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DoD Stabilization for non-linear hyperbolic
conservation laws on cut cell meshes in one

dimension

Sandra May* Florian Streitbürger*

In this work, we present the Domain of Dependence (DoD) stabilization for sys-
tems of hyperbolic conservation laws in one space dimension. The base scheme uses a
method of lines approach consisting of a discontinuous Galerkin scheme in space and
an explicit strong stability preserving Runge-Kutta scheme in time. When applied
on a cut cell mesh with a time step length that is appropriate for the size of the
larger background cells, one encounters stability issues. The DoD stabilization con-
sists of penalty terms that are designed to address these problems by redistributing
mass between the inflow and outflow neighbors of small cut cells in a physical way.
For piecewise constant polynomials in space and explicit Euler in time, the stabi-
lized scheme is monotone for scalar problems. For higher polynomial degrees p, our
numerical experiments show convergence orders of p+ 1 for smooth flow and robust
behavior in the presence of shocks.

1 Introduction

The efficient and fast generation of body-fitted meshes for complex geometries remains one of
the most time-consuming preprocessing steps in numerical simulations involving finite volume
(FV) and discontinuous Galerkin (DG) schemes. As a result, the usage of Cartesian embedded
boundary meshes becomes more and more popular. Out of the different existing variants, we
use the following approach: We simply cut the geometry out of an underlying Cartesian mesh,
resulting in so called cut cells along the boundary of the object.

Cut cells are typically irregular and can become arbitrarily small. This causes various problems.
In the context of solving hyperbolic conservation laws on cut cell meshes, for which one typically
uses explicit time stepping schemes, the most severe problem is the so called small cell problem:
choosing the time step based on the size of the larger background cells results in stability problems
on small cut cells and their neighbors. Therefore, special methods must be developed. The focus
of this contribution is on addressing this problem. For more information on the small cell problem
we refer to [1, 24].

The supposedly easiest approach to overcoming the small cell problem is cell merging or cell
agglomeration [22, 29, 31]: one simply merges cut cells that are too small with bigger neighbors.
This approach is very intuitive but very difficult to do in three dimensions in a robust way and
puts all the complexity back into the mesh generation process.
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The alternative is to develop algorithmic solutions to the small cell problem. In the context of
FV schemes, two well established approaches are the flux redistribution method [7,10] and the h-
box method [3,4]. More recent approaches include a dimensionally split flux stabilization [14,19],
the mixed explicit implicit scheme [26], the extension of the active flux method to cut cells [17],
and the state redistribution method [2].

In the context of DG schemes there exists only very little work addressing the small cell
problem. While there are many different approaches for stabilizing discretizations for elliptic and
parabolic problems on cut cell meshes (for an overview see, e.g., [5]) the research for hyperbolic
problems is still at the beginning but with a lot of current activity. Some very recent work
[12,16,32] is based on applying the ghost penalty stabilization [6], which is a well-known approach
for elliptic equations, to hyperbolic problems. Out of these contributions, only Fu and Kreiss [12]
address the small cell problem for first-order hyperbolic problems by developing a stabilization
for the solution of scalar conservation laws in one dimension. A different approach to overcoming
the small cell problem was taken by Giuliani [13] who extends the state redistribution scheme
to the DG setting. This approach seems to work well in practice but it is challenging to verify
theoretical properties.

In [11], we introduced together with Engwer and Nüßing the Domain of Dependence (DoD)
stabilization. To the best of our knowledge, this is the first contribution to overcoming the small
cell problem in a DG setting in a monotone way. The DoD stabilization introduces penalty terms
that shift mass between small cut cells and their neighbors in a physical way: within one time
step, mass is transported from the inflow neighbors of small cut cells through the cut cells to
their outflow neighbors. This way we restore the proper domain of dependence of the outflow
neighbors and create a stable update on small cut cells for standard explicit time stepping.

The work in [11] treats the case of linear advection for piecewise linear polynomials. In this
contribution we take the next step and extend the stabilization to higher order polynomials
and to non-linear systems of hyperbolic conservation laws in one dimension, in particular to the
compressible Euler equations. For the extension to higher order polynomials we observed that
it is not sufficient to penalize derivatives only on small cut cells. We therefore added terms to
control derivatives on their neighbors as well. For the extension to non-linear systems, the main
challenge consisted in accounting for the various flow directions.

For scalar conservation laws, our extended formulation has the following theoretical properties:
for piecewise constant polynomials in space combined with explicit Euler in time, the resulting
scheme is monotone, independent of the size of the small cut cell; thus, this result transfers
from the linear to the non-linear case. For the semi-discrete setting, there holds L2 stability for
arbitrary polynomial degrees p as a result of also controlling derivatives on cut cells’ neighbors.
Our numerical results for scalar equations and systems show convergence rates of p + 1 for
polynomials of degree p for smooth solutions and robust behavior for problems involving shocks.

The paper is structured as follows: we will first provide in section 2 the general setting, which
includes the cut cell model problem and the unstabilized DG discretization. In section 3, we will
present the DoD stabilization for non-linear problems and higher order polynomials. We will also
give a short comparison between the new formulation and the formulation in [11] for the case of
the advection equation. Section 4 contains theoretical results for scalar conservation laws, like
the monotonicity property and the L2 stability result for the semi-discrete formulation. Finally,
in section 5 we will present numerical results for scalar equations and systems of conservation
laws to support our theoretical findings. We will conclude with an outlook in section 6.
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2 Setting

We consider time-dependent systems of hyperbolic conservation laws in one space dimension of
the form

ut + f(u)x = 0 in Ω× (0, T ) (1)

with initial data u0 = u(·, 0). The spatial domain is given by Ω = (xL, xR) with xL, xR ∈
R, xL < xR, and the final time is given by T ∈ R+. Further, u : Ω × (0, T ) → Rm, m ∈ N, is
the vector of conserved variables and f : Rm → Rm is the flux function. We assume the system
to be hyperbolic, i.e., that the Jacobian fu(u) is diagonalizable with real eigenvalues for each
physically relevant value u ∈ Rm, compare LeVeque [23].

In particular, we will consider the compressible Euler equations, which satisfy (1) with

u =

 ρ
ρv
E

 and f(u) =

 ρv
ρv2 + p

(E + p)v

 . (2)

Here, ρ denotes the density, v the velocity, p the pressure, and E the energy. The system is
completed by the equation of state

E =
p

γ − 1
+

1

2
ρv2.

We will set γ = 1.4 in our numerical tests. We will also consider linear systems given by

u + Aux = 0, (3)

with the matrix A ∈ Rm × Rm being diagonalizable with real eigenvalues.
For the theoretical results, we will focus on scalar conservation laws

ut + f(u)x = 0. (4)

Important representatives include the linear advection equation given by

ut + βux = 0, β > 0 constant, (5)

and Burgers equation given by

ut + f(u)x = 0, f(u) =
1

2
u2.

