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Abstract 
In the recent decades, several processes for kinematic bending of tubes and profiles to 
three-dimensional (3D) contours have been developed. Although these processes offer 
the potential to cope with current demands for natural aesthetic design and high flexi-
bility, they are not yet widely used in the industry. One reason has been, until now, the 
lack of fundamental knowledge about the forming process itself – specifically the forces 
and torques acting on the profile during 3D bending and the resulting stresses and strains 
in the cross-section. 

In order to build up comprehensive process understanding, first, a general geometric 
description of 3D profile shapes is given. Using this geometric description, fundamental 
3D-bending kinematics are derived. It is found that three controlled degrees of freedom 
(cDOF) are necessary to produce a 3D bending line – here, the rotation of the cross-
section cannot be controlled – while at least four cDOFs are needed in order to produce 
profile shapes with a 3D bending line and a specified rotation, or twist, of the cross-
section. Any additional cDOFs are not necessarily needed but might extend the process 
limits of a specific bending process. Using this knowledge, the 3-cDOF TSS bending 
process is extended by two additional actuators and torque measurement equipment. In 
order to time-efficiently analyze 3D profile shapes a new kind of 3D contour measure-
ment device is developed and set up. To allow a thorough investigation of 3D bending 
with the least amount of abstraction of the material data, cold-drawn and heat-treated 
steel profiles are used, which can be regarded as isotropic. In addition to simple tensile 
tests for the generation of flow curves, cyclic tensile tests are used to measure the ap-
parent Young’s modulus degradation. In order to analyze the elastic behavior of the 
profile during 3D bending, a curved beam model is set up. The model can be used to 
represent a beam held by up to three roller/hinged supports, a single full-moment sup-
port, or a combination of a single hinged support and a single full-moment support. The 
model allows the accurate calculation of profile deflection as well as the calculation of 
the reaction forces and moments caused by an applied bending force and torque. 
Through thorough analyses of the stresses and strains in a profile segment during sim-
ultaneous application of a bending moment and a torque it is shown that a stress state 
with uniaxial stress and additional shear stress suffices to accurately model real-life pro-
file behavior. An interesting observation is the linear decrease of shear strains from the 
intrados and extrados to the neutral axis of the profile. 

The geometric relation of profile shape and bending kinematics is finally used together 
with the elastic and plastic analyses to set up a comprehensive process model, which 
can accurately simulate the profile behavior during 3D-profile bending and can be used 
to generate springback compensated NC-data for bending processes with 3-6 cDOFs. 
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Symbols and Abbreviations 
 

Symbol Unit Description 
Ai mm2 Area of the triangle defined by the points Pi-1, Pi, and 

Pi+1 

Aj, Bj, Cj, Dj mm Shear strain distributions 

Am mm2 Area enclosed by the neutral axis of the profile wall 

dA mm2 Infinitesimal segment of the profile cross-section 

b


 - Binormal unit vector 

ib


 mm Binormal vector at discrete point Pi  

Mb


 - Binormal unit vector of machine bending plane M  

B - Bending plane 

c - Profile feeding axis 

ca - Center of area 

cL mm Contact length  

cM Nmm/rad Torsional machine stiffness 

cs - Shear center 

cW mm Half of contact width 

C MPa Hollomon strength coefficient 

CI - Constant of integration 

d mm Depth of impression  

D mm Tube diameter 

DP mm Diameter of the enclosing circle of an arbitrary  
cross-section  

e1 - e1-axis in the plane of a profile element 

e2 - e2-axis in the plane of a profile element 



xiv  Symbols and Abbreviations 

Symbol Unit Description 

y,cse  - Unit vector along the longitudinal axis ycs 

pe  - Unit vector tangent to neutral axis of the profile wall 

E MPa Young’s modulus 

E0 MPa Initial Young’s modulus 

E∞ MPa Asymptotic Young’s modulus 

Eprofile MPa Young’s modulus of profile material 

Eroll MPa Young’s modulus of roll material 

E* MPa Equivalent Young’s modulus 

F N Normal contact force 

FB N Bending force 

FB,xy N Bending force in the xy-plane 

FB,z N z-component of the bending force 

FB,red % Bending force reduction 

FB,Rth,0 N Bending force at the theoretical bending radius Rth  
without twist 

FB,Rth,dϕ N Bending force at the theoretical bending radius Rth and 
the twist per unit length dϕ 

Fp N Sum of Forces in perimetral direction 

Fβe N Sum of Forces along angle βe 

BF


 N Bending force vector 

G MPa Shear modulus 

h mm Height of rectangular cross-section 

h1, h2, h3 mm Partial lengths along height of rectangular cross-section 

hh mm Pitch of the helix 

dhT mm Incremental deflection caused by elastic twisting of the 
beam by dαT 



Symbols and Abbreviations xv 

Symbol Unit Description 
i - Discrete step on curve 

iCU,12 - Number of increments between contact units 1 and 2, 
rounded to the nearest integer 

I mm4 Second moment of area 

IP mm4 Polar moment of inertia 

JT  mm4  Torsional constant 

k  - Index of summation 

lstep  mm Step size 

lstep,i mm Step size from i to i+1 

lstep,i,FS mm Step size of the feed sensor from i to i+1   

L mm Length of the curve r  

Li mm Initial length of straight tube during TRPB 

LB mm Lever arm of the bending force 

LB,eff mm Effective lever arm of the bending force, considering a 
displacement of the forming zone towards the bending 
head 

LB,p mm Distance of the bending force vector to the bending 
plane 

LB,x  mm Distance between the profile support and the point of 
bending force application in x-direction  

LB,y  mm Distance between the profile support and the point of 
bending force application in y-direction  

LCU,12 mm Distance between contact units 1 and 2 

LCU,23 mm Distance between contact units 2 and 3 

LFS mm Perpendicular distance of feed sensor to the bending line 

LS12 mm Beam length between S1 and S2 

LS23 mm Beam length between S2 and S3 



xvi  Symbols and Abbreviations 

Symbol Unit Description 
m - Exponential parameter in Hockett and Sherby  

approximation 

macc % Measurement accuracy 

M - Machine bending plane 

MB Nm Bending moment 

MB,i Nm Inner bending moment 

MB,max Nm Maximum bending moment 

MB,o Nm Outer bending moment 

MB,n Nm Internal moment in normal direction  

MB,z Nm Internal moment in z-direction 

MS1,x, MS1,y, 
MS1,z 

Nm Reaction moments of the profile support S1 

MT Nm Torque caused by twisting 

MT,p Nm Parasitic torque 

MT,red % Torque reduction 

MT,dϕ,0 Nm Torque resulting while twisting a straight profile with 
the twist per unit length dϕ 

MT,dϕ,Rth Nm Torque resulting while twisting with the twist per unit 
length dϕ and bending to the theoretical bending radius 
Rth 

n - Number of discrete points along curve 

n1, n3 mm Distance along x-axis to the vertices nearest to the neu-
tral axis 

n2, n4 mm Distance along x-axis to the intrados/extrados 

nB mm Distance of a profile element to the neutral axis 

nB,0 mm Distance of a profile element to the non-strained axis 

ne mm Distance from the neutral axis to the end of the elastic 
area 



Symbols and Abbreviations xvii 

Symbol Unit Description 
nH - Strain hardening exponent 

nHS - Exponential parameter in Hockett and Sherby  
approximation 

nm mm Distance from the neutral axis to the intrados/extrados of 
the profile 

nN - Normalized distance of a profile element to the neutral 
axis 

nN,0 - Normalized location of the non-strained axis 

n  - Normal unit vector 

in  mm Normal vector at discrete point Pi 

Mn  - Normal unit vector of machine bending plane M 

M,mapn   - Normal vector of machine bending plane M mapped 
onto the normal plane N of the bending line at point PFB 

N - Normal plane 

Ni - Normal plane at discrete point Pi 

NPFB  Normal plane at point PFB 

o  mm Orientation vector  

io  mm Orientation vector at discrete point Pi 

projectedo  mm Projection of the orientation vector at s+Δs onto the  
normal plane at s 

p - Perimetral direction 

P mm Length of the neutral axis of the profile wall 

PCU,1 - Midpoint of contact unit 1 

PCU,2 - Midpoint of contact unit 2 

PCU,3 - Midpoint of contact unit 3 

PFB - Point of bending force application 



xviii  Symbols and Abbreviations 

Symbol Unit Description 
PFB,el - Point of bending force application caused by elastic 

beam deflection 

Pi - Discrete point on a curve  

PLMP,1 - Contact point of LMP 1 with the sensor bar 1-3 

PLMP,2 - Contact point of LMP 2 with the sensor bar 2-4 

PLMP,3 - Contact point of LMP 3 with the sensor bar 1-3 

PLMP,4 - Contact point of LMP 4 with the sensor bar 2-4 

PO - Origin of the XZ-coordinate system 

Ps,i  - Discrete Point on a secondary curve 

PS - Point of profile support 

PSB,int - Intersection point of sensor bars 

Np  mm Position vector of any point on the normal plane Ni 

FBP


 mm Position vector of the point of bending force application 

intP


 mm Intersection point of sr


 and the normal plane N 

OP


 mm Position vector of the origin XZ-coordinate system  

SP


 mm Position vector of the point of profile support 

q - Ratio of height to width of the neutral axis of the profile 
wall 

r mm Resultant 

rαp  mm Projection of the local bending radius r onto the plane of 
an element of the profile 

drαp mm Height of the element 

lr  mm Local bending radius on bending plane 

r  mm Three-dimensional curve used as bending line 

csr  mm Distance vector of an element of the profile wall to the 
center of gravity of the cross-section 



Symbols and Abbreviations xix 

Symbol Unit Description 

CU,2r  mm  Resultant vector of the movement in x and z-direction of 
contact unit 2 

sr


 mm Secondary bending line 

r⊥  mm Perpendicular distance of the vector pe at the differential 
element of the profile wall to the center of gravity of the 
cross-section  

R mm Ideal radius between the profile support and the point of 
bending force application 

RB mm Radius of the neutral axis 

RB,0 mm Radius of the non-strained axis  

Rh mm Radius of the helix 

Ri mm Inner bending radius 

Rio mm Inner/outer bending radius depending on case 

Ri mm Radius at discrete point Pi 

RL mm Loaded bending radius  

RL,cor mm According to Chatti et al. (2010) the loaded ideal radius 
RL reduced by the profile stiffness and the machine  
stiffness 

Ro mm Outer bending radius 

Rprofile mm Radius of profile surface at the point of contact with the 
roll  

Rroll mm Radius of bending head roll at the point of contact with 
the profile  

Rth mm Bending radius that theoretically results from purely  
geometric relations of a kinematic bending process 

Rth,i mm Theoretical bending radius on bending plane at position i 

RU mm Unloaded bending radius  

R* mm Equivalent radius for Hertzian stress calculation 

BR


 mm Arc length of dynamic elastic region in TRPB 



xx  Symbols and Abbreviations 

Symbol Unit Description 
R - 3×n-matrix describing a discretized three-dimensional 

curve r  

Rs - 3×n-matrix describing a second discretized three-dimen-
sional curve sr



 

s mm Arc length along curve (used for description of bending 
line r  and perimeter of cross-section) 

Δs mm Step size 

sPFB mm Arc length at point PFB 

sPS mm Arc length at point PS 

ss mm Arc length along secondary bending line sr


 

ss,i mm Arc length along secondary bending line sr


 up to step i 

S1,x, S1,y, S1,z N Reaction forces at profile support S1 

S2,x, S2,z N Reaction forces at profile support S2 

S3,x, S3,z N Reaction forces at profile support S3 

SBoffset mm Offset of sensor bars to origin of coordinate system 

t -  Path-independent variable used for curve  
parameterization 

t1 mm Thickness of profile wall 1 

t2 mm Thickness of profile wall 2 

t3 mm Thickness of profile wall 3 

t4 mm Thickness of profile wall 4 

th mm Thickness of profile wall having the length h 

ts - Path-independent variable of a secondary line used for 
curve parameterization 

tt mm Thickness of profile wall 

tw mm Thickness of profile wall having the length w 

t


 - Tangent unit vector 



Symbols and Abbreviations xxi 

Symbol Unit Description 

it


 mm Tangent vector at discrete point Pi 

Mt


 - Tangent unit vector of machine bending plane M 

u mm Displacement of a differential element of the  
cross-section 

u  mm Displacement vector of a differential element of the 
cross-section 

w mm Width of rectangular cross-section 

w1, w2, w3 mm Partial lengths along width of rectangular cross-section 

wX,B  mm Displacement of the point of bending force application 
along the X-axis because of elastic beam deflection 

wxy,B  mm Deflection of beam in the xy-plane caused by FB,xy 

w'xy,B rad Slope of beam in the xy-plane caused by FB,xy 

w''xy,B 1/mm curvature of beam in the xy-plane caused by FB,xy 

wz mm Total deflection of beam at point PFB 

wz,B,F mm Deflection of beam in z-direction caused by FB,z 

w'z,B,F rad Slope of beam in z-direction caused by FB,z 

w''z,B,F 1/mm curvature of beam in z-direction caused by FB,z 

wz,B,M mm Deflection of beam in z-direction caused by MT 

w'z,B,M rad Slope of beam in z-direction caused by MT 

w''z,B,M 1/mm curvature of beam in z-direction caused by MT 

wz,T,F mm Deflection of beam in z-direction resulting from beam 
twisting caused by FB,z 

wz,T,M mm Deflection of beam in z-direction resulting from beam 
twisting caused by MT 

WT mm3 Torsional section modulus 

x - x-axis 

x1 mm x-coordinate of PLMP,1 



xxii  Symbols and Abbreviations 

Symbol Unit Description 
x2 mm x-coordinate of PLMP,2 

x3 mm x-coordinate of PLMP,3 

x4 mm x-coordinate of PLMP,4 

xMP mm x-coordinate of PCU2,i  

xMP,r mm Relative offset of the x-coordinate of the midpoint PCU,2,i 
of CU 2  

X - Bending axis 

y - y-axis 

ycs - Axis in longitudinal profile direction  

yf mm Feed length in TRPB 

Y - Y-axis 

z - z-axis 

z1 mm z-coordinate of PLMP,1 

z2 mm z-coordinate of PLMP,2 

z3 mm z-coordinate of PLMP,3 

z4 mm z-coordinate of PLMP,4 

zMP mm z-coordinate of PCU,2,i  

zMP,r mm Relative offset of the z-coordinate of the midpoint PCU,2,i 
of CU 2  

α1 rad Rotation angle of the machine bending plane, in TSS 
bending equal to the rotation angle of the rotatable trans-
portation system 

α2 rad Rotation angle of the torsional cDOF 

αT rad Elastic twisting angle of beam caused by MT and FB,z 

dαT rad/mm Differential elastic twisting angle of beam caused by MT 
and FB,z 

β rad Bending angle 
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Symbol Unit Description 
dβ rad Incremental bending angle of a profile element lifted 

onto the bending plane  

β0 rad Angle between profile support and the point of bending 
force application in y-direction 

β1 rad Rotation angle of N around Mb


, in TSS bending equal to 
the rotation of the compensatory axis of the bending 
head 

β2 rad Rotation angle of N around M,mapn  

βe rad Rotation around the normal vector of a profile element 
in the direction of the wall thickness tt 

dβe rad Incremental bending angle of a profile element 

βs rad Angle of circular segment between profile support and 
point s 

γ - Nominal shear strain 

γavg - Average nominal shear strain 

γe - Shear strain at the extrados 

γi - Shear strain at the intrados 

γm - Maximum nominal shear strain at the intrados and extra-
dos 

γm,v - Nominal shear strain at a vertex closest to the neutral 
bending axis 

γY - Nominal shear strain at the yield point 

γ  1/s Nominal shear strain increment 

δ mm Displacement along X-axis 

δij - Kronecker delta 

δM mm Machine deflection along X-axis 

δP mm Profile deflection along X-axis 

εα  - Axial strain 



xxiv  Symbols and Abbreviations 

Symbol Unit Description 
εαp  - Shear strain 

εe - Axial strain at the extrados 

εi - Axial strain at the intrados 

εp - Perimetral strain 

εY - Nominal strain at the yield point 

αε  1/s Axial strain increment  

αpε  1/s Shear strain increment in αp-direction 

ijε  1/s General state of strain increments 

pε  1/s Perimetral strain increment 

ptε  1/s Shear strain increment in pt-direction 

tε  1/s Strain increment in thickness direction 

tαε  1/s Strain increment in tα-direction 

plε  1/s Equivalent plastic strain increment 

plε  - Equivalent plastic strain 

ζ - Young’s modulus approximation parameter 

η rad Angle between the machine bending plane M and the 
bending plane B 

θ rad Cross-section orientation 

θi rad Cross-section orientation at discrete point Pi 

θlim rad Value determining the limiting angle range when calcu-
lating Δϕapparent,i 

θr rad Cumulative bending plane rotation 

dθr rad/unit 
length 

Bending plane rotation 

θr,corr rad Cumulative bending plane rotation, reduced by the ma-
chine stiffness, with added cross-section orientation θ 
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Symbol Unit Description 
dθr,corr rad/unit 

length 
Bending plane rotation, reduced by the machine stiffness 

θr,corr, offset rad Cumulative bending plane rotation, reduced by the ma-
chine stiffness, with added cross-section orientation θ, 
offset by angle η 

θr,i rad Cumulative bending plane rotation at discrete point Pi 

Δθr,i  rad/unit 
length 

Bending plane rotation at discrete point Pi 

θr,5Rh rad Cumulative bending plane rotation describing the total 
rotation of a helix with a helix radius Rh = Rh,1 and a 
pitch of hh = 5Rh,1 

dθr,5Rh rad/mm Bending plane rotation of a helix with a helix radius 
Rh = Rh,1 and a pitch of hh = 5Rh,1 

θr,CU,12,i rad Rotation angle between the point-symmetric extension 
of the resultant vector and the x-axis 

Δθr,CU,12,i rad/unit 
length 

Change of the rotation angle from Pi-1 to Pi 

θr,TRPB rad Cumulative tube rotation during TRPB 

dθr,TRPB rad/mm Tube rotation per feed length during TRPB 

ϖ rad Angle between the element plane and the bending plane 

κ  1/mm Curvature 

κ5Rh 1/mm Curvature of a helix with a helix radius Rh = Rh,1 and a 
pitch of hh = 5Rh,1  

κconst 1/mm Constant curvature 

κi 1/mm Curvature at discrete point Pi 

κmax 1/mm Maximum curvature 

κmin 1/mm Minimum curvature 

λ  - Proportional parameter according to Levy-Mises 

ν - Poission’s ratio 
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Symbol Unit Description 
νprofile - Poission’s ratio of profile 

νroll - Poission’s ratio of roll 

ξ - Relational parameter 

ρ - Ratio of bending radius RB and the profile height DP 

σα MPa Axial stress 

σα´ MPa Deviatoric axial stress 

σc MPa Contact stress 

σel MPa Von Mises stress in the elastic region 

σf MPa Flow stress 

σh MPa Hydrostatic stress 

σij MPa Stress tensor 

σijh MPa Hydrostatic stress tensor 

σij´ MPa Deviatoric stress tensor 

σp MPa Perimetral stress 

σp´ MPa Deviatoric perimetral stress 

σt MPa Stress in thickness direction 

σY MPa Yield stress 

σ∞ MPa Asymptotic parameter 

τ MPa Shear stress, equal to ταp 

τ´ MPa Deviatoric shear stress 

ταp MPa Shear stress in αp-direction 

τpt MPa Shear stress in pt-direction 

τtα MPa Shear stress in tα-direction 

pυ  mm Displacement of a differential element of the cross-sec-
tion in tangential direction 

x,iυ , y,iυ , z,iυ  mm Position vector elements of a single point on a curve 
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Symbol Unit Description 

s,x,iυ , s,y,iυ , s,z,iυ  mm Position vector elements of a single point on a secondary 
curve 

iυ


 mm Position vector of a single point on a curve 

s,iυ  mm Position vector of a single point on a secondary curve 

ϕ rad Cumulative twist 

dϕ rad/unit 
length 

Twist per unit length 

ϕ5Rh rad Cumulative twist of a helix with a helix radius Rh = Rh,1 
and a pitch of hh = 5Rh,1 

dϕ5Rh rad/mm Twist per unit length of a helix with a helix radius 
Rh = Rh,1 and a pitch of hh = 5Rh,1 

ϕapparent rad Cumulative apparent twist 

dϕapparent rad/unit 
length 

Apparent twist per unit length 

Δϕapparent,i rad/unit 
length 

Apparent twist per unit length at discrete point Pi 

ϕCU,12,i rad Torsion angle between contact units 1 and 2 

Δϕi rad/unit 
length 

Twist per unit length at discrete point Pi 

ΔϕPCU,1,i rad/unit 
length 

Twist per unit length measured by contact unit 2 when in 
position of contact unit 1 at discrete point Pi 

dϕprojected rad Angle between projectedo  and o  

ϕTRPB,dyn rad Dynamic cumulative twist of the straight tube during 
TRPB 

ϕTRPB,stat rad Static cumulative twist of the straight tube during TRPB 

χi - Boolean operator describing acute or obtuse angles in 
the calculation of the cross-section orientation θi 

χs - Boolean operator describing acute or obtuse angle in the 
calculation of the cross-section orientation θ(s) 



xxviii  Symbols and Abbreviations 

Symbol Unit Description 
ωn rad Angle of the normal unit vector to the xy-plane  

ωt rad Angle of the tangent unit vector to the xy-plane 

ωt,5Rh rad Angle of the tangent unit vector of a helix with a helix 
radius Rh = Rh,1 and a pitch of hh = 5Rh,1 to the xy-plane  

 

 

Abbreviations Description 
2D Two-dimensional 

3D Three-dimensional 

an. Analytical 

ASTM American Society for Testing and Materials 

CAD Computer aided design 

cDOF Controlled degrees of freedom 

CNC Computer numerical control 

CNH Case New Holland 

comp. Compensated 

CSR Cross-sectional ratio 

CU  Contact unit 

DIN Deutsches Institut für Normung e.V.  
[German Institute for Standardization] 

DP Dual-phase 

exp. Experimental 

FEM Finite element method 

GOM Gesellschaft für Optische Messtechnik  
[Corporation for optical measuring technology] 

IGES Initial Graphics Exchange Specification 

IMU Inertial measurement unit 
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MOS Freeform bending with a movable die developed by 
Murata, Ohashi, and Suzuki 

NC Numerical control 

num. Numerical 

LMP Length measurement probe 

PPP Point point point (first type of the Apollonius’  
Problem) 

STEP Standard for the exchange of product model data 

TKS ThyssenKrupp Steel 

tnb Frame made up of a tangent, normal, and binormal  
unit vector 

TRB Three-roll bending 

TRPB Three-roll push bending 

TSS Torque superposed spatial 

VDI Verein Deutscher Ingenieure  
[Association of German Engineers] 

 

 





 

1 Introduction 
After the early industrialization in the second half of the 19th century, with its main focus 
on part functionality, industrial design gained of great importance in the early 20th cen-
tury and has steadily risen in importance since.  

Since Alfred P. Sloan (1963) introduced annual model design changes to General Mo-
tors cars in the 1930s and this was adopted by competing car manufactures, automotive 
design has been under continuous evolution. After the boxier industrial design of the 
70s and 80s with clean lines and sharp angles, the design of structural parts, especially 
in the transport sector, have steadily included more and more curved elements. This 
modern design actually more closely relates to the classic automotive design from the 
50s and 60s. At that time complex curved shapes were realized by additional heat treat-
ment in between forming steps and welding, which oftentimes needed additional manual 
labor (Oehler, 1951). Today’s increased popularity of curved designs, in spite of in-
creased labor costs, can be explained by advances in process automatization and process 
control combined with advances in 3D CAD and finite element software that allow the 
productive systematic design and analysis of complex shapes, necessary for cost effi-
cient manufacturing. These techniques make possible a more aesthetic and organic de-
sign, including round shapes and continuous curves. The drive towards these designs 
cannot only be noticed in the automotive industry. Also, the bike industry, the furniture 
industry, and architecture follow a similar trend. Even the design of utility vehicles now-
adays is not simply focused on functionality alone but incorporates actual emotional 
design (see Figure 1.1). 

 
Figure 1.1: Actual space frame used in the APL tractor from CNH (Chatti et al., 

2010) consisting of individual curved profile parts in comparison to an 
optimized design using 3D bent side elements combining the functionali-
ties of the front pillar, roof rail, and rear pillar (Staupendahl et al., 2014a) 

Profiles are being used in all of the previously mentioned industries for structural ele-
ments, enclosures, handrails, etc. To meet the current demands for 3D bent profiles in 
high batch production, the industry mostly relies on form-bound processes such as 
stretch bending or hydroforming. Because of the current additional trend towards more 
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and more individuality, even high-batch industries are faced with a steady increase of 
product variants and are looking for more flexible processes to keep up economic pro-
duction (Groche and Schneider, 2000). In bending this means replacing form-bound 
manufacturing methods by kinematic bending processes. Although several 3D-profile 
bending processes have been designed in the recent decades, these processes are not yet 
widely used in the industry. The most likely reason for this circumstance is the lack of 
knowledge about the mechanisms of 3D-profile bending and the, consequently, difficult 
to control processes, especially regarding part tolerances. The aim of this work is the 
generation of a comprehensive insight into the process of 3D-profile bending, from the 
geometrical interrelations over the elastic profile behavior to the reciprocal effects of 
stresses in the forming zone, to be used by designers and machine manufacturers in order 
to take full potential of this promising technology. 

The thesis is subdivided into 8 chapters. Following the introduction, Chapter 2 will fo-
cus on the state of the art of 3D bending. Currently existing bending processes are in-
troduced as well as their respective process models. Next, the behavior of tubular mate-
rial is discussed. Finally, techniques for the measurement of profile contours are de-
scribed along with their advantages and disadvantages. From the conclusion of the state 
of the art, the aim of the thesis is deducted in Chapter 3. Chapter 3 focuses on the geo-
metrical characteristics of 3D-shaped profiles and addresses the differences between 3D 
profile contours with and without torsion. Using this mathematical foundation, the con-
trolled degrees of freedom (cDOFs) for the production of these shapes are derived and 
used in a subsequent step to classify the currently available 3D bending processes in 
terms of producible part complexity. In order to investigate 3D bending with torsion, 
Chapter 5 describes the development of a 5-cDOF bending machine, based on the TSS 
bending process, and the required force and torque measurement equipment. Addition-
ally, a comprehensive numerical process model is introduced, which is used in the fol-
lowing chapters to validate the process forces and the stresses and strains in the profile. 
Also, the development of a contour sensor is described that enables the time-efficient 
inline-measurement of 3D-profile contours. Chapter 6 analyzes the elastic profile be-
havior and the influence of the profile support and bending radius on the reaction forces 
and moments in the bending setup. By combining knowledge gained in Chapter 3 with 
knowledge gained in Chapter 6, the effect of torque on the bending plane orientation 
and rotation is described. Chapter 7 focuses on the plastic behavior of the profile in the 
forming zone. Especially, the interaction of stresses and strains is investigated and the 
impact of this interaction on bending force and torque. Chapter 8 finally introduces a 
process model that incorporates the knowledge on geometrical relations of Chapter 3, 
the elastic profile behavior of Chapter 6, and the plastic profile behavior of Chapter 7 
and is validated with experimental equipment described in Chapter 5. Chapter 9 con-
cludes the work and gives and outlook on potential further process extensions and com-
binations. 



 

2 State of the art 

2.1 Bending processes for the production of 3D tube and profile structures 

The DIN 8586 divides bending processes into the categories bending with translational 
movement and bending with rotational movement. According to Hermes (2011) and the 
VDI 3430 bending processes can be further categorized into processes with a kinematic  

 
Figure 2.1: Bending processes with a kinematic definition of the bending contour 

(Hermes, 2011, cf. VDI 3430) 
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Figure 2.2: Bending processes with a form-bound definition of the bending contour 

(Hermes, 2011, cf. VDI 3430) 

definition of the bending contour (Figure 2.1) and processes with a form-bound contour 
(Figure 2.2). In form-bound processes the form of the bending tools define the shape of 
the part. The form-bound tools offer optimal guidance of the part and a high repeat ac-
curacy. A major disadvantage is the low flexibility. In general, every new contour needs 
new tooling. Additionally, the size of the bending tools is coupled to the size of the part 
– large parts result in large tools. Limited flexibility is offered by rotary bending, rotary 
draw bending, and classical tube bending by allowing variable bending angles. Kine-
matic bending processes, on the other hand, purely define the bending contour by rela-
tive movements of bending tools in relation to the part. Tools only have to be adapted 
to the cross-section of the part. The following subsections give an overview about kin-
ematic 3D bending processes that allow processing of tubes and, within individual lim-
its, profiles with non-circular cross-sections.1 

 

                                              
1 Although incremental tube forming is only able to process and produce tubes with circular cross-sections, it is a 
highly interesting process able to produce load-adapted parts with a varying diameter and wall-thickness over the 
tube length. For further reading, the works of Becker et al. (2014) and Nazari et al. (2019) are recommended.  
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2.1.1 Three-roll push bending 

The most widely used industrial kinematic bending process to produce 3D bent tubular 
structures is three-roll push bending. Extensive investigations have been done to pro-
duce stable process models that accurately predict part behavior during production. Ha-
genah et al. (2010) set up an FE model for three-roll push bending and increased the 
simulation accuracy by including machine stiffness in the calculation. Gerlach (2010) 
presented an analytical process model of three-roll push bending for two-dimensional 
bending contours. Building up on this knowledge, Engel and Kersten (2011) presented 
an analytical formulation that included machine stiffness to increase the accuracy in 
two-dimensional bending. Kersten (2013) further elaborated on this subject and pre-
sented a method to generate process parameters solely by comparing target and actual 
bending radii. Plettke et al. (2012) showed that bending contours produced by three-roll 
push bending can be efficiently described by the Frenet-Serret formulas. In their inves-
tigations, they noticed a deviation of applied tube rotation and resulting rotation angle 
of the bending plane and introduced an empirical correction parameter called the torsion 
adjustment coefficient. Using a detailed FE model, Vatter and Plettke (2013) analyzed 
the behavior of the torsion adjustment coefficient and proposed an empirical character-
istic map that describes the tube feed, the tube rotation, and the position of the setting 
roll in relation to the generated tube rotation angle and curvature. They observed a slight 
influence of the applied tube rotation on the curvature, but could not define a clear trend. 
Engel and Groth (2015) performed similar investigations to analyze the torsion defor-
mation that occurs during applied tube rotation and noticed the trend that curvatures do 
in fact increase slightly with increasing tube rotation. This, however, they could only 
observe at high curvatures.  

The first analytical model to predict the tube rotation needed to produce accurate three-
dimensional curves was generated by Staupendahl et al. (2015). Their hypothesis was 
that during three-dimensional bending of tubes, meaning profiles with circular cross-
sections, plastic torsion is negligible and that the main driver for an offset of the applied 
tube rotation to the resulting rotation of the bending plane is the elastic tube deformation 
inside the machine during the bending process. As a result, a comprehensive analytical 
model was set up defining the applied tube rotation required to produce a specific target 
shape as a function of geometrical tube rotation, static elastic tube deformation, and 
dynamic elastic tube deformation (Figure 2.3).  

The behavior of the static elastic region is described by the torsion deformation of the 
straight tube of an initial length L, which is reduced during the bending process by the 
feed yf: 

T
TRPB,stat f i f

P

My L y
G I (2.1) 
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Figure 2.3: Geometrical model of three-roll push bending with specified static elastic 

and dynamic elastic region (Staupendahl et al., 2015) 

In the dynamic elastic region, the tube deformation resulting from the applied torsional 
moment is transported out of the bending process per arc length BR by incremental tor-
sional springback between the bending roll and the setting roll: 

T f
TRPB,dyn f i f

P B

M yy L y
G I R

 (2.2) 

The static elastic deformation and the dynamic elastic deformation are now added to the 
targeted cumulative bending plane rotation of a targeted tube contour. Staupendahl et 
al. (2015) exemplarily show the resulting equations for the cumulative rotation needed 
to produce a helical shape: 

T T f h f
r,TRPB f i f i f 2

P P B 2 h
h2

2

M M y h yy L y L y
G I G I R hR (2.3) 

with Rh being the helix radius and hh the pitch. The bending plane rotation that needs to 
be applied to the tube per feed is described by: 

T i f h
r,TRPB f 2

P B B 2 h
h

2 1
2

2

M L y hd y
G I R R hR

(2.4) 

In experimental validations, Staupendahl et al. (2015) noticed deviations of 2.5 % to 
12.5 %, depending on the bending radius, which stand opposed to deviations of up to 
33 % occurring without any compensation. The remaining deviations were assumed the 
result of using the geometric bending radius in the analytical model, which disregards 
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elastic springback, and the assumption of ideal plasticity to calculate the bending mo-
ment. Another factor was assumed non-considered friction between tube and tools. 
Groth and Engel laid a strong focus on the investigation of the transition zones occurring 
during three-roll push bending (see Figure 2.4). They analyzed the influence of the pro-
cess kinematics on the length and form of the transition zone (Groth and Engel, 2017) 
and noticed that the strong initial curvature peak in the infeed area can be reduced by 
increasing the amount of tube feed per setting roll displacement. This, however, also has 
a direct effect on the transition gradient. Because an ideal curvature jump cannot be 
realized and a transition gradient cannot be avoided, Groth et al. (2018b) proposed to 
actually consider this gradient or curvature slope during CAD-modeling. 

Figure 2.4: Characteristic oscillating curvature distribution generated by three-roll 
push bending (Groth et al., 2018c) 

Although Gerlach (2010) has shown that profiles with non-circular cross-sections can 
be bent with three-roll push bending to two-dimensional bending lines, bending of three-
dimensional contours necessitates specialized machines as, for instance, the Hexabend, 
the TKS-Mewag, the machines by Nissin and J.Neu, and the Torque Superposed Spatial 
(TSS) Bender (Chatti et al., 2010).  

2.1.2 TSS Bending 

The TSS-Profile bending machine was developed at the IUL with the primary focus 
being the flexible 3D bending of profiles with arbitrary cross-sections. A patent was 
filed in 2007 (Hermes and Kleiner, 2013) and, since then, the machine has been contin-
uously extended and optimized. The flexibility is gained by a full kinematic process 
setup, meaning that the target contour of the profile is solely defined by the movements 
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of the process axes. To further increase manufacturing flexibility, the process was de-
signed as a roll-based system, which offers continuous forming of bending contours.  

The initial process design was generated by Hermes out of the idea of having a counter-
roll system with single roll pairs being able to perform movements and rotations relative 
to the rest of the counter rolls (Hermes et al., 2008). Thereby, a profile transported 
through this counter-roll system would be bent and twisted according to the relative roll 
movements. This initial idea was extended by Hermes resulting in the process setup and 
machine shown in Figure 2.5. In the presented setup, the profile feed (c-axis) is achieved 
by 3 roll pairs mounted in a rotatable transportation system. The transportation system 
can be rotated around the 1-axis. During the design process, one counter-roll pair 
evolved into a compact bending head allowing it to be moved along a linear axis 
(X-axis). The bending head can freely rotate around the 2 and 1-axis to achieve a tan-
gential movement relative to the profile. 

