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Abstract

In this report we investigate the finite sample properties of a new online monitoring

scheme which was recently introduced by Gösmann et al. (2020) by means of a simulation

study and a real data example. We also develop an algorithm which can be used in an

active risk management.

We start with an introduction in the basic notation and an explanation of the monitor-

ing procedure, continue with an extensive simulation study to provide recommendations

for the choice of several tuning parameters. Finally we present some illustration analyzing

the Standard & Poor’s 500, MSCI World and MSCI Emerging Markets indices.

1 Testing problem and basic defintions

Let (Xt)t2Z be a d-dimensional time series with common mean µ := E[Xt] 2 Rd and Ft the

distribution function of the random variable Xt at time t. We want to detect changes in the

variance Vt := Var(Ft) 2 Rd⇥d, where the functional is defined as

V (F ) =

Z

Rd

(x� µ)(x� µ)>dF (x)

=

Z

Rd

xx
>
dF (x)�

Z

Rd

xdF (x)

Z

Rd

x
>
dF (x) .

We assume that there is a historical ”stable” data set of length m 2 N, in the sense that

V1 = V2 = . . . = Vm .(1.1)
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The sequence X1, . . . , Xm is usually called historical or initial training data set (see, for example,

Chu et al., 1996; Horváth et al., 2004; Wied and Galeano, 2013; Kirch and Weber, 2018, among

many others). One can also check with a retrospective test whether the historical data is stable.

In order to develop a sequential procedure to detect changes in the variance in the future

m + k � m + 1, k 2 N, we define the following null hypothesis for the monitoring data set

Xm+1, . . . , X(T+1)m

H0 : V1 = . . . = Vm = Vm+1 = . . . = V(T+1)m ,(1.2)

against the alternative that the variance changes (once) at the position m + 1  m + k
⇤ 

(T + 1)m, that is

H1 : there exists k⇤ 2 N such that V1 = . . . = Vm+k⇤�1 6= Vm+k⇤ = . . . = V(T+1)m .(1.3)

To simplify the notation and to get some clarity we apply a linear matrix transformation vech(·)
on the variance(matrix). The half-vectorization vech(·) transforms a symmetric d ⇥ d-matrix

in a d
⇤ := d(d + 1)/2-dimensional column vector by vectorizing the upper triangle part of the

matrix. That means we now test for a change in the vector vech(Vt) := vech(V (Ft)).

Note that the null hypothesis in (1.2) and the alternative hypothesis in (1.3) are equivalent

to the corresponding hypotheses version for the vectorized variance vech(Vt). Therefore, we

always refer to (1.2) and (1.3) although we consider vech(Vt) in the formulation of the statistics.

Moreover, we also have to apply the operator vech(·) on the sample variance V̂
j

i
. In order to

test these hypotheses we define the statistic

Êm(k) =
1p
m

k�1
max
j=0

(k � j)
��vech

�
V̂

m+j

1

�
� vech

�
V̂

m+k

m+j+1

���
⌃̂�1

m
,(1.4)

where the notation kvk2
A
= v

>
Av defines a weighted norm of the vector v induced by a positive-

definite matrix A. Here we use canonical variance estimator from the observations Xi, . . . , Xj

defined by

V̂
j

i
:= Var(F̂ j

i
) =

Z

Rd

xx
>
dF̂

j

i
(x)�

Z

Rd

xdF̂
j

i
(x)

Z

Rd

x
>
dF̂

j

i
(x) ,

where

F̂
j

i
(z) =

1

j � i+ 1

jX

t=i

I{Xt  z}
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denotes the empirical distribution function of observations Xi, . . . , Xj. The matrix ⌃̂m denotes

a consistent estimator of the long-run variance matrix

⌃F =
X

t2Z

Cov (IF(X0, F, vech(V )), IF(Xt, F, vech(V ))) 2 Rd
⇤⇥d

⇤

from the initial data set X1, . . . , Xm, where

IF(x, F, V ) = (x� EF [X])(x� EF [X])> � V (F ) .

An explicit formula for an estimator in the case d = d
⇤ = 1 is given in Section 2, see equation

(2.1).

In our case of sequential change point analysis, the monitoring is performed, whenever a new

observation, say Xm+k, arrives. We compute Êm(k) and multiply it with a weight function w,

such that we obtain

w(k/m)Êm(k) ,(1.5)

where the weight function is given by

w(t) =
1

1 + t
.

The monitoring stops at the time k 2 {1, . . . , Tm} if

w(k/m)Êm(k) > c↵,1(1.6)

and in this case we reject the null hypothesis (1.2) in favor of the alternative hypothesis (1.3).

The constant c↵,1 has to be chosen such that the resulting test has asymptotic level ↵ for

↵ 2 (0, 1), that is

lim sup
m!1

PH0

✓
Tm

sup
k=1

w(k/m)Êm(k) > c↵,1

◆
= PH0 (L1(T ) > c↵,1)  ↵,(1.7)

where the statistic L1(T ) is defined by

L1(T ) = sup
0<tT/(T+1)

max
0st

���W (t)�W (s)
��� ,

and W denotes a d
⇤-dimensional Brownian motion.

For dimension d = d
⇤ = 1 we can determine c↵,1 by an explicit formula for the distribution

function of the statistic L1(T )

FL1(T )(x) = 1 + 8
1X

k=1

(�1)k · k ·
⇣
1� �(kx/

p
q(T ))

⌘
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(see Borodin and Salminen, 2002, page 146), where � denotes the cumulative distribution func-

tion of a standard normal distribution and q(T ) = T/(T + 1).

Two alternative statistics for sequential have been considered in the literature and are defined

by

Q̂m(k) :=
kp
m

��vech(V̂ m

1 )� vech(V̂ m+k

m+1 )
��
⌃̂�1

m
,(1.8)

P̂m(k) :=
k�1
max
j=0

k � jp
m

��vech(V̂ m

1 )� vech(V̂ m+k

m+j+1)
��
⌃̂�1

m
.(1.9)

The procedure based on Q̂m was introduced by Horváth et al. (2004) and was then reconsidered

for example by Aue et al. (2012), Wied and Galeano (2013) and Pape et al. (2016). The statistic

P̂m was investigated by Fremdt (2015) and Kirch and Weber (2018).