2.1 The cut cell model problem

To examine the behavior of solving (1) on a cut cell mesh, we create a model problem: We first
discretize Ω in N cells Ij = (xj− 1

2
, xj+ 1

2
), j = 1 . . . , N, of equal length h = xR−xL

N . Then we take
one cell, the cell Ik, in the interior of the domain and split it into two cut cells, Ik1 and Ik2 , of
lengths αh and (1 − α)h with α ∈ (0, 1

2 ]. This way we obtain a one dimensional cut cell mesh
shown in figure 1 with N + 1 cells, which we will refer to as Mh; compare also [11].

Definition 1. For the model problem Mh, we define the following index sets

Iequi = {1 ≤ j ≤ N |j 6= k}, Iall = Iequi ∪ {k1, k2}, IN = {k − 1, k1, k2}. (6)

Here, Iequi contains the indices of all cells of length h, and IN contains the indices of the small
cut cell Ik1 and its left and right neighbor.

We will use this model problem for explaining our stabilization and for the theoretical results
in section 4. For the numerical results in section 5, we will build different test cases upon this
model problem, which use many cut cell pairs.
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Figure 1: Cut cell meshMh: equidistant mesh with cell Ik split into two cells of lengths αh and
(1− α)h with α ∈ (0, 1

2 ]. We denote the new edge coordinate by xcut.

2.2 Unstabilized RKDG scheme

We use a Runge-Kutta DG (RKDG) approach. We first discretize in space using a DG approach.
Then we discretize in time using an explicit strong stability preserving (SSP) RK scheme [15,21].

Definition 2 (Discrete Function Space). We define the discrete space Vph ⊂ (L2(Ω))m by

Vph =
{
vh ∈ (L2(Ω))m vhl |Ij ∈ P p(Ij) for each component l = 1, . . . ,m and for all j ∈ Iall} ,

where P p denotes the polynomial space of degree p.

As functions vh ∈ Vph are not well-defined on cell edges, we define jumps.

Definition 3 (Jump). Using the notation x±
j+ 1

2

= limε→0 xj+ 1
2
± ε we define the jump at an

interior edge xj+ 1
2
, 1 ≤ j ≤ N − 1, as

q
vh

y
j+ 1

2

= vh(x−
j+ 1

2

)− vh(x+
j+ 1

2

).

Analogously, we define
q
vh

y
cut

= vh(x−cut)− vh(x+
cut). At the boundary edges x 1

2
and xN+ 1

2
we

define q
vh

y
1
2

= −vh(x+
1
2

) and
q
vh

y
N+ 1

2

= vh(x−
N+ 1

2

).

Our stabilization is based on extending the influence of the polynomial solutions on cells Ik−1

and Ik2 into the small cut cell Ik1 . We therefore introduce an extension operator, compare [11].

Definition 4 (extension operator). The extension operator Lext
j extends the function uh ∈ Vph

from a cell Ij , j ∈ Iall, to the whole domain Ω:

Lext
j : Vph|Ij → P p(Ω) s.t. Lext

j (uh) ∈ P p(Ω) and Lext
j (uh)|Ij = uh|Ij .

This extension is simply given by evaluating the polynomials uhl |Ij ∈ P p(Ij), l = 1 . . . ,m, outside
of their original support.

Notation 2.1. In the following, we will often use the shortcut notation

uj(x) = Lext
j (uh)(x), x ∈ Ω,

which corresponds to evaluating the discrete polynomial function from cell j at a point x, possibly
outside of Ij. If necessary, we will use the subindex l to denote the lth component. Therefore,
uj,l(x) corresponds to the lth component of Lext

j (uh)(x). Using this notation, one can equivalently
express the jump as q

vh
y
j+ 1

2

= vj(xj+ 1
2
)− vj+1(xj+ 1

2
).
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We now introduce the standard, unstabilized DG scheme for system (1). The DoD stabilization,
which will make it possible to use explicit time stepping despite the presence of the small cut
cell Ik1 , will be introduced in section 3. The semi-discrete problem for the meshMh is given by:
Find uh ∈ Vph such that(

dtu
h(t),wh

)
L2 + ah

(
uh(t),wh

)
= 0 ∀wh ∈ Vph, (7)

with

ah(uh,wh) = −
∑
j∈Iall

∫
j

f(uh) · ∂xwh dx

+

N∑
j=0

H(uj ,uj+1)(xj+ 1
2
) ·

q
wh

y
j+ 1

2

+H(uk1 ,uk2)(xcut) ·
q
wh

y
cut

.

Here, a · b denotes the standard scalar product in Rm given by a · b =
∑m
l=1 albl and (·, ·)L2

denotes the standard scalar product in (L2(Ω))m. Further, H(a,b)(x) denotes the numerical flux
function with arguments a(x) and b(x). Finally, we incorporate boundary conditions by suitably
defining u0(x 1

2
) and uN+1(xN+ 1

2
) in H(u0,u1)(x 1

2
) and in H(uN ,uN+1)(xN+ 1

2
), respectively.

The choices of u0(x 1
2
) and uN+1(xN+ 1

2
) will be discussed in section 5.

Notation 2.2. In formulae we typically refer to the jth cell Ij by using only the letter ‘j′ for
brevity, i.e.,

∫
j

corresponds to
∫
Ij
.

3 DoD stabilization

To handle the small cell problem, we suggest an algebraic approach, which adds special stabiliza-
tion terms, summarized in Jh, to the semi-discrete formulation (7). The resulting DoD stabilized
scheme is then given by: Find uh ∈ Vph such that(

dtu
h(t),wh

)
L2 + ah(uh(t),wh) + Jh(uh(t),wh) = 0 ∀wh ∈ Vph. (8)

The penalty term Jh is linear in the test function wh and in general non-linear in the solution
uh(t).

3.1 General structure of the penalty term Jh

We only stabilize the smaller cut cell Ik1 in the model mesh Mh. Therefore, the stabilization is
given by

Jh(uh,wh) = J0,k1
h (uh,wh) + J1,k1

h (uh,wh)

with

J0,k1
h (uh,wh) = ηk1

[
H(uk−1,uk2)(xk− 1

2
)−H(uk−1,uk1)(xk− 1

2
)
]
·
q
wh

y
k− 1

2

+ ηk1 [H(uk−1,uk2)(xcut)−H(uk1 ,uk2)(xcut)] ·
q
wh

y
cut

(9)

and J1,k1
h being defined below. Here, ηk1 ∈ R+ is a penalty factor. The stabilization term J0,k1

h

is designed to properly redistribute mass between the cells Ik−1, Ik1 , and Ik2 . We achieve this by
adding new fluxes at xk−1/2 and xcut, which move mass between the left neighbor Ik−1 and the
small cut cell Ik1 and between Ik1 and the right neighbor Ik2 , respectively. The sizes of these
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fluxes depend on the flux differences of a newly introduced flux H(uk−1,uk2)(·) and the standard
fluxes H(uk−1,uk1)(·) and H(uk1 ,uk2)(·), respectively. Note that the new flux H(uk−1,uk2)(·)
introduces a direct coupling between cells Ik−1 and Ik2 .

