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Chapter 1

Introduction

The object of this work is the derivation of effective equations for periodic
frameworks of elastoplastic material in the limit of both infinitesimal periodicity
and infinitesimal relative width of the rods of which the framework is composed.

The derivation of effective equations for heterogeneous materials with a fine
mixing of different constituents is commonly known as homogenization. Such
materials may occur in nature or be engineered with the specific aim of obtaining
certain effective material properties which may be impossible or difficult to
obtain in a homogeneous material. One can describe homogenization as the
process of averaging the oscillatory coefficients that describe a heterogeneous
material. The key problem is to find the correct notion of averaging.

In engineered materials, but also in nature (e.g. in crystals), the mixing
of the constituents often follows a periodic pattern. The study of periodic
microstructures is known as periodic homogenization. The other direction of
study is stochastic homogenization, where the coefficients are random variables
which satisfy a stationarity and ergodicity assumption. Qualitative results were
first obtained by Kozvlov [32], Papanicolaou and Varadhan [50] who studied
heat conduction in randomly inhomogeneous media. More recently, quantitative
estimates for the approximation error in the homogenization were obtained by
Gloria, Otto and Neukamm [24, 25, 23]. We focus on periodic homogenization.
Here, an important tool is the notion of two-scale convergence which was first
proposed by Nguetseng [49] and further developed and popularized by Allaire
[5].

We combine homogenization with dimension reduction. In dimension reduc-
tion one is concerned with the derivation of equations for lower-dimensional
objects such as rods, beams, plates and shells from bulk material models. In
the realm of finite strains, the seminal work by Friesecke, James and Müller
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2 CHAPTER 1. INTRODUCTION

[22] enabled much progress. The authors provide the famous quantitative rigid-
ity estimate which they use to rigorously derive a plate model for nonlinear
elasticity. See also [46] for a model for rods. The rigidity result of [22] gives an
estimate for the L2-distance of deformation gradients to the space of orthogonal
matrices in terms of the distance to a single (optimal) orthogonal matrix. We
will work in the realm of infinitesimal strains. Therefore a much simpler rigidity
estimate is sufficient, the Korn inequality, which provides an estimate for the
symmetric gradient of displacement fields.

Many of the results in homogenization and dimension reduction are based
on the notion of Γ-convergence invented by DeGiorgi [18]. This notion for the
convergence of functionals allows rigorous statements about the convergence of
material behaviour for materials which are modeled by energy functionals.

For the modeling of plasticity we refer to [3, 26, 19, 54]. We will consider a
simple model of elastoplasticity with linear kinematic hardening. Hardening
prevents the concentration of displacements. In the absence of hardening (known
as perfect plasticity), no H1-estimates are available and one must resort to the
space of bounded deformations in which displacement fields u are such that the
strain ε = (∇u +∇uT )/2 is only a measure. This problem was analyzed by
Dal Maso, DeSimone and Mora in [17] with groundwork laid by Temam and
Kohn in [57, 30]. As we will incorporate hardening into our models, we can
work in the classical Hilbert-Sobolev spaces.

Moreover, we work under the assumption of rate-indepence [40]. This means
in particular that all processes are quasi-static, inertia terms are neglected. In
addition to that, no viscous effects are considered. The system is assumed to
be constantly in an equilibrium, an assumption which can be justified when
the input of the system evolves slowly compared to the internal restructuring
processes. We may view elastoplasticity as a system that maps an input function
` : [t1, t2]→ L to an output function q : [t1, t2]→ Q. Here Q is the state space
of the system, containing for example displacement fields. The input space L
might consist of loads and boundary conditions. Rate-independence manifests
itself in the property that q is a solution to the input ` if and only if q ◦ φ
is a solution to the input ` ◦ φ for every strictly monotone reparametrization
φ : [t′1, t′2]→ [t1, t2].

Informal overview
Dimension reduction for elastoplastic rods. When we consider thin rods
Ωh = [0, L]× hB, with displacement fields uh : Ωh → R3, a natural question is
how to represent limits of sequences (uh)h as h→ 0. In particular, one could
ask wether sufficiently many features of such limit sequences can be captured
in a one-dimensional displacement field v : [0, L]→ R3.
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Leaving plasticity aside for a moment, considering pure elasticity, we note
that a rod is fully described by its elastic energy functional, which associates
an energy Bh(uh) to every displacement field uh. Certainly, stretching a thin
rod costs less elastic energy than stretching a thicker rod by the same amount.
The same qualitative statement is true for bending. In other words: When the
displacements uh and the elastic energies Bh(uh) converge simulteneously as
h → 0, the limit energy will always be zero. We therefore introduce scalings.
Specifically, we consider h−6Bh instead of Bh. But we also rescale the displace-
ments and consider (h−2uh1 , h

−1uh2 , h
−1uh3 ) instead of uh. The precise choice of

the exponents may not be clear at this point. But it can be seen that with this
scaling of uh, we commit ourselves to the study of sequences of displacements
where the first component (stretching) is of order h2, and thus asymptotically
smaller than the other two components (bending) which are of order h. It turns
out that with this scaling, both stretching and bending contribute to the elastic
energy at the same order, namely h6.

In this scaling, limit displacements can indeed be characterized by one-
dimensional displacement fields v : [0, L]→ R3. Yet some geometric information
is lost in the process: The field v is for example not capable of capturing any
torsion of the rod, even though such torsion may contribute to the energy. It
thus features in the limit energy as a quantity over which the energy is infimized:
the rod always relaxes to an energetically optimal state of torsion. Besides
torsion, there are two other correcting terms which contribute in this way to the
complexity of the limit model (see Figure 4.2 on Page 45 for an illustration).

When we turn to elastoplasticity, the energy also depends on the plastic
strain tensor ph : Ωh → R3×3

sym. This tensor is also rescaled, but it remains
genuinely three-dimensional in the limit.

Homogenization of elastoplastic lattices. When we want to study
periodic lattices, we first need to describe a single periodicity cell. This cell
contains all the joints in the cell as nodes, while rods are represented as
edges. There may even exist multiple edges between the same pair of nodes,
because the edges may reach for different copies of the target node located in
different neighboring cells, see Figure 1.1(a). This periodicity graph can then
be “unrolled” to form an infinite periodic graph as depticted in Figure 1.1(b)
and (c).

We want to fill a macroscopic domain Ω ⊂ R3 with lattice-material of
periodicity ε. Thus we need a reasonable method for taking sections from the
infinite periodic graph. In particular, we do not want to end up having loose
edges or other subcomponents with floppy modes. The overall structure should
possess some form of rigidity. This can be achieved by using rigid components,
which are usually somewhat larger than a single periodicity cell, as building
blocks (see Figure 5.4 on Page 62).
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B CC

B

(b) (c)

Figure 1.1: A periodicity graph (a) is equipped with node positions and edge
cell-offsets and thus “unfolds” to an infinite periodic graph. Figure (b) shows
the immediate neighborhood of one periodicity cell, while (c) shows a larger
section from the periodic graph. For visual clarity, the example in this figure is
in two dimensions.

We then pose the equations of elastoplasticity on each of the edges. In
particular, we define an energy functional for the whole system, which is a
sum over the energies of all the edges. Each edge has, after a rigid motion, an
associated domain of the form ε([0, L]× hB). We thus have two infinitesimal
parameters: The periodicity ε→ 0, and a relative width h = h(ε)→ 0.

Of course, the equations for the different edges are coupled by compatibility
conditions at the nodes. These are encoded by postulating for each node a
displacement vector and an infinitesimal rotation matrix.

After proper rescaling, limits can be considered. Let us, for the purpose of
this introduction, focus on one particular quantity: the displacement vectors for
the nodes. In what sense can they be said to converge? For given ε, let uεk,v ∈ R3

denote the displacement of node v from cell k ∈ Z3. We then identify (uεk,v)k
with the associated piecewise constant interpolation uεv : R3 → R3 defined by
uεv = uεk,v on ε(k + (0, 1)3). We can require ordinary L2-convergence for uεv.
However, it seems unnatural to consider the sequences (uεv)ε for different node
types v separately. There are rods between nodes of different type, and these
tend to keep the corresponding displacements close together. We therefore use
a two-scale ansatz and write uε + εξεv instead of uεv. Here uε is the average node
displacement in a cell, and ξεv is the ε-order deviation of node v. It turns out
that along sequences of bounded energy, both uε and ξεv are bounded in L2.
Moreover, weak limits u of uε are in H1(Ω;R3). This limit quantity u : Ω→ R3

is the primary unknown of the limit model: It is the displacement field of the
homogenized material. We refer to the next paragraph for more details on the
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structure of the limit model.
It remains here to notice the dependency of the limit model on the rate at

which the relative width h(ε) converges to zero as ε→ 0. It turns out that the
rate is relevant when volume loads are considered. When the rods are sufficiently
thin, h(ε)/ε→ 0, then the volume loads will only affect the local oscillations.
For example, in the presence of gravitation, all non-vertical rods will be sagging.
On the other hand, when the rods are sufficiently thick, h(ε)/ε→∞, then the
volume loads will only affect the macroscopic displacement field u : Ω → R3.
The most interesting case is when h ∼ ε. Then both effects are present. In the
literature, this case is referred to as critical thickness [59, 60].

Outline and main results
The main results of this work are developed in Chapters 4–6. Chapters 2 and 3
are preparatory.

We start in Chapter 2 by introducing the equations for linearized elasto-
plasticity with kinematic hardening. We study the rate-independent case and
introduce the notion of rate-independent systems and their energetic solutions
as developed by Mielke [40]. For the convenience of the reader we give a
proof for the by now classical existence and uniqueness result for quadratic
rate-independent systems (Theorem 2.1).

An energetic rate-independent system is a triple (Q, E ,R), where Q is the
state space. In the case of elastoplasticity, the states are of the form q = (u, p),
where u is a displacement field and p a plastic strain tensor. The functional
E = E(t, q) is the total energy. It is time-dependent because it includes the time-
dependent loads. The positive one-homogeneous functional R = R(q) = R(p)
is the dissipation functional. An evolution q : [0, T ]→ Q is considered to be a
solution of that system when

0 ∈ ∂R(∂tq(t)) + DqE(t, q(t)) .

This differential inclusion can also be split into a balance of forces 0 =
DuE(t, q(t)) and the plastic flow rule 0 ∈ ∂pR(∂tp(t)) + DpE(t, q(t)). When
E(t, ·) is convex, this is equivalent to the conditions

E(t, q(t)) ≤ E(t, q(t) + q) +R(q′) for all q′ ∈ Q ,

E(t, q(t)) +
∫ t

0
R(∂sq(s))ds = E(0, q(0)) +

∫ t

0
∂sE(s, q(s))ds .

These are referred to als stability and energy equality. Together they consitute
the definition of energetic solutions.
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In Chapter 3 we cite a result on evolutionary Γ-convergence for rate-
indepentent systems with quadratic energies [42]. We give a proof of this
theorem (Theorem 3.4) which is somewhat simplified compared to what is found
in [42]. The theorem provides conditions under which sequences of solutions
qε of rate-independent systems (Q, Eε,Rε) converge to solutions q0 of a rate-
independent system (Q, E0,R0). It turns out that the main requirements are
the Γ-convergence of Eε to E0 and of Rε to R0. More precisely, one needs
Γ-convergence with respect to both the weak and the strong convergence in the
state space Q, a mode of convergence which is called Mosco-convergence. The
quadratic nature of the energies Eε and the further assumption that all strongly
converging sequences are recovery sequences for Rε then allow the construction
of so-called mutual recovery sequences which enable the proof that solutions of
(Q, Eε,Rε) converge to solutions of (Q, E0,R0).

Theorem 3.4 is then applied in Chapter 4 to a single rod and in Chapter 6
to lattices. The challenging part is in both cases the proof of convergence for
Eε. The energy has always the form Eε(t, q) = Bε(q) − 〈`ε(t), q〉 and for the
most part we focus on the quadratic form Bε.

In Chapter 4 we consider rods, i.e. domains of the form Ωh = I×hB. When
q = (u, p) is the state of the rod expressed in physical variables, we introduce
the rescaled state qh = (uh, ph) defined on Ω = I ×B by the relationship

u(x) =
(
h2 0 0
0 h 0
0 0 h

)
uh
(
x1,

x2

h
,
x3

h

)
, p(x) = h2ph

(
x1,

x2

h
,
x3

h

)
.

This leads to an equivalent rate-independent system in which the states q are
replaced by qh and the stored energy B takes the form

Bh(qh) =
∫

Ω
W
(
Sh∇suhSh, ph

)
, Sh =

(
1 0 0
0 1/h 0
0 0 1/h

)
.

The limit stored energy turns out to be supported on q = (u, p) with ∇su ∈
span(e1 ⊗ e1) a.e., and has the form

B0(q) =
∫

Ω
W

 ∂1u1 ∗ ∗
∂2f − g′(x1)x3

∂3f(x) + g′(x1)x2
∇s2,3w

 , p

 dx .

Here f, g, w depend on q and are chosen in such a way that the expression
given for B0(q) is minimized; see (4.11) for the precise definition. The given
expression suggests that the upper bound property of B0 can be proved by
considering a recovery sequence of the form

uh(x) = u(x) + 2h

 f
−g(x1)x3
g(x1)x2

+ h2

 0
w1
w2

 .
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The lower bound is more difficult to prove as it requires to find appropriate
functions f, g, w for any sequence qh ⇀ q0 with bounded energy Bh(qh).

Chapter 5 is preparatory for the homogenization of periodic lattices consid-
ered in Chapter 6. We introduce the notion of periodic graphs. We start from
a periodicity graph G, which is a finite multigraph with edge labels in Z3. An
“unfolding” procedure prescribed by these labels leads to an infinite periodic
graph Gper (see Figure 5.1). When each node of G is assigned a position in the
periodicity cell, this gives rise to an infinite periodic framework in R3. This
framework is scaled by a factor ε > 0 and fitted into a given domain Ω ⊂ R3.
In doing so, which requires cropping the infinite framework at the boundary
of Ω, we have to be careful not to lose the property of infinitesimal rigidity.
We develop a procedure according to which such cropped graphs Gε can be
constructed using rigidity cells. These are building blocks which are possibly
larger than a single periodicity cell but possess rigidity. The notion of rigidity
we presuppose can be expressed by the assumption that there is an estimate of
the form∑

(v1,v2)

|u(v2)− u(v1)|2 ≤ C
∑

(v1,v2)

∣∣∣∣ z(v2)− z(v1)
|z(v2)− z(v1)| · (u(v2)− u(v1))

∣∣∣∣2 .
Here, the summation is over all edges (v1, v2) of the underlying graph and
z : V → R3 is a placement of the nodes V of that graph. The estimate must
hold uniformly for all node displacement fields u : V → R3. When only a
single graph with a finite set V of nodes is considered, the estimate is clearly
equivalent to the qualitative statement that the left-hand side vanishes whenever
the right-hand side vanishes. However, we need the estimate to hold uniformly
in ε > 0 for all the graphs Gε. This can be guaranteed by constructing Gε with
the above-mentioned rigidity cells.

We then go on to introduce notation for dealing with functions defined on
the nodes and edges of the graphs Gε with a view towards appropriate limit
notions as ε→ 0. Functions on the set of nodes of Gε are denoted (e.g.) βv(x)
with x corresponding to the periodicity cell bx/εc ∈ Z3 and v ∈ V (G) selecting
a node from that cell. Accordingly, functions on the set of edges of Gε are
denoted (e.g.) γe(x) with x as before and e ∈ E(G) selecting an edge from the
cell corresponding to x. These functions are assumed to be constant in x on
each cell ε(k + (0, ε)3) for k ∈ Z3.

Next, we introduce the notion of a graph gradient gradε(β;Gε) which
turns a node-function β into an edge-function which contains the difference
quotients of β along all edges. We prove a corresponding Poincaré inequality
‖β‖ . ‖gradε(β;Gε)‖ (see Lemma 5.11) and introduce a notion of two-scale con-
vergence which satisfies a corresponding compactness property (see Lemma 5.16).



8 CHAPTER 1. INTRODUCTION

In the limit, the graph gradient becomes grad(α, β;Gε) where α = α(x) con-
tains the macroscopic displacements and β = βv(x) captures the microscopic,
node-type dependent oscillations of the original sequence.

In Chapter 6 we finally turn to the homogenization of elastoplastic lattices.
Here we have two infinitesimal parameters: The periodicity ε → 0 and the
(relative) width of the rods h = h(ε)→ 0. Interestingly, the limit stored energy
looks almost the same as in the case of a single rod:

B0(q) =
∑

e∈E(G)

∫
R3

∫
Ωe

We

 ∂y1ve,1 ∗ ∗
∂y2fe − ∂y1ge(x, y1)x3

∂y3fe(x) + ∂y1ge(x, y1)x2
∇sy2,y3

we

 , pe

 dydx .

Here the state q is a triple q = (u, v, p) of macroscopic displacements u : Ω→ R3,
microscopic displacements ve(x, ·) : Ωe → R3 for each macroscopic position
x ∈ Ω and each edge type e, and plastic strain fields pe(x, ·) : Ωe → R3×3

dev . For
the precise definition see (6.24). The important differences from the rod-energy
do not appear in this formula but in the definition of the limit space Q0 ⊂ Q on
which alone this formula is valid. The definition of Q0 includes the condition
∇syv ∈ span(e1 ⊗ e1) (as in the case of rods, this implies that the microscopic
displacements are effectively one-dimensional). But it also includes boundary
conditions for v and g. The boundary values are defined via node states Av(x)
(infinitesimal rotations) and (u(x), ξv(x)) (two-scale node displacements).

For a better understanding of the limit energy, we can infimize out v and
get an energy of the form

(u, p) 7→ inf
v
B0(u, v, p) =

∫
R3
F (∇su(x), p(x)) ,

F (ε, p) =
∑

e∈E(G)

∫
Ωe

We

 ∂1ve,1 ∗ ∗
∂2fe − ∂1ge(y1)x3

∂3fe(x) + ∂1ge(y1)x2
∇s2,3we

 , pe

dydx ,

where v, f, g, w are minimizers of the expression defining F , and the macroscopic
strain ε comes in through the boundary conditions imposed on v. For a more
transparent description which explicitly features ε, see (6.34).

In the case of sufficient thickness, where h(ε)/ε → ∞, the microscopic
displacement field v can indeed be neglected in this way. In the critical case
h(ε) ∼ ε and in the case of sufficiently thin rods, h(ε)/ε → 0, however, the
microscopic displacements v appear in the loading term and thus must be
accounted for.
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Related work

The mathematical theory of rods has rich history. For rigorous results on elastic
rods we refer to the works by Mielke [39, 41] and by Mora and Müller [46, 47],
which work even in the nonlinear regime.

The general theory of rate-independent systems and evolutionary Γ-convergence
is developed in [40, 43] and in book form in [42]. Based on this, Liero and
coworkes have developed elastoplastic plate models in [34, 35]. We follow the
overall approach and scalings used in these papers (particularly [34]) when we
develop a model for elastoplastic rods in Chapter 4.

For the homogenization part (Chapter 6) we refer to previous work on the
homogenization of equations for elastoplasticity [4, 45, 58, 20, 55, 27]. There
are several lines of research in which lattices, frames or trusses are studied. In
most of these, scalar equations or pure elasticity is considered.

One line of research was initiatied by Bouchitté and coauthors [11, 12, 13]
with the introduction of the notion of energies with respect to a measure [11].
This notion serves the specific aim to study singular (i.e. lower-dimensional)
structures. Such structures, for example lattices, are represented by measures.
The authors introduce the concept of tangential gradients with respect to a
measure which enables them to construct associated Sobolev spaces. In [12]
they use this framework for the homogenization of periodic structures. For this,
an appropriate notion of two-scale convergence is introduced. This notion is
employed to obtain homogenized energy densities for convex integral functionals.
However, all of this only applies to scalar problems. In [13] the authors then
study vector valued problems, and in particular linear elasticity. For this they
introduce an approach which they call measure fattening: The low-dimensional
structure of periodicity ε is fattened by an amount δ relative so ε. The analysis
is carried out under the assumption of a fatness condition. In particular, the
authors avoid what is called critical thickness, where δ(ε) ∼ ε.

The work by Zhikov, Pastukhova and coauthors [60, 59, 51, 15, 61] is in
many respects parallel to what Bouchitté and coauthors did. In [15] they also
first study scalar problems, and in [60] the homogenization of elasticity problems
on lower-dimensional structures is considered. In [59] the authors moreover
tackle the setting of critical thickness. In [61], various Korn inequalities for thin
structures are proved.

A more recent line of work comes from Seppecher and coauthors [1, 2].
They are interested in exotic materials. For this they start with simple elastic
networks made up of linear springs which are, however, not rigid in the sense
that we will study in our work, but have, as they call it, “a few number of floppy
modes”. In the homogenization, the model escapes the classical framework of
Cauchy stress theory. The authors get materials with higher order gradients
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(see [56]). In [1, 2], this idea is carried out for elastic networks. As a first step,
the problem posed on a composite domain is reduced to a discrete problem.
Subsequently, the discrete problem is tackled.

Lastly, there is a series of publications by Babuška and coauthors [7, 36, 37].
In [7], the authors develop algorithms for the verification of various properties
of periodic lattices. Then in [37] they prove existence and uniqueness for elastic
equilibrium equations on infinite periodic lattices, and in [36] these equations
are homogenized.

For the concept of the rigidity of graphs we refer to [9, 10, 29, 52]. We only
use quite elementary notions of this field and do not go into the details of the
underlying algebraic theory.

Notation
When we prove various estimates, we often use the notation

A . B ,

which is meant to be equivalent to the statement that A ≤ CB for some constant
C > 0. Here, A and B usually depend on one or more parameters and it is
understood that C is independent of these. In particular, we write A . 1 when
the quantity A is uniformly bounded. Moreover, we write A ∼ B when A . B
and B . A.



Chapter 2

Elastoplasticity

We introduce the classical equations for linearized elastoplasticity in the rate-
independent case with linear kinematic hardening (see for example [26, 3]).
Subsequently we introduce the concept of energetic solutions as introduced by
Mielke [40] and state a by now classical existence result.

2.1 Kinematics

We will study bodies that, from a macroscopic perspective, appear to be
continuously distributed. This means that they occupy a region of three-
dimensional space. In an undeformed state, a body can be identified with a
region Ω ⊂ R3, which we call the reference domain of that body.

Any deformed state of the body can be described by specifying for each
material point x ∈ Ω a displacement vector u(x) ∈ R3. In its deformed state,
the region occupied by the body is {x + u(x) : x ∈ Ω}. When we study
evolutions of the body over a time interval [0, T ], the primary unknown variable
is therefore the displacement field

u : [0, T ]× Ω→ R3 .

We need to distinguish mere rigid body motions, in which the body as a whole
is translated and rotated, from deformations that affect the shape of the body
or at least locally result in changes of lengths and angles. Such behaviour is
fully captured by the (nonlinear) strain tensor, which is defined as

η(u) := 1
2

(
∇u+ (∇u)T + (∇u)T∇u

)
.

For a rigid body motion, one has ∇u = R−I for some R ∈ SO(3) which implies
η(u) = 0. More generally, let us assume 0 ∈ Ω and u(0) = 0, and consider

11
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vectors v, w ∈ R3 at the origin which are of length O(ε). The inner product of
the “deformed vectors” is

(v + u(v)) · (w + u(w)) = (v + (∇u)v) · (w + (∇u)w) +O(ε2)
= v · w +

(
∇u+ (∇u)T + (∇u)T∇u

)
v · w +O(ε2)

= v · w + 2η(u)v · w +O(ε2) .

Thus we see that the nonlinear strain tensor η(u) indeed fully describes how
inner products (and thus lengths and angles) are affected by a displacement u.

We will, however, not work with the full strain tensor η(u). By restricting
our attention to small displacements, we can assume that ∇u is small enough
to justify that we neglect the quadratic term in the definition of η(u). This
leads to the definition of the linearized or infinitesimal strain tensor

ε(u) := 1
2

(
∇u+ (∇u)T

)
,

which is just the symmetrized gradient of u and also denoted by ∇su.

2.2 Balance of momentum

From now on we will assume infinitesimal deformations. There are two types
of forces that may act in (or on) every part of the body: A body force f :
Ω× [0, T ]→ R3, and surface traction. The surface traction sn(x, t) depends on
a unit vector n and is defined by the following property: When the body is split
in two by a regular surface with normal n at point x, then sn(x, t) is the force
per unit area which the part of the body towards which n points exerts on the
other part. We assume that there exists a stress tensor σ : [0, T ]× Ω→ R3×3

such that sn = σn.
For regular subset U ⊂ R3, we have the balance of linear momentum,

0 =
∫
U

fdx+
∫
∂U

σnds =
∫
U

f + div σdx .

As U was arbitrary, this implies f = −div σ. We also have the balance of
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angular momentum,

0 =
∫
U

x ∧ fdx+
∫
∂U

x ∧ σnds

=
∫
U

x ∧ fdx+
∫
∂U

(εijkxjσkl)nlds

=
∫
U

x ∧ fdx+
∫
U

∂l(εijkxjσkl)ds

=
∫
U

x ∧ fdx+
∫
U

εijkσkj + x ∧ div σds

=
∫
U

σ32 − σ23
σ13 − σ31
σ21 − σ12

dx .

Again, as U was arbitrary, this implies σ = σT or σ : [0, T ]× Ω→ R3×3
sym.

2.3 Constitutive equations

What is still missing is a relation between σ and u. This is where material
properties come into play.

We assume an additive decomposition of the strain ε = ∇su into an elastic
part e and a plastic part p,

ε = e+ p .

We further assume a linear relation between the elastic strain e and the stress σ

σ = Cε ,

with an elasticity tensor C : R3×3
sym → R3×3

sym. For thermodynamical reasons, it
is generally assumed that C is symmetric and positive. The elasticity tensor
may depend on the material point, but we will consider homogeneous materials
throughout.

2.4 Plastic flow rule

We complete the equations with an evolution law for p, a flow rule. Plastic
behaviour only occurs when the stress σ(x) reaches a certain limit. We suppose
a bounded, closed, convex set K ⊂ R3×3

sym of attainable stresses with 0 ∈ K.
We further assume linear kinematic hardening: There is a positive symmetric

tensor B : R3×3
sym → R3×3

sym which maps the plastic strain p(x) to a back stress
Bp(x). We assume that σ(x) − Bp(x) ∈ K everywhere and at all times. The
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plastic strain p(x) only evolves when σ(x)− Bp(x) ∈ ∂K, and in that case ṗ(x)
must be an outer normal vector to K at σ(x)− Bp(x).

Moreover, we make the assumption that the plastic behaviour is insensitive
to pressure, meaning that all plastic deformations are volume preserving. This is
expressed in the condition p ∈ R3×3

dev , where R3×3
dev denotes the space of deviatoric

matrices,
R3×3

dev := {A ∈ R3×3
sym : tr(A) = 0} .

This is guaranteed by requiring that K + RI ⊂ K.

2.5 The initial and boundary value problem

To sum up, the material is described by an elasticity modulus C : R3×3
sym → R3×3

sym
which is a positive symmetric tensor; a linear kinematic hardening parameter
B : R3×3

sym → R3×3
sym which is also a positive symmetric tensor; and a bounded,

closed, convex set K ⊂ R3×3
sym with 0 ∈ K and K + RI ⊂ K. We define

ψ : R3×3
sym → R∞ to be the indicator function of K, that is,

ψ(σ) :=
{

0 if σ ∈ K
+∞ if σ /∈ K .

Then the subdifferential of ψ is

∂ψ(σ) =


NσK if σ ∈ ∂K
{0} if σ ∈ K̊
∅ if x /∈ K ,

where NσK ⊂ R3 is the cone of outer normal vectors to K at σ. Thus the flow
rule can be expressed as ∂tp(x) ∈ ∂ψ(σ(x)− Bp(x)).

Let Ω ⊂ R3 be a bounded Lipschitz domain, and ΓD a nonempty open
subset of ∂Ω. We write ΓN := ∂Ω \ ΓD. For given volume and surface loads

fvol : [0, T ]× Ω→ R3 , fsurf : [0, T ]× ΓN → R3 ,

the equations of elastoplasticity are

−∇ · σ = fvol in [0, T ]× Ω (2.1a)
σ = C(∇su− p) in [0, T ]× Ω (2.1b)

∂tp ∈ ∂ψ(σ − Bp) in [0, T ]× Ω . (2.1c)
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These equations for u : [0, T ]×Ω→ R3 and p : [0, T ]×Ω→ R3×3
dev are completed

by initial conditions u(0, ·) = u0 and p(0, ·) = 0, and boundary conditions

u = 0 on [0, T ]× ΓD , (2.2a)
σ · n = fsurf on [0, T ]× ΓN . (2.2b)

Here n denotes a field of outer normal vectors to Ω.

2.6 Energetic formulation, Existence and Uniqueness

In this section we want to make the equations (2.1) and (2.2) precise by
introducing function spaces and the notion of energetic solutions.

For this we define two scalar quantities that will replace C,B and K. The
first of these is the stored energy density W : R3×3

sym × R3×3
dev → R,

W(ε, p) := 1
2C(ε− p) : (ε− p) + 1

2Bp
: p . (2.3)

The second one, the dissipation potential R : R3×3
dev → R, is the Fenchel conjugate

of ψ,
R(p) := ψ∗(p) = sup

σ∈R3×3
sym

σ : p− ψ(σ) .

Since ψ is the indicator function of the elastic region K ⊂ R3×3
sym, the dissipation

potential is a positive one-homogeneous function, namely the so-called support
function of K, that is,

R(p) = sup
σ∈K

σ : p .

With W as defined in (2.3), we can reformulate (2.1b) to

σ = C(∇su− p) = ∂εW(∇su, p) (2.4)

This implies ∂pW(∇su, p) = −C(∇su − p) + Bp = Bp − σ. Thus we can
reformulate (2.1c) to

∂tp ∈ ∂ψ(σ − Bp) = ∂ψ(−∂pW(∇su, p)) .

By Fenchel’s relations, this is equivalent to

− ∂pW(∇su, p) ∈ ∂ψ∗(∂tp) = ∂R(∂tp) , (2.5)

In (2.4) and (2.5) we thus have an equivalent expression for the constitutive
equations (2.1b) and (2.1c) in terms of W and R.
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Up to now we have considered only a single material point. We will now
introduce integrated quantities and therefore consider fields u : Ω → R3 and
p : Ω→ R3×3

dev . The corresponding space is

Q := {(u, p) ∈ H1(Ω;R3)× L2(Ω;R3×3
dev ) : u = 0 on Γ} .

We call Q the state space of the system because one element of it can fully
describe the state of the system at a particular point in time. This space already
encodes the Dirichlet boundary condition (2.2a).

We integrate the pointwise quantities W(∇su, p) and R(p) to get the stored
energy functional B : Q → R,

B(q) :=
∫

Ω
W(∇su(x), p(x))dx , q = (u, p) ∈ Q ,

and the dissipation functional R : Q → R,

R(q) :=
∫

Ω
R(p(x))dx , q = (u, p) ∈ Q .

Moreover, for t ∈ [0, T ] we define `(t) ∈ Q∗ by

〈`(t), q〉 :=
∫

Ω
fvol(t, x) · u(x)dx+

∫
ΓN

fsurf(t, x) · u(x)dH2(x)

for q = (u, p) ∈ Q. With this we define the total energy E : [0, T ]×Q → R,

E(t, q) := B(q)− 〈`(t), q〉 , t ∈ [0, T ] , q ∈ Q .

We can now combine (2.1a), (2.2b) and (2.4) into

−∇ · ∂εW(∇su, p) = fvol in Ω , ∂εW(∇su, p) · n = fsurf on ΓN ,

which in short is
0 = DuE(t, q(t)) . (2.6)

Moreover, (2.5) simply becomes

0 ∈ ∂pR(∂tq(t)) +DpE(t, q(t)) . (2.7)

Now since ∂uR = 0, we can add (2.6) and (2.7) in order to obtain the simple
subdifferential inclusion

0 ∈ ∂R(q̇(t)) + DqE(t, q(t)) , (2.8)
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which is sufficient to replace (2.1) and (2.2).
Given any evolution q : [0, T ]→ Q and any time inverval [s, t] ⊂ [0, T ], the

total dissipation is defined as

DissR(q; [s, t]) := sup
{

N∑
k=1
R(q(tk)− q(tk−1)) : N ∈ N , s = t0 ≤ · · · ≤ tN = t

}
.