The monitoring scheme based on Q̂m and P̂m is similar to the one in (1.6) based on Êm. After

a new observation Xt+k arrives, one determines

w(k/m)Q̂m(k) ,(1.10)

w(k/m)P̂m(k) .(1.11)

and monitoring stops at the time k 2 {1, . . . , Tm} if the w(k/m)Q̂m(k) or w(k/m)P̂m(k) exceed

their corresponding (asymptotic) quantiles c↵,2 and c↵,3, respectively. More precisely, these

quantiles are defined by

lim sup
m!1

PH0

✓
Tm

sup
k=1

w(k/m)Q̂m(k) > c↵,2

◆
= PH0 (L2(T ) > c↵,2)  ↵ ,

lim sup
m!1

PH0

✓
Tm

sup
k=1

w(k/m)P̂m(k) > c↵,3

◆
= PH0 (L3(T ) > c↵,3)  ↵ ,

where

L2(T ) = sup
0t<T/(T+1)

|W (t)| ,

L3(T ) = sup
0t<T/(T+1)

max
0st

���W (t)� 1� t

1� s
W (s)

��� ,

and W denotes a d
⇤-dimensional Browninan motion.
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2 Simulation study

In this section, we will investigate the finite sample properties of the developed methodologies

by means of a detailed simulation study and apply the detection procedure to financial data like

Standard & Poor’s 500 (S&P 500), MSCI World and MSCI Emerging Markets (MSCI E.M.).

For the sake of brevity we will restrict ourselves to the the case d = 1.

For a practical implementation of the detection procedure one has to determine the parameters

m,T and ↵ 2 (0, 1) and an estimator k̂
⇤ for the change point position. In order to archive

the ”optimal” setting for the monitoring and active risk management we will have a look at

synthetic data first.

For the long-run variance estimation we use the Bartlett kernel estimator [see Andrews

(1991)] which is implemented in the MATLAB-function hac and the bandwidth for the estima-

tion is chosen as bm = log10(m). To be precise define

X̄2
m
=

1

m

mX

t=1

X
2
t
,

and let

�̂i =
1

m�i

mX

t=i+1

(X2
t
� X̄2

m
)(X2

t�i
� X̄2

m
)

denote the estimator of the auto-covariances �i = Cov(X2
0 , X

2
�i
) from the initial data set

X1, . . . , Xm, then we use the estimator

⌃̂m = �̂0 + 2
m�1X

i=1

k

✓
i

bm

◆
�̂i ,(2.1)

where bm = log10(m) denotes the bandwidth and

k(x) =

(
1� |x| for |x|  1 ,

0 otherwise .

is the Bartlett kernel.

In the following section we will compare the di↵erent testing procedures based on the test

statistics Êm, Q̂m and P̂m defined in (1.4), (1.8) and (1.9), respectively. In the section thereafter

we will have a closer look at the ”best” test statistic among these three. All subsequent results

presented in these sections are based on 1000 independent simulation runs.
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2.1 Comparison of di↵erent monitoring schemes

For a comparison of the detection procedures based on the di↵erent test statistics we simulate

the following models

(M1) Yt = "t

(M2) Yt = "t + 0.5"t�1

(M3) Yt = "t

p
1 + 0.1Y 2

t�1 ,

where {"t}t2Z is a sequence of independent standard normal distributed random variables. The

model (M2) is a MA(1) while (M3) is an ARCH(1) model. We generate a process {Xt} with a

sample of Tm+m observations. With the intention to simulate the alternative hypothesis (1.3)

we multiply the data points Ym+k⇤ , . . . , YTm+m with the factor
p
V ⇤ and obtain the synthetic

data set

Xt =

(
Yt if t < m+ k

⇤
,

p
V ⇤Yt if t � m+ k

⇤

for each model such that we obtain

(M1) Var(Xm+k⇤) = V
⇤

(M2) Var(Xm+k⇤) = 1.25V ⇤

(M3) Var(Xm+k⇤) =
1

1�0.1V
⇤

We start the monitoring procedure with the initial stable data set X1, . . . , Xm satisfying (1.1).

Then for the data point Xm+k we compute for instance the statistic Q̂m(k) starting with k = 1

and reject the null hypothesis (1.2) and set as time of rejection t̃ = m+ k, if

w(k/m)Q̂m(k) > c1�↵,2,

where c1�↵,2 is the corresponding critical value from Table 1. If the null hypothesis (1.2) is not

rejected we set k 7! k + 1 and keep monitoring until k = Tm. If the null hypothesis is not

rejected we stop the monitoring procedure and assume that no change in the variance occurred

within the monitoring period. We use the same method for the monitoring procedures based on

the test statistics Êm and P̂m with the quantiles c1�↵,1 and c1�↵,3, respectively. These quantiles

are listed in Table 1 [see also Gösmann et al. (2020)].
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↵ c1�↵,1 c1�↵,2 c1�↵,2

0.01 2.7043 2.5145 2.5572

0.05 2.2339 1.9826 2.0435

0.1 2.0046 1.7380 1.8019

Table 1: (1� ↵)-quantiles of the distributions L1(4), L2(4) and L3(4).

We apply the di↵erent testing procedures in (1.5), (1.10) and (1.11) with V
⇤ = 1 for model

(M1) in order to investigate the approximation of the nominal level of the tests under the null

hypothesis (1.2). In Table 2 we show the type I error of the di↵erent methods, where data

is simulated from model (M1) with T = 4 under the null hypothesis of no change. For small

initial sample sizes the approximation of the nominal level is not accurate. For example, for

m = 50, the type I error for the testing procedure with nominal level 0.05 based on Êm and Q̂m

is approximately 12% while it is 13.7% for the procedure based on P̂m. We also observe that

the approximation of the nominal level improves with increasing sample size. For example, if

m = 350 we observe for the test Êm an empirical type I error of 5.7%. In general the testing

procedures based on the statistics Êm and Q̂m yield a better approximation of the nominal level

in comparison to the monitoring scheme based on the statistic P̂m.

Êm(k) Q̂m(k) P̂m(k) Êm(k) Q̂m(k) P̂m(k)

↵ m = 50 m = 100

0.01 6.6% 6% 6.6% 3.7% 3.6% 3.8%

0.05 12.3% 12% 13.7% 8.8% 9.1% 9.4%

0.1 17.9% 17.1% 19.7% 13.6% 13.6% 14.4%

m = 150 m = 350

0.01 2.6% 2.6% 2.6% 1.8% 1.6% 1.8%

0.05 7.1% 7.2% 7.3% 5.7% 6.2% 6.4%

0.1 12.3% 13% 13.6% 11.3% 12.1% 12.4%

Table 2: Type I error of the tests in (1.5), (1.10) and (1.11) for simulated data from model (M1)

with T = 4 and di↵erent sizes m = 50, 100, 150 and m = 350 for the initial data set.

Corresponding results for models (M2) and (M3) can be found in Table 3 and 4, respectively.

We observe here that the nominal level is not so well approximated, even for larger initial sample
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sizes. A potential explanation for this observation is a too small bandwidth in the long-run

variance estimator.

