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Abstract

In this thesis we study asymptotically safe models with implications for flavor physics. We
show that the Yukawa couplings necessary to generate ultraviolet fixed points could link a
new sector to the Standard Model, generating a rich phenomenology. Most prominently,
we find that for theories with heavy vector-like leptons and singlet scalars the discrepancies
in the anomalous magnetic moments of the electron and the muon can be simultaneously
explained without explicitly breaking lepton flavor universality. We study implications for
the models at colliders, and propose targeted observables and null tests which exploit the
flavor structure of the new sector. We finally show that, in asymptotically safe theories
where the Standard Model is extended with an additional U(1) gauge symmetry, large hi-
erarchies in the Yukawa sector can be generated through renormalization group running.
Employing non-universal charge assignments, we find that the observed fermion masses and
quark mixing patterns can be reproduced to the order of magnitude.

Zusammenfassung

In dieser Arbeit untersuchen wir asymptotisch sichere Modelle mit Implikationen für Fla-
vorphysik. Wir zeigen, dass die Yukawa-Kopplungen, die zur Erzeugung ultravioletter Fix-
punkte notwendig sind, einen neuen Sektor mit dem Standardmodell verknüpfen können,
wodurch eine reichhaltige Phänomenologie entsteht. Vor allem finden wir heraus, dass für
Theorien mit schweren vector-like Leptonen und Singulett-Skalaren die Diskrepanzen in
den anomalen magnetischen Momenten des Elektrons und des Myons gleichzeitig erklärt
werden können, ohne die Leptonflavoruniversalität explizit zu brechen. Wir untersuchen
Implikationen für die Modelle an Collidern und schlagen gezielte Observablen und Null-
tests vor, die die Flavorstruktur des neuen Sektors ausnutzen. Schließlich zeigen wir, dass
in asymptotisch sicheren Theorien, in denen das Standardmodell um eine zusätzliche U(1)-
Eichsymmetrie erweitert wird, durch Renormierungsgruppenlaufen große Hierarchien im
Yukawa-Sektor erzeugt werden können. Unter Verwendung von nicht-universellen Ladun-
gen finden wir, dass die beobachteten Fermionenmassen und Quark-Mischungsmuster in der
Größenordnung reproduziert werden können.
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1 Introduction

In 2020, the Nobel Prize in physics was awarded to groundbreaking theoretical and exper-
imental findings which instituted black holes as physical phenomena occurring in nature.
In particular, Roger Penrose was awarded the prize for establishing that black holes are a
solid prediction of Einstein’s theory of general relativity, while Andrea Ghez and Reinhard
Genzel were recognized for leading the discovery that a supermassive black hole resides at
the center of our galaxy. Therefore, this year’s prize exemplifies how both theoretical and
experimental developments are crucial and necessary to advance our knowledge of nature,
and showcases the importance of addressing fundamental questions about our universe.

Within the realm of particle physics, the Standard Model (SM) has been well established as
the current paradigm after exhibiting great success, manifest through accurate predictions
in agreement with numerous experimental measurements. In particular, the discovery of
the Higgs boson at the LHC in the beginning of the last decade [1, 2] corroborated the
existence of the last missing piece of the SM. However, theoretical shortcomings as well
as unexplained observations remain which make the need for physics beyond the Standard
Model (BSM) seem imperative. This holds especially true for the flavor sector of the SM:
the existence of three generations of quarks and leptons with order-of-magnitude dispari-
ties between their masses and the hierarchical structure of the quark-mixing matrix remain
unexplained features of the SM. Even though these phenomena are allowed from a theo-
retical point of view, the lack of a fundamental explanation as to why the flavor structure
is such as we observe is striking, and often referred to as the Standard Model flavor puzzle
[3]. Moreover, measurements of neutrino oscillations [4, 5] confirming that neutrinos carry
a mass have deepened the SM flavor puzzle even further. Indeed, a mechanism giving rise
to neutrino masses and their mixing, which appears to display an anarchical pattern rather
than a marked hierarchy, is still absent within the SM.

Theoretical efforts towards elucidating the origin of flavor include models with extra dimen-
sions [6–8], RG-induced hierarchies [9–11] and global symmetries, such as in the Froggatt-
Nielsen mechanism [12]. If one insists that flavorful new physics arise at the TeV scale, as
is motivated by the hierarchy problem or certain dark matter scenarios, further questions
arise regarding the flavor structure of theories beyond the SM. These should present some
mechanism to suppress contributions to flavor-changing observables, which are mostly seen
to be in great agreement with the SM. The question of how TeV-scale new physics is not
appearing in such observables constitutes the New Physics flavor problem. As an example,
one option to circumvent the issue of sizable flavor-changing interactions is to parametrize
all new physics using the criteria of Minimal Flavor Violation (MFV), which assumes that
the only source of flavor violation beyond the SM resides in the SM Yukawas themselves [13].
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Furthermore, from the experimental side certain observables within the flavor sector have
reported discrepancies with respect to their SM predictions, in what could be signals of
the presence of new physics. This is the case for the anomalous magnetic moments of the
electron and the muon, which presently deviate from their SM values by −2.4σ and 3.5σ,
respectively [14–16]. Additionally, several b physics observables present as well deviations
from theory values. For instance, b → sℓℓ processes show hints of µ − e non-universality
[17–19], as well as anomalies in angular observables [20, 21]. Therefore, both from a theo-
retical and experimental point of view the flavor sector constitutes a natural area to expect
physics beyond the Standard Model.

Going beyond flavor physics, further theoretical issues of the SM include the presence of a
transplanckian Landau pole in the case of the hypercharge coupling, which destabilizes the
renormalization group evolution of the SM. The U(1)Y divergence signals a loss of predic-
tivity at high scales, which entails that the SM is not ultraviolet (UV) complete in the sense
of perturbation theory. The influence of new physics in the running of α1, either through
quantum gravity effects kicking in at the Planck scale [22, 23] or lighter new physics [24–26]
may help resolve this issue. Additional shortcomings of the SM comprise the strong CP
problem, which questions why the CP-violating parameter θQCD of the QCD Lagrangian
should be so small, the strong evidence for the existence of dark matter and dark energy and
the observed matter-antimatter asymmetry of the universe, all of which find no explanation
within the SM. Lastly, the SM does not provide a framework to describe gravity. Even
though at the scales currently probed by the SM gravity effects are negligible, these could
become important at planckian energies. Altogether, both from the theoretical and exper-
imental side it is clear that the SM cannot be the ultimate theory of nature, and therefore
physics beyond it must be present at some scale.

In this thesis, we explore the possibility that flavorful new physics exists which has a certain
impact on a fundamental property of the SM as a renormalizable quantum field theory: the
evolution of couplings with the energy scale. In particular, we focus on UV completions of
the SM which have the ability to render it scale invariant at high energies. A key ingre-
dient is the presence of fixed points of the renormalization group equations, which drive
the couplings towards constant, non-zero values. Such asymptotically safe models not only
avoid Landau poles throughout the running of couplings and maintain predictivity at all
scales, but also allow to constrain the parameter space of new physics by demanding that
renormalization group (RG) trajectories be matched onto the SM. Here, we employ model
building tools from asymptotically safe SM extensions [27–29] to address both fundamen-
tal and data-driven problems of the flavor sector. In order to study the testability of the
proposed models at current experiments, we explore in detail their phenomenology and im-
plications at colliders. This allows us to ascertain whether new physics necessary to render
the SM asymptotically safe could reside at the TeV scale, and potentially be probed with
present or near-future data.

The thesis is structured as follows: in the remainder of this chapter we review the building

– 3 –



blocks of the SM, with a special focus on its flavor and renormalization group properties.
In Chapter 2 we present general formulae for asymptotically safe SM extensions and the
different new physics models discussed in this thesis. The subsequent chapters contain the
following work:

• Chapter 3 explores models where a new sector is connected to the SM both through
mixed Yukawa terms, which mediate interactions between leptons and new vector-
like fermions, and through a scalar portal coupling linking the Higgs to heavy singlet
scalars. We exploit flavor symmetries to parametrize new physics couplings, and then
show that the models can constitute asymptotically safe extensions of the SM. We
provide a thorough discussion of their phenomenology, and detail how the subset
corresponding to models of vector-like leptons is able to simultaneously explain the
discrepancies in the anomalous magnetic moment (AMM) of the electron and the
muon without requiring an explicit breaking of lepton flavor universality.

• In Chapter 4 we analyze implications of vector-like lepton models at the LHC, focusing
on the parameter space of Yukawa couplings which can accommodate both AMM
anomalies. We identify lepton-flavor-violating-like signatures which arise from the
flavor structure of the scalar sector, and use these to build new observables which can
serve as null tests of the SM and help discern the mass hierarchy of the BSM states.

• Chapter 5 deals with asymptotically safe SM extensions featuring an additional local
U(1) symmetry, with an associated massive and electrically neutral Z ′ boson. We
show how assigning non-universal new charges to SM fermions allows the renormal-
ization group flow to generate large hierarchies between Yukawa couplings, which
in certain scenarios can approximately reproduce the mass patterns of the SM. Phe-
nomenological consequences such as Z ′-mediated flavor-changing neutral currents and
implications for B anomalies are discussed.

At the end of each chapter we briefly outline our findings, while a general summary and
conclusions are provided in Chapter 6.
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1.1 Flavor and the Standard Model

The Standard Model of particle physics employs quantum fields and their symmetries to
describe matter and its interactions at the most fundamental level. In this section we present
the building blocks of the SM, starting from the full gauge theory and then examining the
consequences of electroweak symmetry breaking (EWSB) and its implications for the flavor
sector.

1.1.1 Fields and Symmetries

In the SM, matter fields are diversely charged under the gauge group

GSM = SU(3)C × SU(2)L × U(1)Y , (1.1.1)

which determines their interactions. The electric charge Qe of a particle is given by the
Gell-Mann–Nishijima relation

Qe = T3 + Y , (1.1.2)

where T3 is the weak isospin component of a given particle and Y its hypercharge. In
Tab. 1.1 we summarize the full particle content of the SM together with its charges. The
fermionic fields consist of quark SU(2)L doublets Q and singlets U and D, as well as lepton
doublets L and singlets E. For each fermion three different flavors exist, which in the SM
are distinguished only by their masses, and additionally their charged weak interactions in
the case of the quarks. Furthermore, the gauge eigenstates Q,U,D,L,E present a definite
chirality: while SU(2)L doublets are left-handed, singlets are right-handed. It is a salient
feature of the SM that right- and left-handed fermions carry different charges under GSM,
yielding it a chiral theory where only left-handed fields are charged under SU(2)L. There
is, however, no given reason why right-handed fields beyond those in the SM could not be
charged under SU(2)L. For any Dirac fermion f , we define its left-handed (right-handed)
part as fL = PLf (fR = PRf) in terms of the projectors

PL =
1

2

(︁
1− γ5

)︁
, PR =

1

2

(︁
1 + γ5

)︁
, (1.1.3)

where γ5 ≡ iγ0γ1γ2γ3 corresponds to the fifth Dirac gamma matrix [30, 31]. The gauge
interactions of the SM fermions are described by the Lagrangian

Lkin = Qi /DQ+ Ui /DU +Di /DD + Li /DL+ Ei /DE , (1.1.4)

with /D = γµDµ. The covariant derivative Dµ can be expressed as

Dµ = ∂µ + ig′Y Bµ + igT aW a
µ + ig3λ

bGbµ , (1.1.5)

where all flavor and gauge indices are implicitly contracted. In any SU(N) group the
number of generators equals N2 − 1, which yields 3 generators T a for SU(2)L, with a =

1, 2, 3, and 8 generators λb for SU(3)C , with b = 1, 2, ..., 8. The fields Bµ, W a
µ and Gbµ

correspond to the gauge bosons of U(1)Y , SU(2)L and SU(3)C respectively, with g′, g and
g3 their respective couplings. All terms in the kinetic Lagrangian (1.1.4) are diagonal in
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Field Flavors SU(3)C ×SU(2)L×U(1)Y Qe

Q

(︄
uL

dL

)︄
,

(︄
cL

sL

)︄
,

(︄
tL

bL

)︄
(3, 2, 1/6) 2/3

−1/3

U uR, cR, tR (3, 1, 2/3) 2/3

D dR, sR, bR (3, 1,−1/3) −1/3

L

(︄
νeL

eL

)︄
,

(︄
νµL

µL

)︄
,

(︄
ντL

τL

)︄
(1, 2,−1/2) 0

−1

E eR, µR, τR (1, 1,−1) −1

H

(︄
φ+

φ0

)︄
(1, 2, 1/2) 1

0

Table 1.1. Fields and charges in the Standard Model. The second column shows the different
flavors in terms of their SU(2)L components.

flavor space, since any hermitian matrix mixing the generations could be reduced to one
parameter after performing unitary transformations.1 Thus, Lkin presents a global U(3)5

flavor symmetry, where each of the five fermion fields accept an independent U(3) rotation
[13, 32]. This symmetry can be further decomposed as

Gflav = SU(3)3q × SU(3)2ℓ × U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E , (1.1.6)

where

SU(3)3q = SU(3)Q × SU(3)U × SU(3)D , SU(3)2ℓ = SU(3)L × SU(3)E . (1.1.7)

We identify the U(1) rotations in Eq. (1.1.6) with baryon number (B), lepton number (L),
global hypercharge (Y ), Peccei-Quinn symmetry, [33], and finally a rotation of the E field
only.

In addition, the SM contains the Higgs doublet field H. It will prove useful to define as
well its charge conjugate

H̃ = iσ2H
∗ =

(︄
φ0∗

−φ−

)︄
, (1.1.8)

where σ2 is the second Pauli matrix and φ− = (φ+)∗. Note that H̃ is an SU(2)L doublet
with hypercharge −1/2. The Higgs couples to fermions through renormalizable Yukawa

1More explicitly, such an an hermitian matrix would break the U(3) symmetry of a given fermion kinetic
term to a U(1), yielding 8 broken symmetries. Then, from the 9 general parameters of the hermitian matrix,
only 9− 8 = 1 is physical, see Eq. (1.1.11).
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interactions, which can be written as

− LYuk = QYdHD +QYuH̃U + LYℓHE + h.c. . (1.1.9)

Therefore, the Yukawa sector partially breaks the flavor symmetry (1.1.6), yielding

Gflav → U(1)B × U(1)e × U(1)µ × U(1)τ , (1.1.10)

where the U(1)ℓ correspond to the individual lepton numbers2. In order to count the
number of physical parameters, we must subtract the number of broken generators from
the total number of parameters in the Lagrangian [32], following

Nphys = Ntot −Nbroken . (1.1.11)

In the lepton sector, Ntot corresponds to the 18 independent entries of the Yukawa matrix
Yℓ, while from the 2 × 9 = 18 symmetries of U(3)ℓ × U(3)E only 3 are conserved (the
individual lepton numbers), while 15 are broken. Thus, we obtain Nphys = 18 − 15 = 3

physical parameters, which correspond to the three charged lepton masses. In the quark
sector, we start out with the 2 × 18 = 36 parameters of the Yu and Yd matrices, and
from the 3 × 9 = 27 symmetries of the three U(3) quark rotations only one is conserved,
corresponding to baryon number. Thus, we are left with 26 broken symmetries. Using
again Eq. (1.1.11), this yields Nphys = 36− 26 = 10 physical parameters, which correspond
to the six quark masses and a unitary rotation matrix with three angles and one phase.

1.1.2 Electroweak Symmetry Breaking

Through spontaneous symmetry breaking in the Higgs sector, the electroweak SU(2)L ×
U(1)Y symmetry of the SM is broken to the electromagnetic U(1)em symmetry, yielding
a breaking pattern GSM → SU(3)C × U(1)em. Additionally, the Higgs mechanism allows
fermions and weak gauge bosons to acquire masses without the need of adding them by
hand, which would break gauge invariance and endanger the renormalizability of the the-
ory. Thus, the full SM gauge symmetry is preserved at high energies, and the full theory
remains renormalizable. In what follows, we describe electroweak symmetry breaking and
the generation of the fermion and Z,W masses in the SM.

The Higgs potential

Let us start by studying the gauge and self-interactions of the Higgs, which can be expressed
as the Lagrangian

LHiggs = (DµH)(DµH†)− V (H) , (1.1.12)

where the Higgs potential at tree level reads

V (H) = −µ2H†H +
λ

2
(H†H)2 . (1.1.13)

2The global U(1)Y is also a conserved symmetry of the Yukawa sector. However, it is only preserved due
to the presence of the Higgs, which has non-vanishing hypercharge, and thus we must not count it among
the symmetries strictly preserved by fermionic flavor rotations.
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If the parameters of the potential fulfill both µ2 > 0 and λ > 0, V presents a local maximum
at |H| = 0 and a global minimum at

|H|2 = µ2

λ
=
v2h
2
, (1.1.14)

where vh = 246 GeV is the vacuum expectation value (VEV) of the Higgs field. The
extrema structure of V is modified when including further terms of the effective potential.
Then, renormalization group running of the Higgs quartic can lead to the vacuum becoming
metastable or unstable [34–36], as we shall discuss further in Sec. 1.2. Here we focus on the
tree level relations arising from spontaneous symmetry breaking. To this end, the Higgs
field can be written in terms of its SU(2)L components as

H(x) =
1√
2

(︄
φ1(x) + iφ2(x)

φ3(x) + iφ4(x)

)︄
, (1.1.15)

which contains four degrees of freedom corresponding to real scalar fields φi. Using Eq. (1.1.15)
one obtains |H|2 = (φ2

1 + φ2
2 + φ2

3 + φ2
4)/2, so that we may choose the minimum H0 to be

at

φ1 = φ2 = φ4 = 0 , φ2
3 = v2h =

2µ2

λ
, H0 =

1√
2

(︄
0

vh

)︄
, (1.1.16)

see for instance [31]. In the unitary gauge, expanding H around H0 yields

H(x) =
1√
2

(︄
0

vh + h(x)

)︄
, (1.1.17)

where h is the Higgs boson with mass mh ≃ 125 GeV [37], fulfilling mh = vh
√
λ with

λ(mh) ≃ 0.26. The reason why H can be expressed as in Eq. (1.1.17) is rooted in the
SU(2)L invariance of LHiggs, and the fact that we can use an SU(2)L rotation to remove
three of the field perturbations around the ground state. In order to see this more explicitly,
we apply such an SU(2)L transformation to (1.1.17), with finite parameters wa(x)/vh. This
yields

H(x) → eiσ
awa(x)/vh H(x) =

1√
2

(︄
w2(x) + iw1(x)

vh + h(x)− iw3(x)

)︄
+O

(︃
w(x)h(x)

vh

)︃
, (1.1.18)

where σa are the Pauli matrices, see Appendix A.1. Hence, three of the degrees of freedom
of a perturbation around the minimum can be adjusted at will by fixing the parameters wa
of the SU(2)L transformations; in other words, they can be removed by fixing the gauge3

Eq. (1.1.17) corresponds to the unitary gauge, where the Higgs scalar h(x) constitutes the
only perturbation around the ground state. Note as well that H0 is invariant under a gauge
transformation with generator Qe = T3 + Y , yielding

H0 → eiQeα(x)H0 = H0 , (1.1.19)
3In our notation, the SU(2)L gauge bosons transform as W a

µ (x) → W a
µ (x) +

1
gvh

∂µwa(x). In choosing
the ground state in Eq. (1.1.17), the unitary gauge corresponds to setting wa(x) = 0.
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which entails that the ground state preserves electric charge. Hence, out of the four gen-
erators of SU(2)L × U(1)Y only one particular combination is preserved after EWSB, the
electric charge of U(1)em. According to Goldstone’s theorem, there exists one massless
Goldstone boson for each broken generator; in this case, the perturbations wa represent
the Goldstone bosons of the Higgs mechanism. In any arbitrary gauge these appear in the
Lagrangian as unphysical massless modes, while they are completely absent in the unitary
gauge, which we shall use throughout this work.

Masses and mixing

Having reviewed EWSB in the Higgs potential, we are ready to discuss its effects in other
sectors of the SM: the Higgs boson kinetic term yields the masses of the Z and W bosons,
while the Yukawa sector generates mass terms for the fermions. Let us start with the
SU(2)L × U(1)Y interactions of the Higgs, which after EWSB yield

|DµH0|2 =
⃓⃓⃓⃓
⃓(︁ig′Y Bµ + igT aW a

µ

)︁ 1√
2

(︄
0

vh

)︄⃓⃓⃓⃓
⃓
2

=

⃓⃓⃓⃓
⃓i vh2

√
2

(︄
(W 1

µ − iW 2
µ)g

W 3
µg +Bµg

′

)︄⃓⃓⃓⃓
⃓
2

=
v2h
4
g2W+

µ W
µ− +

v2h
8
(W 3

µ , Bµ)

(︄
g2 −gg′

−gg′ g′2

)︄(︄
W 3µ

Bµ

)︄
,

(1.1.20)

according to the covariant derivative in Eq. (1.1.5), and we used W±
µ = (W 1

µ ∓ iW 2
µ)/

√
2

as well as the generators T a = σa/2 in the doublet representation. Then, the mass of the
W± bosons can be automatically read off Eq. (1.1.20), and obeys

MW =
1

2
vhg . (1.1.21)

Furthermore, the matrix mixing the neutral bosons B and W3 can be diagonalized yielding
two eigenstates

Aµ = cos θwBµ + sin θwW
3
µ , Zµ = cos θwW

3
µ − sin θwBµ , (1.1.22)

corresponding to the photon and the Z boson respectively, with θw the weak mixing angle
defined by

cos θw =
g√︁

g2 + g′2
. (1.1.23)

The masses of the Aµ and Zµ bosons can be then computed from Eq. (1.1.20), which gives

MA = 0 , MZ =
1

2
vh
√︁
g2 + g′ 2 =

1

2

vhg

cos θw
. (1.1.24)

We are now in position to define the ρ-parameter, which involves the ratio of the Z and
W boson masses, and provides an important test of the SM. In the Weinberg-Salam model
with the Higgs mechanism, one obtains at tree level

ρ =
M2
W

M2
Z cos2 θw

= 1 , (1.1.25)
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and measurements require ρ = 1 within a small error. Indeed, global fits currently yield
[16]

ρ0 = 1.00038± 0.00020 . (1.1.26)

The result ρ = 1 at tree level in the SM reflects the remnant custodial symmetry of the Higgs
Lagrangian after EWSB. Before spontaneous symmetry breaking, LHiggs presents an SO(4)

(or analogously an SU(2)L × SU(2)R) global symmetry, which corresponds to rotations of
the four real components of H. After the electrically neutral component acquires a VEV,
the symmetry is broken to SO(3), and can also be described as the vectorial part SU(2)V
of SU(2)L × SU(2)R, known as custodial isospin or custodial SU(2) [38]. This pattern of
global symmetries can be altered in extensions of the SM with additional scalar content,
leading to modifications of the ρ-parameter.

Focusing now on the fermion sector, after EWSB the interactions of any chiral (either right-
or left-handed) fermion ψ with the neutral gauge bosons become

ψ
(︁
−gT 3W 3

µ − g′Y Bµ
)︁
γµψ = −ψ

(︃
Zµ

g

cos θw
(T 3 − sin2 θwQe) + eQeAµ

)︃
γµψ , (1.1.27)

where we have used Eqs. (1.1.22), (1.1.28) and (1.1.2), and the couplings obey

e = g sin θw = g′ cos θw ,
1

2v2h
=

g2

8M2
W

=
GF√
2
, (1.1.28)

with e the electromagnetic coupling and GF the Fermi constant. The fine structure constant
is then given by

αe =
e2

4π
, (1.1.29)

with αe ≃ 1/137 when measured at the electron mass scale.

From Eq. (1.1.27) we can now see that the electromagnetic interaction affects right- and
left-handed fields in the same way, since in the SM they carry the same electric charge.
Thus, for any Dirac fermion f its QED interactions can be written as

LQED = −e fγµQefAµ . (1.1.30)

However, as T 3 components are different for fermions of opposite chirality, the Z current is
intrinsically chiral. For a Dirac fermion f it can be expressed in a general way as

LZ = − g

2 cos θw
f γµ(gV − gAγ

5)f Zµ = − g

2 cos θw
f γµ(cLPL + cRPR)f Zµ . (1.1.31)

Using s2w = sin2 θw, the coefficients of the Z couplings obey

gV = T 3
L + T 3

R − 2Qes
2
w, gA = T 3

L − T 3
R ,

cL = 2(T 3
L −Qes

2
w), cR = 2(T 3

R −Qes
2
w) ,

(1.1.32)

where T 3
L (T 3

R) denotes the third isospin component of the left- (right-) handed chirality
of each fermion, with all SM fields fulfilling T 3

R = 0. The gV , gA couplings in the SM can
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Fermion gA

(︂
g1, expA

)︂
gV

(︂
g1, expV

)︂
u, c, t 1/2 (0.519+0.028

−0.033) 1/2− 4/3 sin2 θw ≃ 0.19 (0.266± 0.034)

d, s, b 1/2 (−0.527+0.040
−0.028) −1/2 + 2/3 sin2 θw ≃ −0.35 (−0.38+0.04

−0.05)

e, µ, τ −1/2 (−0.50111± 0.00035) −1/2+2 sin2 θw ≃ −0.038 (−0.03817±0.00047)

νe, νµ, ντ 1/2 1/2 (0.5008± 0.0008)†

Table 1.2. Couplings of the Z boson to SM fermions, see Eqs. (1.1.31) and (1.1.32). Numerical
values are computed using the MS scheme value sin2 θw(MZ) ≃ 0.231. Between parentheses we
show experimental values for the couplings of the first generation [16]. †The neutrino measurement
corresponds to the average over neutrino species of the purely left-handed coupling gν = gνA = gνV .

be found in Tab. 1.2 together with their measured values, which provide stringent tests on
BSM models modifying Z interactions.

In the case of charged currents, for any SU(2)L doublet ψ = (ψ1, ψ2)
T , where ψ is again a

chiral spinor, these can be written as

− ψ(gT1W
1
µ + gT2W

2
µ)γ

µψ = − g√
2

(︁
ψ1γ

µψ2W
+
µ + ψ2γ

µψ1W
−
µ

)︁
. (1.1.33)

In the SM, only left-handed fields present charged-current interactions, so that the couplings
of a Dirac fermion f to the W boson become

− g√
2
f1γ

µPLf2W
+
µ + h.c. . (1.1.34)

However, before explicitly writing down charged weak interactions after EWSB, it is paramount
that we inspect first the Yukawa sector, as rotations to the mass basis affect W interactions
of the quarks. The Yukawa interactions of Eq. (1.1.9) after EWSB become

− LYuk,EWSB =
1√
2
(vh + h)

[︁
dL yd dR + uL yu uR + ℓL yℓ ℓR

]︁
+ h.c. , (1.1.35)

where ℓ = e, µ, τ , d = d, s, b and u = u, c, t and the yf are diagonal matrices. In order to
arrive at (1.1.35), one must first diagonalize the general complex matrices Yf appearing
in Eq. (1.1.9). To this end, we employ a singular value decomposition, where two different
unitary matrices Lf , Rf allow to write

Yf = LfyfR
†
f . (1.1.36)

Then, by performing the field redefinitions

fL → LffL, fR → RffR , (1.1.37)

the Yukawa sector is successfully diagonalized, yielding the result (1.1.35). The terms
proportional to vh generate masses for the quarks and charged leptons, which fulfill

mf =
vh√
2
yf . (1.1.38)
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Figure 1.1. Left: values of the diagonal Yukawa couplings in the SM, as computed from the
fermion masses in (1.1.39). Right: experimental measurements of the diagonal Yukawa couplings
[39], with κf = 1 in the SM. Third-generation Yukawas present the greater experimental accuracy.

within the SM. Measurements of the fermion masses indicate values4 [16]

mu ≃ 2.2 MeV , mc ≃ 1.27 GeV , mt ≃ 172.8 GeV ,

md ≃ 4.7 MeV , ms ≃ 93 MeV , mb ≃ 4.18 GeV ,

me ≃ 0.511 MeV , mµ ≃ 105 MeV , mτ ≃ 1.78 GeV .

(1.1.39)

Then, in the SM the values of the diagonal Yukawa couplings yf can be computed from the
masses (1.1.39) and the relation (1.1.38), given by spontaneous symmetry breaking through
the Higgs mechanism. The resulting values of the Yukawas in the SM are shown schemat-
ically in Fig. 1.1 (left). The fact that the yf differ by several orders of magnitude, from
yt ∼ 1 to ye ∼ 10−6, remains an unexplained feature of the SM. Performing precise, in-
dependent measurements of Yukawa couplings represents an important, yet experimentally
challenging, test of the theory. Indeed, the Higgs decay rates to fermions are proportional
to the Yukawa couplings squared (or, equivalently, proportional to m2

f/v
2
h), and therefore

generally very small. Third-generation Yukawas present the best opportunities to be deter-
mined experimentally, and are measured to a far greater accuracy than any other generation
[39], as seen in Fig. 1.1 (right). In the case of the lighter flavors, measurements still allow
for considerable room for new physics [40].

Regarding the kinetic terms, the unitary rotations (1.1.37) cancel everywhere in Eq. (1.1.4)
except for the charged weak currents. Mixing matrices do not appear in Higgs-fermion
interactions, as a consequence of each fermion species acquiring mass from the vacuum
expectation value of a single scalar. This result is also known as the Paschos-Weinberg

4The light quark masses mu,md,ms are computed in the MS scheme at the scale µ = 2 GeV. The charm
and bottom mass correspond to mc(µ = mc) and mb(µ = mb) as well in the MS scheme. The value mt in
Eq. (1.1.39) stems from direct measurements, and can be interpreted as the pole mass [16].
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theorem [41, 42], and entails that in the SM there are no scalar-mediated flavor-changing
currents. As already mentioned, rotations to the mass basis do have an effect on W -
mediated currents. Indeed, using Eq. (1.1.34) and performing the rotations (1.1.37) one
obtains

LW = − g√
2
(uVCKM γµPLd+ νγµPLℓ)W

+
µ + h.c. . (1.1.40)

where ν = νe, νµ, ντ and VCKM is the Cabibbo–Kobayashi–Maskawa (CKM) quark-mixing
matrix, which corresponds to the combination of left-handed quark rotations

VCKM = L†
uLd =

⎛⎜⎜⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎟⎟⎠ . (1.1.41)

In the SM, the CKM matrix is strictly unitary, and contains three angles and one phase,
which is responsible for CP violation in the quark sector. The Wolfenstein parametrization
allows to write the CKM matrix as an expansion in a small parameter λ, which can be
approximately identified with the Cabbibo angle. The CKM matrix then takes the form

VCKM =

⎛⎜⎜⎝
1− 1

2λ
2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

⎞⎟⎟⎠+O(λ4) . (1.1.42)

Fits indicate λ = 0.22453±0.00044, A = 0.836±0.015, ρ = 0.122+0.018
−0.017 and η = 0.355+0.012

−0.011

[37]. At order λ3, the CP-violating phase only enters the CKM elements Vtd and Vub, and is
absent elsewhere. Furthermore, the CKM matrix presents a highly hierarchical nature, with
diagonal entries close to 1. Together with the unknown origin of the order-of-magnitude
disparity of the Yukawa couplings, the lack of an established explanation for the observed
pattern of quark mixing is often referred to as the SM flavor puzzle. Simply put, it consists
in the question of why all fermions exist in three generations which only differ in their
masses, while exhibiting a very specific mixing pattern in the quark sector.

After studying mixing in the quark sector, it is worth reflecting on why rotations to the
mass basis do not affect leptons. This is due to the fact that in the SM neutrinos are strictly
massless and left-handed, which permits us to freely perform any rotations on the νL. More
explicitly, the rotation of the ℓL field in the W currents can be canceled by an analogous
rotation of the νL. This entails that, in the SM, lepton flavor is strictly conserved. Nev-
ertheless, it is now established that neutrinos are not massless [4, 5], and therefore lepton
flavor must be violated at some scale.

Finally, putting together all the pieces of the SM leads us to the full Lagrangian

LSM = Lgauge + Lkin + LYuk + LHiggs , (1.1.43)

as written in Eqs. (1.1.4), (1.1.9) and (1.1.12) before EWSB, and where Lgauge contains
the kinetic terms of the gauge bosons. After EWSB, it can prove useful to use LQED, LZ
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∼ g2/(4π)2 ∼ y2/(4π)2 ∼ λ/(4π)2

Figure 1.2. Schematic scaling of 1-loop diagrams of gauge (left), Yukawa (center) and scalar
quartic (right) couplings.

and LW (Eqs. (1.1.30), (1.1.31) and (1.1.40), respectively) for electroweak interactions, and
Eq. (1.1.35) for the Yukawa interactions. At this point, we are equipped to count the
parameters of the SM. These consist of 6 quark masses, 3 charged-lepton masses, 4 CKM
parameters, 3 gauge couplings, the Higgs quartic coupling and the Higgs mass, which add
up to 18 independent parameters. There is, however, an additional interaction which we
have not considered so far. This corresponds to the strong CP phase θQCD, which enters
the SM Lagrangian in the form

Lθ = θQCD
g23

32π2
ϵµναβGaµνG

a
αβ , (1.1.44)

and stems from anomalous chiral rotations [38]. Neutron electric dipole moment (EDM)
measurements indicate the strong CP phase to be very suppressed, at order θQCD ≲ 10−13

[43]. The absence of an established explanation for the smallness of this parameter leads to a
fine-tuning problem, referred to as the strong CP problem, which remains an open question
in the SM. Terms analogous to Eq. (1.1.44) but for the SU(2)L and U(1)Y tensors are also
allowed. Such interactions, however, can be removed by performing chiral rotations, which
is not the case for θQCD [38]. This completes our parameter counting of the SM, yielding
a theory with 19 free parameters. Although at first glance this might seem a theory with
low predictivity, the astounding success of the SM relies exactly on the fact that hundreds
of measured observables can be explained with the same values of the parameters.

1.2 Running of Couplings in the Standard Model

An important feature of quantum field theories such as the Standard Model consists in the
energy dependence of the physical couplings of the theory, a behavior known as running,
which arises due to quantum fluctuations. In this work, the running of couplings will play
a crucial role, serving as a guiding tool to look for new physics. In this section we review
the main features of the evolution of gauge, Yukawa and scalar quartic couplings, with a
focus on the interactions of the SM.

The evolution of couplings with the energy scale is encoded in their β-functions or renor-
malization group equations (RGEs), which in turn depend on the interactions and particle
content of a model. RGEs can be computed in perturbation theory, with each successive
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term being proportional to higher powers of the coupling constants and additional loop
factors 1/(4π)2. In order simplify expressions, it will prove useful to normalize couplings
so that factors 1/(4π)2 no longer appear in the β-functions. Here we shall use

αg ≡
g2

(4π)2
, αy ≡

y2

(4π)2
, αλ ≡ λ

(4π)2
, (1.2.1)

where g, y, λ are gauge, Yukawa and scalar quartic couplings appearing in the Lagrangian,
respectively. The different normalization for each type of interaction can be understood by
looking at its 1-loop contribution to the propagator of a scalar particle: as seen in Fig. 1.2,
to close a loop one requires either two gauge or two Yukawa vertices, but only one scalar
quartic. Throughout this work, we employ β-functions computed in the modified minimal
subtraction (MS) scheme [44]. Using the definitions (1.2.1), we define the β-function βi of
any coupling αi as

βi ≡
dαi
d lnµ

, (1.2.2)

where µ is the renormalization scale. A useful way to make sense of the orders in pertur-
bation theory at which one should study β-functions are the Weyl consistency conditions,
which relate different β-functions through partial derivatives [27]. Following Weyl consis-
tency, the lowest ordering that is non-trivial in Yukawa couplings includes their β-functions
at 1-loop, while the RGEs of gauge couplings should be taken at 2-loop. The scalar sector,
which does not enter neither 1-loop Yukawa nor 2-loop gauge β-functions, is not considered.
In this approximation, known as 210, the β-functions of a simple system of one gauge and
one Yukawa coupling can be written in a general way as

βg =
dαg
d lnµ

= α2
g (−B + Cαg −Dαy) ,

βy =
dαy
d lnµ

= αy (E αy − F αg) ,

(1.2.3)

for gauge and Yukawa couplings respectively, following the notation of [27, 28] and subse-
quent works. The coefficients B,C,D,E and F are functions of the particle content and
charges of the theory, and their signs play an important role in the analysis of β-functions.
In any quantum field theory, the 1-loop coefficients E,F of the Yukawa β-functions as well
as the two-loop coefficient D in a gauge β-function are always positive, while B and C can
take either sign [28, 29]. From inspection of Eq. (1.2.3) one can already expect the signs of
the β-function coefficients to play an important role in the evolution of couplings.

1.2.1 Gauge Couplings

Let us first examine the β-functions of gauge couplings at 1-loop. In an SU(N) gauge theory
with NF Weyl fermions transforming in a representation RF and NS complex scalars with
representation RS , the 1-loop coefficient B is given by [46]

B =
22

3
N − 4

3
NF S2(RF )−

2

3
NS S2(RS) , (1.2.4)
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Figure 1.3. Running of the SM couplings at 3-loop. Dotted lines denote gauge couplings, while
the top and bottom Yukawas together with the Higgs quartic λ = λ/2 (see Eq. (1.1.13)) are shown
in full lines. The gray band indicates the Planck scale, while the onset of the U(1)Y Landau pole
can be seen towards the deep UV. RGEs are computed in the MS scheme using ARGES [45], and
initial conditions extracted from [34].

where S2 is the Dynkin index, see Appendix B for details. Hence, gauge fields contribute
positively to B while charged matter yields negative contributions, so that the 1-loop coef-
ficient can take either sign. For instance, for SU(3) with 12 Weyl fermions transforming as
triplets (with S2(3) = 1/2 in SU(3)) and no charged scalars, one obtains B = 22− 6 = 14,
as is the case for SU(3)C in the SM. On the other hand, for a U(1) symmetry the 1-loop
coefficient is obtained by setting N = 0 in Eq. (1.2.4), so that one invariably finds B < 0.
With this in mind, we can understand the form of the β-functions of the SM gauge couplings
at 1-loop, which read

β
(1)
1,SM =

41

3
α2
1 , β

(1)
2,SM = −19

3
α2
2 , β

(1)
3,SM = −14α2

3 , (1.2.5)

Here, we have used normalized the couplings according to Eq. (1.2.1) and employed

g′ = g1, g = g2 , (1.2.6)

for the U(1)Y and SU(2)L interactions, in order to align with literature conventions in RGE
studies [24–26, 29]. From (1.2.5) we observe that β2,SM, β3,SM < 0 and β1,SM > 0 at leading
order. The 1-loop RGEs can be solved analytically, yielding

αi(µ) =
αi,0

1 + αi,0Bi ln
µ
µ0

, (1.2.7)

where αi,0 = αi(µ0), and Bi are the 1-loop coefficients of the βi. Assuming that including
higher loop orders does not lead to large deviations from the running of Eq. (1.2.7), we
can now infer the fate of the SM gauge couplings at high energies: α2 and α3 will decrease
towards zero, following the behavior called asymptotic freedom, while α1 will grow with
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Figure 1.4. Experimental measurements of the electromagnetic coupling [48] with αe = e2/(4π)

(left), and the strong coupling [49], with αs = g23/(4π) (right).

energy and eventually diverge, presenting a Landau pole. This is indeed the case, as can
be seen in Fig. 1.3, where the full 3-loop running of the SM couplings is depicted. For
the computation of 3-loop RGEs we have used ARGES [45]; results are in agreement with
the literature [34, 47]. In Fig. 1.3 the onset of the U(1)Y divergence can be seen at trans-
planckian energies of about ∼ 1040 GeV. Gravitational interactions kicking in at MPl could
potentially modify the running of α1 so that the Landau pole is avoided, a possibility that
has been explored in the literature [22, 23]. In the absence of such interactions, demanding
that the U(1)Y coupling vanish in the UV within the SM running would require setting
α1 = 0 at all scales, which poses a triviality problem. Nonetheless, it must be noted that
the issues in the running of the hypercharge hinge on the fact that the theory becomes
non-perturbative, and therefore we loose our ability to make predictions. In a sense, it may
not be very different from the divergence of the strong coupling at low scales: it is not
unphysical, but our understanding of physics is hindered past a certain scale. Regardless,
if solutions to this problem exist which involve new physics below MPl (and ideally not far
from the TeV scale), these are worth exploring.

Finally, for this work it will prove necessary to study β-functions beyond 1-loop, most
importantly in the case of gauge couplings. In a general case of an SU(N) interaction, the
2-loop coefficient C associated to α3

g terms reads [46]

C = −68

3
N2 +NFS2(RF )

(︃
4C2(RF ) +

20

3
N

)︃
+NSS2(RS)

(︃
8C2(RS) +

4

3
N

)︃
, (1.2.8)

where RF , RS and NF , NS are the representations and multiplicities of Weyl fermions and
scalars in the theory, respectively. Similarly to the 1-loop coefficients, C can be either
negative or positive, depending on the balance between gauge and matter fields. In the
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SM, the 2-loop β-functions of the gauge sector read

β
(2)
1,SM = α2

1

(︃
41

3
+

199

9
α1 + 9α2 +

88

3
α3 −

17

3
αt

)︃
,

β
(2)
2,SM = α2

2

(︃
−19

3
+

35

3
α2 + 3α1 + 24α3 − 3αt

)︃
,

β
(2)
3,SM = α2

3

(︁
− 14− 52α3 + 11α1 + 9α2 − 4αt

)︁
,

(1.2.9)

where we have included effects of the top Yukawa, which enter, as expected, with a negative
sign. Note that only in the case of SU(3)C one obtains C < 0.