Due to the one-homogeneity of R, when q is absolutely continuous, we have

DissR(q; [s, t]) =
∫ t

s

R(∂tq(s))ds .

The differential inclusion (2.8) is equivalent to the so-called energetic for-
mulation for rate-independent systems: An evolution q ∈ L1(0, T ;Q) is said to
be a solution to the rate-independent system (Q, E ,R) if and only if for every
t ∈ [0, T ] the following two conditions are satisfied.

(S) Stability. For all t ∈ [0, T ] and q′ ∈ Q

E(t, q(t)) ≤ E(t, q(t) + q′) +R(q′) .

(E) Energy equality. For all t ∈ [0, T ]:

E(t, q(t)) + DissR(q; [0, t]) = E(0, q(0))−
∫ t

0
〈∂s`(s), q(s)〉ds .

Notice that this formulation is free of time-derivatives of q : [0, T ]→ Q. It was
developed by Mielke and coauthors in [44].

Quadratic rate-independent systems
We now give the classical existence and uniqueness result for quadratic rate-
independent systems. For this, we abstract away from the equations of elasto-
plasticity. Let Q denote a separable Hilbert space. We suppose to have the
following ingredients:

(i) A stored energy functional B : Q → [0,∞], which is a lower semi-continuous
and coercive quadratic form;

(ii) a dissipation functional R : Q → [0,∞], which is positive one-homogeneous,
convex and lower semi-continuous;

(iii) loads ` ∈W 1,∞(0, T ;Q∗).
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By saying that B is a quadratic form we mean that V := {q ∈ Q : B(q) <∞}
is a linear subspace of Q, and

V × V → R , (q, q′) 7→ 〈q, q′〉V := 1
4

(
B(q + q′)− B(q − q′)

)
(2.9)

defines a bilinear form. Note that (2.9) implies B(q) = 〈q, q〉 for q ∈ V. By
saying that B is coervice, we mean that there is a constant β > 0 with

β‖q‖2 ≤ B(q) ∀ q ∈ Q .

As a derived quantity we have the total energy

E : [0, T ]×Q → R∞ := R ∪ {+∞} , E(t, q) := B(q)− 〈`(t), q〉 .

We say that (Q, E ,R) is a quadratic coercive rate-independent system.
Let us now state the classical existence and uniqueness result. It is basically

the same as Theorem 3.5.2 of [42]. However, we give it in a slightly weaker
form by assuming the loads to be Lipschitz continuous as opposed to only being
absolutely continuous.

Theorem 2.1 (Existence and uniqueness). Let (Q, E ,R) be a quadratic
coercive rate-independent system. Consider any initial state q0 ∈ Q such that

E(0, q0) ≤ E(0, q0 + q′) +R(q′) for all q′ ∈ Q .

Then there exists one and only one solution q ∈ L1(0, T ;Q) for (Q, E ,R) with
q(0) = q0. Moreover, q ∈W 1,∞(0, T ;Q) and

‖∂tq(t)‖Q ≤
1

2β ‖∂t`(t)‖Q
∗ for a.e. t ∈ [0, T ] .

In particular, ‖q‖W 1,∞(0,T ;Q) ≤ ‖q0‖Q + T
2β ‖∂t`‖L∞(0,T ;Q∗).

Before we come to the proof of the above theorem, let us begin with a basic
statement about quadratic forms.

Lemma 2.2 (On quadratic forms). Suppose that B : Q → [0,∞] is a lower
semi-continuous and coercive quadratic form on a separable Hilbert space Q.
Then

V := {q ∈ Q : B(q) <∞}

is a Hilbert space when it is equipped with the inner product 〈·, ·〉V defined in
(2.9).
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Proof. The inner product is positive definite since

〈q, q〉V = B(q) ≥ β‖q‖2 .

It remains only to show that V is complete. Let us suppose that (qn)n is a
Cauchy sequence in V . Then, by the coercivity of B, it is also a Cauchy sequence
in Q. By completeness of Q, there exists q ∈ Q such that qn → q in Q. Then,
by the lower semi-continuity of B,

B(q) ≤ lim inf
n→∞

B(qn) = lim inf
n→∞

‖qn‖2V <∞ .

Thus q ∈ V. For any δ > 0 we have

‖qn − q‖2V = B(qn − q) ≤ lim inf
k→∞

B(qn − qk) = lim inf
k→∞

‖qn − qk‖2V ≤ δ (2.10)

for large values of n. The first inequality again follows from the lower semi-
continuity of B. The second inequality is a consequence of (qn)n being a Cauchy
sequence in V. As δ > 0 was arbitrary, (2.10) implies qn → q in V.

We also need the following statement of lower semi-continuity for the total
dissipation.

Lemma 2.3. Suppose that R : Q → [0,∞] is weakly lower-semicontinuous.
Let qn, q : [0, T ]→ Q with qn(t) ⇀ q(t) in Q for all t ∈ [0, T ]. Then

DissR(q; [s, t]) ≤ lim inf
n→∞

DissR(qn; [s, t]) .

Proof. Let ε > 0. Then by the definition of DissR there exist N ∈ N and
s = t0 ≤ · · · ≤ tN = t such that

DissR(q; [s, t])− ε ≤
N∑
k=1
R(q(tk)− q(tk−1)) .

By the lower-semicontinuity of R and again the definition of DissR, this implies

DissR(q; [s, t])− ε ≤
N∑
k=1

lim inf
n→∞

R(qn(tk)− qn(tk−1))

≤ lim inf
n→∞

N∑
k=1
R(qn(tk)− qn(tk−1)) ≤ lim inf

n→∞
DissR(qn; [s, t]) .

As ε > 0 was arbitrary, this finishes the proof.
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We now come to the proof of Theorem 2.1.

Proof of Theorem 2.1. Step 1: Time discretization and a priori estimates. For
N ∈ N, we consider a partition

0 = tN0 < tN1 < · · · < tNN = T

of the interval [0, T ]. We set qN0 := q0, and inductively define

qNk = arg min
{
E(tNk , q) +R(q − qNk−1) : q ∈ Q

}
, 1 ≤ k ≤ N .

Existence and uniqueness of these minimizers follows from the strong convexity,
lower semi-continuity, and coercivity of the functional which is minimized,

INk (q) := ‖q‖2V − 〈`(tNk ), q〉+R(q − qNk−1) , q ∈ V .

By Lemma A.1, we have the estimate

‖qNk − q‖2V ≤ INk (q)− INk (qNk ) for all q ∈ V . (2.11)

Using (2.11) with q = qNk+1, we derive the following estimate for the time-discrete
solution (qNk )Nk=0:

‖qNk+1 − qNk ‖2V ≤ INk (qNk+1)− INk (qNk )
= E(tNk , qNk+1) +R(qNk+1 − qNk−1)− E(tNk , qNk )−R(qNk − qNk−1) .

Here we can make use of the fact that R, being positive one-homogeneous and
convex, satisfies a triangle inequality of the form R(c − a) = 2R( 1

2 (c − b) +
1
2 (b− a)) ≤ R(c− b) +R(b− a), and continue,

≤ E(tNk , qNk+1)− E(tNk , qNk ) +R(qNk+1 − qNk )

≤ E(tNk+1, q
N
k+1)− E(tNk , qNk )−

∫ tNk+1

tN
k

∂sE(s, qNk+1)ds+R(qNk+1 − qNk ) .

We now use INk+1(qNk+1) ≤ INk+1(qNk ) in order to continue,

≤ E(tNk+1, q
N
k )− E(tNk , qNk )−

∫ tNk+1

tN
k

∂sE(s, qNk+1)ds

=
∫ tNk+1

tN
k

∂sE(s, qNk )− ∂sE(s, qNk+1)ds =
∫ tNk+1

tN
k

〈∂s`(s), qNk+1 − qNk 〉ds

≤ ‖∂t`‖L∞(0,T ;V∗) · (tNk+1 − tNk ) · ‖qNk+1 − qNk ‖V .
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We conclude that
‖qNk+1 − qNk ‖V ≤ (tNk+1 − tNk )

√
β‖∂t`‖L∞(0,T ;Q∗) , (2.12)

where we used that ‖q‖ ≤ β−1/2‖q‖V for q ∈ V and therefore ‖α‖V∗ ≤
√
β‖α‖

for α ∈ Q∗. We define qN : [0, T ]→ Q and q̂N : [0, T ]→ Q to be the piecewise
constant and piecewise affine interpolations:

qN (t) := qNk−1 , qN (T ) := qNN ,

q̂N (t) := tNk − t
tNk − tNk−1

qNk−1 +
t− tNk−1
tNk − tNk−1

qNk , q̂N (T ) := qNN ,

for t ∈ [tNk−1, t
N
k ) and 1 ≤ k ≤ N . From (2.12) we derive the estimates

‖∂tq̂N‖L∞(0,T ;V) ≤
√
β‖∂t`‖L∞(0,T ;Q∗) , (2.13)

‖qN − q̂N‖L∞(0,T ;V) ≤
√
β∆tN‖∂t`‖L∞(0,T ;Q∗) , (2.14)

where ∆tN := max1≤k≤N (tNk − tNk−1).
Step 2: Selection of a subsequence. We now choose a sequence of partitions

such that ∆tN → 0 as N →∞. As q̂N is uniformly bounded in W 1,∞(0, T ;V)
by (2.13), we can apply the Arzelà-Ascoli Theorem (Lemma A.2) in order to
find a subsequence and a limit function q ∈W 1,∞(0, T ;V) such that

q̂N (t) V⇀ q(t) (and thus by (2.14) also qN (t) V⇀ q(t))
for all t ∈ [0, T ]. In particular q(0) = q0.

Step 3: Stability of the limit function. For any N ∈ N , 1 ≤ k ≤ N and
q ∈ Q, one has, by the definition of qNk and the triangle inequality for R,

0 ≤ E(tNk , q) +R(q − qNk−1)−
(
E(tNk , qNk ) +R(qNk − qNk−1)

)
≤ E(tNk , q)− E(tNk , qNk ) +R(q − qNk )

(2.15)

which is just the stability of qNk at t = tNk . Given any t ∈ [0, T ], we choose
1 ≤ kN ≤ N such that tN := tNkN → t as N →∞. Then also qN := qNkN ⇀ q(t)
in Q as N →∞. Indeed, qN = q̂N (tN )− q̂N (t)+ q̂N (t) with ‖q̂N (tN )− q̂N (t)‖ ≤
|tN − t|

√
β‖∂t`‖L∞(0,T ;Q) → 0 and q̂N (t) ⇀ q(t) in Q. Inserting q+ (qN − q(t))

for q in (2.15), we have, as N →∞,
0 ≤ ‖q + qN − q(t)‖2V − ‖qN‖2V − 〈`(tN ), q − q(t)〉+R(q − q(t))

= ‖q − q(t)‖2V + 2〈q − q(t), qN 〉V − 〈`(tN ), q − q(t)〉+R(q − q(t))
→ ‖q − q(t)‖2V + 2〈q − q(t), q(t)〉V − 〈`(t), q − q(t)〉+R(q − q(t))
= ‖q‖2V − ‖q(t)‖2V − 〈`(t), q − q(t)〉+R(q − q(t))
= E(t, q)− E(t, q(t)) +R(q − q(t)) ,
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which is the desired stability.
Step 4: Upper energy estimate. By the definition of qNk ,

E(tNk , qNk ) +R(qNk − qNk−1) ≤ E(tNk , qNk−1)

= E(tNk−1, q
N
k−1)−

∫ tNk

tN
k−1

〈∂s`(s), qNk−1〉ds .

Summing this inequality from k = 1 to k = kN ≤ N and using the definition of
DissR yields

E(tN , qN ) + DissR(qN ; [0, tN ]) ≤ E(0, q0)−
∫ tN

0
〈∂s`(s), qN (s)〉ds .

Using lower semi-continuity on the left-hand side, and dominated convergence
on the right-hand side, we get in the limit N →∞:

E(t, q(t)) + DissR(q; [0, t]) ≤ E(0, q(0))−
∫ t

0
〈∂s`(s), q(s)〉ds .

Step 5: Lower energy estimate. The lower energy estimate follows from
stability of the limit function q. Let t ∈ [0, T ]. Given any N ∈ N, we let tk := tk

N
for 0 ≤ k ≤ N . For 1 ≤ k ≤ N we have

E(tk, q(tk)) +R(q(tk)− q(tk−1))

= −
∫ tk

tk−1

〈∂s`(s), q(tk)〉ds+ E(tk−1, q(tk)) +R(q(tk), q(tk−1))

≥ −
∫ tk

tk−1

〈∂s`(s), q(tk)〉ds+ E(tk−1, q(tk−1)) .

Summation over 1 ≤ k ≤ N gives us

E(t, q(t)) +
N∑
k=1
R(q(tk)− q(tk−1)) ≥ E(0, q(0))−

N∑
k=1

∫ tk

tk−1

〈∂s`(s), q(tk)〉ds .

By the definition of DissR,

DissR(q; [0, t]) ≥
N∑
k=1
R(q(tk)− q(tk−1)) .

On the other hand,
N∑
k=1

∫ tk

tk−1

〈∂s`(s), q(tk)〉ds→
∫ t

0
〈∂s`(s), q(s)〉ds
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as N →∞ which follows with the continuity of q from the dominated conver-
gence theorem. In combination, we arrive at

E(t, q(t)) + DissR(q; [0, t]) ≥ E(0, q(t))−
∫ t

0
〈∂s`(s), q(s)〉ds .

Step 6: Regularity and uniqueness. We first show that all solutions are
Lipschitz continuous. Then we prove that Lipschitz continuous solutions are
unique.

Similar to what we did in Step 1, we consider for t ∈ [0, T ] the functional

I(q) := E(t, q) +R(q − q(t)) , q ∈ Q .

By the stability of q(t) at time t, q(t) minimizes I, and by Lemma A.1 we have
the estimate

‖q − q(t)‖2V ≤ I(q)− I(q(t)) , q ∈ Q .

With q = q(t′) for t′ > t this implies

‖q(t′)− q(t)‖2V ≤ E(t, q(t′)) +R(q(t′)− q(t))− E(t, q(t))

≤ E(t′, q(t′))−
∫ t′

t

∂sE(s, q(t′))ds+ DissR(q; [t, t′])− E(t, q(t))

=
∫ t′

t

〈∂s`(s), q(t′)− q(s)〉ds (by the energy equality)

≤
∫ t′

t

‖∂s`(s)‖V′‖q(t′)− q(s)‖Vds .

By Lemma B.1 this implies q ∈W 1,∞(0, T ;V) and ‖∂tq(t)‖V ≤ 1
2‖∂t`(t)‖V∗ . In

particular q ∈W 1,∞(0, T ;Q) and ‖∂tq(t)‖ ≤ 1
2β ‖∂t`(t)‖.

Suppose q1, q2 ∈W 1,∞(0, T ;Q) are solutions for the rate-independent system
(Q, E ,R) with q1(0) = q2(0). We claim that q1 = q2.

The stability relation for qj gives for q ∈ V:

0 ≤ 1
ε

(
‖qj(t) + εq‖2V +R(εq)− ‖qj(t)‖2V − 〈`(t), εq〉

)
= 〈2qj(t)− `(t), q〉V +R(q) + ε‖q‖V

for all ε > 0 and therefore

0 ≤ 〈2qj(t)− `(t), q〉V +R(q) for all q ∈ V . (2.16)
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On the other hand, the energy equality gives us

E(0, qj(0)) = ‖qj(t)‖2V − 〈`(t), qj(t)〉+∫ t

0
R(∂sqj(s))ds+

∫ t

0
〈∂s`(s), qj(s)〉ds

Taking the time-derivative in the sense of distributions, this yields

0 = 〈2qj(t)− `(t), ∂tqj(t)〉V +R(∂tqj(t)) . (2.17)

Applying (2.16) and (2.17), we get

d
dt‖q1(t)− q2(t)‖2V = 2〈q1(t)− q2(t), ∂tq1(t)− ∂tq2(t)〉V

= 〈2q1(t)− `(t), ∂tq1(t)〉V +R(∂tq1(t))
+ 〈2q2(t)− `(t), ∂tq2(t)〉V +R(∂tq2(t))
− 〈2q1(t)− `(t), ∂tq2(t)〉V −R(∂tq1(t))
− 〈2q2(t)− `(t), ∂tq1(t)〉V −R(∂tq2(t))

≤ 0 .

Hence q1(t) = q2(t) for all t ∈ [0, T ].



Chapter 3

Evolutionary Γ-convergence

In this chapter we provide a survey of a method that enables our proof of
Theorem 4.2. The notion of Γ-convergence, developed by DeGiorgi [18], is
primarily designed to deal with static problems of energy minimization. However,
it can also be employed to show that solutions of rate-independent systems
(Q, Eε,Rε) converge to solutions of a rate-indepentent system (Q, E ,R). This
was first explored in [43]. We recall the theory from [42, Section 3.5.4] in the
special case of quadratic energies.

3.1 Γ-convergence and Mosco-convergence

Definition 3.1 (Γ-convergence). Let X denote a topological space, and fε :
X → R∞ a sequence of functionals. We say that fε converges in the sense of
Γ-convergence to a limit functional f : X → R∞ if the following two conditions
are satisfied:

(i) Lower bound: For every sequence (xε)ε ⊂ X with xε → x in X there holds

f(x) ≤ lim inf
ε→0

fε(xε) .

(ii) Upper bound: For every x ∈ X there exists a sequence (xε)ε ⊂ X such
that xε → x in X and

f(x) ≥ lim sup
ε→0

fε(xε) .

Any such sequence (xε)ε is called a recovery sequence for x.

In this case we write fε
Γ→ f . When X is a Banach space equipped with its

weak topology, we write fε
Γ
⇀ f .

25
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Remark. The notion defined above is generally known as sequential Γ-convergence.
By naming it simply Γ-convergence, we deviate from the terminology commonly
used in the literature. In the literature, Γ-convergence is defined in terms of the
open sets of the underlying topology: The functional f is the Γ-limit of fε if

f(x) = sup
U∈N (x)

lim inf
ε→0

inf
xε∈U

fε(xε) = sup
U∈N (x)

lim sup
ε→0

inf
xε∈U

fε(xε)

for all x ∈ X, where N (x) denotes the family of all open sets in X that contain
x. The two notions coincide when the underlying toplogy is first-countable [38,
Proposition 8.1]. In particular this is the case when the topology is metrizable.
Although we will use Γ-convergence with respect to the weak topology of Banach
spaces, and the weak topology is not metrizable, it is metrizable on bounded
sets when the Banach space is reflexive and separable. When the functionals are
equicoercive, as will be the case in our application, this can be shown to imply
that the notions coincide again [38, Propopsition 8.10]. We will, however, avoid
these questions altogether by directly employing the above given definition in
terms of sequences. This is possible as we make no use of results from the
literature (which would be stated in terms of the commonly used definition of
Γ-convergence).

We gather a few well-known facts about Γ-convergence which will be used
later on.

Lemma 3.2 (Elementary properties of Γ-convergence). Suppose fε
Γ→

f on a topological space X.

(i) Suppose g : X → R is continuous. Then fε + g
Γ→ f + g.

(ii) Suppose (xε)ε is a sequence of almost-minimizers of fε, that is,

fε(xε)− inf fε → 0 for ε→ 0 .

Suppose further that xε → x for some x ∈ X. Then x is a minimizer of f
and fε(xε)→ f(x).

(iii) Suppose that f is not identical +∞. Suppose further that (fε)ε is equi-
compact in the sense that any sequence (xε)ε for which fε(xε) is uniformly
bounded contains a convergent subsequence.
Then every sequence of almost-minimizers of fε contains a convergent
subsequence.

(iv) If X is metrizable, f is lower-semicontinuous.
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Proof. (i) This easily follows from the definition of Γ-convergence since g(xε)→
g(x) whenever xε → x.

(ii) Let y ∈ X and consider a recovery sequence (yε)ε for y. Then

f(x) ≤ lim inf
ε→0

fε(xε) ≤ lim sup
ε→0

fε(xε) ≤ lim sup
ε→0

fε(yε) ≤ f(y) .

As this can be done for every y ∈ X, we conclude that x is a minimizer of f .
Moreover, choosing y = x, we see that the chain of inequalities becomes an
equality and therefore fε(xε)→ f(x).

(iii) Let (xε)ε denote a sequence of almost-minimizers of fε. Consider any
y ∈ X with f(y) <∞ and let (yε)ε denote a recovery sequence for y. Then

lim sup
ε→0

fε(xε) ≤ lim sup
ε→0

fε(yε) ≤ f(y) <∞ .

Thus fε(xε) is bounded along all sequences ε → 0. Therefore, by the equi-
covercivity of (fε)ε there is some convergent subsequence of (xε)ε.

(iv) Let xn → x as n → ∞ and δ > 0. We work with an arbitrary
subsequence (fm)m of (fε)ε. For all n ∈ N there exists a recovery sequence
(xmn )m with

xmn → xn , f(xn) ≥ lim sup
m→∞

fm(xmn ) .

Since X is metrizable, we can choose (mn)n such that mn →∞ and xmnn → x
as n→∞ as well as

f(xn) + δ ≥ fmn(xmnn ) for all n ∈ N .

This implies

lim inf
n→∞

f(xn) + δ ≥ lim inf
n→∞

fmn(xmnn ) ≥ f(x) ,

where the last inequality follows from the lower bound of fmn
Γ→ f . As δ > 0

was arbitrary, this finishes the proof.

We also need the notion of Mosco-convergence. Mosco-convergence is Γ-
convergence for functionals on a Banach space with respect to both weak and
strong convergence.

Definition 3.3 (Mosco-convergence). Let X denote a Banach space, and
fε : X → R∞ a sequence of functionals. We say that fε converges in the sense
of Mosco-convergence to a limit functional f : X → R∞ if the following two
conditions are satisfied:
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(i) Lower bound: For every sequence (xε)ε ⊂ X with xε ⇀ x in X there holds

f(x) ≤ lim inf
ε→0

fε(xε) .

(ii) Upper bound: For every x ∈ X there exists a sequence (xε)ε ⊂ X such
that xε → x in X and

f(x) ≥ lim sup
ε→0

fε(xε) .

Any such sequence (xε)ε is called a recovery sequence for x.

In this case we write fε
M→ f .

3.2 Abstract convergence result

We work with a separable Hilbert space Q as our state space. For each ε ∈ [0, 1],
where ε = 0 corresponds to the limit, we have three ingredients:

(a) a stored energy functional Bε : Q → [0,∞],

(b) a dissipation functional Rε : Q → [0,∞],

(c) loads `ε ∈W 1,∞(0, T ;Q∗).

As a derived quantity we have the total energy

Eε : [0, T ]×Q → R∞ , Eε(t, q) := Bε(q)− 〈`ε(t), q〉 .

For ε > 0 we make the following assumptions:

(A) The stored energy functionals Bε are quadratic forms and lower semi-
continuous. Moreover, they satisfy an equicoercivity estimate

β‖q‖2 ≤ Bε(q) ∀ q ∈ Q

for some β > 0.

(B) The dissipation functionals Rε are positive one-homogeneous, convex and
lower-semicontinuous.

(C) The loads satisfy a uniform Lipschitz bound

‖`ε‖W 1,∞(0,T ;Q∗) ≤ C .
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(D) The following convergences hold:

Bε M→ B0 Rε M→ R0

Rε c→ R0 `ε(t)→ `0(t) ∀ t ∈ [0, T ] .

Here,Rε c→ R0 denotes continuous convergence, which means thatRε(qε)→
R0(q) whenever qε → q. In association with Mosco-convergence this implies
that every strongly convergent sequence is a recovery sequence.

Remark. (i) The assumed convergences in (D) imply that the assumptions
(A)–(C), which were made only for ε > 0, still hold true for ε = 0.

(ii) The continuous convergence Rε c→ R0 implies that R0 is continuous.
Indeed, the continuous convergence implies both Rε Γ→ R0 and −Rε Γ→
−R0. Thus by Lemma 3.2(iv), bothR0 and −R0 are lower-semicontinuous.
Hence R0 is continuous.

Theorem 3.4 (Convergence, see [42, Theorem 3.5.14]). Let (Q, Eε,Rε)
for ε ∈ [0, 1] be a family of rate-independent systems that satisfies the as-
sumptions (A)–(D) stated above. Consider a corresponding family of energetic
solutions qε : [0, T ]→ Q with

qε(0) ⇀ q0(0) , Bε(qε(0))→ B0(q0(0))

as ε→ 0. Then also

qε(t)→ q0(t) , Bε(qε(t))→ B0(q0(t))

for all t ∈ [0, T ] as ε→ 0. Moreover,

DissRε(qε; [0, t])→ DissR0(q0; [0, t]) , 〈∂t`ε(t), qε(t)〉 → 〈∂t`0(t), q0(t)〉 .

The proof of this theorem is given in Section 3.4.

Lemma 3.5 (Lower bound for the total dissipation). Let (Rε)ε satisfy
the assumptions outlined in this section. We assume further that qε : [0, T ]→ Q
with qε(t) ⇀ q0(t) for all t ∈ [0, T ]. Then

DissR0(q0; [s, t]) ≤ lim inf
ε→0

DissRε(qε; [s, t])

for all [s, t] ⊂ [0, T ].
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Proof. Let ε > 0. Then there exist n ∈ N and s = t0 ≤ · · · ≤ tn = t such that

DissR0(q0; [s, t])− ε ≤
n∑
k=1
R0(q0(tk)− q0(tk−1))

≤
n∑
k=1

lim inf
ε→0

Rε(qε(tk)− qε(tk−1))

≤ lim inf
ε→0

n∑
k=1
Rε(qε(tk)− qε(tk−1))

≤ lim inf
ε→0

DissRε(qε; [s, t]) ,

where we used the lower bound property of Rε Γ
⇀ R0.

3.3 Quadratic forms

In this section, Q denotes any separable Hilbert space. We consider a family of
lower-semicontinuous quadratic forms

Aε : Q → R∞ , ε ∈ [0, 1] ,

which satisfies an equi-coercivity estimate: β‖q‖2 ≤ Aε(q) for some β > 0 and
all q ∈ Q. As above, for Aε to be a quadratic form means that

domAε = {q ∈ Q : Aε(q) <∞}

is a linear subspace of Q and that the map

(domAε)2 → R , (q, q′) 7→ 1
4

(
B(q + q′)− B(q − q′)

)
is a bilinear form.

We begin with a lemma that is similar to Proposition 3.5.16 in [42]. Unter
the assumption of Mosco-convergence, it first shows that all weakly converging
recovery sequences for Aε indeed converge strongly. (We know that strongly
converging recovery sequences do exist, but a priori there could be strictly
more weakly converging recovery sequences.) It then shows the existence of
so-called mutual recovery sequences (qε)ε. The Lemma crucially relies on the
quadratic nature of the functionals. It employs a “quadratic trick” which was
first introduced in [45] for homogenization in elastoplasticity.

Lemma 3.6. Suppose (Aε)ε≥0 is a family of lower-semicontinuous quadratic
forms on a separable Hilbert space Q with Aε

M→ A0. Then there holds:
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(i) If qε ⇀ q0 and Aε(qε)→ A0(q0) <∞, then qε → q0.
That is: all recovery sequences converge strongly.

(ii) We endow V0 := {q ∈ Q : A0(q) < ∞} with the norm ‖·‖0 := A0(·)1/2.
Then there exists a dense subset D ⊂ V0 with the following property:
For every q0 ∈ D there exists a sequence (qε)ε in Q such that

(A) qε → q0 and Aε(qε)→ A0(q0)
(B) if q̃ε ⇀ q̃0 for some sequence (q̃ε)ε≥0 in Q with supε>0Aε(q̃ε) <∞,

then
Aε(qε + q̃ε)−Aε(q̃ε)→ A0(q0 + q̃0)−A0(q̃0) . (3.1)

Remark. (i) The sequence (qε) in part (ii) of the lemma is a mutual recovery
sequence in the following sense: (a) it is a recovery sequence for Rε because
it converges strongly and all strongly converging sequences are recovery
sequences for Rε; and (b) it is by (3.1) also a recovery sequence for
Aε(·+ q̃ε)−Aε(q̃ε). This property will be helpful for the limit passage in
the stability relation in Theorem 3.4 (Step 3 of the proof).

(ii) Our proof is somewhat simplified as compared to the one in [42]. In
particular our proof of part (i), which is part (ii) in [42], bypasses the
intricate constructions of several linear maps related to Aε, subspaces of
Q and projections onto these subspaces, which we were not able to figure
out in full detail. Instead, it is a simple application of the parallelogram
identity. In part (ii) of our proof (corresponding to part (i) in [42]) a few
of these constructions resurface, although in a quite transparent manner.

Proof. Part (i). Let qε ⇀ q0 be a weakly convergent sequence in Q with
Aε(qε) → A0(q0) and q0 ∈ domA0. We know from the definition of Mosco-
convergence that there exists a strongly converging recovery sequence (q̃ε)ε for
q0,

q̃ε → q0 , Aε(q̃ε)→ A0(q0) .

Using the equi-covercivity and the parallelogram identity for Aε, which holds
since Aε is the square of a norm induced by an inner product, we conclude that

β‖q̃ε − qε‖2 ≤ Aε(q̃ε − qε) = 2Aε(q̃ε) + 2Aε(qε)−Aε(q̃ε + qε) .

Taking the limes superior on both sides, we get

β lim sup
ε→0

‖q̃ε − qε‖2 ≤ 2A0(q0) + 2A0(q0)− lim inf
ε→0

Aε(q̃ε + qε) ≤ 0 ,
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since q̃ε + qε ⇀ 2q0 and thus lim infε→0Aε(q̃ε + qε) ≥ A0(2q) = 4A0(q0). We
conclude that qε = (qε − q̃ε) + q̃ε → q0.

Part (ii). We denote by

Vε := {q ∈ Q : Aε(q) <∞}, ε ≥ 0 ,

the domains of the quadratic forms Aε, which (by Lemma 2.2) are Hilbert spaces
when we equip them with the norms ‖q‖ε := Aε(q)1/2. The corresponding inner
products are denoted 〈· , ·〉ε.

We denote by Q0 the closure of V0 in Q. By the coercicity of A0, the
inclusion map  : V0 ↪→ Q0 is a bounded linear operator. As  injective, its
Hilbert adjoint ′ : Q0 → V0 has dense image D := ′(Q0) ⊂ V0 (see part (i) of
Lemma A.5). Moreover, as V0 is dense in Q0, ′ is injective (see part (ii) of
Lemma A.5). We denote by A : D → Q0 the inverse of ′.

Let q0 ∈ D. Observe that

〈Aq0, q〉 = 〈Aq0, (q)〉 = 〈′(Aq0), q〉0 = 〈q0, q〉0 , q ∈ V0 ⊂ Q0 . (3.2)

We define
qε := arg min

{
1
2Aε(q)− 〈Aq0, q〉 : q ∈ Q

}
.

See (3.3) below for an explicit description of qε. By Lemma 3.2(i) we know that
1
2Aε −Aq0

Γ
⇀

1
2A0 −Aq0 .

Moreover, the functionals 1
2Aε − Aq0 are equi-covercive with respect to the

weak convergence in Q. Thus by Lemma 3.2(ii)-(iii) we find that

qε ⇀ arg min
{

1
2A0(q)− 〈Aq0, q〉 : q ∈ Q

}
(3.2)= arg min

{
1
2‖q‖

2
0 − 〈q0, q〉0 : q ∈ V0

}
= q0

and 1
2Aε(qε)−〈Aq0, qε〉 → 1

2A0(q0)−〈Aq0, q0〉, which implies Aε(qε)→ A0(q0).
Thus (qε)ε is a weakly converging recovery sequence for q0. The strong conver-
gence qε → q0 then follows from part (i).

