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Abstract
Joint academic–industrial projects supporting drug discovery are frequently pursued to deploy and benchmark cutting-edge 
methodical developments from academia in a real-world industrial environment at different scales. The dimensionality of 
tasks ranges from small molecule physicochemical property assessment over protein–ligand interaction up to statistical 
analyses of biological data. This way, method development and usability both benefit from insights gained at both ends, 
when predictiveness and readiness of novel approaches are confirmed, but the pharmaceutical drug makers get early access 
to novel tools for the quality of drug products and benefit of patients. Quantum–mechanical and simulation methods particu-
larly fall into this group of methods, as they require skills and expense in their development but also significant resources in 
their application, thus are comparatively slowly dripping into the realm of industrial use. Nevertheless, these physics-based 
methods are becoming more and more useful. Starting with a general overview of these and in particular quantum–mechanical 
methods for drug discovery we review a decade-long and ongoing collaboration between Sanofi and the Kast group focused 
on the application of the embedded cluster reference interaction site model (EC-RISM), a solvation model for quantum 
chemistry, to study small molecule chemistry in the context of joint participation in several SAMPL (Statistical Assessment 
of Modeling of Proteins and Ligands) blind prediction challenges. Starting with early application to tautomer equilibria in 
water (SAMPL2) the methodology was further developed to allow for challenge contributions related to predictions of dis-
tribution coefficients (SAMPL5) and acidity constants (SAMPL6) over the years. Particular emphasis is put on a frequently 
overlooked aspect of measuring the quality of models, namely the retrospective analysis of earlier datasets and predictions in 
light of more recent and advanced developments. We therefore demonstrate the performance of the current methodical state 
of the art as developed and optimized for the SAMPL6 pKa and octanol–water log P challenges when re-applied to the earlier 
SAMPL5 cyclohexane-water log D and SAMPL2 tautomer equilibria datasets. Systematic improvement is not consistently 
found throughout despite the similarity of the problem class, i.e. protonation reactions and phase distribution. Hence, it is 
possible to learn about hidden bias in model assessment, as results derived from more elaborate methods do not necessarily 
improve quantitative agreement. This indicates the role of chance or coincidence for model development on the one hand 
which allows for the identification of systematic error and opportunities toward improvement and reveals possible sources 
of experimental uncertainty on the other. These insights are particularly useful for further academia–industry collaborations, 
as both partners are then enabled to optimize both the computational and experimental settings for data generation.
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Introduction

Physics‑based modeling in drug discovery

Drug discovery is a multidimensional optimization journey 
starting off from early hit molecules with multiple liabili-
ties to a clinical candidate with desired pharmacokinetic/
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pharmacodynamic (PK/PD) and safety profile, which 
requires the parallel monitoring of different properties. 
While retaining the biological activity against protein 
target(s) of interest, physicochemical properties like solubil-
ity and lipophilicity need to fit a target product profile as well 
as absorption, distribution, metabolism, excretion, and toxic-
ity, ADMET [1] properties. Precise computational predic-
tion of such properties by in silico methods can significantly 
reduce the cycle time for drug discovery, as demonstrated 
by growing interest and application of artificial intelligence 
(AI) methods [2–6]. While AI methods are empirical and 
require large amounts of data to learn the structure–prop-
erty relationship, physics-based methods employ established 
physical knowledge for property prediction. Here, the qual-
ity of the predictions resulting from physics-based methods 
depends on the level of approximations and parameters used 
to describe the underlying processes or reactions.

Quantum mechanics (QM) based methods aim at build-
ing highly detailed models for calculating the electronic 
structure of a system described at the lowest possible level 
of approximations. QM methods may apply wave functions 
(ab initio), density functional theory (DFT) or semiempiri-
cal methods, which are all physics-based and thus use fewer 
approximations and parameters than empirical force field 
techniques. Thus, they are of practical value for the design 
of pharmaceutical compounds, particularly in model systems 
involving reactions, lacking a detailed parametrization. Only 
QM-based approaches can be used to predict processes that 
change the topology of the molecule as a result of chemi-
cal reactivity, which can be helpful for optimizing synthetic 
routes to drug-like compounds. Recently, this has been used 
at Sanofi and elsewhere in the area of late-stage-functional-
ization (LSF) [7–9]. Chemical reactivity is also important 
for the metabolic degradation of pharmaceutical compounds 
by enzymes of the Cytochrome P450 (CYP) family. There-
fore, QM descriptions have been employed in various site 
of metabolism predictions of drug-like compounds [10, 11].

However, in the early phases of drug discovery during hit 
finding and early lead optimization, the use of high-quality 
QM methods is still limited due to resource requirements. 
Here, many candidate structures need to be evaluated while 
at the same time the systems to be studied are often very 
large, such as protein–ligand complexes in structure-based 
design. The handling of many small molecules is trivially 
parallel and could therefore be treated with corresponding 
computing resources available today. Thus, in the early days 
of computer-aided drug design more than 20 years ago, only 
simple QM-derived properties such as the molecular electro-
static potential, MEP [12] or torsional energy profiles [13] 
have been used in industry. The treatment of protein–ligand 
complexes, however, still constitutes a big challenge for 
QM-based computational chemistry. On the other hand, 
force field-based methods that use simple physics models 

for bonded and non-bonded interactions are well established 
for investigating conformational properties of proteins and 
drug-like compounds [14, 15] in drug discovery. They are 
fast, easy to apply and provide results in a time frame that 
fits neatly to the requirements of design-make-test-analyze 
cycles used by project teams throughout industry. This speed 
advantage comes at the inherent cost to all force field meth-
ods that the prediction quality is limited by the chemical 
space used for parametrization. While high-quality force 
fields have been developed that are dedicated to proteins, 
nucleic acids or lipids, general force fields for drug-like 
small molecules do not reach that same level of accuracy 
[16]. A compromise towards higher accuracy of force fields 
consists in augmenting them by torsional potentials cus-
tomized towards the system under investigation and derived 
from QM calculations. As an example, for the OPLS3e force 
field that is used frequently in industry, this process is auto-
mated within the Maestro software [17]. This contributed 
to improvements in free-energy perturbation methods that 
together with a significant increase in compute power on 
graphical processing units led to an increased interest in 
those methods recently [18–21].

Furthermore, supervised machine learning approaches 
(e.g. 2D/3D-QSAR, quantitative structure–activity relation-
ships) are often used to compensate for limitations in force 
field-based methods by making use of larger or project-spe-
cific datasets. In this situation, quantum mechanics-derived 
molecular descriptors offer an interesting opportunity to 
introduce a more physics-based description of molecules into 
the property prediction. At Sanofi and other pharmaceutical 
companies semiempirical quantum mechanics approaches 
like AM1 have been employed to derive molecular orbital 
(MO-) based descriptors for use in 2D-QSAR [22], but also 
3D-QSAR, where the use of MO-based descriptors enabled 
a more detailed analysis of the factors that affect the affinity 
of ligands [23].

Deepening the understanding of non-bonding interac-
tions is of great interest for improvements in structure-based 
design. High-level MP2 (Møller–Plesset 2nd order) and DFT 
calculations have been employed for studying sigma-hole 
[24] and π-stacking interactions [25] between aromatic ring 
systems. Because of the computational expense associated 
with those methods the size of the systems investigated had 
to be reduced to a minimal size of two ring systems. With 
recent advances in improving speed and accuracy of further 
approximated QM approaches, successful predictions of pro-
tein–ligand interactions have been demonstrated using the 
FMO-DFTB [26] and PM6-D3H4 [27] methods.

Combination of QM methods with AI offers an interest-
ing opportunity to reduce time requirements of QM-based 
methods. With some investment in computing time, syn-
thetic training sets can be generated in silico directly from 
QM-based methods. Based on such datasets, progress in the 
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area of deep learning enabled the development of neural 
network potentials such ANI-1 or ANI-1cxx [28, 29], which 
give access to coupled cluster-level energies and geometries 
for large system sizes that are highly relevant to industrial 
applications. Very recently, limitations in the applicability 
of ANI molecular potential have also been overcome by 
extending the training set to include sulfur and halogens 
[30], which has the advantage that the trained neural net-
work can predict high-level conformational energies or other 
properties like dipole moments [31] for large molecule sets 
very quickly. On the other hand, this approach requires a new 
neural network training cycle for any additional property. 
Alternative approaches like SchNOrb overcome this obstacle 
by employing deep learning directly on a ground state wave 
function from which different properties can be derived [32].

