
 0 Physicochemical property prediction for small molecules using integral equation-based 
solvation models 

 
 
Physicochemical property predic-

tion for small molecules using in-

tegral equation-based solvation 

models 
 

 

 

 

Dissertation zur Erlangung des  

akademischen Grades eines Doktors der  

Naturwissenschaften (Dr. rer. nat.) 

 

 

 

Die Dissertation wurde im Zeitraum vom 01.11.15 bis zum 

09.02.21 angefertigt und der Fakultät Chemie und Chemische Bio-

logie der Technischen Universität Dortmund vorgelegt 

 

 

von 

Nicolas Tielker. 

 

Dortmund, 2021 

 

 

 

Erstgutachter:  Prof. Dr. Stefan M. Kast 

Zweitgutachter:  Prof. Dr. Paul Czodrowski 

  



 

 

  



 2 Physicochemical property prediction for small molecules using integral equation-based 
solvation models 

Parts of this work are already available in the following publications under participation of 

the author: 

1: N. Tielker, D. Tomazic, J. Heil, T. Kloss, S. Ehrhart, S. Güssregen, K. F. Schmidt, S. M. 

Kast, J. Comput.-Aided Mol. Des. 30, 1035 (2016) 

2: N. Tielker, L. Eberlein, S. Güssregen, S. M. Kast, J. Comput.-Aided Mol. Des. 32, 1151 

(2018) 

3: N. Tielker, L. Eberlein, C. Chodun, S. Güssregen, S. M. Kast, J. Mol. Model. 25, 139 

(2019) 

4: T. Pongratz, P. Kibies, L. Eberlein, N. Tielker, C. Hölzl, S. Imoto, M. Beck Erlach, S. Kur-

rmann, P. H. Schummel, M. Hofmann, O. Reiser, R. Winter, W. Kremer, H. R. Kalbitzer, 

D. Marx, D. Horinek, S. M. Kast, Biophys. Chem. 257, 106258 (2020) 

5: N. Tielker, D. Tomazic, L. Eberlein, S. Güssregen, S. M. Kast, J. Comput.-Aided Mol. Des. 

34, 453 (2020) 

6: N. Tielker, L. Eberlein, G. Hessler, K.F. Schmidt, S. Güssregen, S. M. Kast, J. Comput.-

Aided Mol. Des., https://doi.org/10.1007/s10822-020-00347-5 



 

DANKSAGUNGEN 

Ich möchte mich zuerst herzlich bei Herrn Prof. Dr. Stefan M. Kast bedanken, durch des-

sen unermüdliche Unterstützung in fachlichen Dingen und die Schaffung einer angenehmen 

Arbeitskreisatmosphäre, ich immer für meine wissenschaftliche Arbeit und die Lehre moti-

viert war. Auch für das Interesse an der Situation der Doktoranden nach ihrer Promotion, ins-

besondere im Hinblick auf das vergangene Coronajahr möchte ich mich herzlich bedanken. 

Bei Herrn Prof. Dr. Paul Czodrowski bedanke ich mich für die Übernahme des Zweitgutach-

tens und bei Herrn Dr. Stefan Güssregen für die vielen fruchtvollen Kooperationen im Be-

reich der „SAMPL challenges“ und den anregenden Gesprächen auf so mancher Konferenz. 

Darüber hinaus möchte ich mich bei allen Mitgliedern des Arbeitskreises für die gute Zu-

sammenarbeit und Arbeitsatmosphäre danken, wo einem bei so gut wie jedem Problem von 

mindestens einer Person geholfen wurde, und auch die sportliche Betätigung nie zu kurz kam. 

Besonders danken möchte ich dabei Dr. Daniel Tomazic, Dr. Roland Frach, Dr. Leonhard 

Henkes, Dr. Jochen Heil und Dr. Florian Mrugalla, die, gerade in der Übergangsphase vom 

Master in die Promotion, mit Rat und Tat geholfen haben. Dr. Patrick Kibies, der nicht nur bei 

fachlichen Themen oder Fragen zur Administration und zum Coding, sondern auch in vielen 

anderen Bereichen mit nützen und unnützen Wissen glänzen konnte. Martin Urban für die 

Unterstützung insbesondere bei MD-Simulationen und der Lehre. Lukas Eberlein und Tim 

Pongratz für die angenehme Atmosphäre im Büro zu Beginn der Promotion, die sich auch mit 

der im Laufe der Zeit wechselnden Besetzung erhalten hat. und insbesondere nochmal bei 

Lukas Eberlein, Julia Jasper, Tim Pongratz, und Patrick Kibies für die sehr angenehme Ge-

sellschaft bei diversen Konferenzen, Workshops, und anderen Dienstreisen. Bei Frau Annelie-

se Ahlke bedanke ich mich besonders für die scheinbar mühelose Bewältigung aller Verwal-

tungsangelegenheiten, durch die das wissenschaftliche Arbeiten sehr viel leichter von der 

Hand ging. 

Schließlich möchte ich mich noch ganz besonders bei meinen Eltern, Birgit Popiolek und 

Uwe Tielker bedanken. Das Wissen, dass es jemanden gibt auf den man sich in allen Lebens-

lagen verlassen kann, hat mich im Laufe meines Studiums von vielen kleinen und großen 

Sorgen befreit. Auch Martina Tielker und Klaus Zipfel habe einen großen Beitrag zu dieser 

Sicherheit geleistet. 



 

ABSTRACT 

This thesis is concerned with the accurate prediction of physicochemical properties of 

small, pharmaceutically relevant compounds. As they are closely related to the pharmacoki-

netic profile, knowing these properties prior to expending money and resources on the mole-

cules’ synthesis is of considerable interest to pharmaceutical companies [7,8,9]. In addition, 

these properties can be measured experimentally and used as benchmarks to compare the ac-

curacy of predictions by different theoretical methods. To predict these condensed phase 

properties such as hydration free energies, acid dissociation constants (pKa), and distribution 

and partition coefficients (log D and log P, respectively) it is necessary to accurately describe 

the solute, the solute-solvent interactions, and the solvent-response to the solute’s presence. 

When this is achieved, the Gibbs energies of the molecules in solution can be used to directly 

calculate these macroscopic properties. 

The embedded cluster reference interaction site model (EC-RISM) makes it possible to 

combine a quantum chemical (QC) description of the solute with an accurate solvent response 

via the three-dimensional reference interaction site model (3D RISM) [10,11,12,13]. This is 

ideal for calculating physicochemical properties of small molecules, because EC-RISM yields 

both the electronic energy of the solvent-polarized wave function, as well as the excess chem-

ical potential of the molecule in solution, the sum of which can be defined as the Gibbs ener-

gy of the molecule in solution. The combination of the very accurate QC description of the 

solute with the quick calculation of the equilibrium solvent structure and excess chemical po-

tential makes it possible to treat a large number of compounds with good accuracy. 

The calculation of Gibbs energies with EC-RISM requires a number of preparatory steps. 

On the solvent side, the solvent response function, also called solvent susceptibility, must be 

pre-computed for use in 3D RISM. For the organic solvents necessary to calculate partition 

coefficients between immiscible phases these susceptibilities did not exist when this thesis 

was started. The calculation of the solvent susceptibilities requires suitable Lennard-Jones 

parameters and the equilibrium structure of the solvent atoms. Additionally, the partially wa-

ter-miscible solvent octanol might not be accurately described by a pure octanol phase and 

thus there was a necessity for generating solvent susceptibilities of water-octanol mixtures. 

On the solute side, proper conformational sampling is necessary because the intramolecular 

energy of the solute strongly depends on the molecule’s geometry. Furthermore, the solute 

electrostatics must be accurately extracted from the wave function so they can be used in the 

3D RISM calculations. 



 

To summarize the following work, in this thesis the development of solvent susceptibili-

ties for the non-aqueous solvents cyclohexane and n-octanol is reported, as well as the chal-

lenges and implications of including water saturation for organic solvents. The solvent sus-

ceptibilities are then used to train partial molar volume (PMV) corrections to correct for the 

error inherent in the calculation of the 3D RISM excess chemical potential using reference 

data from the Minnesota solvation database (MNSOL) [14,15,16,17]. Additionally, a method 

to calculate accurate pKa values is presented and the formal equivalence of a microstate transi-

tion and a partition function approach is briefly summarized. The performance of the models 

is benchmarked by participation in the Statistical Assessment of Modeling of Proteins and 

Ligands (SAMPL) challenges. The first application was in the SAMPL5 challenge, where 

cyclohexane-water distribution coefficients log D7.4 had to be calculated [1]. This task pushed 

the limits of what the theoretical community was capable of and even the best participants had 

unsatisfactory results. For this reason, in the subsequent challenges the task was split into de-

termining aqueous pKa values during the SAMPL6 challenge [2] and octanol-water partition 

coefficients log P of a subset of these compounds for SAMPL6 part II [5]. Over the course of 

these challenges a number of key improvements were made to the EC-RISM model, often 

directly as a result of inconsistencies or performance issues during one of the SAMPL chal-

lenges. These will be reported in detail in the respective chapters. Finally, an extension of the 

partial molar volume correction to extreme conditions such as high pressure is reported. 

Ongoing EC-RISM developments based on this work involve the application of EC-RISM 

to other solvent conditions, solvent mixtures, or aqueous electrolytes through the development 

of PMV corrections, force field reparametrization, and combination with machine learning 

methods. 

  



 

 

  ZUSAMMENFASSUNG 

Die vorliegende Arbeit behandelt die genaue Vorhersage physikochemischer Parameter 

von kleinen, pharmazeutisch relevanten Molekülen. Da diese Eigenschaften eng mit dem 

pharmakokinetischen Profil des Stoffes zusammenhängen ist es von großem Interesse für 

Pharmaunternehmen diese bereits vor der kosten- und zeitaufwändigen Synthese der Substanz 

zu kennen. Zudem können diese Eigenschaften experimentell bestimmt und als Maßstab für 

den Vergleich der Genauigkeit verschiedener theoretischer Methoden verwendet werden. Um 

diese Eigenschaften wie Freie Hydratationsenthalpien, Säurekonstanten (pKa) und Vertei-

lungskoeffizienten (log D und log P), die stark vom Lösungsmittel abhängen, genau vorher-

sagen zu können ist es notwendig sowohl das Solvat, die Solvat-Lösungsmittel-Interaktionen 

und den Effekt des Solvats auf das Lösungsmittel zu berücksichtigen. Dann ist es möglich die 

Gibbs-Energien der Moleküle in Lösung zu verwenden, um diese makroskopischen Eigen-

schaften zu berechnen. 

Das embedded cluster reference interaction site model (EC-RISM) ermöglicht es eine 

quantenchemische Beschreibung des Solvats mit einer genauen Beschreibung des Effekts des 

Solvats auf das Solvens in Form des dreidimensionalen reference interaction site models 

(3D RISM) zu kombinieren. Dies ist vorteilhaft für die Berechnung von physikochemischen 

Parametern, denn EC-RISM liefert sowohl die elektronische Energie der lösungsmittelpolari-

sierten Wellenfunktion als auch das chemische Exzesspotential des Moleküls in Lösung. Die 

Summe dieser beiden Größen kann als Gibbs-Energie des Moleküls in Lösung definiert wer-

den. Durch die Kombination einer sehr genauen quantenchemischen Beschreibung des gelös-

ten Teilchens mit schnell zu berechnenden Gleichgewichts-Lösungsmittelstrukturen und che-

mischen Exzesspotentialen ermöglicht es eine große Anzahl von Verbindungen mit hoher 

Genauigkeit zu behandeln. 

Die Berechnung der Gibbs-Energien mit EC-RISM benötigt einige vorbereitende Schritte. 

Auf der Lösungsmittelseite muss die sogenannte Lösungsmittelsuszeptibilität, welche die 

Antwort des Lösungsmittels auf eine Störung codiert, vorberechnet werden damit sie in 

3D RISM-Rechnungen verwendet werden kann. Für die organischen Lösungsmittel die not-

wendig sind, um Verteilungskoeffizienten zwischen zwei nicht mischbaren Phasen zu berech-

nen existierten zu Beginn dieser Arbeit noch keine dieser Funktionen. Die Berechnung dieser 

Funktionen erfordert geeignete Lennard-Jones-Parameter für die Interaktionszentren und eine 

Gleichgewichtsstruktur des Lösungsmittelmoleküls. Zudem ist zu bedenken, dass die Octa-



 

nolphase durchaus Wasser beinhalten kann, und deshalb die Darstellung als reine Octanolpha-

se das Experiment nicht hinreichend beschreiben kann. Aus diesem Grund ist es auch nötig 

die Lösungsmittelsuszeptibilitäten von Octanol-Wasser-Mischungen zu generieren. Auf Seite 

des gelösten Teilchens müssen die energetisch günstigsten Konformationen durch konforma-

tionelles sampling gefunden werden, da die intramolekulare Energie stark von der Mole-

külgeometrie abhängt. Außerdem muss die Elektrostatik des gelösten Teilchens mit hinrei-

chender Genauigkeit aus der Wellenfunktion extrahiert werden, damit sie in den RISM-

Rechnungen verwendet werden kann. 

In dieser Arbeit wird die Entwicklung von Lösungsmittelsuszeptibilitäten für die nicht-

wäßrigen Lösungsmittel Cyclohexan und n-Octanol beschrieben. Auch die Herausforderun-

gen und Folgen der Modellierung von mit Wasser gesättigten organischen Lösungsmitteln 

wird diskutiert. Diese Lösungsmittelsuszeptibilitäten werden dann genutzt um Korrekturen für 

den 3D RISM inhärenten Fehler bei der Berechnung des chemischen Exzesspotentials an der 

Minnesota solvation database (MNSOL) zu trainieren, welche das partielle molare Volumen 

der Solvate als Parameter nutzen. Zudem wird eine Methode zur Berechnung genauer Säure-

konstanten vorgestellt und für die Vorhersage von pKa-abhängigen Verteilungskoeffizienten 

genutzt. Die Qualität der Modelle wird durch Teilnahme an den Statistical Assessment of Mo-

deling of Proteins and Ligand challenges (SAMPL challenges) überprüft und dabei mit ande-

ren modernen Methoden zur Bestimmung dieser physikochemischen Eigenschaften vergli-

chen. Zunächst wurden die Modelle während der SAMPL5 challenge eingesetzt, um Cyclo-

hexan-Wasser-Distributionskoeffizienten log D7.4 zu berechnen. Diese Aufgabe war so kom-

plex, dass selbst die besten Modelle, die an der challenge teilnahmen, keine zufriedenstellen-

den Ergebnisse erzielen konnten. Aus diesem Grund wurde diese Aufgabe für die SAMPL6 

challenge in zwei getrennten Teilen behandelt. Zunächst mussten nur die Säurekonstanten 

(pKa) bestimmt werden, bevor in einem zweiten Teil, „SAMPL6 part II“, die Octanol-

Wasser-Verteilungskoeffizienten log P bestimmt werden mussten. Im Verlauf dieser challen-

ges wurden eine Reihe von wichtigen Verbesserungen am EC-RISM-Modell gemacht, häufig 

als Antwort auf Inkonsistenzen oder schlechten Ergebnissen während einer der SAMPL chal-

lenges. Schließlich wird eine Erweiterung der Korrektur für das chemische Exzesspotential 

für Extrembedingungen wie hohen hydrostatischen Druck vorgestellt. 

Die Weiterentwicklung von EC-RISM mit den Methoden, die in dieser Arbeit entwickelt 

wurden, beinhaltet unter anderem die Anwendung von EC-RISM auf andere thermodynami-

sche Bedingungen, Lösungsmittelmischungen und wässrige Elektrolyte. Dies wird durch die 



 

Entwicklung neuer PMV-Korrekturen, Kraftfeldreparametrisierungen und Kombination mit 

Methoden des maschinellen Lernens erreicht. 



 9 Physicochemical property prediction for small molecules using integral equation-based 
solvation models 

TABLE OF CONTENTS 

1 Introduction .................................................................................................................. 12 

1.1 Motivation ............................................................................................................ 12 

1.2 Aims and objectives ............................................................................................. 18 

2 Theoretical Background ............................................................................................... 20 

2.1 The embedded cluster reference interaction site model EC-RISM ...................... 20 

2.1.1 Classical density functional theory .............................................................. 20 

2.1.2 1D RISM and the generation of solvent susceptibilities .............................. 24 

2.1.3 The 3D RISM solvation model .................................................................... 25 

2.1.4 EC-RISM ...................................................................................................... 28 

2.2 Calculation of physicochemical properties .......................................................... 29 

2.2.1 Empirical correction of the excess chemical potential ................................. 29 

2.2.2 Calculation of acidity constants ................................................................... 31 

2.2.3 Partition and distribution coefficients .......................................................... 33 

2.3 Molecular dynamics simulations .......................................................................... 35 

2.3.1 Introduction .................................................................................................. 35 

2.3.2 Liquid structure from MD simulations ......................................................... 36 

2.3.3 Thermodynamic integration ......................................................................... 38 

3 Generation of solvent susceptibilities .......................................................................... 39 

3.1 Introduction .......................................................................................................... 39 

3.1.1 Cyclohexane ................................................................................................. 39 

3.1.2 Octanol and water-octanol mixtures ............................................................ 39 

3.2 Computational details ........................................................................................... 40 

3.2.1 Cyclohexane MD simulation ........................................................................ 40 

3.2.2 Solvent susceptibilities and 1D RISM calculations ..................................... 41 



 10 Introduction 

3.3 Results and discussion .......................................................................................... 42 

3.3.1 Cyclohexane ................................................................................................. 42 

3.3.2 Wet n-octanol ............................................................................................... 43 

4 SAMPL5: Calculation of cyclohexane-water distribution coefficients log D7.4 .......... 45 

4.1 Introduction .......................................................................................................... 45 

4.2 Computational details ........................................................................................... 46 

4.3 Results .................................................................................................................. 48 

4.3.1 Solvation free energies ................................................................................. 48 

4.3.2 pKa prediction ............................................................................................... 51 

4.3.3 Prediction of distribution coefficients .......................................................... 52 

5 SAMPL6.1: prediction of acidity constants in aqueous solution ................................. 58 

5.1 Introduction .......................................................................................................... 58 

5.2 Computational details ........................................................................................... 59 

5.3 Results .................................................................................................................. 60 

5.3.1 Solvation free energies ................................................................................. 60 

5.3.1.1 MP2-based models ................................................................................... 61 

5.3.1.2 DFT-based models ................................................................................... 64 

5.3.2 pKa model training ........................................................................................ 67 

5.3.2.1 MP2-based models ................................................................................... 68 

5.3.2.2 DFT-based models ................................................................................... 76 

5.3.3 pKa model application .................................................................................. 78 

5.3.4 Prediction of pH-dependent tautomer ratios ................................................ 85 

6 SAMPL6.2: prediction of partition coefficients between water and octanol ............... 89 

6.1 Introduction .......................................................................................................... 89 

6.2 Computational details ........................................................................................... 90 

6.3 Results .................................................................................................................. 90 

6.3.1 Solvation free energies ................................................................................. 90 



 11 Introduction 

6.3.2 MNSOL partition coefficients ...................................................................... 92 

6.3.3 SAMPL6.2 partition coefficients ................................................................. 93 

6.4 SAMPL5 revisited ................................................................................................ 98 

6.4.1 Introduction .................................................................................................. 98 

6.4.2 Computational Details .................................................................................. 99 

6.4.3 Results ........................................................................................................ 100 

7 Partial Molar Volume correction for molecules under extreme conditions ............... 110 

7.1 Introduction ........................................................................................................ 110 

7.2 Computational details ......................................................................................... 112 

7.3 Results ................................................................................................................ 113 

8 Summary and conclusion ........................................................................................... 117 

9 References .................................................................................................................. 120 

 



 12 Physicochemical property prediction for small molecules using integral equation-based 
solvation models 

1 INTRODUCTION 

1.1 Motivation 

The increasing cost of developing new drugs has led to increased attention to all parts 

of the drug development pipeline [18,19]. Especially in the preclinical stage of develop-

ment not just the biological efficacy, but also the pharmacokinetic profile of new lead 

molecules is of great importance. The pharmacokinetic profile is usually characterized 

with the acronym ADME(T) or ADME-Tox which stands for absorption, distribution, 

metabolism, excretion and toxicity [20,21]. These properties must be properly balanced 

when a compound is developed as a drug and each of those areas can lead to failure in the 

drug development process. For example, the ideal drug formulation enables oral or topical 

application, but sufficient bioavailability is more difficult to achieve chemically than for 

intravenously administered drugs [22]. The distribution of a compound usually takes 

place through the blood stream, and biological obstacles such as the blood-brain barrier 

can make some targets even more difficult to address. The metabolism is closely related 

to the toxicity and the excretion of the molecule, as some of the metabolic products may 

have adverse reactions in the human body, but even just too quick or too slow metabolic 

clearance can make a drug too difficult to dose for widespread use. These properties are 

not characterized by just a single or a simple combination of physical properties but are 

the result of the highly complex interplay between a compound and the biological sys-

tems in the human body.  

Some physicochemical properties can be estimated more easily than others. For ex-

ample, even though the actual biology involved can be more complex, a simple property 

such as the partition coefficient between water and octanol, the log Pow, can be used as a 
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measure of a molecule’s oral bioavailability, which involves the absorption and distribu-

tion of a compound in the human body [7,8,9]. Generally speaking, a drug candidate must 

not be too hydrophilic, because it would not be able to cross through biological mem-

branes that consist of lipid bilayers, but it also must not be too lipophilic, as that may lead 

to accumulation in those bilayers [23]. Furthermore, high lipophilicity is implicated in 

several processes that lead to failure during drug development such as toxic side effects, 

binding to plasma proteins and general target promiscuity [24,25,26,27]. This example 

shows how important it is for drug researchers to accurately determine a drug candidate’s 

hydrophilicity and to know how to modulate it. 

This simple model can be refined by using a more accurate measure, the log D7.4, that 

further takes the molecule’s protonation state at the physiological pH of 7.4 into consider-

ation [28]. Compounds that contain an ionizable group can have a membrane permeabil-

ity that differs significantly from what the partition coefficient would indicate, because 

the protonated or deprotonated species are much less likely to enter the membrane. This 

effect cannot be captured by the log P because it, by definition, only measures the neutral 

species’ partitioning. The log D7.4 is more difficult to predict because it requires 

knowledge of the acidity constants of the molecule in question, but it is also a more accu-

rate measure when profiling pharmaceutically relevant compounds for their in vivo hy-

drophilicity. For most molecules that contain ionizable groups with a pKa that is far from 

the physiological pH, i.e. very weak acids and bases that are predominantly found in their 

neutral forms at pH 7.4, the partition coefficient is effectively equal to the distribution 

coefficient. For those with an ionizable group outside of that range the effects can be ex-

tremely strong, possibly even shifting a molecule that would be considered very lipophilic 

from its neutral state partition coefficient log P to very hydrophilic when looking at the 

log D7.4. 

The protonation state of molecules at physiological pH is of a more general interest as 

well. A protein interacts with ligands in different ways, but often large contributions to 

the Gibbs free energy of binding are made by hydrogen bonding and electrostatic interac-

tions such as salt bridges [29]. The protonation or deprotonation of a ligand can change 

the hydrogen bonding pattern accessible to the protein and introduce charged groups lead-

ing to increased or lowered affinity, depending on the system under investigation. 

To gain access to all parts of the pharmacokinetic profile a multitude of methods have 

been developed over the course of the late 20th and early 21st century to correlate physico-
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chemical properties to experimentally measurable physical properties, the three-

dimensional molecular structure, or molecular descriptors derived from the structure, such 

as the number and type of heteroatoms, the number of hydrogen bond acceptors and do-

nors, or the polar surface area [30,31]. This approach called quantitative structure-activity 

relationship (QSAR) when investigating efficacy and quantitative structure-property rela-

tionship (QSPR) when investigating e.g. pharmacokinetic parameters. In recent years, 

these approaches have been bolstered using deep learning and similar artificial intelli-

gence (AI) methods that take advantage of the progress made in high performance com-

puting and data science [32,33]. The routine use of computational methods to predict the 

pharmacokinetic profile has only recently become possible through the improved compu-

tational power of modern computer clusters and the increased availability of large, high-

ly-curated training sets, even though the correlation of e.g. partition coefficients and 

membrane diffusion rates have been known for a long time [34]. 

To deal with the enormous size of chemical space, i.e. the diversity of potentially syn-

thesizable molecules, modern drug research relies heavily on the existence of compound 

libraries [35]. Due to their large size, however, in a typical molecular library the pharma-

cokinetic properties of most compounds may not be known experimentally, but only by 

computational methods. Furthermore, during the lead optimization phase it can be benefi-

cial to know the change in the pharmacokinetic properties of a proposed optimization 

before spending time and resources on synthesizing the compound and measuring the 

experimental values. In all those cases the use of computational methods, be they empiri-

cal or physical in nature can be a great help for the modern medicinal chemist. For most 

compounds, the quality of predictions made using empirical methods are sufficient and 

more expensive methods that are unfeasible to use for libraries consisting of millions of 

compounds are not required. However, one drawback of these empirical methods is that 

they only work reliably in that part of chemical space that they were parametrized in. 

New chemical moieties that are of great interest to many pharmaceutical companies may 

require retraining or additional empirical corrections [36]. 

Partition and distribution coefficients as well as acidity constants have in common 

that they either are only relevant in solution (partition and distribution coefficients) or at 

least have a strong dependence on the solvent (acidity constants). Thus, for accurate pre-

dictions of such properties the effect of the solvent on the solute must be modeled accu-

rately as well. Various solvation models have been developed to model solvation in com-
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putational approaches: continuum models such as the polarizable continuum model 

(PCM) and generalized Born solvation models (GB/SA) or even explicit solvation using 

atomistic solvent molecules in molecular dynamics (MD) or ab initio molecular dynamics 

(aiMD) simulations [37,38,39]. The continuum models are comparatively fast, because no 

explicit solute-solvent atom interactions must be calculated and so they are very well 

suited to handle large numbers of molecules. Explicit solvation on the other hand requires 

larger computational resources than their continuum counterparts, but if properly used the 

accuracy can be significantly greater due to the explicit modeling of interactions at an 

atomistic level such as hydrogen bonding and solvent structure disruptions [40,41,42] 

Compared to continuum solvent models and explicit solvation the 3D reference inter-

action site model (3D RISM) makes it possible to determine the equilibrium solvent 

structure of a given solvent around the solute with significantly less computational effort 

than using atomistic simulations would require [11,12]. This alleviates some of the issues 

that are inherent to many implicit solvent models, namely that the structural information 

of the solvent is lost and with it the thermodynamic contribution to the solvation process. 

Combining this solvent model with a quantum-chemical description of the solvent 

makes it possible to accurately determine both the intramolecular energies and the solute-

solvent interactions of a given compound [10]. This embedded-cluster reference interac-

tion site model (EC-RISM) had already been applied on a number of tasks related to 

physicochemical property prediction, such as the prediction of tautomer ratios, relative 

acidity constants or the Gibbs energies of hydration of the molecules in the Minnesota 

Solvation Database (MNSOL) [17,43 ,44 ]. However, at the beginning of this work, 

EC-RISM had not been applied on a large scale to calculate more complex physicochem-

ical properties such as absolute acidity constants or partition coefficients. 

The SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) series 

of challenges [45] originated in 2008 from a collaboration of the scientific software com-

pany OpenEye with scientists from Stanford University. This first challenge, later termed 

SAMPL0, consisted of the blind prediction of 17 small molecule aqueous solvation free 

energies [46]. An important decision that was made when designing this challenge, and 

that is now one of the cornerstones of the SAMPL challenges, was the attempt to set it up 

as a “blind” prediction challenge. This means that the data that is to be predicted has not 

been previously published and thus cannot have been used as reference data e.g. to devel-

op the predictive models used during the challenge. For the challenges from SAMPL0 to 
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SAMPL4 the goal of creating a blind challenge was not yet fully achieved because the 

property to predict, hydration free energies, are difficult to measure [46,47,48,49,50]. 

Instead, obscure sources such as vapor pressures or boiling point data were used to calcu-

late experimental solvation free energies of compounds that were not part of readily 

available solvation free energy databases [50]. Eventually in 2015, the SAMPL5 chal-

lenge was issued, and the participants were given the task to predict cyclohexane-water 

distribution coefficients of a set of 53 organic molecules [51]. This new target property 

has the advantage of being much more experimentally accessible, as it can be determined 

using conventional LC-MS/MS (liquid chromatography with tandem mass spectrometry) 

methods that are commonly used in biochemistry labs [52,53]. This means that the chal-

lenges could be conducted on compounds specifically designed for the SAMPL challeng-

es and avoiding any kind of already published data even if it is sufficiently obscure. From 

a computational point of view on the other hand this new target property adds to the com-

plexity of the challenge. To calculate the partition coefficient between water and cyclo-

hexane in this challenge requires on the one hand the development of an entirely new 

solvent model for cyclohexane, as this solvent had never been used with EC-RISM be-

fore. Additionally, it would be necessary to apply the existing water models in a new area 

because the calculation of distribution coefficients requires knowledge of the compounds’ 

acid dissociation constant for ionizable compounds. The big jump in complexity of this 

challenge compared to the preceding ones led to an adjustment in the SAMPL6 challenge. 

Here, the computation of the distribution coefficients was split into separate challenges 

for the acidity constants pKa [54] and the partition coefficients between water and octanol 

[55]. This pattern was also used in the recently finished SAMPL7 challenge [56]. 