We emphasize the symmetric structure of the two terms in J0,k1
h : we add jump terms at both

edges of Ik1 , accounting for the two possible flow directions. Note that we make use of the
extrapolation operator Lext here when we evaluate uk−1 and uk2 at xcut and xk− 1

2
, respectively.

The stabilization term J1,k1
h controls the mass distribution primarily within the small cut cell

Ik1 and secondarily within its neighbors Ik−1 and Ik2 . The stabilization accounts for how much
mass has been moved into and out of the small cut cell Ik1 from and to its left and right neighbors

by means of ah and J0,k1
h . The terms are derived from the proof of the L2 stability, compare

Theorem 7. Analogously to the ansatz functions, we also extrapolate the test functions to be
used within their direct neighbor but outside of their original support. The stabilization term
J1,k1
h is given by

J1,k1
h (uh,wh) = ηk1

∑
j∈IN

K(j)

∫
k1

(H(uk−1,uk2)− f(uj)) · ∂xwjdx

+ ηk1
∑
j∈IN

K(j)

∫
k1

(Ha(uk−1,uk2)uj) · ∂xwk−1dx

+ ηk1
∑
j∈IN

K(j)

∫
k1

(Hb(uk−1,uk2)uj) · ∂xwk2dx.

(10)

Here, the matrices K(j) ∈ Rm×m, j ∈ IN , incorporate information about the flow directions.
They are defined using positive semi-definite matrices Lk1 ,Rk1 ∈ Rm×m and the identity matrix
Im ∈ Rm×m. We set

K(k − 1) = Lk1 , K(k1) = −Im, and K(k2) = Rk1 .

The choices of Lk1 ,Rk1 , and ηk1 will be discussed below.
Further, Ha(u−,u+) ∈ Rm×m denotes the Jacobian of the numerical flux H(u−,u+) with

respect to the first argument, i.e.,
(

∂
∂(u−)j

H(u−,u+)i

)m
i,j=1

. Analogously, Hb(u−,u+) denotes

the Jacobian with respect to the second argument u+.
The stabilization might seem a bit overwhelming. Below, we will examine the stabilization for

the two special cases of linear advection for P p and of scalar conservation laws for P 0 in more
detail. This will provide a better understanding.

Remark 3.1. We note that the stabilized DG scheme is locally mass conservative but that the
local mass conservation must be understood in a slightly broader sense: when checking for mass
conservation (by testing with indicator functions), the penalty term J1,k1

h vanishes. The penalty

term J0,k1
h stays and (depending on the flow direction) connects the cells Ik−1, Ik1 , and Ik2 . This

is intended to overcome the small cell problem. As a result, we have local mass conservation with
respect to the extended control volume Ik−1 ∪ Ik1 ∪ Ik2 .

3.2 Choice of parameters

We now discuss how to choose Lk1 , Rk1 , and ηk1 .

3.2.1 Choice of Lk1 and Rk1

The parameter matrices Lk1 and Rk1 incorporate information about the flow direction. Let us
first consider linear problems. For the scalar linear advection equation (5) with β > 0, we set
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Lk1 = 1 and Rk1 = 0. For linear systems, given by (3), we decompose the matrix A. Thanks
to the assumption of hyperbolicity, A is diagonalizable with real eigenvalues λi, i = 1, . . . ,m,.
Therefore, we can rewrite A = QΛQ−1, with the columns of Q containing the right eigenvectors
of A and Λ being a diagonal matrix containing the eigenvalues (λi)i. Based on Λ, we define the
diagonal matrices I+, I− ∈ Rm×m by choosing element-wise for i = 1, . . . ,m

I+
ii =


1 if Λii > 0,
1
2 if Λii = 0,

0 if Λii < 0,

and I−ii =


0 if Λii > 0,
1
2 if Λii = 0,

1 if Λii < 0.

Then, we define
Lk1 = QI+Q−1 and Rk1 = QI−Q−1. (11)

Note that Lk1 and Rk1 are positive semi-definite matrices, which satisfy Lk1 + Rk1 = Im.
For non-linear problems, we use the same approach but replace A by the (non-linear) Jacobian

matrix fu(u), evaluated at a suitable average û of uk−1(xk1) and uk2(xk1), with xk1 denoting the
cell centroid of cell Ik1 . For scalar problems, i.e., m = 1, we simply use the arithmetic average
û = (uk−1(xk1) + uk2(xk1))/2 and set

(Lk1 , Rk1) =


(1, 0) if û > 0,

( 1
2 ,

1
2 ) if û = 0,

(0, 1) if û < 0.

For solving the compressible Euler equations, compare (2), we use the Roe average given by

û(uk−1,uk2) =
1

2

 √
ρk−1 +

√
ρk2√

ρk−1vk−1 +
√
ρk2vk2√

ρk−1Hk−1 +
√
ρk2Hk2


with H = E+p

ρ and with dropping the evaluation point xk1 for brevity. Then, we decompose

fu(û) into QΛQ−1 and use again the definition (11).

3.2.2 Choice of ηk1

We choose the stabilization parameter ηk1 as

ηk1 = max
(

1− α

ν
, 0
)

(12)

with α being the cut cell fraction and ν the CFL parameter. The CFL parameter is used for
setting the time step ∆t. We use the standard formula for computing the time step length for
DG schemes given by

∆t =
1

2p+ 1

νh

λmax
(13)

with λmax = maxi |λi| being the maximum eigenvalue.
Examining (12), we observe that for α ≥ ν there holds ηk1 = 0 and therefore the stabilization

Jh vanishes. This is intended as in this case the standard CFL condition on cell Ik1 is satisfied
and we do not have a small cell problem. In the following, we typically implicitly assume α < ν,
in which case there holds ηk1 = 1− α

ν > 0.