In later stages of lead optimization until early develop-
ment fewer molecules are subject of more thorough inves-
tigations. Thus, more expensive computational studies can 
be afforded for advanced molecules, prior or subsequent 
to experimental studies. As an example, physicochemical 
properties of substances strongly depend on solvent effects, 
which can be treated explicitly or implicitly by QM methods. 
This way, the rates of formation of reactive or particularly 
genotoxic impurities can be estimated by computation. Fur-
thermore, QM methods allow for the prediction of spectral 
properties of drug candidates, such as chromophores or UV/
visible light absorption. Both thermal stability and light-
induced decay are important drug product properties to mon-
itor, which determine the drug’s shelf-life and may compli-
cate drug production, logistics and distribution by the need 
of light protected storage. Beyond that, UV-sensitive drug 
candidates can give rise to light-induced adverse events sum-
marized as phototoxicity or photoallergy and may require 
drug labelling or even withdrawal of the drug candidate. 
In current drug development practice, photosafety testing 
remains to be an important component for synthetic mol-
ecules. While current regulatory guidelines leave flexibility 
to both scheduling and methods applied, timely prediction 
and optimization of photosafety is facilitated by QM meth-
ods. In the group of the authors, hybrid methods have been 
pioneered, embedding machine learning and time-dependent 
TD-DFT calculations to determine UV/vis spectral absorp-
tion descriptors of drug candidates in solution. Beyond 
property prediction, this method was shown effective for 
the detection of fragmental contributions to toxicity, a key 
prerequisite for visualization and helpful for guiding drug 
optimization [33].

Another important aspect in drug development concerns 
investigations into which molecular species are present in 
solution and their contributions to bioactivity. This means 
that properties like purity and physicochemical properties 
such as log P, log D, and pKa among others will have to be 
determined with high quality, including clarity about the 

prevalence of different tautomeric species, where necessary. 
Here, high-level computational techniques offer additional 
insights to experimental approaches. For instance, this is 
done at Sanofi in cases where drug molecules can exist in 
different isomeric forms in solution. Solvation models cou-
pled to QM calculations such as the EC-RISM approach 
described below are performed on an ensemble of confor-
mations to provide insights about different isomers, which 
might influence the biological activity of the molecules. 
Often, it could be shown that the isomers observed experi-
mentally are significantly more stable compared to other iso-
mers, contributing to a total population of more than 99.9%.

The industrial application of computational methods in 
drug discovery projects requires high-quality predictions that 
are validated and generally accepted in the scientific com-
munity in order to provide answers accepted by regulatory 
authorities on one hand and to meet the demand of reduc-
ing experimental effort substantially on the other. Therefore, 
measuring and assessing the predictive quality of the tools 
is of utmost importance. It is of equal importance, however, 
that consistent and high-quality data, as typically obtained 
and archived in industry, are used for such benchmarking 
purposes. This emphasizes the importance of an exchange 
of pre-competitive data between industry and academia for 
method development and for measuring and assessing the 
predictive quality of the tools.

Background of SAMPL blind prediction challenges

In this context the SAMPL (Statistical Assessment of Mod-
eling of Proteins and Ligands) blind prediction challenges 
[34] represent a widely known platform for testing models 
on high-quality experimental data that are revealed to par-
ticipants only after they have submitted their predictions. 
The SAMPL challenges were originally invented and organ-
ized by scientists from Stanford University and the software 
company OpenEye, focusing initially on small molecule sol-
vation free energies (SAMPL0 [35] and SAMPL1 [36]) and 
later expanding the scope toward tautomerization free ener-
gies in water (SAMPL2 [37]) and host–guest binding affini-
ties (SAMPL3 [38] and SAMPL4 [39]). However, solvation 
free energy challenges remained a central topic throughout 
running in parallel [37, 38, 40]. Protein–ligand binding pose 
and affinity predictions were spun-off from SAMPL in the 
form of “Grand Challenges” organized by the Drug Design 
Data Resource (D3R) [41] while SAMPL5 was devoted to 
host–guest binding on the one hand [42] and—as an extraor-
dinarily more complicated problem compared to earlier 
small molecule SAMPL challenges—distribution coeffi-
cients between water and cyclohexane on the other [43]. 
This particular challenge pushed the computational chem-
istry community to its limits as it turned out that prediction 
metrics were substantially worse compared to “simpler” 
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hydration free energy problems. This is related on one hand 
to the fact that cyclohexane represents a noncommon apolar 
solvent for pharmaceutical applications. On the other hand, 
the problem is far more challenging as distribution coef-
ficients (log D) at a certain pH imply not only neutral-state 
partitioning thermodynamics between phases (measured by 
the log P) but also protonation equilibria for tautomerizable 
compounds. Besides the host–guest problem addressed again 
during SAMPL6 [44] this subsequent challenge eased the 
complexity somewhat compared to SAMPL5 as participants 
were asked to predict aqueous pKa values of small molecules 
[45] and, during SAMPL6 part II, octanol–water log P for a 
selected subset of neutral-state SAMPL6 compounds [46]. 
As the SAMPL initiative recently received NIH funding, 
project leader D. L. Mobley and colleagues J. D. Chodera, 
B. C. Gibb, and L. Isaacs were able to continue on the road-
map, with the SAMPL7 challenge on host–guest and physi-
cal property predictions currently running.

Our interest in the SAMPL series of challenges arose 
from the ongoing developments in the Kast group in the 
first decade of the twenty-first century in the area of integral 
equation theories of the liquid state, most prominently in 
the form of the three-dimensional reference interaction site 
model (3D RISM) [47–49]. This methodology allows for the 
approximate calculation of solvation free energies directly 
from solute–solvent site distribution functions derived from 
pair interactions and a precomputed pure-solvent “response 
function” (susceptibility or site density–density correla-
tion function). Particularly important is the possibility to 
compute—in contrast to computationally more demanding 
molecular simulations—the solvation free energy analyti-
cally, though at the price of added uncertainty due to the 
so-called closure approximations. Based on a variational 
analysis of the underlying mathematical concepts it was 
possible to derive which type of closure approximations sat-
isfy certain conditions of thermodynamic consistency [50] 
from which a new class of closure approximations could 
be deduced in 2008, the “nth order partial series expan-
sion” (PSE-n) [51] which combines numerical stability 
with satisfactory (though still limited in absolute terms, see 
below) predictions of solvation free energies compared to 
reference calculations employing the “hypernetted chain” 
(HNC) closure. Together with an efficient formulation of 
the free energy problem suitable for large-scale 3D RISM 
calculations [52] it is now possible to routinely compute 
solute–solvent distribution functions and thermodynamic 
quantities even for very large solutes in various solvents. In 
the same year 2008, we developed an extension by coupling 
3D RISM theory to quantum-chemical calculations for a 
solvated molecule as a numerically simpler alternative to 
established coupling schemes [49]. It was termed “embed-
ded cluster reference interaction site model” (EC-RISM) 
[53] as the solvent impact on the solute’s wave function is 

modelled by discretizing the solvent charge density from 
3D RISM theory to form a set of embedding point charges. 
From self-consistent calculations of solvent and electronic 
structure we can compute the solvent-polarized electronic 
energy and the excess chemical potential, the sum of which 
represents the free energy of a compound in solution.

One of the first applications of EC-RISM theory was 
devoted to protonation equilibria, namely the calculation 
of relative pKa differences between similar small molecules 
for which the approximation artefacts of 3D RISM were 
expected to largely cancel [53]. At the time of these develop-
ments, 2008–2009, the Kast group got into contact with the 
company Sanofi that recognized the potential of 3D RISM/
EC-RISM for pharmaceutical research, which formed the 
nucleus of a decade-long academia–industry collaboration 
that is still ongoing. While absolute solvation free energies 
from RISM calculations were out of reach at that time, the 
SAMPL2 tautomer challenge was perfectly timed to rigor-
ously assess the quality of the EC-RISM approach, as the 
methodology—again under the assumption of error cancel-
lation for similar molecular tautomeric states—could dem-
onstrate its potential for application to an important problem 
occurring during a drug discovery campaign. Tautomers are 
highly relevant as their state strongly affects the binding of a 
ligand to a drug target; predicting and controlling tautomer 
preferences is therefore an important design goal. QM is 
necessarily an essential modeling component for a micro-
scopic, physics-based approach since chemical reactions are 
involved.