Blind challenges such as the SAMPL series of challenges are designed to facilitate the 

comparison of wildly different methods of predicting a given molecular property. By 

generating but not publishing the experimental results in advance the predicted values are 

as unbiased as possible, because the methods could not have been trained using the same 

compounds. Furthermore, the publication of all results regardless of their quality is very 

valuable. In many disciplines scientific papers too often focus only on positive results due 

to funding pressures or perhaps even the prestige associated with success [57]. Failures 

and negative results are sidelined and in extreme cases never become known outside of 

the group that produced them. This leads to redundant research when other groups repeat 

the same failed experiments and turns science into a chase for the best numbers instead of 
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knowledge. Only by publishing the good and the bad results, as is done in the SAMPL 

series of challenges, can the reasons for e.g. their relative performance be analyzed and, 

ideally, further insight into the natural phenomena under investigation be gained. 
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1.2 Aims and objectives 

Prior to the development of this work, EC-RISM had been applied to a variety of prob-

lems, including the calculation of relative Gibbs energies of tautomers in aqueous solution 

[43]. However, before the development and testing of empirical corrections to the 3D RISM 

excess chemical potential by D. Tomazic it was not possible to calculate properties such as 

solvation free energies [44]. The reason for that is a systematic error in the 3D RISM excess 

chemical potential that is highly correlated with the partial molar volume (PMV) of the solute 

for reasons that will be explained in more detail in Chapter 2.2.1. This work is intended to 

show the step-by-step extension of this approach to be applicable to non-aqueous solvents and 

the improvements developed for water solvent models. 

Early during this work, the SAMPL5 challenge on predicting cyclohexane-water distribu-

tion coefficients for small, drug-like molecules was issued. These blind challenges were con-

sidered to be a great opportunity to apply the PMV correction and test its performance in a 

real world setting against other approaches from various areas of computational modeling. 

The SAMPL5 challenge additionally required the development of a cyclohexane model for 

use with EC-RISM and parametrization of a PMV correction for it. For this solvent, the sol-

vent susceptibility function was generated by directly inverting the total correlation function 

extracted from a molecular dynamics (MD) simulation, which had not been done before. In 

addition, a model to calculate acidity constants from the Gibbs energies of the neutral and the 

charged species had to be developed. This first task and the results of the SAMPL5 challenge 

are detailed in chapters 3 and 4, however at that point in time only a subset of the molecules 

could be investigated due to time constraints. Effectively splitting the task of the SAMPL5 

challenge into two separate parts, the next challenge, SAMPL6.1, was concerned only with 

aqueous acidity constants. This made it possible to test a variety of quantum chemical levels 

of theory, basis sets, PMV correction approaches, pKa models, and approaches to model the 

solute electrostatics for the water model to further improve upon those developed by D. Tom-

azic. The results of these extensive tests are summarized in chapter 5. Following that, the neu-

tral state octanol-water partition coefficients for a subset of the compounds investigated had to 

be predicted during the SAMPL6.2 challenge. For this, the solvent model for octanol had to 

be generated, but, unlike in the case of cyclohexane, a significant, experimentally measurable 

amount of water can be dissolved in the octanol phase. For this reason, both a neat and a wa-

ter-saturated octanol model were generated (chapter 3) and applied to the challenge com-
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pounds to predict the partition coefficients (chapter 6). This marks the first time the PMV 

correction approach for EC-RISM was applied to a solvent mixture. Finally, the improve-

ments made over the course of the SAMPL challenges were reapplied to the compounds of 

the SAMPL5 challenge to determine the effect of the improvements (chapter 6.4). This time 

the entire set of compounds measured in the original challenge except for one could be inves-

tigated. 

In addition to these properties under normal conditions a workflow was developed that 

makes it possible to use the partial molar volume correction for solvents even under extreme 

conditions (chapter 7) to enable the investigation of absolute molecular properties under high 

hydrostatic pressure using EC-RISM. In this work the focus lies on high pressure but repur-

posing of the workflow to e.g. high temperatures is also possible. Due to a lack of available 

experimental data this workflow uses the change in the Gibbs energy of solvation at 1 bar 

compared to higher pressures as calculated using thermodynamic integration (TI) as the refer-

ence during the parametrization. 
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2 THEORETICAL BACKGROUND 

 

 

2.1 The embedded cluster reference interaction 

site model EC-RISM 

2.1.1 Classical density functional theory 

Density functional theory (DFT) is well-known for electronic systems where according to 

the Hohenberg-Kohn theorem of quantum DFT the energy of a quantum system is uniquely 

determined by the density distribution of the electrons [58]. Similarly, however, even for clas-

sical systems the Helmholtz energy A of a fluid is a unique functional of the single particle 

density ρ(1). The following derivation is a summary of the full derivation of the so-called 

Ornstein-Zernike equation for molecular fluids that can be pieced together from the literature 

[59,60,61,62]. 

Given an arbitrary external potential Vext the grand potential of the grand canonical en-

semble is given by  

    extΩ ( ) ( ) ( )V ρ d ρ V A ρ µ d ρ= + − r r r r r  (1) 

where A is the Helmholtz energy, r the three-dimensional coordinates, and µ the excess chem-

ical potential. Square brackets denote functionals while round brackets denote functions. It 

can be shown that the density that minimizes the functional in eq. (1) is the equilibrium densi-

ty ρ0, i.e. 
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  

0

Ω
0

( )
V

ρ

δ ρ
δρ

=
r

 (2) 

and thus 

  0Ω Ω.V ρ =  (3) 

Knowing this the total Helmholtz energy A can be defined as the sum of the intrinsic Helm-

holtz energy and the contribution of the external potential 

  0 ext 0( ) ( )A d ρ V A ρ= + r r r  (4) 

and the excess chemical potential arises from the fundamental thermodynamic relation of the 

Helmholtz energy as 

  0
ext ext in 0( ) ( ) [ ; ]

( )
δA ρ

µ V V µ ρ
δρ

= + = +r r r
r

 (5) 

with µin as the intrinsic chemical potential that arises only from the particle interactions. 

Furthermore, it is also possible to define the total Helmholtz energy as a sum of the con-

tribution arising from an ideal, non-interacting system and a functional for the interaction part 

 φ ρ  as 

      idA ρ A ρ φ ρ −  (6) 

From the definition of the intrinsic chemical potential as the functional derivative of the 

Helmholtz free energy with regards to the density in eq. (5) it follows that 

  
( )3

in[ ; ] ln Λ ( ) [ ; ]
( )

δA ρ
β βµ ρ ρ c ρ

δρ
= = −r r r

r
 (7) 

with the thermal wavelength 2Λ 2 /πβ m= , the thermodynamic beta 1/ ( )Bβ k T= ,  as 

the reduced Planck constant, m as the mass, and where 

 [ ][ ; ]
[ ]

δφ ρc ρ β
δρ

r
r

 (8) 

is the direct correlation function that includes all contributions caused by particle interactions. 

Higher order direct correlation functions can be generated by differentiating the direct correla-

tion function again, most importantly the second order direct correlation function 

 (2) 1
1 2

2 1 2

[ ; ] [ ][ ; , ]
[ ] [ ] [ ]

δc ρ δφ ρc ρ
δρ δρ δρ

 =
rr r

r r r
 (9) 

“is also called the Ornstein-Zernike direct correlation function of the non-uniform fluid” [60]. 

One additional important relation that can be derived from first principles in this way is the 

grand-canonical density-density correlation function 
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(2)

(1) (1) (2) (1)

( , ') ( ) ( ) ( ') ( ')

( ) ( ') ( , ') ( ) ( )

H ρ ρ ρ ρ

ρ ρ h ρ δ

=  −   −    
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r r r r r r r'
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where the particle density of order n is 

 ( ) ( )  ( ) ( )
ext

1

1 1 exp exp ( )
Ξ ( )!

N
n n N n

N iN n
i

ρ d βV z βV
N n

 −

=
=

 
= − − 

−  
 r r r  (11) 

with VN as the interatomic potential energy, z as a local activity ( ) 3exp Λz βμ −= −  and the 

grand canonical partition function 

 ( )  ext0
1

1Ξ exp exp ( )
!

N
N

N iN
i

d βV z βV
N



=
=

 
= − − 

 
  r r . (12) 

h(2)(r,r’) is the total correlation function that is related to the liquid structure by way of the 

radial distribution function as 

 (2) ( , ') ( , ') 1h g= −r r r r . (13) 

To finally derive the Ornstein-Zernike equation it is necessary to take the second func-

tional derivative of the grand canonical potential with respect to the intrinsic chemical poten-

tial which yields the expression 

 
2

1 (2)0

in in in

Ω ( ) ( , ')
( ) ( ') ( ')

Vδ δρβ H
δμ δμ δμ

−= =
r r r

r r r
 (14) 

and the inverse of this functional derivative is 

 ( )
1(2) in

0

( ')( , ')
( )

δμH β
δρ

−

=
rr r
r

. (15) 

Comparison of this result to the definition of the second order direct correlation function de-

fined in eq. (9) as the functional derivative of the direct correlation function and the reformu-

lating eq. (7) as 

 ( )3
in[ ; ] ln Λ ( ) [ ; ]c ρ ρ βµ ρ= −r r r . (16) 

yields 

 ( )
1(2) (2) (2)in

0
0 0 0

( ')( ') ( ')( , ') [ ; , '] ( , ')
( ) ( ) ( )

δμδ δc c ρ β H
δρ δρ δρ

−− −
 = − = −

rr r r rr r r r r r
r r r

. (17) 

By combining eq. (10) and eq. (17) with the definition of the functional inverse 

 ( )
1(2) (2)( , ) ( , ) ( )d H H δ
−

= − r'' r r'' r'' r' r r' . (18) 

 and integrating over r''  it is possible to derive the Ornstein-Zernike equation 

 (2) (2) (2) (1) (2)
0( , ) ( , ) ( , ) ( ) ( , )h c d h ρ c= + r r' r r' r'' r'' r' r'' r r'' . (19) 
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that connects the direct correlation function c(2)(r,r’) and the total correlation function 

h(2)(r,r’) [59,60].  

This is an equation with two unknowns, the direct and the total correlation function, so a 

second relation between these is needed to solve it, the so-called closure relation. It is possible 

to derive an approximate closure relation for the Ornstein-Zernike equation from the defini-

tion of the grand potential in eq. (1): By expressing the intrinsic Helmholtz energy in powers 

of Δρ coupled to a reference system of density ρ0, chemical potential µ0 and the same temper-

ature, and setting the resulting coupling-parameter dependent direct correlation function equal 

to the direct correlation function of the reference system the intrinsic free energy is approxi-

mately 

 in 1
0 0 0

1Δ ( ) Δ ( ) ( , )Δ ( )
2

A A µ d ρ β d d ρ c ρ− + − r r r r' r r r' r'  (20) 

where the index “0” denotes the reference system. It is possible to show that the density which 

minimizes eq. (20) is 

 ( )0 ext 0( ) exp ( ) Δ ( ) ( )ρ ρ βV d ρ c= − + −r r r' r' r r' . (21) 

and together with the Ornstein-Zernike equation this yields 

 ( )( ) exp ( ) ( ) ( )g h c βu= − −r r r r . (22) 

which represents the hypernetted-chain closure (HNC) for the Ornstein-Zernike equation [59].  

To extend this theory to molecular systems the molecules must be described through both 

the coordinates of the molecular center iR  and the molecular orientation expressed by its Eu-

ler angles ( , , ).i i i iθ φ χΩ For ease of notation each molecule i is then defined through the 

unique combination ( , )i ii  R Ω  and the molecular Ornstein-Zernike equation can be written 

by generalizing the atomic Ornstein-Zernike equation as 

 ( ) ( ) ( ) ( )01,2 1,2 1,3 3,2 3,
Ω
ρh c c h d= +   (23) 

where the numbers are the 6-dimensional representation of the molecules [59,63]. The differ-

ential d3, too, indicates integration over the coordinates and Euler angles. It is possible to 

eliminate the total correlation function from the integral by inserting eq. (23) into itself, lead-

ing to the infinite sum expansion 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

0 01,2 1,2 1,3 3,2 3 1,3 3,4 4,2 4 ...,
Ω Ω
ρ ρh c c c d c c c d= + + +  . (24) 
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which is useful for further derivations that are described in more detail in the next chapter. 

Other approaches, such as diagrammatic representations of the OZ equation are not discussed 

here but can be found in the literature [59,64]. 

 

2.1.2 1D RISM and the generation of solvent susceptibilities 

Since the resulting 6-dimensional Ornstein-Zernike equation is difficult to use in a pro-

ductive setting some approximate theories have been developed. The reference interaction site 

model is based on describing the molecule as a set of rigidly connected hard spheres in which 

the spheres may overlap [65]. In the most basic form, the spheres correspond to the mole-

cule’s atoms, but this is not strictly required by the theory and united atom approaches that 

model entire chemical groups as one sphere are possible. The derivation of the RISM equation 

is based on an approximation of the direct correlation function as the sum of all site-site direct 

correlation functions 

 ( ) ( )αγ αγ
α γ

c cr r  (25) 

where α and γ are the solute and solvent sites, respectively. If the direct correlation function 

can be decomposed into site-site correlation function the same is true for the total correlation 

function. This can be proven by substituting the Fourier transform of eq. (25) into the Fourier 

transform of the molecular OZ equation, i.e. eq. (24), and averaging over the orientations of 

the two molecules [61,62,65]. This yields the RISM integral equation 

 ' 1 ' ' ' 2
' '

( ) ( ' ) ( ' ' ' ) ( '' )d 'd ''αγ αα α γ γγ
γ α

ρh r ω c χ= −  − − r r r r r r r r  (26) 

where χγγ’ is the (pure) solvent susceptibility function that is defined as 

 ' ' '( ) ( ) ( )γγ γγ γγχ r ρω r ρh r ρ= +  (27) 

ωαα’ is the intramolecular correlation function that has a similar physical interpretation as the 

intermolecular correlation function but between sites in the same molecule. It can thus be con-

sidered a measure for the equilibrium molecular structure as described through average site-

site distances, as compared to the equilibrium solvent structure described by the intermolecu-

lar correlation function. It is usually approximated as 

 '
' 2

'

( )( )
4

αα
αα

αα

δ r rω r
πr
−

=  (28) 
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which implies a completely rigid molecule, because the small molecular vibrations of e.g. 

water are known to have little effect on the results but other approximations that include mo-

lecular flexibility are possible [66]. The correlation between sites in different molecules is 

then governed by both the intra- and intermolecular correlations between the different sites. 

The solvent susceptibility can be calculated self-consistently by calculating a solvent mol-

ecule solvated by itself as solvent with a suitable closure relation. It is also possible to extract 

the inter- and, if necessary, intramolecular distribution function from MD simulations and 

calculate the solvent susceptibility matrix elements using these functions [67,68]. This is 

achieved by using a modified HNC closure of the form 

 MD( ) 1 exp[ ( ) ( ) ( ) ( )]h r h r c r βu r B r+ = − − +  (29) 

where BMD is constructed in such a way that it constrains the total correlation functions from 

RISM calculations to the simulated total correlation functions calculated from the radial dis-

tribution functions for short distances. To still retain the correct HNC long-range behavior 

BMD contains a cubic polynomial switching function that varies between 1 and 0 over a prede-

fined range so that 

 ( )MD MD( ) ( ) ln ( ) ( ) ( ) ( )B r f r g r h r c r βu r = − + +
 

 (30) 

with ( )f r  as the switching function and MD ( )g r  as the radial distribution function extracted 

from MD simulation. The solvent susceptibilities generated this way can then be used for 

3D RISM calculations [1,69]. 

  

2.1.3 The 3D RISM solvation model 

3D RISM is an extension of 1D RISM theory where only the molecular orientations of the 

solvent atoms are averaged out of the six-dimensional Ornstein-Zernike equation, while those 

of the solute are explicitly considered [11,62,70,71]. The partial averaging over the molecular 

orientations yields the 3D RISM equation 

 ' '
'

( ) ( ' ) ( ' )d 'γ γ γγ
γ

ρh c χ= −r r r r r  (31) 

A number of closures to solve this equation have been developed over the years to approxi-

mate the exact closure relation 

 ( ) 1 exp[ ( ) ( ) ( ) ( )]h h c βu B+ = − − +r r r r r  (32) 
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with B(r) as the so-called bridge function. These approximations are necessary because the 

bridge function is not known analytically. Just like for the Ornstein-Zernike and the 1D RISM 

equations there is a similar expression for the hypernetted chain closure where the bridge 

function is zero at all distances, i.e. 

 ( ) 1 exp[ ( ) ( ) ( )]h h c βu+ = − −r r r r  (33) 

This closure performs well given its rather crude approximation of ignoring the bridge 

function altogether, which is only a good approximation for large distances r. It does, howev-

er, not always converge easily, especially for more complex molecular systems and those with 

strong intermolecular interactions [62]. To avoid these problems, it is also possible to use the 

partial series expansion closure (PSE-n) that was developed in this group as an extension of 

the so-called Kovalenko-Hirata (KH) closure, where the closure is approximated with a poly-

nomial equation for values where the exponential might become unstable [72,73,74]. This 

closure can be written as 

 
exp[ ( ) ( ) ( )] ( ) ( ) ( ) 0

( ) 1 [ ( ) ( ) ( )] / ! ( ) ( ) ( ) 0n

n

h c βu h c βu
h h c βu n h c βu

− − − − 


+ =  − − − − 



r r r r r r
r r r r r r r  (34) 

where the sum is constructed in such a way that for n→  the HNC closure is formally re-

covered, while using small values of n makes it possible to avoid most of the convergence 

problems associated with the HNC closure. Specifically, the PSE-1 closure is equivalent to the 

KH-closure. 

The primary results of any 3D RISM calculation are thus the total and the direct correla-

tion functions of each interaction site. The former has a very intuitive physical interpretation, 

it is the solvent site density at each point in space around the solute. Together with the direct 

correlation function it is also possible to calculate thermodynamic data of the system. For the 

HNC closure the functional of the excess chemical potential is 

 ex 1 2
HNC

1 1( ) ( ) ( ) ( ) d
2 2γ γ γ γ γ

γ
μ β ρ h c h c−  

= − − 
 

  r r r r r  (35) 

while the equivalent expression for the PSE-n closure is 
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where Θ  is the Heaviside function [73,75]. The approximations made for these closures lead 

to a systematic error in the calculated excess chemical potential that will be discussed in more 

detail in chapter 2.2. 

Other thermodynamic data that can be derived from the converged correlation functions is the 

partial molar volume of the solute in solution. This quantity is the effective change of the vol-

ume upon insertion of the particle and thus a measure for the effective size of the solute, in-

cluding solvent reordering and other effects due to the solute-solvent interactions. The partial 

molar volume can be calculated for a polyatomic liquid using 3D RISM via either the total or 

the direct correlation function [76,77]. Derived in analogy to the original Kirkwood-Buff the-

ory the expression for the partial molar volume calculated by using the total correlation func-

tion is 

 1
, ( )dm h γV β κ h−= −  r r  (37) 

with κ as the isothermal compressibility [78], whereas for the direct correlation function it can 

be calculated via 

 1
, 1 ( )dm c γ

γ
V β κ ρ c−

 
= − 

 
 r r  (38) 

While the experimental isothermal compressibility is used for large parts of this work, both 

routes only converge to the same result for neutral species if the RISM consistent compressi-

bility is used. This compressibility can be calculated from the reciprocal space 0-element of 

the direct correlation function using [76] 

 
1

1
RISM 1 ( 0)γ

γ
β κ ρ ρ c k

−

−
  

= − =   
  

 . (39) 

For charged species there is an additional difference between the results calculated from either 

route, because unlike the partial molar volume of a salt, the partial molar volume of an indi-

vidual ion at infinite dilution is not thermodynamically well-defined [79,80]. This gives rise to 

an additional contribution to the partial molar volume so that in practice for ions the partial 

molar volumes calculated by the different routes differ by 

 1
, ,m h m cV V β κρD−= −  (40) 

where D is a solvent-specific constant that has opposite sign for cations and anions [77,79,81]. 

Experimental techniques that make it possible to actually resolve the individual contributions 
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to the partial molar volume of a salt show that ,m cV is the PMV that corresponds to the experi-

mental values [79,82]. 

 

2.1.4 EC-RISM 

The embedded-cluster reference interaction site model is an application of the 3D RISM 

solvation model to quantum chemical systems [83]. After an initial calculation of the mole-

cule’s wavefunction in a vacuum EC-RISM is an iterative scheme consisting of two opera-

tions: First, the electrostatic potential of the solvent molecule resulting from the QC calcula-

tion is used as an input for a 3D RISM calculation. The electrostatic potential can be used 

either in an approximate manner by calculating the atom-wise CHelpG charges, or by using 

the exact electrostatic potential resulting from the QC calculation [84,85,86]. 

For polar solvents the solvent distribution resulting from this calculation will lead to an 

increased polarization of the solute. This effect can be accounted for by generating the charge 

density around the solute 

 γ γ γ, γ
γ

( ) ( )qρ q ρ g=r r  (41) 

using the 3D RISM pair distribution function gγ(r) and the solvent atom’s partial charges qγ 

with ργ as the bulk density of site γ. This charge density is then discretized onto a grid around 

the solute which yields point charges 

 γ ( )Δq Vr  (42) 

where ΔV is the grid cell volume, and these can be used as input for a new QC calculation. As 

mentioned above, an alternative to this approach is to use the exact electrostatic potential de-

rived from the wave function. To achieve a smooth reciprocal space representation of the 

electrostatic potential the electrostatic interactions are calculated using an Ewald sum ap-

proach, where the Coulomb interaction energy calculated from the ESP derived charges 
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( )
4 r( )

α γq
α

α γ α

q q
u

πε
=r r

r r
 (43) 

with ε0 as the vacuum permittivity constant is used to represent the long-range interactions. 

This means that only the difference between the exact and the point-charge based potential 

needs to be transformed into reciprocal space, and this difference is short-ranged compared to 

the electrostatic potential itself. Furthermore, these point-charge based interactions do not 
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meaningfully contribute to the evaluation of the interaction energy if the grid is large enough 

to make the difference between the electrostatic potential energy and the point-charge based 

electrostatic energy vanish at the edges of the grid [86,87]. However, while working on the 

SAMPL6 challenge it was noticed that for strongly polar or charged species this renormaliza-

tion approach can cause convergence problems and inaccurate Gibbs energies, which can be 

alleviated by using a potential switching approach developed by P. Kibies [87], that effective-

ly scales the electrostatic potential near the edges of the box so that it becomes equal to the 

potential derived from the point charges.  

Iterative application of the EC-RISM cycle of calculating the electronic and the solvent 

structure until convergence as measured by the change of the EC-RISM Gibbs energy of a 

molecule described by its atom coordinates {r} in solution 

 sol ex({ }) ({ }) ({ })G E μ +r r r  (44) 

where Esol is the electronic energy resulting from the QC calculation and µex is the 3D RISM 

excess chemical potential yields the solvent-polarized wave function and the solvent distribu-

tion functions around the solute. Because the polarized wave function can be further analyzed 

it is also possible to calculate spectroscopic data of a molecule in solution. The solvent struc-

ture around a solute can in principle be used to e.g. place explicit water molecules at the den-

sity maxima for additional highly accurate quantum calculations [88,89,90,91]. The reference 

state in solution for all EC-RISM calculations is assumed to have a pressure of 1 bar, a formal 

concentration of 1 M at a temperature of 298.15 K and infinite dilution conditions. 

 

2.2 Calculation of physicochemical properties 

2.2.1 Empirical correction of the excess chemical potential 

One well-known deficiency of 3D RISM theory is the inability to give accurate results 

when calculating solvation free energies due to an overestimation of the pressure leading to an 

overestimation of the energy required to form a solute-sized cavity in the solvent [14,15,16]. 

Since this error should be highly correlated to the size of the molecule a correction using the 

partial molar volume of the molecule is commonly applied to correct for this deficiency in the 

calculated excess chemical potential µex [92,93]. For example, the universal correction (UC) 

developed by Palmer et. al corrects the RISM excess chemical potential using 
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 UC ex mμ μ aV b= + +  (45) 

where Vm is the partial molar volume and a and b are parametrized by minimizing the differ-

ence between µUC and experimental Gibbs energies of hydration. Similar approaches were 

developed by Truchon et al. where they scale the direct correlation functions to to correct for 

the bridge function inside the solute volume [94,95], or the PC/PC+ pressure correction de-

veloped by Sergiievskyi et al. [96]. Such models however had not been used in combination 

with the quantum-chemical embedding approach of EC-RISM until D. Tomazic developed 

and tested a large number of corrections [44]. In their most general form, these corrections 

can be written as 

 ex ex
corr

m
μ v q oμ c μ c V c q c= + + +  (46) 

where q is the solute charge, the parameter cv is the basis of the partial molar volume correc-

tion while the additional parameter cq is necessary to correct for between the physical (exper-

imental) process of ion solvation and the unphysical process modeled by 3D RISM [1,16]. In 

the former, the solute crosses an explicit vacuum-water interface during the solvation process, 

while in RISM theory the solvent is for all intents and purposes “infinite”, i.e. it has no sur-

face [97,98]. The surface polarization then gives rise to an additional term in the solvation 

free energy that has to be explicitly accounted for when predicting Gibbs energies of solvation 

or other properties [99,100,101]. As shown in eq. (40) there is an additional additive contribu-

tion to the PMV resulting from a nonzero net charge that might in principle correct for this 

discrepancy, but it is too small to yield accurate Gibbs energies without the additional pa-

rameter. 

The two free parameters cµ and co differ from the other two parameters in that they have 

no sound theoretical basis which means that they should ideally be 1 and 0, respectively. In 

some cases, it can still be beneficial to use these additional parameters to correct for approxi-

mations in e.g. the solvent description or the force field used for the intermolecular interac-

tions, but care must be taken that no overfitting occurs. It should also be noted that there is no 

universal correction applicable to every EC-RISM calculation, but instead the best combina-

tion of parameters differs slightly between different QC levels of theory, basis sets and clo-

sures, and there can be significant deviations between the parameters for different solvents. 

Regardless of which set of parameters is used, the correction must be trained with experi-

mental data. In this and in previous works the Gibbs energy of solvation is used as reference 

data as it can be easily calculated using EC-RISM (or 3D RISM by ignoring the electronic 

contributions to the total energy) via 
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 sol ex vac
solvΔ ,G E μ E= + −  (47) 

where Esol is the electronic energy of the solute in solution while Evac is the electronic energy 

of the solute in the gas phase. This approximation only accounts for vibrational and rotational 

contributions to the Gibbs energy by effectively parametrizing them into the PMV correction 

by fitting to experimental data, but these can in principle be explicitly taken into account us-

ing e.g. the rigid rotor, harmonic oscillator (RHHO) model [3]. Further improvements to the 

accuracy of the calculated Gibbs energy of solvation can be made using high-level coupled 

cluster energies for the gas phase [102]. This quantity is suitable to use for the parametrization 

because unlike the excess chemical potential it is experimentally accessible and the error in 

the electronic energies derived from first principles should be insignificant compared to the 

error in the excess chemical potential. 

2.2.2 Calculation of acidity constants 

In the most general form, the acid dissociation constant Ka of a molecule is the equilibri-

um constant of the formal dissociation reaction  

 +
aq aq aqHA H A−→ +  (48) 

where the charge of the species HAaq is not restricted to be 0, but for a charged HAaq the 

charge of the aqA−  changes accordingly. The acidity constant can then be defined as 

 
( ) ( )

( )
( ) ( ) ( )aq aq0 0 0 0
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ln Δ ln H A HA
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a a
β K G β μ μ μ

a

+ −

+ −− = = − = + −  (49) 

where a denotes the activities of the respective species, 0ΔrG the standard Gibbs energy of 

reaction, and µ0 the standard chemical potentials [3]. To calculate acidity constants resulting 

from multiple distinct states such as conformational states or tautomers of the same molecule, 

two main approaches can be evaluated. Under the assumption that the standard chemical po-

tentials can be approximated as the sum of an ideal contribution and the EC-RISM Gibbs en-

ergy defined above, the reaction free energy can be calculated using a canonical partition 

function of the form 
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where “id” and “ex” denote the ideal and the excess parts of the chemical potential, respec-

tively, M the number of base states, and N the number of acid states. The Gibbs energy of the 

proton cannot be calculated using standard EC-RISM approaches but it is possible to sum it 

with the ideal contributions to an additive constant b. An in-depth discussion of the depend-

ence of this “constant” on molecular parameters can be found in ref. 3, but this variation is 

generally negligible. The expression then becomes 
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where b contains the Gibbs energy of hydration of the proton and the ideal terms of the excess 

chemical potentials, and m is an additional parameter that is ideally 1 [103,104,105]. These 

parameters can be fitted with experimental data to achieve accurate predictions of acidity con-

stants [106,107]. 

An alternative approach is the state transition approach, hereafter denoted as “ST”, where 

all states where the deprotonated state is the result of a single deprotonation step with no fur-

ther tautomerization are connected as individual reactions  

 +
aq, aq aq,HA H Ak j

−→ +  (52) 

The equivalent expression to eq. (51) is 

 ( ) ( )a, aq aqp A HA
ln10jk j k
mβK b G G− = + −

 
 (53) 

and as shown by Bochevarov et al. there is a closed form expression for the macrostate acidity 

constant resulting from the individual microstate acidity constants [108], namely 

 ST
a 1
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K
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=

=
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 (54) 

These approaches yield the same results only if the slope parameter 1m = , because when 

applying the corrections, the acidity constant for the two approaches is calculated as 
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Only if there is only one acid and one base microstate equality is conserved even for non-zero 

slope parameters. While the deviations are minor for usual sizes of m found for EC-RISM this 

cannot be guaranteed for all methods for predicting acidity constants from first principles and 

the choice of using the partition function or the state transition approach may have statistically 

significant effects on the predictions [3]. 

Given the pKa as defined above L. Eberlein was able to show that it is possible to calculate 

the ionization state fractions for any number of titratable sites n of which i are deprotonated 

[2,3,109]. This corresponds to the deprotonation reaction 1AH AH Hn i n i
+

− − −→ +  with the 

equilibrium constant 

 1 1
, 1

i i
a i

i i

a a a xK
a x
+ − + −

+ = =  (56) 

under the assumption that the activities a can be replaced by the molar fractions x. By calcu-

lating the individual fractions using Henderson-Hasselbalch type equations and extrapolating 

the results to n titratable sites the fraction of an ionization state is 
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where the activity of the proton was replaced by 10-pH and an empty product is assumed to be 

unity [105]. The fractional, pH-dependent tautomer populations can then be calculated as 

 |it it i ix x x=  (58) 

with the conditional tautomer population 

 | exp( / ) / exp( / )it i it it
t

x G RT G RT= − − . (59) 

2.2.3 Partition and distribution coefficients 

The calculation of neutral state partition coefficients between two immiscible phases is 

more straightforward. Given an aqueous phase “w” and an organic phase “o” the partition 

coefficient of a molecule is given by 

 
0 0 0

trans wat octΔlog .
ln10 ln10

G G GP
RT RT

−
= − =  (60) 

This equation shows that the Gibbs energies in the respective solvents must be very accu-

rate, as an error of 1 kcal/mol in the transfer free energy between the solvents will lead to an 
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error of approximately 0.73 in the log P and the dynamic range of the partition coefficient is 

significantly smaller than that of e.g. solvation free energies. 

