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Abstract

The coherent control of a charge carrier spin that is localized in a semiconductor
quantum dot and the generation of long-lived states for information storage are
of particular interest for quantum information processing. This spin interacts pre-
dominantly with the surrounding nuclear spins in the quantum dot, which can be
described by the central spin model. The periodic application of circularly polarized
laser pulses induces nonequilibrium spin dynamics in the quantum dot, giving rise to
various phenomena that can be observed in experiments. In this thesis, models and
semiclassical approaches are developed to simulate the driven spin dynamics in this
system under experimental conditions. For the case where a transverse magnetic
field is applied, it is found that the part of the spin mode locking effect stemming
from nuclei-induced frequency focusing depends nonmonotonically on the strength
of the magnetic field, with strong similarities to experimental observations. The
complex behavior is related to various nuclear magnetic resonances with respect
to the repetition rate of the laser pulses, which can be exploited for novel kind
of nuclear magnetic resonance spectroscopy of the emerging nonequilibrium steady
states. For the case where a longitudinal magnetic field is applied, the influence of
the pump pulse power on the spin inertia and on the polarization recovery effect
is analyzed. With the help of the developed model, the related experiments can
be understood and described quantitatively. In this context, a novel effect termed
resonant spin amplification in Faraday geometry is predicted, which enables the di-
rect measurement of the longitudinal g factor of the resident charge carriers. Model
calculations are used to find the optimal conditions for its detection and ways to
improve its visibility are pointed out. The comparison with recent experiments that
demonstrate the realization of the effect shows a remarkable agreement.
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Kurzfassung

Die kohärente Kontrolle eines Ladungsträgerspins, der in einem Halbleiterquan-
tenpunkt lokalisiert ist, sowie die Erzeugung langlebiger Zustände zur Informa-
tionsspeicherung sind von besonderem Interesse für die Quanteninformationsver-
arbeitung. Solch ein Spin wechselwirkt hauptsächlich mit den ihn umgebenden
Kernspins im Quantenpunkt, was durch das Zentralspinmodell beschrieben werden
kann. Durch periodische Anregung mit zirkular polarisierten Laserpulsen lässt sich
die Spindynamik in Quantenpunkten in ein Nichtgleichgewicht treiben, wodurch
verschiedene Phänomene auftreten können, die sich in Experimenten beobachten
lassen. In dieser Arbeit werden theoretische Modelle und semiklassische Methoden
entwickelt, um die getriebene Spindynamik unter experimentellen Bedingungen zu
simulieren. Im Falle eines angelegten transversalen Magnetfelds zeigt sich, dass der
Teil des „Spin Mode Locking” Effekts (Synchronisation von Spin-Moden), welcher
aufgrund einer durch die Kernspins induzierten Frequenzfokussierung entsteht, eine
nicht-monotone Abhängigkeit von der Stärke des Magnetfelds aufweist, mit starken
Parallelen zu experimentellen Beobachtungen. Verantwortlich für das komplexe Ver-
halten sind verschiedene Kernspinresonanzen bezogen auf die Wiederholungsrate
der Laserpulse. Hieraus ergibt sich eine neue Art von Kernspinresonanzspektrosko-
pie, durch welche die langlebigen Nichtgleichgewichtszustände untersucht werden
können. Im Falle eines angelegten longitudinalen Magnetfelds wird der Einfluss der
Pulsleistung auf den „Spin Inertia” (Spinträgheit) und den „Polarization Recovery”
(Wiederherstellung der Spinpolarisation) Effekt untersucht. Die zugehörigen Ex-
perimente lassen sich durch das entwickelte Modell quantitativ verstehen und be-
schreiben. In diesem Zusammenhang wird ein neuer Effekt vorhergesagt, welcher als
„Resonant Spin Amplification in Faraday Geometry” (Resonante Spinverstärkung
in Faraday Geometrie) bezeichnet wird und die direkte Bestimmung des longitudi-
nalen g-Faktors der Ladungsträger ermöglicht. Optimale Bedingungen für dessen
Beobachtung und Möglichkeiten zu Verbesserung seiner Sichtbarkeit werden aufge-
zeigt. Der Vergleich mit kürzlich durchgeführten Experimenten, welche die Existenz
des Effekts bestätigen, zeigt eine hervorragende Übereinstimmung.
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Chapter 1

Motivation and outline

Over the past decades, quantum information processing has emerged to be one of
the most active and promising fields in physics, and in the past two decades, the
very first quantum computers were built. The guiding idea is to exploit quantum
mechanical features such as superposition and entanglement to develop algorithms
that can solve computational problems much more efficiently than classical com-
puters [1]. Popular examples developed in the 90s are the Shor algorithm [2, 3],
allowing one to factorize large numbers in polynomial time, and the Grover algo-
rithm [4], which enables a faster search in unstructured databases. Another idea
proposed by Feynman [5] is the simulation of quantum systems using quantum
computers [6]. Nowadays, quantum information processing has come a long way
and potentially, quantum supremacy has been demonstrated recently for dedicated
problems [7, 8]. Even though it has been argued that the Sycamore processor with
53 qubits used in Ref. [7] does not actually reach quantum supremacy because of
a non-optimal implementation of the classical algorithm [9], it is only a matter
of time until it is accomplished without dispute because the number of qubits in-
creases year after year. The Sycamore processor utilizes so-called transmon qubits
based on superconducting circuits [10]. Generally speaking, a qubit is an effective
quantum mechanical two-level system. Several realizations of a qubit are conceiv-
able, all with their own advantages and disadvantages [11], and it is not yet clear
which hardware implementation will prevail.

But what are the physical requirements for the implementation of a fault-tolerant
quantum computer? In a seminal work by DiVincenzo [12], five criteria are pro-
posed. In a more recent work by Ladd et al. [11], they are rephrased into three
more general criteria, which are based on the assumption that the third DiVincenzo
criterion is fulfilled. This criterion states that the coherence time, often denoted
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Chapter 1 Motivation and outline

as T2, must be large compared to the time of a single logical operation to be able
to perform complex computations, i.e., decoherence effects need to be minimized.
The remaining DiVincenzo criteria rephrased by Ladd et al. [11] are:

• “Scalability: The computer must operate in a Hilbert space whose dimensions
can grow exponentially without an exponential cost in resources (such as time,
space or energy).” [11]

• “Universal logic: The large Hilbert space must be accessible using a finite set
of control operations; the resources for this set must also not grow exponen-
tially.” [11]

• “Correctability: It must be possible to extract the entropy of the computer
to maintain the computer’s quantum state.” [11]

Implementations of quantum computers based on spins of charge carriers in semi-
conductor quantum dots (QDs) [13, 14] are an alternative to implementations based
on superconducting circuits [11]. In QDs, charge carriers can be bound to a localized
potential with discrete energy levels, similar to an electron bound to the nucleus of
an atom and hence, QDs are often referred to as artificial atoms [15–17]. Electro-
statically defined QDs are primarily controlled electrically and operate at very low
temperatures < 1K [18]. Self-assembled QDs, based on a random growth process,
operate at cryogenic temperatures of ∼ 4K and are typically controlled by optical
methods [19].

Individual charge carriers in QDs can be generated, manipulated, and coherently
controlled [20–38]. Furthermore, it is possible to decouple them from the envi-
ronment responsible for decoherence, e.g., by applying suitable schemes of control
pulses [34, 39]. In terms of scalability, there is the advantage of the vast experience
of the semiconductor industry and integrated solutions with existing semiconductor
technologies are conceivable [14, 40].

Spins of charge carriers in quantum dots as stationary qubits offer spin coherence
times in the range of microseconds [18, 19, 41], which is orders of magnitude below
the values of other solid-state competitors such as electrons bound to dopants bound
or nitrogen-vacancy centers in diamond [11]. At the low temperatures at which QDs
are operated, the main interaction of a localized charge carrier spin is the hyperfine
interaction with the nuclei of the lattice, leading to fast decoherence [18, 19, 42].
While it is possible to decrease the influence of the detrimental nuclear spin bath
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1.1 Research objectives

by polarizing it [43, 44], the degree of polarization must be > 99.9% to have a
sufficiently strong impact on the coherence time [18, 42], which is yet to be accom-
plished. Another possibility is the application of dynamical decoupling schemes
to overcome the problem of decoherence caused by a noisy environment. For in-
stance, Bluhm et al. [34] applied a multiple-pulse Carr-Purcell-Meiboom-Gill echo
sequence [39, 45] and achieved an increase of the coherence time by two orders of
magnitude to more than 200µs. Similarly, dynamical decoupling was applied suc-
cessfully to prolong the coherence time of hole spins localized in InGaAs QDs [46,
47]. More advanced pulse sequences can lead to further improvements [48–52].
The development of such dynamical decoupling schemes is a separate field of re-
search [53–63].

Studying the evolution of the nuclear spin bath is possible by means of a coherent
population trapping technique that is sensitive to the nuclear spin bath [64–66]. In
recent years, there has been a shift of interest towards nuclear spins in QDs thanks
to their long lifetimes of seconds up to hours (depending on the applied magnetic
field) [25, 42, 44, 67–69]. The idea is to exploit the nuclear spin system in QDs as
a long-lived quantum resource, which can be used as a quantum memory for the
quantum information originally stored in the spins of charge carriers [67, 70–73].
This extremely challenging task was accomplished recently by Gangloff et al. [70]
with a nuclear spin bath consisting of 104−105 nuclei. The accomplishment can be
considered as “the missing piece of the puzzle for a semiconductor nanostructure
QI [quantum information] platform” [74].

1.1 Research objectives

Already a decade earlier than the recent work of Gangloff et al. [70], it has been
identified that the hyperfine interaction of localized electron spins with the complex
nuclear spin system needs not necessarily be destructive. Greilich et al. [25] studied
QD ensembles subjected to a transverse magnetic field and demonstrated that the
nuclear spin system can be manipulated indirectly via the hyperfine interaction
such that the broad distribution of precession frequencies are focused onto very
few modes describing spin dynamics commensurable with the laser repetition rate.
Tailoring the applied laser pulse protocol can even lead to the formation of single-
mode precessions of the full ensemble of charge carrier spins [75, 76]. Related to
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Chapter 1 Motivation and outline

this fascinating phenomenon, there are several open questions raised in Sec. 2.4.1.
Addressing these issues and expanding the general understanding of this effect is a
particular focus of this thesis. It requires the development of sophisticated theoret-
ical models and approaches to study the intertwined electron-nuclear spin system
under nonequilibrium conditions caused by the periodic application of laser pulses
for extremely long times.

In the context of quantum information [1, 11, 14, 40] and spintronics [77, 78], it is a
fundamental requirement to have a detailed understanding of the underlying phys-
ical systems for many applications, e.g., to coherently control them [20–37, 40, 41].
In the last part of the thesis, the focus lies on the simulation of experimental setups
that enable the characterization of the spin system in QDs.

1.2 Outline

The thesis is divided into three parts. The introductory Part I provides the moti-
vation and foundation for the research results presented in Parts II and III.

Starting in Chap. 2, the reader is introduced to self-assembled semiconductor QDs,
to a mechanism that provides a way of polarizing localized spins in singly-charged
QDs, and to the pump-probe spectroscopy used to monitor the spin dynamics in
experiments. The various spin phenomena that are analyzed in this thesis and
related open questions are introduced afterwards.

In Chap. 3, the fundamental model to describe the spin dynamics in singly-charged
QDs, the central spin model, is introduced. After briefly discussing the numerous
theoretical approaches to this model, the semiclassical approach to the spin dynam-
ics applied in this thesis is introduced. Based on an approximation valid for short
times, important characteristics of the short-time dynamics are discussed.

In view of demanding numerical simulations required to study the spin dynamics
for the experimentally relevant long timescales and large system sizes, efficient
algorithms to the semiclassical approach are developed in Chap. 4.

In the following chapters, the research focuses on experimental setups in which
singly-charged QDs are subjected to trains of periodic laser pulses inducing spin
polarization. The difference between Part II and III is the direction of the applied
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1.2 Outline

magnetic field. In Chaps. 5–7, a transverse magnetic field is used (Part II), while a
longitudinal field is applied in Chaps. 8 and 9 (Part III). The chapters are written
in a mostly self-containing way because they represent related but yet separate
research projects. Thus, it is not necessarily required to read the full thesis if one
is interested in a particular topic, but reading at least Chaps. 2 and 3 is strongly
recommended to gain a general understanding of the underlying physics and of the
terminology used.

The most efficient algorithm to the semiclassical approach developed in Chap. 4 is
put to use in Chap. 5, marking the beginning of Part II. We study the nonequilib-
rium spin dynamics arising from two generic pulses that are applied periodically
to the system in the presence of a transverse magnetic field. The role of the Zee-
man effect for the nuclear spins in the QDs is analyzed and the results for the two
different pulses are compared.

Based on the insight gained in Chap. 5, a sophisticated model is established in
Chap. 6 to describe two interrelated effects appearing in the related experiments:
spin mode locking and nuclei-induced frequency focusing. The interplay of these
two effects, which determines the emerging nonequilibrium steady states, is inves-
tigated.

Further improvements to the model are developed in Chap. 7 by accounting for the
isotope composition of the QDs. The results highlight the importance of nuclear
magnetic resonances for the arising nonequilibrium spin physics.

In Part III, an experimental setup is studied in which a longitudinal magnetic field
is applied to the QDs. To this end, existing models are generalized in Chap. 8.
In particular, the role of the pump pulse strength on the emerging spin phenom-
ena is explored. At the end of the chapter, a novel effect termed resonant spin
amplification in Faraday geometry is predicted.

Recent experiments confirm the existence of the effect. They are analyzed in
Chap. 9, showing a remarkable agreement with model calculations and its pre-
dictions. Furthermore, possible ways to enhance the visibility of resonant spin
amplification in Faraday geometry are proposed.

Chapter 10 concludes the thesis by summarizing the major developments and re-
sults. In an outlook, promising routes for future research are pointed out.
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Chapter 2

Experimental background

In this chapter, semiconductor quantum dots are briefly introduced with a particu-
lar focus on self-assembled ones. Afterwards, it is discussed how spin polarization
can be induced in singly-charged QDs by optical means. At last, an overview of the
spin phenomena in singly-charged QDs relevant for this thesis is given and open
questions are pointed out.

2.1 Semiconductor quantum dots

Quantum dots are nanometer-sized objects that consist of several thousand atoms
of a semiconductor compound. There is a large variety of methods to synthesize
QDs, e.g., colloidal chemistry, molecular beam epitaxy, or metal-organic chemi-
cal vapor deposition [19, 42]. In so-called gate-defined QDs, lithographic QDs are
formed in a two-dimensional electron gas hosted by, e.g., a GaAs/AlGaAs het-
erostructure [18, 42]. Here, we focus on self-assembled InGaAs QDs grown by the
Stranski-Krastanow growth method [79] during molecular beam epitaxy [80, 81].
Monolayers of InAs are deposited on a substrate of GaAs (called the barrier). Even
though the lattice constant for InAs is 7% smaller than for GaAs, the InAs layer
(called the wetting layer) adapts to the lattice structure of the GaAs barrier. In-
evitably, this results in strain when depositing additional layers of InAs. After
a critical thickness of about 1.5 monolayers of InAs is reached [81], the strain is
partially relaxed as a consequence of the formation of little ‘islands’, which are re-
ferred to as quantum dots [19, 38]. This process happens spontaneously and hence,
at irregular positions. This is the reason why such QDs are called ‘self-assembled’.
They have a typical diameter of 20 − 80 nm and a height of 2 − 10 nm, i.e., they
are fairly flat [19, 38, 42, 82]. The QD sample is prepared for optical spectroscopy
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Chapter 2 Experimental background

Figure 2.1: Image of an uncapped InAs QD
grown on a GaAs barrier, which is made visible
by scanning tunneling microscopy. Reprinted
from Ref. [83], ©2008 American Institute of
Physics, with the permission of AIP Publishing.

by covering it again with the barrier material (GaAs), called the capping layer. An
example of a small InAs QD grown on a GaAs barrier (without capping layer) is
shown in Fig. 2.1 [83].

In realistic samples of self-assembled InGaAs QDs, there is a significant fraction
of Ga in the QDs; we refer to them as InxGa1−xAs QDs whenever the ratio of In
and Ga becomes important. The Ga doping is the consequence of the interdiffusion
between the QDs and the barriers, resulting from the process of thermal annealing
for which the sample is heated to ∼ 900 ◦C [84–88]. The benefits of this process are
that it homogenizes the ensemble of QDs and reduces lattice defects. Furthermore,
it allows for tuning the relevant optical transition energies [89, 90].

A controlled n doping can be obtained by an additional δ-doping layer of, e.g.,
Si, which is grown a few nanometer below the QD layer [23, 91–94]. This process
allows one to control the density of the charge carriers, e.g., to obtain QDs that
are on average singly charged by electrons. A p doping can be achieved by exploit-
ing residual carbon impurities typical for GaAs-based materials [95], providing a
p doping even if the sample is nominally undoped [96–98].

The structure of QDs provides a three-dimensional confinement of the charge carri-
ers (electrons or holes, depending on the doping), i.e., they are localized. The energy
levels of such charge carriers are discrete, similar to the states of an electron bound
to the nucleus of an atom [15–17, 99–102]. Combined with the strong localization,
it lead to the motivation to use the spin states of the charge carriers as qubits [11,
13]. The localization is also responsible for the hyperfine interaction being the
dominant interaction in QDs. For n-doped QDs, the localized electron is effectively
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coupled to 104 − 106 nuclear spins [19, 103–107]. The relevant interactions in QDs
are discussed in Sec. 3.1.

2.2 Optical spin orientation in singly-charged quantum dots

In view of the optical manipulation of the spin states of localized charge carriers
in QDs, we discuss the relevant mechanisms. Strict selection rules determine the
electric dipole interaction of an electromagnetic wave with carriers in a semicon-
ductor [108]. For more details, see the text book [109] and the review article [19],
on which the following discussion is based. We focus on GaAs and InAs, which
are direct semiconductors. At the Γ point, the band structure can be treated in
the effective mass approximation. Neglecting the spin splitting, there is a two-fold
degenerate, isotropic conduction band above the band gap. The valence bands con-
sist of several sub-bands as a consequence of the spin-orbit interaction: light- and
heavy-hole bands (both anisotropic, but different effective masses), and an isotropic
split-off band. All three sub-bands are two-fold degenerate in spin.

2.2.1 Optical selection rules

In the following, the lateral dimensions of the QDs are considered to be much larger
than their height as it is the case for self-assembled QDs. The growth axis z ∥ [001]
serves as quantization axis for the spin states. In zinc blende based semiconductors,
e.g., GaAs or InAs, energy and angular momentum are conserved for transitions
between the valence and the conduction band. Since the periodic part of the Bloch
function of the conduction states is s like, a conduction electron carries a spin with
z projection Sz = ±1/2 (ℏ set to unity). The p-like valence states are determined
by the spin-orbit interaction. For the states with total angular momentum J = 3/2,
one distinguishes between the heavy-hole bands with z projection Jz = ±3/2 and
the light-hole bands with Jz = ±1/2. At the Γ point, the light- and heavy-hole
bands in InGaAs are typically separated by several tens of meV, with the light-
hole band being lower in energy. The split-off band with total angular momentum
J = 1/2 is even further down in energy and hence, it can be omitted in the following
discussion.
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Figure 2.2: Optical selection rules for the interband transitions between valence- and
conduction-band electrons in direct semiconductors. The split-off band is omitted. The
conduction band is two-fold degenerate with Sz = ±1/2. The valence electrons states
are related to the heavy-hole band with Jz = ±3/2 and light-hole band with Jz = ±1/2,
respectively. Figure inspired by Ref. [19].

The absorption of a photon can change the angular momentum of an electron
by ±1 for a photon with helicity σ±. The resulting optical selection rules between
the valence and conduction states are visualized in Fig. 2.2. The absorption and
emission of a photon share the same selection rules. Consider a σ+ photon of
suitable energy absorbed by an electron in the heavy-hole band with Jz = −3/2.
The electron is excited to the conduction band with Sz = −1/2. The absorption of a
σ− photon results in a similar transition, but with opposite sign. Transitions to the
conduction band starting from the light-hole states with Jz = ±1/2 are also possible
by absorption of σ∓ photons, but they are not of importance in the following
discussion because they are separated in energy from the heavy-hole states.

In a neutral QD with an empty conduction band prior to the photon absorption,
a bound electron-hole pair (exciton) with integer angular momentum can be ex-
cited optically as a consequence of the attractive coulomb interaction between the
electron promoted to the conduction band and the remaining hole in the valence
band; see, e.g., Refs. [82, 110] for more details. In n-doped singly-charged QDs,
three-particle complexes called trions (also referred to as charged excitons) can be
formed [82, 110]. For instance, if there is a resident electron in the conduction band
with Sz = +1/2, a singlet negatively-charged trion T− (also referred to as X−) can
be formed when a valence-band electron with Jz = −3/2 is promoted to the conduc-
tion band with Sz = −1/2 by absorption of a σ+ photon. Then, the two electrons
in the conduction band form a spin singlet and a heavy-hole with unpaired spin
(Jz = +3/2) is left behind. Similarly, in p-doped QDs, singlet positively-charged
trions T+ (also referred to as X+) can be excited, which consists of two heavy-holes
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in a spin singlet and an unpaired electron spin with Sz = ±1/2.

These photoexcited quasiparticles (trions) have a certain lifetime until the electron
and hole recombine, i.e., the quasiparticle decays back to the ground state. The
recombination is predominantly radiative in direct-band semiconductors such as
GaAs or InAs. In singly-charged QDs, the trion recombination time is of the order
of a few hundred picoseconds [82]. In this thesis, InGaAs QDs with a recombination
time of τ0 ≈ 400 ps [23, 111] are considered.

2.2.2 Microscopic two-level model for the optical excitation of trions

Inducing a finite spin polarization of the localized charge carriers in singly-charged
QDs can be achieved via the excitation of intermediate trion states [23, 112–115]. In
the following, we consider an ensemble of QDs singly-charged by electrons (n doped)
and introduce the two-level model developed in Ref. [113] to describe the spin
initialization process in this system microscopically. Here, the lateral dimensions
of the QDs are considered to be flat (as for self-assembled QDs) so that the growth
axis z ∥ [001] serves as quantization axis for the spin states. The case of three-
dimensional, spherical nanocrystals grown of III-V semiconductor compounds is
discussed in Ref. [116].

The QDs are excited by a circularly polarized laser pulse with helicity σ±, exciting
singlet negatively-charged trion states that consist of two electrons in a spin singlet
and a heavy hole with unpaired spin.1 For instance, the ground state described by
a resident electron with spin z projection +1/2 can be promoted to a negatively-
charged singlet trion T− with spin z projection +3/2 through the absorption of a
σ+ photon of suitable energy. If the spin z projection of the ground state is −1/2,
a σ− photon is required to excite a T− trion with spin z projection −3/2. The
photon energy shall be close to the trion transition energy (about 1.3 − 1.4 eV in
InGaAs QDs [19, 23, 94, 95, 117]) so that the excitation of light-hole spin states can
be neglected. Furthermore, it is assumed that the energy level splitting induced
by an external magnetic field as a consequence of the Zeeman effect is small in
comparison to the spectral width of the pulse, i.e., the splitting can be neglected
1The model is also applicable to QDs singly charged by heavy holes (p doped). But since the
selection rules to excite positively-charged trions are different, the pulse helicity needs to be
inverted.
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as well. Then, the relevant states can be described by a four-component wave
function

Ψ = (ψ1/2, ψ−1/2, ψ3/2, ψ−3/2)⊤, (2.1)

where the subscripts ‘±1/2’ refer to the resident electron spin states and ‘±3/2’ to the
photoexcited trion states. The duration of the laser pulse τp shall be long compared
to the oscillation period of the carrier frequency ωpu of the electromagnetic wave,
but short compared to the electron spin dynamics in the QD so that they can be
neglected. Typically, trains of optical pulses are applied to the QDs with repetition
time TR. In contrast to Ref. [113], we do not assume that the trion recombination
time τ0 is much smaller than TR because this assumption does not hold for the
experiments analyzed in Chap. 9 with TR = 1 ns and τ0 = 400 ps [94].2

A circularly polarized pulse of a given helicity connects only two spin states as
described above; see also Fig. 2.2. Hence, it is sufficient to treat the system as a
two-level model. The corresponding transformation of the wave functions for the
spin states induced by the optical pulse can be written as [113]

i ∂
∂t
ψ±3/2 = ωT ψ±3/2 + V±(t)ψ±1/2 , (2.2a)

i ∂
∂t
ψ±1/2 = V ∗

±(t)ψ±3/2 . (2.2b)

Here, ωT is the trion transition frequency and V±(t) = V0,± e−iωput describes the
interaction of the circularly polarized light with frequency ωpu with the QDs. Its
precise definition is not of importance here, but V0,± depends on an effective dipole
moment for the respective transition (see Ref. [113] for details).

To solve the system of differential equations, it is convenient to switch to a rotated
frame by applying the ansatz ψ̃±3/2 = ψ±3/2 eiωTt. It results in the equations

i ∂
∂t
ψ̃±3/2 = Ṽ±(t)ψ±1/2 , (2.3a)

i ∂
∂t
ψ±1/2 = Ṽ ∗

±(t) ψ̃±3/2 , (2.3b)

2The following generalized relations for the spin initialization were derived by the author together
with D. S. Smirnov for Ref. [94].
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with Ṽ±(t) = V±(t) eiωTt. Since we consider circularly polarized pulses with helic-
ity σ± represented by P = ±1, we can define V (t) := VP(t), whereas V−P(t) = 0.
Hence, two of the four wave functions are unaffected by the light,

ψ−1/2P(+∞) = ψ−1/2P(−∞) , (2.4a)
ψ−1/2P(+∞) = ψ−3/2P(−∞) . (2.4b)

It follows from Eq. (2.3) that the solutions of the remaining two wave functions are
complex conjugated. The solutions have the general form

ψ+1/2P(+∞) = Q eiΦ ψ1/2P(−∞) +Q′ e−iΦ′
ψ̃3/2P(−∞) , (2.5a)

ψ̃+3/2P(+∞) = Q e−iΦ ψ̃3/2P(−∞) +Q′ eiΦ′
ψ1/2P(−∞) , (2.5b)

where Q, Q′, Φ, and Φ′ are real, phenomenological parameters. Since the transfor-
mation must be unitary, it follows Q2 +Q′2 = 1 because of particle conservation.

The occupancy numbers of the ground (superscript ‘G’) and trion (superscript ‘T’)
states can be calculated according to

nG = |ψ−1/2|2 + |ψ+1/2|2 , (2.6a)
nT = |ψ−3/2|2 + |ψ+3/2|2 , (2.6b)

satisfying nG + nT = 1. Physically, this means that the system is either in the
ground or in the excited state. The components of the resident charge carrier spin
S, which we express as quantum mechanical averages of the spin operators, are
given by

Sx = Re
(
ψ−1/2ψ

∗
+1/2

)
, (2.7a)

Sy = Im
(
ψ−1/2ψ

∗
+1/2

)
, (2.7b)

Sz = 1
2
(
|ψ+1/2|2 − |ψ−1/2|2

)
. (2.7c)

The two relevant trion states represent an effective two-level system that can be
modeled by a pseudospin 1/2 denoted as J . We also express its components by
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quantum mechanical averages of the spin operators so that they are given by

Jx = Re
(
ψ−3/2ψ

∗
+3/2

)
, (2.8a)

Jy = Im
(
ψ−3/2ψ

∗
+3/2

)
, (2.8b)

Jz = 1
2
(
|ψ+3/2|2 − |ψ−3/2|2

)
. (2.8c)

In the following, it is assumed that there is no optical coherence between the ground
and trion states before the arrival of the pulse. Mathematically, this assumption is
expressed by the replacement of the products of the form ψ∗

±3/2(−∞)ψ±1/2(−∞) with
zeros. In this case, it follows from Eqs. (2.5) that the spin components (subscript ‘b’,
t = −∞) and after (subscript ‘a’, t = +∞) the pulse are related by

Sx
a = Q cos(Φ)Sx

b + PQ sin(Φ)Sy
b , (2.9a)

Sy
a = Q cos(Φ)Sy

b − PQ sin(Φ)Sx
b , (2.9b)

Sz
a = −P 1−Q2

4
(
nG
b − nT

b

)
+ 1 +Q2

2
Sz
b +

1−Q2

2
Jz
b , (2.9c)

for the electron spin, and similarly for the trion pseudospin by

Jx
a = Q cos(Φ)Jx

b − PQ sin(Φ)Jy
b , (2.10a)

Jy
a = Q cos(Φ)Jy

b + PQ sin(Φ)Jx
b , (2.10b)

Jz
a = P 1−Q2

4
(
nG
b − nT

b

)
+ Q2 + 1

2
Jz
b + 1−Q2

2
Sz
b . (2.10c)

These relations depend on the occupation numbers of the ground and trion state,
which are obviously also affected by the pulse. Their values before and after the
pulse are related by

nG
a = 1 +Q2

2
nG
b + 1−Q2

2
nT
b − P

(
1−Q2

)
(Sz

b − Jz
b) , (2.11a)

nT
a = 1 +Q2

2
nT
b + 1−Q2

2
nG
b + P

(
1−Q2

)
(Sz

b − Jz
b) . (2.11b)

Here, 0 ≤ Q2 ≤ 1 describes the probability for the pulse not to excite a trion,
i.e., Q is a measure for the spin initialization efficiency. The occupation numbers
before the pulse determine how many trions are excited and thus, the degree of
the induced spin polarization. The most efficient case is obtained for Q = 0: The
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transverse components are erased, whereas a finite spin polarization is induced
along the z axis, i.e., after the pulse the electron spin is completely oriented along
this axis. The phase −π ≤ Φ ≤ π describes a spin rotation induced by detuned
pulses. Qualitatively, it can be understood as an effective magnetic field pointing
along the direction of light propagation that acts on the spins during the presence
of the pulse. This dynamic Zeeman effect results from the optical Stark effect in the
field of the circularly polarized light, which induces a splitting of the spin states
with z projections ±1/2, similar to a real longitudinal magnetic field [115, 118].
Note that the phase Φ only plays a role for Q ̸= 0. For completeness, we recall that
the helicity of the circularly polarized light is represented by P = ±1.

The pulse parameters Q and Φ depend on the pulse shape and the detuning of the
photon energy from the trion transition. The application to ensembles of QDs in
which the transition energy is inhomogeneously broadened is discussed in Chap. 9.
In this case, the pulses are inevitably detuned. In terms of applications, pulses with
a controlled detuning can be used, e.g., to implement spin rotations for coherent
spin control [20, 29–32, 41, 119, 120].

The recombination dynamics of the occupancy numbers after the pulse can be
described by the simple exponential law

nG(t) = nG
a + nT

a

[
1− exp

(
− t

τ0

)]
, (2.12a)

nT(t) = nT
a exp

(
− t

τ0

)
, (2.12b)

with τ0 being the aforementioned trion recombination time. This description en-
sures the particle conservation nG(t) + nT(t) = nG

a + nT
a = 1 for all times t. The

exponential recombination dynamics described by Eq. (2.12) can be derived using
a Lindblad approach [121] incorporating a photonic bath into which the transition
energy dissipates during the radiative recombination [122, 123].

Typical initial conditions are Sb = 0, Jb = 0, nG
b = 1, and nT

b = 0. They represent
a system that is in a disordered ground state, which is the experimental situation
with temperatures of ∼ 4 − 6K [24, 25, 117] considering the relevant interactions
in a QD (discussed in Sec. 3.1).

Note that even though Eqs. (2.9), (2.10), and (2.11) are derived using pure spin
states, they are also valid for mixed states as long as the pulse duration is much
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shorter than the electron and hole spin precession in a magnetic field and also
much shorter than their spin relaxation times [113]. Furthermore, there may be
no optical coherence between the ground and trion states before the arrival of the
pulse, i.e., it must decay much faster than the pulse repetition time TR. If the
assumptions are not fulfilled, the density matrix formalism must be employed. But
for the experiments that are analyzed in this thesis, the formalism described here
is sufficient.

For illustration purposes, it is instructive to discuss the most efficient case with
Q = 0 starting from these initial conditions. Application of a single pulse yields
Sz
a = −P/4 and Jz

a = P/4 (all other components are zero since Q = 0), i.e., the
spin z projections of the ground and excited states have opposite signs. On the
occupancy level, we simply have nG

a = nT
a = 1/2. The physical interpretation is

that for an disordered ground state, only half of the states can be promoted to the
excited state by a pulse of a given helicity, in accordance with the optical selection
rules.

The pulse relations derived in Ref. [113] are easily retained by inserting nG
b = 1,

nT
b = 0, and Jb = 0. This simplification would be valid for τ0 ≪ TR, e.g., for the

commonly used pulse repetition time TR = 13.2 ns [23–25, 93, 117]. In this case,
the pulse relations reduce to [113–115]

Sz
a = −P 1−Q2

4
+ 1 +Q2

2
Sz
b , (2.13a)

Sx
a = Q cos(Φ)Sx

b + PQ sin(Φ)Sy
b , (2.13b)

Sy
a = Q cos(Φ)Sy

b − PQ sin(Φ)Sx
b , (2.13c)

Jz
a = Sz

b − Sz
a , (2.13d)

Jx
a = Jy

a = 0 , (2.13e)

which is slightly easier to interpret. It is worth to mention that these relations
can be also derived by starting from the density matrix and then calculating the
expectation values of the spin operators; see Ref. [123] for details.

In the case of resonant pulses (ωpu = ωT), the relations can be simplified even
further and one obtains Φ = 0 and Q = cos(Θ/2), i.e., no in-plane rotation of the
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spin components takes place. Here, Θ is an effective pulse area defined as [113]

Θ := 2
∫ ∞

−∞
f(t) dt , (2.14)

with f(t) being the smooth envelope of the electromagnetic pulse, which can have,
e.g., a Gaussian, hyperbolic secant, or a rectangular shape. The spin polarization
induced by a single pulse depends periodically on the pulse area Θ, which is typical
for two-level systems as a consequence of the Rabi effect [113]. If the pulses are
strong enough, they can not only excite the system from the ground to the excited
state but also de-excite the excited state back to the ground state. Pulses with
Θ = (k + 1)π, k ∈ N, are most efficient in inducing a spin polarization along the
z axis. Indeed, measurements on ensembles of QDs show a periodic dependence of
the induced spin polarization on the pulse area [23].

Up to this point, we have not discussed the spin dynamics taking place after ap-
plication of the pulse. Let us assume for the moment that there is no interaction
between the spins in the QD. In this hypothetical case, the time evolution of the av-
erage spin polarization would be solely determined by the radiative recombination
of the trion, i.e., it simply decays into the ground state. As a result of the optical
selection rules [112, 114, 124], the corresponding dynamics is simply described by

d
dt
S = Jz

τ0
ez , (2.15a)

d
dt
J = −J

τ0
, (2.15b)

where only the z projection of the trion pseudospin contributes to the spin polar-
ization of the ground state during the recombination. This follows from the optical
selection rules for the optical transitions between the bands Γ6 and Γ8 in GaAs-
based semiconductors [114, 124]. Thus, since we consider no further interactions
for now, only the z projections of the spins play a role. Their solution is analogous
to Eq. (2.12) and has the form

Sz(t) = Sz
a + Jz

a

[
1− exp

(
− t

τ0

)]
, (2.16a)

Jz(t) = Jz
a exp

(
− t

τ0

)
, (2.16b)
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where ez is the unit vector along the z axis. Clearly, in the limit t → ∞ we have
Sz(t → ∞) = Sz

a + Jz
a and Jz(t → ∞) = 0, i.e., the long-time spin polarization of

the ground state depends on the initial polarization induced by the pulse. Assuming
the aforementioned disordered initial state and applying Eqs. (2.9c) and (2.10c), we
simply have Sz

a = −P(1−Q2)/4 and Jz
a = P(1−Q2)/4 and thus, no polarization

persists because Sz(t→ ∞) = 0 follows.

This consideration illustrates that further spin dynamics must take place such that
a part of the induced spin polarization in the ground state persists for times t≫ τ0.
An easy way to achieve this is the application of a transverse magnetic field [112] as
will be discussed in Chap. 6. Internal interactions of the spins in the QD also lead
to an imperfect recombination, but typically to a much smaller degree [93, 125, 126].
The resulting mechanisms are very important in the context of the spin inertia and
polarization recovery effects, which are discussed in Sec. 2.4 and Chap. 8.