Hence, we joined forces by exchanging tools and meth-
ods and developed a workflow that is still the basis for 
later challenges to come [54]. Briefly, the experimental 
SAMPL2 dataset consisted of an “explanatory” (reference 
data was revealed to the participants) and an “obscure” 
dataset for which predictions had to be submitted (and 
another “investigatory” set, for which no experimental 
numbers were known). The EC-RISM model available at 
that time was applied to an exhaustively sampled set of 
conformations, employing a self-consistent point charge 
approximation for electrostatic solute–solvent interactions. 
Remarkably, we obtained a root mean square error (RMSE) 
of 0.57 kcal mol−1 for the explanatory set (excluding two 
highly uncertain compounds) with little procedural optimi-
zation, but the performance on the obscure set was disap-
pointing with an RMSE of only 2.91 kcal mol−1 (see Table 6 
in [54]). Interestingly, the unbalanced chemical diversity of 
the two datasets could play a role, as the explanatory set 
consisted mainly of 5-membered rings and the obscure set of 
6-membered rings. The reason for the discrepancy remained 
elusive, yet the overall performance with an average RMSE 
of 1.93 kcal mol−1 was a decent success also in compari-
son with other participants [55], although this is a rather 
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meaningless finding given the apparent wide distribution of 
prediction errors.

The situation concerning absolute RISM-based free 
energy predictions changed when it was recognized roughly 
5 years ago that the error is quantitatively related to the par-
tial molar volume (PMV) and the net charge of a solvated 
molecule [56–59]. This stimulated our interest in combining 
this idea with the EC-RISM approach to arrive at a quanti-
tative, predictive model for computing chemical potentials 
in solution. Again, the coincidence with a SAMPL chal-
lenge, this time SAMPL5 on cyclohexane–water log D at pH 
7.4, triggered implementation of such a corrective scheme 
and application in another joint academic–industrial col-
laboration to the dataset [60]. In 2015 we were able to cal-
culate hydration free energies with satisfactory accuracy, 
whereas a pKa model, which would require an additional 
layer of parametrization to account for the thermodynamics 
of the solvated proton, was not yet finished at the submis-
sion deadline. We therefore decided to optimize the transfer 
free energy prediction between cyclohexane and water by 
training individual solvation free energy models with only 
a few adjustable parameters, supplemented with an empiri-
cal estimate of most relevant tautomers and associated pKa 
values by the software MoKa [61]. In the absence of dis-
closed training data related to the real problem, the com-
munity was faced with an extremely hard challenge, and the 
results were accordingly disenchanting [43]. In our case (see 
Tables 1, 3 in [60]), RMSE values for the MNSOL [62–65] 
reference dataset in water (including ions) and cyclohexane 
reached for the best models 2.43 (1.52 excluding ions) and 
0.76 kcal mol−1, respectively. With the MoKa pKa model our 
SAMPL5 log D estimates deviated by as much as 4.61 pK 
unites RMSE (furthermore restricted to so-called batches 0 
and 1 of the dataset, leaving out the conformationally more 
demanding batch 2 due to time constraints), while a crude 
approximation, namely ignoring the protonation equilibria 
altogether and estimating log D by log P, yielded a surpris-
ingly much better RMSE of 2.86 pK units.

Better pKa predictions are therefore key to improvement. 
Only after the submission were we able to develop such a 
linear EC-RISM-based model which requires two adjustable 
parameters, one for scaling the Gibbs free energy difference 
between protonated and deprotonated form, and one inter-
cept parameter representing the free proton contribution [60, 
66]. Trained on a reference pKa database [67] we obtained 
an overall RMSE including acids and bases of 1.52 pK units 
(Table 2 in [60]), which, applied again to batches 0 and 1 
of the total dataset, improved log D predictions down to an 
RMSE of 2.25 pK units. Notably, this result is massively 
influenced by a few drastically deviating outliers that will 
be further discussed below.

Participating again as joint team in the pKa prediction 
challenge within SAMPL6 in 2017/2018 on small kinase 

inhibitor fragments was then the logical next step. Here 
the main difficulty was the presence of multiple protona-
tion sites and the resulting large number of tautomers (or 
“microstates”), accompanied by several ionization states that 
are not a priori easy to assign to specific molecular tran-
sitions. Participants were also asked—in an investigatory 
manner—to calculate populations of individual microstates 
as a function of pH. While the SAMPL5 post-submission 
pKa model was still based on self-consistent atomic site 
charges for determining the electrostatic contribution to the 
solute–solvent interactions, we now turned to an EC-RISM 
variant that allows for using the electrostatic potential aris-
ing from the solute’s wave function directly, i.e. formally in 
an exact manner. This strategy was developed earlier in the 
context of EC-RISM-type calculations for polarizable solute 
force fields [68] and was trained again on MNSOL com-
pounds for hydration Gibbs energies and on the reference 
pKa database as used during SAMPL5, yielding a training 
RMSE of 1.00 pK units for the best pKa model (see Table 2 
in [69]) and 2.20 kcal mol−1 for the corresponding hydration 
free energy model (Table 1 in [69]). Applying this setup to 
the SAMPL6 dataset turned out to be problematic as not all 
compounds could be calculated consistently using the exact 
electrostatic potential, requiring a point charge fallback in 
certain cases. Consequently, the prediction RMSE suffered, 
reaching 1.70 pK units for the model determined as optimal 
during training.

After the challenge ended we detected the source of the 
convergence problem for selected compounds, an inadequate 
consideration of the aperiodic electrostatic potential under 
otherwise periodic boundary conditions used within 3D 
RISM [69]. Correcting for these artefacts facilitated con-
sistent exact potential calculations for the entire dataset, 
resulting in RMSEs of 2.04 kcal mol−1, 1.04 and 1.13 (two 
conformations)/1.15 (single best conformation) pK units for 
hydration free energies, pKa reference set, and SAMPL6 test 
set, respectively.

Finally, SAMPL6 part II provided participants with 
the additional opportunity to predict neutral-state transfer 
free energies, i.e. octanol–water log P. Without changing 
the water setup compared to the optimal post-submission 
SAMPL6 approach we only optimized a solvation free 
energy model for octanol, trained again against MNSOL 
reference data, that requires two parameters and that reflects 
the saturated water content of the octanol phase adequately. 
This “wet” octanol model was reasonably successful without 
any post-submission optimization, as it exhibited an RMSE 
of only 0.47 pK units (see Table 3 in [70]), but one has to 
consider the small dynamic range of experimental values 
in this case.
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Outline

Given the optimized strategies developed particularly for 
SAMPL6 it appears to be timely to re-address SAMPL2 and 
SAMPL5 datasets in order to find out whether progress has 
been made on all fronts. Moreover, the strategy has been 
successfully benchmarked against other independent sim-
ulation-based approaches for calculating tautomerization 
equilibria of natural and artificial nucleobases very recently 
[71], also augmented by an alternative route comprising 
explicit high-level gas phase calculations combined with 
hydration Gibbs energies for individual species (unlike the 
“direct” approach to compute a solute’s Gibbs energy as sum 
of electronic energy and excess chemical potential as used 
throughout in SAMPL2, -5, and -6). We therefore turned to 
the older datasets in order to measure the performance of 
the SAMPL6 setup and workflow, optimizing and retrain-
ing only the cyclohexane model in order to find out possible 
sources of systematic error. This is then followed by re-anal-
ysis of the SAMPL2 tautomer dataset in the same spirit. 
The—somewhat surprising—results are finally discussed in 
light of future challenges on both the computational and the 
experimental side, both domains potentially benefitting from 
deepened academia–industry collaborations as a perspective.

Computational details

For re-addressing the SAMPL5 challenge compounds, two 
setups were applied and compared, the original SAMPL5 
methodology [60], here extended by covering the whole 
compound set including batch 2 which was not possible 
back then, and an extension of the SAMPL6 models [69, 
70] to address cyclohexane solution thermodynamics. 
For the latter, the “MP2/6-311+G(d,p)/φopt” water model 
and the corresponding two-parameter pKa model from the 
SAMPL6 pKa challenge were used unchanged for calculat-
ing the Gibbs energy of the molecules in the aqueous phase 
and the acidity constants [69, 70]. Also for the SAMPL6 
setup, we developed new cyclohexane models trained to 
reproduce solvation Gibbs energies found in the MNSOL 
dataset [62–65], using the same cyclohexane susceptibil-
ity and solution phase training set structures as before for 
SAMPL5 [60] and, unlike the SAMPL5 workflow where 
we assumed identical geometries in gas and solution phase, 
explicit gas phase re-optimized conformers on the B3LYP/6-
311+G(d,p) level of theory using Gaussian 09 Rev. A.02 
[72]. In contrast to the original SAMPL5 setup where only 
the most abundant tautomer and corresponding Corina-gen-
erated 3D conformations were taken as representative for 
a given compound, for the SAMPL6 setup every tautomer 
state generated by MoKa [61] with initial 3D conformations 
taken from Corina [73] was investigated. Enumeration of 

stereocenters was not necessary as all stereocenters were 
explicitly defined in the input data and no new stereocenters 
were produced during tautomerization. As we found during 
SAMPL6 that accounting for conformational flexibility is 
relevant [69], we used five SAMPL5 compound structures 
with lowest PCM energies in the respective solvent for each 
individual tautomeric state, instead of just the minimum 
structure within the SAMPL5 setup.