 
Figure 2.5: TSS bending process (left) (Hermes et al., 2008) and TSS bending ma-

chine (right) 

Hermes (2011) described 4 modes of bending that can be realized with TSS bending: 

Mode 1: Constant bending of a single radius in a single bending plane, 
 where the X-axis has been moved to a fixed position and only the 
 c-axis is actually moving  
Mode 2: Bending of variable contours in a single bending plane, whereby  
 the X-axis and the c-axis are moving simultaneously 
Mode 3: Bending of 3D contours by simultaneously moving the X-axis and 
 the c-axis while changing the bending plane by rotating the  
 1-axis. The 2-axis positions itself according to the profile cross- 
 section 
Mode 4: Combined 3D bending and torsion to generate 3D contours with 
 a twisted cross-section 
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Hermes (2011) conclusion was that modes 1 through 3 are sufficient to bend profiles 
with arbitrary bending contours and that mode 4 is only needed to add additional twisted 
elements into the contour, compensate the self-twisting of unsymmetrical profiles or 
superpose shear stress in order to reduce bending forces and, as a result, springback. As 
he only focused on modes 1 through 3, Hermes looked at 3D bending as a sequence of 
bending single curvatures, located on different bending planes. He regarded these single 
bending operations as pure bending and calculated springback by (Chatti et al. 2010):  

B B,y

L,cor U

1 1 F L
R R EI

 (2.5) 

with: 
2

B,x P MB,y
L,cor

B,x P M 22
LL

R
L

(2.6) 

RU describes the radius of the profile after unloading. RL,cor is the loaded ideal radius RL 
reduced by the profile stiffness and the machine stiffness. Eq. (2.6) describes RL,cor as a 
function of the bending head displacement along the X-axis LB,x needed to produce the 
loaded ideal radius RL and as a function of the profile deflection P as well as the machine 
deflection M along the X-axis caused by the applied bending force. Hermes (2011) used 
this formulation in a NC-data planning system to setup a compensated CAD-model of 
the profile part, which subsequently is used in a kinematics simulation to generate the 
bending axis data (see Figure 2.6). Hermes (2011) used a straight statically indetermi-
nate beam, loaded with a bending force parallel to the X-axis, to describe the  two-di-
mensional  elastic  profile  behavior  and  reaction  forces  of  the  profile  support 

 
Figure 2.6: Process planning system for 3D bending of profiles (Hermes, 2011) 
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for TSS bending. He interpreted his analytical description to be in a good agreement 
with his experimental results during purely elastic and elastic-plastic bending. On close 
inspection of his results on elastic profile deformation, deviations of over 30 % are no-
ticed (see Figure 2.7). Hermes (2011) explains these deviations with significant machine 
deformation, which Chatti et al. (2010) was able to describe with the following displace-
ment function: 

8 2 2 4
M B B1.496 10 mm / N 3.974 10 mm / NF F (2.7) 

By adding M to P the deviation to the experimental deflection was reduced to 15 %. 

 
Figure 2.7: Experimental profile and machine deflection during TSS bending in 

comparison to numerical and analytical data (Chatti et al. 2010) 

It is important to note that Hermes (2011) did not take into account the torsion of the 
bending line in his process model. He instead looked at the profile as a flexible shaft and 
just compensated the bending radius. This kind of mathematical formulation is accepta-
ble as long as the inevitably resulting cross-section rotation relative to the bending plane 
matches the targeted profile shape or is irrelevant for the targeted application. However, 
in most cases during profile bending the orientation of the cross-section needs to be 
additionally varied to produce the desired results. The best example for such a profile is 
a simple handrail with a rectangular cross-section, where the top face is always supposed 
to point upwards. 

Hudovernik (2014a) performed extensive numerical analyses of the TSS bending pro-
cess and analyzed the location, size, and evolution of the forming zone. While Her-
mes (2011) used a CAD program to discretize the profile cross-section into a finite 
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amount of segments in order to calculate the bending moment according to the elemen-
tary bending theory as proposed by Vdovin (1980), Hudovernik et al. (2014b) extended 
the calculations of Al-Qureshi (1999), who presented an analytical solution for pure 
bending of tubes with circular cross-sections and material hardening, and El Megharbel 
et al. (2008), who presented a similar analytical solution for pure bending of profiles 
with square cross-sections and material hardening in the normal position (Figure 2.8a), 
to a square cross-section of variable orientation (Figure 2.8a-c).  

 
Figure 2.8: Thin-walled square cross-section at different orientation angles to the 

bending plane (Hudovernik et al., 2014b) 

Hudovernik (2014a) also noticed significant deviations between the targeted bending 
plane rotation and experimentally bent profiles, produced via the 3-cDOF TSS bending 
machine. 

Staupendahl et al. (2014b) investigated the possibility to combine TSS bending with an 
integrated induction-heating unit in order to reduce springback and produce load adapted 
bent profiles2 (see Figure 2.9). Additionally, the possibility of combined roll forming 
and 3D bending was examined (Staupendahl et al. 2014b). In the course of further in-
vestigations3 it became clear that, before the challenges of thermal expansion, thermal 
distortion, and high temperature material characterization with high heating rates could 
be met, bending at room temperature would have to be first thoroughly examined. 
 

 

                                              
2 The new process combination three-dimensional bending and integrated hardening was honored with the second 
place of the “Stahl-Innovationspreis” 2012 (Steel Innovation Award) in the category “Steel in research and devel-
opment / Processes” 
3 Pivotal investigations were performed by Juri Martschin in his bachelor thesis: Entwicklung eines Formula Stu-
dent Chassis unter Anwendung der Verfahrensmöglichkeiten des TSS-Profilbiegeprozesses [Development of a 
Formula Student chassis using the process potentials of the TSS profile bending process], 2016, supervised by: D. 
Staupendahl and A. E. Tekkaya 
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Figure 2.9: Springback reduction (a) and strength increase (b) of air hardening steel 

by combined bending and induction heating (Staupendahl et al., 2014b)4 

2.1.3 MOS bending and process extensions 

A highly flexible method to bend tubes and profiles is freeform bending with a movable 
die. The first of its kind was developed by Murata, Ohashi, and Suzuki in 1989. The 
original design of the so-called MOS bending method uses a pusher to feed a tube along 
the Z-axis (Figure 2.10) through a die, mounted in a spherical bearing. The bearing itself 
is mounted on a bending head, which is moved along the X and Y-axis and, thereby,  
 

 

                                              
4 The data and foto used to set up Figure 2.9a was originally generated by Christian Löbbe in his bachelor thesis: 
Verfahrenserweiterung des TSS-Profilbiegeprozesses mittels induktiver Wirbelstromerwärmung für ferromag-
netische Rundrohre [Process extension of the TSS profile bending process by induction heating of ferromagnetic 
tubes], Technische Universität Dortmund, 2011, supervised by: D. Staupendahl, M. Hermes, and A. E. Tekkaya. 
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Figure 2.10: 3-axis Nissin bending machine (left) and 5-axis Nissin bending machine 

(right) (Gantner, 2005) 

deflects the tube in the desired direction. In experimental investigations Murata et al. 
(1994) showed that radius to tube diameter ratios (R/D) of as little as 2.5 are reachable. 
Using profiles with square cross-sections, this ratio increased to approximately 8 (Mu-
rata, 1996). The bending machines were originally manufactured by Nissin Precision 
Machines Co. Ltd. and are now licensed to J. Neu GmbH. J. Neu has continued the 
development and extension of the original machine design and today additionally offers 
5 and 6-axis machines. The 5-axis and 6-axis machines have additional rotary axes on 
the bending head that can guide and twist profiles with non-circular cross-sections (Fig-
ure 2.10, right). Ganter (2005) states that the additionally possible use of a mandrel al-
lows R/D ratios of 2. Although all 3, 5, and 6-axis machines are operated by a stable 
CNC-system and detailed numerical models have been developed (Beulich et al., 2017), 
no analytical model exists that describes the forming behavior and would allow efficient 
and reliable compensated NC-data generation. A compensation of bending data is cur-
rently still done with empirical correction factors for material and clearance, leading to 
acceptable results for single bending radii, but to errors in bending plane rotation of up 
to 108 % (Guo et al., 2018) 

2.1.4 Parallel kinematics bending 

A parallel development was done in Japan and Germany on freeform bending with a 
movable die using parallel kinematics. Neugebauer (2001) developed the Hexabend pro-
cess (Figure 2.11, left), while Goto et al. (2008) worked on 6-DOF bending. Both sys-
tems work on the Steward-Gough platform (Tsai, 1999) using 6 servo-hydraulic cylin-
ders. The general bending mechanism is similar to MOS bending in that a pusher feeds 
a tube through a die, which moves in space to deflect and, thereby, bends the profile.  
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Figure 2.11: Left: Hexabend machine (Hoffmann et al., 2013), right: 6-DOF bending 

machine (Goto et al., 2012) 

The difference is that translations and rotations in all three spatial directions are possible. 
This means that during infeed and outfeed the distance of the bending head to the feeding 
system can be reduced to minimize scrap. As in the 5 and 6-axis MOS bending ma-
chines, a mandrel can be used to minimize cross-section deformation and, as a result, 
the R/D ratio. The focus of the investigations on the Hexabend process were on system 
setup and possible machine extensions as for instance induction heating and controlled 
lubrication. No focus was lain on describing the forming behavior of the tube. Rather an 
empirical springback correction was performed similar to the strategy used for MOS 
bending. (Hoffmann et al., 2013) 

2.1.5 Combined drawing and free-form bending 

In 2006, Flehmig et al. (2009) developed a free-form bending process for tubes with 
circular cross-sections, which, at first glance, operates similar to MOS bending. A 
pusher feeds a tube through a die, or bending head, which deflects the tube to create a 
curved shape. The major difference is that the bending head can only move linearly 
along a single bending axis. The bending plane rotation, needed for 3D bending, is re-
alized by rotating the feeding system. At a closer view, the system is actually much more 
similar to TSS bending, which also uses a single linear axis to guide the bending head. 
However, while the TSS bending system uses a roll-based transportation system and is, 
thus, dependent on friction based contact, the free-forming process by Flehmig et al. 
(2009) uses a form-closed pusher. Because the patent that Flehmig et al. had applied for 
was  specified  for  tubes  and  the  TSS bending  patent  was specified  to  use  similar  kine- 
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Figure 2.12: Process principle of combined drawing and free-form bending (Kibben et 

al., 2013) and machine setup  

matics for bending profiles with arbitrary cross-sections, Flehmig et al. could not simply 
add the profile bending capability to their system. In order to circumvent the TSS bend-
ing patent, which specifically meant the profile twisting part, Kibben et al. (2013) com-
bined their system with a tube drawing stage. Figure 2.12 shows the process principle 
of combined drawing and free-form bending and the realized machine setup. The tube 
is fed by the pusher through a drawing die, which changes the formerly circular cross-
section to an arbitrary shape in a single stage. The drawn tube is then further fed through 
the bending head, which deflects the tube to create a bend. The bending plane is changed 
by rotating the tube and the drawing die. If both rotations are applied synchronously, 
just a change of the bending plane results. In order to create a twisted cross-section, an 
offset between both rotations needs to be set. Here, it is important to note that the profile 
is not actually twisted between the drawing die and the bending head – it is simply drawn 
through a die that has changed orientation. The mechanism is similar to how twisted 
cross-sections are generated via incremental profile forming (Grzancic et al., 2019). This 
fact leads to the ability of the machine to create helical shapes with extremely small 
pitches.  

2.2 Characterization of tubular material for the use in bending process 
models 

Profile bending is usually looked at as a biaxial process, considering only longitudinal 
and radial stresses. When bending large radii, as in the case of kinematic bending, radial 
stresses are frequently neglected to look at the process purely uniaxially. In this case, 
the direct use of a flow curve generated from a uniaxial tensile test seems an obvious 
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choice and should lead to acceptable results. In the literature, this procedure is quite 
common and frequently done. Ludwik (1903) used this method for sheet metal bending, 
Chatti (1997) and Dirksen (2008) used it for three-roll bending, Hermes (2011) used it 
for TSS bending, and Engel et al. (2008) used it for rotary draw bending. However, 
Chatti (1997) explained that the pure use of a tensile test leads to significant errors and 
recommends the execution of a pure bending test. For 3D bending this test would have 
to be done for a large amount of combinations of bending radii and bending planes lead-
ing to an extensive number of experiments. But why does the pure bending test lead to 
different results than a smart use of the flow curve in an advanced bending model – 
especially when bending large radii, where the radial stresses are low?  

One reason is the cross-section deformation that might occur during bending and is also 
seen during a pure bending test (Chatti, 1997). In this case, a process model based on 
the elementary bending theory, which only considers the original cross-section of the 
profile, leads to greater deviations when fed with data from a flow curve rather than with 
data from a bending moment-curvature graph. However, depending on the kinematics 
of the bending process, for which material data is to be generated, the pure bending test 
might also overestimate the cross-section deviation – especially when generating data 
for processes with a localized forming zone as TSS bending, where the non-plastified 
profile regions stabilize the cross-section in the forming zone. In a pure bending test, the 
entire profile is bent the same amount at the same time, thus lacking this previously 
mentioned stabilizing effect.  

2.2.1 Behavior of tubular material in tension and compression 

Another reason can be a different material behavior in the tensile and compressive di-
rection along the longitudinal axis of the profile. It is generally accepted in the field of 
engineering that steel exhibits similar behavior when applied with tension or with com-
pression. This is the case for the elastic region, as is important in machine engineering 
and structural engineering, as well as for the plastic region. Thus, the fairly easy to use 
tensile test, using probes cut from sheet material or bar stock, depending on the forming 
process and material used, is usually used as quick means to generate the flow curve. 
Using a flow criterion like, for example, von Mises, this uniaxial flow curve can then be 
used to set up a yield locus, which describes the state of stresses of the material in three 
dimensions. In the case of isotropic materials, this leads to acceptable results, or when 
using the results in processes, in which main stresses are applied in the tested material 
direction. For processes with complex stress states, the yield locus can be further opti-
mized by performing additional tests (Yin et al., 2014b). For sheet metal forming mostly 
only tests in the first quadrant are performed. The most popular test in this quadrant 
alongside the uniaxial tensile tests is the bulge test, which shows the material behavior 
under biaxial tensile stress and was first introduced by Hill in 1950. Because of the 
possibility to perform this test on standard sheet metal testing machines, it has also found 
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its way into the industry. Alternatively, a stack compression test can be performed, 
which, because a stress is applied in the normal direction to the sheet, also describes the 
material behavior in the biaxial stress state. Yin (2014a) mathematically shows the 
equivalence of the deviatoric stress states of equibiaxial tension and stack compression. 
For this test, a universal testing machine can be used, making the application readily 
available for the industry. Special care does have to be taken to overcome the friction 
between the sheets, however (An and Vegter, 2005). In addition, a biaxial tensile test 
can be performed, which, however, needs specialized equipment. If this equipment al-
lows changing the proportion of the applied stresses, then various points in the first 
quadrant of the yield locus can be gained (Verma et al., 2011). Several authors have 
presented shear specimen geometries that give information on the second quadrant of 
the yield locus. Yin (2014a) presents a thorough overview of this subject and recom-
mends the plane torsion test with a twin bridge design over the Miyauchi-test as well as 
the ASTM B831 standard shear test, because of the advantages of having no parasitic 
reaction torque in the shear zone. In addition, other than the Miyauchi-test specimen the 
opposite shear zones are loaded in the same direction so that actually anisotropy or kin-
ematic hardening can be taken into account by twisting the specimen into the opposite 
direction (Yin, 2014a). This means that also data can be gained about the fourth quadrant 
of the yield locus. However, for the plane torsion test, special equipment is needed. The 
ASTM B831 specimen can be tested in a standard tensile testing machine and, as the 
twin bridge specimen, can also be used to gain different data about quadrants two and 
four. Yin et al. (2014b) actually shows that the modified ASTM specimen proposed by 
Merklein and Biasutti in 2011 produces similar results as the twin bridge specimen when 
using an optical strain measurement system for the generation of flow curves, making 
this geometry the recommended choice for the industry. Because in-plane compression 
is difficult to be achieved with standard testing machines and because tensile stresses 
are generally more profound in sheet metal processes, the third quadrant of the yield 
locus including the uniaxial negative stress directions is usually not experimentally in-
vestigated. Instead, the first quadrant is inverted through the point of origin to describe 
the material yield in quadrant number three. By inverting the yield locus through the 
point of origin from quadrant one, including the positive uniaxial stress data, to the 
quadrant three, differences in the behavior in the tensile and compressive region are 
neglected.  

If the profile to be bent now exhibits an anisotropic behavior because of pre-strains in-
duced by the profile production process as, for instance, roll-forming (Weimar, 1966), 
a process model solely relying on the tensile tests would cause significant errors and 
impede a thorough investigation of the forming mechanisms themselves. 
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2.2.2 Tensile and compression test methods 

Nonetheless, it is common in the industry to rely solely on the tensile test. This is espe-
cially due to the difficulty in preparing probes made from sheet metal for uniaxial and 
biaxial compression tests (Zillman et al., 2015). To prevent buckling of uniaxial com-
pression probes made from sheet metal the height to width ratio has to be kept between 
2 or 3 (Wiederhorn et al., 2006). Depending on the wall-thickness of the probes, this can 
lead to small necessary heights and overall small probes. Alternatively, anti-buckling 
guides can be used (Wiederhorn et al., 2006), which can lead to high friction and thus 
to errors in the results, especially at high strains. To reduce friction Yoshida et al. (2002) 
introduced teflon sheets between the anti-buckling guides and additionally applied pe-
troleum jelly (vaseline) to further reduce the friction. Together with the adhesive bond-
ing of several 1 mm probes to achieve a test specimen with a wall thickness of 5 mm, 
compressive strains up to 0.1 were achieved for mild steel and high-strength dual phase 
steel (DP600). Kuwabara et al. (2009) advanced this design by using upper and lower 
comb type anti-buckling guides that additionally reduce the friction between the tools 
and the test specimen. Using Copper and Aluminum alloys with a thickness of just 
0.25 mm compressive strains up to 0.2 were achieved. Other than Iwata et al. (2001), 
Boger et al. (2005), and Cao et al. (2009), Kuwabara et al. (2009) did not have to pre-
determine the friction between the sample and the guides in order to subtract it from the 
measured data as the friction only added an error of under 0.6 % to the flow stress of the 
materials. 

Tisza and Lukács (2014) analyzed the springback behavior of high strength dual-phase 
steel sheets (DP600, DP800, and DP1000) and for this purpose developed a test setup 
for cyclic high strain tensile and compressive tests. To prevent buckling of the probes 
they developed a comb-like supporting structure, that, other than the guiding dies by 
Kuwabara et al. (2009) was not positioned in parallel to the probes axis but vertical to 
it. As the probe is lengthened or compressed, the comb-like structural elements bend in 
the according direction. Thus, no friction is applied to the probe. On the other hand, the 
force needed to bend the structures needs to be known and subtracted from the measured 
data. Tisza and Lukács (2014) were able to achieve compressive strains up to 0.04. 

To overcome the necessity of using a buckling guide and the resulting difficulties in 
subtracting parasitic forces, ul Hassan et al. (2016) used miniature tensile probes with 
an active gauge length of 2 mm, a width of 2 mm and thickness of 1 mm. These were 
able to be cut directly out of the investigated 1 mm thick sheet materials, DC04, DP600 
and DP1000. Due to the small gauge-length, the application of an extensometer was not 
possible and the strains had to be measured optically via a GOM Aramis setup. This 
online strain measurement system offers a great flexibility, in this case enabling the se-
lection of the area with uniaxial stress, but also necessitates a cumbersome analysis of 
the gathered data, as the points to be used as a virtual extensometer have to be chosen 



Techniques for the measurement of 3D bending contours 19 

 

manually in each analysis. Ul Hassan et al. (2016) were able to compress up to strains 
in the region of 0.08 while DP600 buckled when exceeding compressive strains greater 
than 0.03. While the gauge length of 2 mm was two times the material thickness in the 
performed experiments, which was proposed by Wiederhorn et al. (2006) as being the 
lower limit to avoid buckling, the length of probe between the clamps of the test setup 
was 3 mm, which according to Wiederhorn et al. (2006) is the upper limit to avoid buck-
ling. Reducing this free distance, however, might not have been possible due to limita-
tions in the optical measurement system. A relevant observation that ul Hassan et al. 
(2016) made during their experiments, was that the Young’s modulus significantly 
changes from 0 up to a strain of 0.05, showing a near linear decrease by 6 % for DC04, 
21 % for DP600, and 14 % for DP1000. With TSS bending, loaded radii of 450 mm 
have been achieved during cold forming (Staupendahl et al., 2014b). Considering a lin-
ear strain distribution over the cross-section and a profile height of 40 mm, this equals 
to a maximum strain of 0.045 on the outer fiber. When bending 1000 mm radii, the strain 
is still 0.02. Considering these values and the findings of Hamad et al. (2015) the varia-
tion of the Young’s modulus of the chosen materials should be investigated to determine 
the necessity of including this variation in the further analysis and especially in an ana-
lytical process model. 

2.3 Techniques for the measurement of 3D bending contours 

Chatti (1997) analyzed several methods to measure the curvature of two dimensionally 
bent profiles and differentiated between contact methods, which he divided into point 
measurement techniques and integral measurement techniques, and noncontact meth-
ods. Dirksen (2008), who himself used a laser triangulation sensor, movable relative to 
the profile along a linear axis to measure the bending line online during three-roll bend-
ing, extended this schema by further differentiating between online and offline measur-
ing methods as well as methods that measure a constant curvature versus those that 
measure a curvature trend. Based on the classifications of Chatti and Dirksen an over-
view of all relevant curvature measurement techniques is given in Figure 2.13. The dif-
ferentiation by Dirksen between the capability to measure only constant curvatures or 
curvature trends is not pursued since any sensor can be easily given this ability by the 
simple addition of a feed sensor. 

3D contour measuring systems available on the market today that can directly compute 
and output a limited amount of contour data rely on two different measurement tech-
niques. On non-contact contour projection measurement and on non-contact surface 
measurement. The advantage of the contour projection measurement is the fast pro-
cessing time, which is in the range of seconds (Thiel, 2009). Examples of projection 
measurement systems are the TubeInspect products from AICON 3D Systems GmbH 
(Thiel, 2009), which uses silhouette measurement to determine the bending line, and the 
TUBOSCAN S by TRACTO-TECHNIK GmbH, which uses shadow measurement. The  
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Figure 2.13: Systems to measure curvatures of bent tubes and profiles. Extended chart 

based on Chatti (1997) and Dirksen (2008) 

disadvantage is that these methods can actually only be used for tubes with circular 
cross-sections. Tubes with arbitrary cross-sections lead to irregular 2D projections and 
ambiguous shape computations, which the processing software cannot interpret. Readily 
available non-contact surface measurement systems, which directly output contour data, 
rely on a laser scanner fixed to a coordinate measuring arm. Measurement systems using 
a coordinate measuring arm and only one contact or non-contact sensor can only be used 
offline. For online measurement, at least three points of the profile have to be measured 
simultaneously to directly generate radius data. Three point measurements can be done 
by using contact or non-contact sensors. Non-contact sensors that supply the needed 
measurement accuracy are optical sensors like laser triangulation, through-beam sen-
sors, and laser scanners. Structured light scanners also supply the needed accuracy, but 
the data amount of the continuously measured point cloud is too time-consuming for 
currently available evaluation systems to allow online measurement. Three through-
beam sensors in the form of optical micrometers at fixed distances to each other have 
been used by Klaus (2002) to set up an online-radius sensor for the measurement of 
curved profile contours directly coming out of an extrusion press. Radii of profiles with 
non-circular cross-sections were measured by analyzing the light beam blocked in each 
of the sensors by one edge of the profile, running through the measurement setup. How-
ever, the setup used only allowed the analysis of two-dimensional profile contours. Alt-
hough three through-beam sensors could also be used to measure three-dimensional con-
tours, based on the sensors ability to detect only the light beam blocked by the object 
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moving through it and thereby not being able to detect cross-sectional details, the meas-
urements would be limited to profiles with circular cross-sections. A single laser dis-
placement sensor mounted on a linear guide was used by Dirksen (2008) to setup an 
online measurement system during three-roll bending. The three points required for a 
radius definition were gained by the sensor moving back and forth at a high speed rela-
tive to the profile movement during bending.  

Although optical non-contact sensors offer a higher flexibility, can be easily imple-
mented in existing processes (Döbele et al., 2009), and are not affected by wear, contact 
sensors are much more inexpensive and, especially in low batch production, have their 
raison d'être. Chatti (1997), for instance, successfully integrated a pulley-based mul-
tipoint contact sensor in a closed-loop control of a three-roll bending machine.  

Ghiotti et al. (2017) developed a mandrel with an embedded inertial measurement unit 
(IMU) to monitor the bent geometry during three-roll push bending of round tubes 
online. The IMU comprises a 3-axis gyroscope to measure the angular velocities and a 
3-axis accelerometer. Integrating the acquired values results in the rotation and displace-
ment of the mandrel. Comparing the targeted movement with the actual movement given 
by the IMU, the springback of the tube was calculated. Here, Magro et al. (2019) noticed 
a high dependency of the accuracy on the clearance of the mandrel and the bending 
angle and proposed to couple the IMU rigidly to the free end of the tube.  

Moreover, the company TeZet Technik AG, although offering a system to optically 
measure two-dimensional contours of profiles with rectangular cross-sections (TeZet, 
2017), still recommends using a contact measurement technique for the measurement of 
profiles with three-dimensional contours (TeZet, 2010). But, although being able to an-
alyze these contours, comparable to contact and non-contact systems from AICON, 
GOM and others, the system by TeZet is only able to perform offline measurements. 

 





 

 

3 Aim 
3D bent profiles have the potential to meet the current demand for aesthetic and organic 
design that includes round shapes and continuous curves. In addition, the ever-increas-
ing demand of higher productivity, higher flexibility, and a reduced environmental foot-
print can potentially be met by the possibility of integrating multiple single parts and, 
thus, several functions in one single part. This allows the omission of additional han-
dling and joining steps and can result in an overall reduction of processing time. Several 
3D bending processes exist that were designed to meet exactly these challenges. Inter-
esting is, however, that these process are not yet widely used in the industry.  

One reason could be that the mechanisms of 3D profile bending are not yet fully under-
stood. As 3D profile bending is a kinematic process and, thus, does not use form-bound 
tools to generate the profile contour but rather solely uses actuator movements, it is 
extremely sensitive to imprecise actuator control. If, now, the profile bending mecha-
nisms are not well described, the process control lacks the accuracy needed to drive the 
actuators to produce a part with the targeted precision. The aim of this work is to fill this 
knowledge gap in order to allow designers and machine manufacturers to take full use 
of this promising technology.  

As a first step to achieve this goal, the geometrical characteristics of 3D shaped profiles 
have to be analyzed, especially addressing the differences between 3D profile contours 
with and without torsion. Based on this analysis, the essential amount and position of 
controlled degrees of freedom (cDOFs) will be derived that 3D bending kinematics need 
to incorporate for the production of these shapes. This step will lay the basis for a clas-
sification of currently available 3D bending processes in terms of producible part com-
plexity. 

After establishing the geometrical foundation for 3D profile bending, a 5-cDOF bending 
machine will be set up, based on the TSS bending process. In order to open up the pos-
sibilities to thoroughly investigate the process behavior, not only during bending, but 
also during twisting, a fully integrated torque sensor will be developed. In the following, 
the experimental setup will be used to set up a comprehensive numerical process model, 
which will be able to not only provide the process forces in all spatial directions, but 
also the stresses and strains in the profile. To overcome the current time-consuming task 
of first, optically measuring the surface contour of the profile, then, converting the rec-
orded point cloud to a mathematically usable format and, finally, extracting the relevant 
contour data, an efficient inline-measurement system will be developed. 

The experimental and numerical setup will, then, be used to generate fundamental pro-
cess understanding of 3D bending. The underlying process analysis will be structured 
into an elastic analysis, which will show elastic profile deformation due to bending and 
twisting and the relationship and reciprocal behavior of the applied forces and torque. 
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An emphasis will be lain on the unwanted bending plane rotation that can be induced by 
applied torque. The plastic analysis will focus on describing the stresses and strains in 
the forming zone of the profile. Here, not only the stresses and strains in axial direction 
will be investigated, as has been the case in all previous investigations of 3D profile 
bending, but also along the perimeter of the cross-section. Additionally, shear stresses 
and strains over the cross-section will be analyzed that result from profile twist. An 
emphasis will be lain on the investigation of simultaneous profile deformation by bend-
ing and by torsion and the impact this coincidental deformation has on the resulting 
bending moment as well as torque. 

Finally, the geometrical description of 3D profile bending will be merged with the elas-
tic and plastic profile description to a comprehensive process model. The validation of 
this process model will be shown using experimentally produced sample geometries.  

 

 



 

 

4 Characteristics of 3D profile bending 
In Section 2.1 tube and profile bending processes were discussed that allow the produc-
tion of two-dimensional and three-dimensional tubular shapes. As such, 2D profile 
bending can be defined as forming profiles into two-dimensional shapes where all bend-
ing radii lie in the same bending plane. Considering cross-sections with symmetry along 
the bending plane or point symmetry around the center of area, the bending process can 
fairly accurately be described by only considering longitudinal stresses and, thereby, 
regarding it as a uniaxial problem. Depending on the relation of wall-thickness to the 
cross-sectional diameter and the relation of the bending radius to the cross-sectional 
diameter the consideration of perimetral and radial stresses can further increase model 
accuracy (see Section 7.2). When bending non-symmetrical cross-sections, shear 
stresses are introduced into the profile because bending processes are generally set up 
so that the resultant of the bending force intersects the center of area of the cross-section 
rather than the center of shear (Groth and Engel, 2018a). These shear stresses cause an 
internal torque around the center of area of the cross-section and, thereby, result in pro-
file twist. To achieve in-plane bends, this internal torque has to be compensated by an 
externally applied load. 3D profile bending can be defined as forming profiles into three-
dimensional shapes. But what defines a three-dimensional profile shape? Section 2.1 
gave an overview of 3D bending processes and their respective process models with the 
outcome that, up until now, three-dimensional bending is seen as a sequence of bending 
single curvatures, located on different bending planes. This view breaks down the three-
dimensional problem into several two-dimensional ones, allowing the above-mentioned 
simplifications for 2D bending to be applied. But is this an accurate representation of 
what actually happens during 3D bending? 

4.1 Geometrical definition of 3D contours 

4.1.1 Frenet-Serret description of 3D curves 

In general, continuous and differentiable three-dimensional curves can be mathemati-
cally described using the Frenet-Serret formulas, originally described by Frenet (1852) 
and Serret (1951). The formulas describe the local behavior of a curve using a frame 
made up of a tangent, normal, and binormal unit vector (tnb-frame). The rotation of the 
frame around the tangent unit vector describes the mathematical torsion and the rotation 
of the frame around the binormal unit vector describes the curvature at arc length s of 
the curve. The tangent and the normal unit vector span the osculating plane on which 
the osculating circle lies, which has a second order contact with the curve (see Fig-
ure 4.1). The term torsion is misleading, as the mathematical torsion does not have an-
ything to do with mechanical torsion or twist but actually describes the relative rotation 
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Figure 4.1: Curve r  with local tnb-frame and representation of the osculating circle 

of one osculating plane to the next. The term torsion in its mathematical sense is, thus, 
replaced by the term rotation. If the three-dimensional curve r  is described in terms of 
the arc length s, 

x s
r s y s

z s
(4.1) 

then the curvature , which is regarded as a scalar, can be described by the change of 
the tangent t , or in other words, by the derivative of t . Since t  is the derivative of r , 
curvature  is simply the absolute value of the second derivative of r : 
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ds ds
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Considering that  
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it follows that 
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The derivative of n  with respect to r  is: 
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1dn s d r s
ds ds

(4.5) 
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The binormal unit vector b  is normal to t  and n : 

b s t s n s (4.6) 

The change of b  is described by: 

0 since  and  are parallel
dt s

n s
ds

db s dt s dn sd t s n s n s t s
ds ds ds ds (4.7) 

As db s ds t s  and db s ds b s  it follows that db s ds  is parallel to n . 
As such, the scalar rotation d r and the change of b  can be put into the following rela-
tion: 

r

db s
d s n s

ds
(4.8) 

Multiplying both sides with the unit vector n  and inserting Eq. (4.7) gives: 

r

dn s dn s
d s t s n s t s n s

ds ds
(4.9) 

Inserting Eqs. (4.4) and (4.5) into Eq. (4.9) yields: 
2 3

r 2 2 3

1 dr s d r s d r s
d s

ds ds ds
(4.10) 

Eq. (4.4) relates the change of the tangent unit vector to the curvature. Eq. (4.8) relates 
the change of the binormal unit vector to the rotation. In order to relate the change of 
the normal unit vector to both scalars, n  is written as a vector product of b  and t . Thus, 
the derivative of n  is: 

dn s db s dt sd b s t s t s b s
ds ds ds ds

(4.11) 

Inserting Eqs. (4.4) and (4.8) into Eq. (4.11) yields: 

r

dn s
d s n s t s b s s n s

ds
(4.12) 

Considering that  

b s n s t s   and  t s b s n s (4.13) 

Eq. (4.12) can be written as: 
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d s b s s t s

ds
(4.14) 
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Eqs. (4.4), (4.8), (4.14) are what is known as the Frenet-Serret formulas and can be writ-
ten in the following matrix notation: 

r

r

0 0
0

0 0

t s s t s
d n s s d s n s
ds

d sb s b s
(4.15) 

If curve r  is given in terms of a path-independent variable such as the time, 

x t
r t y t

z t
(4.16) 

which, according to Plettke et al. (2012), can be the case if the curve was generated in a 
CAD program and saved in the IGES or STEP format, the curvature can be calculated 
by: 
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dr d r
dt dt

t
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(4.17) 

and the rotation can be calculated by: 
2 3

2 3

r 22

2

dr d r d r
dt dt dt

d t
dr d r
dt dt

(4.18) 

The Frenet-Serret formulation of curves can be directly applied to the bending line of a 
profile. Following the nomenclature of VDI 3431, the osculating plane can be described 
as the bending plane, with the angle between two successive planes called rotation angle. 

4.1.2 General mathematical description of 3D-shaped profiles 

In order to see if the description of the bending line is sufficient to describe a three-
dimensionally shaped profile, a case study on the geometry of a helical handrail is per-
formed. Only a geometrical analysis is performed. Elastic and plastic material behavior 
is neglected in this case. In the example, a helix is described whose center axis falls 
together with the z-axis. The radius of the helix is given the parameter Rh, the pitch of 
the helix is given the parameter hh. The x and y-coordinates of the points on the curve 
that make up a helix are parametrically described in the same way as those of a circle. 
The difference is the presence of an additional z-coordinate that describes the point 
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movement in the z-direction. The z-coordinate has to be parametrized in such a way that 
the pitch hh is 0 at t=0 and linearly increases to hh at t = 1. The resulting parametric 
representation is: 

h

h

h

cos 2
sin 2

x t R t
r t y t R t

z t h t
 (4.19) 

If the parameter t is seen as time then the tangent vector dr dt  can be regarded as the 
velocity vector. The absolute value of the velocity vector is the instantaneous speed: 

2 2 2
22 2

h h2
dr t dx t dy t dz tds R h

dt dt dt dt dt
(4.20) 

The arc length of of the helix can, thus, be described by: 

22 2
h h

0

2
t dss t t R h

dt
(4.21) 

Using Eq. (4.21) together with Eq. (4.19), the helix can be stated in terms of the arc 
length s: 

h 22 2
h h

h 22 2
h h

h
22 2

h h

2cos
2

2sin
2

2

R s
R h

x s
r s y s R s

R hz s
h s
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(4.22) 

The curvature is calculated by: 
2

h
22 2

h h

2
2

R
s

R h
(4.23) 

The rotation is calculated by: 

h
r 22 2

h h

2
2

hd s
R h (4.24) 
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Figure 4.2 shows an exemplary helical handrail with a circular cross-section (a) in com-
parison to helical handrails with square cross-sections (b, c). The bending line in all 
three cases is described by a helix with a helix radius Rh = Rh,1 and a pitch of hh = 5Rh,1 
resulting in: 

h

2

5 2
h h

2
2 25R s

R R
(4.25) 

and 

hr,5 2
h h

10
2 25Rd s

R R
 (4.26) 

Neglecting cross-section deformation during production of the helical handrail with the 
circular cross-section and, thereby, seeing the cross-section as keeping its original shape, 
the rotation of the cross-section around the bending line can be said to have no effect on 
the final shape of the bent part.  
 