1.2.2 Yukawa Couplings

For Yukawa couplings, β-functions depend both on Yukawa and gauge couplings already at
1-loop. For instance, in the SM the top and bottom Yukawas present 1-loop RGEs

β
(1)
t,SM = αt

(︃
9αt + 3αb −

17

6
α1 −

9

2
α2 − 16α3

)︃
,

β
(1)
b,SM = αt

(︃
9αb + 3αt − 5

6
α1 − 9

2
α2 − 16α3

)︃
,

(1.2.10)

in the approximation where all other Yukawas are negligible, which holds for the β-functions
of the SM. Hence, it is not so straightforward to guess the RGE behavior of Yukawa cou-
plings without explicitly evaluating their β-functions at a given scale. In the case of the
top, contributions from gauge couplings in Eq. (1.2.10) are always subleading with respect
to the α2

t term, so that one obtains βt > 0 throughout the running. As a consequence, the
top Yukawa decreases towards high energies, as seen in Fig. 1.3. There we also show the
evolution of the bottom Yukawa, which follows the same behavior, while all other Yukawas
are smaller in size and not shown. It is noteworthy that, neglecting the contribution from
other Yukawas and the electroweak gauge couplings, the top β-function presents an approx-
imate zero which acts as an infrared (IR) attractor, driving the top Yukawa to a constant
value at low energies [28, 50–52]. This allows to parametrize the evolution of yt in terms
of the strong coupling. Then, demanding that the couplings remain perturbative at the
Planck scale yields the bound mt ≳ 210 GeV [53], obtained before any measurement of
the top mass was available. Remarkably, the result stands after experiments have shown
mt ≃ 173 GeV.

1.2.3 Higgs Quartic

The RG behavior of scalar quartics can differ substantially from that of gauge or Yukawa
couplings. This is due to the fact that, opposed to the latter, the β-functions of a scalar
quartic can contain terms which are not proportional to the coupling itself. Thus, their
behavior can never be expected to be tamed by small values of the coupling. In the SM,
the β-function of the Higgs quartic at 1-loop obeys

β
(1)
λ,SM = 12α2

λ +
3

4
α2
1 +

9

4
α2
2 +

3

2
α1α2 − 12α2

t − αλ(3α1 + 9α2 − 12αt) , (1.2.11)
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Figure 1.5. Right: phase diagrams depicting the stability of the SM electroweak vacuum in terms
of the Higgs and the top pole mass, from [34]. The SM lies in the metastability region, close to
the absolute stability limit. Left: zoom in around the experimentally favored region of the top and
Higgs mass.

where we have neglected all Yukawas except for the top. As expected, several terms are not
proportional to αλ and can greatly influence the running. For instance, in the vicinity of
the electroweak scale βλ is dominated by the top Yukawa contribution, which yields βλ < 0.
Assuming a constant αt one can approximate

λ ≃ λ0 −
3

4π2
y2t ln

µ

µ0
. (1.2.12)

Indeed, as seen in Fig. 1.3, λ first decreases with energy, switching sign around µ ∼
1010 GeV, and then grows to become positive again beyond MPl. Due to the strong depen-
dence of βλ on the top Yukawa, the determination of the top mass has crucial implications
for the stability of the electroweak vacuum [34–36] at the Planck scale. As as seen in
Fig. 1.5, absolute stability (λ > 0) does not hold at all energies. Instead, the Standard
Model electroweak vacuum remains metastable up to the Planck scale, in a region of near-
criticality close to the absolute stability boundary.

This concludes our description of the RG behavior of different types of couplings, and their
evolution in the case of the SM. We have seen that the SM running is well behaved up to
the Planck scale, with the U(1)Y coupling diverging at higher energies and destabilizing the
flow. Moreover, the Higgs potential looses absolute stability below MPl, placing the SM in
a region of metastability. These issues can potentially be addressed by new physics, which
should present some portal interaction to the SM in order to enter the β-functions of the
problematic couplings. In Chapters 3 and 5, we discuss such possibilities in the context of
asymptotically safe extensions of the SM.
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2 UV-safe Model Building

In Sec. 1.2 we studied the running of SM couplings and in particular their UV behavior.
In the case of gauge interactions, we saw that g2 and g3 are asymptotically free, evolving
towards zero at high energies, while g1 runs into a transplanckian Landau pole. However,
an alternative UV fate of RG flows, termed asymptotic safety, is also possible. First conjec-
tured in the context of quantum gravity [54], asymptotic safety proposes that the couplings
of a theory run into an interacting fixed point of the renormalization group equations in the
UV. The importance of fixed points of the RGEs has been long well established [55, 56]. In
fact, asymptotically free couplings tend to zero at high energies driven by the presence of
a UV fixed point where they vanish. In this sense, asymptotic safety is a generalization of
asymptotic freedom: in the UV couplings run towards constant values, which need not be
zero, and enter a nearly-conformal regime.

The discovery that quantum field theories can display asymptotic safety under rigorous
perturbative control thanks to the presence of interacting UV fixed points is, however, a
recent one [27, 28, 57–60], and it has drawn attention for several reasons. In the first place,
if one ensures that the fixed points be perturbative, and if an RG trajectory connecting
low-energy physics with a UV fixed point exists, theories are well behaved and predictive at
all scales. In an extension of the SM presenting such features, the U(1)Y triviality problem
could be resolved, removing UV divergences. Moreover, the limited number of RG trajecto-
ries connecting a fixed point with consistent IR physics often leads to a significant reduction
of the parameter space of a theory. In model building beyond the SM this results in an
enhancement of predictivity, since the requirement that an RG flow from a UV fixed point
match measured values of the SM couplings around the electroweak scale constrains BSM
parameters. Because of these features, asymptotic safety has begun to be used both as a
template to look for extensions of the SM [25, 29, 61] and as a tool reduce the parameter
space of known BSM models [62]. Progress in asymptotically safe theories has also been
made in the context of supersymmetric models [63, 64], conformal windows of parameters
[65], and theories with large particle multiplicities [27, 66–72].

Recently, proposals have been put forward which connect asymptotically safety with flavor
physics within and beyond the SM. Indeed, it has been shown that asymptotically safe
models may be able to explain measurements in the flavor sector in discrepancy with the
SM [24, 25, 73]. Such a scenario is explored in Chapter 3, where we connect asymptotically
safe models with data on anomalous magnetic moments. Moreover, asymptotically safe SM
extensions may lead to RG-driven flavor structures which can explain or at least alleviate
the striking flavor pattern of the SM, both with and without taking into account quantum
gravity effects [11, 23, 73, 74]. This is the focus of Chapter 5, which is devoted to asymp-
totically safe U(1) extensions where flavor hierarchies arise from RG running. Altogether,
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asymptotically safe UV completions of the SM can present strong implications for flavor
physics.

In the remainder of this chapter we outline the main concepts behind asymptotically safe
model building, and provide general formulae. In Sec. 2.1 we review the mechanisms leading
to UV fixed points in gauge-Yukawa theories, and in Sec. 2.2 we discuss models where such
fixed points arise under perturbative control. In Sec. 2.3, we work out expressions for
models containing vector-like fermions, which represent key ingredients in asymptotically
safe theories [27, 28]. Finally, Sec. 2.4 is devoted to studying the extended scalar sector
typically present in asymptotically safe extensions of the SM.

2.1 Asymptotic Safety in Gauge-Yukawa Theories

As a starting point, asymptotic safety requires that the β-functions of a theory present
a fixed point, i.e. some set of coupling values α∗ for which all β-functions vanish. This
condition can be expressed as

βi(α)
⃓⃓
α=α∗ ≡ dαi

d lnµ

⃓⃓⃓⃓
α=α∗

= 0 . (2.1.1)

In general, when looking for fixed points we shall demand the following:

i) The coordinates must be physical, fulfilling α∗
i ≥ 0

ii) Couplings must be perturbative, which requires α∗
i ≤ 1

with the couplings αi normalized according to Eq. (1.2.1). Condition ii) allows to choose
weakly interacting fixed points, which can potentially render the theory predictive at all
scales. In order to illustrate the instances in which a model can present such fixed points
we now study a simple gauge theory containing one gauge coupling g and one Yukawa
coupling y. Following [27–29] and related works, in the 210 approximation we can express
the β-functions of such a theory as

βg = α2
g (−B + Cαg −Dαy) ,

βy = αy (E αy − F αg) ,
(2.1.2)

as already discussed in Sec. 1.2. Several types of fixed points exist for the system (2.1.2).
Firstly, the gaussian fixed point is given by

α∗
g = α∗

y = 0 , (2.1.3)

and may present itself in different energy regimes depending on the specific particle content
and symmetries of a theory. The sign of the 1-loop coefficient is in this case key: for B > 0

the gaussian fixed point is reached in the IR in the direction of the gauge coupling, while
for B < 0 it is reached in the UV. In the SM, the gaussian fixed point is responsible for the
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asymptotically free behavior of α2 and α3. Next, Eq. (2.1.2) admits a fixed point where αy
is asymptotically free but αg is interacting, given by

α∗
g =

B

C
, α∗

y = 0 . (2.1.4)

The above solution is known as the Caswell-Banks-Zaks fixed point [75, 76], and it requires
B/C > 0 in order to be physical and B/C < 1 to ensure perturbativity. As we shall detail
shortly, the Caswell-Banks-Zaks fixed point (2.1.4) can only be reached in the infrared
along the direction of the gauge coupling. Therefore, it is not a suitable solution if we are
attempting to find gauge-Yukawa theories with asymptotic safety in the UV. Finally, the
system in study permits another type of fixed point, where both couplings are non-vanishing.
This is the case of the gauge-Yukawa fixed point, which presents coordinates

α∗
g =

B

C ′ , α∗
y =

BF

C ′E
, (2.1.5)

with
C ′ = C − DF

E
, (2.1.6)

where the coefficient C ′ can take either sign, so that the fixed point can be physical for both
B < 0 and B > 0. Gauge-Yukawa fixed points have the particularity that, unlike Caswell-
Banks-Zaks fixed points, they can be reached the UV [28] and, opposed to the gaussian, the
gauge coupling is interacting at the fixed point. Thus, they can potentially describe a UV
behavior which differs from asymptotic freedom and at the same time provide a controlled
RG evolution at all energies. These are, in fact, the fixed points of asymptotic safety, which
we focus on in this work.

2.1.1 Stability Analysis

A crucial question when studying fixed points of the RGEs is whether they can be reached
in the UV or the IR, and in which particular directions in coupling space this is possible.
Here we aim to address this question in more detail by studying the RG flow around the
fixed points of the simplified system described in the previous section. In what follows, we
designate directions in coupling space as relevant if they allow to reach the fixed point in
the UV, and as irrelevant if they draw couplings away from it. Thus, the notion of relevant
or irrelevant we employ refers to the orientation of a direction with respect to a particular
fixed point. In some cases a direction in coupling space might correspond to a good ap-
proximation to variations of a single coupling. In these cases, we shall speak of relevant or
irrelevant couplings for simplicity.

In order to see how the couplings flow around a given fixed point, we begin by expanding
the β-functions in its vicinity, which results in the linearized flow

βi =
∑︂
j

Mijδj +O(δ2) , (2.1.7)
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where δi = αi − α∗
i . The stability matrix Mij is given by the first derivatives of the β-

function, and obeys

Mij =
∂βi
∂αj

⃓⃓⃓⃓
α=α∗

. (2.1.8)

An analytical first order solution for the evolution of the couplings around the fixed point
can be obtained by solving the linearized set of β-functions, which must first be decoupled.
To that end, we first rewrite Eq. (2.1.7) as

dδi
d lnµ

≃
∑︂
j

Mijδj =
∑︂
j

(V θV −1)ijδj , (2.1.9)

where we decomposed M in terms of a matrix V containing its eigenvectors as columns
and the diagonal matrix θ composed of its eigenvalues. Using the redefinition of couplings
σi = (V −1)ijδj the system of RGEs decouples, yielding

dσi
d lnµ

≃ θiσi , (2.1.10)

where there is no implicit sum over i. Solving the above readily gives

σi − σ0i ≃ ci ln

(︃
µ

µ0

)︃θi
, (2.1.11)

with ci the integration coefficients associated to each eigenvector, and σ0i = σi(µ0). Then,
after undoing both variable changes one obtains

αi ≃ α∗
i +

∑︂
j

cjVji

(︃
µ

µ0

)︃θj
, (2.1.12)

where µ0 is a scale sufficiently close to the fixed point so that δ0i ≃ 0. Eq. (2.1.12) en-
capsulates the features of the flow around a fixed point. Firstly, the eigenvalues θj act
as critical exponents of the RG flow, and their sign determines whether the corresponding
eigendirection drives αi away from or closer to the fixed point. More explicitly, if µ0 is a
high scale the fixed point can only be reached in the UV if at least one of the eigenvalues
is negative. Thus, the eigenvectors associated to negative (positive) eigenvalues correspond
to relevant (irrelevant) directions. Lastly, one might encounter eigenvalues which exactly
vanish. Their associated directions are called marginal, and do not alter the flow from the
fixed point at first order. At higher orders, however, they might drive couplings towards
the UV fixed point, in which case they are marginally relevant, or away from it when they
are marginally irrelevant.

We now take the Caswell-Banks-Zaks fixed point of the system in Eq. (2.1.2), given by
the coordinates (2.1.4). The critical exponents that follow from diagonalizing the stability
matrix obey

θ1 = −BF
C

, θ2 =
B2

C
, (2.1.13)
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with θ1 < 0 < θ2. The sign of the scaling exponents can be deduced from the fact that,
for a gauge theory with B ≤ 0 one immediately obtains C > 0. This entails that Caswell-
Banks-Zaks points, which require B · C > 0 to be physical, only appear in theories with
B,C > 0 [28]. Then, from Eq. (2.1.13) one obtains θ2 > 0 and the general result F > 0

gives θ1 > 0. The corresponding eigenvectors in the (αg, αy) basis obey

v1 =

(︃
BD

C(B + F )
, 1

)︃
, v2 = (1, 0) . (2.1.14)

Then, and according to Eq. (2.1.12), v2 is an irrelevant direction which at first order is
strictly in the direction of gauge coupling, while v1 is UV-attractive and runs mostly along
the direction of the Yukawa coupling. Therefore, in the absence of Yukawa interactions,
Caswell-Banks-Zaks fixed points are invariably IR. In the case of gauge-Yukawa fixed points,
the scaling exponents are given by

θ1 ≃
B2

C ′ , θ2 ≃
BF

C ′ , (2.1.15)

at leading order in B/C ′ ≪ 1. With B/C ′ > 0, and since F is always positive, one always
finds θ2 > 0. However, for a negative shifted coefficient C ′ (see Eq. (2.1.6)) one obtains
θ1 < 0. This is only possible for theories with B < 0. Then, the eigenvector of the relevant
direction again in the B/C ′ ≪ 1 limit reads

v1 =

(︃
E

F

(︃
1− B

F

)︃
, 1

)︃
, (2.1.16)

for which both components fulfill vi1 > 0. Thus, the theory presents an asymptotically safe
fixed point which can be reached in the UV along a direction involving the gauge and the
Yukawa couplings. This relevant direction corresponds to the 1-dimensional UV-critical
surface of the flow, known as the separatrix [28]. The significance of this trajectory relies
on the fact that all UV theories which lie close to the gauge-Yukawa fixed point will flow
into the IR approximating the separatrix, and therefore will present the same IR physics.
A useful way to study the evolution of the gauge coupling along the separatrix is to fix the
Yukawa coupling by the nullcline condition βy = 0, which yields αy = (F/E)αg. Then, the
gauge coupling runs according to

βg = α2
g(−B + C ′αg) . (2.1.17)

Solutions of the above yield good approximations of the separatrix, coinciding both in the
vicinity of the gaussian and close to the UV fixed point [29].

To summarize, we have now studied the linearized flow (2.1.12) of the gauge-Yukawa system,
and explicitly given its coefficients around the Caswell-Banks-Zaks and gauge-Yukawa fixed
points. The former can only be reached in the IR if Yukawa couplings are absent, whereas
the gauge-Yukawa fixed point can present relevant directions which allow to reach it in the
UV. Therefore, we can now ascertain that Yukawa couplings are essential for a theory to
present asymptotic safety, an idea which will guide model-building efforts throughout this
work.
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2.1.2 Asymptotically Free Couplings

We would now like to study in more detail how asymptotically free couplings behave around
fixed points. The linearized flow (2.1.12) constitutes a good approximation when at least
one of the first order derivatives Mij does not vanish at the fixed point, which is sometimes
not the case when some couplings are asymptotically free. For instance, at the gaussian
fixed point (2.1.3) the β-function of a gauge coupling αi fulfills ∂βi/∂αj |α=α∗ = 0, so that
Mij = 0. In such cases, we must resort to the second order expansion of the β-functions,
which can be written down as

βi =
∑︂
j

Mijδj +
1

2

∑︂
j,k

Pijkδjδk +O(δ3) , (2.1.18)

where we used again δi = αi − α∗
i , and the Pijk encode the second derivatives evaluated at

the fixed point, obeying

Pijk =
∂2βi

∂αj∂αk

⃓⃓⃓⃓
α=α∗

. (2.1.19)

Let us now focus on the cause where a gauge coupling αi is asymptotically free. As one
always finds βi ∝ α2

i , the only non-vanishing coefficient of the second-order expansion
reads Piii = ∂2βi/∂α

2
i |α=α∗ . In the case of the simple system of Eq. (2.1.2), one finds

Piii = 2(−B + Cα∗
y). In order to obtain expressions for the second derivatives in a general

case, we first write the 2-loop β-function of a gauge coupling in any model as

βi = −α2
i

⎛⎝Bi − ∑︂
j=gauge

Cij αj +
∑︂

n=Yukawa

Din αn

⎞⎠+O
(︁
α4
)︁
, (2.1.20)

where the indices now include all possible gauge and Yukawa interactions in the theory.
Then, at a fixed point where α∗

i = 0 one finds

Piii = −2

⎛⎝Bi −∑︂
j

Cijα
∗
j +

∑︂
n

Dinα
∗
n

⎞⎠ = −2Beff
i , (2.1.21)

where Beff
i acts as an effective 1-loop coefficient, which allows to write Eq. (2.1.18) as

βi ≃ −α2
iB

eff
i . (2.1.22)

At the gaussian fixed point, with all gauge and Yukawa couplings vanishing, one finds
Beff
i = Bi and recovers the 1-loop β-function. In the case where the gauge coupling αi

is asymptotically free, but other couplings can take any value at the fixed point, solving
Eq. (2.1.22) describes the flow of αi to a good approximation. The result is equivalent to
solutions of the 1-loop running (given in Eq. (1.2.7)) after substituting Bi for Beff

i . Thus, a
gauge coupling vanishing at a fixed point follows a logarithmic evolution where the UV fate
of the coupling is determined by the sign of the effective 1-loop coefficient: for Beff

i > 0,
the gauge coupling grows as it flows to the IR, while for Beff

i < 0 the coupling must remain
zero at all scales if one insists that the fixed point be UV. Therefore, when looking at
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asymptotically safe trajectories of a model, if a gauge coupling fulfills α∗
i = 0 it will only

display non-trivial IR physics if Beff
i > 0.

Conversely, asymptotically free Yukawa couplings present a rather different behavior. Let
us also write their general β-function, which can be expressed as

βn = αn

⎛⎝ ∑︂
m=Yukawa

Enm αm −
∑︂

i=gauge

Fni αi

⎞⎠+O
(︁
α3
)︁
, (2.1.23)

for a Yukawa coupling αn. In this case, Mnn = ∂βn/∂αn|α=α∗ does not vanish if at least
some gauge or Yukawa coupling in the theory is interacting at the fixed point. For α∗

n = 0,
the only non-vanishing first derivative obeys

Mnn =
∑︂

m=Yukawa

Enm α
∗
m −

∑︂
i=gauge

Fni α
∗
i . (2.1.24)

Therefore, the running of αn can be approximated at first order, and it takes the form of
the exponential evolution in Eq. (2.1.12). To obtain a more explicit result for the running,
we rewrite βn as

βn ≃ αnMnn , (2.1.25)

which leads to the solution

αn(µ) ≃ αn,0

(︃
µ

µ0

)︃Mnn

, (2.1.26)

where αn,0 = αn(µ0) and we assume µ0 is a high scale. In Eq. (2.1.26) Mnn acts as the
critical exponent of the flow, and only if Mnn < 0 the coupling corresponds to a relevant
direction of the UV fixed point. In that case, the Yukawa coupling αn presents an exponen-
tial growth towards the IR, a behavior which is radically different to that of asymptotically
free gauge couplings, which run out of the fixed point only logarithmically. A case of special
interest arises when some of the gauge couplings present α∗

i ̸= 0, while all the terms cor-
responding to Yukawa interactions in the right-hand side of Eq. (2.1.24) vanish. Note that
this does not require that all Yukawa couplings αm vanish at the fixed point; it suffices that
for the nonzero α∗

m the respective coefficients Enm in the β-function of αn vanish. Then,
given that the Fni are always positive, one invariably obtains Mnn < 0 and the asymptoti-
cally free Yukawa is relevant. In Chapter 5 we explore this possibility within an extension
of the SM with non-universal interactions. The non-trivial flavor structure of the studied
model allows the coefficients Mnn to be substantially different for each asymptotically free
Yukawa coupling, leading to significant RG-induced deviations in their numerical values.

In conclusion, in this section we studied how asymptotically free couplings behave near
the fixed point. We found that, for gauge couplings, one needs to resort to second-order
derivatives to approximate their flow, which turns out to be logarithmic and governed by
the effective coefficient Beff

i in Eq. (2.1.21). For Beff
i > 0, the gauge coupling corresponds

to a relevant direction of the UV fixed point. In the case of asymptotically free Yukawa
couplings, we found that they present an exponential evolution around the fixed point, and
grow towards the IR if the relevant first derivative fulfills Mnn < 0.
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2.2 A Template Model towards Asymptotic Safety

In [27] and subsequent works, asymptotic safety in gauge-Yukawa theories was shown to
be realized under rigorous perturbative control in models of vector-like fermions, singlet
scalars and non-abelian gauge fields. In this section we describe this setup and its features,
and go on to motivate its role as an extension of the SM. As the starting point, we con-
sider a theory with an SU(N) gauge symmetry and NF generations of vector-like fermions
ψi, transforming in the fundamental representation under SU(N). Given that vector-like
fermions do not introduce triangle anomalies, their representations under the gauge group
can be chosen freely. We also include NF ×NF complex scalars Sij , which are assumed to
be singlets under the gauge symmetry. The scalars are meson-like, in the sense that they
carry two flavor indices. This model presents renormalizable interactions [27, 28, 60]

LAS = Tr
[︁
ψ/iDψ

]︁
+ Tr

[︁
(∂µS)

†(∂µS)
]︁
− yTr

[︁
ψLSψR + h.c.

]︁
− V (S) , (2.2.1)

where the traces run over gauge and flavor indices, and the scalar potential is given by

V (S) = −µ2s Tr
[︂
S†S

]︂
+ uTr

[︂
S†SS†S

]︂
+ v

(︂
Tr
[︂
S†S

]︂)︂2
. (2.2.2)

A mass term MF ψLψR for the vector-like fermions is also allowed, as well as trilinear terms
in V (S) in the case NF = 3. The key feature of the Lagrangian (2.2.1) in the context of
asymptotic safety relies on the presence of the Yukawa coupling y, essential to negotiate
interacting UV fixed points. It must be noted, however, that the Yukawa y in Eq. (2.2.1)
does not describe the most general form of the interaction. Indeed, the flavor structure of
the model allows to write

yijkl ψLiSjkψRl , (2.2.3)

where the indices of the tensor coupling can each take values i, j, k, l = 1, .., NF . However,
the number of parameters can be drastically reduced by the use of flavor symmetries. In
the absence of the Yukawa interaction (2.2.3), the Lagrangian LAS presents global flavor
symmetry

U(NF )
2
ψ = U(NF )ψL

⊗ U(NF )ψR
,

U(NF )
2
S = U(NF )SL

⊗ U(NF )SR
,

(2.2.4)

where the ψL,R transform as triplets under U(NF )ψL,R
, and the scalars transform in the

representation (NF,NF) under U(NF )SL
⊗ U(NF )SR

. Identifying U(NF )
2
S with U(NF )

2
ψ

in Eq. (2.2.4) and imposing that the flavor symmetry be conserved by the full Lagrangian
only allows for the single-parameter Yukawa interaction yTr

[︁
ψLSψR + h.c.

]︁
, as written in

Eq. (2.2.1).

In terms of RGEs, the model is described by the gauge and Yukawa β-functions in the 210
approximation given in Eq. (2.1.2), in this case with coefficients

B =
22

3
N − 8

3
NFS2(R) , C = 4NFS2(R)

(︃
2C2(R) +

10

3
N

)︃
− 68

3
N2 ,

D = 4N2
FS2(R) , E = 2 (NF + d(R)) , F = 12C2(R) ,

(2.2.5)
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in terms of the representation R of the vector-like fermions under SU(N). An important
feature of the coefficients (2.2.5) is the N2

F dependence of the D coefficient, which enters the
β-function of the gauge coupling as βg ∝ −Dαy. For large NF the coefficient is enhanced
with respect to B and C, and can therefore be sizable enough to compensate their effects
and deliver βg = 0 solutions. The N2

F dependence in D stems directly from the flavor struc-
ture of the model, in particular from the fact that the scalars Sij carry two flavor indices.

The crucial feature of the model (2.2.1) is that its β-functions present a gauge-Yukawa
fixed point the perturbativity of which can be controlled in the Veneziano limit [77], which
consists in simultaneously taking NF → ∞, N → ∞ while maintaining the ratio NF /N

fixed. To see the effect of this limit on the β-functions, one rewrites them in terms of the
infinitesimal parameter

ϵ =
NF

N
− 11

2
. (2.2.6)

Assuming the ψ belong to the fundamental representation of SU(N), an expansion in pow-
ers of ϵ shows that the gauge-Yukawa fixed point and its critical exponents are perturbative
as long as ϵ remains small, see [27] for details. A more detailed analysis of the Veneziano
limit is beyond the scope of this work. Here it is sufficient to note that, in theories con-
taining non-abelian gauge interactions together with fermionic and scalar matter, large-N
techniques corroborate the viability of UV gauge-Yukawa fixed points. One may also won-
der about the dependence of the fixed point on the renormalization scheme, as β-functions
at any arbitrary order are generally scheme-dependent. However, the 1-loop coefficients of
a gauge β-function βg are scheme-independent, and the 2-loop gauge contributions to βg
are universal in mass-independent schemes such as MS. These features can be used to show
that, in the Veneziano limit, the gauge-Yukawa fixed point is invariant under reparameter-
izations of the gauge coupling at order ϵ, indicating independence of the renormalization
scheme [27]. Away from the Veneziano limit, or in systems of β-functions at general loop
orders, this invariance cannot be a priori guaranteed. However, we may argue that, if a
fixed point is physical, it will lead to measurable effects in observable quantities. Therefore,
even though the coordinates α∗ may differ in different schemes, the presence of the fixed
point may be regarded as a scheme-independent statement.

Next, one might note that the SM itself shares many features with the models of Eq. (2.2.1):
it is a gauge theory, with some of the gauge groups being non-abelian, and it contains
fermionic and scalar fields with abundant Yukawa interactions. Therefore, it is natural to
wonder whether the SM contains UV fixed points which can render it asymptotically safe.
Large-N studies, however, are not directly applicable in the SM, for which the number of
flavors is fixed to NF = 3 and the gauge groups determined. 1/N expansions may in this
case prove useful; these are nevertheless beyond this work.

Despite its promising structure, the SM does not, however, display asymptotic safety in the
UV. As we already saw in Sec. 1.2, the U(1)Y coupling suffers from a Landau pole, and the
Higgs quartic faces stability issues. Thus, in the SM the Yukawas are not capable of driving

– 28 –



the gauge couplings into a fixed point. This can also be understood by inspection of the 2-
loop gauge RGEs shown in Eq. (1.2.9). Take for instance the U(1)Y β-function: in order to
obtain β1,SM = 0 the top Yukawa should acquire non-perturbative values, since the 1-loop
coefficient B1 is negative and quite sizable. Furthermore, even if one allowed for α∗

t > 1

solutions, these are not accessible in the SM: although the top Yukawa is considerably large
at the electroweak scale, it only decreases towards the UV. Hence, we are left with the
conclusion that the SM alone cannot display asymptotic safety. Nonetheless, it is possible
that in extending the SM it can be rendered asymptotically safe. To this end, one must
attempt to include new Yukawa interactions which can deliver UV fixed points for the
SM gauge couplings, at least in the case of α1. For α2 and α3 it is in principle sufficient
that they remain asymptotically free, but they may also acquire non-vanishing fixed point
values. At 2-loop, BSM physics will modify the RGEs of the gauge couplings only if the
new states are coupled to the SM through either gauge or Yukawa interactions. Thus, a
minimal possibility consists in extending the SM by the model discussed in this section
and assume that the vector-like fermions are charged under the symmetries of the SM, as
explored in [29] and subsequent works [24, 25, 61]. The Lagrangian of the full theory then
reads

LSM,AS = LSM + LAS + LY − V (H,S) , (2.2.7)

where the scalar potential fulfills

V (H,S) = V (H) + V (S) + δTr
[︂
S†S

]︂
H†H , (2.2.8)

and LY contains further BSM Yukawa interactions which may or may not arise depending
on the charges of the vector-like fermions. The full theory (2.2.7) includes at least one
additional Yukawa coupling, y, which enters the β-functions of the gauge couplings of the
symmetries under which the ψ are charged. Hence, it can potentially lead to asymptotically
safe solutions involving the SM. Furthermore, the vector-like nature of the new fermionic
matter avoids any constraints on its charges arising from triangle anomalies.

2.3 Colorless Vector-like Fermions

As argued in Sec. 2.2, vector-like fermions play an important role in asymptotically safe ex-
tensions of the SM. Here, we provide general formulae for color-singlet vector-like fermions,
which will prove useful in Chapters 3 and 4. In particular, we focus on vector-like fermions
ψ in the singlet, doublet and triplet representation of SU(2)L, and describe their weak
interactions including effects from mixing with SM leptons. Let us start by writing the
kinetic terms of the ψ in the interaction basis, which read

Lψ, kin = ψLi /DψL + ψRi /DψR = ψi /Dψ . (2.3.1)

Since the left- and right-handed components of the ψ carry the same charges, in the gauge
basis they present vanishing axial couplings. The coefficients of the interactions of the Z
boson with the ψ then fulfill

gV = cL = cR = 2(T 3 −Qes
2
w), gA = 0 , (2.3.2)
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in the conventions of Eq. (1.1.32), where T 3 is the third isospin component of the vector-
like fermion. Furthermore, for SU(2)L-charged vector-like fermions both the right- and
left-handed components acquire W boson interactions, with numerical factors depending
on the particular representation through Clebsch-Gordon coefficients. In the case of SU(2)L
doublets and triplets, the T 3 eigenstates can be expressed as

ψd =

(︄
ψ+1/2

ψ−1/2

)︄
, ψt =

⎛⎜⎜⎝
ψ+1

ψ0

ψ−1

⎞⎟⎟⎠ , (2.3.3)

respectively, where the superscript indicates the T 3 value of each component. Then, their
W interactions in the gauge basis obey

−ψd
(︃
g
σ1

2
W 1
µ + g

σ2

2
W 2
µ

)︃
γµψd = − g√

2
ψ
+1/2

γµψ−1/2W+
µ + h.c. .

−ψt
(︁
g t1W

1
µ + g t2W

2
µ

)︁
γµψt = −g

(︂
ψ
+1
γµψ0 − ψ

0
ψ−1

)︂
W+
µ + h.c. ,

(2.3.4)

where σa and ta correspond to the SU(2) generators in the doublet and triplet represen-
tation, respectively, as shown in Appendix A.1. For the triplets, as well as for higher
representations, it can be advantageous to employ tensor notation, especially when index
contractions are non-trivial. An SU(2) triplet can be written in terms of vectors ui in the
2 and vj in the 2 representation as the traceless tensor

T i
j = uivj −

1

2
δiju

kvk , (2.3.5)

see for instance [78, 79]. Then, equating tensor and SU(2)L components one obtains

ψ1
2 = ψ+1 , ψ2

1 = ψ−1 , ψ1
1 = −ψ2

2 =
ψ0

√
2
, (2.3.6)

so that the triplet can be written in matrix form as

ψij =

(︄
ψ0/

√
2 ψ1+

ψ−1 −ψ0/
√
2

)︄
. (2.3.7)

The above is a familiar result, used in the SM to express the W boson triplet as a matrix,
allowing us to describe its interactions with doublets in a straightforward way.

Furthermore, vector-like fermions with electric charge Qe = +1 or Qe = 0 can acquire mix-
ing with SM charged leptons or neutrinos, provided they present mixed Yukawa interactions
with scalars undergoing spontaneous symmetry breaking. Let us assume that rotations to
the mass basis are described through mixing angles θ0L and θL,R as

ψ−1
X = cθXψ

−1,m
X − sθX ℓ

m
X , ℓX = cθX ℓ

m
X + sθXψ

−1,m
X ,

ψ0
L = cθ0L

ψ0,m
L − sθ0L

νmL , νL = cθ0L
νmL + sθ0L

ψ0,m
L ,

(2.3.8)
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f
−1
, f ′ −1 gV gA

ℓ, ℓ −1/2 + 2s2w +∆gℓV −1/2 + ∆gℓA

ψ
−1, ψ−1 2

(︂
T 3
ψ−1 + s2w

)︂
−∆gℓV −∆gℓA

ψ
−1, ℓ −1

2

[︂
s2θL(T

3
ψ−1 + 1/2) + s2θRT

3
ψ−1

]︂
−1

2

[︂
s2θL(T

3
ψ−1 + 1/2)− s2θRT

3
ψ−1

]︂
Table 2.1. Coefficients of the Z boson interactions with Qe = −1 fermions in the mass basis (see
Eq. (2.3.8) and Eq. (2.3.9)), with ∆gℓV

A
= s2θL(T

3
ψ−1 + 1/2)± s2θRT

3
ψ−1 .

f
0
, f ′ 0 gV gA

ν, ν 1/2 + ∆gν 1/2 + ∆gν

ψ
0, ψ0 2T 3

ψ0 −∆gν −∆gν

ψ
0, ν −1

2s2θ0L
(T 3
ψ0 − 1/2) −1

2s2θ0L
(T 3
ψ0 − 1/2)

Table 2.2. Coefficients of the Z boson interactions with Qe = 0 fermions in the mass basis (see
Eq. (2.3.8) and Eq. (2.3.9)), with ∆gν = s2

θ0L

[︂
T 3
ψ0 − 1/2

]︂
.

where X = L,R.1 The superscripts in Eq. (2.3.8) indicate the electric charge of the vector-
like fermions, and m denotes the mass basis. Due to these rotations, chiral interactions are
affected, while QED vertices are left invariant. The modified Z couplings to two fermions
f and f ′ in the mass basis are collected in Tabs. 2.1 and 2.2 for the case where both
fermions carry electric charge Qe = −1 and Qe = 0, respectively. The couplings are entirely
determined by the rotation angles and the T 3 component of the vector-like fermions, and
normalized following

LZ = − g

2 cos θw
f
Qe
γµ(gV − gAγ

5)f ′Qe Zµ . (2.3.9)

Note that the charged-lepton couplings are modified by the quantities ∆gℓV,A (see Tab. 2.1).
However, measurements of the Z couplings agree with the SM at permille accuracy, as
shown in Tab. 1.2, strongly constraining the rotation angles of a BSM model. Moreover,
mixing gives rise to Z couplings to an SM lepton and a vector-like fermion. Therefore, it
enables electroweak decays of vector-like fermions to Z plus lepton, which can be extremely
relevant phenomenologically.

Next, we consider implications of mixing for charged-current interactions, which affect Qe =
+1, 0,−1,−2 states. Without specifying the particular U(1)Y × SU(2)L representation of
the vector-like fermions, their W interactions can be written as

LW,ψ = − g√
2
CQeψ

Qe
γµψQe−1W+

µ + h.c. . (2.3.10)

1These rotations correspond to the limit of no flavor mixing, in which each lepton mixes exclusively with
one generation of vector-like fermions.
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f
Qe
, f ′Qe−1 cL cR f

Qe
, f ′Qe−1 cL cR

ν, ℓ cθLcθ0L
+ C0sθLsθ0L

0 ψ
+1
, ψ0 C1cθ0L

C1

ψ
0, ψ−1 sθLsθ0L

+ C0cθLcθ0L
C0cθR ψ

+1
, ν −C1sθ0L

0

ψ
0, ℓ cθLsθ0L

− C0sθLcθ0L
−C0sθR ψ

−1
, ψ−2 C−1cθL C−1cθR

ν, ψ−1 sθLcθ0L
− C0cθLsθ0L

0 ℓ, ψ−2 −C−1sθL −C−1sθR

Table 2.3. Coefficients of the W boson interactions with fermions of electric charge Qe =

−1, 0,−1,−2 in the mass basis (see Eq. (2.3.8) and Eq. (2.3.11)).

where CQe are Clebsch-Gordan coefficients depending on the SU(2)L representation of the
ψ. After rotations to the mass basis, interactions of vector-like fermions and leptons take
the form

LW,mix = − g√
2
f
Qe
γµ(cLPL + cRPR)f

′Qe−1W+
µ + h.c. , (2.3.11)

where the coefficients cL, cR are given in Tab. 2.3. There, one observes two effects arising
from mixing: on the one hand, vector-like fermions acquire axial couplings at order s2θL,R

and, on the other hand, charged leptons pick up sθL,R
-suppressed right-handed couplings

to theW boson and a vector-like fermion. Again, this opens up new decay channels of the ψ.

Lastly, let us comment on the representations known as vector-like leptons, which carry
SU(3)C × SU(2)L × U(1)Y charges

(1, 1,−1) , or (1, 2,−1/2) , (2.3.12)

coinciding with those of the SM lepton singlet and doublet, respectively. The charged
components of the vector-like leptons fulfill T 3

ψ−1 = 0 (T 3
ψ−1 = −1/2) in the singlet (doublet)

case, while the neutral component of the doublet representation presents T 3
ψ0 = 1/2. This

leads to certain cancellations in the expressions of Z couplings after mixing, as can be seen
from inspection of Tabs. 2.1 and 2.2. In particular, the quantity ∆gℓ depends only on the
rotation angle θL (θR) for the singlet (doublet) representation, while ∆gν vanishes.

2.4 Singlet Scalars with a Higgs Portal

In this section we study the vacuum stability and mass spectrum of the scalar sector in-
volving the SM Higgs doublet together with the scalars Sij , with i, j = 1, ..., NF , of the
model described in Sec. 2.2. The results describe the scalar sector of general asymptotically
safe extensions of the SM based on this model, as studied for instance in [24, 25]. In what
follows, we keep NF as a free parameter while providing in some cases explicit results for
NF = 3, as they will prove useful for the models studied in Chapter 3.

– 32 –



The full potential of the scalar sector of study can be written as

V (H,S) =− µ2H†H − µ2s Tr
[︂
S†S

]︂
+ λ(H†H)2 + δH†H Tr

[︂
S†S

]︂
+ uTr

[︂
S†SS†S

]︂
+ v

(︂
Tr
[︂
S†S

]︂)︂2
,

(2.4.1)

which follows the notation of the Higgs and S potentials of Eqs. (1.1.13) and (2.2.2), re-
spectively,2 with the addition of a portal coupling δ. This potential exhibits the BSM flavor
symmetry (2.2.4), as well as the SM gauge and flavor symmetries. In particular, for NF = 3

the potential is invariant under U(3)ψL
×U(3)ψR

rotations of the S. Furthermore, the case
NF = 3 allows for the trilinear term

− µdet

(︂
detS + detS†

)︂
, (2.4.2)

which presents SU(3)ψL
×SU(3)ψR

symmetry. Therefore, U(3) rotations will yield a phase
in (2.4.2) which must not necessarily vanish. However, one can then perform an additional
U(1) rotation of the S fields in order to cancel such a phase while keeping the potential
invariant (see for instance [80] for the study of a scalar model involving trilinear terms).

2.4.1 Vacuum Stability

In order to study the stability of the vacuum, we want to look for directions along which
the potential (2.4.1) presents infinite degenerate minima. This set of directions can be
studied in terms of classical fields, and is then termed the classical moduli space [60, 81].
The idea behind this analysis is to diagonalize the classical field Sc in order to obtain a
potential which depends only on its real eigenvalues si. Thanks to the flavor symmetry of
the potential, all dependence on rotation matrices after diagonalization vanishes and it can
be written entirely in terms of the si. Then, directions with constant moduli can be defined
as those fulfilling

∑︁
i s

2
i = R2, where R is a constant. This condition can be enforced by

use of a Lagrange multiplier η, which we take to enter the potential as −2η(
∑︁

i s
2
i − R2).