Êm(k) Q̂m(k) P̂m(k) Êm(k) Q̂m(k) P̂m(k)

↵ m = 50 m = 100

0.01 9.8% 9.3% 10% 7% 6.2% 6.6%

0.05 15.9% 14.4% 16.1% 12.3% 12% 12.6%

0.1 23.6% 22.7% 23.6% 18.2% 17.1% 18.8%

m = 350 m = 450

0.01 2.8% 2.6% 2.6% 2.4% 2.1% 2.3%

0.05 9% 9.2% 9.6% 7.4% 8.2% 8.5%

0.1 14.4% 14.9% 15.8% 13.3% 14.9% 14.4%

Table 3: Type I error of the tests in (1.5),(1.10) and (1.11) for simulated data from model (M2)

with T = 4 and di↵erent sizes m = 50, 100, 150 and m = 350 for the initial data set.

Êm(k) Q̂m(k) P̂m(k) Êm(k) Q̂m(k) P̂m(k)

↵ m = 50 m = 100

0.01 25.7% 23.9% 25.3% 19.8% 18.4% 19.4%

0.05 35% 32.7% 34.7% 27.8% 25.8% 27%

0.1 36.9% 36% 38.4% 32.3% 30.1% 32.8%

m = 350 m = 450

0.01 10.3% 9.5% 9.9% 9.9% 9.3% 10%

0.05 16.5% 16.4% 17% 16.8% 15.8% 16.6%

0.1 23.2% 22.4% 23.1% 21.3% 21.1% 21.8%

Table 4: Type I error of the tests in (1.5), (1.10) and (1.11) for simulated data from model (M3)

with T = 4and di↵erent sizes m = 50, 100, 150 and m = 350 for the initial data set.

In Figure 1, 2, 3 we display the rejection probabilities of the di↵erent tests in models (M1),

(M2), (M3), respectively, under the alternative, where we choose the level ↵ = 0.05 and di↵erent
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values of the factor
p
V ⇤ are investigated. For di↵erent values of m we choose the center of the

monitoring period as the change point position which means m+ k
⇤ = m+ Tm/2.
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1.00

0.5 1.0 1.5 2.0

m = 50,m+ k⇤ = 150

H0

p
V ⇤
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0.5 1.0 1.5 2.0

m = 100,m+ k⇤ = 300

H0

p
V ⇤
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0.50
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0.5 1.0 1.5 2.0
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0.75

1.00

0.5 1.0 1.5 2.0

m = 350,m+ k⇤ = 1050

H0

p
V ⇤

Figure 1: Power of monitoring procedures for changes in the variance based on the statistics Êm

(solid line), Q̂m (dashed line) and P̂m (dotted line) with di↵erent initial sample sizes (T = 4).

Data is generated under model (M1) and ↵ = 0.05.
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Figure 2: Power of monitoring procedures for changes in the variance based on the statistics Êm

(solid line), Q̂m (dashed line) and P̂m (dotted line) with di↵erent initial sample sizes (T = 4).

Data is generated under model (M2) and ↵ = 0.05.
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Figure 3: Power of monitoring procedures for changes in the variance based on the statistics Êm

(solid line), Q̂m (dashed line) and P̂m (dotted line) with di↵erent initial sample sizes (T = 4).

Data is generated under model (M3) and ↵ = 0.05.

From Figure 1 and 2 we see clearly that the monitoring scheme based on Êm outperforms

the procedures based on Q̂m and P̂m, while the test statistic P̂m is almost as good as Êm. For

example in Figure 1 for m = 150 the procedure based on statistics Êm and P̂m have for a

variance change from 1 to 1.42 = 1.96 already an empirical power close to 1, whereas the power

of the test based on Q̂m is approximately 0.88. Finally, for model (M3), we observe that the

power for all three procedures is very similar, see Figure 3 .

In conclusion we see that the level and power of the detection procedure based on Êm

proposed by Gösmann et al. (2020) is the best among the three competing monitoring schemes.

Therefore, in the next section, we will have a closer look at the test statistic Êm.
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2.2 The monitoring scheme based on Êm

In order to analyze the procedure in (1.5) based on the statistic Êm in more detail we fix the test

level to be ↵ = 0.05 and vary m and T such that the monitoring period mT is approximately

250, which nearly equals the amount of days in one trading year on the stock market. Table

5 shows that the approximation of the level by the test in (1.5) improves with an increasing

initial sample size m and the best approximation of the nominal level is attained for m = 200

and T = 1.2.

m 40 60 80 100 150 200

T 6.3 4.2 3.1 2.5 1.7 1.2

14% 11% 9.2% 8.3% 6.5% 5%

Table 5: Empirical type I error of the test (1.5) (nominal level ↵ = 0.05) for di↵erent choices

of m and T .

Since we have so far only considered change point positions in the center of the monitoring

procedure, we will now also have a look at two alternative positions of the change point. For this

we simulate data from model (M1) with a change in the variance from 1 to Var(Xm+k⇤) = V
⇤

after one third and two thirds of the monitoring period. In other words we choose k
⇤ ⇡ 250/3

and k
⇤ ⇡ 2 · 250/3 and present in Figure 4 the power curves of the procedure in (1.5) based on

the statistic Êm for the di↵erent values of m,T and di↵erent change point positions.
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0.75

1.00

0 1 2 3 4

m = 40, T = 6.3

H0

V ⇤

0.25

0.50

0.75

1.00

0 1 2 3 4

m = 60, T = 4.2

H0

V ⇤
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V ⇤
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V ⇤

k⇤ = 83 k⇤ = 125 k⇤ = 167

Figure 4: Power of the monitoring procedure based on ther statistic Êm for di↵erent values of

m and T with a break in the variance at the position m+ k
⇤ for di↵erent k⇤.

We observe from Figure 4 that an earlier change point yields to larger power of the monitoring

scheme. For example, in the case m = 80, T = 3.1 the power is approximately 1 when the

variance changes after one third (k⇤ = 83) of the monitoring period from 1 to 2, while for

k
⇤ = 125 and k

⇤ = 167 the power is 0.92 and 0.69, respectively.

In the following discussion we choose the change position to be in the center of the monitoring

period with k
⇤ = 250/2 = 125 which is also commonly used in the literature [see Gösmann et al.

(2020)].

2.3 Comparison of di↵erent change point estimators

In practical applications besides the detection, the estimation of the change point is of particular

importance and in this section we will investigate di↵erent estimators for the position of the

change point which can be used after rejecting of the null hypothesis (1.2). For an empirical

comparison of di↵erent change point estimators we simulate data X1, . . . , Xm+k⇤ , . . . , Xm+mT

with the variance changing from 1 to V
⇤ at time m + k

⇤ as described above for the following

cases:
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m T m+ k⇤

case 1 40 6.3 165

case 2 60 4.2 185

case 3 80 3.1 205

If the monitoring procedure rejects the null hypothesis (1.2), we obtain a time of rejection, say t̃.