2.3 Time-resolved pump-probe spectroscopy

Time-resolved pump-probe spectroscopy is a powerful experimental tool to investi-
gate the dynamics of charge carrier spins in semiconductor nanostructures [77, 127,
128]. As discussed in Sec. 2.2, spin polarization in QDs can be induced by circu-
larly polarized laser pulses. Such pulses are referred to as pump pulses. In addition,
with a time delay ∆t ranging from pico- up to microseconds in modern setups [129],
so-called probe pulses are applied. They are linearly polarized and have a small
power not to disturb the system. The delay can be tuned with a mechanical delay
line. In the experiments of interest, the pulses with a typical duration of the order
of picoseconds are applied periodically with repetition time TR; common values are
TR = 13.2 ns [23–25, 93, 117] or TR = 1 ns [76, 94, 130]. To reduce the signal-to-
noise ratio, the measurements are integrated in time, i.e., averaged over repeated
measurements.

Figure 2.3 shows a graphical illustration of the pump-probe technique. As a conse-
quence of the spin Faraday effect, the polarization plane of the probe pulse transmit-
ted through the semiconductor nanostructure (e.g., an ensemble of QDs) is rotated
by a certain angle [113–115]. The rotation of the probe polarization plane is re-
ferred to as Faraday rotation; its measurement yields a signal proportional to the
projection of the spin polarization on the direction of light propagation (typically
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Figure 2.3: Illustration of the pump-
probe technique: The circularly polar-
ized pump pulse induces a spin polariza-
tion S in the sample. The linearly po-
larized probe pulse is applied to the sam-
ple with time delay ∆t. After transmit-
ting through the sample, the polarization
plane of the probe pulse is rotated by the
Faraday rotation angle ϑFR, yielding the
projection of the spin polarization on the
direction of light propagation. Figure in-
spired by Ref. [131].

the z projection) at a certain point in time t = ∆t. Variation of the time delay ∆t
gives access to the time evolution of the spin polarization. A similar accessible
quantity also yielding a signal proportional to the spin polarization is the Faraday
ellipticity [113–115]. In experiments where the reflected instead of the transmitted
probe beam is studied, the Kerr rotation is measured. The pump and probe light
can be degenerate or detuned in photon energy, allowing for probing the spin dy-
namics of different subsets of an inhomogeneous sample. The signal is integrated in
time to obtain an adequate signal-to-noise ratio, i.e., long trains of the pump-probe
protocol need to be applied.

Exemplary Faraday rotation traces measured by Greilich et al. [23] for an n-doped
InGaAs QD ensemble are shown in Fig. 2.4(a). In this experiment, an external
magnetic field is applied parallel to the axis of the pump pulse incidence (Voigt
geometry). The traces reveal periodic oscillations of the spin polarization repre-
senting the Larmor precession about the external magnetic field with a decaying
amplitude caused by dephasing. At small time delays, additional beats are visible
stemming from the heavy hole in the trion with a radiative lifetime of about 400 ps
or from electrons of neutral QD excitons.3 Furthermore, Greilich et al. analyzed the
measured traces by fitting a function ∝ exp(−t/T ∗

2 ) cos(Ωt). The extracted Larmor
frequencies Ω are plotted in Fig. 2.4(b) as a function of the magnetic field; its linear
dependency gives access to the transverse g factor of the electrons [Fig. 2.4(d)]. It is

3The transverse heavy-hole g factor was later measured to be much smaller than the value ex-
tracted from the beats [132]. Hence, the beats are most likely related to the spin precession of
excitons excited in neutral QDs.
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Figure 2.4: (a) Faraday rotation traces
measured for an n-doped InGaAs QD
ensemble in Voigt geometry for vari-
ous strengths of the external magnetic
field B. The inset shows the photolumi-
nescence (PL) spectrum of the QD sam-
ple along with the spectrum of the laser.
(b) Extracted Larmor frequencies Ω
showing a linear dependence on the mag-
netic field. (c) Dephasing time T ∗

2 and
(d) transverse g factor as a function of
the magnetic field. Reprinted with per-
mission from Ref. [23], ©2006 American
Physical Society.

also evident from Fig. 2.4(a) that the spin polarization vanishes significantly faster
for larger magnetic fields. Figure 2.4(c) shows the extracted values of T ∗

2 ∝ B−1,
representing dephasing times that mainly result from the inhomogeneous charac-
ter of the QD ensemble with slightly varying electronic g factor from QD to QD.
The two main mechanisms responsible for spin dephasing in QDs are discussed in
Sec. 3.3.4.

2.4 Spin phenomena in singly-charged quantum dots

Various spin phenomena can be studied in singly-charged QDs by means of the
pump-probe spectroscopy. The effects particularly important for this thesis are spin
mode locking in combination with nuclei-induced frequency, polarization recovery,
and the spin inertia effect. In the following, these phenomena are briefly introduced
while showcasing recent experimental results. Open questions with respect to these
results are pointed out.
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2.4.1 Spin mode locking and nuclei-induced frequency focusing

First, let us discuss two interrelated effects that can occur when a strong transverse
magnetic field (Voigt geometry) is applied to singly-charged QDs while exciting
them periodically by circularly polarized laser pulses to induce a spin polarization
via the excitation of trion states. Typically, the pulses are applied with a repetition
time of TR = 13.2 ns and the pulse protocol has a duration of up to minutes. The
experiments that we intend to describe were performed on n-doped InGaAs QD
ensembles [24, 25, 117]. There are also other experiments performed on p-doped
samples [95, 133, 134], but we do not focus on them here. As mentioned in Sec. 2.3, a
spin polarization induced in this way quickly dephases on the timescale of nanosec-
onds as can be seen in Fig. 2.4(a) [23], so the polarization probed immediately
before the next pump pulse is expected to be zero. The spin mode locking (SML)
effect describes the phenomenon that there can be a revival signal before the arrival
of the next pump pulse [24]. Representative Faraday ellipticity traces showing this
behavior can be seen in Fig. 2.5(a) [117]. The phenomenon is related to the optical
selection rules governing the trion excitation in conjunction with the Larmor pre-
cession of the localized electron spins. Combined, a selection of precession modes
with a distance ∝ T−1

R favoring commensurable dynamics between two pulses takes
place [24, 135]. The consequence is the appearance of a revival signal with its maxi-
mum at the next pulse incidence thanks to constructive interference. The amplitude
of the revival depends on many factors as will be discussed below and it can be
much larger than in the examples shown in Fig. 2.5(a); see, e.g., Refs. [23, 25, 95].

Another effect related to the synchronization of precession modes is resonant spin
amplification (RSA) [77, 133, 135–137], which describes the resonant buildup of the
spin polarization if certain conditions are met. It can also occur as a consequence
of the periodic application of pump pulses in the presence of a transverse magnetic
field, similarly to SML. We do not discuss its details at this point; a brief discussion
can be found in Sec. 8.3.5. But it is worth to know that the two effects, SML and
RSA, occur in different regimes determined by the repetition time of the pump
pulses and the dephasing time of the spin polarization. Qualitatively speaking,
the SML effect can take place if the spin polarization dephases before the next
pump pulse arrives, whereas RSA occurs if there is a finite spin polarization at the
incidence of the pump. The different regimes are discussed in detail in Refs. [133,
135]. In Part II of the thesis where nonequilibrium spin phenomena in the presence
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Figure 2.5: (a) Faraday ellipticity traces showing spin mode locking in combination
with nuclei-induced frequency focusing for various strengths of the applied transverse
magnetic field. (b) Extracted revival amplitudes as a function of the magnetic field for
two different samples of n-doped InGaAs QDs. The lines are a guidance to the eye. The
experiments were performed at a temperature of 4.7K. The dependence of the revival
amplitude on the magnetic field is strongly nonmonotonic. Both figures are reprinted
with permission from Ref. [117], ©2018 American Physical Society.

of a transverse magnetic field are studied, only the SML regime is considered.

Another effect known as nuclei-induced frequency focusing (NIFF) can change the
SML behavior significantly. The hyperfine interaction of the localized electron spins
with the surrounding bath of nuclear spins in the QD is the dominant interaction
as will be discussed in Sec. 3.1. Hence, an electron spin not only sees the external
magnetic field but also an effective magnetic field because of its interaction with
the nuclei. This effective magnetic field is known as the Overhauser field. Then,
in a classical picture, their Larmor precession takes place about the superposition
of both fields. Fascinatingly, the periodic application of pump pulses can induce a
selection of certain polarizations in the Overhauser field that favor commensurable
dynamics [25]. This effect is referred to as nuclear focusing and it is the origin
of NIFF. It is enabled by the hyperfine interaction between the electron and the
nuclear spin bath. The electron spins with a precession frequency being a multiple
of the laser repetition rate are not (or barely) affected by the pump pulses due
to the optical selection rules and hence, neither the nuclei see an abrupt change in
their dynamics. But in QDs with unsynchronized electron spin dynamics, the nuclei
are indirectly affected by the pulse as a consequence of the hyperfine interaction.
This electron-nuclear spin system evolves in time until a nonequilibrium steady
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2.4 Spin phenomena in singly-charged quantum dots

state (NESS) favoring commensurable dynamics is reached.

Exploiting nuclear focusing by applying tailored pulse protocols can result in a
single-mode spin precession of a huge number of electron spins in the QD ensem-
ble [75, 76]. This particular asset allows one to overcome dephasing constraints
induced by the varying electronic g factor from QD to QD and by the hyperfine in-
teraction with the nuclei. A huge benefit in this context is the macroscopic lifetime
of the nuclear polarization of seconds up to several hours [25, 42, 67–69]. Further
control of the selected nuclear polarizations can be achieved by applying a second
pump beam [25], which may also have a different repetition time [76].

Nuclear focusing is a nonequilibrium phenomenon and its interplay with SML is
highly nontrivial. In essence, the interaction of the electron spins with the nu-
clei needs to be taken into account and the spin initialization process also needs
to be described appropriately. The tremendous task of a thorough theoretical de-
scription becomes evident considering that the train of pulses is applied for up to
minutes in the experiments [25] and the shortest timescale of the spin dynamics
is the electronic Larmor period of ∼ 10 ps in a magnetic field of 10T. Therefore,
up to 13 orders of magnitude in time need to be treated theoretically. Several
experimental and theoretical studies have been conducted since the pioneering
experiments of Greilich et al. [24, 25]. Theoretical approaches range from quan-
tum mechanical [25, 117, 138–143] to (semi)classical [122, 131, 135, 139, 144, 145].
Quantum mechanical approaches are limited to small numbers of nuclear spins
because of the exponentially growing Hilbert space, must employ certain approx-
imations, or resort to a perturbative treatment. The numerous experimental in-
vestigations [24, 26, 76, 95, 98, 117, 120, 122, 130, 133, 134, 146–150] highlight the
complexity of the phenomenon. There are also interesting studies in which electron
spins are driven by continuous-wave laser excitation to lock nuclear spins into cer-
tain polarizations [151–155], but we consider only the pulsed laser excitation in this
thesis.

One of the main open questions addressed in this thesis is the magnetic field depen-
dence of the revival amplitude resulting from the interplay of SML and NIFF, for
which experiments reveal a complex nonmonotonic dependence [95, 117, 122], e.g.,
the dependence shown in Fig. 2.5(b) [117]. Throughout Chaps. 5–7, a sophisticated
model is developed to investigate the interplay of SML and NIFF and to understand
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the magnetic field dependence better. We will see that nuclear magnetic resonances
with respect to the laser repetition rate play an important role in this context.

2.4.2 Polarization recovery

The application of a magnetic field to the QDs along the direction of the pump
pulse incidence (Faraday geometry) leads to a stabilization of the spin polariza-
tion along the magnetic field, which would otherwise be destroyed by the hyperfine
interaction of the charge carrier spin with the nuclei on the timescale of nanosec-
onds. Effectively, the spin lifetime increases. This effect is referred to as polar-
ization recovery [98, 125, 126]. In the simplest isotropic model, the spin polariza-
tion without application of a magnetic field is three times smaller than for large
fields [88, 104, 115]. This simple case is discussed in Sec. 3.3.

The corresponding polarization recovery curve (PRC), i.e., the dependence of the
spin polarization on the strength of the longitudinal magnetic field, is usually sym-
metric around zero field. The typical shape the PRC is V-like [88], e.g., like the
one shown in the top-left panel of Fig. 2.6 [93]. However, it was demonstrated by
Zhukov et al. [93] in a pump-probe experiment that the PRC can also be M-like for
p-doped InGaAs QDs (top-right panel).

The different shapes are related to the different spin initialization processes in n-
and p-doped QDs. Generally, the spin orientation mechanism described in Sec. 2.2
is valid for both types. But if there was no further interaction after the trion
excitation, the trion would simply decay into the ground state so that no spin po-
larization persists. Applying a strong transverse magnetic field is probably the most
efficient strategy for spin initialization because the fast Larmor precession during
the trion recombination leads to a sizable spin polarization in the ground state
afterwards [112]. This mechanism does not work in the case of a longitudinal field
because a spin pointing along a magnetic field does not precess. But other interac-
tions also lead to a finite spin generation rate [93, 125]. Typically, the spin polariza-
tion induced in this way is rather small because it strongly depends on the balance
between the radiative trion recombination and the nonradiative trion decay.

For n-doped QDs where negatively-charged trions are excited, the nonradiative
trion decay is mostly unrelated to the hyperfine interaction because this interaction
is generally weak for heavy holes (discussed in Sec. 3.1) [19, 93, 97, 115, 156–158].
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2.4 Spin phenomena in singly-charged quantum dots

In this case, the spin generation rate barely depends on the magnetic field. For p-
doped QDs, however, the trion consists of two heavy holes in a spin singlet together
with an unpaired electron spin. Since the hyperfine interaction for electrons is much
stronger than for heavy holes, it yields an important but magnetic field dependent
contribution to the spin generation. The magnetic field dependence is related to
the same mechanism that leads to the increase of the spin lifetime of the charge
carriers for larger fields: the electron spin and the nuclear spins decouple. Hence,
the spin generation rate decreases in p-doped samples for larger fields.

The different mechanisms for n- and p-doped QDs are visualized in Fig. 2.7 [93]. The
black curve visualizes the increase of the spin lifetime of the ground state caused by
the application of the longitudinal magnetic field. In both cases, this dependence is
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Figure 2.6: Upper row: Polarization recovery curves measured for (a) n-doped and (b) p-
doped InGaAs QDs. The gray solid lines represent model calculations. In the pump-probe
experiments, the helicity of the pump pulses is modulated with frequency fm between σ+

and σ−. Bottom row: Spin inertia measurements giving access to the effective spin relax-
ation times of the resident charge carriers in the (c) n-doped and (d) p-doped QDs. The
insets show a linear extrapolation to zero pump power to extract the intrinsic spin relax-
ation time. Reprinted with permission from Ref. [93], ©2018 American Physical Society.
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Figure 2.7: Schematic dependence
of the spin lifetime (black) and
spin generation rate (orange) on
the magnetic field for (a) n-doped
and (b) p-doped QDs. The result-
ing spin polarization (dashed blue)
is essentially proportional to the
product of spin lifetime and gener-
ation rate. Reprinted with permis-
sion from Ref. [93], ©2018 American
Physical Society.
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V-like. The spin generation rate (orange) follows the dependence described above
for the respective doping. The resulting spin polarization is essentially proportional
to the product of spin lifetime and generation rate, which is displayed by the dashed-
blue curves (also highlighted by the gray-shaded area under this curve).

Measurements of PRCs can be used to determine a variety of parameters charac-
terizing the spin dynamics in the QDs [93, 126]. Especially the combination with
the spin inertia effect, which is introduced in the following section, is very powerful.
We revisit this kind of experiment in Chap. 8 and extend the existing theory [125],
which is valid in the limit of weak pump pulses, to account for an arbitrary pump-
ing efficiency. For instance, the model calculations shown in the top-left panel of
Fig. 2.6 for the n-doped case do not reproduce the width of the zero-field minimum
of the PRCs well for small modulation frequencies [93]. Our theoretical frame-
work is extended and put to use in Chap. 9. The improved understanding related
to spin saturation effects, which turn out to influence the PRC shape, allows for
an even better characterization of QD samples by means of polarization recovery
measurements.

2.4.3 Spin inertia

Measuring long spin relaxation times of charge carriers in QDs is rather hard. A con-
venient method is the measurement of the so-called spin inertia effect [93, 125, 159].
In this kind of experiment, a longitudinal magnetic field is applied so that the mea-
surement of the spin inertia gives access to the longitudinal spin relaxation time
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2.4 Spin phenomena in singly-charged quantum dots

(of the order of microseconds) of the resident charge carriers. The QDs are sub-
jected to a long train of circularly polarized laser pulses with repetition time TR,
periodically exciting trion states to induce spin polarization. The central aspect is
that the helicity of the pulses is modulated between σ+ and σ− with frequency fm.
This modulation scheme is illustrated in Fig. 2.8(a) [125]. The linearly polarized
probe pulses share the same repetition time and are usually applied slightly (about
50 ps) before the arrival of the pump. The probed signal is modulated with the
same frequency as the pump beam, otherwise the integrated signal would simply
yield zero.

The spin inertia effect manifests itself in the dependence of the spin polarization on
the modulation frequency. When this frequency is larger than the spin relaxation
rate of the resident charge carriers, the spin polarization decreases; see the bottom
row of Fig. 2.6 for exemplary measurements on n- and p-doped InGaAs QDs [93].
This behavior, which is visualized in Fig. 2.8(b) [125], led to terming this effect
spin inertia because it can be understood as an inertia of the spin polarization that
prevents it from following a switching of the pump helicity arbitrarily quickly. For
instance, if the modulation frequency is larger than in Fig. 2.8(b), fewer pulses are
applied before the helicity is inverted and hence, the spin polarization builds up

Figure 2.8: Behavior of typical spin dy-
namics without application of a mag-
netic field [panel (b)] as a consequence
of switching the pump helicity (po-
larization) [panel (a)] with frequency
ωm = 2πfm. The vertical lines in (a)
depict the arrival of the pump pulses ap-
plied with repetition rate ωR = 2π/TR.
The dark-blue line in (b) highlights the
dependence of the spin polarization Sz

if it is probed just before each pump
pulse as in the experiments. Adapted
with permission from Ref. [125], ©2018
American Physical Society.
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less. Vice versa, if the modulation frequency is smaller, the spin polarization builds
up more.

In Chap. 8, the influence of the pumping strength on the effective spin relaxation
time is analyzed and it is shown that the extrapolation to zero pump power as
in the insets of the bottom row of Fig. 2.6 [93] yields the intrinsic spin relaxation
time of the resident charge carriers. In Chap. 9, the spin inertia effect is exploited
to reduce the average degree of spin polarization, which turns out to be beneficial
for the detection of a novel effect called resonant spin amplification in Faraday
geometry, which is predicted in Chap. 8.
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Chapter 3

Model for a localized spin in a
quantum dot

The theoretical description of the spin phenomena introduced in Sec. 2.4 requires
the calculation of the spin dynamics in singly-charged III-V semiconductor QDs.
Here, we focus mainly on n-doped QDs with a single electron in the conduction
band. The localization of charge carriers in QDs leads to several features which de-
termine their spin dynamics. First, the spin-orbit interaction is suppressed, whereas
the hyperfine interaction is enhanced and generally, long spin coherence and relax-
ation times of the order of nanoseconds are observed without application of an
external magnetic field [18, 19]. Furthermore, there is the possibility to address
spins of single charge carriers, e.g., by optical means as discussed in Sec. 2.2. On
long timescales and especially under nonequilibrium conditions, e.g., because of the
periodic application of pump pulses, the combined dynamics of electronic and nu-
clear spins becomes important [115]. This intertwined electron-nuclear spin system
is the main subject studied in Part II of the thesis.

The reduced Planck constant ℏ is set to unity in theoretical considerations hence-
forth. For convenience, ℏ is included in the equations whenever the conversion to
SI units is important, e.g., to connect with experiments.

3.1 Interactions in quantum dots

The spin-orbit interaction is responsible for several spin relaxation mechanisms in
bulk semiconductors or quantum wells [108, 109]. In QDs, however, the confinement
of the charge carriers leads to a strong suppression of these effects because of the
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Chapter 3 Model for a localized spin in a quantum dot

absence of translational motion [115, 160, 161]. Hence, spin relaxation mechanisms
induced by the spin-orbit interaction play no role.

3.1.1 Hyperfine interaction

The strong localization of charge carriers in QDs has the consequence that the dom-
inant interaction of an electron in an s-type conduction band is the hyperfine inter-
action with the nuclear spins of the host lattice [19, 104–106, 115, 162, 163]. The
hyperfine interaction describes the coupling of a nuclear magnetic moment µ̂n = γnÎ

to the magnetic moment of an electron. Here, γn is the gyromagnetic ratio of the nu-
cleus with spin Î. Fermi [164] derived the hyperfine interaction between an electron
and a nucleus from relativistic arguments. Similar derivations can be found, e.g.,
in Refs. [115, 165]. For an s-band electron, i.e., without any orbital contribution to
its magnetic moment, only the Fermi-contact hyperfine interaction is relevant. It
is described by the Hamiltonian [115, 164–167]

Ĥcontact−hf = −µ0

4π
8π
3
γsγn|φ(r)|2Ŝ · Î , (3.1)

where Ŝ represents the electron spin with spin S = 1/2, φ(r) is the electronic
wave function at the position r of the nucleus with spin Î, γs ≈ −2µBℏ−1 is the
gyromagnetic ratio of a free electron, µB is the Bohr magneton, and µ0 is the
vacuum permeability. Importantly, the interaction strength of the contact hyperfine
interaction is proportional to the probability density |φ(r)|2 of the electron at the
position of the nucleus. The Hamiltonian (3.1) induces a small shift in the nuclear
magnetic resonance frequency, called the Knight shift [168]. This shift is induced by
the interaction with the magnetic moment of the electron, which can be interpreted
as an effective magnetic field (the Knight field) at the position of the nucleus.

For electrons in an s-type band, the probability density of the electron at the
position of the nucleus is finite and hence, the Fermi-contact hyperfine interaction
is nonzero. But for holes in a p-type band, the probability density is zero at the
position of the nucleus so that there is no contribution from the Fermi-contact
interaction. Instead, the hyperfine interaction of a nuclear spin with a hole is of
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dipole nature. The relevant Hamiltonian is [115, 157, 165, 167]

Ĥdd = −µ0

4π
γsγnÎ ·

(
L̂

r3
− Ŝ

r3
+ 3 r̂(Ŝ · r̂)

r5

)
, (3.2)

where L̂ = r̂ × p̂ is the angular momentum operator of the charge carrier. The
first term describes the orbital part of the interaction, which is important if the
charge carrier is in a p-type band, and the last two terms represent the dipole-
dipole interaction. But for electrons in an s-type band, the contribution from
the Hamiltonian (3.2) to the hyperfine interaction is much weaker than the Fermi-
contact term (3.1).

In the envelope function approximation, the electronic wave function in a nonde-
generate ground-state orbital can be written as φ(r) = √

v0Ψ(r)u(r), where u(r) is
the lattice-periodic k = 0 Bloch amplitude, Ψ(r) is the slowly varying ground-state
envelope function, and v0 is the atomic volume. We normalize the Bloch amplitude
over a unit cell Ω according to ∫

Ω
|u(r)|2 dr = na , (3.3)

where na is the number of atoms in the unit cell (na = 2 in III-V semiconduc-
tors with zinc blende crystal structure) [167]. This normalization is convenient
because the resulting effective coupling constant is independent of na. We define
this constant according to [167]

A := Ahfv0|Ψ(rn)|2 (3.4)

with

Ahf := −µ0

4π
8π
3
γsγn|u(rn)|2 (3.5)

and represent the Hamiltonian (3.1) as the simple Heisenberg-like interaction

Ĥcontact−hf = AŜ · Î . (3.6)

Typically, Ahf is of the order of 100µeV, while A depends on the localization volume
of the electron and is of the order of 0.1− 1µeV [104, 107]. The values relevant in
InGaAs QDs are given in Table 3.1.

33



Chapter 3 Model for a localized spin in a quantum dot

Table 3.1: Nuclear spins I [169], gyromagnetic ratios γn [167], hyperfine coupling
strengths Ahf [167], natural abundances (NA) [170], and relative abundances (RA) of
the different isotopes in InxGa1−xAs QDs. The RA follows from the NA and the zinc
blende crystal structure.

Isotope I γn (rad s−1 T−1) Ahf (µeV) NA RA
69Ga 3/2 6.43× 107 74 0.601 0.5× 0.601× (1− x)
71Ga 3/2 8.18× 107 96 0.399 0.5× 0.399× (1− x)
75As 3/2 4.60× 107 86 1 0.5
113In 9/2 5.88× 107 110 0.043 0.043× 0.5x
115In 9/2 5.90× 107 110 0.957 0.957× 0.5x

3.1.2 Central spin model

Extending the Hamiltonian (3.6) to the situation in QDs where N nuclear spins
interact with the electron spin gives rise to the so-called central spin model (CSM)

ĤCSM =
N∑
k=1

AkŜ · Îk . (3.7)

Its star-like topology is illustrated in Fig. 3.1. The central electron spin sees the
effective magnetic field

B̂ov :=
N∑
k=1

AkÎk , (3.8)

which is commonly referred to as the Overhauser field [171] and represents the sum
of all nuclear spins Îk weighted by their hyperfine coupling Ak. This model, first
introduced by Gaudin as a case of an integrable model solvable by means of the
Bethe ansatz [172–177], is the fundamental model applied in this thesis to study
the spin dynamics of localized electrons in III-V semiconductor QDs.

An electron spin has the spin quantum number S = 1/2, while the spin of the
nuclei depends on the isotope composition of the QD. Often, I = 1/2 is chosen in
a quantum mechanical treatment for simplicity. For InGaAs QDs, the nuclear spin
is I = 3/2 for Ga and As, and I = 9/2 for In (see Table 3.1).
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Figure 3.1: Illustration of the central spin model: The central spin Ŝ couples to N bath
spins Îk with coupling constants Ak in a star-like topology.

As a consequence of the electronic envelope wave function, the strength of hyperfine
interaction depends strongly on the distance between the electron spin and the
nuclei so that the individual couplings Ak in a QD differ significantly. According to
Eq. (3.4), Ak is proportional to the probability density of the electronic envelope
wave function Ψ(rk) at the position rk of the nuclear spin Îk,

Ak = Ahfv0|Ψ(rk)|2 , (3.9)

where v0 is the atomic volume and Ahf is a material-dependent constant defined in
Eq. (3.5). As discussed before, the electron is in an s-type conduction band, i.e.,
in its orbital ground state. Commonly, its envelope wave function is approximated
to be isotropic and of the form [106, 178]

Ψ(rk) = Ψ(0) exp
[
−1
2

(
rk
l0

)m]
. (3.10)

For m = 2, it is a Gaussian with characteristic radius l0 as it follows if the electron
is assumed to be trapped in a harmonic potential. For m = 1, the envelope wave
function corresponds to a hydrogen-like s state with characteristic radius 2l0. We
restrict ourselves to the Gaussian case with m = 2.

Next, we intend to parameterize the couplings Ak as a function of its index k and
instead of the position rk. Note that the index k not only denotes the number of the
nuclei at position rk but also the total number of nuclei within the radius rk if the
nuclei are numbered such that rk+1 > rk. For approximately two-dimensional (flat)
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QDs, we can exploit the quadratic scaling k ∝ r2k in 2D.1 Furthermore, it is clear
from Eq. (3.10) that the interaction with many of the nuclei is exponentially weak,
i.e., for a QD with N nuclear spins, not all of them contribute significantly to
the Overhauser field. We define Neff as the number of nuclear spins within the
radius

√
2l0, i.e., Neff denotes the effective number of nuclear spins coupled to

the electron spin.2 Thus, we have k = Neff at rk =
√
2l0 and consequently, the

relation (
rk√
2l0

)2

= k

Neff
(3.11)

holds [178]. Inserting Eq. (3.11) into (3.10) to parameterize the couplings (3.9)
yields

Ak = C exp
(
− 2k
Neff

)
. (3.12)

This parameterization is applied in major parts of the thesis. It is also considered
in various other studies, e.g., in Refs. [123, 141, 142, 177–182]. Since the effective
number of nuclei interacting with the electron spin in a QD ranges from 104 to 106

(smaller QDs correspond to smaller values ofNeff because of the stronger localization
of the electron) [19, 103–107], it is not practical to treat the CSM (3.7) for a realistic
bath size. Instead, it is convenient to normalize the couplings Ak with respect to
the characteristic energy scale

AQ :=

√√√√ N∑
k=1

A2
k (3.13)

given by the square root of the sum of squares of the couplings [104, 183]. In
Sec. 3.3.4, we will see that the inverse of this energy scale defines the dephasing
time of the electron spin caused by its interaction with the nuclear spin bath. Using
this normalization, the number of effectively coupled nuclei Neff can then be varied
independent of AQ (or of related quantities), which is beneficial to establish scaling
arguments up to realistic bath sizes. Expressing the parameterization (3.12) in

1The scaling would be cubic in 3D and linear in 1D.
2Using the radius

√
2l0 instead of l0 as in Ref. [178] allows for an alternative definition of the

number of effectively coupled nuclear spins via the ratio Neff := (
∑

k Ak)2/
∑

k A
2
k in the limit

N → ∞, Neff ≫ 1. This definition is introduced in Sec. 4.1.
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units of AQ, we have

C =

√√√√ exp(4/Neff)− 1
1− exp(−4N/Neff)

AQ . (3.14)

In the thermodynamic limit, i.e., in the limit of an infinite number of bath spins N ,
this expression reduces to

lim
N→∞

C =
√
exp

( 4
Neff

)
− 1AQ . (3.15)

If we further assume the situation Neff ≫ 1, which is realistic in QDs, an expansion
for large Neff yields

C = 2√
Neff

AQ +O
(
N

−3/2
eff

)
. (3.16)

This relation implies Ak ∝ AQ/
√
Neff , i.e., the rate of change of the nuclear spins

caused by the hyperfine interaction is slower by a factor O(1/
√
Neff) compared to

the characteristic energy scale AQ describing the interaction of the electron spin
with the Overhauser field. The physical interpretation is straightforward: a stronger
localization of the electron in the QD implies that less nuclei are effectively coupled
to the electron spin. Hence, the probability density of the electron at the site of
a particular nucleus increases and in turn, also the individual interaction strength
with this nucleus. For a QD with Neff ≈ 104 − 106 effectively coupled nuclear
spins, the individual couplings Ak are of the order of 0.1 − 1µeV because of the
scaling with 1/

√
Neff [104, 107]. Since A−1

Q is of the order of nanoseconds, the nu-
clear spin dynamics takes place on a timescale of the order of 100 to 1000 ns [104].
Furthermore, since the individual couplings are so small, the typical scenario un-
der experimental conditions with temperatures of ∼ 4K is an initially disordered
state represented by a density matrix ρ̂ ∝ 1̂, which corresponds to the infinite
temperature limit.

3.1.3 Application of a magnetic field

In the experiments introduced in Sec. 2.4, an external magnetic field is applied to
the QD either in a transverse or longitudinal configuration relative to the z axis
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Chapter 3 Model for a localized spin in a quantum dot

serving as quantization axis. Generally, the Zeeman effect for the electron spin is
described by the Hamiltonian

ĤeZ = γeBextnB · Ŝ, (3.17)

where nB represents the direction of the magnetic field, γe = geµBℏ−1 denotes the
electronic gyromagnetic ratio, and ge is the electronic g factor in the QD (not the
g factor of a free electron). A typical value for the electronic g factor in InGaAs
QDs is ge ≈ −0.6 and it only has a small anisotropy [23, 93, 132].

The Hamiltonian (3.17) is also valid for heavy holes, but their g factor is strongly
anisotropic and can also depend on the in-plane orientation of the QD sample [96,
132]. For the transverse g factor, |g⊥h | = 0.05− 0.15 [96, 132] is a typical value. In
contrast, the longitudinal g factor g∥h = −0.45 [93, 132] has a value similar to the
electronic g factor.

For the nuclear spins, the Zeeman Hamiltonian is analogously given by

ĤnZ =
N∑
k=1

γn,kBextnB · Îk . (3.18)

Note that the gyromagnetic ratios γn,k differ for the various isotopes in a QD, but
generally, they are three orders of magnitude smaller than γe because of the larger
nucleus mass relative to the electron mass [19, 167]. For this reason, it is often
possible to neglect the nuclear Zeeman effect, but it can also play a crucial role
when the long-time behavior is important as we will see in Part II.

An overview of relevant parameters (spin, gyromagnetic ratio, hyperfine coupling
strength, relative abundance) for the different isotopes in InxGa1−xAs QDs is given
in Table 3.1.

3.1.4 Anisotropic central spin model

The hyperfine interaction of a hole spin Ĵ in a QD of is much weaker than for
an electron spin because it is caused by the dipole-dipole interaction. The Fermi-
contact term vanishes as a consequence of the p-type character of the valence band.
Yet, the problem can be recast to an anisotropic CSM in which the anisotropy
degree depends on the mixing of heavy and light hole states induced by the shape
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and strain of the QD [156, 157]. The Hamiltonian of the anisotropic CSM has the
form [156, 157, 184]

ĤCSM,anisotropic =
N∑
k=1

Ãk

[
Ĵz Îzk +

1
λ

(
ĴxÎxk + Ĵy Îyk

)]
, (3.19)

where λ describes the degree of anisotropy and λ→ ∞ for heavy holes and λ = 1/2
for light holes. Because of the aforementioned heavy-light hole mixing, a typical
value for primarily heavy holes in InGaAs QDs is λ ≈ 5−10 [93, 97]. The isotropic
CSM (3.7) for localized electron spins is recovered for λ = 1. The coupling con-
stants Ãk are much smaller than the Ak appearing in the isotropic CSM. Because
of the weaker interaction, the coherence time for hole spins is about one order of
magnitude larger than for electron spins [19]. Calculations of the hyperfine inter-
action tensors for electrons and holes in GaAs and Si based on density functional
theory combined with k · p theory are presented in Ref. [158].

Taking the anisotropic hyperfine interaction of hole spins into account is crucial
for the description of the polarization recovery effect in p-doped QDs (Chap. 8);
see also Sec. 2.4.2. In n-doped QDs, the anisotropic hyperfine interaction of the
unpaired heavy-hole spin in negatively-charged trions T− plays only a minor and
often negligible role (Chaps. 6–9).

3.1.5 Further interactions

Since each nucleus with nonzero spin carries a magnetic moment, they also interact
with each other via the dipole-dipole interaction. The Hamiltonian describing this
interaction between two nuclear spins Î and Î ′ has the form [165]

Ĥdd−nuclei =
µ0

4π
γnγn′

 Î · Î ′

r3
− 3

(
Î · r̂

) (
Î ′ · r̂

)
r5

 , (3.20)

where γn and γn′ are the respective gyromagnetic ratios and r is the distance vec-
tor between the two nuclei. The dynamics induced by this interaction is usually
negligible because it takes place on a timescale of the order of 100µs [104]. The
dipole-dipole interaction between the nuclear spins provides, however, a mecha-
nism for nuclear spin diffusion and thermalization. Since the Hamiltonian (3.20)
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does not conserve the total spin of the nuclei, it can cause slow nuclear spin relax-
ation [115].

The formation of self-assembled InGaAs QDs is caused by the partial relaxation of
strain stemming from the different lattice constants of the InAs wetting layer and
the GaAs barrier (see Sec. 2.1). The remaining strain in the formed QDs results in
the formation of electric field gradients, giving rise to a quadrupolar interaction for
nuclei with spin I > 1/2. This interaction is described by the Hamiltonian [115]

Ĥq =
∑

α,β∈{x,y,z}

∂2V

∂rα∂rβ
|e|Q

6I(2I − 1)

[3
2
(
ÎαÎβ + Îβ Îα

)
− I (I + 1)

]
, (3.21)

where V is the potential of the electric field, e is the elementary charge, and Q

is a constant describing the quadrupole moment. The quadrupolar interaction
provides another relaxation mechanism for the electron spin on the timescale of
about 1µs [185]. We neglect this interaction despite dealing with nuclear spins
with I = 3/2 (Ga, As) and I = 9/2 (In); its influence is the subject of other
research [97, 143, 185–190].

3.2 Theoretical approaches to the central spin model

Numerous approaches have been developed to study the central spin model. This
overview is not comprehensive, but it is supposed to highlight the difficulties of the
theoretical treatment of this model. Already from a purely theoretical perspective,
solving the CSM is an interesting task, but it is mainly studied in the context
of decoherence of the central spin induced by the interaction with a spin bath.
Although an analytic solution for this integrable model can be derived using the
Bethe ansatz [172–177, 179], the dynamics in the CSM comprising a large spin bath
still poses a challenging issue even today. The exact solution for an inhomogeneous
parametrization of the hyperfine couplings can only be computed for fairly small
systems of up to 48 bath spins since the exact eigenstates must be sampled, e.g.,
by Monte Carlo methods [177, 179, 180, 182].