This will allow us to search for flat directions. The potential to be minimized then becomes

V (H, s) =− µ2H2 − µ2s
∑︂
i

s2i + λH4 + δH2
∑︂
i

s2i

+ u
∑︂
i

s4i + v

(︄∑︂
i

s2i

)︄2

− 2η

(︄∑︂
i

s2i −R2

)︄
,

(2.4.3)

where we have substituted H†H = H2 for simplicity. The first derivatives of the potential
now obey

∂V

∂si
= 2si

(︁
−µ2s + δH2 + 2us2i + 2vR2 − 2η

)︁
,

∂V

∂H
= −2

(︁
−µ2 + 2λH2 + δR2

)︁
,

∂V

∂η
= −2

(︄∑︂
i

s2i −R2

)︄
.

(2.4.4)

2Up to a factor 2 in the Higgs quartic λ.

– 33 –



To find the minima of V we require that all the derivatives in (2.4.4) vanish, with the values
|H| , |si| of the fields at the minimum constituting their VEVs. From ∂V/∂si in Eq. (2.4.4)
one can see that if either one or several of the si acquire nonzero VEVs these must all take
the same value, which we define as

|si| =
vs√
2
=
R2

n
, (2.4.5)

where n is the number of fields si which do acquire a VEV, with possible values n =

1, ..., NF . Then, the potential at the minimum is given by

Vmin =− µ2 |H|2 − µ2sR
2 + λ |H|4 + δ |H|2R2 +

u

n
R4 + vR4 . (2.4.6)

This result allows to identify two vacuum configurations in terms of the sign of the quartic
coupling u. Firstly, for u < 0 the potential is minimized for the lowest value of n, which
corresponds to n = 1. Hence, only one of the diagonal components of the S acquires a VEV.
We shall refer to this configuration as V −. On the other hand, if u > 0 the lowest value of
Vmin is given by taking the maximum value of n. This corresponds to n = NF , which entails
that all the si acquire a VEV. We denote this ground state as V +. Furthermore, imposing
that the potential be bounded from below in the limit R→ ∞ leads to the constraint

u+ nv > 0 , (2.4.7)

which holds for both vacuum structures. In addition, in the limit of large Higgs field one
obtains

λ > 0 . (2.4.8)

Let us study now another flat direction, in which the VEVs of the Higgs and the S fulfill

|H|2 = R cos θ ,
∑︂
i

|si|2 = R sin θ , (2.4.9)

where the angle θ must belong to the first quadrant so that both vacuum expectation values
as well as R remain positive definite. In this direction the potential takes the form

V (θ) =−R2(µ2 cos2 θ + µ2s sin
2 θ) +R4 cos2 θ

[︂
λ+

(︂u
n
+ v
)︂
tan2 θ + δ tan θ

]︂
. (2.4.10)

Thus, in the large-R limit V is unbounded from below as soon as the second term in the
right-hand side of (2.4.10) becomes negative. Taking into account the conditions (2.4.7)
and (2.4.8), one finds that this is only possible for δ < 0. If that is the case, one can show
that the minimum value of the potential (2.4.10) is obtained for tan θmin = −δ/2(u/n+ v).
Imposing that V (θ) be positive at the minimum for large R we find

δ > −2
√︁
λ(u/n+ v) . (2.4.11)

This result completes the conditions for absolute stability of the potential (2.4.1). Collecting
them for each type of vacua we obtain

V + :

{︄
λ > 0, u > 0, u+NF v > 0,

δ > −2
√︁
λ (u/NF + v) ,

V − :

{︄
λ > 0, u < 0, u+ v > 0,

δ > −2
√︁
λ (u+ v) .

(2.4.12)
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Hence, we have encountered two vacuum structures with distinct stability conditions as
well as different implications for flavor. In V −, where only one of the components sk ac-
quires a VEV, the flavor k is singled out and after spontaneous symmetry breaking the
U(3)ψL

× U(3)ψR
flavor symmetry is broken into U(2)ψL

× U(2)ψR
× U(1). According to

the parameter counting in Eq. (1.1.11), this yields 2 · 9 − 2 · 4 − 1 = 9 massless modes in
S. Conversely, the V + vacuum is flavor-symmetric, with the universal VEVs breaking the
flavor symmetry into a U(3)diag, which yields 9 Goldstone modes as well. The presence
of massless modes can be avoided by adding to the potential terms of the type M2

ijsijs
∗
ij ,

which provide masses for the would-be Goldstone bosons at the cost of breaking the global
U(3)ψL

× U(3)ψR
symmetry. The symmetries involving the Higgs are the same as in the

SM, rendering 3 massless states which in the unitary gauge are absorbed by the W and Z
bosons, as described in Sec. 1.1.

Analytical expressions for the vacuum expectation values of the S and the Higgs can be
obtained by imposing that the first derivatives in Eq. (2.4.4) vanish at the minimum. Using
|H| = vh/

√
2, we obtain

v2s =
µ2s − δ

2λ µ
2

u+ nv − n δ
2

4λ

,

v2h =
µ2 − δn

2(u+nv)µ
2
s

λ− n δ2

4(u+nv)

=
1

λ

(︃
µ2 − nδ

v2s
2

)︃
.

(2.4.13)

Note that only for V + including the determinant term (2.4.2) in the Lagrangian affects
the expressions of the VEVs. These can be obtained by replacing µ2s → µ2s + µdetvs/

√
2 in

Eq. (2.4.13) and solving accordingly for vs.

2.4.2 Scalar Mass Spectrum

Let us now study the scalar mass spectrum for both vacuum structures V − and V +. To that
end, we express the diagonal components of the S after spontaneous symmetry breaking as

Sii =
1√
2
(si + isci + vs) , (2.4.14)

where si now denotes the CP-even part of the quantum field Sii, with sci its CP-odd com-
ponent. Then, in the vacuum V − aligned along the flavor k the mass terms in the poten-
tial (2.4.1) are obtained from

∂2V

∂h∂h

⃓⃓⃓⃓
S,H=0

= m2
h = −µ2 + 3v2hλ+

1

2
δv2s =

2(u+ v)µ2 − δµ2s
(u+ v)− δ2/4λ

,

∂2V

∂sk∂sk

⃓⃓⃓⃓
S,H=0

= m2
s = −µ2s + 3v2s(u+ v) +

1

2
δv2h =

2λµ2s − δµ2

λ− δ2/4(u+ v)
,

∂2V

∂h∂sk

⃓⃓⃓⃓
S,H=0

= msh = δ vsvh =
δ

2
√︁
λ(u+ v)

msmh ,

∂2V

∂(S2
ij)

⃓⃓⃓⃓
S,H=0

= m2
s = −µ2s + v2s v +

1

2
δv2h = − u

2(u+ v)
m2
s for i, j ̸= k ,

(2.4.15)
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while all other second derivatives vanish at the minimum. Hence, the scalars with i, j ̸= k

acquire a mass m2
s. Note that m2

s is a positive quantity, since for V − one requires u < 0

and u + v = 0. Moreover, Eq. (2.4.15) shows that mixing terms arise between the Higgs
scalar and the CP-even part sk of the component of S which acquires a VEV. Then, h and
sk mix according to the mass potential

V mass(sk, h) =
1

2

(︂
sk , h

)︂(︄ m2
s msh

msh m2
h

)︄(︄
sk

h

)︄
, (2.4.16)

which yields the eigenvalues

m1
2
=

1

2

[︂
m2
s +m2

h ±
√︂(︁

m2
s −m2

h

)︁2
+ 4m2

sh

]︂
. (2.4.17)

The mass eigenstates h1, h2 can be expressed as(︄
h1

h2

)︄
=

(︄
cosβ sinβ

− sinβ cosβ

)︄(︄
sk

h

)︄
, (2.4.18)

in terms of the rotation angle β given by

tan 2β =
2msh

m2
s −m2

h

=
2δvhvs
m2
s −m2

h

, (2.4.19)

see Appendix A.2 for details. For BSM models where the S scalars are much heavier than
the Higgs, one can approximate

tan 2β =
δ√︁

λ(u+ v)

mh

ms

(︃
1 +O(m2

h/m
2
s)

)︃
. (2.4.20)

In V +, where all diagonal components of S acquire a VEV, the NF = 3 case yields

∂2V

∂h∂h

⃓⃓⃓⃓
S,H=0

= m′
h
2
= −µ2 + 3v2hλ+

3

2
δv2s ,

∂2V

∂si∂si

⃓⃓⃓⃓
S,H=0

= m′
s
2
= −µ2s + v2s(3u+ 5v) +

1

2
δv2h ,

∂2V

∂si∂sj

⃓⃓⃓⃓
S,H=0

= mss = 2vv2s (i ̸= j),

∂2V

∂h∂si

⃓⃓⃓⃓
S,H=0

= msh = δ vsvh ,

∂2V

∂Sij∂S∗
ji

⃓⃓⃓⃓
S,H=0

= 2uv2s for i ̸= j ,

(2.4.21)

where there are no implicit sums3. Thus, in this case the CP-even part si of each diagonal
component of the S presents mixing with the Higgs scalar. The normalized mass eigenstates

3Including the determinant term (2.4.2) yields an extra term −µdet
vs√
2

in the right-hand side of
∂2V/∂si∂sj in Eq. (2.4.21).
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in the basis (s1, s2, s3, h) read

h′1 =
1√
3

(︂
cosβ′, cosβ′, cosβ′,

√
3 sinβ′

)︂
, h′3 =

1√
2
(−1, 0, 1, 0) ,

h′2 = − 1√
3

(︂
sinβ′, sinβ′, sinβ′, −

√
3 cosβ′

)︂
, h′4 =

1√
2
(−1, 1, 0, 0) ,

(2.4.22)

where the corresponding eigenvalues obey

m′
1
2
=

1

2

[︃
m′
s
2
+m′

h
2
+ 2mss ±

√︂(︁
m′
s
2 −m′

h
2 + 2mss

)︁2
+ 12msh

]︃
,

m′
3 = m′

4 = m′
s
2 − mss .

(2.4.23)

Note that, due to the degeneracy in the eigenvalues m′
3 and m′

4, any linear combination of
the states h′3,4 is an eigenvector as well. In the limit v → 0, µdet → 0 the angle β′ can be
expressed as

tan 2β′ =
2
√
3msh

m′2
s −m′2

h

=
2
√
3 δvhvs

m′2
s −m′2

h

. (2.4.24)

Inspection of the eigenvectors (2.4.22) shows that the eigenstates h′3,4 are purely linear
combinations of the gauge eigenstates of the S, while mixing with the Higgs occurs only for
the states h′1,2, and is universal. This entails that terms in the interaction basis Lagrangian
containing the S fields will acquire sinβ′-suppressed couplings with the Higgs for all flavors
involved, in contrast to the case of V − where only one of the flavors acquires additional
Higgs couplings. Both in V + and V +, all mixing-induced interactions are flavor-conserving,
since they stem only from diagonal components of the S or the Higgs.

Furthermore, in V + the Sij with i ̸= j present mixed mass terms, as seen from Eq. (2.4.21).
These yield six eigenstates h±ij obeying

h±ij =
1√
2
(Sij ± Sji) , (2.4.25)

where the h−ij are massless while h+ij display masses

mij = 2vs
√
u . (2.4.26)

Let us summarize the scalar mass spectrum. In V −, the neutral, CP-even component
h of the Higgs and the CP-even part sk of the flavor-aligned scalar Skk mix, and the
corresponding eigenstates h1,2 acquire masses m1,2. The two diagonal components of the
S which do not acquire a VEV as well as the off-diagonal components Sij with i, j ̸= k

acquire a mass m2
s. The masses obey

h1, h2 → m1
2
=

1

2

[︂
m2
s +m2

h ±
√︂(︁

m2
s −m2

h

)︁2
+ 4m2

sh

]︂
,

Sij(i, j ̸= k) → m2
s = − u

2(u+ v)
m2
s ,

(2.4.27)

with ms,h,sh defined in Eq. (2.4.15). The four remaining Sij (with i = k or j = k, and i ̸= j)
and the CP-odd part of Skk, which do not acquire masses, constitute the 9 Goldstone modes.
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In V +, the CP-even parts si of the diagonal components of the S mix with h, yielding two
eigenstates h′1,2 which contain sk and h, plus two eigenstates h′3,4 mixing the si amongst
themselves. The off-diagonal components of the Sij mix among themselves, yielding 3
massless eigenstates and 3 eigenstates h+ij with masses mij . The masses obey

h′1, h
′
2 → m′

1
2
=

1

2

[︃
m′
s
2
+m′

h
2
+ 2mss ±

√︂(︁
m′
s
2 −m′

h
2 + 2mss

)︁2
+ 12msh

]︃
,

h′3, h
′
4 → m′

3 = m′
4 = m′

s
2 − mss ,

h+ij → mij = 2vs
√
u ,

(2.4.28)
with m′

s,h and mss given in Eq. (2.4.21). The three massless eigenstates h−ij of Eq. (2.4.25),
which are complex scalars, together with the three CP-odd components sci of the Sii, con-
stitute the 9 Goldstone modes of V +.
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3 Vector-Like Fermions
as Flavor Portals

Vector-like fermions play a crucial role in models featuring asymptotic safety [27, 28]. In
Sec. 2.2, we saw explicitly that the model (2.2.1) containing NF generations of vector-
like fermions and NF ×NF complex scalars Sij can present asymptotic safety under strict
perturbative control. The key ingredient is the Yukawa interaction

Ly = −yTr
[︁
ψLSψR + h.c.

]︁
, (3.0.1)

which provides a contribution of the correct sign in the β-functions of the gauge couplings
so that UV gauge-Yukawa fixed points can potentially arise. Moreover, this BSM parti-
cle content can be used as a UV completion of the SM which can successfully render it
asymptotically safe [29]. In this chapter, we study whether the Yukawa interactions needed
to deliver an asymptotically safe SM may go beyond (3.0.1). In particular, we will be
interested in interactions which act as portals between the SM and the sector beyond, in
contrast to purely BSM couplings like (3.0.1). The motivation for this is twofold: firstly,
Yukawa interactions involving SM fields present a potentially rich phenomenology, testable
at current experiments. Secondly, the Yukawa sector constitutes the source of flavor in the
SM, and any interplay between SM and BSM fields through Yukawa interactions will have
an impact on flavor observables, masses and mixing patterns. Therefore, such interactions
might shed light on possible connections between flavor and UV completions of the SM.

In this chapter, based on the findings of [24–26], we study a set of models with Yukawa
portals to the lepton sector of the SM and their implications for flavor physics and asymp-
totic safety. In Sec. 3.1 we describe the models and their flavor symmetries, and in Sec. 3.2
we discuss their fixed point structure and matching both in the 210 and 222 schemes. Phe-
nomenological implications for the different models are worked out in Sec. 3.3, with a special
emphasis on lepton anomalous magnetic moments. Finally, we summarize our results in
Sec. 3.4.

3.1 The Models

We begin by extending the SM with additional vector-like fermions and scalars. In order
to interface with the flavor structure of the SM, we choose NF = 3 generations of vector-
like fermions ψ and 3 × 3 generations of scalars Sij . The BSM fermions are colorless but
charged under the SU(2)L × U(1)Y symmetries of the SM, while the scalars remain gauge
singlets. Note that introducing a U(1)Y -charged BSM sector will lead to a modifications in
the β-function of the hypercharge coupling, and thus allow us to address the Landau pole
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problem in its running.

Model (R3, R2, Y ) Yukawa interactions in Lmix QF

A (1,1,−1) κLHψR + κ′ES†ψL −1

B (1,3,−1) κLHψR 0,−1,−2

C (1,2,−1
2) κEH†ψL + κ′ LSψR 0,−1

D (1,2,−3
2) κEH̃

†
ψL −1,−2

E (1,1, 0) κLH̃ψR 0

F (1,3, 0) κLH̃ψR +1, 0,−1

Table 3.1. Gauge representations R3, R2 and hypercharges Y of the BSM fermions ψ with respect
to the SM gauge group SU(3)C × SU(2)L× U(1)Y for the different models A–F. We also indicate
the mixed Yukawa terms involving SM leptons, BSM fermions and either singlet BSM scalars S or
the SM Higgs. Yukawa couplings with SM scalars (BSM scalars) are denoted by κ (κ′), respectively.
The last column denotes the electric charge QF = T3 + Y of the ψ states.

Imposing that at least one Yukawa interaction between the lepton fields L,E and the vector-
like fermions be present yields only a few options for the representations the ψ can take.
We find that 6 different models, named A – F, allow for such new Yukawa terms. The
representations of the ψ in each model together with their portal interactions Lmix are
collected in Tab. 3.1. The new Yukawa couplings in Lmix can involve either the SM Higgs
or the S, and are denoted κ and κ′ in each case, respectively. The models are distinguished
solely by the electroweak charges of the vector-like fermions. These are either singlets,
doublets or triplets of SU(2)L, and their components carry non-fractional electric charges
ranging from −2 to +1. For each model, the BSM Yukawa sector LY is then given by

LY = Ly + Lmix , (3.1.1)

according to Eq. (3.0.1) and the interactions in Tab. 3.1. A study of portal couplings
with the quark sector, however interesting, lies beyond the scope of this work. The full
Lagrangian of the models studied here obeys L = LSM + LBSM, with

LBSM = Trψi /Dψ + Tr
[︁
(∂µS)

†(∂µS)
]︁
+ LY − V (H,S) , (3.1.2)

where the scalar potential reads

V (H,S) =− µ2H†H − µ2s Tr
[︂
S†S

]︂
+ λ(H†H)2 + δH†H Tr

[︂
S†S

]︂
+ uTr

[︂
S†SS†S

]︂
+ v

(︂
Tr
[︂
S†S

]︂)︂2
− µdet

(︂
detS + detS†

)︂
.

(3.1.3)

Note that V contains a quartic coupling δ, which connects the BSM scalars with the Higgs,
acting as a portal to the SM. The potential is invariant under U(3)ψL

×U(3)ψR
rotations of

the S, which allows to write the BSM quartics u and v, as well as δ and the dimensionful
parameters µs and µdet, in scalar rather than tensor form (see Sec. 2.4 for further details
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and properties of the potential (3.1.3)). Furthermore, the extended Yukawa sector of our
models also contains a priori a large number of parameters, which can be reduced employing
symmetry arguments. We start by noting that, in the absence of Yukawa interactions, the
flavor symmetry of the Lagrangian is that of the SM plus the symmetries (2.2.4) for NF = 3.
More explicitly, for LY = 0 the BSM Lagrangian (3.1.2) is invariant under global rotations

GF = U(3)3q ⊗ U(3)2ℓ ⊗ U(3)2ψ ⊗ U(3)2S , (3.1.4)

with

U(3)3q = U(3)Q ⊗ U(3)U ⊗ U(3)D , U(3)2ℓ = U(3)L ⊗ U(3)E ,

U(3)2ψ = U(3)ψL
⊗ U(3)ψR

, U(3)2S = U(3)SL
⊗ U(3)SR

.
(3.1.5)

As we already saw in Sec. 2.2, identifying U(3)2S with U(3)2ψ allows to write the Yukawa
coupling y in its scalar form (3.0.1), an approach we embrace here. Furthermore, in models
A and C the mixed Yukawas in Lmix contain interactions with the Sij . In principle, the
associated coupling κ′ in its most general form is a tensor carrying four flavor indices, as
we argued in the case of y. However, identifying U(3)E with U(3)ψR

(model A) or U(3)L
with U(3)ψL

(model C) naturally leads to a scalar form of κ′, so that these interactions can
be written as

κ′ Tr
[︂
E S†ψL + h.c.

]︂
(model A) , κ′ Tr

[︁
LS ψR + h.c.

]︁
(model C) . (3.1.6)

On the other hand, the couplings in Lmix involving the Higgs can take a general form κij .
Such terms are present in all models (see Tab. 3.1). For models A, B, E and F we identify
U(3)L with U(3)ψR

, while in models C and D we identify U(3)E with U(3)ψL
, yielding

diagonal and universal Yukawa couplings

κij = κ δij (models A−F) . (3.1.7)

For models A and C this entails U(3)L ∼ U(3)E ∼ U(3)ψR
and U(3)L ∼ U(3)E ∼ U(3)ψL

,
respectively, which leads to κ ∼ Yℓ ∼ 1, implying that the SM lepton Yukawas are universal.
Nonetheless, since in the SM the size of the latter is significantly small compared to the rest
of parameters, including the observed values of the lepton Yukawas only breaks the flavor
symmetry (very) softly.

Alternatively, we could identify U(3)E ∼ U(3)ψR
(models B, E, and F), and U(3)L ∼ U(3)ψL

(model D). This in turn would yield hierarchical Yukawas fulfilling

κ ∼ Yℓ (models B, D, E, F) , (3.1.8)

instead of (3.1.7). Here, we shall adhere to the setup where κ takes its diagonal form (3.1.7),
and neglect SM lepton Yukawas unless stated otherwise. To conclude with our analysis of
flavor symmetries, note that the mass term ψLMFψR of the vector-like fermions only re-
spects the symmetry for U(3)ψL

∼ U(3)ψR
, which in turn yields universal and diagonal MF

in all models. We will stick to this very assumption throughout this work. Note that all
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symmetries and couplings assumed here are in line with the criterion of Minimal Flavor
Violation, since the flavor structure of higher-dimensional operators of SM fields can be
expressed as in terms of products of SM Yukawa matrices.

Under the discussed assumptions on the structure of couplings, the BSM Yukawa La-
grangian LY of the models containing κ′ interactions can be written as

−LA
Y = κLHψR + κ′ES†ψL + y ψLSψR + h.c. ,

−LC
Y = κEH†ψL + κ′ LSψR + y ψLSψR + h.c. ,

(3.1.9)

where flavor and gauge indices are implicitly contracted. Note that in models A and C
the representations of the vector-like fermions exactly coincide with the representations
of the SM lepton singlet and doublet respectively (and are therefore models of vector-like
leptons), which precisely allows for Yukawa interactions with a singlet scalar. The BSM
Yukawa Lagrangians of the remaining models only contain the couplings y and κ, and obey

− LB
Y = κLHψR + y ψLSψR + h.c. , − LD

Y = κĒH̃
†
ψL + y ψLSψR + h.c. ,

− LE
Y = κ L̄H̃ψR + y ψLSψR + h.c. , − LF

Y = κ L̄H̃ψR + y ψLSψR + h.c. ,
(3.1.10)

where again index contractions are implicit.

3.2 RGE Analysis

Having specified our set of models, we now set out to investigate their potential to UV-
complete the SM by rendering it asymptotically safe. In order to do so, we look for fixed
points of the β-functions and explore whether matching to the SM is possible. Our analysis
involves the SU(3)C × SU(2)L × U(1)Y couplings of the SM,

α1 =
g21

(4π)2
, α2 =

g22
(4π)2

, α3 =
g23

(4π)2
, (3.2.1)

as well as the top and bottom Yukawas and the Higgs quartic, normalized as

αt =
y2t

(4π)2
, αb =

y2b
(4π)2

, αλ =
λ

(4π)2
. (3.2.2)

The set of BSM couplings in our RGE analysis involves the new Yukawa interactions y, κ, κ′

together with the scalar quartics δ, u, v of the potential (3.1.3). Altogether, the considered
BSM couplings normalized according to Eq. (1.2.1) read

αy =
y2

(4π)2
, ακ =

κ2

(4π)2
, ακ′ =

(κ′)2

(4π)2
,

αδ =
δ

(4π)2
, αu =

u

(4π)2
, αv =

v

(4π)2
.

(3.2.3)

When fixed points are found, we check for RG trajectories which can be matched onto
the SM at low energies. We assume that effects of the BSM fields kick in at MF and are
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completely decoupled for µ < MF , while SM couplings are taken to coincide with their SM
values at MF . Therefore, we identify MF with the matching scale, which we refer to as

µ =MF . (3.2.4)

The SM running, shown in Fig. (1.3), completely determines the values of the SM couplings
at the matching scale, while BSM couplings can a priori take any real value at MF . De-
manding that the RG evolution of the full system reach a weakly interacting fixed point in
the UV reduces this freedom, which is then determined by the dimensionality of the critical
surface, or equivalently by the number of relevant directions of a given fixed point.

In the remainder of this section, we study the β-functions of models A – F, collected
in Appendix. B.1, and their fixed points in the 210 and 222 approximations, providing
examples of viable matching scenarios. We perform the matching at tree-level only, and
do not implement decoupling relations at the new physics threshold. Note that, when
using 2-loop running for couplings above the matching scale in the MS scheme, decoupling
effects should be considered at 1-loop, see for instance [82]. This lies, however, beyond
the scope of this work, given the complexity of our BSM setup. Nonetheless, we expect
decoupling effects to leave the fixed-point structure and qualitative RG behavior of our
models unchanged, since matching turns out to be possible for sizable regions of BSM
parameters and matching scales, as we shall see shortly. Moreover, the phenomenological
implications discussed in Sec. 3.3, based on leading-order processes, should also be largely
unaffected. Our insistence in employing the BSM running up to 2-loop stems from the wish
to capture the leading effects of the Yukawa and scalar sectors in the β-functions. Indeed,
in the 210 scheme, 2-loop contributions in the β-functions of gauge couplings encode the
leading effects of Yukawa interactions, which are crucial for the existence of UV fixed
points. In the 222 approximation, where all β-functions are computed at 2-loop, the RGEs
of Yukawa couplings contain the leading contributions from scalar quartic interactions, and
the scalar quartic β-functions pick up contributions from all the possible Yukawas in our
models.

3.2.1 Benchmark Models and Fixed Points

We now turn to the analysis of the β-functions in the 210 or leading order approxima-
tion, where RGEs of gauge and Yukawa couplings are considered at 2-loop and 1-loop,
respectively. This scheme does not involve the scalar sector; hence, the BSM couplings
we consider consist of the Yukawas ακ and αy, and additionally ακ′ in models A and C.
On the SM side, we shall only take into account the SU(2)L × U(1)Y couplings. Since at
2-loop the β-function of α3 is not modified by BSM physics, we assume that the coupling
remains asymptotically free and its running SM-like. For the purposes of the 210 analysis,
we do not take α3 effects into account in the running of the remaining couplings. We also
neglect contributions from the SM Yukawa sector. Note that, at 1-loop, SM Yukawas of the
quarks are not modified by BSM physics, while lepton Yukawas are parametrically small
with respect to gauge couplings.
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Our first step is to search for fixed points of the β-functions. Within the 210 approximation
one can already encounter up to (2nG−1) different Banks-Zaks fixed points and a maximum
of (2nG − 1) × (2nY − 1) different gauge-Yukawa fixed points [28, 59], with nG, nY being
the number of gauge groups under which the BSM fields are charged and the number of
BSM Yukawa interactions, respectively. In our models, these can take values nG = 2, 1, 0

and nY = 3, 2. Moreover, the composition of the models contains additional information
on which fixed points might be possible. Since only charged fermionic fields are added to
the SM, the 1-loop coefficients Bi are shifted by a negative contribution (see Eq. (2.2.5)).
Therefore, we will always find B1 < 0, while B2 can take either sign. Moreover, the matter
fields give a positive contribution to the Cij coefficients, in the notation of Eq. (2.1.20).
Hence, the Cij are always positive. This game of signs plays a central role in the presence
and typology of fixed points in the different models. For instance, Banks-Zaks fixed points
only arise in models for which at least one of the Bi is positive. Hence, Banks-Zaks fixed
points with α∗

1 ̸= 0 will be absent in all of our models.

In order to classify the fixed points, we use the abbreviation BZi to denote a Bank-Zaks fixed
point where the gauge coupling αi does not vanish, and GYin...m for a gauge-Yukawa fixed
point where αi and the Yukawas denoted by n...m are nonzero. In addition, for couplings
which vanish at a fixed point, we indicate that they are marginally relevant or marginally
irrelevant by writing their fixed point values as 0(−) or 0(+), respectively. We use this no-
tation for couplings which display a logarithmic running near the fixed point, as is always
the case for asymptotically free gauge interactions. Conversely, if the coupling vanishes at
the fixed point but presents a power-law running in its vicinity, it is marked as 0− (0+)
if it is marginally relevant (marginally irrelevant). This possibility only arises in the case
of Yukawa interactions (see Sec. 2.1 for details). In the following, we describe our findings
for each of the studied models, focusing on their gauge-Yukawa fixed points. In general,
we include results from fixed points which present couplings up to O(1), allowing for small
deviations from strict perturbativity (α < 1), which may be alleviated at higher-loop orders.

Model A

The fixed points for model A are collected in Tab. 3.2. In the case of the Gaussian fixed
point (FP1), we find that α1 and α2 correspond to marginally irrelevant and marginally
relevant directions, respectively. Thus, the Gaussian corresponds to a saddle point. We find
as well a Banks-Zaks fixed point with interacting α2 (FP2). The gauge-Yukawa fixed point
FP3, with α∗

2 ̸= 0, presents no relevant directions and a marginally irrelevant α1. Hence, one
cannot attempt to match it to the SM at low energies. Furthermore, the symmetry between
the 1-loop β-functions of αy and ακ′ allows for the line of fixed points FP4. Indeed, since
the fields involved in the Yukawa interactions of y and κ′ present the same gauge charges, βy
and βκ′ are equivalent for ακ = 0. As we shall see, this also happens in model C. Higher or-
der corrections break this degeneracy and consequently the line structure of the fixed points.
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Model A α∗
1 α∗

2 α∗
κ α∗

κ′ α∗
y rel. irrel. Info Matching

FP1 0(+) 0(−) 0(+) 0(+) 0(+) 1 4 saddle

FP2 0(+) 0.543 0− 0(+) 0(+) 1 4 BZ2

FP3 0(+) 0.623 0.311 0(+) 0+ 0 5 GY2κ

FP4 2.746 0(+) 0− 4.120− α∗
y α∗

y 2 2 line

FP5 (A1) 1.063 0(−) 0.886 1.594 0+ 2 3 GY1κκ′ ✓

FP6 (A2) 1.105 0.569 1.205 1.657 0+ 1 4 GY12κκ′ ✗

FP7 (A3) 2.151 0(−) 0.782 0− 3.032 3 2 GY1yκ ✓

FP8 (A4) 2.267 0.200 0.933 0− 3.165 2 3 GY12yκ ✗

Table 3.2. Fixed points of model A in the 210 approximation. We indicate the number of relevant
(rel.) and irrelevant (irrel.) directions, whether the fixed point is Bank-Zaks (BZ) or gauge-Yukawa
(GY), with indices specifying the non-zero couplings, and whether matching is possible. Free
couplings with power-law running are marked with a superscript ± if they are irrelevant/relevant,
and an additional parenthesis (±) indicates that the flow is logarithmic. FP1,2,3 are IR or crossover
fixed points, FP4 is a line of fixed points, and FP5,6,7,8 (also denoted A1,2,3,4) are potential UV
fixed points. For the latter, we indicate whether matching onto the SM is possible. In Fig. 3.1 (left)
we show the phase diagram for the latter, while Fig. 3.2 shows sample trajectories emanating from
A1 and A2.

In addition, model A presents four gauge-Yukawa fixed points FP5 – FP8, also denoted
as A1 – A4, all featuring a non-vanishing α∗

1. In Fig. 3.1 we show their schematic flow
projected in the α2 – ακ′ plane, with arrows pointing towards the IR. In this projection,
A3 is a UV fixed point in both directions, while A2 lies in the IR. Fig. 3.1 also shows the
various separatrices connecting the fixed points, which correspond to α2 = 0, ακ′ = 0 and
αy = 0 lines. For fixed points A2 and A4, we find that the RG flow cannot be matched
onto the SM. This is due to trajectories being attracted by the gauge-Yukawa fixed point
FP3 in the infrared, which yields too large values of α2 at low energies, as shown in Fig. 3.2
(left) for the case of A2. In contrast, for fixed points A1 and A3, which exhibit α∗

2 = 0,
a sufficiently small α2 allows the trajectories to escape the dominion of attraction of FP3,
and can then be matched onto the SM at any scale. An example of matching at µ = 1 TeV
is shown in Fig. 3.2 for an RG flow emanating from A1. In this case, the BSM couplings
can be predicted at the matching scale; we obtain ακ(MF = 1 TeV) ≃ 2.7 · 10−3 and
ακ′(MF = 1 TeV) ≃ 3.5 · 10−3. Another feature of fixed points A1 and A3 is that the
coupling αy vanishes and is marginally irrelevant. Hence, we find that gauge-Yukawa fixed
points are not only present but also can be matched onto the SM in the absence of the BSM
Yukawa y required in previous settings [29, 83] if other (mixed) Yukawas are present.

Model B

In Tab. 3.3 we show the 210 fixed points found for model B. In this model, both 1-loop
coefficients B1 and B2 are negative, so that no Banks-Zaks fixed points arise and the Gaus-
sian (FP1) corresponds to a total IR fixed point, presenting no relevant directions. The
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Figure 3.1. Schematic phase diagrams and gauge-Yukawa UV fixed points of model A (left) and
B (right) the 210 approximation, see Tabs. 3.2 and 3.3. Arrows indicate the flow into the IR.
The fixed points of model A are projected onto the (α2, ακ′) plane, while fixed points of model B
(Tab. 3.3) are projected onto the (α2, ακ) plane. Results for model D (see Tab. 3.5 for fixed point
details) are equivalent to those of model B. Note in all models the projected RG flows present the
same topology.
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Figure 3.2. Running of couplings of model A in the 210 approximation from fixed point A2 (left)
and A1 (right), see Tab. 3.2. For A2, trajectories are invariably attracted by FP3 in the infrared,
and α2 comes out too large compared to SM values. For A1 we show matching to the SM at µ = 1

TeV.

remaining fixed points FP2 – FP5 are of the gauge-Yukawa type, and all feature α∗
y ̸= 0.

A schematic view of the RG flow around them in the α2 – ακ plane is shown in Fig. 3.1
(right). There, one can observe that B2 is the least ultraviolet fixed point, with α1 as its
only relevant coupling, while B3 presents three relevant directions.

We find that all gauge-Yukawa fixed points B1,2,3,4 can be matched onto the SM at low
energies. The main difference with respect to model A is that no Banks-Zaks fixed points
featuring α∗

2 ̸= 0 and α∗
1 = 0 exist, which in model A could attract α2 towards large values

in the IR. For fixed points B2 and B4, which feature α∗
2 ̸= 0, we find that matching is
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Model B α∗
1 α∗

2 α∗
κ α∗

y rel. irrel. Info Matching

FP1 0(+) 0(+) 0(+) 0(+) 0 4 G

FP2 (B1) 1.953 0(−) 1.562 1.888 2 2 GY1κy ✓

FP3 (B2) 1.224 0.186 1.326 1.541 1 3 GY12κy ✓

FP4 (B3) 2.712 0(−) 0− 2.712 3 1 GY1y ✓

FP5 (B4) 1.732 0.216 0− 2.164 2 2 GY12y ✓

Table 3.3. Fixed points of model B in the 210 approximation, with notation as in Tab. 3.2. All
interacting fixed points we encounter are potential UV gauge-Yukawa fixed points (FP2,3,4,5, also
referred to as B1,2,3,4); for all of these we find that matching onto the SM is possible. See Fig. 3.1
(right) and Fig. 3.3 for the phase diagram and sample trajectories, respectively.

only possible at a given scale, due to the values of the gauge couplings being determined
by the flow along a single relevant direction.1 This is shown in Fig. 3.3 for the case of
B2, where one obtains a matching scale MF ≃ 25 GeV. In the case of B4 we find as well
possible matching scenarios with MF ∼ O(10−2) TeV. Hence, we are presented with a
setup where asymptotic safety is able to predict the scale of new physics. However, this
scale is phenomenologically disfavored by Drell-Yann constraints, which pose a lower bound
on MF at the order of 10−1 TeV, as we spell out in Sec. 3.3.4. Finally, the solutions B1 and
B3, which exhibit α∗

2 = 0, can in principle be matched onto the SM. The effective 1-loop
coefficient Beff

2 remains positive, allowing α2 to grow towards the IR. Nonetheless, as the
flow evolves the contributions of the Yukawas ακ and αy may become small enough to flip
the sign of Beff

2 , driving α2 to lower values. We postpone the discussion of further matching
scenarios to the higher-loop analysis of Sec. 3.2.2.

Model C

Tab. 3.4 shows the physical fixed points of model C in the 210 approximation. Note that
all fixed point values are well within the perturbative domain. We encounter the Gaussian
(FP1), a Banks-Zaks fixed point (FP2) and the gauge-Yukawa fixed points FP3,4,5,6. FP6

is in fact a line of fixed points which arises due to the symmetry between βy and βκ′ in the
limit of vanishing ακ, a phenomenon which we already observed in model A. The symmetry
is a consequence of the vector-like fermions carrying the same charges as the SM lepton
doublets, and disappears when including higher loop corrections. All of the fixed points
present an irrelevant α1, which impedes matching onto the SM. Therefore, in model C we
find no UV-completing fixed points in the 210 approximation.

Model D

The fixed points found for model D are listed in Tab. 3.5. Apart from the Gaussian (FP1)
and a Banks-Zaks fixed point (FP2), we find three gauge-Yukawa solutions with α∗

1 = 0

(FP3,4,5), which suffer from a marginally irrelevant U(1)Y coupling and thus cannot be
1Fixed point B4 presents two relevant directions. However, one of them corresponds to the coupling ακ,

which vanishes at the fixed point, and has small effects on the high-energy running.
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running of α1,2 depicted with dotted (full) lines.

Model C α∗
1 α∗

2 α∗
κ α∗

κ′ α∗
y rel. ir. Info

FP1 0(+) 0(−) 0(+) 0(+) 0(+) 1 4 G

FP2 0(+) 0.038 0− 0− 0− 3 2 BZ2

FP3 0(+) 0.039 0.020 0− 0− 2 3 GY2κ

FP4 0(+) 0.054 0.027 0.049 0+ 0 5 GY2κκ′

FP5 0(+) 0.053 0.011 0− 0.046 1 4 GY2κy

FP6 0(+) 0.052 0− 0.047− α∗
y α∗

y 1 3 GY2κ′y

Table 3.4. Fixed points of model C in the 210 approximation, with notation as in Tab. 3.2. At
this loop order, no viable candidates for UV fixed points exist.

matched onto the SM. The remaining fixed points (FP6,7,8,9, also denotedD1,2,3,4) are as well
gauge-Yukawa but display α∗

1 ̸= 0. Their schematic flow in the α2 − ακ plane is analogous
to that of model B (shown in Fig. 3.1), with D3 being the UV-most fixed point, and D2

the most IR. Moreover, as we already found in model A the Banks-Zaks fixed point FP2 of
model D acts as an IR sink, drawing α2 to its fixed point value α∗

2 ≃ 0.038 and impeding
SM matching for fixed points D2 and D4, which exhibit α∗

2 ̸= 0. This is depicted in Fig. 3.4
(left) for a running emanating from D2. In the case of the fixed points with α∗

2 = 0 (D1 and
D3), α2 can remain small enough and be matched onto the SM in a range of scales, as shown
for D1 and MF = 1 TeV in Fig. 3.4 (right). In this case, the BSM couplings at the matching
scale are predicted to be ακ(MF = 1 TeV) = 4.2 ·10−3, αy(MF = 1 TeV) = 5.8 ·10−3. Fixed
point D3 was previously studied in [61], and discarded due to instability under higher-order
corrections. Here, however, we choose to retain it and discuss higher loop-order effects in
Sec. 3.2.2.
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Model D α∗
1 α∗

2 α∗
κ α∗

y rel. irrel. Info Matching

FP1 0(+) 0(−) 0(+) 0(+) 1 3 G

FP2 0(+) 0.038 0− 0− 2 2 BZ2

FP3 0(+) 0.039 0.020 0− 1 3 GY2κ

FP4 0(+) 0.052 0− 0.047 1 3 GY2y

FP5 0(+) 0.053 0.011 0.046 0 4 GY2κy

FP6 (D1) 0.246 0(−) 0.322 0.631 2 2 GY1κy ✓

FP7 (D2) 0.202 0.145 0.295 0.647 1 3 GY12κy ✗

FP8 (D3) 0.288 0(−) 0− 0.778 3 1 GY1y ✓

FP9 (D4) 0.239 0.152 0− 0.782 2 2 GY12y ✗

Table 3.5. Fixed points of model D in the 210 approximation, with notation as in Tab. 3.2. For
gauge-Yukawa fixed points with α∗

1 ̸= 0 (FP6,7,8,9, also referred to as D1,2,3,4) we indicate whether
matching onto the SM is possible. In Fig. 3.1 and Fig. 3.4 we show the phase diagram and sample
trajectories, respectively.

10
-15

10
-12

10
-9

10
-6

0.001 1
10

-4

0.001

0.01

0.1

1

Μ �MFP

Α
HΜ

L

Α1

Α2

Αy

ΑΚ

0.001 1 1000 10
6

10
9

10
12

10
-4

0.001

0.01

0.1

1

Μ HTeVL

Α
HΜ

L

MF = 1 TeV

Α1

Α2

Αy

ΑΚ

Figure 3.4. Renormalization group running in model D. Left: RG flow emanating from fixed point
D2, where matching is not possible due to the trajectories being attracted by the Banks-Zaks fixed
point FP2 (see Tab. 3.5). Right: running emanating from fixed point D1 and matching at µ = 1

TeV (dashed vertical line). After matching, values of the BSM couplings at the matching scale are
predicted by the running.