Remark 3.2. There is a certain (limited) flexibility in the choice of ηk1 . For a more detailed
discussion we refer to [11, 33].
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3.3 Effect of additional stabilization terms in J1,k1
h

We now briefly discuss our new formulation for the case of the linear advection equation and
compare it to the formulation used in [11], where we presented the DoD stabilization for the

advection equation for piecewise linear polynomials. We start with examining J0,k1
h as formulated

in (9). When using an upwind flux, the first term simply cancels and the second term reduces

to the formulation of J0,k1
h used in [11]; thus, the two formulations coincide for J0,k1

h . This is

not the case for J1,k1
h . Compared to [11], we have added terms to stabilize the mass distribution

within the cells Ik−1, Ik1 , and Ik2 for higher order polynomials. We discuss this in more detail
in the following.

For solving the linear advection equation (5) with the upwind flux, the derivatives of the
numerical flux are given by

Ha(ua, ub) = β and Hb(ua, ub) = 0,

and the coefficients Lk and Rk reduce to Lk = 1 and Rk = 0. Thus, the stabilization is of the
form

Jh(uh, wh) =βηk1 [uk−1(xcut)− uk1(xcut)] JwhKcut

+ βηk1

∫
k1

[uk−1(x)− uk1(x)] [∂xwk−1(x)− ∂xwk1(x)] dx .
(14)

The stabilization suggested in [11] for the same setting has the form

Jh(uh, wh) =βηk1 [uk−1(xcut)− uk1(xcut)] JwhKcut

− βηk1
∫
k1

[uk−1(x)− uk1(x)] ∂xwk1(x) dx .
(15)

Therefore, the only but essential difference is the expression∫
k1

βηk1 [uk−1(x)− uk1(x)] ∂xwk−1(x)dx. (16)

To examine the effect of the additional term (16), especially for higher polynomial degrees, we
study the eigenvalues of the semi-discrete system

Ut = M−1LU.

Here, we denote by M the mass matrix, by L the stabilized stiffness matrix, and by U the
coefficient vector of uh. We use a modified version of our model problemMh here: we discretize
the domain (0, 1) by 100 equidistant cells and then split all cells in (0.1, 0.9) in cut cell pairs of
length αh and (1−α)h. All cells of length αh are identified as cells of type Ik1 and are stabilized.
We compare the results for α = 10−1 with the results for α = 10−6.

In table 1 we show the spectral abscissa of M−1L for the two different stabilizations for
polynomial degrees p = 1, 2, 3. The spectral abscissa µ is defined as the supremum over the real
parts of all eigenvalues λ̂i of M−1L, i.e., µ = supi(Re(λ̂i)). It is a good indicator for the stability
of a semi-discrete system, compare [28,35]. We need to prevent µ > 0.

Usually, the tiny cut cells are the trouble-makers. For α = 10−6 though all values in table 1
are zero (within the range of machine precision) and therefore fine. So one might think that the
formulation (15), which we introduced in [11] for linear polynomials only, also works for higher
order polynomials.
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α = 10−1 α = 10−6

Pp without (16) with (16) without (16) with (16)
P1 -4.81e-16 4.38e-17 -1.58e-17 8.40e-17
P2 2.51e-04 -1.73e-15 1.10e-15 -6.53e-16
P3 5.11e-03 2.50e-15 3.84e-17 2.46e-16

Table 1: Effect of adding the term (16): Comparison of the spectral abscissa for the modified
model problem for α = 10−1 and α = 10−6.

Surprisingly though we have problems for the ‘big’ cut cells with volume fraction α = 10−1.
For P 1 the values look good for both formulations. For P 2 and P 3 however the formulation
without the term (16) shows values for µ of the order of 10−4 and 10−3, i.e., a clear indication
of instability. For our new formulation, which adds the term (16), the values are zero again.
When examining the term (16), we can confirm that it should be more relevant for relatively
large volume fractions α as we integrate over cells of type Ik1 , which have length αh, and the
derivative ∂xwk−1 scale like O(1/h).

This example also shows that it is important to not only focus on the case of tiny α’s but to
also ensure that everything runs stable for larger volume fractions as well.

Remark 3.3. A similar observation seems to hold true for solving the Euler equations: reducing
J1,k1
h to only using the single term

−ηk1
∫
k1

(H(uk−1(x),uk2(x))− f(uk1(x))) · ∂xwk1(x)dx

leads to stable results for P 1 polynomials in our tests but causes instabilities for higher order
polynomials.

3.4 Limiter

To run test cases involving a shock in a stable way, we need a limiter. We use the total variation
diminishing in the means (TVDM) generalized slope limiter developed by Cockburn and Shu [8,9],
which we modify appropriately for the neighbors Ik−1 and Ik2 of the small cut cell.

The standard scheme for limiting the discrete solution uj on a cell Ij , j ∈ Iall, (of a non-uniform
mesh) can be summarized as follows:

1. Compute the limited extrapolated values ulim
j (x+

j− 1
2

) and ulim
j (x−

j+ 1
2

):

ulim
j (x+

j− 1
2

) = ūj − m̃(ūj − uj(x+
j− 1

2

), ūj − ūj−1, ūj+1 − ūj)

ulim
j (x−

j+ 1
2

) = ūj + m̃(uj(x
−
j+ 1

2

)− ūj , ūj − ūj−1, ūj+1 − ūj)

with ūj denoting the average mass of uj over cell Ij and m̃ being the minmod function
given by

m̃(a1, . . . , an) =

{
s ·min1≤i≤n |ai| if sign (a1) = . . . = sign (an) = s,

0 otherwise.

2. If the limited values ulim
j (x+

j− 1
2

) and ulim
j (x+

j+ 1
2

) are equal to the unlimited values uj(x
+
j− 1

2

)

and uj(x
+
j+ 1

2

), set ulim
j = uj . Otherwise, reduce uj to P 1 by setting higher order coefficients
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to zero. (Note that this does not change the mass as we use a Legendre basis.) Then, limit
the linear polynomial such that the edge evaluations of the limited polynomial do not
exceed ulim

j (x+
j− 1

2

) and ulim
j (x+

j+ 1
2

), respectively. Use the outcome as ulim
j .

Note that despite using the minmod function, this approach of limiting is more in the spirit of
the MC limiter.

In the penalty term Jh, we evaluate the solutions of cells Ik−1 and Ik2 outside of their original
support. We therefore postprocess the limiting on these cells to additionally enforce

min
(
ūnk−1, ū

n
k1 , ū

n
k2

)
≤ uk−1(xcut) ≤ max

(
ūnk−1, ū

n
k1 , ū

n
k2

)
,

min
(
ūnk−1, ū

n
k1 , ū

n
k2

)
≤ uk2(xk− 1

2
) ≤ max

(
ūnk−1, ū

n
k1 , ū

n
k2

)
.

As for the standard cells, we first apply a check whether it is necessary to change the high order
polynomial (see Step 1) and only adjust the solution if needed.