For the distribution coefficient log D, a more complicated picture arises [110,111]. Under 

the assumption that only the neutral species enters the organic phase, the log D is calculated 

as 

 ( )ap 7.4log log log 1 10 KD P −
= − +  (61) 

for bases and 

 ( )ap 7.4log log log 1 10 KD P +
= − +  (62) 

for acids. Depending on the organic solvent under investigation this assumption does not al-

ways hold, and more complicated methods must be used. In that case the distribution coeffi-

cient of a base is 

 ( ) ( )(p pH) (p pH)log log 10 log 1 10a aK K
iD P P − −

= +  − +  (63) 

for bases and 

 ( ) ( )(pH p ) (pH p )log log 10 log 1 10a aK K
iD P P − −

= +  − +  (64) 

for acids where Pi is the partition coefficient of the ionic species. In either case, no unified 

formula for acids and bases exists because the definition of the acid dissociation constant de-

termines the direction of the protonation reaction. 

In this work acids and bases are defined not by their behavior in aqueous solution, where 

compounds that are proton donors at a pH of 7 are acids and proton acceptors are bases, but 

more generally. Any neutral or negatively charged compound and its deprotonated form are 

defined as an acid and its conjugate base, regardless of the pH that is necessary to deprotonate 

it. Conversely, any neutral or positively charged compound and its protonated form are con-

sidered to be a base and its conjugate acid. This definition is in line with the Brønsted-Lowry 

acid-base theory and is more robust for modeling purposes, even if it is not necessarily in line 

with the common understanding of acids and bases 
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2.3 Molecular dynamics simulations 

2.3.1 Introduction 

Molecular dynamics (MD) simulations have been used for decades to investigate molecu-

lar systems at an atomic level. The major advantage of MD simulations when compared to 

quantum mechanical (QM) methods is that much larger systems consisting of up to millions 

of atoms can be investigated [112]. MD simulations work by propagating the atomic move-

ments of the system through time. Given a good parametrization and long enough sampling 

this should in theory yield the equilibrium distribution of states that the real system occupies 

[113]. 

The interatomic potentials used in MD simulations are twofold. Firstly, the long-range po-

tentials capture the effect of London dispersion, Pauli repulsion, and Coulomb interactions 

through the charge q and usually through the Lennard-Jones parameters ε and σ. For atoms 

that are part of the same molecule there are additional terms to model bonds and angles, usu-

ally with simple quadratic potential functions, and dihedrals, for which trigonometric func-

tions are used to allow for a free rotation of the bonds. While atoms that are more than three 

bonds apart are generally treated as though they were in different molecules, the van der 

Waals and electrostatic interactions between atoms separated by only one or two bonds are 

usually switched off to avoid numerical issues. For atoms separated by exactly three bonds the 

so-called 1-4 interactions may be scaled down by a constant factor to account for the partial 

inclusion of the short-ranged interactions in the torsional potentials [114]. Especially for sys-

tems that are aromatic or have a similarly inhibited free dihedral rotation so-called improper 

torsions are used to prevent this. The sum of all these contributions 

 tot bond angle torsion coulomb LJU U U U U U= + + + +  (65) 

the total potential Utot, consists of the bonded terms Ubond, Uangle, and Utorsion that represent the 

molecular bonds and the nonbonded terms Ucoulomb and ULJ that represent the electrostatic and 

the repulsive-dispersive interaction, respectively. From this the acceleration of a particle can 

be calculated by taking the gradient and dividing by its mass m 

 / ( ) / .i i i im U m= = −a F r  (66) 

Here ai is the vector of acceleration, Fi the vector of the force, and ri the position of the parti-

cle denoted as i, respectively. Propagation through time can be achieved by using e.g. the ve-
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locity Verlet algorithm [115], where the positions and velocities of the atoms for the next 

timestep are calculated as 

 21( ) ( ) ( ) ( )
2i i i it δt t δt t δt t+ = +  + r r v a  (67) 

and 

 21( ) ( ) ( ( ) ( ))
2i i i it δt t δt t t δt+ = +  + +v v a a  (68) 

where ri and vi are the positions and velocities of the atoms, respectively. t is the current time 

and δt is the discrete timestep with which the system is propagated. The timestep has to be 

chosen large enough that sufficient sampling can be achieved in a given simulation, but if it is 

chosen too large errors will accumulate, especially if the timestep is larger than the fastest 

motion in the system. These are usually the vibrations of hydrogen atoms and by holding 

them fixed a timestep of 2 fs is possible [116]. 

 

2.3.2 Liquid structure from MD simulations 

Among the information that can be extracted from MD simulations, structural information 

is the primary one. A trajectory generated by an MD simulation consists of the atom positions 

and velocities for each time step that is saved. The systems investigated by MD simulation are 

generally assumed to be ergodic and so the equilibrium distribution functions of the system 

arise naturally given a long enough simulation time. For RISM, as shown in greater detail in 

Chapter 2.1.2, the radial distribution function g(r) is of great interest, because it can be used to 

generate solvent models. The radial distribution function describes the number of particles 

that can be found in a distance r, relative to the bulk density. Thus, it can be used as a graph-

ical representation of the depletion and enrichment of solvent atoms around a particle due to 

the molecular interactions as shown in Fig. 1. 
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Fig. 1: Radial distribution function between united atom cyclohexane CH2 groups extracted from the molecular 

dynamics simulation described in chapter 3.3.1. 

To understand how to generate inter- and intramolecular distribution functions from MD 

simulations to use for RISM it is convenient to consider the model system of pure water. The 

hydrogen atoms in water are positioned symmetrically around the central oxygen atom which 

makes water part of the C2v point group. Due to this symmetry the two hydrogen atoms are 

equivalent, so for the purpose of generating distribution functions only one type of hydrogen 

atom exists. This model system yields three different distribution functions: gOO, gHH, and 

gOH, the latter of which is identical to a hypothetical gHO function. The intermolecular distri-

bution functions can be discretized from the simulation data via  

 ( Δ / 2)( )
( Δ / 2)

N r rg r
V r r ρ


=


 (69) 

where ( Δ / 2)N r r  is the number of atoms of a certain type found in the interval Δ / 2r r   

and ( Δ / 2)V r r  the volume of the same interval. The gOO function would be generated by 

applying eq. (69) from each oxygen atom and counting all other oxygen atoms, the gHH func-

tion by applying it from each hydrogen atom and counting all hydrogen atoms that are not 

part of the same molecule and so on. To generate the intramolecular distribution functions the 

same scheme is applied but, in this case, counting only those atoms that are part of the same 

molecule. Since the hydrogen atoms of water are usually kept frozen to enable larger step 

sizes this is only necessary for larger molecules with more conformational degrees of free-

dom. 
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2.3.3 Thermodynamic integration 

MD simulations are not only used to gain structural information of a molecular system but 

also thermodynamic properties. One method to calculate Gibbs energies of solvation that are 

of great interest in this work is thermodynamic integration (TI). This method makes it possi-

ble to calculate the difference in the Helmholtz energy between two pre-defined states by 

connecting them with an integration variable λ that scales the interactions of the alchemically 

active region with the rest of the system. The partition function and the Helmholtz energy A 

that can be calculated from it are then functions of the scaling parameter λ 

 1( ) ln ( )A λ β Z λ−= −  (70) 

Here Z is the classical canonical ensemble partition function and 1/ ( ).Bβ k T=  Differentiating 

with respect to the integration variable gives [117] 

 ( ) ( )
λ

A λ H λ
λ λ

 
=

 
 (71) 

where H is the system Hamiltonian and the angled brackets imply a canonical average that is 

computed from the MD simulation [118]. From this the difference in the Helmholtz energy 

between the states defined by 0λ =  and 1λ =  can be calculated by integrating 

 
1

0

( )Δ (1) (0)
λ

H λA A A dλ
λ


= − =

  (72) 

This integration cannot be done analytically, but instead a number of λ-states are simulated 

and numerical integration yields the difference in the Helmholtz energy. Depending on the 

system setup and the choice of the alchemically active region it is possible to calculate proper-

ties such as (relative) binding free energies and solvation free energies. Some care must be 

taken, because in the limit of 0λ =  the potential energy becomes infinite for the standard po-

tential energy functions used in MD simulations. Usually, soft-core potentials are used to 

avoid this issue [119,120]. 
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3 GENERATION OF SOLVENT SUSCEPTIBILITIES 

3.1 Introduction 

3.1.1 Cyclohexane 

The SAMPL5 challenge on predicting cyclohexane-water distribution coefficients neces-

sitated the development of a cyclohexane solvent susceptibility for use in 3D RISM. The cy-

clohexane solvent model developed in this work is based on the united atom GRO-

MOS96 45A3 parameter set for aliphatic hydrocarbons, because this reduces the number of 

interaction sites from 18 to 6 and unlike in the case of water the hydrogen atoms are not in-

volved in directional polar interactions [124]. Each interaction site is thus a sphere represent-

ing an entire CH2 group instead of individual atoms. 

Due to certain issues encountered while generating the solvent susceptibilities using 

1D RISM that will be expanded upon below it was necessary to use MD simulations to gener-

ate them. The solvent susceptibilities were generated by measuring the likelihood of finding a 

solvent atom of either the same or a different solvent molecule in a certain distance through 

histogram analysis. This had the additional benefit of making it possible to fully resolve the 

intramolecular distribution function that is commonly represented through the Dirac delta 

function, implying a single, fully rigid conformation. 

3.1.2 Octanol and water-octanol mixtures 

A model for neat octanol had already been developed and applied in EC-RISM calcula-

tions by the author [121]. In this work a new model for water-saturated octanol was developed 

to account for the experimental conditions usually found in experiments for partition or distri-

bution coefficient determinations. When using a shake-flask protocol the two phases are in 
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direct contact and thus a certain amount of octanol is dissolved in the water phase and a sig-

nificantly larger amount, up to 48.91 g∙kg-1 of water is dissolved in the octanol phase [122]. In 

theory it would be necessary to generate an octanol-saturated water model as well, but the 

amount of octanol dissolved in water is significantly lower at only 0.3 g∙L-1. Furthermore, 

while the water content of the octanol phase should increase the polar character of this phase 

considerably the small amount of octanol in the water phase is not expected to have such a 

significant effect on the solvent properties. 

3.2 Computational details  

3.2.1 Cyclohexane MD simulation 

To set up the simulation packmol 1.1.2.023 was used to place 10,000 cyclohexane mole-

cules in a cubic box with an edge length of 122 Å [123]. The molecules were parametrized 

using the united atom GROMOS96 45A3 parameter set for aliphatic hydrocarbons [124], 

leading to a total system size of 60,000 atoms. For the simulation Berendsen temperature and 

pressure controls were used to keep the system at 298.15 K and maintain a pressure of 1 bar. 

The time constants for the temperature and pressure were 0.1 ps and 2.5 ps, respectively, and 

the experimental compressibility of 1.12∙10-4 bar-1 was used [125]. As in the original work on 

the GROMOS96 45A3 force field all bonds were kept constrained using the implementation 

of the SHAKE algorithm implemented in Gromacs [126,127]. For the Lennard-Jones interac-

tions a cutoff of 1.4 Å was used, while the Coulomb cutoff could be ignored since every atom 

of the system is electrostatically neutral. 

Using Gromacs 4.6.3 the system was first minimized until the greatest force evaluated 

converged to below 750 kJ mol-1 nm-1 and then simulated for 17 ns using a time step of 2 fs. 

Every 5 ps, i.e. 2500 time steps, a snapshot of the system was taken, and the final 15 ns of this 

continuous trajectory were used to extract the intra- and intermolecular distribution functions.  

Due to the extended functionality of the more modern version of the tool, the intramolecu-

lar distribution functions were extracted using the “gmx_d distance” tool of Gromacs 5.0 with 

a bin width of 0.002 Å. This was achieved by creating custom index files containing only the 

pairs of atoms that are part of the same molecule. For each intramolecular distribution func-

tion (e.g. the one between C1 and C2, C1 and C3, etc.) a new index file had to be created, 

leading to a total number of 15 index files. 

For the intermolecular distribution functions the version of the “g_rdf” tool found in 

Gromacs 4.6.3 was sufficient and used accordingly. By excluding atoms within the same mol-
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ecule only the intermolecular distribution functions were extracted from the trajectory with 

this tool.  

3.2.2 Solvent susceptibilities and 1D RISM calculations 

The solvent susceptibilities for neat octanol had already been generated in a previous work 

with the same settings used for the octanol-water mixtures described below in Table 2, but 

using a number density of 3.82054∙10-3 Å-3 and the experimental dielectric permittivity of 

9.86284 [121,128]. The molecular structure and solvent parameters for both cyclohexane and 

octanol are also provided as OR_01. The structure for cyclohexane represents the average 

distances between two sites during simulation, while for octanol it is the basis for the genera-

tion of rigid intramolecular distribution functions as described in equation (28). To generate 

solvent susceptibilities for octanol-water mixtures, SPC/E water sites were added to the 

1D RISM calculations, using number densities of 1.37473∙10-3 Å-3 for the water sites and 

3.64253∙10-3 Å-3 for the octanol sites. Furthermore, compared to neat octanol with a dielectric 

permittivity of 9.86294, for the octanol-water mixtures a lower permittivity of 9.1 was used. 

These values are slightly inaccurate because they were estimated from the molar mass-scaled 

saturation fraction of wet n-octanol of 0.274 and its mass density of 0.82883 [129]. Future 

works should use the accurate number densities of 1.3598∙10-3 Å-3 for the water sites and 

3.65787∙10-3 Å-3 for the octanol sites, as calculated from the experimental densities and a satu-

ration water mole fraction of 0.2705 [122].  

Since no experimental dielectric permittivity for water-saturated octanol at a temperature 

of 298.15 K was available the permittivity was estimated by extrapolating the available data at 

293.15 K and 303.15 K to the saturation mole fraction and adding the average offset from 

neat octanol at those temperatures to the experimental value at 298.15 K. The resulting per-

mittivity for n-octanol that should be used in future works is 8.41 [130]. 

All 1D RISM calculations for generating the octanol solvent susceptibilities were con-

ducted using the same logarithmic grid as for the cyclohexane model. The RISM integral 

equations were solved using a Mathematica implementation developed by Professor Stefan 

M. Kast until the maximum norm of the direct correlation functions was smaller than 10-6. 
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3.3 Results and discussion 

3.3.1 Cyclohexane 

Initially, it was attempted to use 1D RISM to generate solvent susceptibilities for use with 

EC-RISM, but the appearance of singularities in the generated susceptibilities made this ap-

proach impossible. The relevant parameters used for the generation of the solvent susceptibil-

ity are summarized in Table 1, σ and ε are the Lennard-Jones parameters of the cyclohexane 

CH2 groups, ρcyc the experimental density and εr the dielectric constant. 

Table 1: Solvent parameters for the generated susceptibility for cyclohexane [124,128]. 
 

Cyclohexane 
σ(CH2) /Å 3.95474 
ε(CH2) /10-21 J 0.795858 
ρcyc /10-3 Å-3 5.488 
εr 2.01647 

For this reason, the choice was made to extract the intra- and intermolecular distribution 

functions from MD simulations. This is not as straightforward as it might seem, because usu-

ally the simulated total correlation functions are switched to the analytic HNC total correla-

tion functions [67,69], because the minimum image convention restricts the maximum length 

of the former, and a prohibitively large simulation box would be needed to be able to apply 

the usual logarithmic grid ranging from 0.0059 to 164.02 Å  [131,132].  

Here, the intramolecular functions were approximated using a single Gaussian function of 

the form 

 
2

2

( )( ) exp r bω r a
c

 −
=  − 

 
 (73) 

with variable height a, position b and width c to give an analytical representation in reciprocal 

space. The Gaussian fit parameters are gathered in OR_01. The intermolecular distribution 

functions were smoothed before calculation of the solvent susceptibility using cubic splines, 

where the smoothing factor S was calculated from the number of molecules nmol and the num-

ber of snapshots nt of the system [69,133] via the equation 

 mol t

2
n nS 

= . (74) 

Beyond a distance of 61.19 Å the intermolecular distribution function was set to one, inter-

polated on a logarithmically spaced grid of 512 points ranging from 0.0059 to 164.02 Å and 
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and after calculating the solvent susceptibilities using eq. (27) they were converted to recipro-

cal space using a numerical Fourier transformation. 

 

Fig. 2: Comparison of solvent susceptibilities for cyclohexane generated with 1D RISM (red) and from direct 

inversion of simulated correlation functions (blue). 

As can be seen in Fig. 2, the discontinuity in the solvent susceptibility vanishes when us-

ing the distribution functions generated from the MD simulation while the overall shape and 

the behavior towards the limits stays similar to that found in the discontinuous solvent suscep-

tibility function derived from 1D RISM. This approach made it possible to use cyclohexane as 

a solvent in 3D RISM calculations for the SAMPL5 challenge. It is noteworthy that there is 

technically no need to use the EC-RISM framework for calculations with this solvent because 

all methylene groups have a charge of zero and no solute-solvent polarization occurs. Still, it 

was advantageous to be able to use the same workflow for setting up, running, and analyzing 

the calculations on the same compounds in different solvents and this was done throughout 

this work. 

3.3.2 Wet n-octanol 

There were no convergence issues while generating the solvent susceptibilities for wet oc-

tanol, but some remarks on the differences between dry and wet octanol, as well as on the 

differences between the two combinations of density and permittivity are in order. The origi-

nal number densities were calculated from slightly older experimental values and in a slightly 

inaccurate manner that ultimately results in the difference of about 1.1% for the water densi-

ties and 0.4% for the octanol densities. Additionally, the estimated dielectric constant of wa-

ter-saturated octanol at 25°C is significantly lower than the one used originally as well. Fortu-
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nately, the greatest change in the partition coefficients calculated using the two different sol-

vent susceptibilities is in the order of 0.01 pK units and most are even lower than that. This 

means that the results generated from the original solvent susceptibilities are close to identical 

to the ones generated with the new ones. For this reason, while in the future the updated sus-

ceptibilities should be used to be as close to the experimental conditions as possible, all data 

published in this work has been generated with the old susceptibilities. An overview over the 

different combinations of solvent parameters is given in Table 2. Here σ and ε are the Len-

nard-Jones parameters of the different chemical groups of the octanol molecule, ρoct and ρwat 

the density used for the octanol and water sites, respectively, and εr the dielectric constant. 

Table 2: Solvent parameters for the generated susceptibilities for octanol and octanol-water mixtures [129, 

130,128]. CH2o denotes the CH2 group next to the alcohol oxygen, specifically. 
 

Octanol (dry) Octanol (wet) Octanol (wet) 
corrected 

σ(CH3) /Å 3.9048 3.9048 3.9048 
ε(CH3) /10-21 J 1.0432 1.0432 1.0432 
q(CH3) /e 0.0000 0.0000 0.0000 
σ(CH2) /Å 3.9048 3.9048 3.9048 
ε(CH2) /10-21 J 0.8206 0.8206 0.8206 
q(CH2) /e 0.0000 0.0000 0.0000 
σ(CH2o) /Å 3.9048 3.9048 3.9048 
ε(CH2o) /10-21 J 0.8206 0.8206 0.8206 
q(CH2o) /e 0.2650 0.2650 0.2650 
σ(Ooct) /Å 3.0700 3.0700 3.0700 
ε(Ooct) /10-21 J 1.1823 1.1823 1.1823 
q(Ooct) /e -0.7000 -0.7000 -0.7000 
σ(Hoct) /Å 1.0000 1.0000 1.0000 
ε(Hoct) /10-21 J 0.395589 0.395589 0.395589 
q(Hoct) /e 0.4350 0.4350 0.4350 
σ(Owat) /Å - 3.1660 3.1660 
ε(Owat) /10-21 J - 1.0797 1.0797 
q(Owat) /e - -0.8476 -0.8476 
σ(Hwat) /Å - 1.0000 1.0000 
ε(Hwat) /10-21 J - 0.3891 0.3891 
q(Hwat) /e - 0.4238 0.4238 
ρoct/10-3 Å-3

 3.82054 3.64253 3.65787 
ρwat/10-3 Å-3 - 1.37473 1.3598 
εr 9.86294 9.1 8.41 
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4 SAMPL5: CALCULATION OF CYCLOHEXANE-

WATER DISTRIBUTION COEFFICIENTS LOG D7.4 

4.1 Introduction 

The SAMPL series of challenges traditionally had the task of predicting hydration free en-

ergies of either diverse sets of organic molecules or series of related compounds to test the 

various solvent models on both overall performance and potential systematic errors. The 

SAMPL5 challenge changed this pattern for the first time and instead tasked the participants 

with predicting the distribution coefficients of 53 molecules between cyclohexane and water 

at a pH of 7.4, which is generally considered to be the physiological pH of the human body. 

These compounds were further divided into three batches of 13, 20, and 20 molecules respec-

tively, chosen in such a way that the dynamic range of each batch, i.e. the range from the low-

est to the highest log D7.4 is approximately the same in each batch, and the size of the com-

pounds increases from batch 0 to batch 2. Since the different batches were generated before 

the experimental results were available the dynamic range was estimated using an empirical 

log P prediction [51]. 

As described in chapter 2.2.3 one part of the distribution coefficient of a compound is the 

neutral state partition coefficient. To calculate this, it was necessary to generate a PMV cor-

rection for both water and cyclohexane. Furthermore, the pKa of the molecule had to be de-

termined to account for the existence of ionic species that cannot enter the organic phase. Due 

to the time limit imposed by the challenge authors, here, only the distribution coefficients of 
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the 33 molecules in the sets “batch 0” and batch 1” could be submitted in the challenge. To 

better showcase the development of this work, the data in this chapter is a subset of the results 

shown in chapter 6.4, where “batch 2” results are included and more advanced solvent and 

pKa models are used. The original results of the SAMPL5 challenge are shown here to better 

demonstrate the advancements that were made alongside and often inspired by problems 

posed during the SAMPL challenges. While the partition coefficient could be calculated di-

rectly from the EC-RISM Gibbs energies of the compound in the respective solvent according 

to eq. (60), in this case it was calculated from the Gibbs energies of solvation. In theory this 

should not lead to different results, as the vacuum energies cancel, but here the vacuum con-

formations for the calculation of the Gibbs energy of solvation in water were reoptimized 

from the water optimized PCM structures, and vice versa for the Gibbs energy of solvation in 

cyclohexane. This can give rise to an artificial reorganization term upon calculation of the 

partition coefficient if the vacuum structures do not converge to the same local minimum. 

Furthermore, at the time of the challenge deadline there was no model to predict pKa values 

yet and the acidity constants were predicted using MoKa and Corina [134,135]. The EC-

RISM pKa model was generated in the post-submission phase and made the prediction of dis-

tribution coefficients using only EC-RISM possible.  

4.2 Computational details 

In analogy to the earlier work by D. Tomazic, this work uses the Minnesota Solvation Da-

tabase (MNSOL) as reference data to train the partial molar volume correction. This database 

contains Gibbs energies of solvation for molecules in water and a variety of organic solvents, 

including n-octanol and cyclohexane. 

To account for the potentially high conformational flexibility of molecules with a high 

number of rotatable bonds the same workflow was used for generating the conformations of 

the molecules in the MNSOL and the SAMPL5 dataset for each solvent: First, for each mole-

cule containing less than 7 rotatable bonds 50 conformations were generated, while for mole-

cules containing more than 7 rotatable bonds 200 conformations were generated using the 

EmbedMultipleConfs function of RDKit [136,137]. These conformations were then pre-

optimized using antechamber from the Amber12 software package with an ALPB water mod-

el using the dielectric constant corresponding to the respective solvents to account for solva-

tion effects, AM1-BCC charges and GAFF version 1.7 parameters for the non-bonded terms, 

which are identical to the GAFF version 1.4 parameters and the versions in between 
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[138,139,140,141]. The resulting structures were clustered based on the following criteria: all 

conformations with a molecular mechanics (MM) energy at least 20 kcal/mol higher com-

pared to the lowest energy conformation found were discarded. The minimum structure was 

then assigned as the first cluster and the root mean square distance (RMSD) of the next best 

structure was determined using the GetBestRMS function of RDKit. If this structure had an 

RMSD of less than 0.5 Å, the structure was assumed to be properly represented by the exist-

ing cluster. If the RMSD was greater, the structure was instead assigned as a new cluster 

against which all further conformations were compared as well. 

All cluster representatives generated that way were then optimized quantum-chemically at 

the IEFPCM/B3LYP/6-311+G(d,p) level of theory using Gaussian 09 [142] and clustered 

again using the same workflow as used for the MM structures. Of those cluster representa-

tives, up to five conformations with the lowest PCM energy were used to calculate the solva-

tion free energy using EC-RISM. The vacuum conformations were generated by reoptimizing 

these structures without a PCM solvent model. No attempt was made to control for shifts in 

the tautomeric state of the molecules during QM optimization under the assumption that any 

such shift leads to a lower energy tautomer and only the energetically lowest states contribute 

to the final Gibbs energy. 

To calculate the pKa values for the Klicić dataset the rotamers and tautomers were opti-

mized at the same level of theory and their energies calculated with EC-RISM [143]. To cal-

culate the pKa values of the SAMPL5 compounds the energetically lowest structures of the 

neutral species were manually protonated and deprotonated at chemically plausible sites and 

reoptimized to relax the structure into the new local minimum. No further conformational 

searches were carried out for the charged species at this stage. 

All 3D RISM calculations were conducted on cuboid grids with a grid spacing of 0.3 Å 

and a total grid size that is dependent on the size of the molecule in such a way that the atoms 

closest to the boxes edges were at least 35 Å away in the final 3D RISM calculation and at 

least 30 Å in all the preceding iterations of the EC-RISM cycle. One of the major differences 

between calculations conducted in this chapter and from chapter 5 onwards is the use of solute 

atomic charges generated from the wave function using CHelpG [84]. Beginning in chapter 5 

and for the remainder of this work after that, instead the exact electrostatic potential generated 

from the wave function will be used after investigating their relative performance. Periodic 

boundary conditions were implemented via an Ewald summation scheme, where the potential 

is split into a short range real-space potential, that can be easily truncated, and a long range 
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reciprocal-space potential [83]. The convergence criterion for the 3D RISM calculations was a 

maximum residual norm for the direct correlation functions of 10-6 between two iterations for 

the calculation to be considered converged. For cyclohexane, the model developed as de-

scribed in the preceding chapter was used, while for water the model originally used in the 

SAMPL2 challenge without a PMV correction was used unchanged [43]. This model is de-

rived from the SPC/E water model with the hydrogens modified to have a σ of 1.0 Å 

[144,145]. The PSE-2 closure was used for both solvents to make sure that all molecules of 

the SAMPL5 data set would converge while at the same time yielding accurate thermodynam-

ic data. 

In the EC-RISM calculations the HF/6-311+G(d,p) level of theory was used during the it-

erations until the change in the total Gibbs energy measured as the sum of electronic energy 

and excess chemical potential fell below 0.01 kcal mol-1. After that a single iteration with the 

MP2/6-311+G(d,p) level of theory was performed to account for electron correlation effects. 

For all EC-RISM QM calculations in this chapter Gaussian 03 rev D.02 was used [146]. 

During the SAMPL5 challenge the PMV calculated from the total correlation function and 

the experimental isothermal compressibility were used (eq. (37)). This results in significantly 

differing calculated PMVs, but due to the scaling introduced by the PMV correction parame-

ter cV only minor changes in the corrected excess chemical potentials. Nevertheless, in the 

course of this work it was discovered that the PMVs calculated from the direct correlation 

function and using the RISM estimate for the compressibility (eq. (39)) should be used to 

achieve the most thermodynamically consistent results. 

4.3 Results 

4.3.1 Solvation free energies 

In this work 481 of the molecules for which experimental Gibbs energies of hydration are 

available in the MNSOL database were used to train a PMV correction for water. This set 

contained 351 neutral compounds, 80 anions and water-anion clusters, and 50 cations and 

cation-water clusters. Additionally, 90 neutral molecules for which experimental Gibbs ener-

gies of solvation in cyclohexane were available were used to train the corrections for this sol-

vent. For water a single model using three adjustable parameters, cµ, cV, and cq was applied, 

because this model had shown good performance on the MNSOL dataset while it did not use 

many ad hoc parameters that might be the cause of overfitting [43]. Due to the lack of experi-
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ence in working with cyclohexane as a solvent, two different models were derived from eq. 

(46) and tested here using the SAMPL5 challenge compounds as a benchmark set. The first 

one used three parameters cµ, cv, and a linear offset cd and will be referred to as “3-par-I(5)” 

in the following, while the second model used only the two latter parameters and will be re-

ferred to as “2-par-I(5)”. The corrected excess chemical potential is then 

 ex ex
corr

m
μ v oμ c μ c V c= + +  (75) 

for the 3-par-I(5) model and 

 ex ex
corr

m
v oμ μ c V c= + +  (76) 

for the 2-par-I(5) model. The resulting Gibbs energies of solvation in water and cyclohexane 

in comparison with the experimental values are depicted in Fig. 3 while the optimized param-

eters and statistical metrics of the different models are shown in Table 3. 

 
Fig. 3: Calculated versus experimental solvation free energies for the MNSOL dataset [14] using EC-RISM at 

the MP2/6-311+G(d,p) level of theory before (red) and after (blue) correcting the raw data using the corrections 

based on the partial molar volumes. Results are shown for cyclohexane (A) using the 3-par-I(5) model (blue) and 

the 2-par-I(5) model (light blue) and water (B). Dashed lines indicate descriptive regression results. Original 

uncorrected and corrected EC-RISM/3D RISM data are provided in OR_02, optimized solution and gas phase 

structures are collected in OR_03. Figure adapted from [1]. 