Model E

In model E the vector-like fermions are total singlets, and thus only modify the β-functions
of the SM gauge couplings through κ. On the other hand, βy receives no contributions from
gauge couplings and can only vanish if αy = 0. This leads to model E displaying only the
gaussian, a Banks-Zaks fixed point BZ2 and a gauge-Yukawa fixed point with vanishing and
marginally irrelevant α1, of the type GY2κ. Therefore, we find no viable UV fixed points
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in model E within the 210 approximation.

Model F

In model F no viable UV fixed points are found either. Since in this model the vector-like
fermions carry no hypercharge, the coupling αy is absent in β1 and βy is independent of
α1. As in model E, the mixed Yukawa ακ represents the only negative contribution both in
β1 and β2, and turns out to be insufficient for any gauge-Yukawa fixed points to arise. No
Banks-Zaks arise in this model either, since B2 is negative due to the vector-like fermions
being in the triplet representation of SU(2)L, similarly to model B.

Summary

In this section we have performed a top-down study of the β-functions of models A –
F in the leading order approximation, looking for UV fixed points and viable matching
scenarios. We have found that models A, B and D indeed present gauge-Yukawa fixed
points (see Tabs. 3.2, 3.3 and 3.5) which can in some instances be matched onto the SM,
while such viable solutions are absent in models C, E and F. In the next section, we study
the β-functions at higher loop orders in order to investigate whether patterns beyond those
found at 210 arise.

3.2.2 Running beyond Leading Order

In this section we study the RG flow of our couplings beyond the leading order approxima-
tion considered in the previous section. In particular, we consider the β-functions at the
complete two-loop order (222 approximation), with all couplings being treated on equal
footing, including those of the scalar sector. In our analysis we then include the full set of
BSM couplings (3.2.3) plus the SM gauge couplings and the top and bottom Yukawas. Note
that third-generation Yukawas become especially important at 222, given their significant
influence on the running of the Higgs quartic. Overall, we consider the RG evolution of a
total of 11 couplings (12 for models A and C).

Due to the increased complexity of the β-functions and their fixed-point solutions at 2-loop
we employ a bottom-up strategy, exploring different regions of the parameter space of BSM
couplings and their UV fate. In what follows, we refer as BSM critical surface to the values
of the BSM couplings (3.2.3) at the matching scale whose associated RG trajectories are
safe at least until the Planck scale. Opposed to our approach in the 210 analysis carried
out in the previous section, here we study RG flows emanating from the IR into the UV,
and choose to set the matching scale

µ0 = 1TeV . (3.2.5)

Moreover, we use the SM running at 3-loop order (shown in Fig. 1.3) to compute initial
conditions. Using mt ≃ 172.9 GeV we obtain [34, 37]

α1(µ0) ≃ 8.30 · 10−4, αλ(µ0) ≃ 6.09 · 10−4,

α2(µ0) ≃ 2.58 · 10−3, αt(µ0) ≃ 4.61 · 10−3,

α3(µ0) ≃ 7.08 · 10−3, αb(µ0) ≃ 1.22 · 10−6.

(3.2.6)
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Initial conditions for the BSM couplings are a priori free parameters, and in what follows
we explore how the running depends on their values. In particular, we discuss whether
the RG flow evolves up to the Planck scale without developing poles (which we refer to
as Planck safety), if it presents asymptotic safety and the stability of the vacuum. We
focus on scenarios where the BSM couplings at the matching scale are of the same order
of magnitude as the SM couplings of Eq. (3.2.6), which we refer to as weak BSM couplings
(within the range O(10−6 − 10−2)). We shall also refer to couplings as feeble when they
lie below these orders of magnitude (α ∼ 10−7 or smaller). For feeble BSM interactions at
the matching scale, we find that the new sector decouples and the running of the models
resembles that of the SM extended with additional vector-like fermions. Trajectories either
reach Planck safety or Landau poles below the Planck scale, see [25] for details. For weak
matching-scale values of the couplings trajectories present richer implications. Let us study
in more detail the running for two different configurations of the BSM couplings at the
matching scale:

i) Weak αy, with ακ, ακ′ ∼ 0 (for all models)

ii) Weak ακ, ακ′ , with αy ∼ 0 (models A and C).

Benchmark results for the case i) are shown in Fig. 3.5, where trajectories remain safe at
least up to the Planck scale thanks to the Yukawa αy. In Fig. 3.5 we have taken a weak
initial value of the portal coupling |αδ| ≃ 10−5 in all models except for model E, where αδ
is chosen to be very feeble at the matching scale. We find that BSM interactions enhance
the portal coupling, which becomes more sizable through its running. In models A and E,
this stabilizes the Higgs quartic coupling, which remains positive throughout its running.
For models B and F, αλ switches sign twice, while in models C and D it changes sign only
once, yielding a negative αλ at the Planck scale. Hence, attaining absolute stability of the
electroweak vacuum is possible but not guaranteed. In general, we also find that feeble
values of ακ and ακ′ allow for at least Planck safety in all models.

For the case ii), where both ακ and ακ′ are weak and αy is negligible, we choose ακ ∼ 10−5

at the matching scale, which is compatible with Z data bounds on ακ studied in Sec. 3.3.1,
see Eq. (3.3.9). Results for models A and C are shown in Fig. 3.6, where we have chosen
weak matching-scale values of αδ. A synergy between ακ and αδ stabilizes the Higgs quartic,
rendering it positive throughout its flow into the deep UV. In both models we observe that
the running slows down into a walking regime around the Planck scale. This effect is due to
the couplings approaching approximate fixed points, which in both cases involve the portal
coupling. Moreover, the gauge couplings vanish at the intermediate fixed points, so that
their evolution is minimally affected. For model A, the running then abandons its walking
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Figure 3.5. Renormalization group running of models A – F and ακ ≈ 0, |αδ| = 10−5 (except for
model E, where |αδ| is very feeble), as well as ακ′ = 0 for models A and C. In model A, C, D and
E, small initial values of ακ (light blue) run into poles in the UV, while for B and F the trajectories
remain more stable. The Higgs potential (purple) is not stabilized by Yukawa interactions (model
B-C,F), but for sufficiently large initial values of αδ (orange) in the singlet models (model A and
E).

regime to flow into a UV fixed point at

α∗
1 ≃ 1.93 · 10−1 , α∗

κ ≃ 3.05 · 10−1 ,

α∗
3 = α∗

2 = α∗
y = 0 , α∗

κ′ ≃ 6.25 · 10−1 ,

α∗
λ ≃ 1.27 · 10−1 , α∗

δ ≃ −1.55 · 10−2 ,

α∗
t ≃ 4.78 · 10−1 , α∗

u ≃ 1.19 · 10−1 ,

α∗
b ≃ 4.53 · 10−1 , α∗

v ≃ 4.03 · 10−2 ,

(3.2.7)

displaying asymptotic safety. In model C, we find instead that poles arise in the deep UV,
with the running being only Planck safe. Larger matching-scale values of ακ, although
phenomenologically disfavored, can help drive the running into a UV fixed point, see [25]
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Figure 3.6. Renormalization group running of models A and C for weak matching-scale values of
ακ (light blue), ακ′ (pink) and |αδ| (orange), with αy ∼ 0. Flows are stabilized around the Planck
scale due to cross-over fixed points involving αδ, which slows down couplings into a walking regime.
In model A, the flow goes on to reach the fixed point (3.2.7) in the far UV, while in model C it runs
into poles. The quartic coupling αu (brown) changes sign below MPl, marking a transition between
vacuum structures V + and V −.

for details. In both cases, the coupling αu changes sign below MPl, leading to a transition
between the stable vacuum ground states V + and V −.

In summary, we have found that for certain benchmark values of the BSM couplings at the
matching scale our models display in some cases Planck safety, while in others asymptotic
safety is realized thanks to the couplings reaching interacting fixed points in the deep UV.
We observed that Yukawa interactions are essential both to influence the running of gauge
couplings, moving Landau poles past the Planck scale, and to stabilize the Higgs and BSM
potential. Moreover, we have found that transitions between the BSM vacua V + and V −

can also be realized owing to a change of sign in αu throughout the running. Implications
for the BSM critical surface for a range of values of the Yukawas αy, ακ and ακ′ beyond
the benchmark initial conditions studied here are outlined in Appendix B.2 (see Figs. B.2.1
and B.2.2), while explicit computations of the running for further benchmarks can be found
in [25].
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3.3 Phenomenological Analysis

In the previous sections we have studied the RG flows of our set of models containing por-
tal Yukawa interactions between vector-like fermions and SM leptons. We have seen that
a 210 analysis of the flows from UV fixed points drastically reduces the parameter space
of the BSM sector after requiring that models be matched onto the SM around the TeV
scale. Nevertheless, the 222 analysis involving all couplings revealed a much wider range of
fixed point possibilities and matching scenarios, which considerably opens up the parameter
space.

In this section we provide a detailed study of the phenomenological implications of our
six vector-like fermion models without imposing any previous assumptions on BSM cou-
plings. We study production and decay of BSM states at proton and lepton colliders,
Drell-Yann constraints and implications for anomalous magnetic moments, electric dipole
moments (EDM) and charged lepton flavor violation (cLFV). A central ingredient for the
phenomenological analysis is given by mixing, both in the fermion and scalar sector, which
we also discuss in detail. In particular, we shall see that Z data places strong constraints
on fermion couplings involved in the mixing angles. Furthermore, we discuss how scalar
mixing can provide enhanced 1-loop contributions to anomalous magnetic moments which
have the potential to explain current experimental results in tension with SM predictions.
The same mechanism, which relies on the portal coupling δ, induces lepton EDMs already
at 1-loop once CP-violating phases in the BSM Yukawas κ and κ′ are allowed.

3.3.1 Fermion Mixing

The scalar potential V (H,S) of the models in study presents distinct vacuum patterns,
described in detail in Sec. 2.4. Indeed, spontaneous symmetry breaking in the BSM sector
can yield to two stable vacua, V + and V −, according to the conditions (2.4.12). In V +, all
diagonal components of the S acquire a VEV, while in V − only one of them does. There-
fore, the Yukawa interactions κ′ involving the S field, present in models A and C, yield
mixing mass terms between the SM leptons and the vector-like fermions which depend on
the vacuum ground state. Furthermore, interactions of vector-like fermions with the Higgs
yield additional mixed mass terms in all models, in this case proportional to κ. In this
section we detail patterns of fermion mixing for both vacuum structures and study impli-
cations for electroweak interactions and Higgs couplings.

In order to illustrate how mixing arises, we take the case of model A where the vacuum
V − is aligned in the muon direction. After spontaneous symmetry breaking, the mass
Lagrangian of the leptons and vector-like fermions obeys

fLMffR =
vh√
2
eL YℓeR +

vh√
2
κ eL ψR

+
vs√
2
κ′ ψL2 µR +

vs√
2
y ψL2 ψR2 +MF ψL ψR ,

(3.3.1)
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Vacuum θAL θAR θBL θBR θ0,BL θ0,CL

V + κvh√
2m2

κ′vs√
2m2

κvh
2m2

κv2hyℓ

2
√
2m2

2

κvh√
2m2

κ′vs√
2m2

V −(ψ2 − ℓ2)
κvh√
2MF

κ′vs√
2m2

κvh
2MF

κv2hyℓ

2
√
2M2

F

κvh√
2MF

κ′vs√
2m2

V −(ψ1,3 − ℓ1,3)
κvh√
2MF

κv2hyℓ
2M2

F

κvh
2MF

κv2hyℓ

2
√
2M2

F

κvh√
2MF

0

Table 3.6. Mixing angles of the QF = −1 fermions (θM ) and the QF = 0 fermions (θ0,M ) (see
Tab. 3.1), with m2 = MF + yvs/

√
2. Angles are given for both vacuum structures V ± in the

case where V − takes a VEV in the second generation. The angles not shown in the table fulfill
θCL,R = θAR,L for model C, and θDL,R =

√
2θBR,L for model D. We also find θ0,EL =

√
2θ0,FL = θ0,BL and

θFL,R =
√
2θBL,R in models E and F. The additional factor of 1/

√
2 in θB and θ0,F originates from

Clebsch-Gordan coefficients of the triplet representation (see for instance Eq. (2.3.6)).

where fX = (eX , µX , τX , ψX1, ψX2, ψX3)
T with X = L,R. Then, diagonalizing MfM†

f

and M†
fMf allows to compute the rotations to the mass basis for fL and fR, respectively

(see Appendix A.2 for details). The resulting mass eigenstates can be obtained from the
rotations (2.3.8) with mixing angles fulfilling

θAL ≃ κvh√
2MF

, θAR ≃ κ′vs√
2m2

, (3.3.2)

in the small-angle approximation, for ℓLi − ψLi and µR − ψR2 respectively. We have also
defined m2 =MF + vs√

2
y, and used the diagonal form of the SM lepton Yukawa matrix

vh√
2
Yℓ =

vh√
2
diag(ye, yµ, yτ ) . (3.3.3)

For the flavors which are not aligned in the V − direction, the right-handed rotation angles
read instead

θAR =
κ v2h yℓ
2M2

F

(ℓ = e, τ) , (3.3.4)

again in the small-angle approximation. Hence, in V − the right-handed rotation angles are
parametrically smaller for the non-aligned flavors than for the aligned flavor. Moving on to
the case of V +, we take again model A as an example and find rotation angles fulfilling

θAL ≃ κvh√
2m2

, θAR ≃ κ′vs√
2m2

, (3.3.5)

for ℓLi- ψLi, and ℓiR- ψRi, respectively. Thus, in V + rotation angles are the same for all
flavors, as should be expected from a flavor-universal vacuum structure. The mixing an-
gles θMX at leading order for all models, indicated by the superscript M, and both vacuum
structures are collected in Tab. 3.6. In models B,C, E and F, which contain QF = 0 states,
left-handed rotations θ0,ML are introduced between the ψ0

L and neutrinos. The rotation an-
gles for the electrically neutral states are also shown in Tab. 3.6.
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As described in Sec. 2.3, mixing of colorless vector-like fermions with SM leptons gives
rise to tree-level effects in their chiral interactions. This affects couplings to the Z and W
bosons as well as to the Higgs. A most important effect for weak-boson interactions is the
appearance of vertices involving a vector-like fermion, an SM lepton and either the W or
the Z. This is especially relevant for the production and decay of vector-like fermions, as
we detail in Sec. 3.3.2.

In the case of the Z, its vector and axial couplings gV,A to any representation of vector-
like fermions can be obtained from Tab. 2.1, according to the normalization of the La-
grangian (1.1.31). It is especially relevant that the Zℓ+ℓ− vertex acquires couplings

gℓV
A
= gℓ, SMV

A

+∆gV
A
= gℓ, SMV

A

+ s2θL(T
3
ψ−1 + 1/2)± s2θRT

3
ψ−1 , (3.3.6)

which can deviate from the SM values gℓ, SMV = −1/2+2s2w and gℓ, SMA = −1/2. In Eq. (3.3.6),
the rotation angles θL,R should be taken from Tab. 3.6, and T 3

ψ−1 denotes the isospin of
the QF = −1 component of the vector-like fermions in each model. For model A (C), the
isospin of the negatively charged vector-like fermions leads ∆g to depend only on right-
handed (left-handed) rotation angles, yielding

∆g ∝
(︃
κ
vh
MF

)︃2

(3.3.7)

in both cases. For models B and F (model D) one finds in turn θL ≫ θR (θR ≫ θL), which
leads to the same parametric dependence of ∆g.

Furthermore, the Zνν vertex is modified as well in models containing QF = 0 states, with
its coupling being shifted according to

gν = gν, SM +∆gν = gν, SM + s2θ0L

[︂
T 3
ψ0 − 1/2

]︂
, (3.3.8)

with gν, SM = 1/2 and T 3
ψ0 the isospin component of the electrically neutral vector-like

fermion. In model C, where the ψ0 fields carry T 3
ψ0 = −1/2, the neutrino coupling gν

remains unaffected. For models B, E and F, one always finds ∆gν ∝ (κvh/MF )
2 according

to the angles of Tab. 3.6. Therefore, modifications of the Z couplings to charged leptons
and neutrinos, if present, display the dependence (3.3.7) in all models. Since Z couplings
to charged leptons and electron-flavored neutrinos demand ∆g ≲ 10−3 or smaller [37], one
obtains the constraint

ακ ≲ 4 · 10−4 (MF /[TeV])
2 . (3.3.9)

Modifications of W vertices can be read off Tab. 2.3, following the notation of Eqs. (2.3.10)
and (2.3.11). For our set of models, the non-vanishing Clebsch-Gordan coefficients Ci read

CB0 = −CB−1 =
√
2, CC0 = CD−1 = 1, CF1 = −CF0 =

√
2 , (3.3.10)

and angles should be again taken from Tab. 3.6. Note that the νℓ−W+ vertex is modified
by a factor

CW = cθLcθ0L
+ C0sθLsθ0L

, (3.3.11)
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with CW = 1 in the SM. For all models, one obtains at most CW ∝ cos(κvh/MF ), up to or-
der one factors. Note that for model C one finds θCL = θ0,CL for V + and the vacuum-aligned
flavor of V −, which yields CW = 1, while for the non-aligned flavors θ0,CL vanishes and θCL
is parametrically small. This entails that, if the requirement (3.3.9) from Z couplings is
fulfilled, W data constraints are also avoided.

Finally, let us discuss the effects of mixing in Higgs couplings. Since leptons receive masses
from several terms in the Lagrangian, diagonal lepton Yukawas yℓ of the Lhℓℓ = yℓ√

2
ℓℓh

interaction are modified. Taking again model A as an example, the couplings are shifted
according to

yℓ = ySMℓ + sin θℓL

(︃
κ′
vs
vh

cos θℓR −
√
2
MF

vh
sin θℓR

)︃
, (3.3.12)

where the ySMℓ obey the SM relation (1.1.38). Results for model C are obtained by replacing
L ↔ R, while in all other models the κ′ term is absent. We find that, for angles fulfilling
the Z vertex constraint (3.3.9), Higgs signal strength bounds are avoidable for all leptons
[37, 40].

3.3.2 BSM Sector Production

We turn now to studying how the BSM sector can be produced at pp and ℓ+ℓ− colliders.
Production channels for both the ψ and the S are depicted in Fig. 3.7. Let us first dis-
cuss the production of vector-like fermions. Since these are colorless, pair production in
hadron colliders occurs solely via quark-antiquark fusion, shown in diagrams (a) and (b).
At least one of these channels is present in all models except for model E, where the ψ are
electroweak singlets. Single production in pp colliders can occur through s-channel Higgs
thanks to the Yukawa interactions κ, shown in diagram (c). Note that ψ0 production in
association with a neutrino only occurs for models B, E and F. Additional channels open
up in ℓℓ colliders thanks to the BSM Yukawa interactions. There, pair production can take
place through Higgs or S exchange (diagram d) and single production through t-channel
Higgs (diagram e).

The contribution to ψ pair production from s-channel Z or photon is especially relevant,
since it arises in all models (except for model E) and in both pp and ℓℓ collisions. Further-
more, all NF = 3 flavors of the ψ are produced. The contribution to pair production via
photon exchange at center of mass energy squared s reads

σγ(ff → ψψ) = NF
4π

3

α2
eQ

2
f

s

∑︂
SU(2)L

Q2
F

√︃
1− 4M2

F

s

(︃
1 +

2M2
F

s

)︃
for s > 4M2

F ,

(3.3.13)
in the limit MF ≫ mf , where f is a quark or a lepton, and we summed over the ψ’s flavors
and SU(2)L components. This results in cross sections of the orderNFQ

2
f

∑︁
Q2
F 90 fb/(s[TeV])

[84]. In models B and D, which contain fermions with |QF | = 2, the sum over charged states
in (3.3.13) enhances the cross section by effective charge-squares of

∑︁
Q2
F = 5. A more

detailed study of pair production at pp colliders in the case of models A and C can be found
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Figure 3.7. Production channels of the BSM particles at pp and ℓℓ colliders, with f = ℓ, q. In
diagram f) the S and S† labels are schematic for model A, see text for details.

f

f

ν / `+

ψ0 /ψ−

Z

a)

u

d

ν /ψ0

ψ− / `−

W−

b)

Figure 3.8. Single-production channels via weak bosons of the QF = −1 and QF = 0 vector-like
fermions at pp and ℓℓ colliders, with f = ℓ, q. Both diagrams arise from mass mixing between the
ψ and SM leptons.

in Chapter 4.

Additionally, mixing between vector-like fermions and leptons allows for further single-
production channels of the ψ−1 and the ψ0 through electroweak interactions, see Sec. 3.3.1
for details. In Fig. 3.8 we show how mixing-driven single production can occur via s-channel
Z (diagram a) or W (diagram b).

We now focus on the production of BSM scalars. In the following, we denote by Re[S] and
Im[S] their real, CP-even and CP-odd physical degrees of freedom, respectively. Note that,
since the BSM scalars are SM singlets, their tree-level production through gauge bosons is
prohibited. In models A and C, the Yukawa interactions κ′ permit their pair production
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via ψ exchange at lepton colliders, as shown in Fig. 3.7 (diagram f). The pair-production
cross section for a center-of-mass energy s > 4M2

S reads

σ(ℓ+ℓ− → SS†) =
NF

32π

κ′4

s

(︃
1− 4M2

S

s

)︃5/2

×

×
∫︂ 1

−1
dx x2(1− x2)

[︄(︃
2(M2

F −M2
S)

s
+ 1

)︃2

− (1− 4M2
S

s
)x2

]︄−2

.

(3.3.14)

Additionally, the Yukawa interactions κ and κ′ permit single-production of either Re[S]

or Im[S] in association with the Higgs, also shown in diagram (f). Furthermore, after
spontaneous symmetry breaking in the Higgs and BSM sector the portal coupling δ gives
rise to trilinear couplings hRe[S]Re[S], hIm[S]Im[S] and hhRe[S]. This allows the S to
be pair- or singly-produced via s-channel Higgs both in pp and ℓℓ colliders (diagram g), a
contribution which arises in all models. Hence, S-production occurs through few channels
and is driven by either Yukawa or scalar quartic couplings. However, for the appropriate
BSM mass hierarchies the S take an important role in the decay of the ψ, and could
therefore have a strong presence in processes occurring at colliders, as we study in detail in
Chapter 4.

3.3.3 BSM Sector Decay

We now discuss decays of the BSM sector. We first study decays of the vector-like fermions,
including as well decay channels induced by mixing, and go on to discuss the decays of the
BSM scalars.

Vector-like Fermions

Let us first discuss how the vector-like fermions decay in the absence of mixing. The
Yukawa interactions κ allow for decays of the QF = −1 and QF = 0 states to hν and hℓ−,
respectively.2 The latter occurs at a rate

Γ(ψ → ℓh) =
π

4
C2
ψℓ ακMF

(︃
1− m2

h

M2
F

)︃2

, (3.3.15)

where we have neglected the lepton mass, and the Clebsch-Gordan coefficient reads Cψℓ =
1/

√
2 for the T3 = 0 states in models B and F and Cψℓ = 1 otherwise. For ακ ≳ 10−14 and

MF at the TeV scale or above, one obtains a lifetime Γ−1 ≲ O(10−13) s, which leads to a
prompt decay.

Additionally, in models A (C), the decays ψi → ℓjS
†
ji (ψi → ℓjSji) are also allowed if the

BSM scalars are lighter than the vector-like fermions. The corresponding decay rate obeys

Γ(ψ → ℓS) =
π

2
C2
ψℓ ακ′MF

(︃
1− M2

S

M2
F

)︃2

. (3.3.16)

2With the exception of model C, for which only the QF = −1 states can decay to Higgs plus lepton due
to the SU(2)L structure of the interaction.
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In model C, the decay ψ0
i → νjSji occurs as well with the same rate. For large values of κ′,

the decays through S become the main decay channel of the ψ when kinematically allowed,
as we shall see explicitly in Chapter 4.

Furthermore, models B and D contain QF = −2 fermions while model F contains QF = +1

fermions, which cannot decay through BSM Yukawa interactions. However, SU(2)L mass
splitting leads to mass differences ∆m within the multiplets, which are induced at 1-loop
via weak interactions. This allows the QF = −2 and QF = +1 states to decay to the
QF = −1 or QF = 0 components within their corresponding multiplet, respectively. The
QF = −1 and QF = 0 states subsequently decay to leptons and scalars through Yukawa
interactions. The mass splitting in the limit MF ≫ mW ,mZ in models B and D reads [85]

∆mB,D =Mψ−2 −Mψ−1 ≃ αPDG
2

2

(︁
3 sin θ2wmZ + k

)︁
, (3.3.17)

with k = mW −mZ (model B), k = 0 (model D), which is of order GeV for both models,
and αPDG

2 = g22/4π ≃ 0.034. Note that in the limit of heavy vector-like fermions the mass
splitting (3.3.17) is not proportional to MF , but scales with the weak boson masses and
depends on the SU(2)L charges of the multiplet. The decay rate then reads

Γ(ψ−2 → ψ−1ℓν) ∼ G2
F

∆m5

15π3
≃ 3 · 10−13GeV

(︃
∆m

[GeV]

)︃5

, (3.3.18)

which has a strong dependence on the value of the mass splitting. We find that the
rate (3.3.18) results in picosecond lifetimes for the ψ−2, which give a small but macro-
scopic displacement cτ ≃ 0.3 mm and a displaced vertex signature which can be searched
for at the LHC [86]. For model F, the ψ+1 acquire mass splitting

∆mF =Mψ+1 −Mψ0 = αPDG
2 MW sin2

θw
2

≃ 166 MeV , (3.3.19)

which is about one order of magnitude smaller than the splitting in models B and D.
The corresponding decay rate, which can be approximated as (3.3.18), is therefore heavily
suppressed with respect to the case of the ψ−2. This allows for remarkable long-lived charged
particle signatures in the case of model F. However, the presence of fermion mixing induces
faster decays unless there is a strong suppression from mixing angles, as we discuss shortly.
It is worth noting that the ρ-parameter poses limits on general SU(2)L mass splittings δM ,
which imply [84]

NFS(R2) δM
2 ≲ (40GeV)2 , (3.3.20)

where S2(R2) is the Dynkin index of the representation R2 of SU(2)L (see Appendix B for
details). For NF = 3 and S2 = 2 (S2 = 1/2) for models B and F (model D), the mass
splittings given by Eqs. (3.3.17) and (3.3.19) are well within constraints.
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Finally, let us discuss the decays induced by fermion mixing. After rotating to the mass
basis, vector-like fermions can decay to weak bosons and fermions with rates

Γ(ψQe

i → ZfQe

i ) =
MF

64π

g22
cos2 θw

(︁
g2V + g2A

)︁
(1− rZ)

2(2 + 1/rZ) ,

Γ(ψQe

i →W−fQe+1
i ) =

MF

64π
g22
[︁
c2L + c2R

]︁
(1− rW )2(2 + 1/rW ) ,

(3.3.21)

where Qe denotes the electric charge of a fermion, ri = m2
i /M

2
F and f−1 = ℓ, f0 = ν. The Z

couplings gV,A can be read off Tabs. 2.1 and 2.2 for all models, while the W coefficients cL,R
are collected in Tab. 2.3 with Clebsch-Gordan coefficients given by Eq. (3.3.10). Electroweak
decays through mixing are especially relevant for the ψ0 states of model C. These can decay
via ψ0 → Sν through κ′ if kinematically allowed, and for MS > MF they can only decay
through weak interactions, with different mechanisms for each type of vacuum alignment.
First, note that for V + and the vacuum-aligned flavor of V − rotation angles in model C
fulfill θCL > θCR , and at tree level one finds θCL = θ0,CL . Therefore, from the W interaction
coefficients of Tab. 2.3 one can see that the decay ψ0 → ℓ−W+∗ happens at order sin2 θCR .
Alternatively, if θCR is very small, mass splitting plays again a role in the decay. Note that in
model C the ψ0 is the lightest state in the SU(2)L doublet, with the mass splitting fulfilling

∆mC =Mψ−1 −Mψ0 =
αPDG
2

2
sin θ2wmZ ≃ 0.4 GeV. (3.3.22)

Then, mixing angles acquire a small difference θ0,CL − θCL ≃ θCL (∆mC/MF ), and the decay
ψ0 → ℓ−W+∗ can take place through left-handed mixing angles. On the other hand, for the
non-aligned flavors k of V −, one finds θ0,CL = 0, and the angles of the negatively charged
rotations have the opposite hierarchy θCL ≪ θCR . Then, the ψ0

k decay as ψ0
k → W+ℓ−k with

coefficient |cR| = sin θCR ≃ κvh/
√
2MF .

To summarize, we have found that vector-like fermions can decay through their Yukawa
interactions κ to Higgs plus lepton, and additionally in models A and C through κ′ to S
plus lepton if the BSM mass hierarchy allows it. The QF = −2 states of models B and
D and the QF = +1 states of model F must first cascade within their multiplet through
W exchange driven by SU(2)L mass splitting, leading to displaced vertices and long-lived
signatures, respectively. Electroweak decays to W or Z plus lepton are additionally allowed
by mass mixing. In the case of the QF = 0 states of model C, where decays to Higgs plus
neutrino are prohibited, for MF < MS decays depend on the vacuum structure and are
driven by both mass splitting and mixing.

Scalars

The BSM scalars can decay via four different channels. Schematically, these are:

i) S → ψψ through the Yukawa y (for MF > 2MS , in all models and for all Sij flavors)

ii) S → GG′, where G are gauge bosons, through a ψ loop (only for the diagonal com-
ponents Sii, and absent in model E)
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iii) S → ψℓ, ψν, either through κ′ (models A and C) or through mixing in the y interaction
(all models, at order θy)

iv) S → ℓℓ′, which occurs thanks to mixing either at order κ′θ (models A and C) or yθ2

(all models)

Let us first discuss the decays which do not require mixing. For MF > 2MS , S → ψψ

occurs in all models via the y interaction, while in models A and C the decay S → ψℓ, ψν

takes place for MF ≳ MS + mℓ, MF ≳ MS respectively through κ′. These channels are
available for all flavors Sij . Neglecting lepton masses, their corresponding decay rates obey

Γ(Sij → ψi ℓj) + Γ(Sij → ℓj ψi) = 2πακ′MS

(︃
1− M2

F

M2
S

)︃2

,

Γ(Sij → ψi ψj) + Γ(Sij → ψj ψi) = 2παyMS

(︃
1− 4M2

F

M2
S

)︃1/2+ξ

,

(3.3.23)

where ξ = 1 and ξ = 0 correspond to the scalar and pseudoscalar parts of S, respectively.
Note that for i = j the right-hand side of Eq. (3.3.23) picks up a factor 2, while for i ̸= j the
second term on the the left-hand side vanishes due to flavor conservation. Model-dependent
SU(2)L multiplicities in the final states are not explicitly shown in Eq. (3.3.23). For ex-
ample, in model B the Sij decay to ψ−2

i ψ−2
j +ψ

−1
i ψ−1

j +ψ
0
iψ

0
j plus CP-conjugate final states.

The diagonal components Sii of the BSM scalars can decay through a ψ triangle loop to
a pair of electroweak bosons thanks to the Yukawa coupling y. The off-diagonal Sij (with
i ̸= j) do not present this decay, as the y interaction is strictly flavor-conserving in our
setup. For the Sii, decays to dibosons take place in all models with the exception of model
E, where the ψ are total gauge singlets. The corresponding decay rates to two gauge bosons
G and G′ read

Γ(Sii → GG′) =
α2
eαy
16π

M3
S

M2
F

|CGG′A1/2(τ)|2 . (3.3.24)

The coefficients CGG′ depend on the representation of ψ and in the limit MS ≫ MW can
be written as

Cγγ = S2(R2) + d(R2)Y
2 , CZZ = S2(R2) tan

−2 θw + d(R2)Y
2 tan2 θw ,

CWW =

√
2

cos2 θw
S2(R2) , CZγ =

√
2
(︁
S2(R2) tan

−1 θw − d(R2)Y
2 tan θw

)︁
,

(3.3.25)

and the loop function reads A1/2(τ) =
2
τ2

(ξτ + (τ − ξ)f(τ)) with

f(τ) =

⎧⎨⎩arcsin2(
√
τ) for τ ≤ 1 ,

−1
4

(︂
ln 1+

√
1−τ−1

1−
√
1−τ−1

− iπ
)︂2

for τ > 1 ,
(3.3.26)

and τ =M2
S/4M

2
F [87]. For model A, the reduced rates Γ/(MSαy) for the different channels

as a function of τ are shown in Fig. 3.9 (left) for αy = ακ′ . One can see that the decay
channels ψψ and ψℓ dominate, followed by the decay to photons. Since in model A the
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Figure 3.9. Reduced decay rates Γ/(MSαy) of the flavor-specific components of the BSM scalars
S in model A (left) and model B (right) for αy = ακ′ , see Eqs. (3.3.23) and (3.3.24). Decays to
dibosons occur only for the diagonal components Sii. Solid (dashed) lines correspond to the scalar
(pseudoscalar) decays; for S → ψℓ they coincide. In model A, the decay rate into Zγ lies between the
ZZ and γγ curves, while decay rates in model B intoWW and γγ satisfy ΓB

ZZ > ΓB
γγ > ΓB

WW > ΓB
Zγ .

If kinematically allowed, decays to fermions dominate.

ψ are SU(2)L singlets, di-W decays are forbidden, while the coefficients of the remaining
gauge boson modes obey 1 > (CZγ)

2 = 2 tan θ2w > (CZZ)
2 = tan θ4w.

Similarly, in models B, C, D and F, the decays S → ψψ (and additionally S → ψℓ, ψν in
model C) dominate if kinematically allowed. Furthermore, the decays to W+W− are also
permitted, as the vector-like fermions carry SU(2)L charges. In Fig. 3.9 (right) we show
the corresponding reduced rates Γ/MSαy for the case of model B. The hierarchies of the
diboson modes for the SU(2)L-charged models read

ΓB
ZZ > ΓB

γγ > ΓB
WW > ΓB

Zγ , ΓC
ZZ > ΓC

γγ > ΓC
Zγ ≈ ΓC

WW ,

ΓD
γγ > ΓD

ZZ > ΓD
Zγ > ΓD

WW , ΓF
ZZ > ΓF

Zγ > ΓF
WW > ΓF

γγ .
(3.3.27)

In addition, if one of the Sij presents mixing with the Higgs with angle β, its real part can
decay through scalar mixing at a rate Γmix = sin2 β ΓSM

h , where ΓSM
h is the decay rate of

the Higgs in the SM. This concludes our discussion of S decays in the absence of fermion
mixing. Therefore, for MS < MF and within a parameter space where αy and β are negli-
gible the S could potentially be a stable particle. However, the additional channels arising
from fermion mixing may lead to fast decays, as we discuss next.

Models A and C contain κ′ interactions. After rotations to the mass basis, tree-level decays
Sij → ℓ±i ℓ

∓
j are allowed with couplings κ′θAL , κ

′θCR ≃ κ′ κvh√
2MF

, using the angles in Tab. 3.6.
These decays can be competitive with the diboson modes. For instance, in model A and for
κ′ ∼ y, they dominate over S → γγ as long as θAL is of order 10−3 or larger. The S lifetime
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is then below picoseconds, and therefore too fast to yield displaced vertex signatures unless
fermion mixing is strongly suppressed, at least by κ′θAL , κ

′θCR ≲ 10−7 forMS at the TeV scale.

For models B, D and F, mixing yields effects for S decays in the Yukawa interaction y:
decays of the type S → ψℓ and S → ℓ−ℓ′+ arise at order yθ and yθ2, respectively. More
precisely, in models B and F (model D) rotations of the negatively charged states induce
Sij → ψjℓi (Sij → ψiℓj) for MF > MS . Additionally, the decays Sij → ℓ±i ℓ

∓
j arise at order

y θML θ
M
R ≃ y

(︃
κvh√
2MF

)︃2 yℓvh√
2MF

, (3.3.28)

and they can constitute the leading decay channel forMS < MF . Unless mixing yields a sup-
pression of y θML θ

M
R ∼ 10−7 or smaller, using Eq. (3.3.23) one obtains below-picosecond life-

times of the S. Furthermore, the coupling (3.3.28) of the dilepton mode is flavor-dependent,
with tau-less final states presenting a stronger suppression. Therefore, scenarios are possible
where decays into dielectrons, dimuons and e±µ∓ are slower and present displaced vertex
signatures, while those into ditaus, e±τ∓ and µ±τ∓ could remain prompt. Moreover, an
important feature of the dilepton decay modes of the Sij is that they can yield different-
flavor and opposite-charge leptons, giving rise to LFV-like signatures, even though lepton
flavor is strictly conserved by our interactions. We shall exploit this in Chapter 4 when
building observables to look for our models at colliders.

Finally, in models with electrically neutral vector-like fermions the decays S → ψ
0
jνi are

allowed for MS > MF . These decays occur at order y θ0,ML for models B, E and F and at
order κ′ for model C. For model E they represent the only decay mode of the Sij , apart
from S → ψψ if kinematically allowed.

3.3.4 Drell-Yan

New particles charged under the SM lead to new physics corrections to the gauge boson
propagators, which in the case of electroweak interactions can be quantified in terms of the
parameters W and Y . These are defined as [88]

Y = α1
3

50

M2
W

Λ2
(BSM

1 −B1) , W = α2
1

10

M2
W

Λ2
(BSM

2 −B2) , (3.3.29)

where B1,2 (BSM
1,2 ) are the 1-loop coefficients of β1 and β2 in a given model (in the SM).

Measurements of Drell-Yan processes [89] allow then to constrain the scale of new physics
Λ ∼ MF in all our models except for model E, for which the vector-like fermions do not
couple to the weak bosons. For the remaining models, we find

MF ≳ 0.1 TeV (model A) , MF ≳ 0.2 TeV (models C,D) ,

MF ≳ 0.3 TeV (models B,F) .
(3.3.30)

Constraints for models A, B and D are shown in Fig. 3.10, where we also indicate projected
limits. In model B, the bound (3.3.30) excludes matching scenarios of fixed points B2
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Figure 3.10. Electroweak parameters Y (solid lines) and W (dashed lines) for models A, B and
D as functions of the BSM fermion mass. We show as well constraints from either LHC 8 TeV or
LEP (black), and the projected sensitivity of LHC 13 TeV (gray) [89].

and B4, which can only be matched at MF ≃ 0.02 TeV, while fixed points displaying an
asymptotically free α2 remain viable. Effects from two-loop corrections in W,Y can be
estimated by employing the effective coefficients Beff

i instead of B2,1 in Eq. (3.3.29). For
feeble BSM Yukawa couplings, this typically induces relative changes of order 1% or less in
W,Y , which do not flip their sign.

3.3.5 Anomalous Magnetic Moments

Our BSM Yukwawa interactions contribute to anomalous magnetic moments of leptons
at 1-loop. This constitutes an especially interesting feature for new physics models, since
experimental determinations are in tension with SM predictions both in case of the muon
and the electron. In this section, we briefly review the theoretical and experimental status
of lepton AMMs and explore the parameter space for which our models can explain the
current anomalies.

From a quantum field theory point of view, anomalous magnetic moments constitute a cer-
tain contribution to loop corrections of the photon coupling to fermions, depicted schemat-
ically in Fig. 3.11 for a given lepton ℓ. Contributions to the vertex of Fig. 3.11 can be
parametrized through the matrix element [38, 90]

ū(p′)
[︃
eγµF1(q

2) + ie
σµνqν
2mℓ

F2(q
2) + ie ϵµνσρσρσqνF3(q

2)

]︃
u(p) , (3.3.31)

where mℓ is the lepton mass and Fi are form factors depending on the transfered momen-
tum q = p − p′, with σµν = i

2 [γ
µ, γν ]. At tree level in QED one obtains F1(0) = 1 and

F2(0) = F3(0) = 0. Loop corrections then give rise to scale-dependence effects of αe through
F1, and can yield nonzero values for F2 and F3. The Lorentz structure accompanied by F2
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yields corrections to the magnetic moment of the given fermion, which are precisely what
we call its anomalous magnetic moment, in the sense that they arise purely from quan-
tum fluctuations. It is worth noting that the AMM is the coefficient of a chirality-flipping
operator, as can be gathered from the Lorentz structure containing σµν . The form factor
F3 accompanies a similar Lorentz structure, with the crucial difference that it can only be
nonzero if the couplings present a source of CP-violation. It is connected to electric dipole
moments, which we discuss in the next section.

The classical value of the magnetic moment, gcl = 2, is already contained in the tree-level
QED vertex. Then, it is usual to define the anomalous part (g−2)ℓ of the magnetic moment
of a lepton ℓ through the relation

aℓ =
(g − 2)ℓ

2
= F2(0) , (3.3.32)

which reads aℓ = αe/2π at 1-loop in QED [91]. From the experimental side, in the case of
the muon measurements at BNL report an AMM of [15]

aexpµ = 11659208.9(6.3) · 10−10 , (3.3.33)

where statistical and systematic uncertainties have been added in quadrature 3. This entails
a discrepancy with SM predictions of [37]

∆aµ = aexp
µ − aSM

µ = 268(63)(43) · 10−11 , (3.3.34)

where uncertainties are experimental and theoretical, respectively. Adding them in quadra-
ture, the deviation from the SM adds up to 3.5σ, while certain theory predictions find up
to 4.1σ [92, 93]. On the other hand, recent lattice determinations of the hadronic vac-
uum polarization suggest that the the anomaly could not be present [94]. This is however
in tension with electroweak data and earlier lattice studies, and therefore requires further
scrutiny [95–97]. In this work we shall use the anomaly (3.3.34) as a guideline, and explore
the parameter space in our models which is able to accommodate it. Note that, since the
AMM is determined by a matrix element rather than an amplitude, the sign of each con-
tribution is crucial in evaluating whether it alleviates or enhances the discrepancy.