A common approximation is the so-called box model in which all couplings Ak

are chosen to be equal [104, 115, 122, 138–140, 163, 181, 191–195]. Essentially, the
envelope wave function Ψ(rk) in Eq. (3.9) is assumed to be a constant with a certain
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cutoff radius. This approximation neglects, however, an additional decoherence
mechanism stemming from the nonuniform distribution of the hyperfine couplings,
but it is often sufficient to describe effects qualitatively while being much easier to
handle. The approach can be improved in terms of a graded box model for which
Ψ(rk) is approximated by a sequence of step functions [196].

Many complementary theoretical techniques have been developed to analyze the
CSM for large bath sizes and long times. Besides the already mentioned Bethe
ansatz, exact diagonalization [106, 117, 189, 190, 197], Chebyshev expansion tech-
niques [184, 198, 199], or a direct evolution of the density matrix via the Liouvillean
using a perturbative treatment [141, 142] can be applied to study small systems of
up to 20 bath spins. These approaches can treat the spin dynamics up to long times.
Larger bath sizes up to about 1000 spins can be treated using the time-dependent
density matrix renormalization group, but this method is restricted to intermediate
times up to about 40A−1

Q [181–183, 200]. The limit of infinite times to study per-
sisting correlations of the central spin can be addressed by mathematically rigorous
lower bounds [180, 201]. Techniques based on rate equations or on non-Markovian
master equations can be employed to access large bath sizes, but they require a
sufficiently strong external field to be well justified [105, 138, 163, 178, 202–206].
This is also the case for approaches based on equations of motion [207, 208]. Clus-
ter expansion techniques are another type of approaches, but they are restricted by
the maximum cluster size, limiting the maximum time up to which the results are
reliable [209–216].

In the limit of large spin baths, the CSM Hamiltonian (3.7) can be mapped to
a four-dimensional impurity that couples to a noninteracting bosonic bath [182].
Remarkably, even in the limit of an infinite bath the CSM does not become com-
pletely classical. While this approach is promising, its practical application in the
current form is limited because of extensive memory requirements [217], i.e., a
better implementation or methodical improvements are called for.

Recently, a promising quantum mechanical method has been proposed by Lindoy
and Manolopoulos [218]. They demonstrated that their method yields accurate
results for large bath sizes up to N = 999 and long timescales up to 100A−1

Q by
comparison with other established methods such as time-dependent density ma-
trix renormalization group, Bethe ansatz, and also semiclassical approaches. The
approach does not suffer from the statistical errors occurring when using a Monte

41



Chapter 3 Model for a localized spin in a quantum dot

Carlo sampling for the exact eigenstates of the CSM obtained from the Bethe ansatz
as in Refs. [177, 179]. Furthermore, there is no growth of a truncation error as in the
approach based on time-dependent density matrix renormalization group applied in
Refs. [181–183, 200]. The main idea is to construct a sequence of simpler Hamilto-
nians that converges to the original CSM Hamiltonian the more sub-Hamiltonians
are included. In a way, this approach is similar to the graded box model used by
Petrov et al. [196], but the required modification of the distribution of hyperfine
couplings is performed in a more sophisticated way. The approach has been ap-
plied to study, e.g., radical pair recombination reactions, also demonstrating that
semiclassical approaches [219, 220] to the CSM work remarkably well [221].

Treating the CSM in a semiclassical or classical manner is a commonly used and
powerful approach to study its real-time dynamics. Various kinds of such ap-
proaches have been proposed and applied over the years. In one approach, the bath
consisting of a large number of nuclei is replaced by an effective time-dependent
field [104, 183, 200, 222, 223]. When the slow dynamics of the nuclear spins play
no role, the Overhauser field may be approximated as frozen in time, which sim-
plifies the theoretical treatment significantly (Sec. 3.3.4). Subsequently, random
fluctuations of the bath resulting from its interaction with the central spin can be
included [104]. When the spin bath is assumed to behave like a stochastic field,
the fluctuations of the central spin can be studied by solving Bloch-Langevin equa-
tions [200, 224]. However, such an approach is insufficient to describe effects such
as nuclear focusing or dynamic nuclear polarization [19, 42, 115, 225] because no
backaction from the central spin on the bath spins is included [200]. Another draw-
back is that the bath fluctuations need to be known a priori. It was also argued
that the saddle-point approximation of the spin-coherent path integral representa-
tion describes the dynamics of the central spin well because quantum fluctuations
become less important if the number of bath spins is large [226]. Similarly, the
spin-coherent states P representation of the density matrix combined with time-
dependent mean-field theory essentially amounts to solving classical equations of
motion, showing very good agreement with the exact quantum mechanical solu-
tions [227, 228].

The comparison of data stemming from quantum mechanical approaches utilizing
time-dependent density matrix renormalization group, Chebychev expansion, or
Bethe ansatz with classical simulations that are ensemble-averaged over normal
distributions also shows very good agreement [182, 200, 229]. Details on this semi-
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classical approach introduced by Stanek et al. [200] are given in Sec. 3.3. It is
supported by the analytical argument that according to the central limit theorem,
the Overhauser field stemming from a very large number of fluctuating nuclear
spins behaves like a classical variable [183, 200, 229]. Furthermore, the classical
and quantum mechanical version of the CSM have the same conserved quanti-
ties [173, 200, 226].

The big advantage of (semi)classical approaches is that they can handle the large
number of nuclear spins present in QDs while also allowing for calculating real-time
dynamics up to very long times. These are exactly the requirements to study the
effects SML and NIFF under experimental conditions where trains of periodic pulses
are applied to the QDs for extremely long times. For this reason, we resort to the
approach promoted by Stanek et al. [200], which is introduced in the following.

3.3 Semiclassical approach

Treating the Overhauser field in QDs as a classical variable is well justified because
of the huge number of nuclear spins that are effectively coupled to the central
spin [183, 200, 229]. But for the single central spin with S = 1/2, this argument
does not hold because it is a quantum mechanical object whose backaction on the
nuclear spins is not classical. In the following, we introduce the truncated Wigner
approximation (TWA) [230] as the theoretical foundation of our semiclassical ap-
proach and apply it to the CSM. In this approximation, the central spin is not
treated purely classically. Instead, quantum fluctuations enter through random
initial conditions of the classical equations of motion to be solved.

3.3.1 Truncated Wigner approximation

The TWA is a semiclassical approach based on the Wigner-Weyl quantization of
the phase space; see Ref. [230] for a review. A compact discussion of its application
to spin systems can be found in Refs. [231, 232]. In this phase-space representation,
the classical limit in which quantum fluctuations vanish and the structure of quan-
tum corrections can be naturally recovered [230]. In our case, the classical limit
corresponds to the classical spin limit where spins are treated as rotating three-
dimensional vectors. In the framework of the TWA, classical equations of motion
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must be solved with initial conditions sampled from appropriate probability distri-
butions through which leading order quantum fluctuations enter. The equations of
motion themselves are not affected, i.e., they are purely classical.

The Wigner-Weyl transform describes a mapping of the Hilbert space of a quantum
mechanical system to its corresponding phase space. This mapping can be accom-
plished by introducing so-called phase-point operators Â expressed in terms of the
classical phase-space variables p and q via [230, 232–234]

⟨q′|Â(p, q)|q′′⟩ = 1
(2π)D

δ

(
q − q′ + q′′

2

)
eip·(q′−q′′) , (3.22)

where D is the dimension of the phase space and δ(x) is the Dirac delta function.
The phase-point operators defined in this way relate the quantum mechanical den-
sity matrix ρ̂ to a quasiprobability distribution, which is known as the Wigner
function [230, 232, 233, 235]

W (p, q) = Tr
[
ρ̂ Â(p, q)

]
. (3.23)

Generally, this quasiprobability distribution is normalized for any proper density
matrix, but it can be nonpositive. The Wigner function is the so-called Weyl symbol
of the density matrix. The Weyl symbol

OW(p, q) = Tr
[
Ô(p, q) Â(p, q)

]
(3.24)

maps any operator Ô(p, q) to a function over the classical phase space. In this rep-
resentation, the time evolution of its expectation value can be calculated according
to [230, 232]

⟨Ô⟩(t) =
∫∫

OW(p, q)W (p, q, t) dp dq , (3.25)

i.e., the Weyl symbol is averaged over the phase space weighted by the Wigner
function. But typically, it is not possible to compute the time evolution exactly
from this expression. A common approximation is the TWA. In this semiclassical
approach, quantum fluctuations are accounted for in leading order [230]. In the
following, we work in the Heisenberg picture where the Wigner function is fixed to
its initial value W (p0, q0). The Weyl symbol is time-dependent and follows a clas-
sical trajectory within the framework of the TWA. Concretely, the approximation
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is given by [230, 232]

⟨Ô⟩(t) ≈
∫∫

OW (pcl(t), qcl(t))W (p0, q0) dp0 dq0 , (3.26)

where the time dependence of pcl(t) and qcl(t) is determined by Hamilton’s equa-
tions starting from the initial conditions {p0, q0}.

The TWA can be generalized to spin systems [230, 231] by means of the spin-
coherent state representation [236, 237]. In this representation, the spin operators
are expressed as bosons using the Schwinger representation [238]. Spin operators
satisfy the canonical commutation relations

[
Ŝα, Ŝβ

]
= i

∑
γ

εαβγŜγ , (3.27)

α, β, γ ∈ {x, y, z}, with the Levi-Civita symbol εαβγ . The commutation relations
are inherited when the spin operators are represented by two bosons according
to [230, 231, 238]

Ŝα = 1
2

∑
i,j∈{1,2}

â†i σ
α
ij âj , (3.28)

where the σα are the Pauli matrices and âi, â†i are the bosonic annihilation and
creation operators. Any operator Ô that can be expressed as a function of the
boson operators â and â† can be mapped to a function over the classical phase space
of canonical variables α and α∗, which are vectors of complex numbers. Analogous
to Eq. (3.26), the TWA in this representation has the form [231]

⟨Ô⟩(t) ≈
∫∫

OW (αcl(t),α∗
cl(t))W (α0,α

∗
0) dα0 dα∗

0 . (3.29)

Again, leading order quantum corrections appear only through the initial conditions
determined by the Wigner function W , which is conserved along the classical tra-
jectories of the Weyl symbol OW. The trajectories follow from solving Hamilton’s
equations for the canonical variables [231],

i d
dt
αcl,k =

∂Hcl

∂α∗
cl,k

, (3.30)

where Hcl is the classical Hamiltonian function. In fact, these equations are Gross-
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Pitaevskii equations [230]. The factor i stems from using the coherent state Poisson
brackets, which is the classical analogue of the commutator [230, 231]. Resorting
to Eq. (3.28) to represent the spin operators by bosons, the classical equations of
motion for the spin components result to be [231]

d
dt
Sα
cl =

∑
β,γ

εαβγ
∂Hcl

∂Sβ
cl
Sγ
cl . (3.31)

The big advantage of this approximation is the linear scaling in the degrees of
freedom in comparison to the exponentially increasing Hilbert space in the quantum
mechanical treatment of systems consisting of N spins.

The dynamics stemming from the TWA is exact for an Hamiltonian bilinear in
boson operators and hence, the TWA is also exact for systems linear in spin opera-
tors [230]. The expansion parameter for spin systems is 1/S, i.e., the TWA works
better for systems with large spin [230]. The classical limit in which quantum
fluctuations vanish corresponds to S ≫ 1.

Typically, the Wigner function describing the initial conditions is approximated
by a Gaussian-like distribution whose variance resembles Heisenberg’s uncertainty
principle. This choice does not reduce the accuracy of the approximation because
the difference between the exact Wigner function and the appropriately chosen
normal distribution is of the same order in 1/S as the corrections to the dynamics
stemming from the TWA (3.29) [231]. In fact, Davidson and Polkovnikov [231]
found that this Gaussian TWA consistently yields better results than the TWA
using the exact Wigner function. This has the advantage that normal distributions
are much easier to handle because they are always positive. In contrast, the exact
Wigner function can involve negative probabilities.

It is possible to generalize the TWA to any SU(N) group of operators, leading to
the appearance of hidden variables that represent local spin-spin correlations [231].
Other approaches resort to a discrete phase space [232, 239]. Including higher-order
quantum corrections is also possible in terms of stochastic quantum jumps [230],
but they are generally hard to handle.
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3.3.2 Application to the central spin model

In the following, the Gaussian TWA is applied to the Hamiltonian relevant for the
spin dynamics in QDs. We consider the classical Hamiltonian ĤQD → HQD with

ĤQD := ĤCSM + ĤeZ + ĤnZ . (3.32)

The Hamiltonians ĤCSM, ĤeZ, and ĤnZ are given by Eqs. (3.7), (3.17), and (3.18),
respectively. The Hamiltonian ĤQD the main model studied in this thesis and
includes the hyperfine interaction of the central electron spin with the surrounding
nuclear spins and also the Zeeman terms for both the electron and nuclear spins.

The equations of motion for the classical spins S and Ik within can be derived using
Eq. (3.31). A straightforward calculation (see Appendix A) yields

d
dt
S =

(
N∑
k=1

AkIk + γeBextnB

)
× S , (3.33a)

d
dt
Ik = (AkS + γn,kBextnB )× Ik , k ∈ {1, 2, . . . , N} . (3.33b)

These equations are essentially Bloch equations that describe precessions about
time-dependent, effective magnetic fields. The time dependence results from the
interrelated dynamics of the central spin S and the N bath spins Ik. The same
equations can be derived using time-dependent mean-field theory [240], but it does
not naturally incorporate an ensemble average over a distribution of initial condi-
tions for the classical trajectories as in the TWA. This ensemble average, however,
is essential for the semiclassical approach to work appropriately [200].

As discussed earlier, the spin system is initially disordered under typical experimen-
tal conditions. Hence, we approximate the Wigner function W in Eq. (3.29) by a
multivariate normal distribution with mean value zero. The quantum mechanical
second moments of the spin operators are

〈
ŜαŜβ

〉
= 1

4
δαβ , (3.34a)〈

Îαj Î
β
k

〉
= Ik(Ik + 1)

3
δαβ δjk , (3.34b)〈

ŜαÎβk
〉
= 0 , (3.34c)
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α, β ∈ {x, y, z}, for the central spin Ŝ with spin S = 1/2 and the bath spins Îk

with spin Ik. They represent the second-order quantum fluctuations that we intend
to approximate by normal distributions. To reproduce the second moments (3.34)
in the semiclassical picture, we use the variances

Var [Sα] = 1
4

(3.35)

for the components of the initial central spin and

Var [Iαk ] =
Ik(Ik + 1)

3
(3.36)

for the components of each bath spin. In practice, the integration over this dis-
tribution in Eq. (3.29) is approximated by a Monte-Carlo sampling over M con-
figurations while the classical trajectories are obtained by solving the equations of
motion (3.33) numerically. For instance, the time-evolution of the central spin S

is calculated according to

S(t) = 1
M

M∑
m=1

Sm(t) , (3.37)

where the overline is used to denote the ensemble average over the M classical
trajectories Sm(t).

The semiclassical approach is compared with full quantum mechanical simulations
utilizing time-dependent density matrix renormalization group, Chebychev expan-
sion, and Bethe ansatz in Refs. [182, 200, 229]. The comparison shows very good
agreement with and without application of a magnetic field and becomes even bet-
ter for larger spin baths. A very similar approach is developed in Ref. [226] based
on the path integral formalism. It is applied in Ref. [122] to simulate the spin
dynamics in a QD subjected to periodic laser pulses and in Ref. [190] to calculate
fourth-order spin correlation functions for an extended version of the CSM. In these
works, the initial conditions of the spins are sampled from the Bloch sphere, which is
a valid alternative provided the spin length is treated appropriately. Other related
semiclassical approaches are applied in Refs. [219, 220] to study radical pair recom-
bination reactions, also showing very good agreement with quantum mechanical
calculations [221].

But why does the semiclassical treatment work so well for the CSM? First, the Over-
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hauser field behaves like a classical variable in the limit of a large number of bath
spins N as a consequence of the central limit theorem [183, 200, 229]. Second, the
classical and the quantum mechanical version of the CSM share the same conserved
quantities [173, 200, 226]. Nevertheless, the approximation is rather crude for the
single central spin with S = 1/2, which is far from the classical limit, but yet, the
approach works surprisingly well. In Chaps. 5 and 6, we will see that when study-
ing the dynamics of the Overhauser field, it is extremely important that the initial
conditions of the central spin are sampled from an appropriate distribution.

The required averaging over initial conditions has another advantage. Typically, it
is difficult to distinguish the present semiclassical approach from the calculation of
ensemble averages required to describe experiments on QDs. For instance, the en-
semble average required to describe a homogeneous ensemble of QDs is identical to
the average appearing in the semiclassical approach. Furthermore, it mimics the in-
fluence of quantum fluctuations of the Overhauser field in repeated measurements
of the spin dynamics (required to improve the signal-to-noise ratio) for homoge-
neous ensembles and also for single QDs. Hence, these circumstances [104, 115] are
automatically described by the semiclassical approach.

3.3.3 Numerical treatment and implementation

Solving the system of ordinary differential equations (ODE) given in Eq. (3.33)
(or similar ODEs introduced later) is straightforward by applying standard Runge-
Kutta methods. We use the Dormand-Prince method [241] as ODE solver, which is
an adaptive fifth-order Runge-Kutta algorithm. Six function evaluations are used
to calculate fourth- and fifth-order solutions; their difference is used to estimate the
error for the adaptive stepsize control. A particular advantage of this method is
the ‘First Same as Last’ principle: the method uses six function evaluations despite
having seven steps. This is achieved by reusing the last stage for the subsequent
integration step. An implementation is provided by odeint [242], which is part of
the boost C++ library. Another implementation is provided in Ref. [243]. Both
implementations are used for different parts of this thesis. The latter turned out
to be a bit more efficient.

The random numbers required for the sampling of the initial conditions can be
obtained from the Mersenne-Twister pseudo random number generator [244], which
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is provided by the C++ standard library random. The library also provides
convenient routines to directly sample from normal distributions.

The required ensemble average over M trajectories constitutes a big challenge if
several orders of magnitude in time need to be simulated. But since the trajec-
tories are independent, a parallelization of the code using MPI (Message Passing
Interface) [245] is very powerful, scaling very well up to M/2 −M CPU cores for
M = O(104). The relative error following from the statistical nature of the ap-
proach scales like 1/

√
M [200, 229]. Depending on the desired accuracy of the

results, the typical ensemble size ranges from M ≈ 104 to 106.

In view of large scale simulations, special care needs to be taken to ensure that the
vectorization capabilities of modern CPUs are utilized as much as possible using
the available SIMD (single instruction, multiple data) instructions such as AVX,
AVX2, or even AVX-512. To utilize these instructions efficiently, the system size
needs to be large, but not too large with respect to the L1 cache of the CPU. The
ODE system (3.33) has the dimension 3(N+1), where N ≫ 1 is the number of bath
spins. Later in Chaps. 6–9, we have to deal with similar ODE systems, but they are
of the small dimension 6 or 9 so that in a naive implementation, the vectorization
capabilities of the CPU are barely utilized. But since the calculation of an ensemble
average is still required, one can group the numerous ODEs together and solve them
simultaneously. This procedure enables the efficient vectorization of the code; the
cache usage can be optimized by tuning the number of independent ODEs grouped
together. More details on the performance of the simulations conducted for this
thesis are given in Ref. [246].

Rotating frame

A particular obstacle is the treatment of the fast Larmor precession of the electron
spin in strong external magnetic fields, which needs to be resolved numerically.
This problem occurs especially when applying a strong transverse magnetic field
with BextnB = Bextex, where ex is the unit vector along the x axis. In this case,
the runtime scales approximately linearly with Bext for large magnetic fields. A
more efficient way to treat this dynamics consists of switching to a rotated frame
by applying the rotation ansatz S(t) = D(t)Z(t) to Eq. (3.33a). The proper choice
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3.3 Semiclassical approach

for the rotation matrix is

D(t) =


1 0 0
0 cos(ht) sin(ht)
0 − sin(ht) cos(ht)

 , (3.38)

which describes the Larmor precession with frequency h = γeBext. The slow dynam-
ics induced by the interaction with the nuclear spins is included in Z(t). Inserting
the ansatz into Eq. (3.33a) yields

d
dt
S =

(
d
dt
D

)
Z × S +D

d
dt
Z , (3.39)

with (
d
dt
D

)
Z = h× S (3.40)

and h = hex. Thus, the term describing the Larmor precession about the external
magnetic field vanishes in the rotated frame and we have

d
dt
Z = D−1 (Bov × S) =

(
D−1Bov

)
×Z (3.41)

with

D−1(t) =


1 0 0
0 cos(ht) − sin(ht)
0 sin(ht) cos(ht)

 . (3.42)

The consequence is that no term linear in h appears in the ODE to be solved.
Instead, the new prefactors cos(ht) and sin(ht) appear, which are O(1) instead
of O(h). It is not a priori clear whether this approach is more efficient than the
straightforward numerical integration of the ODE system (3.33a) because sine and
cosine functions need to be evaluated. This is numerically much more expensive
than calculating, e.g., a simple multiplication or addition of two variables. It turns
out that for a typical ODE dimension of O(200), the rotating frame approach is
about three times faster than the naive implementation for large magnetic fields.
But oscillations with frequency h are also present in the nuclear spin bath because of
its interaction with the central spin, and they still need to be resolved numerically.
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Chapter 3 Model for a localized spin in a quantum dot

Hence, the runtime still scales approximately linearly with the strength of the
applied magnetic field.

A much more efficient but approximate approach is developed and applied in
Chap. 7. There, the fast and slow degrees of freedom are treated separately for all
dynamical variables. The terms governing the fast Larmor precession are treated
analytically, while the terms governing the slow dynamics are expanded in the large
magnetic field while neglecting corrections of the order O(h−2).

3.3.4 Frozen Overhauser field approximation

An instructive approximation valid for short times is the frozen Overhauser field
approximation [104]. It is based on the observation that the dynamics of the bath
spins resulting from the hyperfine interaction is slower by a factor of 1/

√
Neff in

comparison to the central spin dynamics in the random Overhauser field. The Lar-
mor precession of the nuclear spins is also three orders of magnitude slower than for
the electron spin, i.e., it can be neglected on short timescales. The approximation
consists of simply neglecting any dynamics of the nuclear spins, i.e., the Overhauser
field is assumed to be frozen in time so that only Eq. (3.33a) remains to be solved.
Its general solution has the form [104, 115]

S(t) = [S(0) · neff ]neff + [S(0)− (S(0) · neff)neff ] cos(Ωefft)
+ S(0)× neff sin(Ωefft) , (3.43)

where neff = (Bov+γeBextnB)/|Bov+γeBextnB| denotes the direction of the effective
magnetic field Ωeff = Bov+γeBextnB, which is the sum of the Overhauser field and
the external magnetic field.

Zero magnetic field

First, we consider the case without external magnetic field, i.e., Bext = 0, and
apply the Gaussian TWA (3.29) where the Wigner function is approximated by the
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3.3 Semiclassical approach

isotropic multivariate normal distribution3

p(Bov) =
1

(
√
πωn)3

exp
(
−B2

ov
ω2
n

)
. (3.44)

Its variance in all spatial directions α ∈ {x, y, z} is given by

Var [Bα
ov] :=

ω2
n
2

=
N∑
k=1

A2
k Var [Iαk ] =

I(I + 1)
3

A2
Q . (3.45)

Here, we assume that all bath spins have the same spin I. The frequency ωn is
the characteristic frequency of the central spin precession about the Overhauser
field. Since we identify the bath spins as the nuclear spins in QDs, we choose the
label ‘n’. The average over a probability distribution for initial conditions of the
central spin is neglected and instead, a deterministic initial condition S(0) is con-
sidered.4 Finally, the integration of Eq. (3.43) weighted by the distribution (3.44)
yields [104, 115, 183]

S(t) =
∫

S(t,Bov) p(Bov) dBov (3.46a)

= S(0)
3

[
1 +

(
2− t2ω2

n

)
exp

(
−t

2ω2
n

4

)]
. (3.46b)

The overline is used to denote the ensemble average, which replaces the quantum-
mechanical average ⟨Ŝ(t)⟩. The dependence is plotted in Fig. 3.2 for the case where
the central spin is initially polarized in z direction. The polarization first decreases
significantly to almost zero and increases again afterwards to a constant value. The
decay is solely determined by the low-energy scale ωn ∝ AQ. Clearly, the long-time
limit is S(t→ ∞) = S(0)/3, i.e., one third of the initial central spin polarization
remains. The influence of the nuclear spin dynamics, which induces a slow long-time
decay on the timescale O(ω−1

n /
√
Neff), is analyzed in detail in Chap 4.

3In Chaps. 8 and 9, the Overhauser field is denoted as Ωn (instead of Bov) to be consistent with
the related literature.

4The average over a distribution of initial conditions for the central spin becomes important when
taking the nuclear spin dynamics into account.
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Figure 3.2: Central spin dynamics in the frozen Overhauser field approximation: With-
out magnetic field [red, Eq. (3.46b)], the spin polarization initially decays to almost zero
and then increases to a plateau at 1/3 of the initial polarization. Applying a strong
transverse magnetic field h ≫ ωn [blue, Eq. (3.49)] leads to a complete dephasing of
the initial spin polarization (orange-dashed envelope) while oscillating with frequency h.
In contrast, applying a longitudinal magnetic field [green, Eq. (3.47)] stabilizes the spin
polarization and dampens the amplitude of the oscillations. In all three examples, the
initial spin polarization is chosen to point along the z axis, i.e., S(0) = Sz(0)ez.

Longitudinal magnetic field

We now turn to the case of a longitudinal magnetic field with BextnB = Bextez and
S(0) = Sz(0)ez. The averaging procedure is the same, but the solution is more
complicated [115, 185],

Sz(t) = Sz(0)
(
1− ω2

n
h2

[
1− cos(ht) exp

(
−t

2ω2
n

4

)]
+ ω3

n
h3
D

(
h

ωn

)

−
√
πωn

2h
exp

(
−h2

ω2
n

)
Re

{
erfi

[
ωn

(1
h
− i t

2

)]})
, (3.47)

with the Dawson function D(x) = exp(−x2)
∫ x
0 exp(y2) dy, the imaginary error

function erfi(x) = (2/
√
π) exp(x2)D(x), and h = γeBext. The time evolution is

plotted in Fig. (3.2) for h = 3ωn, showing a periodic but dampened oscillation
because of the precession about the effective magnetic field, which is the sum of the
Overhauser field and the external magnetic field. Compared to the case without
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Figure 3.3: Dependence of the long-time spin polarization on the longitudinal magnetic
field h, calculated using Eq. (3.48a) (blue, solid) and Eq. (3.48b) (red, dashed). The
full width at half maximum (FWHM) given by 2

√
2ωn is indicated. The initial spin

polarization is chosen to point along the z axis, i.e., S(0) = Sz(0)ez.

magnetic field, the nondecaying fraction of the spin polarization increases. In the
long-time limit t≫ ω−1

n , it follows for the nondecaying fraction [88, 115]

Sz(t→ ∞)
Sz(0)

= 1− ω2
n
h2

+ ω3
n
h3
D(h/ωn) (3.48a)

≈ 1− 2
3

1
1 + h2/(2ω2

n)
. (3.48b)

This dependence, which is shown in Fig. 3.3, describes the suppression of the nuclei-
induced spin relaxation, resulting from the application of the longitudinal magnetic
field h. The central spin polarization is stabilized along the direction of this field.
The full width at half maximum (FWHM) of the Lorentzian dip is 2

√
2ωn [88]. The

dependence represents the V-like shape of polarization recovery curves characteristic
for n-doped QDs (see Sec. 2.4.2). More general forms appearing in pump-probe
experiments are studied in Chaps. 8 and 9.5

5In Chaps. 8 and 9, the Larmor frequency is denoted as ΩL (instead of h) to be in line with the
related literature.
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Transverse magnetic field

In contrast to a longitudinal magnetic field, the application of a transverse field
BextnB ⊥ S(0) results in a dephasing of the central spin caused, which is caused by
its interaction with the random Overhauser field. We again assume that the initial
spin polarization S(0) = Sz(0)ez points along the z axis. For strong magnetic fields
with h≫ ωn, the time evolution of the central spin is described by [104, 115, 183]

Sz(t) = Sz(0) cos (ht) exp

−( t

T ∗
n

)2
 . (3.49)

The z component of the spin polarization oscillates with the Larmor frequency h

while dephasing takes place on the timescale6

T ∗
n := 2

ωn
=
√

6
I(I + 1)

A−1
Q (3.50)

because of the interaction with the random Overhauser field. The decay is Gaussian
and for t≫ T ∗

n , no average spin polarization remains. The time evolution described
by Eq. (3.49) is visualized in Fig. 3.2 for h = 10ωn. In QDs, this dephasing time is
of the order of nanoseconds, depending on the number of effectively coupled nuclear
spins [19, 104].

So far, we considered only the dephasing caused by the random Overhauser field. In
ensembles of self-assembled QDs in which the randomly grown QDs differ slightly,
there is an additional inhomogeneity that needs to be considered. The electronic
g factor ge differs slightly from QD to QD [23, 24]. This g factor spread is respon-
sible for an additional dephasing mechanism and can be modeled by the Gaussian
distribution

p(ge) =
1√

2π∆ge
exp

−1
2

(
ge − ge
∆ge

)2
 (3.51)

with variance (∆ge)2 and mean value ge. To calculate the influence of the g factor
spread on the spin dynamics, Eq. (3.49) weighted by its distribution must be inte-
grated over the electronic g factor. The result is the simple replacement T ∗

n → T ∗
2

6Depending on the context, the energy and time is normalized to either ωn, AQ, or T ∗
n . The

conversion between these quantities is given by Eq. (3.50).
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Figure 3.4: Dependence of the total dephasing time T ∗
2 on the magnetic field

strength Bext calculated from Eq. (3.52b) for various typical dephasing times T ∗
n stem-

ming from the interaction with the random nuclear spin bath. The red dashed curve
depicts the B−1

ext following from Eq. (3.53). Parameters: ge = 0.555, ∆ge = 0.005.

in Eq. (3.49), where the total dephasing time T ∗
2 is given by

(T ∗
2 )−2 := (T ∗

n )−2 + (T ∗
inh)−2 (3.52a)

⇒ T ∗
2 = T ∗

n T
∗
inh√

(T ∗
n )2 + (T ∗

inh)2
. (3.52b)

The inhomogeneous dephasing time

T ∗
inh :=

√
2

∆geµBℏ−1Bext
, (3.53)

results from the spread ∆ge of the electronic g factor and is magnetic field depen-
dent. The consequence is a B−1

ext dependence of the dephasing time T ∗
2 in QD en-

sembles for large magnetic fields as observed in experiments; see Fig. 2.4(c) [23, 24].
The dependence T ∗

2 (Bext) given by Eq. (3.52b) is visualized in Fig. 3.4 for vari-
ous typical values of T ∗

n (of the order of nanoseconds) using ge = 0.555 [25] and
∆ge = 0.005 [24, 123]. For Bext → 0, the total dephasing time T ∗

2 is limited by T ∗
n ,

while for large Bext, T ∗
2 is approximately equal to Tinh. Slight deviations from

this dependence found in pump-probe experiments performed on inhomogeneous
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ensembles of QDs can be explained [123] by taking into account the linear depen-
dence of the electronic g factor on the trion transition energy, which also follows a
distribution [24, 113].
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Chapter 4

Efficient algorithms for large and infinite
semiclassical central spin models

Even the semiclassical approach to the central spin model introduced in the pre-
vious chapter represents a tremendous computational challenge when considering
the 104 − 106 effectively coupled nuclear spins in a QD [19, 103–107] up to the
extremely long times relevant in experiments. In this chapter, efficient algorithms
are established that enable us to meet this challenge successfully. With the help of
these algorithms, timescales can be explored that previously were inaccessible for
very large bath sizes. In this way, we establish that the long-time behavior of the
system is governed by a low-energy scale different from the energy scale AQ. This
low-energy scale is proportional to square root of the inverse number of effectively
coupled bath spins, i.e., proportional to AQ/

√
Neff .

The chapter is set up as follows.1 First, the model to be analyzed is specified in
Sec. 4.1. In Sec. 4.2, three approaches to its semiclassical simulation are introduced
of which two work very well. The results are shown and compared in Sec. 4.3. A
particular focus lies on the long-time behavior and its scaling with the number of
effectively coupled bath spins. Finally, conclusions are drawn in Sec. 4.4.

1This chapter is based on the author’s publication [247], ©2017 American Physical Society, which
originated from J. Hüdepohl’s master’s thesis [248] supervised by G. S. Uhrig and B. Fauseweh.
The author’s contribution was an improvement of the Spectral Density approach over its original
version [248], its application to different parametrizations of the hyperfine couplings, its con-
vergence analysis, a study of the long-time spin dynamics, creation of all figures including the
calculation of all data, and partial writing of the manuscript.
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central spin models

4.1 Semiclassical central spin model

We consider the classical version of the CSM (3.7),

HCSM =
N∑
k=1

AkS · Ik , (4.1)

in which a central spin S (spin 1/2) is coupled to N bath spins Ik with coupling
constants Ak. The classical spins S and Ik are represented as three-dimensional
vectors. The sum of all bath spins weighted by their couplings forms the Overhauser
field

Bov =
N∑
k=1

AkIk . (4.2)

We will see that the classical treatment only requires very limited information about
the bath spins as their spin I essentially determines the length of the correspond-
ing classical vector. For simplicity, we choose I = 1/2 for all bath spins in the
calculations.

In a QD singly-charged by an electron, the coupling constants are determined by
the Fermi-contact hyperfine interaction strength, which is proportional to the prob-
ability density of the electron at the position of a nuclear spin. For a Gaussian
wave function in two dimensions, the result is an exponential parametrization of
the couplings (see Sec. 3.1.2 for details)

Ak = C exp(−kγ) , k ∈ {1, . . . , N} . (4.3)

Here, C is an energy constant and the parameter γ > 0 is related to the number of
effectively coupled spins as we will see below. Note that N is effectively infinite in
QDs. In our calculations, we use the energy AQ defined by

A2
Q :=

N∑
k=1

A2
k (4.4)

as the natural energy unit. In the limit of an infinite spin bath N → ∞, it follows
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4.1 Semiclassical central spin model

C =

√√√√1− exp(−2γ)
exp(−2γ)

AQ (4.5a)

=
√
2γAQ +O(γ3/2) , (4.5b)

where the second relation holds for small values of γ ≫ 1.

What is the significance of the parameter γ? Besides AQ, we introduce the sum of
all couplings

AS :=
N∑
k=1

Ak (4.6)

to clarify this question. Let us consider the simplest parametrization for comparison,
namely a uniform one where all Ak = C, implying AS = CN and A2

Q = C2N so that
the ratio A2

S/A
2
Q = N yields the number of bath spins. For the parametrization (4.3)

in the limit N → ∞, we have

AS =
∞∑
k=1

C exp(−kγ) = C
exp(−γ)

1− exp(−γ)
, (4.7a)

A2
Q =

∞∑
k=1

C2 exp(−2kγ) = C2 exp(−2γ)
1− exp(−2γ)

. (4.7b)

Note that for large baths for which Nγ ≫ 1 holds, there is only an exponentially
small difference between large finite N and N → ∞. From Eq. (4.7) we deduce

Neff := A2
S

A2
Q
= 1− exp(−2γ)

[1− exp(−γ)]2
(4.8a)

= 2
γ
+O(γ) , (4.8b)

where the last relation holds again for small values of γ. Hence, the effective number
of bath spins is not infinity even in the limit N → ∞, but proportional to the inverse
of γ = 2/Neff . This implies γ ≈ 10−4 − 10−6 for generic QDs with Neff ≈ 104 − 106.
In contrast, for large values of γ the dynamics of the central spin is determined
by a small number of bath spins and can be determined using a fully quantum
mechanical description [117, 141, 189].
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In this chapter, we study the autocorrelation function of the central spin

Szz(t) :=
〈
Ŝz(t)Ŝz(0)

〉
(4.9)

for small values of γ, i.e., large spin baths. Note that the autocorrelation Szz(t) is
fully equivalent to the time evolution of the expectation values of Ŝz(t)/2 evaluated
for an initial |↑⟩ central spin with spin S = 1/2 as we study here. We focus on the
case where the system is initially completely disordered, corresponding to infinite
temperature or equivalently to the fact that its density matrix is proportional to
the identity,

ρ̂ = 1
Z

1̂ , (4.10)

where Z is the dimension of the total Hilbert space normalizing the density matrix.
As discussed at the end of Sec. 3.1.2, this is a common scenario in experiments
performed on QDs at temperatures of ∼ 4− 6K.