Table 3: Regression parameters of optimized EC-RISM-based Gibbs energy of solvation models (cμ is unitless, 

cV / kcal mol-1 Å-3, cq / kcal mol-1 e-1, cd / kcal mol-1) along with statistical metrics (root-mean-square error RMSE 

/ kcal mol-1, mean absolute error MAE / kcal mol-1, mean signed error MSE / kcal mol-1, slope m’, intercept b’ / 

kcal mol-1, and coefficient of determination R2 from descriptive regression). cV was calculated using the PMVs 

calculated via the total correlation route [76], and the experimental isothermal compressibilities of 0.450183∙10-9 

Pa-1 for water and 1.1197·10-9 Pa-1 for cyclohexane [125]. Table adapted from [1]. 

Solvent RMSE MAE MSE m' b’ R2 cµ cV cq cd 
Water           
Uncorrected 20.84 18.83 -13.23 1.24 18.74 0.88 - - - - 
All 2.43 1.69 0.35 0.99 -0.52 0.99 0.97 -0.17 -17.26 - 
Neutrals 1.52 1.17 -0.52 0.98 -0.62 0.89 - - - - 
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Anions 4.48 3.78 -0.21 1.11 7.92 0.88 - - - - 
Cations 2.91 2.09 0.68 0.87 -7.95 0.85 - - - - 
Cyclohexane            
Uncorrected 5.90 5.65 -5.65 0.13 1.58 0.06 - - - - 
2-par-I(5) 0.88 0.70 0.00 0.59 -1.94 0.77 - -0.11 - -1.66 
3-par-I(5) 0.76 0.48 0.00 0.84 -0.73 0.84 1.84 -0.15 - -1.05 

Here and throughout this work the descriptive regression metrics must not be mistaken for 

the parameters m and b resulting from the fit of the pKa models. A slope close to 1 and an 

offset close to 0 indicate a good model, provided that the R2 is close to 1 as well. As can be 

seen in Fig. 3, after training of the PMV corrections the corrected Gibbs energies of solvation 

for both solvents are significantly closer to the experimental values than before.  

The exact results of the PMV correction are summarized in Table 3. Using just three pa-

rameters for water the calculated hydration free energies exhibit a total RMSE of 2.43 

kcal∙mol-1. This error is mostly determined by the performance of the ions, because while they 

are fewer in number, their RMSE is significantly larger: looking only at the neutral com-

pounds the RMSE shrinks to 1.52 kcal∙mol-1 while the errors for cations (2.91 kcal∙mol-1) and 

especially for anions (4.48 kcal∙mol-1) are significantly larger.  

The results for the prediction of Gibbs energies of solvation in cyclohexane are slightly 

better for both models that were trained: the total RMSE is only 0.76 kcal∙mol-1 for the three-

parameter model and 0.88 kcal∙mol-1 for the two-parameter model. This, in addition to the fact 

that every calculated statistical metric is improved in the training set data could be expected, 

because an additional parameter can only improve the residual (otherwise it should be set to 1 

for the parameter directly scaling the excess chemical potential and 0 for all other parameters 

during training). Interestingly, while the parameter directly scaling the uncorrected 3D RISM 

excess chemical potential for the water model is close to one, implying only minor corrections 

to the raw value, using this as an adjustable parameter for cyclohexane leads to a value of 1.84 

which leads to an almost doubled excess chemical potential before the correction takes place. 

This implies that either some of the physical assumptions made for the PMV correction are 

wrong or incomplete, there are some deficiencies in the cyclohexane model used, or the ex-

perimental data is not reliable. However, this large parameter value appears to be necessary to 

improve the slope of the descriptive regression which is far from unity for the 2-par-I(5) mod-

el. To investigate this both models were applied to the SAMPL5 challenge compounds, as this 

is a data set that contains none of the MNSOL compounds and is thus ideal to use as a true 

test set for the models. 
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4.3.2 pKa prediction 

For the prediction of acidity constants, 103 pairs of acids and conjugated bases (or vice 

versa) from the experimental dataset by Klicić et al. [143] were used to train a model that is 

used to calculate pKa values without using the Gibbs free energy of the proton in solution. 

Here, two different models were tested as well. While in this case the loss function for both 

models was the same, for the first model all “acids” and “bases” defined as pairs consisting of 

a neutral compound and a deprotonated form or a neutral compound and a protonated form, 

respectively were adjusted with a single set of parameters. In the second model three sets of 

parameters were generated, one for all acids, one for secondary and tertiary amines, and one 

for all other basic compounds as defined above. When using this split there are 51 acidic 

compounds, 17 secondary and tertiary amines, and 35 other basic compounds. Similar splits 

have been used in other works because it has shown to improve the predictive power of pKa 

models even though the Gibbs free energy of the proton should be the same in all cases [147]. 

The resulting acidity constants in comparison with the experimental values are depicted in 

Fig. 4 while the optimized parameters and statistical metrics of the different models are sum-

marized in Table 4. 

 

Fig. 4: pKa values calculated using EC RISM at the MP2/6-311+G(d,p) level of theory compared with experi-

mental values from the Klicić dataset. Data generated using individual 2-parameter regression models for acids, 

secondary and tertiary amines, and other bases is depicted in dark blue while data generated using a single model 

for all classes is depicted in light blue. Acids are depicted using squares, secondary and tertiary amines with 

pentagons and all other bases with triangles. Original data are provided as OR_02, optimized structures are col-

lected in OR_03. Figure adapted from [1]. 

Table 4: Parameters m and b of optimized EC-RISM-based pKa models and statistical metrics (root-mean-square 

error RMSE, mean absolute error MAE, mean signed error MSE, and coefficient of determination R2 from de-

scriptive regression). Table adapted from [1]. 

pKa model RMSE MAE R2 m b 
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All 1.52 1.29 0.85 0.74 -149.6 
Acids 1.41 1.10 0.76 0.94 -191.7 
Sec/tert amines 0.94 0.85 0.60 0.48 -94.6 
Other bases 0.79 0.64 0.97 0.89 -149.6 

As expected, the data in Table 4 shows that at least for the training set the split models 

perform significantly better than the unified model with a total RMSE of 1.15 and 1.52 

pK units, respectively. The obtained parameters also appear to validate the choice of splitting 

the bases into secondary and tertiary amines, and all other kinds of bases. The obtained slope 

parameter for the amines is 0.48 and the offset only -94.6, while ideally these values should 

be 1, and a value corresponding to the Gibbs free energy of solvation of the proton, respec-

tively. This is almost the case for the acids where the training yields a slope of 0.94 and an 

offset of -191.7 and the non-amine bases. Multiplying the unitless offset for this model with 

RT ln(10) yields an energy of -261.53  kcal mol-1. For comparison, the Gibbs free energy of 

solvation of the proton has been experimentally determined as -265.89 kcal mol-1 [103].  Even 

visually the data in Fig. 4 suggests that the unified model has more outliers for all compound 

classes. Regardless, in the application of the model to the SAMPL5 dataset the unified model 

was chosen, because for the training set the compounds contain only a single ionizable group 

that can be clearly determined to belong to one of the three classes. This is not generally the 

case for the compounds contained in the SAMPL challenges, which often contain multiple 

ionizable groups that may be in different compound classes, making it difficult to properly 

assign which model should be used for which compound. 

4.3.3 Prediction of distribution coefficients 

For the SAMPL5 challenge not only was the choice made to only evaluate the model us-

ing a single set of parameters for all compound classes, but also to only use the pKa value that 

has the greatest influence when applied with eq. (61) or (62), respectively in the case of mul-

tiple pKa values for the same molecule. This is inaccurate only if an acidic and a basic pKa 

value of the same molecule are equally distant to 7.4 which is unlikely. 

The PMV corrections and the pKa model described above where applied to the batch 0 and 

batch 1 of the SAMPL5 dataset to predict the log D7.4. Consequently, there are six different 

combinations of models to be explored by combining one water model, two cyclohexane 

models (2-par-I(5) and 3-par(5)), and three pKa models (no pKa, i.e. a log P model, the MoKa 

pKa values, and the EC-RISM pKa values). In the original SAMPL5 paper the batch 1 com-

pounds SAMPL5_010, SAMPL5_011, SAMPL5_026, and SAMPL5_060 were erroneously 

treated as bases for the calculation of the distribution coefficient but are correctly treated as 
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acids in this work. The calculated partition or distribution coefficients in comparison with the 

experimental values for the distribution coefficients are depicted in Fig. 5 while the optimized 

parameters and statistical metrics of the different models are shown in Table 5. 

 
Fig. 5: Calculated partition coefficients using EC-RISM at the MP2/6-311+G(d,p) level of theory considering 

only neutral species (A) and distribution coefficients taking into account protonation equilibria using pKa values 

derived from EC-RISM (B) or Moka (C). Results for compounds belonging to batch 0 are depicted in light blue 

while those for batch 1 are depicted in dark blue. Cyclohexane models using two parameters are depicted in light 

blue while those using three parameters are depicted in dark blue. Descriptive regression lines are depicted for 

batch 0 (light blue) and batch 1 (dark blue). Compounds where the most relevant ionized state is protonated are 

depicted as triangles (bases) and those where the most relevant ionized state is deprotonated as squares (acids). 

Original data are provided as part of OR_02, optimized structures are collected in OR_03. Figure adapted from 

[1]. 

Table 5: Statistical metrics (root-mean-square error RMSE, mean absolute error MAE, mean signed error MSE, 

and slope m, intercept b, and coefficient of determination R2 from descriptive regression) for both partition and 

distribution coefficient predictions for the SAMPL5 compounds of batches 0 and 1. Table adapted from [1]. 

pKa cyclohexane RMSE MAE MSE R2 m' b' 
None 2-par-I(5) 1.99 1.48 -0.09 0.61 1.35 0.09 

3-par(5) 2.86 2.08 2.08 0.65 1.41 2.30 
EC-RISM 2-par-I(5)a 2.25 -0.86 1.63 0.71 1.60 -0.54 

3-par(5)b 2.59 1.31 2.29 0.70 1.66 1.67 
Moka 2-par-I(5) 4.61 4.09 -3.12 0.23 1.12 -5.23 
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3-par(5) 6.42 5.87 -5.30 0.28 1.19 -3.03 
a-bCorrected results for SAMPL5 setup, original values [1] for RMSE, MSE, R2, m’, b’: 
a2.15, -0.53, 0.59, 1.36, -0.34; 
b2.76, 1.64, 0.59, 1.42, 1.87. 
Looking at the differences between the predictions shown in Fig. 5 the first observation 

that can be made is that the use of MoKa pKa values (C) significantly shifts almost every pre-

dicted distribution coefficient to lower values compared to the log P predictions (A). This 

behavior can also be observed for the distribution coefficients calculated using acidity con-

stants generated with EC-RISM (B), but there only for a few compounds, e.g. SAMPL5_015 

and SAMPL5_072 (see Table 6). Interestingly, the use of acidity constants of either kind does 

not consistently improve the predictive power of the model. While for the 3-par(5) cyclohex-

ane model a small improvement in the RMSE can be observed when using EC-RISM pKa 

values, for the 2-par-I(5) model the opposite behavior is found. 

The different cyclohexane models on the other hand exhibit a more conclusive picture. Ig-

noring the clearly inferior distribution coefficients calculated using MoKa pKa values the 

2-par-I(5) model has a significantly better performance predicting the SAMPL5 distribution 

coefficients than the 3-par(5) model with RMSEs of 1.99 and 2.86 for the log P models, and 

2.15 and 2.76 for the log D7.4 models, respectively. This is the opposite result compared to the 

one obtained in the training set and warrants closer examination. 

The most important thing to note is that while the slope for results obtained using either 

cyclohexane model is almost unchanged, the offset of the regression is shifted towards lower 

values by approximately 2.2 pK units for the 2-par-I(5) models. In other words, the 3-par(5) 

models tend to overestimate the fraction of the compounds present in the organic phase. This 

can also be recognized in the figure where the central cluster of data points lies on the diago-

nal for the 2-par-I(5) models, but significantly above it for the 3-par(5) models, leading to a 

higher RMSE and MSE overall. 

Another counter-intuitive result is the fact that application of the pKa model to calculate 

distribution coefficients leads to worse results than achieved by the calculated partition coef-

ficients. This can be seen in Table 6, where a closer look at the results reveals that while for 

some compounds that were previously estimated as too lipophilic but have an ionizable group 

the predicted log D7.4 is better than the predicted log P. An example for this is the compound 

SAMPL5_070, where the log P model fails completely with a deviation of 6.65, the structure 

of which is depicted in Fig. 6. 
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Fig. 6: Chemical structure of the compound SAMPL5_070 and SAMPL5_015 in their neutral form. Only the 

most abundant tautomer is depicted if multiple tautomeric states are possible. 

Such a high predicted partition coefficient is actually plausible, because the molecule is 

almost completely apolar, but the dimethylamine is predicted to be almost completely in its 

protonated form at pH 7.4, which leads to a predicted log D7.4 that is nearly four orders of 

magnitude lower, leading to a deviation of only 2.88. This is still quite large, but much better 

than the originally predicted neutral state partition coefficient. 

However, the exact opposite trend can be observed for some compounds that were already 

predicted to be too hydrophilic, and these molecules are then predicted even worse than be-

fore. One example of this is the compound SAMPL5_015 that is also shown in Fig. 6 and is 

predicted quite well, with only a deviation of -0.67 pK units, but the carboxylic acid is pre-

dicted to be mostly deprotonated at pH 7.4 with an acid dissociation constant of 4.60. A full 

list of all calculated partition and distribution coefficients for the batch 0 and batch 1 

SAMPL5 compounds as well as their experimental distribution coefficient is provided in Ta-

ble 6. 

Table 6: Individual experimental and computational data for distribution coefficients underlying the statistics 

shown in Fig. 5 and Table 5. Asterisks denote compounds with acidic pKa values where the log D is evaluated 

according to eq. (62), all other compounds had basic pKa values and the log D is evaluated according to eq. (61). 
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Batch 0          
003 1.90 1.17 3.19 15.42 -6.85 -4.83 -3.56 1.17 3.19 
015 -2.20 -5.28 -2.87 15.31 -13.19 -10.78 4.60* -8.08 -5.67 
017 2.50 3.39 6.39 15.09 -4.30 -1.30 -0.26 3.39 6.39 
020 1.60 1.98 3.83 13.32 -3.94 -2.09 0.67 1.98 3.83 
037 -1.50 -3.79 -2.31 4.38 -3.79 -2.31 7.05 -3.95 -2.47 
045 -2.10 -2.42 -0.64 12.04 -7.06 -5.28 0.91 -2.42 -0.64 
055 -1.50 -3.13 -1.31 14.11 -9.84 -8.02 -1.24 -3.13 -1.31 
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058 0.80 -0.83 1.16 16.00 -9.43 -7.44 -5.84 -0.83 1.16 
059 -1.30 -0.25 1.32 12.73 -5.58 -4.01 0.52 -0.25 1.32 
061 -1.45 -1.19 0.08 15.00 -8.79 -7.52 8.04 -1.91 -0.65 
068 1.40 0.95 3.33 15.00 -6.65 -4.27 3.05 0.95 3.33 
070 1.60 7.32 8.25 5.31 7.32 8.24 11.17 3.56 4.48 
080 -2.20 -3.42 -0.71 12.02 -8.04 -5.33 -0.95 -3.42 -0.71 
Batch 1          
004 2.20 2.60 4.96 7.08 2.43 4.79 0.05 2.60 4.96 
005 -0.86 -1.44 1.68 8.71 -2.77 0.35 3.84 -1.44 1.68 
007 1.40 2.91 4.90 15.14 -4.83 -2.84 3.63 2.91 4.90 
010a -1.70 -3.45 -1.43 14.47 -10.52 -8.50 4.98* -5.88 -1.43 
011b -2.96 1.03 3.43 14.48 -6.05 -3.65 4.71* -1.67 3.43 
021 1.20 1.22 3.72 14.34 -5.72 -3.22 3.06 1.22 3.72 
026c -2.60 -2.08 -0.82 4.47* -2.08 -0.82 4.46* -5.02 -0.82 
027 -1.87 -3.44 -1.16 14.53 -10.57 -8.29 2.26 -3.44 -1.16 
042 -1.10 0.40 2.63 16.00 -8.20 -5.97 -2.89 0.40 2.63 
044 1.00 -0.74 2.97 11.58 -4.92 -1.21 0.36 -0.74 2.97 
046 0.20 0.70 3.38 16.87 -8.77 -6.09 -1.55 0.70 3.38 
047 -0.40 -0.35 2.53 15.00 -7.95 -5.07 -8.41 -0.35 2.53 
048 0.90 1.47 5.07 15.00 -6.13 -2.53 0.81 1.47 5.07 
056 -2.50 -1.10 1.12 16.00 -9.70 -7.48 -2.58 -1.10 1.12 
060d -3.90 -4.19 -1.79 3.31* -8.28 -5.88 4.74* -6.86 -1.79 
063 -3.00 -6.39 -5.06 8.36 -7.93 -6.06 9.24 -8.77 -6.90 
071 -0.10 -0.99 1.02 10.05 -3.64 -1.63 6.12 -1.02 0.99 
072 0.60 3.49 4.30 5.45 3.49 4.30 10.94 -0.05 0.76 
081 -2.20 -6.02 -4.20 4.81 -6.03 -4.20 9.05 -7.69 -5.86 
090 0.80 2.04 4.46 13.33 -3.89 -1.47 2.53 2.04 4.46 

a-dCorrected results for SAMPL5 setup, original data [1] for log D7.4,MoKa(2-par-I(5), 3-par) and log D7.4,EC-RISM(2-
par-I(5), 3-par): 
a-10.52, -8.50, -3.45, -1.43; 
b-6.05, -3.65, 1.03, 3.43; 
c-2.08, -0.82, -2.08, -0.82; 
d-8.28, -5.88, -4.19, -1.79. 

 

Some possible explanations for these deviations exist: For one, the system investigated 

experimentally may differ from the system with which the Gibbs free energies of solvation 

were originally measured. For example, the experimental conditions for the SAMPL5 chal-

lenge included cosolvents such as 1% DMSO and 0.5% acetonitrile, phosphate buffer for the 

aqueous phase and octanol to dilute the injection volume [52]. None of these additional sub-

stances were represented in the water or cyclohexane models. Another reason may be that 

overfitting to the Gibbs energies of solvation by doubling the 3D RISM excess chemical po-

tential when applying the correction leads to overestimated excess chemical potentials corre-

sponding to overestimated partitioning into the organic phase. However, due to the lack of 

further, difficult to obtain experimental data the error in the partitioning cannot be separated 

into its components. For this reason, it is at this point impossible to know if the error in the 

calculated distribution coefficients is caused by errors in the Gibbs energies in one of the two 

or in both solvents. The lack of experimental acidity constants for the individual compounds 

also makes it difficult to ascertain to what degree the significant discrepancies between parti-
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tion and distribution coefficient would be found in experimental measurements. Further dis-

cussion and analysis of a reevaluation of the entire SAMPL5 set of compounds will be con-

ducted in Chapter 6.4. 
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5 SAMPL6.1: PREDICTION OF ACIDITY CON-

STANTS IN AQUEOUS SOLUTION 

5.1 Introduction 

The task set by the authors in the SAMPL5 challenge was quickly recognized as being 

perhaps slightly too difficult compared to the “simple” prediction of hydration free energies in 

the earlier SAMPL challenges. Especially the fact that errors cannot be properly assigned to 

the modeling of either phase or the pKa model makes it difficult to analyze and improve the 

models used. For example, if a model performs well in predicting the energy in the water 

phase but significantly worse for the octanol phase the results are indistinguishable from those 

of a model for which the opposite is true. 

For this reason, the SAMPL6 challenge was created to tackle the same task, the distribu-

tion of compounds between two immiscible phases, but split into two parts: the first task was 

to predict the acidity constants of 24 compounds in aqueous solution, while at a later date the 

prediction of the octanol-water partition coefficient of the neutral form of the molecules 

would form an independent challenge. Furthermore, even the first task itself was split into 

three parts: the prediction of microscopic pKa values, that is, the acid dissociation constant 

between two specific microstates of a given compound, the prediction of microstate popula-

tions as a function of the pH, and finally the prediction of macroscopic, experimentally meas-

urable pKa values. Of these only the last task had full experimental results available, while the 

microstate populations were only determined for a few, selected compounds. Unlike in the 

previous challenge, here, a comprehensive set of tautomeric states in all potentially relevant 

protonation states (sometimes ranging from -3 to +4) was issued by the challenge authors. 
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This task is perfectly suited for EC-RISM for a number of reasons: for one, all the re-

quired predictions can be made by simply calculating the Gibbs energies of all relevant tau-

tomers in each protonation state under investigation. Furthermore, the use of quantum-

chemical methods should make the calculations more accurate, especially for the highly 

charged compounds, as polarization effects become more important. Three different quantum-

chemical levels of theory were investigated to learn about their relative performance for pre-

dicting physicochemical parameters. Finally, compared to the earlier SAMPL5 challenge 

there were some improvements that could be tested for the first time in this blind prediction 

challenge. During the SAMPL5 challenge the electrostatic potential used in the EC-RISM 

calculations was derived from atomic partial charges, while here the exact electrostatic poten-

tial was derived from the wave function of the solute, which should be more accurate. In addi-

tion to this, over the course of the challenge P. Kibies et al. developed a truncation scheme for 

the exact electrostatic potential, because of convergence issues for some compounds when 

using it during EC-RISM calculations. The problem is caused by the exact electrostatic poten-

tial not being sufficiently close to the point-charge based potential at the box edges, especially 

for some charged compounds. P. Kibies’ scheme scales the exact electrostatic potential with a 

cubic switching function [87]. For comparison’s sake a simple pKa model taking the PCM 

energies at the B3LYP/6-311+G(d,p) level of theory as input was also developed and submit-

ted in the SAMPL6 challenge to investigate if it is possible to gain access to reasonable acid 

dissociation constants at such little computational cost. 

 

5.2 Computational details 

In the interest of brevity, in the following chapters only those computational details that 

differ from the setup used in the SAMPL5 challenge will be mentioned. In this instance only 

the globally minimal PCM structures were taken to calculate the Gibbs energies of solvation 

and the acidity constants for the MNSOL training set [17]. For the SAMPL6 challenge set a 

more efficient way of generating the conformers was used. This may seem counterintuitive 

considering that only 24 molecules had to be investigated, however, considering that the sum 

of all microstates published by the authors made this number swell to 413 distinct states, for 

each of which the conformational ensemble had to be generated, this course of action was 

necessary. Thus, to generate the conformations Dr. Stefan Güssregen from our collaboration 

partner the Sanofi-Aventis Deutschland GmbH used Maestro 11.2 and Macromodel 11.6 from 
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the 2017-2 release of the Schrödinger software suite using OPLS3 with an implicit water 

model and the mixed torsional/low-mode conformational search algorithm [148]. The search 

was carried out with 100 steps for each rotatable bond up to a maximum of 1000 steps. An 

energy cutoff of 5 kcal∙mol-1 and an RMSD cutoff of 1.5 Å were used to eliminate high-

energy and redundant conformations from the search results. In one compound, SM22, iodine 

was present. Since this element cannot be treated with all basis sets used in this work it was 

replaced by the next smaller halogen, bromine, for every microstate. For the challenge sub-

mission only the minimum conformation supplied by Macromodel was optimized quantum-

chemically, first using PBE/6-311+G(d,p) for pre-optimization followed by an optimization at 

the same level of theory used in the SAMPL5 challenge. After the submission all confor-

mations were optimized this way and the lowest two conformations as measured by their 

PCM energies were calculated with EC-RISM. During the EC-RISM calculations three dif-

ferent levels of theory were used: the SAMPL5 level of theory MP2/6-311+G(d,p), the slight-

ly more expensive level of theory MP2/cc-pVTZ, and the inexpensive DFT functional 

B3LYP/6-311+G(d,p). All calculations, including the EC-RISM calculations, were conducted 

using Gaussian 09 rev E.01 [149]. 

Some of the microstates contained a protonated oxygen atom with a positive atomic 

charge and bonded to three different atoms. These atoms have no corresponding GAFF pa-

rameters and microstates containing them were discarded. Judging from their relative PCM 

energies compared to other microstates of the same protonation state this was not expected to 

have an effect on the final energy. 

The 3D RISM calculations were conducted on size-adapted grids with the same 0.3 Å 

spacing as in the SAMPL5 challenge for the submission phase, however this time using dis-

tances of only 12.5 Å between the molecule and the box edges during the HF iterations and 

15 Å in the final MP2 iteration. For the calculations after the initial submission cubic boxes 

with a fixed grid size of 1283 points were used for all molecules other than SM23, where due 

to the large size of the molecule a grid of 1403 points was used. 

5.3 Results 

5.3.1 Solvation free energies 

In this challenge a greater number of models was tested to investigate if the choice of the 

MP2/6-311+G(d,p) level of theory in combination with a 3-par PMV correction for water and 

a 2-par correction for the pKa were sensible. In addition, the new treatment of the electrostat-
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ics further increases the number of models under consideration. For the SAMPL6 challenge 

the following PMV corrections were trained: 

1. Three levels of theory: MP2/cc-pVTZ, MP2/6-311+G(d,p), B3LYP/6-311+G(d,p). The 

6-311+G(d,p) basis set will be denoted as “6-311” in the model designations 

2. Three treatments of the electrostatics: point charges (“q”), full electrostatics without peri-

odicity correction (“φ”), and full electrostatics with periodicity correction (“φopt”) 

3. Two PMV corrections: including direct scaling of the 3D RISM excess chemical potential 

(3-par) and no scaling of the 3D RISM excess chemical potential (2-par). In this case nei-

ther model contains an intercept parameter, but instead both contain a parameter account-

ing for the Galvani potential when investigating charged species (see chapter 2.2.1). 

Compared to the corrections used for cyclohexane (see equations (75) and (76)), in this 

case the corrected excess chemical potentials for the two corrections are 

 ex ex
corr

m
μ v qμ c μ c V c q= + +  (77) 

for the 3-par model and 

 ex ex
corr

m
v qμ μ c V c q= + +  (78) 

for the 2-par model. This gives a total of 18 possible PMV corrections under consideration of 

which only a few selected examples can be fully discussed in the main body of this work, 

because the different pKa models further expand the number of potential models. 

5.3.1.1 MP2-based models 

First the Gibbs energies of hydration calculated with the MP2 level of theory and the 

6-311+G(d,p) and cc-pVTZ basis sets will be discussed in full, as these were the models orig-

inally submitted in the SAMPL6 challenge [2]. The calculated Gibbs energies of solvation 

using point charges and the full electrostatic potential with periodicity correction are shown in 

Fig. 7 and the full sets of parameters and statistical metrics for this level of theory in Table 7. 
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Fig. 7: Gibbs energies of solvation calculated using EC-RISM at the MP2 level of theory using the 6-311+G(d,p) 

(A,B) and the cc-pVTZ (C,D) basis sets vs. the experimental results from the MNSOL database using point 

charges (A,C) and the periodicity-corrected exact electrostatic potential (B,D). Data generated using the 2-par 

correction is shown using blue squares and data generated using the 3-par correction as red squares. Original 

data are provided as part of OR_04, optimized structures are collected in OR_05. The latter are the same for all 

models investigated in this chapter. Figure adapted from [2]. 

Table 7: Parameters of optimized EC-RISM-based solvation free energy models for water (cμ, cV / kcal mol-1 

Å-3, cq / kcal mol-1 e-1) along with statistical metrics (root mean square error RMSE / kcal mol-1, mean absolute 

error MAE / kcal mol-1, mean signed error MSE / kcal mol-1, slope m’, intercept b’ / kcal mol-1, and coefficient of 

determination R2 from descriptive regression). This data was generated using the experimental isothermal water 

compressibility of 0.450183∙109 Pa-1. Table adapted from [2]. 