The same workflow used for generating the conformations 
for batch 0 and batch 1 during the SAMPL5 challenge was 
repeated here to sample the conformations for batch 2 and 
the alternative tautomers: first, for each molecule 200 con-
formations were generated using the EmbedMultipleConfs 
function of RDKit [74, 75]. These conformations were 
then pre-optimized using antechamber from the Amber12 
software package with an implicit solvent model using the 
dielectric constants of water and cyclohexane, respectively 
to account for solvation effects with AM1-BCC charges and 
GAFF version 1.7 (identical with 1.4) parameters for the 
non-bonded terms [76–79]. The resulting structures were 
clustered based on the following criteria: all conformations 
with a force field energy at least 5 kcal mol−1 higher than 
the lowest energy conformation found were discarded. The 
minimum structure was then assigned as the first cluster 
and the structural root mean square difference (RMSD) to 
the next best structure was determined using the GetBe-
stRMS function of RDKit. If this structure had an RMSD 
of less than 0.5 Å the structure was assumed to be prop-
erly represented by the existing cluster. In case of a larger 
RMSD the structure was instead assigned as a new cluster 
to which all further conformations were compared as well. 
All cluster representatives generated in this way were then 
optimized quantum-chemically at the IEFPCM/B3LYP/6-
311+G(d,p) level of theory using Gaussian 09 Rev. A.02 
[72]. Within the SAMPL6 setup, up to five conformations 
with the lowest PCM (polarizable continuum model) energy 
were taken from those cluster representatives to calculate 
the Gibbs energy in solution using EC-RISM and a similar 
partition function approach as during the SAMPL6 chal-
lenge, whereas only the globally optimal conformation (for 
the MoKa-determined dominant tautomer) was selected for 
the SAMPL5 setup.

The Gibbs energy G of a species immersed in a solvent i 
is defined as the Boltzmann-weighted sum over state-specific 
electronic energies, Esol, in solution and (corrected) excess 
chemical potentials by 

with molar gas constant R and absolute temperature (25 °C) 
T, and where t and c denote the tautomeric state and the 

(1)G(i) = −RT ln
∑

tc

exp
[

−
(

Esol
tc
(i) + �

ex,corr
tc

(i)
)

∕RT
]
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conformer, respectively. The correction to the EC-RISM-
derived excess chemical potential is defined by [60, 69, 70]

with adjustable, solvent-specific parameters c scaling the 
RISM chemical excess potential μex, the PMV Vm, and the 
net charge q, and an optional intercept parameter d can be 
employed. The solvation free energy follows by subtract-
ing the gas phase energy, ignoring thermal corrections. 
For evaluating the log D of the SAMPL5 compounds these 
Gibbs energies in water (W) and cyclohexane (C) enter the 
partition coefficient log P directly via

G actually corresponds to standard state quantities as cal-
culations were performed at infinite dilution in solvents 
assumed at 1 bar pressure by definition of the density. The 
distribution coefficient at pH 7.4 then follows by account-
ing for the pKa (here computed according to the optimized 
SAMPL6 setup) from

for bases (if no deprotonation site is detected or if pKb < pKa) 
and

for the acidic compounds. The approach was applied to the 
three components of the SAMPL5 dataset, batches 0, 1, and 
2. Batches 0 and 1 were already treated in our earlier paper 
[60] within the SAMPL5 setup that was extended here to 
cover the most abundant tautomer and conformer also for 
batch 2 species, while the SAMPL6 setup was applied to 
the complete spectrum of tautomers and corresponding five 
dominant conformers for all three batches. Note that we 
detected an error in our original SAMPL5 submission paper 
[60] where we accidentally applied the base equation to the 
four acids contained in batch 1 of the dataset, which slightly 
changes the statistical metrics, to be corrected below.

An important difference between these new SAMPL6-
style calculations and the previous SAMPL5 setup concerns 
the alternative route via explicit solvation free energies sub-
stituting G in Eq. (3) as given by Eq. (14) in [60]. Physically, 
this choice makes no difference, as the real gas phase state 
of the compound is the same when it is dissolved in water 
or cyclohexane. In the previous calculations we, however, 
optimized the solvation free energy models for a given set of 
gas phase and solution state structures that were generated 
and optimized independently as they arose from separate 
conformational searches in solution. We accounted for this 
formal, artificial term by a virtual reorganization energy 

(2)�
ex,corr
tc

= c
�
�
ex
tc
+ cVVm,tc + cqq + d

(3)log P =
G(W) − G(C)

RT ln 10
.

(4)log D7.4 = log P − log(1 + 10pKa−7.4)

(5)log D7.4 = log P − log(1 + 107.4−pKa )

difference as this approach worked well at that time. Here, 
we switched to the physically more plausible way of directly 
calculating the Gibbs energy in solution as done throughout 
in later challenges.

For consistency with the original SAMPL5 challenge, 
SAMPL5-style calculations on batch 2 compounds were 
conducted using the EC-RISM and 3D RISM settings 
employed during SAMPL5 [60]. For the new SAMPL6-style 
calculations all of the EC-RISM and 3D RISM settings were 
chosen identical to those used in the SAMPL6 part II log P 
challenge [70] that slightly differ from SAMPL5 settings, 
entailing minor numerical differences even when the original 
cyclohexane model was applied to original SAMPL5 train-
ing set structures.

For the SAMPL2 tautomer dataset [54] we followed a 
similar route as for the direct SAMPL5 Gibbs energy cal-
culations by defining the tautomerization reaction Gibbs 
energy in water for a state change a → b as

here employing the SAMPL6 water model. We used the 
same set of exhaustively sampled OH rotamers as before, 
optimized again on the IEFPCM/B3LYP/6-311+G(d,p) 
level of theory using Gaussian 09 Rev. D.01 [80] for solution 
phase structures, consistently with SAMPL6. An alterna-
tive route is provided by an explicit thermodynamic cycle as 
used by us in [71], where we added a high-level [CCSD(T)/
cc-pVTZ] gas phase energy difference, calculated using the 
ORCA [81] software and applying the RI-F12 approximation 
[82, 83], to the difference between explicit hydration Gibbs 
energies computed at the SAMPL6 level, including thermal 
correction computed by vibrational analysis on optimized 
B3LYP/6–311 + G(d,p) structures using Gaussian 09 Rev. 
D.01 [80]. For both routes we calculated the free energy 
per species via a partition function approach averaging over 
Gibbs energies of all rotamers in solution and—for the indi-
rect route—also in the gas phase to determine the total free 
energy difference, similar to our recent nucleobase analysis 
[71].

Results and discussion

Cyclohexane training set

In total four different cyclohexane models were newly 
trained using 1–3 free parameters to fully capture the range 
of possible corrections for cyclohexane, extending the range 
of models examined during SAMPL5 [60] and inspired by 
the insight from the recent SAMPL6 challenges [69, 70]. 
In particular, the octanol–water challenge [70] showed that 
a two-parameter model (termed here “2-par”) that scales 

(6)ΔG0 = Gb(W) − Ga(W),
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the excess chemical potential and the PMV performed best, 
whereas at the time of the SAMPL5 challenge for cyclohex-
ane we tested only models containing the intercept term d, 
scaling either the PMV contribution (termed here “2-par-I” 
and “(cμ = 1)” in [60]) or both PMV and excess chemical 
potential terms (termed here “3-par” and “(cμ opt)” in [60]). 
For completeness we also tested a conservative model where 
only the PMV expression is scaled, termed “1-par”.