In the case of the electron, direct measurements indicate [98]

aexpe = 1001159652180.73(28) · 10−12 . (3.3.35)

Comparison with SM predictions have recently become in tension with experiment, thanks
to a recent determination of the fine structure constant using cesium atoms [14]. This yields
a difference between theory and experiment of

∆ae = aexp
e − aSM

e = −88(28)(23) · 10−14 , (3.3.36)
3This value has been rescaled using the muon and the proton magnetic moment ratio, see [37] for details.
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Figure 3.11. Quantum corrections to charged lepton couplings to photons, with incoming and
outgoing momenta p and p′, respectively.

where we again show experimental and theory uncertainties. The pull from the SM predic-
tion corresponds in this case to −2.4σ, and the discrepancy carries opposite sign with respect
to the muon anomaly. Furthermore, a new measurement of the fine structure constant using
rubidium atoms has been published very recently. A determination of the electron AMM
using the rubidium data yields ∆aRub

e = (48± 30) · 10−14, which represents a deviation of
1.6σ from the SM, and a 5.4σ tension with the cesium measurement [99]. Note that the
results of both experiments yield values of ∆ae which are comparable in size and error but
deviate from the SM in different directions. The origin of the discrepancy between the two
measurements remains unclear, and will require further experimental efforts [100]. In what
follows, we employ the cesium data [14] unless otherwise specified, and indicate implications
of the rubidium measurement in the case of simultaneous explanations of the electron and
the muon AMMs.

Significant effort has been invested by the theory community in order to explain the lepton
AMM anomalies simultaneously. Models have been put forward which feature new light
scalar fields [101–106], leptoquarks [107, 108], extended Higgs sectors [109, 110], supersym-
metry [111–114] or other BSM physics [115–123]. Effective field theory methods have also
been used to shed light on the subject with a bottom up-approach [124, 125]. In general,
these explanations introduce a source of violation of lepton flavor universality (LFU) which
allows for the different sizes and signs of the corrections to both anomalies. However, here
we shall argue that the electron and muon data can also be explained without an explicit
breaking of LFU, provided that a mechanism is in place which allows for different scaling
of the corrections to each AMM.

Contributions from General Yukawa Interactions

In our models, contributions to lepton AMMs arise mainly through new Yukawa couplings.
For a general Yukawa interaction between a lepton, a fermion ψ with QF = −1 and a
neutral scalar H described by the Lagrangian

LY, gen = ψ (cLPL + cRPR) ℓH + h.c. , (3.3.37)
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the contribution through a fermion-scalar loop amounts to

aNP
ℓ =

m2
ℓ

16π2m2
H

[︄
1

2
(c2L + c2R) I1(M

2
F /m

2
H) +

MF

mℓ
cLcR I2(M

2
F /m

2
H)

]︄
, (3.3.38)

where the couplings cL,R are assumed to be real, and the loop integrals in the limit mℓ → 0

read

I1(t) =
t3 − 6t2 + 3t+ 6t ln(t) + 2

3(t− 1)4
, I2(t) =

t2 − 4t+ 2 ln(t) + 3

(t− 1)3
. (3.3.39)

These are well defined for t→ 1, yielding, I1(1) = 1/6 and I2(1) = 2/3. A crucial feature to
note about the new physics contribution (3.3.38) is its dependence on the chiral couplings.
The first term in its right-hand side is present for any Yukawa interaction, and always
carries a suppression of m2

ℓ . Except for model E, which is the only model that does not
contain QF = −1 vector-like fermions, such a contribution arises in all of our models via
Higgs exchange through the Yukawa interaction κ and additionally via S exchange and
κ′ in models A and C, as shown in Fig. 3.12. There, the chirality flip necessary for any
contribution to the AMM is depicted to occur in an external fermion line. From Eq. (3.3.38)
one finds that in the heavy-fermion limit, which yields I1(M2

F /m
2
H) ≃ m2

H/3M
2
F , this new

physics contribution to the AMM of a lepton can be approximated as

aNP
ℓ ≃ 1

6

m2
ℓ

M2
F

c2L + c2R
16π2

, (3.3.40)

where cL,R can be identified with either κ or κ′ in our models. For real couplings, the
contribution (3.3.40) is always positive, and therefore ill-equipped to alleviate the tension
of the electron AMM in Eq. (3.3.36). For models A and C and for κ ∼ κ′, the dominant
contribution comes from the exchange of the lightest scalar. However, note that for κ′ the
three flavors of the ψi can propagate in the loop (see again Fig. 3.12), which after summing
over all flavors leads to an additional factor of NF = 3 in the total new physics contribution
with respect to κ-driven loops.

Going back to the general new physics contribution of (3.3.38), we now focus on the second
term on its right-hand side, which presents an MF /mℓ enhancement. Such a contribution
is often depicted as a Feynman diagram with a chirality flip in an internal fermion line,
as shown in Fig. 3.13. For this term to be switched on, one requires cL ̸= 0 and cR ̸= 0

simultaneously. The contribution ultimately carries a suppression by only one power of the
lepton mass. Taking again the limit of heavy vector-like fermions, for which I2(M2

F /m
2
H) ≃

m2
H/M

2
F , Eq. (3.3.38) yields a chirally enhanced contribution of

aNP*
ℓ ≃ mℓ

MF

cLcR
16π2

, (3.3.41)

which can be either positive or negative, depending on the signs of the cL,R. As we shall
spell out shortly, such chirally enhanced terms only arise in models A and C and in the
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muon, the long-standing discrepancy amounts to [? ]

∆aµ = aexpµ − aSMµ = 268(63)(43) · 10−11 . (68)

Adding uncertainties in quadrature, this represents a
3.5σ deviation from the SM, while recent theory predic-
tions find up to 4.1σ [? ? ].3 For the magnetic moment
of the electron, recent measurements lead to

∆ae = aexpe − aSMe = −88(28)(23) · 10−14 , (69)

corresponding to a pull of −2.4σ from the SM prediction
[? ? ].

From a model building perspective it is important to
understand which new physics ingredients are required to
explain the anomalies (68), (69) simultaneously. Given
that the electron and muon deviations point into opposite
directions, it is commonly assumed that an explanation
requires the manifest breaking of lepton flavor universal-
ity. BSM models which explain both anomalies by giving
up on lepton flavor universality have used either new light
scalar fields [? ? ? ? ? ? ], supersymmetry [? ? ? ? ],
bottom-up models [? ? ], leptoquarks [? ? ], two-Higgs
doublet models [? ? ], or other BSM mechanisms which
treat electrons and muons manifestly differently [? ? ?
? ? ? ? ? ? ]. In the spirit of Occam’s razor, however,
we have shown recently that the data can very well be
explained without any manifest breaking of lepton uni-
versality [? ], which is in marked contrast to any of the
alternative explanations offered by [? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ].

In this and the following subsection, we detail how the
models A, B, C, D, and F induce anomalous magnetic
moments at one-loop, and why, ultimately, only models
A and C can explain the present data. Note that model
E does not appear in the list, the reason being that the
charged SM leptons do no longer couple to BSM fermions
after electroweak symmetry breaking. The setting previ-
ously put forward by us in [? ] corresponds to model A
and model C of the present paper.

Specifically, new physics contributions to ∆a` arise
through the 1-loop diagrams shown in Fig. 19. In the
limit where MF is much larger than the mass of the
lepton and the scalar propagating in the loop, the NP
contribution typically scales as

aNP` ∼ αη
m2
`

M2
F

, (70)

where m` denotes the lepton mass and η = κ, κ′ is one
of the mixed Yukawa couplings; see appendix B for de-
tails. For couplings κ′, κ of comparable order, the largest
contribution comes from the latter, which couples the

3 The possibility of rendering ∆aµ insignificant has recently been
suggested by a lattice determination of the hadronic vacuum po-
larization [? ]. Further scrutiny is required [? ] due to tensions
with electroweak data [? ? ] and earlier lattice studies.

``

γ

ψ`ψ`

h
κ κ

(a)

``

γ

ψiψi

S`i
κ′ κ′

(b)

Figure 19. Contributions to ∆a` (` = e, µ, τ) with a lepton
chiral flip (cross on solid line) via h (a) or Si` exchange, with
i = 1, 2, 3, only present in models A, C (b).

vector-like fermions to the lighter scalar (the Higgs). The
parameter space ακ, MF compatible with (68) is shown
in Fig. 20. As obvious from (B.2), (70) is manifestly posi-
tive, and cannot account for ∆ae. For the muon anomaly
(68), the coupling ακM−2

F ≈ (1.4± 0.4)TeV−2 in model
A, C and D as well as ακM−2

F ≈ (4.2± 1.2)TeV−2 for
model B and F is required. This is however ruled out
by the constraint (64). We learn that the models B, D,
E and F cannot accommodate either of the present data
(68), (69). Models A and C on the other hand have an
additional diagram from S exchange, Fig. 19b). In fact,
since the S field is a matrix in flavor space the unobserved
flavor index of the BSM fermion ψi in the loop makes this
in total NF = 3 contributions. The external chirality flip
again induces a contribution quadratic in lepton mass
(70) which can account for (g − 2)µ, since the coupling
to the scalar singlet κ′ is much less constrained than the
one to the Higgs [? ].

Certain NP scenarios, notably supersymmetric ones,
can evade one power of lepton mass suppression in (70)
by having instead the requisite chiral flip on the heavy

ακ
NP

ακ
NP*

0.05 0.10 0.50 1 5 10
10-6

10-4

0.01

1

MF (TeV)

α
κ

Z→ll excluded

Figure 20. Requisite values of ακ to account for ∆aµ (68) for
new physics contributions scaling as (70) (full line) and (71)
(dotted line). The shaded region is excluded by Z-data (64).

Figure 3.12. Contributions to ∆aℓ (ℓ = e, µ, τ) with a lepton chiral flip (cross on solid line) via h
(a) or Sℓi exchange, with i = 1, 2, 3, only present in models A, C (b).

``

γ

ψ`ψ`

h s``
κ κ′

δ

Figure 3.13. Chirally enhanced contribution to the anomalous magnetic moment of a lepton ℓ

through scalar mixing (cross on dashed line) and a ψℓ chiral flip (cross on solid line).

presence of scalar mixing. For this reason these models are the only ones which can accom-
modate both anomalies. The key observation is that, with BSM contributions displaying
universal scaling (either linear or quadratic in the lepton mass) both anomalies cannot be
explained, as depicted in Fig. 3.14. However, if BSM models present both types of contri-
butions fitting the data is indeed possible, as we detail below.

Furthermore, one might wonder about contributions to the AMMs from gauge boson ex-
change. Such contributions only arise as a consequence of fermion mixing, which enables
couplings between the ψ, SM leptons and weak bosons. The θ2 suppression in terms of
the mixing angle and a quadratic dependence on the lepton mass results in gauge boson
exchange yielding parametrically smaller contributions compared to scalar exchange, and
we shall neglect it here.

Accommodating Experimental Results

Let us now discuss the parameter space of our Yukawa couplings κ, κ′ which are able
to accommodate the anomalies (3.3.34) and (3.3.36). We begin with contributions of
the type (3.3.40) which, as we have seen, are always positive and thus cannot possi-
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Figure 3.14. Leading contributions to ∆ae,µ from Fig. 3.13a (blue) and Fig. 3.13b (red). Band
widths represent a 20% mass splitting between BSM fermion flavors from leading loops; the hatched
region is inaccessible due to quadratic contributions being positive. The data (3.3.34) and (3.3.36)
within their 1σ uncertainties is shown as well (yellow). With a universal scaling for both flavors,
simultaneous explanations of the anomalies are not possible.
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Figure 3.15. Values of ακ and vector-like fermion masses that account for the (g − 2)µ
anomaly (3.3.34) for new physics contributions scaling as aNP

µ ∼ ακm
2
µ/M

2
F (solid line) and as

aNP∗
µ ∼ ακmµ/MF (dotted line), see Eqs. (3.3.40) and (3.3.41). The shaded region is excluded by
Z-data according to the bound (3.3.9). Contributions scaling quadratically with the muon mass
are generally excluded.

bly account for ∆ae. Explaining ∆aµ with κ-mediated Higgs exchange would require
ακM

−2
F ≈ (1.4± 0.4)TeV−2 in models A, C and D, and ακM

−2
F ≈ (4.2± 1.2)TeV−2

for models B and F. Nevertheless, Z data heavily constrains the ακ ,MF parameter space
through fermion mixing. In fact, the bound (3.3.9) rules out any explanation of ∆aµ through
the Yukawa coupling κ with scaling (3.3.40) in all of our models, as shown in Fig. 3.15 (solid
line), while κ-driven contributions scaling as (3.3.41) are allowed (dotted line). In models
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Figure 3.16. Scalar mixing angle |sin 2β| as a function of MF that explains ∆aµ within its 1σ

uncertainty for a muon-aligned vacuum V −, which yields the chirally enhanced contribution (3.3.46),
and for different values of

√
ακακ′ . We show as well the upper bound on β from Higgs signal strength

measurements [14]. For V + the corresponding, requisite value of | sin 2β′| is a factor of
√
3 larger

(see Eq. (3.3.49)).

A and C, however, κ′-mediated interactions remain unconstrained by Z data. In order to
follow the conventions of [24], let us rewrite this particular new physics contribution as

aκ
′
ℓ =

NF κ
′2

96π2
m2
ℓ

M2
F

f1

(︃
M2
S

M2
F

)︃
, (3.3.42)

with loop function

f1(t) =
3

t
I1(1/t) , (3.3.43)

in terms of Eq. (3.3.39), and f1(0) = 1. In the limit M2
S/M

2
F ≪ 1, we find that the muon

anomaly can be accommodated for a Yukawa coupling

ακ′ ≃ (0.48± 0.15)

(︃
MF

[TeV]

)︃2

, (3.3.44)

which demands a rather large yet perturbative coupling ακ′ for MF at the TeV scale. The
contribution (3.3.42) is however universal and positive, so one might wonder if it increases
the tension in ae. Still, the suppression by m2

e in the case of the electron AMM yields
only aκ′e ≃ 6 · 10−14, which represents only about 7% of ∆ae and is smaller than both its
theoretical and experimental errors. Thus, we conclude that models A and C can explain
the anomaly in the muon AMM through Eqs. (3.3.42) and (3.3.44) without aggravating the
status of the electron AMM. It is also worth noting that this is possible regardless of the
pattern of spontaneous symmetry breaking in the scalar sector.

Moreover, models A and C contain the necessary ingredients to present a chirally enhanced
contribution to the AMMs, of the form (3.3.41). Such a contribution also emerges in other
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NP scenarios, such as supersymmetric ones. In our models it arises through mixing in the
scalar sector, giving rise to the diagram depicted in Fig. 3.13, which presents a chiral flip in
an internal fermion line. As studied in Sec. 2.4, scalar mixing depends on the patterns V ±

of spontaneous symmetry breaking in the potential V (H,S). In the case of V −, where only
one of the diagonal components Skk acquires a VEV, scalar mixing only has an effect on
the κ′ terms involving a lepton and vector-like fermion of flavor k. Then, after rotations to
the mass basis the Lagrangian involving the QF = −1 states of models A and C becomes

L−
β = −ψj

[︂(︁
κ sinβ δjiPL + κ′ cosβ δik δjkPR

)︁
h1

+
(︁
κ cosβ δijPL − κ′ sinβ δikδjkPR

)︁
h2

]︂
ℓi + h.c. ,

(3.3.45)

where β is the scalar mixing angle (2.4.19) and h1, h2 are the heavy and light mass eigen-
states, respectively.4 Hence, comparing L−

β with the general Yukawa Lagrangian (3.3.37)
we can already see that for the vacuum-aligned flavor k it fulfills the requirement cL,R ̸= 0

necessary to obtain enhanced contributions of the type (3.3.41). Then, neglecting the con-
tribution from the heavy scalar mass eigenstate h1 and in the limit MF ≫ mh2 , the new
physics contribution to the AMM of the lepton of flavor k reads

aV
−

ℓ ≃ − mℓ

2MF

κκ′

16π2
sin 2β , (3.3.46)

which presents an enhancement factor MF
mℓ

(
ακ′
ακ

)1/2| sin 2β| with respect to new physics con-
tributions such as (3.3.40), and can take either sign. Accommodating ∆ae and ∆aµ with
Eq. (3.3.46) requires

|√ακακ′ sin 2β|∆ae ≃ 3.4 · 10−6 MF

[TeV]
, |√ακακ′ sin 2β|∆aµ ≃ 5.1 · 10−5 MF

[TeV]
, (3.3.47)

which falls within the bound (3.3.9) for ακ. Therefore, in V − either the electron or the
muon anomalies can be explained via the chirally enhanced contribution. The scalar mixing
angle β is constrained by Higgs signal strength measurements, which impose sin 2β < 0.2

[84]. The parameter space sin 2β, MF which allows to explain the muon anomaly is shown
in Fig. 3.16 for several values of

√
ακακ′ . A crucial feature of the electron-aligned V − is

that ∆ae can be explained by fixing
√
ακακ′ sin 2β according to (3.3.47), while one is still

free to choose ακ′ as in (3.3.44) to explain ∆aµ. Thus, we conclude that models A and C
can simultaneously explain both anomalies if the vacuum ground state V − is aligned in the
electron direction.

For the vacuum ground state V +, one finds that all diagonal components of the Sij acquire
a VEV, which leads to mixing between the three generations of scalars and the Higgs. Two
of the four mass eigenstates, which we denote h1, h2, mix the Higgs and the three si, while
the remaining two mix only the si amongst themselves (see Sec. 2.4 for details). Then, the

4For the sake of this discussion, we neglect effects from fermion mixing.
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BSM Yukawa terms of the QF = −1 fermions of models A and C in the scalar mass basis
read

L+
β′ = −

∑︂
i

ψi

[︂(︁
κ sinβ′ PL + κ′ cosβ′ PR

)︁
h1 +

(︁
κ cosβ′ PL − κ′ sinβ′ PR

)︁
h2

]︂
ℓi + h.c. ,

(3.3.48)
with angle β′ given by Eq. (2.4.24). Therefore, the chirally enhanced contribution to the
anomalous magnetic moments affects all lepton flavors. Employing again the large-MF

limit, it obeys

aV
+

ℓ = − mℓ

2
√
3MF

κκ′

16π2
sin 2β′ , (3.3.49)

which again can take either sign. The parameter space required to explain ∆aµ is the
same as depicted in Fig. 3.16 for V − up to a factor

√
3, which however cancels with the

factor in the angle β′ (see again Eq. (2.4.24)). However, fixing the combination of couplings√
ακακ′ sin 2β in order to explain the (g − 2)µ anomaly automatically yields electron and

tau AMMs

aV
+

e = (me/mµ)a
V +

µ ≃ 1.4 · 10−11 , aV
+

τ = (mτ/mµ)a
V +

µ ≃ 4.5 · 10−8 . (3.3.50)

In the case of the tau, the contribution is four orders of magnitude away from present limits
on ∆aτ ≡ aexpτ − aSMτ [37]. On the other hand, aV +

e comes out of opposite sign and about
one order of magnitude larger than ∆ae, and is thus in conflict with data. Nonetheless, if
one fixes the contribution (3.3.49) to accommodate ∆ae the corresponding contribution to
the muon AMM is roughly aV +

µ ≃ −3.6 · 10−10, which is of the order of magnitude of both
the theoretical and experimental error of ∆aµ. Hence, we find that the vacuum structure
V + can also accommodate both anomalies. This is a remarkable feature, since V + is flavor
universal, and entails that models A and C are able to explain both anomalies without
relying on any sources of lepton-flavor-universality violation.

Explaining ∆ae and ∆aµ Simultaneously

Having seen that our vector-like lepton models can successfully explain both AMM anoma-
lies, let us explore the parameter space of these solutions in more detail. Firstly, for the
combined explanation we saw that ∆aµ needs to be explained via the quadratic contribu-
tion (3.3.42) through the Yukawa coupling κ′, which must be set approximately according
to (3.3.44). Furthermore, the electron AMM receives contributions both with quadratic
and linear scaling, and can be expressed as

∆aNP
e =

me

MF

κκ′ sin 2β
32π2

[︃
f2

(︃
m2
s

M2
F

)︃
− f2

(︃
m2
h

M2
F

)︃]︃
+
m2
e

m2
µ

∆aµ , (3.3.51)

where we have assumed that the lightest mass eigenstate h2 is the 125 GeV Higgs boson,
while mh1 = ms is the mass of the BSM scalar mixing with the Higgs. The loop function

f2(t) =
1

t
I2(1/t) (3.3.52)
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Figure 3.17. Yukawa and portal couplings which simultaneously explain the muon (blue curve)
and electron (green curves) anomalous magnetic moment anomalies within their 1σ uncertainties
as functions of the vector-like fermion mass, and for MS = 500 GeV. In the case of the electron,
we show the values of |κ sin 2β| /(4π) which accommodate the data (3.3.36) from [14] (solid green
line) and from the rubidium measurement [99] (dashed line). Grey-shaded areas are excluded by
Drell-Yan searches, the red-shaded area indicates strong coupling. All results refer to V −, very
similar ones are found for V + (not shown). A window with vector-like fermion masses up to ∼ 1

TeV and large but perturbative κ′ exists for which both anomalies are explained.

is positive for any t and fulfills f2(0) = 1 (see Eq. (3.3.39)). Eq. (3.3.51), holds for both
vacua V ±, as long as V − is electron-aligned. The first term in its right-hand side is the
dominant one, as it scales only linearly with me, and includes contributions from both
scalars propagating in the loop. Note that for ms ∼ mh the loop functions exert a GIM-
like suppression on the chirally enhanced term, which vanishes in the limit of equal scalar
masses. The second term in the right-hand side of ∆aNP

e accounts for the contribution of
the κ′-loop, which scales quadratically with the electron mass, and is completely fixed by
demanding that the muon anomaly be explained.

The parameter space which simultaneously explains both anomalies is shown in Fig. 3.17
for a benchmark scalar mass of MS = 500 GeV. We also shown Drell-Yann bounds on
the vector-like fermion masses, already computed in Sec. 3.3.4, and perturbativity limits.
In Fig. 3.17 we show as well the values of |κ sin 2β| /(4π) needed to explain the electron
AMM computed from the rubidium measurement [99] (dashed green curve), which demands
mildly smaller couplings. Note that although the rubidium data requires ∆ae > 0 it can
still be accommodated by our models, since κ sin 2β can take either sign. In any case, a
window where the models can explain both AMMs exists, which demands vector-like fermion
masses of at most ∼ 1 TeV. Additionally, the mechanism predicts BSM contributions to
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the anomalous magnetic moment of the tau of

∆aNP
τ ≃ (7.5± 2.1) · 10−7 (V +) , ∆aNP

τ ≃ (8.1± 2.2) · 10−7 (V +) . (3.3.53)

Finally, it is also worth noting that the BSM parameter space compatible with simultaneous
explanations of the anomalies allows for RG trajectories which display either asymptotic
safety (singlet model) or Planck safety (doublet model) [24]. This is explicitly shown in
Appendix B.2, where we present benchmark trajectories and the BSM critical surface for a
range of ακ and ακ′ (see Fig. B.2.3).

3.3.6 EDMs

As we have seen in Sec. 3.3.5, BSM Yukawa interactions contribute at 1-loop to lepton
AMMs, with scalar mixing enabling chirally enhanced contributions in models A and C.
Here, we explore implications for lepton electric dipole moments. These correspond as well
to quantum corrections of the photon coupling to fermions, with the crucial difference that
a source of CP violation is required. According to Eq. (3.3.31), the electric dipole moment
dℓ of a lepton is proportional to the form factor F3(0), which has dimensions of inverse
mass. The effective Lagrangian describing the EDM can be written as the dimension-five
operator

LEDM = − i

2
dℓℓσµνγ5F

µνℓ , (3.3.54)

where Fµν is the electromagnetic field strength tensor. In the SM, EDMs can arise from
the two possible sources of CP violation: the phase in the CKM matrix and the strong
CP phase θQCD. Leptons do not couple at tree level to any of these, which results in SM
contributions to their EDMs being heavily loop-suppressed; in fact, these arise only at
4-loop. Upper bounds on SM contributions to lepton EDMs are found to be [126]

dSM
e < 10−38 e · cm , dSM

µ < 1.8 · 10−35 e · cm , dSM
τ < 3.1 · 10−34 e · cm . (3.3.55)

From the experimental side, measurements have improved immensely in the past years.
Current upper bounds on the electron and the muon EDM read

|d exp
e | < 1.1 · 10−29 e · cm , |d exp

µ | < 1.8 · 10−19 e · cm , (3.3.56)

according to the results of the ACME collaboration @90 % C.L. [127] and the Muon
g-2 collaboration @95 % C.L. [128], respectively, while for taus measurements indicate
|d exp
τ | ≲ 10−17 [37]. Therefore, both the smallness of the SM predictions and the increasing

precision of the measurements put forward lepton EDMs as unique probes to constrain
CP-violating new physics.

Remarkably, for the general Yukawa interaction (3.3.46), lepton EDMs arise already at 1-
loop if at least one of the Yukawa couplings presents an imaginary part. The contribution
obeys [129]

dℓ
e

= − QF
2MF

Im[c∗RcL]
16π2

f2(m
2
H/M

2
F ) , (3.3.57)
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according to the loop function in (3.3.52). As we saw in the previous section, models A and
C contain simultaneously non-vanishing coefficients cL,R thanks to scalar mixing. Unlike
in the rest of this chapter, we now allow for small imaginary phases of the couplings κ
and κ′, which leads to contributions to the EDMs. In model A and for the V − vacuum
ground state, the 1-loop contribution emerges only for the vacuum-aligned flavor, and in
the large-MF limit reads

dV
−

ℓ

e
= −sin 2β

4MF

Im[κ∗κ′]
16π2

. (3.3.58)

Conversely, for the vacuum V + EDMs are induced for all flavors. Provided that the CP-
violating phases are lepton-universal, we find instead

dV
+

ℓ

e
= − sin 2β′

4
√
3MF

Im[κ∗κ′]
16π2

, (3.3.59)

which yields the same contribution to all flavors, predicting universal lepton EDMs. Expres-
sions for model C can be obtained by exchanging κ∗κ′ → κκ′∗ in Eqs. (3.3.58) and (3.3.59).
The electron data (3.3.56) poses the most stringent bound on BSM couplings, which must
fulfill

1

16π2
⃓⃓
sin 2β Im[κ∗κ′]

⃓⃓
< 2.2 · 10−12 MF

[TeV]
, (3.3.60)

for V + or electron-aligned V −. These are precisely the cases for which in the previous sec-
tion we found that the muon and electron magnetic moment anomalies can be explained,
with ∆ae being accommodated via the real counterpart of (3.3.60). Therefore, the scenarios
of simultaneous explanations of the AMM anomalies can yield an electron EDM as large as
the current experimental bound. CP-violating phases, however, must yield a suppression of
at least O(10−6) in order to fulfill the electron EDM bound (3.3.56). Accommodating the
(g − 2)µ anomaly via chirally enhanced contributions within a V + ground state demands
as well suppressed phases, of O(10−7) or smaller, to avoid the electron EDM bound. Con-
versely, for a V − pointing in the muon direction, or if CP phases are flavor-dependent, the
electron bound no longer applies. Instead, the muon measurement yields a bound weaker
than (3.3.60) by 10 orders of magnitude . If the muon-specific, chirally-enhanced contribu-
tion is set to accommodate ∆aµ with the couplings (3.3.47), the muon EDM could then be
as large as dµ ∼ 2.5 · 10−22 e cm, with order one phases. This is interestingly in reach of
future experiments expecting to attain a sensitivity of |dµ| ∼ 5 · 10−23 e · cm [124].

3.3.7 Charged LFV Processes

Following flavor symmetry arguments we have so far considered only diagonal, universal
forms of our BSM Yukawa couplings κ and κ′. This has resulted in a setup which strictly
conserves flavor. The y interaction, although it contains a less trivial flavor structure, is
also flavor-conserving. We now consider the effects of breaking lepton-flavor conservation,
in order to see how these variants of our models can be probed by LFV processes. For
the sake of this discussion, we only allow for non-diagonal flavor patterns in the coupling
κ. We then study ℓi → ℓjγ and µ → 3e decays, as well as µ → e conversion in nuclei.
All these processes, which feature charged lepton flavor violation, are entirely absent in the
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SM. However, evidence of neutrino masses and oscillations indicates that cLFV must occur
at some scale, with branching ratios of the different processes depending on the particular
neutrino model. Nonetheless, neutrino-mediated cLFV may also be very suppressed. For
instance, in minimal SM extensions featuring three additional generations of right-handed
neutrinos the branching ratio for µ→ eγ is found to be smaller than 10−50, as it depends on
the ratio of the neutrino mass differences with respect to the W mass [130, 131]. Therefore,
cLFV processes can also be excellent probes of lepton-flavor-violating new physics outside
the neutrino sector.

Let us first discuss ℓi → ℓjγ decays. Measurements by the MEG experiment [130] and the
BABAR collaboration [132] indicate that branching ratios fulfill

B (µ→ eγ) < 4.2 · 10−13 ,

B (τ → eγ) < 3.3 · 10−8 ,

B (τ → µγ) < 4.4 · 10−8 ,

(3.3.61)

at 90% C.L., while the MEG-II experiment expects future bounds to constrain B (µ→ eγ) ≲
2 ·10−15 [133]. We now consider contributions of the general Yukawa interaction (3.3.37) to
these processes, which in our models occur at 1-loop via the diagrams depicted in Fig. 3.18.
Firstly, if either the left- or right-handed coefficients ciL, ciR associated to a lepton ℓi vanish,
one obtains a decay rate [134]

Γ(ℓi → ℓjγ) =
αe

576m3
iM

4
F

(︁
m2
i −m2

j

)︁3 (︁
m2
i +m2

j

)︁(︃c∗jXciX
16π2

)︃2

|f1(m2
H/M

2
F )|2 , (3.3.62)

where X = L,R and the loop function f1 in the limit of vanishing lepton masses is given
by (3.3.43). Taking the limit MF ≫ mH and mi ≫ mj we find

Γ(ℓi → ℓjγ) ≃
αe
576

(︃
c∗jXciX
16π2

)︃2
m5
i

M4
F

. (3.3.63)

Except in model E, such a contribution arises in all of our models through h exchange and
κ, as shown in Fig. 3.18 (diagram a). The decay rate is then given by Eq. (3.3.63), with
couplings

c∗jXciX
16π2

= αijκ =
1

(4π)2

∑︂
m

κimκjm , (3.3.64)

where m runs over the flavors of vector-like fermions in the loop, and mH = mh is the
mass of the Higgs boson. For model B, Clebsch-Gordan coefficients of the QF = −1 states
yield an additional factor 1/2 in αijκ . The measurements (3.3.61) then constrain the αijκ
for i ̸= j in terms of the vector-like fermion masses. Bounds on αµeκ and ατµκ are shown in
Fig. 3.19, together with projected MEG-II limits. For comparison we also show the Z-data
bound (3.3.9), which affects the diagonal components of κ. As seen in Fig. 3.19, µ → eγ

constraints (blue) are comparable to the ones from Z → ℓℓ, while τ → µγ (red) is less
constraining.5 Therefore, ℓi → ℓjγ constraints do not require the off-diagonal elements

5Bounds from τ → eγ on ατe
κ are comparable to τ → µγ bounds shown in Fig. 3.19, see Eq. (3.3.61).
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a) b)

Figure 3.18. Contributions to µ→ eγ via h exchange (a), present in all models except for model
E, and chirally enhanced contribution in the case of h − s22 mixing (b), only present in models A
and C.

of κ to be significantly suppressed with respect to the κii, potentially allowing for a non-
hierarchical coupling structure.

Furthermore, in models A and C chirally enhanced contributions arise through κ′ and scalar
mixing, as we have already seen for AMMs and EDMs in the previous sections. In diagram
b) of Fig. 3.18 we show how such a contribution arises for µ → eγ in the case of a muon-
aligned V −. For the general Yukawa interaction (3.3.46), the corresponding decay rate
reads

Γ∗(ℓi → ℓjγ) =
αe
16

(︂
m2
i −m2

j

)︂3
m3
iM

2
F

|f2(m2
H/M

2
F )|2

[︄(︃
c∗jRciL
16π2

)︃2

+

(︃
c∗jLciR
16π2

)︃2
]︄
, (3.3.65)

where f2 in the limit of negligible lepton masses is given by (3.3.52), and we have neglected
terms proportional to c2L, c

2
R. Note that, since f2(0) = 1, in the large-MF limit the decay

rate (3.3.65) scales as ∼ m3
i /M

2
F , which represents an MF /mi enhancement with respect

to the purely left- or right-handed contributions (3.3.62). In this limit, and neglecting the
electron mass, chirally enhanced contributions to µ→ eγ in our models A and C then read

Γ(µ→ eγ) ≃ αe
64

(︃
κeµκ

′ sin 2β
16π2

)︃2 m3
µ

M2
F

, (3.3.66)

for the vacuum V − pointing in the muon direction. For an electron-aligned V −, a similar
contribution arises, with decay rate given by (3.3.65) after replacing κeµ → κµe. Constraints
on the coupling αµeκκ′δ = κeµκ

′ sin 2β/(16π2) from the chirally enhanced rate are therefore
stronger than those shown in Fig. 3.19 for αµeκ by a factor mµ/3MF .

In addition, cLFV decays into three-lepton final states occur as well in our models, receiving
contributions from both penguin and box diagrams with κ and κ′. From the experimental
side, measurements of µ→ eee by the SINDRUM collaboration have set the bound [135]

B(µ→ eeē) < 10−12 , (3.3.67)
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Figure 3.19. Allowed regions (shaded) for αµeκ , ατµκ and MF from LFV decays (3.3.61). Due to
the proximity of upper limits on B(τ → eγ) and B(τ → µγ) only the latter is shown. The projected
sensitivity of the MEG-II experiment [133] is shown by the solid gray line. The dashed gray line
denotes the Z → ℓℓ-constraint (3.3.9). In the case of chirally enhanced rates such as (3.3.66),
bounds from a decay of a lepton ℓ are stronger by a factor mℓ/3MF

.

at 90% C.L., while future measurements at the Mu3e experiment expect a reach of B(µ→
eeē) < 10−16 [136]. For our models, we estimate [137]

B(µ→ eeē) ∼ 3(4π)2α2
e

8G2
F

(αµeκ )2

M4
F

B(µ→ eν̄eνµ) , (3.3.68)

which presents the same (αµeκ )2 suppression as the κ-mediated µ → eγ rate (3.3.63). The
bound (3.3.67) then yields αµeκ /(MF [TeV])2 < (2−3) ·10−4, which is comparable to µ→ eγ

bounds in Fig. 3.19, yet not more excluding. In the case of τ decays into three charged lep-
tons, present bounds are less constraining, with measurements setting upper limits on the
branching ratios at order 10−8 [37]. This poses a looser constraint on off-diagonal couplings
involving taus, ατℓκ /(MF [TeV])2 ≲ 0.1.

Finally, µ→ e conversion in nuclei also poses constraints on our models. The SINDRUM II
collaboration has set a 90% C.L. limit for the conversion rate (CR) in gold nuclei of [138]

CR(µ− e,Au) ≲ 7 · 10−13 , (3.3.69)

In our models, Z and γ penguin diagrams, which are again (αµeκ )2-suppressed, contribute
to the conversion process. We estimate [139]

CR(µ− e,Au) ∼ O(10−12)

(︃
αµeκ
10−4

)︃2(︃
[TeV]

MF

)︃4

, (3.3.70)

in close competition with µ → eγ bounds. The future Mu2e experiment [140], with ex-
pected sensitivity CR(µ− e,Au) < 6.7 · 10−17, can improve the bound from SINDRUM II
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on αµeκ by about two orders of magnitude.

In conclusion, the strongest bounds on the κij stem from µ → eγ measurements, while
other processes are competitive yet not more excluding at present. cLFV data cannot,
however, constrain the off-diagonal entries of κ to be significantly suppressed with respect
to the diagonal components κii, limited by Z-coupling measurements. Therefore, a non-
hierarchical form of the BSM Yukawa κ remains allowed, and can yield signatures in cLFV
observables within reach of future experiments.

3.4 Summary

In this chapter we have studied six models of vector-like fermions with new scalars Sij , each
presenting an extended Yukawa sector with BSM interactions κ between the new fermions,
SM leptons and the Higgs. Additionally, models A and C feature Yukawa couplings κ′ of
the vector-like fermions with SM leptons and the new scalars (see Tab. 3.1), and all models
admit the purely BSM Yukawa y. The leading order (210) RG analysis revealed interact-
ing fixed point solutions which can, in some cases, be matched onto the SM at low scales,
resolving the U(1)Y Landau pole problem. Moreover, matching scenarios exist in the ab-
sence of the BSM Yukawa y, distinguishing our models from previous model building efforts
[29]. Beyond the 210 approximation, the models exhibit a complex pattern of fixed point
solutions, which we have analyzed from a bottom-up approach. Using full 2-loop results
(222 approximation), we found that all models present regions in the parameter space of
low-scale BSM couplings which are either Planck safe or display asymptotic safety. In some
cases, BSM trajectories are able to completely stabilize the electroweak vacuum.

Phenomenologically, Drell-Yan processes constrain vector-like fermion masses to be at least
a few hundred GeV. Thanks to their gauge or Yukawa interactions, both vector-like fermions
and BSM scalars can be produced at pp and ℓℓ colliders. Decays of the vector-like fermions
occur via their Yukawa interactions or to weak bosons through mixing with the SM leptons,
and for sufficiently suppressed couplings can give rise to displaced vertex signatures or long
lived states. Additionally, fermion mixing allows the BSM scalars to decay to two leptons
of different charge and opposite flavor, giving a distinct LFV-like signature which can be
used to probe the models at colliders.

Furthermore, the models offer distinct implications for 1-loop observables, in particular for
lepton anomalous magnetic moments. We find that for the models of vector-like leptons
(models A and C) both the electron and the muon g − 2 anomalies can be simultaneously
accommodated. The explanation relies on a chirally enhanced contribution to the AMM of
the electron, which requires the presence of both Yukawas κ and κ′ and a portal coupling
in the scalar sector. The parameter space favored by data is depicted in Fig. 3.17, and
requires vector-like fermion masses to be ∼ 1 TeV or below. Remarkably, the mechanism
does not require any explicit breaking of flavor universality, and yields predictions for the
tau AMM. Furthermore, allowing for a soft breaking of the flavor or CP symmetry of the
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models allows for 1-loop contributions to cLFV observables and electric dipole moments,
respectively. If the vacuum is aligned in the muon direction, we find that electron EDM
bounds can be bypassed and the muon EDM can be as large as ∼ 10−22 e · cm. Therefore,
we conclude that models connecting the SM with heavy new physics through a mixed
Yukawa sector can constitute UV completions of the SM, and at the same time give rise to
relevant phenomenological signatures in flavor observables which can be probed at current
and future experiments.
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4 Vector-Like Leptons
at Colliders

In the previous chapter we saw that vector-like fermions are not only a crucial ingredient
to build asymptotically safe models but can also present relevant phenomenological impli-
cations. In particular, in Sec. 3.3.5 we showed how models of vector-like leptons (VLLs)
with additional Yukawa interactions (referred to as models A and C in Chapter 3) are
able to simultaneously explain the observed discrepancies between measurements and SM
predictions in the anomalous magnetic moments of the electron and the muon. Phenomeno-
logically, Drell-Yan processes constrain vector-like leptons to have masses of at least a few
hundred GeV (see Fig. 3.10). However, dedicated searches at colliders might constrain
the parameter space further. VLL models are especially suited for such searches as their
decay products are mostly leptonic, yielding clean signals and opportunities to look for
resonances. Using these features, the CMS collaboration has recently ruled out vector-like
lepton doublets in the range of 120 – 790 GeV at 95%C.L. in a particular tau-philic model
[141, 142]. This represents a significant improvement with respect to previous searches
at LEP, which were able to exclude heavy leptons lighter than ∼ 100 GeV [143], and by
the ATLAS collaboration, which ruled out singlet VLLs mixing with first-generation lep-
tons in the 114 – 176 GeV range at 95%C.L. [144]. Future LHC searches have the potential
to greatly improve current limits on VLL models, already by including the full run 2 dataset.