We denote by ıε : Vε ↪→ Q the inclusion map which is bounded because of
the coercivity of Aε. Observe that

qε = arg min
{

1
2‖q‖

2
ε − 〈Aq0, ıεq〉 : q ∈ Vε

}
= arg min

{
1
2‖q‖

2
ε − 〈ı′εAq0, q〉ε : q ∈ Vε

}
= ı′εAq0 .

(3.3)
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Given a weakly converging sequence q̃ε ⇀ q̃0 in Q with supε>0Aε(q̃ε) < ∞
(and hence also A0(q̃0) < ∞ by the lower bound of Aε

Γ
⇀ A0), we therefore

have,

Aε(qε + q̃ε)−Aε(q̃ε) = Aε(qε) + 2〈qε, q̃ε〉ε
(3.3)= Aε(qε) + 2〈Aq0, q̃ε〉

→ A0(q0) + 2〈Aq0, q̃0〉
(3.2)= A0(q0) + 2〈q0, q̃0〉0

= A0(q0 + q̃0)−A0(q̃0) .

3.4 Proof of the abstract convergence result

Proof of Theorem 3.4. Step 1: A priori estimates. By Theorem 2.1, we have a
uniform bound

‖qε‖W 1,∞(0,T ;Q) ≤ ‖qε(0)‖Q + T

2
√
β
‖∂t`ε‖L∞(0,T ;Q) ≤ C .

Step 2: Selection of subsequences. The Arzelá-Ascoli theorem (Lemma A.2)
guarantees the existence of a subsequene and a limit function q ∈W 1,∞(0, T ;Q)
such that qε(t) ⇀ q(t) for all t ∈ [0, T ]. In particular q(0) = q0(0). We now
show that q is a solution. By the uniqueness of solutions this implies q = q0.

Step 3: Stability of the limit. Fix t ∈ [0, T ]. For ε > 0 we have the stability
of qε at time t. This means that

J ε(q) := Bε(qε(t) + q)− Bε(qε(t)) +Rε(q)− 〈`ε(t), q〉 ≥ 0 for all q ∈ Q .

We want to conclude that

J 0(q) := B0(q(t) + q)− B0(q0(t)) +R0(q)− 〈`0(t), q〉 ≥ 0 for all q ∈ Q .

We start by showing J 0(q) ≥ 0 for q ∈ D with D from Lemma 3.6(ii). The
Mosco-convergence Bε M→ B0 and Lemma 3.6(ii) imply that we find a sequence
qε → q in Q such that

Bε(qε(t) + qε)− Bε(qε(t))→ B0(q(t) + q)− B0(q(t)) ,

and therefore J 0(q) = limε→0 J ε(qε) ≥ 0 by the continuous convergence
Rε c→ R0 and the strong convergence `ε(t)→ `0(t) in Q∗. We have thus shown
that J 0 ≥ 0 on D.

As D is a dense subset of V0, we also have J 0 ≥ 0 on V0. Indeed, this
immediately follows from the fact that J 0|V0 : V0 → R is continuous w.r.t. the
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norm ‖·‖0 = B0(·)1/2 of V0. This continuity property is easily seen by inspecting
each term of the formula

J 0(q) = ‖q(t) + q‖20 − ‖q(t)‖20 +R0(q)− 〈`0(t), q〉 , q ∈ V0 ,

where  : V0 ↪→ Q denotes the continuous inclusion map. (For the continuity of
R0 see Remark (ii) on Page 29.)

It remains to verify J 0 ≥ 0 on Q\V0, but here we trivially have J 0 =∞ ≥ 0.

Step 4: Upper energy estimate. By the lower bound of Eε(t, ·) Γ
⇀ E0(t, ·)

and Lemma 3.5, the pointwise weak convergence qε(t) ⇀ q0(t) implies together
with the energy balance for qε that, for arbitrary t,

E0(t, q(t)) + DissR0(q; [0, t])
≤ lim inf

ε→0

(
Eε(t, qε(t)) + DissRε(qε; [0, t])

)
= lim inf

ε→0

(
Eε(0, qε(0))−

∫ t

0
〈∂t`ε(s), qε(s)〉ds

)
= E0(0, q(0))−

∫ t

0
〈∂t`0(s), q(s)〉ds .

Regarding the last equality, the reasoning is as follows. With an integration by
parts we have

−
∫ t

0
〈∂t`ε(s), qε(s)〉ds =

∫ t

0
〈`ε(s), ∂tqε(s)〉ds− 〈`ε(t), qε(t)〉+ 〈`ε(0), qε(0)〉

→
∫ t

0
〈`0(s), ∂tq(s)〉ds− 〈`0(t), q(t)〉+ 〈`0(0), q(0)〉

= −
∫ t

0
〈∂t`0(s), q(s)〉ds .

Here the convergence of the boundary parts is obvious since `ε(s)→ `0(s) in
Q∗ and qε(s) ⇀ q(s) in Q for every s ∈ [0, T ]. The integral term however also
converges as `ε → `0 in L2(0, T ;Q∗) (by dominated convergence) and qε ⇀ q
in L2(0, T ;Q).

Step 5: Lower energy estimate. The lower energy estimate can be derived
from the stability proved in Step 3. Given t ∈ [0, T ], consider a partition
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0 = tN0 < tN1 < . . . < tNN = t. For 1 ≤ k ≤ N we have

E0(tNk+1, q(tNk+1)) +R(q(tNk+1)− q(tNk ))

=
∫ tNk+1

tN
k

∂tE0(s, q(s))ds+ E0(tNk , q(tNk+1)) +R(q(tNk+1)− q(tNk ))

≥ −
∫ tNk+1

tN
k

〈∂t`0(s), q(s)〉ds+ E0(tNk , q(tNk )) ,

where we used the stability of q at tNk . Summing this over 1 ≤ k ≤ N , we
obtain

E0(t, q(t)) + DissR0(q; [0, t])

≥ E0(0, q(0))−
N∑
k=1

∫ tNk+1

tN
k

〈∂t`0(s), q(tNk )〉ds

= E0(0, q(0))−
∫ t

0
〈∂t`0(s), qN (s)〉ds ,

where qN is the piecewise constant approximation of q defined by qN = q(tNk )
on (tNk , tNk+1). As the fineness of the partition converges to zero, the right-hand
side converges to

E0(0, q(0))−
∫ t

0
〈∂t`0(s), q(s)〉ds

by the dominated convergence theorem.
Step 6: Improved convergence. We know from Step 5, that we have equality

in the calculation of Step 4. Therefore

Eε(t, qε(t)) + DissRε(qε; [0, t])→ E0(t, q(t)) + DissR0(q; [0, t]) .

But for the individual terms we have the lower bounds

lim inf
ε→0

Eε(t, qε(t)) ≥ E0(t, q(t)) ,

lim inf
ε→0

DissRε(qε; [0, t]) ≥ DissR0(q; [0, t]) .

Thus both terms must converge individually,

Eε(t, qε(t))→ E0(t, q(t)) , DissRε(qε; [0, t])→ DissR0(q; [0, t]) .

With the help of Lemma 3.6(i) we conclude that qε(t)→ q0(t) strongly.





Chapter 4

Dimension reduction
for elastoplastic rods

In this chapter, we study the elastoplastic behaviour of a single rod with a
thickness parameter h > 0 in the limit h→ 0. We use Theorem 3.4 to perform
a 3D-1D dimension reduction, i. e. we rigorously derive a material model with
which the original model can be replaced when the thickness h is small. Our
approach is inspired by [34, 35], where a plate model is derived via 3D-2D
dimension reduction. The models derived in [34, 35] are obtained by pointwise
minimization of the original energy density in some of its components. With
rods, the situation is more complicated and certain global features of the
displacements have to be injected into the limit model.

A rod is described by a reference domain Ωh ⊂ R3,

Ωh := I × hB , I := (0, L) , B ⊂ R2 , L , h > 0 .

We assume that B is a bounded Lipschitz domain which is centered in the sense
that

∫
B

(x2, x3)>dx2dx3 = 0 . For simplicity, we will in this chapter prescribe
zero displacements on Γh := ∂I × hB ⊂ ∂Ωh. When in Chapter 6 we consider
lattices of many rods, we will have linear but nonzero displacements at both
ends of each rod.

As outlined in Chapter 2, the elastoplastic behaviour of a solid body as

Figure 4.1: Geometry of a rod Ωh = I × hB.

hB

37
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above can be described by evolutions q : [0, T ]→ Qh in a state space

Qh := H1
Γh(Ωh;R3)× L2(Ωh;R3×3

dev ) ,

where H1
Γh(Ω;R3) := {u ∈ H1(Ω;R3) : u = 0 on Γh}. The driving force of the

evolution is a load function `h ∈W 1,∞(1, T ; (Qh)∗). We use overscored symbols
for all variables (and spaces of variables) in physical dimensions. Later on, we
will work with rescaled quantities, and there the overscores will disappear.

The rate-independent system that describes the rod is (Qh, Eh,Rh), where

Eh(q, t) := Bh(q)− 〈`h(t), q〉 ,

Bh(q) :=
∫

Ωh
W(∇su(x), p(x))dx ,

Rh(q) :=
∫

Ωh
R(p(x))dx ,

for q = (u, p) ∈ Qh and t ∈ [0, T ]. We recall from Chapter 2 that the stored
energy density W : R3×3

asym×R3×3
dev → R is a positive quadratic form and that the

dissipation potential R : R3×3
dev → R is positive one-homogeneous and convex.

By way of example, we can consider the case that the loads are composed
of volume loads

f
h

vol ∈W 1,∞(0, T ;L2(Ωh;R3))

and surface loads

f
h

surf ∈W 1,∞(0, T ;L2(I × h∂B;R3)) .

In that case `h is defined by

〈`h(t), q〉 =
∫

Ωh
f
h

vol(t, x) · u(x)dx+
∫
I×h∂B

f
h

surf(t, x) · u(x)dH2(x) (4.1)

for t ∈ [0, T ] and q = (u, p) ∈ Qh.

4.1 Scalings

In order to compare displacement fields

u : Ωh = I × hB → R3
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across different values of the thickness parameter h > 0, we have to pull them
back to a common reference domain. The obvious choice for this reference
domain is

Ω := I ×B .

It would, however, be overly simplistic to study the limit behaviour of

Ω→ R3 , x 7→ q(x1, hx2, hx3) .

Physical intuition and experience suggest that bending a thin object needs
considerably less energy than stretching it. More precisely, the elastic energy of a
fixed amount of bending tends to zero at a faster rate than that of a fixed amount
of stretching as the thickness h of the object approaches 0. This indicates that
u1 (stretching) should be scaled differently from u2 and u3 (bending).

We therefore propose to look at the scaled quantities

uh(x) :=
(
h−α

h−β

h−β

)
u(x1, hx2, hx3) , x ∈ Ω .

This means that our limit theory (yielding uh) will be able to predict stretching
of order hα and bending of order hβ . In terms of uh, the linearized strain tensor
is

∇su =

 hα∂1u
h
1 ∗ ∗(

hα−1∂2u
h
1 + hβ∂1u

h
2
)
/ 2 hβ−1∂2u

h
2 ∗(

hα−1∂3u
h
1 + hβ∂1u

h
3
)
/ 2 hβ−1 (∂3u

h
2 + ∂2u

h
3
)
/ 2 hβ−1∂3u

h
3

 .

A ∗-symbol in a symmetric matrix denotes entries which can be inferred from
the explicitly given ones. The fact that ∇su has entries which contain both
terms of oder hα−1 and of order hβ , suggests we should take β := α − 1 so
that in the limit process both terms survive. The choice of α is not completely
arbitrary since the equations of elastoplasticiy are nonlinear. More precisely,
when the material of which the rods are made is fixed (independent of h), the
fixed yield surface defines the typical magnitude of stresses, and hence of strains.
When the actual strains do not match this, we will either have purely elastic or
purely plastic behaviour in the limit. We will, however, not assume the material
to be h-independent: we will scale the dissipation potential (and hence the
yield surface). Therefore we can make an arbitrary choice for α, and we choose
α = 2. Accordingly, β = 1. In particular, stretching will be of order h2 and
bending of order h.

Using the scaling matrix

Sh :=
(

1
1/h

1/h

)
∈ R3×3

sym , (4.2)
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we thus have
u(x) = h2Shu

h(Shx) . (4.3)
With (4.3), we can now write the strain tensor as

∇su =

 h2∂1u
h
1 ∗ ∗

h
(
∂2u

h
1 + ∂1u

h
2
)
/ 2 ∂2u

h
2 ∗

h
(
∂3u

h
1 + ∂1u

h
3
)
/ 2

(
∂3u

h
2 + ∂2u

h
3
)
/ 2 ∂3u

h
3


= h2Sh∇suh(Shx)Sh ,

Since ∇su is of order h2, we scale p so that it will be of the same order:

p(x) = h2ph(Shx) . (4.4)

We could have also scaled the individual components of p differently so that the
scaling matches the scaling of the individual components of ∇su (and not just
the overall scaling). In the case of plates, this has been done in [35], whereas
the uniform scaling approach was carried out in [34]. It turns out that the
resulting models are similar and differ only in the flow rule [35, Section 4.1].
We therefore follow the simpler approach of [34].

We now express the stored energy Bh(q) in terms of the rescaled quantity
qh = (uh, ph) which is an element of the rescaled state space Q := H1

Γ(Ω;R3)×
L2(Ω;R3×3

dev ):

Bh(q) =
∫

Ωh
W(∇su(x), p(x))dx

=
∫

Ω
W(h2Sh∇suh(x)Sh, h2ph(x))h2dx

= h6
∫

Ω
W(Sh∇suh(x)Sh, ph(x))dx .

We thus have Bh(q) = h6Bh(qh) when we define

Bh(qh) :=
∫

Ω
W(Sh∇suh(x)Sh, ph(x))dx , qh = (uh, ph) ∈ Q .

This determines the overall scaling of the rate-independent system. We now
must scale the loads and the dissipation accordingly in order to arrive at a
rate-independent system which is equivalent to the original one.

As for the loads, we define `h ∈W 1,∞(0, T ;Q∗) by

〈`h(t), qh〉 := h−6〈`h(t), q〉 , t ∈ [0, T ] .

With Eh(t, qh) := Bh(qh)− 〈`h(t), qh〉 we then have Eh(t, q) = h6Eh(t, qh).
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Remark. In the case where the loads are given by a volume force and surface
traction as defined in (4.1), we have

〈`h(t), qh〉 =
∫

Ω
fhvol(t, x) · uh(x)dx+

∫
I×∂B

fhsurf(t, x) · uh(x)dx

with

fhvol(t, x) := h−2Shf
h

v (t, Shx) , fhsurf(t, x) := h−3Shf
h

s (t, Shx) .

As noted above, we also rescale the dissipation potential. We let R := h−2R.
This amounts to the assumption that the radius of the yield surface in physical
variables is of the order h2. We now express the total dissipation Rh(q) in
terms of the rescaled variables:

Rh(q) =
∫

Ωh
R(p(x))dx =

∫
Ω
h2R(h2ph(x))h2dx

= h6
∫

Ω
R(ph(x))dx ,

where we made use of the positive one-homogeneity of R. We thus have
Rh(q) = h6Rh(qh) when we define

Rh(qh) :=
∫

Ω
R(ph(x))dx , qh = (uh, ph) ∈ Q .

Since Eh and Rh have the same scaling, we now have the equivalence:

qh is a solution of (Q, Eh,Rh) ⇐⇒ q is a solution of (Qh, Eh,Rh) .

We will therefore study the asymptotic behaviour of the rate-independent system
(Q, Eh,Rh).

4.2 Summary of the setting

We will now exclusively work with the rescaled rate-independent systems
(Q, Eh,Rh). Before we state the convergence result, let us give a concise
summary of the setting.

The material of the rod is described by a stored energy density W : R3×3
asym×

R3×3
asym → R which is a positive quadratic form, and a (rescaled) dissipation

potential R : R3×3
dev → R which is positive one-homogeneous and convex. We

work on the reference domain

Ω := I ×B , I := (0, L) , B ⊂ R2 , L > 0 .
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We assume that B is a bounded Lipschitz domain with
∫
B

(x2, x3)>dx2dxx = 0.
We denote by

Γ := ∂I ×B ⊂ ∂Ω
the union of the two opposite faces of the rod. On these, boundary values are
prescribed. Hence the overall state space is Q := U × P with

U := H1
Γ(Ω;R3) , P := L2(Ω;R3×3

dev ) .

The stored energy and the dissipation function are given by

Bh(q) :=
∫

Ω
W(Sh∇su(x)Sh, p(x))dx , (4.5)

Rh(q) :=
∫

Ω
R(p(x))dx (4.6)

for q = (u, p) ∈ Q. We note that the dissipation functional is h-independent,
we therefore write R := Rh. Given loads `h ∈W 1,∞(0, T ;Q∗), we also define
the total energy

Eh(t, q) := Bh(q)− 〈`h(t), q〉 , t ∈ [0, T ] , q = (u, p) ∈ Q .

4.3 Description of the limit system

We now come to a description of the limiting rate-independent system. For this
we first define the subspace U0 of admissible limit displacements:

U0 := {u ∈ U : ∇su ∈ span(e1 ⊗ e1) a. e.} , e1 ⊗ e1 =
(

1 0 0
0 0 0
0 0 0

)
. (4.7)

This is motivated by the fact that sequences qh = (uh, ph) of bounded stored
energy Bh(qh) have the property that

Sh∇suhSh =

 ∂1u1
1

2h (∂2u1 + ∂1u2) 1
2h (∂3u1 + ∂1u3)

1
2h (∂1u2 + ∂2u1) 1

h2 ∂2u2
1

2h2 (∂2u3 + ∂3u2)
1

2h (∂1u3 + ∂3u1) 1
2h2 (∂2u3 + ∂3u2) 1

h2 ∂3u3


bounded in L2(Ω;R3×3

sym). Hence any weak H1-limit u of such uh must lie in U0.
The overall space of admissible limit states is

Q0 := U0 × P . (4.8)

The displacements contained in U0 are effectively one-dimensional in the sense
that they are uniquely determined by the midline displacement x1 7→ u(x1, 0, 0)
(see Lemma 4.1 below).
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The limit dissipation functional is just

R0 := R = Rh (4.9)

as defined in (4.6). We now define the limit stored energy

B0 : Q → R∞ . (4.10)

For q ∈ Q \ Q0, the limiting stored energy ist set to B0(q) := ∞. For q ∈ Q0

we let

B0(q) := inf
g

∫
I

inf
f,w

∫
B

W

 ∂1u1(x) ∗ ∗
∂2f(x′)− g′(x1)x3
∂3f(x′) + g′(x1)x2

∇s2,3w(x′)

 , p(x)

 dx′dx1 ,

(4.11)
where x′ = (x2, x3) such that x = (x1, x

′) and the infima are taken over all

f ∈ H1(B) , g ∈ H1
0 (I) , w ∈ H1(B;R2) .

As above, by ∗ we denote matrix entries which are determined by the condition
that the first argument of W must be a symmetric matrix. By ∇s2,3w(x) we
denote for w = (w2, w3) the matrix

∇s2,3w(x′) :=
(

∂2w2(x′) 1
2 (∂3w2(x′) + ∂2w3(x′))

1
2 (∂2w3(x′) + ∂3w2(x′)) ∂3w3(x′)

)
.

The definition of B0 given above will be justified by the Mosco-convergence

Bh M→ B0

stated in Proposition 4.6. Under the assumptions of Theorem 4.2, we will also
have a load function `0 ∈ W 1,∞(0, T ;Q). As usual, we then define the total
energy E0 : [0, T ]×Q → R∞ by

E0(t, q) := B0(q)− 〈`0(t), q〉 , t ∈ [0, T ] , q ∈ Q .

Discussion of the limit stored energy

At a first glance it is not obvious that the limit stored energy B0 must have the
form given above. As a naive guess one might have proposed to define the limit
energy as

(u, p) 7→
∫

Ω
Wrelax(∂1u1(x), p(x))dx (4.12)
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with a relaxed energy density

Wrelax(a, P ) = inf{W(A,P ) : A ∈ R3×3
sym , A11 = a} (4.13)

for a ∈ R and P ∈ R3×3
dev . Indeed, this is the form the limit energy takes in the

case of the plate models considered in [34] and [35]. Contrary to what one might
expect, the situation is more complicated with rods. This is the case because
integrability conditions prevent the pointwise minimization implied in (4.13)
to be realized by actual displacement fields. These integrability conditions are
more restrictive in higher codimension. Hence the difficulty lies in the number
of dimensions reduced, not in the number of dimensions left.

It is clear that the energy defined by (4.12) and (4.13) is a lower bound
for Bh in the sense of Γ-convergence (with respect to the weak topology of Q).
Indeed, whenever (uh, ph) ⇀ (u, p) in Q, we have

lim inf
h→0

Bh(uh, ph) = lim inf
h→0

∫
Ω
W(Sh∇suhSh, ph)dx

≥ lim inf
h→0

∫
Ω
W(∂1u

h
1 , p

h)dx ≥
∫

Ω
W(∂1u1, p)dx .

However, the bound is too low. It cannot in general be attained by a recovery
sequence. The pointwise relaxation of W to W is inadequate. That is why we
have a milder degree of relaxation in our definition of B0. It is not accomplished
by pointwise minimization but instead by global adjustments of u. These
adjustments are parametrized by the functions f, g, w in (4.11). The idea
behind the matrix argument of W in (4.11) is to write

uh(x) := u(x) + 2h

 f(x)
−g(x1)x3
g(x1)x2

+ h2

 0
w1(x)
w2(x)

 , x ∈ Ω . (4.14)

This leads to

Sh∇suh(x)Sh =

 ∂1u1 ∗ ∗
∂2f(x)− g′(x1)x3
∂3f(x) + g′(x1)x2

∇s2,3w(x)

+ o(1) ,

which is up to the o(1) error in h exactly what we have in (4.11). This indicates
that recovery sequences can be constructed as in (4.14). The harder task will
be to show that B0 is a lower bound.

To provide more intuition for (4.11) and (4.14), let us indicate the geometric
meaning of the displacement-corrections g, f and w:
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f−→

g−→

w−→

Figure 4.2: Illustration of the effect of g, f and w in the definition of B0: g is
longitudinal torsion; f is an out-of-plane deformation of cross-sections; w is an
in-plance deformation of cross-sections.

• g(x1) measures the torsion at each longitudinal position x1 ∈ I. The
torsion is not captured by the one-dimensional limit displacement u but
has a nonvanishing contribution to the stored energy.

• For fixed longitudinal position x1 ∈ I, f(x′) is an out-of-plane deformation
of the corresponding cross sections. Again, variations inside a cross-section
are not captured by the one-dimensional limit displacement.

• For fixed longitudinal position x1 ∈ I, w(x′) is an in-plane deformation of
the corrresponding cross sections. The same comment applies as for f .
However, the in-plane deformations affected by w are smaller than the
out-of-plane deformations affected by w, as can be seen in (4.14).

The above described effects of f , g and w are illustrated in Figure 4.2.
We now prove that any limit displacement field u ∈ U0, and more generally

any displacement field u ∈ H1(Ω;R3) with∇su ∈ span(e1⊗e1) a.e., is effectively
one-dimensional.

Lemma 4.1 (On limit displacement fields). Given any u ∈ H1(Ω;R3) with
∇su ∈ span(e1 ⊗ e1) almost everywhere, there exist v ∈ H1(I;R3) and α ∈ R
such that

u(x) := v(x1) +

−∂1v2(x1)x2 − ∂1v3(x1)x3
−αx3
αx2

 . (4.15)

Moreover, v2, v3 ∈ H2(I).

Remarks. (i) This is analogous to the so-called Kirchhoff-Love displacements
for plates (discussed in [34]) which are characterized by the condition
(∇su)13 = (∇su)23 = (∇su)33 = 0 and can be reconstructed from midplane
displacements (x1, x2) 7→ u(x1, x2, 0).
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−→

Figure 4.3: Effect of the term ∂1v2(x1)x2 + ∂1v3(x1)x3 in (4.15). The uniform
application of the midline-displacement across all of the rod’s fibers is replaced
by an energetically more favourable layout.

(ii) For u ∈ U0, the boundary values u = 0 on Γ imply that α = 0, v1 ∈ H1
0 (I)

and v2, v3 ∈ H2
0 (I).

(iii) The constant α > 0 specifies the fixed rotational state of the rod.

(iv) Figure 4.3 shows the effect of the first component of the second summand
in (4.15).

Proof. We write ε := ∇su. Then εij = 0 for (i, j) 6= (1, 1). Thus

0 = ∂1ε23 + ∂2ε13 − ∂3ε12

= 1
2 (∂1(∂2u3 + ∂3u2) + ∂2(∂1u3 + ∂3u1)− ∂3(∂1u2 + ∂2u1))

= ∂1∂2u3 . (4.16)

Similarly, we get ∂1∂3u2 = 0. Together with ∂2u2 = 0 and ∂3u3 = 0 this implies

∂2(u1 + ∂1u2x2 + ∂1u3x3) = ∂2u1 + ∂1u2 = 0
∂3(u1 + ∂1u2x2 + ∂1u3x3) = ∂3u1 + ∂1u3 = 0 .

Thus the expression inside the brackets on the left-hand side depends only on
x1 ∈ I. We therefore have

u1(x) + ∂1u2(x)x2 + ∂1u3(x)x3 = v1(x1) (4.17)

for a function v1 ∈ L2(I). Next, we show that ∂2u3 is constant by evaluating
its partial derivatives:

∂1∂2u3 = 0 by (4.16) ,
∂2∂2u3 = ∂2(2ε23 − ∂3u2) = 0− ∂3∂2u2 = −∂3ε22 = 0 ,
∂3∂2u3 = ∂2∂3u3 = ∂2ε33 = 0 .
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Thus there exists α ∈ R with ∂2u3 = α and therefore ∂3u2 = 2ε32 − ∂2u3 = −α.
As ∂2u2 = ∂3u3 = 0, this implies that there exist v2, v3 ∈ L2(I) such that

u2(x) = −αx3 + v2(x1) , u3(x) = αx2 + v3(x1) . (4.18)

It follows that v2, v3 ∈ H1(I). Moreover, starting from (4.17) and then using
(4.18), we have

u1(x) = v1(x1)− ∂1u2(x)x2 − ∂1u3(x)x3

= v1(x1)− ∂1v2(x1)x2 − ∂1v3(x1)x3 .

Now we have shown that u has the form (4.15). From

∂1u1(x) = ∂1v1(x1)− ∂2
1v2(x1)x2 − ∂2

1v3(x1)x3 ,

and ∂1u1 ∈ L2(Ω) we conclude that v1 ∈ H1(I) and v2, v3 ∈ H2(I).

Isotropic elasticity

By way of example, let us consider pure isotropic elasticity,

W(A,P ) = λ

2 (trA)2 + µ|A|2 , λ, µ > 0 .

The stored energy density W does not depend on the plastic variable P . This
choice of W implies that the infimum in (4.11) is attained with f = g = 0, since
populating the off-diagonal entries of A only increases the value of W(A,P ).

In order to find the optimal function w in (4.11), we exploit that u ∈ U0

has the form (4.15) for some v ∈ H1
0 (I)×H2

0 (I;R2) and α = 0. Let us consider
w ∈ L2(I;H1(B;R2)) defined by

w1 := −ν
(
∂1v1x2 − ∂2

1v3x2x3 + 1
2∂

2
1v2(x2

3 − x2
2)
)

w2 := −ν
(
∂1v1x3 − ∂2

1v2x2x3 + 1
2∂

2
1v2(x2

2 − x2
3)
) (4.19)

with some constant ν > 0. We then have ∇s2,3w = −diag(ν, ν)∂1u1. Our choice
of w may not be optimal, but when we use this ansatz combined with f = g = 0
in (4.11), we get

B0(q) ≤
∫

Ω
W(diag(1,−ν,−ν)∂1u1, 0)dx . (4.20)
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Now it turns out that the relaxed energy density Wrelax defined in (4.13) in our
case takes the form

Wrelax(a, P ) = W(diag(1,−ν,−ν)a, 0) .

Here, of course, ν is no longer arbitrary. It is Poisson’s ratio ν := λ
2(λ+µ) . This

constant measures, when the material is expanded in one direction, how much
it is contracted in directions perpendicular to that direction. Using the same
constant in (4.19), we can now continue (4.20) to

B0(q) ≤
∫

Ω
W(diag(1,−ν,−ν)∂1u1, 0)dx =

∫
Ω
Wrelax(∂1u1, 0)dx ≤ B0(q) .

In this particular case we see that B0 agrees with the trivial lower bound defined
in (4.12) in terms of Wrelax.

4.4 Statement of the convergence result

In this section, we formulate the main convergence result. We also give a proof,
but in doing so we refer to the results of the following sections.

Let us suppose that `h ∈ W 1,∞(0, T ;Q∗) satisfies `h(t) → `0(t) for all
t ∈ [0, T ], and moreover ‖`h‖W 1,∞(0,T ;Q∗) ≤ C for all h ∈ [0, 1].

We claim that the rate-independent system (Q, E0,R0) is the limit of the
systems (Q, Eh,Rh) in the following sense.

Theorem 4.2. Consider a family of energetic solutions qh ∈ L1(0, T ;Q) for
the rate-independent system (Q, Eh,Rh) for h ≥ 0 such that

qh(0) ⇀ q0(0) , Bh(qh(0))→ B0(q0(0))

as h→ 0. Then also

qh(t)→ q0(t) , Bh(qh(t))→ B0(q0(t))

for all t ∈ [0, T ] als h→ 0. Moreover,

DissRh(qh; [0, t])→ DissR0(q0; [0, t]) , 〈∂t`h(t), qh(t)〉 → 〈∂t`0(t), q0(t)〉 .

Proof. The statement of the theorem follows from Theorem 3.4. We only need
to check that the assumptions (A)–(D) on Pages 28 and 29 are satisfied:

(A) The stored energy functionals Bh are quadratic forms since W is a quadratic
form. Moreover, Bh is continuous, hence lower-semicontinuous. What
remains to be proved is the equicoercivity. This is done in Proposition 4.3
below.
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(B) The dissipation functionalsRh are all equal toR. The functionR is positive
one-homogeneous and convex because R is positive one-homogeneous and
convex. Moreover, R is continuous, hence lower-semicontinuous.

(C) The assumption on the Lipschitz bound of the loads `h was just repeated
in Theorem 4.2.

(D) The Mosco-convergence of Bh is proved in Proposition 4.6 below. The
Mosco-convergence and continuous convergence of Rh immediately fol-
lows from the continuity and weak lower-semicontinuity of Rh = R. The
assumption on the convergence of the loads `h was just repeated in Theo-
rem 4.2.

Thus the theorem is proved once Propositions 4.3 and 4.6 are established.

In the following sections, we provide the missing parts referred to in the above
proof: equi-coercivity and Mosco-convergence of Bh.

4.5 Proof of the equi-coercivity

Proposition 4.3 (Equi-coercivity). We consider Bh of (4.5), describing the
stored energy of thin rods. There is a constant β > 0 such that

Bh(q) ≥ β‖q‖2

for all q ∈ Q and h ∈ (0, 1).

Proof. For q = (u, p) ∈ Q, we have

Bh(q) =
∫

Ω
W(Sh∇su(x)Sh, p(x))dx .

By the positivity of the quadratic form W this implies

Bh(q) &
∫

Ω
|Sh∇su(x)Sh|2 + |p(x)|2dx

≥ ‖∇su‖2
L2(Ω;R3×3

sym) + ‖p‖2
L2(Ω;R3×3

dev ) .

By Korn’s inequality (see Lemma A.4(i); we recall that boundary conditions
for u are imposed in the space Q) this implies

Bh(q) & ‖u‖2H1(Ω;R3) + ‖p‖2
L2(Ω;R3×3

dev ) = ‖q‖2 .