Then we can estimate the change point with the help of an estimator, say k̂
⇤, and stop the whole

monitoring procedure. If there has been no rejection at time m +mT , we stop the procedure

and conclude that no change in the variance has occurred within the monitoring period.

In order to compare the di↵erent parameters we repeat this monitoring procedure 1000 times

and have a look at several key figures in Table 6-10. No break gives the proportion of procedures

where the null hypothesis (1.2) is not rejected. Early stands for the percentage of procedures

where the monitoring procedure stops before the actual change point position, i.e. if t̃ < m+k
⇤.

If the detection procedure stops after the actual change point one can determine the average

and median time between m+ k
⇤ and time of detection t̃ denoted by average and median delay,

respectively. We observe that the results improve for increasing m. In particular, the percentage

of too early stops becomes less for growing m. Note that the worst results are obtained for

V
⇤ = 0.49, which corresponds to the alternative, which is closest to the null hypothesis V ⇤ = 1.

p
V ⇤ no break early

average

delay

median

delay

0.5 0.52 0.12 85.2 89

0.7 0.78 0.11 87.3 93.5

1.5 0.19 0.12 59.3 56

2 0 0.1 26.9 23

Table 6: Basic properties of the monitoring scheme based on the statistic Êm for data simulated

from model (M1), m = 40 and T = 6.3.
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p
V ⇤ no break early

average

delay

median

delay

0.5 0.34 0.07 86.5 89

0.7 0.75 0.09 88.5 93.5

1.5 0.11 0.07 52.7 48

2 0 0.08 22.9 20

Table 7: Basic properties of the monitoring scheme based on the statistic Êm for data simulated

from model (M1), m = 60 and T = 4.2.

p
V ⇤ no break early

average

delay

median

delay

0.5 0.24 0.05 85.5 89

0.7 0.7 0.05 89.6 94

1.5 0.08 0.05 50.3 47

2 0 0.05 20.8 18

Table 8: Basic properties of the monitoring scheme based on the statistic Êm for data simulated

from model (M1), m = 80 and T = 3.1

Corresponding results for models (M2) and (M3) are shown for the case m = 40 in Table 9

and 10, respectively. The results for model (M2) are very similar to the results for (M1) (see

Table 6). However, for model (M3) more substantial di↵erences can be observed. For example

for
p
V ⇤ = 0.5 the percentage of no break is quite low with 11% but from the 89% breaks

approximately 30% are estimated too early (see Table 10).

p
V ⇤ no break early

average

delay

median

delay

0.5 0.48 0.16 84 90

0.7 0.74 0.16 78.6 83

1.5 0.2 0.16 54.9 51

2 0 0.14 27.9 22

Table 9: Basic properties of the monitoring scheme based on the statistic Êm for data simulated

from model (M2), m = 40 and T = 6.3
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p
V ⇤ no break early

average

delay

median

delay

0.5 0.11 0.3 16.8 11

0.7 0.39 0.33 25.8 19

1.5 0.05 0.33 17.4 10

2 0 0.32 4.1 3

Table 10: Basic properties of the monitoring scheme based on the statistic Êm for data simulated

from model (M3), m = 40 and T = 6.3

In order to estimate the change point position we consider the following five estimators

k̂
⇤
1 = m+ argmaxk�1

j=0(m+ j)(k � j)||V̂ m+j

1 � V̂
m+k

m+j+1||⌃̂�1
m

k̂
⇤
2 = m+ argmaxk�1

j=0

p
(m+ j)(k � j)||V̂ m+j

1 � V̂
m+k

m+j+1||⌃̂�1
m

k̂
⇤
3 = m+ argmaxk�1

j=0

p
(m+ j)(k � j)||V̂ m+j

1 � V̂
m+k

m+j+1||⌃̂�1
m

k̂
⇤
4 = m+ argmaxk�1

j=0(m+ j)
p
(k � j)||V̂ m+j

1 � V̂
m+k

m+j+1||⌃̂�1
m

k̂
⇤
5 = m+ argmaxk�1�b

j=0 ||V̂ m+j

1 � V̂
m+k

m+j+1||⌃̂�1
m

with b = 10 ,

where k = t̃�m and we set b = 0 if k � 1� b�m  0.

A comparison of the di↵erent estimates is presented in Table 11, 12 and 13 for the model (M1)

for di↵erent values of m. We consider the estimation of the change point as correct if the

absolute di↵erence of the actual and estimated change point is smaller than a given tolerance

parameter Wtol. In our case we choose Wtol = 50 (days). If the estimated change point is not

in the given tolerance range we classify the estimation as wrong. The mean and median of the

absolute di↵erence of the actual and estimated change point (in the case of no early break and

no wrong estimation) is given through average and median error, respectively.

Note, that the estimators k̂⇤
1 and k̂

⇤
3 do not perform well for estimating the change point. For

example the percentage of correct estimation of k̂⇤
1 and k̂

⇤
3 in the case V

⇤ = 4 is 61% and 12%,

respectively, while the other estimators produce the correct result in 85% of the cases (see Table

11). This trend can be also observed in Table 12 and Table 13 and accordingly the proportion

of wrong estimations is higher for these estimators. Moreover, even if the estimators identify

the change point correctly, the error they make is large, for example in Table 13 for V ⇤ = 2.25

the median error for k̂⇤
1 and k̂

⇤
3 are 41 and 86, respectively.

The estimator k̂
⇤
5 is performs very good if the variance has a large variation, for instance in

Table 13 we can see that for V ⇤ = 0.25 and V
⇤ = 4 the estimator yields the best results while

for V ⇤ = 0.49 and V
⇤ = 2.25 (closer to H0) it is not performing so well.
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From these observations, we come to the conclusion that k̂⇤
2 and k̂

⇤
4 are rather stable estimators

for the various scenarios obtained by di↵erent choices of m,T and V
⇤. A comparison of k̂⇤

2 and

k̂
⇤
4 shows that in most cases the estimator k̂⇤

4 performs better. For example we observe from the

results in Table 12 that k̂⇤
4 mostly estimates the change point correctly and also the estimated

change points have the smallest distance to the actual change point.