 

 

 

For any helix, whose center axis falls together with the z-axis, the angle of the normal 
unit vector to the xy-plane is defined by: 

1 1
n cos sin 0 0

2 zs n e (4.27) 

where ez is the unit vector in z-direction. At the same time the angle of the tangent unit 
vector of any helix to the xy-plane is defined by: 

1 1
t cos sin

2 z zs t e t e  (4.28) 

For the special case of a helix with Rh = Rh,1 and a pitch of hh = 5Rh,1 Eq. (4.28) becomes: 

h

1
t,5 2

5sin
2 25

R s (4.29) 

 

For profiles with circular cross-sections, it can be followed that in a purely geo-
metrical analysis the sole description of the bending line is sufficient to describe 
the shape of a 3D part. As a result, the view of 3D bending as a sequence of bend-
ing single curvatures, located on different bending planes is valid in this case. 
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So, although Eq. (4.26) implies a continuously changing bending plane with a constant 
rotation d r,5Rh, Eqs. (4.27) and (4.29) show that the angle between the bending plane 
and the xy-plane is constant over the complete helical bending line. What this means for 
a profile with a square cross-section can be seen in Figure 4.2 b). The figure shows the 
outcome of shaping a profile with a square cross-section solely on the basis of the bend-
ing line. At s = 0 the cross-section position is defined so that two parallel sides of the 
square are parallel to the xy-plane, while the two adjacent sides are parallel to the 
yz-plane. With an increasing arc length s, the bending plane rotates relative to the initial 
position of the cross-section. Since the angle of the bending plane relative to the xy-plane 
actually does not change, the result is a rotation of the cross-section around the bending 
line in the xyz-coordinate system. Figure 4.2 b) shows the rotation of the cross-section 
at arc lengths: 

1 1 4 with 0, , , ,1
5 2 5

s t t (4.30) 

Relative to the tnb-frame, the rotation of the cross-section has the opposite sign of the 
bending plane rotation. In the case of the exemplary helix, the rotation d 5Rh of the cross-
section can be described by: 

h5 2
h h

10
2 25Rd s

R R (4.31) 

The cumulative rotation, which describes the total rotation of the cross-section at an arc 
length s can be calculated by: 

h h5 5 2
0 h h

10
2 25

s

R Rs d s ds s
R R

(4.32) 

or, in terms of t: 

h5 2

10

2 25
R t t (4.33) 

Generalized for any helix the cumulative cross-section rotation can be stated as: 

h
r 22 2

0 0 h h

2
2

s s hs d s ds d s ds s
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(4.34) 

or, in terms of t: 
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(4.35) 
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Figure 4.2: 3D-bent helical profiles with an identical bending line, a) circular cross-

section, b) square cross section,  = 0, c) square cross section,  = r 

Relative to tnb-frame, the cross-section rotation appears to be twisted. Thus, in the fol-
lowing this relative rotation will be called apparent twist apparent. The relation of the 
cumulative rotation r,5Rh and the cumulative twist 5Rh for the helix shown in 4.2 b) and 
the resulting apparent twist over the arc length s is shown in Figure 4.3 a). In order to 
produce a shape as shown in Figure 4.2 c), whose cross-section does not rotate relative 
to the tnb-frame and, hence, shows no apparent twist, the cross-section has to actively 
be twisted around the tangent unit vector with the same amount as the bending plane 
rotates. For the helix this means that the twist per unit length 5Rh of the cross-section 
has to be equal to r,5Rh and, as a result, the cumulative twist 5Rh equal to the cumulative 
rotation r,5Rh. The relation of the parameters is shown in Figure 4.3 b).  

This interaction can actually be generalized to any three-dimensional shape: If the ap-
parent cross-sectional twist of profile geometry is supposed to be zero, the twist per unit 
length  of the cross-section has to be equal to r and, as a result, the cumulative twist 

 equal to the cumulative rotation r. Figure 4.3 c) shows this effect qualitatively. To 
generate a specific non-zero apparent twist, the difference between  and r (  and r 
accordingly) has to be controlled. A qualitative representation is shown in Figure 4.3 d). 
The general formula for the apparent twist per unit length is: 

apparent rd d d  (4.36) 

and for the cumulative apparent twist is: 

apparent r (4.37) 
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Figure 4.3: Cumulative bending plane rotation r and apparent twist apparent for a 
helix with a square cross-section and a)  = 0 and b)  = r, 
qualitative representation of general interaction of r and  for  
c)  = r and d) varying 

s s

In conclusion it can be said, that in a purely geometrical analysis while for profiles 
with circular cross-sections it is sufficient to solely describe the bending line, pro-
files with non-circular cross-sections necessitate the additional information about 
the cross-sectional twist aka torsion (s) to describe arbitrary 3D shapes. 
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4.1.3 Extraction of contour data from structural models 

Profile contours, especially complex three-dimensional ones, are generally designed 
with CAD software as part of comprehensive parametric structural models. Usually the 
contours are first designed as line models, with the line representing the bending line of 
the shape. In a next step, a profile is extruded along this bending line. Following the 
elementary bending theory and the VDI 3431, the bending line should pass through the 
center of area of the cross-section, used as a basis for the extrusion. For 3D-bending it 
is now necessary to extract the relevant curvature, rotation, and torsion data to be further 
processed in the bending process control. In the case that a three times differentiable 
parametric spline or B-spline curve is used as the bending line, Eqs. (4.4) or (4.17) can 
be used to calculate the local curvatures and Eqs. (4.10) or (4.18) can be used to calculate 
the local bending plane rotation. To extract the data about profile torsion, another sec-
ondary line sr  is needed that passes through another point other than the center of area 
of the cross-section. Depending on how the profile was extruded in the CAD software, 
a secondary line might already exist. If not, then a new secondary line needs to be de-
rived from the CAD shape. An effective way is to generate a line along an edge of the 
profile or along a surface as shown in Figure 4.4. 

 
Figure 4.4: Bending line (red) needed to describe 3D-curve and secondary line 

(blue) needed to describe torsion with a) the secondary line lying on an 
edge of the profile and b) the secondary line lying on an arbitrary surface 
of the profile5 

To extract the torsion data from the profile that is now described by a central bending 
line r  and a secondary line sr , first of all an orientation vector o  between these two 
lines has to be generated, lying on the normal plane spanned by n  and b , parameterized 
either as a function of ss or ts. In the following all further parametrization will be based 
on the arc length, so s for the bending line and ss for the secondary line. In a first step, 
the intersection point intP  of sr  and the normal plane N has to be calculated. If the plane 

 

                                              
5 Based on a figure by Jan Kersting from his student thesis: Entwicklung eines Prozesssimulationsmodells für das 
TSS-Biegen [Development of a Process Simulation Modell for TSS Bending], Technische Universität Dortmund, 
2012, supervised by: D. Staupendahl and A. E. Tekkaya 



Geometrical definition of 3D contours 35 

is stated in the point-normal form, then r  simply has to be inserted as the point vector 
and sr  as the position vector. Thus, intP  can be described by: 

int s sP s r s (4.38) 

where s sr s  can be found by solving Eq. (4.39) for ss: 

s s 0r s r s t s (4.39) 

The orientation vector o  at position s is then calculated by: 

into s P s r s (4.40) 

The angle between o  and n  is called the cross-section orientation  and is calculated 
by: 

 s

1
s

s

1
s

 

        0                              for  0

    cos   for  1
    with    

2 cos   for  1

o s
n s o s b so ss

o s b s
o s

n s
o s

 (4.41) 

The value s describes if the angle between o  and b  is acute (1) or obtuse (-1) and, thus, 
if the angle between o  and n  is less or greater than . As a result, Eq. (4.41) outputs 
values of  in the range 0   < 2 . 

 
Figure 4.5: Angle measured between the orientation vector at s and the projection of 

the orientation vector at s+ s onto the normal plane at s for the helix 
with  = 0 

d projected 

 

 

 

 

 

  

s 
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The VDI3431 defines the torsion angle as the angle of twist between two successive 
cross-sections. It might now seem straightforward to calculate the profile torsion by cal-
culating the angle between the orientation vectors at s and s+ s. However, the problem 
here is that for 3D bending lines the angle calculated would actually be the resultant 
angle generated by the rotations of o  around the tangent, normal, and binormal vector 
and not by the rotation of o  around the tangent alone. Another potential straightforward 
solution is to project the orientation vector at s+ s onto the normal plane at s or vice 
versa. Here, the remaining problem is that this projection also is a resultant of the rota-
tion of o  around the above-mentioned three axes. 

Depending on the shape of the bending line, a rotation could be calculated even though 
the profile is not actually twisted (see Figure 4.5).This effect cannot be neglected be-
cause, although showing small deviations locally, the error accumulates with accumu-
lating torsion and causes large deviations in the calculated cumulative twist.  

This can be overcome by first calculating the angle between the vector o  at arc length s 
and the bending plane at the same arc length s. Secondly, the angle between the vector 
o  at arc length s+ s and the bending plane at s+ s is calculated. Because the calculated 
angles depend on the bending plane rotation, the rotation angle of o  between arc lengths 
s and s+ s does not directly yield the twist per unit length but the apparent twist (see 
Section 4.1.2): 

apparent apparent0

r0 0

r0 0

0

   

lim

lim            for  lim 0

            lim 2     for  lim 2

lim 2    for  lim
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s s

s s

s s

d

s s s s s s d

s s s s s s d

s s s r0
2s s s d

 (4.42) 

Values of r0
lim
s

s s s d  approaching -2  as well as 2  indicate a rotation 
of o  crossing n . In order to avoid the resulting error in apparent 2  and -2  are added 
to the equation, respectively. Following Eq. (4.36), the twist per unit length can then be 
calculated by: 

apparent rd d d (4.43) 

The calculation of  is especially relevant for the shear strain and shear stress calcula-
tion shown in Section 7.3 and has a direct impact on the resulting torque and bending 
moment, as shown in Section 7.3.3. 

4.1.4 Discrete description of 3D-contours 

When designed in CAD, complex 3D parts are often not designed from one single par-
ametric spline or B-spline that is three times differentiable. Oftentimes several design 
methods are used to set up one single shape. A shape might, for instance, be made up of 
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a spline, a line, and a radius. These separate geometric constructs might be tangent to 
each other, but still show discontinuities in the second derivative of the complete curve. 
In such a case, the curve has to be described discretely.6 

As described in Section 4.1.3, first, the bending line r  needs to be extracted from the 
3D shape. If the profile has a non-circular cross-section, then a secondary curve sr  needs 
to be defined, as described in the same section. The next step is the discretization of the 
two curves (see Figure 4.6).  

 
Figure 4.6: Discretization of bending line (red) for the case of a)-c) a profile with a 

circular cross-section, discretization of bending line (red) and secondary 
line (blue) for the case of d)-f) a profile with an arbitrary non-circular 
cross-section  

In a CAD program the discretization of r  can efficiently be done by automatically de-
fining a finite amount of points along the curve set apart by a fixed arc-length: 

  with    1iP i i n (4.44) 

The curve can then be described as a 3 n -matrix, where each column vector represents 
the position vector of a single point on the curve:

x, x, 1 x,

y, y, 1 y,

z, z, 1 z,

R
i i n

i i n

i i n

(4.45) 

 

                                              
6 The figures in this subsection are based on drawings by Jan Kersting from his student thesis: Entwicklung eines 
Prozesssimulationsmodells für das TSS-Biegen [Development of a Process Simulation Modell for TSS Bending], 
Technische Universität Dortmund, 2012, supervised by: D. Staupendahl and A. E. Tekkaya.  
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To be able to later extract the orientation vectors needed to describe profile torsion, the 
curve sr  needs to be discretized so that each of the discrete points lie on a normal plane 
of the curve r . To describe the normal plane Ni at a point Pi, first, the tangent it  needs 
to be found. If three points on r  are always thought to describe an ideal circle and all 
points are, as described above, evenly spaced apart, then it  is simply 1 1i iP P . The normal 
plane at position i can, thus, be described in the point-normal form by: 

N 1 1: 0i i i iN p (4.46) 

where Np  is the position vector of any point on the plane. To discretize sr , the curve 
needs to be inserted as Np  into Eq. (4.46) and solved for ss,i. The procedure is similar 
to the procedure described for continuous curves in Section 4.1.3. Parallel to Eq. (4.38), 
the points: 

s,   with    1iP i i n (4.47) 

on the secondary curve sr  are defined by the position vectors: 

s, s s,i is r s (4.48) 

The secondary curve can then be described as a 3 n -matrix, where each column vector 
represents the position vector of a single point on sr , as in the matrix R defining the 
bending line r :

s,x, s,x, 1 s,x,

s s,y, s,y, 1 s,y,

s,z, s,z, 1 s,z,

R
i i n

i i n

i i n

(4.49) 

To calculate the curvature of the bending line at the point Pi, the directly preceding point 
Pi-1 and subsequent point Pi+1 are used together with Pi to describe the ideal radius Ri 
(see Figure 4.7). The task of calculating the radius of the circle touching three points is 
known as the first type of the Apollonius’ Problem, or PPP problem (Viète, 1600) and 
can be solved by using the law of sines (Walther, 1931): 

1 1

1 12sin ,
i i

i
i i i i

P P
R

P P PP
(4.50) 

Using the magnitude of the cross product between 1i iP P  and 1i iPP  Eq. (4.50) can be 
rewritten as: 

1 1

1 1 1 1

21 i i i i
i

i i i i i i i

P P PP

R P P PP P P
 (4.51) 
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Figure 4.7: Geometrical definition of the radii at points Pi-1, Pi, and Pi+1 

or alternatively, as the magnitude of a cross-product equals the Area of the parallelogram 
spanned by the two adjacent vectors: 

1 1 1 1

41 i
i

i i i i i i i

A
R P P PP P P (4.52) 

where the Ai is the area of the triangle defined by the points Pi-1, Pi, and Pi+1. To calculate 
Ai Heron’s formula can be used, which is named after Heron of Alexandria and is 
thought to date back to Archimedes (Heath, 1921): 

1 1 1 1

1 1 1 1
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i s s i i s i i s i i

s i i i i i i

A p p P P p PP p P P

p P P PP P P
(4.53) 

Expanded, Eq. (4.53) can be rewritten as: 

22 2 2 2

1 1 1 1 1 1 1
1 2
4i i i i i i i i i i iA P P P P P P P P PP (4.54) 

For the description of the discrete bending plane rotation r,i, the geometric definition 
of the dot product is used to calculate the angles between the binormal vectors ib  and  

1ib , whereby: 

1 1 1 1 1 2  and  i i i i i i i i i ib P P PP b PP P P  (4.55) 

Knowing the direction of bending plane rotation around the tangent is crucial for a 
proper description of the bending line. However, this knowledge cannot be directly 
gained from the dot product. The dot product can, though, be used to define the angle 
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between two vectors to be acute or obtuse. If the binormal vector 1ib , now, forms an 
obtuse angle with the normal vector: 

1 1i i i in b P P (4.56) 

which indicates a positive bending plane rotation, the normalized dot product is equal 
to -1. If 1ib  and in  form an acute angle, then the normalized dot product is equal to 1. 
As a result: 

1 1 1
r,

1 1

cos i i i i
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i i i i

b b b n
b b b n

(4.57) 

and the cumulative bending plane rotation r,i is: 

r,
1

n

i
i

(4.58) 

To calculate the torsion of the profile, first, the orientation vectors at positions i and i+1 
are calculated by: 

s,i i io    and   1 s, 1 1i i io (4.59) 

Similar to Eq. (4.41) the cross-section orientation i is calculated by: 
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(4.60) 

in the range 0   < 2 . As a next step, similar to Eq. (4.42), the discrete apparent twist 
 is calculated by: 

1 lim 1 r, lim

apparent, 1 1 r, lim

1 lim 1 r,

  

          for       
2    for        2 2
2    for   2 2 

  i i i i i

i i i i i i

i i i i i

 (4.61) 

Similar to the term r0
lim
s

s s s d  in Eq. (4.42), the term 1 r,i i i  in 
Eq. (4.61) should give values close to zero, while values near -2  or 2  signal a rotation 
of o  crossing n . As in Eq. (4.42), in the case of a vector crossing, 2  and -2  are added 
to the equation, respectively.  
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Although the step size: 

1step
Ll

n
 (4.62) 

in discrete curve representations should be small, the specific value can be chosen arbi-
trarily. In order to define “close to” or “near”, the term lim is used. lim should be chosen 
in the range of /4 to incorporate even very large step sizes. 

Finally, and similar to Eq. (4.43), the discrete twist per unit length can then be calculated 
by: 

apparent, r ,i i i  (4.63) 

The difference between Eqs. (4.10) and (4.43), and (4.57) and (4.63) s. 
While the step size approaches 0 in Eqs. (4.10) and (4.43) s is finite in Eqs. (4.57) and 
(4.63). For easier legibility and a more compact setup of the rest of this work, in the 
following sections and chapters only the differential representations will be used. 

4.2 Characterization of free-form bending kinematics 

In Section 4.1 it was learned that 3D profiles with circular cross-sections can solely be 
described by their bending line, while 3D profiles with non-circular cross-sections ne-
cessitate the additional information about the profile torsion aka twist. What does this 
now mean for bending kinematics and, as a result, for bending machines? How many 
controlled axes or actuators are needed to bend a profile? 

4.2.1 Derivation of cDOFs needed for manufacturing 

To bend a profile, a bending moment needs to be generated in a targeted position of the 
initially straight profile. To generate this bending moment, part of the profile needs to 
be fixed in space, while a moment or a force is applied to another part of the profile. All 
of the bending processes mentioned in Section 2.1 of the state of the art use bending 
force application instead of bending moment application, which is why all further anal-
yses will focus on applied bending force. Furthermore, the point of bending force appli-
cation PFB is defined to move on a plane, which is located at a specified distance to the 
plane that is orthogonal to the profile axis at the fixed profile part. If the bending kine-
matics are thought to be fixed in space, the profile fixture or support can be defined to 
be at point PS (x = 0, y = 0, z = 0) and the plane of the movement of the point of bending 
force application PFB can be defined to be parallel to the xz-plane. In the plane of PFB 
movement, the two dimensional movement of PFB can be described by a local two-di-
mensional coordinate system made up of the X-axis and the Z-axis. The origin PO of this 
local coordinate system lies at the global coordinates (0,yPFB,0). The X and Z-axes follow 
the directions of the x and z-axes, respectively. The resulting geometric process model  
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Figure 4.8: a) Top view of the generalized geometric 3D bending process model, b) 

3D view of the bending process model 

is shown in Figure 4.8. Figure 4.8a shows bending of a single radius in the xy-plane, 
while Figure 4.8b shows the three-dimensional view. 

By defining the profile support to lock all profile movements but the movement in the 
y-direction, the movement of PFB of an arbitrary profile can now be tracked by continu-
ously moving the profile through the profile support. The function of the curve r  or, in 
case of a discrete curve description, the matrix R need to be continuously transformed 
into the coordinate system of the bending process model based on the profile movement. 
Figure 4.9 a) shows a sequence of PFB movements for an exemplary profile with a bend-
ing line made up of two consecutive bending radii in two different bending planes. The 
first bending radius is marked red, the second blue. To overcome the distance between 
the profile support and the plane of movement of PFB, straight elements are added to the 
front and back end of the bending line, marked in green.  

During the movement of the first radius (red) through the profile support (Fig-
ure 4.9 a) steps 1-2), PFB solely moves along the X-axis, with the value of X actually 
being fixed in step 2. Steps 3 and 4 mark the transition from the first bending radius to 
the second (blue) and, thus, from the first bending plane to the second. Here, PFB moves 
both in X and in Z-direction. Step 5 shows the movement of the second radius through 
the profile support and PFB. PFB does not change its position in this case, similar as in 
step 2. In steps 6 and 7 the point PFB moves back to its central starting position. Hereby, 
the point moves in the bending plane of the second radius. The ratio of X to Z values, 
thus, stays constant. 

Considering a continuous curve description, PFB(sPS) refers to the position of the point 
of bending force application when the point PSr s  of the bending line is in the profile 
support. The movement of PFB can be described either in Cartesian coordinates or in 
polar coordinates: 

PS 1 PSPS
FB PS

PS PS 1 PS

cos

sin

r s sX s
P s

Z s r s s
  with  2 2

PS PS PSr s X s Z s (4.64) 
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Figure 4.9: Movement of the point of bending force application PFB for an exem-

plary profile with a bending line with two different subsequent radii in 
different bending planes using a cross table (a) or a single linear axis (b) 
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In the range 1  the angle 1(sPS) relates to movements in X and Z-direction by: 

PS PS
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X s Z s

X s
s Z s

r s

X s
Z s

r s

(4.65) 

Eq. (4.64) shows that the movement of PFB can either be described by two translations 
(one in X and one in Z-direction), or by one translation (the resultant r) and one rotation 
(angle 1). This rotation does not necessarily need to be in the plane of movement of 
PFB. The two parameters – translation and rotation – can be separated so that the rotation 
is applied at the profile support and a linear translation along a single axis is left in the 
original plane of PFB movement. It is important to note here that the sign convention of 

1 changes in this case. Using this adapted kinematic setup, the resulting sequence of 
PFB movements for the above stated exemplary profile is shown in Figure 4.9 b). The 
profile and axis movements in steps 1 and 2 are identical to the movements in Fig-
ure 4.9 a). However, in the transition from one bending plane to the next (steps 3 and 
4), instead of allowing a PFB movement in the Z-direction, the profile itself rotates until 
the bending plane of the second radius (blue) is equal to the xy-plane (step 5). No further 
profile rotation is needed to complete the profile movements of steps 6 and 7. It is im-
perative to note that the movement of PFB along the single linear X-axis of Figure 4.9 b) 
is not identical to the X-axis movement of PFB but equal to the resultant r as calculated 
with Eq. (4.64). 

Figure 4.9 additionally shows the plane NPFB at the point PFB that is congruent to the 
normal plane N of the bending line at this same point. The tangent tt  of the bending line 
at this point represents the orientation of NPFB in the coordinate system of the bending 
process model. In terms of the bending kinematics, the angle of NPFB relative to the XZ-
plane can be defined by individual rotations around the X and Z-axis. Although, the 
plane only rotates around the Z-axis in the case of single radii (Figure 4.9 b) steps 1-2 
and steps 5-7), the plane also rotates around an axis parallel to the x-axis in the transition 
zones shown in steps 3 and 4. As these plane rotations are not necessary to describe the 
movement of the point of force application PFB, they can be called compensatory move-
ments. 
An interesting observation that can be made by comparing the kinematics shown in Fig-
ure 4.9 is that the Cartesian and polar coordinate description of a) as well as the polar  
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coordinate description of b) need 3 parameters to track the profile geometry. It can, thus, 
be concluded that the three variables that describe a bending line:  

1. curvature, 
2. bending plane rotation, 
3. and arc length, 

directly define the minimum controlled degrees of freedom (cDOF) necessary to bend a 
3D profile with a circular cross-section. This realization also directly implies, that a 3-
cDOF process cannot be used to bend profiles with non-circular cross-sections to arbi-
trary bending contours. A 3-cDOF process can only be used to generate a 3D shaped 
profile, if the targeted apparent twist is exactly opposite to the bending plane rotation, 
so in other words if apparent = – r (see Eq. (4.36)). In all other geometrical cases, at 
least 4 cDOF are needed, with the 4th cDOF imperatively being an actuator to twist the 
profile. Any additional cDOFs are theoretically optional, but might support a smooth  

Figure 4.10: cDOFs (red) needed to produce 3D bending lines with and without a 
twisted cross-section 
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operation of the machine and prevent jamming of the profile in critical machine posi-
tions (compensatory axes based on the above stated compensatory plane movements), 
or a more efficient material usage (controllable lever arm by adjusting the distance of 
the profile support to the plane of PFB movement).  

As was already hinted when looking at Figure 4.9, the positions of the cDOFs are flex-
ible. Figure 4.10 schematically shows the possible locations of cDOFs required to pro-
duce profiles with 3D bending lines with and without torsion. The shown profile seg-
ment represents the profile part between the profile support, marked by the arrow in 
axial profile direction and the plane of PFB movement, marked by the X and Z-axis (cross 
table) and the resultant X-axis (single linear axis). Cases a) and b) represent the same 
kinematics as used in Figure 4.9 a) while case c) represents the same kinematics as Fig-
ure 4.9 b). In the case of cross table kinematics the 4th cDOF needed to twist the profile 
can be either located in the compensatory plane at the point of bending force application 
PFB or in the profile support. In the case of bending kinematics with a single linear axis, 
the rotation in the profile support is already used to change the bending plane rotation. 
Thus, in the latter case, the only possible position for the 4th cDOF is the point PFB. 

4.2.2 Classification of free-form bending kinematics 

Based on the controlled degrees of freedom (cDOFs), defined in the previous sections, 
that are needed to produce profiles with arbitrary 3D shapes, and the tool used to apply 
the bending force, the currently available bending machines were assessed. The result-
ing process classification can be seen in Table 4.1.  

“1D bending actuator” means that only a single actuator is used to apply the bending 
force. “2D bending actuator” describes the use of two actuators, independent of the lo-
cation of the mechanisms. So both the cross-table and the single linear axis used together 
with a rotational cDOF at the profile support are encompassed.  

In the classification, only processes were regarded that allow fully automatic bending of 
single profiles and do not require manual intervention during the process to, for instance, 
change the position of the profile. As such, only three-roll bending without any addi-
tional vertical actuators was regarded. Although three-roll bending allows limited 3D 
bending, contours are constricted to helical shapes and require constant manual engage-
ment by the operator. Three-roll bending and three-roll push bending are classified as 
processes with a single linear bending axis. At first glance, this assessment might not fit 
because in three-roll bending generally two rolls can be moved and in three-roll push 
bending the bending roll can be moved along the x and the y-axis. However, only one 
of  these  movements  in  each  of  the  processes  is  actually  needed  to  bend  profiles.  In the 
case of TSS bending only the 3-DOF process has been realized until now. However, 
possible 4-DOF and 5-DOF setups have been proposed by (Hermes and Kleiner, 2013). 
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Table 4.1: Classification of kinematic bending processes based on the controlled 
degrees of freedom (cDOF)  
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In the Gigalus combined drawing and free-form bending machine, the profile is actually 
not twisted as in the other processes with  4 cDOFs. The classification as 5 cDOF is 
justified because, although the profile is not mechanically twisted, still a rotation is 
needed to produce the contoured profile.  

Although the basic movements of the bending head in the Hexabend process and the 
6-DOF bending process follow the movements of a bending head mounted on a cross-
table with a variable distance to the profile support and, thereby, a variable lever arm, 
the calculation of the actual movements of the actuators is so complex that both pro-
cesses were placed in a separate parallel kinematics class. 

4.2.3 Relation of profile geometry and actuator movements 

In Section 4.2.1 the relation of 1 to the X and Z-axis movement of the bending kine-
matics was shown. In order to establish the relation of 1, X and Z to the shape of the 
profile, it is most convenient to visualize how the plane spanned by the vectors S OP P  
and O FBP P  moves along the bending line. The plane is equal to the bending plane B at 

SP : 

If r \ 0d  in between points SP  and FBP , and S O 0P P  
or if r 0d  in between points SP  and FBP , and S O 0P P  

If one of these cases is not met, however, then these two planes are unequal. Since the 
distance S OP P  is dependent on the bending machine setup, the plane will be called the 
machine bending plane M in the further work. Figure 4.12 shows the different rotations 
of M and B for an exemplary profile with a bending line with two different subsequent 
radii in different bending planes, also used in Figure 4.9. SP  is used as the point vector 
of M, which defines its position in space. SP  moves along the bending line from 0r  
to r l  with: 

S PSP r s (4.66) 

OP  is calculated by: 

PS

O PS PS S O

dr s
ds

P r s t s P P
(4.67) 

The second term is subtracted because the vector S OP P  is directed into the opposite di-
rection of PSt s . FBP  is gained by calculating the point on the bending line PFBr s  
that is located at a distance of S OP P  from the normal plane N at SP : 

FB PFB PFB PS PS S O   with   P r s r s r s t s P P (4.68) 

In order to generate data starting from 0SP r  and ending up with FBP r l , a valid 
geometry needs to be added to r  for values of s < 0 and s > l. Since profile bending 
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generally always starts out with a straight profile that is bent to the desired shape with 
the chosen bending process, the addition of a straight-line segment to the beginning and 
end of r  with the length of S OP P  is the most straightforward choice. Figuratively this 
is shown in Figure 4.9 (added straight line segments are marked green). PSr s  and 

PFBr s  are, thus, adapted to: 

PS PS

PS
PFB PFB

for   0

for   S O

r s s l
r s

r l t l s l s l P P
(4.69) 

and: 

PFB PS

PFB
PFB PFB

for   0

0 0 for   0S O

r s s l
r s

r t s P P s
(4.70) 

In order to describe the movement and rotation of M relative to the bending line a 
tMnMbM-frame is introduced, with:  

M PS PSt s t s (4.71) 

O FB
M PS PS

O FB

P Pb s t s
P P (4.72) 

M M Mn b t (4.73) 

The angle between M and the bending plane B at position sPS is calculated by: 

 

 

s
M PS PS1

PS M PS PS s s
M PS PS1

M PS PS s

       0                                for  0
 cos   for  1 with    

2 cos   for  1   

 
n s b s

s n s n s
n s b s

n s n s

 (4.74) 

The value s describes if the angle between Mn  and b  is acute (1) or obtuse (-1) and, 
thus, if the angle between Mn  and n  is less or greater than . As a result, Eq. (4.74) 
outputs values of  in the range 0   < 2 . 

The angle 1 is now defined as the difference of  and the cross section orientation  at 
the position sPS:  

1 PS PS PSs s s (4.75) 

Graphically this is shown in Figure 4.11. The resultant r(sPS), which can be directly used 
as the displacement along the X-axis in the case of a bending process with a single linear 
axis (Figure 4.10c,f), or, in the case of bending kinematics that use a cross-table (Fig-
ure 4.10a,b,d,e,g,h), inserted into Eq. (4.64) together with 1(sPS) in order to obtain 
 



50  Characteristics of 3D profile bending 

 
Figure 4.11: a) top view of the machine bending plane M and the points PS, PO and 

PFB b) front view and visualization of the angles  and  at the points PS

and PFB,  
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the axes movements in the X and Z-direction, is calculated by:  

PS O FBr s P P (4.76) 

The torsional cDOF is defined by analyzing the rotation of the profile cross-section at 
the point of bending force application PFB. The angle between M and the bending plane 
B at this position is gained by first mapping Mn  onto the normal plane N of the bending 
line at point PFB. Essentially, this vector is the intersection line of N and M and, as a unit 
vector is calculated by: 

M PS PFB
M,map

M PS PFB

b s t s
n

b s t s
(4.77) 

The angle between M,mapn  and the bending plane B at position sPS is calculated by: 

 

 
M,map PFB1

PFB M,map PFB
M,map PFB1

M,map PFB

      0                                for  0

 cos   for  1 with   

2 cos   for  1   

s

s s

s

n b s
s n n s

n b s
n n s

 (4.78) 

The rotation angle 2 of the torsional cDOF is finally gained by:  

2 PFB PFB PFBs s s (4.79) 

Using the exemplary helix with the helix radius Rh = Rh,1 and a pitch of hh = 5Rh,1 from 
Section 4.1.2 (Figure 4.2b,c) combined with the distance S O h,1P P R , to calculate the 
angular diffe  = 2- 1  = 0 for  = 0 and 

 = 0.52 rad for  = r. These values are identical to the values of cumulative torsion 
between the points PFB and PPS. Thus, the angle 2 can also be stated in terms of 1 and 

:  

PS

PFB

2 PS 1 PS

s

s

s s d s ds (4.80) 

In the case of bending kinematics using a single linear axis, the compensatory rotations 
of the normal plane N at point PFB can be directly calculated. The rotation angle of N 
around Mb  is computed by: 

1
1 PS M,map M PScoss n n s (4.81) 

1 is always positive with an angle range of 0 to , because in case of a direction change 
of the vector O FBP P , the tMnMbM-frame also rotates around M PSt s . For the rotation  
 



52  Characteristics of 3D profile bending 

 

angle of N around M,mapn , the angle between N and Mb  is calculated by: 

1
2 PS FB M PSsins t s b s (4.82) 

Eq. (4.82) produces angles between – /2 and /2. 

4.2.4 Location and movement of the bending force vector 

Figure 4.12 shows the front view of the sequence of kinematic movements initially pre-
sented in Figure 4.9 for an exemplary profile with a bending line made up of two con-
secutive bending radii in two different bending planes B1 and B2. A close look is now 
taken at the bending force vector, which always necessarily passes through the point 
PFB. In steps 1 and 2 of both sequences a) and b) it can be seen that PFB lies in the same 
plane as the single radius, going from the profile support to point PFB. The same is true 
for steps 5 through 7. If the radius is now considered to be actually bent, a bending force 
needs to be applied at PFB to generate the necessary bending moment. As only single 
radii are considered in the above-mentioned steps, which each lie in single bending 
planes, the bending force vector BF  necessarily lies in this same plane. But what happens 
in the transition from one bending radius lying in one bending plane to the next radius 
lying in another bending plane?  

Once the second radius is supposed to be bent, the bending force vector needs to in-
stantly change direction to be parallel to the bending plane of the second radius. How-
ever, the force vector still needs to pass through PFB. This means that the bending force 
vector does not lie in the bending plane but at a distance LB,p to it. This effect can be 
seen in steps 3 and 4. What can be noticed in comparing these two steps in sequences a) 
and b) is that, although the absolute direction of the bending force vector is different in 
both sequences, the direction relative to the profile as well as the distance LB,p are equal. 
This implies that the movement of the bending force vector relative to the profile is 
independent of the specific bending process design. Together with the knowledge that 
the value of the bending force vector is only influenced by the contour to be produced, 
it can be implied that a general formulation of 3D bending can be found that can be 
applied to all kinematic bending processes. 

A bending force vector, set at a distance to the bending plane, results in an unwanted or 
parasitic torque MT,p in the forming zone at the profile support: 

T,p B B,pM F L (4.83) 

This can lead to unwanted twisting of the profile. This unwanted twisting of the profile 
not only results in unwanted torsion of the cross-section but also results in deviations of 
the bending plane rotation.  
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Figure 4.12: Movement of the bending force vector FB for an exemplary profile with a 

bending line with two different subsequent radii in different bending 
planes (B1, B2) using a cross table (a) or a single linear axis (b) 
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Figure 4.13a) explains how local twisting of the profile in transition zones can affect the 
angle between two subsequent bending planes using step 3 of the kinematic sequence 
shown in Figure 4.12a). This phenomenon has a direct influence on the applicability of 
3-cDOF processes on profiles with non-circular cross-sections. It was stated before in 
Section 4.2.1 that a 3-cDOF process can be used on these profiles if the targeted appar-
ent twist is exactly opposite to the bending plane rotation, so in other words if  
dϕapparent = –dθr (see Eq. (4.36)). Depending on the magnitude of the parasitic torque 
MT,p in transition areas, the resulting profile shape, specifically the bending plane rota-
tion and the cross-sectional twist, might vary greatly from the targeted shape. Hu-
dovernik (2014a), for instance, noticed deviations of around 15 % between targeted and 
set bending plane rotations in his investigations.  

If the profile has a circular cross-section or if the predicted unwanted twist of a profile 
with a non-circular cross-section is insignificant for the application, then the targeted 
bending line can still be achieved if the deviation in the bending plane rotation is com-
pensated by bending axes movements. If the cross-section position is essential for the 
application of a profile, a compensation of MT,p can only be done using a 4th cDOF to 
apply a compensatory torque of –MT,p to the forming zone as seen in Figure 4.13b). 
 