Tracking the constants in the &-steps, we see that the constant β claimed in the
lemma depends only on the quadratic form W and the Poincaré-Korn-constant
of Ω and Γ.
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4.6 Proof of the Mosco-convergence

In order to prove the Mosco-convergence of Bh, we need a Korn-type inequality
for thin domains. In general, the constant in a Korn inequality depends on
the domain under consideration. In particular, when a domain gets thinner,
its Korn constant increases. This is because a bending deformation u takes
progressively less energy per volume (measured in terms of ∇su) when the
thickness decreases. In a two-dimensional setting this can be seen by considering
a displacement field uh,

uh : (0, 1)× (0, h)→ R2 , uh(x) =
(
−φ′(x1)x2
φ(x1)

)
, φ ∈ C∞c ((0, 1)) .

Here the values of uh are of order 1, but the values of∇su(x) = −φ′′(x1)x2e1⊗e1
are only of order h.

However, when we disallow large deformations in the thin directions, this
effect no longer occurs. We then get a Korn inequality which is independent of
the thickness parameter. This is basically what the next lemma expresses, where
such a restriction is achieved by subtracting from an arbitrary displacement
at every point its mean value over the whole cross section to which that point
belongs. The lemma is stated in rescaled variables (as this is the form in which
we will use it). The physical intuition however is better grasped when the
provided estimate is looked at as stated in physical variables in (4.22).

Lemma 4.4 (Korn’s inequality for thin domains). Let Ω := (0, L) × B
for a constant L > 0 and a bounded Lipschitz domain B ⊂ R2. There is a
constant C = C(B) > 0 such that∥∥∥∥Sh(∇u−−∫

B

∇u
)
Sh

∥∥∥∥
L2(Ω;R3×3)

≤ C‖Sh∇suSh‖L2(Ω;R3×3
sym) (4.21)

for all u ∈ H1(Ω;R3) and h ∈ (0, L), where(
−
∫
B

∇u
)

(x) := −
∫
B

∇u(x1, x
′)dx′ .

Proof. We pull-back u to the thin domain Ωh := (0, L) × hB by considering
uh(x) := Shu(Shx) for x ∈ Ωh. Since

∇uh(x) = Sh∇u(Shx)Sh , x ∈ Ωh ,

the claimed inequality (4.21) is equivalent to∥∥∥∥∇uh −−∫
hB

∇uh
∥∥∥∥2

L2(Ωh;R3×3)
≤ C‖∇suh‖2L2(Ωh,R3×3

sym) . (4.22)
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hB

h t+ h 2t+ h 3t+ h

0 t 2t 3t

Figure 4.4: Illustration of the decomposition Ωh =
⋃K
k=0 Ωkth in the case K = 3.

The shaded region denotes Ωt
h. When h gets smaller, the number of patches

increases, but their shape remains the same.

We therefore proceed to prove (4.22).
For this we consider subdomains of the form Ωth := (t, t+ h)× hB. On each

of these we have∥∥∥∥∇uh −−∫
hB

∇uh
∥∥∥∥2

L2(Ωt
h

;R3×3)
≤

∥∥∥∥∥∇uh −−
∫

Ωt
h

∇uh

∥∥∥∥∥
2

L2(Ωt
h

;R3×3)
. (4.23)

Here we used Fubini and a pointwise estimate for each longitudinal position
s ∈ (t, t+ h), namely that the algebraic mean of a function over {s} × hB is
the optimal constant to subtract from that function when the objective is to
minimize the L2({s} × hB)-norm; subtracting the mean over Ωth can only yield
a larger norm.

We observe that all domains Ωt
h are homothetic to (0, 1) × B and thus

have the same Korn constant which only depends on B (see Lemma A.4(ii)).
Therefore ∥∥∥∥∥∇uh −−

∫
Ωt
h

∇uh

∥∥∥∥∥
2

L2(Ωt
h

;R3×3)
. ‖∇suh‖2L2(Ωt

h
;R3×3

sym) . (4.24)

We now use the (non-disjoint) decomposition Ωh =
⋃K
k=0 Ωkt

h , where K :=
d(L− h)/he and t := (L− h)/K. Here we denote by dxe the smallest integer
greater than or equal to x. See Figure 4.4 for an illustration. Then∥∥∥∥∇uh −−∫

hB

∇uh
∥∥∥∥2

L2(Ωh;R3×3)
≤

K∑
k=0

∥∥∥∥∇uh −−∫
hB

∇uh
∥∥∥∥2

L2(Ωkt
h

;R3×3)
(4.23)
≤

K∑
k=0

∥∥∥∥∥∇uh −−
∫

Ωkt
h

∇uh

∥∥∥∥∥
2

L2(Ωkt
h
,R3×3

sym)

(4.24)
.

K∑
k=0
‖∇suh‖2L2(Ωkt

h
,R3×3

sym)

≤ 2‖∇suh‖2L2(Ωh,R3×3
sym) ,
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where the factor 2 accounts for the possible overlap of the patches Ωkth . With
this we have proved (4.22) and thus the lemma.

We now give an alternative description of the limit stored energy B0.

Lemma 4.5. We use Q0 from (4.8) and B0 from (4.10) and (4.11). For
q = (u, p) ∈ Q0 there holds

B0(q) = inf
f,g,w

∫
Ω
W

 ∂1u1(x) ∗ ∗
∂2f(x)− g′(x1)x3
∂3f(x) + g′(x1)x2

∇s2,3w(x)

 , p(x)

 dx , (4.25)

where the infimum is taken over all

f ∈ H1
Γ(Ω) , g ∈ H1

0 (I) , w ∈ H1
Γ(Ω;R2) .

Proof. We only have to prove “≥”, the opposite inequality is clear. For brevity,
we denote the integrand on the right-hand side of (4.25) with ellipses (“. . . ”).
The statement now follows from from Lemma B.2:

inf
f∈H1

Γ(Ω)
g∈H1

0 (I)
w∈H1

Γ(Ω;R2)

∫
Ω
W(. . . )dx ≤ inf

g∈H1
0 (I)

inf
f∈H1

0 (I;H1(B))
w∈H1

0 (I;H1(B;R2))

∫
I

∫
B

W(. . . )dx′dx1

Lemma B.2
≤ inf

g∈H1
0 (I)

∫
I

inf
f∈H1(B)

w∈H1(B;R2)

∫
B

W(. . . )dx′dx1 = B0(q) .

This shows the claim.

The lemma is important for the construction of recovery sequences: It provides
functions f, g, w of sufficient regularity to define qh in terms of these functions
as indicated in (4.14).

We now proceed to the main proposition in this chapter: the Mosco-
convergence of the stored energy. It is the last missing piece used in the
proof of Theorem 4.2.

Proposition 4.6. Consider Bh as defined in (4.5) and B0 as defined in (4.11).
Then there holds the Mosco-convergence Bh M→ B0.

Proof. Part I: Lower bound. Consider any weakly converging sequence
qh = (uh, ph) ⇀ q = (u, p) in Q. We claim that

lim inf
h→0

Bh(qh) ≥ B0(q) . (4.26)
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Step 1. Without loss of generality, we may assume that Bh(qh) is uniformly
bounded along a subsequence. We consider a subsequence with Bh(qh) →
lim infh→0 Bh(qh).

The bound on Bh(qh) implies that Sh∇suhSh is uniformly bounded in
L2(Ω;R3×3

sym). Therefore (∇suh)ij → 0 in L2(Ω) for (i, j) 6= (1, 1). Because of
∇suh ⇀ ∇su in L2(Ω;R3×3

sym), this implies ∇su ∈ span(e1⊗ e1) a.e. This proves
q ∈ Q0, compare (4.7) and (4.8).

Step 2. Since Sh∇suhSh is uniformly bounded in L2(Ω;R3×3
sym), there exists

a subsequence and some E ∈ L2(Ω;R3×3
sym) with

Sh∇suhSh ⇀ E .

Our aim is to find

f ∈ L2(I;H1(B)) , g ∈ H1
0 (I) , w ∈ L2(I;H1(B;R2))

such that

E(x) =

 ∂1u1(x) ∗ ∗
∂2f(x)− g′(x1)x3
∂3f(x) + g′(x1)x2

∇s2,3w(x)

 , x ∈ Ω . (4.27)

Once (4.27) ist shown, the lower bound (4.26) follows since

lim inf
h→0

Bh(qh) = lim inf
h→0

∫
Ω
W(Sh∇suh(x)Sh, ph(x))dx

≥
∫

Ω
W(E, p) ≥ B0(q) .

Step 3. In order to define (f, g, w), we first consider

ũhj (x) := uhj (x)−−
∫
B

uhj (x1, x
′)dx′ , j ∈ {2, 3} .

By Korn’s inequality of Lemma 4.4 and the boundedness of Bh(qh),∥∥∥∥ 1
2h

(
∂1ũ

h
2

∂1ũ
h
3

)∥∥∥∥
L2(Ω;R2)

≤
∥∥∥∥Sh(∇u−−∫

B

∇u
)
Sh

∥∥∥∥
L2(Ω;Rn×n)

. 1 . (4.28)

Since (ũh2 , ũh3 ) = 0 on {0} ×B, this implies that∥∥∥∥ 1
2h

(
ũh2
ũh3

)∥∥∥∥
L2(Ω;R2)

. 1 . (4.29)
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We define gh ∈ L2(I) as the unique minimizer of∥∥∥∥ 1
2h

(
ũh2 (x)
ũh3 (x)

)
− gh(x1)

(
−x3
x2

)∥∥∥∥
L2(Ω;R2)

.

By (4.29), the sequence (gh)h is uniformly bounded. Hence there exists a
subsequence and a limit function g ∈ L2(I) such that

gh ⇀ g in L2(I) . (4.30)

By Korn’s inequality on {x1} × B (see Lemma A.4(ii)) and the fact that
1

2h (ũh2 , ũh3 )> − gh(x1)(−x3, x2)> vanishes in the mean on each {x1} × B, we
have ∥∥∥∥ 1

2h

(
ũh2
ũh3

)
− gh(x1)

(
−x3
x2

)∥∥∥∥
L2(Ω;R2)

.

∥∥∥∥ 1
h
∇s2,3ũh2,3

∥∥∥∥
L2(Ω;R2×2

sym)

=
∥∥∥∥ 1
h
∇s2,3uh2,3

∥∥∥∥
L2(Ω;R2×2

sym)
≤ h

∥∥Sh∇suhSh∥∥L2(Ω;R3×3
sym) → 0 .

In particular,
1

2h

(
∂1ũ

h
2

∂1ũ
h
3

)
→ g′(x1)

(
−x3
x2

)
in the sense of distributions on Ω, and by the bound (4.28) this implies

1
2h

(
∂1ũ

h
2

∂1ũ
h
3

)
⇀ g′(x1)

(
−x3
x2

)
(4.31)

in L2(Ω;R2). In particular, g ∈ H1(I). Integrating (4.31) over I × B′ for
B′ ⊂ B, we get

0 = (g(L)− g(0))
∫
B′

(−x3, x2)> .

When we choose B′ such that B′ is not centered, i.e.
∫
B′

(−x3, x2)⊥ 6= 0, this
implies g(L) = g(0). If g /∈ H1

0 (I), we can replace g with g − g(0). Then
g ∈ H1

0 (I) and (4.31) remains true in the process.
Step 4. We define ũh1 ∈ L2(I;H1(B)) by

ũh1 (x) := uh1 (x) +
(
x2∂1−

∫
B

uh2 (x1, x
′)dx′ + x3∂1−

∫
B

uh3 (x1, x
′)dx′

)
.

We know from (4.28) and the boundedness of Sh∇suhSh in L2(Ω;R3×3
sym) that

1
2h

(
∂1ũ

h
2

∂1ũ
h
3

)
and 1

2h

(
∂1ũ

h
2 + ∂2ũ

h
1

∂1ũ
h
3 + ∂3ũ

h
1

)
= 1

2h

(
∂1u

h
2 + ∂2u

h
1

∂1u
h
3 + ∂3u

h
1

)
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are bounded in L2(Ω;R2). But then

1
2h

(
∂2ũ

h
1

∂3ũ
h
1

)
is also bounded in L2(Ω;R2). Thus there exists (by Poincaré’s inequality from
Lemma A.3(ii) and a compactness argument) a subsequence and a function

f ∈ L2(I;H1(B))

such that
1

2h

(
∂2ũ

h
1

∂3ũ
h
1

)
⇀

(
∂2f
∂3f

)
in L2(Ω;R2). Combining this with (4.31), we find that

1
2h

(
∂1u

h
2 + ∂2u

h
1

∂1u
h
3 + ∂3u

h
1

)
= 1

2h

(
∂1ũ

h
2 + ∂2ũ

h
1

∂1ũ
h
3 + ∂3ũ

h
1

)
⇀

(
∂2f − g′(x1)x3
∂3f + g′(x1)x2

)
(4.32)

in L2(Ω;R2).
Step 5. It remains to construct w. As

‖h−2∇s2,3uh2,3‖L2(Ω;R2×2
sym) ≤ ‖Sh∇

suhSh‖L2(Ω;R3×3
sym) . 1 ,

by Korn’s inequality (see Lemma A.4(ii)) and a compactness argument, there
exists a subsequence and a function

w ∈ L2(I;H1(B;R2))

such that
1
h2∇

s
2,3u

h
2,3 ⇀ ∇s2,3w (4.33)

in L2(Ω;R2×2
sym).

Step 6. We conclude, using the weak convergence uh ⇀ u in H1(Ω;R3) as
well as (4.32) and (4.33) that

Sh∇suh(x)Sh ⇀

 ∂1u1(x) ∗ ∗
∂2f(x)− g′(x1)x3
∂3f(x) + g′(x1)x2

∇s2,3w(x)

 = E(x)

in L2(Ω;R3×3
sym). As noted at the end of Step 2, this concludes the proof of the

lower bound.
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Part II: Upper bound. Let q = (u, p) ∈ Q and δ > 0. We need to find a
sequence (qh)h ⊂ Q with qh → q and

lim sup
h→0

Bh(qh) ≤ B0(q) + δ .

We can assume that q ∈ Q0 as otherwise B0(q) = ∞. By Lemma 4.5, there
exist

f ∈ H1
Γ(Ω) , g ∈ H1

0 (I) , w ∈ H1
Γ(Ω;R2)

such that∫
Ω
W

 ∂1u1(x) ∗ ∗
∂2f(x)− g′(x1)x3
∂3f(x) + g′(x1)x2

∇s2,3w(x)

 , p(x)

 dx ≤ B0(q) + δ .

We now define uh ∈ H1
Γ(Ω;R3) by

uh(x) := u(x) + 2h

 f(x)
−g(x1)x3
g(x1)x2

+ h2

 0
w1(x)
w2(x)

 , x ∈ Ω .

Defining qh := (uh, p), we have qh → q in Q. Moreover,

Sh∇suh(x)Sh =

 ∂1u1(x) ∗ ∗
∂2f(x)− g′(x1)x3
∂3f(x) + g′(x1)x2

∇s2,3w(x)

+

 2h∂1f(x) ∗ ∗
h
2∂1w2(x)
h
2∂1w3(x)

0 0
0 0


→

 ∂1u1(x) ∗ ∗
∂2f(x)− g′(x1)x3
∂3f(x) + g′(x1)x2

∇s2,3w(x)


in L2(Ω;R3×3

sym). This implies

lim
h→0
Bh(qh) =

∫
Ω
W

 ∂1u1(x) ∗ ∗
∂2f(x)− g′(x1)x3
∂3f(x) + g′(x1)x2

∇s2,3w(x)

 , p(x)

 dx

≤ B0(q) + δ ,

and thus the claim.



Chapter 5

Periodic graphs

For the homogenization of periodic lattices we need to describe the underlying
periodic structure in the language of graph theory. For this purpose, we
introduce here the concept of periodic graphs in R3. We show how, based
on this notion, one can construct lattices with a periodicity parameter ε > 0
that approximate a macrosopic domain Ω ⊂ R3. We also discuss the crucial
property of (infinitesimal) rigidity. Moreover, we introduce notation for dealing
with functions defined on the nodes or edges of the ε-lattices. This will lead
to a notion of convergence for such functions, including a notion of two-scale
convergence together with an appropriate compactness result.

This chapter prepares for Chapter 6 where we will state the equations of
elastoplasticity on the edges of the periodic graph, coupled by boundary values
encoded in the state of the nodes.

5.1 The infinite periodic graph

In this section we describe how to construct an infinite periodic graph Gper by
an unfolding procedure from a finite periodicity graph G. The graph G describes
a single periodicity cell. Each of its edges has a label (a vector in Z3) which
informs the unfolding procedure about the cell-offset of edges of that type.

Definition 5.1 (Periodicity graph). Let G be a finite directed multigraph
with edges E(G) and vertices V (G). An edge e ∈ E(G) connects v1 = v1(e) ∈
V (G) with v2 = v2(e) ∈ V (G). Let

z : V (G)→ � := (0, 1)3

57
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be a placement function which assigns to each node v ∈ V (G) a position z(v)
in the periodicity cell �. Moreover, let

d : E(G)→ Z3

be a function which assigns a label d(e) ∈ Z3 to each edge e ∈ E(G). We
assume that (v1, v2; d) uniquely identifies the edge e, i.e., any two edges between
the same pair of vertices must have differing labels. We also require for any
e = (v1, v2; d) ∈ E(G) that −e := (v2, v1;−d) /∈ E(G).

The triple (G, z, d) is called a periodicity graph. When z and d are clear
from the context, we simply call G a periodicity graph.

Remark. (i) A multigraph is a graph that is allowed to have loops (edges
beginning and ending at the same vertex) and also multiple edges between
the same pair of vertices. For brevity, once a particular multigraph is
introduced, we will subsequently refer to it simply as a graph.

(ii) A periodicity graph may contain loops e = (v, v; d) ∈ E(G), but the
requirement −e /∈ E(G) implies d 6= 0 in this case.

Below we will add two further requirements for a periodicity graph G which,
however, will be expressed in terms of the derived periodic graph Gper which
we introduce now.

Given any periodicity graph (G, z, p), we construct an infinite directed graph
Gper by defining

V (Gper) := V (G)× Z3 , (5.1a)
E(Gper) := {((v1, k), (v2, k + d)) : (v1, v2; d) ∈ E(G) , k ∈ Z3} . (5.1b)

We will identify E(Gper) with E(G)× Z3 and thus, by abuse of notation, write
(e, k) ∈ E(Gper) when e ∈ E(G) and k ∈ Z3. Observe that Gper cannot have
any loops, since (v1, k) = (v2, k + d) implies v1 = v2 and d = 0, and therefore
(v1, v2; d) /∈ E(G).

The node placement z : V (G)→ � now induces a node placement

z : V (Gper)→ R3 , z((v, k)) := z(v) + k . (5.2)

By this, (Gper, z) is a frame in R3. The length of an edge of type e ∈ E(G) is

L(e) := |d(e) + z(v2(e))− z(v1(e))| .

Furtheremore, we denote by

r(e) := d(e) + z(v2(e))− z(v1(e))
L(e) (5.3)
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A

B

C

(0, 0)

(0, 0)

(−1, 0)

(1, 0)

(0, 0)
(0, 1)

(0, 1)

(a) A graph G with V (G) =
{A, B, C} and edges indicated by ar-
rows. The labels are elements of Z2.
A vector (n, m) means: “go n cells to
the right and m cells to the top”.

A A

A

B CC

B

(b) A section from the corresponding
infinite periodic graph Gper, realized
by a placement function z : V (G) →
(0, 1)2 with, e.g., z(A) = (0.25, 0.25).

Figure 5.1: Example of a graph G labeled with integer vectors which gives rise
to a periodic graph Gper. For visual clarity, we provide this example in two
space dimensions. In the main text everything is stated in three dimensions.

the unit vector that indicates the direction of an edge of type e. For convenience,
we also use

k : V (Gper)→ Z3 , k((v, k)) := k ,

v1 : E(Gper)→ V (Gper) , v1((e, k)) := (v1(e), k) ,
v2 : E(Gper)→ V (Gper) , v2((e, k)) := (v2(e), k + d(e)) .

As mentioned above, we will make two further assumptions on G which are
expressed in terms of (Gper, z):

Connectivity. The graph Gper must be connected. On the level of G this
can be expressed in the following way: For every v0, v ∈ V (G) and k ∈ Z3,
there exists a sequence of edges

(v0, v1; d1) , (v1, v2; d2) , · · · , (vn−1, vn; dn)

in ±E(G) = {e,−e : e ∈ E(G)} with v = vn and k = d1 + · · · + dn. Recall
that for e = (v1, v2; d) ∈ E(G) we defined −e := (v2, v1;−d).
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Figure 5.2: A two-dimensional example.

Infinitesimal rigidity. The frame (Gper, z) must be infinitesimally rigid.
By this we mean that any displacement field on the nodes of Gper,

u : V (Gper)→ R3 ,

which at first order (i.e. from a geometrically linearized viewpoint) preserves
the lengths of all the edges, i. e. which satisfies,

r(e) · (u(v2(e))− u(v1(e))) = 0 for all e ∈ E(Gper) , (5.4)

also satisfies u(v2(e))− u(v1(e)) = 0 for all e ∈ E(Gper). In conjunction with
the connectivity of Gper this implies that u is in fact constant.

Remark. There are various notions of rigidity for frames. Let us for the purpose
of this remark assume that we are given any graph G = (V,E) with a node
placement z : V → Rn.

(i) Generally, the frame (G, z) is said to be rigid if any continuous motion of
the nodes which preserves the length of edges, also preserves the distance
between any pair of two nodes (see for example [28]). More precisely,
(G, z) is called rigid if, given any continuous function Z : [0, 1]× V → R
which satisfies Z(0, ·) = z and

|z(v)− z(v′)| = |Z(t, v)− Z(t, v′)| for all t ∈ [0, t] , (v, v′) ∈ E , (5.5)

also satisfies

|z(v)− z(v′)| = |Z(t, v)− Z(t, v′)| for all t ∈ [0, t] , v, v′ ∈ V . (5.6)

(ii) The notion of infinitesimal rigidity, which we introduced above, and which
is suitable in the geometrically linearized setting, arises from continuous
rigidity by linearization. It is stronger than rigidity.
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(a) The deformation of the vertical
rods is perpendicular to the direc-
tion of the rods. This means that
lengths are preserved at first order.
However, the deformation is not
constant.

(b) We see a deformation which (at
first order) changes the length of
the diagonal edge. In fact, such a
change of length occurs for every
non-constant deformation of this
triangle.

Figure 5.3: Example of a non-rigid graph (a) and a rigid graph (b). Dashed
lines show the undeformed, solid lines the deformed state.

Indeed, a degenerate triangle defined by three collinear nodes is rigid
(which is trivially true for every complete graph), but not infinitesimally
rigid (all displacements perpendicular to the straight line containing the
triangle preserve edge lengths at first order).
On the other hand, let us assume that (G, z) is flexible (not rigid). Then
There exists a continuous motion Z : [0, 1] × V → R with Z(0, ·) = z
which satisfies (5.5) but not (5.6). It can be shown that it is even possible
to assume that Z is smooth and ∂t|Z(0, v0) − Z(0, v′0)| 6= 0 for some
v0, v

′
0 ∈ V .

We let u(v) := ∂tZ(0, v) for v ∈ V (G). Then (5.5) implies

0 = ∂t|Z(0, v)− Z(0, v′)| = (u(v)− u(v′)) · z(v)− z(v′)
|z(v)− z(v′)|

for all (v, v′) ∈ E. If (G, z) were infinitesimally rigid, this would imply
that u is constant. But from ∂t|Z(0, v0)− Z(0, v′0)| 6= 0 we conclude that

0 6= ∂tZ(0, v0)− ∂tZ(0, v′0) = u(v0)− u(v′0) ,

so that u is not constant and hence (G, z) not infinitesimally rigid.

(iii) We also mention that it is an interesting question to ask in how far rigidity
can be viewed not only as a property of the frame (G, z), but as an inherent
property of the graph G, independent of the node placement z. Indeed,
there is the notion of n-rigidity: The graph G is said to be n-rigid if (G, z)
is rigid for almost all node placements z. Sometimes this is also called
generic rigidity [53].
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(1, 0)

(0, 1)

(5, 1)

(2, 1)

(a) This example of a graph
G with only one node but
four edges shows that rigidity
cells sometimes need to span
many perdiodicity cells. Observe
that without the (5, 1)-edge, the
graph would not be rigid.

A

B C

A

A

A

A

B C

(b) A rigidity cell corresponding to the
example of Figure 5.1.

Figure 5.4: Example of rigidity cells.

Existence of a rigidity cell. We make an even slightly stronger assump-
tion than infinitesimal rigidity which also subsumes the condition of connectivity.
We require the existence of a rigidity cell Gr with the following properties:

(R1) Gr is a finite connected subgraph of Gper.

(R2) Gr contains the cell with index k = 0 ∈ Z3 in the sense that

V (G)× {0} ⊂ V (Gr) , E(G)× {0} ⊂ E(Gr) . (5.7)

(R3) Gr is infinitesimally rigid: Every u : V (Gr)→ R3 with r(e) · (u(v2(e))−
u(v1(e))) = 0 for all e ∈ E(Gr) is constant.

(R4) For 1 ≤ i ≤ 3 the graph Gr ∪ (Gr + ei) is connected (notation introduced
below).

The rigidity cell Gr will serve as a building block for larger subgraphs of Gper.
In order to give assumption (R4) a precise meaning, we introduce the following
bits of notation:

• Having two subgraphs G1 and G2 of a graph G, we denote by G1∪G2 the
subgraph of G defined by V (G1∪G2) = V (G1)∪V (G2) and E(G1∪G2) =
E(G1) ∪ E(G2).
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• We write Gr + d with d ∈ Z3 for the subgraph of Gper defined by

V (Gr + d) = V (Gr) + d , E(Gr + d) = E(Gr) + d ,

where d ∈ Z3 acts on vertices (v, k) ∈ V (Gper) and edges (v1, v2) ∈
E(Gper) by (v, k) + d := (v, k + d) and (v1, v2) + d := (v1 + d, v2 + d).

With this notation we can say that (5.7) implies that Gr spans Gper in the
sense that

Gper =
⋃
d∈Z3

Gr + d . (5.8)

The following lemma shows that the infinitesimal rigidity of Gr implies the
infinitesimal rigidity of Gper and even yields a quantitative rigidiy estimate
(which serves a purpose similar to that of a Korn inequality).

Lemma 5.2 (Rigidity estimate). Let (G, z, d) be a periodicity graph. Sup-
pose that Gr is an infinitesimally rigid finite subgraph of Gper that spans Gper
in the sense of (5.8). Then there exists a constant C > 0 such that for all
u : V (Gper)→ R3,∑

e∈E(Gper)

|u(v2(e))− u(v1(e))|2

≤ C
∑

e∈E(Gper)

|r(e) · (u(v2(e))− u(v1(e)))|2 (5.9)

as an inequality in R∞ := R ∪ {+∞}.

Proof. The rigidity of Gr can be expressed by saying that the kernel of the
linear map A : (R3)V (Gr) → (R3)E(Gr), defined by

Au := (u(v2(e))− u(v1(e)))e∈E(Gr) , u : V (Gr)→ R3 ,

is contained in the kernel of the linear map B : (R3)V (Gr) → RE(Gr), defined by

Bu := (r(e) · (u(v2(e))− u(v1(e))))e∈E(Gr) , u : V (Gr)→ R3 .

As V (Gr) is finite, this implies the quantitative estimate ‖Au‖2 ≤ C‖Bu‖2 for
some C > 0 independent of u, i. e.∑

e∈E(Gr)

|u(v2(e))− u(v1(e))|2 ≤ C
∑

e∈E(Gr)

|r(e) · (u(v2(e))− u(v1(e)))|2 .
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When we now consider u : V (Gper)→ R3, we have∑
e∈E(Gper)

|u(v2(e))− u(v1(e))|2 ≤
∑
d∈Z3

∑
e∈E(Gr)+d

|u(v2(e))− u(v1(e))|2

.
∑
d∈Z3

∑
e∈E(Gr)+d

|r(e) · (u(v2(e))− u(v1(e)))|2

.
∑

e∈E(Gper)

|r(e) · (u(v2(e))− u(v1(e)))|2 .

For the last inequality we used that by the finiteness of Gr there is a bound on
the number of ways that any edge e ∈ E(Gper) can be written as e = er + d
with er ∈ E(Gr) and d ∈ Z3.

Remark. There is some literature on the (infinitesimal) rigidity of periodic
graphs. In the work by E. Ross [52] it is considered under the assumption of
forced rigidity, meaning that only displacement fields are considered which have
the same periodicity as the underlying graph. In a series of works by Borcea
and Streinu [8, 9, 10] this assumption is droppped.

5.2 Finite graphs adapted to a domain

Our object of study will not be an infinite lattice corresponding to the full
periodic graph Gper, but rather a sequence of finite (and scaled) sublattices that
occupy some bounded domain Ω. In this section we will therefore undertake the
construction of appropriate subgraphs Gε of Gper. For the scaling we introduce
the periodicity cells

�εk := ε(�+ k) , k ∈ Z3 , � := (0, 1)3 .

We start with a bounded Lipschitz domain Ω ⊂ R3 and a nonempty open
subset Γ of ∂Ω. On Γ we will prescribe Dirichlet boundary values, whereas on
∂Ω \ Γ we will have Neumann boundary values. We write

H1
Γ(Ω) := {u ∈ H1(Ω) : u = 0 on Γ} .

Since Γ is an open subset of ∂Ω, we can find a set ΩΓ ⊂ R3 such that ΩΓ ∪Ω is
open, ΩΓ ∩Ω = ∅ and ΩΓ ∩∂Ω = Γ. We assume that ΩΓ can be chosen in a way
that Ω ∪ ΩΓ is a Lipschitz domain. In the case of pure Dirichlet data (Γ = ∂Ω)
we can simply choose ΩΓ = R3 \ Ω. For a simple example see Figure 5.5.

We will not only construct subgraphs Gε, but also subsets V εΓ ⊂ V (Gε) of
their respective sets of vertices which correspond to Γ in the sense that they
contain the nodes on which values (of displacements) are prescribed.
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ΩΓ Γ Ω

Figure 5.5: Example showing a rectangular domain Ω with Γ being the left face
of Ω. An appropriate domain ΩΓ is denoted by the shaded region.

The main challenge in the construction of Gε is that the uniform ridigity of
Gε must be ensured. This can be done by using translated copies of the rigidty
cell Gr as building blocks. Our approach can be summarized as follows:

(1) Define Gε as the union of translated copies of Gr which “fit” into Ω ∪ ΩΓ.

(2) Define Gε as the subgraph of Gε that consists of all nodes that fit into Ω
or are at most one edge away from Ω.

(3) Those nodes of Gε that are one edge away from Ω make up V εΓ .

In order to formalize these steps, we proceed as follows: We first choose
appropriate index sets Dε ⊂ Z3 and use these to define Gε:

G
ε :=

⋃
d∈Dε

Gr + d , ε > 0 .

For the choice of the sets Dε we impose the following requirements:

(D1) Approximation from within. There holds �εk(v) ⊂ Ω ∪ ΩΓ for all v ∈
V (Gr) +Dε.
Moreover, there exists a constant C > 0 such that

dist(ε(Dε + [0, 1]3) , R3 \ (Ω ∪ ΩΓ)) < Cε

for all ε > 0.

(D2) Uniform connectivity. There exist constants C ∈ N and ε0 > 0 such
that for all ε ∈ (0, ε0) and d, d′ ∈ Dε there exist d0, . . . , dN ∈ Dε with
N ≤ C‖d− d′‖1 and

d = d0 , d′ = dN , ‖di − di−1‖1 ≤ 1 for i = 1 ≤ i ≤ N .

In other words: The minimum number of unit-steps in Z3 needed to
connect any two given points of Dε gets at most C times larger when the
restriction is added that only points of Dε may be visited.
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(a) The shaded re-
gion shows the orig-
inal Dε.

(b) After two steps of
shrinking we have the
shaded region Dε

2.

43
3

2 2
2

2
21

1
11

(c) Two growing-steps
yield Dε

2,2, but four
are needed to arrive
back at Dε = Dε

2,4.

Figure 5.6: The shrink-and-grow property illustrated at a right angle. With
sharper angles, the number of growing steps needed would further increase.