correct wrong
average

error

median

error
correct wrong

average

error

median

error

0.5 0.7

k̂⇤
1 0.31 0.06 25.4 18 0.08 0.02 33.4 25

k̂⇤
2 0.32 0.05 21 9.5 0.08 0.03 36.2 23

k̂⇤
3 0.11 0.26 68.1 69 0.01 0.1 91 96.5

k̂⇤
4 0.37 0 6.5 3 0.11 0 10.1 6

k̂⇤
5 0.32 0.05 19.1 4 0.05 0.06 61.8 64

1.5 2

k̂⇤
1 0.57 0.12 28.2 23 0.61 0.29 41.9 41

k̂⇤
2 0.65 0.04 13.1 6 0.86 0.04 9.1 3

k̂⇤
3 0.24 0.45 63.8 63 0.12 0.74 75.9 75

k̂⇤
4 0.66 0.03 13.6 7 0.89 0 5.9 3

k̂⇤
5 0.46 0.24 38.8 30 0.87 0.03 13 7

Table 11: Performance of di↵erent estimators of the position of the change point for data gen-

erated from model (M1), where m = 40 and T = 6.3.
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correct wrong
average

error

median

error
correct wrong

average

error

median

error

0.5 0.7

k̂⇤
1 0.48 0.11 28 21 0.10 0.06 42.8 40

k̂⇤
2 0.51 0.07 20.4 10 0.1 0.06 43.2 37.5

k̂⇤
3 0.19 0.4 70.3 74 0.02 0.15 88.8 90

k̂⇤
4 0.58 0 5.8 3 0.16 0 11.7 7

k̂⇤
5 0.56 0.02 8.9 3 0.08 0.09 56.1 56

1.5 2

k̂⇤
1 0.55 0.26 37.5 32 0.47 0.45 52 49

k̂⇤
2 0.74 0.08 16.1 7 0.87 0.05 11 3

k̂⇤
3 0.22 0.6 73 75 0.08 0.84 85 86

k̂⇤
4 0.79 0.03 11.9 6 0.92 0.01 6.1 3

k̂⇤
5 0.58 0.23 34.6 26.5 0.91 0.01 10.6 6

Table 12: Performance of di↵erent estimators of the position of the change point for data gen-

erated from model (M1), m = 60 and T = 4.2.

correct wrong
average

error

median

error
correct wrong

average

error

median

error

0.5 0.7

k̂⇤
1 0.54 0.17 32.9 24 0.14 0.09 43.8 39

k̂⇤
2 0.63 0.08 20.3 10 0.15 0.08 41.4 32

k̂⇤
3 0.2 0.52 74.7 80 0.02 0.21 92.5 100

k̂⇤
4 0.71 0.01 6.5 3 0.22 0.01 13 8

k̂⇤
5 0.7 0.01 7.1 3 0.15 0.08 42.4 32

1.5 2

k̂⇤
1 0.52 0.35 44.5 41 0.36 0.59 60.2 58

k̂⇤
2 0.79 0.09 17 7 0.88 0.06 12.7 4

k̂⇤
3 0.15 0.72 81.3 86 0.04 0.90 91.3 94

k̂⇤
4 0.85 0.03 11.7 6 0.93 0.01 7.1 3

k̂⇤
5 0.66 0.22 32.4 26 0.94 0.01 9.3 6

Table 13: Performance of di↵erent estimators of the position of the change point for data gen-

erated from model (M1), where m = 80 and T = 3.1.
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Corresponding results for model (M2) are displayed in Table 14 and we see that the estimator k̂⇤
4

provides the best results with respect to the estimation of the change position. For example forp
V ⇤ = 2 k̂⇤

4 estimates in 85% of the cases the change point correctly with 0% wrong estimations.

On the other hand the alternative estimators produced some mistakes. Some results for model

(M3) are depicted in Table 15, which shows that in this model the estimators k̂⇤
4 and k̂

⇤
5 perform

similar. For example in the case
p
V ⇤ = 0.7. Both have almost the same number of correct and

wrong results, while the average (median) error di↵er. Mostly the estimator k̂⇤
5 performs better

than k̂
⇤
4.

correct wrong
average

error

median

error
correct wrong

average

error

median

error

0.5 0.7

k̂⇤
1 0.3 0.06 28.2 20 0.07 0.03 38.8 36

k̂⇤
2 0.3 0.05 28.2 20 0.07 0.04 43.3 33

k̂⇤
3 0.11 0.25 71.4 74 0.02 0.09 87.7 93

k̂⇤
4 0.35 0 6.8 3 0.1 0 14.6 8

k̂⇤
5 0.3 0.06 24. 6 0.04 0.06 64.4 65

1.5 2

k̂⇤
1 0.49 0.16 32.8 30 0.56 0.3 43.4 42

k̂⇤
2 0.58 0.07 18 9 0.8 0.05 11.8 4

k̂⇤
3 0.21 0.44 67 68 0.16 0.7 75.3 75

k̂⇤
4 0.61 0.04 15.8 10 0.85 0 7.14 3

k̂⇤
5 0.46 0.19 35.3 27 0.81 0.04 14.5 8

Table 14: Performance of di↵erent estimators of the position of the change point for data gen-

erated from model (M2), where m = 40 and T = 6.3.

19



correct wrong
average

error

median

error
correct wrong

average

error

median

error

0.5 0.7

k̂⇤
1 0.21 0.38 60 56 0.09 0.2 62.3 60.5

k̂⇤
2 0.42 0.17 41.8 38.5 0.14 0.14 53.7 50

k̂⇤
3 0 0.6 85.3 84 0 0.27 88.1 87.5

k̂⇤
4 0.55 0.04 29.3 28 0.22 0.06 36.5 34

k̂⇤
5 0.53 0.06 23.1 16 0.2 0.08 37.5 29.5

1.5 2

k̂⇤
1 0.21 0.4 57.6 53 0.18 0.5 57.15 54

k̂⇤
2 0.5 0.13 39.5 37 0.65 0.02 23 21

k̂⇤
3 0 0.62 83.6 81 0 0.68 83.2 79

k̂⇤
4 0.59 0.03 26 24 0.68 0 16.8 15

k̂⇤
5 0.58 0.04 18.6 12 0.68 0 9.8 9

Table 15: Performance of di↵erent estimators of the position of the change point for data gen-

erated from model (M3), where m = 40 and T = 6.3.

After the empirical study we can sum up that in the following we will use the estimator k̂⇤
4 in

order to estimate the change position. Thus, we will write

k̂
⇤ := k̂

⇤
4 = m+ argmaxk�1

j=0(m+ j)
p
(k � j)||V̂ m+j

1 � V̂
m+k

m+j+1||⌃̂�1
m

.(2.2)

3 Applications

Due to the current relatively low level of interest rates, traditionally safe securities such as

government bonds (from countries with high credit ratings, e.g. Fitch AAA) have become much

less attractive. In order to generate real returns, investors are forced to switch to riskier securities

such as equities. However, these can lose value very quickly in crisis situations or more generally

in phases of high volatility. For this reason, it is important to recognize phases of increased

volatility as soon as possible to exit the market or to hedge with derivatives. Here, a risk

overlay can be useful. In the optimal case, you then get a risk-return profile that safe government

bonds used to have. For institutional investors, hedging is particularly interesting due to the

regulatory framework. Institutional investors often shift their asset allocation to equities which
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are associated with high risk and over the last two decades several periods have been observed,

where the market was not stable. Examples for such a situation are the Dot-Com-Bubble, the

European debt crisis, the global financial crisis around and the recent COVID-19 pandemic.