EC-RISM RMSE MAE MSE m' b’ R2 cμ cV cq 
MP2/6-311/q/2-par 2.99 2.01 -0.56 1.04 0.42 0.99 - -0.1608 -20.5422 
Neutral 1.77 1.31 -0.20       
Anions 5.27 3.92 2.23       
Cations 4.66 4.16 3.61       
MP2/6-311/q/3-par 2.32 1.65 -0.09 0.99 -0.34 0.99 0.9538 -0.1623 -17.8117 
Neutral 1.53 1.16 0.31       
Anions 4.17 3.62 -0.68       
Cations 2.93 2.13 -0.42       
MP2/6-311/φ/2-par 2.20 1.53 -0.29 1.00 -0.29 0.99  -0.1630 -16.0322 
Neutral 1.63 1.17 -0.30       
Anions 3.50 2.76 -0.19       
Cations 3.04 2.19 -0.31       
MP2/6-311/φ/3-par 2.16 1.50 -0.19 0.99 -0.44 0.99 0.9901 -0.1633 -15.5270 
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Neutral 1.60 1.17 -0.40       
Anions 3.42 2.72 0.35       
Cations 3.04 2.03 0.56       
MP2/6-311/φopt/2-par 2.04 1.43 -0.26 1.00 -0.35 1.00 - -0.1633 -15.7284 
Neutral 1.56 1.13 0.36       
Anions 3.07 2.46 -0.01       
Cations 2.98 2.09 -0.02       
MP2/6-311/φopt/3-par 2.03 1.42 -0.20 0.99 -0.44 1.00 0.9938 -0.1634 -15.4259 
Neutral 1.55 1.13 -0.42       
Anions 3.03 2.44 -0.35       
Cations 3.00 2.01 -0.54       
MP2/cc-pVTZ/q/2-par 3.04 1.69 -0.44 1.03 0.26 0.99 - -0.1663 -19.4448 
Neutral 1.42 1.04 0.13       
Anions 6.21 4.36 -1.69       
Cations 4.03 2.19 -2.80       
MP2/cc-pVTZ/q/3-par 2.72 1.69 -0.11 0.99 -0.29 0.99 0.9652 -0.1669 -17.5025 
Neutral 1.37 1.05 -0.24       
Anions 5.68 4.36 0.23       
Cations 2.87 2.19 0.38       
MP2/cc-pVTZ/φ/2-par 2.32 1.47 -0.27 1.00 -0.26 0.99 - -0.1679 -15.9468 
Neutral 1.33 0.97 -0.26       
Anions 4.51 3.39 -0.26       
Cations 2.94 2.19 -0.41       
MP2/cc-pVTZ/φ/3-par 2.30 1.47 -0.27 0.99 -0.37 0.99 0.9937 -0.1677 -15.5604 
Neutral 1.34 0.97 -0.26       
Anions 4.46 3.39 -0.26       
Cations 2.90 2.19 -0.41       
MP2/cc-pVTZ/φopt/2-par 2.20 1.41 -0.26 1.00 -0.28 0.99 - -0.1677 -15.8696 
Neutral 1.30 0.94 -0.28       
Anions 4.22 3.22 -0.17       
Cations 2.90 2.13 -0.28       
MP2/cc-pVTZ/φopt/3-par 2.19 1.41 -0.26 0.99 -0.37 0.99 0.9923 -0.1680 -15.5669 
Neutral 1.31 0.94 -0.28       
Anions 4.17 3.22 -0.17       
Cations 2.89 2.13 -0.28       

Using no direct scaling of the excess chemical potential appears to make the results slight-

ly worse when using point charges during the EC-RISM calculations. For the model MP2/6-

311/q/2-par the RMSE reaches 2.99 kcal∙mol-1 across all molecules while for the correspond-

ing 3-par model achieves an RMSE of 2.32 kcal∙mol-1. The increased error is mostly caused 

by a worse prediction of anions and cations where the RMSE is 5.27 and 4.66 kcal∙mol-1 in-

stead of 4.17 and 2.93 kcal∙mol-1, respectively. This is not a surprise, because a less accurate 

model for the treatment of the electrostatics should have a larger influence on charged mole-

cules, where the electrostatics contribute the most to the Gibbs energy of solvation. The mod-

el using point charges is also the only one where the trained parameter scales the calculated 

excess chemical potential by more than 1%. For the other models using the exact electrostatic 

potential the model parameter for scaling the excess chemical potential is close to unity and 

thus the differences in the errors and other statistical parameters between the 2-par and 3-par 

models is negligible. This is also the reason why only the 2-par models were discussed in the 

original paper [2]. 
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Using the full QM electrostatics without any further correction already improves the re-

sults significantly. While for neutral species the RMSE decreases only to 1.63 kcal∙mol-1, the 

anions and cations are now predicted with an RMSE of 3.50 and 3.04 kcal∙mol-1, respectively, 

resulting in a total RMSE of only 2.20 kcal∙mol-1. Using the periodicity correction with the 

model MP2/6-311/φopt/2-par further decreases the RMSE to 2.04 kcal∙mol-1. 

Looking at the results for the cc-pVTZ basis set some similarities and some differences 

are easy to make out. For this level of theory, the trends are the same for the point charge and 

electrostatic models and here, too, the parameter directly scaling the excess chemical potential 

is only significantly deviating from unity for the point charge model MP2/cc-pVTZ/q/3-par. 

Using the exact electrostatics improves the total RMSE from 3.04 to 2.32 kcal∙mol-1 for the 

2-par model and to 2.20 kcal∙mol-1 with the MP2/cc-pVTZ/φopt/2-par model. But while for 

neutral and cationic species the result is slightly better than with the corresponding models 

using the 6-311+G(d,p) basis set, anions are predicted significantly worse here. Using the 

MP2/6-311/φopt/2-par model gives an RMSE of 3.07 kcal∙mol-1 for the anions, which is al-

most the same as the RMSE for the cations of 2.98 kcal∙mol-1. For the cc-pVTZ model these 

values are 4.22 and 2.90 kcal∙mol-1, respectively, which shows a significant difference in the 

relative performance. Even at this point this should be expected to constitute a challenge when 

predicting the acidity constants of compounds where the deprotonated species is an anion. 

Two important observations can be made just from this training set: The addition of a 

third free parameter does not appear to lead to improved results when using the exact electro-

static potential. It is thus possible to think of this parameter as a correction term for the ap-

proximation of using point charges to calculate the excess chemical potential. Furthermore, 

the usage of the full electrostatic potential mostly increases the accuracy for ions which means 

that for properties involving only neutral species, such as partition coefficients, the accuracy 

should be comparable while for properties involving charged species, such as acidity con-

stants and distribution coefficients, the models using the full electrostatic potential should 

perform significantly better. 

5.3.1.2 DFT-based models 

While the following results were not published in the original paper, during the SAMPL6 

challenge the DFT functional that is generally used to optimize the structures was also inves-

tigated for the quality of the EC-RISM energies. Furthermore, a simple PCM-based model 

that requires even fewer computational resources was developed and submitted as a model in 

the challenge. Compared to the MP2 calculations these DFT based energies can be calculated 
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much faster because they scale much more favorably with the number of basis functions, 

making it possible to evaluate much larger or significantly more molecules at the same com-

putational cost. The Gibbs energies of hydration calculated with the B3LYP/6-311+G(d,p) 

level of theory and using point charges and the full electrostatics with periodicity correction 

are exemplary depicted in Fig. 8 and the full sets of parameters and statistical metrics for this 

level of theory in Table 8. Fig. 8 and Table 8 also contain the data from the PCM model, 

where a single parameter correcting the Gibbs energy of hydration for ions, regardless of the 

sign of their total charge, was used. While this implicit solvation model does not have the 

same issues with respect to the PMV of the molecule as EC-RISM based models, the Gibbs 

energies of hydration of ionic compounds exhibited a strong deviation from the experimental 

values. A correction using only a single parameter multiplied by the absolute value of the net 

charge of the molecule was trained on the MNSOL database and applied to the PCM energies 

in all further calculations. 

 
Fig. 8: Gibbs energies of solvation calculated using EC-RISM (A,B) and PCM (C) at the B3LYP/6-311+G(d,p) 

level of theory vs. the experimental results from the MNSOL database using point charges (A) and the periodici-

ty-corrected exact electrostatic potential (B). For the EC-RISM-based models data generated using two free 

parameters is shown using blue squares and data generated using three free parameters as red squares. For the 
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PCM-based model uncorrected data is shown in red and corrected data in blue. Original data are provided as part 

of OR_04. 
 

Table 8: Parameters of optimized EC-RISM- and PCM-based solvation free energy models for water (cμ, cV / 

kcal mol-1 Å-3, cq / kcal mol-1 e-1) along with statistical metrics (root mean square error RMSE / kcal mol-1, mean 

absolute error MAE / kcal mol-1, mean signed error MSE / kcal mol-1, slope m’, intercept b’ / kcal mol-1, and 

coefficient of determination R2 from descriptive regression). For the PCM-based model only, the uncorrected 

data is shown as well. The EC-RISM-based data was generated using the experimental isothermal water com-

pressibility of 0.450183∙10-9 Pa-1. 

Model RMSE MAE MSE m' b’ R2 cμ cV cq 
EC-RISM          
B3LYP/6-311/q/2-par 3.56 2.54 -0.59 1.06 0.63 0.99 - -0.1472 -22.7004 
Neutral 2.47 1.88 0.30       
Anions 5.82 4.35 -2.54       
Cations 5.26 4.64 -4.20       
B3LYP/6-311/q/3-par 2.71 1.97 -0.02 0.99 -0.30 0.99 0.9426 -0.1482 -19.3426 
Neutral 2.08 1.56 -0.33       
Anions 4.41 3.73 0.69       
Cations 3.17 2.28 1.14       
B3LYP/6-311/φ/2-par 2.32 1.65 -0.19 0.99 -0.33 0.99 - -0.1541 -16.4628 
Neutral 1.84 1.36 -0.35       
Anions 3.39 2.57 0.23       
Cations 3.20 2.28 0.38       
B3LYP/6-311/φ/3-par 2.31 1.63 -0.14 0.99 -0.40 0.99 0.9953 -0.1541 -16.2306 
Neutral 1.83 1.35 -0.40       
Anions 3.37 2.54 0.48       
Cations 3.25 2.26 0.79       
B3LYP/6-311/φopt/2-par 2.19 1.54 -0.14 0.99 -0.39 0.99 - -0.1546 -15.9949 
Neutral 1.76 1.29 -0.41       
Anions 3.04 2.31 0.52       
Cations 3.23 2.25 0.86       
B3LYP/6-311/φopt/3-par 2.19 1.55 -0.14 0.99 -0.38 0.99 1.0009 -0.1546 -16.0396 
Neutral 1.77 1.29 -0.40       
Anions 3.04 2.31 0.47       
Cations 3.21 2.25 0.78       
PCM (Uncorrected) 6.86 4.49 3.01 0.8134 -1.1402 0.99 - - - 
PCM/6-311/2-par 3.57 2.53 0.06 0.9718 -0.5700 0.99 - - -11.6360 
Neutral 3.02 2.06 0.08       
Anions 5.57 4.60 0.66       
Cations 3.22 2.73 -1.10       

The results are significantly worse when using point charges than for the equivalent mod-

els using MP2 energies, but the use of the full electrostatic potential closes most of this gap. 

This can be exemplified with the B3LYP/6-311/q/2-par model, which yields and RMSE of 

3.56 kcal∙mol-1 after training compared to the corresponding MP2 models that have an RMSE 

of only approximately 3.0 kcal∙mol-1. The B3LYP/6-311/φopt/2-par model on the other hand 

achieves an RMSE of merely 2.19 kcal∙mol-1 which is well in line with the MP2 models’ per-

formances. Due to the bad performance for anions when using the MP2/cc-pVTZ level of the-

ory the DFT approach in practice yields predictions with similar accuracy as these models, 

e.g., the MP2/cc-pVTZ/φopt/2-par has an almost identical RMSE of 2.20 kcal∙mol-1. And 

while for the MP2/cc-pVTZ model the performance varies significantly for cations and ani-
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ons, this is not the case for the DFT models, making the use of DFT energies potentially ad-

vantageous for pKa prediction, even though the performance of the MP2/6-311 model can still 

be expected to be superior. 

The performance of the PCM model similar to the B3LYP/6-311/q/2-par EC-RISM model 

which is the worst-performing EC-RISM model investigated in this section, with total RMSEs 

of 3.56 and 3.57 kcal∙mol-1, respectively. As in the case of the MP2/cc-pVTZ models, here the 

significant difference in the performance for anions and cations is a concern when aiming to 

use a single set of parameters for the calculation of acidity constants, too. 

Both the MP2- and the DFT-based corrections can now be applied to train pKa models so 

their relative performance can be re-evaluated on this independent data set to investigate if the 

training set performance can be considered predictive. 

5.3.2 pKa model training 

Unlike during the SAMPL5 challenge, here, the pKa models were also investigated in 

more details. While the split of the training set into acids, secondary and tertiary amines, and 

other bases did not show any improvement in the predicted distribution coefficients and is not 

used here for that reason, there is in theory no reason for the slope parameter to be anything 

but “1”. However, as seen in this and other groups’ works [143,147,150], the parameter seems 

to be necessary to achieve predictions with chemical accuracy. Nevertheless, it is useful to 

know how much of an influence this additional parameter has on the results and how much 

this influence changes depending on the level of theory and the PMV correction used. In addi-

tion to the “2-par” and “3-par” for the PMV correction, these models are denoted “1-par” and 

“2-par”, respectively. Furthermore, during the training of the pKa models one compound class, 

thiols, stood out as having significantly worse predicted pKa values. The reason for this was 

later determined to be that the σ-Lennard Jones parameter of the negatively charged sulfur 

atom used in the GAFF parameter set was too small [151,152], but at the time of the challenge 

for each pKa model two versions were trained: one with all molecules of the Klicić data set for 

training denoted “all”, and one excluding all thiol compounds from the regression denoted 

“nt”. Ultimately this means that for every PMV model four pKa models were trained, but in 

the original paper only five of the models were discussed, namely the MP2/6-311/*/2-par/all 

models, where “*” denotes any of the possible options, as well as the MP2/cc-

pVTZ/q/2-par/all and the MP2/cc-pVTZ/φopt/2-par/all models. This notation for all possible 

variations of a model designation will be used in the rest of this chapter as well. However, in 
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this chapter the entire spectrum of different model combinations is shown, and the general 

trends resulting from each option will be discussed through some examples. 

5.3.2.1 MP2-based models 

First, the effect of the exact electrostatics, with and without periodicity correction will be 

compared with the point charge models using both the 6-311+G(d,p) and the cc-pVTZ basis 

sets that were discussed for the SAMPL6 challenge [2]. Furthermore, the influence of the two 

different PMV correction models, 2-par and 3-par, will be investigated. The calculated acidity 

constants of the training set for these points of discussion are shown in Fig. 9 and the parame-

ters for the pKa models and the resulting statistical metrics in Table 9.  
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Fig. 9: Acidity constants pKa calculated using EC-RISM at the MP2/6-311+G(d,p) (A,C,E) and MP2/cc-pVTZ 

(B,D,F) level of theory vs. the experimental results from the Klicić data set [143] using point charges (A,B), the 

exact electrostatic potential (C,D), or the periodicity-corrected exact electrostatic potential (E,F) with two pa-

rameters for the pKa model. Data generated using the 2-par model for the PMV correction is shown in dark blue 

and data generated using the 3-par model as light blue. Acids are depicted as squares and bases as triangles. Raw 
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data are provided as part of OR_04, and optimized solution phase structures are provided as OR_05. The latter 

are identical for all models investigated in this chapter. Figure adapted from [2]. 

Table 9: Parameters m and b of optimized EC-RISM-based pKa models and statistical metrics (root-mean-square 

error RMSE, mean absolute error MAE, and coefficient of determination R2 from descriptive regression). Table 

adapted from [2]. 

EC-RISM RMSE MAE m b R2 
MP2/6-311 nt/all nt/all nt/all nt/all nt/all 
q/2-par/1-par 2.56/2.79 1.96/2.08 1/1 -205.973/-205.699 0.85/0.83 
Acids 2.16/2.52 1.88/2.00    
Bases 2.87/3.03 2.03/2.16    
q/2-par/2-par 1.57/1.88 1.17/1.34 0.6369/0.6228 -129.239/-126.031 0.94/0.92 
Acids 1.56/2.04 1.08/1.33    
Bases 1.57/1.70 1.26/1.34    
q/3-par/1-par 1.93/1.97 1.62/1.67 1/1 -204.923/-204.801 0.91/0.92 
Acids 1.26/1.49 1.06/1.26    
Bases 2.37/2.34 2.12/2.08    
q/3-par/2-par 1.40/1.51 1.20/1.28 0.7332/0.7392 -148.488/-149.950 0.96/0.95 
Acids 1.30/1.58 1.16/1.39    
Bases 1.48/1.43 1.23/1.18    
φ/2-par/1-par 1.64/1.61 1.37/1.32 1/1 -204.038/-204.057 0.94/0.94 
Acids 1.12/1.08 0.91/0.87    
Bases 1.99/1.99 1.76/1.76    
φ/2-par/2-par 1.01/1.00 0.84/0.83 0.7438/0.7493 -150.393/-151.521 0.98/0.98 
Acids 0.88/0.88 0.73/0.73    
Bases 1.12/1.11 0.94/0.93    
φ/3-par/1-par  1.79/1.77 1.54/1.50 1/1 -204.065/-204.112 0.93/0.93 
Acids 1.39/1.33 1.21/1.16    
Bases 2.08/2.10 1.83/1.84    
φ/3-par/2-par 1.21/1.18 1.03/1.00 0.7363/0.7391 -148.832/-149.422 0.97/0.97 
Acids 1.13/1.09 0.98/0.92    
Bases 1.27/1.26 1.08/1.07    
φopt/2-par/1-par  1.68/1.66 1.46/1.43 1/1 -204.197/-204.242 0.94/0.94 
Acids 1.24/1.20 1.10/1.06    
Bases 1.99/2.00 1.77/1.78    
φopt/2-par/2-par 1.07/1.04 0.90/0.87 0.7421/0.7449 -150.155/-150.720 0.97/0.98 
Acids 0.97/0.93 0.81/0.77    
Bases 1.15/1.14 0.97/0.97    
φopt/3-par/1-par 1.88/1.86 1.63/1.61 1/1 -204.221/-204.292 0.92/0.92 
Acids 1.55/1.51 1.39/1.36    
Bases 2.12/2.15 1.84/1.87    
φopt/3-par/2-par 1.29/1.26 1.11/1.07 0.7290/0.7288 -147.428/-147.383 0.96/0.97 
Acids 1.25/1.19 1.09/1.01    
Bases 1.33/1.33 1.13/1.13    
MP2/cc-pVTZ      
q/2-par/1-par 1.92/3.13 1.45/2.01 1/1 -207.786/-207.229 0.92/0.79 
Acids 1.02/3.67 0.80/2.00    
Bases 2.45/2.50 2.03/2.01    
q/2-par/2-par 1.02/2.15 0.82/1.38 0.6973/0.5881 -143.263/-119.598 0.98/0.90 
Acids 1.05/2.87 0.87/1.93    
Bases 1.00/1.06 0.78/0.84    
q/3-par/1-par 2.64/3.24 2.27/2.68 1/1 -207.012/-206.577 0.84/0.77 
Acids 2.24/3.70 2.04/3.06    
Bases 2.95/2.72 2.47/2.31    
q/3-par/2-par 1.78/2.31 1.56/1.82 0.6395/0.5803 -130.455/-117.559 0.93/0.88 
Acids 1.89/2.93 1.72/2.44    
Bases 1.68/1.50 1.43/1.23    
φ/2-par/1-par 2.40/2.51 2.00/2.13 1/1 -206.376/-206.176 0.87/0.86 
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Acids 2.04/2.45 1.85/2.20    
Bases 2.67/2.57 2.13/2.06    
φ/2-par/2-par 1.51/1.72 1.34/1.45 0.6579/0.6564 -133.937/-133.436 0.95/0.94 
Acids 1.59/2.09 1.43/1.84    
Bases 1.44/1.27 1.25/1.08    
φ/3-par/1-par 2.65/2.71 2.23/2.32 1/1 -206.227/-206.050 0.84/0.84 
Acids 2.40/2.67 2.27/2.45    
Bases 2.86/2.75 2.18/2.19    
φ/3-par/2-par 1.72/1.87 1.54/1.63 0.6333/0.6349 -128.634/-128.810 0.93/0.92 
Acids 1.82/2.20 1.66/2.01    
Bases 1.64/1.48 1.44/1.27    
φopt/2-par/1-par 2.42/2.50 2.01/2.12 1/1 -206.333/-206.154 0.87/0.86 
Acids 2.08/2.40 1.87/2.12    
Bases 2.68/1.70 2.13/1.46    
φopt/2-par/2-par 1.53/1.70 1.36/1.46 0.6560/0.6574 -133.507/-133.630 0.95/0.94 
Acids 1.61/2.04 1.47/1.83    
Bases 1.45/1.30 1.27/1.11    
φopt/3-par/1-par 2.63/2.67 2.20/2.27 1/1 -206.212/-206.051 0.84/0.84 
Acids 2.37/2.59 2.15/2.38    
Bases 2.84/2.74 2.25/2.18    
φopt/3-par/2-par 1.70/1.83 1.53/1.61 0.6357/0.6392 -129.135/-129.727 0.93/0.93 
Acids 1.79/2.14 1.65/1.47    
Bases 1.61/1.47 1.43/1.27    

Looking at the results from calculations using the MP2/6-311/q/2-par/2-par/all PMV cor-

rection shows that the results are worse than those using the corresponding 3-par PMV correc-

tion that was originally used in the SAMPL5 challenge (see Fig. 9A). The RMSE is at 1.88 

pK units for the entire data set, and acids are predicted significantly worse than bases with 

RMSEs of 2.04 and 1.70, respectively. This is in line with the results obtained for the 

MNSOL data set, where anions were predicted significantly worse than cations. The gap be-

tween acids and bases is decreased with RMSEs of only 1.58 and 1.43, yielding a total RMSE 

of 1.51 when the 3-par correction is used. 

However, when applying the exact electrostatics during the EC-RISM calculations the re-

sults of the MP2/6-311/φ/2-par/2-par/all correction are actually slightly better than those us-

ing the corresponding 3-par correction, with total RMSEs of 1.00 and 1.18, respectively (see 

Fig. 9B). The improved electrostatics also invert the behavior of the acids and bases as in this 

case the acids show a lower error with an RMSE of only 0.88 compared to 1.11 for the bases. 

In all cases the results are greatly improved compared to the point charge model, with the best 

total RMSEs for the uncorrected and the periodicity corrected electrostatics at 1.00 (MP2/6-

311/φ/2-par/2-par/all) and 1.04 (MP2/6-311/φopt/2-par/2-par/all), respectively, and when ac-

counting for the statistical model errors these models are actually indistinguishable. While a 

convergence of the RMSEs for the 2-par and the 3-par models could be expected from the 

training data, a complete reversal was not seen on the MNSOL data set. 
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Comparing the results of the MP2/6-311+G(d,p) level of theory with those generated us-

ing the slightly larger cc-pVTZ basis set reveals unexpectedly bad results. Even when using 

exact, periodicity-corrected electrostatics, the best total RMSE of 1.70 for the 

MP2/cc-pVTZ/φopt/2-par/2-par/all model is not significantly better than that achieved by us-

ing the MP2/6-311/q/2-par/2-par/all model with atomic point charges and the smaller basis 

set. As expected, this is due to the bad performance of the anions that in this data set leads to a 

bad performance for the acids (RMSE 2.04) while the bases are predicted reasonably well 

(RMSE 1.30). Since only a single model is used for both acids and bases it is likely that the 

performance would be even better if the acids were not predicted as badly. 

Especially for the point charge-based models MP2/6-311/q/*/2-par/all and 

MP2/cc-pVTZ/q/*/2-par/all the bad performance for thiols can be easily spotted in Fig. 9A 

and B, where significant outliers distort the predicted results. While the results are not as bad 

when using the full electrostatic potential, all models were also trained by removing the thiols 

from the training set, yielding the models MP2/6-311/*/*/*/nt and MP2/cc-pVTZ/*/*/*/nt. 

While the statistical metrics are incorporated in Table 9, the comparison with the experi-

mental results is depicted in Fig. 10. 

It is not surprising that the removal of the worst data points leads to improved statistical 

metrics, e.g. for the MP2/6-311/q/2-par/2-par/all and MP2/cc-pVTZ/q/2-par/2-par/all models 

the total RMSE shrinks from 1.88 and 2.15, respectively, to 1.57 and even 1.02, which is the 

best performance of any point charge model, for the corresponding “nt” models. This also 

represents the only case where the point charge-based model’s training set performance is 

better than the model’s using the exact electrostatic potential. In this case, the 

MP2/cc-pVTZ/φopt/2-par/2-par/nt yields an RMSE of 1.53, but even here the performance gap 

between the acids and bases shrinks significantly. Conversely, for the MP2/6-311-based mod-

els there is almost no difference in the performance when including or excluding the thiols 

from the training data set as long as the exact electrostatic potential is used. 
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Fig. 10: Acidity constants pKa calculated using EC-RISM at the MP2/6-311+G(d,p) (A,C,E) and MP2/cc-pVTZ 

(B,D,F) level of theory vs. the experimental results from the Klicić data set [143] using point charges (A,B), the 

exact electrostatic potential (C,D), or the periodicity-corrected exact electrostatic potential (E,F) with two pa-

rameters for the pKa model. Thiols were excluded for the training of these models. Data generated using the 2-
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par model for the PMV correction is shown in dark blue and data generated using the 3-par model as light blue. 

Acids are depicted as squares and bases as triangles. Raw data are provided as part of OR_04. 

Using only a single parameter for the pKa model unsurprisingly leads to worse results on 

the training data set, but here the differences in the errors between the models generally fol-

low the differences for the pKa model using two parameters. Again, the statistical metrics and 

model parameters are included in Table 9, while the comparison with the experimental values 

is depicted in Fig. 11. 

It is easily apparent that the slope parameter is necessary for the accurate prediction of 

acidity constants from both a visual inspection of the predicted values in comparison with the 

experimental results and the statistical metrics: Looking at Fig. 11 shows that there are large 

differences between the experimental and the predicted acidity constants, especially for the 

smallest and largest values. Furthermore, the lowest values are underpredicted and the largest 

overpredicted, indicating that an additional slope parameter would improve the results. This is 

confirmed by the statistical metrices: Even the best-performing model 

MP2/6-311/φ/2-par/1-par/all only achieves an RMSE of 1.61 compared to 1.00 for the 

MP2/6-311/φ/2-par/2-par/all model. In general, the error is between 0.6 and 1.0 pK units big-

ger for all models when compared with their corresponding 2-par models and the smaller dif-

ferences are exhibited by the better performing models using the exact electrostatic potential 

while the larger differences by the models using point charges. 

These results indicate that for the MP2-based models the exact electrostatic potential 

should be used to predict accurate acidity constants. Furthermore, the 2-par PMV correction 

in combination with the 2-par pKa model seem to generate the best results. The different mod-

els generated including or excluding thiols from the training set show only significantly dif-

fering results for the point charge-based models, but they still need to be tested on another 

data set to judge their relative performances.  
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Fig. 11: Acidity constants pKa calculated using EC-RISM at the MP2/6-311+G(d,p) (A,C,E) and MP2/cc-pVTZ 

(B,D,F) level of theory vs. the experimental results from the Klicić data set [143] using point charges (A,B), the 

exact electrostatic potential (C,D), or the periodicity-corrected exact electrostatic potential (E,F) with one pa-

rameters for the pKa model. Data generated using the 2-par model for the PMV correction is shown in dark blue 
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and data generated using the 3-par model as light blue. Acids are depicted as squares and bases as triangles. Raw 

data are provided as part of OR_04. 

5.3.2.2 DFT-based models 

The less computationally expensive B3LYP/6-311+G(d,p) level of theory unsurprisingly 

exhibits worse results than what is achieved using MP2/6-311+G(d,p). With an RMSE of 2.71 

for the 2-parameter point charge model, these results cannot be used to obtain accurate predic-

tions. Here, the slope parameter is also smaller than 0.5 which indicates that the raw energy 

differences are the furthest from the true values when compared to the other two levels of 

theory. And while the 3-parameter PMV correction improves these results significantly, they 

are still worse than the corresponding MP2 models. 

 

 

Fig. 12: Acidity constants pKa calculated using EC-RISM at the B3LYP/6-311+G(d,p) level of theory vs. the 

experimental results from the Klicić data set using point charges (A,B) or the exact electrostatic potential (CD) 

with either a single parameter for the pKa model (A,C) or two parameters (B,D). Data generated using two free 
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parameters for the PMV correction is shown in dark blue and data generated using three free parameters as light 

blue. Acids are depicted as squares and bases as triangles. Raw data are provided as part of OR_04.  
 

Table 10: Parameters m and b of optimized EC-RISM-based pKa models and statistical metrics (root-mean-

square error RMSE, mean absolute error MAE, and coefficient of determination R2 from descriptive regression).  

Model RMSE MAE m b R2 
EC-RISM      
B3LYP/6-311 nt/all nt/all nt/all nt/all nt/all 
q/2-par/1-par 4.11/4.48 3.81/4.07 1/1 -206.252/-205.806 0.62/0.56 
Acids 4.08/4.46 4.01/4.08    
Bases 4.13/4.51 3.65/4.06    
q/2-par/2-par 2.39/2.71 1.74/1.89 0.4789/0.4391 -95.987/-87.259 0.87/0.84 
Acids 2.08/2.58 1.54/1.71    
Bases 2.64/2.83 1.92/2.07    
q/3-par/1-par 1.95/2.24 1.48/1.63 1/1 -204.915/-204.656 0.91/0.89 
Acids 1.23/1.92 0.97/1.22    
Bases 2.41/2.50 1.91/2.01    
q/3-par/2-par 1.51/1.83 1.10/1.29 0.7433/0.7277 -150.946/-147.421 0.95/0.93 
Acids 0.99/1.75 0.71/1.07    
Bases 1.84/1.90 1.45/1.51    
φ/2-par/1-par 1.79/1.86 1.40/1.47 1/1 -204.141/-203.995 0.93/0.92 
Acids 1.59/1.68 1.25/1.32    
Bases 1.94/2.02 1.53/1.62    
φ/2-par/2-par 1.19/1.36 0.92/1.01 0.7361/0.7420 -148.864/-149.942 0.97/0.96 
Acids 0.88/1.24 0.74/0.88    
Bases 1.41/1.48 1.07/1.14    
φ/3-par/1-par 1.66/1.73 1.27/1.33 1/1 -204.047/-203.915 0.94/0.93 
Acids 1.43/1.53 1.09/1.16    
Bases 1.84/1.91 1.43/1.49    
φ/3-par/2-par 1.13/1.28 0.85/0.93 0.7523/0.7596 -152.185/-153.572 0.97/0.96 
Acids 0.79/1.15 0.64/0.78    
Bases 1.35/1.40 1.03/1.08    
PCM/1-par/2-par 2.58 1.83 0.4022 -78.6463 0.85 
Acids 2.09 1.49    
Bases 2.98 2.16    

Here, too, using the exact electrostatic potential improves the overall results, giving a 

model with a total RMSE of 1.28 for the best performing model using a 3-parameter correc-

tion, B3LYP/6-311/φ/3-par/2-par/all, and 1.36 for the best performing model using a 

2-parameter correction, B3LYP/6-311/φ/2-par/2-par/all. Similar to the corresponding 

MP2/6-311 models, the acids are predicted more accurately than the bases, and if the small 

difference of only 0.36 in the RMSE would also be found in the independent test set it might 

be possible to use this much faster level of theory to calculate large molecules or datasets. The 

models trained by excluding all thiols perform slightly better than those including the thiols 

again, and the difference is exacerbated when using the point charge-based models. The larg-

est difference amounts to 0.37 pK units for the B3LYP/6-311/q/2-par/1-par/nt model, while 

the smallest ones are only 0.07 for the B3LYP/6-311/φ/2-par/1-par/nt model, compared with 

the corresponding “all” models. As in the preceding chapter this variation of the model can 

only be discussed in more detail when applied to an independent test set. Due to time con-
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straints during the challenge the periodicity-corrected exact electrostatic potential was not 

investigated further for the B3LYP/6-311+G(d,p) level of theory. 