Remark 3.4. This limiter has been adjusted to our stabilization and produces robust results but
tends to be diffusive for higher order. The focus of this work is on the development of the stability
term Jh, not on limiting. Limiting in this setup is a very challenging task as it combines the
issues of not limiting higher order polynomials at smooth extrema and complications caused by
the cut cell geometry [25]. We plan to address this in future work.

4 Theoretical results

In this section we present theoretical results concerning the stability of the stabilized scheme.
For this, we focus on scalar conservation laws given by (4). We also require some standard
properties for the numerical flux, compare, e.g., Cockburn and Shu [9].

Prerequisite 4.1. We request the numerical flux H to satisfy the following properties:

1. Consistency: H(u, u) = f(u).

2. Continuity: H(u−, u+) is at least Lipschitz continuous with respect to both arguments u−

and u+.

3. Monotonicity: H(u−, u+)

� is a non-decreasing function of its first argument u−,

� is a non-increasing function of its second argument u+.

Then, the flux has the E-flux property defined by Osher [30]: For all u between u− and u+

there holds
(H(u−, u+)− f(u))(u+ − u−) ≤ 0. (17)

4.1 Theoretical results for P 0

We first consider the case of piecewise constant polynomials. Then, the stabilization J1,k1
h , which

involves derivatives of the test functions, vanishes, and the stabilization for the model problem
Mh reduces to Jh(uh, wh) = J0,k1

h (uh, wh). In time we use explicit Euler. This results in the

10



following update formulae in the neighborhood of the small cut cell Ik1

un+1
k−2 =unk−2 −

∆t

h
{H(unk−2, u

n
k−1)−H(unk−3, u

n
k−2)},

un+1
k−1 =unk−1 −

∆t

h
{(1− ηk1)H(unk−1, u

n
k1) + ηk1H(unk−1, u

n
k2)−H(unk−2, u

n
k−1)},

un+1
k1

=unk1 −
∆t

αh
(1− ηk1){H(unk1 , u

n
k2)−H(unk−1, u

n
k1)},

un+1
k2

=unk2 −
∆t

(1− α)h
{H(unk2 , u

n
k+1)− (1− ηk1)H(unk1 , u

n
k2)− ηk1H(unk−1, u

n
k2)},

un+1
k+1 =unk+1 −

∆t

h
{H(unk+1, u

n
k+2)−H(unk2 , u

n
k+1)}.

(18)

We use the common FV notation and denote the solution in cell Ij at time tn by unj . Evaluation
points ′x′ are not necessary as we only consider piecewise constant solutions.

The update formulae in (18) gives some insight in the effect of the stabilization. Let us first
consider the update for the small cell Ik1 . The factor (1− ηk1) = α

ν in front of the flux difference
balances the factor α (from the cell size αh) in the denominator and provides the prerequisite for
a stable update on Ik1 . Further, there now exists an additional flux H(uk−1, uk2) between the
cells Ik−1 and Ik2 , which are not direct neighbors. The scaled mass given by ηk1H(uk−1, uk2) is
directly transported between cells Ik−1 and Ik2 (depending on the flow direction), skipping the
small cut cell Ik1 .

4.1.1 Monotonicity

A standard first-order FV/DG scheme is monotone on a uniform mesh for scalar conservation
laws. We can also show this property for our stabilized scheme on the model mesh Mh. This
guarantees that overshoot cannot occur. For explicit schemes, a monotone scheme can be defined
as follows, compare Toro [34].

Definition 5. A method un+1
j = H(unj−iL , u

n
j−iL+1, ..., u

n
j+iR

) is called monotone, if ∀j there
holds for every l with −iL ≤ l ≤ iR

∂H

∂uj+l
(uj−iL , ..., uj+iR) ≥ 0. (19)

Theorem 6. Consider the stabilized scheme (8) for P 0 polynomials for the model problem Mh

with explicit Euler in time, applied to a scalar conservation law. Let the time step be given by
∆t = νh

λmax
for 0 < α < ν < 1−α. Let the numerical flux H satisfy prerequisite 4.1. Further, we

require:

|Ha(u, v)|+ |Hb(w, u)| ≤ νh

∆t
∀u, v, w. (20)

Then, the stabilized scheme is monotone.

Remark 4.1. Condition (20) is a common condition for monotonicity on regular meshes, com-
pare [27].

Proof. Away from the two cut cells, we use a standard first-order DG scheme on a uniform mesh,
which is monotone under the given assumptions. It therefore suffices to show property (19) for
the three cells Ij , j ∈ IN , that are affected by our stabilization. The update formulae are given

11



by (18). Due to 0 < ηk1 < 1, the non-negativity of ∂
∂un

i
un+1
j for i 6= j follows directly from the

monotonicity of the fluxes. It remains to examine ∂
∂un

j
un+1
j for j ∈ IN . We start with cell Ik−1:

∂

∂unk−1

un+1
k−1 = 1− ∆t

h
{(1− ηk1)Ha(unk−1, u

n
k1) + ηk1Ha(unk−1, u

n
k2)

− (1− ηk1)Hb(unk−2, u
n
k−1)− ηk1Hb(unk−2, u

n
k−1)}

≥ 1− ∆t

h

{
(1− ηk1)

νh

∆t
+ ηk1

νh

∆t

}
≥ 0.

For the small cut cell Ik1 there holds with ηk1 = 1− α
ν

∂

∂unk1
un+1
k1

= 1− ∆t

αh
(1− ηk1){Ha(unk1 , u

n
k2)−Hb(unk−1, u

n
k1)}

≥ 1− ∆t

αh

α

ν

νh

∆t
≥ 0.

Finally, for cell Ik2 we get

∂

∂unk2
un+1
k2

= 1− ∆t

(1− α)h
{(1− ηk1)Ha(unk2 , u

n
k+1) + ηk1Ha(unk2 , u

n
k+1)

− (1− ηk1)Hb(unk1 , u
n
k2)− ηk1Hb(unk−1, u

n
k2)}

≥ 1− ∆t

(1− α)h

νh

∆t
≥ 0.

This concludes the proof.

4.2 L2 stability for P p, p ≥ 0

In this section we prove that the stabilized semi-discrete scheme (8) is L2 stable for arbitrary
polynomial degree p for the model problemMh. The time is not discretized here and we consider
scalar conservation laws.

We note that the unstabilized semi-discrete scheme (7) is also L2 stable in this setting as
shown in the proof below. But when combined with an explicit time stepping scheme, one would
need to take tiny time steps to ensure stability for the fully discrete scheme. This is not the
case for our stabilized scheme. The difficulty in designing the stabilization term Jh is to find a
formulation that is both L2 stable for the semi-discrete setting and solves the small cell problem
for the fully discrete setting in a monotone way.