Because of such high-risk environments with extreme movements and high implied volatility

most of the institutional investors consider an active risk overlay in their equity allocation (see,

for example, Gösmann and Ziggel, 2018). With a strategy controlling the investors reduce the

exposure to all the assets if the realized volatility exceeds a given level and increase it if the

realized volatility is below the volatility level. Therefore it is of particular importance to locate

phases when the markets enter a higher risk phase with the help of statistical testing procedures

for detecting changes in the volatility and to react by an appropriate active risk management.

Gösmann and Ziggel (2018) develop a methodology to detect changes in the volatility. They use

a retrospective approach such that they perform their test every 10 trading days. In Section 3.3

we will have closer look on that methodology.

Before, we will apply the elaborated methodology to financial data to detect structural breaks

such that we can divide our time series into di↵erent volatility phases. For this purpose we

consider three frequently used financial time series: Standard & Poor’s 500 (S&P 500), MSCI

World and MSCI Emerging Markets (MSCI E.M.), which measure the market assessment for

the most important companies from the United States, the whole world and emerging markets,

respectively. We will then analyze these results in Section 3.2.
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Figure 5: Log-Return of the S&P 500 (upper panel), MSCI World (middle panel) and MSCI

E.M. Index (lower panel)

For each of the indices, we use the closing prices {Pt} for t � 0 and determine the logarithmic
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returns {Xt} with

Xt = log

✓
Pt

Pt�1

◆
for t � 1 ,

which are displayed in Figure 5. In the application of the detection procedure we consider the

logarithmic returns beginning at day 1 b= 1988-01-01 with X1 and starting from day m+1 with

the return Xm+1 we apply the following algorithm:

Algorithm 1 Firstly choose T , the weight function w and the corresponding constant c↵ such

that (1.7) holds for an ↵ 2 (0, 1).

(Initialization) We take X1, . . . , Xm as initial data set, which satisfies (or is assumed to

satisfy) (1.1).

(Monitoring) If the data point Xm+k arrives for k 2 {1, . . . , Tm}, we compute the statistic

Êm(k) and reject the null hypothesis in (1.2) if

w(k/m)Êm(k) > c↵,1

and set as time of rejection t̃ = m + k. Then we estimate the time of change using

the estimator k̂
⇤ defined in (2.2). In the other case we continue monitoring the next

observation which means we set k 7! k + 1 until k = Tm.

(Restart) A restart of the algorithm is required if either a change point has been detected

at k̂⇤ or the observation has been stopped at k = Tm with no break. In both cases we take

m new data points as initial training data set in order to continue the detecting procedure.

Therefore we distinct two di↵erent cases:

(Case of rejection) The monitoring has been stopped at t̃ with an estimated change

position k̂
⇤ and we need two rules to determine the new stable data set:

i. If t̃ � k̂
⇤ � m we start the whole algorithm with the data starting at Xt̃�m+1

which means that we take m data points before the time of detection t̃ as initial

training data set, such that Xt̃�m+1, . . . , Xt̃ is the stable data. In this case Xt̃+1

is the first new monitoring observation.

ii. If t̃� k̂
⇤
< m we start the whole algorithm with the data starting at X

k̂⇤+1. For

this we have to wait until we have m observations after the estimated change

point k̂⇤ and take these data points X
k̂⇤+1, . . . , Xk̂⇤+m

as initial training data set.

Then the first new monitoring observation is X
k̂⇤+m+1.
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(Case of no rejection) If there has been no rejection of the null hypothesis such that

the monitoring was stopped with the observation XTm+m, we take the last m data

points of the monitoring period as new initial data set. That meansXTm+1, . . . , XTm+m

is the stable data and we restart the whole algorithm with the first monitoring ob-

servation X(T+1)m+1.

We continue applying this algorithm while new data arrives. However, as the data set ends with

day 8610 b= 2020-12-31 the whole algorithm will be stopped completely with this last observa-

tion. During this whole algorithm the times of all rejections and all estimated change points

will be saved.

In the following, we apply the algorithm with m = 40 and T = 6.3 to the data from the three

indices. The detected change positions and time of detection are listed in Table 16 and in Figures

5. The algorithm detected for S&P 500 index 26 volatility breaks, while for MSCI World and

MSCI E.M. 34 and 32 breaks, respectively.

A significant number of change points identified by our algorithm coincides with special

phases on the financial markets. For example several breaks lay on the period of the gulf war

(1990–1991), the rise and collapse of the Dot-com bubble (1995–2001), the global financial crisis

(2007–2009), European debt crisis (2007–2009) and the COVID-19 pandemic (2019–today). The

average time of delay to detect a break are 33 calendar days while the average median delay are

21 calendar days.
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S&P 500 MSCI World MSCI E.M.

change position detected at change position detected at change position detected at