(D3) Shrink-and-grow property. For r, j ∈ N we define

Dε
r := Dε

r,0 := {d ∈ Dε : dist(Z3,‖·‖1)(d,Z3 \Dε) > r} , (5.10)
Dε
r,j := {d ∈ Dε : ‖d− d′‖1 ≤ 1 for some d′ ∈ Dε

r,j−1} . (5.11)

Given any r ∈ N there exist constants R ∈ N and ε0 > 0 such that
Dε
r,R = Dε for all ε ∈ (0, ε0).

Here r is the number of shrinking steps, and R is the number of growing
steps needed to compensate for the shrinking. For an illustration see
Figure 5.6.

Remark. A canonical way to define Dε is the following:

Dε := {d ∈ Z3 : �εk(v) ⊂ Ω ∪ ΩΓ for all v ∈ V (Gr) + d} . (5.12)

With Dε defined this way, condition (D1) is obviously satisfied. We conjecture
that for Lipschitz Domains Ω with Dε defined as in (5.12), (D2) and (D3) are
satisfied too. However, we will not set out to prove this statement, because in
practical situations one would in general have a domain where it is obvious how
to define Dε such that (D1)–(D3) are satisfied.

Following to item (1) on Page 65, we now construct Gε. For this we use Dε

and define Gε := Gr +Dε, which means that

V (Gε) = V (Gr) +Dε , E(Gε) = E(Gr) +Dε . (5.13)
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As outlined in items (2)–(3) on Page 65, we then define subgraphs Gε0 and Gε
of Gε as well as the set of nodes V εΓ in the following way:

V (Gε0) := {(v, k) ∈ V (Gε) : �εk ∩ Ω 6= ∅} , (5.14)
E(Gε0) := {e ∈ E(Gε) : v1(e), v2(e) ∈ V (Gε0)} , (5.15)
V (Gε) := {v2(e) : e ∈ ±E(Gε) with v1(e) ∈ V (Gε0)} , (5.16)
E(Gε) := {e ∈ E(Gε) : v1(e) ∈ V (Gε0) or v2(e) ∈ V (Gε0)} (5.17)

V εΓ := V (Gε) \ V (Gε0) . (5.18)

For later reference, we summarize these constructions in the following definition.

Definition 5.3 (Graph realizations). Let (G, z, d) be a periodicity graph
according to Definition 5.1 and Gper the associated periodic graph as defined in
(5.1).

Let Ω ⊂ R3 be a bounded Lipschitz domain and Γ a nonempty open subset
of ∂Ω. We assume that there exists a set ΩΓ ⊂ R3 with ΩΓ ∩ Ω = ∅ such that
Ω ∪ ΩΓ is a bounded Lipschitz domain and ΩΓ ∩ ∂Ω = Γ.

Let (Dε)ε be a family of subsets of Z3 satisfying (D1)–(D3). We then say that
(Gε)ε as defined in (5.13) to (5.18) constitutes a family of graph realizations.

We draw two important consequences from the above constructions. The
first one is an ε-uniform rigidity estimate which quantifies the infinitesimal
rigidity and is similar in character to a Korn inequality. The second one will be
a Poincaré inequality.

Lemma 5.4 (Uniform rigidity estimate). Let (Gε)ε be a family of graph
realizations with (V εΓ )ε defined by (5.18) in the setting of Definition 5.3. Then
there exist constants C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) and all
u : V (Gε)→ R3 with u = 0 on V εΓ ,∑

e∈E(Gε)

|u(v2(e))− u(v1(e))|2

≤ C
∑

e∈E(Gε)

|r(e) · (u(v2(e))− u(v1(e)))|2 . (5.19)

Proof. We extend u by zero to V (Gε). Then we use E(Gε) ⊂ E(Gε) =
E(Gr) +Dε in order to see that∑
e∈E(Gε)

|u(v2(e))− u(v1(e))|2 ≤
∑
d∈Dε

∑
e∈E(Gr)+d

|u(v2(e))− u(v1(e))|2 .



68 CHAPTER 5. PERIODIC GRAPHS

Using the rigidity of Gr (see Lemma 5.2), this implies∑
e∈E(Gε)

|u(v2(e))− u(v1(e))|2 .
∑
d∈Dε

∑
e∈E(Gr)+d

|r(e) · (u(v2(e))− u(v1(e)))|2 .

As every element of E(Gε) is only contained in E(Gr) + d for a finite and
uniformly bounded number of vectors d ∈ Dε, we then have∑
e∈E(Gε)

|u(v2(e))− u(v1(e))|2 .
∑

e∈E(Gε)

|r(e) · (u(v2(e))− u(v1(e)))|2 .

Finally we use that by (5.17) for e ∈ E(Gε) \ E(Gε) there holds v1(e) /∈ V (Gε0)
and v2(e) /∈ V (Gε0) and therefore u(v1(e)) = u(v2(e)) = 0 by (5.18). Thus we
have∑
e∈E(Gε)

|u(v2(e))− u(v1(e))|2 .
∑

e∈E(Gε)

|r(e) · (u(v2(e))− u(v1(e)))|2 .

As already mentioned, a second important consequence which we can draw
from our constructions is an ε-uniform Poincaré inequality.

Lemma 5.5 (Uniform Poincaré inequality). Let (Gε)ε be a family of graph
realizations with (V εΓ )ε defined by (5.18) in the setting of Definition 5.3.

Then there exist constants C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0)
and u : V (Gε)→ R3 with u = 0 on V εΓ ,∑

v∈V (Gε)

|u(v)|2 ≤ C
∑

e∈E(Gε)

∣∣∣∣u(v2(e))− u(v1(e))
ε

∣∣∣∣2 .
The proof of this lemma is most conveniently executed in the framework
developed in the next section. We thus postpone it to Page 71.

Here is another important lemma which leverages the uniform connectivity
assumption (D2) for Dε:

Lemma 5.6 (Uniform connectivity). Let (Gε)ε be defined by (5.13) in the
setting of Definition 5.3. Then there exist constants C > 0 and ε0 > 0 such
that for all ε ∈ (0, ε0) and any two nodes (v, k), (v′, k′) ∈ V (Gε) there holds

distGε((v, k), (v′, k′)) ≤ C(1 + ‖k − k′‖1) .

Here distGε measures the length of the shortest undirected path in Gε between
two nodes (in terms of numbers of edges).
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Proof. Consider any (v, k), (v′, k′) ∈ V (Gε). Since V (Gε) = V (Gr) +Dε, there
exist d, d′ ∈ Dε such that (v, k) ∈ V (Gr) + d and (v′, k′) ∈ V (Gr) + d′. Since
Gr is finite and connected (see (R1) on Page 62),

distGε((v, k), (v, d)) . 1 , distGε((v, d
′), (v′, k′)) . 1 .

It remains to prove an estimate for distGε((v, d), (v, d′)).
By the uniform connectivity assumption (D2) forDε, there exist d0, . . . , dN ∈

Dε with d = d0, dN = d′ and ‖di−di−1‖1 = 1 for 1 ≤ i ≤ N and N . ‖d−d′‖1.
Since Gr ∪ (Gr + e) is connected for all unit vectors e ∈ Z3, see (R4) on Page 62,
and in particular for e = di−di−1, there exists in G

ε a corresponding path from
(v, d) to (v, d′) via (v, d1), (v, d2), . . . (v, dN−1) with a total length . ‖d− d′‖1.
Thus we have

distGε((v, d), (v, d′)) . ‖d− d′‖1 ≤ ‖d− k‖1 + ‖k − k′‖1 + ‖k′ − d′‖1
. 1 + ‖k − k′‖1 .

5.3 Calculus on periodic graphs

When we consider elastoplastic lattices, the state of such a lattice will be the
union of the states of the individual nodes and edges. We will thus naturally
deal with functions of the form

β : V (Gε)→ X and γ : E(Gε)→ X

for some separable Banach spaces X, that is, with functions defined on the
nodes or edges of the graph Gε.

We implicitly extend such functions β and γ by zero to all of V (Gper) or
E(Gper), respectively. Then we can identify β and γ with functions defined on
R3, piecewise constant on each cell �εk, and having multiple values in X – one
for each node type v ∈ V (G) or edge type e ∈ E(G), respectively:

β : R3 → XV (G) , βv|�ε
k
≡ β((v, k)) for (v, k) ∈ V (Gper) ,

γ : R3 → XE(G) , γe|�ε
k
≡ γ((e, k)) for (e, k) ∈ E(Gper) .

Since edges may represent rods of, e.g., different cross sections, the target space
for an edge-function γ will usually depend on the class e ∈ E(G) of an edge
(e, k) ∈ E(Gε), so that we will replace X with a separate Banach space Ye for
each e ∈ E(G). This leads to Definition 5.8. But first we introduce the cell
projectors P ε.
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Definition 5.7 (ε-cell projections). With P ε we denote the operator that
takes a locally integrable function f defined on R3 with values in some separable
Banach space and averages it on each cell �εk,

P εf(x) := −
∫
�ε
k

f(x)dx for x ∈ �εk , k ∈ Z3 . (5.20)

Definition 5.8 (Functions on periodic graphs). Let (G, z, d) be a period-
icity graph and Gper the associated periodic graph as defined in (5.1). Now let
Gε be a subgraph of Gper, and let X and (Ye)e∈E(G) be separable Banach spaces.
For v ∈ V (G) and e ∈ E(G) we consider the domains

Ωεv(Gε) :=
⋃

k∈Dεv(Gε)

�εk , Dε
v(Gε) := {k ∈ Z3 with (v, k) ∈ V (Gε)} , (5.21)

Ωεe(Gε) :=
⋃

k∈Dεe(Gε)

�εk , Dε
e(Gε) := {k ∈ Z3 with (e, k) ∈ E(Gε)} , (5.22)

Ωε(Gε) :=
⋃

v∈V (G)

Ωεv(Gε) (5.23)

and the corresponding characteristic functions

1εv(Gε) = 1Ωεv(Gε) , 1
ε
e(Gε) = 1Ωεe(Gε) , 1

ε(Gε) = 1Ωε(Gε) : R3 → {0, 1} .

We then introduce the following terminology:

(i) A function α : R3 → R is a Gε-cell function if α = P εα and α = 1ε(Gε)α.

(ii) A function β : R3 → Πv∈V (G)X is a Gε-node function if β = P εβ and
βv = 1εv(Gε)βv for all v ∈ V (G).

(iii) A function γ : R3 → Πe∈E(G)Ye is a Gε-edge function if γ = P εγ and
γe = 1εe(Gε)γe for all e ∈ E(G).

Moreover, given any Gε-cell function α : R3 → R3, we also interpret it as a
Gε-node function by the convention

αv := 1εv(Gε)α , v ∈ V (G) . (5.24)

This just means that we assign the cell-value to all existing nodes in the cell.

Remark. It would be more precise to speak of (Gε, ε)-cell functions etc. instead
of Gε-cell functions etc.: The graph Gε is in itself ignorant of the ε-scale, it
is just a subgraph of Gper. We will, however, always use graphs where the
intended value of ε is indicated with a superscript. Thus no ambiguity should
arise.
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Definition 5.9 (Periodic graph gradient). Let u : R3 → Πv∈V (G)X be
a Gε-node function. We define the Gε-edge function gradε(u;Gε) : R3 →
Πe∈E(G)X by

gradεe(u;Gε) := 1εe(Gε)
Tεd(e)uv2(e) − uv1(e)

ε
, e ∈ E(G) , (5.25)

where Tv for v ∈ R3 is the translation operator (Tvf)(x) := f(x+ v).

Remark. The graph-gradient gradε(u;Gε) contains difference quotients of u
along the edges of the graph Gε. Observe, however, that in the denominator we
do not have the actual length εL(e) of an edge of type e ∈ E(G), but instead
just ε.

We can now cast Lemma 5.4 (the already proved uniform rigidity estimate)
and Lemma 5.5 (the uniform Poincaré inequality which we still need to prove)
into the new language of functions on periodic graphs. In this framework,
boundary values will no longer be prescribed on V εΓ as defined in (5.18), but for
each v ∈ V (G) on Γεv,

Γεv := {x ∈ R3 : x ∈ �εk for some k ∈ Z3 with (v, k) ∈ V εΓ } . (5.26)

Lemma 5.10 (Uniform Rigidity estimate II). Let (Gε)ε be a family of
graph realizations and Γεv as defined by (5.26) in the setting of Definition 5.3.
Then there exists a constant C > 0 such that for all ε ∈ (0, 1) and all Gε-node
functions u : R3 → Πv∈V (G)R3 with uv = 0 on Γεv,∑

e∈E(G)

‖gradεe(u;Gε)‖2L2(R3;R3) ≤ C
∑

e∈E(G)

‖r(e) · gradεe(u;Gε)‖2L2(R3;R3) .

Proof. This lemma is equivalent to Lemma 5.4. Indeed, the summation over all
the cells is implicit in the squared L2(R3;R3)-norm.

Lemma 5.11 (Uniform Poincaré inequality II). Let (Gε)ε be a family of
graph realizations and Γεv as defined by (5.26) in the setting of Definition 5.3.
Then there exist constants C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) and
all Gε-node functions u : R3 → Πv∈V (G)R3 with uv = 0 on Γεv,∑

v∈V (G)

‖uv‖2L2(R3;R3) ≤ C
∑

e∈E(G)

‖gradεe(u;Gε)‖2L2(R3;R3) .

In order to prove Lemma 5.11, and thus Lemma 5.5, we first give the following
lemma.
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Ui

Ũi

∂Ω

∂Ωs

Ṽi Vi

Figure 5.7: Illustration of the shrinking and the Lipschitz covering.

Lemma 5.12 (Shrinking-uniform Poincaré inequality). Let Ω ⊂ Rn de-
note a bounded Lipschitz domain and U ⊂ Ω a nonempty open subset. For s ≥ 0
we consider the shrinked domain

Ωs := {x ∈ Rn : dist(x,Rn \ Ω) > s} ⊂ Ω .

Then there exist s0 > 0 and C > 0 such that

‖u‖L2(Ωs) ≤ C‖∇u‖L2(Ωs;Rn)

for all s ∈ [0, s0] and u ∈ H1(Ωs) with u = 0 in U ∩ Ωs.

Proof. We may assume that U b Ω, since shrinking U makes the statement
only stronger. Since Ω is a bounded Lipschitz domain, we can cover Ω with
open sets U0, . . . , UN ⊂ Rn such that U ⊂ U0 b Ω and for 1 ≤ i ≤ N there
exist rigid transformations φi : Rn → Rn, bounded open sets Vi ⊂ Rn−1 and
Lipschitz continuous functions fi : V i → (0, hi) with

φi(Ui) = Vi × (0, hi) ,
φi(Ω ∩ Ui) = {(x, t) : x ∈ Vi , t ∈ (0, fi(x))} ,

φi(∂Ω ∩ U i) = {(x, t) : x ∈ V i , t = fi(x)} .

Moreover, we can choose Ṽi b Vi such that Ω is still covered by U0, Ũ1, . . . , ŨN ,
where

Ũi := φ−1
i ({(x, t) : x ∈ Ṽi , t ∈ (0, fi(x))} .

See Figure 5.7 for an illustration.
We now fix some 1 ≤ i ≤ N and assume without loss of generality that the

rigid transformation φi is the identity. We claim: For small s > 0 the shrinked
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patch Ωs ∩ Ũi is a subgraph above Ṽi. More precisely, there exists a function
fsi : Ṽi → (0, hi) (not necessarily Lipschitz continuous) such that

Ωs ∩ Ũi = {(x, t) : x ∈ Ṽi , t ∈ (0, fsi (x))} . (5.27)

Proof of the claim. Let us choose s > 0 small enough such that Vi×(−s, 0] ⊂
Ω and dist(Ṽi, ∂Vi) > s. In order to prove the subgraph property for Ωs∩ Ũi, we
consider any (x, t) ∈ Ωs ∩ Ũi and show that (x, r) ∈ Ωs ∩ Ũi for every 0 < r < t.
It is clear that (x, r) ∈ Ũi since Ũi has the subgraph property by definition. It
remains to show that (x, r) ∈ Ωs, i. e. dist((x, r), ∂Ω) > s. Since ∂Ω is compact,
it suffices to show that dist((x, r), (x′, r′)) > s for all (x′, r′) ∈ ∂Ω.

Case 1: (x′, r′) /∈ Ui = Vi × (0, hi). Since Vi × (−s, 0] ⊂ Ω this implies
(x′, r′) /∈ Vi×(−s, hi). On the other hand, (x, t) ∈ Ωs implies r < t < fi(x)−s ≤
hi − s. Thus (x, r) ∈ Ṽi × (0, hi − s). This implies

dist((x, r), (x′, r′)) ≥ dist(Ṽi × (0, hi − s),Rn \ (Vi × (−s, hi))) > s .

Case 2: (x′, r′) ∈ Ui. Then r′ = fi(x′). Now let t′ := max(r′, t). Then

|t′ − t| = max(r′ − t, 0) ≤ max(r′ − r, 0) ≤ |r′ − r| .

Moreover, (x′, t′) ∈ Rn \ Ω, and therefore

dist((x, r), (x′, r′)) ≥ dist((x, t), (x′, t′)) ≥ dist((x, t),Rn \ Ω) > s .

We have thus proved (5.27).
We now drop the assumption that φi is the identity so that instead of (5.27)

we have
φi(Ωs ∩ Ũi) = {(x, t) : x ∈ Ṽi , t ∈ (0, fsi (x))} .

Writing v := u ◦ φ−1
i we have

‖u‖2
L2(Ωs∩Ũi) =

∫
Ṽi

∫ fsi (x)

0
|v(x, t)|2dtdx

.
∫
Ṽi

|v(x, 0)|2 +
∫ fsi (x)

0
|∇v(x, t)|2dtdx

= ‖u‖2
L2(φ−1

i
(Ṽi×{0}))

+ ‖∇u‖2
L2(Ωs∩Ũi) , (5.28)
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with a constant independent of s for small values s > 0. Thus we have, using
that U0 ⊂ Ωs for small s > 0,

‖u‖2L2(Ωs) ≤ ‖u‖
2
L2(U0) +

N∑
i=1
‖u‖2

L2(Ωs∩Ũi)

(5.28)
. ‖u‖2L2(U0) +

N∑
i=1
‖u‖2

L2(φ−1(Ṽi×{0})) + ‖∇u‖2
L2(Ωs∩Ũi)

. ‖u‖2H1(U0) +
N∑
i=1
‖∇u‖2

L2(Ωs∩Ũi) (trace estimate)

. ‖∇u‖2L2(U0) +
N∑
i=1
‖∇u‖2

L2(Ωs∩Ũi) (Poincaré on U0)

. ‖∇u‖2L2(Ωs) .

This shows Lemma 5.12.

Proof of Lemma 5.11. We fix v ∈ V (G) and give an estimate for ‖uv‖2L2(R3;R3).
This is sufficient, since V (G) is finite. The problem can be reduced to the
ordinary Poincaré inequality, and we do so by considering appropriate approxi-
mations to which the Poincaré inequality applies. We denote by ûv : R3 → R3

the trilinear interpolation of uv with respect to the grid εZ3 for which ûv(εk) is
the value of uv on �εk for k ∈ Z3. Since uv is constant on cells, the interpolation
is explicitly given by the formula

ûv(x) := −
∫

(0,ε)3
uv(x+ y)dy =

∫
(0,1)3

uv(x+ εy)dy , x ∈ R3 . (5.29)

The main challenge is to deal with the behaviour of uv near the Neumann-
boundary ∂Ω\Γ of Ω. We therefore consider shrinked versions of Ω∪ΩΓ. Given
any r ∈ N0 and s ≥ 0, we define

Ωεr :=
⋃
k∈Dεr

�εk , Ω̂εs := {x ∈ R3 : dist(x,R3 \ (Ω ∪ ΩΓ)) > εs} ,

where Dε
r ⊂ Dε is the set defined in (5.10). Observe that by (D1), there exists

a constant r0 ∈ N such that Ωε
0 ⊂ Ω̂ε0 and Ω̂ε0 ⊂ Ωε

r0 for all ε > 0. By the
equivalence of the euclidean and the `1 norm in R3, there thus exists a constant
C ∈ N such that

Ωεr ⊂ Ω̂εCr and Ω̂εr ⊂ ΩεC(r+1) for all ε > 0 , r ∈ N . (5.30)
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Note that uv = 0 on Γεv implies gradε(u;Gε) = gradε(u;Gε). Indeed, for
any edge e ∈ E(Gε) \ E(Gε) we have v1(e), v2(e) /∈ V (Gε0) = V (Gε) \ V εΓ by
(5.17) and (5.18). Hence both ends of e are outside the support of u and e does
not contribute to the graph gradient.

By (5.13) and (R2) we have E(Gε) ⊃ E(G)×Dε and thus∑
e∈E(G)

‖gradεe(u;Gε)‖2L2(R3;R3) =
∑

e∈E(G)

‖gradεe(u;Gε)‖2L2(R3;R3)

≥
∑

e∈E(G)

∥∥∥∥uv2(e)(·+ εd(e))− uv1(e)

ε

∥∥∥∥2

L2(Ωε0;R3)
.

By (R4), there exists for 1 ≤ i ≤ 3 a path in Gper joining (v, 0) with (v, ei).
Moreover, these paths only visit nodes (v′, k′) with ‖k′‖1 ≤ r1, where r1 is a
constant only depending in G. Using the triangle inequality along (translated
copies of) these paths, we get the estimate

∑
e∈E(G)

∥∥∥∥uv2(e)(·+ εd(e))− uv1(e)

ε

∥∥∥∥2

L2(Ωε0;R3)
&

3∑
i=1

∥∥∥∥uv(·+ εei)− uv
ε

∥∥∥∥2

L2(Ωεr1 ;R3)
.

The derivatives of ûv can be explicitly computed from (5.29) to be, e.g.,

∂1ûv(x) = −
∫
{0}×(0,ε)2

uv(x+ y + εe1)− uv(x+ y)
ε

dy

= −
∫
x+{0}×(0,ε)2

uv(·+ εe1)− uv
ε

dy ,

with similar formulas for ∂2ûv and ∂3ûv. This implies that

3∑
i=1

∥∥∥∥uv(·+ εei)− uv
ε

∥∥∥∥2

L2(Ωεr1 ;R3)
& ‖∇ûv‖2L2(Ωεr1+1;R3) .

Now by (5.30) there exists r2 > 0 such that Ωεr1+1 ⊃ Ω̂εr2 for all ε > 0 and thus

‖∇ûv‖2L2(Ωεr1+1;R3) ≥ ‖∇ûv‖
2
L2(Ω̂εr2 ;R3) .

Consider some nonempty open subset U b ΩΓ. For small enough ε > 0, we
have ûv = 0 in U (since uv = 0 in ΩΓ) and hence, by Lemma 5.12, we have

‖∇ûv‖2L2(Ω̂εr2 ;R3) & ‖ûv‖
2
L2(Ω̂εr2 ;R3) .
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Again by (5.30) there exists r3 > 0 such that Ω̂εr2 ⊃ Ωε
r3−3 for all ε > 0 and

thus, by the definition of ûv (observe that Ωεr3 + [0, ε]3 ⊂ Ωεr3−3),

‖ûv‖2L2(Ω̂εr2 ;R3) ≥ ‖ûv‖
2
L2(Ωε

r3−3;R3) & ‖uv‖
2
L2(Ωεr3 ;R3) .

In the following we use the notation GD := Gr +D for any D ⊂ Z3. Now with
a constant r4 > 0 depending only on r3 and Gr we have the implication

(v, k) ∈ GDεr4 =⇒ k ∈ Dε
r3 ,

which means that Ωεr3 ⊃ Ωεv(GDεr4 ), where Ωεv(GDεr3 ) is defined as in (5.21), and
therefore

‖uv‖2L2(Ωεr3 ;R3) ≥ ‖uv‖
2
L2(Ωεv(GDεr4

);R3) .

Joining all the above inequalities and writing r := r4, we have∑
e∈E(G)

‖gradεe(u;Gε)‖2L2(R3;Πe∈E(G)R3) & ‖uv‖
2
L2(Ωεv(GDεr );R3) . (5.31)

The proof is not finished yet since we have an estimate uv only on a shrinked
domain.

We now make use of the shrink-and-grow property (D3): There exists some
R ∈ N, depending only r, such that Dε

r,R = Dε for small enough ε > 0.
For sets D ⊂ Z3 of the form D := {d, d± ei} with d ∈ Z3 und i = 1, 2, 3 we

have the uniform Poincaré estimate

‖u‖L2(Ωε(GD);R3) . ε‖gradε(u;GD)‖+ ‖u‖L2(Ωε(G{d});R3) . (5.32)

For the meaning of Ωε(·) we refer to (5.23). Indeed, when the right-hand
side of (5.32) vanishes, u is constant on Ωε(GD) and vanishes on Ωε(G{d}).
Thus it vanishes on Ωε(GD) so that the left-hand side also vanishes. As the
space of GD-node functions is finite-dimensional, this implies the quantitative
estimate (5.32) for fixed D and ε > 0. But (5.32) is clearly translation-invariant
(independent of d) and scaling-invariant (independent of ε).

Summing (5.32) over all D = {d, d± ei} with D ⊂ Dε and d ∈ Dε
r,k, we get

‖u‖L2(Ωε(GDε
r,k

);R3) . ε‖gradε(u;Gε)‖+ ‖u‖L2(Ωε(GDε
r,k−1

);R3) . (5.33)

Summing (5.33) over 1 ≤ k ≤ R and using (5.31) finally yields

‖u‖L2(R3;R3) = ‖u‖L2(Ωε(GDε
r,R

);R3)

. ε‖gradε(u;Gε)‖L2(R3;Πe∈E(G)R3) + ‖u‖L2(Ωε(GDεr );R3)

. ‖gradε(u;Gε)‖L2(R3;Πe∈E(G)R3) .

This finishes the proof of Lemma 5.11.
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5.4 Two-scale convergence

Until now we have never used the notion of Gε-cell functions introduced in
Definition 5.8. In Chapter 6, Gε-cell functions αε : R3 → R3 will serve
to describe cell-averages of node-displacements. The displacements of the
individual nodes relative to the cell-average will then be denoted as εβεv with
a Gε-node function βε : R3 → Πv∈V (G)R3 that satisfies

∑
v∈V (G) β

ε
v = 0. We

thus make the following definition.

Definition 5.13 (Gε-function pairs). Suppose α : R3 → R3 is a Gε-cell
function and β : R3 → Πv∈V (G)R3 is a Gε-node function in the sense of
Definition 5.8. When

∑
v∈V (G) βv = 0 as a function on R3, we call (α, β) a

Gε-function pair.

According to (5.24), every Gε-cell function can also be interpreted as a Gε-cell
function by using each cell-value for all available nodes of the cell. Thus, when
(α, β) is a Gε-function pair, α+ εβ is an ε-node function and its graph-gradient
as defined in (5.25) is

gradεe(α+ εβ;Gε)(x) = α(x+ εd(e))− α(x)
ε

+ βv2(e)(x+ εd(e))− βv1(e)(x)

for e ∈ E(G) and x ∈ Ωε
e(Gε). This motivates the following definition of a

two-scale limit graph gradient.

Definition 5.14 (Limiting periodic graph gradient). For locally integrable
functions α : R3 → R3 and β : R3 → Πv∈V (G)R3 with

∑
v∈V (G) βv = 0, we let

grade(α, β;G) := d(e) · ∇α+ βv2(e) − βv1(e) , e ∈ E(G) ,

in the sense of distributions on R3.

As a preliminary for a two-scale compactness result, we have the following
lemma which improves upon the Poincaré inequality of Lemma 5.11 by providing
an additional estimate for local oscillations.

Lemma 5.15. Let (Gε)ε be a family of graph realizations and Γεv as defined by
(5.26) in the setting of Definition 5.3. Then there exist constants C > 0 and
ε0 > 0 such that for all ε ∈ (0, ε0) and all Gε-function pairs

(α, β) : R3 → R3 ×Πv∈V (G)R3

with αv + εβv = 0 on Γεv,

‖α‖2L2(R3;R3) +
∑

v∈V (G)

‖βv‖2L2(R3;R3) ≤ C
∑

e∈E(G)

‖ gradεe(α+εβ;Gε)‖2L2(R3;Πe∈E(G)R3) .
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Proof. By Lemma 5.11, we already have an estimate for α+ εβ. It is therefore
sufficient to provide an estimate for β.

By Lemma 5.6, any two vertices (v, k), (v′, k) ∈ V (Gε) from the same cell
k ∈ Z3 can be joined with a path in Gε which is uniformly bounded in length.
Suppose this path is

(e1, k1), . . . , (eJ , kJ) ∈ ±E(Gε) .

We can assume that no edge occurs more than once in this list. Now we can
write

βv − βv′ =
J∑
j=1

Tε(kj−k) gradεej (α+ εβ;Gε) on �εk ,

where Tv is the translation operator Tvf(x) = f(x+ v). Thus by the triangle
inequality,

‖βv − βv′‖2L2(�ε
k
;R3) ≤

 J∑
j=1
‖gradεej (α+ εβ;Gε)‖L2(�ε

kj
;R3)

2

≤ J
J∑
j=1
‖gradεej (α+ εβ;Gε)‖2L2(�ε

kj
;R3) .

The uniform bound of the path length J implies that the relevant cells �εkj are
all contained in a ball εBR(k) with a uniform radius R > 0. We thus have

‖βv − βv′‖2L2(�ε
k
;R3) . ‖gradε(α+ εβ;Gε)‖2L2(εBR(k);Πe∈E(G)R3) .

As this is true for every (v, k), (v′, k) ∈ V (Gε) and we also have
∑
v∈V (G) βv = 0,

this implies∑
v∈V (G)

‖βv‖2L2(�ε
k
;R3) . ‖gradε(α+ εβ;Gε)‖2L2(BεR(k);Πe∈E(G)R3) .

A further summation over k ∈ Z3 yields∑
v∈V (G)

‖βv‖2L2(R3;R3) . ‖gradε(α+ εβ;Gε)‖2L2(R3;Πe∈E(G)R3) .

This proves Lemma 5.15.

We now state a lemma about two-scale convergence in the spirit of [5]. Note,
however, that our setting is very simple: the microsopic variable ranges only
over the finite set V (G) as opposed to a continuous periodicity cell.
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Lemma 5.16 (Two-scale compactness). Let (Gε)ε be a family of graph re-
alizations and Γεv as defined by (5.26) in the setting of Definition 5.3. Let

(αε, βε)ε ⊂ L2 (R3;R3 ×Πv∈V (G)R3)
be a sequence of Gε-function pairs with αεv + εβεv = 0 on Γεv. Suppose that there
exists a constant C > 0 such that

‖gradε(αε + εβε;Gε)‖L2(R3;Πe∈E(G)R3) ≤ C for all ε > 0 .

Then there exists a subsequence and (α, β) ∈ L2 (R3;R3 ×Πv∈V (G)R3) such
that

∑
v∈V (G) βv = 0, α|Ω ∈ H1

Γ(Ω;R3), (α, β) = 0 in R3 \ Ω, and

αε ⇀ α in L2(R3;R3) , (5.34)
βε ⇀ β in L2(R3; Πv∈V (G)R3) , (5.35)

gradε(αε + εβε;Gε) ⇀ grad(α, β;G) in L2 (Ω; Πe∈E(G)R3) . (5.36)

Proof. By Lemma 5.15, the bound on gradε(αε+εβε;Gε) implies bounds on αε
in L2(R3;R3) and on βε in L2(R3; Πv∈V (G)R3). Thus there exist a subsequence
and limit functions (α, β) ∈ L2(R3;R3×Πv∈V (E)R3) with

∑
v∈V (G) βv = 0 such

that
αε ⇀ α in L2(R3;R3) , βε ⇀ β in L2(R3; Πv∈V (E)R3) .

Moreover, (α, β) = 0 in R3 \ Ω since αε and βε vanish on every U b R3 \ Ω for
sufficiently small ε > 0. This is a consequence of the approximation property of
Dε and the construction of Gε as Gε = Gr +Dε.