In this chapter we perform a dedicated collider study for the models of singlet and doublet
vector-like leptons described in Chapter 3, focusing on the parameter space which permits
simultaneous explanations of the electron and the muon g − 2 anomalies. Our aim is to
ascertain how current analyses can constrain the parameter space of our models and to
develop targeted search strategies at colliders. The chapter, which is based on the findings
of [145], is organized as follows: in Sec. 4.1 we review the decay and production modes of
vector-like leptons at the LHC, placing an emphasis on the effects of fermion mixing. In
Sec. 4.2, we recast constraints from the present data [141] using the transverse momenta of
the multi-lepton final states. We build dedicated observables which take advantage of the
specific features of our models, in particular the LFV-like decays of the BSM scalars Sij , in
Sec. 4.3. We exploit the fact that, when pair produced, the VLLs present dominant decays
into 6-lepton final states which can be used to look for heavy resonances. In Sec. 4.4 we
explore scenarios beyond the g − 2 parameter space of our models, and we summarize our
results in Sec. 4.5.
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4.1 Vector-like Lepton Models

We start out with the theories of vector-like leptons ψ described in Chapter 3, corresponding
to models A and C in Tab. 3.1. In what follows, we refer to them as singlet and doublet
model, respectively, according to the SU(2)L representations of the VLLs. We denote the
weak isospin components of the doublet VLLs by

ψL,R = (ψ0
L,R, ψ

−
L,R)

T , (4.1.1)

and employ L = (ν, ℓL)
T and E = ℓR for the SM leptons. The models also contain the

complex scalar singlets Sij , with i, j = 1, 2, 3. The BSM Yukawa Lagrangian of the models
in the interaction basis is given by

Lsinglet
Y = −κLiHψRi − κ′Ei(S†)ijψLj − y ψLiSijψRj + h.c. ,

Ldoublet
Y = −κEiH†ψLi − κ′ LiSijψRj − y ψLiSijψRj + h.c. ,

(4.1.2)

where we have spelled out contractions of flavor indices. Here we put aside discussions of
the purely BSM Yukawa y, as its effects for collider phenomenology are subleading with
respect to the couplings κ and κ′, which directly connect the SM with new states. After
spontaneous symmetry breaking in the Higgs and S sectors, VLLs acquire mixing with SM
leptons, which affects all chiral interactions. Measurements of the Z couplings to leptons
constrain left-handed (right-handed) mixing angles in the singlet (doublet) model to fulfill

θ ≃ κvh√
2MF

≲ O(10−2) , (4.1.3)

see Sec. 3.3.1 for details, and [146] for recent electroweak fits. Therefore, Z data places
constraints on κ, while κ′, the Yukawa coupling of the new scalars, remains unbounded. At
first order in κ, electroweak and Yukawa interactions of the VLLs can be written as

Lsinglet
int =−eψγµψAµ+

g2
cos θw

ψγµψZµ +

(︄
− κ√

2
ℓ̄LψR h− κ′ℓ̄RS†ψL

+ gS ℓ̄RS
†ℓL + gZ ℓLγ

µψL Zµ + gW νγµψLW
+
µ + h.c.

)︄
,

(4.1.4)

in the mass basis of the singlet model, where h is the physical Higgs boson with mass
mh = 125 GeV. The couplings in the Lagrangian (4.1.4) fulfill

gS =
κ′κ√
2

vh
MF

, gZ = − κ√
2

mZ

MF
, gW = κ

mW

MF
, (4.1.5)

where we have assumed that all flavor and SU(2)L components of the VLLs have approxi-
mately the same mass MF . For the doublet model we find instead

Ldoublet
int =−eψ−γµψ−Aµ+

g2
2 cos θw

[︂
(2 sin2 θw − 1)ψ−γµψ− + ψ0γµψ0

]︂
Zµ

+

(︄
g2√
2
ψ−γµψ0W−

µ − κ√
2
ℓ̄Rψ

−
L h− κ′ℓ̄LSψ

−
R − κ′ν̄Sψ0

R + gS ℓ̄LS ℓR

+ gZ ℓRγ
µψ−

R Zµ + gW ℓRγ
µψ0

RW
−
µ + h.c.

)︄
,

(4.1.6)

– 83 –



where the couplings obey

gS =
κ′κ√
2

vh
MF

, gZ =
κ√
2

mZ

MF
, gW = −κmW

MF
. (4.1.7)

Note that the vertex νγµψ−
L W

+
µ is subleading, as it arises only at order κyℓ (see Sec. 3.3.1

and the angles in Tab. 3.6 for details).

In order to successfully explain the muon magnetic moment anomaly, the parameters κ′,
MF and MS must allow for the contribution to (g − 2)µ in Eq. (3.3.42) to accommodate
the data (3.3.34), which leads to the condition

∆aµ =
κ′2

32π2
m2
µ

M2
F

f1

(︃
M2
S

M2
F

)︃
, (4.1.8)

with f1 given by Eqs. (3.3.43) and (3.3.39). Unless otherwise specified, throughout this work
we use the above condition to fix κ′ in terms of benchmark massesMF andMS . For instance,
setting MS = 500 GeV and MF = {100, 500, 1000} GeV requires κ′ ≃ {3.6, 6.5, 10.4}, re-
spectively. Furthermore, the coupling κ allows to explain ∆ae by enforcing that the chirally
enhanced contribution (3.3.51) coincide with the data (3.3.36). This contribution, however,
involves couplings of the scalar sector as well, providing more freedom in the choice of κ. In
this chapter, we fix the ratio between couplings as κ = ϵκ′ and choose ϵ = 10−2, which for
the considered parameter space allows to fulfill the Z-data bound (3.3.9). Moreover, once
the hierarchy between BSM Yukawas is set all branching ratios are independent of κ and κ′.

Production of the VLLs at pp colliders occurs via quark fusion and s-channel electroweak
bosons or Higgs (Fig. 3.7, diagrams a, b and c). Additional single-production channels arise
through mixing, with a VLL being produced alongside a lepton of its same generation (see
Fig. 3.8). Note that W -mediated channels are only possible for the doublet model. Together
with larger particle multiplicities, this leads to higher production cross sections in the case
of the doublet model. Single- and pair-production cross sections for the VLLs at the LHC
for a center-of-mass energy

√
s = 13 can be found in Fig. C.3.1 in Appendix C. For VLLs

around the TeV scale, we find pair-production cross sections at the order 10−4 pb, while
single-production is mixing-suppressed and occurs only at order 10−7 pb.

After production, the VLLs decay promptly to a scalar and a lepton through their Yukawa
interactions or to a weak boson and a lepton through mixing. The rates of all possible
decays in the singlet model read

Γ(ψi → hℓ−i ) = κ2
MF

64π
(1− r2h)

2 ,

Γ(ψi → S ∗
ij ℓ

−
j ) = κ′ 2

MF

32π
(1− r2S)

2 ,

Γ(ψi →W−νi) = g2W
MF

32π
(1− r2W )2(2 + 1/r2W ) ,

Γ(ψi → Zℓ−i ) = g2Z
MF

32π
(1− r2Z)

2(2 + 1/r2Z) ,

(4.1.9)
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where rX = mX/MF . Corresponding branching ratios are shown in Fig. 4.1 (left) for a
range of VLL masses MF and for MS = 500 GeV. As soon as the S can be produced on
shell, and for large κ′, the decay ψi → S ∗

ij ℓ
−
j dominates over the rest of channels, which

are κ-suppressed. Quantitatively, for large MF the decays through the Sij dominate over
Higgs-mediated decays (decays through weak bosons) as soon as κ′ ≳ κ/

√
6 (κ′ ≳ κ/

√
3 ).

For the doublet model we find decay rates

Γ(ψ−
i → hℓ−i ) = κ2

MF

64π
(1− r2h)

2 ,

Γ(ψ−
i → Sji ℓ

−
j ) = κ′ 2

MF

32π
(1− r2S)

2 ,

Γ(ψ0
i → Sji νj) = κ′ 2

MF

32π
(1− r2S)

2 ,

Γ(ψ−
i → Zℓ−i ) = g2Z

MF

32π
(1− r2Z)

2(2 + 1/r2Z) ,

Γ(ψ0
i →W+ℓ−i ) = g2W

MF

32π
(1− r2W )2(2 + 1/r2W ) .

(4.1.10)

Branching ratios for the decays of the ψ− and the ψ0, displayed in Fig. 4.1 (right), show
again a dominance of the decays to S plus lepton for both SU(2)L components as soon
as MF > MS . In both models, the Sij can decay to ψ plus lepton (for MF < MS),
to a diboson pair (only in the case of the diagonal components Sii), to a VLL pair (for
2MF < MS through y) and to a dilepton pair via mixing (with coupling gS), as discussed
in detail in Sec. 3.3.3. The dilepton channel is available for all BSM mass hierarchies, and
dominant over decays to dibosons unless mixing is very suppressed. In what follows, we
assume that the BSM scalars decay entirely to dileptons, while other modes are negligible.
Then, the dominant decays of the VLLs through the Sij read

ψi → S∗
ij ℓ

−
j → ℓ−i ℓ

+
j ℓ

−
j , (singlet)

ψ−
i → Sji ℓ

−
j → ℓ−i ℓ

+
j ℓ

−
j , ψ0

i → Sji νj → ℓ−i ℓ
+
j νj . (doublet)

(4.1.11)

Note that the decay chains (4.1.11) are strictly flavor-conserving, since the Sij carry flavor.
Nonetheless, for i ̸= j they can decay to two leptons of opposite charge and different flavor
(OCDF), yielding an LFV-like signature. Hence, if the VLLs are heavy enough to decay to
on-shell BSM scalars, one can use dilepton invariant masses of OCDF leptons to look for
resonances around the S mass. This provides a unique opportunity to specifically target
the features of our models, and distinguish them from other theories of vector-like leptons
such as [124, 142, 147–149].

Decays via (4.1.11) result in purely leptonic final states, while decays to weak bosons or
Higgs can produce either leptons or jets. In the rest of this work, we focus on final states
with at least four light leptons (4L), where a light lepton is a muon or an electron, as
has also been studied in the CMS analysis [141]. In the case where the VLLs are pair
produced and decay through (4.1.11), only certain flavor configurations can give rise to a
4L final state, which we have collected in Tab. 4.1. Note that, in the doublet model, if pair
production involves a ψ0

3 flavor conservation entails that the final state cannot contain four
or more light leptons.
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Figure 4.1. Branching ratios of on-shell decays of the VLLs as a function of their mass in the
singlet model (left) and the doublet model (right), with scalar mass MS = 500 GeV. For MF < MS ,
only electroweak and Higgs-mediated decays are possible, and the rates are independent of κ, κ′.
We fix κ = 10−2 κ′, and therefore the branching ratios at leading order do not depend on κ′ either,
even in the MF > MS range. For the BSM mass hierarchy MF > MS , decays of the VLLs through
the Sij are dominant in both models; increasing the ratio κ/κ′ would enhance the branching ratios
of electroweak decays.

State Decay modes

ψ
(−)
1 e−e+e−, e−µ+µ−, e−τ+τ−

ψ
(−)
2 µ−µ+µ−, µ−e+e−, µ−τ+τ−

ψ
(−)
3 τ−e+e−, τ−µ+µ−

ψ0
1 e−e+νe , e−µ+νµ

ψ0
2 µ−µ+νµ , µ−e+νe

Table 4.1. Flavor configurations of the decay products of VLL decays through the S scalars (see
Eq. (4.1.11)) which can give rise to a final state with at least four light leptons.

4.2 Constraints from CMS Data

In order to study the production of VLLs at the LHC and their subsequent decays into 4L
final states, we use FeynRules [150] to compute tree-level Feynman rules for our models.
We then create UFO models [151], and use these as input for the Monte Carlo generator
MadGraph5_aMC@NLO [152] to generate samples of 5× 104 events. In the event gener-
ation we include all processes which yield a 4L final state (see Appendix C.1 for technical
details). We obtain event samples for a set of benchmark masses MF and MS , with the
coupling κ′ fixed according to Eq. (4.1.8), and again fixing κ = ϵκ′ with ϵ = 10−2. In
order to compare our results with experimental bounds from the CMS search [141], we
then compute the scalar sum of the transverse momenta the four light leptons with the
largest transverse momenta, LT , for an integrated luminosity of 77.4 fb−1. In the rest of
this section, we review the decay chains yielding 4L final states and go on to present the
constraints on the BSM masses MF and MS stemming from LT distributions.
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4.2.1 4L Multiplicities

We now explore which decay chains can give rise to final states with at least four light
leptons. Such final states can arise both from single and pair production of the VLLs, since
the former occurs in association with a lepton. For the decays through the Sij , the different
flavor configurations contributing to the 4L final state were already collected in Tab. 4.1.
Taking into account all possible decays of the VLLs, the decay chains which yield a 4L final
state in the singlet model are

pp→ ψiψ̄i → ℓ−i ℓ
+
i ℓ

+
j ℓ

−
j ℓ

+
k ℓ

−
k for i, j, k = 1, 2, 3 , (20)

pp→ ψiψ̄i → ℓ−i ℓ
+
i qj q̄jℓ

+
k ℓ

−
k for i, k = 1, 2 , (15× 4)

pp→ ψiψ̄i → ℓ−i ℓ
+
i ℓ

+
j ℓ

−
j νkν̄k for i, j = 1, 2, k = 1, 2, 3 , (12)

pp→ ψiψ̄i → νiℓ
+
i ℓ

+
j ℓ

−
j ℓ

−
k ν̄k for i, j, k = 1, 2 , (8)

pp→ ψiψ̄i → ℓ−i ν̄iℓ
+
j ℓ

−
j ℓ

+
k νk for i, j, k = 1, 2 , (8)

pp→ ψiℓ
+
i → ℓ−i ℓ

+
j ℓ

−
j ℓ

+
i for i, j = 1, 2 , (4)

pp→ ψ̄iℓ
−
i → ℓ+i ℓ

+
j ℓ

−
j ℓ

−
i for i, j = 1, 2 , (4)

(4.2.1)

where we have indicated the multiplicity of each decay chain between parentheses. The
allowed values of the lepton flavor indices i , j , k are also indicated, and for quarks these
can take values qj = u, d, c, s, b. The first decay chain in (4.2.1) is especially relevant, since
it represents the only channel yielding a 6-lepton final state. Only in this case two taus
can be produced alongside four light leptons. Hence, ψ3 production only contributes to the
4L channel via this decay chain. In the doublet model, single and pair production of the
negatively charged component lead to 4L final states following (4.2.1), with the exception
of the W -mediated decays ψ−

i → νiℓ
−
j ν̄j , which in the doublet model are subleading and

not taken into account for our study. Moreover, when the ψ0 are produced additional 4L
final states arise through

pp→ ψ0
i ψ

0
i → νjνkℓ

+
j ℓ

−
i ℓ

+
i ℓ

−
k for i, j, k = 1, 2 , (8)

pp→ ψ−
i ψ

0
i → ℓ−i ℓ

+
i νjℓ

−
j ℓ

+
k ℓ

−
k for i, j, k = 1, 2 , (8)

pp→ ψ0
i ψ

+
i → ℓ−i ℓ

+
i ℓ

+
j νjℓ

+
k ℓ

−
k for i, j, k = 1, 2 , (8)

pp→ ψ−
i ψ

0
i → ℓ−i ℓ

+
i qjqjℓ

+
k ℓ

−
k for i, k = 1, 2 , (15× 4)

pp→ ψ0
i ψ

+
i → ℓ−i ℓ

+
i qjqjℓ

+
k ℓ

−
k for i, k = 1, 2 . (15× 4)

(4.2.2)

Production cross sections of the 4L final states through the channels (4.2.1) and (4.2.2) are
shown in Fig. 4.2 for both our models (red curves) and third-generation VLL models such
as [142] (blue curves). Cross sections are larger by roughly two orders of magnitude in our
models due to a higher multiplicity of 4L final states, and are further enhanced when the
VLLs are heavy enough to decay to on-shell Sij . As studied in the previous section, these
decays are dominant when kinematically allowed and yield purely leptonic final states,
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Figure 4.2. Production cross section of 4L final states at a pp collider with
√
s = 13 TeV in the

singlet (left) and doublet model (right) in terms of of the VLL mass, with MS = 500 GeV. The
red curves correspond to the VLL models (4.1.4) and (4.1.6), while the blue curves correspond to
third-generation VLL models such as [142]. In general, cross sections are larger in our models due
to higher multiplicities of the 4L final states. Moreover, for MF > MS the additional S-mediated
decay channels of the VLLs further enhance the cross sections.

populating the 4L channel. This can be observed in Fig. 4.2 through the peak around
the benchmark scalar mass MS = 500 GeV. In general, 4L production cross sections are
higher in doublet models by at least one order of magnitude, due to additional W -mediated
production channels and higher 4L multiplicities.

4.2.2 LT Distributions and CMS Constraints

The analysis of the transverse momenta distributions in the CMS study [141] allowed to
exclude doublet VLL masses in the 120−790 GeV range at 95%C.L. We now compute these
distributions for the 4L channel in our VLL models, scanning over a range of BSM masses
MS and MF , and after performing a fast detector simulation we compare our results to the
limits set by CMS (see [145] and Appendix C.1 for details). Our findings are summarized
in Fig. 4.3, where we show the points in our parameter space which are allowed by data
together with schematic regions of exclusion. For the doublet model, we find that masses
above ∼ 800 GeV are excluded, in line with CMS limits. Due to smaller cross sections, no
hard lower limit on the VLL masses is found for the singlet model. In both cases, we find
that regions around the MS ∼ MF line are excluded, owing to the enhancement of cross
sections around the S resonance. In Fig. 4.3, the green dotted line shows the perturba-
tivity limit of the coupling κ′, which is fixed according to Eq. (4.1.8) to explain the g − 2

anomalies and becomes large for heavy BSM particles. Note that, even though both models
allow explanations of the AMM anomalies through the same parameter space of Yukawa
and scalar couplings [24], doublet VLL masses are significantly more constrained by present
data.

From amongst the scanned masses which avoid present bounds we have selected three
representative benchmarks for each model, marked in yellow in Fig. 4.3, which we use in
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Figure 4.3. Excluded and allowed values of the VLL mass MF and the BSM scalar mass MS for
the singlet (left) and doublet model (right). The coupling κ′ is fixed for each point to explain the
(g−2)µ anomaly using Eq. (4.1.8); the onset of non-perturbative κ′ values is indicated by the green
dotted line. For the points marked as allowed, all bins in the distribution of LT (the scalar sum of
the transverse momenta of the four light leptons with the largest transverse momenta) fall within
1σ of the central values measured by CMS [141]. Allowed points marked in yellow are used as
benchmarks to study the observables described in Sec. 4.3, and their LT distributions are displayed
in Fig. 4.4.

the following sections to exemplify our analysis strategy. For each model, the benchmarks
include at least one case where MF > MS and another with MS > MF . The corresponding
LT distributions after hadronization and detector simulation are shown together with CMS
constraints in Fig. 4.4, where we observe that for each bin VLL contributions do not surpass
the experimental 1σ limits. Fig. 4.4 also shows the LT distribution of the dominant SM
background processes of ZZ, triboson and tt̄Z production. In the ZZ channel we include
contributions from pp → γ∗γ∗, γ∗Z and ZZj, as well as gg → ZZ. The latter is induced
at lowest order at 1-loop, but represents ∼ 15% of the SM ZZ background [153]. Final
states with a jet are included via multijet merging in PYTHIA8 [154]. We find that
our background simulation is in reasonable agreement with that of CMS in all the bins
of the LT distributions, even though small differences are present. These are, however,
expected: we perform leading order computations and employ the publicly available fast
detector simulations, in contrast to the more involved analysis performed by CMS in which
background distributions are fitted to control region data.

4.3 Observables and Null Tests

So far the study of transverse momenta distributions allowed us to constrain the param-
eter space of BSM masses through experimental constraints from [141]. In this section,
we present observables beyond LT which specifically target the features of our models and
allow to reconstruct masses of the VLLs and the S scalars. The new observables consist
of the dilepton invariant masses m2ℓ and m2ℓ_diff, which allow to search for BSM scalar
resonances, and the three-lepton invariant masses m3ℓ and m3ℓ_diff, which target the VLL
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Figure 4.4. Scalar sum of transverse momenta LT in the singlet (left) and doublet model (right)
after detector simulation. Distributions are shown for several benchmark masses of vector-like
fermions and BSM scalars (dashed curves), and for SM background processes (solid green area).
An integrated luminosity of 77.4 fb−1 and a bin width of 150 GeV have been chosen in order to match
CMS data from [141], also displayed at 1σ (black points and hatched region). We have included as
well the control region veto of two dilepton pairs with invariant masses 76 GeV < m2ℓ < 106 GeV.
For both models, the displayed benchmarks fall within 1σ CMS constraints, and correspond to the
highlighted yellow points of Fig. 4.3. The observed small differences between our simulation of the
SM background and the CMS data are expected, as CMS uses a data-driven background estimation
not publicly available.

mass. The ’_diff’ observables contain at least one invariant mass built out of two OCDF
leptons, which in our models arise from LFV-like decays of the Sij . Therefore, they are
designed to hunt for resonances of the BSM scalars (in the case of m2ℓ_diff) or the VLLs
(m3ℓ_diff) while suppressing contributions from SM background1. Schematically, the four
observables we propose are computed as follows (see Appendix C.2 for a detailed account
of the algorithms):

m2ℓ: for each 4L final state, two invariant masses are added to m2ℓ. These can come
from two leptons of opposite charge and same flavor (OCSF) which reconstruct to
a Z boson or Higgs, or from two jets or two taus which reconstruct to Z or Higgs.
Additionally, we add to m2ℓ pairs of dilepton invariant masses either of OCSF or
OCDF leptons which do not reconstruct to SM particles but coincide. This last step
allows to reconstruct the S scalars without prior knowledge of their mass, and requires
VLLs to be pair produced and decay through the BSM scalars.

m2ℓ_diff: a pair of dilepton invariant masses, where at least one of the invariant masses is
constructed out of two OCDF leptons, are added to the observable if they coincide.
Therefore, the m2ℓ_diff targets decays of the type Sij → ℓ−i ℓ

+
j for i ̸= j.

1The ’_diff’ observables can in principle be used to search for general models with heavy particles
decaying to leptons of different flavors, as long as the BSM states can be pair produced at the LHC.
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m3ℓ: for each 4L final state we start from the dilepton invariant masses added to m2ℓ, and
pair each of them with another lepton in the final state. If a dilepton invariant mass
contains OCSF leptons, we require that the paired lepton also be of that same flavor.
If the dilepton invariant mass was computed out of two OCDF leptons, we require
that the paired lepton be OCSF with respect to one of the leptons in the dilepton
invariant mass. We add the subsequent three-lepton invariant masses to m3ℓ if they
coincide. This allows to reconstruct the masses of the VLLs.

m3ℓ_diff: similar to m3ℓ, but in this case we start out from the dilepton invariant masses added
tom2ℓ_diff. Hence,m3ℓ_diff allows to reconstruct VLL masses in the case where both
VLLs decay through the Sij and at least one of these undergoes an LFV-like decay.
Only 6-lepton final states contribute to m3ℓ_diff, and imposing flavor conservation
within the hypothesis of our models always allows to group the final-state leptons
correctly to reconstruct VLL masses.

We compute the above observables for the benchmarks highlighted in Fig. 4.3 for an inte-
grated luminosity of 150 fb−1, corresponding to the full dataset of run 2 at the LHC [155].
Results are shown in Figs. 4.5 and 4.6 for the singlet and doublet model, respectively. In
the case of m2ℓ and m2ℓ_diff, we observe that in benchmarks where on-shell S production
is possible peaks around MS with O(10) events arise, giving clear signals of the presence of
the BSM scalars. For the benchmarks where the VLLs are lighter than the BSM scalars,
distributions peak around the electroweak boson resonances but do not rise above the SM
background. However, bins where the SM background is absent receive contributions as
well. Higher luminosities would benefit these scenarios, making the tails of the distributions
more visible. Note that the observable m2ℓ_diff is in principle a null test of the SM, since it
requires at least one LFV-like decay to take place. Nevertheless, a large SM background in
the low-mass region can give rise to pairs of coincident dilepton invariant masses which are
incorrectly reconstructed as two BSM scalars. Therefore, the SM background is suppressed
with respect to m2ℓ but not completely absent, as can be seen in Figs. 4.5 and 4.6.

Furthermore, the three-lepton invariant masses m3ℓ and m3ℓ_diff clearly peak around the
VLL mass in benchmarks where MF < MS . This effect arises due to lower VLL masses
requiring a smaller κ′ coupling to accommodate the g− 2 explanations, which leads to nar-
row resonances of the VLLs. However, in these benchmarks the VLL peaks in m3ℓ_diff are
fairly suppressed, since on-shell S production is forbidden. For higher values of κ′ the VLLs
present faster decays, leading to broad resonances which can however reach O(1) events in
some bins. This can be seen for the m3ℓ and m3ℓ_diff distributions of the benchmarks with
MF > MS (black curves in Fig. 4.5 and blue and black curves in Fig. 4.6).

Finally, the m3ℓ_diff distribution presents the advantage of being completely background-
free, thanks to strict flavor-conservation conditions imposed on the 4L final state together
with the requirement that an LFV-like decay take place. Therefore, the observable is an
excellent null test of the SM. The trade-off is however a depletion of both broad distributions
and peaks around the VLL masses. Hence, the observables would again greatly benefit from
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Figure 4.5. Dilepton invariant masses m2ℓ, m2ℓ_diff, m3ℓ, and m3ℓ_diff (see Sec. 4.3 for details)
for the singlet model and for different benchmark masses of the VLLs and the BSM scalars. The
distributions are shown for

√
s = 13 TeV and a luminosity of 150 fb−1. For the benchmarks with

MF < MS (blue and red), VLLs decay mostly to electroweak bosons or Higgs and no peaks around
the S mass arise in the dilepton masses, while VLL resonances are clearly visible in the three-lepton
invariant masses. For the benchmark with MF > MS (black), decays through the S scalars are
dominant, yielding clear peaks at the scalar mass in m2ℓ and m2ℓ_diff, while a large value of κ′

yields a broad VLL resonance in m3ℓ and m3ℓ_diff. The latter presents a complete suppression of
the background, resulting in a null test of the SM.

higher luminosities. To exemplify this, we have computed our set of observables for the
studied benchmarks at

√
s = 14 TeV and future HL-LHC luminosities of 3000 fb−1 [155],

which we present in Fig. C.3.2 in Appendix C. We observe that the enhanced luminosity
yields peaks with up to O(103) events, improving the opportunities of discovery.

4.4 Benchmarks beyond g − 2

In Sec. 4.3 we developed novel observables targeting the features of our models, and com-
puted their distributions for several benchmark BSM parameters compatible with lepton
AMM data. In this section, we focus on the singlet model to explore scenarios beyond the
g− 2 explanations, no longer fixing κ′ according to Eq. (4.1.8). Since the g− 2 benchmarks
already present a rather large κ′, we choose instead the lower value κ′ = 1. The coupling
κ, restricted by Z-data, is fixed to κ = 10−2 as in the rest of this chapter. Note that, for
vanishing κ′ but y ̸= 0, the decays ψ → Sℓ and S → ℓℓ′ can still occur, arising at order yθ
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Figure 4.6. Dilepton invariant masses m2ℓ, m2ℓ_diff, m3ℓ, and m3ℓ_diff (see Sec. 4.3 for details),
for the doublet model and for different benchmark masses of the VLLs and the BSM scalars. The
distributions are shown for

√
s = 13 TeV and a luminosity of 150 fb−1. Features depending on the

BSM mass hierarchy identified in Fig. 4.5 apply.

and yθ2vh/MF yℓ, respectively, where yℓ is the lepton Yukawa. This holds as well for other
models of vector-like fermions considered in Chapter 3, where κ′ interactions are absent. In
this case, however, the constraint (4.1.3) on the mixing angle θ severely suppresses contri-
butions to the ’diff’ observables.

Having fixed the BSM Yukawas to κ′ = 1, κ = 10−2, we study the benchmark BSM
masses already employed in Sec. 4.3. Results for the corresponding LT distributions af-
ter hadronization and detector simulation are shown in Fig. 4.7 together with limits from
CMS [141]. We observe that, for the two benchmarks with lower VLL masses, all LT bins
still lie within experimental bounds, while for the MF = 800 GeV benchmark high-LT bins
are in tension with data. This is due to the lower value of κ′ yielding a narrower VLL res-
onance, which leads to more events in the high-LT region. For this reason, we have chosen
another benchmark, with MF = 900 GeV, which is in agreement with CMS bounds (pink
curve in Fig. 4.7). The higher VLL mass yields in this case a lower cross section, which
compensates for the resonance effect. We therefore choose the MF = 900 GeV benchmark,
together with the MF = 300, 600 GeV benchmarks, to compute the set of new observables
described in Sec. 4.3.
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Figure 4.7. Scalar sum of transverse momenta LT after detector simulation in the singlet model,
for different masses of vector-like fermions and BSM scalars and for SM background processes,
with κ′ = 1. Results are shown for an integrated luminosity of 77.4 fb−1 and a bin width of
150 GeV together with CMS data from [141] at 1σ (black dots). For κ′ = 1, the MF = 800 GeV,
MS = 500 GeV benchmark (black curve) is excluded at 1σ, in contrast to the allowed benchmark
with the same masses and larger κ′ shown in Fig. 4.5. A benchmark with higher MF = 900 GeV is
allowed for κ′ = 1 (pink curve).

Results for the new observables are shown in Fig. 4.4. In the case of the dilepton invariant
masses m2ℓ and m2ℓ_diff, we observe a similar pattern with respect to the g−2 benchmarks
studied in Sec. 4.3: when the scalars can be produced on shell, peaks around the S mass are
clearly visible (in this case with O(10) events), while for for MF < MS resonances remain
below SM background contributions. Furthermore, in the three-lepton invariant masses m3ℓ

and m3ℓ_diff the effects of narrower VLL resonances due to smaller κ′ are clearly visible,
with all benchmarks peaking at the VLL mass. In the cases whereMF < MS , the observable
m3ℓ is the optimal one, since peaks rise well above SM background. ForMF > MS , m3ℓ_diff

presents the advantage of the SM background being entirely suppressed, while the VLL
resonance is nearly as populated as in m3ℓ_diff . This results from the fact that in this
case the VLLs decay almost entirely through the BSM scalars, populating both three-lepton
invariant masses similarly.

4.5 Summary

In this chapter we have explored LHC signatures of asymptotically safe models of vector-
like leptons with an extended scalar sector. We have focused on the parameter space which
allows the models to accommodate the muon and electron anomalous magnetic moment
anomalies simultaneously through new Yukawa interactions. For each model, we have gen-
erated samples of events in which VLLs are produced and decay to at least four light leptons
(electrons or muons). This allowed us to study the transverse momenta LT of the final state
and compare it to current CMS data [141], identifying regions in the parameter space of
BSM masses and couplings which are already in tension with data. These results are sum-
marized in Fig. 4.3, which shows that for the doublet model masses below ∼ 800 GeV are
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Figure 4.8. Dilepton invariant masses m2ℓ, m2ℓ_diff, m3ℓ, and m3ℓ_diff (see Sec. 4.3 for details)
for the singlet model with fixed κ′ = 1 and for several benchmark masses of the VLLs and the BSM
scalars, at a luminosity of 150 fb−1 and

√
s = 13 TeV. Lower values of κ′ in comparison to the g−2

benchmarks shown in Fig. 4.5 lead to narrower VLL resonances, which become visible for all BSM
masses in m3ℓ and m3ℓ_diff.

excluded, but lower masses (at least as low as ∼ 300 GeV) are still allowed for the singlet
model. In both cases the regions with similar BSM scalar and VLL masses are ruled out as
well.

Next, we have built novel observables which target the features of our models, in particular
the LFV-like decays of the VLLs through the scalars Sij . The observables consist of the
dilepton invariant masses m2ℓ and m2ℓ_diff and the three-lepton invariant masses m3ℓ and
m3ℓ_diff. Using our event samples and a luminosity of 150 fb−1, we have computed their
distributions for several benchmark BSM masses which were found to be allowed in the LT
analysis. As seen in Figs. 4.5 and 4.6, the dilepton invariant masses clearly show peaks
around the BSM scalar mass, with m2ℓ_diff presenting a more suppressed SM background,
while the three-lepton invariant masses m3ℓ and m3ℓ_diff allow to reconstruct the VLL
masses. In the case of m3ℓ_diff, the requirement that at least one scalar Sij undergo an
LVF-like decay entirely suppresses the background, making it a null test of the SM. A higher
luminosity would greatly benefit the observables, with peaks potentially reaching O(103)

events at HL-LHC luminosities, as seen in Fig. C.3.2. Lastly, we have explored benchmarks
with smaller BSM Yukawa couplings, going beyond the g − 2 parameter space. We found
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that in these cases the VLL resonances can be narrower, yielding higher peaks in the m3ℓ

and m3ℓ_diff distributions.

In conclusion, we have shown that our class of VLL models is already constrained by present
data, while targeted observables provide unique opportunities to detect BSM particles and
distinguish mass hierarchies. Moreover, the LFV-like signature specific to our models allows
to build null tests of the SM, where the background is completely absent.
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5 Flavor from Running
in U(1)X Models

The evolution of gauge and Yukawa couplings typically presents logarithmic dependence on
the energy scale, making it difficult for large hierarchies to arise as a consequence of the
renormalization group flow. However, in certain scenarios the running can abandon its log-
arithmic behavior and present a steeper evolution, making significant RG-induced changes
in the couplings possible. It is then natural to wonder whether these effects can induce
large hierarchies amongst the couplings of a theory, in particular within the flavor sector.
The idea of using RG effects to explain flavor patterns is an early one [12], and it generally
requires a mechanism to steer Yukawa couplings away from the logarithmic regime. Exam-
ples have been put forward in the context of a nearly scale-invariant gauge coupling [156]
and in supersymmetric theories through the coupling of the SM to a conformal field theory
[9, 10]. Recent works propose the generation of RG-induced hierarchies between the up and
the down sector thanks to hypercharge differences and universal shifts in the β-functions
of gauge and Yukawa couplings, with a possible origin in asymptotically safe gravity [11].
Further studies also employing quantum gravity assumptions can accommodate flavor pa-
rameters, but fail to generate large ratios between couplings through the running [23].

In the case of asymptotically safe gauge-Yukawa theories a steep running emerges from the
UV fixed point, with couplings abandoning their logarithmic flow. In particular, for asymp-
totically free Yukawa couplings the evolution follows the pure power-law behavior (2.1.26).
Then, if the exponents of this flow are different for each fermion species and generation,
Yukawa couplings can acquire large hierarchies throughout their running. To this end, a lo-
cal symmetry with non-universal charges is paramount. Here we explore a simple realization
of such a scenario, where the SM is extended with a non-universal U(1) gauge interaction.
This chapter, which is based in ongoing works [74], is organized as follows: in Sec. 5.1 we
show how ratios of Yukawa couplings can become sizable throughout the running, thanks to
the presence of a UV fixed point and generation-dependent charges. In Sec. 5.2 we propose
a concrete model which contains the necessary ingredients for RG-induced hierarchies in
Yukawa couplings to arise, and discuss possible scenarios of quark mixing. Benchmarks
which can reproduce the values of physical parameters of the flavor sector of the SM at the
order of magnitude are discussed in Sec. 5.4. Phenomenological implications are worked
out in Sec. 5.5, and in Sec. 5.6 we summarize.

5.1 Hierarchies from Running in U(1) Extensions

Let us start by considering a minimal scenario where the SM is extended by a new U(1)X
gauge symmetry. Generally, we would like the SM fermions to be charged under the new
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gauge group, in particular with non-universal charges. This will allow U(1)X interactions to
contribute differently to the anomalous dimensions of Yukawa couplings of each generation.
An important constraint on the charges that fermionic fields can carry under the new sym-
metry is encoded in triangle diagrams with three gauge bosons as external legs, where
charged fermions propagate in the loop. If the matrix element of a given triangle diagram
does not vanish, gauge symmetries are not conserved at a quantum level, yielding gauge
anomalies. In the SM all gauge anomalies cancel, with a notorious case being the U(1)3Y
anomaly, which vanishes in a non-trivial manner. Note that any G3 anomaly of a non-chiral
group G always vanishes, owing to contributions of right- and left-handed fermions yielding
an opposite sign.

In U(1)X extensions without any additional matter content gauge anomalies are directly
canceled if the new charges of the SM fermions coincide with the values of their hypercharges
(see for instance [38] for details). Further scenarios become possible when new charged
particles are added to the SM. To this end, we choose to extend the SM with three right-
handed fields, denoted by Ni, which we take to be total SM singlets and carry charges under
the new symmetry. Then, the anomaly cancellation conditions which are not automatically
fulfilled can be written in terms of the fermionic U(1)X charges Xf as [157]

U(1)3X :
∑︂[︁

2(X3
L + 3X3

Q)− (X3
E +X3

N + 3X3
U + 3X3

D)
]︁
= 0 , (5.1.1a)

U(1)2X × U(1)Y :
∑︂[︁

−X2
L +X2

Q +X2
E − 2X2

U +X2
D

]︁
= 0 , (5.1.1b)

U(1)X × U(1)2Y :
∑︂[︃

1

2
XL +

1

6
XQ −XE − 4

3
XU − 1

3
XD

]︃
= 0 , (5.1.1c)

SU(2)2L × U(1)X :
∑︂[︁

XL + 3XQ

]︁
= 0 , (5.1.1d)

SU(3)2C × U(1)X :
∑︂[︁

2XQ −XU −XD

]︁
= 0 , (5.1.1e)

grav2 × U(1)X :
∑︂[︁

2(XL + 3XQ)− (XE +XN + 3XU + 3XD)
]︁
= 0 , (5.1.1f)

where the sums run over all flavors, and we have substituted the SM hypercharges according
to their values in Tab. 1.1. Let us now consider a few simple solutions of Eq. (5.1.1). First,
assume that the anomalies cancel per generation, as is the case in the SM. In that case,
Eq. (5.1.1d) immediately requires XL = −3XQ. Additionally, the conditions

Xi
L = Xi

E = Xi
N , Xi

Q = Xi
U = Xi

D , (5.1.2)

that is, all quark and all lepton fields carry the same U(1)X charges, allow to cancel all
remaining equations in (5.1.1)1. However, the requirement XL = −3XQ invariably leads to
larger U(1)X charges (in absolute value) in the lepton sector. As we shall argue in Sec. 5.4,
this can pose challenges when building models with RG-induced hierarchies, as the running
of the U(1)X coupling will enhance the Yukawas of the leptons with respect to those of

1The case where charges of quarks and leptons are universal, with XQ = 1/3 and XL = −1, corresponds
to U(1)B−L solutions.
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the quarks. Abandoning the restriction of anomaly cancellation per generations leads to
another set of solutions obeying ∑︂

i

Xi
f = 0 , (5.1.3)

which together with (5.1.2) allows to fulfill all the conditions (5.1.1). In the limit of de-
generate fermion masses, Eq. (5.1.3) ensures that no kinetic mixing between U(1) gauge
bosons is induced at 1-loop [158]. Finally, note that the presence of additional fermions
with vector-like charges would not spoil anomaly cancellation, since right- and left-handed
fields contribute terms with opposite signs.