We apply the semiclassical approach to the CSM by applying the TWA as discussed
in Sec. 3.3. The classical equations of motion (3.33) to be solved for M random
configurations of the initial conditions are given in Sec. 3.3.2. Here, we consider
only the case without magnetic field, for which the equation of motion for the
central spin S is given by

d
dt
S = Bov × S (4.11)

with the Overhauser field Bov = ∑N
k=1AkIk, and for the N nuclear spins Ik we

have

d
dt
Ik = AkS × Ik , k ∈ {1, 2, . . . , N} . (4.12)

The initial conditions of the vector components are drawn randomly from a normal
distribution with mean value zero and variance determined such that it coincides
with the quantum mechanical expectation values for the spin operators given by
Eq. (3.34). Thus, for a single spin component of the central spin the variance is
given by 1/4 and by I(I + 1)/3 for the bath spins. Obviously, for bath spins with
I = 1/2, all variances are given by 1/4.

In practice, an ensemble average over an appropriate large number of configurations
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of the random fields needs to be calculated. The calculation of 106 independent
trajectories is required to reduce the relative statistical error below 10−3 [200]. This,
however, limits the number of bath spins that can be treated in the semiclassical
simulation within reasonable times to about 103. In the following sections, we intro-
duce algorithms that reduce the number of equations of motion to a manageable size
of about 100− 200 equations, even in the limit of an infinite bath size N → ∞.

4.2 Expansion of the Overhauser field

In this section, optimized algorithms are derived that allow us to calculate the
dynamics of the central spin by means of the semiclassical approach much more
efficiently. We start with the Hierarchy approach, which uses a hierarchy of Over-
hauser fields to describe the dynamics. Then, the significantly improved Lanczos
approach is developed, which uses orthogonal polynomials of the Overhauser fields
to overcome problems with the long-time behavior in the Hierarchy approach. Fi-
nally, the Spectral Density approach is introduced, which extends the Lanczos
approach and leads to uniform convergence of the results in time.

4.2.1 Hierarchy approach

For an exact solution of the classical equations of motion (4.11) and (4.12), 3(N+1)
coupled differential equations need to be solved. In order to reduce the number of
equations significantly, we aim at using the Overhauser field as dynamical variable
instead of the individual bath spins. To this end, we introduce the hierarchy of
Overhauser fields

Bn :=
N∑
k=1

An
k Ik . (4.13)

Clearly, B1 is the original Overhauser field Bov. The dynamics of the hierarchy is
given by the easily derived equation of motion

d
dt
Bn = S ×Bn+1 , (4.14)
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which is exact if the full hierarchy n ∈ {1, 2, . . . , N} is considered. A possible trun-
cation, however, cuts the hierarchy according to n ∈ {1, 2, . . . , Ntr} with Ntr < N .
This neglects the higher Overhauser fields and treats the last one BNtr as constant.

While the individual vectors Ik are uncorrelated, normally distributed random fields,
the hierarchy of Overhauser fields Bn is correlated obeying

〈
B̂α

n B̂
β
m

〉
= I(I + 1)

3
δαβ

N∑
k=1

An+m
k . (4.15)

This symmetric correlation matrix can be mapped to uncorrelated diagonal fields
by applying an orthogonal transformation. In this way, the initial conditions of the
correlated components Bα

n can be determined from uncorrelated variables drawn
randomly from a normal distribution [248].

In the numerical simulations, see Sec. 4.3, it becomes evident that the Hierarchy
approach does not converge well. This can be traced back to the fact that for
fixed S, the set of linear differential equations (4.12) can be diagonalized yielding
purely imaginary eigenvalues, which implies oscillatory solutions. They represent
the precession of angular momenta as it has to be. But the truncated system of
linear differential equations (4.14) cannot be diagonalized so that instead of oscil-
latory solutions, we find a polynomial behavior that approximates the precessions
only poorly.

4.2.2 Lanczos approach

The Lanczos approach is based on the observation that in the Hierarchy approach,
higher powers of Ak appear in the equations of motion. We introduce uncorrelated
fields with polynomials pn of Ak as prefactors,

Pn :=
N∑
k=1

pn(Ak) Ik , (4.16)

where the subscript n denotes the degree of the polynomial. In order to have
uncorrelated fields, it is required that the polynomials are orthogonal with respect
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to the scalar product

(pn|pm) :=
N∑
k=1

pn(Ak) pm(Ak) = δnm . (4.17)

Then, the correlation matrix is also diagonal,

〈
P̂α
n P̂

β
m

〉
= I(I + 1)

3
A2

Q δαβ δnm , (4.18)

which is very advantageous but not yet the key point for introducing these gener-
alized Overhauser fields.

We construct the polynomials in the usual way by iterated multiplication of the
argument, i.e., by the Lanczos algorithm [249]. The starting point is p0(x) := 0,
p1(x) := x, which is a bit unusual compared to standard orthogonal polynomials
starting at p1(x) = 1. The advantage is that P1 = Bov follows immediately from
this choice. For the iteration, it is assumed that the recursion

x pm(x) = βm pm+1(x) + αm pm(x) + βm−1 pm−1(x) (4.19)

for orthonormalized pm holds up to m = n − 1. The real coefficients αm, βm ≥ 0
result from the Lanczos iterative determination of the orthogonal polynomials. The
next step of the induction iterates p̃n+1 := xpn, where the tilde indicates that this
polynomial is not yet the next orthonormalized one. The overlaps with the already
defined polynomials are

(p̃n+1|pn−1) = (xpn|pn−1) = βn−1 , (4.20a)
(p̃n+1|pn) = (xpn|pn) = αn . (4.20b)

Furthermore, we compute and define

βn :=
√
|p̃n+1 − αn pn − βn−1 pn−1|2 , (4.21a)

pn+1(x) :=
1
βn

(p̃n+1 − αn pn − βn−1 pn−1) . (4.21b)

A straightforward calculation confirms that pn+1 defined in this way obeys the
Eq. (4.19) for m = n and is orthonormalized with respect to all previously defined
polynomials. We stress that the above construction does not require a finite spin
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bath. As long as the scalar product in Eq. (4.17) is well-defined, i.e., converges, the
Lanczos approach works.

Following this recursion, the equations of motion for the generalized fields Pn be-
come

d
dt
Pn = S ×

N∑
k=1

Ak pn(Ak) Ik (4.22a)

= S × (βnPn+1 + αnPn + βn−1Pn−1) . (4.22b)

The central spin S still obeys Eq. (4.11) and the Overhauser field Bov is equal to
P1 because of the choice p1(Ak) = Ak.

If truncated at finite Ntr < N , the equations of motion (4.22) are similar to the
ones of the Hierarchy approach, but they have two important advantages. The first
is that the initial values for the components of the polynomial fields Pn are uncor-
related normally distributed variables with variance I(I + 1)A2

Q/3 and mean value
zero. The second advantage, which is crucial, is that the set of linear differential
equations (4.22b) is diagonalizable for fixed central spin. The result are imaginary
eigenvalues representing the expected precessions in the dynamics.

4.2.3 Spectral Density approach

The Lanczos approach provides differential equations of the form

d
dt
Pn = S ×

Ntr∑
k=1

(
T
)
nk

Pk , (4.23)

where the
(
T
)
nk

are the matrix elements of the tridiagonal matrix

T =



α1 β1 0 0 · · · 0
β1 α2 β2 0 · · · 0
0 β2 α3 β3

. . . ...
0 0 β3 α4

. . . 0
... ... . . . . . . . . . βNtr−1

0 0 · · · 0 βNtr−1 αNtr


. (4.24)
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The matrix T is symmetric and real so that it can be diagonalized with real eigen-
values εα and eigenvectors Uα ∈ RL, α ∈ {1, 2, . . . , Ntr}. Then, we can define the
diagonal dynamical vectors

Qα(t) :=
Ntr∑
m=1

(Uα)m Pm(t) . (4.25)

Their dynamics is determined by the equations of motion

d
dt
Qα = εαS ×Qα , (4.26)

which is even simpler than in the Lanczos approach thanks to the diagonalization.
The equation of motion (4.11) of the central spin is still determined by the Over-
hauser field Bov, which equals the first polynomial field

P1(t) =
Ntr∑
α=1

(Uα)1 Qα(t) , (4.27)

where we assume that all elements (Uα)1 are non-negative for later use. If not, the
vectors Qα can be scaled appropriately. So far, this approach is equivalent to the
Lanczos approach, except that it is expressed in a diagonal basis. The Spectral
Density approach goes some steps further, realizing a suitable continuum limit.

First, we know from mathematics that orthogonal polynomials qn(x) require a scalar
product that is defined by a weight function w(x) ≥ 0 [250],

(f |g) :=
∫
w(x) f(x) g(x) dx , (4.28a)

(qm|qn) =
∫
w(x) qm(x) qn(x) dx = δmn . (4.28b)

The only difference between the pn and the standard definition is that the pn start
with p1(x) = x instead of q1(x) = 1. Thus, we simply define

qn(x) :=
pn(x)
x

. (4.29)

Furthermore, we recall that the weight function can be retrieved from the 1, 1 matrix

67



Chapter 4 Efficient algorithms for large and infinite semiclassical
central spin models

element of the retarded resolvent of T by

w(x) = − 1
π
Im

 lim
δ→0+

(
1

x+ iδ − T

)
1,1

 . (4.30)

Expressed in the diagonal basis, this equation implies

w(x) =
Ntr∑
α=1

|(Uα)1|2 δ(x− εα) . (4.31)

Next, we calculate the weight function. Since the orthonormality (4.17) must be
preserved in Eq. (4.28b), we deduce

(pm|pn) =
N∑
k=1

pm(Ak) pn(Ak) (4.32a)

=
N∑
k=1

A2
k qm(Ak) qn(Ak) (4.32b)

= (qm|qn) . (4.32c)

Comparing Eq. (4.32b) with (4.28b) reveals

w(x) :=
N∑
k=1

x2 δ(x− Ak). (4.33)

The integral over w(x) simply yields A2
Q.

Naturally, the weight function for any finite spin bath consists of a finite number of
δ peaks. In view of the extremely large number of bath spins in QDs, it is reasonable
to establish a suitable continuum limit. This can be realized by approximating the
discrete sum by an integral. To this end, we start from a general parametrization
of the couplings given by

Ak = Df(γk) , (4.34)

where f(x) for x ∈ [0, x0] is a monotonic decreasing function that starts at f(0) = 1
and vanishes at f(x0) = 0. If γ ≪ 1, we can replace the sum in Eq. (4.33) by
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an integral,

w(x) =
N∑
k=1

x2 δ(x−Df(γk)) (4.35a)

≈
∫ x0

0

x2

γ
δ(x−Df(y)) dy (4.35b)

= x2

γD|f ′(y)|
θ(x(D − x))

∣∣∣∣∣
x=Df(y)

, (4.35c)

where θ(x) is the Heaviside step function and f ′(x) denotes the first derivative of the
function f(x). This is the general result. For the exponential parametrization (4.3)
the weight function w(x) is easily computed yielding

w(x) = x

γ
θ(x(

√
2γAQ − x)) . (4.36)

This particularly simple spectral density, which is linear with slope 1/γ on the
interval [0,

√
2γAQ], is illustrated in Fig. 4.1. Further continuous weight functions

are derived in Sec. 4.2.4.

We point out that thanks to the simplicity of the linear weight function, the tridi-

0 . . . ε5 ε4 ε3 ε2 ε1

x

0

√
1

2γAQ

√
2
γAQ

w
(x

)

W1

W2
W3

W4W5

ε̃0 = εmax

ε̃1

ε̃2

ε̃3

ε̃4
ε̃5

Figure 4.1: Illustration of the spectral density w(x) given by Eq. (4.36), which results
from the exponential parametrization (4.3) in the limit of small γ. In addition, the
interval boundaries ε̃k, the corresponding weights Wk, and the chosen energies εk are
highlighted as they result in the Spectral Density approach from the procedure explained
around Eq. (4.40) for Ntr = 10, λ = 0.85.
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agonal coefficients {αn, βn} as they enter in Eq. (4.24) can be provided analytically
for the limit N → ∞, γ ≪ 1. From the known continued fraction representation
for the Jacobi polynomials [251], we deduce

αn = 4n2

4n2 − 1

√
γ

2
, (4.37a)

βn =

√
n(n+ 1)
2n+ 1

√
γ

2
. (4.37b)

This allows us to carry out calculations based on the Lanczos approach directly
in the continuum limit. For large enough Ntr, the result obtained in this way is
numerically exact and serves as a benchmark for the Spectral Density approach.
For illustration, the first three generalized Overhauser fields following from these
recursion coefficients are

P1 =
√
γ

N∑
k=1

AkIk , (4.38a)

P2 =
√
γ

N∑
k=1

(
3Ak −

√
8
)
AkIk , (4.38b)

P3 =
√
γ

N∑
k=1

√
3(5A2

k − 6
√
2Ak + 3)AkIk , (4.38c)

where Ak := Ak/
√
γ.

The Spectral Density approach aims at a most efficient representation of the con-
tinuous spectral density w(x) by a small number of dynamic variables. Hence,
we choose the well-established exponential discretization of the energies in order
to capture the long-time behavior efficiently. First, the energy range [0,

√
2γAQ]

for which the spectral density is finite is divided into Ntr intervals Ik := [ε̃k+1, ε̃k]
with

ε̃k = λk
εmax(Ntr − k)

Ntr
, k ∈ {0, 1, . . . , Ntr} , (4.39)

where Ntr + 1 is the number of grid points ε̃k and εmax is the maximum value for
which w(x) is finite, i.e., εmax =

√
2γAQ for the spectral density given by Eq. (4.36).

This discretization scheme is visualized in Fig. 4.1. The factor λ < 1 ensures
an exponentially finer discretization for smaller energies to capture the long-time
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dynamics efficiently. This factor is chosen according to

λ =
(

Ntr

εmaxtmax

) 1
Ntr−1

. (4.40)

The guiding idea of the above expression is to identify a maximum time tmax up
to which the time evolution needs to be calculated. Then, the modes with suffi-
ciently low energies are kept such that they precess at most a fraction of a complete
revolution, i.e., we set ε̃Ntr−1tmax = 1. This condition fixes λ such that it is given
by Eq. (4.40). In rare cases where Eq. (4.40) would yield a value λ > 1, we set
λ = 1, refraining from an exponential zoom towards large energies because the
linear discretization is already sufficient.

Finally, the discretization energies εk are chosen such that they are the average over
w(x) between ε̃k and ε̃k−1,

εk :=
∫ ε̃k−1

ε̃k

xw(x) dx
/∫ ε̃k−1

ε̃k

w(x) dx , k ∈ {1, 2, . . . , Ntr} . (4.41)

This choice guarantees that the weight and the first moment for each of the inter-
vals and hence, also for the total weight function, is correctly represented by the
discretization. The finite set of differential equations is now given by

d
dt
Qk = εkS ×Qk , k ∈ {1, 2, . . . , Ntr} . (4.42)

Equation (4.11) for the central spin is still valid and thanks to Eqs. (4.27) and (4.31),
the Overhauser field can be expressed as

Bov = P1 =
Ntr∑
k=1

√
WkQk , (4.43)

where Wk denotes the weight in the interval Ik, which is given by the integral

Wk =
∫ ε̃k−1

ε̃k

w(x) dx. (4.44)

Thus, the only free parameter left is the number of intervals Ntr. It must be chosen
large enough to reach reliable results as we will see in Sec. 4.3.3.

The auxiliary fields Qk represent the sums of the bath spins whose couplings lie
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within the interval Ik. According to the central limit theorem, each initial com-
ponent of the vectors Qk can be drawn from a normal distribution because they
represent large linear sums of the bath spins, and they are uncorrelated for differ-
ent k. Thus, the 3Ntr components Qα

k , α ∈ {x, y, z}, can be initialized according
to a normal distribution around zero with variance

Var [Qα
k ] =

I(I + 1)
3

. (4.45)

The influence of the sum over all bath spins whose couplings lie within the inter-
val Ik is accounted for by weighting the auxiliary fields Qk with

√
Wk when calcu-

lating the Overhauser field from Eq. (4.43) because the SD approach is constructed
such that ∑Ntr

k=1
√
Wk

2 = A2
Q holds.

It is worth to mention that the exponential discretization advocated above can also
be used to efficiently approximate the discrete weight function defined in Eq. (4.33)
for finite bath sizes [248]. But we emphasize that the continuum limit yields ex-
cellent results in view of the large number of bath spins in QDs. Moreover, it
has the conceptually advantageous features (i) to reduce the number of parameters
(N drops out) and (ii) to allow for scaling arguments as we will see in Sec. 4.3.4.

4.2.4 Weight functions

In the previous section, the linear weight function (4.36) was derived for the expo-
nential parametrization (4.3) of the couplings. This finding is supplemented in the
following for three alternative, generic Gaussian parametrizations.

One-dimensional Gaussian parametrization

We consider the Gaussian parametrization of the couplings

Ak = C exp(−α2k2) (4.46)
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with k ∈ {1, 2, 3, . . . }, i.e., in dimension d = 1. For small values of α, it is justified
to approximate the sums over all couplings by integrals. For A2

Q, we calculate

A2
Q =

∑
k

A2
k =

C2

α

∫ ∞

0
exp(−2y2) dy = C2√2π

4α
, (4.47)

and analogously for AS, we obtain

AS =
∑
k

Ak =
C

α

∫ ∞

0
exp(−y2) dy = C

√
π

2α
. (4.48)

Then, the effective number of bath spins Neff = A2
S/A

2
Q is given by

Neff =
√
π

2
1
α

(4.49)

and setting α =
√

π
8γ implies γ = 2/Neff as before. We opt for this choice of α

for a better comparability between the different parametrizations. The energy
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Figure 4.2: Comparison of the three weight functions wd(x) resulting from a Gaussian
parameterization of the hyperfine couplings in d dimensions. The different weight func-
tions are given by Eqs. (4.51), (4.57), and (4.63). The linear weight function resulting
from the two-dimensional Gaussian parameterization is equal to that of a one-dimensional
exponential parameterization as discussed in the main text. This fact underlines the rel-
evance of the linear weight function for the description of QDs.
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constant C in units of AQ results to

C = √
γAQ (4.50)

and finally, the weight function for the Gaussian parameterization in one dimension
is given by

w1(x) =
x2

α

∫ ∞

0
δ(x− C exp(−y2)) dy (4.51a)

=
√
2
π

x

γ

1
ln(C/x)

θ(x(C − x)). (4.51b)

In Fig. 4.2, this weight function is compared to the other weight functions derived
below for the same value of γ, i.e., for the same number of effectively coupled bath
spins.

Two-dimensional Gaussian parametrization

Next, we consider the parametrization of the couplings

Ar = C exp(−α2r2) , (4.52)

where r ∈ Z2 is a two-dimensional vector. For small values of α, it is again justified
to approximate the sums over all couplings by integrals. For A2

Q, we calculate

A2
Q =

∑
r

A2
r =

2πC2

α

∫ ∞

0
y exp(−2y2) dy = πC2

2α
(4.53)

and for AS, we find

AS =
∑
r

Ar =
2πC
α

∫ ∞

0
y exp(−y2) dy = πC

α
. (4.54)

Hence, the number of effectively coupled bath spins Neff = A2
S/A

2
Q results to

Neff = 2π
α
. (4.55)
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Setting α = πγ implies γ = 2/Neff as before for a better comparability with the
other generic weight functions. For the energy constant C, we obtain

C =
√
2γAQ (4.56)

so that the weight function for the Gaussian parameterization in two dimensions is
given by

w2(x) =
2πx2

α

∫ ∞

0
y δ(x− C exp(−y2)) dy (4.57a)

= x

γ
θ(x(C − x)) . (4.57b)

Clearly, the Gaussian parametrization of the couplings in two dimensions yields
precisely the same weight function as the exponential parametrization (4.3) in one
dimension. This has to be the case because the one-dimensional exponential param-
eterization follows from the scaling k ∝ r2k valid in two dimensions, where k labels
the bath spins Ik with distance rk < rk+1 from the central spin (see Sec. 3.1.2).
It is the weight function that we apply to study the spin dynamics in QDs. In
Fig. 4.2, the linear weight function w2(x) given by Eq. (4.57) is compared to the
other generic ones.

Three-dimensional Gaussian parametrization

Finally, we consider the parametrization of the couplings

Ar = C exp(−α2r2) , (4.58)

where r ∈ Z3 is a three-dimensional vector. For small values of α, it is again
justified to approximate the sums over all couplings by integrals. For A2

Q and AS,
we calculate

A2
Q =

∑
r

A2
r =

4πC2

α

∫ ∞

0
y2 exp(−2y2) dy = C2

α

(
π

2

)3/2
, (4.59)

AS =
∑
r

Ar =
4πC
α

∫ ∞

0
y2 exp(−y2) dy = π3/2C

α
, (4.60)

75



Chapter 4 Efficient algorithms for large and infinite semiclassical
central spin models

so that the number of effectively coupled bath spins Neff = A2
S/A

2
Q results to

Neff = (2π)3/2

α
. (4.61)

Setting α = (2π)3/2γ/2 implies γ = 2/Neff as before for a better comparability with
the other generic weight functions. The energy constant C results to

C = 2√γAQ . (4.62)

and the weight function for a Gaussian parameterization in three dimensions is
given by

w3(x) =
4πx2

α

∫ ∞

0
y2 δ(x− C exp(−y2)) dy (4.63a)

=
√
2
π

x

γ

√
ln
(
C

x

)
θ(x(C − x)) . (4.63b)

This weight function is compared to the other generic ones in Fig. 4.2. The dif-
ferences are not very large since they result only from square roots of logarithmic
factors. The influence of the dimensionality on the long-time dynamics is studied
in Sec. 4.3.4.

4.3 Results

In Sec. 4.2, three different algorithms that aim at enhancing the performance of the
semiclassical simulation of spin dynamics in the CSM are proposed: the Hierarchy
approach (Sec. 4.2.1), the Lanczos approach (Sec. 4.2.2), and the Spectral Density
approach (Sec. 4.2.3). The enhancement of the performance is crucial to study the
long-time behavior for large spin baths. While in the full semiclassical simulation
the dimension of the ODE system is proportional to N , the dimension in the pro-
posed algorithms scales with Ntr ≤ N . The total dimension of the ODE system
is given by 3(Ntr + 1) in all three algorithms. In this section, we analyze how the
truncation parameter Ntr must be chosen to obtain reliable results. Additionally,
we study the dependence of the long-time behavior on the parameter γ, which is
proportional to the inverse effective number of bath spins. In this way, we retrieve
the long-time scale of the slow spin dynamics [163, 178], which is essentially given
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by the inverse of the maximum individual coupling 1/A1 = 1/(
√
2γAQ). It is a

particular strength of the advocated Spectral Density approach that the dynamics
on this long timescale is accessible.

4.3.1 Comparison of all approaches

All numerical data shown has been averaged over M = 106 random initial configu-
rations (unless stated otherwise), which are sampled from the appropriate normal
distributions for all spin components to approximate the quantum mechanical spin
dynamics by means of the Gaussian TWA. For simplicity, all spins are considered
as spin 1/2.

The time evolution of the central spin autocorrelation Szz(t) is shown in Fig. 4.3.
The result obtained from the full semiclassical simulation for N = 1000 bath spins
at γ = 10−2 is shown in black. This result serves as our benchmark for the three
algorithms. But first, let us briefly discuss the characteristics of the autocorrelation
Szz(t). Since the central spin represents a spin with S = 1/2, the autocorrelation
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Figure 4.3: Comparison of the central spin autocorrelation Szz calculated by means of
the Hierarchy, the Lanczos, and the Spectral Density (SD) approach for fixed truncation
parameter Ntr = 8 with the result of the full semiclassical simulation for N = 1000 bath
spins (except for the SD approach, which employs the continuum limit N → ∞) and
γ = 10−2. The short-time behavior is shown in the inset. The solution resulting from the
frozen Overhauser field approximation (Sec. 3.3.4) is included for comparison.

77



Chapter 4 Efficient algorithms for large and infinite semiclassical
central spin models

simply starts at Szz(0) = 1/4. The initial decay and subsequent revival to Szz(0)/3,
which can be seen in the inset, is almost identical to the solution resulting from the
frozen Overhauser field approximation in Sec. 3.3.4 (included in gray). Minimal dif-
ferences stem from the finite bath size considered in the full semiclassical simulation
and from its statistical nature. But in contrast to this solution, an additional slow
long-time decay of the autocorrelation caused by the dynamics of the nuclear spins
occurs in the semiclassical simulation. This long-time decay is studied in detail in
Sec. 4.3.4.

The Hierarchy, Lanczos and Spectral Density (SD) approach for fixed truncation
parameter Ntr = 8 are compared with the numerically exact solution of the full
semiclassical simulation in Fig. 4.3. All algorithms capture the short-time dynamics
shown in the inset very well up to t ≈ 16A−1

Q . But the Hierarchy approach shows
a strong deviation already at t ≈ 20A−1

Q . Its results improve when Ntr is increased
and they become exact for Ntr = N , but the convergence is slow. Hence, we
conclude that this algorithm is not efficient and do not discuss it further. We
have anticipated this conclusion already in Sec. 4.2.1. The general mathematical
structure of the Hierarchy approach is not appropriate to capture the long-time
dynamics since it leads to polynomial instead of oscillatory solutions because of the
impossibility to diagonalize the truncated linear differential equations (4.14).

In contrast, both the Lanczos and the SD approach capture the exact solution up
to remarkably long times in spite of the fairly small truncation parameter. The
Lanczos approach starts to deviate at about t ≈ 700A−1

Q , while the SD approach
is close to the exact solution for all displayed times. A deeper understanding of
how the results of the Lanczos and the SD approach depend on the truncation
parameter Ntr is developed in the following.

4.3.2 Lanczos approach

Figure 4.4(a) shows the dependence of the results for the Lanczos approach on
the truncation parameter Ntr. It is obvious that after a specific time, the solution
starts to deviate from the exact result and displays an artificial plateau region. Up
to this specific time the solution is very accurate. In order to know beforehand
until which time the results are reliable, we introduce the time tmax at which the
relative deviation exceeds a certain relative threshold ξ, for instance ξ = 0.1. The
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Figure 4.4: (a) Results of the Lanczos approach for various truncation parameters Ntr
compared to solution of the full semiclassical simulation for N = 1000 bath spins at
γ = 10−2. The inset shows the short-time behavior. (b) Scaling of the time tmax up
to which the Lanczos approach is reliable (relative deviation threshold ξ = 0.1) with
the truncation parameter Ntr . Fitting a power law tmax ∝ Na

tr yields the exponent
a = 1.99± 0.02.
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dependence of tmax on Ntr is studied in Fig. 4.4(b). A power law fit tmax ∝ Na
tr in the

double-logarithmic plot clearly reveals that the scaling is quadratic, i.e., tmax ∝ N2
tr.

Therefore, by increasing the truncation parameter Ntr much longer times can be
simulated using the Lanczos approach while still having a significant advantage in
performance over the full semiclassical simulation. We stress that increasing Ntr

does not lead to a deterioration of the description of the short-time dynamics; see
the inset of Fig. 4.4(a).

4.3.3 Spectral Density approach

In contrast to the Lanczos approach, the SD approach shows a completely different
behavior when increasing the truncation parameter Ntr (which is actually a dis-
cretization parameter here); see Fig. 4.5(a). Similar to the Lanczos approach, the
SD approach works better for larger Ntr and the short-time behavior is correctly
described independent of Ntr. But the convergence is roughly uniform, i.e., for Ntr

deviations with a similar magnitude occur for intermediate and large times. We
consider this to be an important advantage because we are interested in a reliable
description for very long times. The reason for this behavior lies in the particular
construction of the SD approach. The energies included in the description of the
bath are designed to capture all the relevant dynamics in the time interval under
study; see Eqs. (4.39) and (4.40). The crucial advantage is that this construction
captures the dynamics on all timescales efficiently.

In order to assess the accuracy of the SD approach quantitatively, we plot in
Fig. 4.5(b) the root-mean-square deviation ∆S between the SD result and a highly
accurate Lanczos calculation (Ntr = 32) in the time interval t/A−1

Q ∈ [0, 104] as
a function of the truncation parameter Ntr ≥ 4. Clearly, a rapid convergence is
visible. It can be fitted by the function

∆S(Ntr) =
A

NB
tr

+ C , (4.64)

yielding A = 0.21 ± 0.01, B = 2.44 ± 0.04, and C = (2.9 ± 0.2) × 10−4 for the fit
parameters. The fit reveals that the average convergence is better than quadratic
in the inverse number of tracked dynamic vectors. The constant offset C occurs
naturally since a statistical error remains for all Ntr because of the ensemble av-
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Figure 4.5: (a) Comparison of the results from the SD approach and the full semiclassical
simulation for various truncation parameters Ntr at γ = 10−2. The full simulation is
performed for N = 1000 bath spins; the SD approach employs the continuum limit
N → ∞. The left inset shows the short-time behavior. The fluctuations visible in
the right inset result from the averaging over M = 106 random initial configurations.
(b) Root-mean-square deviation ∆S in the time interval t/A−1

Q ∈ [0, 104] between the
SD result and a highly accurate Lanczos calculation (Ntr = 32) in the continuum limit at
γ = 10−2. Here, the ensemble averages for the SD and Lanczos results are calculated over
M = 107 configurations. The orange solid line depicts the fit of type (4.64) calculated
for Ntr ≥ 4.
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Figure 4.6: Comparison of the results from the Lanczos and SD approach for Ntr = 16
to the full semiclassical simulation for very long times up to t = 104A−1

Q at γ = 10−2. The
Lanczos and the full calculations are performed for N = 1000 bath spins; the SD approach
employs the continuum limit N → ∞. The inset shows the short-time behavior.

erage over M = 107 random initial configurations. This statistical error scales
like 1/

√
M [200].

The advantageous feature of the SD approach is summarized in Fig. 4.6, clearly
demonstrating that the SD approach captures the dynamics of the central spin
model more efficiently than the Lanczos approach for very long times if the same
value of Ntr is chosen. We stress that the Lanczos approach has the advantage
to yield very precise data when simulating shorter times, but such times are not
a computational challenge. Both approaches can deal with infinitely large spin
baths N → ∞ while the number of effectively coupled bath spins Neff = 2/γ
remains finite.

4.3.4 Long-time behavior

Above, we have illustrated that the SD approach is especially suited to describe the
dynamics at very long times accurately. For this reason, we apply this algorithm
for the following analysis and use Ntr = 32 in the following calculations. The
calculations are carried out for infinitely large spin baths N → ∞, i.e., in the
continuum limit.
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Let us investigate the influence of the parameter γ, which represents the inverse
number of effectively coupled bath spins via γ = 2/Neff . Figure 4.7(a) shows a
set of representative results for various values of γ up to times t = 104A−1

Q . In all
cases, the short-time behavior is very similar to the result obtained from the frozen
Overhauser field approximation (included in Fig. 4.3). On the long-time scale, a
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Figure 4.7: (a) Central spin autocorrelation Szz(t) for various values of γ up to very
long times calculated using the SD approach. The calculations are performed for N → ∞
bath spins with a truncation parameter Ntr = 32. (b) Scaled results from Fig. 4.7(a)
showing an excellent data collapse as long as the short-time dynamics and the long-time
dynamics are separated clearly, i.e., for √

γ ≪ 1.
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slow decay of the autocorrelation takes place. While the curves are qualitatively
very similar, smaller values of γ imply a slower long-time decay. We stress that
the short-time dynamics (see the inset) is not altered by changing γ because it
is determined by the energy scale AQ. Hence, all curves coincide in the inset up
to about t ≈ 8A−1

Q , and this is also the reason why the frozen Overhauser field
approximation works well for short times. Only the result for γ = 0.05 deviates
slightly. We attribute this to the fact that for γ = 0.05, the continuum limit, i.e.,
the step from Eq. (4.35a) to (4.35b) justified for γ ≪ 1, does not capture the
discrete bath perfectly.

Turning back to the long-time dynamics, the question arises whether the dynamics
for different values of γ can be mapped to a single curve. This would imply that
the contained information is essentially the same. Practically, a good data collapse
would help future theoretical simulations so that only moderate values of γ (instead
of very small ones) need to be studied. A larger value of γ implies a faster long-time
decay, i.e., the long-time limit is easier to reach numerically. Studying Fig. 4.1 and
the analytic result for the weight function given in Eq. (4.36), it is obvious that the
maximum energy occurring in the weight function w(x) sets a second energy scale.
This energy scale is √

γAQ. The first energy scale is AQ as discussed above for the
inset of Fig. 4.7(a). Hence, it is natural to assume that the long-time dynamics
is determined by the second, much smaller energy scale √

γAQ. To corroborate
this hypothesis, we plot the data from Fig. 4.7(a) with a scaled time argument
in Fig. 4.7(b). Indeed, an impressive data collapse is achieved. In particular for
small values of γ, the scaling with √

γ works perfectly. For larger values of γ, e.g.,
γ = 0.05, the two energy scales AQ and √

γAQ are not clearly separated so that
the scaling is not fully quantitative. Obviously, the short-time dynamics does not
match anymore after scaling the time with the factor √γ; see the inset of Fig. 4.7(b).
It results from the fact that the corresponding short-time scale is solely determined
by A−1

Q .

Another question is how the correlations of the central spin decay. For the quantum
mechanical model with a finite bath, we know from rigorous lower bounds [180, 201]
that the correlations are persistent, i.e., no complete decay occurs. Even for infinite
baths, the correlations persist if the couplings are distributed such that their distri-
bution can be described as a probability distribution p(A) with finite moments [201].
Note that this is not the case for the exponential parametrization (4.3) and for the
Gaussian parametrizations of the couplings considered in Sec. 4.2.4. The reason is
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Figure 4.8: Analysis of the long-time behavior of the autocorrelation, averaged over
M = 108 trajectories, by a logarithmic fit (4.65). The fit parameters are A = 0.303±0.001,
B = 1.024± 0.001, and t0 = (0.442± 0.003)A−1

Q .

that these parametrizations imply that there is an infinite number of very weakly
coupled spins so that no normalization of a probability distribution p(A) is possi-
ble. We recall that the lower bounds as discussed in Refs. [180, 201] result from
the existence of conserved quantities such as the total angular momentum and the
total energy. These quantities are conserved also for the classical Hamiltonian 4.1
and the choices of couplings we are considering here. Hence, it is not astonishing
that the correlations persist very long. They are protected by conservation laws
and thus, they decay very slowly as can be seen in Fig. 4.7.

The question arises how the slow decay can be described quantitatively. Various
studies propose a slow logarithmic decay [223, 226, 227]. Hence, we fit the simulated
data for γ = 10−2 according to

Szz(t) = A

lnB(t/t0)
. (4.65)

The simulation and the fit of the long-time behavior are compared in Fig. 4.8. The
fit is obtained in the interval t/A−1

Q ∈ [3×102, 104] and works very well, supporting
the results of previous research [223, 226, 227]. The obtained fit parameters are
A = 0.303 ± 0.001, B = 1.024 ± 0.001, and t0 = (0.442 ± 0.003)A−1

Q . The fit is of
comparable quality if we fixed B = 1. Hence, the existence of a logarithmic factor

85



Chapter 4 Efficient algorithms for large and infinite semiclassical
central spin models

0 2000 4000 6000 8000 10000

t/A−1
Q

0.00

0.03

0.06

0.09

0.12

S
zz

(t
)

d = 1

d = 2

d = 3

0 10 20 30
0.00

0.25

Figure 4.9: Comparison of the central spin autocorrelation for three generic weight
functions wd(x) relevant in dimension d = 1, d = 2, and d = 3 for γ = 10−2. The weight
functions are given in Eqs. (4.51), (4.57), and (4.63), respectively. Note that the d = 2
Gaussian case is identical to the linear weight function w(x) given by Eq. (4.36).

is certain, but further details such as logarithmic corrections found in Ref. [180]
cannot be determined reliably. Since the dynamics can be scaled quantitatively
with √

γ if γ is sufficiently small, there is no need to show or analyze data for other
values of γ.

Finally, let us address the influence of the weight function. We do not study wildly
different weight functions but stay with the plausible choices of Sec. 4.2.4. As
discussed in Sec. 3.1.2, the strength of the Fermi-contact hyperfine interaction is
proportional to the probability density of the electron at the position of the nuclear
spins in the QD. Assuming to first approximation a parabolic trapping potential
as it results from any Taylor expansion, Gaussian wave functions are the most
plausible assumption (see Sec. 3.1.2). Previously in Sec. 4.2.4, we computed the
three corresponding weight functions wd(x) in dimension d = 1, 2, and 3. The
d = 2 case is covered by the linear weight function that we have used so far.