The acidity constants calculated with PCM at the B3LYP/6-311+G(d,p) level of theory are 

depicted in Fig. 13 and the corresponding parameters and statistical metrics for this method in 

Table 10. For the PCM model all molecules including thiols were used for training, because 

there was no significant deviation for these compounds. The results of this training are very 

questionable, especially for some of the acids and bases where large deviations between the 

experimental and predicted acidity constants can be found for many of the compounds with a 

low pKa. Judging from the apparent individual slopes of the acids and bases, using separate 

models for the two compound classes better results might result in better predictions but this 

was not pursued during the challenge. While some compounds are predicted well it would be 

surprising if this model performed well on the SAMPL6 set of molecules because of the large 

number of outliers.  

 

Fig. 13: Acidity constants pKa calculated using PCM at the B3LYP/6-311+G(d,p) level of theory vs. the experi-

mental results from the Klicić data set. Acids are depicted as squares and bases as triangles. Raw data are pro-

vided as part of OR_04.  

 

5.3.3 pKa model application 

For the application of the models to the compounds of the SAMPL6 challenge a section 

dealing with the influence of ranking the conformations by their MM energies or their PCM 

energies is added to their designation. Here the use of the original MM conformations is de-

noted “cMM”, use of one PCM minimum structure is denoted “cQM” and the use of the two 
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lowest PCM structures is denoted as “cQM2”. In the original publication these conformational 

ensembles were termed “corig”, “copt”, and “copt2”, respectively. 

It should be noted in advance that while the SAMPL6 compounds can be considered a test 

set for the application of the models, it is by no means a perfect test set, because the chemical 

diversity differs significantly from that of both the MNSOL and the Klicić data set used to 

train the models. For example, all molecules in the SAMPL6 challenge contain multiple, sub-

stituted aromatic rings, while the compounds contained in the MNSOL range from simple 

aliphatic molecules, over simple alcohols, amines and other organic compounds to molecules 

that are comparable to the SAMPL6 challenge data set, e.g. caffeine, and even some inorganic 

ions. The statistical metrics for all models submitted during the SAMPL6 challenge and in-

vestigated in the post-submission phase are shown in Table 11. 

Table 11: Statistical metrics for acidity constant predictions (root mean square error RMSE, mean absolute error 

MAE, mean signed error MSE, slope m’, intercept b’, and coefficient of determination R2 from predictive regres-

sion) for the different model combinations submitted during the SAMPL6 challenge and generated in the post-

submission phase. Models are sorted by their performance as measured by the RMSE. Raw and calculated data 

for both EC-RISM- and PCM-based models are provided as OR_06. Optimized structures are collected in 

OR_05. 

EC-RISM RMSE MAE MSE m' b’ R2 
MP2/6-311/φopt/2-par/2-par/all/cQM2 1.13 0.97 -0.37 1.17 -1.38 0.91 
MP2/6-311/φopt/2-par/2-par/all/cQM 1.15 0.98 -0.39 1.16 -1.36 0.91 
MP2/cc-pVTZ/φopt/2-par/2-par/all/cQM2 1.15 1.01 -0.42 1.17 -1.45 0.91 
MP2/cc-pVTZ/φopt/2-par/2-par/all/cQM 1.23 1.09 -0.43 1.16 -1.41 0.90 
MP2/6-311/φopt/2-par/2-par/all/cMM 1.54 1.26 -0.37 1.22 -1.70 0.85 
MP2/cc-pVTZ/φ/2-par/2-par/all/cMM 1.60 1.24 0.32 1.14 -0.53 0.80 
MP2/cc-pVTZ/q/2-par/2-par/all/cMM 1.62 1.30 0.92 0.97 1.10 0.79 
MP2/cc-pVTZ/φ/2-par/2-par/nt/cMM 1.64 1.30 0.12 1.20 -1.08 0.81 
MP2/6-311/φ/2-par/2-par/all/cMM 1.70 1.24 -0.44 1.15 -1.36 0.79 
MP2/cc-pVTZ/φ/3-par/2-par/all/cMM 1.71 1.39 0.11 1.25 -1.43 0.82 
MP2/cc-pVTZ/φopt/2-par/2-par/all/cMM 1.71 1.40 -0.23 1.26 -1.82 0.83 
MP2/6-311/φ/2-par/2-par/nt/cMM 1.72 1.27 -0.51 1.15 -1.41 0.79 
MP2-cc-pVTZ/q/2-par/2-par/nt/cMM 1.80 1.39 0.74 1.15 -0.16 0.80 
MP2/cc-pVTZ/φ/3-par/2-par/nt/cMM 1.82 1.48 -0.10 1.29 -1.88 0.82 
B3LYP/6-311/φ/2-par/2-par/nt/cMM 1.99 1.56 0.59 1.01 0.50 0.67 
MP2/6-311/φ/3-par/2-par/all/cMM 2.01 1.59 -0.52 1.36 -2.68 0.82 
MP2/6-311/φ/3-par/2-par/nt/cMM 2.01 1.58 -0.56 1.35 -2.66 0.82 
MP2/cc-pVTZ/q/3-par/2-par/all/cMM 2.10 1.69 0.36 1.40 -2.06 0.82 
B3LYP/6-311/φ/3-par/2-par/nt/cMM 2.21 1.65 0.73 1.28 -0.98 0.76 
MP2/6-311/q/3-par/2-par/nt/cMM 2.22 1.78 -0.78 1.41 -3.24 0.82 
MP2/6-311/φ/2-par/1-par/all/cMM 2.40 1.94 -0.31 1.55 -3.64 0.84 
MP2/cc-pVTZ/q/3-par/2-par/nt/cMM 2.44 2.06 0.11 1.54 -3.18 0.82 
B3LYP/6-311)/q/3-par/2-par/nt/cMM 2.54 1.83 0.65 1.43 -1.96 0.76 
PCM/B3LYP/6-311/cMM 2.84 2.63 0.57 0.08 6.12 0.03 
MP2/6-311/φ/3-par/1-par/all/cMM 2.99 2.53 -0.42 1.78 -5.15 0.84 

The results of the SAMPL6 challenge predictions partially exhibits similar trends as the 

training set, but there are some noticeable differences. The B3LYP energies give significantly 

worse predictions for the pKa than the two levels of theory that use MP2 energies when using 
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point charges. A comparison of the predicted acidity constants for the three different B3LYP 

models using either point charges or the full electrostatics without the periodicity correction, 

which was only developed during the post-submission phase, are shown in Fig. 14A. This gap 

is partially closed when using the exact electrostatic potential, but the MP2 models still per-

fom better, because even the best B3LYP model, B3LYP/6-311+G(d,p)/φ/2-par/2-par/nt/cMM 

only achieves an RMSE of 1.99 while the corresponding MP2 model has an RMSE of 1.70. 

Despite using an additional parameter for the PMV correction the other two B3LYP-based 

models show an even worse performance with RMSEs of 2.21 and 2.54, indicating that the 

additional parameter actually worsens the model performance.  

 
Fig. 14: Acidity constants pKa calculated using EC-RISM at the B3LYP/6-311+G(d,p) (A), MP2/6-311+G(d,p) 

(B,D), and MP2/cc-pVTZ (C) level of theory using only the original cMM structures vs. the experimental results 

from the SAMPL6 challenge data set. 

For the MP2/6-311 models the same trend can be observed. Compared to the aforemen-

tioned MP2 model with an RMSE of 1.70, the corresponding 3-par model 

MP2/6-311/φ/3-par/2-par/all/cMM yields an RMSE of 2.01. Most noticeably the slope of the 

descriptive regression is 1.15 for the 2-par and 1.36 for the 3-par model, which shows that the 
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deviation from the ideal slope is more than twice as big (see Fig. 14B and D). A similar trend 

is also seen in Fig. 14C for models using the cc-pVTZ basis set. The 3-par model using the 

exact electrostatic potential barely achieves the same performance as the 2-par model using 

point charges, with RMSEs of 1.82 and 1.80, respectively, and both the slope and the offset of 

the descriptive regression are significantly worse. The best model of this series of related 

models is the MP2/cc-pVTZ/φ/2-par/2-par/nt/cMM model with an RMSE of 1.64. Also shown 

in Fig. 14D is confirmation that the exclusion of thiolic compounds makes no meaningful 

difference for models using the 6-311+G(d,p) basis set and the exact electrostatic potential. 

This could be expected, because the model parameters are almost identical for these models 

and the RMSEs of 1.70 and 1.72 for the MP2/6-311/φ/2-par/2-par/all/cMM and 

MP2/6-311/φ/2-par/2-par/nt/cMM models, respectively or identical RMSEs of 2.01 for both the 

MP2/6-311/φ/3-par/2-par/all/cMM and MP2/6-311/φ/3-par/2-par/nt/cMM models confirm this. 

Finally, the models using a 1-par pKa model generally perform worse than their corre-

sponding 2-par models. An example of this is depicted in Fig. 14B where the 

MP2/6-311/φ/3-par/2-par/all/cMM model with an RMSE of 2.01 is still significantly better 

than the 1-par model with an RMSE of 2.99. The descriptive regression slopes of 1.36 for the 

2-par model compared to 1.78 for the 1-par model all but confirms the necessity of using two 

parameters to achieve reasonably accurate performance. The same observation can be made 

for the MP2/6-311/φ/2-par/1-par/all/cMM model (RMSE: 2.40, m’: 1.55), where the compara-

ble MP2/6-311/φ/2-par/2-par/all/cMM model outperforms it in a similar manner (RMSE: 1.70, 

m’: 1.15). 

Looking at the best-performing models with regards to the RMSE in Table 11 it is notice-

able that only models using the periodicity corrected electrostatic potential are at the top of 

the ranking and there is a gap of 0.47 in the RMSE between the best-performing model and 

the first model using the normal electrostatic potential. The best model, MP2/6-

311/φopt/2-par/2-par/all/cQM2, achieves an RMSE of only 1.13, and despite the worse perfor-

mance of the cc-pVTZ basis set of acids during the training set, the corresponding MP2/cc-

pVTZ/φopt/2-par/2-par/all/cQM2 model is only 0.02 pK units worse. 

An important question to consider is, how much of this improved performance is due to 

the periodicity correction (q, φ, and φopt), and how much of it is due to the different confor-

mations used in the EC-RISM calculations (cMM, cQM, and cQM2). These comparisons are de-

picted in Fig. 15. 
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Fig. 15: Acidity constants pKa calculated using EC-RISM at the MP2 level of theory using the 6-311+G(d,p) 

(A,C) and the cc-pVTZ basis sets (B,D) vs. the experimental results from the SAMPL6 challenge data set. In 

panel A the model switches more significantly because the exact corresponding model was not investigated dur-

ing the SAMPL6 challenge. 

The results obtained from the original point charge-based models and those using exact 

electrostatics or even the periodicity corrected implementation does not appear to differ sig-

nificantly. A series of MP2/cc-pVTZ/*/2-par/2-par/all/cMM models is best to illustrate this 

(Fig. 15B): The point charge-based model of this series yields an RMSE of 1.62, while the φ 

and φopt models give an RMSE of 1.60 and 1.71, respectively. In this case the use of the peri-

odicity correction increases the RMSE slightly. For the models based on the series denoted as 

MP2/6-311/*/2-par/2-par/all/cMM this comparison can not be made fully, because this point 

charge-based model was not investigated, but the results for the exact electrostatic potential 

indicate an improvement from an RMSE of 1.70 to 1.64 when using the periodicity correction 

(Fig. 15A). In any case, the periodicity correction is nevertheless very beneficial because for 

no significant computational overhead the number of EC-RISM calculations diverging due to 

constantly increasing polarization of the molecule was reduced to zero when using this im-
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plementation and even for the models using the cc-pVTZ basis set the RMSEs are very close. 

It must also be considered that there might be some error compensation resulting from the use 

of cMM conformations in combination with the q- or φ-models. 

This is due to the large contribution to the model error caused by the choice of the con-

formations, which is depicted in Fig. 15C and D. Early in the challenge only the conformation 

with the lowest MM-energy was further optimized for each microstate and their energy calcu-

lated with EC-RISM. While these conformations are optimized quantum-chemically, the local 

minimum found by that optimization is not necessarily close to the global minimum, because 

many intramolecular interactions are not captured by the MM-energy evaluation. Upon re-

optimization of the entire set of conformations and re-ranking them by their PCM energy, the 

EC-RISM results obtained from the minimum structure significantly improve the predicted 

pKa values. The results obtained by using the MP2/6-311/φopt/2-par/2-par/all/cMM model show 

an RMSE of 1.64 with reasonable slope parameters of 1.22 from the descriptive regression. 

Compared to that, just by using the cQM conformations the RMSE is improved significantly to 

1.15 and the slope parameter slightly to 1.17. the Using the second-lowest conformation here 

barely improves the results any further to an RMSE of 1.13, indicating that just the single 

minimum QM structure is one of the most important factors to predict accurate values for the 

pKa. The results of the corresponding models using the cc-pVTZ basis set, 

MP2/6-311/φopt/2-par/2-par/all/*, support this conclusion, too. Here, the RMSE improves 

from 1.71 for the cMM-model, to 1.23 for the cQM-model to 1.15 for the cQM2-model, again 

showing the importance of the minimum QM structures. 

All these results point to the MP2/6-311/φopt/2-par/2-par/all/cQM2 model as the best prac-

tice for predicting pKa values. While the MP2/cc-pVTZ/φopt/2-par/2-par/all/cQM2 model has a 

similar performance, this comes at a significantly increased computational cost. 

One issue that might have occurred for all models considered up to this point during the 

prediction of acidity constants for the SAMPL6 data set is the calculation of Gibbs energies 

for species with a charge greater than 1 or smaller than -1. Neither the MNSOL nor the Klicić 

data set contains multiply charged molecules, so if the effect of the unphysical process cor-

rected for by the cq parameter of the PMV correction does not scale linearly with the charge, 

larger deviations from the experimental values can be expected for these acids and bases. For-

tunately, the acidity constants of the compound SM18 are predicted exceptionally well, show-

ing that the PMV correction and the pKa models originally trained solely on singularly 

charged compounds are applicable even outside the chemical space they were trained in. Pre-
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dicted and experimental acidity constants for the individual compounds of the SAMPL6 chal-

lenge are shown in Table 12 for a few selected models. 

Table 12: Individual experimental and assigned computational data for macrostate pKa values for various models 

based on MP2/6-311/*/2-par/2-par/all/*. Red text color indicates data points where solutions with exact electro-

static could not be obtained (original submission only) and were replaced by point charge data. Table adapted 

from [2]. 

 pKa,exp φorig/corig φopt/corig φopt/copt φopt/copt2 
 Exp. MP2/6-311+G(d,p)  
SM01 9.53 8.75 9.81 9.81 9.82 
SM02 5.03 4.16 4.18 3.88 3.73 
SM03 7.02 9.32 10.10 8.10 7.94 
SM04 6.02 4.78 4.74 3.95 4.67 
SM05 4.59 6.61 6.62 6.83 6.74 
SM06 3.03 

11.74 
2.48 

10.12 
1.32 

11.12 
1.27 

11.02 
1.02 

11.19 
SM07 6.08 2.90 2.88 4.93 4.75 
SM08 4.22 4.68 4.90 4.94 4.60 
SM09 5.37 4.95 4.74 4.27 4.17 
SM10 9.02 9.04 10.87 10.07 10.10 
SM11 3.89 3.55 3.06 3.06 3.06 
SM12 5.28 5.15 3.84 3.84 3.62 
SM13 5.77 5.94 5.76 5.32 5.19 
SM14 2.58 

5.30 
0.72 
4.28 

0.70 
4.02 

0.69 
4.03 

0.59 
4.13 

SM15 4.70 
8.94 

3.21 
9.85 

3.38 
9.44 

3.38 
9.52 

3.38 
9.52 

SM16 5.37 
10.65 

4.99 
11.74 

4.40 
11.56 

4.39 
11.64 

4.41 
11.64 

SM17 3.16 4.11 2.55 2.52 2.52 
SM18 2.15 

9.58 
11.02 

1.82 
9.97 
9.30 

1.44 
9.49 

10.18 

1.29 
9.59 

10.97 

1.31 
9.62 

10.92 
SM19 9.56 11.38 12.25 9.80 9.74 
SM20 5.70 7.15 7.45 7.68 7.63 
SM21 4.10 1.92 0.78 3.16 3.22 
SM22 2.40 

7.43 
-3.77 
8.19 

0.77 
7.23 

0.77 
7.22 

0.83 
7.16 

SM23 5.45 3.98 3.87 4.87 6.26 
SM24 2.60 2.30 2.33 2.53 2.48 
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Fig. 16: Acidity constants pKa calculated using PCM energies at the B3LYP/6-311+G(d,p) level of theory and 

corrected with the PCM/B3LYP/6-311/cMM model vs. the experimental results from the SAMPL6 challenge data 

set. 

The acidity constants of the SAMPL6 dataset calculated with PCM at the 

B3LYP/6-311+G(d,p) level of theory and applying the PCM/B3LYP/6-311/cMM model are 

depicted in Fig. 16. This model’s performance is singular in that it has not just a high RMSE 

of 2.84, which is one of the worst of the models investigated here, but the regression parame-

ters are complete outliers compared to all other models as well. With a slope of 0.03 and an 

offset of 6.12 there is very little correlation between the predicted and the experimental value. 

The reason for the RMSE not being even higher is the small dynamic range of the experi-

mental values that range from 2.40 to 11.74 with most compounds tending towards the middle 

of this range. The performance of a possible null hypothesis such as “every compound has a 

pKa of 7” is comparable, yielding an RMSE of 2.86. This implies that the predictive power of 

the PCM model as implemented here is close to zero and it cannot even be used as a method 

to get a quick estimate for a compound’s pKa. 

5.3.4 Prediction of pH-dependent tautomer ratios 

The additional task of predicting the pH-dependent tautomer ratios could be easily com-

pleted using just the individual Gibbs energies of the different tautomers in their individual 

protonation states, but initially no experimental results were available for comparison. This 

was achieved by applying eq. (59) originally derived by L. Eberlein to the calculated 

EC-RISM data. 

After the SAMPL6 challenge the organizers were able to experimentally determine the 

microstates of the compounds SM07 and SM14 in the two ionization states, 0 and +1 through 
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analysis of nuclear magnetic resonance (NMR) parameters [153]. For this compound the mi-

crostate SM07_micro004 was determined to be exclusively present for the neutral state and 

the microstate SM07_micro006 for the protonated state. While the absolute pKa for this com-

pound was not among the best predicted ones, with a deviation of 1.33 for the best-performing 

MP2/6-311+G(d,p) model, the microstates were nevertheless predicted correctly for both pro-

tonation states. The microstate SM07_micro004 was predicted to account for 0.996 of the 

total population, which would make the other tautomers experimentally undetectable, and the 

microstate SM07_micro006 was predicted with an even larger population. For the compound 

SM14 that had two titratable sites within the experimental range the tautomers 

SM14_micro001, SM14_micro002 and SM14_micro003 were determined to be exclusively 

present in the neutral, protonated, and doubly protonated state, respectively. Again, the pre-

dicted pKa values are not ideal, with deviations of 1.89 and 1.27, but the microstates predicted 

using EC-RISM for the neutral and the doubly protonated ionization states are the correct one 

and all other microstates in these protonation states are correctly predicted to not contribute. 

For the ionization state with only a single protonation the NMR analysis suggests only the 

existence of the microstate SM14_micro002, the predicted microstates yield a relative popula-

tion of 0.621 for SM14_micro004 and only 0.379 for SM14_micro002. 

An interesting case is the compound SM13. While no experimental NMR data was pro-

duced for this compound it is structurally similar to SM07, with a phenyl substituting the ben-

zyl group and two additional methoxy substituents. The structures of both compounds are 

depicted in Fig. 17. 
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Fig. 17: Chemical structures of the tautomerically stable compound SM07 and the similar compound SM13 that 

is predicted to have two different tautomers in its protonated form by EC-RISM. 

Despite this structural similarity, EC-RISM predicts the protonated states to be made up of 

two relevant microstates with populations of 0.626 and 0.374, respectively. The different mi-

crostates and their total populations as a function of the pH are shown in Fig. 18. For this 

compound the predicted pKa is close to the experimental value as well with a deviation of 

only 0.58, implying that the EC-RISM energies are reasonable. The tautomeric analogue of 

this second state could also exist for SM07 but is there correctly predicted to be so energeti-

cally unfavorable that it cannot be detected. 

 
Fig. 18: Exemplary pH-dependent population for all relevant microstates of compound SM13 (shown in their 

respective optimal conformations) from EC-RISM calculations (MP2/6-311/φopt/2-par/2-par/all/cQM2), and exper-

imental and theoretical macrostate populations. Dashed lines: from experimental pKa value; solid lines: calcula-

tion results. Non-black lines represent microstates; black line: macrostate populations; since only one microstate 

is predicted for the neutral and anionic macrostate, the blue and orange line also represent macrostate popula-

tions. Material from: 'N Tielker, L Eberlein, S Güssregen, SM Kast, The SAMPL6 challenge on predicting aque-

ous pKa values from EC-RISM theory, J Comput-Aided Mol Des, published 2018, Springer’ [2]. 

Unfortunately, the absence of experimental results for this compound makes confirmation 

or disproval of this prediction impossible for the time being, but further investigations of ex-
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perimentally determined tautomer ratios might be interesting, especially in light of the good 

performance of EC-RISM in the SAMPL2 challenge where relative tautomer stabilities in 

water had to be determined [43]. 
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6 SAMPL6.2: PREDICTION OF PARTITION COEF-

FICIENTS BETWEEN WATER AND OCTANOL 

6.1 Introduction 

The second part of the SAMPL6 challenge dealt with predicting the neutral state partition-

ing behavior between water and octanol. This organic phase is in some regards simpler than 

the cyclohexane of the SAMPL5 challenge, for example both Gibbs energies of solvation and 

especially Gibbs energies of transfer between this solvent and water are far more abundant in 

the literature than they are for cyclohexane. The reason for this is the fact that the octanol-

water partition coefficient has long been used to predict the lipophilicity of compounds and 

estimate their permeability in the human body [7]. On the other hand, the specific chemical 

makeup of octanol makes it more difficult to handle for modeling purposes. The hydroxyl 

group gives this molecule a certain polarization, meaning that EC-RISM is once again neces-

sary to capture the induced polarization of the compounds upon solvation, but more signifi-

cantly the amount of water contained in the octanol phase might be non-negligible. That is 

why the best performing water model of the SAMPL6.1 challenge was reused here, while the 

only thing that was varied was the octanol model. The PMV correction was trained using a 

single and two parameters, once for dry octanol and once for the octanol-water mixture with 

the experimental density and molar fraction of water, leading to a total of four models under 

consideration. Here the corrected excess chemical potentials for the different models are 

 ex ex
corr

m
μ vμ c μ c V= +  (79) 

for the 2-par model and 

 ex ex
corr

m
vμ μ c V= +  (80) 

for the 1-par model. 

In addition, the training function for compounds with more than a single conformation 

was changed slightly. For this PMV correction the properly weighted target function 
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is used, where t and c represent the tautomers and conformations, respectively instead of us-

ing only the minimum conformation for training the parameters.  

6.2 Computational details 

The conformations generated for the SAMPL6.1 challenge were used unchanged for the 

water phase and reoptimized for the octanol phase at the IEFPCM/B3LYP/6-311+G(d,p) level 

of theory using Gaussian 16 rev. B.01 [154] with tight convergence criteria and octanol as a 

PCM solvent. Due to the fact that charged species did not have to be evaluated in this part of 

the challenge, every generated conformation could be treated with EC-RISM for both solvents 

instead of only the two lowest energy conformations. In this case the PMV was calculated via 

the total correlation route [76,77], using the 1D RISM estimate of the isothermal compressi-

bility with a value of 0.717062∙10-9 Pa-1 for water and the experimental compressibility of 

0.761∙10-9 Pa-1 for octanol [155]. Due to convergence issues, for octanol the PSE-1 closure 

was used throughout, while all other 3D RISM and EC-RISM settings were taken unchanged 

from the earlier part of the SAMPL6 challenge. 

6.3 Results 

6.3.1 Solvation free energies 

While the water model from the SAMPL6.1 challenge could be used unchanged, the oc-

tanol PMV correction had to be created from scratch. The MNSOL contains 224 molecules 

with experimental Gibbs energies of solvation in octanol. Training the correction was con-

ducted using either only one parameter for the partial molar volume or an additional parame-

ter directly scaling the excess chemical potential, because the effect of this had not yet been 

investigated for octanol in the same way it had been for water and cyclohexane. Results for 

the MNSOL compounds without the PMV correction and for the two different PMV correc-

tions for both the dry and wet octanol solvent model are shown in Fig. 19 while the parame-

ters and the statistical metrics are shown in Table 13. 
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Fig. 19: Gibbs energies of solvation in octanol calculated using EC-RISM vs. the experimental results from the 

MNSOL database for both the dry (A) and the wet (B) models. Uncorrected data is shown using red squares, the 

data generated using the 1-par correction is shown in light and that generated using the 2-par correction in dark 

blue. Raw data are provided as part of OR_07. Optimized solution and gas phase structures are provided as 

OR_08. Figure adapted from [5]. 

Table 13: Regression parameters of optimized EC-RISM-based Gibbs energy of solvation models (cq, cV / kcal 

mol-1 Å-3, cq / kcal mol-1 e-1) along with statistical metrics (root-mean-square error RMSE / kcal mol-1, mean 

absolute error MAE / kcal mol-1, mean signed error MSE / kcal mol-1, slope m’, intercept b’ / kcal mol-1, and 

coefficient of determination R2 from descriptive regression). cV corresponds to PMVs computed using the total 

correlation function with an experimental isothermal compressibility of 0.761∙10-9 Pa-1 for octanol and the RISM 

estimate of 0.717062∙10-9 Pa-1 for water. Material from: 'N Tielker, D Tomazic, L Eberlein, S Güssregen, SM 

Kast, The SAMPL6 challenge on predicting octanol–water partition coefficients from EC-RISM theory, J Com-

put-Aided Mol Des, published 2020, Springer’ [5]. 

Solvent RMSE MAE MSE m' b’ R2 cµ cV cq 
Water          
All 2.04 1.43 -0.26 1.00 -0.35 1.00 - -0.10251 -15.728 
Neutrals 1.56 1.13 -0.36 0.97 -0.47 0.89 - - - 
Anions 3.07 2.46 0.01 1.10 7.18 0.94 - - - 
Cations 2.98 2.10 0.02 0.96 -2.62 0.85 - - - 
Octanol (dry)           
1-par 1.78 1.33 0.03 0.66 -2.15 0.85 - -0.00799 - 
2-par 1.48 1.14 -0.08 0.89 -0.78 0.87 1.33446 -0.00609 - 
Octanol (wet)           
1-par 1.73 1.31 -0.01 0.68 -2.08 0.85 - -0.01552 - 
2-par 1.51 1.16 -0.10 0.87 -0.93 0.86 1.28924 -0.01315 - 

Regression results for the PMV correction of octanol exhibit similar trends as the other 

solvents investigated in this work. One noteworthy aspect is that the uncorrected Gibbs ener-

gies of solvation are much closer to the experimental values than for the other two solvents 

investigated in this work. This is also reflected in the cv parameter that is one order of magni-

tude smaller than that for water. Part of the reason for the smaller parameter is the larger par-

tial molar volumes calculated by 3D RISM. However, the magnitude of the difference cannot 

be explained solely by this. 

There is seemingly very little difference between the dry and the wet octanol model de-

spite the significant molar fraction of water in the latter model. While there is some deviation 
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in the correction parameters, all the statistical metrics are within the margin of error between 

the two models. As in the case of cyclohexane the model with an additional parameter, in this 

case the 2-par model, performs slightly better than the 1-par model. But as the experience in 

the SAMPL5 challenge shows this should not be taken as proof that the 2-par model is supe-

rior because overfitting can occur. This is one aspect that makes the SAMPL challenges so 

valuable, as they make it possible to investigate potential model errors. 

6.3.2 MNSOL partition coefficients 

The MNSOL database contains not only Gibbs energies of solvation, but also Gibbs ener-

gies of transfer between two solvents and the solvent pair octanol-water is among them. These 

Gibbs energies of transfer can be easily converted into partition coefficients log P and this 

serves as a first, but not truly independent test set, because the molecules in this data set are 

merely a subset of the Gibbs energies of solvation in octanol, which are in turn a subset of the 

Gibbs energies of solvation in water that were used to train the PMV corrections. Still, this 

can provide a first glimpse at the relative performance of the four different models, so the 

predicted and experimental partition coefficients for the MNSOL compounds are depicted in 

Fig. 20 while the statistical parameters for the different octanol models are shown in Table 14. 

 
Fig. 20: Partition coefficients log P between water and octanol calculated using EC-RISM vs. the experimental 

values calculated from the Gibbs energies of transfer according to Eq. (60) in the MNSOL database for both the 

1-par (A) and the 2-par correction (B). Data generated using the dry octanol model is shown in light blue while 

that generated using the wet octanol model is shown in dark blue. Raw data are provided as part of OR_07 and 

structures as OR_08. 

Table 14: Statistical metrics for log P predictions on the MNSOL transfer free energy data set (root-mean-square 

error RMSE / kcal mol-1, mean absolute error MAE / kcal mol-1, mean signed error MSE / kcal mol-1, slope m’, 

intercept b’ / kcal mol-1, and coefficient of determination R2 from descriptive regression). 