In the remainder of this chapter, we assume that SM fields follow the vector-like charge as-
signment (5.1.2), with each generation carrying different charges which fulfill as well (5.1.3),
while the Higgs field is uncharged under the new symmetry. Then, gauge invariance allows
only for diagonal terms in the SM Yukawa matrices Yu,d,ℓ, and the additional Yukawa cou-
pling LYνNH̃ of the neutrino sector must also take a diagonal form. Within this minimal
scenario, we now envision a situation where a gauge-Yukawa fixed point exists at which all
SM Yukawas as well as the Yν vanish. We further assume that the gauge-Yukawa fixed point
is negotiated by an entirely BSM Yukawa y (of the type contained in the model (2.2.1)),
which does not enter the β-functions of the SM Yukawas at 1-loop. The possible non-
vanishing coordinates of the fixed point are thus

(α∗
1, α

∗
2, α

∗
3, α

∗
X , α

∗
y) , (5.1.4)

where αX = g2X/(4π)
2 is the coupling of the new interaction. We postpone the discussion of

a model where such a fixed point can be realized to the next sections and focus now on the
implications for the SM Yukawas. According to Eqs. (2.1.24) and (2.1.26), their evolution
close to the fixed point follows

αn(µ) ≃ αn,0

(︃
µ

µ0

)︃−∑︁
i=1,2,3,X Fniα

∗
i

, (5.1.5)

where αn,0 = αn(µ0), αi denote gauge couplings, and the Fni can be read off the β-function
of αn following the conventions of (2.1.23). Thus, the evolution of the asymptotically
free Yukawas near the fixed point is determined by the values of the gauge couplings at
the fixed point together with their associated coefficients in the Yukawa β-function. The
Fn1,n2,n3 depend on SM interactions only, and coincide for all generations within the up,
down, charged- and neutral-lepton sectors. Leptons further present Fn3 = 0, and since the
SU(2)L structure of the quark and lepton sector extended with the Ni coincides, one finds
Fn2 = 9/4 in all cases (see for instance the 1-loop β-function of the top in Eq. (1.2.10)). In
our setup, however, the FnX coefficients associated to the U(1)X coupling are generation-
dependent, and fulfill

FnX = 12X2
n , (5.1.6)

where Xn is the U(1)X charge of the fermion species n. Thus, from Eqs. (5.1.5) and (5.1.6)
one can directly see that non-universal charges Xn will induce differences within Yukawa
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couplings throughout the running. It shall also prove useful to define a measure of the RG
time that separates the scale µc, at which the running is far enough from the fixed point
to slow down its power-law behavior, from the scale µ0, where we take our initial condition
αn,0. We define this critical time as

τ = − log
µc
µ0

. (5.1.7)

Hence, the ratio of the Yukawa couplings of two fermions n and m of the same sector (up,
down, charged or neutral lepton) but different generation after the power-law phase of the
running can be approximated by

log
αn
αm

⃓⃓⃓⃓
µc

≃ 12τ α∗
X(X

2
n −X2

m) , (5.1.8)

where we have assumed that at the scale µ0 there is no significant hierarchy between the
couplings and αn,0 ∼ αm,0. As soon as the right-hand side of (5.1.8) is of order one, αn and
αm can differ by several orders of magnitude. Hence, we have shown how the presence of a
gauge-Yukawa fixed point together with non-universal charges can create large differences
between Yukawa couplings. Note that if the Yukawas had not been free but interacting at
the fixed point (following then the evolution (2.1.12)), their ratio would not be governed
by a pure exponential law, and it would become much more difficult to obtain successive
hierarchies between couplings, posing a fine-tuning problem.2

Furthermore, we can assess how our setup relates couplings from different sectors. For
instance, the ratios between up and down and charged-leptons and neutrino Yukawas of the
same generation at µc read

log
αui
αdi

⃓⃓⃓⃓
µc

≃ 2τ α∗
1 , log

αei
ανi

⃓⃓⃓⃓
µc

≃ 6τ α∗
1 . (5.1.9)

respectively, where the labels ui = u, c, t, di = d, s, b, ei = e, µ, τ and νi = νe, νµ, ντ denote
the diagonal Yukawa couplings. Therefore, the differences in the hypercharges within the
quark or lepton sectors already encoded in the SM lead to running-induced hierarchies for a
non-vanishing α∗

1. Note that the hypercharge is the only SM gauge coupling which presents
this effect, as α2,3 are factored out of the ratios (5.1.9). Moreover, Eq. (5.1.9) implies that
the ratio between same-generation quarks within the up and down sector is fixed. This is
however not the case in the SM, where one finds yd/yu ∼ 1, ys/yc ∼ 10−1 and yb/yt ∼ 10−2.
Nevertheless, these differences could be ameliorated by subleading effects, for example in
the running after the power-like phase. On the other hand, Yukawa couplings of an up
quark and a charged lepton of generations i and j respectively obey

log
αui
αej

⃓⃓⃓⃓
µc

≃ τ

(︃
− 14

3
α∗
1 + 16α∗

3 + 12α∗
X(X

2
qi −X2

ℓi
)

)︃
, (5.1.10)

2Yukawas which are interacting at the fixed point evolve as α ∼ α∗+Cµθ. Therefore, if several Yukawas
present non-hierarchical fixed point values α∗ ̸= 0, in order for the couplings to evolve towards values
separated by several orders of magnitude there must be at least one fine-tuned cancellation between α∗ and
the exponential term in the evolution. The possibility that only one of the SM Yukawas is not vanishing
might however prove interesting, and we reserve it for future works.
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αt αc αu αb αs αd ατ αµ αe

6 · 10−3 3 · 10−7 1 · 10−12 4 · 10−6 2 · 10−9 5 · 10−12 7 · 10−7 2 · 10−9 5 · 10−14

yt yc yu yb ys yd yτ yµ ye

1.0 7.3 · 10−3 1.3 · 10−5 2.4 · 10−2 5.5 · 10−4 2.7 · 10−5 1.0 · 10−2 6.1 · 10−4 2.9 · 10−6

Table 5.1. Values αf = 2(mf/4πvh)
2 and yf =

√
2mf/vh of the Yukawa couplings and masses

from [37].

where we have used Xi
Q = Xi

U = Xi
D = Xqi and Xi

L = Xi
E = Xi

N = Xℓi . Note that terms
proportional to α∗

2 drop out as expected and α∗
1 (α∗

3) contribute to larger lepton (quark)
couplings, while α∗

X enhances quark masses if the Xqi are larger in magnitude than the Xℓi .

In summary, we have shown that non-universal U(1)X charges together with a fixed point
involving an interacting α∗

X can generate sizable hierarchies among Yukawa couplings as-
sociated to different flavors, while non-zero α∗

1 and α∗
3 can add differences between sectors.

5.2 Setup and Mixing Scenarios

We now aim to build a model which can explain the observed hierarchies between the SM
Yukawa couplings through the mechanism introduced in the Sec. 5.1, which involves the
presence of a gauge-Yukawa fixed point in the UV. We will also require that CKM mixing
can be accommodated, while a discussion of mixing in the neutrino sector is beyond the
scope of this work. Assuming that SM fermions are non-universally charged under the new
U(1)X symmetry, with anomaly cancellation being fulfilled through the conditions (5.1.2)
and (5.1.3), only the diagonal terms in the Yukawa matrices are allowed by gauge invariance.
These read

−L yf =
∑︂

di=d,s,b

ydi QiHDi +
∑︂

ui=u,c,t

yui QiH̃Ui

+
∑︂

ei=e,µ,τ

yei LiHEi +
∑︂

νi=νe,νµ,ντ

yνi LiH̃Ni + h.c. .
(5.2.1)

This scenario, however, prohibits any mixing in the quark sector. In order to remedy this
issue, we introduce additional SU(2)L scalar doublets ηij , with hypercharge 1/2 and U(1)X
charges set to allow couplings with different-flavor quarks. In particular, we introduce two
additional doublets η12 and η23, which link either the first and second generation or the
second and third generation. This is only possible when the ηij carry charges Xqi −Xqj or
Xqj −Xqi , which leads to the mixing Yukawa terms

−Ldmix = ydsQ1 η
12D2 + ycuQ2 η̃

12U1 + ysbQ2 η
23D3 + ytcQ3 η̃

23U2 + h.c. ,

−Lumix = ysdQ2 η
12D1 + yucQ1 η̃

12U2 + ybsQ3 η
23D2 + yctQ2 η̃

23U3 + h.c. ,
(5.2.2)

respectively. The labeling of the Lagrangian responds to the fact that for scalar charges
Xqi −Xqj (Xqj −Xqi) the mixing stems mainly from the down (up) sector, as we shall see
shortly. Indeed, if the ηij acquire vacuum expectation values vηij , non-diagonal contribu-
tions to the mass matrices arise from the interactions (5.2.2), giving rise to quark mixing.
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Our choice of two additional scalars renders two extra non-vanishing elements in the mass
matrices after spontaneous symmetry breaking, allowing to generate a mixing matrix with
no vanishing entries.

In our setup, the values of the Yukawa couplings yij associated to the ηij can be predicted
by the RG evolution once we assume SM Yukawas can be matched to their electroweak-scale
values. Since the ηij link two different quark flavors i and j, their critical exponent contains
a factor 6(X2

qi +X
2
qj )α

∗
X , following the arguments of Sec. 5.1 (see as well the β-functions βij

in Appendix B.3). Comparing this to diagonal Yukawas, which grow with a factor 12X2
qi ,

we find that the yij after the power-law phase of the running can be approximated as

yij |µc ≃
√
yiyj |µc . (5.2.3)

Therefore, in models that reproduce the SM values of the diagonal Yukawas the yij are
predicted by the RG flow via (5.2.3), and the VEVs vηij constitute the only free parameters
in the quark mass matrices. Let us now study in more detail the form that the mass
and mixing matrices can take in this setup. The mass Lagrangian for the quarks in the
interaction basis can be written as

Lmass = uLMu uR + dLMd dR ,+h.c. , (5.2.4)

where the mass matrices Mq (q = u, d) contain the diagonal terms vh√
2
yq arising from

Eq. (5.2.1) as well as off-diagonal entries stemming from BSM interactions (5.2.2). The
mass matrices can be expressed as

Md = LdMdR
†
d , Mu = LuMuR

†
u (5.2.5)

in terms of the diagonal matrices Mq containing the quark masses. The quark-mixing
matrix V = L†

uLd can be written as [159, 160]

V =

⎛⎜⎜⎝
1 s12 + su13s23 s13 − su12s23

−s12 − sd13s23 1 s23 + su12s13

−s13 + sd12s23 −s23 − sd12s23 1

⎞⎟⎟⎠ , (5.2.6)

in terms of the angles sqij parameterizing the left-handed rotations Lq, and with

sij = sdij − suij . (5.2.7)

In models where the Mq are completely known, the angles can be calculated directly in
terms of their components. We now set to compute the form of V in two different scenarios,
where mixing is driven mainly by either the up or the down sector.

5.2.1 Mixing from the Down Sector

We consider first the scenario where the ηij carry charges Xqi − Xqj , leading to the La-
grangian Ldmix in Eq. (5.2.2). In this case the mass matrices of the down and the up sector
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after spontaneous symmetry breaking read

Md =
vh√
2

⎛⎜⎜⎝
yd yds tβ12 0

0 ys ysb tβ23

0 0 yb

⎞⎟⎟⎠ , Mu =
vh√
2

⎛⎜⎜⎝
yu 0 0

ycu tβ12 yc 0

0 ytc tβ23 yt

⎞⎟⎟⎠ , (5.2.8)

where tβij = tanβij = vηij/v. Then, the mixing matrix V = L†
uLd of Eq. (5.2.6) receives

its leading contributions from the angles [159, 160]

sd12 ≃
Md

12

Md
22

≃ tβ12

√︃
yd
ys
,

sd23 ≃
Md

23

Md
33

≃ tβ23

√︃
ys
yb
,

su12 ≃
Mu

21Mu
11

(Mu
22)

2
≃ tβ12

(︃
yu
yc

)︃3/2

,

(5.2.9)

where we assumed large third-generation entries Mq
33, and used the relation Eq. (5.2.3) the

off-diagonal Yukawas. From Eq. (5.2.6) we observe that the contributions to V from su23 are
subleading, and su12 only enters Vub. Thus, the mixing arising from the matrices (5.2.8) stems
mainly from rotations of the down sector, and we find that V ∼ Ld. For tanβij ∼ O(1)

or lower, the singular values of (5.2.8) correspond approximately to the yi, so that we may
take yi ≃

√
2mi/vh at low scales. For tanβ12 ∼ 1, we obtain the successful prediction

|Vus| ≃ 0.22, while a lower value of tβ23 is needed to accommodate Vts and Vcb. Using
tanβ12 ≃ 1.1 and tanβ23 ≃ 0.3 we obtain

|V | =

⎛⎜⎜⎝
0.974 0.225 1.8 · 10−6

0.225 0.973 0.0422

0.00950 0.0411 0.999

⎞⎟⎟⎠ , (5.2.10)

which is in agreement with measurements of the CKM mixing matrix at the percent level
for first-second and second-third generation mixing [16], with larger deviations in Vub and
Vtd. The discrepancies in first-third generation mixing could be accounted for by imaginary
phases, which we do not include in this work but contribute significantly to Vub and Vtd.

5.2.2 Mixing from the Up Sector

Let us now consider the case where the η12 and η23 carry charges Xqj −Xqi , leading to the
Lagrangian Lumix in Eq. (5.2.2). The quark mass matrices in this scenario obey

Md =
vh√
2

⎛⎜⎜⎝
yd 0 0

ysd tβ12 ys 0

0 ybs tβ23 yb

⎞⎟⎟⎠ , Mu =
vh√
2

⎛⎜⎜⎝
yu yuc tβ12 0

0 yc yct tβ23

0 0 yt

⎞⎟⎟⎠ . (5.2.11)
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Assuming again large third-generation entries Mq
33, and employing Eq. (5.2.3), the leading

angles contributing to the quark mixing matrix (5.2.6) read [159, 160]

su12 ≃
Mu

12

Mu
22

= tβ12

√︃
yu
yc
,

su23 ≃
Mu

23

Mu
33

= tβ23

√︃
yc
yt
,

sd12 ≃
Md

21Md
11

(Md
22)

2
= tβ12

(︃
yd
ys

)︃3/2

.

(5.2.12)

Hence, in this case the mixing is driven by the angles of the up sector, and we find V ∼ L†
u.

For a benchmark with tanβ12 ≃ 6.1 and tanβ23 ≃ 0.5, we obtain

|V | =

⎛⎜⎜⎝
0.975 0.223 0.0101

0.223 0.974 0.0399

0.000974 0.0411 0.999

⎞⎟⎟⎠ , (5.2.13)

giving again a CKM-like pattern with larger deviations in Vub and Vtd. Since mixing is
given mainly by the rotations of Mu, a very similar result is obtained in the case where
Md is purely diagonal, with Mu still fulfilling Eq. (5.2.11). This corresponds to a situation
where the couplings of the ηij with the down sector in Lumix exactly vanish. In this case,
the mixing matrix is described by the angles of the up sector given by (5.2.12), and Vub
becomes strongly suppressed. Phenomenologically, the absence of rotations in the down
sector entails that it acquires no flavor-changing couplings with the gauge boson of the new
symmetry. As detailed in Sec. 5.5, this scenario is favored by meson mixing data, which
poses strong constraints on flavor-changing couplings of the down sector.

To summarize the results of Sec. 5.2.1 and Sec. 5.2.2, we have seen how the charges of the
ηij under the new symmetry determine the shape of the quark mass matrices and ultimately
the origin of the mixing matrix. The case where the new scalars carry charges Xqi −Xqj

leads to V ∼ Ld, while flipping the sign of their U(1)X charges leads to V ∼ L†
u. If all off-

diagonal couplings in the down-quark mass matrix vanish one obtains V ∼ L†
u as well, and

additionally suppresses FCNCs in the down sector. Note that, while the masses depend
only on the U(1)X charges of the quarks and the SM pattern of electroweak symmetry
breaking, the mixing is regulated by the vacuum expectation values of the new scalars
through tanβij .

5.2.3 Lepton Masses

We now turn to the mass pattern of the lepton sector in our setup. After electroweak
symmetry breaking, the Yukawa interactions (5.2.1) yield diagonal mass terms vhyei/

√
2

for the charged leptons, while neutrinos acquire diagonal Dirac masses vhyνi/
√
2. In the

mechanism described in Sec. 5.1, the yei and yνi vanish at a UV fixed point and grow
steeply towards the IR, thanks to non-vanishing values of the gauge couplings. Since both
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the hypercharge and the U(1)X couplings enhance the running of the neutrino Yukawas, the
yνi might give rise to Dirac masses surpassing current bounds. Examples of values the yνi
can acquire through the running are discussed in the context of two different benchmarks
in Sec. 5.4. For now, in order to ensure that a mechanism is in place to sufficiently suppress
light neutrino masses, we introduce three generations of SM singlet Majoron fields σi with
U(1)X charges −2Xℓi , which allow to write the terms

− Lσ =
∑︂
i

yσi σiNC
iNi + h.c. . (5.2.14)

After spontaneous symmetry breaking, we assume that the σi yield Majorana mass terms
large enough to suppress the masses of the light neutrinos via the see-saw mechanism.

In order to describe neutrino mixing, one may consider introducing additional scalar dou-
blets coupling to different-generation leptons, and using a mechanism similar to that de-
scribed in Secs. 5.2.1 and 5.2.2 for the quark sector. Alternatively, mixing could also be
introduced by adding further Majorons σij with off-diagonal couplings. Since all fields
involved in the yσ couplings are only charged under U(1)X , introducing a number of σij
would have no influence on the β-functions of the SM gauge couplings. A detailed study of
models for neutrino masses and mixing and their scalar potential lies, however, beyond the
scope of the present work. In what follows, we assume diagonal Yukawa couplings in the
lepton sector, and postpone a modeling of neutrino mixing to future studies.

5.2.4 Asymptotically Safe Setup

Finally, let us discuss how UV fixed points with interacting U(1) couplings can arise in
our setup. If all Yukawas giving rise to fermion masses and mixings are assumed to be
asymptotically free, there is no Yukawa interaction which can potentially give rise to such a
fixed point.3 Building on the developments of the previous sections, we introduce a flavor-
blind BSM sector composed of NF vector-like fermions ψi and N2

F singlet scalars Sij , with
Lagrangian following (2.2.1), and assume that the vector-like fermions are only charged
under the U(1)X and U(1)Y symmetries. This assumption is minimal in the sense that
both U(1) charges are essential for α1 and αX to present an interacting value at the fixed
point, which in turn is paramount if we wish to avoid triviality problems. Conversely, the
SU(2)L and SU(3)C couplings can remain asymptotically free, and their trajectories from
fixed points exhibiting α∗

2,3 = 0 can in principle be matched to the SM. Then, in our setup
the BSM Yukawa interaction

− Ly = yTr[ψLSψR + h.c.] , (5.2.15)

contributes to the β-functions of the U(1) couplings, allowing to generate fixed points with
non-vanishing coordinates (α∗

1, α
∗
X , α

∗
y). The U(1)X and U(1)Y charges XF and YF of the

3Note that SM Yukawas are in general insufficient to give rise to a perturbative UV fixed point, as
already discussed in Chapter 2. Therefore, a BSM sector is necessary independently of the values of the
SM Yukawas at the fixed point.
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Generations SU(3)C × SU(2)L × U(1)Y U(1)X

ψi Vector-like fermions i = 1, . . . , NF (1, 1, YF ) XF

Sij Singlet scalars i, j = 1, . . . , NF (1, 1, 0) 0

Ni Right-handed singlets i = 1, 2, 3 (1, 1, 0) XL

ηij Quark-mixing scalars ij = 12, 23 (1, 2, 1/2) Xqi −Xqj

σi Majorons i = 1, 2, 3 (1, 1, 0) −2Xℓi

Table 5.2. BSM particle content of the model and its gauge charges under the SM and the new
symmetry. For the benchmark scenario of Sec. 5.4.1, only the three upper rows are considered,
while the full particle content is included in the benchmark of Sec. 5.4.2.

vector-like fermions, as well as their flavor multiplicity NF , remain free parameters of the
model. This completes the description of our setup, for which the BSM particle content
and its charges have been collected in Tab. 5.2. The full Yukawa sector of the theory is
described by the Lagrangian

LY = Lyf + Lmix + Lσ + Ly, (5.2.16)

where Lmix can be either Ldmix or Lumix in Eq. (5.2.2) depending on the BSM scalar doublet
charges.

5.3 Fixed-Point Structure

Having set our model and introduced a mechanism to restore quark mixing, we now study
the RGEs and their fixed point solutions, in particular those with non-vanishing coordinates
(α∗

1, α
∗
X , α

∗
y). We perform our study in the 210 approximation, where the β-functions of

gauge and Yukawa couplings are computed at 2- and 1-loop order, respectively, and the
scalar sector is not included. We include the full set of gauge and Yukawa couplings for
the U(1)X extension of the SM with the additional BSM particles of Tab. 5.2 and Yukawa
Lagrangian (5.2.16). The corresponding 210 β-functions computed with ARGES [45] are
collected in Appendix B.3. In the limit where all Yukawas other than the top and the
purely BSM Yukawa αy vanish, and taking as well α2, α3 = 0, the β-functions of the U(1)

gauge couplings read

β1 = α2
1

[︃
43

3
+

8

3
NFY

2
F + α1

(︃
217

9
+ 8NFY

4
F

)︃
+ αX

(︁
f1 + 8NFX

2
FY

2
F

)︁
−4αyN

2
FY

2
F − 17

3
αt

]︃
,

βX = α2
X

[︃
f2 +

8

3
NFX

2
F + αX

(︁
f3 + 8NFX

4
F

)︁
+ α1

(︁
f1 + 8NFX

2
FY

2
F

)︁
− 4αyN

2
FX

2
F − 24X2

q3αt

]︃
,

(5.3.1)
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while for the Yukawa couplings we find

βy = αy
[︁
αy(2NF + 2)− 12α1Y

2
F − 12αXX

2
F

]︁
,

βt = αt

[︃
9αt −

17

6
α1 − 12αXX

2
q3

]︃
.

(5.3.2)

The fi are functions of the U(1)X charges which obey

f1 =
∑︂
k

(︃
22

3
X2
qk

+ 6X2
ℓk

)︃
+ 4(Xq1 −Xq2)

2 + 4(Xq2 −Xq3)
2 ,

f2 =
∑︂
k

(︁
16X2

qk
+ 8X2

qℓ

)︁
+

4

3
(Xq1 −Xq2)

2 +
4

3
(Xq2 −Xq3)

2 ,

f3 =
∑︂
k

(︁
48X4

qk
+ 144X4

ℓk

)︁
+ 16(Xq1 −Xq1)

4 + 16(Xq2 −Xq3)
4 .

(5.3.3)

For α∗
y ̸= 0, we find that fixed point solutions of the system (5.3.1) exist as a function of

the model parameters. These solutions become simple in the large-NF limit, in which β1
and βX are equivalent after interchanging YF → XF . This limit also corresponds to the
case where the U(1)X and U(1)Y charges of all fields except the vector-like fermions vanish.
Then, an interacting fixed point of the system {β1, βX , βy, βt} exists with coupling values

6
(︁
α∗
XX

2
F + α∗

1Y
2
F

)︁
= 1 , α∗

y =
1

NF
, α∗

t = 0 , (5.3.4)

where the symmetry of β1 and βX allows to freely choose one of the fixed-point values
of the gauge couplings. The fixed point can be perturbative and physical for NF ≥ 1

and appropriate choices of XF , YF . Far from the large-NF limit, the functions fi and the
numerical coefficients in β1, which stem purely from the hypercharges, break the symmetry
between β1 and βX as well as the degeneracy of the fixed point solution (5.3.4). For O(1)

charges, especially f3 can be significantly large. Including only the gauge 1-loop terms
f3 ̸= 0 and c = 217/9 we find that the fixed point becomes

α∗
1 =

8NFY
2
F f3

48(X4
F + Y 4

F )NF − 3cf3
, α∗

X =
c

f3
α∗
1,

α∗
y =

1

NF − cf3/
[︁
16
(︁
cX4

F + f3Y 4
F

)︁]︁ , (5.3.5)

which is physical for NF > cf3/[16
(︁
X4
F + Y 4

F

)︁
]. Including all terms in the β-functions

we find that fixed points for the (α1, αX , αy) system persist; expressions become however
cumbersome and we do not reproduce them here.

Furthermore, demanding that fixed points can be matched to SM values at low scales
requires that the SU(2)L and SU(3)C couplings, which we assume to vanish at the fixed
point, can grow towards the IR. Their evolution close to the fixed point follows

dαi
d lnµ

≃ α2
i

2
Piii , (5.3.6)
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see Sec. 2.1.2 for details. Imposing that α2 and α3 correspond to UV-attractive directions
and can grow from the fixed point sets constraints

P222 = −17

3
+ 5α∗

1 + α∗
X

[︄∑︂
k

(︁
6X2

qk
+ 2X2

ℓk

)︁
+ 4(Xq1 −Xq2)

2 + 4(Xq2 −Xq3)
2

]︄
< 0 ,

P333 = −14 +
11

3
α∗
1 + 8α∗

X

∑︂
k

X2
qk
< 0 ,

(5.3.7)
where the Piii are computed from the β-functions in Appendix B.3.4 Thus, the bounds (5.3.7)
constrain the fixed point values of α1 and αX in terms of the U(1)X charges of the model.
In summary, we have found that fixed points with non-vanishing coordinates (α∗

1, α
∗
X , α

∗
y)

exist in our model, and that requiring asymptotic freedom in the weak and strong sectors
poses constraints on the model parameters.

5.4 Benchmarks

In this section, we study two particular setups of our model: we consider first a simple
scenario, referred to as scenario A, where only the lepton sector is charged under the new
symmetry, putting aside the quark sector and the U(1)X -charged BSM scalars. We then
examine the case where the SM is extended with the full particle content in Tab. 5.2, includ-
ing both the lepton and quark sectors (scenario B). For each case, we study a particular
benchmark where we fix the parameters NF , XF , YF of the vector-like fermions and the
U(1)X charges Xℓi and Xqi , with the latter being nonzero only in the scenario B. In or-
der to choose the benchmark values of NF and the BSM charges, we enforce the following
conditions:

i) The Xqi and Xℓi must fulfill the anomaly-cancellation conditions (5.1.3). Moreover,
they must allow α2 and α3 to remain UV-attractive directions by fulfilling Eq. (5.3.7).

ii) The fixed point must be physical and perturbative, with 0 < α∗
1, α

∗
X , α

∗
y < 1. This

specially affects NF , which cannot be arbitrarily low, as illustrated in Sec. 5.3.

iii) After the power-law phase of the running, diagonal Yukawa couplings must approxi-
mately take their SM values at order of magnitude. Using Eqs. (5.1.8)-(5.1.10), this
condition affects the Xqi and Xℓi charges together with the fixed point values α∗

1 and
α∗
X . Once the quark and lepton U(1)X charges are fixed, YF , XF and NF determine

the values of α∗
1 and α∗

X .

The parameters we have selected for the benchmarks of both scenarios are summarized in
Tab. 5.3. We have chosen U(1)X charges of quarks and leptons to be of O(1), ensuring
that they fulfill the condition (5.1.3). As seen from the β-functions of the U(1) couplings

4Note that the 1-loop coefficient of β2 and its 2-loop coefficient associated to α1 differ from the SM due
to the two additional SU(2) doublets ηij .
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Scenario NF YF XF Xℓi Xqi

A (lepton-only) 7 0.907 2.05 1/2, 5/2,−3 -
B (quarks and leptons) 7 7.1 0.826 1/2, 5/2,−3 6/5, 31/10,−43/10

Table 5.3. Benchmark parameters of scenarios A and B, see text for details.

in (5.3.1), this leads to large coefficients fi in βX (see Eq. (5.3.3)), and demands a siz-
able vector-like fermion multiplicity NF to keep α∗

y perturbative; in our benchmarks we set
NF = 7. The U(1) charges XF , YF of the vector-like fermions are then chosen to find fixed
point coordinates that lead to trajectories approximating the SM values of the Yukawa cou-
plings towards the IR. A more comprehensive scan over the parameter space is the subject
of ongoing and future works.

For the RGE analysis we employ the 210 β-functions assembled in Appendix B.3. In
numerical solutions of trajectories one must also fix the αn,0, the initial conditions for
asymptotically free Yukawa couplings close to the fixed point (see Eq. (5.1.5)). Here we
take the same values of αn,0 for all Yukawa couplings, although these could in principle be
a random set of numbers of the same order of magnitude, introducing minor differences in
the final result. Furthermore, we do not attempt to perform an accurate matching between
the SM and BSM running: this would demand knowledge of all U(1)X breaking scales and
masses of the BSM sector, which we choose not to fix but assume to lie somewhere between
µc and the scale of EWSB. We find that, even without imposing matching conditions, a
study of the running over a wide range of RG scales is sufficient to identify the features of
the framework.

5.4.1 Scenario A: Lepton-only

We consider first the simple scenario where only leptons carry U(1)X charges, and no addi-
tional scalars charged under the new symmetry are present. Note that a feature of anomaly
cancellation through the condition

∑︁
Xfi = 0 together with the vector-like charge assign-

ment (5.1.2) is that the lepton and quark U(1)X charges are decoupled in the anomaly
cancellation equations (5.1.1). Therefore, we may set all Xqi to zero and focus on how
the lepton sector can acquire the desired mass hierarchies through the RGE mechanism
described in Sec. 5.1.

In the absence of U(1)X -charged scalars, neutrinos acquire only diagonal Dirac masses
mνi = vhyνi/

√
2. Then, measurements indicate that neutrino Yukawas must fulfill ανi ≲

10−26 around the electroweak scale [37]. If the largest neutrino mass saturates this bound,
from the relation (5.1.9) between the charged- and neutral-lepton sector Yukawas one finds

τα∗
1 ≃

1

6
log

ατ
αντ

⃓⃓⃓⃓
µc

≃ 3.3 . (5.4.1)

The above value of τα∗
1 can be accommodated with τ of order one and α∗

1 close to its
perturbative limit. Therefore, Eq. (5.4.1) implies that the hierarchy between the charged-
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Figure 5.1. RG flow emanating from the fixed point (5.4.2) of the scenario A (lepton-only), with
benchmark parameters given in Tab. 5.3, with p, q, r = νe, νµ, ντ . The gray band indicates the
end of the power-like behavior at µc ∼ 10−5. A large hierarchy between the Yukawa couplings of
the charged- and neutral-lepton sector (shown in green and magenta, respectively) arises through
differences in SM hypercharges, see Eq. (5.4.1). Values of the charged lepton Yukawas in the IR
approximately reproduce observed masses.

and neutral-lepton sectors can actually arise from the different U(1)Y charges of the right-
handed lepton fields. We find that, for the benchmark parameters collected in Tab. 5.3
(scenario A), the condition (5.4.1) is fulfilled, and lepton masses are approximately repro-
duced. The gauge-Yukawa fixed point is in this case given by the coordinates

(α∗
1, α

∗
X , α

∗
y) = (0.75, 0.012, 0.50) . (5.4.2)

Then, for τ ∼ 5 one finds τα∗
1 ∼ 3.4, which nears the requirement Eq. (5.4.1). A numerical

solution of the RG flow is shown in Fig. 5.1. Note that after µc the running slows down,
abandoning the power-law regime and introducing small changes in the values of the cou-
plings. Indeed, below µc charged leptons present Yukawa couplings of the correct order of
magnitude (0.1 < y/ySM < 10), while the largest neutrino mass is ∼ 0.3 eV, a pattern which
is not altered as the flow evolves towards the IR. The predicted neutrino mass scheme is
compatible in order of magnitude with normal ordering estimates [37]. Therefore, we have
shown that differences in hypercharge alone can lead to large hierarchies between lepton
sectors, while a non-universal U(1)X charge assignment is able to approximately reproduce
the values of the lepton Yukawas.

5.4.2 Scenario B: Quarks and Leptons

We now consider the both the quark and lepton sectors together with the BSM particle
content gathered in Tab. 5.2. This includes the presence of two BSM scalars η12 and η23
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allowing for quark mixing, which we now assume to take charges Xqi − Xqj . In order
to generate the appropriate hierarchies in the lepton sector, one may start by assuming
that neutrino masses are Dirac, and that the condition (5.4.1) ensures that the lepton
sector acquires its correct masses. However, the result (5.1.9) implies that quark Yukawas
obey logαui/αdi ∼ 6.6, which is too large even for the third-generation ratio. Thus, we
abandon any attempts to fulfill (5.4.1) when dealing with the full SM. On the other hand,
if τα∗

1 is smaller than in (5.4.1) the Yukawas of charged and neutral leptons will turn out
parametrically closer than in the lepton-only benchmark. This entails that, if the running
reproduces charged lepton masses, neutrino masses will become too large. This can however
be remedied by the Majoron terms (5.2.14), which allow for large Majorana masses which
can potentially suppress light neutrino masses via the see-saw mechanism. Here we assume
that the Majoron VEVs vσi are sizable enough to generate the appropriate neutrino mass
spectrum. The only gauge coupling entering the β-functions of the Majoron couplings yσi
is αX , which leads to the relation

log
ασi
ασj

⃓⃓⃓⃓
µc

∼ 12τα∗
X

[︁
X2
ℓi
−X2

ℓj

]︁
. (5.4.3)

between couplings of different generations.

Moreover, equations (5.1.8) – (5.1.10) allow to obtain a bound on the quark U(1)X charges.
From imposing that the charged leptons have a mass approximately equal or less than the
down quarks of the same generation one obtains

(Xqi)
2 ≳ (Xℓi)

2 +
5

9

α∗
1

α∗
X

− 4

3

α∗
3

α∗
X

. (5.4.4)

Since the up sector carries larger hypercharges than the down sector, the above bound also
ensures that up-quark Yukawas will turn out larger than those of charged leptons. It is
noteworthy that, in a fixed point where α∗

3 = 0, the U(1)X charges of the quarks must
always be larger in absolute value than those of the leptons of the same generation.

For a quantitative study of this scenario, we choose benchmark parameters displayed in
Tab. 5.3 (scenario B), which give rise to the UV fixed point

(α∗
1, α

∗
X , α

∗
y) = (0.064, 0.010, 0.41) . (5.4.5)

A numerical solution of trajectories emanating from the above fixed point is depicted in
Fig. 5.2 for the diagonal quark and charged-lepton Yukawas (left) and the off-diagonal quark
Yukawas (right), together with the evolution of the U(1) gauge couplings and the BSM
Yukawa y. We find that the diagonal couplings are all reproduced at order-of-magnitude
level at µ ∼ 10−15, while the off-diagonal components follow Eq. (5.2.3) up to order one
factors.

Lastly, one may wonder whether the presented benchmarks can be matched to the SM.
After the 15 orders of magnitude in RG time shown in Fig. 5.2, one finds g1 ∼ 0.5, which is
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Figure 5.2. RG flow emanating from the fixed point (5.4.5) of the scenario B (quarks and leptons),
with benchmark parameters collected in Tab. 5.3. Trajectories are shown for diagonal charged-
lepton and quark Yukawas (left) and off-diagonal quark Yukawa couplings (right), together with
the running of U(1) gauge couplings and the BSM Yukawa y. The gray band indicates the end
of the power-like behavior at µc ∼ 5 · 10−5. Towards the IR end of the flow, diagonal couplings
approximately reproduce SM masses, while off-diagonal Yukawas follow (5.2.3) up to order one
factors.

larger but comparable to gSM1 (1TeV) ≃ 0.36 (see for instance Eq. (3.2.6)), and well within
the range of values g1 takes through its SM running below the Planck scale. Therefore, we
conclude that matching this scenario with the SM could be possible. The U(1)X coupling
is predicted to be smaller, with gX ∼ 0.07 at the IR end of our numerical solution.

5.5 Phenomenological Analysis

So far we have shown how the model considered in this chapter presents the correct ingredi-
ents to reproduce the flavor patterns of the SM, and we now wish to explore its phenomeno-
logical implications. In our framework, additional U(1)X -charged scalar content restores
quark mixing and provides neutrino Majorana masses after undergoing spontaneous sym-
metry breaking. Therefore, the gauge boson of the new interaction becomes massive and
mixes with the SM Z boson. The new mass eigenstate Z ′ presents diagonal couplings
with the leptons and tree-level off-diagonal interactions with the quark sector, giving rise
to flavor-changing neutral currents (FCNCs). The BSM scalars mediate FCNCs as well,
since they couple directly to quarks of different generations. In what follows we consider
phenomenological constraints on the model parameters stemming from the ρ-parameter, Z ′

searches and different flavor-changing processes.
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5.5.1 Mass Spectrum and the ρ-parameter

We begin by studying the mass spectrum of the massive neutral bosons in our setup. After
spontaneous symmetry breaking the gauge interactions of the Higgs and the BSM scalars
lead to a mass matrix

MZX =
1

4

⎛⎝ g22
c2w
v2ϕ −2 g2cw gXv

′ 2
ϕ

−2 g2cw gXv
′ 2
ϕ 4g2Xv

′′ 2
ϕ

⎞⎠ (5.5.1)

in the (Zµ, Xµ) basis, where Zµ = cwW
3
µ − swBµ and Xµ is the gauge boson of the new

symmetry in the interaction basis, and we have neglected contributions from kinetic mixing.
The third neutral boson Aµ = cwBµ+swW

3
µ , corresponding to the photon, remains massless.

The reduced VEVs in (5.5.1) obey

v2ϕ = v2h +
∑︂
ij

v2ηij , v′ 2ϕ =
∑︂
ij

(Xi
Q −Xj

Q)v
2
ηij ,

v′′ 2ϕ =
∑︂
ij

(Xi
Q −Xj

Q)
2v2ηij +

∑︂
i

(2Xi
L)

2v2σi .
(5.5.2)

where vηij and vσi are the VEVs of the scalar doublets and Majorons of Tab. 5.2, respec-
tively. The mass matrix MZX can be diagonalized with an orthogonal matrix obeying
OTMZXO = diag(mZ ,mZ′), with mZ and mZ′ the masses of the physical bosons. The
matrix O can be parametrized as

O =

(︄
cos θ − sin θ

sin θ cos θ

)︄
, (5.5.3)

where the mixing angle θ fulfills

sin 2θ(m2
Z′ −m2

Z) =
g2
cw
gXv

′ 2
ϕ . (5.5.4)

The masses of the gauge bosons then obey

m2
Z =

1

4

g22
c2w
v2ϕ(1− δρ) , m2

Z′ = g2Xv
′′ 2
ϕ

[︄
1 +

(︃
g2

2gXcw

)︃2 v2ϕ
v′′ 2ϕ

δρ

]︄
,

δρ =
v′ 4ϕ /v

4
ϕ

v′′ 2ϕ /v2ϕ − (g2/2cw gX)
2 ,

(5.5.5)

see Appendix A.2 for details. The mass of the W boson is only altered with respect to its
SM tree-level expression by the VEVs of the SU(2)L-charged fields, and readsm2

W = 1
4 g

2
2v

2
ϕ.

Then, using (5.5.5), we find that the masses of the W and Z boson in our model read

m2
W

c2w
= ρm2

Z = (1 + δρ)m2
Z . (5.5.6)

Therefore, the ρ-parameter deviates from its SM tree level relation (1.1.25) by δρ. In the
absence of fine-tuned cancellations, ensuring that δρ≪ 1 can be achieved either with large
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v′′2ϕ or small gX . For large v′′2ϕ the shift in the ρ-parameter scales as

δρ ∼
v2ϕ
v′′ 2ϕ

, (5.5.7)

in the approximation v′ϕ/vϕ ∼ O(1). Note that this contribution is positive, as is favored by
measurements [16]. Assuming that the Majoron VEVs constitute the leading contribution
to v′′ϕ, the data (1.1.26) yields the constraint

v′′ϕ ∼ vσi ≳ 42 TeV

(︃
[TeV]

vϕ

)︃
, (5.5.8)

at 1σ. According to Eq. (5.5.5), for small δρ and large v′′ϕ one can approximate mZ′ ∼
gXv

′′
ϕ

5. If the bound (5.5.8) is saturated, Z ′ masses can be at the TeV scale as soon as gX
is of order 10−1 or smaller.

5.5.2 Z ′ Searches

Production of the Z ′ boson at colliders allows to perform direct searches. Measurements at
e+e− colliders constrain its coupling to electrons to fulfill [161, 162]

mZ′

gX |Xℓ1 |
≳ 6.9 TeV . (5.5.9)

The above is valid for mZ′ ≲ 209 GeV, which requires gX |Xℓ1 | ≲ 0.03. The bound does not
constrain our benchmark of Sec. (5.4.2), but becomes relevant for smaller gX . Moreover, Z ′

interactions with quarks allow its production at pp colliders as well, with cross section [37,
163]

σ(pp→ Z ′X → ff̄X) ≃ π

48s

∑︂
i

cfqi wqi(s,mZ′) , (5.5.10)

where the sum is over all quarks and ff is the difermion decay product of the Z ′. The
coefficients wqi include all information of parton distribution functions and QCD corrections,
while the dependence on the Z ′ couplings is completely encoded in the coefficients cfqi . The
wu and wd functions are substantially more sizable than the rest of wqi . In the absence of
kinetic mixing and neglecting mass mixing with the Z boson, we find that in our class of
models the coefficients cℓjqi for two charged leptons in the final state obey

c
ℓj
qi ≃ 2g2X X

2
qi Br(Z

′ → ℓjℓj̄) ≃ g2X
X2
qiX

2
ℓj∑︁

k

[︁
3X2

qk
+X2

ℓk

]︁ , (5.5.11)

where the sum runs over all fermion final states, and we have assumed that no scalar
final states are kinematically allowed. For the benchmark considered in Sec. 5.4.2, we
find c eu,d ≃ 1.8 · 10−5 and cµu,d ≃ 4, 4 · 10−5. Small values of the cℓjqi in our setup stem
from leptons carrying lower U(1)X charges than quarks, according to the constraint (5.4.4),
which in turn leads to suppressed branching ratios to leptons. The CMS [164, 165] and

5This approximation may not hold if gX is very feeble, but is valid for the benchmark scenarios considered
in Sec. 5.4, which predict gX ∼ 10−1 − 10−2.
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ATLAS [166] collaborations have set bounds on the cross section (5.5.10) for specific Z ′

models. For our benchmark values of cℓu,d we estimate mZ′ ≳ 2.5 TeV. A precise recasting
of experimental limits is however beyond the scope of this work.

5.5.3 Flavor-changing Processes

Due to the non-universality in the U(1)X charges of the SM fermions, unitary rotations to
the mass basis do not cancel in the kinetic terms involving the new gauge boson. The Z ′

interactions with the quarks in the mass basis are then described by the Lagrangian

− LqZ′ = gX q̄iγ
µ(BqL

ij PL +BqR
ij PR) qj Z

′
µ , (5.5.12)

where the coefficients obey

BqL
ij = (L†

qXQLq)ij , BqR
ij = (R†

qXQRq)ij , (5.5.13)

with XQ = diag{Xqi} and Lq, Rq the matrices diagonalizing the quark masses. From
(5.5.13) one can directly see that Z ′-mediated FCNCs arise at tree-level thanks to the off-
diagonal elements of the Bij matrices. In what follows, we study the Z ′ contributions to the
mixing and decays of neutral mesons, and then consider FCNC constraints on the scalar
sector. Since in this chapter we do not attempt to describe lepton mixing, lepton flavor
violating observables are not discussed.