Results for the various models are shown in Table 1 
(water model metrics according to the SAMPL6 setup is 
presented for completeness, see [69]) and Fig. 1. The results 
obtained here for parameters and statistical metrics are very 
similar to the original SAMPL5 numbers [60], while the 
gas phase optimization slightly improves the 3-par model 
only. A notable difference to the previous paper is reflected 

by the 2-par model whose development essentially followed 
the successful octanol model applied during SAMPL6 part 
II [70]. As expected from the octanol approach, the 2-par 
model (not tested during SAMPL5) performs very well on 
the training set, with a root-mean-square error (RMSE) 
being only slightly worse than the best, but with a slope 
near one and an intercept near zero accompanied by a near 
optimal coefficient of determination R2 indicating a well-
balanced approach. One would therefore expect superior 
performance when applied to the SAMPL5 test set, but in 
general it is very likely that the improved SAMPL6 water/
pKa model should exhibit the larger effect on predictions.

Table 1   Regression parameters 
of optimized 3D/EC-RISM/
PSE-2-based Gibbs energy 
of solvation models (cµ, cV/
kcal mol−1 Å−3, cq/kcal mol−1 
e−1, cd/kcal mol−1) along with 
statistical metrics (root-mean-
square error RMSE/kcal mol−1, 
mean absolute error MAE/
kcal mol−1, mean signed error 
MSE/kcal mol−1, slope m′, 
intercept b′/kcal mol−1, and 
coefficient of determination R2 
from descriptive regression). 
Water model data correspond to 
the “MP2/6-311+G(d,p)/φopt” 
approach in [69]

For consistency with the SAMPL6 part II representations cV corresponds to PMVs computed via the total 
correlation function route [84, 85] using an experimental isothermal compressibility of 1.1197 × 10−9 Pa−1 
for cyclohexane [86] and the RISM estimate of 0.717062 × 10−9  Pa−1 for water. “(5)” after the solvent 
model code indicates SAMPL5 models from [60]. Optimized solution and gas phase structures are pro-
vided as Online Resource 1; calculated data, also split into separate components, are provided as Online 
Resource 2

Solvent RMSE MAE MSE m′ b′ R2 cµ cV cq cd

Water
 All 2.04 1.43  − 0.26 1.00  − 0.35 1.00 – –
 Neutrals 1.56 1.13  − 0.36 0.97  − 0.47 0.89 – – – –
 Anions 3.07 2.46 0.01 1.10 7.18 0.94 – – – –
 Cations 2.98 2.10 0.02 0.96  − 2.62 0.85 – – – –

Cyclohexane
 Uncorrected 5.86 5.60 5.60 0.13 1.53 0.05 – – – –
 1-par 1.07 0.86 0.20 0.73  − 1.04 0.62 –  − 0.14923 – –
 2-par 0.77 0.58 0.11 0.99 0.06 0.83 2.0184  − 0.17795 – –
 2-par-I 0.90 0.73 0.00 0.57  − 2.00 0.76 –  − 0.10894 –  − 1.6593
 2-par-I(5) 0.88 0.70 0.00 0.59  − 1.94 0.77 –  − 0.10811 –  − 1.6566
 3-par 0.68 0.50 0.00 0.84  − 0.75 0.83 1.8516  − 0.14692 –  − 1.0842
 3-par(5) 0.76 0.56 0.00 0.84  − 0.73 0.84 1.8444  − 0.14703 –  − 1.0479

Fig. 1   Gibbs energies of solva-
tion in cyclohexane from opti-
mized 3D RISM calculations 
vs. the experimental results 
from the MNSOL database. 
Uncorrected data is shown by 
red squares in both panels. A 
1-par (dark blue), 2-par (green) 
and B 3-par (green), 2-par-I 
(dark blue)
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SAMPL5 revisited

The four new optimized cyclohexane models and the best-
performing SAMPL6 water/pKa models were then applied 

to the SAMPL5 dataset, this time to all batches 0, 1, and 2 as 
batch 2 was left out in our earlier SAMPL5 paper [60], and 
extended by covering multiple tautomers and conformers. 
For a complete comparison we also re-applied the original 

Table 2   Statistical metrics 
(root-mean-square error RMSE, 
mean absolute error MAE, 
mean signed error MSE, and 
slope m′, intercept b′, and 
coefficient of determination R2 
from descriptive regression) for 
all compounds from SAMPL6-
type models for water [MP2/6-
311+G(d,p)/PSE-2] and 
cyclohexane (PSE-2) and the 
original SAMPL5 setup

Optimized solution structures are provided as Online Resource 3; calculated data, also split into separate 
components, as Online Resource 4

Setup Observable Cyclohexane mod Batches RMSE MSE MAE R2 m′ b′

SAMPL6 log P 1-par 0 + 1 + 2 3.40 1.25 2.59 0.52 1.76 1.60
2-par 0 + 1 + 2 4.36 3.38 3.67 0.56 1.65 3.69
2-par-I 0 + 1 + 2 2.33  − 0.01 1.76 0.54 1.4 0.18
3-par 0 + 1 + 2 3.18 2.21 2.68 0.57 1.45 2.42

log D7.4 1-par 0 + 1 + 2 3.23 0.59 2.50 0.63 2.02 1.07
2-par 0 + 1 + 2 3.97 2.72 3.40 0.65 1.92 3.15
2-par-I 0 + 1 + 2 2.46  − 0.67 1.71 0.67 1.69  − 0.35
3-par 0 + 1 + 2 2.88 1.55 2.44 0.66 1.72 1.89

SAMPL5 log P 2-par-I(5) 0 + 1 + 2 2.33 0.55 1.79 0.55 1.39 0.73
3-par(5) 0 + 1 + 2 3.63 2.85 3.10 0.57 1.43 3.04

log D7.4 2-par-I(5) 0 + 1 + 2 2.32  − 0.37 1.76 0.68 1.69  − 0.05
3-par(5) 0 + 1 + 2 3.11 1.92 2.74 0.66 1.73 2.27

Table 3   Statistical metrics 
(root-mean-square error RMSE, 
mean absolute error MAE, 
mean signed error MSE, and 
slope m′, intercept b′, and 
coefficient of determination R2 
from descriptive regression) 
separated by batches using 
the SAMPL6-type models for 
water and cyclohexane and 
the original SAMPL5 setup 
excluding SAMPL5_083

a–b Corrected results for SAMPL5 setup, original values [60] for RMSE, MSE, R2, m′, b′:
a 2.15, − 0.53, 0.59, 1.36, − 0.34
b 2.76, 1.64, 0.59, 1.42, 1.87

Setup Observable Cyclohexane mod Batches RMSE MSE MAE R2 m′ b′

SAMPL6 log P 1-par 0 + 1 2.29 0.13 1.77 0.63 1.56 0.43
2 4.74 3.18 4.01 0.54 2.04 3.56

2-par 0 + 1 3.18 2.37 2.59 0.66 1.52 2.64
2 5.87 5.14 5.53 0.59 1.82 5.44

2-par-I 0 + 1 1.99  − 0.65 1.57 0.62 1.31  − 0.49
2 2.83 1.10 2.09 0.53 1.58 1.31

3-par 0 + 1 2.44 1.49 1.97 0.63 1.36 1.68
2 4.15 3.47 3.93 0.60 1.56 3.67

log D7.4 1-par 0 + 1 2.45  − 0.59 1.88 0.77 1.89  − 0.12
2 4.26 2.62 3.58 0.63 2.18 3.05

2-par 0 + 1 2.88 1.65 2.49 0.74 1.85 2.09
2 5.36 4.59 4.98 0.66 1.95 4.94

2-par-I 0 + 1 2.44  − 1.37 1.73 0.74 1.64  − 1.04
2 2.48 0.55 1.66 0.64 1.71 0.80

3-par 0 + 1 2.33 0.77 1.91 0.72 1.69 1.13
2 3.65 2.92 3.38 0.68 1.69 3.17

SAMPL5 log P 2-par-I(5) 0 + 1 1.99  − 0.09 1.48 0.61 1.35 0.09
2 2.83 1.67 2.32 0.52 1.39 1.81

3-par(5) 0 + 1 2.86 2.08 2.41 0.65 1.41 2.30
2 3.86 2.98 3.54 0.67 1.81 3.27

log D7.4 2-par-I(5) 0 + 1a 2.25  − 0.86 1.63 0.71 1.60  − 0.54
2 2.44 0.48 1.99 0.69 1.81 0.77

3-par(5) 0 + 1b 2.59 1.31 2.29 0.70 1.66 1.67
2 4.68 4.17 4.29 0.56 1.40 4.32
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SAMPL5 setup (water and cyclohexane models, point charge 
electrostatics, globally optimal MoKa-determined tautomer 
and sampled conformer set) to the full set of batches in 
order to clarify possibly different trends depending on the 
choice of compound sets that might bias the analysis. As 
before, we furthermore show results for both, the pure neu-
tral state partition coefficient, log P, and the target quantity, 

the distribution coefficient at pH 7.4, log D7.4, collected in 
Tables 2, 3, 4 and 5 and in Fig. 2.