Theorem 7. Let uh(t), with uh(t) ∈ Vph for any fixed t, be the solution to the semi-discrete
problem (8) for the scalar equation (4) with periodic boundary conditions. Let the numerical flux
function H satisfy prerequisite 4.1. Then, the solution satisfies for all t ∈ (0, T )∥∥uh(t)

∥∥
L2(Ω)

≤
∥∥uh(0)

∥∥
L2(Ω)

.

Proof. We choose wh = uh(t) in (8) to get(
dtu

h(t), uh(t)
)
L2(Ω)

+ ah(uh(t), uh(t)) + Jh(uh(t), uh(t)) = 0.

We integrate in time to get for the first term∫ t

0

(
dτu

h(τ), uh(τ)
)
L2(Ω)

dτ =

∫ t

0

d

dτ

1

2

∥∥uh(τ)
∥∥2

L2(Ω)
dτ =

1

2

∥∥uh(t)
∥∥2

L2(Ω)
− 1

2

∥∥uh(0)
∥∥2

L2(Ω)
.

12



It remains to show that for any fixed t

ah(uh(t), uh(t)) + Jh(uh(t), uh(t)) ≥ 0.

In the following we will suppress the explicit time dependence for brevity.
Unstabilized case: We first prove L2 stability for the unstabilized case, i.e., we show

ah(uh, uh) ≥ 0. Here, we follow Jiang and Shu [18] for the special case of the square entropy
function. We define

g(u) =

∫ u

f(û)dû.

This implies g′(u) = f(u). By the E-flux property (17) and the mean value theorem, there holds

H(u−, u+)(u− − u+)− (g(u−)− g(u+)) ≥ 0. (21)

Further, there holds for an arbitrary cell Ii and an arbitrary uj∫
i

f(uj) ∂xujdx = g(uj(xi+ 1
2
))− g(uj(xi− 1

2
)).

We define the flux

Fi+ 1
2
(u) = H(ui, ui+1)(xi+ 1

2
) ui(xi+ 1

2
)− g(ui(xi+ 1

2
)).

Then we can rewrite the contribution of the bilinear form ah for a single, arbitrary cell Ii as

−
∫
i

f(ui(x))∂xui(x)dx+H(ui, ui+1)(xi+ 1
2
) ui(xi+ 1

2
)−H(ui−1, ui)(xi− 1

2
) ui(xi− 1

2
)

=− g(ui(xi+ 1
2
)) + g(ui(xi− 1

2
)) +H(ui, ui+1)(xi+ 1

2
) ui(xi+ 1

2
)−H(ui−1, ui)(xi− 1

2
) ui(xi− 1

2
)

=Fi+ 1
2
(u) + g(ui(xi− 1

2
))−H(ui−1, ui)(xi− 1

2
) ui(xi− 1

2
)

=Fi+ 1
2
(u)− Fi− 1

2
(u)− g(ui−1(xi− 1

2
)) + g(ui(xi− 1

2
)) +H(ui−1, ui)(xi− 1

2
)
q
uh

y
i− 1

2

.

Using the notation Jg(u)Ki+ 1
2

= g(ui(xi+ 1
2
))− g(ui+1(xi+ 1

2
)), we can summarize

ah(uh, uh) =
∑

j∈Iequi

(
Fj+ 1

2
(u)− Fj− 1

2
(u) +H(uj−1, uj)(xj− 1

2
)
q
uh

y
j− 1

2

− Jg(u)Kj− 1
2

)
+
(
Fcut(u)− Fk− 1

2
(u) +H(uk−1, uk1)(xk− 1

2
)
q
uh

y
k− 1

2

− Jg(u)Kk− 1
2

)
+
(
Fk+ 1

2
(u)− Fcut(u) +H(uk1 , uk2)(xcut)

q
uh

y
cut
− Jg(u)Kcut

)
.

Due to the fluxes F building a telescope sum and the usage of periodic boundary conditions, this
implies

ah(uh, uh) = T1 + T2

with

T1 =
∑

j∈Iequi

(
H(uj−1, uj)(xj− 1

2
)
q
uh

y
j− 1

2

− Jg(u)Kj− 1
2

)
,

T2 =H(uk−1, uk1)(xk− 1
2
)
q
uh

y
k− 1

2

− Jg(u)Kk− 1
2

+H(uk1 , uk2)(xcut)
q
uh

y
cut
− Jg(u)Kcut .

Note that due to (21) T1,T2 ≥ 0.

13



Contribution of stabilization: Now we consider the stabilization. We will not show
Jh(uh, uh) ≥ 0 but instead ah(uh, uh) + Jh(uh, uh) ≥ 0. For the edge stabilization, we get

1

ηk1
J0,k1
h (uh, uh) =

[
H(uk−1, uk2)(xk− 1

2
)−H(uk−1, uk1)(xk− 1

2
)
] q
uh

y
k− 1

2

+ [H(uk−1, uk2)(xcut)−H(uk1 , uk2)(xcut)]
q
uh

y
cut

= −T2 + T3

with

T3 = H(uk−1, uk2)(xk− 1
2
)
q
uh

y
k− 1

2

− Jg(u)Kk− 1
2

+H(uk−1, uk2)(xcut)
q
uh

y
cut
− Jg(u)Kcut .

Since ηk1 ∈ (0, 1), we can later take care of the negative term −ηk1T2 by adding the bilinear
form ah to get

ah(uh, uh)− ηk1T2 = T1 + (1− ηk1)T2 ≥ 0.

It remains to examine T3 and the volume stabilization term J1,k1
h . Here, we make use of the

assumption of the flux H being differentiable a.e. to write

d

dx
H(uk−1, uk2) = Ha(uk−1, uk2)∂xuk−1 +Hb(uk−1, uk2)∂xuk2 .

This implies

1

ηk1
J1,k1
h (uh, uh) =

∑
j∈IN

K(j)

∫
k1

(H(uk−1, uk2)− f(uj)) ∂xujdx

+
∑
j∈IN

K(j)

∫
k1

Ha(uk−1, uk2)uj ∂xuk−1dx+
∑
j∈IN

K(j)

∫
k1

Hb(uk−1, uk2)uj ∂xuk2dx

=
∑
j∈IN

K(j)

∫
k1

H(uk−1, uk2)∂xujdx−
∑
j∈IN

K(j)
(
g(uj(xcut))− g(uj(xk− 1

2
))
)

+
∑
j∈IN

K(j)

∫
k1

(
d

dx
H(uk−1, uk2)

)
uj dx.