Solvent RMSE MAE MSE m' b’ R2 
Octanol (dry)        
1-par 1.51 1.08 -0.83 1.49 -1.57 0.77 
2-par 0.83 0.68 0.01 1.16 -0.23 0.79 
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Octanol (wet)        
1-par 1.40 0.99 -0.77 1.42 -1.40 0.77 
2-par 0.77 0.61 -0.06 1.09 -0.20 0.79 

The results show two important trends. Firstly, the 2-par corrections are significantly bet-

ter at predicting the correct partition coefficients. The worse results of the 1-par corrections 

are not caused by a larger spread of the predicted values but by a significant underestimation 

of the partition coefficients that increases even more with lower log P values. This indicates 

that the parameter directly scaling the excess chemical potential may be necessary to correctly 

model octanol as a solvent. Especially the MSEs of both 2-par models being close to 0 is a 

very promising sign for their predictive ability. Secondly, the wet octanol models are slightly 

better than the dry octanol models. The difference here is less pronounced and might not be 

statistically significant, but the RMSE and the slope are both improved for the wet octanol 

model, which may indicate that it is indeed better suited to model the experimental conditions 

of the partition coefficient determination. 

These results now have to be validated on the external test set comprised of SAMPL6 

compounds. While less chemically diverse, this set of molecules has not been used for train-

ing of the corrections, and it is important to analyse the performance of the models on these 

compounds. 

 

6.3.3 SAMPL6.2 partition coefficients 

Turning to the compounds of the SAMPL6 challenge, the partition coefficients could be 

experimentally measured only for 11 of the 24 compounds. By calculating the Gibbs energies 

of each tautomer and conformation of each compound in the respective solvents and applying 

a partition function approach the log P values could be calculated according to equation (60). 

In the original SAMPL5 challenge an artificial gas phase reorganization term was used to 

calculate the Gibbs energies of transfer by conducting gas phase optimizations of the solute 

structures for the respective solvents and determining the resulting structures’ gas phase ener-

gies. Conversely, here the Gibbs energy of transfer was directly calculated from the Gibbs 

energies of the solutes in solution because the gas phase energies should cancel exactly. The 

calculated partition coefficients for the SAMPL6.2 compounds in comparison with the exper-

imental results are shown in Fig. 21. The individual results for each compound applying the 

different models are shown in Table 16 while the statistical metrics are summarized in Table 

15. 
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Fig. 21: Partition coefficients log P between water and octanol calculated using EC-RISM vs. the experimental 

values of the SAMPL6.2 set of compounds for both the 1-par (A) and the 2-par correction (B). Data generated 

using the dry octanol model is shown in light blue while those generated using the wet octanol model is shown in 

dark blue. Raw data are provided as part of OR_07. Optimized solution phase structures are the same as those 

used in the original SAMPL6 challenge gathered in OR_05. Figure adapted from [5]. 

Table 15: Statistical metrics for log P predictions (root-mean-square error RMSE, mean absolute error MAE, 

mean signed error MSE, slope m’, intercept b’, and coefficient of determination R2 from descriptive regression) 

for the four different models. Table adapted from [5]. 

Model RMSE MAE MSE m' b’ R2 
dry, 1-par 1.38 1.21 -1.21 1.58 -2.99 0.79 
wet, 1-par 1.32 1.15 -1.15 1.51 -2.72 0.77 
dry, 2-par 0.54 0.45 0.15 1.22 -0.51 0.73 
wet, 2-par 0.47 0.31 -0.07 1.14 -0.51 0.73 

For both the 1-par model and the 2- par model there is only a very small difference be-

tween the results generated with the dry and the wet octanol models. There is, however, a 

massive difference between the 1- par and the 2- par model results. For the 1- par model there 

is a clear deviation between the experimental and the calculated partition coefficients that 

increases further with increasing hydrophilicity, as measured through the slope of 1.58 and 

1.51 for the dry and the wet model, respectively. While the RMSE is still only slightly above 

1.3, these models appear to underestimate the interaction of octanol with more polar solvents. 

Table 16: Individual experimental and corresponding predicted log P values for all models. Material from: 'N 

Tielker, D Tomazic, L Eberlein, S Güssregen, SM Kast, The SAMPL6 challenge on predicting octanol–water 

partition coefficients from EC-RISM theory, J Comput-Aided Mol Des, published 2020, Springer’ [5]. 

 log Pexp dry, 1-par wet, 1-par dry, 2-par wet, 2-par 
SM02 4.09 3.74 3.66 4.56 4.19 
SM04 3.98 2.97 3.00 4.08 3.86 
SM07 3.21 2.60 2.65 3.62 3.46 
SM08 3.10 1.55 1.62 3.78 3.37 
SM09 3.03 2.23 2.31 3.41 3.22 
SM11 2.10 0.22 0.29 2.25 2.01 
SM12 3.83 3.19 3.15 4.25 3.92 
SM13 2.92 1.99 2.22 3.28 3.22 
SM14 1.95 0.05 0.18 1.51 1.42 
SM15 3.07 0.42 0.51 1.85 1.71 
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SM16 2.62 1.64 1.65 3.00 2.73 

The 2- par models on the other hand have much better agreement between experimental 

and predicted values for all compounds in the SAMPL6 log P challenge. Between the two 

models all statistical metrics are nearly the same, but the wet octanol model has a small edge 

across the board. With an RMSE of 0.47 pK units, this model places second among all phys-

ics-based models submitted in the SAMPL6 challenge [156]. Additionally, the low MSE and 

the slope close to unity are evidence for a very balanced model. 

For this set of data it is more difficult to conceive a suitable null hypothesis, because there 

is no physically justifiable guess for an “average” log P. However, considering that the chal-

lenge was about drug-like molecules, a reasonable guess might be the mean partition coeffi-

cient of a library of drug-like compounds. Ghose et. al give an average log P of 2.52 for the 

Comprehensive Medicinal Chemistry database [157]. A challenge participant using no further 

resources and simply guessing that every compound has that partition coefficient would have 

achieved a respectable 32nd place out of 93 total submissions with an RMSE of 0.87. This 

value lies right between the RMSEs of the 1- par and the 2- par models, further supporting the 

assumption that two parameters are necessary for the octanol model. 

One unfortunate outlier, the compound SM15, is responsible for the model not performing 

even better in the challenge. This outlier is surprising for another reason: the compound SM15 

is structurally very similar to the compound SM14, which, while slightly underpredicted as 

well, was predicted significantly more accurately. Both structures are depicted in Fig. 22. 

 
Fig. 22: Chemical structures of the outlier compound SM15 and the structurally related compound SM14. 

The fact that this compound is the only alcohol in the SAMPL6 log P data set made rein-

vestigation of the performance on the alcohols contained in the MNSOL Gibbs energy of 

transfer data set advisable. The predicted partition coefficients of all SAMPL6.2 compounds 



 

 

96 SAMPL6.2: prediction of partition coefficients between water and octanol 

and the alcohols contained in the MNSOL database, as well as the individual errors in the 

Gibbs energies of solvation for each MNSOL alcohol are shown in Fig. 23. 

 
Fig. 23: Partition coefficients log P between water and octanol calculated using EC-RISM vs. the experimental 

values of the SAMPL6.2 set of compounds (squares) and the alcohols in the MNSOL database (triangles) for the 

best performing wet 2-par model (A). Alcohols are depicted in red while all other compound classes are depicted 

using blue. Also shown are the individual errors in the Gibbs energy of solvation in the two respective solvents 

for the MNSOL compounds (B). Aliphatic alcohols are depicted using squares while aromatic alcohols are de-

picted using triangles. 

The MNSOL contains a number of aliphatic and aromatic alcohols, but regardless of the 

type or the absolute log P of the alcohol in question, the deviation between predicted and ex-

perimental value is almost constant. Regression of all alcoholic compounds in both sets yields 

a slope of 1.03, effectively unity, but a deviation of -1.16 pK units. In addition, since for the 

MNSOL compounds the individual experimental Gibbs energies of solvation are available 

there was a chance that the reason for this nearly constant offset could be determined by look-

ing at the errors in the two solvents. It appears, however, that while the difference in the errors 

remains similar for every compound, leading to similar errors in the eventual log P, the Gibbs 

energy of solvation is at times predicted better in octanol, at times in water, and at times even 

with a similar magnitude in the error but of opposite sign. Especially surprising is the error in 

the related compounds i-, o-, and m-cresol. While the experimental Gibbs energies of solva-

tion are very close, deviating by only 0.6 kcal∙mol-1, the predicted values are reasonable in 

water, but in octanol vary by as much as 1.8 kcal∙mol-1. 

A larger database of alcoholic compounds might be able to shed some more light on this 

issue, especially since there appears to be a significant difference between aliphatic and aro-

matic alcohols. In the former the error in the Gibbs energy of solvation in octanol is larger, 

and negative, while in the latter the error in the Gibbs energy of solvation in water is larger 

and positive. For the immediate future, the reparameterization of the GAFF force field that is 
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used throughout this work should be of higher priority and with respect to the difference be-

tween aliphatic and aromatic alcohols the addition of new atom types may have to be consid-

ered as well. The additional molecules recently published by the SAMPL6 challenge authors, 

many of which are alcohols, but also other compounds with a greater dynamic log P range 

than that investigated in this challenge may prove helpful in this endeavor [158,159]. 

The good performance of the other SAMPL6 compounds compared to the performance on 

the MNSOL Gibbs energies of transfer can be explained by the fact that only three scaffolds 

account for nine of the eleven compounds in the SAMPL6 data set. This should not detract 

from the good performance of the best-performing EC-RISM model, because obtaining the 

correct trends in a series of closely related compounds is a challenge itself. But the applicabil-

ity to other compound classes should be investigated further in the future. 

A second task that was not officially part of the SAMPL6 log P challenge was the deter-

mination of the relative tautomer stabilities in the different solvents. While no experimental 

values were determined for this property, there was an interest in how different methods 

would predict the tautomer stabilities in the polar and non-polar solvents. EC-RISM had al-

ready shown reasonable results in the SAMPL2 challenge on tautomer stabilities, although 

more recent results using high-level coupled cluster gas phase energies show a mixed picture 

[6,43]. Nevertheless, for this set of compounds the relative tautomer energies could be calcu-

lated by applying the partition function only to the conformations and not to the tautomers as 

well. The relative free energies of the different tautomers considered for each compound 

compared to the energetically most favorable one are collected in Table 17. 

Table 17: Calculated Gibbs free energies of the neutral microstates relative to the most favorable tautomer (mi-

crostate) of each compound for both solvents (in kcal mol-1). In contrast to the calculation of the partition coeffi-

cients where special treatment is not necessary, we here made sure that individual conformations undergoing a 

protonation shift during QC optimization were manually assigned to the correct microstate before evaluation of 

the partition function. 

Microstate Water Octanol  
(wet, 2-par) 

Octanol  
(dry, 2-par) 

Octanol  
(wet, 1-par) 

Octanol  
(dry, 1-par) 

SM02_micro002 0.00 0.00 0.00 0.00 0.00 
SM02_micro003 5.16 5.57 5.66 5.65 5.71 
SM02_micro007 6.18 8.86 8.80 10.30 10.40 
SM04_micro003 0.00 0.00 0.00 0.00 0.00 
SM04_micro004 8.45 9.81 9.74 10.68 10.76 
SM04_micro009 11.10 11.72 11.78 12.15 12.24 
SM07_micro002 8.97 10.59 10.61 11.63 11.78 
SM07_micro003 6.75 7.97 8.00 8.34 8.41 
SM07_micro004 0.00 0.00 0.00 0.00 0.00 
SM08_micro008 10.26 24.63 24.61 32.59 33.52 
SM08_micro010 5.69 6.05 6.56 4.70 4.89 
SM08_micro011 0.00 0.00 0.00 0.00 0.00 
SM09_micro002 6.79 9.55 9.45 11.45 11.57 
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SM09_micro003 0.00 0.00 0.00 0.00 0.00 
SM09_micro011 5.60 6.02 6.09 6.46 6.55 
SM11_micro005 0.00 0.00 0.00 0.00 0.00 
SM11_micro028 7.14 8.07 8.21 8.46 8.61 
SM11_micro029 14.81 17.69 17.68 18.81 18.93 
SM11_micro030 26.91 34.04 34.12 36.10 36.40 
SM12_micro002 4.73 5.21 5.32 5.35 5.43 
SM12_micro011 5.76 8.48 8.42 10.04 10.14 
SM12_micro012 0.00 0.00 0.00 0.00 0.00 
SM13_micro005 0.00 0.00 0.00 0.00 0.00 
SM13_micro007 6.23 6.28 6.31 6.69 6.76 
SM13_micro009 8.01 10.72 10.51 12.78 12.84 
SM14_micro001 0.00 0.00 0.00 0.00 0.00 
SM14_micro005 28.76 37.41 37.02 41.99 42.23 
SM15_micro001 9.24 19.80 18.80 26.68 26.76 
SM15_micro002 0.00 0.00 0.00 0.00 0.00 
SM16_micro002 0.00 0.00 0.00 0.00 0.00 
SM16_micro003 12.41 13.39 13.61 12.68 12.79 
SM16_micro007 6.75 11.48 11.49 13.61 13.93 

The results of the tautomer stability analysis show that there is no change in the lowest 

energy microstate, regardless of the solvent. There is however a difference in the relative en-

ergies of the energetically higher tautomers. It does not lead to a flip, but for example for the 

compound SM16 an energy difference of 1.91 kcal∙mol-1 between the second and the third 

lowest tautomers, micro003 and micro007, in the best performing octanol model turns into a 

5.66 kcal∙mol-1 difference in water. Other tautomer pairs converge, for example SM08’s two 

higher ranked tautomers are predicted to have an energy difference of 18.58 kcal∙mol-1 in oc-

tanol, an energy difference that would make the energetically higher ranked microstate com-

pletely irrelevant, but in water this difference shrinks to “only” 4.57 kcal∙mol-1.  

At least for the compounds investigated in the SAMPL6 challenge there does not appear 

to be a shift of the most energetically favored microstate between the two phases. For other 

compounds, especially ones that only have a low energy difference between the tautomer 

forms, this can change. For certain compounds there is even experimental evidence that the 

tautomer found in water is not the same as in an organic phase and knowledge of this is of 

vital importance to predict the true partition coefficient of a molecule [160,161]. 

 

6.4 SAMPL5 revisited 

6.4.1 Introduction 

The improvements that had been made over the course of the SAMPL6 challenges, espe-

cially with regards to the pKa model and the treatment of the electrostatics made a reinvestiga-
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tion of the distribution coefficients from the SAMPL5 challenge promising. While the cyclo-

hexane as an apolar solvent does not benefit from the improved electrostatics, the water model 

and especially the pKa model derived from it have been greatly improved since the time of the 

SAMPL5 challenge. Additionally, the computational resources available had increased signif-

icantly, making it possible to calculate distribution coefficients for all three batches with both 

the old SAMPL5 setup and the new and improved water and pKa models [162]. 

6.4.2 Computational Details 

To compare the predictive power of the old and the new models two different setups were 

used. In the following they will be referred to as the “SAMPL5 setup” and the “SAMPL6 set-

up”, respectively. For the SAMPL6 setup the MP2/6-311+G(d,p) water and pKa models from 

the SAMPL6 challenge were used unchanged and all of the EC-RISM and 3D RISM settings 

employed for the SAMPL6 setup are identical to those used in the SAMPL6.2 challenge. 

However, a new cyclohexane PMV correction was trained where the vacuum conformations 

were explicitly reoptimized at the B3LYP/6-311+G(d,p) level of theory to account for molec-

ular reorganization upon entering the solvent using Gaussian 09 Rev. A02 [142]. In the origi-

nal SAMPL5 setup, the vacuum conformation was identical to the conformation in cyclohex-

ane instead. Unlike in the original SAMPL5 challenge the entire set of compounds including 

batch 2 were investigated.  For the SAMPL5 setup the most abundant tautomer states of batch 

2 were conformationally sampled and the conformation with the lowest PCM energy treated 

with the same EC-RISM setup as described in chapter 4.2. In contrast, for the SAMPL6 setup 

every tautomer state generated using MoKa [134] was conformationally sampled using the 

workflow described there, and up to five conformations of each of the tautomers were taken 

into account using a partition function approach to account for the high conformational flexi-

bility of the compounds included in the SAMPL5 challenge. Another important difference 

between the SAMPL5 and SAMPL6 setup is the calculation of the transfer free energies. In 

the original SAMPL5 setup these were calculated from solvation free energies, i.e. the free 

energy difference between the molecule in vacuum and in water and octanol, respectively. For 

the SAMPL6 setup they were instead calculated directly from the Gibbs energies of the mole-

cules in their respective solvents. Formally this makes no difference, because the energies of 

the molecule in vacuum should cancel, however the vacuum conformations were originally 

generated separately from both the water and the cyclohexane conformations, leading to an 

artificial reorganization energy difference.  
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6.4.3 Results 

In total four different cyclohexane models were trained using between a single and three 

free parameters to fully capture the range of possible corrections instead of only two models 

trained during the SAMPL5 challenge. These models are denoted as 1-par for the model using 

only a single parameter scaling the PMV (eq. (83)), 2-par (eq. (82)) and 2-par-I (eq. (76)) for 

the models with an additional parameter scaling the 3D RISM excess chemical potential or a 

linear offset, respectively, and 3-par for a model with all three parameters (eq. (75)). The 2-

par-I and the 3-par models trained during the original challenge are denoted with a (5) after 

their respective identifier, but the general form of the correction is identical to those without a 

(5). The results for the Gibbs energies of solvation in cyclohexane using the different models 

are depicted in Fig. 24 while the parameter sets and the statistical metrics for each model are 

shown in Table 18. 

 
Fig. 24: Gibbs energies of solvation in cyclohexane calculated using EC-RISM vs. the experimental results from 

the MNSOL database. Uncorrected data is shown using red squares, panel A shows the corrections without an 

intercept parameter while panel B shows the corrections with one. Corrections using a parameter directly scaling 

the excess chemical potential are shown in light blue and corrections without such a parameter in dark blue. Raw 

and calculated data are provided as part of OR_09. Optimized solution and gas phase structures are provided as 

OR_10. Figure adapted from [6]. 

Table 18: Regression parameters of optimized EC-RISM-based Gibbs energy of solvation models (cµ, cV / kcal 

mol-1 Å-3, cq / kcal mol-1 e-1) along with statistical metrics (root-mean-square error RMSE / kcal mol-1, mean 

absolute error MAE / kcal mol-1, mean signed error MSE / kcal mol-1, slope m’, intercept b’ / kcal mol-1, and 

coefficient of determination R2 from descriptive regression). cV corresponds to PMVs computed using the total 

correlation function with an experimental isothermal compressibility of 1.197∙10-9 Pa-1 for cyclohexane and the 

RISM estimate of 0.717062∙10-9 Pa-1 for water. Material from: 'N Tielker, L Eberlein, G Hessler, KF Schmidt, S 

Güssregen, SM Kast, Quantum–mechanical property prediction of solvated drug molecules: what have we 

learned from a decade of SAMPL blind prediction challenges?, J Comput-Aided Mol Des, published 2020, 

Springer’ [6]. 

Solvent RMSE MAE MSE m' b’ R2 cµ cV cq cd 
Water           
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All 2.04 1.43 -0.26 1.00 -0.35 1.00 - -0.10251 -15.728 - 
Neutrals 1.56 1.13 -0.36 0.97 -0.47 0.89 - - - - 
Anions 3.07 2.46 0.01 1.10 7.18 0.94 - - - - 
Cations 2.98 2.10 0.02 0.96 -2.62 0.85 - - - - 
Cyclohexane            
Uncorrected 5.86 5.60 5.60 0.13 1.53 0.05 - - - - 
1-par 1.07 0.86 0.20 0.73 -1.04 0.62 - -0.14923 - - 
2-par 0.77 0.58 0.11 0.99 0.06 0.83 2.0184 -0.17795 - - 
2-par-I 0.90 0.73 0.00 0.57 -2.00 0.76 - -0.10894 - -1.6593 
2-par-I(5)  0.88 0.70 0.00 0.59 -1.94 0.77 - -0.10811 - -1.6566 
3-par 0.68 0.50 0.00 0.84 -0.75 0.83 1.8516 -0.14692 - -1.0842 
3-par(5) 0.76 0.56 0.00 0.84 -0.73 0.84 1.8444 -0.14703 - -1.0479 

For the models that were already used in the original SAMPL5 challenge the results ob-

tained for the PMV correction for cyclohexane are very similar [1]. This had to be expected 

because the improved electrostatics in the 3D RISM iterations do not have an effect on the 

calculations for this apolar solvent and only the addition of the gas-phase optimized confor-

mations slightly improves the results for the 3-par model. One notable addition is the 2-par 

model. This model had not been investigated during the original SAMPL5 challenge but had 

performed very well when used with another apolar solvent, octanol, during the SAMPL6 

challenge [5]. For the compounds in the MNSOL database this model also performs best for 

cyclohexane with a low RMSE, a slope of 0.99 and an intercept of only 0.06, which are the 

best statistical metrics among all models and point towards a very balanced model. It should 

be noted that even the 1-par model’s performance, as judged by its RMSE, is significantly 

better than the best-performing 2-par model for octanol. This may, however, simply be caused 

by the different compounds for which experimental data is available in the MNSOL database. 

Generally improved performance for the log D7.4 predictions could be expected for this mod-

el. The partition and distribution coefficients calculated using both the old models originally 

considered in chapter 4 and the new models developed in this chapter are depicted in Fig. 25. 

The corresponding statistical metrics are shown in Table 19. 
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Fig. 25: Partition (dark blue) and distribution coefficients (light blue) calculated using EC-RISM compared with 

the experimental results of the SAMPL5 challenge. Panel A shows results generated using the 1-par correction, 

panel B the 2-par results, panel C the 2-par-I and panel D the 3-par results. Raw data are provided as part of 

OR_09. Newly generated optimized solution phase structures are provided as OR_10. Figure adapted from [6]. 

Table 19: Statistical metrics (root-mean-square error RMSE, mean absolute error MAE, mean signed error MSE, 

and slope m, intercept b, and coefficient of determination R2 from descriptive regression) for the SAMPL5 chal-

lenge results for all compounds. Material from: 'N Tielker, L Eberlein, G Hessler, KF Schmidt, S Güssregen, SM 
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Kast, Quantum–mechanical property prediction of solvated drug molecules: what have we learned from a decade 

of SAMPL blind prediction challenges?, J Comput-Aided Mol Des, published 2020, Springer’ [6]. 

Setup Observable Cyclohexane mod. Batches RMSE MSE MAE R2 m’ b’ 
SAMPL6 log P 1-par 0+1 2.29 0.13 1.77 0.63 1.56 0.43 
   2 4.74 3.18 4.01 0.54 2.04 3.56 
  2-par 0+1 3.18 2.37 2.59 0.66 1.52 2.64 
   2 5.87 5.14 5.53 0.59 1.82 5.44 
  2-par-I 0+1 1.99 -0.65 1.57 0.62 1.31 -0.49 
   2 2.83 1.10 2.09 0.53 1.58 1.31 
  3-par 0+1 2.44 1.49 1.97 0.63 1.36 1.68 
   2 4.15 3.47 3.93 0.60 1.56 3.67 
 log D7.4 1-par 0+1 2.45 -0.59 1.88 0.77 1.89 -0.12 
   2 4.26 2.62 3.58 0.63 2.18 3.05 
  2-par 0+1 2.88 1.65 2.49 0.74 1.85 2.09 
   2 5.36 4.59 4.98 0.66 1.95 4.94 
  2-par-I 0+1 2.44 -1.37 1.73 0.74 1.64 -1.04 
   2 2.48 0.55 1.66 0.64 1.71 0.80 
  3-par 0+1 2.33 0.77 1.91 0.72 1.69 1.13 
   2 3.65 2.92 3.38 0.68 1.69 3.17 
SAMPL5 log P 2-par-I(5) 0+1 1.99 -0.09 1.48 0.61 1.35 0.09 
   2 2.83 1.67 2.32 0.52 1.39 1.81 
  3-par(5) 0+1 2.86 2.08 2.41 0.65 1.41 2.30 
   2 3.86 2.98 3.54 0.67 1.81 3.27 
 log D7.4 2-par-I(5) 0+1a 2.25 -0.86 1.63 0.71 1.60 -0.54 
   2 2.44 0.48 1.99 0.69 1.81 0.77 
  3-par(5) 0+1b 2.59 1.31 2.29 0.70 1.66 1.67 
   2 4.68 4.17 4.29 0.56 1.40 4.32 
a-bCorrected results for SAMPL5 setup, original values [1] for RMSE, MSE, R2, m’, b’: 
a2.15, -0.53, 0.59, 1.36, -0.34; 
b2.76, 1.64, 0.59, 1.42, 1.87. 

There are a number of key takeaways from these predictions. The results obtained for the 

batch 2 compounds are generally worse than those for the smaller batch 0 and batch 1 com-

pounds, regardless of the model applied. While for the original SAMPL5 setup the lack of 

different conformers and tautomers might have been an explanation for this finding, the re-

sults are the same for the new SAMPL6 setup that explicitly accounts for this. Additionally, 

for both setups there is no clear improvement when taking the molecules’ pKa into account. 

While the RMSE is lowered for most models there are always individual compounds that are 

predicted significantly worse, leading to much higher slopes of the regression. Additionally, 

given the model errors inherent to the water and cyclohexane models, there is no statistically 

significant difference between the RMSEs obtained using the SAMPL5 and the SAMPL6 

setup even though the PMV corrections and the pKa model were improved since the original 

SAMPL5 challenge. Most surprisingly, the 2-par model which had been expected to perform 

well judging from the statistical metrics of the training set is even worse than the simple 1-par 

ansatz for both the log P and log D prediction. The predicted and experimental results for 

each individual compound are shown in Table 20. 
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Table 20: Experimental distribution coefficients and calculated partition and distribution coefficients for all 

models for which both SAMPL5 and SAMPL6 data exists. Table adapted from [6]. 
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Batch 0              
003 1.90 1.17 3.19 2.09 4.22 1.54 3.51 1.17 3.19 2.09 4.22 1.54 3.51 
015 -2.20 -5.28 -2.87 -4.76 -1.92 -4.79 -2.41 -8.08 -5.67 -7.07 -4.23 -7.10 -4.72 
017 2.50 3.39 6.39 3.20 6.14 1.81 4.75 3.39 6.39 3.20 6.14 1.81 4.75 
020 1.60 1.98 3.83 3.83 5.12 2.28 3.91 1.98 3.83 3.83 5.12 2.28 3.91 
037 -1.50 -3.79 -2.31 -3.91 -2.29 -4.27 -2.79 -3.95 -2.47 -4.92 -3.30 -5.27 -3.80 
045 -2.10 -2.42 -0.64 -2.26 -0.22 -2.43 -0.67 -2.42 -0.64 -2.26 -0.22 -2.43 -0.67 
055 -1.50 -3.13 -1.31 -3.91 -1.53 -3.50 -1.65 -3.13 -1.31 -3.91 -1.53 -3.50 -1.65 
058 0.80 -0.83 1.16 0.47 2.64 0.03 2.00 -0.83 1.16 0.47 2.64 0.03 2.00 
059 -1.30 -0.25 1.32 -2.17 -0.17 -1.96 -0.36 -0.25 1.32 -2.17 -0.17 -1.96 -0.36 
061 -1.45 -1.19 0.08 -2.76 -1.37 -3.22 -1.89 -1.91 -0.65 -3.39 -2.00 -3.86 -2.53 
068 1.40 0.95 3.33 0.91 2.99 -0.76 1.57 0.95 3.33 0.91 2.99 -0.76 1.57 
070 1.60 7.32 8.25 8.76 8.52 5.84 6.65 3.56 4.48 6.40 6.16 3.48 4.29 
080 -2.20 -3.42 -0.71 -4.69 -1.21 -4.11 -1.40 -3.42 -0.71 -4.69 -1.21 -4.11 -1.40 
Batch 1              
004 2.20 2.60 4.96 3.85 6.12 2.64 4.96 2.60 4.96 3.84 6.12 2.63 4.95 
005 -0.86 -1.44 1.68 -1.17 2.41 -1.54 1.58 -1.44 1.68 -1.18 2.41 -1.54 1.58 
007 1.40 2.91 4.90 3.73 5.59 2.22 4.30 2.91 4.90 3.73 5.59 2.22 4.30 
010a -1.70 -3.45 -1.43 -3.60 -1.38 -4.05 -2.03 -5.88 -3.85 -5.77 -3.55 -6.23 -4.21 
011b -2.96 1.03 3.43 1.36 4.05 0.95 3.34 -1.67 0.74 -2.48 0.21 -2.89 -0.50 
021 1.20 1.22 3.72 -0.28 2.65 -0.48 2.04 1.22 3.72 -0.28 2.65 -0.48 2.04 
026c -2.60 -2.08 -0.82 -0.31 0.77 -1.18 0.02 -5.02 -3.76 -2.82 -1.74 -3.69 -2.49 
027 -1.87 -3.44 -1.16 -4.29 -1.48 -4.12 -1.83 -3.44 -1.16 -4.34 -1.53 -4.17 -1.88 
042 -1.10 0.40 2.63 0.01 2.12 -1.44 0.83 0.40 2.63 0.01 2.12 -1.44 0.83 
044 1.00 -0.74 2.97 1.00 5.21 0.50 4.19 -0.74 2.97 1.00 5.21 0.50 4.19 
046 0.20 0.70 3.38 1.79 4.42 0.53 3.17 0.70 3.38 1.79 4.42 0.53 3.17 
047 -0.40 -0.35 2.53 1.26 4.48 0.79 3.64 -0.35 2.53 1.26 4.48 0.79 3.64 
048 0.90 1.47 5.07 2.08 5.86 1.28 4.74 1.47 5.07 2.08 5.86 1.28 4.74 
056 -2.50 -1.10 1.12 -3.02 -0.63 -3.56 -1.37 -1.10 1.12 -3.63 -1.24 -4.17 -1.98 
060d -3.90 -4.19 -1.79 -4.17 -1.21 -3.99 -1.58 -6.86 -4.45 -6.13 -3.17 -5.95 -3.54 
063 -3.00 -6.93 -5.06 -6.88 -5.15 -7.86 -6.08 -8.77 -6.90 -9.41 -7.68 -10.39 -8.61 
071 -0.10 -0.99 1.02 -1.03 0.61 -2.47 -0.60 -1.02 0.99 -1.04 0.61 -2.48 -0.60 
072 0.60 3.49 4.30 4.53 4.55 2.27 3.09 -0.05 0.76 3.04 3.07 0.78 1.60 
081 -2.20 -6.02 -4.20 -4.41 -2.96 -5.72 -4.05 -7.69 -5.86 -6.68 -5.23 -7.99 -6.32 
090 0.80 2.04 4.46 1.87 3.82 -0.08 2.23 2.04 4.46 1.87 3.82 -0.08 2.23 
Batch 2              
002 1.40 2.17 4.35 3.07 5.22 2.06 4.21 2.17 4.35 3.07 5.22 2.06 4.21 
006 -1.02 0.20 1.41 -0.28 0.71 -1.26 -0.09 0.20 1.41 -0.28 0.71 -1.26 -0.09 
013 -1.50 -2.53 1.28 -0.44 3.64 -1.45 2.31 -2.53 1.28 -0.44 3.64 -1.45 2.31 
019 1.20 2.81 5.61 3.74 6.59 2.61 5.38 2.77 5.57 3.74 6.59 2.61 5.38 
024 1.00 3.46 6.75 5.40 8.43 3.51 6.70 3.46 6.75 5.40 8.43 3.51 6.70 
033 1.80 5.06 6.72 9.80 10.24 6.33 7.90 5.06 6.72 9.80 10.24 6.33 7.90 
049 1.30 1.80 3.81 2.50 4.79 2.25 4.25 1.80 3.81 2.50 4.79 2.25 4.25 
050 -3.20 -0.11 2.49 -1.00 2.12 -0.91 1.67 -5.58 -2.98 -4.36 -1.24 -4.27 -1.69 
065 0.70 1.88 7.06 6.16 9.79 0.54 5.53 1.88 7.06 6.16 9.79 0.54 5.53 
067 -1.30 1.40 3.15 3.23 4.54 1.59 3.26 0.17 1.94 3.23 4.54 1.59 3.26 
069 -1.30 2.34 5.18 2.01 4.64 0.28 3.08 0.95 3.79 1.86 4.49 0.13 2.93 
074 -1.90 -6.61 -3.04 -9.85 -5.62 -9.76 -6.25 -6.61 -3.04 -9.85 -5.62 -9.76 -6.26 
075 -2.80 1.35 3.07 1.22 2.46 -0.48 1.15 -0.36 1.37 -1.05 0.18 -2.75 -1.13 
082 2.50 8.17 9.06 12.15 10.96 7.34 8.02 4.94 5.84 9.88 8.69 5.06 5.75 
083e -1.90 - - - - - - - - - - - - 
084 0.00 3.79 6.52 4.66 6.42 1.77 4.25 1.25 3.97 3.90 5.67 1.02 3.50 
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085 -2.20 -2.33 -0.57 -1.24 0.39 -2.29 -0.56 -8.14 -6.39 -1.24 0.39 -2.29 -0.56 
086 0.70 4.15 6.59 7.23 7.80 3.74 5.52 2.89 5.32 5.58 6.15 2.09 3.87 
088 -1.90 -1.46 -0.62 2.19 2.02 -0.41 0.35 -1.46 -0.62 2.19 2.02 -0.41 0.35 
092 -0.40 -0.71 3.52 2.91 5.61 -1.51 2.33 -0.71 3.52 2.87 5.56 -1.55 2.28 

 

These surprising findings must be adequately explained. The reason for the deviation of 

the regression slopes is the inverse sigmoidal-shaped distribution of the predicted values. 