As a first result, predictions for batch 2, which contains 
mostly larger molecules compared to batches 0 and 1 and 
which therefore deviates most from PMV correction and 
pKa training set species, are systematically worse than for 
the other batches. For the SAMPL5 setup the cause could be 
related the higher likelihood of missing relevant tautomers 

Fig. 2   Partition (dark blue) and 
distribution coefficients (green) 
calculated using EC-RISM 
with the SAMPL6- (A–D 
1-par, 2-par, 2-par-I, 3-par) 
and SAMPL5-type [E and F 
2-par(5), 3-par(5)] models 
for water and cyclohexane 
compared with the experi-
mental results (excluding 
SAMPL5_083, for which MP2 
energies could not be obtained). 
Compounds of batches 0, 1, 
and 2 are shown as triangles, 
squares, and pentagons, respec-
tively. Dashed lines indicate 
descriptive linear regression 
results
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or conformers, but this tendency is consistently found for 
both, SAMPL5 and SAMPL6 setups. Given the resulting 
uncertainty in RMSE metrics, we find—to our surprise—
basically no significant difference between the two setups, 
despite the fact that individual training set results (solvation 
free energies and pKa) were markedly improved between 
SAMPL5 and SAMPL6. This discrepancy between training 
and test set performance is also reflected by the fact that the 
expectedly worse 2-par-I model turns out, again as during 
SAMPL5, to be better than the 3-par approach. And—most 
strikingly—the well-balanced 2-par model introduced for 
the SAMPL6 setup, which yielded excellent predictions 
for octanol–water log P during SAMPL6 part II, is even 
the worst of all models tested in terms of RMSE and mean 
signed error (MSE). Still, as expected, log P correlates 
worse than predicted log D with experiments measured by 
error metrics and R2, but regression slopes m′ deviate even 
more strongly from unity by inclusion of pKa, and models 
without an explicit intercept parameter (i.e. all except 2-par-
I) show a regression intercept b′ substantially far off from 
zero. All these findings indicate a systematic problem that 
cannot easily be identified as originating from a theoreti-
cal or an experimental source. With the present EC-RISM 

capabilities it appears impossible to obtain RMSEs better 
than 2–3 for log D.

Regression slopes much larger than unity are a signature 
of systematic asymmetry, as solubilities of highly water-sol-
uble compounds in cyclohexane are strongly underestimated 
(or their solubility in water overestimated), and vice versa 
for highly cyclohexane-soluble species. Near the extremes of 
the dynamic range, we hence observe extraordinarily large 
log D errors exceeding 4 pK units (see Table 4), to a lesser 
extent already visible in the log P predictions. Due to the 
directional nature of the distribution coefficient accounting 
for pH can only shift the partition coefficient to lower val-
ues because the ionized species is assumed to be unable to 
enter the organic phase. As a consequence, regression slopes 
deviate even more strongly from unity for log D compared to 
log P predictions, but the origin of the total error is probably 
related to both phases.

Looking first at the effect of pH, we can test to what 
degree pKa predictions change for the SAMPL5 compounds 
between SAMPL5 and SAMPL6 setups. Unfortunately, no 
experimental aqueous pKa values are accessible for these 
compounds, but comparison of the pKa values predicted 
using the SAMPL5 and SAMPL6 setup shows (Table 5; 

Table 5   Statistical metrics (root-mean-square error RMSE, mean 
absolute error MAE, mean signed error MSE, and slope m′, intercept 
b′, and coefficient of determination R2 from descriptive regression) 

for the pKa values predicted using the SAMPL5 and SAMPL6 setups 
compared with the Chemicalize [87] predictions

pKa model RMSE MSE MAE R2 m’ b’

SAMPL5 2.07  − 0.57 1.54 0.72 0.88 0.21
SAMPL6 2.10 0.58 1.45 0.73 0.94 0.99

Fig. 3   Acidity constants calcu-
lated with the original SAMPL5 
setup compared to the SAMPL6 
setup (A), results obtained from 
SAMPL5 (green) and SAMPL6 
setups (dark blue) compared 
to Chemicalize [87] predic-
tions (B). Dashed lines indicate 
descriptive regression results. 
Raw data are provided as Online 
Resource 5
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Fig. 3) that the predicted values of both setups have a good 
correlation, and those of the former are on average lower by 
about 1.15 pK units. Comparing these results with predic-
tions from a different source, in this case using pKa values 
empirically predicted using Chemicalize [87] shows that 
both methods have reasonable agreement with the empiri-
cal predictions with RMSEs of 2.10 and 2.07, respectively. 
The higher predicted pKa values of the SAMPL6 setup lead 
to opposite effects for acids and bases. Acids will be pre-
dicted to have a lower fraction of the ionic species at pH 7.4 
so their log D will be closer to the log P, while bases will 
be predicted to have a higher fraction of the ionic species 
and their log D will be shifted by a larger amount. Since 
there are 33 basic and only 14 acidic pKa values this leads 
to a stronger effect of the pKa on the already slightly lower 
partition coefficients predicted using the SAMPL6 setup 
when calculating the distribution coefficients, but the effect 
is not large enough to correct for the massive outliers near 
the negative limit of the dynamic range. Given the expected 
pKa prediction uncertainty of the SAMPL6 setup of around 
1 pK unit [69], it is very likely that pKa errors can be ruled 
out as the source of the computational discrepancy.

Model limitations attributed to the cyclohexane phase 
are another possible source of error. The EC-RISM models 
describe cyclohexane as a pure organic phase, ignoring a 
small, experimentally measurable water fraction estimated 
between 3.20 × 10−4 and 3.75 × 10−4 [88]. Especially for 
very polar compounds this might have a significant effect 
on the Gibbs energy of solvation in cyclohexane because 
single water molecules could reside near the polar solute 
over considerable time, as has been found during MD simu-
lations by Bannan et al. [43]. These authors found a signifi-
cant impact of added water molecules on the calculated log 
P for compound SAMPL5_074, changing from − 3.76 (no 
water) to − 2.82 (one water) and − 1.74 (7 water molecules), 
the last value being close to the experimental (log D) value 
of − 1.9. While this could explain the deviations to lower 
calculated distribution coefficients for the more polar com-
pounds one should keep in mind that the water concentra-
tions during these simulations were ~ 14–100 times higher 
than the experimental values. As the authors note, further 
investigations into the actual local water concentrations near 
the solute are necessary to understand the role of residual 
water in cyclohexane. Also, in the aftermath of the SAMPL5 
challenge Klamt et al. studied the effect of small water con-
centrations and found only a minor improvement of some 
predicted values [89], yielding an RMSE of 2.08 (2.11 
before accounting for the water fraction) from COSMO-RS 
calculations. Even when comparing the predicted distribu-
tion coefficients obtained by EC-RISM with their model that 
performed best in the original SAMPL5 challenge, includ-
ing the correction for the water fraction, the agreement is 
significantly better than with the experimental data (Fig. 4). 

While there is an offset towards lower predicted values for 
EC-RISM which makes the performance slightly worse, 
there is a clear agreement between the two models even for 
the most hydrophilic and lipophilic compounds (RMSE of 
1.77 relative to our best model 2-par-I). Hence, a systematic 
deficiency of the apolar phase model can neither be identi-
fied and, more importantly, two entirely different prediction 
models yield similar disagreement with experimental refer-
ence data with a relative RMSE that is even smaller than 
RMSEs with respect to experimental values in both cases.

The agreement between both approaches is even more 
evident if we analyze a reduced dataset excluding the seven 
worst outliers (implying the missing SAMPL5_083 as an 
effective outlier as well) similar to Klamt et al. [89] who 
excluded the eight worst outliers. In our case these are 
SAMPL5_033, 010, 015, 037, 063, 074, 081 (most of them 
predicted too small); the smallest deviation among these was 
found for SAMPL5_037 (3.77), the largest for 074 (7.86), 
all from applying the 2-par-I model. The resulting RMSE 
would drop to 1.37 (COSMO-RS: 1.57) with an MSE of only 
0.12. Outliers near the limits of the dynamic range appar-
ently account for the largest share of the discrepancies. All 
these findings point to a systematic problem either with the 
experiments or with the way theoretical models try to reflect 
experimental conditions, which will be further discussed in 
the concluding section.