Using d
dx (H(uk−1, uk2)uj) = H(uk−1, uk2)∂xuj + d

dxH(uk−1, uk2)uj , we get

1

ηk1
J1,k1
h (uh, uh) =

∑
j∈IN

K(j)
[
(H(uk−1, uk2)uj) (xcut)− (H(uk−1, uk2)uj) (xk− 1

2
).

− g(uj(xcut)) + g(uj(xk− 1
2
))
]
.

Recall that
K(k − 1) = Lk1 , K(k1) = −1, K(k2) = Rk1

with Lk1 , Rk1 ∈ [0, 1] and Lk1 +Rk1 = 1. Then, skipping some tedious computations for brevity,
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we get

1

ηk1
J1,k1
h (uh, uh) + T3 =H(uk−1, uk2)(xk− 1

2
)uk−1(xk− 1

2
)−H(uk−1, uk2)(xcut)uk2(xcut)

− g(uk−1(xk− 1
2
)) + g(uk2(xcut))

+ Lk1

[
H(uk−1, uk2)(xcut)uk−1(xcut)−H(uk−1, uk2)(xk− 1

2
)uk−1(xk− 1

2
)

−g(uk−1(xcut)) + g(uk−1(xk− 1
2
))
]

+Rk1

[
H(uk−1, uk2)(xcut)uk2(xcut)−H(uk−1, uk2)(xk− 1

2
)uk2(xk− 1

2
)

−g(uk2(xcut)) + g(uk2(xk− 1
2
))
]

=T4 + T5

with

T4 = Lk1 [H(uk−1, uk2)(xcut) (uk−1(xcut)− uk2(xcut))− g(uk−1(xcut)) + g(uk2(xcut))]

T5 = Rk1

[
H(uk−1, uk2)(xk− 1

2
)
(
uk−1(xk− 1

2
)− uk2(xk− 1

2
)
)
− g(uk−1(xk− 1

2
)) + g(uk2(xk− 1

2
))
]
.

Note that we use Lk1 + Rk1 = 1 here. Again, T4,T5 ≥ 0 due to (21). In total, we get for the
stabilization

J0,k1
h (uh, uh) + J1,k1

h (uh, uh) = −ηk1T2 + ηk1T4 + ηk1T5.

Together with the bilinear form ah, this gives

ah(uh, uh) + Jh(uh, uh) = T1 + (1− ηk1)T2 + ηk1T4 + ηk1T5.

As T1,T2,T4,T5 ≥ 0 and all prefactors are non-negative due to 0 < ηk1 < 1, this concludes the
proof.

Remark 4.2. Let us consider the special case of the linear advection equation with β = 1 and
upwind flux. Then, g(u) = 1

2u
2 and ah(uh, uh) reduces to

ah(uh, uh) =
∑
j∈Iequi

1

2

q
uh

y2

j− 1
2︸ ︷︷ ︸

=T1

+
1

2

q
uh

y2

k− 1
2

+
1

2

q
uh

y2

cut︸ ︷︷ ︸
=T2

.

In the stabilization several terms drop out, compare (14), and we get

1

ηk1
Jh(uh, uh) = −1

2

q
uh

y2

k− 1
2

− 1

2

q
uh

y2

cut︸ ︷︷ ︸
=−T2

+
1

2
[uk2(xcut)− uk−1(xcut)]

2︸ ︷︷ ︸
=T4

.

When considering the sum ah(uh, uh)+Jh(uh, uh), we observe that the stabilization has the effect
of replacing a certain portion, identified by ηk1 , of the ‘standard’ jumps (T2) at both edges xk− 1

2

and xcut of the small cut cell Ik1 by an ‘extended’ jump (T4), evaluated at xcut.
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5 Numerical results

In this section we present numerical results for both scalar conservation laws and systems of
conservation laws. We will show results for piecewise constant polynomials in space as well as
for higher order polynomials to assess accuracy and stability of the proposed scheme.

To test convergence properties we need smooth solutions, which is non-trivial for, e.g., the
compressible Euler equations. We will use manufactured solutions for this purpose: we define
a smooth function u(x, t) that we would like to be the solution of our system. Then we insert
u(x, t) in the corresponding equations of the system. This typically results in a non-zero source
term g on the right hand side. As a consequence, instead of solving (1), we now solve the system

ut + f(u)x = g in Ω× (0, T ). (22)

The semi-discrete problem is then given by: Find uh ∈ Vph such that(
dtu

h(t),wh
)
L2 + ah

(
uh(t),wh

)
+ Jh(uh(t),wh) = Sh

(
g,wh

)
∀wh ∈ Vph,

with

Sh(g,wh) =
∑
j∈Iall

∫
j

g ·wh dx .

We will discretize this semi-discrete problem with a time stepping scheme whose order is chosen
to match the order of the space discretization: When using the polynomial degree p in space,
we will use an SSP RK scheme of order p + 1 in time. In particular, for piecewise constant
polynomials in space we will use explicit Euler in time. Our test cases are extensions of the
model problem Mh: we will use many cut cell pairs instead of using only one pair. Unless
otherwise specified, we choose Ω = (0, 1) and split every cell Ik between x = 0.1 and x = 0.9
in cut cell pairs (Ik1 , Ik2) of lengths αkh and (1 − αk)h, where αk ∈ (0, 1

2 ] may be different for
different k. We consider two cases:

� Case 1 (’α = 10−�’): The cut cell fraction αk is the same for all cut cell pairs, i.e. αk ≡ α.

� Case 2 (’rand α’): The cut cell fraction αk varies and is computed randomly as αk = 10−2Xk

with Xk being a uniformly distributed random number in (0, 1).

We compute the time step length according to (13) using ν = 0.4 in all our experiments. For
systems, we compute the L1 and L∞ error as

‖u(·, T )‖1 =

m∑
l=1

‖ul(·, T )‖L1(Ω), ‖u(·, T )‖∞ = max
1≤l≤m

‖ul(·, T )‖L∞(Ω).

For the tests involving Burgers’ equation and the linear system, we use the exact Riemann
solver. For the Euler equations, we use the approximate Roe Riemann solver [34]. We implement
periodic boundary conditions by setting u0(x 1

2
) = uN (xN+ 1

2
) and uN+1(xN+ 1

2
) = u1(x 1

2
). For

transmissive boundary conditions we use u0(x 1
2
) = u1(x 1

2
) and uN+1(xN+ 1

2
) = uN (xN+ 1

2
).

5.1 Burgers equation

We start with two tests for Burgers equation. In both cases, we initialize the solution with a
sine curve. In the first test, we force the solution to stay smooth. In the second test, we allow
the shock and rarefaction waves to develop.
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Figure 2: Convergence test for manufactured solution for Burgers equation: Error in the L1 and
L∞ norm.