Consider any U b Ω∪ΩΓ. For sufficiently small ε > 0, we have U ⊂ Ωεe(Gε)
for all e ∈ E(G) and therefore

gradεe(αε + εβε;Gε)(x)

= αε(x+ εd(e))− αε(x)
ε

+ βεv2(e)(x+ εd(e))− βεv1(e)(x)

→ d(e) · ∇α(x) + βv2(e)(x)− βv1(e)(x)
= grade(α, β;G)(x)

in the sense of distributions on U . Therefore

gradε(αε + εβε;Gε)→ grad(α, β;G) in D′(Ω ∪ ΩΓ) .

By the uniform bound on gradε(αε + εβε;Gε) we even have

gradε(αε + εβε;Gε) ⇀ grad(α, β;G) in L2(Ω ∪ ΩΓ; Πe∈E(G)R3) .
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In particular, grad(α, β;G) ∈ L2(Ω ∪ ΩΓ; Πv∈V (G)R3). As {d(e) : e ∈ E(G)}
spans R3 (otherwise Gper would not be connected) this implies α ∈ H1(Ω ∪
ΩΓ;R3). Since α = 0 in ΩΓ, we have α|Ω ∈ H1

Γ(Ω;R3).

Remark. In addition to the weak convergence of αε expressed in (5.34), we even
have strong convergence αε → α in L2(R3;R3). We do not give a proof of this
fact since we will not make use of it.

5.5 Recovery Lemma

In this section, we show how continuous quantities can be approximated by
functions on the graphs Gε. We start with a lemma which states a simple and
well-known fact.

Lemma 5.17 (Discretization). Let α ∈ L2(R3;X), where X is a reflexive
Banach space. Then P εα → α in L2(R3;X) as ε → 0 with P ε from Defini-
tion 5.7.

Proof. We first give a proof for α ∈ H1(R3;X). By Poincaré’s inequality, we
have ∥∥∥∥∥α−−

∫
�ε
k

α

∥∥∥∥∥
L2(�ε

k
)

. ε‖∇α‖L2(�ε
k
)

for all ε > 0 and k ∈ Z3. This implies

‖α− P εα‖2L2(R3) =
∑
k∈Z3

∥∥∥∥∥α−−
∫
�ε
k

α

∥∥∥∥∥
2

L2(�ε
k
)

. ε2
∑
k∈Z3

‖∇α‖2L2(�ε
k
)

= ε2‖∇α‖2L2(R3) → 0 .

Now for a general α ∈ L2(R3;X) and δ > 0 we can find a function φ ∈ H1(R3;X)
with ‖α− φ‖L2(R3;X) ≤ δ/2. Then

‖α− P εα‖ ≤ ‖α− φ‖+ ‖φ− P εφ‖+ ‖P ε(φ− α)‖
≤ ‖α− φ‖+ ‖φ− P εφ‖+ ‖φ− α‖
≤ δ + ‖φ− P εφ‖ → δ ,

where we have used that ‖P ε‖ = 1 in the L2-operator norm. As δ > 0 was
arbitrary, this finishes the proof.

In the following lemma, we show how, starting from a limit function on
cells/nodes/edges, we can define discretizations that approximate this function.
This will be important in the construction of recovery sequences.
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Lemma 5.18 (Recovery). Let (Gε)ε be a family of graph realizations and Γεv
as defined by (5.26) in the setting of Definition 5.3. Let X and (Ye)e∈E(G) be
reflexive Banach spaces. In this lemma, all functions defined on Ω are implicitly
extended by zero to all of R3 (in particular f |Ω = f1Ω for any function f on
R3).

(i) Let β ∈ L2(Ω; Πv∈V (G)X). Then the Gε-node function βε, defined by

βεv := 1εv(Gε)P εβv for v ∈ V (G) ,

satisfies βεv = 0 on Γεv and βε → β in L2(R3; Πv∈V (G)X).

(ii) Let γ ∈ L2(Ω; Πe∈E(G)Ye). Then the Gε-edge function γε, defined by

γεe := 1εe(Gε)P εγe for e ∈ E(G) ,

satisfies γε → γ in L2(R3; Πe∈E(G)Ye).

(iii) Let α ∈ H1
Γ(Ω;R3) and β ∈ L2(Ω; Πv∈V (G)R3) with

∑
v∈V (G) βv = 0.

Then the ε-node function ηε, defined by

ηεv := 1εv(Gε)P ε(α+ εβv) for v ∈ V (G) ,

satisfies ηεv = 0 on Γεv and

gradε(ηε;Gε)→ grad(α, β;G)|Ω in L2(R3; Πe∈E(G)R3) .

Moreover, for the unique Gε-function pairs (αε, βε) with ηε = αε + εβε,
there holds

(αε, βε)→ (α, β) in L2(R3;R3 ×Πv∈V (G)R3) .

Proof. (i) Using that 1εv(Gε) and P ε commute, and that ‖P ε‖ ≤ 1, we find
that

‖βv − βεv‖ ≤ ‖βv − P εβv‖+ ‖P εβv − P ε1εv(Gε)βv‖
≤ ‖βv − P εβv‖+ ‖βv − 1εv(Gε)βv‖
= ‖βv − P εβv‖+ ‖βv|Ω\Ωεv(Gε)‖ .

From Lemma 5.17 and the fact that |Ω \ Ωε
v(Gε)| → 0 as ε → 0 we conclude

that ‖βv − βεv‖ → 0.
Observe that β is supported in Ω. Now whenever �εk intersects Ω and (v, k) ∈

V (Gε), we also have (v, k) ∈ V (Gε0), see (5.14). This implies 1εv(Gε)P εβv =
1εv(Gε0)P εβv, and therefore βεv = 0 on Γεv.
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(ii) The same reasoning as in (i) applies.
(iii) We first prove gradε(ηε;Gε)→ grad(α, β;G)|Ω without making use of

the decomposition of ηε. Let us fix e ∈ E(G). We can then compute,

‖gradεe(ηε;Gε)− grade(α, β;G)|Ωεe(Gε)‖
2
L2(R3;R3)

=
∑

k∈Dεe(Gε)

∫
�ε
k

∣∣∣∣−∫
�ε
k

α(y + εd(e))− α(y)
ε

+ βv2(e)(y + εd(e))− βv1(e)(y)dy − grade(α, β;G)(x)
∣∣∣∣2dx

=
∑

k∈Dεe(Gε)

∫
�ε
k

∣∣∣∣−∫
�ε
k

−
∫ ε

0

(
d(e) · ∇α(y + sd(e))− d(e) · ∇α(x)

+ βv2(e)(y + εd(e))− βv1(e)(y) + βv2(e)(x)− βv1(e)(x)
)

dsdy
∣∣∣∣2dx

≤
∑

k∈Dεe(Gε)

∫
�ε
k

−
∫
�ε
k

−
∫ ε

0

∣∣∣∣d(e) · ∇α(y + sd(e))− d(e) · ∇α(x)

+ βv2(e)(y + εd(e))− βv1(e)(y) + βv2(e)(x)− βv1(e)(x)
∣∣∣∣2dsdydx

(∗)
≤
∫

(−1,1)3

∫ 1

0

∫
R3

∣∣∣∣d(e) · ∇α|Ω(x+ εz + εsd(e))− d(e) · ∇α|Ω(x)

+ βv2(e)(x+ εz + εd(e))− βv1(e)(x+ εz) + βv2(e)(x)− βv1(e)(x)
∣∣∣∣2dxdsdz

=
∫

(−1,1)3

∫ 1

0

∥∥∥∥d(e) · ∇α|Ω(·+ εz + εsd(e))− d(e) · ∇α|Ω

+ βv2(e)(·+ εz + εd(e))− βv1(e)(·+ εz) + βv2(e) − βv1(e)

∥∥∥∥2

L2(R3;R3)
dsdz

→ 0 .

For (∗) we have used that for x, y ∈ �εk there holds y = x + εz for some
z ∈ (−1, 1)3. The final convergence follows from the dominated convegence
theorem: The integrand converges by the Fréchet-Kolmogorov theorem and it
is dominated by

(
2‖d(e) · ∇α|Ω‖L2(R3) + 2‖βv2(e)‖L2(R3) + 2‖βv1(e)‖L2(Ω)

)2
∈ R .
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As |Ω \ Ωεe(Gε)| → 0 for ε→ 0, the above convergence implies

gradε(ηε;Gε)→ grad(α, β;G)|Ω

in L2(R3; Πe∈E(G)R3).
It remains to show the convergence of αε and βε. We claim that the

deomposition ηε = αε + εβε is given by

αε := 1ε(Gε)P εα+ εMεβ , βεv := 1εv(Gε)(P εβv −Mεβ) , (5.37)

where
Mεβ =

∑
v∈V (G) 1

ε
v(Gε)P εβv∑

v∈V (G) 1
ε
v(Gε)

.

Indeed, with αε and βε defined by (5.37), we have

αεv + εβεv = 1εv(Gε)(P εα+ εMεβ) + ε1εv(Gε)(P εβv −Mεβ)
= 1εv(Gε)P ε(α+ εβv) = ηεv .

Moreover,

∑
v∈V (G)

βεv =
∑

v∈V (G)

1εv(Gε)
(
P εβv −

∑
v′∈V (G) 1

ε
v′(Gε)P εβv′∑

v′∈V (G) 1
ε
v′(Gε)

)

=
∑

v∈V (G)

1εv(Gε)P εβv −
∑
v∈V (G) 1

ε
v(Gε)∑

v′∈V (G) 1
ε
v′(Gε)

∑
v′∈V (G)

1εv′(Gε)P εβv′

= 0 .

We now observe thatMεβ → 0 in L2(R3;R3). Indeed, |Mεβ| ≤
∑
v∈V (G) |P εβv|

and Mεβ = |V (G)|−1P ε
∑
v∈V (G) βv = 0 in Uε :=

⋂
v∈V (G) Ωεv(Gε) . Therefore

‖Mεβ‖L2(R3;R3) = ‖Mεβ‖L2(R3\Uε;R3)

≤
∑

v∈V (G)

‖P εβv‖L2(R3\Uε;R3)

≤
∑

v∈V (G)

‖βv‖L2(Ω\Uε;R3) → 0 ,

since |Ω \ Uε| → 0. The convergence of Mεβ and the same reasoning as in (i)
now imply that αε → α in L2(R3;R3) and βε → β in L2(R3; Πv∈V (G)R3).





Chapter 6

Homogenization
of elastoplastic lattices

In this chapter, we consider the equations of elastoplasticity on the graphs
Gε introduced in the previous chapter. For this we introduce a parameter
h = h(ε) > 0 which describes the relative thickness of the rods in the lattice
corresponding to Gε.

As in Chapter 4, we start by modeling the physical situation. We describe a
lattice made of elastoplastic material for fixed ε and h, and then we introduce
appropriate scalings. Our main result includes simultaneous homogenization
(ε→ 0) and dimension-reduction (h = h(ε)→ 0).

In all of this chapter, we work in the setting of Definition 5.3. In particular,
(G, z, d) is a periodicity graph which is “unfolded” to the infinite periodic graph
Gper defined by (5.1). Moreover, we have a bounded Lipschitz domain Ω ⊂ R3

and a nonempty open subset Γ of ∂Ω. Along a sequence ε → 0, we have
subgraphs Gε of Gper which approximate the domain Ω on an ε-scale, and V εΓ
is for each ε a set of nodes corresponding to Γ.

We also make free use of the language introduced for functions on periodic
graphs: See Definition 5.8, Definition 5.9, Definition 5.13 and Definition 5.14.

6.1 Elastoplasticity on periodic graphs

We can picture Gε as a one-dimensional structure in R3. But in order to impose
the laws of elastoplasticity, we need a three-dimensional domain. This is where
the thickness-parameter h = h(ε) comes into play. We blow up all the edges of
Gε so that they have a thickness of order εh (they have a length of order ε).
We then consider the displacement fields on each rod separately. This allows

85
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for scalings which depend on the different orientations of the rods. All the
nodes (joints) are assumed to be rigid. Each node is therefore fully described
by a displacement vector and an infinitesimal rotation (i. e. an antisymmetric
matrix). The equations on different rods are only coupled via the state of
adjacent nodes.

We assume that h(ε)→ 0 as ε→ 0. This means that the relative width of
the individual rods tends to zero. The rate of convergence is only relevant for
the loading terms. As in [60], we distinguish between three cases:

(i) Sufficiently thick rods: h(ε)/ε→∞ as ε→ 0,

(ii) Sufficiently thin rods: h(ε)/ε→ 0 as ε→ 0,

(iii) Critical case: h(ε)/ε → θ ∈ (0,∞) as ε → 0. The number θ is an
asymptotical thickness parameter.

In the presence of volume loads, we will observe a qualitatively different be-
haviour in the three cases. The critical case is the most complex, as it combines
the behaviour of the other two cases.

The state space

For the displacements of the nodes we assume from the outset a decomposition
u + εξ, where u ∈ R3 is the overall displacement of a cell �εk, and ξ ∈ R3 is
the ε-order relative displacement of a particular node from that cell. In the
language of Definition 5.13 we can say that

(u, ξ) ∈ L2(R3;R3 ×Πv∈V (G)R3)

is a Gε-function pair. The displacement of a node (v, k) ∈ V (Gε) is given by
the value of u + εξv on �εk. The rotational state of the nodes is given by a
Gε-node function

A ∈ L2(R3; Πv∈V (G)R3×3
asym) .

Let us now turn to the edges. We first have to specify the exact domain
that each edge occupies. For this purpose we fix for each class e ∈ E(G) of
edges a rescaled cross section Be ⊂ R2 which is assumed to be a bounded and
centered Lipschitz domain. We further fix an orthogonal matrix R(e) ∈ SO(3).
The first column of R(e) must be the edge-orientation vector r(e) as defined
in (5.3), r(e) = R(e)e1. The remaining degree of freedom in the matrix R(e)
specifies the rotational alignment of Be along the edge.

The domain occupied by an edge (e, k) ∈ E(Gε) at rest is εk + Ωεe with

Ωεe := ε(z(v1(e)) +R(e)(Ie × hBe)) , Ie := (0, L(e)) .
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(a) Three rods with overlap at a
joint. The bold segments indicate
where boundary values are pre-
scribed via the state of the rigid
joint.

(b) The more physical situation
without overlap. The grey area
indicates the rigid joint.

Figure 6.1: Illustration of the overlap of rods at joints.

Here z : V (Gper)→ R3 is the node placement from (5.2) on Page 58.
Observe that, in this description, the rods will have unphysical overlaps at

the joints (see Figure 6.1). This could be prevented by shortening the rods at
both ends by a length of order εh and attaching the rods at a distance from the
centers of the adjacent joints. As this offset approaches zero as ε→ 0, it would
not appear in the limit equations. For notational ease we will not incorporate
these offsets. For rigorous approaches to the modeling of junctions in the case
of elasticity we refer to [14, 33, 16].

For each edge (e, k) ∈ E(Gε) we have a displacement field and a plastic
strain tensor. These are conveniently described as Gε-edge functions

v ∈ L2(R3; Πe∈E(G)H
1(Ωεe;R3)) , p ∈ L2(R3; Πe∈E(G)L

2(Ωεe;R3×3
dev )) .

Clearly, the set of possible displacements of a rod must be restricted by state of
its neighboring nodes. The state of the nodes provides the boundary data for
the displacement fields of the edge. The precise conditions are

ve(x, εz(v1(e)) + y) = u(x) + εξv1(e)(x) +Av1(e)(x)y (6.1a)

for the first node and

ve(x, εz(v2(e)) + y) = u(x+ εd(e)) + εξv2(e)(x+ εd(e)) (6.1b)
+Av2(e)(x+ εd(e))y

for the second node, for all y ∈ εR(e)({0} × hBe).
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We see that the state (u, ξ, A) of the nodes is implicitly contained in the
state of the edges. In particular, when we define the overall state space, we can
leave out (ξ, A) and just require the existence of some (ξ, A) which satisfy (6.1):

Qε := {(u, v, p) : (6.1) holds for some (ξ, A)}

We decided to keep u in the state space since u is the macroscopic quantity we
are most interested in.

The rate-independent system

As nodes are assumed to be rigid and mass-free, there is neither energy nor
dissipation associated with them. The overall stored energy and dissipation of
the system is thus simply the sum of the stored energy and dissipation of all
the rods.

As in Chapter 4, the material of the rods is described by a stored energy
density W : R3×3

asym × R3×3
asym → R which is a positive quadratic form, and a

dissipation potential R : R3×3
dev → R which is positive one-homogeneous and

convex. We could easily assume different material properties for different classes
e ∈ E(G) of rods. Besides bloating notation, this would have no effect on
the analysis. For notational ease, we do not pursue this generalization. Note
however, that in the case of non-isotropic W one might want to account for the
spatial orientation of the rods and replace the occurrences of We (defined in
(6.8)) with W.

Similar to (4.5) and (4.6), we define

Bε(q) := ε−3
∑

e∈E(G)

∫
R3

∫
Ωεe

W(∇syve(x, y), pe(x, y))dydx , (6.2)

Rε(q) := ε−3
∑

e∈E(G)

∫
R3

∫
Ωεe
R(pe(x, y))dydx (6.3)

for all q = (u, v, p) ∈ Qε. The factor ε−3 compensates for the x-integration
in which every cell �εk, and thus every rod, is discounted with a weight factor
|�εk| = ε3.

Regarding the loads, we restrict our attention to macroscopic volume loads

f
ε ∈W 1,∞(0, T ;L2(R3;R3)) .

With these, we define `ε ∈W 1,∞(0, T ;Q) by

〈`ε(t), q〉 := ε−3
∑

e∈E(G)

∫
R3

∫
Ωεe
f
ε(t, εbx/εc+ y) · ve(y)dydx
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for t ∈ [0, T ] and q = (u, v, p) ∈ Qε. Here, bzc denotes for any z ∈ R3 the
unique integer vector in bzc ∈ Z3 with z − bzc ∈ [0, 1)3. As usual, the total
energy Eε is

Eε(t, q) := Bε(q)− 〈`ε(t), q〉 , t ∈ [0, T ] , q ∈ Qε .

6.2 Scalings

We now perform a rescaling that resembles what we have done in Section 4.1.
Starting from ve(x, ·) and pe(x, ·), we construct functions ve(x, ·) and pe(x, ·)
defined on Ωe := Ie ×Be in the following manner. As in (4.3) and (4.4), we use
Sh := diag(1 , h−1, h−1) to define

ve(x, y) := ε−1h−2S−1
h R(e)−1

(
ve
(
x, ε

(
z(v1(e)) +R(e)S−1

h y
))
− u(x)

)
,

(6.4a)
pe(x, y) := h−2pe(ε(z(v1(e)) +R(e)S−1

h y))) (6.4b)

for x ∈ R3 and y ∈ Ωe. We also rescale A, u and ξ by introducing

A := h−1A , u := h−2u , ξ := h−2ξ . (6.5)

Using (6.4), we can now express the compatibility conditions (6.1) in rescaled
variables: For x ∈ R3 and y ∈ {0} ×Be we have, using S−1

h y = hy,

ve(x, y) = ε−1h−2S−1
h R(e)−1

(
εξv1(e)(x)

+Av1(e)(x)εR(e)S−1
h y

)
= S−1

h R(e)−1
(
ξv1(e)(x) +Av1(e)(x)R(e)y

) (6.6a)

ve(x, y + L(e)e1) = ε−1h−2S−1
h R(e)−1

(
u(x+ εd(e))− u(x)

+ εξv2(e)(x+ εd(e)) +Av2(e)εR(e)S−1
h y

)
= S−1

h R(e)−1
(

gradεe(u+ εξ;Gε)(x) + ξv1(e)(x)

+Av2(e)(x+ εd(e))R(e)y
)
.

(6.6b)
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We now express Bε and Rε, defined in (6.2) and (6.3), in terms of the rescaled
variables (v, p):

Bε(q) = h6
∑

e∈E(G)

∫
R3

∫
Ωe

We(Sh∇syve(x, y)Sh , pe(x, y))dydx , (6.7a)

Rε(q) = h6
∑

e∈E(G)

∫
R3

∫
Ωe
R(pe(x, y))dydx , R := h−2R , (6.7b)

for all q = (v, p) ∈ Qε, where

We(A,P ) := W(R(e)AR(e)−1, P ) , A ∈ R3×3
sym , P ∈ R3×3

dev . (6.8)

Note that in the transformation leading to (6.7), a factor ε3h2 comes from the
change of variables from Ωεe to Ωe, the ε3 being immediately cancelled by the
prefactor in (6.2) and (6.3), while another factor h4 is contributed by the values
of the integrands. We also need to rescale the volume loads fε : [0, T ]×R3 → R3.
In the case of sufficiently thick rods, we define

fε(t, x) := h−2f
ε(t, x) .

This gives us

〈`ε(t), q〉 = ε−3
∑

e∈E(G)

∫
R3

∫
Ωεe
f
ε(
t, εbx/εc+ y

)
· ve(y)dydx

= h6
∑

e∈E(G)

∫
R3

∫
Ωe
fε
(
t, ε(bx/εc+ z(v1(e)) +R(e)S−1

h y
)

·
(
u(x) + εR(e)Shve(y)

)
dydx . (6.9)

In the critical case and in the case of sufficiently thin rods, however, we define

fε(t, x) := εh−3f
ε(t, x) .

This gives us

〈`ε(t), q〉 = h6
∑

e∈E(G)

∫
R3

∫
Ωe
fε
(
t, ε(bx/εc+ z(v1(e)) +R(e)S−1

h y
)

·
(h
ε
u(x) + hR(e)Shve(y)

)
dydx . (6.10)
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Looking at (6.7), (6.9) and (6.10), we see that we have a factor h6 in front of
Eε(t, q) = Bε(q)− 〈`ε(t), q〉 and Rε(q) when expressed in terms of q = (u, v, p).
This suggests that as in Chapter 4 the right way to proceed is to define Eε and
Rε by

Eε(t, q) := h−6Eε(t, q) , Rε(q) := h−6Rε(q) .

This is done in the next section.

6.3 Summary of the setting

In the preceding section, we performed a rescaling, starting from physical
variables q = (u, v, p) and yielding rescaled variables q = (u, v, p) defined
according to (6.4) and (6.5). We have seen that the necessary compatibility
condition in rescaled variables is that u, ξ and A exist such that (6.6) holds.

We define the overall state space

Q := L2

R3;R3 ×
∏

e∈E(G)

H1(Ωe;R3)×
∏

e∈E(G)

L2(Ωe;R3×3
dev )

 . (6.11)

For each ε > 0, the subspace Qε ⊂ Q of compatible states consists of all
q = (u, v, p) ∈ Q such that

(i) u is a Gε-cell function; v and p are Gε-edge functions;

(ii) there exist Gε-node functions

(A, ξ) ∈ L2 (R3; Πv∈V (G)R3×3
asym ×Πv∈V (G)R3)

such that (u, ξ) is a Gε-function pair with uv + εξv = 0 on Γεv and

ve(x, y) =
( 1

h
h

)
R(e)−1

(
ξv1(e)(x) +Av1(e)(x)R(e)y

)
(6.12a)

ve(x, L(e)e1 + y) =
( 1

h
h

)
R(e)−1

(
gradεe(u+ εξ;Gε)(x)

+ ξv1(e)(x) +Av2(e)(x+ εd(e))R(e)y
) (6.12b)

for all x ∈ Ωεe(Gε) and y ∈ {0} ×Be.

As suggested by (6.7), (6.9) and (6.10), the right scaling for energy and dissipa-
tion is

Bε(q) = h−6Bε(q) , Rε(q) = h−6Rε(q) .
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Accordingly we define the stored energy Bε : Q → R∞ and the dissipation
Rε : Q → R∞ for q = (u, v, p) ∈ Q by

Bε(q) :=


∑

e∈E(G)

∫
R3

∫
Ωe

We(Sh∇syve(x, y)Sh , pe(x, y))dydx, if q ∈ Qε ,

+∞ otherwise,
(6.13)

Rε(q) :=
∑

e∈E(G)

∫
R3

∫
Ωe
R(pe(x, y))dydx . (6.14)

We could have set Rε(q) = +∞ for q /∈ Qε. However, this makes no difference as
the definition of the stored energy Bε already enforces q(t) ∈ Qε along energetic
solutions q : [0, T ]→ Q. The total energy is

Eε(t, q) := Bε(q)− 〈`ε(t), q〉 (6.15)

with `ε ∈W 1,∞(0, T ;Q∗). In the case of rescaled volume loads

fε ∈W 1,∞(0, T, L2(R3;R3))

we define in accordance with (6.9), (6.10) and the scaling,

〈`ε(t), q〉 :=
∑

e∈E(G)

∫
R3

∫
Ωe
fε
(
t, ε([x/ε] + z(v1(e)) +R(e)S−1

h y)
)

·
(
h

ε

)γ (
u(x) + εR(e)Shve(x, y)

)
dydx (6.16)

for t ∈ [0, T ] and q = (u, v, p) ∈ Q, where γ = 0 in the case of sufficient thickness
and γ = 1 otherwise. We then have the equivalence

qε is a solution of (Q, Eε,Rε) ⇐⇒ q is a solution of (Qε, Eε,Rε) ,

We will therefore study the asymptotic behaviour of the rate-independent system
(Q, Eε,Rε).

Lemma 6.1 (Convergence of volume loads). Consider a bounded sequence
(fε)ε ⊂ W 1,∞(0, T ;L2(R3;R3)) and let `ε ∈ W 1,∞(0, T ;Q∗) be defined by
(6.16). Suppose that there exists f0 ∈W 1,∞(0, T ;L2(R3;R3)) with fε(t)→ f0(t)
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in L2(R3;R3) for all t ∈ [0, T ]. Define

〈`0thick(t), q〉 :=
∫
R3
f0(t, x) · ρu(x)dx , (6.17)

〈`0thin(t), q〉 :=
∫
R3
f0(t, x) ·

∑
e∈E(G)

R(e)
(

0
1

1

)∫
Ωe
ve(x, y)dydx , (6.18)

`0(t) :=


`0thick for sufficiently thick rods,
`0thin for sufficiently thin rods,
θ`0thick + `0thin in the case of critical thickness,

(6.19)

for t ∈ [0, T ] and q = (u, v, p) ∈ Q, where θ = limε→0 h(ε)/ε is the asymptotical
thickness parameter and ρ :=

∑
e∈E(G) |Ωe|. Then `ε(t)→ `0(t) in Q∗ for all

t ∈ [0, T ].

Proof. Let us consider any weakly converging sequence qε = (uε, vε, pε) ⇀
(u, v, p) = q in Q. Then

(
h

ε

)γ
(uε(x) + εR(e)Shvεe(x, y)) ⇀


u(x) thick
R(e)

(
0

1
1

)
ve(x, y) thin

θu(x) +R(e)
(

0
1

1

)
ve(x, y) critical

(6.20)
in L2(R3 × Ωe;R3).

We now observe that, for fixed t ∈ [0, T ],

fε(t, ε(bx/εc+ z(v1(e)) +R(e)S−1
h y))→ f0(t, x) (6.21)

in L2(R3 × Ωe;R3). This is by the Fréchet-Kolmogorov theorem a consequence
of the L2(R3;R3)-convergence fε(t, ·)→ f0(t, ·) and the uniform convergence

ε(bx/εc+ z(v1(e)) +R(e)S−1
h y)→ x , x ∈ R3 , y ∈ Ωe .

Using (6.20) and (6.21), we can now pass to the limit in the term 〈`ε(t), qε〉,
see (6.16). With `0 as defined by (6.17)–(6.19), we indeed find that

〈`ε(t), qε〉 → 〈`0(t), q0〉 , t ∈ [0, T ] .

This implies qε(t)→ q0(t) in Q∗ for all t ∈ [0, T ].

Remark. Equations (6.17) to (6.19) show that in the thick case, the volume
loads only affect the macroscopic displacements u. In the thin case, however,
the volume loads also affect the local oscillations ve (when the volume loads
describe gravitation, e.g., the non-vertical rods will be sagging). In the critical
case, both effects coexist.
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6.4 Description of the limit system

The limit state space is the linear subspace Q0 ⊂ Q which consists of all
q = (u, v, p) ∈ Q such that q = 0 in the complement of Ω and u|Ω ∈ H1

Γ(Ω;R3)
as well as ∇syv ∈ span(e1 ⊗ e1) a. e., and such that there holds the following
compatibility condition: There exist

(A, ξ) ∈ L2 (R3; Πv∈V (G)R3×3
asym ×Πv∈V (G)R3)

such that (A, ξ) = 0 in the complement of Ω with
∑
v∈V (G) ξv = 0 and

ve(x, y) =
(

1
0

0

)
R(e)−1

(
ξv1(e)(x) +Av1(e)(x)R(e)y

)
, (6.22a)

ve(x, y + L(e)e1) =
(

1
0

0

)
R(e)−1

(
grade(u, ξ;G)(x)

+ ξv1(e)(x) +Av2(e)(x)R(e)y
) (6.22b)

for all e ∈ E(G), x ∈ Ω and y ∈ {0} ×Be.
The limit dissipation functional is just

R0 := Rε (6.23)

with Rε as defined in (6.14). We now define the limit stored energy

B0 : Q → R∞ .

For q ∈ Q \ Q0 we set B0(q) :=∞. For q = (u, v, p) ∈ Q0 we set

B0(q) :=
∑

e∈E(G)

∫
R3

inf
g

∫
Ie

inf
f,w

∫
Be

We

 ∂y1ve,1(x, y) ∗ ∗
∂2f(y′)− g′(y1)y3
∂3f(y′) + g′(y1)y2

∇sw(y′)

 , pe(x, y)

 dydx , (6.24)

where y = (y1, y
′). The infima are taken over all

g ∈ H1(Ie) , f ∈ H1(Be) , w ∈ H1(Be;R2)

such that

g(0) = 1
2
(
R(e)−1Av1(e)(x)R(e)

)
23 ,

g(L(e)) = 1
2
(
R(e)−1Av2(e)(x)R(e)

)
23 .
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For the volume loads, we consider f0 ∈W 1,∞(0, T ;L2(R3;R3)) and define
`0 ∈W 1,∞(0, T ;Q∗) by (6.19). The limiting total energy is set to

E0(t, q) := B0(q)− 〈`0(t), q〉 .

The following lemma gives an alternative description of B0, where the infima are
outside the sum and integral signs. Moreover, the infimized quantities possess
some additional regularity and additional boundary conditions. This will be
beneficial in the construction of recovery sequences, where these quantities are
used.

Lemma 6.2. For q = (u, v, p) ∈ Q0 there holds

B0(q) = inf
f, g, w

∑
e∈E(G)

∫
R3

∫
Ωe

We

 ∂y1ve,1(x, y) ∗ ∗
∂y2fe(x, y)− ∂y1ge(x, y1)y3
∂y3fe(x, y) + ∂y1ge(x, y1)y2

∇sy2,y3
we(x, y)

 , pe(x, y)

 dydx ,

(6.25)

where the infimum is taken over all

f ∈ L2(R3; Πe∈E(G)H
1(Ωe)) ,

g ∈ L2(R3; Πe∈E(G)H
1(Ie)) ,

w ∈ L2(R3; Πe∈E(G)H
1(Ωe;R2))

such that fe = we = 0 on R3 × ∂Ie ×Be and

ge(x, 0) = 1
2
(
R(e)−1Av1(e)(x)R(e)

)
23 ,

ge(x, L(e)) = 1
2
(
R(e)−1Av2(e)(x)R(e)

)
23

for e ∈ E(G) and x ∈ R3.

Proof. We only have to prove “≥” in (6.25), the opposite inequality is clear. For
brevity, we denote the integrand on the right-hand side of (6.25) with ellipses
(“. . . ”). The statement now follows from Lemma B.2. Applying Lemma B.2
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with J = Ω, we get

inf
f∈L2(R3;Πe∈E(G)H

1(Ωe))
g∈L2(R3;Πe∈E(G)H

1(Ie))
w∈L2(R3;Πe∈E(G)H

1(Ωe)
+boundary conditions

∑
e∈E(G)

∫
R3

∫
Ωe
. . . dydx

=
∑

e∈E(G)

inf
f∈L2(R3;H1(Ωe))
g∈L2(R3;H1(Ie))
w∈L2(R3;H1(Ωe))

+boundary conditions

∫
R3

∫
Ωe
. . . dydx

Lemma B.2
≤

∑
e∈E(G)

∫
R3

inf
f∈H1(Ωe)
g∈H1(Ie)

w∈H1(Ωe;R2)
+boundary conditions

∫
Ωe
. . . dydx . (6.26)

Applying Lemma B.2 once more, now with J = Ie, we also get

inf
f∈H1(Ωe)

w∈H1(Ωe;R2)
+boundary cond.