SAMPL2 revisited

Compared to the SAMPL5 re-analysis, the expectation was 
even higher to obtain improved results for the SAMPL2 

Fig. 4   Distribution coefficients calculated using the best-performing 
SAMPL6-type EC-RISM model (2-par-I, RMSE 2.49, excluding 
SAMPL5_083) compared with predictions from the COSMO-RS 
model applied to the SAMPL5 challenge [89] with an RMSE of 2.11 
(before correction for water presence, including special correction for 
SAMPL5_069). The diagonal line indicates perfect correlation
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tautomer datasets, as we are facing a simpler single-phase 
problem in this case, with results collected in Tables 6 
and 7 and Fig. 5. During SAMPL2, training (“explana-
tory”) and test (“obscure”) sets were composed of differ-
ent chemical and reaction classes, the former of keto-enol 
5-membered heterocycles (compound numbers 10–16) 
and diketo compounds (7 and 8, both with considerably 
larger estimated experimental uncertainty and therefore 
excluded for training purposes by us earlier), the lat-
ter of keto-enol 6-membered heterocycles (1–6) [37, 54]. 
While we obtained very promising results during training 
with RMSEs of 0.58/0.66 kcal mol−1 for rotamer minima 
(“min”) or partition function (“Z”), respectively, corre-
sponding metrics for the blind test set were much larger 
(RMSEs 2.90/2.78 kcal mol−1) yielding overall RMSEs of 
1.98/1.93 kcal mol−1 which still was a major success back 
then. Moreover, we noted a systematic shift (measured by 
MSE and b′) for the 6-membered rings (keeping the keto-
enol direction consistent as specified by the challenge organ-
izers) which gave rise to the puzzling conclusion that the 
computational methodology was seemingly inconsistent 
depending on ring topology and composition.

The results from applying the direct and the indirect 
SAMPL6 setups [71] did, much to our surprise, not set-
tle the inconsistency. While the test set error decreased 

considerably to ca. 1.5 kcal mol−1, the training set perfor-
mance deteriorated down to an RMSE of 2.6–3.4 kcal mol−1, 
with the smaller number obtained by the expectedly more 
reliable explicit CCSD(T) gas phase approach. Total RMSEs 
averaged over training and test set are finally even worse 
(2.2–2.7 kcal mol−1), again with a better performing explicit 
CCSD(T) model. Taking all metrics together, the explicit 
gas phase thermodynamic cycle approach performs best and 
most consistent among all compound classes, but the per-
formance inversion compared to the earlier SAMPL2 results 
is worrisome. Equally worrying is the finding that more 
advanced methods apparently do not improve predictive 
power overall, though we were able to produce better bal-
anced results by refining computational methods. Whether 
or not there exists an experimental problem with the train-
ing compounds 10–16 remains elusive at this point. One 
hint may be that the partition function approach in SAMPL2 
produced slightly worse results, quite in contrast to com-
pounds 1–6.

As for the SAMPL5 re-analysis, more insight can be 
gained from comparison with results from technically very 
different, though still QM-based models, here again by relat-
ing our results to COSMO-RS data. In the aftermath to the 
SAMPL2 challenge, Klamt and Diedenhofen [90] presented 
an enhancement over their original submission. Compared 

Table 6   Statistical metrics (root-mean-square error RMSE/kcal 
mol−1, mean absolute error MAE/kcal mol−1, mean signed error 
MSE/kcal mol−1, and slope m’, intercept b’, and coefficient of deter-
mination R2 from descriptive regression) for all SAMPL2 tautomer 
pairs from SAMPL6-type models for water [MP2/6-311+G(d,p)/PSE-
2] and the original SAMPL2 setup (MP2/aug-cc-pVDZ/PSE-3), the 

latter reported for calculations including minimum rotamer (“min”) 
free energies only and from partition function (Z) averaging, while 
SAMPL6-style calculations—also for explicit consideration of ther-
mally corrected gas phase legs [“CCSD(T)”] of the thermodynamic 
cycle as in [71]—are shown for the partition function approach only

Numbers in parentheses denote original values from the SAMPL2 paper [54] where equilibrium constants have been transformed to reaction 
Gibbs energies, whereas we here show metrics relative to reference Gibbs energies from the SAMPL2 overview paper [37]. Structures are pro-
vided as Online Resource 6; calculated data, also split into separate components, as Online Resource 7

Model Group RMSE MAE MSE m b R2

SAMPL6/Z
 1–6 Obscure 1.59 1.26 1.26 1.21 2.19 0.95
 10–16 Explanatory 3.36 3.08 2.78 0.02 2.00 0.00
 1–16 All 2.69 2.24 2.04 1.00 2.04 0.79

SAMPL6/CCSD(T)
 1–6 Obscure 1.52 1.13 0.62 1.31 2.02 0.93
 10–16 Explanatory 2.62 2.39 2.39 0.82 2.24 0.46
 1–16 All 2.20 1.83 1.32 1.03 1.38 0.79

SAMPL2/min
 1–6 Obscure 2.90 (2.91) 2.67  − 2.67 1.10  − 2.20 0.89
 10–16 Explanatory 0.58 (0.57) 0.46 0.12 0.83 (0.89)  − 0.02 (− 0.05) 0.78 (0.77)
 1–16 All 1.98 (1.93) 1.49  − 1.00 1.18  − 0.64 (− 0.63) 0.86

SAMPL2/Z
 1–6 Obscure 2.78 2.53  − 2.53 1.10  − 2.10 0.89
 10–16 Explanatory 0.66 0.52 0.21 0.84 0.09 0.74
 1–16 All 1.93 1.47  − 0.94 1.16  − 0.63 0.86
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to us, they obtained an inverse trend, worse performance for 
the training compared to the test set, and they augmented 
hydration free energies with explicit gas phase calcula-
tions (MP2+vib-CT-BP-TZVP), similar to our SAMPL6/
CCSD(T) approach. The corresponding juxtaposition is 
shown in Fig. 5D. The similarity between the two approaches 
particularly for the strongly negative values is striking while 
the 5-membered ring data distribution scatters more strongly 
(RMSEs with respect to experiment of 2.62/3.82 for 10–16 
and 1.52/1.50 kcal mol−1 for 1–6, comparing SAMPL6/
CCSD(T) and MP2+vib-CT-BP-TZVP, respectively, see 
also Online Resource 6). This provides strong evidence that 
experimental reference data for the “obscure” test set are 
reliable whereas the “explanatory” training set raises some 
doubts, despite the estimated small experimental uncertain-
ties published. Moreover, by averaging over both methods, 
a hypothetical consensus prediction is obtained, for which 
the RMSEs relative to both original predictions are smaller 
than each individual prediction with respect to experiment, 
dropping to only 1.07 (1–6), 1.25 (10–16), and 1.12 (1–16) 
kcal mol−1. This computational consistency, particularly for 
the crucial pairs 10–16 whose original RMSEs were more 
than twice as large, together with the individual divergence 
from experiment suggests that experimental values for the 
explanatory set pairs 10–16 should be reconsidered.

Concluding discussion

What did we learn over the past decade? The common key 
result, observed as average over re-analysis of all SAMPL2 
and SAMPL5 datasets is—at first sight—that we did not 
make any visible progress, with a persisting log D or free 
energy uncertainty of around 2 pK units or 2 kcal mol−1, 
respectively. At second sight, the situation is, however, much 
more complicated and provides essential insight into com-
putational and experimental pitfalls.

The “vertical” way, comparing methods with advancing 
performance over time on the same original dataset and a 
“horizontal” approach, extending the size or diversity of 
the data source while employing one and the same method, 
reveal different aspects of model performance. In the lat-
ter case, only the bias originating from training or calibrat-
ing models with limited datasets can be elucidated, not the 
quality of the data or the models themselves. In contrast, 
the vertical approach utilized in this work provides insight 
into expectation bias which can be the related to both, com-
putational and experimental issues to be analyzed further. 
Moreover, augmentation of the vertical approach by direct 
comparison with other challenge participants as done here, 
which is only possible by prediction challenges stimulating 
participation of a large number of groups, can be useful for 
discriminating between experimental and modeling prob-
lems, or both.