5.1.1 Accuracy test with a manufactured solution

We consider the manufactured solution

u(x, t) = sin(4π(x− t))

with periodic boundary conditions. This results in the source term

g(x, t) = 4π cos(4π(x− t)) (sin(4π(x− t))− 1) .

In figure 2 we show the error, measured in the L1 and in the L∞ norm, for different values of
the volume fractions αk and different polynomial degrees at the final time T = 1. We observe
standard convergence rates, i.e., rates p+ 1 for polynomial degree p for both the L1 and the L∞

norm. We also note that the error sizes for the different test cases involving varying values of αk
are quite similar.

5.1.2 Stability test

Next, we consider a non-smooth problem. We choose the initial data

u0(x) = sin (4π(x+ 0.5))

with periodic boundary conditions and use g = 0. As is well-known, these initial data result in
the development of shock waves in the regions where the derivative of u0 is negative.

Figure 3 shows the solution at final time T = 0.1 for different polynomial degrees for αk
being chosen randomly as specified above. The cut cell mesh was created from a mesh with
N = 100 equidistant cells, and therefore contains 180 cells. For piecewise constant polynomials,
the computed solution does not overshoot, consistent with the monotonicity result in theorem
6. We also show the solution for P 3 polynomials, with and without the limiter. Without the
limiter, the solution produces overshoot near the shock. Nevertheless, as is the case on a regular
mesh, the numerical tests are stable and do not break despite using small cut cells. With limiter,
the overshoot is gone.
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Figure 3: Stability test for Burgers equation: Solution at final time for piecewise constant poly-
nomials (left) and piecewise cubic polynomials with and without a limiter (right).

5.2 Linear systems

We now consider the linear system given by equation (3) with

A =

 4 2.5 −7
−1 0.5 7
−0.5 1.25 1.5

 and u0(x, t) =

 sin(2πx)
− 1

3 cos(2πx)
1
2 sin(2πx)

 .

The eigenvalues of A are λ1 = −2, λ2 = 3 and λ3 = 5. We again use periodic boundary
conditions.

In figure 4, we show the errors in the L1 and in the L∞ norm for piecewise linear, piecewise
quadratic, and piecewise cubic polynomials for different values of the volume fractions αk. As
for Burgers equation, we observe convergence rates p + 1 for polynomial degree p for both the
L1 and L∞ error.
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Figure 4: Convergence test for linear system: Error in the L1 and L∞ norm.

5.3 Euler equations

For the Euler equations we present two tests: a test with a smooth manufactured solution and
the Sod shock tube test.

18



1/401/801/1601/320
h

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

er
ro

r

 = 2.0

 = 3.0

 = 4.0

Convergence L1 - error

2.5 × 10 21.25 × 10 26.25 × 10 33.125 × 10 3

1/h

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

er
ro

r p = 2.0

p = 3.0

p = 4.0

Convergence L1 - error
P1 = 10 1

P1 = 10 5

P1 rand 
P2 = 10 1

P2 = 10 5

P2 rand 
P3 = 10 1

P3 = 10 5

P3 rand 

1/401/801/1601/320
h

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

er
ro

r

 = 2.0

 = 3.0

 = 4.0

Convergence L  - error

Figure 5: Convergence test for manufactured solutions for Euler equations: Error in the L1 and
L∞ norm.

5.3.1 Accuracy test with manufactured solution

We define the solution (in terms of primitive variables) asρv
p

 =

2 + sin(2π(x− t))
sin(2π(x− t))

2 + cos(2π(x− t))


together with periodic boundary conditions. The source term g(x, t) can be calculated by in-
serting the vector of conserved variables u(x, t) into equation (22) (but it is not given here due
to its length).

In figure 5 we show the L1 and the L∞ error for different test cases at time T = 1. Again, we
see optimal convergence rates in the L1 and in the L∞ norm for the different polynomial degrees.

5.3.2 Sod shock tube test

We conclude the numerical results with the well-known Sod shock tube test [34]. The initial data
are given by the following Riemann problem

(ρ, ρv,E) =

{
(1, 0, 2.5) if x < 0,

(0.125, 0, 0.25) otherwise.

For this test, we choose Ω = (−1, 1) and use transmissive boundary conditions. We discretize
Ω with N = 100 equidistant cells and split every cell in [−0.75, 0.75] into a pair of two cut cells
with the volume fraction αk chosen randomly as described above. We set T = 0.4.

In figure 6 we show the solution for density and for velocity at the final time using piecewise
constant polynomials. As expected for P 0, the solution looks good but is quite diffusive. Figure
7 shows the solution for piecewise linear, limited polynomials. We applied the limiter described
in subsection 3.4 to the components of the conserved variables and added a check to ensure that
the pressure stays positive. Compared to the results for P 0, the results are significantly less
diffusive while mostly being free of oscillations.
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Figure 6: Sod shock tube test: Numerical solution for density ρ and velocity v at final time using
piecewise constant polynomials.
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Figure 7: Sod shock tube test: Numerical solution for density ρ and velocity v at final time using
piecewise linear polynomials with limiter.

6 Conclusions and outlook

In this contribution we have presented the extension of the DoD stabilization to non-linear
problems and to higher order polynomials. To account for the latter, we have extended the
support of test functions from small cut cells’ neighbors into the small cut cells, compare J1,k1

h in
(10). This stabilizes the derivatives on the cut cells’ neighbors. To account for the changing flow

directions in non-linear problems, we make use of Riemann solvers in both J0,k1
h and J1,k1

h . Note
also that both penalty terms treat the left and right neighbors of small cut cells in a symmetric
way.

For our new formulation we can show that the fully discrete, first-order scheme is monotone
for scalar conservation laws. For the semi-discrete formulation, we have an L2 stability result for
arbitrary polynomial degree p. Our numerical results confirm that the DoD stabilized scheme
has the same order of accuracy as standard RKDG schemes on equidistant meshes. Further, we
observe robust behavior in the presence of shocks.

The choice of J0,k1
h followed in a fairly straightforward way from the choice of J0,k1

h for linear

advection in [11] by accounting for the changing flow directions. The design of J1,k1
h was signif-

icantly more complicated. The goal of ensuring L2 stability has been a major guideline in the
development of the terms.
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The next step will be the extension of the formulation to higher dimensions. Here, the main
difficulty will consist in extending the penalty term J1,k1

h appropriately. Solving a Riemann prob-
lem in the interior of a cell in two dimensions is non-trivial. We believe that it will be necessary
to replace this formulation by a suitable approximation, similarly to using approximate Riemann
solvers instead of exact ones. We also believe that the results presented in this contribution are
an essential step and a very good guideline towards reaching that goal.
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