1989-09-26 1989-10-12 1989-05-17 1989-06-14 1994-03-16 1994-04-01

1991-02-14 1991-03-28 1989-10-18 1989-12-19 1997-06-27 1997-08-14

1992-04-02 1992-04-06 1990-02-08 1990-02-23 1997-08-26 1997-09-01

1995-05-15 1995-05-30 1991-08-02 1991-08-19 1997-10-23 1997-10-28

1996-06-27 1996-07-12 1992-11-24 1993-02-05 1999-02-08 1999-07-06

1997-10-09 1997-10-24 1993-02-12 1993-03-05 1999-10-20 1999-12-24

2000-04-07 2000-04-24 1994-05-17 1994-08-30 1999-12-30 2000-01-06

2002-07-03 2002-07-23 1994-10-06 1994-11-21 2000-03-31 2000-04-17

2002-11-26 2003-02-26 1996-11-29 1997-01-30 2002-06-06 2002-06-25

2003-03-06 2003-03-21 1997-03-25 1997-05-09 2002-11-14 2003-02-07

2003-08-04 2003-12-16 1997-10-13 1997-10-28 2004-04-21 2004-05-14

2007-02-09 2007-02-26 2000-04-10 2000-05-31 2004-07-21 2004-09-28

2007-10-30 2008-03-17 2002-06-25 2002-07-19 2004-09-29 2004-10-11

2008-09-04 2008-10-06 2002-11-26 2003-04-15 2006-04-28 2006-06-07

2009-03-20 2009-05-28 2003-07-18 2003-10-09 2006-07-26 2006-09-27

2009-07-14 2009-09-29 2006-04-28 2006-06-07 2007-02-12 2007-03-05

2011-07-29 2011-08-26 2006-08-15 2006-10-10 2008-09-04 2008-10-03

2011-12-19 2012-03-20 2007-02-23 2007-03-12 2008-12-09 2009-01-29

2012-05-15 2012-06-05 2008-01-10 2008-03-10 2009-02-13 2009-03-27

2013-01-01 2013-03-29 2008-04-17 2008-09-01 2009-08-14 2009-12-10

2013-04-11 2013-04-15 2008-09-02 2008-09-05 2011-07-28 2011-08-22

2015-08-06 2015-08-21 2009-04-01 2009-06-09 2011-11-30 2012-02-29

2016-03-10 2016-09-05 2011-06-08 2011-07-20 2012-05-10 2012-07-26

2016-09-06 2016-09-08 2011-08-04 2011-08-08 2012-09-26 2012-12-25

2018-01-12 2018-01-29 2011-12-19 2012-02-20 2013-04-05 2013-06-13

2020-02-13 2020-02-26 2012-03-02 2012-03-07 2013-06-18 2013-06-25

2012-11-16 2013-04-03 2014-09-01 2014-09-26

2013-04-08 2013-04-12 2015-06-25 2015-08-26

2013-06-03 2013-06-19 2017-11-13 2018-02-02

2014-09-22 2014-10-08 2020-01-17 2020-02-03

2018-01-17 2018-02-02 2020-05-01 2020-07-31

2019-07-31 2019-08-15

2020-02-20 2020-03-06

2020-05-15 2020-07-29

Table 16: Estimated structural breaks: estimated change points and time of detection
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3.1 Active risk management

In this section we introduce our risk overlay which aims to avoid market phases of high volatil-

ity to achieve a more defensive risk profile than plain investments in the stock indices under

consideration. We will compare our approach to the latter alternative by extensive backtesting.

Despite of testing for a change point, we compute on a daily basis the cumulative return P

since the most recent change point. If the most recent change point is more than Wmax = 250

days ago, we consider the cumulative return of the last 250 days. Now the idea of the trading

rule is to be completely invested or in cash. A naive approach is to invest if the cumulative

return is positive (P > 0). However, to avoid unnecessary many transactions around the zero

line and thus associated costs, we define an investment band, which is an interval [�i, i] with

i 2 (0, 1). In our particular case we take i = 0.015 and only generate trading signals if the

cumulative return since the last change point of the last 250 days crosses the whole interval

[�0.015, 0.015]. This means that we obtain the following cases:

• If we are completely invested and have

P > �i we stay invested.

P  �i we switch into cash.

• If we are completely in cash and have

P < i we stay in cash.

P � i we invest.

We apply this active risk management on the detected change points listed in Table 16.

3.2 Backtesting

In order to investigate the active risk management based on the new detection methodology we

perform a backtest, comparing our strategy with the passive investment strategy. The idea of

passive investment is the buy-and-hold portfolio strategy with the assumption that the market

posts positive returns over a long time period. With this approach one can reduce costs which are

incurred by transaction or risk management procedures (see, for example Hilliard and Hilliard,

2018).

As an alternative we consider a active risk management, where we switch from being invested

to being in cash and vice versa. That means in this case we also have to imitate the regrouping

for the backtest by taking trading costs for each transaction volume into account. For this

purpose we take the average liquid stock market spread of 0.135% (see Wied et al., 2013) and
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declare the trading costs to be 0.135%/2 = 0.0675% (see Gösmann and Ziggel, 2018). Further,

we assume the interest rate to be 0% which also means that cash assents do not gain any

interest.We also assume that transactions are regulated in the local currency, i.e. fluctuations

of exchange rates are not taken into account.

With this active risk management we can classify time regions in which we should whether invest

or not. For the backtesting we still consider the three ETFs S&P 500, MSCI World and MSCI

E.M. with the results from Table 16. We apply the above described active risk management and

passive investment (no strategy) on the returns of the indices according to the detects change

points. Now we can compute the new returns {X⇤
t
} and the corresponding prices {P ⇤

t
} with the

application of our strategy and compare these with the returns {Xt} and prices {Pt} with no

strategy.

In order to compare these strategies we study some important financial key figures. Besides

comparing the obvious key figures like return and volatility, we look at the Sharpe ratio (see

Sharpe, 1994) and maximum drawdown (see Grossman and Zhou, 1993). The Sharpe ratio gives

us the ratio of a (given) index’s excess return to its corresponding volatility:

return� riskfree return

volatility
=

excess return

volatility
.

In our case we set riskfree return = 0%. maximum drawdown is the maximal possible loss of

value of the index from its high point to its low point in the observing period and is defined

with

max
t2(1,8611)

max
s2(0,t)

prices � pricet

prices
.

S&P 500 MSCI World MSCI E.M.

Return p.a. 6.52% (8.13%) 3.51% (5.49%) 4.18% (7.51%)

Volatility p.a. 11.26% (17.72%) 8.76% (14.76%) 10.12% (17.77%)

Sharpe ratio 0.58 (0.46) 0.4 (0.37) 0.41 (0.42)

Max. drawdown 21.36% (56.78%) 27.74% (59.07%) 50.13% (66.06%)

Regroupings 57 75 53

Table 17: Backtest results for our active risk management and for the investment without any

overlay (in the brackets).

The corresponding results are displayed in Table 17 and show that the monitoring procedure

with the active risk management reduces the risk of all three indices. The volatility decreased
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for example from 17.77% to 10.12% and the maximum drawdown from 66.06% to 50.13%. Since

the great amount of regrouping of approximately 2 per year (57, 75 and 53) it is not surprising

that the return decreased for S&P 500 1.6% p.a., MSCI World 2% p.a and MSCI E.M. 3.3%

p.a.. Certainly the Sharpe ratio improved after applying the active risk management.

In the Figure 6 and 7 we display the e↵ect of the active risk management for the three

indices S&P 500, MSCI World and MSCI E.M., respectively. The red curves corresponds to the

passive strategy and the blue curve to our strategy. Our active risk management is based on

the new monitoring scheme, where m = 40, T = 6.3 and ↵ = 0.05 (the estimated change point

are displayed in in Table 16). One can observe that the growth rate of the index without the

application of the strategy is higher in comparison to the index with active risk management.

This mostly leads to a lower return and volatility for the index with strategy than without the

active risk management.
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Figure 6: Growth Rate of the S&P 500 Index (with basis 1988) without (red) and with active

risk management (blue) while time of detection (dashed line) and estimated change point (solid

line) are given.