While the experimental results indicate a dynamic range from -3.90 to 2.50 the predictions 

cover a much larger range in both directions. This is further amplified by the directional na-

ture of the distribution coefficient because accounting for the ionic species can only shift the 

log D towards more negative values. Molecules that are already underpredicted in the log P 

thus become even more underpredicted, an effect that cannot be offset by the improved pre-

dictions of previously overestimated log P values in the RMSEs. At the edges of the dynamic 

range the errors exceed 4 pK units, leading to bad statistical metrics and strongly deviating 

regression slopes. 

When looking at the SAMPL5 and the SAMPL6 pKa models used there are some changes 

in the predictions here, too. Unfortunately, no experimental pKa values exist for these com-

pounds, but comparing the predictions of both setups shows them to have good correlation, 

while those of the former are on average lower by about 1.15 pK units. Comparing these re-

sults with predictions from a different source, in this case using pKa values empirically pre-

dicted using Chemicalize [163] shows that both methods have reasonable agreement with the 

empirical predictions with RMSEs of 2.10 and 2.07, respectively. The acidity constants calcu-

lated using EC-RISM with the SAMPL5 and SAMPL6 model as well as those predicted by 

Chemicalize are depicted in Fig. 26. The statistical metrics for the two different EC-RISM 

based models are shown in Table 21. 
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Fig. 26: (A) shows acidity constants calculated with the SAMPL5 setup compared with those calculated with the 

SAMPL6 setup. (B) shows the results obtained with the SAMPL5 setup (light blue) and the SAMPL6 setup 

(dark blue) compared with those predicted with the empirical Chemicalize tool. Raw data are provided as part of 

OR_09. Optimized structures are provided as OR_10. Figure adapted from [6]. 

Table 21: Statistical metrics (root-mean-square error RMSE, mean absolute error MAE, mean signed error MSE, 

and slope m, intercept b, and coefficient of determination R2 from descriptive regression) for the SAMPL5 chal-

lenge results for all compounds.  

pKa model RMSE MSE MAE R2 m' b' 
SAMPL5 2.07 -0.57 1.54 0.72 0.88 0.21 
SAMPL6 2.10 0.58 1.45 0.73 0.94 0.99 

While the RMSEs of 2.07 and 2.10 of the SAMPL5 and the SAMPL6 setup, respectively, 

might suggest that the two pKa models are nearly identical, this is not actually the case. The 

MSEs reveal that the SAMPL5 acidity constants tend to underestimate the reference values 

obtained using Chemicalize while the SAMPL5 acidity constants tend to overestimate them 

by approximately the same absolute value. The higher predicted pKa values of the SAMPL6 

setup lead to different effects for acids and bases: acids will be predicted to have a lower frac-

tion of the ionic species at a pH of 7.4 so their log D is closer to the log P, while bases will be 

predicted to have a higher fraction of the ionic species and their log D will be reduced more 

compared to the log P. Since there are 33 basic and only 14 acidic predicted pKa values this 

leads to a stronger effect of the pKa on the already slightly lower partition coefficients pre-

dicted using the SAMPL6 setup when calculating the distribution coefficients. While this dif-

ference is part of the reason for the different results for the SAMPL5 and the SAMPL6 setup, 

this cannot explain the large differences between the predicted values from both setups and 

the experimental results. 

When discussing deviations between experimental and theoretical results it is also neces-

sary to consider deviations in the theoretical modeling of the real experiment that might cause 

some errors. The cyclohexane model used here is a pure organic phase while the experimen-
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tally determinable water fraction in cyclohexane is estimated between 3.20∙10-4 and 3.75∙10-4 

[164]. While this might be assumed to be a negligibly small water content, for the more polar 

compounds this might have a significant effect because there is some evidence that the water 

molecules may form complexes with them, improving their solubility in the organic phase 

[51]. Klamt et al. who submitted the best-performing model during the original SAMPL5 

challenge studied the effect of these small water concentrations but found only some very 

minor improvements for some of their predicted distribution coefficients and an improved 

RMSE of 2.08 from 2.11 before accounting for the water content of the organic phase [165]. 

Unless otherwise mentioned, in the following only the best-performing model of the 

SAMPL6 setup, 2-par-I, is discussed. Comparing the predicted distributions coefficients ob-

tained with EC-RISM with those of the Klamt et al. the agreement is significantly better than 

with the experimental data. While there is an offset towards lower predicted values for 

EC-RISM, with an RMSE of 1.77 the agreement between the two models is very reasonable 

even for the most hydrophilic and lipophilic compounds that have the worst agreement with 

the experimental data. The good agreement between the two theoretical approaches and the 

lack of improvement upon consideration of the water content in the cyclohexane phase for the 

approach used by Klamt et al. show that there is no indication of a systematic deficiency of 

the apolar phase model used in this work. The distribution coefficients calculated using EC-

RISM and those predicted by Klamt et al. are depicted in Fig. 27. 

 
Fig. 27: Distribution coefficients calculated using the best-performing EC-RISM model compared with predic-

tions from the best-performing model overall during the original SAMPL5 challenge [165]. Material from: 'N 

Tielker, L Eberlein, G Hessler, KF Schmidt, S Güssregen, SM Kast, Quantum–mechanical property prediction of 

solvated drug molecules: what have we learned from a decade of SAMPL blind prediction challenges?, J Com-

put-Aided Mol Des, published 2020, Springer’ [6]. 

The agreement between both approaches and the experimental data is significantly strong-

er when ignoring the outliers. Klamt et al. investigated a set that was generated by excluding 
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the eight worst outliers, yielding an RMSE of only 1.57. For EC-RISM by removing the seven 

worst outliers, SAMPL5_033, 010, 015, 037, 063, 074, and 081, the RMSE drops to merely 

1.37 and the MSE to 0.12. For both models these outliers are clearly the main cause for the 

large errors in the predictions. These results indicate that while for the medium range of dis-

tribution coefficients the theoretical models are performing well, for very hydrophilic and 

very lipophilic side there is a large discrepancy between the model predictions and the exper-

imental results. Effects such as dimerization are not included in either computational model 

and the formation of such species can influence the partitioning behavior in a way that would 

not be seen in the predictions. On the experimental side some more general potential issues 

with the experimental design have been discussed in the literature, such as a low equilibration 

time and the possibility of detector saturation [52,166]. A more fundamental problem has 

been mentioned by Hill and Young when they compared computationally predicted and ex-

perimentally measured octanol-water distribution coefficients [167]. They find a very similar 

distribution of the predicted values with high accuracy in the mid-range and large errors going 

towards the extremes. The reason might be a combination of low solubility in one phase with 

a high solubility in the other phase leading to larger uncertainties of the measurement for the 

former, and non-ideal solution behavior in the latter phase. The reason for the large errors for 

these compounds might thus at least partially be found in the experimental measurements. 

Finally, it is useful to give a null hypothesis for the prediction of the distribution coeffi-

cients to assess the overall performance of the computational predictions. Unfortunately, for 

the log D7.4 no precise average value could be found, but the analysis of 18,428 compounds 

by Hill and Young suggests a similar average distribution coefficient as found for the partition 

coefficients [167]. Using the same value of 2.5 as a null hypothesis gives a considerably large 

RMSE of 3.45 which would not have been enough to break into the top half of the submis-

sions. However, this truly blind null hypothesis does not take into account the composition of 

the SAMPL5 set of compounds. A post hoc analysis would have to conclude that the distribu-

tion of distribution coefficients in the SAMPL5 challenge significantly differs from the one in 

the octanol-water dataset investigated by Hill and Young. Using an adjusted null hypothesis 

of exactly zero for the “guessed” distribution coefficient results in an RMSE of 1.78, easily 

winning the challenge. While the model RMSEs after removal of the worst outliers is lower 

than this, it is difficult to draw conclusions from this fact since, by removing the worst per-

forming compounds only the compounds with low contributions to the RMSE remain. This 

shows that while for simpler problems good solutions have already been found, there is still 
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much work to do to bring experimental and predicted distribution coefficients into accordance 

with each other.  
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7 PARTIAL MOLAR VOLUME CORRECTION FOR 

MOLECULES UNDER EXTREME CONDITIONS 

7.1 Introduction 

The successful application of the PMV correction for a wide range of different solvents 

and the ability to calculate not just Gibbs energies of solvation, the property the models were 

originally trained for, but any kind of property that can be derived from the Gibbs energy of 

the molecule in solution made it attractive to investigate further areas where this method 

could be applied. EC-RISM had been used for some time to investigate the properties of mol-

ecules under high hydrostatic pressure [88,168,169]. The behavior of biomolecules under high 

pressure is not just of academic interest, enabling researchers to probe protein dynamics and 

folding [69], but may also be biologically relevant when discussing the potential origin of life 

in the deep sea or extraterrestrial biology [170]. Even today complex life exists in the deep sea 

or even deeper in the oceanic crust and has adapted to the higher pressures present there 

[171,172]. 

As long as only relative properties are investigated there is no need for a PMV correction, 

because of the error cancellation if the PMV does not change, but to make EC-RISM as versa-

tile under these conditions as it is at atmospheric pressure there was some need to develop 

such a model. Even before this work it did not seem likely that the 1 bar correction would 

hold up under high hydrostatic pressure because of its physical origin: The error in the excess 

chemical potential is related to the overestimation of the energy of cavity formation and this 

in turn is directly related to the pressure (or density) of the solvent. 

The most obvious problem with the development of a PMV correction for non-

atmospheric pressures is the lack of experimental reference data. The MNSOL database con-

tains only Gibbs energies of solvation under normal conditions and an investigation of the 

available literature did not yield any usable data either. Even if some reference data at higher 

pressure had been found, EC-RISM is used for calculations of systems with a pressure of up 

to 10 kbar, a pressure that cannot be reached experimentally. Since experimental data was 

unavailable, a way to generate reference data using a method that is inherently able to include 
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pressure information was needed. The method chosen for this purpose were TI reference cal-

culations as it is well suited to this task for a number of reasons. TI calculations are routinely 

used to calculate Gibbs energies of solvation with high accuracy and it is possible to minimize 

model error by using the same force field (GAFF) and water model (SPC/E) that is used in the 

3D RISM calculations. Furthermore, while it is impossible to prove due to the lack of availa-

ble experimental data, there is no evidence that TI calculations suffer from significant issues 

at higher pressures. 

However, using TI reference energies gives rise to a different problem: the PMV correc-

tion is already trained using experimental data at a pressure of 1 bar. It is in theory possible to 

calculate the TI reference energies for the entire MNSOL database but doing so would be both 

prohibitively expensive as well as not ideal compared to using experimental reference data for 

the 1 bar correction. For this reason, the choice was made to use the experimental 1 bar refer-

ence data to train a 1 bar PMV correction for EC-RISM and then fit the high-pressure correc-

tion in such a way that the energy difference between the 1 bar TI calculations and the PMV-

corrected 1 bar EC-RISM calculations ideally remains constant over the entire pressure range. 

This can be achieved by generating high pressure reference data from TI calculations and add-

ing the 1 bar energy difference between the EC-RISM and TI results. The reference data is the 

calculated as 

0 0 0 0
solv ref solv TI solv EC-RISM, 1 bar solv TIΔ ( ) Δ ( ) (Δ (1 bar) Δ (1 bar))G p G p G G= + − . (82) 

The correction then has the form of 

( )0 0
solv EC-RISM,hp solv EC-RISM,1 bar hpΔ ( ) Δ ( ) 1 bar ( ),mG p G p c p V p= + −  (83) 

where the subscript “hp” denotes the high-pressure PMV correction while the subscript 

“1 bar” denotes the usual PMV correction under normal conditions. This expression recovers 

the results of the original PMV correction unchanged at a pressure of 1 bar and scales the re-

sults with respect to the pressure at higher than atmospheric pressures. The target function 

( )( )
20 0

hp solv ref solv EC-RISM,1 bar hp
molecules

{ } arg min Δ ( ) Δ ( ) 1 bar ( )mc G p G p c p V p 
= − − − 

 
  (84) 

then yields the high-pressure parameter. 
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7.2 Computational details 

To calculate a representative sample of the neutral molecules in the Minnesota Solvation 

Database, 51 neutral molecules from different substance classes were manually chosen for 

reference TI calculations. 

To set up the simulations, 4167 SPC/E water molecules were placed in a box with an edge 

length of 50 Å around a single molecule of the solute, the structure of which corresponded to 

the minimum PCM structure used for EC-RISM calculations, using packmol 1.1.2.023. For 

the solute molecules AM1-BCC charges and parameters from the General Amber Force Field 

(GAFF 1.7, i.e. equivalent to GAFF 1.4) were used [173]. All simulations were conducted 

using NAMD 2.11 [174]. During the simulations 1-4 interactions were scaled by 0.833333 

and all water bonds were kept rigid using the SETTLE algorithm [175]. Lennard-Jones inter-

actions were gradually switched off between 10 and 12 Å while the electrostatic interactions 

were accounted for using a 4th order Particle Mesh Ewald (PME) algorithm with a grid spac-

ing of 1.0 Å [176]. The temperature was held constant at 298.15 K using Langevin dynamics 

while the pressure was set to the target pressure (1, 100, 500, 1000, 2000, 3000, 4000, 5000, 

7500 or 10000 bar) using the Nosé-Hoover-Langevin piston pressure control [177,178]. 

The system was minimized for 5000 steps with the conjugate gradient and line search al-

gorithm implemented in NAMD. The system was then equilibrated for 0.4 ns with a time step 

of 2 fs with all interactions between solute and solvent molecules fully switched off. During 

the TI simulations the coupling parameter was first increased linearly for the Lennard-Jones 

interactions between 0 and 1 in steps of 0.1. After these interactions were fully switched on 

the electrostatic interactions were gradually switched on using the same step size. Hysteresis 

was performed in the reverse order, first turning off the electrostatic and then the Lennard-

Jones interactions. In each lambda window the system was first equilibrated for 60 ps before 

being simulated for another 0.4 ns. The resulting data was analyzed using a bootstrapping 

scheme [179]. 

The EC-RISM calculations were conducted using the settings described in chapter 5.2, but 

using the solvent susceptibilities developed by T. Pongratz with the isothermal compressibili-

ties calculated according to eq (39), and densities and dielectric constants taken from the work 

of Floriano and Nascimento [69,180]. The values used for each pressure are tabulated in Ta-

ble 1 of the work of Pongratz et al. [4]. 
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7.3 Results 

First the results for the Gibbs energies of solvation from PMV-corrected EC-RISM calcu-

lations and TI calculations at normal pressure should be compared, because if the EC-RISM 

predictions are significantly better than the TI results the basis for using TI as a reference for 

higher pressures is called into question. The comparison of the Gibbs energies of solvation 

calculated from the two different approaches is shown in Fig. 28 and the individual Gibbs 

energies of solvation including the statistical uncertainty from the TI calculations in Table 22. 

 
Fig. 28: Gibbs free energies of hydration at 1 bar calculated with EC-RISM and TI in comparison with experi-

mental data taken from the Minnesota Solvation Database. Raw data for all EC-RISM and TI calculations in this 

chapter are provided in OR_11. Optimized structures are provided as OR_12.  Figure adapted from [4]. 

Table 22: Individual experimental and corresponding predicted Gibbs energies of hydration in units of 

kcal∙mol-
1 calculated using TI and EC-RISM for a pressure of 1 bar, as well as statistical uncertainties ΔTI for 

the Gibbs energies of hydration generated from TI. Calculated TI Gibbs energies of hydration for all pressures 

are provided in as OR10.3 in OR-10. 

MNSOL Compound Exp.   TI  ΔTI  EC-RISM  
0018cyc cyclohexane 1.23 2.23 0.15 1.71 
0025buta 1-butene 1.38 2.95 0.13 0.91 
0034hex 1-hexyne 0.29 1.34 0.16 -0.56 
0036tol toluene -0.89 -0.14 0.19 -0.43 
0042ant anthracene -4.23 -4.34 0.25 -1.94 
0047pro 1-propanol -4.83 -2.68 0.17 -5.90 
0050met t-butanol -4.51 -2.77 0.18 -5.58 
0053phe Phenol -6.62 -4.88 0.19 -6.04 
0056mcr m-cresol -5.49 -4.38 0.19 -5.79 
0060dim dimethylether -1.92 -0.59 0.19 -4.10 
0068ani anisole -2.45 -1.99 0.17 -3.14 
0072but butanal -3.18 -2.61 0.17 -3.30 
0074ben benzaldehyde -4.02 -4.40 0.18 -3.59 
0086eth acetic acid -6.70 -6.16 0.16 -7.28 
0098met methyl pentanoate -2.57 -2.85 0.20 -3.18 
0103eth ethylamine -4.50 -2.38 0.13 -7.07 
0107tri trimethylamine -3.23 -2.68 0.14 -4.14 
0109pip piperazine -7.40 -7.96 0.18 -14.43 
0115dip dipropylamine -3.66 -1.86 0.19 -4.68 
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0118ani aniline -5.49 -5.69 0.19 -8.47 
0119met 2-methyl pyridine -4.63 -3.05 0.18 -4.76 
0131nit 1-nitropropane -3.34 -1.11 0.14 -5.16 
0134nit nitrobenzen -4.12 -2.85 0.17 -4.14 
0138pro 1-propanethiol -1.05 0.47 0.16 -2.13 
0139thi thiophenol -2.55 -1.01 0.19 -2.77 
0154dif 1,1-difluoroethane -0.11 0.50 0.12 -1.69 
0168chl 2-chloropropane -0.25 1.12 0.14 -0.29 
0174chl chlorobenzene -1.12 0.25 0.16 -0.53 
0187dib dibromomethane -2.30 0.07 0.21 -0.92 
0211tri 1,1,1-trifluoropropan-2-ol -4.16 -3.78 0.16 -5.09 
0213bis bis(2-chloroethyl) sulfide -3.92 0.19 0.20 -3.80 
0217wat water -6.31 -5.59 0.12 -9.51 
0401amia 1,1-dimethyl-3-phenylurea -9.63 -10.65 0.24 -10.13 
0402adn 9-methyladenine -13.60 -13.71 0.24 -16.23 
0403thi 1-methylthymine -10.40 -15.01 0.21 -13.95 
0406oct octafluoropropane 4.28 3.18 0.14 2.45 
n015 3-aminoaniline -9.92 -11.37 0.19 -16.73 
n191 uracil -16.59 -17.05 0.19 -16.63 
n201 5-trifluoromethyluracil -15.46 -17.12 0.24 -15.21 
test1003 butylnitrate -2.10 -1.25 0.18 -3.40 
test1007 alachlor -8.20 -8.51 0.29 -6.67 
test1048 propanil -7.80 -7.30 0.24 -8.76 
test1049 pyrazon -16.40 -14.83 0.27 -14.86 
test1051 sulfometuron methyl -20.30 -19.68 0.33 -19.89 
test2025 phthalimide -9.61 -11.09 0.20 -9.15 
test3007 2-methoxybezoic acid -10.32 -7.61 0.19 -11.4 

 

The results show that the TI predictions are of similar quality as the EC-RISM data. While 

there is a shift in the sign of the error, EC-RISM tends to predict lower energies while TI cal-

culations tend to predict higher energies, this does not matter because the correction will not 

be trained directly on the TI reference data but using the reference data generated as described 

above. The Gibbs energies of solvation at high pressures calculated using EC-RISM both with 

and without the additional high-pressure correction are depicted in Fig. 29. Table 23 shows 

the statistical metrics for the different approaches and the high-pressure correction. 
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Fig. 29: Gibbs free energy of solvation calculated with EC-RISM in comparison with TI reference calculations at 

pressures of 1 kbar (A) and 10 kbar (B). Figure reprinted from [4] (https://doi.org/10.1016/j.bpc.2019.106258). 

Table 23: Statistical metrics for Gibbs free energies of hydration calculated by EC-RISM, where the superscript 

“0” indicates the 1 bar and the superscript “hp” indicates the p-dependent PMV correction, and by TI in compar-

ison with experimental values for 1 bar and for Gibbs free energies of solvation calculated by EC-RISM in com-

parison with TI results (root mean square error RMSE, mean absolute error MAE, mean signed error MSE, slope 

m’, intercept b’, and coefficient of determination R2 from descriptive regression) for PMV-corrected and high 

pressure-corrected results. Corrected EC-RISM Gibbs energies of hydration are provided as OR10.4 in OR-10. 

Model RMSE MAE MSE m' b’ R2 
1 bar (exp. ref.)       
TI 1.56 1.24 0.65 0.87 -1.28 0.94 
EC-RISM0 1.98 1.32 -0.86 0.88 0.12 0.89 
1 bar (TI ref.)       
EC-RISM0 2.44 1.99 1.52 0.90 -1.99 0.89 
EC-RISMhp 2.44 1.99 1.52 0.90 -1.99 0.89 
1 kbar (TI ref.)       
EC-RISM0 2.39 1.79 -0.36 0.91 0.15 0.82 
EC-RISMhp 2.34 1.85 1.26 0.93 -1.41 0.86 
10 kbar (TI ref.)       
EC-RISM0 14.34 12.64 -12.64 1.62 0.97 0.92 
EC-RISMhp 2.92 2.41 2.30 1.05 -3.25 0.97 

After training of the correction, the Gibbs energies of solvation predicted from EC-RISM 

are in line with the Gibbs energies of solvation from the TI reference calculations. While there 

is a small increase in the RMSE from 2.44 kcal∙mol-1 at a pressure of 1 bar to 2.92 kcal∙mol-1 

at a pressure of 10 kbar using the TI as a reference, the error obtained when using only the 

1 bar correction is much higher at 14.34 kcal∙mol-1. The increase in the error at very high 

pressures might be due to the increased polarization of the molecules in the EC-RISM calcu-

lations whereas in the TI reference calculations the same AM1-BCC charges were used for 

every pressure. Another potential reason is the fact that the pressures used in the correction 

are not spaced evenly but instead there are as many pressures between 1 and 2000 bar as there 

are between 2000 and 10000 bar. 

The lack of experimental data at high hydrostatic pressures makes not only the develop-

ment of the PMV correction for high pressures difficult, but also the validation. However, the 

https://doi.org/10.1016/j.bpc.2019.106258
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autoprotolysis constant of water is known to shift to lower values under increasing pressure 

[181]. P. Kibies was able to show that application of the high pressure PMV correction is able 

to correct both the trend and the magnitude of the shift for different force fields under investi-

gation when compared to the 1 bar PMV correction [4,87]. This is strong evidence for the 

necessity of the high pressure PMV correction and its correct training with the TI reference 

data. More evidence for the high pressure PMV correction should be forthcoming as it is used 

in more research areas in the future. 

 

 

. 
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8 SUMMARY AND CONCLUSION 

In the course of this work a number of improvements to the scope of applications and the 

accuracy of the EC-RISM solvation model were made, many of which can and already have 

been applied to other fields of research in the group. These improvements fall into one of the 

following three categories: 

1. Development of a workflow to generate solvent susceptibilities for diverse solvents and 

training and testing of a PMV correction for it. 

2. Development and testing of models to generate accurate acidity constants and other physi-

cochemical properties for compounds with an arbitrary number of conformational, tauto-

mer, and ionic states. 

3. Development of a general method to gain access to reference data for environmental con-

ditions for which little or no experimental data is available. 

 The methods described in chapter 3 can be used as default methods to generate solvent 

susceptibilities for many different solvents if the usual 1D-RISM-based workflow fails, or to 

generate alternative solvent models. In combination with a well-performing water model, the 

prediction of partition coefficients makes these nonaqueous solvents more accessible, as they 

can otherwise be difficult to investigate due to lack of experimental data. In the future, further 

investigation into methods to develop PMV corrections for solvents without sufficient training 

data is also necessary, e.g. to handle solvent mixtures of varying composition or a wider range 

of nonaqueous solvents.  

Building on the PMV corrections developed by D. Tomazic, different combinations of 

level of theory, basis set, and PMV correction model were examined. Using the PMV correc-

tion enables the calculation of accurate Gibbs energies for small, organic compounds in solu-

tion, which can in turn be used to calculate molecular properties such as partition coefficients. 

To calculate acidity constants and distribution coefficients a second model was developed that 
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accounts for the proton’s Gibbs energy of hydration, that cannot be accessed with EC-RISM. 

The active participation in the SAMPL series of challenges, where such properties have to be 

predicted, made it possible to take advantage of the opportunities provided by the blind chal-

lenges for model development and improvement. The access to curated experimental data sets 

specifically developed for prediction by theoretical methods should be used for further devel-

opments in the future. Especially the comparison of predictions made using EC-RISM with 

those of other methods can shed light on the strengths and weaknesses of EC-RISM, and po-

tential avenues of improvement, as has been done in this work. 

One thing that the reanalysis of the SAMPL5 dataset in chapter 6.4 showed, is that there is 

no clear improvement in the quality of the predictions, despite the advances in the EC-RISM 

methodology, PMV and pKa models, and the treatment of multiple conformational or tauto-

meric states. The question in how far the employed theoretical models mimic the experi-

mental reality, where e.g. non-ideal mixture effects may play a role, needs to be considered in 

future works. Moreover, it might be useful to also repeat experiments when new experimental 

equipment has been developed to minimize uncertainty in the reference data needed to train 

and validate theoretical models. To advance the prediction and understanding of physico-

chemical properties, close collaboration of computational and experimental groups is neces-

sary. 

Use of the PMV correction is not limited to the properties investigated in this work. As the 

Gibbs energy is a fundamental thermodynamic property any molecular property that can be 

derived from them can, in principle, now be calculated using EC-RISM. Furthermore, while 

spectroscopic properties calculated from the wave function of the molecules in solution are 

not directly affected by the PMV correction, the conformational and tautomer populations of 

the molecules under investigation are. 

The high-pressure correction developed in this work makes it possible to calculate the 

properties of molecules under high hydrostatic pressure, conditions under which living organ-

isms must adapt but can still exist. Research on topics such as base pairing stability under 

high hydrostatic pressure has already been carried out using this new correction [182]. Fur-

thermore, the new correction gave the initial spark to the development of a temperature-

dependent partial molar volume correction that is still under development but will make it 

possible to calculate the properties of molecules under higher temperatures and their en-

thalpies. 
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Finally, some of the “results” obtained over the course of this dissertation are not just the 

development and improvement of certain models and approaches to calculating physicochem-

ical properties, but also methods to handle large amounts of data, the standardized generation 

of conformations of flexible molecules for use with EC-RISM and the script-based analysis of 

the results obtained from these calculations. Applying these advances to the three categories 

PMV correction development, physicochemical property prediction, and biophysical mole-

cules under extreme conditions in the future will increase the speed, scope, and accuracy of 

EC-RISM even further. 
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