 
Figure 4.13: Deviation of the bending plane rotation caused by profile torsion in the 

transition zone from one bending plane to the next 

 



 

 

5 Setup of a 5-cDOF profile bending process and measuring 
equipment 

The conclusion of Section 4.2.1 was that 3D bending of profiles with non-circular cross-
sections to arbitrary shapes can only be performed with bending processes that encom-
pass at least 4 controlled degrees of freedom (cDOF). This chapter focuses on the setup 
of such a process and the development of measuring equipment to monitor the torque 
applied during bending and simultaneous twisting. Additionally, the development of a 
contour sensor is described as well as the setup of a comprehensive numerical process 
model. However, before diving into the experimental hardware and numerical methods, 
the material used in the investigations is presented. 

5.1 Material characterization and parametrization 

As was described in Section 2.2 of the state of the art, the accuracy of kinematic profile 
bending processes is very sensitive to accuracy of the material data used in the process 
model. Tubes and profiles are often roll formed and are, thus, pre-strained in axial di-
rection (Weimar, 1966) and along the perimeter of the cross-section (Eichhorn, 1974). 
Together with the necessity to weld the profiles longitudinally to produce closed sec-
tions, this makes roll-formed profiles highly anisotropic. Compared to sheet material, 
profiles only offer flat surface areas of an extremely limited width – width in this case 
meaning length along the perimeter. Tubes do not even have any flat surfaces at all. This 
makes a thorough material characterization difficult, time consuming, and not realizable 
with standard measuring equipment. Since material characterization is not the focus of 
this work, it was decided to use profile material that can be robustly characterized simply 
by uniaxial tensile tests. The only possible ways to produce reasonably isotropic profiles 
are either by hot rolling (Halmos, 2006) or by a cold forming step such as roll forming 
or cold drawing and subsequent heat treatment (Hubmer, 2017). 

For the investigations, it was decided to use cold-drawn and heat-treated seamless pre-
cision tubes from Mannesmann Precision Tubes GmbH (formerly known as Salzgitter 
Mannesmann Precision GmbH). Specifically, the air hardening steel MW700L was se-
lected in its soft-annealed state (Z1) and its air-hardened and tempered state (Z3). As 
profile geometry, a square cross-section was chosen with the size 40x40x2.5 mm. Ten-
sile tests complying with DIN EN ISO 6892-1:2009-12 using a non-proportional A80 
tensile probe as described in Appendix B of the DIN standard (gauge length = 80 mm, 
probe width = 20 mm) were conducted on a Zwick Z250 SN universal testing machine 
equipped with an Xforce K load cell.  

In order to achieve a continuous mathematical description of the stress-strain relation-
ship of the material with the aim of generating a monotonically increasing function well 
suited for FE-simulations, a flow curve approximation has to be performed. Because 
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maximum strains reached in kinematic profile bending are generally below 0.1, an ac-
curate approximation has to be used for exactly this range of small strains. The elongated 
yield point of the material in the Z1 state gives the experimental data an initial convex 
appearance, followed by a concave trend. This kind of material behavior cannot accu-
rately be described by the methods proposed by Ludwik (1909), Hollomon (1945), Swift 
(1952), or Voce (1948) as these methods only allow purely concave approximations and, 
thus, deviate from the experimental data points in the relevant strain range. The approx-
imation method proposed by Hockett and Sherby (1975) is based on the method set up 
by Voce, but includes an additional power function in the exponential term (see 
Eq. (5.1)).  

HS

pl

f pl Y

n
me (5.1) 

This additional exponent actually allows the function to exhibit an inflection point, mak-
ing it the optimal choice for the present flow curve approximation. Since the elongated 
yield point covers a small strain range compared to the complete flow curve, the initial 
convex curve trend can only be reached with a Hockett and Sherby approximation if the 
asymptotic  parameter    is  relatively  low.  In  cases  where  exact  approximations  are  

Table 5.1: Flow curve approximations for MW700L Z1 and MW700L Z3 

MW700L Z1: Hockett and Sherby + Hollomon 
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needed in low as well as in high strains, the combination of a Hockett and Sherby ap-
proximation and another approximation is recommended. Here, the approach by Hollo-
mon is adequate, because while being simple, it offers a realistic approximation of ma-
terial hardening (Yin, 2014a). Table 5.1 shows the approximation functions used for 
MW700L Z1 and Z3 and the parameters found using a least-square data fitting method. 
Figure 5.1 displays the flow curve approximations for MW700L Z1 and Z3 in compar-
ison with the experimental data. 

 
Figure 5.1: Experimental and approximated flow curve of MW700L Z1 

But not only the plastic material behavior has to be accurately described to allow a robust 
operation of kinematic bending processes. Also, the elastic material behavior plays a 
crucial role, especially in the determination of springback. The standard method to de-
scribe the elastic behavior of metals is by determining the Young’s modulus. The stand-
ard testing procedure in metal forming is by regarding the experimental stress-strain 
data, gained from the tensile test, up to the yield point and approximating the stress-
strain relationship of a selected region in this sector by linear regression. In materials 
without an elongated yield point, the yield point definition itself depends on the Young’s 
modulus. This interdependency of parameters makes the Young’s modulus determina-
tion with a tensile test highly dependent on the interpretation by the operator. A method 
to reduce the range of Young’s modulus interpretations is described in the DIN EN 
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ISO 6892-1:2009-12, whereby the sample is first tensioned up to the expected yield 
strength and, upon exceeding this value, the applied tensile force is reduced down to 
10 % of the force value at the expected yield point. A subsequent force increase above 
the initial force value generates a hysteresis loop, whose middle line or chord, specifi-
cally, its slope shall serve as the Young’s modulus. Other methods to determine the 
Young’s modulus use acoustic analyses as, for instance, resonance measurement (Ger-
stein et al., 2017) or ultrasonic pulse-echo measurement (Krautkrämer and Krautkrämer, 
1990), whereby the wave propagation in the longitudinal and transverse direction 
through a probe is first used to calculate the Poisson’s ratio and subsequently the 
Young’s modulus (Krautkrämer and Krautkrämer, 1990). The resonance measurement 
is standardized in the ASTM E1875-13 (Standard Test Method for Dynamic Young's 
Modulus, Shear Modulus, and Poisson's Ratio by Sonic Resonance) and ASTM E1876-
15 (… by Impulse Excitation of Vibration) but necessitates a complex setup to measure 
the resonance frequency of a sample. The ultrasonic pulse-echo method, on the other 
hand, can be performed with readily available ultrasonic thickness gauges (Olympus, 
2018). However, measurements of the latter are highly dependent on accurate thickness 
measurements and are sensitive to applied stresses on the samples, which make the ma-
terial double refracting (Krautkrämer and Krautkrämer, 1990). 

In tube and profile bending, and actually in metal forming in general, the Young’s mod-
ulus is used in springback calculations. And this is done even though Lems investigated 
the change in Young’s modulus after material deformation as early as 1963. Morestin 
and Boivin showed in 1996 that the Young’s modulus of construction steel, of non-alloy 
quality special steel and high-strength low-alloy steels reduces by 5-15 % in tension and 
compression up to an equivalent plastic strain of 0.05, with insignificant further reduc-
tions up to 0.1 in tension. Recent investigations have extended these observations to 
dual-phase steel, specifically DP600, for which Yoshida et al. (2002) noted a reduction 
of 21 % and ul Hassan et al. (2016) noted a reduction of 28 % up to an eq. plastic strain 
of 0.1, DP800, for which Chongthairungruang et al. (2012) observed a reduction of 14-
21 % depending on the rolling direction, and DP1000, for which ul Hassan et al. (2016) 
observed a reduction of 26 % and saturation up to a strain of 0.09. As shown by Gerstein 
et al. (2016) for DP600, this high apparent reduction of Young’s modulus cannot be 
measured by the resonance method. Instead of values between 21 % and 28 %, only a 
reduction of 3 % was observed at a strain of 0.01. This difference is due to the fact that 
the material actually does not act purely elastic during unloading. Rather, the unloading 
strain can be separated into a linear elastic contribution and an anelastic7 contribution 

 

                                              
7 Anelasticity refers to short-range reversible movements of dislocations, which result in a reversible non-linear 
strain recovered during unloading alongside the pure elastic strain (Torkabadi et al., 2017) and is not to be confused 
with inelasticity. 
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(Torkabadi et al., 2017). While the non-destructive resonance method can apparently 
only measure the linear elastic contribution, the total unloading strain can only be meas-
ured by a destructive method such as the tensile test. 

As such, the apparent Young’s modulus degradation of MW700L Z1 and Z3 was deter-
mined by cyclic tensile tests. The selected range of nominal strains is 0 to 8 %, where 
8 % is the theoretical nominal strain reached in the extrados of a profile with a square 
cross-section of the size 40x40 mm, bent to the loaded radius 250 mm in normal direc-
tion. During the tensile tests, the tensile force was reduced down to 0 in 1 % intervals, 
generating a set of 8 hysteresis loops per test. The chord moduli were determined by 
approximating the data during unloading and loading using linear regression. Figure 5.2 
shows the experimental apparent Young’s modulus degradation and the approximation 
by Yoshida et al. (2002): 

pl
pl 0 0 1E E E E e (5.4) 

which, when simplified, is actually identical to the approximation by Voce (1948): 

pl
pl 0E E E E e (5.5) 

As in the parameter identification of the flow curve, the parameters of the Young’s mod-
ulus approximation were found using a least-square data fitting method. The Parameters 
are listed in Table 5.2, while the degradation curves are shown in Figure 5.2. 

Table 5.2: Parameters for the Young’s modulus approximation for MW700L Z1 
and MW700L Z3  

MW700L Z1 MW700L Z3 

 

 0

 

199,350 MPa
131,000 MPa
21.874 

E
E   

 0

 

198,920 MPa
141,000 MPa
24.163 

E
E  

  

Since MW700L Z1 shows an elongated yield point (Figure 5.1) with a sharp transition 
from elastic to elastic-plastic behavior, the Young’s modulus E0 was stably measured as 
199,350 MPa without the need for an additional hysteresis loop. The apparent Young’s 
modulus degradation from 0 to the equivalent plastic strain of 0.077 is 28 %. The ap-
proximation function predicts a further degradation down to a total of 34 %. 

For MW700L Z3 a Young’s modulus E0 of 198,920 MPa was determined. The apparent 
Young’s modulus degradation from 0 to the equivalent plastic strain of 0.077 is 25 %. 
The approximation function predicts a further degradation down to a total of 29 %. 
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The profiles are regarded as isotropic so that the shear modulus can be related to the 
Young’s modulus by: 

1    with   0.3
2 1

G E (5.6) 

 

 
Figure 5.2: Experimental and approximated apparent Young’s modulus degradation 

5.2 Extension of 3-cDOF TSS bending to a 5-cDOF profile bending process 

The TSS bending process, as it was set up by Hermes et al. (2008), only offers 3 cDOF 
(see Figure 5.3). Using the insight found in Section 4.2.1 it follows that this process can 
only be used in a limited fashion to bend 3D contours in which the targeted apparent 
twist is exactly opposite to the bending plane rotation. The capability of the 3-cDOF 
TSS bending process to produce such profiles was shown by Chatti et al. (2010) and 
Hudovernik (2014a). Especially the latter noticed large deviations between targeted and 
set bending plane rotations in his investigations. The most likely cause for the presented 
high contour deviation is the incapability of the 3-cDOF process to compensate the par-
asitic torque (see Section 4.2.4) that occurs during bending plane transitions.  

Considering the classification presented in Table 4.1, TSS bending is a kinematic bend-
ing process with a bending head on a single linear axis (X-axis). By consulting Fig-
ure 4.10, which shows the possible locations of cDOFs required to produce profiles with 

E

pl
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Figure 5.3: 3-cDOF TSS bending process (Hermes et al., 2008), cDOFs are marked 

red, free DOFs are marked blue 

3D bending contours with and without torsion in different process designs, it can be 
inferred that the only option to apply twist in TSS bending is by controlling the rotary 
DOF ( 2-axis) of the bending head (Figure 4.10f). Controlling the 2-axis would convert 
the 3-cDOF TSS bending process into a 4-cDOF process. 

In kinematic bending processes with a bending head on a single linear axis, the bending 
head should move along the X-axis according to the point of bending force application 
PFB and rotate according to the rotations of the plane NPFB at PFB that is congruent to the 
normal plane N of the bending line at this same point (see Section 4.2.1). In Section 4.2.3 
these rotations were named 1, the rotation angle of N around the normal vector Mb of 
the machine bending plane M, and 2, the rotation angle of N around M,mapn , which is 
equal to the directional vector of the X-axis, rotated by 1 to lie in N and put in unit 
length. Looking at the dimensions of the set up 3-cDOF TSS bending machine and tak-
ing the distance from the front feeding roll pair to the X-axis (LB,y = S OP P = 390 mm) 
and the maximum X-axis value of 250 mm, and neglecting machine stiffness and profile 
elasticity, the minimal producible theoretical bending radius would be 429.2 mm. The 
maximum angle of 1 would be 1.14 rad or 65.3° in this case. The general relation is 
given by: 

2 2
B,X B,y

th
B,X

1
2

L L
R

L
( 5.7) 

and: 

B,y1
1

th

sin
L
R

( 5.8) 

Figure 5.3 shows that the 3-cDOF TSS bending process does not include a 2-axis and, 
thus, cannot  perform  an  according  bending  head  rotation.  If  the  profile  now  switches 
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Figure 5.4: Geometrical relations of bending head movement and resulting ideal 

bending radius and β1 angle 
 

 
Figure 5.5: Angular offset of bending head to the bending line of the profile during 

3D-bending using the 3-cDOF TSS bending process 

from one  radius  Rth,1  on  one  bending  plane  to  the  next  radius  Rth,2  on  the  next  bending  

plane, as shown for an exemplary profile in Figure 4.9, the bending head is offset from 
the normal plane N of the bending line by exactly –β2. The maximum angle of β2 can be 
calculated by considering two consecutive radii of 429.2 mm and a bending plane rota-
tion Δθr of π from the first radius (Rth,1) to the second (Rth,2). If a third consecutive radius 
now lies on a bending plane perpendicular to the bending plane of Rth,2, the profile is 
positioned in the machine as shown in Figure 5.5 resulting in β2 = 0.384 rad = 22.0°. 
This large offset can pose problems for the bending process by causing collisions in the 
bending head. Furthermore, jamming of the profile in the bending head rolls can occur 
when the y-component of the bending force exceeds the feeding force of the feeding 
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system or because of excessive Hertzian stress between the bending head rolls and the 
profile and the resulting deformation of the profile surface. In the calculation of the 
Hertzian stress between the bending head rolls and the profile, the roll is considered as 
elastic and the profile is thought of as an elastic half-space with a plane surface. The 
contact problem can then be defined as the interaction of two cylinders, whereby one 
cylinder has an infinite radius (the profile). According Popov (2010) the contact stress 
between two cylinders with parallel axes can be calculated by: 

* * *

c * *
W L2 2

E d E d E F
c R c R

( 5.9) 

Whereby cL is the contact length, d is the depth of impression and, cW is half of the 
contact width:  

*
Wc R d (5.10) 

The equivalent radius R* is given by: 

*
roll profile

1 1 1
R R R

profile0 when R

(5.11) 

and, thus, is equal to the radius of the bending head roll Rroll. The equivalent Young’s 
Modulus E* is computed by: 

22
profileroll

*
roll profile

111
E E E

(5.12) 

where  is the Poisson’s ratio. F is the normal contact force and given by: 

*
L4

F E c d (5.13) 

Using the contact length of 28 mm, a bending roll radius of 40 mm and assuming a 
Poisson’s ratio of 0.3 and a Young’s modulus of 210 GPa for both the bending head roll 
and the profile, Figure 5.6 shows the bending head offset and the geometrically linked 
impression depth for different contact stresses. The maximum contact stress of 
2000 MPa is given by the material of the bending head roll. The rolls are made of 
quenched and tempered 42CrMo4 (DIN EN ISO 683-1, Steel number: 1.7225), surface 
hardened by gas nitriding reaching a surface hardness of 55-64 HRC.  

From Figure 5.6 it can be seen that even the slightest bending head offsets can poten-
tially affect the surface quality of the profile. Considering that the shown impression 
depths are below 0.05 mm the possible surface defect could be described as burnishing. 
On the one hand, higher bending head offsets than shown in Figure 5.6 would damage 
the  bending  head  rolls.  On  the  other  hand,  these  low  offsets  would  greatly  reduce  the 
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Figure 5.6: Impression depth and the geometrically linked bending head offset for 
different contact stresses 

Figure 5.7: Process window considering minimal producible radii without collisions 
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applicability of the TSS bending process to bend 3D-contours. To overcome this limi-
tation, the bending head rolls must be adjusted to create a gap in between the rolls and 
the profile. Based on an analysis of the circular runout tolerance of the rotatable trans-
portation system, which resulted in measurements of ±0.2 mm (Staupendahl et al. 
2014a) at the point PO, the size of the gap was defined to be 0.2 mm. With the additional 
consideration of the profile elasticity between the points PS and PFB, the process window 
shown in Figure 5.7 is achieved. The combinations of Rth,1 and Rth,2 in the red area are 
not producible because of the limited X-axis movements (±250 mm), independent of the 
profile cross-section. The red curved lines further limit the process window based on the 
collision of the profile with the bending head, whereby the possible radius combinations 
are to the top right of the lines. The limits are shown for sizes of arbitrary cross-sections 
ranging from DP = 20 2  mm to DP = 60 2  mm, were DP is defined as the diameter of 
the enclosing circle having its midpoint at the center of gravity of the cross-section. 

5.2.1 Drive system of the bending head’s rotational DOFs 

As explained in the previous section, controlling the 2-axis would convert the 3-cDOF 
TSS bending process into a 4-cDOF process and theoretically allow 3D bending of pro-
files with non-circular cross-sections to arbitrary bending contours. However, the miss-
ing 2-axis and the resulting angular offset between the profile and the bending head can 
cause jamming of the free 1-axis. To overcome the limitations of the process concern-
ing profile shape and part tolerances, the process is, thus, extended by two additional 
actuators. One to drive the 2-axis and one to drive the 1-axis. For the development of 
the controlled bending head system8, the systematic engineering design approach of 
Pahl and Beitz (1977) was used, standardized in the VDI guideline VDI 2221, which 
divides the development and design process into the single steps: 

Planning and clarifying the task 
Conceptual design 
Embodiment design 
Detail design 

The major requirements in the planning step were: 

The torque and rotation speed of the 2-axis actuator must match or be greater 
than the maximum torque and speed of the 1-axis actuator (3000 Nm, 1.89 min-1) 

 

                                              
8 The design and assembly of the bending head drive system was done by Aydogan Zeyd Kaya in the course of 
his diploma thesis: Konstruktive Erweiterung der TSS-Profilbiegemaschine um zwei zusätzliche CNC-Servoach-
sen [Extension of the TSS Profile Bending Machine by two additional CNC-Servo Axes], Fachhochschule Aachen, 
2011, supervised by: D. Staupendahl, M. Hermes, A. E. Tekkaya, and H. Heinrichs. 
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• The rotation speed of the β1-axis actuator must not reduce the overall process
time

• The process window must not be reduced by more than 5 %

During this systematic process, different drive concepts were evaluated regarding their 
complexity, efficiency, installation size, cost, as well as the torque and rotation speed 
requirements. Segregated and integrated servo-gear systems were compared, the ad-
vantages and disadvantages of different angular gears, namely bevel gears and worm 
gears, were analyzed, and the advantages and disadvantages of different axial gear sys-
tems, based on parallel axes gears and planetary gears, were assessed. Figure 5.8 gives 
an overview of the drive concepts that were investigated.  

Figure 5.8: Drive concepts for the α2-axis and the β1-axis (Staupendahl et al. 2014a) 

Since the bending head itself is quite compact, a compact gear system is needed. For the 
drive of the α2-axis, the least interference with the bending process proved to be a verti-
cal placement of the servo. The horizontal placement would either limit the rotation 
angles of the β1-axis or greatly increase the distance LB,y. However, a vertical placement 
of the servo entailed an angular gear with an operating angle of 90°. Gear concepts in-
volving bevel gears or worm gears as a last stage did not meet the requirements con-
cerning maintaining the process window inside the previously defined tolerance. Also, 
bevel gear boxes used as a first stage proved to need too much installation space and 
result in premature collision of the profile with the bending head (see Figure 5.5). Worm 
gear boxes, on the other hand, allowed much more compact setups. Yet, worm gears 
only allow the transmission of high torques at low speed ratios. In order to reach high 
torques, worm gears either have to be driven by high torque servos, whose diameter is 
too large for the present use case, or be combined with additional axial transmissions. 
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Applicable axial gearboxes either use planetary gears or parallel axes gears based on 
spur or helical gears. Parallel axes gearboxes proved the more cost effective choice. The 
finally chosen concept uses a vertically placed servo, which drives the following gear 
stages: 

1. Parallel axes gear box  increases torque output of servo 
2. Worm gear box   90° direction change, further torque increase 
3. Parallel axes gear   transmission of torque to 2-axis 

In the embodiment design it was finally decided to use a compact helical servo gear 
motor with an internal speed ratio of 66.12 from KEB Automation as stage 1, which 
offers a maximum continuous torque ouput of 610 Nm (standstill) and a maximum ro-
tational speed of 45 min-1. As a second stage, a high-torque worm gear unit from Atlanta 
Antriebssysteme was chosen with a transmission ratio of 4.75, a center distance of 80 
mm, and an allowable static torque to avoid tooth fracture of 3000 Nm. The allowable 
static torque was seen as the determining parameter because the speed of the driving 
shaft is considerably lower than the specified maximum driving speed of the gear of 
3000 min-1. The advantage of using a worm gear with a low speed ratio is the higher 
transmittable torque and higher efficiency compared to worm gears with high-speed ra-
tios. The efficiency of the selected worm gear at 1500 min-1 is stated as 94 % and is 
reduced to 77 % at standstill (Atlanta, 2012). As a third stage, a spur gear with a modulus 
of 5, a width of 50 mm, and a transmission ratio of 1.16 was especially designed to be 
fully integrated into the bending head, replacing the outer housing of the bending head’s 
thrust bearing. In order to enable the transmission of torques up to 3000 Nm from the 
worm to the spur gear, the bolted connection interface according to DIN EN ISO 9409-1 
was strengthened by 4 hardened cylindrical pins. The selection of a spur gear over a 
helical gear was mainly done to avoid additional thrust loads in axial direction and real-
ize the highest possible transmission efficiency. The close to 100 % transmission effi-
ciency is important for the integration of an accurate flange-based torque measurement 
device in between the worm gear and the spur gear as explained in Section 5.2.3. 

The total speed ratio including the internal ratio of the gear motor is 364.32. The result-
ing nominal rotational speed of the 2-axis is 8.17 min-1. Since the 1-axis speed is lim-
ited to 1.89 min-1, as stated in the design requirements, the servo driving the 2-axis will, 
thus, mostly rotate up to around 23 % of its nominal speed. The torque output in this 
speed range is close to the servo’s standstill torque. Using the total efficiency of the gear 
unit of 77 %, the continuous torque output of the 2-axis can be specified as 2588 Nm. 
The overloading capacity of the used servo is three times higher than the continuous 
torque at standstill, which allows a short-time torque output of 3480 Nm, limited by the 
3000 Nm tooth fracture torque of the worm gear.  

The connection of the bending head to the linear X-axis unit is realized through a vertical 
shaft, fixed to the bending head and supported in polymer sleeve and thrust bearings 
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inside the X-axis unit (Hermes, 2011). This support setup permits the free rotation of the 
shaft and, with it, the bending head around the 1-axis. The shaft protrudes the lower 
casing of the X-axis unit and calls for a plug-on drive solution. A vertical placement of 
the servo with an axial connection to the shaft would cause collisions with the ground if 
mounted below the X-axis unit and decrease the process window if mounted in front of 
the unit. It was, thus, focused on a horizontal placement of the servo. As mentioned 
before in the description of the 2-axis drive, a worm gear of a certain size or, more 
specifically, a certain center distance withstands higher torques at lower speed ratios. If 
high-speed ratios are required to realize a specific final torque, a worm gear must be 
combined with additional gear units. In the case of the 2-axis, the installation space was 
the crucial factor that necessitated this kind of combination. As installation space below 
the X-axis unit is abundant, the main deciding factors were the drive complexity, cost, 
and efficiency. The finally chosen concept uses a: 

single integrated servo-bevel gear unit            Integrates the following functions: 
                                                                          servo, increased torque output, 
                                                                          90° direction change 

In the embodiment design, it was decided to use a helical servo bevel gear motor with 
an internal speed ratio of 336.18 from KEB Automation, which offers a maximum con-
tinuous torque ouput of 2970 Nm (standstill) and a maximum rotational speed of 
8.9 min-1. The vertical shaft holding the bending head was replaced by a shaft of in-
creased length to fit through the entire hollow shaft of the servo-bevel gear unit and 
connected via a shrink disk. The bolted connection interface between the shaft and the 
bending head limits the transmittable torque to 2000 Nm. 

Figure 5.9 shows the finalized detailed design of the bending head drive system and the 
realized machine extension. The slightly eccentric position of the bending head, which 
was  previously  needed for  a robust  operation  of  the  undriven  1-axis  was  not  needed  

 
Figure 5.9: Finalized bending head drive design and realized machine extension 
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anymore in the case of a driven axis. By centering the bending head, the distance from 
the front feeding roll pair to the X-axis (LB,y) was increased from 390 mm to 396.92 mm, 
which results in an increase of the minimal producible radii Rth,min from 429.2 mm to 
440.1 mm. The process window is, thus, decreased by 2.5 %, which is well within the 
initially stated maximum required value of 5 %. By simply changing the lower limits of 
the process window shown in Figure 5.7 to the new minimal producible radii, the pro-
cess window is still valid for the extended bending machine. 

5.2.2 Performance of the 5-cDOF TSS bending process 

Due to the changes made to the bending head, the stiffness of the bending machine was 
re-evaluated. The measurement strategy presented by Hermes (2011) was used to set up 
a displacement function for the point of bending force application as explained by Chatti 
et al. (2010). The new displacement function (Eq. (5.14) in Table 5.3) produces signifi-
cantly lower values in the range 0.1 kN (factor 6) to 50 kN (factor 2) than the values 
calculated for the original setup using Eq. (2.7) and, hence, suggest a significantly higher 
machine stiffness. Additionally, the torsional stiffness of the machine was measured and 
is stated as the torsional spring constant cm (Eq. (5.15) in Table 5.3).  

Together with the extension of the machine by two additional driven axes, the complete 
control hardware and software of the machine was upgraded. Table 5.3 gives an over-
view of the characteristics of the upgraded 5-cDOF TSS bending machine. Originally, 
the 1-axis communicated over the serial bus RS-485, the c-axis was controlled by ±10V, 
and the X-axis communicated over CAN bus – all axes and sensors being connected to 
a process control unit made up of a dual-core PC (Pentium D 3.4 GHz, 1 GB RAM) with 
LabVIEW used as control software. The initial idea of integrating the additional bending 
head rotational axes into the process control via Ethernet was quickly abandoned due to 
high program cycle times caused by too many hardware interfaces and a slow PC hard-
ware. In tests, these high cycle times caused the software-PID-controlled bending axis 
to jitter because of constant parameter overshooting at c-axis feed speeds above 
30 mm/s, which eventually led to process failure. To overcome this problem, all com-
munication with the axes was changed to one single interface: Profibus DP. The control 
hardware was upgraded to a current 4-core system and used as an embedded system. As 
control software, the LabVIEW Real-Time Module was used. Programming was done 
in LabVIEW 2012. The processors capability of hyper-threading was disabled due to 
compatibility issues with the real-time software.  

As shown in Section 4.2.1, all axes movements can be related to profile feed. So, as 
realized by Hermes (2011) in his original process control, the c-axis is used as the master 
axis. In order to increase the stability of this axis and allow proper speed and velocity 
control when no profile is placed into the machine or if the rotary encoder used as a feed  
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Table 5.3: Characteristics of the 5-cDOF TSS bending machine 

Features Specifications 

1-axis 

Servo drive 
Nominal torque: 3000 Nm 
Nominal rotational speed: 1.89 min-1 
Travel: 3600° 

2-axis 

Servo drive 
Nominal torque: 3480 Nm 
Nominal rotational speed: 8.17 min-1 
Travel: continuous 

c-axis 

Asynchronous motor 
Nominal torque: 2945 Nm 
Nominal rotational speed: 6.9 min-1 (feed rolls) 
Nominal feed speed: 70 mm/s (feed roll Ø = 200 mm) 
Travel: continuous 
rotary encoder on motor shaft 
rotary encoder connected to profile with measuring wheel 

X-axis 

Hydraulic cylinder 
Nominal force: 50 kN 
Travel: ±250 mm 
Distance LB,y: 396.92 mm 
Rth,min: 440.1 mm 
linear encoder integrated in cylinder 

1-axis 

Servo drive 
Nominal torque: 2000 Nm 
Nominal rotational speed: 8.9 min-1 
Travel: continuous 

Machine 
stiffness 

X-axis 8 2 2 5
M B B1.496 10 mm/N 6.342 10 mm/NF F  ( 5.14 ) 

Torsion 7
M 2.552 10 Nmm/radc  ( 5.15 ) 

Data transmission Profibus DP 

Control  
Hardware 

Embedded system 
Core i7-2600 3.4 GHz (4 cores, hyper-threading disabled) 
8 GB RAM 

Control  
Software LabVIEW Real-Time Module 

Programming  
Environment LabVIEW 2012 
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sensor loses contact, an additional encoder was connected to the motor shaft of the asyn-
chronous drive. The upgraded control hardware and software, together with object-ori-
ented multithread programming reduced the program cycle times by 10 and resulted in 
PID response times able to handle the axes speeds mentioned in Table 5.3 (Staupendahl 
et al., 2014a). 

5.2.3 Development of an integrated torque measurement device 

A torque sensor was designed9 in order to measure the torque MT, applied by the 2-axis 
to twist the profile, and the parasitic torque MT,p generated during 3D bending by a bend-
ing force vector, set at a distance to the bending plane as explained in Section 4.2.4. As 
for the bending head drive system, the design approach laid out in the VDI 2221 guide-
line was used. 

First, potential mounting positions for the torque sensor were analyzed (see Figure 5.10). 
The potential positions are: 

1. The bolted connection interface between the worm gear and spur gear. 
2. The hollow shaft of the worm gear 
3. The connection of the helical servo gear motor to the worm gear 

Of these three positions, position 3 can be directly discarded. The efficiency of the worm 
gear of solely 77 % (see Section 5.2.1) would greatly impede the accuracy of the down-
stream torque sensor. Position 2, the hollow shaft, allows the design of a very compact 
measuring setup. An axial shear type shaft-based sensor could be used of which one side 
is directly connected to the spur gear and the other side is connected to the bolted con-
nection interface on the opposite side of the worm gear on which the spur gear is placed. 
In the sectional drawing A-A, one side of the shaft sensor would be connected to the left 
connection interface of the worm gear while the other side would be connected to the 
spur gear on the right side of the worm gear. The torque would be, thus, completely 
transmitted by the shaft-based sensor inside the hollow shaft of the worm gear. Because 
the shaft-based sensor would need to take up the shear forces acting on the spur gear 
during torque transmission, the sensor would have to be supported by bearings or bush-
ings inside of the hollow shaft. This reduces the maximum possible outer diameter of 
the sensor and causes excessive stress in the area of strain gauge application. Also, the 
stiffness of the 2-axis would be negatively influenced by the elastic twist of the slender 
shaft. 

 

                                              
9 The design of the torque measurement device was done by Frank Schyma in the course of his bachelor thesis: 
Konstruktion einer Drehmoment-Messvorrichtung für das Tordieren von asymmetrischen Profilen während des 
TSS-Profilbiegeprozesses [Design of a Torque Measurement Device for the Twisting of Asymmetric Profiles dur-
ing the TSS Bending Process], Fachhochschule Südwestfalen, 2012, supervised by: D. Staupendahl and W. Stolp 
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Figure 5.10: Sensor concepts for an integrated torque measurement device 

Position 1, the connection interface between the worm gear and the spur gear, calls for 
a compact flange-based sensor. Different sensor designs were investigated: 

A bending type sensor, where the outer ends of the bending beams are supported 
by bushings or needle bearings.  
A compression-tension type, where the outer edges of the sensor are supported 
by transversely placed tension-compression beams.  
A radial shear type, where the spokes of the flange are sheared radially.  
And, last, a spoke wheel type, in which the individual spokes of the flange are 
bent in an S-shape, with a radial shear zone occurring in the middle of each spoke.  

The bending type sensor has very homogeneous stress and strain fields on the individual 
bending beams, and negligible radial stresses. The design with the outer end supports 
requires very accurate production in order to avoid pre-stressing the sensor during as-
sembly. This is also true for the compression-tension type sensor. Additionally to the 
required high production accuracy, the transverse beams in this design do not experience 
pure tension and compression but a combination of tension and compression and 
S-shape bending. The sensor design is, therefore, especially sensitive to strain gauge 
placement. The radial shear type sensor and the spoke wheel type sensor are both robust 
designs, whereby the spoke wheel design offers a higher overall stiffness and a high 
stability against parasitic off-center shear forces.  

A technical and economic value analysis, as stated in the VDI 2225, showed the spoke 
wheel type design to be the most promising design. The final design and integration into 
the bending head is shown in Figure 5.11. The connection interface of the worm gear 
connects to the center hub of the measurement flange. The torque is transmitted via four 
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spokes to the outer ring of the flange, which is bolted to an adapter flange. The center 
hub of the adapter flange is finally connected to the spur gear. To increase the resistance 
of the setup to shear forces caused by the spur gear transmission, an additional shaft is 
mounted into the hollow shaft of the worm gear, with needle bearings supporting the 
spur gear and the adapter flange. In order to decrease friction as much as possible and 
thereby increase measurement accuracy, all polymer sleeve bearings and thrust washers 
used in the 2-axis (Hermes, 2011) were replaced by radial and axial needle bearings. 

For the strain gauge circuitry, a full Wheatstone bridge is used. Figure 5.12 shows the 
general strategy of applying a full Wheatstone bridge on a beam under pure bending 
(Hoffmann, 1987). With the presented strain gauge placement, axial strain, torsion, and 
thermal expansion can be compensated. In the designed torque measurement flange, ax-
ial shear loads that would twist the individual spokes are not expected. Radial shear 
loads caused by the spur gear transmission are unavoidable, however. This is why the 
strain gauge pairs 1-2 and 3-4 are each placed on spokes set 90° apart from each other. 
To increase the overall measurement stability, the strain gauges 1-4 are each replaced 
by two individual strain gauges connected in series (e.g. 1 = 1´+1´´ as shown in Fig-
ure 5.12). The placement of the strain gauges on the spokes of the measurement flange 
was done as a result of finite element analysis showing the areas of axial strain during 
loading. Using gas nitrided 42CrMo4 (DIN EN ISO 683-1, Steel number: 1.7225) with 
a surface hardness of 55-64 HRC and a tensile strength of about 1900 MPa, the measur-
ing range was initially specified from 100 to 3000 Nm. The strains in the middle of the 

 
Figure 5.11: TSS bending machine with included force and torque sensors 
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Figure 5.12: Strain gauge circuitry and application on manufactured torque sensor 

 

 
Figure 5.13: Torque sensor calibration using the in-plane torsion setup by Yin et al. 

(2011) (a) and using a load cell setup inside the 5-cDOF TSS bending 
machine (b) 
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measuring grid of the strain gauges, hereby, range from 0.005 % at 100 Nm to 0.16 % 
at 3000 Nm. 