In Fig. 4.9, we compare the resulting central spin autocorrelation for the same value
of γ = 10−2, which implies the same number of effectively coupled bath spins. The
results indicate that the influence of the dimension is only of moderate importance.
The behavior is identical on short times t ≲ 8A−1

Q as it has to be because the
distribution of the couplings is not of importance on this timescale solely determined
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by A−1
Q . The feature of a very slowly, logarithmically decaying autocorrelation is

found in all dimensions. The same is true for the scaling of the long-time dynamics
with √

γ. The difference is that the slow long-time decay is initially faster in larger
dimensions.

4.4 Chapter conclusion

We considered the central spin model as the relevant description of two-level sys-
tems coupled to large spin baths. While the quantum model is the ultimate aim
in order to describe experimental results, it has been shown that semiclassical
simulations comprising appropriate ensemble averages over normally distributed
initial conditions provide very good approximations to the quantum mechanical
solution [182, 200, 226, 227]. Thus, this chapter aimed at establishing efficient ap-
proaches to deal with this semiclassical approach to the CSM. Two demanding re-
quirements had to be met: very large numbers of bath spins and very long times.

Instead of addressing single spins, we introduced generalized higher Overhauser
fields to develop a much more efficient approach than the full semiclassical simula-
tion. A first attempt, the Hierarchy approach, failed because of an inappropriate
mathematical structure. But the Lanczos and the SD approach turned out to be
extremely powerful because only a limited number of dynamical vectors needs to
be tracked. The number of these vectors, denoted as Ntr, is the control parameter
determining the accuracy of both approaches.

The Lanczos approach, which displays a nonuniform convergence, works excellently
up to a certain threshold in time tmax. This time can be pushed higher and higher
by increasing Ntr; the scaling is tmax ∝ N2

tr. The Lanczos approach is particularly
suited if high-precision data is required for not too long times.

The SD approach is adjusted to a preset time interval. Within this interval, it
displays a uniform and better than quadratic convergence at very moderate com-
putational cost. Moreover, it is based on the appealing concept of a continuum
limit that amounts to setting the total number of bath spins to infinity while the
number of effectively coupled bath spins Neff within the localization volume of the
central spin is kept as the relevant parameter. In order to establish an appropriate
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continuum limit, we introduced weight functions and determined them for generic
cases.

Employing the powerful SD approach, we identified the energy scale that is re-
sponsible for the long-time dynamics. This low-energy scale is given by AQ/

√
Neff ,

where AQ is the root of the square sum of all couplings. The energy AQ is known
to determine the short-time behavior [104, 183]; see also Sec. 3.3.4. The low-energy
scale AQ/

√
Neff also appeared in previous investigations [163, 178]. But we empha-

size that the SD approach can produce reliable real-time data up to these very long
timescales for infinite baths with very large numbers of effectively couples bath
spins. This allowed us to show by explicit and systematically controlled calcula-
tions that a scaling of the long-time tails of the autocorrelation with the low-energy
scale yields a convincing data collapse.

Physically, the low-energy scale AQ/
√
Neff is obviously a representative value of the

individual couplings of the bath spins. This observation is highly plausible because
the individual bath spin Ik can react to the behavior of the central spin only by
the rate Ak. As long as the bath itself remains static, the autocorrelation of the
central spin does not decay but remains constant at one third of its initial value
(Sec. 3.3.4). Hence, further decay of the autocorrelation will be slow and can only
happen at the rate at which the bath spins precess. For QDs with Neff = 104 − 106

effectively coupled nuclear spins and A−1
Q being of the order of nanoseconds, the

long-time scale is of the order of 102 to 103 ns [19, 104].

Finally, we studied the influence of the dimensionality of the electronic wave func-
tion by computing the different weight functions wd(x). The resulting dynamics,
however, indicates only a moderate dependence on the dimension d. This obser-
vation also implies that the details of the couplings in a QD do not matter much.
The key parameters are the high-energy and the low-energy scale, which dominate
the short-time and the long-time behavior, respectively.

The established approaches and the above observations provide a reliable algorith-
mic and conceptual foundation for many further investigations. The approach is
straightforwardly extended to finite external magnetic fields acting on the central
spin or on the bath spins. In particular, it can be applied to study QDs sub-
jected to trains of pulses in conjunction with a transverse external magnetic field,
where the effect of nuclei-induced frequency focusing takes place on extremely long
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timescales [25]. This is the subject of the following three chapters, constituting
Part II of the thesis.
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II
Nonequilibrium spin phenomena
in a transverse magnetic field
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Chapter 5

Nuclei-induced frequency focusing in
infinite semiclassical central spin models

Singly-charged QDs subjected to periodic laser pulses in a transverse magnetic field
can show the fascinating phenomenon of spin mode locking (SML) [24] as a conse-
quence of nuclei-induced frequency focusing (NIFF) [25]. An overview over these
two effects is given in Sec. 2.4.1. When a strong transverse magnetic field is applied
to the QDs, the localized electron spins can be manipulated to respond coherently
through the application of long trains of periodic laser pulses, where the pulses ap-
plied with repetition time TR induce a synchronization of the precession frequency
of the electron spin with the repetition rate of the pulses. The synchronization can
be achieved through a focusing of the nuclear spin bath onto certain polarizations:
The Overhauser field, i.e., the effective magnetic field applied by the nuclear spins
on the electron spin via the hyperfine interaction, is driven indirectly until com-
mensurability of the electronic precession frequency and the pulse repetition rate
is reached.

In this chapter, we apply the efficient semiclassical Spectral Density approach de-
veloped in Sec. 4.2.3 to study this effect. The approach enables us to study the
experimentally relevant bath sizes and long pulse sequences for the experimental sit-
uation in which the spin dynamics in the QDs approaches a nonequilibrium steady
state. A very useful observation in this context is that the intrinsic timescale of
the spin bath scales like the square root of the number Neff of effectively coupled
bath spins, i.e., tnuclei ∝

√
NeffA

−1
Q . Thus, one can perform calculations for smaller

baths and scale them up to the orders of magnitude relevant under experimental
conditions. Whether such a scaling still holds in the system with external magnetic
field while being subjected to periodic pulses is one of the open issues in the field.
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The objective of this chapter is to make use of the methodological progress devel-
oped in the previous chapter to consider the effect of periodic pulses on the CSM.
We do not aim at a quantitative simulation of the experimental scenario yet; this
is the subject of Chaps. 6 and 7. In order to keep the simulations simple and ef-
ficient, we study two kinds of pulses: a classical and a semiclassical pulse. Both
pulses orient the central spin along the z axis, independent of the direction it had
before the pulse. Thus, the alignment induced by the pulse is perpendicular to the
applied external magnetic field, which is oriented along the x axis (Voigt geometry).
The semiclassical pulse also accounts for the quantum mechanical uncertainty. The
pulse relations derived in Sec. 2.2.2 are considered in the following chapters.

The chapter is set up as follows.1 In Sec. 5.1, the model to be studied is specified
and the two different pulse models are introduced. In Sec. 5.2, representative
results are provided for the CSM subjected to periodic pulses without coupling
of the bath spins to the external magnetic field, i.e., the nuclear Zeeman effect is
neglected. Clear evidence for NIFF is found. The scaling behavior with respect to
the size of the spin bath and to the applied magnetic field is studied. In Sec. 5.3,
the influence of the additional Larmor precession of the nuclear spins about the
external magnetic field, which turned out to be relevant for the nonequilibrium
dynamics [117, 122, 142], is investigated. Finally, the most promising model is
applied to an experimental scenario in Sec. 5.4.2 A conclusion is given in Sec. 5.5.

5.1 Model and simulation

In the following, the ingredients for the semiclassical simulation of the CSM by
means of the Spectral Density approach are summarized. The theoretical founda-
tion for this approach is the TWA introduced in Sec. 3.3.

1This chapter is based on the author’s publication [252], ©2018 American Physical Society.
J. Hüdepohl performed early calculations on this topic for his master’s thesis [248] supervised
by G. S. Uhrig and B. Fauseweh. The author continued this work by studying different pulse
models and including the nuclear Zeeman effect. Further contributions were the calculation of
all data, creation of all figures, and writing the major parts of the manuscript.

2This section is based on the author’s contribution to Ref. [117] (Sec. VI therein), ©2018 American
Physical Society.
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5.1.1 Semiclassical central spin model with transverse magnetic field

The classical Hamiltonian of the CSM with magnetic field to be considered is given
by

HQD =
N∑
k=1

AkS · Ik − hSx − hn
N∑
k=1

Ixk , (5.1)

where the classical three-dimensional vector S represents the central electron spin
and the vectors Ik represent the N nuclear spins forming a spin bath. The hyperfine
couplings Ak represent the coupling between the electron spin and the nuclear spins.
The external magnetic field h = γeBext = geµBℏ−1Bext is applied in Voigt geometry,
i.e., along the x axis. A generic electronic g factor is ge = 0.555 [25].3 The last
term in Eq. (5.1) is the nuclear Zeeman term with hn = γnBext, where γn = γe/800
is approximately an average value for the gyromagnetic ratio of the nuclear spins
in GaAs or InGaAs QDs [117, 122, 142, 167]. This factor takes into account that
the nuclear magnetic moment is three orders smaller than the electronic one.

The hyperfine couplings Ak are proportional to the probability density of the lo-
calized electron at the position of the kth nucleus. As discussed in detail in
Secs. 3.1.2 and 4.1, a plausible choice for the parameterization of the couplings
in self-assembled QDs is

Ak = C exp(−kγ) , k ∈ {1, 2, . . . , N} . (5.2)

Here, C is an energy constant and γ ≪ 1 is a small parameter given by γ = 2/Neff ,
with Neff being the number of effectively coupled bath spins. Note that the total
number of bath spins N is essentially infinite because all spins in the QD are
coupled to the central spin, but most of them extremely weakly. The number Neff

quantifies the number of bath spins that are effectively coupled to the central spin;
see Sec. 3.1.2 and 4.1 for details. A realistic value for γ in QDs with Neff = 104−106

effectively coupled nuclear spins [19, 103–107] is γ = 10−4 − 10−6.
3Note that we consider the coupling to the external magnetic field with negative sign in this
chapter. This is different from the other parts of the thesis, but the replacement Bext → −Bext
easily recovers the coupling with a positive sign. Similarly, the electronic g factor in InGaAs
QDs is actually negative [132]. But for the physics to be investigated, the sign with which the
magnetic field couples to the spins is not of particular importance because of symmetry reasons:
the Overhauser field is represented as a random classical field centered around zero polarization.
The sign becomes important whenever the direction of a certain polarization needs to be uniquely
identified.
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The energy constant C in Eq. (5.2) is specified via the square root of the sum of
the squared couplings

AQ =

√√√√ N∑
k=1

A2
k (5.3)

because this energy scale determines the dynamics of the central spin for short
times. The corresponding timescale A−1

Q is of the order of nanoseconds [19, 104].
For small values of γ in the limit N → ∞ of an infinite bath size, C =

√
2γAQ

results in leading order in γ; see Eq. (4.5).

The Overhauser field Bov is the sum of all bath spins weighted by their coupling
constant,

Bov =
N∑
k=1

AkIk . (5.4)

Since we assume that the initial bath is completely disordered, we describe it by
randomly chosen initial conditions with mean value zero. The variances of the Over-
hauser field components Bα

ov, α ∈ {x, y, z} shall mimic their quantum mechanical
counterpart, i.e.,

Var [Bα
ov] =

5
4
A2

Q, (5.5)

where the factor 5/4 follows from the observation that all nuclear spins in GaAs QDs
have I = 3/2 if no indium needs to be considered [167, 169]. This simplification is
lifted in Chap. 7.

5.1.2 Setup of the simulation

The equations of motion resulting from the classical Hamiltonian (5.1) are the well-
known differential equations describing precessions

d
dt
S = (Bov − hex)× S , (5.6a)

d
dt
Ik = (AkS − hnex)× Ik , k ∈ {1, 2, . . . , N} , (5.6b)

where ex is the unit vector along the x axis. While these equations can be solved
numerically by standard algorithms such as Runge-Kutta methods of various or-
ders, the direct simulation of 104 − 106 equations, let alone of an infinite number
of them, is not an option. For this reason, we resort to the very efficient Spectral
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Density approach developed in Sec. 4.2.3, where the ensemble of bath spins param-
eterized according to Eq. (5.2) in the continuum limit N → ∞ is represented by
the linear spectral density given by Eq. (4.36).

In the following, the Spectral Density approach is briefly recapitulated. In this
approach, the equations of motion (5.6b) for the N bath spins Ik are replaced by
the Ntr equations of motion

d
dt
Qk = (εkS − hnex)×Qk (5.7)

for the auxiliary fields Qk, which represent linear sums of bath spins. In this
representation, the Overhauser field is given by

Bov =
Ntr∑
k=1

√
WkQk . (5.8)

The energies εk and weights Wk follow from the discretization of the spectral
density (4.36), which is explained around Eq. (4.40). A visualization of the dis-
cretization procedure is given in Fig. 4.1. The key advantage is that the dimension
3(Ntr + 1) of the ODE is only O(102) instead of O(104 − 106). This substantial
reduction is achieved thanks to the uniform convergence of the Spectral Density
approach with the truncation parameter Ntr. In the time interval for which the
discretization of the weight function is optimized, the accuracy is essentially the
same for all times. The deviations show a better than quadratic decrease when
increasing Ntr.

We use the semiclassical simulation based on the Gaussian TWA as approximation
of the quantum mechanical problem (Sec. 3.3). In this semiclassical approach, the
solutions calculated from the classical equations of motion must be averaged over
M random initial configurations to determine the autocorrelation function

Szz(t) := Sz(t)Sz(0) (5.9)

as approximation of the quantum mechanical autocorrelation function ⟨Ŝz(t)Ŝz(0)⟩.
The averaging over the classical trajectories is denoted by the overline in Eq. (5.9).
Each spin component of each bath spin and of the central spin is chosen according
to normal distributions centered around zero and with variance 1/4 for the central
electron spin (S = 1/2) and with variance 5/4 for the bath spins (I = 3/2). Since
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the auxiliary fields Qk represent linear sums of many bath spins, their components
are also normally distributed. Furthermore, different fields are uncorrelated. Hence,
we have to ensure that

Qα
jQ

β
k = 5

4
δjk δαβ (5.10)

holds at t = 0, which is easily realized by initializing the 3Ntr components Qα
k

according to normal distributions with variance 5/4 and mean value zero. The
same variance for all Qα

k can be chosen because we consider a single species of
nuclear spins with I = 3/2 for simplicity. The influence of the different numbers of
bath spins contributing to the auxiliary fields Qk is accounted for by the weights Wk,
which enter in the calculation of the Overhauser field as given by Eq. (5.8).

5.1.3 Pulse models

Next, we turn to the pulses acting on the central spin. In real experiments, the
optical pulses of circularly polarized light with well-defined frequency excite trions
of only one spin orientation (see Sec. 2.2). The trions decay fast on the timescale
of 400 ps [23, 111], leaving behind a partially polarized spin if a transverse magnetic
field is applied [23, 112–114, 117, 122, 135, 141]. In this chapter, we neglect this
time and mimic the whole pulse by an instantaneous orientation of the central spin
along the z axis.

As a first description of the pulse, we consider pulse model I given by the relation

Sa =


0
0

|Sb|

 , (5.11)

which orients the full central spin vector S onto the z axis while preserving its
length, i.e., the vector is simply rotated. Note that the pulse is always applied
separately to each of the M configurations, not to the averaged quantity S (this is
also true for all other pulses considered in the thesis). The subscripts denote the
central spin vector before (‘b’) and after (‘a’) the pulse. This pulse is idealized in the
sense that it does not respect Heisenberg’s uncertainty relation for the central spin.
It is very close to the classical pulse studied by Petrov and Yakovlev [139], which
simply sets Sa = ez/2. In our case, the initial components S(0) are random as a
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consequence of the application of the Gaussian TWA, i.e., the vector length is fixed
at t = 0 such that it reproduces on average the quantum mechanical expectation
values ⟨Ŝ2⟩ = S(S + 1) = 3/4 and ⟨(Ŝα)2⟩ = 1/4 for a spin with S = 1/2.

Pulse model II is set up to mimic the quantum mechanical aspects better. The
guiding idea is that each application of a pulse represents a quantum mechanical
measurement with the definite outcome of a spin |↑⟩ state. In the framework of the
Gaussian TWA, this case can be modeled by the following Wigner function that
describes the central spin components after a pulse,

W (Sx
a , S

y
a , S

z
a) ≈

2
π
exp

(
−(Sx

a )2 + (Sy
a )2

4

)
δ
(
Sz
a −

1
2

)
, (5.12)

where δ(Sz − 1/2) is the Dirac delta function that ensures the definite outcome
Sz
a = 1/2 [230, 237]. Because of the quantum mechanical uncertainty, the outcome

is random for the transverse components in accordance with the quantum mechani-
cal expectation values ⟨(Ŝα)2⟩ = 1/4. Translating this choice of the Wigner function
to a concrete pulse model requires that the components of the central spin after a
pulse are given by

Sa =


X

Y
1
2

 , (5.13)

where X and Y are chosen for each pulse at random from a normal distribu-
tion around zero with variance 1/4. This implies vanishing expectation values
of X and Y while ensuring that the quantum mechanical expectation values for the
spin length ⟨Ŝ2⟩ = S(S + 1) = 3/4 and ⟨(Ŝα)2⟩ = 1/4 are reproduced on average
after each pulse. Since the pulse model II is based on the TWA, it be considered
as semiclassical.

Alternatively, X and Y could be chosen uniformly distributed on a circle with radius
X2 + Y 2 = (1/2)2, which would be a third pulse model. However, we tested that
the difference to pulse model II is hardly noticeable and hence, we restrict ourselves
to pulse model II in addition to pulse model I. We expect that pulse model I is
more efficient in generating NIFF, but pulse model II should be more realistic in
terms of mimicking the quantum mechanical system.
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5.2 Results without nuclear Zeeman effect

We start the numerical analysis by neglecting the nuclear Zeeman term in the
Hamiltonian (5.1), i.e., we set hn = 0. The influence of this term is studied later
in Sec. 5.3 by comparing the results of this section with simulations in which the
nuclear Zeeman effect is included.

Typical experiments are performed at external magnetic fields of 0.5 to 10T [24, 25,
95, 117, 122]. In our units, 1T corresponds approximately to h = 40AQ. The pulses
in the experiments are usually applied with a repetition time of TR = 13.2 ns. In the
simulations, we use TR = 5πA−1

Q , which is roughly in the experimentally relevant
range if A−1

Q is of the order of 1 ns [19, 104]. The repetition time is chosen as a
multiple of πA−1

Q to make effects stemming from commensurability easier to discern.
A concrete conversion to SI units takes place in Sec. 5.4.

The results presented in this chapter stemming from semiclassical simulations are
averaged over M = 105 trajectories starting from random initial configurations
if not stated otherwise. The results for representative illustrations are averaged
over M = 106 configurations. The truncation parameter is chosen to be Ntr = 44
for simulations in which up to np = 104 pulses are applied. For simulations with
more pulses, Ntr is increased such that the discretization parameter λ defined in
Eq. (4.40) remains constant. This ensures the same accuracy level independent of
the number of pulses studied. Based on the analysis in Sec. 4.3.3, it turned out
that λ ≈ 0.87 is a good choice to obtain reliable results. Note that thanks to the
exponential discretization of the weight function, the truncation parameter has to
be increased only slightly for much longer simulations, e.g., Ntr = 58 is sufficient
to study ten times more pulses (np = 105).

5.2.1 Results for pulse model I

Figure 5.1 shows the dynamics of the central spin caused by the periodic application
of pulses of type I [Eq. (5.11)] in an external magnetic field of h = 40AQ. In the
upper panel, the dynamics of the central spin after the first two pulses is shown.
After the incidence of a pulse (t/TR = 0, 1, 2, . . . ), the autocorrelation Szz(t) always
takes the value 0.75 because initially, all three components of the central spin are
sampled from a normal distribution with mean value zero and variance 1/4 that
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Figure 5.1: Representative result for the autocorrelation Szz(t) defined in Eq. (5.9) (blue)
when applying trains of pulses of type I [Eq. (5.11)] at a magnetic field of h = 40AQ, pulse
repetition time TR = 5πA−1

Q , and γ = 10−2. The envelope S⊥(t) defined in Eq. (5.14b)
is depicted in orange.

are then rotated onto the z axis by the pulse (5.11). Afterwards, the central spin
precesses about the external magnetic field while dephasing on the timescale A−1

Q ,
analogous to what we have seen using the frozen Overhauser field approximation
in Sec. 3.3.4. The dephasing is Gaussian and can be described by Eq. (3.49). After
many more pulses (3000 pulses in the case of the lower panel of Fig. 5.1), a strong
revival signal is visible just before the next pulse arrives. Its origin is the effect of
nuclei-induced frequency focusing, which is analyzed below.

In order not to be distracted by the fast Larmor precession, we address the envelope
directly by defining

Syz(t) := Sy(t)Sz(0) , (5.14a)

S⊥(t) :=
√
[Szz(t)]2 + [Syz(t)]2 , (5.14b)

and using Szz(t) defined by Eq. (5.9). The modulus S⊥(t) represents the envelope
of a fast precession about the x axis along which the external magnetic field is
oriented. In Fig. 5.1, the envelope is highlighted in orange.
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Figure 5.2: Relative revival amplitude S⊥
rel as a function of the number of pulses np at

a magnetic field of h = 40AQ for various values of the inverse bath size γ using pulse
model I from Eq. (5.11). Inset: Excellent data collapse when the time axis is scaled
with √

γ.

We characterize the degree of NIFF by studying the relative revival amplitude

S⊥
rel(np) :=

S⊥(npT
−
R )

S⊥(npT
+
R )

, np ∈ N , (5.15)

which is the quotient of the envelopes just before (npT
−
R ) and after (npT

+
R ) a pulse

is applied; see Fig. 5.1 at t/TR = 2999. Figure 5.2 shows the buildup of the relative
revival amplitude for various inverse bath sizes γ. We already know from Eq. (4.8b)
that smaller values of γ correspond to a larger number Neff of effectively coupled
bath spins. Since each individual coupling Ak is proportional to

√
2γ, the dynamics

of each bath spin is slower for smaller values of γ and accordingly, the buildup of
the revival amplitude as a consequence of NIFF takes longer.

In view of demanding numerical simulations, we intend to make use of scaling
arguments to reduce the required computational resources. In Sec. 4.3.4, a scaling
of time with √

γ is established, but for h = 0 and without periodic application of
pulses. The inset in Fig. 5.2 demonstrates that this scaling is also valid for the
revival amplitude S⊥

rel(t) at a finite magnetic field of h = 40AQ and periodically
applying pulses of type I. Thus, we can study the magnetic field dependence later
for one particular value of γ = 10−2 and scale the results accordingly if smaller
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5.2 Results without nuclear Zeeman effect

values of γ need to be investigated.

The origin of the revival signal visible in the dynamics of the central spin is a focus-
ing within the Overhauser field distribution along the axis of the external magnetic
field, i.e., along the x axis. Since the spin bath in a QD consists of nuclear spins, we
refer to this behavior as nuclear focusing. The basic idea is the following: Each pulse
kicks the central electron spin and in turn, its motion has a small effect on each bath
spin. As long as the central spin does not precess with a frequency commensurable
with the pulse repetition rate, these periodic kicks continue to influence the state of
the bath spins. Only once commensurability is approached, the periodic application
of pulses ceases to influence the distribution of bath spins until a nonequilibrium
steady state is reached. Thus, after application of long pulse trains the expected
result is a stationary distribution of the Overhauser field that is strongly peaked at
polarizations that induce commensurable precessions [25, 117, 122, 139].

To investigate the nuclear focusing quantitatively, we study the probability distri-
bution of the effective magnetic field

heff := |hex −Bov| , (5.16)

which is the relevant quantity to describe the Larmor precession for each of the
independent trajectories in the semiclassical approach. The upper panel in Fig. 5.3
illustrates the dynamic buildup of nuclear focusing after np pulses. The probability
distribution p(heff) starts as a Gaussian with a variance determined by the initial
conditions (5.5). Then, as a consequence of the periodic pulse application, the
shape of the distribution evolves towards a comblike structure made up of various
peaks. The peaks appear to be perfectly centered around the values of heff that
satisfy the odd resonance condition (ORC)

hoddeff TR = (2|k|+ 1)π , k ∈ Z , (5.17)

indicated by the dashed vertical lines in Fig. 5.3. This resonance condition is
termed to be ‘odd’ because 2|k| + 1 is an odd integer. It corresponds to a half-
integer number of spin revolutions of the central spin within the pulse repetition
time TR. The distance between these modes is obviously proportional to T−1

R . Small
sub-peaks in the middle between the main peaks are found additionally in the early
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Figure 5.3: Upper panel: Probability distribution p(heff) of the effective magnetic
field heff [defined in Eq. (5.16)], shifted by h = 40AQ, after np pulses of type I at γ = 10−2.
The vertical dashed lines indicate the values of heff that satisfy the ORC (5.17). Lower
panel: Same as upper panel, but after np = 3000 pulses. In addition, the probability
distributions of the Overhauser field components Bα

ov, α ∈ {x, y, z}, are shown.

stages. Their positions are determined by the even resonance condition (ERC)

heveneff TR = 2π|k| , k ∈ Z , (5.18)

with 2|k| being an even integer, corresponding to an integer number of spin revo-
lutions within the pulse repetition time TR. However, these modes appear to be
suppressed quite fast, i.e., after a few hundred pulses.

How do the single components of the Overhauser field Bα
ov evolve? An example is

given in the lower panel of Fig. 5.3, in which the probability distributions of the
components Bα

ov are shown together with the one of heff after np = 3000 pulses.
Obviously, the comblike structure of the distribution p(heff) results mainly from
the distribution of Bx

ov, i.e., from the component of the Overhauser field paral-
lel to the external field. This is in accordance with the results of other stud-
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5.2 Results without nuclear Zeeman effect

ies [24, 25, 117, 122, 139]. However, the peaks found in the distribution p(Bx
ov)

are shifted slightly away from the ORC (5.17). The reason is the finite contribu-
tion from transverse components By

ov and Bz
ov to the effective magnetic field heff ,

i.e., they have an influence on the resonance conditions. The influence decreases
for larger external fields.

Surprisingly, the probability distribution p(By
ov) is shifted to a finite mean value

By
ov > 0 while also becoming slightly narrower. For Bz

ov, a strong narrowing ef-
fect occurs so that its contribution to heff almost vanishes. The finding that the
application of periodic pulses can also generate nontrivial Overhauser fields perpen-
dicular to the external magnetic field and to the direction of the polarization of the
pulses carries an interesting message also for experiments. It would be interesting
to conceive experiments that can measure the components of the Overhauser field
perpendicular to the external field. Here, we find that the average y component
can be of the order of |By

ov| ≈ 100mT after long pulse trains. To our knowledge,
however, such effects have not yet been observed experimentally. Usually, such
a polarization takes place along the axis of the external field as a consequence of
dynamic nuclear polarization [42, 115, 225].

In order to study the process of nuclear focusing quantitatively, we analyze the
weight of the even and odd resonances by defining the following intervals. The
even resonance is characterized by all values of heff in the intervals

[heveneff − π/(2TR), heveneff + π/(2TR)] . (5.19)

Their normalized number with respect to the configuration size M defines the
weight Σeven. Analogously, the odd resonance is characterized by all values of heff
in the intervals

[
hoddeff − π/(2TR), hoddeff + π/(2TR)

]
. (5.20)

Obviously, the relation

Σeven(np) + Σodd(np) = 1 (5.21)

holds for all times and hence, it is sufficient to investigate only one of the two
weights; we choose Σeven. Initially, both weights have the same value of 0.5. In case
of a perfect even resonance, Σeven rises to unity. In case of a perfect odd resonance, it
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Figure 5.4: (a) Dependence of the weight Σeven on the number of pulses np at h = 40AQ
for various inverse bath sizes γ using pulse model I. Inset: Excellent data collapse when
scaling the number of pulses np with √

γ. (b) Same as (a), but for fixed γ = 10−2 and
varying the external field h. Inset: Excellent data collapse when scaling the number of
pulses np with 1/h.

shrinks to zero. Figure 5.4(a) depicts Σeven as a function of the number of pulses for
various values of γ at h = 40AQ. Again, the scaling with √

γ leads to a remarkable
collapse of the curves as demonstrated in the inset. Therefore, we conclude that
the degree of nuclear focusing in the effective field, i.e., the convergence of Σeven to
zero, directly influences the relative revival amplitude S⊥

rel of the central spin.

Up to now, we only studied external fields of moderate strength, i.e., h = 40AQ.
The question arises as to what happens when h is increased. For now, we restrict
ourselves to the range h ∈ [40AQ, 240AQ], corresponding to fields of approximately
1 to 6T in experiments. Figure 5.4(b) shows the time dependence of the weight Σeven

for various magnetic fields h. In general, the application of a larger field results in
a slower buildup of nuclear focusing. We find that a scaling of time with 1/h leads
to a perfect collapse of the curves as demonstrated in the inset of Fig. 5.4(b).

The linear scaling at high magnetic fields is at odds with the quantum mechanical
analysis of Ref. [141], which indicates a quadratic scaling ∝ 1/h2. The quadratic
scaling is also found in the classical analysis of Ref. [131] for the case that the
system is not yet close to the resonance condition, but a different pulse model is
used and the nuclear Zeeman effect is accounted for. Indeed, we will see in the
following sections that the classical pulse (5.11) and neglecting the nuclear Zeeman
effect are both responsible for the observed linear scaling behavior.

Another way to investigate the resonance behavior is to compare the phases of the
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5.2 Results without nuclear Zeeman effect

revival signal to the post-pulse signal. If there is a phase shift by π, the resonance
is odd. If there is no phase shift, the resonance is even. In principle, also other
phase shifts could occur. The details of this analysis are given in Appendix B.
We always find a phase shift of π with deviations up to 3%, demonstrating the
dominance of the odd resonance in agreement with the analysis of Σeven < 0.5.
Thus, this pulse model clearly favors odd resonances in agreement with what is
found without nuclear Zeeman effect in a quantum mechanical analysis for small
spin baths [141]. The nuclear Zeeman effect can have an important impact on the
resonance condition [117, 122, 142], i.e., it can change the resonance chosen by the
system. We come back to this point in Sec. 5.3 where the effect is included.

In summary, the application of periodic pulses of type I leads to efficient nuclear
focusing at odd resonance. The rate of the nuclear focusing scales with √

γ, i.e., it
is inversely proportional to the square root of the effective bath size. In addition,
the rate scales inversely proportional with the external magnetic field h, which is
at odds with the finding of a quantum mechanical approach [141] and also with a
classical approach [131] that accounts for the nuclear Zeeman effect. We attribute
this discrepancy to the both the classical nature of pulse model I and to the omission
of the nuclear Zeeman effect. Generally, the scalings with √

γ and 1/h generate
very nice data collapses so that quantitative extrapolations are possible with a high
degree of accuracy.

5.2.2 Results for pulse model II

Next, we turn to pulse model II and carry out the same analyses as for pulse
model I. The motivation is twofold. First, we want to see to which extent the
previous findings change if the pulse is changed. The underlying issue is whether
and to which extent the findings are robust to the details of the pulse. Second,
pulse model II is closer to a quantum mechanical pulse because it accounts for the
uncertainty principle and hence, we are interested in its phenomenology.

Indeed, several qualitative differences are found. Overall, the tendency for the
system to show nuclear focusing is much less pronounced for pulse model II than
for pulse model I. This can be seen by comparing the lower panel of Fig. 5.5 to the
lower panel of Fig. 5.1. In both figures, representative spin dynamics are shown
after the same number of pulses for identical parameters but using the two different
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pulses. The comparison of Fig. 5.6 to Fig. 5.2, which show the buildup of the relative
revival amplitude S⊥

rel for various values of γ at h = 40AQ, is more quantitative.
The obvious difference is that the revival signal when using pulse model II does not
reach amplitudes as large as when using pulse model I (note the different scales
on the y axes). In addition, the data is much noisier because of the statistical
component of pulse model II described by Eq. (5.13). The statistical fluctuations
decrease with 1/

√
M for larger configuration sizes M .

The most striking feature, however, is the nonmonotonic dependence of the relative
revival amplitude on the inverse bath size γ; see Fig. 5.6. The fastest buildup of
the revival amplitude is found for γ = 10−2, but for γ = 10−4 it is only slower by
approximately a factor of 2 while reaching a larger saturation value. Obviously, no
scaling with any power of γ can lead to a collapse of the curves. Quite unexpectedly,
the buildup for γ = 10−3 is slower than for the other two curves and no significant
revival amplitude is reached at all. The revival amplitudes for γ = 3 × 10−3 and
γ = 3× 10−4 are also rather small, but larger than for γ = 10−3. Hence, we assume
that there is a qualitative transition occurring at around γ ≈ 10−3. We come back
to this point later.

We stress that the saturation values of the relative revival amplitude stay far away
from the theoretical maximum of unity, i.e., the periodic pulses of type II induce
only imperfect nuclear focusing. This is in contrast to the results for pulse model I
where S⊥

rel reaches almost unity and underlines the importance of the pulse proper-
ties.

How does the Overhauser field evolve when applying periodic pulses of type II?
The evolution of a representative probability distribution p(heff) of the effective
magnetic field is depicted in the upper panel of Fig. 5.7 for h = 40AQ and γ = 10−2.
The peaks in the distribution of the effective magnetic field are much broader and
smaller in amplitude, i.e., the degree of nuclear focusing is much less pronounced
compared to the distribution induced by the periodic application of pulse model I
(see Fig. 5.3). The peaks in Fig. 5.7 are not located at values of the effective
field that fulfill the ORC (5.17). Instead, the peak positions correspond to the
ERC (5.18). Note that in contrast to the distribution obtained for pulse model I, the
y and z components of the Overhauser field maintain their initial Gaussian shape
(lower panel). Yet, the peaks found in the distribution of Bx

ov are still shifted slightly
to the right of the theoretically expected resonance condition. This is not the case
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for the distribution of the effective magnetic field because it also incorporates the
influence of the transverse components By

ov and Bz
ov on the Larmor frequency. As

before, the shift decreases for larger external fields.

When pulses of type II are applied long enough, the distribution of the effective
magnetic field becomes quasistationary. This means that it does not change any-
more if it is analyzed stroboscopically, i.e., at a given instant in time relative to the
pulses, for instance just before each pulse. But the peaks in the distribution do not
become arbitrarily sharp: they keep a substantial width and there is always some
weight around both kinds of resonances. This qualitative behavior is confirmed
quantitatively by the weight Σeven(np) approaching neither zero nor one as we will
see in the following.

Remarkably, we find a transition from even to odd resonance when studying smaller
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Figure 5.7: Upper panel: Probability distribution p(heff) of the effective magnetic field,
shifted by h = 40AQ, after np pulses of type II at γ = 10−2. The vertical solid lines
indicate the values of heff that satisfy the ERC (5.18). Lower panel: Same as upper
panel, but after np = 3000 pulses. Additionally, the probability distributions of the
Overhauser field components Bα

ov, α ∈ {x, y, z}, are shown.
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values of γ. This is demonstrated in Fig. 5.8 for the weight Σeven at h = 40AQ and
80AQ. Upon reducing γ, the even resonance (Σeven > 0.5) is replaced by the odd
resonance (Σeven < 0.5). It is not a continuous shift of the peak positions in the
Overhauser field distribution leading to this transition. Instead, the probability
distribution p(heff) of the effective magnetic field becomes featureless at the transi-
tion point between even and odd resonance, e.g., at γ ≈ 10−3 and h = 40AQ. No
coexistence of even and odd resonances as found in the semiclassical analysis of
Ref. [122] is observed.

We emphasize that Fig. 5.8 indicates that the change of the Overhauser field dis-
tribution occurs at a rate proportional to √

γ. Even though we change γ by two
orders of magnitude, the curves in Fig. 5.8 approach saturation after approximately
the same number of scaled pulses np

√
γ. Since Σeven shows a nonmonotonic depen-

dence on γ because of the resonance transition, the impossibility to achieve a data
collapse by the scaling is obvious. Yet, the characteristic timescale remains √

γAQ

as for pulse model I.
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To corroborate the existence of the transition between even and odd resonance, we
investigate the phase shift ∆φ obtained by fitting the autocorrelation Szz(t) just
before and just after a pulse. We analyze the combinations of h and γ used in
Fig. 5.8 and some other parameter combinations. As expected, the phase shifts
are directly connected to the parity of the resonance: if Σeven > 0.5, no phase shift
occurs, whereas it takes the value π if Σeven < 0.5. More details of this analysis can
be found in Appendix B.