Meson Mixing

Z ′ contributions to the mixing of neutral mesons pose strong constraints on the model
parameters. In the limit of small Z −Z ′ mixing, the Z ′ exchange contribution to the mass
splitting of a meson P 0 = qjqi reads [167]

∆mP = mP f
2
PBP

g2X
m2
Z′

1

3

[︃
Re
[︂
(BqL

ij )
2 + (BqR

ij )
2
]︂
−
(︃
3

2
+

m2
P

(mqi +mqj )
2

)︃
Re
[︂
BqL
ij B

qR
ij

]︂]︃
,

(5.5.14)
where mP is the meson mass and fP its decay constant, and the bag parameters BP encode
deviations from naive factorization, see for instance [168, 169]. From Eq. (5.5.14) and
current meson mixing data and predictions we estimate [16, 170–173]

gX
mZ′

|BdR,L

12 | ≲ 5.7 · 10−5 TeV−1 ,
gX
mZ′

|BdR,L

13 | ≲ 6.9 · 10−4 TeV−1 ,

gX
mZ′

|BdR,L

23 | ≲ 3.4 · 10−3 TeV−1 ,
gX
mZ′

|BuR,L

12 | ≲ 7.5 · 10−4 TeV−1 .
(5.5.15)

where we have considered one non-vanishing coefficient BqL
ij , B

qR
ij at a time.6 The various

mixing scenarios considered in Sec. 5.2 yield different results for the Bij coefficients. In
the case where mixing is driven by the down sector (with V ∼ Ld), we find that the off-
diagonal elements of the BdL matrices fulfill BdL

ij ≃ |Vij(Xqi − Xqj )|, while the |BdR
ij | are

6For Kaon mixing, data points to a negative new physics contribution to ∆mK [173], which requires CP
violating couplings not considered here. The bound in (5.5.15) considers the SM prediction at 2σ, which
allows for positive new physics contributions.
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parametrically smaller. Then, for the quark U(1)X charges and the low-scale value of gX
of the benchmark of Sec. 5.4.2, we find that the bound from the Kaon system poses the
strong constraint mZ′ ≳ O(500) TeV. Similar results are obtained for the scenario where
V ∼ L†

u, with BdR
ij being the larger coefficients. Instead, in the scenario where the down-

type mass matrix is diagonal, rotations are absent in the down sector, and one obtains
BuL
ij ≃ |Vij(Xqi −Xqj )|. Then, charm mixing data poses the strongest bound, which yields

mZ′ ≳ 3 ·
(︂ gX
10−2

)︂(︃ |BuL
12 |

0.22

)︃
TeV , (5.5.16)

allowing for lower Z ′ masses, within the reach of present colliders.

Neutral Meson Decays

The flavor-changing Z ′ current contributes at 1-loop level to radiative decays of neutral
mesons, and at tree level to leptonic and semileptonic decays. Here we follow [167] to
obtain bounds on the Z ′ couplings from experimental data. In the case of radiative decays,
for b→ sγ one finds

Γ(B → Xsγ)

Γ(B → Xceνe)
=

8αe
3π

f−1(m2
c/m

2
b)

g4X
|Vcb|2

m4
W

m4
Z′m2

b

[︂
|(BdLMdB

dR)23|2 + |(BdRMdB
dL)23|2

]︂
,

(5.5.17)
with f(x) = 1 − 8x + 8x3 − x4 − 12x2 lnx. The experimental fit of the branching ratio
B(B → Xsγ) = (3.32± 0.15) · 10−4 [168] gives constraints on the BSM couplings and mZ′

much weaker than meson mixing bounds in Eq. (5.5.15). In the case of leptonic decays of
the type P 0 → ℓ+ℓ−, the Z ′ contribution vanishes in the limit of no lepton mixing, since
the Z ′ interaction with the leptons is purely vectorial. Finally, vectorial couplings can be
constrained in the decays of P 0 to another pseudoscalar meson and a lepton pair. Here
we shall not consider the CP-violating decay K0

L → ℓ+ℓ−, which is proportional to the
imaginary parts of the Z ′ couplings. For the semileptonic decays of B0 and D0 we find
[167]

Γ(D0 → ℓ+ℓ−π0) = Γ(D+ → ℓ+νℓπ
0)
4(Xℓ

L)
2

|Vcb|2
g4X

m4
W

m4
Z′
|BuL

12 +BuR
12 |2 ,

Γ(B0 → ℓ+ℓ−K0) = Γ(B+ → ℓ+νℓD
0
)
f(m2

K/m
2
B)

f(m2
D/m

2
B)

4(Xℓ
L)

2

|Vcb|2
g4X

m4
W

m4
Z′
|BdL

23 +BdR
23 |2 .

(5.5.18)

In the case of the D0 → ℓ+ℓ−π0, the resulting bounds are again softer than (5.5.15).
Furthermore, the B0 decay in (5.5.18) is part of the b → s ℓ+ℓ− observables which have
been seen to show discrepancies with the SM. Models with a heavy Z ′ have been put forward
as a solution for the B anomalies, see for instance [174–178]. In the conventions of [175],
new physics contributions to the relevant weak Hamiltonian coefficients in our models give

δCbsµµ9 = −δCbsµµ10 = − π

αe

v2h
V ∗
tsVtb

g2XXµB
dL
23

m2
Z′

,

δCbsµµ9′ = δCbsµµ10′ = − π

αe

v2h
V ∗
tsVtb

g2XXµB
dR
23

m2
Z′

.

(5.5.19)
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Accommodating b→ s ℓ+ℓ− data at 2σ with a V −A structure requires [179]

δCbsµµ9 = −δCbsµµ10 ∈ [−0.69,−0.37] ⇒ g2XXµB
dL
23

m2
Z′ [TeV−2]

∈ [0.59, 1.1] · 10−3, (5.5.20)

Assuming that the Bs mixing bound in (5.5.15) is saturated, one obtains gXXµ/mZ′ [TeV] ∈
[0.17, 0.32]. As long as gXXµ ≲ O(0.1), as is the case for our benchmark model shown in
Fig. 5.2, this demands below-TeV Z ′ masses, in tension with constraints from direct searches.
Benchmarks featuring higher gXXµ values may however allow to accommodate (5.5.20)
while fulfilling Bs mixing bounds.

Scalar-mediated FCNCs

Scalar-mediated FCNCs arise as a result of quarks receiving their masses from different
SU(2)L doublets [41, 42]. In the limit where both U(1)X -charged scalars acquire the same
VEV vη, the Yukawa couplings of the quark mass eigenstates can be expressed as

−Lqϕ = dL

[︃(︃√
2

vh
Md − ϵd tanβ

)︃
H + ϵ′dη12 + ϵ′′dη23

]︃
dR

+ uL

[︃(︃√
2

vh
Mu − ϵu tanβ

)︃
H + ϵ′uη̃12 + ϵ′′u η̃23

]︃
uR + h.c. ,

(5.5.21)

where flavor-changing processes are governed by the non-holomorphic couplings

ϵdij = (ϵ′d + ϵ′′d)ij = (yds δi1δj2 + ysb δi2δj3)(L
†
d)ik(Rd)kj ,

ϵuij = (ϵ′u + ϵ′′u)ij = (ycu δi2δj1 + ytc δi3δj2)(L
†
u)ik(Ru)kj .

(5.5.22)

A plethora of observables constrain the ϵu,dij together with the scalar masses and tanβ

[180, 181]. Again, one of the most stringent set of constraints stems from meson mixing.
In the Kaon system, K − K̄ mixing data sets

− 1.0 · 10−10 ≤ Re[ϵd12ϵ
d∗
21]

(︃
tanβ

mη/100 GeV

)︃2

≤ 3.0 · 10−11 , (5.5.23)

with weaker bounds from other systems. In our setup, where the ϵij arise from the mass
matrices of the quarks, the ϵdij and ϵuji with i < j are naturally suppressed (for instance, with
tanβ ≃ 1.2 we find Re[ϵd12ϵ

d∗
21] ≃ 3.7 · 10−11), and meson mixing constraints are generally

fulfilled for mη ≳ 130 GeV.

5.6 Summary

In this chapter we have explored how SM masses and quark mixing can arise from renormal-
ization group effects. The mechanism relies on a new U(1)X gauge symmetry, under which
quarks and leptons must be non-universally charged. The presence of a UV fixed point
where the hypercharge and the coupling of the new symmetry are interacting then enables
SM Yukawas, assumed asymptotically free, to grow with a power-law scaling and evolve
towards significantly diverse values towards the IR. The hierarchy between two Yukawa
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couplings of the same sector after the power-law phase of the running depends mainly on
the non-universal charges and the value of the new gauge coupling at the fixed point, as
shown in Eq. (5.1.8).

In order to model quark mixing, we introduced additional scalar doublets carrying charges
under the new symmetry. Their Yukawa couplings, which grow according to Eq. (5.2.3),
allow to approximately reproduce CKM mixing for appropriate values of their vacuum ex-
pectation values. We studied a particular benchmark of the full model, and saw that quark
and charged-lepton masses can be approximately reproduced, as depicted in Fig. 5.2. Phe-
nomenological implications of the model revolve around a massive Z ′ boson with tree-level
FCNCs in the quark sector. Direct searches constrain the new boson to be at the TeV scale,
while meson mixing poses the strongest bounds on new physics couplings, with different
implications for the three studied mixing scenarios. In the case where mixing is driven by
the up sector, the Z ′ could be as light as a few TeV.
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6 Summary and Conclusions

In this thesis we have studied asymptotically safe extensions of the SM with implications for
flavor phenomenology. In order for weakly interacting UV fixed points to arise, Yukawa cou-
plings are essential. For this reason, the models we have studied contain vector-like fermions
and singlet scalars which allow to write the purely BSM Yukawa interaction (3.0.1), already
considered in previous works as an extension of the SM [29, 61]. In Chapter 3, we studied
for the first time effects of linking the new sector to SM leptons through mixed Yukawa in-
teractions, finding that these can be sufficient for UV fixed points to arise. Both in the 210
approximation and using full 2-loop results, we found benchmarks which can be matched
onto the Standard Model around the TeV scale, as seen in Figs. 3.2 and 3.6. Furthermore,
the extended Yukawa sector acts as a portal to the SM, yielding a rich phenomenology.
In particular, models where the new fermions transform as vector-like leptons allow to si-
multaneously explain the observed anomalies in the anomalous magnetic moments of the
electron and the muon, thanks to the BSM Yukawa interactions and mixing between the
Higgs and the new scalars. As shown in Fig. 3.17, the parameter window which allows
for simultaneous explanations of the lepton AMM data demands vector-like lepton masses
around the TeV scale or below. Remarkably, the mechanism requires no explicit breaking
of lepton-flavor universality and is able to predict the AMM of the tau. The models can
yield as well contributions to lepton-flavor-violating observables and EDMs which will be
probed in the near future.

With vector-like fermions carrying SM gauge charges, the particles of the BSM sector stud-
ied in Chapter 3 can be produced at both pp and ℓℓ colliders. In Chapter 4, we focused on
the models of vector-like leptons (models A and C) and studied their potential signatures
at the LHC, developing targeted search strategies. After simulating production of vector-
like leptons within LHC conditions, we studied decays yielding a final state with at least
four light leptons (electrons on muons). Comparing the sum of transverse momenta of the
final-state leptons with current CMS data we were able to constrain the allowed range of
BSM masses, as summarized in Fig. 4.3. In general, we found that doublet VLLs lighter
than ∼ 800 GeV are excluded, while singlets can be at least as light as ∼ 300 GeV. For the
parameter space of BSM Yukawa couplings which allows to explain the AMM anomalies,
VLLs decay almost entirely to a lepton and a BSM scalar. The latter can subsequently
decay to two leptons of different flavor, yielding an LFV-like signature. We exploited this
feature to build novel observables in the form of dilepton and three-lepton invariant masses,
which can serve as null tests of the SM and permit to identify the masses of the BSM sec-
tor. Their distributions for several g−2-favored benchmark scenarios are shown in Figs. 4.5
and 4.6, where clean BSM resonances can be observed. With current LHC data the observ-
ables present a limited potential for discovery, while higher luminosities can greatly enhance
it.
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In Chapter 5 we proposed a model where fermion masses and quark mixing can be ex-
plained via RG effects, thanks to a power-law scaling of asymptotically free couplings near
UV fixed points. We began by showing that hierarchies between Yukawa interactions can
arise through the running if fermions carry non-universal gauge charges. These effects were
explored in the context of an extension of the SM with a new U(1)X symmetry, under
which SM fields were assigned vector-like charges. We showed that RG-induced differences
among couplings of the same sector depend on their non-universal charges, as described
by Eq. (5.1.8). We studied as well benchmark values of the BSM sector parameters which
can reproduce SM masses at order of magnitude, as depicted in Fig. 5.2. For each bench-
mark, the coupling of the new gauge interaction is fixed by the running. Moreover, the
setup predicts a Z ′ boson with tree-level FCNCs. If quark mixing is driven by the up sec-
tor, both meson mixing and direct detection bounds allow the Z ′ to be as light as a few TeV.

In conclusion, we have shown that asymptotically safe extensions of the SM can be strongly
connected to the flavor sector and present low-scale signatures which can be measured at
current and near-future experiments. Their phenomenology can address both experimen-
tal discrepancies with the SM and the more fundamental issue of the flavor puzzle while
rendering the running of the Standard Model UV complete. We look forward to further
studies and tests of asymptotically safe models.
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Appendix

A General Formulae

In this appendix we collect several useful formulae used throughout this thesis. The em-
ployed conventions for the SM couplings are

U(1)Y : g1 = g′ , α1 =
g21

(4π)2
, αe =

e2

4π
=

(g1 cos θw)
2

4π
,

SU(2)L : g2 = g , α2 =
g21

(4π)2
, αPDG

2 =
g22
4π

,

SU(3)C : g3, α3 =
g23

(4π)2
, αs =

g23
4π

.

(A.0.1)

A.1 Generators of SU(2)

The generators of SU(2) in the doublet representation correspond to σi/2, where the Pauli
matrices σi are given by

σ1 =

(︄
0 1

1 0

)︄
, σ2 =

(︄
0 −i
i 0

)︄
, σ3 =

(︄
1 0

0 −1

)︄
. (A.1.1)

Furthermore, the generators in the triplet or adjoint representation read

t1 =
1√
2

⎛⎜⎜⎝
0 1 0

1 0 −1

0 −1 0

⎞⎟⎟⎠ , t2 =
1√
2

⎛⎜⎜⎝
0 −i 0

i 0 i

0 −i 0

⎞⎟⎟⎠ , t3 =

⎛⎜⎜⎝
1 0 0

0 0 0

0 0 −1

⎞⎟⎟⎠ . (A.1.2)

A.2 Mass Mixing

In models where gauge eigenstates acquire mixed mass terms the mass matrix must be
diagonalized in order to obtain the mass eigenstates. In a general case with two-particle
mixing, one is confronted with a mass matrix of the type

N =

(︄
A C

C B

)︄
. (A.2.1)

For fermions, the mass matrix can be generally written as M = LMR†, where M contains
the singular values of M. In order to find the left and right rotations one must then
diagonalize MM† and M†M respectively, which take the form of N in Eq. (A.2.1). In the
case of two real scalars, one finds N = 1

2M. The eigenvalues of N fulfill

λ± =
1

2

[︂
A+B ±

√︁
(A−B)2 + 4C2

]︂
, (A.2.2)

– 121 –



R2 C2(R2) S2(R2) R3 C2(R3) S2(R3)

2 3/4 1/2 3 4/3 1/2

3 2 2 8 3 3

Table B.1. Values of the Casimir operator and the Dynkin index for the fundamental and adjoint
representations of SU(2) and SU(3).

and their corresponding normalized eigenvalues can be written as

v+ = (cosα, sinα) , v− = (− sinα, cosα) , (A.2.3)

with
tan 2α =

2C

A−B
. (A.2.4)

Then, if the mass matrix is written in the interaction basis, the interaction eigenstates
(H,L) can be expressed in terms of the mass eigenstates (Hm, Lm) as

H = cosαHm − sinαLm , L = cosαLm + sinαHm . (A.2.5)

For C > 0, the heaviest eigenstate always carries a minus sign. In the case above, for A > B

one finds α > 0 and Hm (Lm) correspond to the heavy (light) eigenstates.

B RGE Studies

This appendix contains the RGE equations of several models discussed in this thesis. We
denote the Casimir operator and the Dynkin index of a given representation R as C2(R)

and S2(R), respectively. These are related through

S2(R) =
d(R)

d(Adj)
C2(R) , (B.0.1)

where Adj denotes the adjoint representation, and their values are collected in Tab. B.1 for
the fundamental and adjoint representations of SU(2) and SU(3). For U(1) symmetries
one finds C2(Y ) = S2(Y ) = Y 2 for fields with charge Y .

The β-functions collected in the rest of this section are computed in the MS scheme with
the Mathematica package ARGES [45] (available at https://github.com/TomSteu/ARGES),
which builds on [46, 182–186]. Further computational tools to compute RGEs can be found
in the SARAH package [187], while analytical results can be obtained by using the methods of
the structure δ [188], which generalizes the results of [46, 182, 183] to be readily applicable
to any model. The β-functions for the SM up to three-loop can be found for instance in
[34, 47].
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B.1 β-functions for Models of Vector-like Fermions

In this section we reproduce the β-functions for the models A – F studied in Chapter 3 up
to 2-loop order for all couplings. For the coefficients of the 2-loop gauge and 1-loop Yukawa
RGEs we employ the notation of Eq. (2.1.20) and Eq. (2.1.23), respectively. Model-specific
coefficients are listed in Tabs. B.2-B.4, while others are universal or can be easily expressed
in terms of the Casimir operator and Dynkin index of the SU(2)L×SU(3)C representations
R2, R3 and the hypercharge Y of the vector-like fermions [29]. For the hypercharge coupling
β-function, the coefficients read

B1 = −41

3
− 8 d(R2)Y

2 , C11 =
199

9
+ 24 d(R2)Y

4 ,

C12 = 9 + 24C2(R2)d(R2)Y
2 , C13 =

88

3
,

D1t =
17

3
, D1b =

5

3
, D1y = 36 d(R2)Y

2 .

(B.1.1)

For the β-function of the SU(2)L coupling, coefficients obey

B2 =
19

3
− 8S2(R2) , C21 = 3 + 24S2(R2)Y

2 ,

C22 =
35

3
+ 12S2(R2) (2C2(R2) + 20/3) , C23 = 24 ,

D2t = D2b = 3 , D2y = 36S2(R2) .

(B.1.2)

Finally, in our models the coefficients of the strong coupling β-function are not modified by
the BSM sector, and read

B3 = 14 , D3t = 4 , D3b = 4 ,

C31 =
11

3
, C32 = 9 , C33 = −52 .

(B.1.3)

For the β-functions of Yukawa couplings, model-dependent coefficients are collected in
Tab. B.2. The remaining coefficients are given by

Ett = Ebb = 9 , Etb = Ebt = 3 , Ft1 =
17

6
,

Fb1 =
5

6
, Ft2 = Fb2 =

9

2
, Ft3 = Fb3 = 16 ,

Eyy = 2 [3 + d(R2)] , Fy1 = 12Y 2 , Fy2 = 12C2(R2) ,

Eκt = Eκb = 6 , Eκy = 3 , Eκκ′ = Fκ3 = 0 .

(B.1.4)

In order to simplify expressions of the β-functions of scalar couplings, it is convenient to
use the definition

˜︁αy = {︄ακ′ + αy model A, C

αy model B, D, E, F
. (B.1.5)
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Model D1κ D1κ′ D2κ D2κ′ Etκ Ebκ Eyκ Eyκ′ Eκκ Fκ1 Fκ2 Eκ′κ′ Eκ′y Eκ′κ Fκ′1 Fκ′2

A 15 36 3 0 6 6 2 8 9 15/2 9/2 8 8 0 12 0

B 45/4 0 33/4 0 6 6 1/2 0 23/4 15/2 33/2

C 15 18 3 18 9/2 9/2 1 10 9 15/2 9/2 10 10 0 3 9

D 39 0 3 0 6 6 1 0 9 39/2 9/2

E 3 0 3 0 6 6 2 0 9 3/2 9/2

F 9/4 0 33/4 0 6 6 1/2 0 23/4 3/2 33/2

Table B.2. Model-specific loop coefficients for the gauge and Yukawa β-functions of the vector-like
fermion models of Chapter 3, following the conventions of (2.1.20) and (2.1.23).

Model Iκ Jλκκ Kλ
11κ Kλ

12κ Kλ
22κ Hλ

κκκ Hδ
κκy Lλ1κ Lλ2κ Lδ1y Lδ2y

A 12 6 75/4 −33/2 9/4 10 14 12 0 12 0

B 9 15/8 225/16 −51/8 −21/16 47/32 39/8 15/4 15/2 9 18

C 12 6 75/4 −33/2 9/4 10 16 12 0 6 6

D 12 6 219/4 39/2 9/4 10 16 36 0 30 6

E 12 6 3/4 3/2 9/4 10 14 0 0 0 0

F 9 15/8 9/16 57/8 -21/16 47/32 39/8 0 15/2 0 18

Table B.3. Model-specific loop coefficients for the quartic and Yukawa β-functions (B.1.6), (B.1.7),
(B.1.9) and (B.1.10).

Then, the 1-loop RGEs for the scalar quartic couplings read

β
(1)
λ = β

(1)
λ,SM + 9α2

δ + Iκ ακαλ − Jλκκ α
2
κ ,

β
(1)
δ = αδ

[︃
4αδ + 12αλ + 24αu + 40αv + 6αt + 6αb +

1

2
Iκ ακ + 2 d(R2) ˜︁αy

−3

2
α1 −

9

2
α2

]︃
− 1

3
Iκ ακαy ,

β(1)u = 24αu (αu + αv) + 2 d(R2)˜︁αy (2αu − ˜︁αy) ,
β(1)v = 52α2

v + 12αu (αu + 4αv) + 2α2
δ + 4 d(R2) ˜︁αyαv ,

(B.1.6)

where β(1)λ, SM denotes the 1-loop β-function of the Higgs quartic in the SM, and the 1-loop
coefficients Iκ and Jλκκ are collected in Tab. B.3.
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At 2-loop order, the RGEs of αt,b,λ are found to obey

β
(2)
t

αt
=
β
(2)
t,SM

αt
+ 9α2

δ −
9

4
Jλκκ α

2
κ −

27

24
Iκ ακ

(︃
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27
αb

)︃
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(D1κ α1 + 3D2κ α2)ακ + 6S2(R2)α

2
2 +
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9
Y 2 d(R2)α

2
1 ,

β
(2)
b

αb
=
β
(2)
b, SM

αb
+ 9α2

δ −
9

4
Jλκκ α

2
κ −

27

24
Iκ ακ

(︃
αy + αb −

15

27
αt

)︃
+

5

4
(D1κ α1 + 3D2κ α2)ακ + 6S2(R2)α

2
2 −

2

9
Y 2 d(R2)α

2
1 ,

β
(2)
λ = β

(2)
λ, SM − 90α2

δαλ − 36α3
δ − 18 d(R2) ˜︁αyα2

δ − 12 Iκ ακα
2
λ −

1

2
Jλκκ α

2
καλ

− 27

12
Iκ ακαyαλ + 3 Jλκκαyα

2
κ + 3Hλ

κκκα
3
κ − Lλ1κα1α

2
κ − Lλ2κα2α

2
κ

+
5

2
(D1κ α1 + 3D2κ α2)ακαλ −Kλ

11κα
2
1ακ −Kλ

12κα1α2ακ −Kλ
22κα

2
2ακ

+ 30S2(R2)α
2
2αλ + 10 d(R2)Y

2 α2
1αλ − 4d(R2)Y

2 (α1 + α2)α
2
1

− 4S2(R2) (α1 + 3α2)α
2
2 ,

(B.1.7)

where coefficients are given in in Tabs. B.2 and B.3, and β
(2)
t,b,λ, SM denote the 2-loop β-
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functions of the SM. 2-loop RGEs of the BSM Yukawas αy,κ,κ′ read

β
(2)
κ

ακ
=− P κκκα

2
κ −

9

4
(1 + 2d(R2)) ˜︁αyαy − 3

32
[90 + d(R2) (89− 27 d(R2))]αyακ +Rκ11 α

2
1

− 1

6
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2
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α1 [17αt + 5αb] +
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4
α2 [αt + αb] + 40α3 [αt + αb]− 6S2(R2) [1− 2d(R2)] α2αy
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2

[︁
α2
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b

]︁
+ 3αt αb − Jλκκ I
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κ (27αt + 27αb + 48αλ)ακ − 12αyαδ + 9α2

δ + 12α2
λ .

β
(2)
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ακ′
=
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3
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]︃
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+ 6C2(R2)− 40S2(R2)
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2
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2
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y
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Y 2 α2

1 −
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3
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]︃
C2(R2)α

2
2

− 12C2(R2)Y
2 α1 α2 + [48 + 10 d(R2)] Y

2 α1 ˜︁αy + [48 + 10 d(R2)] C2(R2)α2˜︁αy
+ 8

[︁
5α2

u + 5α2
v + 6αuαv

]︁
+ 2α2

δ − 16 (5αu + 3αv) ˜︁αy − [︃1
2
+ 18 d(R2)

]︃ ˜︁α2
y

− P yκκ α
2
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− 2−d(R2) [18αt + 18αb + 3 (2 d(R2) + 1)αy + 16αδ]ακ ,

(B.1.8)
using as well the loop coefficients in Tab. B.4. Finally, the 2-loop RGEs of the BSM scalar
quartic couplings fulfill

β(2)u =− 336α3
u − 1056α2

uαv − 688αuα
2
v +

[︁
Y 2d(R2)α1 + 3S2(R2)α2

]︁
[20αu − 8˜︁αy] ˜︁αy

− 48d(R2)˜︁αy (αu + αv)αu + 2d(R2) [6˜︁αy − 9αu + 4αv] ˜︁αy − 20α2
δαu + Iκ ακαy
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1

3
˜︁αy − 1

2
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]︃
,

β(2)v =− 288α3
u − 688α2

uαv − 1056αuα
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v − 816α3
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Y 2d(R2)α1 + 3S2(R2)α2
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y −

1

2
Iκ ακαyαv

+ 4 [α1 + 3α2 − 3αt − 3αb − 3ακ − 5αv − 2αδ]α
2
δ ,

(B.1.9)
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Model P yκκ P κκκ Qy1κ Qy2κ Qκ1y Qκ2κ Rκ11

A 19/2 24 37/4 51/4 6 225/8 721/12

B 57/32 59/8 37/16 −101/16 6 1343/32 1249/12

C 5 24 55/8 33/8 15 225/8 589/12

D 5 24 95/8 33/8 27 225/8 4541/12

E 19/2 24 17/4 51/4 0 225/8 35/12

F 57/32 59/8 17/4 -101/16 0 1343/32 35/12

Table B.4. Model-specific 2-loop coefficients for the BSM Yukawa β-functions (B.1.8).

while for the portal coupling the 2-loop β-function obeys
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(2)
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1
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2˜︁αy − Lδ1y α1αyακ − Lδ2y α2αyακ ,

(B.1.10)
with further model-specific loop coefficients specified in Tab. B.3.

B.2 BSM Critical Surface

Using the β-functions detailed above, in Chapter 3 we explored the RGE structure of models
of colorless vector-like fermions, both with a bottom-up approach in the 210 approximation
and from a top-down perspective for some benchmarks of our BSM couplings at a matching
scale of 1 TeV, in this case using full 2-loop results. Here, we study the UV fate of the
running more comprehensively by scanning over the values of the BSM Yukawas at the
matching scale, mapping the BSM critical surface. Employing as well 2-loop results, we
integrate the RGEs up to the Planck scale and determine if the vacuum is stable (with
V + or V − structure), or if vacuum stability is not fulfilled. In the latter case we distin-
guish between instances where αu or αv violate the vacuum stability conditions (2.4.12),
regardless of the values of αλ and αδ (a situation labeled V unstable), and cases where the
Higgs quartic is metastable, with 0 > αλ|MPl

> −10−4 (Higgs metastable) or unstable with
αλ|MPl

< −10−4 (Higgs unstable). We also indicate regions where poles arise at or below
the Planck scale.
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Figure B.2.1. BSM critical surface for models A – F in the {ακ, αy} |MF
plane, from [25]. Initial

conditions at the matching scale for the remaining couplings are given by Eq. (B.2.1). We indicate
whether the vacuum at the Planck scale MPl corresponds to a stable V + (blue) or V − (green)
according to Eq. (2.4.12), an unstable BSM vacuum (gray), a stable vacuum for αu,v|MPl

but with
αλ|MPl

< 0 (yellow for αλ|MPl
> −10−4, otherwise brown) or if the RG flow runs into poles (red).

Resolution is 141 × 61 points per model. All models allow for regions where the BSM and Higgs
vacuum present absolute stability (green and blue areas). These corresponding to the µ0 = 1 TeV
slices of the parameter space we refer to as BSM critical surface.

Results for models A – F (see Tab. 3.1) are shown in Fig. B.2.1, where we scan over a range
of the couplings αy and ακ. The remaining BSM couplings at the matching scale are taken
at benchmark values

{ακ′ , αδ, αu, αv} |MF
= {0, 5, 1, 4} · 10−5 . (B.2.1)

We observe that, for all models, regions of absolute stability arise (V ± regions depicted in
green and blue in Fig. B.2.1), while large values of both scanned Yukawas generally lead to
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poles below or at the Planck scale.

For models A and C, results for a scan of the couplings ακ and ακ′ are shown in Fig. B.2.2,
where the remaining BSM couplings are in this case set to

{αy, αδ, αu, αv} |MF
= {0, 5, 1, 4} · 10−5 . (B.2.2)

at the matching scale. In both cases, large regions with absolute vacuum stability exist,
which in the case of model A require at least one of the couplings to be of O(10−2) or larger,
while in model C ακ′ must be weaker. Note, however, that values of ακ at the order 10−3

or larger are disfavored by the Z data constraint (3.3.9).

Finally, in Sec. 3.3.5 we found that for certain values of the BSM couplings models A and C
can accommodate both the muon and the electron anomalous magnetic moment anomalies.
In Fig. B.2.3 (left) we show the running in these models for benchmark BSM couplings at
the matching scale which are able to explain the anomalies. The right panels of Fig. B.2.3
show the BSM critical surface in the ακ and ακ′ plane, where red-shaded regions correspond
to the values of the couplings preferred by the data (3.3.34) and (3.3.36) at 1σ, and the white
dots indicate the benchmarks for which we show the running. Similarly to the results shown
in Fig. 3.6, when extending the running shown in Fig. B.2.3 into the deep UV trajectories
end in interacting fixed points (for model A) or run into transplanckian poles (model C).
The scanning of trajectories for different values of the BSM Yukawas shown in Fig. B.2.3
(right) displays sizable regions with a stable V + vacuum (metastable Higgs sector) in model
A (model C) at the Planck scale, while poles are found for large, non-perturbative values
of ακ′ in both models.
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Figure B.2.2. BSM critical surface for models A and C in the {ακ, ακ′} |MF
plane with matching

conditions (B.2.2), from [25]. The color coding of Fig. B.2.1 applies. Resolution is 141× 61 points
per model. Both models present a large parameter space for which absolute stability is achieved by
the SM and BSM vacuum at the Planck scale.
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Figure B.2.3. Renormalization group running for MF = 2MS = 1 TeV between the matching
scale MF and the Planck scale (left), and BSM critical surface at the Planck scale in the ακ, α′

κ

plane (right) for a) the singlet model or model A (top) and b) the doublet model or model C
(bottom), from [24]. For the surface plots, the color coding of Fig. B.2.1 applies. BSM couplings
at the matching scale are set to (αδ, αu, αv, αy)|MF

= (5,−1, 4, 0) · 10−5. Parameters within the
red-shaded areas are compatible with data (3.3.34), and white dots refer to the benchmarks on the
left.
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B.3 β-functions for U(1)X Models

Here we present 2-loop gauge and 1-loop Yukawa β-functions for the U(1)X extensions
of the SM studied in Chapter 5, with the particle content shown in Tab. 5.2 and Yukawa
sector (5.2.16), with mixing terms Ldmix in Eq. (5.2.2). In the following, a sum over k = 1, 2, 3

is understood. For the gauge couplings we find
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3
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3
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(B.3.1)

while the BSM Yukawa y obeys

βy = αy
[︁
αy(2NF + 2)− 12α1Y

2
F − 12αXX

2
F

]︁
. (B.3.2)
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The Yukawa couplings of the lepton sector fulfill

βei = αei
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(B.3.3)

while the RGEs of the diagonal quark Yukawas read

βui = αui
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(B.3.4)

with an implicit sum over l > i and l < i for the up and down sector, respectively. Finally,
the RGEs of the off-diagonal Yukawa couplings obey
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(B.3.5)

where all indices are fixed.
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C Collider Studies with MadGraph5_aMC@NLO

In this appendix we provide additional information and results regarding the study of
vector-like lepton models at colliders presented in Chapter 4.

C.1 Event Simulation

In order to create samples of events of our VLL models in Eqs. (4.1.4) and (4.1.6), we
first employ FeynRules [150] to compute tree-level Feynman rules, which are then used
to generate UFO models [151]. These are given as an input to the Monte Carlo generator
MadGraph5_aMC@NLO [152], with which we generate event samples that can be used
to compute observables. For the event generation we use the set of parton distribution
functions (PDFs) NNPDF3.0 [189]. In the 4L cross sections of Fig. 4.2 and the single-
and pair-production cross sections of Fig. C.3.1, PDF and scale variation uncertainties are
shown, see [145] for details.

For the study of the LT distributions and the new observables, we generate, for each bench-
mark of BSM masses in Fig. 4.3, a sample of 5×104 events with at least four light leptons in
the final state. The same number of events is computed for SM background processes con-
tributing at leading order to 4L final states. We include ttZ-, triboson- and ZZ-mediated
4L production (see Sec. 4.2 for a discussion of the ZZ background). Higher-order correc-
tions to SM production cross sections are taken into account by applying k factors to the
leading order contributions [190–196]. The SM and VLL distributions for each observable
are rescaled to the desired luminosity (77.4, 150 or 3000 fb−1) using cross sections obtained
with MadGraph5_aMC@NLO .

The event generation is performed with settings similar to the CMS study [141], with
parameters collected in Tab. C.1. The cut on the missing transverse momentum is set
to pmiss

T < 50 GeV in order to reproduce the signal region considered by CMS and to
suppress contributions from final states with neutrinos. Electrons and muons are required
to carry a minimum transverse momentum pℓT ≥ 20 GeV. Following CMS settings, and in
order to suppress resonances in the low-mass region, we demand a light-lepton invariant
mass mℓℓ ≥ 12 GeV for all flavor and charge configurations of the final states. In events
containing jets, we require as well pjetT ≥ 20 GeV. To perform a simulation of the detector
response, which in this thesis is included only in the LT distributions shown in Figs. 4.4
and 4.7, we shower and hadronize the events with PYTHIA8 [154] and use DELPHES3
[197] for the fast detector simulation, see [145] for further details.

C.2 Algorithms for Null Tests

In Sec. 4.3 we described a set of four observables which allow to look for our VLL models at
colliders, targeting their specific LFV-like decay signatures. Here we give a detailed account
of the algorithms we use to compute the observables from the generated event samples. The
parameters of the reconstruction algorithms are collected in Tab. C.1.
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Parameters Signal selection cuts Reconstruction

αs(mZ) = 0.118 pmiss
T < 50 GeV ∆mZ = 15 GeV

mh = 125 GeV pℓT ≥ 20 GeV ∆mh = 5 GeV

mW = 80.379 GeV pjetT ≥ 20 GeV ∆MS = 5 GeV

mt = 172 GeV mℓℓ ≥ 12 ∆MF = 100 GeV

mb = 4.7 GeV - -

Table C.1. Parameters used in the event generation and the reconstruction algorithm.

m2ℓ and m2ℓ_diff

For each event with at least four light leptons in the final state, we compute all possible
sets of two dilepton invariant masses from leptons of opposite charge, where each lepton
contributes to only one of the invariant masses in the pair. If present, τ leptons are included
in this step. If the event contains jets, we compute as well all possible pairs of invariant
masses where one of them is a dilepton invariant mass and the other is the dijet invariant
mass. For each event, only one pair of invariant masses is added to the observable m2ℓ. In
order to be added, it must fulfill one of the following requirements:

a) Each invariant mass is equal either to mZ ± ∆mZ or to mh ± ∆mh, according to
the parameters in Tab. C.1, and each dilepton pair contains OCSF leptons. The
states used to compute the masses are in this case (ℓ+i ℓ

−
i )(ℓ

+
j ℓ

−
j ), (τ

+τ−)(ℓ+i ℓ
−
i ) or

(ℓ+i ℓ
−
i )(jj) with i, j = 1, 2. This condition reconstructs Z and Higgs bosons.

b) The difference between both invariant masses is less than ∆MS (see Tab. C.1), while
none of the other invariant mass pairs present a smaller difference, and each invariant
mass is computed from OCSF leptons. The states used to compute the masses are in
this case (ℓ+i ℓ

−
i )(ℓ

+
j ℓ

−
j ) with i, j = 1, 2. This condition reconstructs two scalars, Sii

and Sjj .

c) Both invariant masses differ by less than ∆MS (see Tab. C.1), while none of the other
invariant mass pairs present a smaller difference, and at least one of the invariant
masses contains two OCDF leptons. The states used to compute the masses are in
this case (ℓ+i ℓ

−
j )(ℓ

+
k ℓ

−
i ) with i, j, k = 1, 2, 3 and a maximum of one τ+ and one τ−.

This condition reconstructs two scalars, Sij and Sik.

We check for these conditions in the above order (a → b → c) and stop when one of
the requirements is fulfilled. We define the observable m2ℓ_diff as invariant mass pairs
that only fulfill condition c), where two particles of approximately equal invariant mass are
found and at least one of them is reconstructed from OCDF leptons. All SM contributions
to m2ℓ_diff, although they can be sizable due to combinatorics in regions with a large SM
background, are purely statistical.
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m3ℓ and m3ℓ_diff

These observables are designed to reconstruct the invariant masses of the VLLs via their
three-body decays. For each pair of two-particle invariant masses added to m2ℓ, we look
for the additional lepton which comes from the decay of each ψ. We add to m3ℓ the pairs
of three-particle invariant masses which fulfill one the following conditions:

i) For two-particle invariant masses which reconstruct to a Z or Higgs (condition a in the
previous section) each two-particle invariant mass is paired with an additional lepton
present in the final state. The resulting three-particle invariant masses are added to
m3ℓ if their difference is smaller than ∆MF , and no other combination presents a
smaller difference.

ii) For two-lepton invariant masses which reconstruct to Sii and Sjj (condition b in the
previous section) each two-lepton invariant mass is paired with an additional lepton
present in the final state which has the same flavor of the two leptons in the two-
lepton invariant mass. The resulting three-lepton invariant masses are added to m3ℓ

if their difference is smaller than ∆MF , and no other combination presents a smaller
difference.

iii) For two-lepton invariant masses which reconstruct to Sik and Skj (condition c in the
previous section) if a two-lepton invariant mass contains two same-flavor leptons, it
is paired with an additional lepton present in the final state which has the same
flavor. If it contains two different-flavor leptons, it is paired with an additional lepton
which has the same flavor but opposite charge of one of the leptons in the two-lepton
invariant mass. For each event, we find at most one possible combination that fulfills
this condition. The corresponding three-lepton invariant masses are added to m3ℓ.

In the last two conditions, flavor requirements are designed to reflect flavor conservation in
the decays of the Sij . We define the observable m3ℓ_diff as invariant mass pairs that only
fulfill condition iii). Remarkably, the selection of the third leptons via flavor rules allows
to populate m3ℓ_diff even when the ψ do not present a narrow width, which is the case
for larger masses MF > MS . Similarly to m2ℓ_diff, m3ℓ_diff is a null test of the SM given
perfect reconstruction of the events.

C.3 Cross Sections and Observables

Production cross sections: Fig. C.3.1 shows pair- and single- production cross sections of
the VLLs at the LHC for

√
s = 13. The BSM scalar mass is taken to be MS = 500 GeV

and we fix κ′ according to Eq. (4.1.8) and κ = 10−2κ′. Note that the value of MS has
no influence on VLL production per se, but has an impact on the chosen values of κ, κ′.
The BSM Yukawas do not affect pair production at leading order, which occurs through
s-channel electroweak bosons (see Figs. 3.7 and 3.8) but have an impact on single produc-
tion, which occurs at order κ and is suppressed by several orders of magnitude with respect
to pair production.
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Figure C.3.1. Cross sections for VLL single production (top) and pair production (bottom) at√
s = 13 TeV for different VLL masses in the singlet (left) and the doublet model (right). Results

are shown for production of a single VLL flavor. For the computation we use κ = 10−2κ′, while κ′

is computed with Eq. (4.1.8) for each value of MF and for MS = 500 GeV.

Invariant masses: for the observables described in Sec. 4.3, larger luminosities enhance
the number of events present in the distributions, yielding higher chances of detection.
In Fig. C.3.2 we display the invariant masses m2ℓ, m2ℓ_diff, m3ℓ and m3ℓ_diff for the√
s = 14 TeV HL-LHC at a luminosity of 3000 fb−1, and for the benchmarks studied in

Sec. 4.3. We observe that peaks reach O(103) events in most cases, and distributions show
a clear separation between BSM distributions and SM background, which is confined to low
invariant mass regions.
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Figure C.3.2. Dilepton invariant massesm2ℓ, m2ℓ_diff, m3ℓ, andm3ℓ_diff (see Sec. 4.3 for details)
for the singlet and doublet model for different benchmark masses of the VLLs and the BSM scalars
at a luminosity of 3000 fb−1 and

√
s = 14 TeV. The coupling κ′ is fixed according to Eq. (4.1.8).
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