The change points of the index S&P 500 in Table 16 seem to be reasonable in many cases.

The monitoring procedure detected the change point 1991-02-14 at 1991-03-28 which lays in

the time period of the gulf war between the USA and Iraq (see Table 16). The active risk
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management and the change points 2000-04-07 and 2008-09-04 stopped us in investing around

the high risk phases of the Dot-com bubble and the financial crisis, respectively. This leads to

the over performance of the index with the active risk management during end of 2008 until end

of 2012. Also in the period of the COVID-19 pandemic we did not invest.
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Figure 7: Growth Rate of the MSCI World Index (upper panel) and MSCI E.M. Index (lower

panel) with basis 1988. MSCI E.M. without (red) and with active risk management (blue) while

time of detection (dashed line) and estimated change point (solid line) are given.

For the MSCI World index 34 change points were detected by the monitoring procedure and

we determined 75 regroupings. As one can see in Figure 7 most change points are localized

at time periods corresponding to events with a strong impact on the market. For example the
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change point 2000-04-10 corresponds to the Dot-com bubble, 2008-09-02 to the global financial

crisis, 2011-06-08 occurs after the Fukushima Daiichi nuclear disaster and 2020-02-20 during

the COVID-19 pandemic. For the index MSCI E.M. we found 21 change points resulting in

53 regroupings. From Table 17 we observe that the MSCI E.M. is the index with the largest

loss (of 44.3%) after the regrouping. Clearly the volatility decreased by 43% since we did not

invest in high-risk periods. For example, we did not invest in the 1998 Russian financial crisis

and because of the detected change points 2014-09-01 and 2015-06-25 we did not invest in the

period of the Greek debt crisis.

3.3 Comparison with Methodology Gösmann and Ziggel (2018)

In this section, we will compare sequential change point detection methodology proposed in this

paper (methodology I ) with the sequential methodology introduced by Wied et al. (2012) and

applied by Gösmann and Ziggel (2018) (methodology II ). Gösmann and Ziggel (2018) proposed

for log-returns X1, . . . , XK with Vt = Var(Xt) the hypotheses

H0 : V1 = . . . = VK(3.1)

H1 : there exist t 2 {1, . . . , K � 1} with Vt 6= Vt+1 .

In order to test for a change in the volatility they employed the test statistic

VK =
K

max
t=1

���D̂
tp
K

(V̂ t

1 � V̂
K

1 )
��� ,

while the factor D̂ is important for the asymptotic distribution of VK and is defined as

D̂ =

 ✓
1

�2X̄K

◆>

D̂1

✓
1

�2X̄K

◆!�1/2

.

D̂1 is defined as

D̂1 =
1

K

KX

t=1

ÛtÛ
>
t
+ 2

KX

j=1

k

✓
jp
K

◆
1

K

K�jX

t=1

ÛtÛ
>
t+j

,

while the vector Ût is defined as

Ût =

 
X

2
t
� 1

K

P
K

t=1 X
2
t

Xt � 1
K

P
K

t=1 Xt

!
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and the function k is defined as

k(x) =

(
1� |x| for |x|  1 ,

0 otherwise .

Under the null hypothesis (1.2) and some mild assumptions one can show (see Wied et al., 2012)

that

VK

d�! sup
t2[0,1]

B(t) ,

where B(t) is an one-dimensional Brownian Bridge such that with its quantiles we can provide

an asymptotic test.

After observing 60 trading days such that we have log returns X1, . . . , X60 we apply the test on

day 61 on X1, . . . , X61. We compute VK and if VK  c↵ for an appropriate quantity c↵ such

that the test has significance level ↵, we do not reject the null hypothesis (3.1) and wait for 10

trading days to include these returns and apply the test once again. But if VK > c↵ we decide

for the alternative hypothesis and estimate the change point with the following estimator

t̂ = argmaxK
t=1

���D̂
tp
K

(V̂ t

1 � V̂
K

1 )
��� .

Then the estimated change point is the new anchor point such that 10 trading days later we

apply the test again. We continue the monitoring procedure in this way with the updated anchor

point. But if the last anchor point is more that 250 trading days ago, we only consider the last

250 log-returns. We then stop the monitoring procedure with the last observation.

While detecting the change points we apply the active risk management defined in Section

3.1. To compare methodology I and II we apply the monitoring procedure with active risk

management on the financial data and evaluate the results by means of backtesting. In the

upper panel of Figure 8 we display the corresponding results for methodology I und II in the case

of the S&P 500 index. The gray lines show the detected change points and time of detection of

the methodology II with ↵ = 0.05. For methodology I we picked the parameter m = 60, T = 4.2

and ↵ = 0.05. With methodology I (methodology II) we detected 30 change points (34 change

points) for S&P 500. Since methodology II is applied every 10 days the average time of delay to

detect the change points are 88 trading days while for the other methodology the change point

detection takes 42 trading days. Corresponding results for the two other indices are shown in

the middle and lower panel of the figure. Further, in Table 18 we computed the key figures for

backtesting.
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Figure 8: Growth Rate of the S&P 500 Index (upper panel), MSCI World Index (middle panel)

and MSCI E.M. (lower panel) without active risk management (red) and with the active risk

management based on methodology I (blue) and the methodology II (green); time of detection

(dashed gray line) and estimated change point (solid gray line) of methodology I
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S&P 500 MSCI World

no strategy Method. I Method. II no strategy Method. I Method. II

Return p.a. 8.15% 6.15% 7.58% 5.4% 4.95% 5.76%

Volatility p.a. 17.73% 11.5% 13.14% 14.78% 9.33% 10.29%

Sharpe ratio 0.46 0.53 0.58 0.37 0.53 0.56

Max. drawdown 56.78% 20.65% 32.07% 59.07% 27.82% 30%

Regroupings 59 35 65 33

MSCI E.M.

no strategy Method. I Method. II

Return p.a. 7.24% 6.14% 7.3%

Volatility p.a. 17.78% 10.34% 12.19%

Sharpe ratio 0.4 0.59 0.6

Max. drawdown 66.06% 42.98% 42.4%

Regroupings 63 43

Table 18: Backtest results for the investment without any overlay and our active risk manage-

ment based on methodology I and II

From Figure 8 we see that many change points are detected close to important financial

events such as the Dot-com bubble, the global financial crisis and COVID-19 pandemic. The

return of the backtest based on methodology II is better than for methodology I. But the

volatility and maximum drawdown is better for methodology I compared to methodology II.

We conclude that methodology I has advantages for a trading on a daily basis. Even though

the return gets worse with methodology I it is a better to control the volatility. We also could

identify high risk phases with methodology I. On the other hand methodology II is more useful

in applications, where trading is performed every 10 days.
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