To our knowledge, this kind of transition has not yet been observed in other, similar
calculations. At present, we do not have an explanation for its occurrence because
there are so many energy scales in the problem so that various combinations can
become relevant. But we strive to provide a heuristic description for which param-
eters h and γ the transition occurs. From a wide range of numerical experiments,
the working hypothesis ensues that the transition occurs for

P := hγ2 = const . (5.22)

We find that for h = 40AQ and γ = 1.5 × 10−3, no tendency towards even or odd
resonance is apparent so that this parameter combination provides the estimate
P = 9 × 10−5AQ. From this value, we generate other possible combinations of
h and γ that should correspond to parameters at the transition according to the
conjecture (5.22). Figure 5.9 puts this conjecture to a test. Note that the scale on
the ordinate is roughly five times smaller than in Fig. 5.8. Indeed, for large enough
external fields, the conjecture (5.22) appears to hold within the statistical accuracy.
We point out that this result is not very sensitive to the precise value of P . For
instance, a similar plot as in Fig. 5.9 can be obtained for P = 3.8× 10−5AQ.

Next, the issue of scaling the dynamics with the magnetic field h arises. We cannot
expect a simple power-law scaling close to the resonance transition, just as we did
not find a power-law scaling with γ because of the transition. Yet, the typical rate
of nuclear focusing can be investigated far away from the transition to see whether a
scaling law can be identified. There are two ways to keep away from the transition.
Either one stays far in the regime of even resonance, i.e., for relatively small spin
baths (large values of γ) at a given magnetic field, or one stays far in the regime of
odd resonance, i.e., for relatively large spin baths (small values of γ). If we take the
above determined value of P = 9× 10−5AQ and insert γ = 10−5 into Eq. (5.22), we
obtain h = 9× 105AQ, which corresponds to a magnetic field larger than 2× 104 T.
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Figure 5.9: Dependence of the weight Σeven on the number of pulses np for various pairs
of magnetic field h and inverse bath size γ fulfilling P = hγ2 = 9 × 10−5AQ to test the
conjecture (5.22).

0 5000 10000

0.50

0.55

0.60

Σ
ev

en

γ = 10−2

0.0 0.5 1.0 1.5

0.50

0.55

0.60

Σ
ev

en

γ = 10−2

h = 40AQ

h = 80AQ

h = 120AQ

h = 160AQ

h = 240AQ

0 5000 10000

np

0.35

0.40

0.45

0.50

Σ
ev

en

γ = 10−4

0 1 2 3 4

np/h
2 (A−2

Q )

0.35

0.40

0.45

0.50

Σ
ev

en

γ = 10−4

(a) (b)

Figure 5.10: (a) Upper panel: Dependence of the weight Σeven on the number of
pulses np at γ = 10−2 for various magnetic fields h using pulse model II. Lower panel:
Same as upper panel, but for γ = 10−4. (b) Same as (a), but the scaled number of pulses
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Hence, systems with bath sizes of this magnitude such as QDs are expected to be
in the regime of odd resonance without nuclear Zeeman effect. Other systems with
much smaller spin baths, e.g., NV centers or spins in organic molecules, can very
well be in the regime of even resonance. Note that the practical importance of these
implications are limited because we will see that the nuclear Zeeman effect has a
significant impact on the physics.

First, we study the regime of even resonance. The upper panel of Fig. 5.10(a)
displays the buildup of Σeven for γ = 10−2 and various external fields h. Clearly,
larger fields imply a slower buildup as expected. Can we reach a data collapse by
rescaling the number of pulses np by a power of h? For pulse model I, we succeeded
in doing so with a linear scaling, but it does not work here. Instead, the rate of
the increase of Σeven scales with 1/h2. This is shown by the collapse of the curves
in displayed in the upper panel of Fig. 5.10(b). This scaling is in agreement with
the quantum mechanical [141] and the classical [131] result mentioned before.

Next, we address the regime of odd resonance occurring for very large spin baths.
The lower panel of Fig. 5.10(a) displays the decrease of Σeven at γ = 10−4 for various
external fields h. The number of pulses after which Σeven approaches saturation
scales approximately with 1/h2 as shown in the lower panel of Fig. 5.10(b). However,
the saturation values differ vastly for different fields h, with larger h corresponding
to a less pronounced nuclear focusing at the odd resonance.

We summarize that pulse model II without nuclear Zeeman effect displays regimes
of even and odd resonance with a transition between the two depending on the
precise values of the external magnetic field and of the bath size. According to the
heuristic description (5.22) of the transition point, QDs are far in the regime of
odd resonance. The overall rate of change of the Overhauser field is proportional
to √

γ and inversely proportional to h2. The latter agrees with the finding in
a quantum mechanical study for small spin baths [141], underlining that pulse
model II leads to a better description of the quantum mechanical problem. The
data collapse obtained by application of the scaling laws is not quantitative because
of the resonance transition and the resulting nonmonotonic dependence on the bath
size and on the magnetic field.

114



5.3 Influence of the nuclear Zeeman effect

5.3 Influence of the nuclear Zeeman effect

In any experiment performed on QDs, an external magnetic field acts on the electron
spin as well as on the nuclear spins by the Zeeman effect. In many circumstances,
the latter can safely be neglected since it is smaller by three orders of magnitude
because of the larger mass of the nuclei compared to the electron mass. But in the
CSM as a model for QDs, a magnetic field of about 2T (h = 80AQ) is about two
orders of magnitude larger than the intrinsic energy scale AQ of the CSM. For large
spin baths with γ ≈ 10−5, the electronic Zeeman energy is four orders of magnitude
larger than the largest coupling A1 =

√
2γAQ ≈ 0.0045AQ. But the nuclear Zeeman

energy (hn = 0.1AQ) is one order of magnitude larger than A1. Even for γ = 10−2,
both energies have the same order of magnitude. Hence, the nuclear Zeeman effect
clearly needs to be considered and it is possible that it introduces qualitatively
important changes to the physics. For instance, there is evidence that the even
resonance can be favored over the odd resonance when the nuclear Zeeman effect
is included [117, 122, 142].

The nuclear Zeeman term in the Hamiltonian (5.1) is included by using hn = γnBext

with γn/γe = 1/800 [117, 122, 142, 167], i.e., hn = h/800. First, the nonequilibrium
spin physics resulting from the periodic application of pulses of type I is analyzed.
Afterwards, the analysis is repeated for pulse model II.

5.3.1 Pulse model I

The buildup of the relative revival amplitude S⊥
rel caused by the application of

periodic pulses of type I at a magnetic field of h = 40AQ is shown in Fig. 5.11 for
various values of γ. The relative revival amplitude approaches unity for γ = 10−2,
whereas the curves for smaller values of γ have not yet reached saturation. A
comparison to the curves in Fig. 5.2 without nuclear Zeeman effect reveals that
this effect slows down the buildup of the revival signal significantly, especially for
smaller values of γ.

It is obvious that the scaling with √
γ does not work anymore. Instead, we find a

remarkable data collapse by scaling the number of pulses np with γ as demonstrated
in the inset of Fig. 5.11. This finding is in agreement with the observation of Jäschke
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et al. [122] in a semiclassical analysis for which a scaling with the inverse of the
bath size is also found.

The question arises as to why the scaling changes from √
γ to γ after including

the nuclear Zeeman effect. We attribute this qualitative change to the relative
strengths of the couplings to which an individual bath spin is subjected. Without
nuclear Zeeman effect, the coupling Ak is the only energy relevant for the individual
bath spin. These couplings scale like √

γ and thus, the evolution of the central spin
exerts an effect onto each bath spin at a rate proportional to √

γAQ. But if the
nuclear Zeeman term ∝ hn is included, each bath spin is dominated by this term
and precesses predominantly about the external magnetic field if γ ≪ 1 as in
QDs. Then, the coupling to the central spin, i.e., the precession about the Knight
field AkS in the classical picture, is just a perturbation on top of the coupling to
the external field. This perturbation is effective only in second order A2

k/hn. This
difference is similar to the Stark effect, which is generically second order, but first
order if the perturbed system is degenerate, i.e., without internal dynamics. We
conclude that with nuclear Zeeman effect, the central spin dynamics influences the
bath spins only in second order.

In the following, we exploit the linear scaling in γ and perform the following calcu-
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Figure 5.11: Relative revival amplitude S⊥
rel as a function of the number of pulses np at

h = 40AQ for various values of γ using pulse model I in presence of the nuclear Zeeman
effect. Inset: Excellent data collapse when scaling the number of pulses np with γ.
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lations for a relatively large value of γ = 10−2 because no qualitative changes for
smaller values are to be expected. We stress that for realistic values γ ≈ 10−4−10−6,
all time dependencies are slower by two to three orders of magnitude.

Let us turn to the behavior of nuclear focusing, which is responsible for the revival
signal. A representative probability distribution p(heff) of effective magnetic field
is shown in the upper panel of Fig. 5.12. The peaks are located at the values of heff
fulfilling the ERC (5.18), which is in contrast to the observation in Sec. 5.2.1 for
the same pulse without nuclear Zeeman effect. The fact that the nuclear Zeeman
effect influences the system to favor the even resonance is in line with previous
research [122, 142]. Moreover, the peak shape shows a certain asymmetry. The
peak width reduces when applying longer pulse trains and eventually, the nuclear
focusing appears to become perfect, i.e., the peaks in the distribution of the effective
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Figure 5.12: Upper panel: Probability distribution p(heff) of the effective magnetic field,
shifted by h = 40AQ, after np pulses of type I at γ = 10−2 in presence of the nuclear
Zeeman effect. The vertical solid lines indicate the values of heff that satisfy the even
resonance condition (5.18). Lower panel: Same as upper panel, but after np = 3000 pulses.
Additionally, the distributions of the Overhauser field components Bα

ov, α ∈ {x, y, z}, are
shown.
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magnetic field approach δ peaks. This behavior is strongly corroborated by the
relative revival amplitude approaching unity as can be seen in Fig. 5.11.

The inclusion of the nuclear Zeeman effect leads to a drastically different behavior
for the individual components of the Overhauser field. The distributions of By

ov

and Bz
ov maintain their initial Gaussian shape and we find no average polariza-

tion |By
ov| > 0 anymore. Again, the peaks of in the distribution of Bx

ov are slightly
shifted to the right of the resonance conditions because the transverse components
of the Overhauser field By

ov and Bz
ov contribute to the effective magnetic field heff .

Further strong support for perfect nuclear focusing is provided by the study of the
weight Σeven of the even resonances, which is plotted in Fig. 5.13(a) as a function of
the number of pulses for various values of γ at h = 40AQ. For long pulse trains, the
weight approaches unity, which implies that the Overhauser field evolves towards
values compatible with the ERC (5.18). In addition, scaling the number of pulses
with γ [inset of Fig. 5.13(a)] leads to a perfect data collapse and corroborates this
scaling also found for the revival amplitude.

Next, we turn to the variation of the magnetic field h. In Fig. 5.13(b), the increasing
weight Σeven is plotted for various values of h. Clearly, larger fields result in slower
changes of the Overhauser field. The best collapse of the curves is obtained when
scaling the number of pulses with 1/h2 as illustrated in the inset. We emphasize that
this quadratic scaling is in contrast to what is found in Sec. 5.2.1 for pulse model I
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Figure 5.13: (a) Dependence of the weight Σeven on the number of pulses np (inset:
scaled pulses npγ) at h = 40AQ for various inverse bath sizes γ using pulse model I in
presence of the nuclear Zeeman effect. (b) Same as (a), but for fixed γ = 10−2 and
various magnetic fields h. Inset: number of pulses np scaled with 1/h2.
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without nuclear Zeeman effect. We attribute this change of scaling to the fact that
the individual rate of change of each bath spin caused by the hyperfine interaction
has become a second-order effect as a consequence of the additional precession of
the nuclear spins about the external magnetic field. Hence, the Overhauser field
becomes stiffer because of the nuclear Zeeman effect.

Since the nuclear Zeeman effect introduces an additional energy scale that depends
on the strength of the external field h, it is reasonable to expect a qualitative
change of the physics when increasing h from 40AQ to 240AQ. A conceivable
scenario would be a transition from even to odd resonance. However, we find no
qualitative difference for the values of h studied in Fig. 5.13(b). Instead, the inset
in Fig. 5.13(b) shows that the nuclear focusing scales well with 1/h2.

For completeness, we also calculate the phase shifts at the pulse boundaries. In
all investigated cases, the phase shifts result to be close to zero, ∆φ ≈ 0, which is
expected for a dominant even resonance.

In summary, we find very strong nuclear focusing triggered by the periodic appli-
cation of pulse model I while including the nuclear Zeeman effect. The inclusion
of the nuclear Zeeman effect slows the rates of nuclear focusing down considerably.
The scaling with the inverse bath size γ changes from √

γ to γ and is quantitative,
i.e., it leads to a perfect data collapse. The scaling with the magnetic field changes
from 1/h to 1/h2 and is not completely perfect.

5.3.2 Pulse model II

Finally, let us study the periodic application of pulse model II in presence of the
nuclear Zeeman effect. Again, we start by inspecting the buildup of the relative
revival amplitude S⊥

rel for various values of γ at h = 40AQ in Fig. 5.14(a). Compared
to the case without nuclear Zeeman effect (Fig. 5.6), the revival amplitude generally
approaches larger values. But we stress that the amplitude does still not reach unity,
i.e., S⊥

rel(np → ∞) < 1 as can be seen for the blue curve in Fig. 5.14(a). In this
sense, the nuclei-induced frequency focusing remains imperfect.

A scaling of the number of pulses np with γ as applied in the inset of Fig. 5.14(a)
appears to work for very small values of γ ≪ 10−2. But the data collapse is
not as good as for pulse model I (Fig. 5.11): the revival amplitude approaches

119



Chapter 5 Nuclei-induced frequency focusing in infinite semiclassical
central spin models

slightly larger saturation values for smaller values of γ. The weight Σeven plotted in
Fig. 5.14(b) shows an analogous behavior, which was to be expected for consistency.
From the weight, it is also apparent that the system favors the even resonance.

Representative results for the distributions of the effective magnetic field and for
the Overhauser field components are shown in Fig. 5.15. The Overhauser field
components By

ov and Bz
ov maintain their initial Gaussian shape. The positions

of the peaks in the distribution of the effective magnetic field clearly match the
ERC (5.18) and the peaks in the distribution of Bx

ov are again slightly shifted to
the right. The degree of nuclear focusing is significantly more pronounced than for
the case without nuclear Zeeman effect (Fig. 5.7), but the peaks still retain a finite
width, even in the limit np → ∞.

The dependence of Σeven on the magnetic field h for fixed γ = 10−2 and γ = 10−3

is shown in Fig. 5.16(a). Again, larger values of h imply a slower nuclear focusing.
In contrast to the previous results, we find no data collapse by scaling with 1/h or
1/h2. Moreover, only the even resonance is present, independent of the choice of γ
and h. This finding is supported by a vanishing phase shift ∆φ ≈ 0 for all studied
parameter combinations of γ and h.

Interestingly, the degree of nuclear focusing shows a minimum at a field of about
h = 160AQ (red curve) as visible in Fig. 5.16. The minimum is clearly discernible
if the number of pulses is scaled with 1/h2 as in Fig. 5.16(b). The scaling does not
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Figure 5.14: (a) Relative revival amplitude S⊥
rel as a function of the number of pulses np

(inset: scaled number of pulses npγ) at h = 40AQ for various inverse bath sizes γ using
pulse model II in presence of the nuclear Zeeman effect. (b) Same as (a), but displaying
the weight Σeven as a function of the number of pulses np (inset: scaled number of
pulses npγ).
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yield a perfect data collapse, but it is obvious that it captures the main influence
of the magnetic field on the nuclear focusing rate, except for the nonmonotonic
behavior of its degree. The minimum seems to be more pronounced for the smaller
value of γ (lower panel) corresponding to a larger effective bath size.

In SI units, the magnetic field h = 160AQ converts to roughly 4T. There appears
to be a connection to recent experiments where a minimum of the revival signal
is found at about 3.75T in Ref. [122] or at about 4.2T in Ref. [117]; see also
Fig. 2.5(b) taken from Ref. [117]. But under experimental conditions, the system is
in a nonequilibrium steady state (NESS) as a consequence of the periodic applica-
tion of pulses for up to minutes. Simulating such a NESS is extremely challenging
for large values of h combined with small values of γ because of the scaling behavior
found for these parameters.

In summary, significant nuclear focusing is observed for pulse model II in presence
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Figure 5.15: Upper panel: Probability distribution p(heff) of the effective magnetic
field, shifted by h = 40AQ, after np pulses of type II at γ = 10−2 in presence of the
nuclear Zeeman effect. The vertical dashed lines indicate the values of heff that satisfy the
ORC (5.17). Lower panel: Same as upper panel, but after np = 3000 pulses. Additionally,
the probability distributions of the Overhauser field components Bα
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Figure 5.16: (a) Dependence of the weight Σeven on the number of pulses for various
magnetic fields h at γ = 10−2 using pulse model II in presence of the nuclear Zeeman
effect. (b) Same as (a), but scaling the number of pulses np with 1/h2 for γ = 10−2

(upper panel) and γ = 10−3 (lower panel). Taking the scale of the abscissa into account,
one notes the significantly slower dynamics in the lower panel because of the linear scaling
with γ.

of the nuclear Zeeman effect, but it is less pronounced than for pulse model I and
generally imperfect. The inclusion of the nuclear Zeeman effect slows down the
process of nuclear focusing considerably because the scaling with the inverse bath
size changes from √

γ to γ. The scaling with the magnetic field remains at 1/h2,
i.e., it does not change when including the nuclear Zeeman effect. Remarkably,
the nuclear focusing induced by pulse model II displays nontrivial nonmonotonic
features when studying the magnetic field dependence, but the even resonance
prevails for all studied parameter combinations of γ and h. The nonmonotonic
behavior, which is analyzed in more detail in the following, prevents a quantitative
scaling with 1/h2.

5.4 Nonmonotonic magnetic field dependence

Let us expand on the previous analysis by studying the magnetic field dependence
of the revival amplitude in the NESS regime for pulse model II in the presence
of the nuclear Zeeman effect. In order to be able to compare our results to the
experimental results presented in Refs. [117, 122], we must convert the applied the-
oretical units to physical ones. We fix TR = 5πA−1

Q = 13.2 ns as in the experiments
so that for an electronic g factor of ge = 0.555 [25], a magnetic field of Bext = 1T

122



5.4 Nonmonotonic magnetic field dependence

with corresponds to approximately h = geµBℏ−1Bext = 41AQ. At the same time,
this choice implies a dephasing time of T ∗

n =
√
8/5A−1

Q ≈ 1.06 ns, which follows
from the conversion given by Eq. (3.50) with I = 3/2 for all nuclear spins. The
spin polarization probed in the experiments by means of the spin Faraday effect
is proportional to the spin polarization in the QDs [113, 115]. Since the periodic
pulses are applied for up to minutes, the experimental situation is that the system
is in a NESS with a saturated revival amplitude.

The ensemble average is calculated over M = 104 − 105 configurations. The pre-
cise ensemble size depends on the computational demand of a particular simu-
lation, which scales approximately linearly with the effective bath size Neff and
cubically with the magnetic field h. The cubic scaling occurs as a consequence of
the quadratic scaling of the number of pulses to reach the NESS combined with the
fact that the Larmor frequency of the electron spin is the smallest timescale to be
resolved numerically, resulting in an additional linear increase of the computation
time with h.

The buildup of the relative revival amplitude S⊥
rel is shown in Fig. 5.17 for a vari-

ety of magnetic fields Bext up to 5.56T. Clearly, the applied scaling with 1/h2 in
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Figure 5.17: (a) Relative revival amplitude S⊥
rel as a function of the number of applied

pulses np for various magnetic fields Bext at γ = 10−2 using pulse model II in the presence
of the nuclear Zeeman effect. Eventually, a NESS is approached. The black dashed curves
depict the fit with Eq. (5.23). (b) Same as (a), but with scaled number of pulses np/h

2.
All curves reach a steady state after about np/h

2 ≈ 3A−2
Q .
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Fig. 5.17(b) demonstrates that an approximately saturated value is reached after
a very similar number of scaled pulse np/h

2 ≈ 3A−2
Q . But most importantly, the

revival amplitude depends nonmonotonically on Bext: the amplitude is large for
small fields, decreases for larger fields up to about 4T, and increases again for even
larger fields.

Since the nondeterministic pulse model II induces a statistical noise in the revival
amplitude, we apply the suitable fit function

S⊥
fit(np) = ANIFF

2
π
arctan

(
np

η

)
+Boff (5.23)

to smoothen the data. Such fits are included in Fig. 5.17 as black dashed curves.
They display a 1/np convergence towards the saturation value (np → ∞) in the
NESS regime given by

S⊥
rel,NESS := sgn(η)ANIFF +Boff , (5.24)

where sgn(η) is the sign function. The fit parameter Boff accounts for the inevitable
statistical offset, whereas a finite value of ANIFF is the result of NIFF. The rate of
NIFF is characterized by the parameter η. Alternatively, an exponential saturation
fit also yields a decent agreement with the numerical data, but it underestimates the
real saturation value slightly because of a faster (exponential) convergence towards
saturation.

The revival amplitude S⊥
rel,NESS in the NESS regime as a function of the magnetic

field Bext is plotted in Fig. 5.18 for γ = 10−2 (Neff = 200) and γ = 3 × 10−3

(Neff ≈ 667). The error bars display the root-mean-square deviation calculated
for the fit (5.23) over the last 10% data points, serving as a measure for both the
fit quality and the statistical fluctuations. The nonmonotonic dependence of the
revival amplitude on the magnetic field shows a pronounced minimum at around
3.9T and a less pronounced, narrow minimum at around 7.8T. In addition, there is
a maximum close to 1T and two maxima of similar height at around 7T and 8.5T.
The nonmonotonic behavior is more pronounced for the larger bath (smaller γ), i.e.,
the maximal revival amplitude is larger and the minimal one is smaller.

The time required to approach the NESS scales linearly with γ, and quadratically
in the magnetic field. For this reason, simulations for large magnetic fields and
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Figure 5.18: Relative revival amplitude S⊥
rel,NESS in the NESS regime, determined from

fits of type (5.23) using Eq. (5.24), as a function of the magnetic field Bext for two different
values of the inverse bath size γ using pulse model II in the presence of the nuclear Zeeman
effect. The error bars display the root-mean-square deviations calculated for the fit over
the last 10% data points. The two horizontal dashed lines represent the magnetic fields
Bext that satisfy the nuclear resonance condition (5.25) for k = 1 and 2.

large bath sizes are computationally very expensive so that we cannot cover the
full range of magnetic fields up to 10T for the larger spin bath with γ = 3× 10−3

in Fig. 5.18.4

The first minimum at around 3.9T is qualitatively very similar to the minimum
found in experiments in the vicinity of 4T [117, 122]; see also Fig. 2.5(b) taken from
Ref. [117]. Furthermore, similar minima are found in Ref. [117] using a quantum
mechanical approach for N = 6 bath spins, but the widths of the minima differ
from our result. The differences could stem from the vastly differing bath sizes
and from the difference between the quantum mechanical and the semiclassical
approach. In particular, we do not account for the excitation of trion states by the
pulses, which is the mechanism exploited in experiments to induce spin polarization
on the quantum mechanical level as discussed in Sec. 2.2.2. This mechanism and
further extensions of the semiclassical approach are the studied in Chap. 6. There,
we will see that the selection rules governing the trion excitation already lead to the

4At a later stage, we obtained access to more powerful but limited computational resources. They
were used for the more advanced simulations presented in the following chapters.
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appearance of a sizable revival amplitude after very few pulses without any nuclear
focusing.

But here, the revival amplitude is solely caused by NIFF, i.e., by the forma-
tion of a comblike structure in the distribution of the Overhauser field compo-
nent Bx

ov. Figure 5.19 shows its probability distribution p(Bx
ov) for the two mag-

netic fields Bext = 0.93T and 3.71T in the NESS regime, i.e., the distributions
do not change significantly if more pulses were applied. Both distributions show
a pronounced comblike structure as the result of nuclear focusing, with peaks cor-
responding to the even resonance (slightly shifted because the effective magnetic
field heff is the relevant quantity that determines the resonance condition). But the
width and concomitantly the height of the peaks differ substantially. This is the
reason for the much smaller revival amplitudes at magnetic fields in the vicinity
of 3.9T and 7.8T. In general, a larger value of the revival amplitude corresponds
to sharper peaks because sharper peaks imply an enhanced synchronization of the
precession frequencies.

The positions of the two minima in Fig. 5.18 at Bext ≈ 3.9T and 7.8T are related
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Figure 5.19: Probability distribution p(Bx
ov) of the Overhauser field x component in the

NESS regime reached after np pulses (denoted in the legend) for two different magnetic
fields Bext at γ = 10−2 using pulse model II in the presence of the nuclear Zeeman effect.
The vertical solid lines indicate the values of the effective magnetic field heff that fulfill
the ERC (5.18), shifted by h.
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to another class of resonance conditions that takes the Larmor precession of the
nuclear spins into account [117, 142]. As a consequence of the nuclear Zeeman effect,
they also precess about the magnetic field. The nuclear resonance condition

hnTR = |k|π , k ∈ Z , (5.25)

describes the number of half-turn revolutions of the nuclear spins between consecu-
tive pulses. The small contribution from the Knight field AkS is neglected; it could
lead to tiny shifts from the nuclear resonance condition (5.25) [253]. Calculating
the corresponding magnetic field Bext in SI units for k = 1 and 2 yields the values
Bext ≈ 3.9T and 7.8T (ge = 0.555 [25], γn = γe/800 [117, 122, 142, 167], and
TR = 13.2 ns). They are highlighted as vertical dashed lines in Fig. 5.18 and match
precisely the positions of the minima.

What is the reason in the semiclassical simulations for the nonmonotonic depen-
dence on the magnetic field shown in Fig. 5.18? It captures the interplay of the
electronic and nuclear spin precessions. An important additional clue is obtained
by setting X = Y = 0 for each application of the pulse (5.13) or by simply applying
pulse model I from Eq. 5.11, i.e., when the quantum mechanical uncertainty in the
spin orientation is neglected. In this case, we find that the relative revival ampli-
tude S⊥

rel,NESS → 1 converges towards unity for all magnetic fields, corresponding to
perfect nuclear focusing. Hence, it is indeed the quantum mechanical uncertainty,
mimicked by the randomness of X and Y in pulse model II, which is decisive for
the finite peak widths shown in Fig. 5.19. They are responsible for the imperfect
nuclear focusing and the nonmonotonic behavior of the revival amplitude shown in
Fig. 5.18.

An additional piece of information on how the randomness in X and Y acts against
perfect nuclear focusing results from the following observation for a magnetic field
around 4T. Including only the uncertainty in the y component results in the ap-
pearance of odd resonances. In contrast, including only the uncertainty in the
x component results in even resonances. Hence, they compete against each other
such that the reduced nuclear focusing found when the fluctuations are included
for both components can potentially be understood as an effect of destructive in-
terference.
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5.5 Chapter conclusion

Many experiments show that localized electron spins in ensembles of QDs sub-
jected to periodic pulses in a transverse magnetic field show the phenomenon of
nuclei-induced frequency focusing where the Larmor precession synchronizes to the
periodicity of the pulses. Here, we simulated this setup by periodically applying
pulses to the central spin model using a semiclassical approach. The algorithmic
progress developed in Sec. 4.2.3 renders it possible to simulate very large spin baths
that reach the experimentally relevant sizes of 104 − 106 nuclear spins.

We studied two kinds of pulses, which both align the central spin along the z axis.
Pulse model I aligns the total spin vector, whereas pulse model II contains knowl-
edge of the quantum mechanical uncertainty so that the transverse spin components
remain finite but zero on average. Both pulse models are applied to an isotropic
central spin model for the cases with and without nuclear Zeeman effect.

In all cases, we found strong evidence for nuclei-induced frequency focusing. This
is indicated by a strong revival signal of the central electron spin, i.e., a signal
similar to a spin echo that occurs before the next pulse is applied. Perfect nu-
clear focusing leads to a revival amplitude as large as the signal right after the
pulse. This phenomenon is explained by a highly nonequilibrium distribution of
the Overhauser field. Its distribution develops a comblike peak structure such that
the difference between the Overhauser fields in two adjacent peaks implies precisely
one additional spin revolution between consecutive pulses [25, 117, 122, 131, 139,
141, 142]. We distinguish between even and odd resonances for the peak positions
in the distribution of the effective magnetic field, which is the sum of the external
magnetic field and the Overhauser field. If the system is in even resonance, an
integer number of electronic Larmor periods fits between consecutive pulses. For
the odd resonance, a half-integer number of revolutions takes place.

The nuclear focusing induced by pulse model I is very efficient and the system
favors the odd resonance. The buildup of the revival signal scales with 1/

√
Neff ,

i.e., the nuclear focusing is slower by a factor of two if the spin bath is four times
larger. Similarly, larger magnetic fields slow down the rate of nuclear focusing
by 1/h. These scaling laws result in excellent data collapses so that quantitative
extrapolations to larger spin baths or magnetic fields are possible.
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For pulse model II without nuclear Zeeman effect, nuclear focusing can arise in even
or in odd resonance, with a transition between the two scenarios depending on the
parameters γ = 2/Neff and h. For QDs under typical experimental conditions,
the odd resonance is the relevant one. The degree of nuclear focusing is always
weaker than for pulse model I, i.e., the relative revival amplitude stays well below
unity and the peak structure in the distribution of the Overhauser field does not
approach a comb of δ peaks. Instead, the peaks retain a certain width. The scaling
of the nuclear focusing rate is again proportional to 1/

√
Neff and stationary states

are reached after at approximately the same number of scaled pulses np/h
2. The

scaling laws only yield an approximate data collapse because of the nonmonotonic
dependence on the parameters and because of the transition between even and odd
resonance.

Next, we included the nuclear Zeeman effect using a generic value for an average
isotope. For pulse model I, the nuclear focusing shifts from the odd to the even
resonance because of its inclusion. The nuclear focusing is slowed down considerably
since the nuclear Zeeman effect acts as a perturbation such that the hyperfine
interaction determining the rate of change of the bath spins becomes a second-order
effect. The rate of nuclear focusing is now proportional to 1/Neff and 1/h2. These
scaling laws yield very good data collapses so that quantitative extrapolations are
possible.

The inclusion of the nuclear Zeeman effect for periodic pulses of type II results
in nuclear focusing fulfilling the ERC (5.18). The rate of nuclear focusing is pro-
portional to 1/Neff and the accuracy of the scaling improves for larger baths Neff .
But since the dependence on the magnetic field h is nonmonotonic, no quantita-
tive data collapse can be achieved by scaling with 1/h2. Instead, stationary states
are reached after approximately the same number of scaled pulses np/h

2, i.e., the
rate of nuclear focusing scales approximately with 1/h2, but not the degree. The
quadratic scaling with the magnetic field is in agreement with the result of other
research using quantum mechanical [141] or classical [131] approaches.

Using pulse model II in the presence of the nuclear Zeeman effect is a promising
starting point for further improvements. Similar to the nonmonotonic magnetic
field dependence of the revival amplitude on the external magnetic field found in
experiments [117, 122], we find pronounced minima in this dependence at magnetic
fields that fulfill a resonance condition for the nuclear spins. At these fields, the

129



Chapter 5 Nuclei-induced frequency focusing in infinite semiclassical
central spin models

nuclear spins perform a multiple of half-turn revolutions about the external field
between consecutive pulses. Note that only an average isotope is considered here,
whereas there are five different isotopes in InGaAs QDs. Hence, the complexity of
the nonmonotonic behavior is expected to increase substantially when the isotope
composition of the QDs is accounted for. This more complex situation is studied
in Chap. 7.

We emphasize that our findings clearly show that a realistic description of the pulse
matters. The qualitative differences in the results found between pulse model I
and II underline that an accurate understanding of the pulse process is required.
Even though the phenomenon of nuclei-induced frequency focusing appears to be
robust, important features such as its rate, degree and the kind of resonance (even
or odd) are very sensitive to the details of the pulse.

In the following chapter, we treat the pulse in a more realistic manner by describing
its action as the result of the formation of trion states. Furthermore, we combine
the ideas developed in this chapter with ideas from other research to gradually
build a model that is capable of describing several effects seen in experiments.
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Chapter 6

Interplay of spin mode locking and
nuclei-induced frequency focusing

The results of the previous chapter demonstrate that the CSM subjected to peri-
odic pulses shows the phenomenon of NIFF. But they also demonstrate that the
behavior is sensitive to the properties of the pulse and to the nuclear Zeeman effect.
In particular, the results of Sec. 5.4 underline the importance to account for the
quantum mechanical nature of a pulse. The action of a pulse can be interpreted as
a quantum mechanical measurement so that the uncertainty principle needs to be
accounted for in the semiclassical approach.

In this chapter, we pursue this route further and extend the models studied in
Chap. 5 in several steps.1 In Chap. 5, the revival signal is solely caused by the
emerging nonequilibrium distribution of the Overhauser field as a consequence of
nuclear focusing. But it is known that there is also a contribution that can emerge
without nuclear focusing, simply resulting from a selection of commensurable pre-
cession modes as a consequence of the pulse properties [24, 117, 122, 135, 141, 148].
In this regime, which takes place after very few pulses, we face spin mode locking
without nuclei-induced frequency focusing. Clearly, this behavior is not described
by the models used in Chap. 5. The main difference between them and other theo-
retical approaches is the applied pulse, which is considered as a simple alignment of
the central spin (on average) along the z axis in Chap. 5. In experiments, however,
the spin polarization of a localized electron spin in a singly-charged QD is induced
by the optical excitation of trion states [23, 24, 112, 113, 117, 122, 141]. This
mechanism is described in detail in Sec. 2.2.
1This chapter is based on the author’s publication [254], ©2020 American Physical Society.
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A fundamental question that we want to address is whether NIFF always acts
constructively, i.e., does it always lead to an enhancement of the SML effect, and
what is the influence of the external magnetic field on this interplay? Previous
theoretical studies, both quantum mechanical [117, 142] and semiclassical [122],
suggest that this is not necessarily the case. In these studies, additional resonances
that can act destructively are found. The slow Larmor precession of the nuclear
spins plays a major role in this context. In these studies, however, the dynamics
of the unpaired heavy-hole spin in the excited trion [125, 255] is neglected. We lift
this simplification and show that it influences the physics on a qualitative level.

This chapter is devoted to a better theoretical description and understanding of
NIFF while being close to the experimental conditions. Existing (semi)classical
precession models [117, 122, 131, 139, 252] are improved by interpreting the action
of each pump pulse as a quantum mechanical measurement [117, 252], very similar
to pulse model II studied in Chap. 5. In this sense, we apply the TWA [230] to
the action of each pulse, which results in a reduced discrepancy of our semiclassical
approach to a fully quantum mechanical description. Moreover, we investigate the
role of the dynamics of the trion pseudospin during its lifetime and briefly analyze
the role of an inhomogeneous ensemble of QDs.

First, the initial model is introduced in Sec. 6.1, which combines the semiclassical
approach to the spin dynamics in QDs used in Chap. 5 with a pulse model resulting
from the quantum mechanical description of the trion excitation [113]. We will see
that the initial model does not describe some experimental results appropriately.
In the subsequent sections, we extend the initial model step by step, leading to the
extended models (EMs) I, II, and III. A nondeterministic description of the pulse
model is introduced in Sec. 6.2 by interpreting each pulse as a quantum mechanical
measurement, similarly to the pulse model II used in Chap. 5, but also accounting
for the trion excitation. This reduces the discrepancy to a fully quantum mechanical
model while still being able to treat large numbers of nuclear spins for a realistic
distribution of the hyperfine couplings. In Sec. 6.3, the model is extended by
including the dynamics of the trion pseudospin [125, 255], resulting in qualitatively
different physics and also in the emergence of dynamic nuclear polarization [42, 115,
225], i.e., to the formation of a finite average polarization of the nuclear spin bath.
The role of inhomogeneities in the QD ensemble is briefly discussed in Sec. 6.4. A
minimal model to describe the qualitative interplay of SML and NIFF is presented
in Sec. 6.5. Finally, a conclusion and an outlook are given in Sec. 6.6.
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6.1 Initial model: Localized electron spin in a quantum dot
subjected to periodic laser pulses

In this section, we introduce and numerically analyze the initial model. It is a
combination of an established pulse model often used to describe the excitation of
a trion [23, 113, 122, 135, 255, 256] with the efficient semiclassical Spectral Density
approach to the nuclear spin dynamics in the CSM introduced in Sec. 4.2.3. This
efficient approach enables us to simulate the spin dynamics for large or even infinite
bath sizes up the experimentally relevant nonequilibrium steady states appearing
on very long timescales.