Table 7   Experimental [37] 
tautomerization Gibbs energies 
(kcal mol−1) including 
estimated errors, calculated 
values from original SAMPL2 
setup for rotamer minima 
(“min”) and partition functions 
(“Z”) [54], and from direct 
(“Z”) and indirect (“CCSD(T)”) 
[71] approaches using the 
SAMPL6 setup

Reaction Exp Error SAMPL2/min SAMPL2/Z SAMPL6/Z SAMPL6/
CCSD(T)

1A → 1B  − 4.8 0.3  − 7.73  − 7.57  − 3.38  − 4.52
2A → 2B  − 6.1 0.3  − 9.66  − 9.29  − 5.40  − 6.74
3A → 3B  − 7.2 0.3  − 11.17  − 11.12  − 7.04  − 8.12
4A → 4B  − 2.3 0.4  − 4.57  − 4.43 0.96  − 0.52
5A → 5B  − 4.8 0.5  − 6.16  − 5.83  − 3.28  − 4.19
5B → 5C 0.5 0.2  − 0.51  − 0.51 1.50 1.25
6A → 6B  − 9.2 0.4  − 11.15  − 11.12  − 9.05  − 9.59
6A → 6Z  − 2.4 0.3  − 6.72  − 6.69  − 0.43 1.17
7A → 7B 7.0 1.5 5.11 4.71 6.50 3.94
8A → 8B  − 3.0 3.0  − 1.01  − 1.38 0.38  − 2.34
10B → 10C  − 2.9 0.4  − 2.84  − 2.83 0.91  − 0.20
10D → 10C  − 1.2 0.2  − 0.55  − 0.45 3.54 2.70
11D → 11C  − 0.5 0.2  − 0.39  − 0.23 3.64 2.96
12D → 12C  − 1.8 0.7  − 0.79  − 0.60 2.73 1.57
13D → 13C 0.1 0.1 0.81 1.09 4.31 3.20
13D → 14C 0.3 0.3 0.16 0.32 1.64 0.84
15A → 15B 0.9 0.3 0.02 0.01  − 0.62 2.65
15A → 15C  − 1.2 0.3  − 1.87  − 1.87 0.53 1.18
15B → 15C  − 2.2 0.3  − 1.88  − 1.88 1.15  − 1.47
16A → 16C 0.5 0.1 0.56 0.56 1.90 2.46
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Coming back to the results obtained in the present work, 
the major surprise came with the disappointing insight that 
derived data from independently optimized computational 
methodology did not correspond to advanced predictive 
power. We have indeed succeeded over the past years to 
bring the error of direct application of 3D RISM theory to 
thermodynamic problems down to an order of 1 pK unit or 
1–2 kcal mol−1 for solvation free energies. Another layer of 
calibration made it possible to even predict acidity constants 
to within a similar accuracy. Yet, for composite problems 
such as a distribution coefficient in SAMPL5, which can be 
physically and exactly traced back to solvation free energy 
and acidity calculations, the accuracy deteriorates (although 
the partition coefficient calculation was quite reliable during 

SAMPL6 part II, but that might be related to the small 
dynamic range). Hence, our “conservative” approach to 
model basic physical quantities only and compute derived 
data by exact thermodynamics could potentially suffer from 
non-canceling or even amplified errors.

Leaving the obvious alternative possibility of erroneous 
experiments aside, such as a low equilibration time and the 
possibility of detector saturation [91, 92], the key questions 
therefore are: Do theoretical models really mimic the experi-
mental reality? And what can be done within both domains 
to converge to a common well-defined reality that allows 
for truly unbiased assessments of model performance? At 
least for the log D problem there are indeed issues that are 
typically ignored or underestimated. Theoretically, we are 

Fig. 5   Calculated and experimental standard reaction Gibbs energies 
for the tautomer pairs of the SAMPL2 dataset (A–C) [37, 54] and 
comparison of explicit thermodynamic cycle data with corresponding 
explicit COSMO-RS (MP2+vib-CT-BP-TZVP) results [90] (D). Data 
using the SAMPL6 workflow (MP2/6-311+G(d,p)/φopt/PSE-2) are 
shown as orange squares (obscure pairs 1-6), green triangles (explan-
atory pairs 10–16) and green crosses (explanatory pairs 7 and 8). Lin-
ear regressions are depicted as dashed lines in corresponding colors, 
with the total regression over all pairs in light blue (A–C). The data 
of the original SAMPL2 submission are shown by red squares (1–6), 

blue triangles (10–16) and blue crosses (7 and 8) with regression 
lines again in corresponding color and total regression in magenta 
for the best performing SAMPL2 model (MP2/aug-cc-pVDZ/PSE-3) 
using only minimum conformations for SAMPL2 setup (A SAMPL2/
min and SAMPL6/Z) or the Boltzmann weighted free energies of the 
conformational ensemble (B SAMPL2/Z and SAMPL6/Z). Results 
from the explicit thermodynamic cycle combining SAMPL6-style 
Gibbs free energies of hydration and CCSD(T)/cc-pVTZ gas phase 
free energies including B3LYP/6-311+G(d,p) thermal corrections are 
shown by analogously color-coded symbols in (C)
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essentially doing the right thing when we try to compute 
a thermodynamic standard quantity (as is required for the 
strict definition of equilibrium constants like log P or log D) 
by referencing to the infinite dilution limit and treating all 
non-ideal mixture effects (even formally including phenom-
ena such as aggregation) via appropriately chosen activity 
coefficients. In the absence of a predictive activity coefficient 
model for diverse compounds in various solvents, this would 
in turn demand that experiments adequately extrapolate to 
the infinite dilution case, which is not easily guaranteed. 
Indeed, the accumulation of log D outliers near the extremes 
of the dynamic range (i.e. high solubility in either water or 
cyclohexane) found by us and by others, hint at an experi-
mental problem. Hill and Young reported a general issue 
with the computational prediction of distribution coefficients 
caused by low solubilities of very hydrophilic and very lipo-
philic compounds in the organic and the aqueous phase, 
respectively [93] (though specifically for octanol–water, 
but probably transferable to other nonaqueous solvents). As 
near the extremes we will always observe a combination of 
low solubility in one phase with high solubility in the other, 
measurement uncertainty can affect the low-solubility side 
whereas non-unity activity coefficients can be relevant for 
the high-solubility regime. These are therefore the urgent 
questions for the next phase of experimental–computational 
co-design.

As we did on the computational side, repeating experi-
ments in a vertical way, i.e. following after some time using 
possibly enhanced experimental equipment or protocols, 
should also become common practice. This is particularly 
challenging for the problem of tautomer determination in an 
aqueous environment which is generally known to be prob-
lematic, as also indicated by our consensus estimate over 
different computational models that is more consistent inter-
nally than with experimental reference data in the SAMPL2 
case. Proper enumeration and fast population predictions are 
of utmost importance for future model improvements, as the 
combinatorial problem grows dramatically with the num-
ber of protonatable groups. In practice, this will ultimately 
require sampling protocols like those used in constant-pH 
simulations that require accurate (de-)protonation free ener-
gies for estimating state switching probabilities. Uncertain-
ties in this respect revealed by the SAMPL2 re-analysis 
could therefore have massive impact on derived quantities 
when proton shifts play a role. Our data clearly indicate 
that outliers identified from consensus correlation analysis 
should stimulate re-assessment on the experimental side.

On the other hand, the fact that not only experiments are 
a source of uncertainty is clearly revealed by repeating the 
SAMPL2 workflow using presumably better methodology. 
The inconsistency between direct and indirect approaches 
obviously demonstrates room for improvement, in our case 
very likely by adjusting nonbonded dispersion–repulsion 

parameters and re-addressing the corrective schemes toward 
more accurate chemical excess potentials. Reaching consist-
ency between different methodologies can be a useful way 
to optimize computational strategies even in the absence of 
reliable experimental data.

Existing knowledge on the respective accuracy is essen-
tial for industrial applications. Our current results clearly 
show that thorough benchmarking of methods is warranted 
to assess their accuracy in order to choose those suited 
best for the scientific question at hand and avoid repeating 
method evaluations. However, successful benchmarking can 
only be achieved if it is based on high-quality data. In this 
context, quality of data not only means measurement preci-
sion, but has also to be viewed in light of dataset size, struc-
tural diversity, and sustainable, reproducible measurement 
protocols. Traditionally, this is the domain of industry where 
data is acquired in a consistent manner over long periods 
of time. In light of current trends toward “open data”, effi-
cient research data management, the FAIR principles, and 
the relevance of reliable experimental and computational 
data for developing powerful machine learning models, this 
constitutes a common goal for industry and academia work-
ing together.
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