The sensor was calibrated using the in-plane torsion setup designed by Yin et al. (2011) 
up to 1200 Nm using adapter flanges (Figure 5.13 a). The setup can also be seen in Yin 
et al. (2015). The final calibration was performed with the fully assembled measurement 
setup inside of the 5-cDOF TSS bending machine (Figure 5.13 b). By calibrating the 
torque measurement flange, the measurement range could finally be specified from 
250 Nm to 3000 Nm with an accuracy ranging from 5 % at 250 Nm to 0.7 % at 3000 
Nm. Using the approximation function by Voce (1948), the measurement accuracy macc 
over the whole range can be described by: 

T0.002676
acc % 0.7 8.3 Mm e (5.16) 

5.3 Development of a 3D contour measurement device 

Additionally to the process data made up of actual axes movements and force and torque 
measurements, the knowledge of the produced profile shape is needed in order to ana-
lyze and understand the mechanisms of 3D-profile bending.  

Chatti et al. (2010), Staupendahl et al. (2011), Hermes (2011), and Hudovernik et. al. 
(2014b) used the structured-light 3D scanner GOM Atos I 350, a noncontact offline 
surface measurement technique, to scan the outer surfaces of profiles after bending. In 
order to generate the bending lines further extensive processing of the data is needed. 
The first step is a cleanup of the files, deleting excess points that do not belong to the 
profile but to objects that surrounded the profile during scanning. In a next step, the 
surfaces are smoothed and meshed with triangular facets in order to allow the generation 
of an STL-file. This file can be further processed either in the GOM Atos software or in 
other CAD programs. Chatti et al. (2010) and Hermes (2011) used the GOM Atos soft-
ware to perform deviation analyses of 3D-bent profiles, specifically set-actual compar-
isons. The bending line and torsion was not investigated.  Staupendahl et al. (2011) and 
Hudovernik et. al. (2014b), on the other hand, used the CAD program CATIA by Das-
sault Systèmes to generate the bending lines from mesh data. In the course of the re-
search, two methods for bending line generation were found (see Figure 5.14). In 
method A, evenly spaced section cuts are produced along the longitudinal axis of the 
profile. Since this longitudinal axis initially does not exist as a geometrical element, it 
has to be manually approximated. In the next step, the center of area of each individual 
section cut is generated. Following the VDI 3431, the bending line is finally produced 
by connecting the centers of area with a continuous curve, specifically a spline. Errors 
can occur because of a poor initial longitudinal axis definition or by failing section cut 
definitions caused by a poorly cleaned up or smoothed STL-file. In method B two or 
more outer surfaces are parameterized and offset to the middle of the profile. Here, the  
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Figure 5.14: Generation of the bending line by the processing of section cuts 

(Method A) and the outer surfaces of the profile (Method B) 

intersection of two surfaces generate a line, which can ultimately serve as the bending 
line. The accuracy of this method can be increased by averaging the intersections of 
several surface pairings and thus countering potential errors caused by cross-section de-
formation. Both methods describe the generation of the bending line. As explained in 
Section 4.1.3, additionally to the bending line r , a secondary line sr



 is needed to de-
scribe profile torsion. In order to generate said secondary line, an additional point needs 
to be created in the same relative position on each section cut. For the square cross-
section shown in Figure 5.14 two adjacent sides could be extrapolated in each cut and 
intersected to create this point. Performing these steps manually is unjustifiable and the 
automatization of the necessary steps is highly complex. Method B on the other hand 
can efficiently be adapted to not only produce the bending line by offsetting the outer 
surfaces and intersecting the same, but to also produce a secondary line in a virtual ver-
tex by extruding the outer surfaces so that they exceed this virtual vertex and then create 
the intersection line between these two extruded parts. Once the bending line r  and the 
secondary line sr



 are generated, the mathematical calculation described in Section 4.1.3 
(if the curve description is continuous and three times differentiable) or in Section 4.1.4 
(if the curves show discontinuities). As can be sensed from the above description, the 
analysis of a profile using the structured-light 3D scanning technique is very time con-
suming and can actually take up to 3-5 hours for a 2 meter long profile (including prep-
aration of the profile and post-processing). Another disadvantage is that the system can 
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only perform offline-measurements. In order to simplify this procedure and additionally 
allow for online-measurements, a new 3D contour measurement device was developed. 

5.3.1 Design concept of a contact measurement device 

As for the drive system of the bending head and the torque sensor, the design approach 
described in the VDI 2221 guideline was used. Following the results and recommenda-
tions of the state of the art (Section 2.3), the focus in the sensor design was placed on 
contact measurement methods. But not only the experience of leading measurement ex-
pert companies speaks for contact measurement methods when analyzing 3D-bent pro-
files, also a significant cost benefit exists – e.g comparing digital length measurement 
probes and laser triangulation sensors or laser scanners. Additionally, measurement dif-
ficulties caused by reflections and thermal radiation can be avoided. 

The main requirements of the new sensor design were: 

Analysis of bending line: curvature and bending plane rotation relative to the arc 
length s 
Measurement of profiles with cross-sections fitting into a square of 65x65 mm 
and radii from 250 mm to 2000 mm 
Analysis of twist relative to the arc length s 
Compact setup 
Capability to perform online measurements  

The compact setup was targeted so that the sensor could be integrated into a wide range 
of kinematic bending processes and placed as near to the forming zone as possible. Since 
kinematic bending processes form the profile contour incrementally and the ability to 
perform online measurements was also targeted, the actual contour measurement pro-
cess is required to work incrementally as well. This means that only one specific parti-
tion of the profile can be measured at a single time step, with the overall profile contour 
being a combination or addition of the individual partition measurements. 

The simplest way to describe a radius is by three points (see Section 4.1.4). For the 
analysis of two-dimensional curves, where the bending plane is always oriented in the 
same direction, a sensor is sufficient that is only able to measure concave and convex 
radii. A sensor of this kind only needs to be in contact with the profile at a defined 
position on the inner or outer radius. However, in three-dimensional curves the orienta-
tion of the bending planes variates necessitating an enclosing sensor.  

Following the recommendations of the VDI 2222 a morphological analysis was used in 
the conceptual design phase of the sensor to generate potential designs from a combina-
tion of several partial solutions.  Figure 5.15 shows the ultimately chosen measurement 
concept of the newly developed sensor. The sensor is made up of three contact units: 
Two outer units, where one is fixed in an enclosing housing and one is rotatable around 
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the y-axis, and a center contact unit, which is freely movable in the x and z direction and 
additionally rotatable around the y-axis. A feed sensor is used to determine the position 
of the sensor along the profile axis. The contact units can be adapted to arbitrary cross-
section shapes by simple change and flexible positioning of guiding elements (see Fig-
ure 5.16).  By  this  simple  setup  for  which  a  European  patent  was  granted  under  the 
patent number EP 3 315 221 B110 all of the above targets can be achieved. The mid-
points of the contact units 1, 2, and 3 define the local radius of of a 3D shaped profile, 
running through the sensor, and the local bending plane (see Figure 5.17 a). 

 
Figure 5.15: Measurement concept of the 3D contour sensor (Staupendahl and  

Tekkaya, 2017a) 
 

 
Figure 5.16: Contact units with mounted exemplary guiding elements (Staupendahl 

and Tekkaya, 2017a) 

 

                                              
10 Staupendahl, D., Schultz, D., Tekkaya, A.E., 2018a. Device for Tactile Detection and Analysis of the Geometry 
of Bent Profiles or Tubes. European patent EP 3 315 221 B1, priority date: 31.10.2016. 
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The twist per unit length is obtained by analyzing the rotation of contact unit 2 around 
the y-axis of the sensor. The movement of contact unit 2 is tracked by digital length 
measurement probes (LMP 1-4), placed parallel to the sides of the sensor as seen in 
Figure 5.17 b, sensing the position and motion of sensor bars, protruding from contact 
unit 2. The placement of the LMPs was chosen to allow a compact sensor setup. The 
detailed calculation of the profile data is shown in the next section. 

 
Figure 5.17: Determination of the bending plane rotation r,CU,12,i relative to the sen-

sors x-axis and the torsion angle CU,12,i (Staupendahl and Tekkaya, 
2017a) 

5.3.2 Calculation of the profile contour data 

The mid-points of the contact units 1, 2, and 3 (PCU,1, PCU,2, PCU,3) define the radius Ri 
of a curve. Here, the relevant parameter of the freely movable contact unit (CU) 2 is the 
length of the resultant vector CU,2r  of the movement in x and z-direction (see Figure 
5.17 a). In order to calculate CU,2r , first of all, the movement of PCU,2 needs to be related 
to the measurements of the LMPs (see Figure 5.18). The contact points of the LMPs 
with the sensor bars are described as PLMP,1 through PLMP,4. As a result, the sensor bars 
can be represented by straight-line equations in the point slope form. The angle between 
the sensor bar 1-3 and the x-axis is equal to the angle between the sensor bar 2-4 and the 
z-axis and is described by: 

1 11 3 4 2
CU,12,

1 3 2 4

tan tani
z z x x
x x z z

(5.17) 

Thus, a clockwise rotation of CU 2 relative to CU 1, which is actually a negative rotation 
around the y-axis, results in a positive CU,12,i. Taking this sign convention into account, 
the sensor bar line 1-3 can be defined with the point PLMP,1 as: 

CU,12, 1 CU,12, 1tan tani iz x z x (5.18) 
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Using point PLMP,2 as the known point, the sensor bar line 2-4 is defined by: 

2 2
CU,12, CU,12,

1 1
tan tani i

z x z x (5.19) 

The coordinates of the intersection point PSB,int are obtained by equalizing Eqs. (5.18) 
and (5.19): 

CU,12,
CU,12, 1 2 2 12

CU,12, CU,12,

tan 1tan
tan 1 tan

i
i

i i

x x x z z (5.20) 
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i i

i i

z x x z z z x  (5.21)

The coordinates of PCU,2,i are finally calculated by adding the relative offsets xMP,r and 
zMP,r to the respective coordinates of PSB,int: 
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CU,12,
MP CU,12, 1 2 2 12
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 (5.23)

The length of the resultant vector CU,2r  then becomes: 
2 2

CU,2 MP MPr x z (5.24) 

Eqs. (4.50), (4.51), or (4.52) can be used for the calculation of the radius. Here, instead 
of 1i iP P , 1i iPP , and 1 1i iP P , the vectors between the midpoints of the contact units 

CU,1, CU,2,i iP P , CU,2, CU,3,i iP P , and CU,1, CU,3,i iP P  are used.  

Since CU 1 and 2 are set the distance LCU,12 apart CU,12,i has to be divided by the arc 
length of the curve between CU 1 and 2 in order to obtain the twist per unit length of  
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i. As an idealization, the arc is defined to have the shape of a circle: 

CU,12,

1 CU,12sin

i
i

i
i

L
R

R
(5.25) 

As for CU,12,i, a clockwise rotation, so a negative rotation around the y-axis, signals 
positive torsion. This sign convention can be understood when imagining the profile’s 
local tnb-frame during its movement through the sensor. Similar to the profile move-
ment through the generalized geometric 3D bending process model seen in Figure 4.8,  

 

Figure 5.18: Geometrical relations between the contact points of the LMPs and the 
sensor bars as well as the midpoint PCU,2,i 
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the t-direction of the tnb-frame at the origin of the xyz-coordinate system is exactly op-
posite to the y-axis. The rotation angle r,CU,12,i between the point-symmetric extension 
of the resultant vector and the x-axis (see Figure 5.17 a and Figure 5.18) is used to cal-
culate the discrete rotation angle r,i of the bending plane. The point-symmetric exten-
sion is relevant in this case because the normal vector of the curve, passing through the 
sensor, is always directed in the opposite direction of the resultant vector. As a result, 
the rotation angle and the torsion angle measured by the sensor have the same sign, 
which is what is expected when looking at Section 4.1. In the range r,CU,12,0 2i  
the angle r,CU,12,i relates to movements in x and z-direction by: 

MP MP

1 MP
r,CU,12, MP

CU,2

1 MP
MP

CU,2

 0 for 0 and 0

 cos for 0

cos for 0

 

 i

x z

x z
r

x z
r

(5.26) 

Since the rotation angle r,CU,12,i is measured relative to the current cross-section position 
in CU 1, a twisted cross-section affects the rotation measurements. In the extreme case 
in which the bending plane rotation is equal to the twist per unit length as shown in 
Figure 4.2 c, the sensor would measure no rotation at all. It is, thus, essential to add the 
torsion that CU 1 has already undergone to the measured rotation angle. Mathematically 
this can be described by: 

CU,1,r,i r,CU,12, P ii (5.27) 

with:  

r,CU,12, r,CU,12, r,CU,12, 1i i i (5.28) 

PCU,1,i is the value that CU 2 measured when it was in the 
position of CU 1. If the feed sensor only tracks the movement of a single line on the 
outer surface of the profile facing in the z-direction as shown in Figure 5.15, the step 
size output by the sensor lstep,i,FS needs to be converted into the step size of the bending 
line lstep,i: 

step, step, ,FS
FS r,CU,12,sin

i
i i

i i

Rl l
R L

(5.29) 
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PCU,1,i can, thus, be described as: 

CU,1, CU,12

CU,12

CU,12 CU,121
P CU,12

step,

   with   sin 0.5
i i i i i

i
i

k i i

L i i
i R

R l
(5.30) 

Here, the parameter CU,12i  describes the number of increments between contact units 1 
and 2, rounded to the nearest integer. 

5.3.3 Setup of the manufactured contact measurement device 

Figure 5.19 shows the manufactured 3D contour sensor. As planned in the conceptual 
design, the finalized setup allows flexible positioning of guiding elements on contact 
units 1 through 3. During first tests, it was noticed that the contact rolls of the guiding 
elements were not in line contact with the profile cross-section if it had undergone severe 
distortion during bending. To overcome this contact issue, only one guiding element 
was fixed in each contact unit. One adjacent element was mounted rotatable into the 
contact unit. The remaining two elements were designed rotatable and spring-loaded in 
radial direction. In order to allow inline-measurements directly in sequence to a bending 
process, the sensor is supported by a tool balancer. The tool balancer balances out the 
complete weight of the contour sensor in order to avoid additional force on the profile, 
which could affect the bending process.11 

As LMPs, digital sensors from Magnescale (DT32N) were used, which allow a maxi-
mum range of 32 mm, a resolution of 5  and a measurement accuracy of 10  The 
measurement of the accuracy of the fully assembled contour sensor was performed in 
two steps. First, the geometry of the finalized sensor  setup was analyzed with GOM 
Tritop. The coded and uncoded measurement points used in the analysis can be seen in 
Figure 5.19 a. The geometrical aspects verified were the parallel positioning of the 
LMPs to the center as well as the distances of contact points PLMP,1 through PLMP,4 to the 
center in x and z-direction.  

The actual measurement accuracy of the sensor was gained by a comparison of meas-
ured radius, bending plane and torsion data with data gained via the structured light 
scanner  GOM  Atos.  Radii  between  700 mm  and  1300 mm  and  bending  plane  rotations  

 

                                              
11 The embodiment and detail design as well as the assembly of the contour sensor with solely fixed guiding 
elements was done by Daniel Schultz in the course of his master thesis: Entwicklung einer Messvorrichtung für 
das Analysieren von Konturen dreidimensional gebogener Profile [Development of a Measurement Device for the 
Contour Analysis of Three-Dimensionally Bent Profiles], Technische Universität Dortmund, 2014, supervised by: 
D. Staupendahl and A. E. Tekkaya, 
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Figure 5.19: Manufactured 3D contour sensor (left) (Staupendahl and Tekkaya, 

2017a) and guiding element setup used to allow accurate measurement 
during cross-section deformation (right)  

and twist per unit length data from 0 to 0.982 rad/m were used in the analysis. Using the 
CAD program Catia from Dassault Systèmes, Method A from Figure 5.14 was used to 
generate the bending line and Method B was used to generate the secondary line needed 
to describe profile torsion. The section cuts defining the bending line in Method A were 
distributed  at  an  interval  of  5  mm  along  the  length  the  profile.  For  the  analysis  of  the 
bending line and torsion data, three evenly spaced points on the bending line and their 
corresponding points on the secondary line, with the outer points on the bending line 
being 128 mm apart from each other. This exactly matches the 64 mm spacing between 
the CUs of the contour sensor and avoids deviations because of different discretizations. 
The radius accuracy data was extrapolated to cover the range 250 mm until 5000 mm. 

Figure 5.20 shows the accuracy of the different measurement parameters in relation to 
the currently measured radius Ri and the twist per unit length Δϕi. These relations are 
significant because the resolution of the LMPs relative to the measured parameters ac-
tually changes with changing parameters. E.g., the relative resolution is high when 
measuring small radii and decreases with increasing radii. Thus, the radius and bending 
plane measurement accuracy decreases. This effect can be seen in Figure 5.20 a.  

In the analysis of the data, it was noticed that the absolute accuracy of the contour sensor 
is about two times lower than what is mathematically calculated from the accuracy of 
the LMPs. This can be mainly related to manufacturing tolerances but also to non-opti-
mal contact when handling profiles with cross-section deformation. In the range 
250 mm to 2000 mm, the radius measurement accuracy goes from 0.23 to 2.0 %. No 
relative accuracy can be specified for the bending plane rotation. Instead, the accuracy  
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Figure 5.20: a) Relation of radius measurement accuracy and bending plane rotation 

measurement accuracy to currently measured radius Ri, b) Relation of 
torsion measurement accuracy to currently measured i and error accu-
mulation over profile length 

Ri
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is specified in terms of radians. The expected deviations in both cases increase about 
linearly up to Ri = 15000 mm although only data up to Ri = 5000 mm are shown. This is 
because deviations above 5 % are too high for the validation of the effects analyzed in 
Sections 6.3 and 8. It is important to note that for the radius measurement, no error 
accumulation exists because the instantaneous radius is only dependant on the instanta-
neous CU midpoint positions. Figure 5.20 b shows the error accumulation resulting dur-
ing torsion measurement and the consequential accuracies at different twists per unit 
length. Because of the relation between torsion and bending plane rotation shown in 
Eq. (5.27) the error accumulation of the measured torsion has a direct effect on the bend-
ing plane rotation and has to be accounted for additionally to the instantaneous deviation 
shown in Figure 5.20 a. All in all the presented accuracies show that the designed 3D 
contour sensor is feasible for the analysis of 3D profile contours. 

5.4 Numerical model of the 5-cDOF TSS bending process and its validation 

In two-dimensional plane bending, the force data in the X-direction, collected by the 
force sensor that is integrated into the X-axis of the 5-cDOF TSS bending machine (load 
cell in Figure 5.11), can be used, together with the rotation of the bending head around 
the -axis, to directly calculate the bending force. In three-dimensional bending, the ap-
plication of torque by the bending head rotation around the 2-axis causes additional 
loads and, thereby, increases frictional forces on the linear guiding system of the bend-
ing head, resulting in a reduced measurement accuracy. As such, the experimental data 
of plane bending of profiles to the theoretical radii Rth of 600, 800, and 1000 mm as well 
as pure torsion of a profile to  = 1.964 rad/m was used to calibrate a numerical model 
of the process, which was, in turn, used to analyze the stresses and strains during bending 
(Section 7.1) and generate the bending force data for the investigations with applied 
torque in Section 7.3. 

5.4.1 Comprehensive numerical model 

The numerical model used is based on the model first described by Hudovernik et al. 
(2014b) and set up with the numerical software Abaqus from Dassault Systèmes. As 
kinematic bending is a dynamic process with continuously changing contact conditions, 
the explicit solver is used. The feeding rolls and the bending head rolls are modeled 
using analytically rigid shells, with the profile being modeled as a deformable shell. 
Specifically the profile is described by the extruded middle axis of the profile wall (a 
square with the dimensions 37.5x37.5 mm), meshed using 4-node, quadrilateral, general 
purpose shell elements with a Gauss thickness integration using five integration points. 
The feeding rolls are completely fixed, with the bending head rolls being rigidly linked 
to a central reference point, whose movement is controlled along the X-axis and, other 
than described by Hudovernik et al. (2014b), also around the 2 and 1-axis. This setup 
idealizes the stiffness of the actual 5-cDOF TSS Bending machine and, as such, does 
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not consider bending roll and feeding roll deflections. A frictionless surface-to-surface 
penalty contact is defined between profile and rolls. As a result, other than in the actual 
process, the feeding rolls are not used to transport but only to guide the profile, whereby 
the feed is being applied to the rear end of the profile, acting similar to a pusher in tube 
bending. The impact of this simplification on the bending force component in the X-di-
rection was previously investigated by Hudovernik (2014a), with the outcome that the 
difference between the two feed strategies is negligible. The advantage of the pusher 
strategy, however, is the clearly reduced calculation time of the numerical model. Fig-
ure 5.21 displays the model setup. The controlled axes are marked with arrows.  

The numerical analyses were performed using the flow curve approximated for the ma-
terial MW700L Z1 from Eq. (5.2) in combination with the von Mises yield criterion and 
isotropic hardening. No mass scaling was applied, but while the plane bending experi-
ments were performed at a constant velocity of 4 mm/s, the numerical simulations were 
performed with a velocity of 200 mm/s. A further decrease of the velocity did not bring 
improvements to the simulation, while higher values negatively affected the force out-
put. Below 200 mm/s the bending process can, thus, be regarded as quasi-static. In pre-
vious investigations (Staupendahl and Tekkaya, 2017b) a feed velocity of 600 mm/s was 
actually used in the numerical simulations, which explains the slight differences in the 
calculated strain and bending force data. Figure 5.22 shows the experimental and nu-
merical force components in X-direction for the theoretical radii 600 mm, 800 mm,  
 

 
Figure 5.21: FE model of the 5-cDOF TSS bending machine used for the calculation 

of bending forces in two-dimensional and three-dimensional bending 
(Staupendahl and Tekkaya, 2018b) 
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Figure 5.22: Experimental and numerical X-axis force component data during bending 

of MW700L Z1 to Rth = 600 mm, Rth = 800 mm, and Rth = 1000 mm 
(Staupendahl and Tekkaya, 2018b) 
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and 1000 mm in relation to the profile feed. The graph can be divided into three regions: 
loading, steady-state, and unloading. During the loading stage, which begins at a profile 
feed of 0 mm, the bending head moves along the X-axis and rotates around the β1-axis 
until it reaches its steady-state position. It stays at this position until a profile feed of 
800 mm, after which the unloading stage begins. In this last stage, the bending head 
moves and rotates back to the initial center starting position until the profile feed reaches 
1200 mm. The movements of the axes are defined using an ideal profile made up of a 
400 mm straight part, followed by an 800 mm curved part with the target radius Rth, and 
finalized by a 400 mm straight part in combination with a digital kinematic mock-up as 
described by Staupendahl (2011) and used by Hudovernik et al. (2013), which is built 
up like the generalized geometric 3D bending process model shown in Figure 4.9 b. Ac-
cording to the X-axis force data comparison shown in Figure 5.22, the numerical data 
can be rated to be in good agreement with the experimental results with errors lying well 
within a 5 % range at the force peak in the loading section and over the whole steady-
state region. 

The validation of the numerical model during pure torsion was performed without pro-
file feed in order to focus solely on the torque response of the model. The profile was 
twisted to dϕ = 1.964 rad/m at an angular speed of the α2-axis of 0.00393 rad/s in the 
experiment while it was twisted at 0.196 rad/s in the numerical simulation, keeping the 
previously established speed factor 1:50. The experimental and numerical torque data 
in relation to twist per unit length of the profile is shown in Figure 5.23. The slope of 
the numerical curve in between 0 and 0.491 rad/m deviates significantly from the ex-
perimental slope, causing an error of 30 % at 0.246 rad/m. This deviation can be 
 

 
Figure 5.23: Experimental and numerical torque data during twisting the MW700L Z1 

profile to different values of dϕ   
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attributed to the machine stiffness, which, in case of torsion, is calculated with 
Eq. (5.15). The slope of the numerical data corrected by the torsional stiffness cM as seen 
in Figure 5.23 is in much better agreement with the experimental data, showing a max-
imum error of 14 % at 0.246 rad/m and an average error of 7 % from 0.246 rad/m to 
0.491 rad/m. The average error between the numerical and the experimental results in 
the range from 0.491 to 0.982 rad/m is below 5 % and only increases to 6 % from 0.982 
to 1.964 rad/m. 

5.4.2 Simplified numerical model 

In order to analyze the shear strain over the cross-section without the influence of tool 
contact and, thus, contact stresses, a simplified implicit FE model was additionally set 
up in which bending and twisting were applied by boundary conditions (see Fig-
ure 5.24). Due to the non-existence of contact interfaces in this approach and the quasi-
static nature of the actual 3D profile bending process in the investigated range of feed 
velocities, the simplified FE model was regarded as a static problem and solved using 
the implicit solver. The advantage of using this calculation scheme is that equilibrium 
equations are solved in each time step, thereby upholding the static equilibrium through-
out the entire simulation (Belytschko et al., 2014). This allows a reliable analysis of 
mathematical constructs that cannot be directly validated experimentally. As the explicit 
model, the simplified implicit model was set up using 4-node, quadrilateral, general pur-
pose shell elements. In order to avoid tool contact, only a 400 mm long profile segment 
was regarded, which represents the length of the profile between the front feeding rolls 
and the bending head, with boundary conditions at both ends of the profile simulating 
bending and twisting. To further simplify the simulation and increase the calculation 
efficiency, only half of the profile length was actually analyzed. Here, twist was applied 
to one end of the profile segment by a rotational boundary condition around the neutral 
axis of the profile, while bending was simulated by a rotational boundary condition 

around the binormal vector b  at the other end of the segment. The rotation around b  is 
 

 
Figure 5.24: Simplified FE model to simulate combined bending and twisting without 

tool contact (Staupendahl and Tekkaya, 2018b) 
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given by the bending angle β, which, in the specific case of a 200 mm long profile seg-
ment, is equal to 200 mm/Rth. The vertices of the cross-section were filleted with 
1.25 mm radii, closely resembling the experimentally used profile material, which was 
presented in Section 5.1. The main reason behind the filleting was overcoming conver-
gence issues during solving of the numerical model. A mesh size of 0.2 mm was chosen 
in the areas in proximity to the fillet and in the middle section of the profile. The middle 
section was used to extract the stress and strain data in Section 7.3. Figure 5.25 compares 
the bending force data calculated with the simplified model to the bending force data 
calculated with the comprehensive numerical model. In the simplified simulations with 
bending and simultaneous twisting, twisting and bending were initialized in the same 
instant and reached their final values at the same increment.  

 
Figure 5.25: Comparison of bending force data calculated by the comprehensive nu-

merical in the loading region and the steady-state region to the bending 
force calculated by the simplified numerical model at profile positions 
θ = 0 and θ = π/4 



92 Setup of a 5-cDOF profile bending process and measuring equipment 

 

In the comprehensive simulations, the α2-axis movements were initialized parallel to the 
X-axis and β1-axis movements at a profile feed of 0 mm. All axis movements were fi-
nalized upon reaching the steady state region. On average, the difference between FB 
obtained with the simplified model and FB obtained with the comprehensive model is in 
the same range as the difference between the average FB in the steady-state region and 
the peak FB of the comprehensive model. As a result, the simplified FE-model is de-
clared feasible for the stress and strain analyses performed in Section 7.3. 

 



 

 

6 Elastic profile behavior during 3D profile bending 
Depending on the position of PFB, a torque MT applied to the profile in order to twist its 
cross-section can result in a parasitic force that is oriented orthogonally to the bending 
force. Similar to the parasitic torque discussed in Section 4.2.4, this parasitic force can 
result in deviations of the bending plane rotation. The calculations necessary to set up 
the relation between an applied torque and a parasitic force in a 4-cDOF bending process 
is addressed in the next section. 

6.1 Definition of a supported beam model for profile bending with  4 cDOF 

In order to calculate the forces and moments acting on a profile during 3D profile bend-
ing, an analogous model has to be set up. An efficient way to do this is by converting 
the complex real-life bending process with its profile feeding system and enclosing 
bending head into a supported beam model. The state of the art of 3D profile bending 
machines  4 cDOF shows two general kinds of profile supports:  

A die-based support, through which the profile is fed and which acts like a sleeve 
bearing, taking up radial forces and moments. Processes that use a die-based sup-
port are the Gigalus combined drawing and free-form bending machine, the Nis-
sin processes, the Hexabend process, and the 6-DOF bending process. 
A roll-based support, where the individual feeding rolls take up different forces 
and moments depending on the general roll setup and the roll positions. The only 
system that currently uses this kind of support is the TSS bending process.  

As explained in Section 2.1.2, Hermes (2011) used a straight statically indeterminate 
beam, loaded with a bending force parallel to the X-axis, to describe the in-plane elastic 
profile behavior in TSS bending. This simplification lead to displacement deviations 
along the X-axis of 30 %, which were reduced to 15 % by the consideration of machine 
stiffness (see Figure 2.7). However, a remeasurement of the machine stiffness (see Sec-
tion 5.2.2) has actually yielded a much higher machine stiffness with displacement val-
ues at the point of force application 2 to 6 times lower than Hermes’ values, depending 
on the applied bending force (2 at FB = 50 kN, 6 at FB = 0.1 kN). A reason for Hermes’ 
high deviation between experimental and analytical values could be his simplification 
of the elastic bending problem as a straight beam. Thus, for an increased real-life repre-
sentation of the bending process, a curved beam is regarded in the following sections.  

For the setup of the supported beam model, it is assumed that the curve describes an 
ideal radius and lies in the xy-plane. The top view of a 3D bending process in the xy-
plane with a die support and its simplification are shown in Figure 6.1a) and b). In the 
illustrated process setup, the profile is replaced by a cantilever beam, while the die is 
simplified as a full moment connection. 
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Figure 6.1 c) and d) show a roll-based support, as it is applied in the TSS bending pro-
cess, and its simplification as a statically indeterminate beam. The left and middle pair 
of the feeding rolls are replaced by two roller supports, constraining the translations of 
the beam in x and z-direction. The right pair (front pair) is replaced by a hinged support, 
constraining the translations in x, y, and z-direction. Additionally to the respective trans-
lations, the supports also constrain the rotation of the beam around the y-axis. 

Should more or less feeding roll pairs be used in the roll-based support, the beam model 
can be extended with further roller supports left of the hinged support, or the amount of 
roller supports can be reduced. In the case of combining the roll-based support with a 
form-closed feeding mechanism as, for instance, a pusher or booster, the beam model 
can be extended by a full moment connection left of the roller supports. The bending 
head, in all cases, is replaced by a simple support, solely constraining the translation of 
the beam in z-direction, and a force vector with the magnitude FB and a torque MT. 

The real-life surface-to-surface contact is, thus, simplified to a point contact implicating 
the following additional simplifications: 

No transmission of additional moments into the profile by an oblique positioning 
of the profile in the supporting system (Figure 6.2) 
No effect of contact pressure on the stresses generated inside of the beam (Fig-
ure 6.2) 

 
Figure 6.1: 3D bending process with a die support (a) and roll-based support (c) and 

their respective simplified supported beam models including qualitative 
bending moment diagrams (b, d) 
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Figure 6.2: a) Contact stresses caused by oblique positioning of profile in a die-

based support (a) and a roll based support (b) 

No movement of the forming zone due to a change of the point of contact on the 
front feeding roll (Figure 6.3) 

Hudovernik (2014a) suggested that the forming zone begins before the front feeding 
rolls and ends after, with a shift of the forming zone center towards the bending head, 
not only because of a moving contact point on the feeding roll (Figure 6.3) but also 
because of cross-section deformation and resulting changes in the second moment of 
area. He defined the center of the forming zone as the mid-point of the line described by 
the points of maximum von Mises stress in the compressive and tensile region of the 
profile as given by a FE-simulation. His results suggest forming zone displacements 
towards the bending head, which reduce the ideal bending lever arm LB as much as 10 % 
creating the effective lever arm LB,eff. The validity of Hudovernik’s approach is not com-
pletely clear, however, because the von Mises stress data that he extracted from his sim-
ulations were affected by contact stresses, applied to the profile by the feeding rolls. The 
figures in his work, showing the von Mises stress distribution along the profile during 
bending, could also be interpreted in the way that the center of the forming zone is ac-
tually much closer to the front feeding rolls than he stated, which would match observa-
tions done by Hermes (2011).  

The supported beam model, that is set up in this work will, thus, use the ideal lever arm 
LB that does not consider a shift of the forming zone. As a result, the maximum bending 
moment that acts on the forming zone, as shown in the supported beam models in Fig-
ure 6.1b) and d), can be calculated with the bending force FB and the ideal lever arm LB: 
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B,max B BM F L (6.1) 

In the case of an ideal bending radius, LB is equal to the distance LB,y from the profile 
support to plane of PFB movement, or, when looking at the process in the xy-plane as 
pictured in Figure 6.3, from the front feeding rolls to the X-axis: 

 
Figure 6.3: Movement of the point of contact between profile and front feeding roll 

because of oblique profile position in feeding roll pair 

6.2 Supported beam model: die-based profile support 

Figure 6.4 shows the isometric view of a supported beam model of a 3D bending process 
with a die support and the corresponding free-body diagram. Since the movement of the 
beam is constrained in the z-direction at the point of bending force application PFB by a 
simple support, the beam has to be regarded as a statically indeterminate beam. The 
most effective way to calculate the loads and the bending line in the present case is by 
the method of superposition, which allows a separation of loads in order to set up stati-
cally determinate beams. In the free body diagram, the simple support is, herefore, re-
placed by the force FB,z in the z-direction. In the point PFB the beam is, thus, loaded by 
the bending force in the xy-plane FB,xy, by the force FB,z, and by the torque MT. In order 
to calculate the individual forces and the bending line of the beam, first, the deflection 
caused by each individual forces is calculated. Using the constraint that the total deflec-
tion wz,PFB in the point PFB must be zero, the unknown force FB,z can be calculated and 
used to solve the equilibrium equations. An ideal radius R between the profile support 
and the point of bending force application is considered. 



Supported beam model: die-based profile support  97 

 
Figure 6.4: a) Supported beam model of a 3D bending process with a die support, 

b) free-body diagram 

The beam is positioned so that the osculating plane is parallel to the xy-plane with the 
binormal axis being positioned in the opposite direction of the z-axis. The simplification 
of the ideal radius results in the following relations: 

B,x 1sinL R R (6.2) 

B,y 1sinL R (6.3) 

The equilibrium equations of the beam: 

1,x B,xy 1

1,y B,xy 1

1,z B,z

cos
0 sin

S F
F S F

S F
(6.4) 

S1,x B,x B,xy 1 T 1

S1,y B,y B,xy 1 T 1

S1,z B,z

cos sin
0 sin cos

0 0

M L F M
M M L F M

M F
(6.5) 

lead to the following reaction forces: 

1,x B,xy 1cosS F (6.6) 

1,y B,xy 1sinS F (6.7) 

1,z B,zS F (6.8) 

and reaction moments of the support: 

S1,x B,z B,y T 1sinM F L M (6.9) 

S1,y B,z B,x T 1cosM F L M (6.10) 

S1,z B,xy B,yM F L (6.11) 
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6.2.1 Beam deflection in the xy-plane 

In the xy-plane the beam is statically determined so that the beam deflection in the plane 
can be directly calculated from the applied load FB,xy. The supported beam model and 
the respective free-body diagram are pictured in Figure 6.5. 