6.1.1 Equations of motion

We consider a homogeneous ensemble of GaAs QDs, i.e., all QDs in the ensemble
are assumed to be equal. The QDs are singly charged by electrons and a strong
transverse magnetic field of up to several Tesla is applied perpendicular to the axis
of light propagation (Voigt geometry), which is also parallel to the growth axis ez

of the QD. A graphical illustration depicting the basic model and setup is shown
in Fig. 6.1.

We treat the spin dynamics in a QD using our semiclassical approach to the CSM
(Sec. 3.3.2), i.e., we solve the corresponding classical equations of motion and aver-

Figure 6.1: Illustration of the basic
model and setup: A localized electron
spin S in a QD is subjected to a train
of periodic circularly polarized σ− pulses,
which are applied with repetition time TR.
The electron spin S couples to the sur-
rounding nuclear spins Ik via the hy-
perfine interaction with coupling con-
stants Ak. This interaction is described
by the CSM (3.7). An external magnetic
field Bextex is applied in Voigt geome-
try, i.e., perpendicular to the direction
of light propagation. The direction of
light propagation is parallel to the growth
axis ez of the QD.
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age over an appropriate distribution for the initial conditions of the classical spins.
Initially, the nuclear spins are completely disordered because the temperature in
experiments (∼ 4− 6K [24, 25, 117]) corresponds to a much larger energy than the
individual hyperfine couplings. Thus, as a consequence of the central limit theorem,
each component Bα

ov, α ∈ {x, y, z}, of the Overhauser field comprising 104 − 106 ef-
fectively coupled nuclear spins [19, 103–107] with I = 3/2 follows initially a normal
distribution with expectation value E[Bα

ov] = 0 and variance

Var[Bα
ov] =

5
4
A2

Q = 2
(T ∗

n )2
, (6.1)

Unless stated otherwise, we use the generic value T ∗
n = 1 ns [19, 104]. We fix

the variance of the Overhauser field via the dephasing time T ∗
n because this time is

accessible in the experiments. Physically, it is defined in Eq. (3.50) via the strength
of the hyperfine interaction and the spin quantum number of the nuclei, resulting
in T ∗

n =
√
8/5A−1

Q for nuclear spins with I = 3/2.

In the semiclassical approach, the dynamics of the localized electron spin S and of
the N nuclear spins Ik for a single random initial configuration of the full ensemble
is determined by the classical equations of motion

d
dt
S = (Bov + hex)× S + 1

τ0
Jzez , (6.2a)

d
dt
Jz = − 1

τ0
Jz , (6.2b)

d
dt
Ik = (AkS + hnex)× Ik , k ∈ {1, 2, . . . , N} , (6.2c)

with h = γeBext, hn = γnBext, γe = geµBℏ−1 is the electronic gyromagnetic ra-
tio, ge = 0.555 [25] is the electronic g factor,2 µB the Bohr magneton, Bext the
strength of the external magnetic field, and eα the unit vector in α ∈ {x, y, z}
direction. For the gyromagnetic magnetic ratio of the nuclear spins, we use the
value γn = γe/800 as in Chap. 5, which is approximately an average value for GaAs
or InGaAs QDs [117, 122, 142, 167]. The intermediate trion state, which can

2Note that the electronic g factor is chosen to be positive here, whereas it is actually negative in
InGaAs QDs [132]. But for the physics under investigation, its sign is not of particular importance
because of symmetry reasons: the Overhauser field is represented as a random classical field
centered around zero polarization. The sign is important whenever the direction of a certain
polarization needs to be uniquely identified.
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be excited by a circularly polarized pump pulse, is denoted by the z projection
Jz of its pseudospin J [defined in Eq. (2.8c)] and has a recombination time of
τ0 = 400 ps [23, 111]. Its decay is simply described by Jz(t) = Jz(0) exp(−t/τ0).
As a consequence of the radiative trion recombination, the polarization Jz is trans-
ferred back to the ground state Sz while emitting a photon. The recombination
dynamics for the spin polarizations of the trion and ground state can be derived,
e.g., from a Lindblad approach [121] incorporating a photonic bath. The combi-
nation with the semiclassical treatment of the CSM was carried out by Jäschke et
al. [122, 257]. The terms describing the recombination dynamics also appear in sev-
eral other works, e.g., in Refs. [23, 112–114, 124, 125, 135]. The implications of the
recombination dynamics with and without contributions from other interactions
are discussed in Sec. 2.2.2 around Eq. (2.15).

Crucially for the description of NIFF, the Overhauser field Bov = ∑N
k=1AkIk is a

dynamic object since the individual nuclear spins Ik are also dynamic as described
by Eq. (6.2c). Otherwise, no nuclear focusing could occur. The hyperfine coupling
constants Ak are proportional to the probability density the localized electron at
the position of the kth nucleus. As discussed in Sec. 3.1.2, the hyperfine couplings
in approximately flat QDs can be parameterized exponentially by

Ak = C exp(−kγ) , k ∈ {1, 2, . . . , N} . (6.3)

with C =
√
2γAQ for N → ∞, γ ≪ 1. The parameter γ defines the number of effec-

tively coupled nuclear spins Neff = 2/γ. In the previous chapters, the couplings Ak

are normalized with respect to AQ. Here, we fix AQ =
√
8/5(T ∗

n )−1 via the input
parameter T ∗

n .

Since it is unfeasible to solve the equations of motion (6.2c) for each individual
nuclear spin Ik for a realistic bath size, we resort to the efficient Spectral Den-
sity approach, which is introduced in Sec. 4.2.3 and applied in Chap. 5 to simulate
nonequilibrium spin dynamics in the CSM. In this approach, the total number of
nuclear spins N is infinite while the number of effectively coupled nuclear spins Neff

is finite. The essence of the Spectral Density approach is the replacement of the in-
dividual nuclear spins Ik by appropriate sums of nuclear spins that are represented
by the Ntr auxiliary fields Qk, where Ntr is a discretization parameter of a weight
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function. The dynamics of these fields is governed by the equation of motion

d
dt
Qk = (εkS + hnex)×Qk , k ∈ {1, 2, . . . , Ntr} . (6.4)

The effective coupling constants εk ∝
√
2γAQ ∝ √

γ/T ∗
n result from the param-

eterization (6.3) of the original couplings after discretization of the spectral den-
sity (4.36); see Sec. 4.2.3 around Eq. (4.40) for details. Finally, the Overhauser
field in this approach is given by

Bov =
Ntr∑
k=1

√
WkQk , (6.5)

where the Wk are the weights that result from the discretization of the spectral
density. The discretization procedure is visualized in Fig. 4.1. Since we focus on
GaAs QDs, we have I = 3/2 for all nuclear spins. Thus, we sample the components
of the vectors Qk from a normal distribution around zero with variance 5/4 given
by Eq. (4.45). This choice ensures that the resulting variances of the Overhauser
field components respect Eq. (6.1).

6.1.2 Pulse model: Spin polarization induced by trion excitation

In the experiments, the periodic pumping with laser pulses is carried out with a
repetition time of TR = 13.2 ns [24, 25, 117, 122]. We focus on resonant pumping of
the electron spin S by circularly polarized π pulses with helicity σ− and a typical
duration of 1.5 ps [23–26, 30, 117, 148]. Such pulses are very efficient in generating
a sizable revival amplitude as a result of SML [24, 25, 113]. The pumping with
the circularly polarized light leads to the excitation of a negatively-charged singlet
trion T− [112], which decays completely before the next pulse arrives under the
experimental condition τ0 ≪ TR. The trion consists of two electrons in a spin
singlet state and a heavy hole with unpaired spin. We consider flat QDs where the
lateral size by far exceeds their height, i.e., we can choose the growth axis ez to
be the quantization axis for the electron and heavy-hole spin states. As discussed
in Sec. 2.2, the electron spin state with Sz = −1/2 and the heavy-hole spin state
with Jz = −3/2 are responsible for the dominant optical transition when using
σ− pulses [19, 113–115]. Since a single Larmor period in a magnetic field as large
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as 9T lasts about 14 ps, the action of the pulse is approximated to be instantaneous
because the pulse duration is shorter by one order of magnitude.

Under these conditions, the action of a pump pulse can be described by simple
relations between the spin components before (Sb, Jb) and after (Sa, Ja) the pulse.
The concrete relations have the form [113, 122]

Sz
a = 1

4
+ 1

2
Sz
b , (6.6a)

Sx
a = Sy

a = 0 , (6.6b)
Jz
a = Sz

b − Sz
a , (6.6c)

Jx
a = Jy

a = 0 , (6.6d)

where the Jα, α ∈ {x, y, z}, represent the components of the trion pseudospin
vector J defined in Eq. (2.8), which represents the unpaired heavy-hole spin in the
excited trion [114, 115].3 The transverse components Jx and Jy have no relevance
in this section since we neglect possible trion pseudospin dynamics for now, but
they become important later in Sec. 6.3. For a significantly longer pulse duration,
the pulse efficiency is reduced when the external magnetic field is large [117, 147],
but this is beyond the scope of this work.

The application of the pulse (6.6) aligns the electron spin along the z axis, similar
to the pulse (5.11) used in Chap. 5 (pulse model I). The key difference is that
the value Sz

a after the pulse now depends on the value Sz
b before the pulse. In the

following, we will see that this dependence is responsible for the appearance of SML
without NIFF because the spin polarization is amplified whenever the electronic
precession frequency favors commensurable dynamics, i.e., such precession modes
are enhanced.

6.1.3 Results for the initial model

We solve the coupled equations of motion (6.2a), (6.2b), and (6.4) describing the
spin dynamics numerically for M random initial fields {Qk} while applying the
pulse relation (6.6) every TR = 13.2 ns for np pulses. The actual dynamics of the
electron spin polarization is given by the ensemble average (denoted by an overline)
3As discussed in Sec. 2.2.2, these relations follow from Eq. (2.13) for a resonant σ− pulse (P = −1)
with pulse area Θ = π because of Q = cos(Θ/2) = 0.
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over all M ≈ 104 independent trajectories starting from random initial conditions.
Concretely, the time evolution of the quantum mechanical average ⟨Ŝ(t)⟩ of the
central spin is approximated in the semiclassical approach by

S(t) = 1
M

M∑
m=1

Sm(t) , (6.7)

where Sm(t) represents one of the M independent trajectories.

Let us briefly review the basic phenomena of SML and NIFF, which can be already
discussed qualitatively using the initial model. The typical time evolution between
consecutive pulses influenced by these two effects is shown in Fig. 6.2. The first
pulse creates a net spin polarization S(0) = ez/4, which precesses predominantly
about the transverse magnetic field Bextex. As a consequence of the interaction with
the random Overhauser field, the polarization dephases on the timescale T ∗

n = 1 ns
according to [104, 115, 200]

Sz(t) = Sz(0) cos(γeBextt) exp

−( t

T ∗
n

)2
 . (6.8)

−0.25

0.00

0.25

SMLSML

Bext = 1 T

NIFF

0 1 2

−0.25

0.00

0.25

7 8

SML

199999 200000

Bext = 4 T

NIFF

0.0 0.2 0.4 0.6 0.8 1.0

t/TR

0.0

0.2

0.4

0.6

0.8

1.0

S
z
(t

),
S
⊥ (
t)

Figure 6.2: Initial model: Spin dynamics Sz(t) (blue lines display the fast oscillations)
between consecutive pulses after the first pulse, after a few pulses (SML regime without
NIFF), and after many pulses (NIFF regime) for two external magnetic fields Bext at
γ = 0.02. The envelope S⊥(t) defined analogously to Eq. (6.11) is plotted in orange.
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This basic result follows from the frozen Overhauser field approximation for large
transverse magnetic fields (see Sec. 3.3.4). But after applying only a few pulses,
a revival of the spin polarization emerges just before the arrival of the next pulse.
This effect is known as spin mode locking [24, 135]; see Sec. 2.4.1 for an overview.
Here, it occurs because of an enhancement of commensurable precession modes
as a consequence of the properties of the pulse (6.6). Qualitatively speaking, the
modes corresponding to an integer number of Larmor periods between consecutive
pulses lead to an enhancement of the spin polarization, whereas the polarization is
destroyed for modes corresponding to a half-integer number. The physics behind
this behavior is that the electron spin is optically inactive in the first case and
active in the second case as a consequence of the selection rules governing the trion
excitation.

It can be shown analytically that a steady state emerges for the revival amplitude
when neglecting the Overhauser field dynamics and also the trion recombination
(γeBext ≫ 1/τ0) [117, 141]. It follows from the condition Sz(npTR) = Sz(npTR + TR)
describing a steady state in combination with the periodic application of the pulse
relation (6.6). After averaging over the initial Overhauser field distribution, the
steady state in the SML regime without NIFF takes the value [117, 141]

SSML := lim
np→∞

Sz(npT
−
R ) = 1√

3
− 1

2
≈ 0.07735 , (6.9)

where the notation T−
R indicates that the spin polarization immediately before the

arrival of the next pulse is taken. The transverse components vanish on average
so that the amplitude of the revival is equal to SSML. In the following, this value
is referred to as the SML steady-state value.4 It is reached after about ten pulses,
independent of the strength of the external magnetic field.

When driving the system by much longer pulse trains, the effect of NIFF comes into
play [25], with a rate depending strongly on the parameters Bext, γ, and T ∗

n . This
effect influences the amplitude of the revival signal. The periodic driving of the
electron spin is transferred to the nuclear spin bath via the hyperfine interaction.
The Overhauser field, which contributes to the effective electronic Larmor frequency
mainly by its component Bx

ov because of Bextex being large, evolves in time until the
effective magnetic field Beff = |Bov + γeBextex|/γe, i.e., the sum of the Overhauser
4To be precise, it is the SML steady-state value without NIFF. In Ref. [117], it is referred to as
the ‘purely electronic steady state’.
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and external magnetic field, fulfills a certain resonance condition. Initially, the
Overhauser field and therefore also the effective magnetic field follows a normal
distribution. As a consequence of the periodic application of pulses, nuclear focusing
takes place so that the probability distribution p(Beff) of the effective magnetic field
evolves towards a comblike structure; see Fig. 6.3. Initially, the distribution p(Beff)
is simply a Gaussian because of the contribution from the random Overhauser
field. Similarly to Chap. 5, two classes of resonance conditions determine the peak
positions in the distribution [117, 122],

γeBeffTR = 2π|k| , (6.10a)
γeBeffTR = 2π|k|+ 2arctan (γeBeffτ0) ≈ (2|k|+ 1)π , (6.10b)

k ∈ Z, where γeBeff is the precession frequency of the electron spin in the effec-
tive magnetic field and τ0 is the trion recombination time. We refer to the first
condition (6.10a) as the even resonance condition (ERC) because 2|k| is an even
integer. It describes an integer number of electron spin revolutions about the effec-
tive magnetic field between consecutive pulses. The approximation in the second
condition (6.10b) is valid for γeBeffτ0 ≫ 1, which is the case in our theoretical con-
siderations and also under typical experimental conditions. Hence, we refer to it

0.97 1.00 1.03
0

50

100

7.77 7.80 7.83
0

50

100

3.97 4.00 4.03
0

50

100

7.97 8.00 8.03
0

50

100

0.0 0.2 0.4 0.6 0.8 1.0

Beff (T)

0.0

0.2

0.4

0.6

0.8

1.0

p(
B

eff
)

(T
−1

)

Figure 6.3: Initial model: Probability distribution p(Beff) of the effective magnetic field
showing nuclear focusing in the NESS regime for various magnetic fields Bext (orange
vertical lines) and γ = 0.02. The gray solid and dashed vertical lines represent the values
of Beff fulfilling the ERC (6.10a) and ORC (6.10b), respectively.
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to periodic laser pulses

as the odd resonance condition (ORC) because (2|k| + 1) is an odd integer, which
means that the number of electron spin revolutions between consecutive pulses is
a half-integer. Depending on which resonance condition is dominant, the revival
amplitude is either increased or decreased with respect to the SML steady-state
value SSML. The description of this interplay as a function of the magnetic field is
the main goal of this chapter.

One of the key quantities of interest is again the revival amplitude

S⊥(np) :=
√[
Sy(npT

−
R )
]2

+
[
Sz(npT

−
R )
]2
. (6.11)

The trion does not contribute to the revival signal because it decays completely
until t = npT

−
R for τ0 ≪ TR. In particular, we are interested in the long-time

behavior of the revival amplitude and its corresponding saturation values

S⊥
NESS := lim

np→∞
S⊥(np) , (6.12a)

Sz
NESS := lim

np→∞
Sz(npT

−
R ) , (6.12b)

which describes the NESS reached in the experiments where the pulses are applied
for very long times. As discussed in Sec. 2.3, the spin polarization can be probed
using weak linearly polarized pulses and measuring the Faraday rotation or elliptic-
ity, yielding a signal proportional to Sz − Jz [113, 114]. Since the pulse duration
in experiments is finite (but very small), it is beneficial to study the envelope also
in experiments so that possible phase shifts do not influence the results [117].

Figure 6.4 shows the buildup of spin polarization for various values of the in-
verse bath size γ. The revival amplitude increases to the SML steady-state value
SSML ≈ 0.07735 within the first few pulses, independent of γ and of the magnetic
field Bext. The regime of NIFF emerges after a long train of pulses, but there is an
important qualitative difference between Bext = 1T and 2T: the revival amplitude
decreases for Bext = 1T, but it increases for Bext = 2T. In both cases, saturation
is reached eventually. Scaling the number of pulses np with γ leads to an almost
perfect data collapse in Fig. 6.4 so that the saturation value S⊥

NESS is independent
of γ; differences stem from the statistical nature of the semiclassical approach. This
is the same scaling behavior that we have found in Chap. 5 in the presence of the
nuclear Zeeman effect. A linear scaling with the inverse of the bath size is also
found in the semiclassical analysis of Ref. [122].
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Figure 6.4: Initial model: Revival amplitude S⊥ as a function of the scaled number of
pulses npγ for various inverse bath sizes γ at Bext = 1T (upper panel) and 2T (lower
panel); note the data collapse for long trains of pulses. The inset shows the SML regime
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6.1 Initial model: Localized electron spin in a quantum dot subjected
to periodic laser pulses

Since γ = 2/Neff represents the inverse of the effective bath size, we are particularly
interested in values γ ≈ 10−4 − 10−6. But the computational effort is too big
for a direct simulation because the typical hyperfine coupling of a nuclear spin is
proportional to √

γ, i.e., the rate of nuclear focusing is much smaller for realistic
bath sizes. In fact, the rate scales only linearly with γ as demonstrated in Fig. 6.4.
The reason is that NIFF is only a second-order effect when the nuclear Zeeman
term in Eq. (6.4) is present: The nuclear spin dynamics induced by the hyperfine
interaction acts as a perturbation to the full Larmor precession and its leading
effect occurs in second order. Thanks to the scaling, we can study the dependence
of S⊥

NESS on the magnetic field Bext for γ = 0.02 (Neff = 100) in Fig. 6.5, which is
also representative for the limit γ → 0, i.e., the limit of interest for QDs with a
huge number of effectively coupled nuclear spins. We also show Sz

NESS to identify
possible phase shifts between the signal before and after the pulse.

Previous research has established another class of resonance conditions, namely for
the nuclear spins [117, 142],

γnBextTR = π|k| , (6.13)

k ∈ Z, which plays a crucial role for the magnetic field dependence of the saturated
revival amplitude S⊥

NESS. Its importance is already discussed in Sec. 5.4, where
minima in the magnetic field dependence of the revival amplitude are found at
the values of Bext fulfilling this nuclear resonance condition (NRC). Similarly, we
highlight these values in Fig. 6.5 as vertical dashed lines for the two different ratios
γe/γn = 800 and 500. The NRC describes the number of half-turn revolutions of the
nuclear spins between consecutive pulses caused by the Larmor precession in the
external magnetic field. The influence of the small Knight field, i.e., the additional
field seen by a nuclear spin because of its coupling to the electron spin, is neglected.
It can be responsible for slight deviations from the expected resonances [253].

Let us discuss the details of Fig. 6.5. Essentially, the curve for γe/γn = 500 is a
horizontally scaled version of the curve for γe/γn = 800. Maxima are found close to
the values of Bext fulfilling the NRC (6.13). The first maximum (k = 1, half turn)
is rather broad, while the second maximum (k = 2, full turn) is quite sharp and
slightly shifted to the right from the expected resonance. Since S⊥

NESS and Sz
NESS

start to deviate from each other while approaching the second maximum, there must
be a phase shift in the electron spin dynamics at the pulse boundary. Just after
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the NRC for k = 2 is reached, this phase shift vanishes again. For γe/γn = 500, a
third maximum (k = 3) appears, which is very similar to the first one and indicates
a periodicity for larger values of Bext. We expect a third maximum also for the
ratio γe/γn = 800, but it is computationally out of reach. The heights of the
broad maxima are very similar. The sharp maximum is slightly less pronounced
for γe/γn = 800, but this behavior stems most likely from the discretization of the
magnetic field.

The finding of a maximum at Bext ≈ 3.9T for γe/γn = 800 is the main downside
of the initial model. As demonstrated in Sec. 5.4 and in Ref. [117], minima are
expected at the values of Bext fulfilling the NRC, which is also in much better
agreement with the experimental results in the vicinity of Bext = 4T [117, 122];
see also Fig. 2.5(b) taken from Ref. [117].

The dependence S⊥
NESS(Bext) shown in Fig. 6.5 can be understood by studying

the corresponding quasistationary probability distributions p(Beff) of the effective
magnetic field. The term ‘quasistationary’ implies that the distribution does not
change noticeably anymore even though the Overhauser field is still dynamic. A
nonequilibrium steady state (NESS) is reached. Characteristic examples for differ-
ent magnetic fields are shown in Fig. 6.3 using the ratio γe/γn = 800 (only this
ratio is used henceforth). For almost any magnetic field Bext, highlighted by the
orange vertical line in the plots, we find sharp peaks at the even (vertical solid
black lines) and odd (vertical dashed black lines) resonance conditions, but with
different weights. Since the ERC corresponds to full Larmor periods between con-
secutive pulses, the steady-state condition following from the pulse relation (6.6a) is
Sz
b = Sz

a = 1/2. For the ORC, the steady state is determined by Sz
b = −Sz

a = −1/6.
For this reason, odd resonances contribute with a three times smaller weight than
even resonances when integrating over the full distribution of the effective magnetic
field. For the same reason, the ERC dominates the SML regime without NIFF be-
cause the Overhauser field is normally distributed and this distribution by itself
does not favor the ERC over the ORC or vice versa.

In Fig. 6.3, obvious deviations from the even and odd resonances are found in the
vicinity of Bext ≈ 7.8T, which is the resonant field resulting from the NRC (6.13) for
k = 2. This finding explains the deviations of the z component from the envelope
in Fig. 6.5. When increasing the magnetic field just slightly to Bext = 8T, sharp
peaks are found at the ERC, but small side peaks that do not correspond to the
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6.2 Extended model I: Pulse as quantum mechanical measurement

expected resonances remain. At Bext = 8.5T and 9T, the behavior is back to
normal, i.e., with sharp peaks at the ERC and slightly broader peaks at the ORC
(not shown).

6.1.4 Discussion of the initial model

The initial model reveals the coherent spin phenomena SML and NIFF and also a
nonmonotonic dependence of the revival amplitude. However, the magnetic field
dependence contradicts our previous results of Sec. 5.4 and the results of Kleinjo-
hann et al. [117] where minima instead of maxima are found at the NRC, which
is also in much better agreement with experimental observations [117, 122]. While
there are experimental results that indicate that even and odd resonances can ap-
pear simultaneously in the frequency spectrum of the electron spin, this does not
seem to be the case for every magnetic field [122]. Moreover, the peaks found in the
experiments appear to be much broader than the peaks visible in Fig. 6.3. In this
context, one has to keep in mind that the frequency spectrum of the electron spin is
not completely equal to the probability distribution of the effective magnetic field.
The main reason is that the ERC and the ORC contribute to the spin polarization
with different weights, the precession modes are weighted differently when studying
the frequency spectrum of the electron spin. In the following sections, the issues of
the initial model are addressed by extending it in three steps.

6.2 Extended model I: Pulse as quantum mechanical
measurement

Since we are modeling the system in a semiclassical picture, it is not clear how to
treat the quantum mechanical action of a pulse on the electron spin. In fact, the
pulse model (6.6) was derived quantum mechanically [113, 122], but the relations
are only valid for the expectation values of the spins as discussed in Sec. 2.2.2.
One could argue that the relations given by Eq. (6.6) must be applied to the spin
polarization after calculating the ensemble average, but this approach destroys
any correlation otherwise present in a single configuration. Since S(t = T−

R ) ≈ 0
corresponds to the initial condition S(t = 0−) = 0 of an unpolarized electron spin,
the action of every pulse (6.6) would be identical so that no revival amplitude can
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build up without NIFF, i.e., there would be no initial buildup to the SML steady-
state value. However, such correlations are preserved in the existing quantum
mechanical approaches [117, 141] and hence, they should not be neglected.

In the following, we extend the pulse (6.6) by interpreting its application as a
quantum mechanical measurement, i.e., we account for the uncertainty principle.
To this end, we apply the TWA [230–232] and obtain a nondeterministic pulse
description that reduces the discrepancy to the fully quantum mechanical descrip-
tion of the pulse. This is the same principle used for pulse model II in Chap. 5,
which is the pulse model for which a minimum in the magnetic field dependence
of the revival amplitude is found at around 3.9T, similar to experimental observa-
tions [117, 122].

6.2.1 Nondeterministic pulse description

The essence of simulating quantum mechanics via classical equations of motion by
means of the TWA is the choice of appropriate initial conditions. Typically, one tries
to fulfill the quantum mechanical moments of the corresponding operators, in our
case of the spin operators. We are already applying this principle to the Overhauser
field by sampling it from the proper normal distribution, and in Chaps. 4 and 5 this
principle is also applied to the central spin. In the case of the Overhauser field, the
large number of nuclear spins forming the spin bath provides a valid justification of
the semiclassical treatment based on the central limit theorem [200]. In contrast,
this argument does not hold for the single electron spin that is excited by a pump
pulse, so any semiclassical treatment is always an approximation. Nevertheless, we
will see that the semiclassical treatment leads to promising results.

The main requirement is that the nondeterministic pulse retains the properties
of pulse (6.6) in the SML regime. We consider each pulse to act as a quantum
mechanical measurement, i.e., we have to account for the uncertainty principle as
before in Chap. 5 for pulse model II. To be precise, the pulse needs to fulfill the
quantum mechanical property for spin-1/2 operators ⟨(Ŝα)2⟩ = 1/4. Hence, the
deterministic pulse relation (6.6) is extended to a nondeterministic description in
which the electron spin Sa after the pulse is sampled from normal distributions
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characterized by

E[Sz
a ] =

1
4
+ 1

2
Sz
b , (6.14a)

E[Sx
a ] = E[Sy

a ] = 0 , (6.14b)

Var[Sα
a ] =


1
4 − E[Sα

a ]2 , if E[Sα
a ]2 ≤ 1

4 ,

0 , else.
(6.14c)

The distribution is determined by the spin vector Sb before the pulse, i.e., the
distribution is different for every pulse application. Randomness is present even
in a NESS so that such a nonequilibrium state can only be steady on average.
Note that we have to set the variance to zero in some cases because we treat the
spins as classical vectors, i.e., a spin component can be larger than 1/2 because of
the sampling from a normal distribution. Practically, the issue only arises for the
z component, but for about 25% of the pulses. This changes its effective variance
to a certain extent, but it does not change the expectation value responsible for
the correct revival amplitude in the SML steady state without NIFF. The treat-
ment is in line with semiclassical approaches based on the TWA [230–232]. In
such approaches, resorting to normal distributions often yields convincing results
even though it is known that the Wigner functions reflecting quantum mechanical
measurements involve negative probabilities [231].

The validity of the nondeterministic pulse description is established in Appendix C.
There, various nondeterministic pulse descriptions are benchmarked in the SML
regime without NIFF against the deterministic pulse (6.6) and its quantum mechan-
ical counterpart used by Kleinjohann et al. [117]. The alternative nondeterministic
pulse descriptions introduced in Appendix C do not reproduce the SML steady-
state value correctly and hence, we do not consider them further. The approach
promoted above turns out to be the only reliable one.

6.2.2 Results for the extended model I

As pointed out above and analyzed in detail in Appendix C, the nondeterministic
pulse description (6.14) does not change the behavior in the SML regime without
NIFF besides adding statistical fluctuations to the spin polarization. In the fol-
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lowing, we study the interplay of SML and NIFF when long trains of pulses are
applied.

Figure 6.6 shows the influence of NIFF on the revival amplitude for various magnetic
fields Bext given in the legend. Since the initial SML regime is reached after very few
pulses, the curves appear to start with a revival amplitude S⊥ ≈ SSML. All curves
reach a saturation value after approximately the same number of scaled pulses
np/B

2
ext, but the value depends strongly on the strength of the applied magnetic

field. Since there are significant statistical fluctuations in the data resulting from
the nondeterministic pulse description, we extract the saturation value S⊥

NESS by
fitting an appropriate function. As in Sec. 5.4, a suitable fit function is

S⊥
fit(np) = ANIFF

2
π
arctan

(
np

η

)
+BSML , (6.15)

which displays a 1/np convergence towards saturation. The constant offset BSML

accounts for the sizable revival amplitude reached after very few pulses. This initial
amplitude changes on the timescale η because of the contribution ANIFF stemming
from NIFF. The fits using Eq. (6.15) are included in Fig. 6.6 as black dashed curves.

0 5000 10000 15000 20000 25000

np/B
2
ext (T−2)

0.00

0.05

0.10

0.15

S
⊥ (
n

p
)

1 T

4 T

6 T

7.5 T

7.8 T

8 T

Figure 6.6: Extended model I: Revival amplitude S⊥ as a function of the scaled number
of pulses np/B

2
ext for various magnetic fields Bext given in the legend and γ = 0.004. The

black dashed lines represent the corresponding fits using Eq. (6.15).
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6.2 Extended model I: Pulse as quantum mechanical measurement

The saturation value reached for np → ∞ is given by

S⊥
NESS = sgn(η)ANIFF +BSML . (6.16)

Since the fit error turns out to be fairly small, we use the root-mean-square deviation
of the last 10% data points as error estimate. It is a measure for both the fit
quality and the statistical fluctuations. In the rare cases where the fit does not
work appropriately, e.g., because almost no NIFF emerges for a given parameter
set, we simply interpret the revival amplitude averaged over the last 10% pulses as
the saturation value.

The quasistationary distributions of the effective magnetic field shown in Fig. 6.7
reveal much broader peaks than the distributions in Fig. 6.3 for the initial model.
They are located at the values of Beff corresponding either to the ERC or to the
ORC, i.e., only a single kind of resonance appears, not both simultaneously as for
the initial model.

In the extended model, the parameter γ = 2/Neff defining the effective bath size
plays an important role. While the number of pulses required to reach a NESS still
increases linearly with γ, the saturation value S⊥

NESS changes. A similar behavior
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Figure 6.7: Extended model I: Probability distribution p(Beff) of the effective magnetic
field showing nuclear focusing in the NESS regime for various magnetic fields Bext (orange
vertical lines) at γ = 0.004. The gray solid and dashed vertical lines represent the values
of Beff fulfilling the ERC (6.10a) and ORC (6.10b), respectively.
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is found in Sec. 5.3 using pulse model II; see Figs. 5.14(a) and 5.18. It turns out
that the typical hyperfine coupling, which is proportional to √

γ/T ∗
n , determines the

saturation value. In Fig. 6.8, we study S⊥
NESS as a function of the typical hyperfine

coupling for various combinations of Bext and T ∗
n while varying γ. Especially for

Bext = 1T and 4T, there appears to be a linear dependence. It can be exploited for
an extrapolation √

γ → 0, i.e., to an infinite bath size. This is the limit of interest
for QDs with 104 − 106 effectively coupled nuclear spins, i.e., √γ ≈ 10−3 − 10−2.
Furthermore, the choice of the dephasing time T ∗

n , which is an input parameter
taken from experiments, appears to be of minor importance in the limit √γ → 0 as
long as it is significantly shorter than the pulse repetition time TR. Otherwise, one
would approach the regime of resonant spin amplification instead of SML, where
the physics is qualitatively different [135]. We do not study this regime here. The
data and their extrapolation is not as robust for Bext = 2T where almost no NIFF
emerges, but this uncertainty is represented by the fit error being larger than the
error of a single saturation value.

For too large values of √γ/T ∗
n and independent of the magnetic field, there is almost

no NIFF and the linear scaling is not applicable. Physically, the effective hyperfine
couplings εk ∝

√
γ/T ∗

n become too large in comparison to the nuclear Zeeman term
γnBext in Eq. (6.4). For this reason, the linear scaling is applicable for larger ratios
√
γ/T ∗

n when a larger magnetic field is applied. For instance, the linear scaling in
Fig. 6.8 for Bext = 4T is valid up to larger ratios √

γ/T ∗
n than for Bext = 1T.

The fact that the influence of T ∗
n on the revival amplitude S⊥

NESS in the limit γ → 0
is only minor is very beneficial because the number of pulses required to reach the
saturated revival amplitude scales approximately with (T ∗

n )3. Thus, we can stick
to our initial choice T ∗

n = 1 ns without worrying about a strong influence of this
parameter, which can also be larger for some QD samples, e.g., T ∗

n ≈ 4 ns [23, 123].
Simulations for such a large value are out of reach because of the required com-
putational effort. They require a perturbative treatment, which is developed and
applied in Chap. 7 to study the influence of the isotope composition of the QDs on
the nonequilibrium spin physics.

We put the new insight to use in Fig. 6.9 by plotting the saturated revival ampli-
tude S⊥

NESS as a function of Bext for decreasing values of γ. The z component Sz
NESS

is not shown because it is almost equal to S⊥
NESS. We also extrapolate the saturation

values to an infinite bath size (γ → 0) using the procedure described above and
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compare the results to the SML regime without NIFF. For the extrapolation, we
enforce the physical lower bound S⊥

NESS ≥ 0. This is realized by setting S⊥
NESS = 0

if the extrapolation yields a negative value, but we have checked that the actual
extrapolation value and its error are in agreement with the bound. Turning to the
results, we find two minima at the values of Bext that fulfill the NRC (6.13), with
the second one being much narrower. The minima and maxima become more pro-
nounced for smaller values of γ, and the minima for γ → 0 correspond to S⊥

NESS ≈ 0,
i.e., there is no revival amplitude. At around Bext = 2T and 6T, the revival ampli-
tude is very close to SSML for any choice of γ, which implies that there is almost no
contribution NIFF. Between these two fields, we find a destructive interplay of SML
and NIFF that is responsible for a decrease of the revival amplitude with respect to
SSML. This behavior is also evident in a narrow interval around Bext = 7.8T. For
the other values of Bext, NIFF leads to an increase of the revival amplitude, i.e., it
acts constructively by enhancing the revival amplitude SSML already present after
a few pulses in the SML regime without NIFF.

6.2.3 Discussion of the extended model I

Mimicking the quantum mechanical behavior of the system by interpreting the
action of each pump pulse as a quantum mechanical measurement requires a non-
deterministic pulse description in the framework of our semiclassical approach based
on the TWA. As a result of this extension to the initial model, we find the expected
minima in the magnetic field dependence of S⊥

NESS, similar to the experimental and
theoretical results of Kleinjohann et al. [117], similar to our result for pulse model II
in Sec. 5.4, and in contrast to the initial model studied in the previous section.

Overall, the results for the EM I are qualitatively very similar to the quantum
mechanical results of Kleinjohann et al. [117]. This is a good message because they
consider essentially the effects in their model, which suggests that our semiclassical
approach mimics the quantum mechanical system well. Differences could stem
from the considered bath sizes: the quantum mechanical approach is limited to
only N = 6 nuclear spins, while our semiclassical approach can deal with much
larger bath sizes.