∫
Ωe
. . . dy ≤ inf

f∈H1
0 (Ie;H1(Be))

w∈H1
0 (Ie;H1(Be;R2))

∫
Ie

∫
Be

. . . dy′dy1

Lemma B.2
≤

∫
Ie

inf
f∈H1(Be)

w∈H1(Be;R2)

∫
Be

. . . dy′dy1 . (6.27)

Continuing (6.26) with the help of (6.27), we get

inf
f∈L2(R3;Πe∈E(G)H

1(Ωe))
g∈L2(R3;Πe∈E(G)H

1(Ie))
w∈L2(R3;Πe∈E(G)H

1(Ωe)
+boundary conditions

∑
e∈E(G)

∫
R3

∫
Ωe
. . . dydx

≤
∑

e∈E(G)

∫
R3

inf
g∈H1(Ie)

+boundary cond.

∫
Ie

inf
f∈H1(Be)

w∈H1(Be;R2)

∫
Be

. . . dy′dy1dx = B0(q) ,

where we used the definition of B0 from (6.24).

Discussion of the limit stored energy

Let us derive an alternative description of the stored limit energy B0 defined in
(6.24). The results of the following considerations are stated in Proposition 6.3
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below. We consider the reduced stored limit energy

B0
red(u, p) := inf

v
B0(u, v, p) .

Observe that by (6.24) we can write

B0
red(u, p) =

∫
R3
F (∇su(x), p(x))dx

with a limit energy density F : R3×3
sym × Πe∈E(G)L

2(Ωe;R3×3
dev ) → R which is

defined as

F (ε, p) := inf
A,ξ,v

∑
e∈E(G)

inf
g

∫
Ie

inf
f,w

∫
Be

We

 ∂1ve,1(y) ∗ ∗
∂2f(y′)− g′(y1)y3
∂3f(y′) + g′(y1)y2

∇sw(y′)

 , pe(y)

dy′dy1 . (6.28)

Here, the first infimum is taken over all ξ ∈ Πv∈V (G)R3, A ∈ Πv∈V (G)R3×3
asym,

and v ∈ Πe∈E(G)H
1(Ωe;R3) such that ∇sve ∈ span(e1 ⊗ e1) a. e. and

ve(y) =
(
r(e) ·

(
ξv1(e) +Av1(e)Rey

))
e1 , (6.29a)

ve(y + L(e)e1) =
(
r(e) ·

(
ξv2(e) +Av2(e)Rey + εd(e)

))
e1 (6.29b)

Observe that the argument ε in (6.28) only enters in (6.29b). The second
infimum in (6.28) is taken over all g ∈ H1(Ie) with

g(0) = 1
2
(
R(e)−1Av1(e)R(e)

)
23 , g(L(e)) = 1

2
(
R(e)−1Av2(e)R(e)

)
23 .

(6.30)
The third infimum in (6.28) is taken over all f ∈ H1(Be) and w ∈ H1(Be;R2)
without any further constraints.

Applying Lemma 4.1 to ve and using the boundary conditions of (6.29) to
conclude that the α of Lemma 4.1 must be α = 0, we see that we can write

ve(y) = ve(y1)−

∂1ve,2(y1)y2 + ∂1ve,3(y1)y3
0
0

 (6.31)

with ve,1 ∈ H1(Ie) and ve,2, ve,3 ∈ H2(Ie). The boundary values that follow
from (6.29) are

ve,1(0) = r(e) · ξv1(e) ve,1(L(e)) = r(e) ·
(
ξv2(e) + εd(e)

)
(6.32a)

ve,j(0) = 0 ve,j(L(e)) = 0 (6.32b)
∂1ve,j(0) = Av1(e)r(e) ·R(e)ej ∂1ve,j(L(e)) = Av2(e)r(e) ·R(e)ej , (6.32c)
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where j ∈ {2, 3}.

In order to make the formula for the energy more transparent (in particular
its dependence on ε), we want to get rid of the dependendencies between the
arguments and the infimized quantities expressed in (6.29) and (6.30). We
achieve this decoupling by using the unique decomposition ve,j = v0

e,j + v1
e,j in

which

(i) v0
e,1 ∈ H1

0 (Ie) and v0
e,2, v

0
e,3 ∈ H2

0 (Ie),

(ii) v1
e,1 is a polynomial of degree one (i.e. affine) and v1

e,2, v
1
e,3 are polynomials

of degree three.

We now can give an explicit formula for v1
e,j and independently infimize over

v0
e,j . By (6.32a) we clearly must have

v1
e,1(y1) = r(e) · ξv1(e) + y1

L(e)r(e) ·
(
εd(e) + ξv2(e) − ξv1(e)

)
.

As for v1
e,2 and v1

e,2, we use the following general fact which is easy to verify:
For a third-order polynomial f : [0, L]→ R the boundary conditions

f(0) = f(L) = 0 , f ′(0) = a , f ′(L) = b

imply

f(x) = ax− 2a+ b

L
x2 + a+ b

L2 x3 , f ′′(x) = −22a+ b

L
+ 6a+ b

L2 x . (6.33)

In the end, we are interested in an expression for ∂1v1(y), because this term
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enters into the formular for F (η, p) in (6.28). We have:

∂1v1(y) =
1∑
i=0

∂1v
i
1(y1)− ∂2

1v
i
2(y1)y2 − ∂2

1v
i
3(y1)y3

= ∂1v
0
1(y1)− ∂2

1v
0
2(y1)y2 − ∂2

1v
0
3(y1)y3

+
ηd(e) + ξv2(e) − ξv1(e)

L(e) · r(e)

+ 2
2Av1(e) +Av2(e)

L(e) r(e) ·R(e)e2y2 − 6
Av1(e) +Av2(e)

L(e)2 r(e) ·R(e)e2y1y2

+ 2
2Av1(e) +Av2(e)

L(e) r(e) ·R(e)e3y3 − 6
Av1(e) +Av2(e)

L(e)2 r(e) ·R(e)e3y1y3

= ∂1v
0
1(y1)− ∂2

1v
0
2(y1)y2 − ∂2

1v
0
3(y1)y3

+
ηd(e) + ξv2(e) − ξv1(e)

L(e) · r(e)

+ 1
L(e)

(
4Av1(e) + 2Av2(e) − 6

(
Av1(e) +Av2(e)

) y1

L(e)

)
r(e) ·R(e)y

= ∂1v
0
1(y1)− ∂2

1v
0
2(y1)y2 − ∂2

1v
0
3(y1)y3 + r(e)

L(e) ·
(

ηd(e) + ξv2(e) − ξv1(e)

+
((
Av2(e) −Av1(e)

)
− 3

(
1− 2y1

L(e)

) (
Av2(e) +Av1(e)

))
R(e)y

)
.

Inserting this back into (6.28), we arrive at the following description of the limit
stored energy.

Proposition 6.3. Let B0 : Q0 → R denote the stored limit energy defined by
(6.24) and let B0

red(u, p) := infv B0(u, v, p) Then

B0
red(u, p) =

∫
Ω
F (∇su(x), p(x))dx,

where the limit energy density

F : R3×3
sym ×Πe∈E(G)L

2(Ωe;R3×3
dev )→ R
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is defined by

F (ε, p) := inf
A,ξ

∑
e∈E(G)

inf
v,g

∫
Ie

inf
f,w

∫
Be

We

(

1
L(e)

((
εd(e) + ξv2(e) − ξv1(e)

)
· r(e)− 6

(
1− 2y1

L(e)

)(
A+
e y
)

1

)
e1 ⊗ e1

+ 1
L(e)

(
2A−e

(
0
y′

)
, 0, 0

)
sym

+

v′1(y1)− v′′2 (y1)y2 − v′′3 (y1)y3 ∗ ∗
∂2f(y′)− g′(y1)y3
∂3f(y′) + g′(y1)y2

∇sw

 ,

pe(y)
)

dy′dy1 . (6.34)

Here, the infimization takes place over all

A ∈ Πv∈V (G)R3×3
asym , ξ ∈ Πv∈V (G)R3 , v ∈ H1

0 (Ie)×H2
0 (Ie)×H2

0 (Ie) ,
g ∈ H1

0 (Ie) , f ∈ H1(Be) , w ∈ H1(Be;R2) ,

and we use the abbreviations A±e := 1
2R(e)−1 (Av2(e) ±Av1(e)

)
R(e).

Remark. In order to completely reduce the rate-independent system (Q, E0,R0)
from the state space containing q = (u, v, p) to the space containing only (u, p),
we also need to express the load term 〈`0(t), q〉 and the dissipation R0 in terms
of (u, p). The dissipation depends by definition only on p, see (6.23). But for
the load-term, this reduction is not always possible. For example, when `0 is
defined by volume-loads as in (6.17)–(6.19), the reduction is only possible in the
case of sufficient thickness. In the critical and thin case, one has to deal with
the expression

∫
Ωe ve,j(y)dy for j = 2, 3 which translates in our setting into

|Be|
(∫

Ie

ve,j(y1)dy1 + 1
6(A−e )j1L(e)2

)
.

Here we made use of the fact that
∫ L

0 f(x)dx = 1
12 (a− b)L2 when f is defined

as in (6.33). This reveals a dependence of the load-term on v2, v3 and A. These
variables therefore cannot be independently reduced in the stored energy. This
issue can be resolved by incorporating v2, v3 and A into the state space and
defining B0

red(u, p, v2, v3, A) via an energy density of the form F (ε, p, v2, v3, A)
which differs from the definition of F (ε, p) in (6.34) only in that no infimization
takes place over v2, v3 and A.
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6.5 Statement of the convergence result

In this section, we formulate the main convergence result. We also give a proof,
but in doing so we refer to the results of the following sections.

Let us suppose that `ε ∈ W 1,∞(0, T ;Q∗) satisfies `ε(t) → `0(t) for all
t ∈ [0, T ], and moreover ‖`ε‖W 1,∞(0,T ;Q∗) ≤ C for all ε ∈ [0, 1]. Such sequences
of loads can be realized, e.g., by volume loads as in Lemma 6.1.

We claim that the rate-independent system (Q, E0,R0) is the limit of the
systems (Q, Eε,Rε) in the following sense.

Theorem 6.4. Consider a family of energetic solutions qε ∈ L1(0, T ;Q) for
the rate-independent system (Q, Eε,Rε) for ε ≥ 0 such that

qε(0) ⇀ q0(0) , Bε(qε(0))→ B0(q0(0))
as ε→ 0. Then also

qε(t)→ q0(t) , Bε(qε(t))→ B0(q0(t))
for all t ∈ [0, T ] as ε→ 0. Moreover,

DissRε(qε; [0, t])→ DissR0(q0; [0, t]) , 〈∂t`ε(t), qε(t)〉 → 〈∂t`0(t), q0(t)〉 .
Proof. The statement of the theorem follows from Theorem 3.4. We only need
to check that the assumptions (A)–(D) on Pages 28 and 29 are satisfied:

(A) The stored energy functionals Bε are quadratic forms since W is a quadratic
form. Moreover, Bε is continuous, hence lower-semicontinuous. What
remains to be proved is the equicoercivity. This is done in Proposition 6.6
below.

(B) The dissipation functionalsRε are all equal toR. The functionR is positive
one-homogeneous and convex because R is positive one-homogeneous and
convex. Moreover, R is continuous, hence lower-semicontinuous.

(C) The assumption on the Lipschitz bound of the loads `ε was just repeated
in Theorem 6.4.

(D) The Mosco-convergence of Bε is proved in Propositions 6.7 and 6.8 below.
The Mosco-convergence and continuous convergence of Rε immediately
follows from the continuity and weak lower-semicontinuity of Rε = R.
The assumption on the convergence of the loads `ε was just repeated in
Theorem 6.4.

Thus the theorem is proved once Propositions 6.6 to 6.8 are established.

In the following sections, we provide the missing parts referred to in the above
proof: equi-coercivity and Mosco-convergence of Bε.
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6.6 Proof of the equicoercivity

In this section, we derive energy estimates for lattices of rods. We start by
considering a single rod. Its elastic energy is estimated in terms of prescribed
Dirichlet boundary values, that is, in terms of the state of its neighboring nodes.

Lemma 6.5 (Estimates for a single rod). Let Ω = (0, L)× B with L > 0
and B ⊂ R2 a bounded and centered Lipschitz domain, i.e.

∫
B

(y2, y3)dy2dy3 = 0.
For v ∈ H1(Ω;R3) and h ∈ (0, 1) we consider the affine boundary conditions

v(y) = S−1
h

(
A0y + d0) , v(y + Le1) = S−1

h

(
A1y + d1) . (6.35)

for y ∈ {0} ×B with given d0, d1 ∈ R3 and A0, A1 ∈ R3×3
asym.

We use the shorthands A± := 1
2 (A1 ± A0) and d := d1 − d0. There exist

constants C1, C2 > 0 such that:

(i) For all h ∈ (0, 1), d0, d1 ∈ R3, A0, A1 ∈ R3×3
asym and v ∈ H1(Ω;R3) such

that (6.35) is satisfied, there holds

|A−|2 + |S−1
h d−A+Le1|2 ≤ C1‖Sh∇svSh‖2L2(Ω;R3×3

sym) . (6.36)

(ii) For all h ∈ (0, 1), d0, d1 ∈ R3, A0, A1 ∈ R3×3
asym, there exists v ∈ H1(Ω;R3)

such that (6.35) is satisfied and

‖Sh∇svSh‖2L2(Ω;R3×3
sym) ≤ C2

(
|A−|2 + |S−1

h d−A+Le1|2
)
. (6.37)

Remark. Observe that

|A−|2 + |S−1
h d−A+Le1|2

= |A−|2 + |d1|2 + |hd2 − LA+
21|2 + |hd3 − LA+

31|2 .

In particular, (6.36) implies that the elastic energy ‖Sh∇svSh‖2L2(Ω;R3×3
sym) con-

trols the longitudinal displacement d1. When considering not one isolated rod,
but a rigid system of rods, the rigidity of that system will enable us to control
the full set of displacement vectors d.

Proof. Throughout this lemma, we can assume without loss of generality that
A0 = 0 and d0 = 0. Indeed, consider any v ∈ H1(Ω;R3) such that (6.35) is
satisfied. We then transform it to

ṽ(y) := v(y)− h−1S−1
h A0S−1

h y − S−1
h d0 .
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This transformation leaves the symmetric gradient unchanged: We have ∇sv =
∇sṽ since S−1

h A0S−1
h is antisymmetric. Moreover, with

d̃0 = 0 , d̃1 = d−A0Le1 , Ã0 = 0 , Ã1 = A1 −A0 .

the transformed field ṽ satisfies

ṽ(y) = 0 = S−1
h

(
Ã0y + d̃0) ,

ṽ(y + Le1) = S−1
h (A1y + d1)− h−1S−1

h A0S−1
h (y + Le1)− S−1

h d0

= S−1
h

(
(A1 −A0)y + d−A0Le1

)
= S−1

h (Ã1y + d̃1)

for y ∈ {0} ×B. We also write Ã± := 1
2 (Ã1 ± Ã0) and d̃ := d̃1 − d̃0 = d̃1. Then

Ã− = A− and

S−1
h d̃− Ã+Le1 = S−1

h (d−A0Le1)−A−Le1 = S−1
h (d−A+Le1) .

We have thus seen that both sides of (6.36) and (6.37) are invariant under the
transformation from v to ṽ. We therefore can from now on assume that A0 = 0
and d0 = 0.

Once we have A0 = 0, we furthermore note that

|A−|2 + |S−1
h d−A+Le1|2 ∼ |A1|2 + |S−1

h d|2 , (6.38)

since A+ = A− = 1
2A

1.
(i) Using the Poincaré-Korn inequality (Lemma A.4(i)) on Ω with zero

boundary values on {0} ×B, and a trace theorem, we find that

‖Sh∇svSh‖2L2(Ω;R3×3
sym) ≥ ‖∇

sv‖2
L2(Ω;R3×3

sym) & ‖v‖
2
H1(Ω;R3)

& ‖v|{L}×B‖2L2({L}×B;R3)

= ‖S−1
h (A1y + d)‖2L2({0}×B;R3)

& |A1
12|2 + |A1

13|2 + |S−1
h d|2 .

Because of (6.38) and |A1|2 ∼ |A1
12|2 + |A1

13|2 + |A1
23|2, this almost proves (6.36).

It remains only to provide an estimate for |A1
23|2.

Observe that

v2(y) = 0 , v2(y + Le1) = hA1
23y3 + hd2

for y ∈ {0} ×B. It follows from the fundamental theorem of calculus that

h−1
∫

Ω
∂1v2(y)y3dy =

∫
B

A1
23y

2
3 + d2y3dy′ = A1

23

∫
B

y2
3dy′
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with y′ = (y2, y3). This implies

A1
23 = h−1

(∫
B

y2
3dy′

)−1 ∫
Ω

(
∂1v2(y)−−

∫
B

∂1v2(y1, y
′)dy′

)
y3dy ,

since the term with the averaged integral vanhishes after the Ω-integration by∫
Ω y3 = 0. Therefore

|A1
23| .

∥∥∥∥h−1
(
∂1v2 −−

∫
B

∂1v2(·, y′)dy′
)∥∥∥∥

L2(Ω)

. ‖Sh∇svSh‖L2(Ω;R3×3
sym) ,

where the last inequality follows by Korn’s inequality for thin domains, Lemma 4.4.
(ii) Given h > 0, A1 ∈ R3×3

asym and d ∈ R3, let us define

g : [0, L]→ R , w : [0, L]→ R3

by the following conditions: Both g and w1 are affine, whereas w2 and w3 are
polynomials of order 3, and there holds

g(0) = 0 , g(L) = A1
23 , w(0) = 0 , w(L) = S−1

h d ,

w′2(0) = 0 , w′2(L) = A1
12 , w′3(0) = 0 , w′3(L) = A1

13 .
(6.39)

With these functions, we define

v(y) := w(y1) +

w′2(y1)y2 + w′3(y1)y3
hg(y1)y3
−hg(y1)y2

 .

One can easily check that (6.35) holds (recall that we assumed A0 = 0).
Moreover,

Sh∇sv(y)Sh =

w′1(y1) + w′′2 (y1)y2 + w′′3 (y1)y3 ∗ ∗
1
2g
′(y1)y3 0 0

− 1
2g
′(y1)y2 0 0

 .

As w1, w2, w3 and g are polynomials which are solely defined by the boundary
conditions (6.39), we have

‖w′1‖2L2(0,L) + ‖w′′2‖2L2(0,L) + ‖w′′3‖2L2(0,L) + ‖g′‖L2(0,L) . |A1|2 + |S−1
h d|2

and thus
‖Sh∇svSh‖2L2(Ω;R3×3

sym) . |A
1|2 + |S−1

h d|2 .

By (6.38), this finishes the proof of (6.37).
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Proposition 6.6 (Equi-coercivity). We consider Bε of (6.13), describing
the stored energy of a lattice of thin rods. There exists a constant β > 0 such
that

β‖qε‖2 ≤ Bε(qε) (6.40)
for all qε ∈ Q and ε ∈ (0, 1). Moreoever, there exists a constant C > 0 such
that for all qε = (uε, vε, pε) ∈ Qε there holds

‖vε‖2
L2(R3;Πe∈E(G)H1(Ωe;R3)) + ‖ gradε(uε + εξε;Gε)‖2

L2(R3;Πe∈E(G)R3)+

‖Aε‖2
L2(R3;Πv∈V (G)R3×3

asym) + ‖pε‖2
L2(R3;Πe∈E(G)L2(Ωe;R3×3

dev )) ≤ CB
ε(q) (6.41)

where
(Aε, ξε) ∈ L2 (R3; Πv∈V (G)R3×3

asym × R3)
are Gε-node functions such that (uε, ξε) is a Gε-function pair with uεv + εξεv = 0
on Γεv and the compatibility condition (6.12) holds.

Proof. The estimate (6.40) immediately follows from (6.41) with the help of
Lemma 5.15. We therefore directly give a proof for (6.41).

In the proof we will drop the ε-superscripts for better readability. We
consider the terms on the left-hand side of (6.41). The p-term is trivially
estimated from

Bε(q) =
∑

e∈E(G)

∫
R3

∫
Ωe

We(Sh∇syve(x, y)Sh , pe(x, y))dydx

&
∑

e∈E(G)

∫
R3
‖Sh∇syve(x, ·)Sh‖2L2(Ωe;R3×3

sym) + ‖pe(x, ·)‖2L2(Ωe;R3×3
dev )dx .

For the other terms we need to invoke Lemma 6.5(i) with

d := R(e)−1 gradεe(u+ εξ;Gε)(x) ,
A0 := R(e)−1Av1(e)(x)R(e) ,
A1 := R(e)−1Av2(e)(x+ εd(e))R(e) ,

according to compatibility condition (6.12) for v. In a first step, we use the
estimate for d1 in (6.36) in order to find that

Bε(q) &
∑

e∈E(G)

∫
R3
‖Sh∇syve(x, ·)Sh‖2L2(Ωe;R3×3

sym)dx

&
∑

e∈E(G)

∫
R3

∣∣(R(e)−1 gradεe(u+ εξ;Gε)(x)
)

1

∣∣2 dx .
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Noting that (R(e)−1a)1 = a · R(e)e1 = a · r(e) for any a ∈ R3, and using the
uniform rigidity estimate from Lemma 5.10, we then have

Bε(q) &
∑

e∈E(G)

∫
R3
|gradεe(u+ εξ;Gε)(x) · r(e)|2 dx

&
∑

e∈E(G)

∫
R3
|gradεe(u+ εξ;Gε)(x)|2 dx

= ‖ gradε(u+ εξ;Gε)‖2
L2(R3;Πe∈E(G)R3) . (6.42)

Having thus obtained a bound on all components of d, we can use (6.36) again
to get estimates for A0 and A1. Indeed, in the setting of Lemma 6.5, it follows
from (6.36) that

|A0e1|2 + |A1e1|2 . ‖Sh∇svSh‖2L2(Ω;R3×3
sym) + |d|2 .

Therefore, recalling that r(e) = R(e)e1, we have

Bε(q) &
∑

e∈E(G)

∫
R3

∣∣Av1(e)(x)r(e)
∣∣2 +

∣∣Av2(e)(x+ εd(e))r(e)
∣∣2 dx

=
∑

e∈E(G)

∫
R3

∣∣Av1(e)(x)r(e)
∣∣2 +

∣∣Av2(e)(x)r(e)
∣∣2 dx . (6.43)

Now we observe that for all v ∈ V (G),

span{r(e) : e ∈ E(G) with v1(e) = v or v2(e) = v} = R3 . (6.44)

This is a consequence of the infinitesimal rigidity of Gper (see Lemma 5.2).
Indeed, let w denote a vector from the orthogonal complement of the left-hand
side of (6.44) and define u : V (Gper)→ R3 by u(v, 0) = w and u = 0 everywhere
else. Then (5.9) yields that u must be constant and it follows that w = 0. Now
a direct consequence of (6.44) is that∫

R3
|Av(x)|2dx .

∑
e∈E(G)

∫
R3
|Av1(e)(x)r(e)|2dx+

∫
R3
|Av2(e)(x)r(e)|2dx

for all v ∈ V (G). Hence we can continue (6.43) and get

Bε(q) &
∑

v∈V (G)

∫
R3
|Av(x)|2 dx = ‖A‖L2(R3;Πv∈V (G)R3) . (6.45)
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In order to get an estimate for v, we first define

ṽe(x, y) := ve(x, y)− h−1S−1
h R(e)−1Av1(e)(x)R(e)S−1

h y − S−1
h R(e)−1ξv1(e)(x) .

Then ∇syv = ∇sy ṽ and ṽe(x, y) = 0 for y ∈ {0} ×Be. We can thus apply Korn’s
inequality from Lemma A.4(i) to find

‖ṽ‖L2(R3;Πe∈E(G)H1(Ωe;R3)) ≤ C‖∇
s
yv‖L2(R3;Πe∈E(G)L2(Ωe;R3×3

sym)) .

But then

‖v‖L2(R3;Πe∈E(G)H1(Ωe;R3))
. ‖ṽ‖L2(R3;Πe∈E(G)H1(Ωe;R3)) + ‖ξ‖L2(R3;Πv∈V (G)R3)

+ ‖h−1S−1
h R(e)−1AR(e)S−1

h ‖L2(R3;Πv∈V (G)R3×3
asym)

. ‖∇syv‖L2(R3;Πe∈E(G)L2(Ωe;R3×3
sym)) + ‖A‖L2(R3;Πv∈V (G)R3×3

asym)
+ ‖gradε(u+ εξ;Gε)‖2

L2(R3;Πe∈E(G)R3)
. Bε(q) ,

where we have used Lemma 5.15 for the estimate of ξ, and (6.42) and (6.45) in
the last step.

6.7 Proof of the Mosco-convergence

Proposition 6.7 (Lower bound). Consider Bε as defined in (6.13) and B0

as defined in (6.24). Given any weakly convergent sequence qε ⇀ q in Q there
holds

lim inf
ε→0

Bε(qε) ≥ B0(q) . (6.46)

Proof. Step 1. We write (uε, vε, pε) := qε and (u, v, p) := q. Without loss of
generality, we may assume that Bε(qε) is uniformly bounded along a subsequence.
We consider a subsequence with Bε(qε)→ lim infε→0 Bε(qε).

Recall that qε ∈ Qε consists of Gε-node and Gε-edge functions. It thus
follows immediately from qε ⇀ q and our construction of Gε (going back to
(D1) on Page 65) that q = 0 in R3 \ Ω. Moreover, the bound on Bε(qε) implies
by the definition of Bε a bound on Sh∇syvεSh in L2(R3; Πe∈E(G)L

2(Ωe;R3×3
sym)).

Therefore (∇syvε)ij → 0 in L2(R3; Πe∈E(G)L
2(Ωe)) and (∇syv)ij = 0 for (i, j) 6=

(1, 1). This shows that ∇syv ∈ span(e1 ⊗ e1) a. e.
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As qε ∈ Qε, there exist Gε-node functions

(Aε, ξε) ∈ L2 (R3; Πv∈V (G)R3×3
asym ×Πv∈V (G)R3)

such that (u, ξ) is a Gε-function pair with uv + εξv = 0 on Γεv and the compati-
bility conditions (6.12) are satisfied. We know from Proposition 6.6 that

‖Aε‖L2(R3;Πv∈V (G)R3×3
asym) . 1 ,

‖gradε(uε + εξε;Gε)‖L2(R3;Πe∈E(G)R3) . 1 .

First, this implies that there exists a subsequence andA ∈ L2(R3; Πv∈V (G)R3×3
asym)

such that
Aε ⇀ A in L2(R3; Πv∈V (G)R3×3

asym) .
Second, we can use the two-scale compactness of Lemma 5.16. It provides a
subsequence and ξ ∈ L2(R3; Πv∈V (G)R3)) such that

ξε ⇀ ξ in L2(R3; Πv∈V (G)R3) ,
gradε(uε + εξε;Gε) ⇀ grad(u, ξ;G) in L2 (Ω; Πe∈E(G)R3) .

Moreoever, u|Ω ∈ H1
Γ(Ω;R3) and uε ⇀ u in L2(R3;R3).

We now prove that (A, ξ) is admissible for q in the sense that the compati-
bility conditions (6.22) hold, and thus q ∈ Q0. For this we observe that

vεe(·, ·) ⇀ ve(·, ·) ,
vεe(·, ·+ L(e)e1) ⇀ ve(·, ·+ L(e)e1)

in L2(R3;L2({0} ×Be;R3)). But on the other hand, we have the compatibility
condition (6.12) and therefore

vεe(x, y) = S−1
h R(e)−1

(
ξεv1(e)(x) +Aεv1(e)(x)R(e)y

)
⇀
(

1
0

0

)
R(e)−1

(
ξv1(e)(x) +Av1(e)(x)R(e)y

)
and

vεe(x, y + L(e)e1) = S−1
h R(e)−1

(
gradεe(uε + εξε;Gε)(x)

+ ξεv1(e)(x) +Aεv2(e)(x+ εd(e))R(e)y
)

⇀
(

1
0

0

)
R(e)−1

(
grade(u, ξ;G)(x)

+ ξv1(e)(x) +Av2(e)(x)R(e)y
)
.
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This establishes (6.22).
Step 2. Since Sh∇syvεSh is uniformly bounded in L2(R3; Πe∈E(G)L

2(Ωe;R3×3
sym)),

there exists a subsequence and some

E ∈ L2 (R3; Πe∈E(G)L
2(Ωe;R3×3

sym)
)

such that Sh∇syvεSh ⇀ E. Our aim is to find

f ∈ L2 (R3; Πe∈E(G)L
2(Ie;H1(Be))

)
,

g ∈ L2 (R3; Πe∈E(G)H
1(Ie)

)
,

w ∈ L2 (R3; Πe∈E(G)L
2(Ie;H1(Be;R2))

)
,

such that

ge(x, 0) = 1
2
(
R(e)−1Av1(e)(x)R(e)

)
23 , (6.47a)

ge(x, L(e)) = 1
2
(
R(e)−1Av2(e)(x)R(e)

)
23 (6.47b)

for almost every x ∈ R3, and

Ee(x, y) =

 ∂y1ve,1(x, y) ∗ ∗
∂y2fe(x, y) + ∂y1ge(x, y1)y3
∂y3fe(x, y)− ∂y1ge(x, y1)y2

∇sy2,y3
we(x, y)

 . (6.48)

Once (6.48) is shown, the lower bound (6.46) follows since

lim inf
ε→0

Bε(qε) = lim inf
ε→0

∑
e∈E(G)

∫
R3

∫
Ωe

We(Sh∇syvεe(x, y)Sh, pεe(x, y))dydx

≥
∑

e∈E(G)

∫
R3

∫
Ωe

We (Ee(x, y), pe(x, y)) dydx

≥ B0(q)

by weak lower semi-continuity and the definition of B0 in (6.24).
Step 3. In order to define (f, g, w), we first consider

ṽεe,2(x, y) := vεe,2(x, y)−−
∫
Be

vεe,2(x, y1, y
′)dy′ ,

ṽεe,3(x, y) := vεe,3(x, y)−−
∫
Be

vεe,3(x, y1, y
′)dy′ .
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By Korn’s inequality on thin domains (Lemma 4.4), there holds∥∥∥∥ 1
2h

(
∂y1 ṽ

ε
2

∂y1 ṽ
ε
3

)∥∥∥∥
L2(R3;Πe∈E(G)L2(Ωe;R2))

. ‖Sh∇syvεSh‖L2(R3;Πe∈E(G)L2(Ωe;R3×3
sym)) . 1 . (6.49)

But by (6.12a), we also have the boundary estimate∥∥∥∥ 1
2h

(
ṽε2
ṽε3

)∥∥∥∥
L2(R3;Πe∈E(G)L2({0}×Be;R2))

. ‖Aε‖L2(R3;Πv∈V (G)R3×3
asym) . 1 .

In combination this yields by the fundamental theorem of calculus (applied to
the interval Ie) the estimate∥∥∥∥ 1

2h

(
ṽε2
ṽε3

)∥∥∥∥
L2(R3;Πe∈E(G)L2(Ωe;R2))

. 1 . (6.50)

We define gε ∈ L2 (R3; Πe∈E(G)L
2(Ie)

)
as the unique minimizer of∥∥∥∥ 1

2h

(
ṽε2(x, y)
ṽε3(x, y)

)
− gε(x, y1)

(
−y3
y2

)∥∥∥∥
L2(R3;Πe∈E(G)L2(Ωe;R2))

.

By (6.50), the sequence (gε)ε is uniformly bounded. Hence there exists a
subsequence and a limit function g ∈ L2(R3; Πe∈E(G)L

2(Ie)) such that

gε ⇀ g in L2(R3; Πe∈E(G)L
2(Ie)) .