 
Figure 6.5: a) Supported beam model with just the bending force FB,xy applied  

b) free-body diagram 

The internal moment in terms of s is calculated by: 

B,z B,xy B,y, B,xy 1sins s sM F L F R (6.12) 

With the relation: 

s
s
R

(6.13) 

Eq. (6.12) can be put in terms of the arc length s: 

B,z B,xy 1sin sM s F R
R

(6.14) 

Integrating the curvature-bending moment equation: 

xy,B B,zw s EI M s (6.15) 

with the constraint xy,B 0 0w  (full moment connection), the beam’s slope equation is 
derived: 

2
B,xy

xy,B 1 1cos cos
F R sw s

EI R
(6.16) 

or, in terms of s: 
2

B,xy
xy,B 1 1cos coss s

F R
w

EI
(6.17) 
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with the constraint wxy,B(0) = 0 the beam deflection is calculated: 
3

B,xy
xy,B 1 1 1sin cos sin

F R s sw s
EI R R

(6.18)

or, in terms of s: 
3

B,xy
xy,B 1 1 1sin cos sins s s

F R
w

EI
(6.19) 

The displacement wxy,B describes the repositioning of each infinitesimal point of the 
beam in normal direction to the beam’s original geometry. This means that the total 
deflection at 1 is in direction of the applied load FB,xy. In the case of a movement of the 
point of bending force application PFB on a plane parallel to the xz-plane (Figure 4.9), 
as it is the case with all die-based 3D-profile bending process with  4 cDOF but the 
parallel-kinematics-based processes (see Table 4.1), the resulting deflection in this plane 
is needed. In the present calculation this means calculating the deflection wx,B,F in x-
direction. Here, a projection of wxy,B at 1 onto the x-axis does not lead to the required 
results because this vector component breakdown implies a possible movement of PFB 
in y-direction. This is hindered, however, by the constraint of PFB to movements along 
the X-axis. The profile, on the other hand can move freely through PFB. The resulting 
geometric dependencies are shown in Figure 6.6. In order to allow a movement of the 
profile point initially in contact with PFB, the curved beam is extended with a straight 
beam element tangent to the endpoint. The intersection point of the extended beam and 
the X-axis represents the position of PFB,el with the total displacement along the X-axis 
wX,B being calculated by: 

xy,B 1
X,B 1

1 xy,B 1cos
w

w
w (6.20) 

 

 
Figure 6.6: Elastic deformation of beam causing deflection wX,B along X-axis  
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The difference of wX,B,F to the displacements calculated with a straight profile are sig-
nificant. Figure 6.7 shows the specific deflection of a curved beam in relation to the 
rotation angle 1. The specific deflection is given by: 

X,B 1 1 1
3

X,B 1 1

3 tan
, 0 sin

w
w R

  with     xy,B 1 0w (6.21) 

Taking the distance LB,y to be 396.92 mm, as it is the case in the 5-cDOF TSS bending 
machine, and a radius R of 2000 mm ( 1 = 0.200), the difference between the calculated 
deflection using the curved beam representation and the straight beam representation is 
4 %. At a radius of 1000 mm ( 1 = 0.408) this deviation increases to 17 %, however. At 
600 mm ( 1 = 0.723) the deviation further increases to 65 %. 

 
Figure 6.7: Specific deflection of curved beam in relation to the rotation angle 1  

6.2.2 Beam deflection in z-direction 

In the z-direction the beam is statically indeterminate. Here, a separation of the individ-
ual loads on the beam – FB,z and MT – has to be performed. The impact of these loads 
on beam deflection, aka bending, has to be calculated as well as the impact on beam 
torsion.  

6.2.2.1 Impact of MT on beam bending 

In the point of torque application, the torque vector is tangential to the beam. Thus, no 
bending moment is generated by the torque in this point. As the torque is moved along 
the curve, hereby staying parallel to its initial position at s = s0, the torque splits up into  
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Figure 6.8: a) Supported beam model with just the torque MT applied  

b) free-body diagram in order to calculate beam bending 

a tangential and a normal component (see Figur 6.8a). While the tangential component 
twists the beam, the normal component acts as a bending moment. As such, the internal 
bending moment in terms of s is calculated by: 

B,n T 1sins sM M (6.22) 

Using Eq. (6.13) the internal moment can be put in terms of s: 

B,n T 1sin sM s M
R

(6.23) 

When setting the second derivative of the beam deflection equal to the internal moment, 
it is imperative to use the correct sign. In Eq. (6.15) the second derivative was set equal 
to –MB,z, which is the common convention in the literature if positive forces to the right 
side of the origin rotate into the opposite direction of the bending moment. E.g., the 
positive bending moment rotation in Section 6.2.1 is counterclockwise, while positive 
forces to the right of the origin lead to a clockwise rotation. Setting MB,n negative in this 
case, leads to deflections that are positive when going into the same direction as the 
positive forces. Since the bending moment in the case of a beam deflection in z-direction 
(MB,n) rotates into the same direction as positive forces to the right of the origin (coun-
terclockwise) the second derivative of the beam deflection must be set equal to +MB,n: 

z,B,M B,nw s EI M s z,B,M 0 0w (6.24) 

Using the constraints z,B,M 0 0w  and z,B,M 0 0w  yields the beam deflection: 
2

T
z,B,M 1 1 1sin cos sinM R s sw s

EI R R
(6.25) 

In terms of s Eq. (6.25) can be written as: 
2

T
z,B,M 1 1 1sin cos sins s s

M Rw
EI

(6.26) 
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6.2.2.2 Impact of FB,z on beam bending 

 
Figure 6.9: a) Supported beam model with just the force FB,z applied  

b) free-body diagram in order to calculate beam bending 

The force FB,z acts on each individual position s of the profile with the bending lever 
LB,y,s (see Figure 6.9a): 

B,y, 1sins sL R  (6.27) 

In combination with Eq. (6.13), the internal bending moment in terms of s is calculated 
by: 

B,n B,z 1sin sM s F R
R

(6.28) 

Double integrating the equation: 

z,B,F B,nw s EI M s (6.29) 

and using the constraints z,B,F 0 0w  and z,B,F 0 0w  yields the beam deflection: 

3
B,z

z,B,F 1 1 1sin cos sin
F R s sw s

EI R R
(6.30) 

In terms of s, Eq. (6.25) can be written as: 
3

B,z
z,B,F 1 1 1sin cos sins s s

F R
w

EI
(6.31)

6.2.2.3 Impact of MT on beam twisting 

The component of the torque tangent to the beam causes the beam to twist around its 
neutral axis. Since the neutral axis of the beam is shaped in form of a partial circle with 
the  radius  R  (see  Figure 6.10a),  twisting  of  the  beam  causes  a  deflection  in  the  z-direc- 
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Figure 6.10: a) Supported beam model with just the torque MT applied  

b) free-body diagram in order to calculate beam twisting 

tion. Specifically, the beam twists with the angle T at the lever arm LB,x,s, causing the 
deflection dhT. The relation between T, LB,x,s, and dhT is given by: 

T
T

B,x,

tan
s

dhd
L (6.32) 

At small displacements, Eq. (6.32) can be simplified to: 

T
T

B,x,s

dhd
L (6.33) 

Integrating the incremental displacement dhT over T leads to the deflection wz,T,M:  

z,T,M T T B,x, Tsw dh L d (6.34) 

Since the final value T is unknown, T can be related to the angle s by using the Saint 
Venant formulation (Venant, 1855): 

T 1
T

T

cos sM ds
d

GJ
   with   sds R d (6.35) 

Together with the geometric relation: 

B,x, coss sL R R (6.36) 

it follows that: 
2

T
z,T,M 1

T

1 cos coss s s s
M Rw d
GJ

(6.37) 

The integral can be solved by considering the constraint wz,T,M(0) = 0: 
2

T
z,T,M 1 1 1 1

T

1 1 3sin sin 2 cos sin
4 2 4s s s s

M Rw
GJ

(6.38) 
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6.2.2.4 Impact of FB,z on beam twisting 

 
Figure 6.11: a) Supported beam model with just the torque FB,z applied 

b) free-body diagram in order to calculate beam twisting 

The impact of FB,z on beam twisting is calculated in a similar fashion as the impact of 
MT in the previous section. In this case, beam twisting in a beam element at position s is 
caused by the force FB,z at the lever arm LB,x,s0-s.  

0B,x, 1coss s sL R R (6.39) 

This lever arm is maximal at s = 0 and minimal at s = s0. Figure 6.11 shows the geomet-
ric relations of the supported beam model and the free-body diagram. As FB,z at the lever 
arm LB,x,s0-s causes a torque around the neutral axis of the beam with a negative sign, the 
deflection at point PFB in the z-direction is calculated by: 

z,T,F T T B,x, Tsw dh L d (6.40) 

As T can be related to the angle s by: 

B,z 1
T

T

cos sF R R ds
d

GJ
    with    sds R d (6.41) 

and LB,x,s to R and s by Eq. (6.36), the deflection wz,T,F can be written as: 
3

B,z
z,T,F 1

T

1 cos 1 coss s s s

F R
w d

GJ
(6.42) 

The integral can be solved by considering the constraint wz,T,F(0) = 0: 
3

B,z
z,T,F 1 1 1 1

T

1 1 3sin sin sin 2 cos sin
4 2 4s s s s s s

F R
w

GJ
 (6.43) 
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6.2.2.5 The relation of FB,Z and MT 

As the total deflection wz at point PFB must be zero, the sum of all individual deflections 
calculated in Sections 6.2.2.1 to 6.2.2.4 must be zero as well: 

z 1 z,B,M 1 z,B,F 1 z,T,M 1 z,T,F 10w w w w w (6.44) 

By inserting Eqs. (6.26), (6.31), (6.38) and (6.43) into Eq. (6.44), the unknown force 
FB,z can be determined in terms of the applied torque MT: 

1 1 1
TT

B,z

1 1 1 1 1 1 1
T

1 sin cos
2

sin cos 3sin cos 2
2

EI
GJMF EIR

GJ

(6.45) 

From Eq. (6.45) it can be seen that the relation of FB,z to MT is dependent on the beam 
radius R, the bending head angle 1, and the ratio bending stiffness EI to torsional stiff-
ness GJT. Figure 6.12 shows this relation for radii from 200 mm to 10,000 mm for 1 

atios of 1.25, 1.50, and 1.75. At a radius of 10,000 mm 
FB,z is only between 1 and 4 %/m of MT. and can be neglected. However, at a radius of 
2000 mm FB,z is already between 6 and 19 %/m of MT. The effect of MT on FB,z steadily 
increases with a decreasing radius and reaches values between 63 and 188 %/m at 
200 mm.  

Considering the square profile shape and material data introduced in Section 5.1, a stiff-
ness ratio of 1.74 results. At a beam radius of 600 mm, the ratio of FB,z to MT is 0.21 1/m, 
at 800 mm the ratio is 0.16 1/m, and at 1000 mm the ratio is 0.13 1/m.  
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Figure 6.12: Ratio of bending force FB,z to applied torque MT for different radii and 

ratios of bending stiffness EI to torsional stiffness GJT 
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6.3 Supported beam model: roll-based profile support 

Figure 6.13 shows the isometric view of a supported beam model adapted for a roll-
based profile support with 3 supports as used in the 5-cDOF TSS bending process. The 
model is set up similar to the model of the die-based support with the difference that 
support S1 only constrains the rotation around the y-axis while allowing rotations around 
the x and z-axis. This means that bending moments in the xy and yz-plane are transferred 
to the beam on the left side of S1. In order to take up the resulting reaction forces in x 
and in z-direction the support S2 is located at a distance of –LS12 from the origin and S3 
is located at a distance of –LS12–LS23 from the origin. The free rotations in the point S1 
result in a nonzero slope of the beam in the xy and yz-plane and, thus, in non-zero bound-
ary conditions for the beam bending calculations in this point. The two additional sup-
ports also make the beam statically indeterminate in the xy-plane and actually two times 
statically indeterminate in the yz-plane.  
 

 
Figure 6.13: a) Supported beam model of a 3D bending process with a roll-based  

support b) free-body diagram 

Although the same calculation strategy as in Section 6.2 can be used, the calculation is 
much more extensive. Only the twisting calculation using the applied moment MT and 
the applied force FB,z is identical to Section 6.2 because all torque (only torque around 
the y-axis is generated) is taken up by rotary constraint of S1. 
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The equilibrium equations of the beam are: 

3,x 2,x 1,x B,xy 1

1,y B,xy 1

3,z 2,z 1,z B,z

cos
0 0 0 sin

S S S F
F S F

S S S F
(6.46) 

1

3,x 2,x

S12 S23 S12 S1,y

3,z 2,z

B,x B,xy 1 T 1

B,y B,xy 1 T 1

B,z

0 0 0
0 0 0

0 0 0

cos sin
                   sin cos

0 0

S

S S
M L L L M

S S

L F M
L F M

F

(6.47) 

and lead to the following reaction forces: 

B,yS23
1,x 3,x B,xy 1

S12 S12

cos
LLS S F

L L
(6.48) 

1,y B,xy 1sinS F (6.49) 

B,y S12S23
1,z 3,z B,z T 1

S12 S12 S12

1sin
L LLS S F M

L L L
6.50) 

B,yS12 S23
2,x 3,x B,xy

S12 S12

LL LS S F
L L

(6.51)

B,yS12 S23
2,z 3,z B,z T 1

S12 S12 S12

1sin
LL LS S F M

L L L
(6.52)

B,yS12
3,x 2,x B,xy

S12 S23 S12 S23

LLS S F
L L L L

(6.53)

B,yS12
3,z 2,z B,z T 1

S12 S23 S12 S23 S12 S23

1sin
LLS S F M

L L L L L L
(6.54)

and the following reaction moment of S1: 

S1,y B,z B,x T 1cosM F L M (6.55) 
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6.3.1 Beam deflection in xy-plane 

Using S1 as the origin of the coordinate system, the following set of differential equa-
tions is set up to describe elastic beam bending and the resulting deflection in the 
xy-plane: 

xy,B,1 B,xy 1sin sw s EI F R
R

(6.56) 

S23
xy,B,2 B,xy 1 3,x

S12 S12

sin 1 Lsw s EI F R S s
L L

(6.57) 

xy,B,3 3,x S12 S23w s EI S s L L (6.58) 

The set of equations can be solved using the method of superposition similar to the case 
shown for the cantilever beam in Section 6.2 and using the following boundary condi-
tions in the xy-plane: 

xy,B,1 xy,B,2 xy,B,2 S12 xy,B,3 S12 xy,B,3 S12 S230 0 0w w w L w L w L L  

xy,B,1 xy,B,20 0w w  

xy,B,2 S12 xy,B,3 S23w L w L  

(6.59) 

Consequently, the supporting force S3,x is defined by: 

S12 1
3,x B,xy

S23 S12 S23

sin1
2

LS F R
L L L

 (6.60) 

resulting in the beam slope xy,Bw  and the deflection xy,Bw : 
2

B,xy
xy,B 1 1cos coss s

F R
w

EI
(6.61) 

3
B,xy

xy,B 1 1 1sin cos sins s s s

F R
w

EI
(6.62) 

with: 
2

S12 S12 1
1

S12 S23

sin1 1sin
3 12

L L
R R L L

(6.63) 

As in the die-based model, Eqs. (6.61), (6.62) and (6.63) can be put in terms of s by 
replacing s by s/R. Eqs. (6.61) and (6.62) are similar to Eqs. (6.17) and (6.19) with the 
difference of the added terms  and s.  
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Different support geometries can be modelled with Eq. (6.62): 

Die-based support (full-moment support):   LS12 = LS23 = 0 
2-roll support:    LS23 >> LS12, LS12  0 
2-roll support + chuck:   LS23 = 0, LS12  0 
3-roll support:   LS12  0, LS23  0 

As explained in Section 6.2.1 wxy,B defines the repositioning of each infinitesimal point 
of the beam in normal direction to the beam’s original geometry. In order to calculate 
the displacement along the X-axis wX,B is calculated by Eq. (6.20). Figure 6.14 shows 
the specific deflection of a curved beam in relation to the rotation angle 1 for different 
ratios of LS12/LB,y and LS23/LB,y. Here, the ratios LS12/LB,y = LS23/LB,y = 0.001 and 0.01 
produce similar results as the specific deflection of the die-based support shown in Fig-
ure 6.7. If LS12 and LS23 have different lengths, then solely the ratio LS12/LB,y can be used 
to analyze the deviation between the curved beam model and the straight beam model, 
as the effect of LS12 on the deflection is much greater than the effect of LS23. 

Taking the distance LB,y to be 396.92 mm, the ratio LS12/LB,y = 0.82 and the ratio 
LS23/LB,y = 0.63 as is the case in the 5-cDOF TSS bending machine, and a radius R of 
2000 mm ( 1 = 0.200), the difference between the calculated deflection using the curved 
beam representation and the straight beam representation is 3 %. At a radius of 1000 mm 
( 1 = 0.408) this deviation increases to 15 %, however. At 600 mm ( 1 = 0.723) the de-
viation further increases to 57 %. 

Since the calculation effort to set up a three-support beam model is quite extensive in 
comparison to a beam with a die-based support, it might seem attractive to simplify the 
three-support model and combine the supports into a full moment connection. This, 
however, produces quite high deviations as can be seen in Figure 6.15. As explained 
before, the ratios LS12/LB,y = LS23/LB,y = 0.001 and 0.01 simulate a full moment connec-
tion quite satisfactorily. But already at ratios of 0.2 the three-support model calculates 
deflections that are up to 17 % higher then the die-based model. Considering the geom-
etry of the 5-cDOF TSS bending machine and the radii 2000 mm ( 1 = 0.200), 1000 mm 
( 1 = 0.408), and 600 mm ( 1 = 0.723) the three-support model calculates deflections 
that are 70 %, 68 %, and 62 % higher, respectively. 

Figure 6.16 shows the experimentally measured springback along the X-axis of profiles 
bent to the theoretical radii 600 mm, 800 mm, and 1000 mm in relation to analytically 
calculated beam deflection using a curved beam as described in this section and a 
straight beam as was done by Hermes (2011). The experimental data was gained by first 
bending a profile to the respective theoretical radius, then pausing the process, and fi-
nally relieving the profile by moving the bending head until the X-axis force sensor reg-
istered a remaining load of 0 N. The experimental deflection data was reduced by the 
deflection caused by machine stiffness (for the material MW700L Z1: 0.8 mm, for  
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Figure 6.14: Specific deflection of curved beam over straight beam with 3 supports of 

varying distance in relation to the rotation angle β1  

 

 

 
Figure 6.15: Specific deflection of curved beam with 3 supports of varying distance 

over curved beam with full moment connection in relation to β1  
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MW700L Z3: 2.0 mm at Rth = 1000 mm and 2.5 mm at Rth = 600 mm). Using Eq. (5.7) 
and reducing LB,X by said reduced deflection, the theoretical unloaded radii 668.5 mm, 
924.0 mm, and 1196 mm are calculated for MW700L Z1 and 745.2 mm and 1396 mm 
are calculated for MW700L Z3. These are the radii used in the beam deflection calcula-
tions, since the radius used in the analytical beam deflection calculation represents the 
unloaded radius. The Young’s modulus degradation, described in Section 5.1 is taken 
into account by using the average true axial strain over the cross-section at each respec-
tive theoretical bending radius as pl , thereby calculating a single Young’s modulus for 
the whole cross-section. The resulting analytical beam deflections for the curved beam 
are in quite good agreement with the experimental data. For MW700L Z1 the deviation 
is 4.9 % for Rth = 600 mm, 7.4 % for Rth = 800 mm, and 7.6 % for Rth = 1000 mm. In 
relation, the deviations for the straight beam model are 34.7 % for Rth = 600 mm, 22.8 % 
for Rth = 800 mm, and 17.2 % for Rth = 1000 mm. As expected, the deviation is lower 
for larger radii and is predicted to converge with the curved model for Rth = . For 
MW700L Z3 the deviation is 5.8 % for Rth = 600 mm and 3.5 % for Rth = 1000 mm. In 
relation, the deviations for the straight beam model are 31.8 % for Rth = 600 mm and 
11.9 % for Rth = 1000 mm. 

  
Figure 6.16: Experimental profile deflection caused by relieving a loaded profile dur-

ing the bending process in comparison to analytical beam deflection cal-
culations using a curved beam and a straight beam. Data for the materials 
MW700L Z1 and Z3 are shown. 

X

Rth Rth
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6.3.2 Beam deflection in z-direction 

For the deflection in the z-direction, a set of three differential equations describes beam 
bending and the resulting deflection: 

z,B,1 T 1 B,z 1sin sins sw s EI M F R
R R

(6.64) 

S23
z,B,2 T 1 B,z 1 3,z

S12 S12 S12

sin 1 sin 1 Ls sw s EI M F R S s
L L L

(6.65) 

z,B,3 3,z S12 S23w s EI S s L L (6.66) 

As in Section 6.2.2, the twisting curved beam section also causes a deflection in z-di-
rection. Since S1 takes up all torque around the y-axis, the same equations can be used 
to describe the deflection of the beam as in Section 6.2.2. Eq. (6.67) is equal to the sum 
of Eqs. (6.38) and (6.43): 

3
z,T,1 T B,z

3 2
B,z T 1 1 1 1

sin

1 1 3             sin sin 2 cos sin
4 2 4

s sw s GJ F R
R R

s s sF R M R
R R R

 (6.67) 

Together with the following boundary conditions in the z-direction: 

z,B,1 1 z,T,1 1 0w s w s  

z,B,1 z,B,2 z,B,2 S12 z,B,3 S12 z,B,3 S12 S230 0 0w w w L w L w L L  

z,B,1 z,B,20 0w w  

z,B,2 S12 z,B,3 S23w L w L  

(6.68) 

and using the method of superposition as for the die-based model in Section 6.2, the 
unknown forces FB,z and S3,z can be determined in terms of the applied torque MT: 

1 1 1 1 1 1 1
T P

B,z

1 1 1 1 1 1 1 1
P

sin cos sin cos
2

sin cos 3sin cos 2
2

EI
M GIF EIR

GI

 (6.69) 

S12 1
3,z T B,z

S23 S12 S23

sin1
2

LS M F R
L L L

 (6.70) 
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Figure 6.17: Ratio of bending force FB,z to applied torque MT for different radii and 

ratios of bending stiffness EI to torsional stiffness GJT 
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with ψ from Eq. (6.63). It can be noticed that Eq. (6.69) is similar to Eq. (6.45) with the 
difference of the added term ψ, which introduces dependencies on the support lengths 
LS12 and LS23. Figure 6.17 shows the relation of FB,z to MT in dependence of the beam 
radius R, the bending head angle β1, and the ratio bending stiffness EI to torsional stiff-
ness GJT. The lengths LS12 = 325 mm and LS23 = 250 mm were chosen to depict the 5-
cDOF TSS bending machine geometry. Comparing Figure 6.17 with Figure 6.12 it can 
be directly noticed that the influence of the beam support has a dramatic influence on 
the ratio of FB,z to MT. While the maximum ratio in the full moment support model was 
-1.9 at a radius of 200 mm the ratio in the 3 support model is -5.0. Using a stiffness ratio 
of 1.74 as in Section 6.2.2 and a beam radius of 600 mm, the ratio of FB,z to MT is 
0.76 1/m, at 800 mm the ratio is 0.59 1/m, and at 1000 mm the ratio is 0.48 1/m. Relative 
to the full moment support this means that the FB,z values resulting from a torque appli-
cation are between 3.6 and 3.7 times higher. 

Because of its normal position to the bending force FB,xy, FB,z causes the resultant of the 
bending force to rotate out of the xy-plane, resulting in a relocation of the bending plane. 
For 3D bending a rotating bending plane is absolutely necessary to produce 3D-shapes 
(see Section 3). If the profile is supposed to be bent in the xy-plane, however, and addi-
tionally twisted, the relocation of the bending plane is unwanted and needs to be pre-
dicted in order to be compensated. Figure 6.18 shows the bending plane rotations of 
three experimentally bent profiles. The profiles were bent to the theoretical plane radii 
Rth = 600 mm, 800 mm, and 1000 mm and additionally twisted with 0.982 rad/m. Dur-
ing bending, the torque and the X-axis force were measured using the measurement setup 
described in Section 5.2.3. Using the 3D-contour sensor introduced in Section 5.3 the 
radius, the torsion, and the bending plane rotation was measured. To define the radius 
of the curved beam, necessary for the calculation of FB,z, the radii measured in the load-
ing and steady state region (see Section 5.4.1) were averaged to generate the parameter 
Rmeas,avg. As applied torque, the peak torque measured at the end of the loading stage 
(MT,meas) was used. Because of the difficulties in the extraction of the bending force from 
experimental measurements as mentioned in Section 5.4, the comprehensive numerical 
model was used to extract the peak bending force data (FB,xy,num) in the loading stage. 
The low deviations between the numerically calculated peak torque (MT,num) and the 
experimentally measured peak torque (MT,meas) – 6.8 % at Rth = 600 mm, 5.1 % at 
Rth = 800 mm, and 1.6 % at Rth = 1000 mm – support the applicability of the numerical 
force data (Table 6.1). The angle between the resultant of FB,xy,num and FB,z and the 
xy-plane is used to determine the angle η(sPS) between the machine bending plane M and 
the bending plane B at the profile support sPS (see Section 4.2.3, Figure 4.11). In the 
beam calculations in this section the profile support S1 is positioned at s = 0. The values 
are stated in Table 6.1. 



116  Elastic profile behavior during 3D profile bending 

 

Table 6.1: Experimental and analytically calculated parameters for bending plane 
rotation analysis 

Rth Rmeas,avg FB,xy,num MT,num MT,meas FB,z (sPS) 

600 mm 723 mm 5106 N 963Nm 1033 Nm -668.5 N -0.130 rad 

800 mm 960 mm 4901 N 1126 Nm 1071 Nm -532.8 N -0.108 rad 

1000 mm 1265 mm 4739 N 1219 Nm 1200 Nm -457.8 N -0.096 rad 
      

Since the 1-axis is not rotated, the difference between  and  (Eq. (4.75)) does not 
change. This means that the apparent twist apparent = 0. According to Eq. (4.36) an ap-
parent twist of 0 combined with a twist per unit length   0, results in a bending plane 
rotation r = . Hereby, the angle  introduces an additional constant offset of the 
cross-section. 

The bending plane rotation, reduced by the machine stiffness, is calculated by: 

T
r,corr r

m 1 th

machine stiffness

Md d
c R

 
(6.71) 

The term  offsets the bending plane as a whole and, as such, only appears in the calcu-
lation of the cumulative rotation. In order to know the initial bending plane orientation 
relative to the cross-section, the cross-section orientation  is additionally added: 

r,corr r,corr
0

s

d  (6.72) 

r,corr,offset r,corr  (6.73) 

Figure 6.18 shows the experimentally measured cumulative bending plane rotation in 
relation to the theoretical rotation reduced by the machine stiffness and the rotation ad-
ditionally offset by . In the present case  = 4. On average, the measured cumulative 
rotation is in good agreement with the calculated rotation r,corr,offset. Using the instanta-
neous force and torque at every bending step would lead to improved local curve agree-
ment. In order to model the profile behavior independently from experimental data, the 
bending force and torque, and especially the reciprocal effects that each load has on the 
other during simultaneous application, need to be investigated. The next section focuses 
on the analysis of stresses and strains during simultaneous bending and twisting and 
derives bending moment and torque calculations. As a final step the knowledge gained 
about plastic material behavior is combined with the knowledge on elastic behavior from 
this chapter and the knowledge about geometric shape definition from Chapter 3 into a 
comprehensive process model. 
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Figure 6.18: Experimental cumulative bending plane rotation in comparison to the 

theoretical bending plane rotation, reduced by the machine stiffness, and 
the offset 
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7 The reciprocal effects of bending and torsion during 3D profile 
bending 

As described in Section 3, profiles with non-circular cross-sections can only be bent to 
arbitrary bending contours by changing the bending plane, while simultaneously con-
trolling the torsion angle of the cross-section. By applying mechanical torsion to a pro-
file, shear stresses are induced in the cross-section that interact with the axial stresses 
generated by the applied bending force. This fundamental aspect of 3D profile bending 
and its effect on the resulting bending curvature has until now been neglected in analyt-
ical process models and is addressed in the following sections.  

7.1 Analytical description of the states of strains and stresses 

Figure 6.1 shows the qualitative trends of the bending moment for a 3D-bending process 
with a die support and roll-based support during bending. These trends can be directly 
linked to externally applied moments and forces. The challenge in 3D profile bending 
processes, actually the challenge in all bending processes, is that these forces and mo-
ments are initially unknown. What is known, however, is the target contour of the pro-
file. This means that the final deformed geometry can be used to calculate the resistance 
of the profile against deformation, which, in effect causes the above-mentioned internal 
moments. These moments in turn cause springback, which is regarded in Chapter 6. 

Because this work focuses on thin-walled profiles, plane stress is assumed as a first 
simplification. Figure 7.1 shows the stresses acting on a single element of a profile with 
an arbitrary cross-section. Here, the angle e describes the rotation around the normal 
vector of the element in the direction of the wall thickness tt, while d e describes the 
incremental bending angle of said element. 

 

Figure 7.1: a) simplified supported beam model of the process b) segment of the pro-
file c) element of a profile segment 
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Considering displacements and strains to be small leads to the following equilibrium 
conditions: 

p:F

e
p

t

0 +
2

dr t d d r dr t d dr t d d t dr

t dr d t dr

p p10
e

d d
dr r d r (7.1) 

e
:F

e e0
2 2

d dt dr d t dr t dr d t dr

r dr t d d r dr t d r t d

1 20 dd
dr r d r

 (7.2

The parameters of interest in Eqs. (7.1) and (7.2) are the axial stress , the perimetral 
stress p, and the shear stress . The parameter r  describes the projection of the local 

 

Figure 7.2: Relation of element plane to bending plane 
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bending radius rl, lying on the bending plane, onto the plane of the element, while dr  
represents the height of the element (see Figure 7.2). The angle  describes the angle 
between the element plane and the bending plane.  

cos
rr (7.3) 

l

cos
drdr (7.4) 

If r  and dr  in Eqs. (7.1) and (7.2) are replaced by Eqs. (7.3) and (7.4), then cos  
appears in every term and can be cancelled. In order to be independent of e in the 
following calculations, Eqs. (7.1) and (7.2) can be solved for d e and subsequently 
equated resulting in the following nonlinear differential equation: 

p pl l

l

20
dr r d

d d dr d d dr d
(7.5) 

To be able to solve the above equation, a relation of the unknown stress values to plastic 
strain has to be established. Using the Levy-Mises flow rule, plastic strain increments 
can be set in relation to deviatoric stress: 

1
p 2 (7.6) 

With the stress tensor being: 

p

0
0

0 0 0
ij  (7.7) 

The deviatoric stress tensor becomes: 

h
ij ij ij with h

h ij
1 1tr
3 3ij ij ij ij (7.8

p

2 1 0
3 3

2 1 0
3 3

1 10 0
3 3

ij (7.9) 
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By inserting the deviatoric stress values from Eq. (7.9) into Eq. (7.6), the following re-
lationship can be found: 

1 2
6 (7.10) 

with its two partial derivatives: 

1
3

d d (7.11) 

p
1
6

d d (7.12) 

Inserting Eqs. (7.10) and (7.12) into Eq. (7.5) leads to: 

2 2 2
l

p 2 2 2

1 2 10 1 1 1
9 9 18

r d
dr

(7.13) 

which can be rearranged to: 

2

p2
l

2 2
l

2 2
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r

(7.14) 

Integrating the above differential equation leads to the general solution containing the 
constant CI: 

2 21
2

2 2

9
2 2 9

I l p 2 2

1 21 1
9 9

C r (7.15) 

The particular solutions can be found by considering the perimetral stress p to be zero 
at the inner projected bending radius Ri and outer projected bending radius Ro: 

2 2

2 21
2

9
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p 2 2

9 2 1
9

R
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R r R
R

R r R (7.16) 

Based on the von Mises yield criterion, the flow stress can be described as: 

2 2 22 2 2 2
f

1 6
2

(7.17) 
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Using the plane stress condition stated in Eq. (7.7), Eq. (7.17) simplifies to: 
2 2 2 2
f 3 (7.18) 

By inserting Eqs. (7.10) and (7.16) into Eq. (7.18) the axial stress  and the perimetral 
stress p can be determined in terms of the axial strain increment , the shear strain 
increment , the flow stress f , the local bending radius rl and the projected inner and 
outer bending radii Ri and Ro:  

f
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f
p 22

2 2
1 1 21

12
(7.20) 
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Inserting Eqs. (7.19) and (7.20) into Eq. (7.10) yields the shear stress : 

f f
2 2222
2 2 2

1 2
6 1 1 1 21 2 112 12

(7.22) 

Up to now, the behavior of the flow stress, which depends on the equivalent plastic strain 
increment pl , is unknown and, as a result, is derived in the following. Since plane stress 
is considered, the general state of strain increments can be described as follows: 

1
2

1
ij 2

t t

0 0
0 0

0 0 0 0
(7.23) 

As initially described, the target contour of the profile is supposed to be used to describe 
the local deformation acting on one element of the profile segment. From the torsion,  
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the shear strain of one element can be derived, while the curvature of the contour can be 
used to find the local bending radii and the axial strain. Strain in perimetral direction 
and in thickness direction are not targeted and, thus, unknown parameters. However, as 
described in Section 2.2, nearly all analytic approaches to describe tube and profile 
bending have regarded the bending process as being uniaxial with quite satisfactory re-
sults. A uniaxial stress state also results in a three-dimensional strain state but with con-
sidering volume constancy: 

0 (7.24) 

and isotropic material behavior, the state of strain increments simplifies to: 
1
2

1 1
ij 2 2
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0
0

0 0
 with p t
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(7.25) 

The equivalent plastic strain increment can, thus, be defined as: 

2 2 2 2 2 2 2 2
pl

2 12
3 3

 (7.26) 

To be able to link the strain increments directly to the target contour to be bent, linear 
strain paths are considered. This means that strains are considered to increase with the 
same proportion until the final strain state is reached. Hereby, it is important to note 
that the individual strains reach their final states at the same time. From Eq. (7.6) it 
follows that: 

2
(7.27) 

where: 

d
ddt

d d
dt

(7.28) 

Linearizing the strain increment relationship leads to: 

d
d

(7.29) 

Graphically this relationship is pictured in Figure 7.3. To analyze the validity of the 
assumption of proportional deformation, the analytical simplification is compared to 
numerical strain data. Reliable experimental data for shear strain could not be obtained 
by digital image correlation due to a limited resolution of the available measurement  
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Figure 7.3: Assumption of proportional deformation during 3D bending 

 

 
Figure 7.4: Numerical analysis of the axial and shear strain evolution in the forming 

zone for MW700L Z1 using the comprehensive numerical model 

s

Rth d

Rth d

s

s s

d   

 



126 The reciprocal effects of bending and torsion during 3D profile bending 

 

setup and the resulting high scatter. Therefore, it was only focused on the numerical data 
shown in Figure 7.4 calculated with the comprehensive numerical model described in 
Section 5.4.1. The axial and shear deformations evolve along the course of a hyperbolic 
tangent, which can  be  effectively  linearized  in  the  area  surrounding  its  inflection  point.  

Additionally, it can be seen that the shear deformation as well as the axial deformation 
begin and end at the same position along the profile. By regarding the feed rate, each 
position of the profile can be linked to a specific time step, leading to the conclusion 
that the shear and axial deformations reach their final states at the same time. A lineari-
zation of the strain paths, thus, is feasible. This leads to the following set of equations, 
which describe the stresses in an element of a profile segment purely in terms of defor-
mation: 

f pl
o l B,02

22
2

f pl
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with:  
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and: 
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The flow stress f pl  is calculated according to the flow curve approximations de-
scribed in Section 5.1. 
The next step is to set the strains in relation to the target contour of the profile. The 
general analytical approach in bending of sheets as well as tubes and profiles is to con-
sider a linear increase of the axial strain from the neutral axis to the intrados and extra-
dos, with respect to the bending plane, whereby a point symmetry is considered around 
the point lying on the neutral axis. As mentioned by Franz (1961), in plastic bending the 
neutral axis actually splits up into a remaining neutral axis with the radius RB and a non-
strained axis RB,0 with RB,0 < RB (see Figure 7.2) to maintain the internal force equilib-
rium. The axial strain is considered to increase linearly from the non-strained axis to the 
intrados and to the extrados. If a single profile segment under pure bending is consid-
ered, such that its cross-section is staying plane and normal to the neutral axis, the slope 
of the engineering strain from the inner fiber to the outer fiber can be directly related to 
the bending radius. Inversely this means that if a specific bending radius is defined to 
which the segment is bent, only one single slope in axial strain over the profile height 
can result. The shift of the nonstrained axis inwards, hereby, only increases the length 
of the profile segment, not its bending radius, which is still defined by its neutral axis. 
In sheet metal bending, this lengthening of the segment is what necessitates a bend de-
duction during the preparation of the flat specimen. Strain calculations performed by 
Hill (1950) and Wang et al. (1993) for sheet metal bending, and by Hassan (2017) for 
rotary draw bending of tubes, actually do not consider this unchanging radius. They 
defined the maximum strain as the distance from the extrados to the nonstrained axis 
divided by RB,0 and the minimum strain as the distance from the intrados to the non-
strained axis divided by RB,0, accordingly. The linear slope between these two extrema 
actually defines a bending radius that is smaller than the one applied to the profile seg-
ment. It follows that in a calculation strategy, where the bending radius is used as a 
controlling parameter, this ratio cannot be used. To keep the slope constant, the strain 
actually needs to be set in relation to RB: 

l B,0 B,0

B B

ln 1 ln 1
r R n

R R
(7.35) 

The parameter nB,0 describes the distance of a profile element from the non-strained axis, 
projected onto the bending plane. Numerical data, as shown in Figure 7.5, underline the 
validity of the hypothesis of a linear strain distribution between the non-strained axis 
and the extrados and intrados respectively. 
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7.2 Influence of perimetral stress on the bending process 

Defining an element of a thin-walled tube or profile as a plane stress element, the 
perimetral stress can be split up in a radial component, lying in the bending plane, and 
a transverse component, normal to the bending plane. Franz (1961) stated a relation 
between radial force components and the ovalization of tubes. Paulsen and Welo (2001) 
analyzed cross-sectional deformation of tubes and profiles by directly regarding the act-
ing perimetral stress. Their focus was on the analysis of bending processes that are 
greatly affected by cross-section deformation, namely rotary draw bending, stretch 
bending, and pure bending. In pure bending the forming zone is as large as the area of 
constant bending moment, leading to an equally constant cross-section deformation in 
this zone. The cross-section deformation is only hindered in the area of moment appli-
cation by nondeformed profile segments. In stretch bending the size of the forming zone 

 
Figure 7.5: Numerical analysis of the axial strain along the cross-section for 

MW700L Z1 using the comprehensive numerical model 
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or multiple forming zones vary according to the tool geometry, but the applied additional 
axial tension increases the perimetral stress and, thus, the radial stress components es-
pecially on the outer radius of the profile part. Rotary draw bending actually combines 
elements of pure bending and stretch bending together with bending radii as small as 0.7 
times the diameter of the tube (0.7xD, only possible with a mandrel) (Chatti et al., 2012). 
The kinematics of the process, which is based on a moment being directly applied to the 
tube, results in a large forming zone (Hinkel, 2013). Additionally, tensile stresses can 
be superposed onto the outer radius by the pressure die, which has a similar effect on 
the radial stress components as in stretch bending.  

In kinematic 3D bending processes, targeted bending radii are generally larger than in 
rotary draw bending. According to J. Neu GmbH, their machines can produce radii down 
to 2xD (see Section 2.1.3). According to Figure 5.7, the minimum theoretical bending 
radius, which the 5-cDOF TSS profile bending machine can achieve in the case of arbi-
trary profile cross-sections, is 5.5xDP (at a DP of 55 2  mm). At a DP of 40 mm, the 
theoretical bending radius is equal to 11xDP, which was also experimentally observed 
by Staupendahl et al. (2014a) using 40x1.5 mm tubes made from MW700L Z1 and Z3. 
But not only the produced radii are larger in kinematic 3D bending processes, also the 
forming zone is localized in a smaller region of the profile because the application of a 
single bending force results in a distinct maximum bending moment in the proximity of 
the profile support. The non-plastic profile segments surrounding the forming zone sta-
bilize the plastic profile segment and, in turn, reduce cross-sectional deformation (Her-
mes, 2011). 
So apart from cross-section deformation, which will not be covered in this work, the 
question arises if the occurring perimetral stress significantly affects the axial stress and 
the shear stress and, consequently, affects the bending outcome. From Eq. (7.18) it can 
be directly seen that the perimetral stress and the axial stress influence each other more 
than they do the shear stress. Thus, the following analyses solely focus on the interaction 
of perimetral and axial stress. 

Setting the shear strain  in Eqs. (7.30), (7.31), and (7.33) to zero, they simplify to: 
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and: 
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To be able to solve Eqs. (7.36) and (7.37), RB,0 needs to be found. As stated before, RB,0 
describes the axis, around which the internal forces and moments equalize. Now, the 
axial stress distribution could be used together with the geometry of a specific profile to 
calculate the bending moment MB,o generated by the profile elements in the area greater 
than Rb and the bending moment MB,i generated by the profile elements in the area 
smaller than RB. RB,0 could then be found in an iterative process by minimizing the dif-
ference between MB,o and MB,i. However, since the perimetral stress is caused by the 
profile elements in the profile area smaller than RB,0 pushing outward and the profile 
elements in the profile area greater than RB,0 pushing inward, the stress caused by the 
inner elements and outer elements must be equal at RB,0. Thus, by directly equating both 
cases of Eq. (7.37) and setting rl = RB,0, the radius of the non-strained axis is found: 

B,0 i oR R R (7.38) 

Although, starting with a plane stress model, this formula is actually equal to the one 
used to find the non-strained axis in sheet metal bending, which is derived from a plane 
strain formulation (Ismar and Mahrenholtz, 1979).  

7.2.1 Normalized stress-strain relationship  

Eqs. (7.36) and (7.37) describe the axial and perimetral stress solely in terms of the radii 
on the bending plane (radius of the non-strained axis RB,0, inner radius Ri, outer radius 
Ro, and local bending radius rl). The equations are independent from the cross-section 
geometry. By stating the bending radius RB as a multiple of the profile height DP: 

B PR D  with P o iD R R (7.39) 

Eqs. (7.36) and (7.37) can even be set independent from a specific bending radius and 
profile height. By rearranging Eqs. (7.38) and (7.39) and normalizing the distance of a 
profile element to the neutral axis nN to the range [–1, 1], with –1 describing the location 
of the intrados and 1 that of the extrados, the location of the non-strained axis is  
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defined by: 

2
N,0 4 1 2n (7.40) 

The axial and the perimetral stress can, thus, be described by: 
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with: 

2
N 4 1ln 2

2
n

(7.43) 

Using the relation of strain rates stated in Eq. (7.25) and the assumption of proportional 
deformation introduced in Section 7.1, the strains in perimetral as well as in thickness 
direction can be described as: 

2
N

p t
4 11 ln 2

2 2
n

(7.44) 

Eqs. (7.41) to (7.44) thus describe the stresses and strains in a profile with an arbitrary 
cross-section but point symmetrical to the neutral axis. 

To quantify the reciprocal influence of the perimetral stress and the axial stress during 
bending, Eqs. (7.41) to (7.44) are solved for significant values of . Based on the previ-
ously mentioned minimal bending radii of available 3D profile bending processes, bend-
ing radii of 15xDP, 5xDP, and 2xDP are chosen. To validate the results without the influ-
ences of friction, contact pressure, and shear, an implicit plane stress FE-model of a pure  
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bending process is used. The geometrical proportions and boundary conditions were 
based on a plane strain model by Weinrich (2015). As such, the length of the specimen 
was set to be 5 times longer than the profile height in order to have a large region in the 
middle of the profile not affected by the constrained profile ends. The profile height was 
set to 40 mm and a wall-thickness of 2.5 mm was chosen. The mesh size was defined as 
1.0 mm with a linear decrease to 0.2 mm at the neutral axis. The pure bending process 
was realized by fully constraining one end of the profile, while applying a rotation to a 
rigid part connected to the other. The rotation was applied at the point of the rigid part 
lying on the neutral axis of the profile. Figure 7.6 shows the axial and radial strain dis-
tribution while Figure 7.7 shows the axial and radial stress distribution for said bending 
radii. To validate the analytical calculation, the results are shown in comparison to val-
ues generated with the plane stress FE-model using material data of MW700L Z1.  

Figure 7.6: Axial and perimetral strain distribution over a normalized profile height 
for different ratios of RB to Dp: a)  = 15 b)  = 5 c)  = 2 

Figure 7.7: Axial and perimetral stress distribution over a normalized profile height 
for different ratios of RB to Dp: a)  = 15 b)  = 5 c)  = 2 

n N
n N
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Figures 7.6 and 7.7 show a high agreement between the analytical and numerical stress 
and strain results. The low deviation supports the hypothesis of a linear nominal strain 
distribution over the cross-section. Additionally, the assumption of an equal true strain 
in thickness and in perimentral direction as introduced in Eq. (7.25) is backed. Only at 
 = 2 the analytically calculated position of the non-strained axis deviates noticeable 

from  the  numerically  calculated  axis.  This  difference  can  be  related  to  the  fact  that  in 
the analytical calculation, the total height change of the profile is not regarded. As a 
result, the nonstrained axis falls together with the nonstressed axis, while in the FE-
model, the non-strained and non-stressed axes diverge at lower values of  (see Ta-
ble 7.1). As seen in Figure 7.7, this simplification actually does not have a significant 
impact on the resulting stress distribution. 

Table 7.1: Normalized shift of nonstrained and nonstressed axes 

 = 15  = 10  = 5  = 2

Analytical 
nonstrained=nonstressed 

-0.017 -0.025 -0.050 -0.127 

Numerical 
nonstressed 

-0.016 -0.025 -0.035 -0.144 

Numerical 
nonstrained

-0.015 -0.029 -0.044 -0.080 

 

7.2.2 Impact of the neutral axis shift on the bending moment 

The most obvious impact of the additional consideration of perimetral stress during 
bending is the shift of the non-strained axis towards the intrados. Additionally, the axial 
stress above the non-strained axis is lower in proximity to said axis, while the axial stress 
is higher below and in proximity to the non-strained axis compared to a uniaxial ap-
proach. The differences are shown in Figure 7.8. Here, the uniaxial stress distribution is 
simply calculated by: 

 (7.45) 

which is essentially mapping the flow curve over the profile height as described in the 
elementary bending theory. The question now is if this axis shift and stress shift towards 
the compressive region is relevant for bending moment calculations.  
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Regarding a normalized profile, the bending moment is calculated as follows: 
2

2

B,tensB,comp

4 1 2 1

B
1 4 1 2A

MM

M n n dA n n dA n n dA
(7.46) 

With the consideration of a uniaxial stress distribution, Eq. (7.46) simplifies to: 

B,comp B,tens

0 1

B
1 0A

M M

M n n dA n n dA n n dA (7.47) 

Figure 7.8: Difference in stress distribution between a uniaxial stress assumption and 
a plane stress assumption at  = 2 using material data of MW700L Z1 
and the numerical model described in Section 7.2.1 

In both of the equations, dA describes a section of the profile cross-section of infinites-
imal height. In practice, the nondeformed cross-section is generally used to set up dA. 
Additionally, when bending profiles with point symmetric cross-sections, the stress dis-
tribution over the cross-section is generally considered point symmetric as well. Using 
the latter assumption, Eq. (7.46) simplifies to: 

B,tens

1

B
0

2

M

M n n dA
(7.48) 

Commonly, Eqs. (7.47) and (7.48) are integrated over the nondeformed cross-section 
while at the same time assuming a true stress distribution. A more obvious choice would 

n N
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be to combine the nondeformed, or nominal area, with the nominal stress, but the com-
mon practice has proven to lead to acceptable results over a multitude of  values and 
in modelling different bending processes – form-bound as well as kinematic (see Sec-
tion 2.2).  

Table 7.2 compares the accuracies of different calculation strategies using a normalized 
profile with a constant mass distribution over the profile height for different values of . 
These values can be assigned to hollow cross-sections with a near constant mass distri-
bution as, for instance, square profiles bent over their diagonal axes or non-hollow rec-
tangular profiles bent over their normal axes. Hollow profiles with arbitrary cross-sec-
tions tend to have an increasing mass distribution from the neutral axis to the intrados 
and extrados, with the exact distribution depending on the shape of the cross-section. 
However, also in the case of arbitrary cross-sections Table 7.2 can be used for a quali-
tative assessment of the strategies’ performance.  

Table 7.2: Deviation of analytical bending moment calculated using different strate-
gies in relation to numerical data 

Analytical bending moment 
calculation strategies 

 = 25  = 15  = 10  = 5  = 2

1 Plane stress True stress
True dA 

0.3 % 0.8 % 0.8 % 1.0 % 0.9 % 
 

2 Uniaxial True stress 
Nominal dA 

0.3 % 0.7 % 0.6 % 0.6 % 2.3 % 
      2MB,tens 

3 Uniaxial Nominal stress 
Nominal dA 

-1.0 % -1.5 % -2.7 % -5.9 % -12.5 % 
      2MB,tens 

4 Uniaxial True stress 
True dA      2MB,tens 

5 Uniaxial True stress 
Nominal dA 

0.3 % 0.8 % 0.9 % 1.4 % 3.4 % 
MB,tens+ MB,comp 

6 Uniaxial Nominal stress 
Nominal dA 

0.4 % 0.9 % 1.1 % 2.0 % 7.2 % 
MB,tens+ MB,comp 

7 Uniaxial True stress 
True dA MB,tens+ MB,comp 
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Table 7.2 was generated using the numerical model described in Section 7.2.1 and the 
hardening behavior of the material MW700L Z1 given by Eq. (5.2), which incorporates 
an elongated yield point and significant material hardening. In comparison, using an 
elastic-ideally plastic material behavior, at  = 2 the deviation between calculation strat-
egies 1 and 2 increases by 1 % while the deviation to strategies 3 and 4 actually reduces 
by 1.2 %. At increasing values of , these deviations exponentially decrease with negli-
gible differences at values of  greater 10. The impact on the deviations of strategies 5, 
6 and 7 are negligible at all values of  between 2 and 25. 

As a conclusion, it can be stated that the bending moments calculated via strategies 2 
and 5 most closely resemble the results of the comprehensive plane stress calculation 
(strategy 1), with strategy 2 producing slightly lower results at  values equal and higher 
than 5, and with strategy 5 producing slightly higher results in that same range. At values 
of  lower than 5, the results gained via strategies 2 and 5 diverge significantly from the 
results gained via the plane stress calculation. In comparison to the plane stress calcula-
tion, the uniaxial stress calculation is much simpler to handle, especially in combination 
with integrating dA over the original cross-section to gain the bending moment. As a 
result, it is recommended to use calculation strategy 2 for point symmetrical cross-sec-
tions, while strategy 5 is recommended for non-symmetrical cross-sections. The usage 
of these simplified calculations should be limited to  values equal or higher than 5 in 
order to keep calculation errors negligible. 

7.3 Influence of torsion on the bending process 

From the outcome of Section 7.2 it can be deduced that for  values equal or higher than 
5, perimetral stress can be neglected without causing significant errors in bending mo-
ment calculations. Thus, the complex state of stresses acting on a single element of a 
profile, as shown in Figure 7.1, can be simplified to the state shown in Figure 7.9. In-
stead of a regarding a curved element, the element can be simplified as a parallelepiped.  

 
Figure 7.9: a) simplified supported beam model of the process b) segment of the pro-

file c) element of a profile segment 
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The force equilibria along the p-axis as well as the a-axis, hereby, result in no geometric 
dependency of the axial stress  and the shear stress . As a result, the interaction of the 
two parameters can solely be defined by the von Mises yield criterion and the Levy-
Mises flow rule. Using the simplified stress state uniaxial stress + shear, the stress ten-
sor, set up in Section 7.1, simplifies to: 

ij

0
0 0

0 0 0
 (7.49) 

resulting in the following deviatoric stress tensor: 

ij

2 0
3

1 0
3

10 0
3

(7.50) 

The Levy-Mises flow rule: 
1
2 (7.51) 

can be used together with the simplification of linear strain paths from Section 7.1 to 
define as a function of : 

1
3 (7.52) 

Inserting Eq. (7.52) into the von Mises yield criterion: 
2 2 2

f pl 3 (7.53) 

yields the following set of equations:  
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(7.54) 
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For pl , Eq. (7.34) from Section 7.1 is used. In Section 7.1 it was also shown that the 
axial strain  can be directly related to the bending radius by Eq. (7.35). Since there is 
no shift in the nonstrained axis in a uniaxial calculation approach, Eq. (7.35) simplifies 
to the generally known term: 

l B B

B B

ln 1 ln 1r R n
R R

(7.56) 

The question that now arises is how the nominal shear strain  can be related to the 
torsion of the profile. 

7.3.1 Analytical description of pure torsion 

Pure torsion of solid profiles with a constant cross-section can be described by the Saint 
Venant formulation (Saint Venant, 1855). This formulation considers warping of the 
cross-section in axial direction of the profile to be irrelevant in the calculation of the 
shear stresses. To apply the theory, the following requirements have to be fulfilled: 

The profile is able to warp freely over the regarded profile length 
Possibly occurring warping is constant over the profile length 
The outer contour of the cross-section is considered to not change 
Twisting only occurs around the longitudinal axis whereby the rotational center 
has to be able to position itself 
The twist per unit length d  over the longitudinal axis is constant 

The first requirement can actually not be fulfilled in 3D bending. At least one end of the 
profile section being twisted is hindered in its possible warping. If the location of the 
twisted profile region is directly at the front end of the profile, said end is free to deform 
in axial direction during moment application by the bending head, while axial warping 
is hindered at the end held in the profile support by the remaining nondeformed profile 
directly behind this support. If a twisted region is supposed to be generated in a middle 
section of the profile then the axial warping is actually hindered at both ends of the 
twisted profile. Figure 7.10 reflects both stated cases.  

But not all cross-sections actually warp when twisted. And if the cross-section does not 
warp, then it makes no difference if the profile can warp freely or not. The most simple 
geometry, a cylinder – hollow as well as full – does, for instance, not warp. But there 
are several other warp-free cross-sections that are especially relevant for 3D profile 
bending. Figure 7.11 shows an overview of different cross-sections and their tendency 
to warp. Besides circular cross-sections (a-1), all regular polygons with a constant wall- 
thickness are warp-free (a-2). In these cases, the center of area ca coincides with the 
shear center cs. Additionally, all polygons are warp-free that fulfill the following re-
quirement (a-3) (Roik, 1978): Two vectors are set up in each vertex so that their starting 
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Figure 7.10: a) Hindered warping at one end of the profile b) hindered warping at 

both ends of the profile 

point is in the vertex itself and their direction is each parallel to an adjoining side of the 
polygon. The length of each vector represents the wall thickness of the side of the poly-
gon that it is lying on. If the resultants, set up by the two vectors in each vertex all 
intersect at a single point, then the cross-section is warp-free. For a rectangular profile 
with opposite sides of equal wall-thickness, this definition can be specified by saying: 
if the ratio of the two wall-thicknesses is equal to the ratio of the corresponding side 
lengths, then the rectangular cross-section is warp free. Also, open thin-walled profiles 
are warp free that are made up of members that all intersect in one single point (a-4). 
All of these described shapes are only warp-free if the center of rotation lies on the shear 
center point cs. (Francke and Friemann, 2005) 

Cross-sections that do warp can be differentiated into two groups. The first group is 
comprised of arbitrary closed profiles – both solid and hollow. The second group is 
comprised of arbitrary open profiles that do not fulfil the requirement of having one 
common intersection point of all of its members. Although, both of these groups do 
warp, the deformation is small in the case of closed arbitrary profiles and can be ne-
glected according to EN 1993-1-1, Abs. 6.2.7 (7) (Lohse et al., 2016). It can be con-
cluded that, with the exception of arbitrary open shapes and combined open-closed 
shapes, the Saint Venant formulation can be applied to the profiles relevant for 3D bend-
ing.  



140 The reciprocal effects of bending and torsion during 3D profile bending 

Figure 7.11: Warp-free cross sections and cross sections with minor warping (Ex-
tended representation of results by Francke and Friemann (2005), Roik 
(1978), and Lohse et al. (2016) 



Influence of torsion on the bending process  141 

If an arbitrary hollow profile is regarded (Figure 7.12), the displacement vector of a 
differential element at the position s of the cross-section can be described as:  

y,cs y,cs cs

Longitudinal In-plane
displacement displacement

(causes warping)

csu s u s e y e r s  
(7.57) 

where (ycs) describes the angle of twist along the longitudinal axis ycs. To calculate the 
displacement in tangential direction, the in-plane displacement term is multiplied by the 
tangent unit vector ep and rearranged: 

p y,cs cs p y,cs cs pcs csy e r s e y e r s e (7.58) 

The term: 

y,cs cs pr s e r s e  (7.59) 

is a scalar describing the perpendicular distance of the vector pe  at the differential ele-
ment to the centroid. Using r s  as the moment arm, the total torque caused by twisting  
the profile can be calculated by: 

T t
0

P

s

M s t r s ds (7.60) 

If the shear stress is assumed constant over s and 1
2 r s ds  is considered a differential 

  
 

 
Figure 7.12: a) Arbitrary hollow profile b) arbitrary hollow profile with applied twist 

c) cross-sectional view of the profile 
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segment of the cross-sectional surface enclosed by the middle axis of the wall Am, then 
Eq. (7.60) can be rewritten as:  

T t t m
0

2
P

s

M t r s ds t A  (7.61) 

Eq. (7.61) essentially is the first formulation by Bredt (1896). Assuming small displace-
ments and no warping, the shear strain can be described as: 

p

0
no warping

    
cs

cs

u y r s
s y (7.62) 

Regarding the twist per unit length (ycs) to be constant over ycs, the relation of  to 
(ycs) can also be expressed as the more figurative: 

cs csdy d y r s (7.63) 

cs

cs

d y
r s

dy
 (7.64) 

Graphically, this relation is presented in Figure 7.13. The integration of the local shear 
strains over the perimeter can, as the torque in Eq. (7.61), be related to the area Am: 

m
0 0

ds 2
P P

cs cs
s s

y r s ds y A (7.65) 

and by dividing this term by the length of the neutral axis of the wall P, the average 
shear strain can be written as: 

m T
avg

T

2
cs cs

A Jy y
P W

 (7.66) 

Hereby, JT is the torsional constant, which in the case of a circular cross-section is equal 
to the polar moment of inertia, and WT is the torsional section modulus. In the case of a 
rectangular profile with the profile height h, the profile width w, and the wall-thickness 
tt, Eq. (7.66) can be specified as: 

t t
avg

t2cs

w t h t
y

w h t
 (7.67) 

In the case of warp-free pure torsional deformation,  is equal to avg and, thus, constant 
over s. To confirm the validity of Eq. (7.67), the analytic shear strain is compared to 
numerical strain data calculated with the simplified implicit plane stress FE-model de-
scribed in Section 5.4.2. As in Section 7.2.1, the model regards a 200 mm long profile  
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Figure 7.13: Geometrical relation between  and d (ycs) 

segment with the difference that, instead of simulating only one face of the profile, a 
whole square cross section with the dimensions 40x40x2.5 mm is modelled. The com-
parison of the analytical and the numerical strain data at twist per unit length values 
linearly increasing from 0 to 1.964 rad/m, which represents an angle of twist of 45° on 
a profile length of 400 mm, is shown in Figure 7.14. The analytically calculated shear 
strain in the middle of the profile wall (Figure 7.14a) is in good agreement with the 
numerical strain over the whole range of the twist per unit length with a negligible de-
viation in proximity to the maximum rate of 1.964 rad/m. Figure 7.14b shows the strain 
distribution over a single face of the profile cross-section. While the analytical calcula-
tion regards the strain as being constant over s, the numerical analysis shows a slightly 
increasing shear strain from the middle of the face at s = 18.75 mm to the starting points 
of the fillets at s = 1.25 mm and s = 36.25 mm.  

Figure 7.14: a) Shear strain evolution over twist per unit length for the element at 
s = 18.75 mm b) Shear strain distribution along the neutral axis of the 
profile wall (Staupendahl and Tekkaya, 2018b), calculations were per-
formed using material data of MW700L Z1 

d
s

s
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Figure 7.15: a) Shear stress evolution over shear strain at s = 18.75 mm b) Torque 

over twist per unit length for MW700L Z1 

The fillets itself are not considered in the comparison due to edge effects in the numer-
ical data. Comparing the average of the numerical strains with the analytical value, the 
deviation is at maximum 1 %. The shear stress distribution over the cross section be-
haves similar to the shear strain and can, thus, be defined as constant over s. To compare 
the accuracy of the analytical calculation in relation to the numerical data, it is sufficient 
to compare the shear stress at the point s = 18.75 mm. The shear stress over shear strain 
is pictured in Figure 7.15a and only shows slight deviations in the transition from elastic 
to elasto-plastic deformation. The resulting deviation of the analytically calculated 
torque to the numerical torque is negligible over the whole range of investigated twist 
per unit length values with the maximum error being 0.6 % at the value 1.964 rad/m. 

7.3.2 Analytical description of combined bending and torsion 

Looking at the well-fitting analytical models for pure bending (Section 7.2) and pure 
torsion (Section 7.3.1) it might seem straightforward to combine the linear increasing 
axial strain from the neutral axis to the intrados and extrados due to bending with a 
uniform shear strain over the cross section. This would result in using Eqs. (7.54) and 
(7.55) to calculate the axial stress and shear stress in each fiber of the profile and subse-
quently use Eqs. (7.48) and (7.60) to calculate the bending moment and torque.  

However, this is not how strains develop in the case of combined loading. Analyses 
performed with the comprehensive numerical model described in Section 5.4.1 show 
that the shear strain, in fact, is not constant over the cross-section during combined load-
ing (Figure 7.16). This observation was also made with the simplified implicit FE model 
described in Section 5.4.2. Although differences do exist between both curves, which 
can be attributed to tool contact in the comprehensive numerical model, the general trend 
of a shear strain starting at a minimal value near to the neutral axis (s = 37.5 mm, 

d
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s = 112.5 mm) and increasing towards the intrados (the innermost fiber) and extrados 
(the outermost fiber) of the profile can be observed in both models. Considering a profile 
that is both bent and twisted simultaneously, the elastic limit is first reached at the intra-
dos and extrados of the profile, as in the case of pure bending. This statement can be 
directly verified by the von Mises yield criterion (Eq. (7.53)), which, for the elastic case, 
can be rewritten as: 

2 22
el 3E G (7.68)

During elastic deformation, the axial strain is linearly distributed over the profile cross-
section with its minimum at the intrados and its maximum at the extrados. The shear 
strain is distributed homogeneously over the entire cross-section. As a result, the von 
Mises stress el will always be maximum at the intrados and extrados and el will reach 
the yield stress Y at exactly these positions. The strains at the yield point can be defined 
as Y and Y. Once the material yields, plastic deformation initiates in these respective  
 

 

Figure 7.16: Shear strain distribution over the cross-section at  = /4 calculated for 
MW 700L Z1 (Staupendahl and Tekkaya, 2018b) 
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forming zones. With an increasing bending curvature and twisting angle, the forming 
zones increase toward the neutral axis of the profile until it is completely plastified. 
Figure 7.17 compares the qualitative development of the forming zone for the three 
cases: pure bending, pure twisting, and combined bending and twisting. Figure 7.18 
qualitatively shows the profile deformation along the diagonal of Figure 7.17 for ideal-
ized linear axial as well as shear strain distributions. The validity of a linear axial strain 
distribution is shown in Section 7.1, Figure 7.5, while the validity of a linear shear strain  
 

 
Figure 7.17: Development of the forming zone during pure bending, pure twisting and 

combined bending and twisting 

 

 
Figure 7.18: Development of the forming zone with proportionally increasing curva-

ture and twist per unit length 
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distribution during simultaneous bending and torsion can be concluded from Fig-
ure 7.16. With an increasing bending curvature and twist per unit length, the absolute 
values of the axial strain and shear strain at the extrados (εe, γe) and the intrados (εi, γi) 
also increase, whereby γe can be said to equal γi for a symmetrical or point symmetrical 
cross section. With, assuming proportional loading, εY and γY being constant, the point 
of initial yield continuously moves inward until it reaches the neutral axis of the profile.  

In Section 7.3.1, warp-free cross sections were defined and it was explained that thin-
walled square cross sections are warp-free under pure torsion. If the exemplary square 
profile segment from Figure 7.18 is now taken, which is simultaneously bent and 
twisted, and the shear deformation, linearly increasing from the neutral axis to the intra-
dos and extrados, is regarded separately from the axial strain and, thus, without the re-
sulting axial constraints, the cross section would actually warp, generating the S-shape 
shown in Figure 7.19a. This shows that cross sections that are generally considered to 
be warp-free in pure torsion loose this property in combined bending and torsion. What 
also becomes clear when looking at Figure 7.19a is how there can be a difference in γavg 
calculated by Eq. (7.66) and the local shear strain γ. In the shown profile segment, even 
though the local shear strain γ of the elements at the neutral axis is 0 and that of the 
elements at the intrados and extrados is γe, γavg is actually equal in all elements of the 
profile segment. If now warping is considered to be hindered (Figure 7.19b), as this is 
the constraint of kinematic 3D bending processes (Figure 7.10), γavg is left to describe 
the  shear  angle  of  the  outer  edge  of  the  profile  segment.  The  local  shear  strain  γ  of  the 
elements at the intrados and extrados is still γe as in the case of unhindered warping, 
which again reduces to 0 in the elements at the neutral axis of the profile segment.  
 

 
Figure 7.19: a) Warping of a profile segment caused by varying shear strains over the 

cross section b) hindered torsion caused by 3D bending constrains c) ac-
tual shear strain distribution in simultaneously bent and twisted profile 
segment 
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By superposing the axial deformation of the profile segment caused by bending (Fig-
ure 7.19c), the geometry previously shown in the far right of Figure 7.18 is generated. 
The local shear strains, hereby, stay the same as in Figure 7.19a and b and the average 
shear strain avg is still measured at the outer edge of the profile segment. In the following 
calculations, the stiffening effect hindered warping has on the torsional stiffness 
(Francke und Friemann, 2005) is neglected. 

To analytically describe the shear strain distribution for a rectangular cross-section with 
the profile width w and the profile height h, the distribution is idealized as shown in 
Figure 7.18 and defined to begin at 0 on the neutral axis and linearly increase to the 
maximum shear strain m (with m = i = e) at the intrados and extrados. Specifically, 
the distribution projected on the bending plane is defined to be linear, while the distri-
bution along the sides of the cross-section are allowed to be bi-linear. Using this simpli-
fication, only m needs to be found in order to determine the overall shear strain distri-
bution. In order to calculate m for any given cross-section rotation, two particular cross-
section rotation angle cases have to be distinguished. The first case describes the neutral 
axis intersecting the sides of the rectangle with the length w – tt, which occurs in the 
rotation angle ranges: 

1 11 1tan tan
q q

(7.69) 

and 

1 11 1tan tan
q q

(7.70) 

The parameter q, hereby, describes the ratio of the height to the width of the middle axis 
of the profile wall: 

t

t

h tq
w t (7.71) 

Figure 7.20 shows a qualitative linear shear strain distribution in n -direction from 0 on 
the neutral axis (b -vector) over the intermediate value m,v at position n1 (vertex nearest 
to the neutral axis) to the maximum value m at position n2. Additionally, the bi-linear 
projection of this linear shear strain distribution on two sides of the rectangular cross-
section is shown for the rotation angle range described by Eq. (7.69). In the interest of 
clarity, the point symmetric distribution along the other two sides is not displayed. To 
describe the shear strain distribution for Eq. (7.70), the rectangular cross-section shown 
in Figure 7.20 simply has to be mirrored around the n -vector. 
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Figure 7.20: Case 1: Qualitative shear strain distribution generated when the neutral 

bending axis intersects the sides of the rectangle with the length w – tt 
(Staupendahl and Tekkaya, 2018b) 

The link of the actual shear strain distribution to the average shear strain can be made 
by adding individual distributions per side and dividing the sum by the perimeter P, 
whereby j = {1,2} depending on the case of cross-section rotation: 

avg

2 j j j jA B C D
P

(7.72) 

The shear strain distributions A1, B1, C1, and D1 are, in turn, calculated with the relevant 
dimensions shown in Figure 7.20. To simplify the equations, the length w – tt is normal-
ized to 1 so that, by using Eq. (7.71), h – tt equals q: 

1
1 1 tan
2 2

w q (7.73) 

2
1 tan
2

w q (7.74)

3
1 1 tan
2 2

w q (7.75)

1
1 1 tan cos
2 2

n q (7.76)

2
1 1 tan cos
2 2

n q (7.77)
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Using Eqs. (7.76) and (7.77), the shear strain at the vertex closest to the neutral bending 
axis is defined: 

m,v m
1 tan
1 tan

q
q

(7.78) 

With the set of Eqs. from (7.73) to (7.78), the shear strain distributions are found: 
2

1 m

1 tan1
4 1 tan

q
A

q
(7.79) 

1 m
1 tan
1 tan

qB q
q

(7.80)

1 m
1 1 tan1
2 1 tan

qC q
q

(7.81)

1 m
1 1 tan
4

D q (7.82)

The second particular case of cross-section rotation describes the neutral axis intersect-
ing the sides of the length h – tt, which occurs in the rotation angle ranges: 

1 11 1tan tan
q q

(7.83) 

and 

1 11 1tan 2 tan
q q

(7.84) 

Figure 7.21 shows the qualitative shear strain distribution along two sides of the rectan-
gle for the rotation angle range described by Eq. (7.83). As in Figure 7.20 the point 
symmetric distribution along the other two sides is not shown. To describe the shear 
strain distribution for Eq. (7.84), the rectangular cross-section shown in Figure 7.21 
simply has to be mirrored around the z-axis. The relevant dimensions in case 2 are: 

1
1 1 tan
2 2 2

h q (7.85) 

2
1 tan
2 2

h (7.86)

3
1 1 tan
2 2 2

h q (7.87)
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Figure 7.21: Case 2: Qualitative shear strain distribution generated when the neutral 

bending axis intersects the sides of the rectangle with the length h – t  
(Staupendahl and Tekkaya, 2018b) 

 

3
1 1 tan cos
2 2 2 2

n q (7.88)

4
1 1 tan cos
2 2 2 2

n q (7.89)

The shear strain at the vertex closest to the neutral bending axis calculated using 
Eqs. (7.88) and (7.89): 

m,v m
1 tan
1 tan

q
q

(7.90) 

The set of Eqs. from (7.85) to (7.90) leads to the shear strain distributions: 
2

2 m

tan
21

4 tan
2

q
A

q
(7.91) 
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2 m

tan
2

tan
2

q
B

q
(7.92)

2 m

tan
1 21
2 tan

2

q
C

q
(7.93)

2 m
1 tan
4 2

D q (7.94)

The maximum shear strain m is finally set in terms of the rotation angle of the profile 
cross-section  and related to avg by solving Eq. (7.72) for cases 1 and 2: 

1 1

m avg2 2
1 1

1 1tan tan   
2 1 1 tan

          for   
1 tan 2 1 1tan tan

q qq q
q q

q q

(7.95) 

1 1

m avg
2 2 1 1

1 1   tan tan2 1 tan
2     for   

1 1tan 2 tan 2 tan2

 
q q q q

q q
q q

(7.96)

Figure 7.22 sets the two previously shown cross-section rotation angle cases in line with 
the two normal positions at  = 0 and at  = /2. In these positions, the shear strains 
increase linearly along the two sides normal to the neutral axis from 0 to the maximum 
shear strain m at the intrados and extrados. The shear strain value along the sides parallel 
to the neutral axis has the constant value m. For  = 0, m is calculated with Eq. (7.95), 
while for  = /2, m is calculated with Eq. (7.96). The shear strain at each position along 
the cross-sectional parameter is calculated by: 

B
B m

m

n
n

n
(7.97) 
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Figure 7.22: Shear strain distribution over the profile wall of a rectangular cross-section 

in the rotation angle range  = 0 to /2 (Staupendahl and Tekkaya, 2018b) 

Inserting Eq. (7.97) into Eqs. (7.54) and (7.55) leads to: 

f pl

2

m B11
3

n
n

 
(7.98) 

f pl

2

m

m B

3 9 n
n

 (7.99) 

 

with pl , according to Eq. (7.34) from Section 7.1 being: 
2

2 B
pl

m

1
3

n
n

( 7.100 ) 

Figure 7.23 shows the comparison between the shear strain calculated numerically with 
the simplified FE model and the analytically calculated shear strain over the profile wall 
parallel to the bending plane at  = 0 and  = /4. Additionally, Figure 7.24 shows the 
analytically calculated shear stress in comparison to the numerical data and Figure 7.25 
shows the analytically calculated axial stress in comparison to the numerical data. The 
data is given relative to the perimetral length s, whereby nB = 0 at s = 18.75 mm and 
nm = 18.75 mm for  = 0 and nB = 0 at s = 37.5 mm and nm = 26.52 mm for  = /4. The 
results for three twist per unit length values (0.491, 0.982, and 1.964 rad/m) are shown. 
The ratios of twist per unit length to bending curvature d /RL for each of the trials were 
chosen to be 0.491, 0.982, and 1.964 rad, respectively. The graphs with the strain and 
stress results for the radii 600 mm and 800 mm can be found in annex A.1. 
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Figure 7.23: Comparison of analytically calculated shear strain to numerically calcu-

lated shear strain for combined bending and torsion at θ = 0 (a) and 
θ = π/4 (b) for MW700L Z1 (Staupendahl and Tekkaya, 2018b) 
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Figure 7.24: Comparison of analytically calculated shear stress to numerically calcu-

lated shear stress for combined bending and torsion at θ = 0 (a) and 
θ = π/4 (b) for the material MW700L Z1 
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Figure 7.25: Comparison of analytically calculated axial stress to numerically calcu-

lated axial stress for combined bending and torsion at θ = 0 (a) and 
θ = π/4 (b) for the material MW700L Z1 
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For  = 0 the average deviations between the linear shear strain approach, given by 
Eq. (7.97), and the numerically calculated strains at 0.491, 0.982, and 1.964 rad/m lie at 
11 %, 11 %, and 15 %, respectively. For  =  the average deviations between the lin-
ear shear strain approach, given by Eq. (7.97), and the numerically calculated strains at 
0.491, 0.982, and 1.964 rad/m lie at 13 %, 14 %, and 12 %, respectively. A major part 
of these errors is caused by the analytical shear strain starting at 0 on the neutral axis of 
the profile, whereby the numerical calculation actually shows initial elastic strains.  