By Korn’s inquality on Be (see Lemma A.4(ii)),∥∥∥∥ 1
2h

(
ṽε2(x, y)
ṽε3(x, y)

)
− gε(x, y1)

(
−y3
y2

)∥∥∥∥
L2(R3;Πe∈E(G)L2(Ωe;R2))

.

∥∥∥∥ 1
h
∇sy2,y3

ṽε2,3

∥∥∥∥
L2(R3;Πe∈E(G)L2(Ωe;R2×2

sym))

=
∥∥∥∥ 1
h
∇sy2,y3

vε2,3

∥∥∥∥
L2(R3;Πe∈E(G)L2(Ωe;R2×2

sym))
→ 0 .

In particular,
1

2h

(
∂y1 ṽ

ε
2

∂y1 ṽ
ε
3

)
→ ∂y1g

(
−y3
y2

)
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in the sense of distributions, and by the bound (6.49) this implies

1
2h

(
∂y1 ṽ

ε
2

∂y1 ṽ
ε
3

)
⇀ ∂y1g

(
−y3
y2

)
(6.51)

in L2 (R3; Πe∈E(G)L
2(Ωe;R2)

)
. In particular, g ∈ L2(R3; Πe∈E(G)H

1(Ie)). In-
tegrating (6.51) over Ie ×B′e for B′e ⊂ Be and taking the limit ε→ 0 yields

1
2
(
R(e)−1(Av2(e) −Av1(e))(x)R(e)

)
23 = ge(x, L(e))− ge(x, 0)

by (6.12). If g does not yet satisfy (6.47), we simply replace ge(x, y) with

ge(x, y)− ge(x, 0) + 1
2
(
R(e)−1Av1(e)R(e)

)
23 .

Then (6.47) is satisfied, and (6.51) remains true in the process.
Step 4. We define ṽε1 ∈ L2(R3; Πe∈E(G)H

1(Ωe)) by

ṽεe,1(x, y) := vεe,1(x, y)+
(
y2∂y1−

∫
Be

vεe,2(x, y1, y
′)dy′ + y3∂y1−

∫
Be

vεe,3(x, y1, y
′)dy′

)
.

We know from (6.49) and ‖Sh∇syvSh‖L2(R3;Πe∈E(G)L2(Ωe;R3×3
sym)) . 1 that

1
2h

(
∂y1 ṽ

ε
2

∂y1 ṽ
ε
3

)
and 1

2h

(
∂y1 ṽ

ε
2 + ∂y2 ṽ

ε
1

∂y1 ṽ
ε
3 + ∂y3 ṽ

ε
1

)
= 1

2h

(
∂y1v

ε
2 + ∂y2v

ε
1

∂y1v
ε
3 + ∂y3v

ε
1

)
are bounded in L2 (R3; Πe∈E(G)L

2(Ωe;R2)
)
. But then

1
2h

(
∂y2 ṽ

ε
1

∂y3 ṽ
ε
1

)
is also bounded in L2 (R3; Πe∈E(G)L

2(Ωe;R2)
)
. Thus there exists (by Poincaré’s

inequality and a compactness argument) a subsequence and function

f ∈ L2 (R3; Πe∈E(G)L
2(Ie;H1(Be))

)
such that

1
2h

(
∂y2 ṽ

ε
1

∂y3 ṽ
ε
1

)
⇀

(
∂y2f
∂y3f

)
(6.52)

in L2 (R3; Πe∈E(G)L
2(Ωe;R2)

)
.

Step 5. It remains to construct w. As

‖h−2∇sy2,y3
vε2,3‖L2(R3;Πe∈E(G)R2×2

sym)

≤ ‖Sh∇wy2,y3
vε2,3Sh‖L2(R3;Πe∈E(G)R2×2

sym) . B
ε(qε) . 1 ,
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by Korn’s inequality (see Lemma A.4(ii)) and a compactness argument, there
exsists a subsequence and a function

w ∈ L2 (R3; Πe∈E(G)L
2(Ie;H1(Be;R2))

)
such that

1
h2∇

s
y2,y3

vε2,3 ⇀ ∇sy2,y3
w (6.53)

in L2 (R3; Πe∈E(G)L
2(Ωe;R2×2

sym)
)
.

Step 6. We conclude, using the weak convergence

vε ⇀ v in L2(R3; Πe∈E(G)H
1(Ωe;R3))

as well as (6.51), (6.52), and (6.53) that

Sh∇syvεe(x, y)Sh ⇀

 ∂y1ve,1(x, y) ∗ ∗
∂y2fe(x, y)− ∂y1ge(x, y1)y3
∂y3fe(x, y) + ∂y1ge(x, y1)y2

∇sy2,y3
we(x, y)


in L2 (R3; Πe∈E(G)L

2(Ωe;R3×3
sym)

)
. This implies (6.48). As noted at the end of

Step 2, this concludes the proof of the lower bound.

Proposition 6.8 (Upper bound). Consider Bε as defined in (6.13) and B0

as defined in (6.24). For every q ∈ Q there exists a sequence (qε)ε ⊂ Q such
that qε → q in Q and

lim sup
ε→0

Bε(qε) ≤ B0(q) .

Proof. Step 1. It is sufficient for every δ > 0 and q ∈ Q to find a sequence
qε → q in Q such that

lim sup
ε→0

Bε(qε) ≤ B0(q) + δ . (6.54)

We can assume that q = (u, v, p) ∈ Q0, as otherwise B0(q) = ∞. Then there
exists

(A, ξ) ∈ L2 (R3; Πv∈V (G)R3×3
asym ×Πv∈V (G)R3)

vanishing outside Ω with
∑
v∈V (G) ξv = 0 such that (6.22) holds. According to

Lemma 6.2, there exist

f ∈ L2(R3; Πe∈E(G)H
1(Ωe)) , fe = 0 on R3 × ∂Ie ×Be ,

g ∈ L2(R3; Πe∈E(G)H
1(Ie)) ,

w ∈ L2(R3; Πe∈E(G)H
1(Ωe;R2)) , we = 0 on R3 × ∂Ie ×Be ,
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such that

ge(x, 0) = 1
2
(
R(e)−1Av1(e)(x)R(e)

)
23 ,

ge(x, L(e)) = 1
2
(
R(e)−1Av2(e)(x)R(e)

)
23

for e ∈ E(G) and x ∈ R3, and

∑
e∈E(G)

∫
R3

∫
Ωe

We

 ∂y1ve,1 ∗ ∗
∂y2fe − ∂y1ge(x, y1)y3
∂y3fe + ∂y1ge(x, y1)y2

∇sy2,y3
we

 , pe

 ≤ B0(q) + δ .

Step 2. We define discretizations as introduced in Lemma 5.18,

(ηεv, Aεv) := 1εv(Gε)P ε(u+ εξv, Av) for v ∈ V (G) ,
(vεe, pεe, fεe , gεe , wεe) := 1εe(Gε)P ε(ve, pe, fe, ge, we) for e ∈ E(G) .

Furthermore, we we denote by (uε, ξε) ∈ L2(R3;R3 ×Πv∈V (G)R3) the unique
Gε-function pair such that ηε = u+ εξ.

With these discretized functions, we define

vεe(x, y) := vεe(x, y) + 2h

 fεe (x, y)
−gεe(x, y1)y3
gεe(x, y1)y2

+ h2

 0
wεe,1(x, y)
wεe,2(x, y)

+ φεe(x, y) (6.55)

for e ∈ E(G) , x ∈ R3 and y ∈ Ωe. Here φεe is a small correction term which
is necessary because without it, (uε, vε, pε) would in general not satisfy the
boundary conditions (6.12) required for elements of Qε. This is because the
boundary conditions that vε has to satisfy are spanning across neighboring
cells (see the term x + εd(e) in (6.12) which is also implicit in the definition
of gradε), whereas in the limit ε = 0 the boundary conditions fully decompose
over x ∈ R3 (see (6.22)).

The correction term φε is defined to be the unique minimizer of the elastic
energy

‖Sh∇sφεSh‖2L2(R3;Πe∈E(G)L2(Ωe;R3×3
sym)) (6.56)

among all Gε-edge functions φε ∈ L2 (R3; Πe∈E(G)H
1(Ωe;R3)

)
which satisfy
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the boundary conditions

φεe(x, y) =
( 0

h
h

)
R(e)−1ξεv1(e)(x) (6.57a)

φεe(x, y + L(e)e1) =
( 1

h
h

)
R(e)−1

(
gradεe(ηε;Gε)(x) + ξεv1(e)(x)

+Aεv2(e)(x+ εd(e))R(e)y −Aεv2(e)(x)R(e)y
)

−
(

1
0

0

)
R(e)−1

(
P ε grade(u, ξ;G)(x) + ξv1(e)(x)

) (6.57b)

for all e ∈ E(G), y ∈ {0} ×Be and x ∈ Ωεe(Gε).
We check that vε then satisfies the compatibility condition (6.12). By (6.22),

the boundary values of g, and (6.57) we have:

vεe(x, y) =
(

1
0

0

)
R(e)−1

(
ξεv1(e)(x) +Aεv1(e)(x)R(e)y

)
+
( 0

h
h

)
R(e)−1

(
ξεv1(e)(x) +Aεv1(e)(x)R(e)y

)
=
( 1

h
h

)
R(e)−1

(
ξεv1(e)(x) +Aεv1(e)(x)R(e)y

)
vεe(x, y + L(e)e1) =

(
1

0
0

)
R(e)−1

(
P ε grade(u, ξ;G)(x) + ξεv1(e)(x)

+Aεv2(e)(x)R(e)y
)

+
( 0

h
h

)
R(e)−1Aεv2(e)(x)R(e)y

+
( 1

h
h

)
R(e)−1

(
gradεe(ηε;Gε)(x) + ξεv1(e)(x)

+Aεv2(e)(x+ εd(e))R(e)y −Aεv2(e)(x)R(e)y
)

−
(

1
0

0

)
R(e)−1P ε

(
grade(u, ξ;G) + ξv1(e)

)
(x)

=
( 1

h
h

)
R(e)−1

(
gradεe(ηε;Gε)(x) + ξεv1(e)(x)

+Aεv2(e)(x+ εd(e))R(e)y
)

for all e ∈ E(G), y ∈ {0} × Be and x ∈ Ωε
e(Gε), which is in accordance with

(6.12). We have thus shown that

qε := (uε, vε, pε) ∈ Qε .

We still have to show that qε → q in Q and lim supε→0 Bε(qε) ≤ B0(q) + δ.
Step 3. We claim that qε = (uε, vε, pε) → q = (u, v, p) as ε → 0. The

convergences uε → u and pε → p follow from Lemma 5.18. We therefore turn
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our attention to vε. First, we will show that φε is small. From the fact that
the elastic energy (6.56) is minimized subject to the boundary values (6.57), we
can use part (ii) of Lemma 6.5 with

A0 = 0

A1 = R(e)−1
(
Aεv2(e)(x+ εd(e))−Aεv2(e)(x)

)
R(e)

d = d1 − d0 = R(e)−1 gradεe(ηε;Gε)(x)−
(

1
0

0

)
R(e)−1P ε grade(u, ξ;G)(x)

for e ∈ E(G) and x ∈ Ωεe(Gε) on Ωe in order to infer that

‖Sh∇syφεe(x)Sh‖L2(Ωe;R3×3
sym) . |A

1|+ |d1|+ |hd2|+ |hd3| .

Integrating x over R3 and summing e over E(G) yields

‖Sh∇syφεSh‖L2(R3;Πe∈E(G)L2(Ωe;R3×3
sym))

.
∥∥∥Aεv2(e)(·+ εd(e))−Aεv2(e)

∥∥∥
L2(R3;Πe∈E(G)R3×3

asym)

+ ‖gradε(ηε;Gε)− grad(u, ξ;G)‖L2(R3;Πe∈E(G)R3)

+ h‖gradε(ηε;Gε)‖L2(R3;Πe∈E(G)R3) → 0 .

Here we use for the final convergence the Kolmogorov-Riesz theorem and the
strong convergence Aε → A in L2(R3; Πv∈V (G)R3×3

asym) for the first term, and
part (iii) of Lemma 5.18 for the second term.

As φεe(x, ·)−
( 0

h
h

)
R(e)−1ξεv1(e)(x) vanishes on {0} ×Be, see (6.57a), we

can use Korn’s inequality (see Lemma A.4(i)) to conclude that

‖φε‖L2(R3;Πe∈E(G)H1(Ωe;R3))

. h‖ξ‖L2(R3;Πv∈V (G)R3) + ‖∇syφε‖L2(R3;Πe∈E(G)L2(Ωe;R3×3
asym)) → 0 .

We can now conclude the convergence of vε (as defined in (6.55)): The con-
vergence of vε to v in L2(R3; Πe∈E(G)H

1(Ωe;R3)) follows from Lemma 5.18,
the boundedness of (fε, gε, wε) also follows from Lemma 5.18, the convergence
φε → 0 in L2(R3; Πe∈E(G)H

1(Ωe;R3)) was just shown, and thus

vε → v in L2(R3; Πe∈E(G)H
1(Ωe;R3)) .

Furthermore, we have the convergences uε → u and pε → p in their respective
spaces according to Lemma 5.18. This implies qε → q in Q.
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Step 4. It remains to show that lim supε→0 Bε(qε) ≤ B0(q) + δ. For this we
observe that

Sh∇syvεe(x, y)Sh =

 ∂y1v
ε
e,1(x, y) ∗ ∗

∂y2f
ε
e (x, y)− ∂y1g

ε
e(x, y1)y3

∂y3f
ε
e (x, y) + ∂y1g

ε
e(x, y1)y2

∇sy2,y3
wεe(x, y)


+

 2h∂y1f
ε
e (x, y) ∗ ∗

h
2∂y1w

ε
e,2(x, y) 0 0

h
2∂y1w

ε
e,3(x, y) 0 0

+ Sh∇syφεe(x, y)Sh

→

 ∂y1ve,1(x, y) ∗ ∗
∂y2fe(x, y)− ∂y1ge(x, y1)y3
∂y3fe(x, y) + ∂y1ge(x, y1)yy

∇sy2,y3
we(x, y)


in L2(R3; Πe∈E(G)L

2(Ωe;R3×3
sym)). From this we can finally conclude that

Bε(qε) =
∑

e∈E(G)

∫
R3

∫
Ωe

We(Sh∇syvεe(x, y)Sh , pεe(x, y))dydx

→
∑

e∈E(G)

∫
R3

∫
Ωe

We

 ∂y1ve,1 ∗ ∗
∂y2fe − ∂y1ge(x, y1)y3
∂y3fe + ∂y1ge(x, y1)yy

∇sy2,y3
we

 , pe

 dydx

≤ B0(q) + δ .

This shows (6.54) and thus finishes the proof.



Appendix A

Tools from Analysis

A.1 Strong convexity

Lemma A.1. Let X be a Hilbert space, f : X → R∞ a convex function, and
define I(x) := ‖x‖2 + f(x). Suppose that x̂ is a minimizer of I. Then

‖x− x̂‖2 ≤ I(x)− I(x̂) , x ∈ X .

Proof. Given any x ∈ X and ε > 0, the minimizer property of x̂ implies

0 ≤ I((1− ε)x̂+ εx)− I(x̂)
ε

= ‖x̂+ ε(x− x̂)‖2 − ‖x̂‖2
ε

+ f((1− ε)x̂+ εx)− f(x̂)
ε

.

By the convexity of f , this implies

0 ≤ ‖x̂+ ε(x− x̂)‖2 − ‖x̂‖2
ε

− f(x̂) + f(x)

= 2〈x̂, x− x̂〉+ ε‖x− x̂‖2 − f(x̂) + f(x) .

Taking the limit ε→ 0, this implies

0 ≤ 2〈x̂, x− x̂〉 − f(x̂) + f(x)
= −‖x̂− x‖2 − ‖x̂‖2 + ‖x‖2 − f(x̂) + f(x)
= −‖x̂− x‖2 − I(x̂) + I(x) ,

and therefore ‖x̂− x‖2 ≤ I(x)− I(x̂).

117
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A.2 Arzelà-Ascoli

Lemma A.2. Let X be a reflexive Banach space, T > 0 and (un)n a bounded
sequence in W 1,∞(0, T ;X). Then there exists a subsequence (unk)k and a limit
function u ∈W 1,∞(0, T ;X) such that unk(t) ⇀ u(t) as k →∞ for almost every
t ∈ (0, T ).

Proof. By altering un on a null set, we can assume that un is Lipschitz contin-
uous. By the boundednes of (un)n in W 1,∞(0, T ;X), there exists a uniform
bound C > 0 on the Lipschitz constants. Now for every t ∈ (0, T ) the sequence
(un(t))n is bounded in X. Thus there exists a subsequence and a limit ele-
ment u(t) ∈ X such that un(t) ⇀ u(t). By doing this for the countably many
t ∈ (0, T ) ∩ Q, iteratively choosing subsequences and in the end taking the
diagonal sequence, we end up with a subsequence (unk)k along which unk(t)
weakly converges to some u(t) ∈ X for every t ∈ (0, T ) ∩ Q. This defines a
function u : (0, T ) ∩Q→ X. But then we have

‖u(s)− u(t)‖ ≤ lim inf
k→∞

‖unk(s)− unk(t)‖ ≤ C|s− t| ∀ s, t ∈ (0, T ) ∩Q .

Therefore we can uniquely extend u to a Lipschitz continuous function u ∈
W 1,∞(0, T ;X).

Now consider any (possibly irrational) t ∈ (0, T ). We want to show that
unk(t) ⇀ u(t) in X. For this we consider any f ∈ X ′ \ {0} and ε > 0. We can
find t∗ ∈ (0, T ) ∩Q such that

|t− t∗| ≤ ε

3C‖f‖ .

As unk(t∗) ⇀ u(t∗) in X, for large n ∈ N we have |f(unk(t∗)− u(t∗))| ≤ ε
3 and

consequently

|f(unk(t)− u(t))|
≤ |f(unk(t)− unk(t∗))|+ |f(unk(t∗)− u(t∗))|+ |f(u(t∗)− u(t))|

≤ C‖f‖|t− t∗|+ ε

3 + C‖f‖|t− t∗| ≤ ε .

Thus f(unk(t))→ f(u(t)), and hence unk(t) ⇀ u(n) in X.

A.3 Poincaré and Korn inequalities

In the main text we make use of the following well-known Poincaré and Korn
inequalities. For Poincaré inequalities see for example [6, 54]. For Korn
inequalities see [21, 48, 31, 54].
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Lemma A.3 (Poincaré inequalities). Let Ω ⊂ Rn denote a bounded Lips-
chitz domain.

(i) Let Γ be a subset of ∂Ω with Hn−1(Γ) > 0. Then there exists a constant
C > 0 such that

‖u‖H1(Ω) ≤ C‖∇u‖L2(Ω)

for all u ∈ H1(Ω) with u = 0 on Γ in the sense of traces.

(ii) Let U be a nonempty open subset of Ω. Then there exists a constant C > 0
such that

‖u− u‖H1(Ω) ≤ C‖∇u‖L2(Ω) ,

for all u ∈ H1(Ω) and u := −
∫
U
u(x)dx.

Remark. We often encounter the special cases U = Ω, u = 0 or Γ = ∂Ω.

Lemma A.4 (Poincaré-Korn inequalities). Let Ω ⊂ Rn denote a bounded
Lipschitz domain.

(i) Let Γ be a subset of ∂Ω with Hn−1(Γ) > 0. Then there exists a constant
C > 0 such that

‖u‖H1(Ω;Rn) ≤ C‖∇su‖L2(Ω;Rn×nsym )

for all u ∈ H1(Ω;Rn) with u = 0 on Γ in the sense of traces.

(ii) There exists a constant C > 0 such that

inf
A∈Rn×nasym , b∈Rn

‖u(x)−Ax− b‖H1(Ω;Rn) ≤ C‖∇su‖L2(Ω;Rn×nsym )

for all u ∈ H1(Ω;Rn). Moreover,

‖∇u−A‖L2(Ω;Rn×n) ≤ C‖∇su‖L2(Ω;Rn×nsym )

for A = −
∫

Ω∇
au or A = −

∫
Ω∇u.

A.4 Hilbert Adjoints

The following basic facts from functional analysis are gathered here for the
convenience of the reader.

Lemma A.5. Let T : X → Y be a bounded linear operator between Hilbert
spaces, and T ∗ : Y → X its adjoint operator.
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(i) If T is injective, then the image R(T ∗) of T ∗ is dense in X.

(ii) If the image R(T ) of T is dense in Y , then T ∗ is injective.

Proof. Ad (i). Consider any x ∈ R(T ∗)⊥. Then

〈Tx, y〉 = 〈x, T ∗y〉 = 0

for all y ∈ Y , and consequently Tx = 0. As T is injective, this implies x = 0.
Hence we have R(T ∗)⊥ = 0 and thus R(T ∗) = X.

Ad (ii). Consider any y ∈ Y with T ∗y = 0. Then

〈Tx, y〉 = 〈x, T ∗y〉 = 0

for all x ∈ X. Hence y ∈ R(T )⊥. As R(T ) is dense in Y , this implies y = 0.



Appendix B

Technical proofs

B.1 An integral inequality

Lemma B.1. For a reflexive Banach space X and I = (0, T ) let u ∈ L1(I;X)
and g ∈ L∞(I) satisfy

‖u(t2)− u(t1)‖2 ≤
∫ t2

t1

g(s) · ‖u(t2)− u(s)‖ ds

for almost every 0 < t1 < t2 < T . Then u ∈W 1,∞(I) and ‖∂tu(t)‖ ≤ 1
2g(t) for

almost every t ∈ I.

Proof. Step 1: Regularity of u. Fix t2 ∈ I such that the inequality holds for
almost every t1 ∈ (0, t2) and let

f(t) :=
∫ t2

t2−t
‖u(t2)− u(s)‖ds .

We assume without loss of generality that ‖g‖L∞(I) ≤ 1. Then we have the
estimate

f ′(t) = ‖u(t2)− u(t2 − t)‖ ≤
(∫ t2

t2−t
‖u(t2)− u(s)‖ds

)1/2

=
√
f(t) .

This implies
∂t
√
f(t) = f ′(t)

2
√
f(t)

≤ 1
2 .

Since f(0) = 0, we then have
√
f(t) ≤ 1

2 t. Thus, for almost every t1 < t2,

‖u(t2)− u(t1)‖ = f ′(t2 − t1) ≤
√
f(t2 − t1) ≤ 1

2(t2 − t1) .

121
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Thus u is Lipschitz continuous with Lipschitz constant 1
2 .

Step 2: Estimate for ∂tu. Consider any t ∈ I where u is differentiable and
which is a Lebesgue point of g. By Rademacher’s theorem this is true for almost
every t ∈ I. We claim that

g(t) = lim
ε→0
−
∫ t+ε

t

g(s) · 2(s− t)
ε

ds . (B.1)

Indeed, writing gε(t) := −
∫ t+ε
t

g(s) 2(s−t)
ε ds, we have

|g(t)− gε(t)| ≤ −
∫ t+ε

t

|g(t)− g(s)| · 2(s− t)
ε

ds

≤ 4−
∫ t+ε

t−ε
|g(t)− g(s)|ds→ 0 ,

where the convergence ist just the Lebesgue point property. By the assumption
of the lemma we have

‖u(t+ ε)− u(t)‖2
ε2 ≤ −

∫ t+ε

t

|g(s)| · s− t
ε
· ‖u(s)− u(t)‖

|s− t|
ds .

The difference quotients converge by choice of t, and because of (B.1) we get in
the limit ε→ 0,

‖u′(t)‖2 ≤ 1
2 |g(t)| · ‖u′(t)‖ .

Thus ‖u′(t)‖ ≤ 1
2 |g(t)|.

B.2 Infimization

Lemma B.2. Let Ω ⊂ Rn be open and bounded and let U ,V denote separable
Hilbert spaces. Suppose that F : U ×V → R is a positive semidefinite continuous
quadratic form. Then for any u ∈ L2(Ω;U),

inf
v∈H1

0 (Ω;V)

∫
Ω
F(u(x), v(x))dx = inf

v∈L2(Ω;V)

∫
Ω
F(u(x), v(x))dx

=
∫

Ω
inf
v∈V
F(u(x), v)dx .

Proof. We only have to prove “≤” in both instances, the opposite inequality is
clear.
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Step 1. Let v ∈ L2(Ω;V). As H1
0 (Ω;V) is dense in L2(Ω;V), we find a

sequence vn ∈ H1
0 (Ω;V) such that vn → v in L2(Ω;V) as n→∞. Along a sub-

sequence, we have vn(x)→ v(x) and thus F(u(x), vn(x))→ F(u(x), v(x)) for
almost every x ∈ Ω. With the quadratic bound of F it follows then by the dom-
inated convergence theorem that

∫
Ω F(u(x), vn(x))dx →

∫
Ω F(u(x), v(x))dx,

which establishes the first (in)equality. Indeed, we have a sequence of majo-
rants gn(x) := C(‖u(x)‖2 + ‖vn(x)‖2) which converge almost everywhere to
g(x) := C(‖u(x)‖2 + ‖v(x)‖2).

Step 2. Let ε > 0. There is a continuous linear function Aε : U → V such
that

Aεu = arg min{F(u, v) + ε‖v‖2 : v ∈ V} .

Indeed, we can write F(u, v) = 1
2 〈Au, u〉 + 1

2 〈Bv, v〉 + 〈Cu, v〉 with linear
operators A : U → U∗, B : V → V∗, C : U → V∗, and thus Aε = −(B + ε)−1C.
We therefore let vε(x) := Aεu(x) and find that vε ∈ L2(Ω;V) and∫

Ω
F(u(x), vε(x)) ≤

∫
Ω
F(u(x), vε(x)) + ε‖vε(x)‖2dx

=
∫

Ω
inf
v∈V
F(u(x), v) + ε‖v‖2dx→

∫
Ω

inf
v∈V
F(u(x), v)dx

as ε→ 0, where we used monotone convergence of the integrand on the right-
hand side. The monotone convergence theorem applies for this decreasing
sequence since the integrals that are involved exist and are finite.





Bibliography

[1] H. Abdoul-Anziz and P. Seppecher. Homogenization of periodic graph-
based elastic structures. Journal de l’Ecole Polytechnique - Mathematiques,
5, 01 2018.

[2] H. Abdoul-Anziz and P. Seppecher. Strain gradient and generalized con-
tinua obtained by homogenizing frame lattices. Mathematics and Mechanics
of Complex Systems, 6:213–250, 07 2018.

[3] H.-D. Alber. Materials with memory, volume 1682 of Lecture Notes in Math-
ematics. Springer-Verlag, Berlin, 1998. Initial-boundary value problems
for constitutive equations with internal variables.

[4] H.-D. Alber. Evolving microstructure and homogenization. Continuum
Mechanics and Thermodynamics, 12(4):235–286, 2000.

[5] G. Allaire. Homogenization and two-scale convergence. SIAM Journal on
Mathematical Analysis, 23(6):1482–1518, 1992.

[6] H. W. Alt. Linear functional analysis. Universitext. Springer-Verlag Lon-
don, Ltd., London, 2016. An application-oriented introduction, Translated
from the German edition by Robert Nürnberg.

[7] I. Babuška and S. Sauter. Algebraic algorithms for the analysis of mechan-
ical trusses. Mathematics of Computation, 73(248):1601–1622, 2004.

[8] C. Borcea, I. Streinu, and S.-i. Tanigawa. Periodic body-and-bar frame-
works. In Computational geometry (SCG’12), pages 347–356. ACM, New
York, 2012.

[9] C. S. Borcea and I. Streinu. Periodic frameworks and flexibility. Proceedings
of The Royal Society of London. Series A. Mathematical, Physical and
Engineering Sciences, 466(2121):2633–2649, 2010.

125



126 BIBLIOGRAPHY

[10] C. S. Borcea and I. Streinu. Minimally rigid periodic graphs. Bulletin of
the London Mathematical Society, 43(6):1093–1103, 2011.

[11] G. Bouchitte, G. Buttazzo, and P. Seppecher. Energies with respect to
a measure and applications to low-dimensional structures. Calculus of
Variations and Partial Differential Equations, 5(1):37–54, 1997.

[12] G. Bouchitté and I. Fragalà. Homogenization of thin structures by two-
scale method with respect to measures. SIAM Journal on Mathematical
Analysis, 32(6):1198–1226, 2001.

[13] G. Bouchitté and I. Fragalà. Homogenization of elastic thin structures: A
measure-fattening approach. Journal of Convex Analysis, 9(2):339–362,
2002. Special issue on optimization (Montpellier, 2000).

[14] F. Bourquin and P. Ciarlet. Modeling and justification of eigenvalue
problems for junctions between elastic structures. Journal of functional
analysis, 87(2):392–427, 1989.

[15] G. A. Chechkin, V. V. Jikov, D. Lukkassen, and A. L. Piatnitski. On
homogenization of networks and junctions. Asymptotic Analysis, 30(1):61–
80, 2002.

[16] P. G. Ciarlet. Mathematical elasticity. Vol. II, volume 27 of Studies in Math-
ematics and its Applications. North-Holland Publishing Co., Amsterdam,
1997. Theory of plates.

[17] G. Dal Maso, A. DeSimone, and M. G. Mora. Quasistatic evolution
problems for linearly elastic-perfectly plastic materials. Archive for Rational
Mechanics and Analysis, 180(2):237–291, 2006.

[18] E. De Giorgi and T. Franzoni. Su un tipo di convergenza variazionale.
Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze
Fisiche, Matematiche e Naturali. Serie VIII, 58(6):842–850, 1975.

[19] C. Eck, H. Garcke, and P. Knabner. Mathematical modeling. Springer
Undergraduate Mathematics Series. Springer, Cham, 2017.

[20] G. Francfort and A. Giacomini. On periodic homogenization in perfect
elasto-plasticity. Journal of the European Mathematical Society (JEMS),
16(3):409–461, 2014.

[21] K. O. Friedrichs. On the boundary-value problems of the theory of elasticity
and Korn’s inequality. Annals of Mathematics. Second Series, 48:441–471,
1947.



BIBLIOGRAPHY 127

[22] G. Friesecke, R. D. James, and S. Müller. A theorem on geometric rigidity
and the derivation of nonlinear plate theory from three-dimensional elastic-
ity. Communications on Pure and Applied Mathematics, 55(11):1461–1506,
2002.

[23] A. Gloria, S. Neukamm, and F. Otto. Quantification of ergodicity in
stochastic homogenization: optimal bounds via spectral gap on Glauber
dynamics. Inventiones Mathematicae, 199(2):455–515, 2015.

[24] A. Gloria and F. Otto. An optimal variance estimate in stochastic ho-
mogenization of discrete elliptic equations. The Annals of Probability,
39(3):779–856, 2011.

[25] A. Gloria and F. Otto. An optimal error estimate in stochastic homoge-
nization of discrete elliptic equations. The Annals of Applied Probability,
22(1):1–28, 2012.

[26] W. Han and B. D. Reddy. Plasticity. Springer New York, 2013.

[27] M. Heida and B. Schweizer. Stochastic homogenization of plasticity equa-
tions. ESAIM. Control, Optimisation and Calculus of Variations, 24(1):153–
176, 2018.

[28] I. Izmestiev. Projective background of the infinitesimal rigidity of frame-
works. Geometriae Dedicata, 140(1):183–203, 2008.

[29] D. Kitson and S. C. Power. The rigidity of infinite graphs. Discrete &
Computational Geometry, 60(3):531–557, 2018.

[30] R. Kohn and R. Temam. Dual spaces of stresses and strains, with ap-
plications to Hencky plasticity. Applied Mathematics and Optimization,
10(1):1–35, 1983.

[31] V. A. Kondrat’ev and O. A. Oleinik. Boundary value problems for a system
in elasticity theory in unbounded domains. Korn inequalities. Akademiya
Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matem-
aticheskikh Nauk, 43(5(263)):55–98, 239, 1988.

[32] S. M. Kozlov. The averaging of random operators. Matematicheskĭı Sbornik.
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