These initial elastic strains also cause the numerical shear stress to be non-zero (see 
Figure 7.24), while the analytical model predicts a drop down Y to 0 MPa on the 
neutral axis. For  = 0 the average deviations between the shear stress, given by 
Eq. (7.99), and the numerically calculated shear stress at 0.491, 0.982, and 1.964 rad/m 
lie at 9 %, 7 %, and 8 %, respectively. For  =  the average deviations between the 
shear stress, given by Eq. (7.99), and the numerically calculated shear stress lie at 7 % 
for all three twist per unit length values. 

Figure 7.25 shows an increasing deviation between the analytically calculated axial 
stress, given by Eq. (7.98) and the numerically calculated stress values with an increas-
ing twist per unit length. While the average deviation for  = 0 is 4 % at 0 and 
0.491 rad/m, this value increases to 6 % at 0.982 rad/m, and to 22 % at 1.964 rad/m. For 
 =  the average deviation behaves similarly with the average deviation being 3 % at 

0 and 0.491 rad/m, 6 % at 0.982 rad/m, and 20 % at 1.964 rad/m. 

7.3.3 Performance of the analytical model for combined bending and torsion 

Using Eq. (7.98) in combination with the bending moment calculation strategy 2 from 
table 7.2: 

m

B
0

2
n

M n dA ( 7.101 ) 

the bending force FB = MB/LB can be calculated. The torque is calculated via Eq. (7.60). 
Figure 7.26 shows experimental bending force and torque results abreast results from 
the comprehensive and simplified numerical model in comparison to the results from 
the analytical model with a uniform shear strain distribution over the cross-section 
(Saint-Venant) and the variable strain model derived in Section 7.3.2 for  = . The 
results for  = 0 can be found in Annex A.2, Figure A.7. The data was produced using 
the material description for MW700 L Z1. For the comprehensive numerical model (de-
scription in Section 5.4.1, Figure 5.21), the NC-data was set up as described in Section 
5.4 resulting in a loading region with increasing values of X, 1, and 2, a steady-state 
region with constant values of X, 1, and 2 and, finally, an unloading region. The aver-
age bending force and torque in the steady state region and the peak 
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Figure 7.26: Bending force and torque results for MW700L Z1 at θ = π/4 of the load-

ing region and the steady-state region of the comprehensive numerical 
model and experiments in comparison to the bending force and torque of 
the simplified numerical model and the analytical models with a variable 
strain over the cross-section and a constant shear strain (Saint-Venant) 
(Staupendahl and Tekkaya, 2018b) 
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bending force and torque in the loading region are presented. For the simplified numer-
ical model (description in Section 5.4.2, Figure 5.24) the peak bending force and torque 
are stated, output at the increment when the final loaded radius and twist per unit length 
is reached in each separate simulation. The comprehensive numerical model could only 
be used to generate data up to a twist per unit length of 0.982 rad/m. At a twist per unit 
length of 1.964 rad/m, the twist was not able to be applied uniformly to the profile. 
Rather, local excessive twisting occurred in the forming zone, resulting in unusable 
bending force and torque data. Experimental data could also not be consulted for this 
twist per unit length because the feeding force generated by the friction-based roll feed-
ing system did not have the height required to transport the profile. As a result, only data 
from the simplified numerical model can be presented alongside the analytical data for 
the twist per unit length of 1.964 rad/m. While the experimental torque values, measured 
using the torque sensor introduced in Section 5.2.3, are stated for all producible radius-
twist per unit length combinations, the experimental bending force data can only be 
shown for plane bending (twist per unit length = 0 rad/m) as explained in Section 5.4. 

Looking at the three bending force diagrams of Figure 7.26, it can be seen that the bend-
ing force decreases with an increased twist per unit length. This decrease is more pro-
nounced with increasing bending radii, which can be explained by the then increased 
quadratic ratio of shear strain to longitudinal strain as seen in Eq. (7.98). It can also be 
noticed that the analytical model with a constant shear strain over the cross-section 
greatly overestimated the bending force reduction FB,red: 

th th

th

B, ,0 B, ,
B,red

B, ,0

100%R R d

R

F F
F

F ( 7.102 ) 

with FB,Rth,0 describing the bending force at the theoretical bending radius Rth and a twist 
per unit length of 0 and FB,Rth,d  describing the bending force at the theoretical bending 
radius Rth and the twist per unit length d . Compared to the numerical simulations and 
the enhanced analytical model with a variable shear strain over the cross-section, the 
bending force reduction is significantly overestimated and about three times as high in 
several combinations of Rth, , and  (e.g. at Rth = 800 mm,  = and 
d  = 0.491 rad/m the simplified numerical model shows a bending force reduction of 
4.5 %, the comprehensive numerical model shows a bending force reduction of 6.2 % 
(steady state) and 4.1 % (peak), the enhanced analytical model shows a reduction of 
4.4 %, while the analytical model with a constant shear strain over the cross-section 
shows a reduction of 13.2 %), with a maximum absolute bending force deviation of 
32.1 % (Rth = 1000 mm,  = , and  = 1.964 rad/m) to the simplified numerical 
model and 26.5 % (steady-state, Rth = 1000 mm,  = , and d  = 0.982 rad/m) and 
27.5 % (peak, Rth = 1000 mm,  = , and d  = 0.982 rad/m) to the comprehensive nu-
merical model. The enhanced analytical model, on the other hand, only shows maximum 
absolute deviations of up to 3.0 % (Rth = 1000 mm,  = , and  = 1.964 rad/m) to 
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the simplified numerical model and 6.2 % (steady-state, Rth = 1000 mm,  = , and 
 = 0.982 rad/m) and 7.5 % (peak, Rth = 1000 mm,  =  = 0.982 rad/m) to 

the comprehensive model.  

While the analytical model with a constant shear strain overestimates the bending force 
reduction FB,red, the model underestimates the torque reduction MT,red: 

th th

th

T, ,0 T, ,
T,red

T, ,0

100%R R d

R

M M
M

M ( 7.103 ) 

Using the above mentioned example of Rth = 800 mm,  = and d  = 0.491 rad/m, 
the simplified numerical model shows a torque reduction of 66.5 %, the comprehensive 
numerical model shows a bending force reduction of 65.5 % (steady state) and 57.6 % 
(peak), the enhanced analytical model shows a reduction of 67.8 %, while the analytical 
model with a constant shear strain over the cross-section only shows a reduction of 
38.9 %. The maximum absolute deviation of the torque calculated via the analytical 
model with a constant shear strain to the simplified numerical model is 101.5 % 
(Rth = 600 mm,  =  = 0.491 rad/m) and to the comprehensive numerical 
model is 79.6 % (steady-state, Rth = 800 mm,  = , and d  = 0.491 rad/m) and 46.1 % 
(peak, Rth = 800 mm,  = , and d  = 0.491 rad/m). In contrast, the enhanced analyti-
cal model only shows maximum absolute deviations of up to 4.2 % (Rth = 600 mm, 
 =  = 0.491 rad/m) to the simplified numerical model and 8.7 % (steady-

state, Rth = 1000 mm,  =  = 0.982 rad/m) and 24.2 % (peak, Rth = 600 mm, 
 =  = 0.491 rad/m) to the comprehensive model. 

The higher deviations to the bending force and torque output of the comprehensive nu-
merical model can be explained with the elastic deformation of the profile in the feeding 
roll system as well as in between the front feeding roll and the bending head, which does 
not occur in the simplified model. This elastic profile deformation actually causes the 
effective loaded radii to be larger than the targeted loaded radii (see Section 6.3.1). As 
the stresses and strains used in both analytical models were generated based on the the-
oretical radii 600 mm, 800 mm, and 1000 mm, the elastic behavior is not considered in 
the generation of the shown bending force and torque results and explains the higher 
agreement with the results of the simplified numerical model.  

The combination of the description of plastic 3D-bending behavior with the description 
of elastic profile behavior from Section 6.3 is presented in the next Chapter. 

 



 

 

8 Comprehensive process model of 3D profile bending 
The results of Chapters 3, 6, and the previous sections of Chapter 7 are now used to 
setup a comprehensive process model that predicts the bending axes movements needed 
to produce a targeted profile shape. 

8.1 Model procedure 

The first step is the generation of the geometrical data of the target profile shape in 
relation to the arc length s as explained in Section 4.1: 

Curvature  by Eq. (4.17) (continuous curve description) or Eqs. (4.50), (4.51), 
or (4.52) (discrete curve description) 
Bending plane rotation r via Eq. (4.18) (continuous curve description) or r 
via Eq. (4.57) (discrete curve description) 
The twist per unit length  by Eq. (4.43) (continuous curve description) or  
by Eq. (4.63) (discrete curve description) 

For easier legibility, the differential representations will be used in all of the following 
steps.  

The next step is the generation of the raw NC-data based on the target geometry in terms 
of the arc length s as explained in Section 4.2.3: 

The rotation angle 1 is calculated based on Eq. (4.75) 
The resultant r, which can be directly used as the displacement along the X-axis 
(LB,X) in the case of a bending process with a single linear axis is calculated with 
Eq. (4.76) 
The rotation angle 2 of the torsional cDOF is either calculated with Eq. (4.79) 
or with Eq. (4.80) 
The rotation angle 1 of the bending head is obtained by Eq. (4.81) 
The rotation angle 2 of the bending head is obtained by Eq. (4.82) 

Subsequently, the bending moment (Eq. (7.101)) and torque (Eq. (7.60)) are calculated 
using the stress distributions determined with Eqs. (7.98) (axial stress) and (7.99) (shear 
stress). The bending moment is subsequently used in order to calculate the loaded cur-
vature L: 

B L
L

M
EI

(8.1) 

The torque is used in order to calculate the loaded twist per unit length L: 

T L
L

t

M d ds
d d

GJ
( 8.2) 
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Since the bending moment depends on the unknown loaded curvature and the torque 
depends on the unknown loaded twist per unit length and both loads are related through 
the state of stresses described by Eqs. (7.98) and (7.99), L and L have to be approxi-
mated by the recurrence relations given by Eqs. (8.3) and (8.4). Because of the parame-
ters’ reciprocal effects, the parameters have to approximated simultaneously. 

B L, -1
L, pl,cs,mid,L m L, -1

pl,cs,mid,L

1   with   ln 1
2

n
n n

M
n

E I
( 8.3) 

T L, -1
L,

t

n
n

M d ds
d d

GJ
( 8.4) 

Since the forming zone is defined to be at the front profile support S1 (see Figures 6.1 
and 6.13), the curvature L represents the instantaneous loaded curvature at this position. 
Using the distance from S1 to the plane of bending force application LB,y and MB( L), the 
bending force FB is calculated. This bending force is subsequently used to determine the 
elastic beam deformation. In order to avoid the otherwise necessary constant change of 
the coordinate system of the elastic beam model, FB is used as the in plane bending force 
FB,xy. The elastic beam models described in Chapter 6 calculate the beam deformation 
based on an unloaded beam. As such, for bending of constant curvatures, rather than 
using L to set up the curved beam model, U is used. Depending on the targeted shape 
of the profile and the segment of the profile being bent, U is not necessarily constant 
between S1 and the point of bending force application PFB. In order to still be able to use 
the beam models described in Chapter 6, which are based on constant curvature, LB,X is 
used together with LB,y and Eq. (5.7) to determine the average curvature avg = 1/Ravg in 
this segment. Next, the elastic beam deflection in the xy-plane wxy,B is calculated accord-
ing to Eq. (6.62), using the parameters FB, Ravg, 1,avg, and pl,cs,mid,avgE  with: 

pl,cs,mid,avg m avg
1ln 1
2

n ( 8.5) 

The profile deflection wX,B along the X-axis is highly affected by 1 as shown in Fig-
ure 6.6 and as can be interpreted from the comparison of deflections calculated with a 
straight beam model and a curved beam model (Figure 6.16). For the calculation of wX,B 
Eq. (6.20) is, therefore, modified to: 

xy,B B avg 1,avg
X,B B avg 1 1,avg

1 xy,B B avg 1,avg

, ,
, , ,

cos , ,

w F R
w F R

w F R
( 8.6) 

where 1 is the value generated in the raw NC-data generation. The total deflection along  
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the X-axis, corrected by the machine stiffness displacement function (Eq. (5.14)) is: 

X,B,corr B avg 1 1,avg X,B B avg 1 1,avg M B, , , , , ,w F R w F R F ( 8.7) 

By adding this term to LB,X of the raw NC-Data in Eq. (5.7) the equivalent loaded cur-
vature can be determined: 

12 2
B,X X,B,corr B,y

L,eq
L,eq B,X X,B,corr

1 2
L w L

R L w
( 8.8) 

The equivalent loaded twist per unit length is calculated by: 

T L
L,eq L

m 1 th

machine stiffness

M d
d d

c R ( 8.9) 

Based on the findings of Section 6.3.2 the equivalent loaded bending plane rotation is 
determined by: 

T L
r,L,eq r

m 1 th

machine stiffness

M d
d d

c R (8.10) 

with the equivalent loaded cumulative rotation being: 

r,L,eq,offset r,L,eq    with   B,z1

B

sin
F
F

(8.11) 

8.2 Generation of springback-compensated NC-data 

Two strategies can now be used in order to determine the springback-compensated 
NC-data.  

The first method (a) is similar to the strategy by Hermes (2011): The equivalent 
loaded curvature, twist and bending plane rotation are used to generate a com-
pensated profile shape, which, in turn, is used to generate the compensated NC-
data in terms of the arc length s as explained in Section 4.2.3. (Figure 8.1a) 
The second method (b) uses the raw NC-data determined with the target profile 
geometry together with compensatory axis data generated from Eqs. (8.7), (8.9), 
and (8.11). When using this strategy it has to be respected that wX,B,corr represents 
the deflection in the bending plane and not the deflection along the X-axis of the 
bending machine or along the resultant r. Consequently, when using the 5-cDOF 
TSS bending process with its single linear axis, wX,B,corr has to be split up into an 
X-axis component and an 1-component. (Figure 8.1b) 
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Figure 8.1: Exemplary springback-compensated NC-data in comparison to raw data 

using the two above mentioned strategies: a) by the generation of a com-
pensated profile shape, b) by direct compensation of axis data 

Comparing the curves shown in Figure 8.1a and b it can be seen that, while the final 
compensated steady-state axis values are the same, the ramp-up is different. In the first 
method (a), the raw and compensated NC-Data both initiate at the same start values and 
smoothly deviate according to part geometry and material data. In the second method 
(b) the movements of all axes are distinguished by an abrupt data jump at the beginning 
of the ramp-up and at the end of the steady state region. This behavior can be generalized 
to all radius, twist, and bending plane rotation transitions. The advantage of these data 
jumps is the possibility to directly compensate the elasticity from the beginning of a new 
radius/twist/rotation segment resulting in smaller transition zones in between radii. A 
disadvantage is the increased complexity of the machine control. While in method (a) 
the feed speed can be constant, the data jumps in method (b) necessitate variable feed 
speeds. Also, even if method (b) allows for smaller transition zones, this effect has to be 
measurable. The 128 mm distance from contact unit 1 to contact unit 3 of the 3D contour 
sensor (see Section 5.3) results in the limitation that transition zones under 128 mm 
cannot be properly analyzed.  

The process model validation is, thus, performed according to the method (a). The com-
prehensive process model that includes the generation of springback-compensated 
NC-data according to method (a) is shown in Figure 8.2. 
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Figure 8.2: Comprehensive process model of 3D profile bending using springback 

compensation method (a) 

8.3 Process model demonstration 

The process validation is performed using profiles experimentally bent to the theoretical 
radii 600 mm, 800 mm, and 1000 mm and twisted with 0 rad/m, 0.491 rad/m 
0.982 rad/m. The same NC-data was used as for the comprehensive numerical model in 
Section 7.3.3. As such, the validation is performed inversely: the NC-data is seen as the 
compensated data, with the theoretical radius, twist, and bending plane rotation seen as 
the equivalent data. This equivalent data is recursively used to analytically calculate the 
target curvature, twist, and bending plane rotation, which are in turn compared to the 
experimentally obtained data. From the analyses in Section 6.3.2 it is known that twist-
ing a profile without rotating the 1-axis results in a helix with a theoretical apparent 
twist per unit length apparent = 0. Figure 8.3 shows the contour data of the experimen-
tally bent helices, measured with the 3D-contour measurement device presented in Sec-
tion 5.3, compared to the theoretical and analytically calculated data.  

For Rth = 600 mm, the deviation of the analytically calculated to the experimental peak 
curvature is 1.1 % for th. = 0 rad/m and th. = 0.0491 rad/m, and 2.5 % for 

th. = 0.0982 rad/m. The deviation  of  the  average  curvature  in  between  the  profile  
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lengths 500 mm  and  1100 mm  is 4.0 % for dϕth. = 0 rad/m and 6.4 % for 
dϕth. = 0.0982 rad/m. Although the deviation in twist per unit length at 
dϕth. = 0.0982 rad/m in between profile lengths 500 mm and 1100 mm is on average 
14.0 %, the finally reached value only shows a deviation of 0.3 %. This can be explained 
by the large transition zones that show that during ramp-up and ramp-down actually also 
the profile in between the bending head and the front profile support S1 is twisted outside 
of the forming zone defined by bending. The bending plane rotation shows an average 
deviation of 3.5 % in the same profile range. The analytically calculated cumulative ro-
tation at a profile length of 1200 mm deviates 2.1 % from the experimentally obtained 
value.  

For Rth = 800 mm, the deviation of the analytically calculated to the experimental peak 
curvature is 0.9 % for dϕth. = 0 rad/m, 1.1 % for dϕth. = 0.0491 rad/m, and 2.9 % for 
dϕth. = 0.0982 rad/m. The deviation  of  the  average  curvature  in  between  the  profile  

lengths 500 mm  and  1100 mm  is 4.9 % for dϕth. = 0 rad/m, 4.0 % for 
dϕth. = 0.0491 rad/m, and 4.5 % for dϕth. = 0.0982 rad/m. The deviation in twist per unit 
length at dϕth. = 0.0491 rad/m in between profile lengths 500 mm and 1100 mm is on 
average 14.3 %, while the finally reached cumulative twist value shows a deviation of 
5.8 %. At dϕth. = 0.0982 rad/m the average twist per unit length deviation is 4.3 % and 
the finally reached cumulative twist value shows a deviation of 8.5 %. The bending 
plane rotation shows an average deviation of 7.4 % at dϕth. = 0.0491 rad/m and 1.9 % at 
dϕth. = 0.0982 rad/m. The analytically calculated cumulative rotation at a profile length 
of 1200 mm deviates 0.6 % from the experimentally obtained value at 
dϕth. = 0.0491 rad/m and 3.7 % at dϕth. = 0.0982 rad/m. 

For Rth = 1000 mm, the deviation of the analytically calculated to the experimental peak 
curvature is 0.1 % for dϕth. = 0 rad/m, 2.2 % for dϕth. = 0.0491 rad/m, and 1.8 % for 
dϕth. = 0.0982 rad/m. The deviation  of  the  average  curvature  in  between  the  profile  

lengths 500 mm  and  1100 mm  is 6.4 % for dϕth. = 0 rad/m, 4.2 % for 
dϕth. = 0.0491 rad/m, and 6.5 % for dϕth. = 0.0982 rad/m. As for Rth = 600 mm and 
800 mm, the deviation in twist per unit length at dϕth. = 0.0491 rad/m is relatively high 
with 20.0 %. As for the two other theoretical radii the finally reached cumulative twist 
value shows low deviation of 4.8 %. At dϕth. = 0.0982 rad/m the average twist per unit 
length deviation is again relatively high with 17.1 % while the finally reached cumula-
tive twist value shows only a deviation of 5.4 %. The bending plane rotation shows an 
average deviation of 11.5 % at dϕth. = 0.0491 rad/m and 1.1 % at dϕth. = 0.0982 rad/m. 
The analytically calculated cumulative rotation at a profile length of 1200 mm deviates 
3.2 % from the experimentally obtained value at dϕth. = 0.0491 rad/m and 1.4 % at 
dϕth. = 0.0982 rad/m. 
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Figure 8.3: Validation of process model by comparison of experimentally bent heli-
ces made from MW700L Z1 at   to analytically calculated data 
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Overall, it can be said that the analytically calculated values for the curvature, twist, and 
bending plane rotation correlate well with the experimental data. What can be noticed 
in all curvature graphs is that, after a first curvature peak, a local minimum occurs in the 
transition from ramp-up to the steady state region after which a plateau develops with a 
central local maximum. This curvature trend can be explained by the used NC-data com-
pensation method (a) (see exemplary Figure 8.1). This method does not take into account 
the elastic behavior of the straight profile between the profile support and the bending 
head prior to load application. With the initial movement of the bending head along the 
X-axis, the profile is, thus, not plastically deformed but only elastically. With further 
movement of the bending head, the profile reaches plastic strains in the forming zone at 
S1. So, instead of a sharp curvature jump from 0 to the target curvature, a smooth trend 
develops. Since the NC-data assumes said sharp curvature jump, the profile necessarily 
needs to develop a curvature peak in order to develop a trend, which, on average, is 
equal to the targeted curvature. The movement of the curvature peak towards the bend-
ing head inevitably causes the following curvature to decrease, again, to average out this 
initial peak. The following plateau with the local maximum develops because of the 
same reason as the initial curvature peak and can be considered as the second wave in a 
dampened curvature oscillation. This behavior could be overcome to a certain extent by 
using method (b) for NC-data generation, whereby ideal curvature jumps will not be 
achievable and will have to actually be replaced with ramps as shown by Groth et al. 
(2018c). 

In all of the cumulative twist diagrams, large transition zones are visible that begin be-
fore ramp-up (400 mm) and end after ramp-down (800 mm). This behavior is in contrast 
to the curvature graphs in which the transition zones actually begin after ramp-up and 
end before ramp down. As explained before, this behavior shows that twisting does not 
necessarily occur only in the forming zone as it was specified in Chapters 6 and 7. Es-
pecially during the slight initial X-axis movements that cause only elastic axial defor-
mation of the profile, or only slight plastic deformation of the extrados and intrados, the 
resulting stress state in the specified forming zone is not high enough to cause a locali-
zation of the twist. This localization could be assisted by using method (b) for the NC-
data generation. Here, it should be considered to apply the X-axis movement before ro-
tating the α2-axis in order to generate a region of high axial stress prior to twisting. 
Another option would be to allow a movement of the bending head towards the profile 
support S1. This would reduce LB,y and allow a more localized application of the twist, 
independent of the stress-state in the profile segment in between S1 and the bending 
head. 

Another interesting aspect that is noticed when comparing the cumulative twist and cu-
mulative bending plane rotation diagrams is that the experimental and analytical cumu-
lative apparent twist (ϕ – θR) of the profiles is actually non-zero. This is because, while 
profile twist is dependent on profile springback and machine stiffness, the bending plane 
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rotation is only dependent on the machine stiffness. This independence of the bending 
plane rotation on profile springback can be understood when looking back at Section 
6.3.2. Here, it was explained that the angle η, which describes the angle between the 
bending plane and the machine bending plane is only dependent on the bending force 
components. The good agreement of the analytical and experimental twist and bending 
plane rotation data show that this behavior is well implemented in the process model. 

In Section 4.2.4 it was described how a parasitic torque develops during bending plane 
changes and it was deduced that this torque was responsible for the deviations of around 
15 % between targeted and set bending plane rotations, which were noticed by Hu-
dovernik (2014a) in his 3-cDOF bending tests. The question here is, how this torque can 
be compensated? In the 5-cDOF process, the resulting torque is directly taken up by a 
reaction moment in the bending head. In the 3-cDOF TSS bending process and also in 
the three-roll push bending process, the rotation of the cross-section in the bending head 
or setting roll is free. No torque can be applied here. However, by using the target con-
tour, in this case solely the bending line since the cross-section rotation cannot be con-
trolled, the bending plane angle η can be determined (Eq. (4.74)). The next steps have 
to be performed inside a reccurence scheme. Using the initially unknown bending mo-
ment and the angle η, the force FB,z can be determined. Using the elastic beam calcula-
tions from Chapter 6 the resulting torque at MS1,y (=MT,p) can be determined – the torque 
MT at PFB is 0 in this calculation. The torque gives the shear stress distribution 
(Eq. (7.60)) over the cross-section. Using the axial strain distribution given by the target 
curvature together with the shear stress distribution and Eqs. (7.98), (7.99), and (7.100), 
the maximum shear strain γm is determined. The average shear strain γavg is then calcu-
lated by Eqs. (7.95) or (7.96) for rectangular cross-sections. For circular cross-sections 
γavg is obtained by, first, projecting a linear increasing shear strain onto the circumfer-
ence (similar to the method shown for a rectangular profile in Figure 7.20) and by then 
averaging the strain values. Eq. (7.64) is finally used to determine dϕ, which, in the case 
of 3-cDOF TSS bending process and three-roll push bending is the unwanted twist per 
unit length that leads to a reduced bending plane rotation. In order to compensate this 
unwanted behavior, dϕ has to be added to the targeted dθr. 

 





 

 

9 Conclusion and outlook 
Kinematic 3D profile bending opens up a whole new area of geometric freedom, which 
is inline with with current demands by the industry and consumers regarding natural and 
aestetic shapes, lightweight design, and individuality. Profiles with non-circular cross-
sections allow geometric function integration by especially selecting cross-sections that 
are adapted for specific applications and applied loads. Although several 3D bending 
processes have been developed in the recent decades that allow kinematic 3D profile 
bending, the process is not yet widely used. A research of the state of the art has shown 
that the main factor limiting its widespread use, has, up until now, been the limited 
knowledge of fundamental aspects of 3D bending itself. 

The first step towards a fundamental understanding of 3D bending was the setup of a 
sound mathematical model of a 3D shaped profile with a twisted cross-section. Special 
care was taken to describe the relationship of cross-sectional twist and bending plane 
rotation. Beside a continuous mathematical description a discrete description is given, 
which, depending on the differentiability of the curves, is either a necessity when ana-
lyzing 3D shapes or might just be easier to implement in control or analysis software. 
Next, the fundamental number and positions of actuators was analyzed, needed for the 
production of a 3D bent profile part with and without a twisted cross-section. This fun-
damental view allowed a classification of currently available kinematic bending pro-
cesses with respect to their freedom in shape generation. As a final step in the geomet-
rical analysis of 3D profile bending the mathematical relationship of the profile shape 
and actuator movements was derived. 

Using the knowledge gained in the geometrical analysis, the 3-cDOF TSS bending pro-
cess was extended to a 5-cDOF-bending process, thereby, expanding the range of pro-
ducible shapes from simple 3D bending lines to shapes with 3D bending lines and 
twisted cross-sections. In order to analyze the shapes during and after bending, a flange-
based torque sensor was developed and integrated into the bending head. Additionally, 
a 3D contour sensor was designed and manufactured that allows the time efficient online 
and offline measurement of 3D shaped profiles. Since kinematic bending is highly af-
fected by springback, not only the flow curve of the investigated material was set up but 
also the impact of plastic strain on the apparent Young’s modulus, or cord modulus, was 
investigated. Here, it was noticed that the apparent Young’s modulus decreases from 
199 GPa down to around 175 GPa for both MW700L Z1 and MW700L Z3 at an equiv-
alent plastic strain of only 0.02. Up until a strain of 0.05 the apparent Young’s modulus 
even drops down to below 160 GPa. A comparison with the state of the art showed that 
this material behavior is actually common in all modern steel grades. Since elastic mod-
els generally work with a static Young’s modulus, it was proposed to use the average 
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equivalent strain of the cross-section to determine the apparent Young’s modulus of the 
loaded profile. 

The assessment of the impact of torsion on the bending process was split up into an 
elastic analysis and a plastic analysis. In the elastic analysis, a curved beam model was 
set up and the influence of different profile supports was investigated. The model can 
be used to represent a beam held by up to three roller/hinged supports, a single full-
moment support, or a combination of a single hinged support and a single full-moment 
support. In the deflection calculation, it became apparent that the curved representation 
is essential for an accurate calculation of the elastic behavior of bent profiles. While the 
accuracy of the calculated deflection using a curved beam model is about two times as 
high as the deflection calculated using a straight beam at a theoretical radius of 
1000 mm, the accuracy is actually 7 times as high at a radius of 600 mm. By applying a 
torque to the curved beam model, an additional force component at the point of bending 
force application could be determined, which lies orthogonal to the in-plane bending 
force. By comparing analytical data with experimental investigations, it was found out 
that this vertical force can be used to determine the actual bending plane position and 
that it is the cause of a rotation of the bending plane. 

In order to feed the elastic beam model with the correct bending force and torque data, 
the stresses and strains in the forming zone during simultaneuous bending and twisting 
were investigated next. A thorough analysis of an analytical plane stress model showed 
that the shift of the neutral axis, caused by perimetral stress, has insignificant effects on 
the finally calculated bending moment. The plane stress model could, as a consequence, 
be simplified to a uniaxial stress state with additional shear stress. In numerical analyses 
that were performed alongside the analytical modelling it was observed that the shear 
strain during combined loading of bending and torsion is not uniform over the cross-
section, but rather decreases linearly towards the neutral axis. The integration of this 
behavior into the analytical model lead to bending forces that are in accordance with 
targeted values, not only qualitatively but also quantitatively.  

Finally, the knowledge about geometric modelling, elastic profile deformation, and plas-
tic profile behavior was merged into a single comprehensive process model. In the 
model validation, deviations of the curvature, cumulative twist, and cumulative bending 
plane rotation of around 5 % were achieved, which prove the applicability of the pre-
sented model. Additionally to the usability of the model for 3D profile bending to com-
pensate elastic deformation during the process, it was explained how the model could 
be adapted to determine the bending plane rotation difference noticed during 3D bending 
using 3-cDOF bending processes as three-roll push bending. 
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Although the validation of the developed process model has shown well correlating ex-
perimental and analytical data, the deviations of the curvature, cumulative twist and cu-
mulative bending plane rotation of around 5 % might still be too high for certain appli-
cations.  An  accuracy  increase  is expected from using  the  direct  compensation  method  

 

 
Figure 9.1: Concepts of a) indirect closed-loop control b) direct closed-loop control 

(Staupendahl et al., 2016) 
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of NC-data generation (Figure 8.1b). However, minimal shape deviations will only be 
achievable through the integration of a closed-loop control system. Figure 9.1a shows 
the concept of an indirect closed-loop control system, which uses force and torque meas-
urements as control parameters. Figure 9.1b displays the concept of a direct closed-loop 
control system, which uses the measured contour data – curvature, twist per unit length, 
and bending plane rotation – as control parameters. The closed-loop control concepts 
are exemplarily shown for the combination with the NC-data compensation strategy us-
ing a compensated profile shape (Figure 8.1a). The advantage of the indirect closed-
loop control is the use of the instantaneous load measurements of the currently bent 
profile segment. This means that only the calculation time of the compensation algo-
rithm appears as a lag element. The disadvantage is that the relationship between process 
forces and resulting shape data has to be very accurate and might need additional cali-
bration. The advantage of the direct closed-loop control is the direct measurement of the 
actual profile shape. The disadvantage is that the shape cannot be measured directly in 
the forming zone due to limited access. The contour sensor is, thus, either placed in 
between the profile support and the bending head or downstream of the bending head. 
This means that, additionally to the lag element caused by the compensation calculation, 
a lag element caused by delayed contour measurement is introduced into the system. 
The impact of these conditions will have to be investigated in future studies. 
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Annex 
A.1 Comparison of analytically calculated shear strain, shear stress, and axial stress to 

numerical data, generated with the simplified numerical model introduced in Sec-
tion 5.4.2, for RL = 600 mm and 800 mm at  = 0 and  = /4 

 
Figure A.1: Comparison of analytically calculated shear strain to numerically calcu-

lated shear strain for combined bending and torsion at  = 0 (a) and 
 = /4 (b) for the material MW700L Z1 
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Figure A.2: Comparison of analytically calculated shear stress to numerically calcu-

lated shear stress for combined bending and torsion at θ = 0 (a) and 
θ = π/4 (b) for the material MW700L Z1 
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Figure A.3: Comparison of analytically calculated axial stress to numerically calcu-

lated axial stress for combined bending and torsion at θ = 0 (a) and 
θ = π/4 (b) for the material MW700L Z1 
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Figure A.4: Comparison of analytically calculated shear strain to numerically calcu-

lated shear strain for combined bending and torsion at θ = 0 (a) and 
θ = π/4 (b) for the material MW700L Z1 
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Figure A.5: Comparison of analytically calculated shear stress to numerically calcu-

lated shear stress for combined bending and torsion at θ = 0 (a) and 
θ = π/4 (b) for the material MW700L Z1 
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Figure A.6: Comparison of analytically calculated axial stress to numerically calcu-

lated axial stress for combined bending and torsion at θ = 0 (a) and 
θ = π/4 (b) for the material MW700L Z1 



Annex  193 

   

A.2 Comparison of the bending force and torque results from the comprehensive and 
simplified numerical model to the results from the analytical model with a uniform 
shear strain distribution over the cross-section (Saint-Venant) and the variable 
strain model derived in Section 7.3.2 at  = 0 

 
Figure A.7: Bending force and torque results for MW700L Z1 at  = 0 
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