Summarizing the results, the probability distributions of the effective magnetic field
show much broader nuclear focusing peaks than those found for the initial model.
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This is in much better agreement with the experimental observation [122, 148].
Moreover, only a single kind of resonance appears, corresponding to either an inte-
ger (ERC) or a half-integer (ORC) number of Larmor periods between consecutive
pulses. Depending on the strength of the magnetic field, either the ERC or the
ORC is fulfilled, which, in turn, leads to an increase (constructive interplay) or
a decrease (destructive interplay) of the revival amplitude relative to the SML
steady-state value, respectively. The minima and maxima in the magnetic field
dependence of the revival amplitude become more pronounced for larger bath sizes.
Furthermore, it is possible to extrapolate the revival amplitude to an infinite bath
size. In this limit, the dephasing time T ∗

n , which serves as an input parameter taken
from experiment, only has a minor influence.

Note that in principle, the emergence of the ORC could also lead to an increase of
the revival amplitude relative to the SML regime, given that the nuclear focusing
is strong enough. Sz

NESS would be negative in this case, i.e., there would be a phase
shift of ∆φ ≈ π at the pulse boundary. This behavior, however, is not observed
in the simulations. In this context, it is important to mention that the resonance
favored by the effective magnetic field does not directly translate to a phase shift
of either ∆φ ≈ 0 or π as in Chap. 5. The reason is the aforementioned difference
between the distribution of the effective magnetic field and the frequency spectrum
of the electron spin towards which the precession modes contribute with different
weights.

6.3 Extended model II: Trion pseudospin dynamics

Up to this point, the trion is treated only on the level of an intermediate state that
decays on the timescale τ0 = 400 ps as described by Eq. (6.2b). We neglected the
dynamics of its pseudospin J , which can be described similarly to the dynamics of
the electron spin S. In the theoretical studies of Refs. [117, 122], this dynamics is
not considered either. But its description, especially the coupling to the external
magnetic field, is crucial for the correct description of the time evolution between
consecutive pulses. In the context of spin inertia and polarization recovery mea-
surements, where rather small magnetic fields up to a few 100mT are applied in
Faraday geometry, the detailed description of the trion pseudospin dynamics can
be absolutely mandatory [93, 125]. In the following, we demonstrate that the trion
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pseudospin dynamics also changes the behavior of NIFF. In addition, we observe
the appearance of dynamic nuclear polarization [42, 115, 225], i.e., the formation of
a nonzero average polarization of the nuclear spin bath, in the extended model.

6.3.1 Equations of motion of the trion pseudospin

A singlet T− trion excited by the σ− pulses consists of two electrons in a spin
singlet state and a heavy hole with unpaired spin so that the effective type of
the charge carrier spin in the excited state (hole) is opposite to the type in the
ground state (electron). We recall that the relevant trion states, resulting from the
unpaired heavy-hole spin, can be described by an effective pseudospin 1/2 denoted
as J ; see Eq. (2.8) for its definition. Its dynamics is induced by its coupling to the
effective magnetic field, but we need to consider that the hyperfine interaction is
much weaker and anisotropic for hole spins because it is caused by the dipole-dipole
interaction [156–158]. As discussed in Sec. 3.1.4, this interaction can be described
by the anisotropic CSM [156, 157, 184]

ĤCSM,anisotropic =
N∑
k=1

χAk

[
Ĵz Îzk +

1
λ
(ĴxÎxk + Ĵy Îyk )

]
. (6.17)

Here, we assume the same parameterization for the couplings Ak as before and use
the factor χ to describe how much weaker the hyperfine interaction is for hole spins
than for electron spins. Typically, it is about five to ten times weaker [19, 93, 97]
and thus, we use χ = 0.2 in the simulations. A typical value for the degree of
anisotropy is λ ≈ 5− 10 [93, 97]; we use λ = 5.

The Zeeman effect acting on the trion pseudospin also needs to be accounted for.
Since we consider a magnetic field that is applied along the x axis, the corresponding
Hamiltonian simply has the form

ĤhZ = hhĴ
x , (6.18)

with hh = γhBext. The subscript ‘h’ refers to the heavy hole in the trion. The
g factor entering in the gyromagnetic ratio γh = ghµBℏ−1 is also anisotropic. Typical
values range from gh = 0.05 to 0.15, depending on the in-plane orientation of the
QD sample [96, 132]. We focus on gh = 0.15 here and show in Appendix D that
the results are very similar for gh = 0.05.
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In the semiclassical approach, the classical equation of motion for the trion pseu-
dospin J follows from application of Eq. (3.31). It has the form

d
dt
J = χ

(
Bz

ovez +
1
λ
B⊥

ov

)
× J + hhex × J − 1

τ0
J , (6.19)

with B⊥
ov = Bx

ovex + By
ovey. The first term describes the precession about the

Overhauser field, but it is weaker (factor χ) and also anisotropic (factor 1/λ). The
second term describes the precession about the external magnetic field. The last
term describing the trion recombination is included by hand in accordance with
similar approaches [23, 125, 135]. Note that because of the selection rules governing
the optical transitions between the bands Γ6 and Γ8 in GaAs-based semiconductors,
only the z projection Jz contributes to the spin polarization in the ground state
during the recombination [114, 124]. Thus, Eq. (6.2a) describing the dynamics of
the electron spin S requires no change.

The equations of motion describing the dynamics of the Overhauser field Bov also
need to be extended because the nuclei interact with the trion pseudospin during
its lifetime τ0. Again, the weaker and anisotropic hyperfine interaction is accounted
for by the parameters λ and χ. Since we assume that the couplings for the trion
pseudospin can be parameterized using the same exponential parameterization (6.3)
as for the electron spin, the effective coupling constants εk and the weights Wk

entering in the Spectral Density approach can be reused. Then, the extended
equations of motion of the Ntr auxiliary fields Qk result to be

d
dt
Qk = εkS ×Qk + χεk

(
Jzez +

1
λ
J⊥

)
×Qk + hnex ×Qk , (6.20)

with J⊥ = Jxex + Jyey. The second term is the new one and describes the
anisotropic coupling of the fields Qk to the trion pseudospin J .

6.3.2 Results for the extended model II

The numerical integration of the extended equations of motion (6.19) and (6.20)
together with Eq. (6.2a) leads only to a negligible increase of computational com-
plexity in comparison to the previous setup. In the following, we discuss the main
changes appearing in comparison to the results of the EM I analyzed in Sec. 6.2.
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Spin dynamics

In the pump-probe experiments under consideration, the Faraday rotation or el-
lipticity is measured by weak linearly polarized pulses. The probed signal is pro-
portional to Sz − Jz [113, 114], i.e., the spin polarization of the system is mea-
sured. Figure 6.10 shows the corresponding time evolution resulting from our model
between two consecutive pulses in the NESS regime for the two magnetic fields
Bext = 1T and 4T. The initial dephasing reveals additional beats that stem from
the trion pseudospin precessing about the external magnetic field with a different
Larmor frequency than the electron spin. The beats decay on the timescale τ0 ≪ TR

so that they do not appear in the revival signal before the next pulse. They are
also evident in experimental results [23–25, 117], see also Figs. 2.4(a) and 2.5(a),
but they typically vanish much quicker than in our model calculations. This is-
sue is related to the inhomogeneous nature of self-assembled QD ensembles and is
addressed in Sec. 6.4.

Nuclei-induced frequency focusing

The most prominent difference to the EM I is visible in the magnetic field depen-
dence of the revival amplitude, which is shown in Fig. 6.11 for various values of the
inverse bath size γ. While there are still two minima at values of Bext fulfilling the
NRC (6.13), the first broad minimum hints at the emergence of even resonances
instead of the previous odd ones because the revival amplitude is larger than SSML

and not smaller as for the EM I (Fig. 6.9). This finding is supported by the corre-
sponding quasistationary distributions p(Beff) of the effective magnetic field, e.g.,
for Bext = 4T shown in Fig. 6.12 where nuclear focusing peaks appear at values
of Beff fulfilling the ERC. Hence, the values of the revival amplitude are larger than
the mere SML steady-state value SSML (highlighted in Fig. 6.11 as horizontal dashed
line) thanks to a constructive interplay of SML and NIFF. But the overall NIFF
degree in this regime is small, which differs from our findings for the EM I where the
revival amplitude approaches zero in the vicinity of Bext = 3.9T (Fig. 6.9) because
the nuclear focusing (favoring the ORC) is more efficient for smaller values of γ.
For the EM II, the narrow minimum visible in Fig. 6.11 at Bext = 7.8T still results
from the ORC being favored in the probability distribution p(Beff) as evident from
Fig. 6.12. In contrast to the EM I, this minimum is slightly narrower.
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Figure 6.10: Extended model II: Spin dynamics between two consecutive pulses after
a long train of pulses for the two magnetic fields Bext = 1T and 4T at γ = 0.004. The
beats visible in the initial dephasing signal result from the different Larmor frequencies
of the electron spin S (ge = 0.555) and trion pseudospin J (gh = 0.15).
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Figure 6.11: Extended model II: Limiting values S⊥
NESS of the revival amplitude as a

function of the magnetic field Bext for various inverse bath sizes γ and for the infinite
bath limit γ → 0. The vertical dashed lines represent the NRC (6.13) for k = 1 and 2,
the horizontal dashed line indicates the SML steady-state value SSML.
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Figure 6.12: Extended model II: Probability distribution p(Beff) of the effective mag-
netic field in the NESS regime for various magnetic fields Bext (orange vertical lines)
at γ = 0.004. The gray solid and dashed vertical lines represent the values of Beff fulfill-
ing the ERC (6.10a) and ORC (6.10b), respectively. The green vertical lines represent
the expectation value of the distributions.

The linear extrapolation √
γ → 0 to the infinite bath limit of the saturation value

S⊥
NESS, which is established in Fig. 6.8 for the EM I, is still applicable when ac-

counting for the trion pseudospin dynamics. As before, the exact choice of the
dephasing time T ∗

n has only a minor influence on the results. We apply the ex-
trapolation procedure for the magnetic field dependence S⊥

NESS(Bext) of the revival
amplitude in Fig. 6.11. Overall, the structure becomes more pronounced in the
limit γ → 0, but the revival amplitudes in the vicinity of Bext = 3.9T are almost
independent of γ. Moreover, the maxima have a similar height as in Fig. 6.9 for
the EM I. This implies that the degree of NIFF under optimal conditions is very
similar, and the revival amplitude is about three times larger than without NIFF.
Experimentally, a ratio of 3.6 for the revival amplitude with versus without NIFF
is found at Bext = 2T [148]. For this particular magnetic field, we find a ratio of
only 2. For the EM I, this ratio is barely larger than 1.

Dynamic nuclear polarization

In the probability distributions of the effective magnetic field shown in Fig. 6.12,
a small shift of the distributions to the right can be discerned for Bext = 1T
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(upper left panel) and Bext = 8T (lower right panel). The shift is made visible by
highlighting the expectation value Beff of the distribution as a green vertical line.
The applied magnetic field Bext is highlighted in orange. Remember that at the
beginning of each simulation, Beff ≈ Bext holds, with small deviations stemming
only from the statistical nature of the semiclassical approach.

The shift results from dynamic nuclear polarization (DNP) [19, 42, 115, 225] in
the Overhauser field, i.e., the nuclear spins align along the axis of the external
magnetic field Bextex to a certain extent. First, there is the possibility of an internal
alignment of the nuclear spins in each QD. Second, the Overhauser fields of all QDs
in the ensemble could also align. This ensemble effect can be the result of the first
mechanism, but the internal alignment of nuclear spins is not possible when a
simple box model is used for the hyperfine couplings, i.e., when all couplings are
considered to be equal.

In order to analyze this phenomenon in more detail, we define the DNP as

BDNP(np) :=
Bx

ov(npTR)− Bx
ov(0)

γe
(6.21)

and study it as a function of the magnetic field for several values of γ in Fig. 6.13.
The number of pulses np is chosen such that S⊥

NESS is approximately in saturation.
The spheres and solid lines represent BDNP, the triangles and dashed lines its ab-
solute value |BDNP|. The DNP BDNP can be either positive or negative, i.e., it can
point in the same direction as the external magnetic field (BDNP > 0) or in the op-
posite direction (BDNP < 0). Interestingly, the magnetic field dependence of |BDNP|
is very similar to that of S⊥

NESS (Fig. 6.11) and we find no DNP at the magnetic
fields fulfilling the NRC (6.13). This suggests that the underlying mechanisms of
DNP and NIFF have a similar origin in the equations of motion. But considering
that nuclear focusing displays also a kind of dynamic polarization of the nuclei, just
with the polarization approaching stable points given by the resonance conditions,
this finding is not a big surprise.

For most magnetic fields, the dependence of the DNP on the inverse bath size γ is
only minor. But we stress that the values BDNP plotted in Fig. 6.13 do not represent
the stationary values of the DNP even though the values of S⊥

NESS are approximately
in saturation (number of pulses scaled with B2

ext). The reason is that the saturation
limit for the DNP is approached much slower than for the revival amplitude. It
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Figure 6.13: Extended model II: DNP BDNP (circles, solid lines) and its absolute
value (triangles, dashed lines) as a function of the magnetic field Bext for various in-
verse bath sizes γ after the saturation of the revival amplitude is reached. The vertical
dashed lines represent the NRCs (6.13) for k = 1 and 2.

appears that for the magnetic fields for which the DNP is most prominent, smaller
values of γ correspond to a stronger DNP. Unfortunately, it is not possible to reach
the stationary DNP regime for large magnetic fields because of its extremely slow
convergence, but the DNP behavior for small magnetic fields is analyzed in the
following.

In Fig. 6.14, we investigate the saturation behavior of DNP and the mechanisms
leading to its emergence. Figure 6.14(a) demonstrates the buildup of BDNP caused
by periodic driving with pulses for Bext = 0.5T at γ = 0.004, eventually reaching a
steady state of about 100mT after more than 106 pulses. This DNP is fairly large
in comparison to the initial standard deviation of the Overhauser field components
of about 29mT. Note that the revival amplitude S⊥

NESS is already saturated after
about 5000 pulses for this set of parameters, i.e., a two orders of magnitude longer
pulse train is required to reach the saturation regime for DNP.

The DNP buildup and saturation as a function of the number of pulses can be
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described by the function

fDNP(np) = ADNP
2
π
arctan

(
np

η

)
+BDNP , (6.22)

where ADNP, BDNP, and η are the fit parameters. As before, the function displays
a 1/np convergence towards saturation and it is the same function that describes
the buildup of the revival amplitude.

The average length of the Overhauser field vector

Bov :=
|Bov|
γe

(6.23)

increases as a consequence of an alignment of the individual nuclear spins. The
dependence of Bov on the number of pulses can also be described by the func-
tion (6.22). However, this lengthening alone does not explain the appearance of
DNP completely as we see next.

Figure 6.14(c) shows the average angles

θα := arccos
(
Bα

ov
|Bov|

)
, (6.24)

α ∈ {x, y, z}, between the Overhauser field components Bα
ov and the unit vectors eα

as a function of the number of pulses. The average of the initial angle is given by π/2
for all components because the components Bα

ov are sampled from the same normal
distribution. Driving the system with periodic pulses does not influence the average
angles θy and θz, but the average angle θx is reduced to about π/12, implying
that the Overhauser field aligns along the direction of the external magnetic field
pointing along the x axis, which is confirmed by BDNP > 0. The dependence of θx
on the number of pulses can again be described by the function (6.22). Note that
θx does not shrink to zero because of the finite components By

ov and Bz
ov. These

components still follow a normal distribution but with a reduced variance.

The corresponding probability distributions of the angles θα after different numbers
of pulses are plotted in Fig. 6.14(d). Initially, all components follow the same
distribution with a maximum at π/2. As a consequence of the periodic driving
with pulses, the distributions of all components become narrower, i.e., more focused
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Figure 6.14: Analysis of the DNP behavior in the extended model II for Bext = 0.5T
at γ = 0.004 caused by periodic driving with np pulses. All fits (black dashed lines)
are of the type (6.22). (a) Buildup of the DNP BDNP (blue line) defined in Eq. (6.21).
The purple line shows the simultaneous increase of the average Overhauser field length
Bov. (b) Decrease of the standard deviations σα

ov, α ∈ {x, y, z}, of the Overhauser field
components. (c) Average angles θα between the Overhauser field and the unit vectors eα.
(d) Probability distributions of the angles θα after different numbers of pulses.
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around a certain angle. The angles θy and θz remain centered around π/2, but the
angle θx becomes significantly smaller; see also Fig. 6.14(c) for the average angles.

An important consequence of DNP is a narrowing of the Overhauser field distribu-
tion, which is analyzed in Fig. 6.14(b). The standard deviations of the Overhauser
field components

σα
ov :=

√
Var[Bα

ov]
γe

, (6.25)

α ∈ {x, y, z}, are reduced from their initial value of approximately 29mT to about
21 − 22mT. This process is faster for the x component and the precise satura-
tion value differs slightly from that of the y and z components. A fit with the
function (6.22) works well again, allowing for an extrapolation np → ∞. The nar-
rowing of the Overhauser field distribution implies an increase of the coherence
because the dephasing time T ∗

n is inversely proportional to the standard deviations
of the Overhauser field components according to Eq. (6.1).

What is the influence of the system parameters, especially of the inverse effective
bath size γ, on the DNP behavior? First, we find that the rate of DNP scales
linearly with γ and the data available for Bext = 0.5T and 1T suggests a B−2

ext

dependence. These are the same scaling laws as for NIFF.

For a more detailed analysis of the influence of the bath size, we fit the func-
tion (6.22) to the data at Bext = 0.5T (circles) and 1T (triangles) for various
values of γ and plot the resulting saturation values in Fig. 6.15. It turns out that
the dependence on γ is linear for all observables and hence, linear fits enable extrap-
olations to the limit γ → 0, i.e., the limit of interest for QDs with Neff = 104 − 106

effectively coupled nuclear spins. For BDNP, this extrapolation yields a value of
117mT for Bext = 0.5T and a value of 102mT for Bext = 1T. For Bext = 0.5T,
the standard deviations σy

ov and σz
ov are reduced by about 40% from their initial

value of about 29mT to only 17.4mT. The standard deviation σx
ov decreases slightly

less to 21.2mT. For Bext = 1T, this anisotropy is less pronounced with limiting
values of σx

ov = 21.7mT and σy
ov = σz

ov = 20mT. Comparing the results for the
limit γ → 0 to the data for finite values of γ, we conclude that all main effects
are already present for, e.g., γ = 0.01. The size of the spin bath influences only
the precise values of the observables, but their order of magnitude turns out to be
robust.
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Figure 6.15: Extended model II: Limiting values of the DNP BDNP, the average
length Bov of the Overhauser field, the standard deviations σα

ov of the Overhauser field
components, and the average angle θx as a function of the inverse bath size γ, calculated
by fitting the function (6.22) to the data for Bext = 0.5T (circles) and 1T (triangles).
The fit errors shown for each data point are usually too small to be discernible. The
dashed (Bext = 0.5T) and dash-dotted (Bext = 1T) lines represent linear fits, which
enable an extrapolation to the infinite bath limit γ → 0.

Let us briefly discuss the role of the dephasing time T ∗
n on DNP. According to

Eq. (6.1), the initial fluctuation strength of the Overhauser field is proportional
to (T ∗

n )−1 and hence, we also expect this dependence for the DNP in the saturation
limit. For QDs with γ = 0.01 at Bext = 0.5T, we find a DNP of BDNP = 127mT for
T ∗
n = 0.5 ns, BDNP = 96mT for T ∗

n = 1 ns, and BDNP = 45mT for T ∗
n = 2 ns. For

Bext = 1T, the dependence is similar, i.e., a larger dephasing time T ∗
n corresponds

to a smaller DNP. We cannot confirm the (T ∗
n )−1 dependence for this data with

certainty, but it fits sufficiently well to provide an educated guess. For γ → 0
and T ∗

n ≈ 4 ns, which corresponds to the QD sample studied in Refs. [23, 123],
we estimate a DNP of about 30mT based on the scaling with (T ∗

n )−1. A direct
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simulation of the DNP for this particular sample is out of reach because the required
computational effort scales roughly with (T ∗

n )3. In any case, the DNP is expected
to be noticeably larger than the typical Overhauser field fluctuations.

6.3.3 Discussion of the extended model II

The inclusion of the trion pseudospin dynamics is a crucial step towards the correct
description of the underlying pump-probe experiments. It turns out to have an
important qualitative influence on the interplay of SML and NIFF. For the EM I
studied in Sec. 6.2, a broad range of magnetic fields is found for which nuclear
focusing appears in the probability distribution p(Beff) of the effective magnetic
field at values of Beff fulfilling the ORC. In contrast, when including the trion
pseudospin dynamics, the majority of magnetic fields Bext reveal nuclear focusing
at the ERC, with the only exception being the very narrow but apparently robust
regime around Bext = 7.8T for which the system chooses the ORC. This means that
for the majority of magnetic fields, the interplay of SML and NIFF is constructive.
In the vicinity of the broad minimum at Bext = 3.9T, we find very weak nuclear
focusing in the Overhauser field (Fig. 6.12) and it is almost independent of the
effective bath size. In contrast, the nuclear focusing in this regime for the EM I
is fairly pronounced (Fig. 6.7), but the system chooses the ORC instead of the
ERC so that the revival amplitude is strongly suppressed because of a destructive
interplay of SML and NIFF (Fig. 6.9).

In the quantum mechanical model with N = 6 nuclear spins studied by Kleinjohann
et al. [117], odd resonances emerge in the vicinity of the NRC (6.13) for Bext = 3.9T
(k = 1) with an accompanied minimum of the revival amplitude. A minimum is also
found around Bext = 7.8T (k = 2), but it is much broader than the one appearing
in our semiclassical simulations. At this particular value, neither the ERC nor the
ORC is fulfilled in their model, similar to the behavior of the initial model (Fig. 6.3).
But the trion pseudospin dynamics is not accounted for in Ref. [117]. We expect
that its inclusion also has a significant influence on the results of the fully quantum
mechanical approach.

Why do even instead of odd resonances appear around Bext = 3.9T when the trion
pseudospin dynamics is included? One can think of the Larmor precession of the
trion pseudospin as a perturbation to the transfer of spin polarization during the
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trion recombination, especially when the external magnetic field is large. Effectively,
this leads to a decoupling of the trion pseudospin J from the electron spin S so that
the equations of motion become very similar to those studied by Glazov et al. [131],
who neglect the radiative trion recombination and observe only the ERC. Note
that in the derivation of the ORC (6.10b) [122], the trion decays only exponentially
as described by Eq. (6.2b) of the initial model, i.e., no further dynamics of its
pseudospin is considered. For this reason, the ORC (6.10b) in its original form
does not hold anymore when the dynamics of the trion is more complex such as
in Eq. (6.19).

At present, the origin of the persistent sharp minimum in the magnetic field depen-
dence of the revival amplitude at Bext = 7.8T remains unclear and it is very difficult
to come up with a mechanism because of the nondeterministic pulse description.
But it is plausible that something different happens whenever the NRC (6.13) with
k being an even integer is fulfilled. In this case, the Larmor period of the nuclear
spins is equal to the pulse repetition time so that without the Knight field, the
nuclei would have the same orientation at the incidence of each pulse. Thus, the
process of nuclear focusing induced by the hyperfine interaction is not disturbed as
much by the nuclear Larmor precession as when the NRC with even k is not fulfilled.
This reminds us of Chap. 5, where we have analyzed in detail that the nuclear Zee-
man effect acts as a perturbation to the process of nuclear focusing, resulting in a
very different qualitative behavior of the nonequilibrium spin physics.

The experimental situation on the aforementioned issues is unclear, but techniques
that allow for a systematic study are available. By applying a radio frequency field,
Evers et al. [148] are able to scramble the nuclear spins in the QDs such that they do
not contribute to the revival amplitude by means of NIFF. Applying this approach
to a broad range of magnetic fields allows for a systematic comparison between
SML without NIFF and SML with NIFF. Such an experimental study is likely to
clarify whether or not NIFF always leads to an increase of the revival amplitude.
Moreover, a detailed experimental search for sharp features in the vicinity of the
NRC (6.13), especially for k = 2, would be very interesting. Note that multiple
NRCs are possible when considering all the different isotopes in the QDs instead of
an average one. Indeed, accounting for the various isotopes results in a much more
complex structure in the magnetic field dependence of the revival amplitude as we
will see in Chap. 7.
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The finding of a DNP of up to 120mT in the simulation is interesting since it implies
a certain increase of the dephasing time because of the associated narrowing of the
Overhauser field distribution. But for a substantial increase, a much larger DNP is
required [18, 19, 42]. Yet, the DNP found in our simulations is significantly larger
than the magnitude of the Overhauser field fluctuations. We point out that hints
for DNP are also visible in Fig. 5.19 of Sec. 5.4, where the NESS emerging from the
application of pulse model II combined with the nuclear Zeeman effect is studied.

We stress that the nondeterministic pulse description is not responsible for DNP.
It also appears when using the deterministic pulse (6.6) in combination with the
inclusion of the trion pseudospin dynamics. For this combination, DNP as a func-
tion of the magnetic field shows a fairly similar behavior as depicted in Fig. 6.13.
But at the same time, NIFF fulfilling the ERC with S⊥

NESS → 0.5 occurs. Only for
Bext = 7.8T, the ORC with S⊥

NESS → −1/6 appears instead of the ERC. But since
the broad minimum around Bext = 3.9T is missing and NIFF is almost perfect
(unlike in experiments [117, 122, 148]), we do not study the combination in more
detail.

As argued above, the equations of motion studied by Glazov et al. [131] are similar
to those of the EM II because the trion pseudospin effectively decouples from the
ground state for large magnetic fields so that almost no spin polarization is trans-
ferred during the trion recombination. In their model, DNP is predicted analytically
by studying the stability of fixed points given by the ERC (6.10a). Without any
additional nuclear spin relaxation, the resonance condition turns out to describe
an unstable fixed point so that DNP is possible. In agreement with Ref. [131],
changing the helicity of the pulses does not change the direction of the DNP in
our semiclassical simulations. In experiments, the buildup of DNP could be less
efficient because of weak nuclear spin relaxation [131].

Experimental hints for DNP in the related experiments exist. In Ref. [122], the
distribution of Larmor frequencies, extracted from the real-time evolution of the
spin polarization measured via pump-probe spectroscopy, is shown. There, the
mean value of the distribution is shifted from the bare Larmor frequency stemming
only from the external magnetic field, possibly as a result of DNP.

Since about two orders of magnitude more pulses are required to reach the satura-
tion of the DNP than for the revival amplitude caused by NIFF, it is well possible
that the DNP steady state is not reached in the experiments under investigation.
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Experimentally, it takes about a minute to reach an almost saturated revival ampli-
tude for a magnetic field of 6T [25]. By applying the suggested scaling with B−2

ext,
which has yet to be confirmed experimentally, we estimate that a sizable DNP
should emerge within 5 minutes for a magnetic field of 1T and within 3 hours for
a magnetic field of 6T.

6.4 Extended model III: Inhomogeneous ensemble of
quantum dots

When using the EM II of the previous section, beats that decay during the trion life-
time τ0 = 400 ps are visible in the initial dephasing of the signal Sz(t)−Jz(t) shown
in Fig. 6.10. However, the beats vanish noticeably faster in experiments [23, 117]
as can be seen in Figs. 2.4(a) and 2.5(a). Moreover, the total dephasing time T ∗

2

shows a strong magnetic field dependence in experiments [23, 24, 123], see also
Fig. 2.4(c), which cannot be explained by the random Overhauser field.

Until now, we have considered a homogeneous ensemble of QDs with dephasing time
T ∗
n = 1 ns. This is, however, a simplification. In self-assembled QDs, the g factor

of the localized electron spin varies slightly from QD to QD because they are not
identical, leading to a faster dephasing for large magnetic fields as shown by the
experimental results in Fig. 2.4(c) and as discussed at the end of Sec. 3.3.4. Here,
we only consider resonant optical pumping, i.e., the g factor of the electron spin
in each QD can be modeled by the normal distribution given in Eq. (3.51) with
expectation value ge = 0.555 [25] and standard deviation ∆ge = 0.005 [24, 123].
The result is that the spin polarization now dephases within the total dephasing
time T ∗

2 defined by

(T ∗
2 )−2 = (T ∗

n )−2 + (T ∗
inh)−2 , (6.26)

where the dephasing time (T ∗
inh)−1 = ∆geµBℏ−1Bext/

√
2 results from the spread

of g factors in the inhomogeneous ensemble of QDs. The total dephasing time
decreases for large magnetic fields, while its upper bound is given by T ∗

n for Bext → 0
(see Fig. 3.4). Because of the computational reasons mentioned before and for a
better comparability with the previous results, we still use T ∗

n = 1 ns.
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Figure 6.16: Extended model III: (a) Spin dynamics for an inhomogeneous ensemble of
QDs in the NESS regime for various magnetic fields Bext. (b) Probability distribution
p(Beff) of the effective magnetic field in the NESS regime for various magnetic fields Bext
(orange vertical lines). The gray solid and dashed vertical lines represent the values of Beff
fulfilling the ERC (6.10a) and (6.10b), respectively. The green vertical lines represents
the expectation value of the distributions. Parameters: γ = 0.004, T ∗

n = 1 ns, ge = 0.555,
∆ge = 0.005, gh = 0.15, ∆gh = 0.05, TR = 13.2ns.
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We apply the same modeling to the g factor of the heavy hole in the trion with
standard deviation ∆gh = 0.05 [132] to account for the fast vanishing of the beats
in the time evolution of the spin polarization as observed in experiments. When
including the spread ∆gh, the spin polarization stemming from the ensemble of
photoexcited trions can dephase on a timescale shorter than the radiative trion
lifetime τ0. The average gyromagnetic ratio of the nuclei is not altered, i.e., it is
still chosen to be γn = γe/800.

The implementation of the spread of the g factors is straightforward in the simu-
lations. It is realized by sampling the g factors from the aforementioned normal
distributions around their expectation values given by ge = 0.555 and gh = 0.15.
Results for a different in-plane orientation of the QD sample with gh = 0.05 are
presented in Appendix D, but they reveal only slight quantitative differences.

Let us discuss the differences to the results of the previous section (EM II) when ac-
counting for an inhomogeneous ensemble of QDs (EM III). Figure 6.16(a) shows the
overall faster dephasing for larger magnetic fields Bext, as expected from Eq. (6.26).
The beats also vanish much quicker, which is in better agreement with the exper-
imental observations [23, 117]. An even better agreement could be achieved by
explicitly fitting the system parameters to experimental results, e.g., the g factor
of the heavy hole in the trion, but this is not our goal here.

Instead, we are interested if and how an inhomogeneous ensemble of QDs influences
the interplay of SML and NIFF. Obviously, modeling the g factor of the electron
spin by a normal distribution leads to a broadening of the distribution of the effec-
tive magnetic field p(Beff) for large magnetic fields as demonstrated in Fig. 6.16(b),
but the width of each individual peak caused by nuclear focusing does not change
noticeably.

Without the spread of the electronic g factor, the nuclear focusing peaks are also
visible in the probability distribution of the mere Overhauser field p(Bx

ov) as demon-
strated in Chap. 5 (see, e.g., Fig. 5.15). The peaks are slightly shifted from the
expected resonance and they are also a bit broader compared to peaks in the prob-
ability distribution p(Beff) of the effective magnetic field. In contrast, for the in-
homogeneous ensemble of QDs under study even a rather small magnetic field of
0.5T is enough to smear out the resonances such that no peaks are discernible in
the distribution p(Bx

ov), i.e., it keeps its initial Gaussian shape (not shown). The
minimal peak width is determined by the spread of the g factor ∆ge of the electron
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spin. Once the minimal width is larger than the distance 2π/TR between adjacent
resonances, i.e., for T−1

R ≲ ∆geµBℏ−1Bext, no peaks can be discerned. Hence, we
find no peaks in the Overhauser field distribution p(Bx

ov) here, only the distribution
of the effective magnetic field p(Beff) reveals a comblike structure.

In Fig. 6.17, the magnetic field dependence of the revival amplitude is shown for
the EMs I, II, and III in the limit of an infinite bath size (γ → 0). It turns out that
no significant difference can be found between the EM II (homogeneous) and the
EM III (inhomogeneous), i.e., the qualitative interplay of SML and NIFF does not
change when a finite spread for the g factors is included. From the comparison we
conclude that the minimum at Bext = 7.8T is even narrower for the EMs II and III
in comparison to the EM I. Possibly, this narrow feature remains undiscovered in
experiments if the discretization of the magnetic field is chosen too coarse; we find it
only when simulating closely around Bext = 7.8T. Hence, a systematic experimental
search for such narrow features in the vicinity of the magnetic fields fulfilling the
NRC (6.13) is called for.

We point out that DNP also occurs even when studying an inhomogeneous ensem-
ble of QDs (see Appendix D), with an almost identical DNP behavior as in Fig. 6.13.
The strong similarity was expected because the additional small variances of the
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Figure 6.17: Limiting values S⊥
NESS of the revival amplitude as a function of the

magnetic field Bext in the infinite bath limit (γ → 0) for the three extended models
(EMs) I, II, and III. The vertical dashed lines represent the NRC (6.13) for k = 1 and 2,
the horizontal dashed line indicates the SML steady-state value SSML.
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g factors barely change the dynamics from QD to QD, i.e., the qualitative physics
remains the same as in the EM II. The same argument holds for the strong simi-
larity of the magnetic field dependence of the revival amplitude in Fig. 6.17 for the
EMs II and III.

For an inhomogeneous ensemble of QDs, the influence of DNP on the total de-
phasing time T ∗

2 is smaller than for the homogeneous case. DNP only implies a
decrease of the dephasing time T ∗

n , which is determined by the variance of the ran-
dom Overhauser field, and this variance reduces as a consequence of DNP. The
inhomogeneous dephasing time T ∗

inh, however, does not change. For this reason,
the relative influence of the narrowed Overhauser field distribution on the total
dephasing time T ∗

2 defined in Eq. (6.26) is diminished, especially for large magnetic
fields where the influence of T ∗

n on T ∗
2 is minimal (see Fig. 3.4).

6.5 Minimal model

The qualitative interplay of SML and NIFF described by the EM II can be captured
by a simpler, minimal model. For simplicity, we neglect the spread of the g factors
introduced for the EM III because it barely influence the NESS for the revival
amplitude. Note that it needs to be included to describe the spin dynamics between
consecutive pulses and of course, also the broadening of the probability distribution
of the effective magnetic field is missing. Furthermore, we set χ = 0 in the equations
of motion (6.19) and (6.20), i.e., the interaction between the trion pseudospin and
the nuclear spins is neglected. This approximation is justified because the hyperfine
interaction between the unpaired heavy hole in the trion and the nuclei is much
weaker than for the electron and only present on the short timescale of τ0 = 400 ps.
As demonstrated in Fig. 6.18(a), only small differences between the results for
χ = 0 and χ = 0.2 are found when studying magnetic field dependence of the
revival amplitude in the NESS. The qualitative behavior is the same.

The next simplification has a bigger impact, but only on a quantitative level. We
consider all hyperfine couplings Ak in the equation of motion (6.2c) to be equal,
i.e., we set them to

Ak =
1√
N
AQ , (6.27)
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Figure 6.18: Limiting values S⊥
NESS of the revival amplitude as a function of the magnetic

field Bext: (a) Comparison using the EM II for χ = 0 and χ = 0.2 in Eqs. (6.19) and (6.20)
for various effective bath sizes Neff = 2/γ and extrapolated to the infinite bath limit
corresponding to γ → 0. (b) Combination of the EM II with the box model for the
hyperfine couplings (see main text) for various bath sizes N using χ = 0.2 or χ = 0. The
vertical dashed lines represent the NRC (6.13) for k = 1 and 2, the horizontal dashed line
indicates the SML steady-state value SSML.
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with A2
Q being the square root of the square sum of all couplings. Equation (3.50)

describes its relation with the dephasing time T ∗
n ,

AQ =

√√√√ N∑
k=1

A2
k =

√
6

I(I + 1)
1
T ∗
n
=
√
8
5
1
T ∗
n
. (6.28)

The approximation that all couplings Ak are assumed to be equal is referred to as
the box model [115, 191]. It assumes that the electronic wave function in Eq. (3.9)
is a constant with a certain spatial cutoff that determines the number of nuclear
spins N coupled to the electron spin. The advantage is that we do not have to
resort to the spectral density approach to describe the Overhauser field dynamics.
Instead, since all nuclear spins precess with the same frequency, the dynamics of
the Overhauser field is described by the single equation of motion

d
dt
Bov =

[
AkS + χAk

(
Jzez +

1
λ
J⊥

)
+ hnex

]
×Bov . (6.29)

The results for the box model combined with the choices χ = 0.2 and χ = 0
are compiled in Fig. 6.18(b). Clearly, the qualitative behavior is very similar in
comparison to the results for the EM II: The revival amplitude is overall larger
when comparing the results for a given N to the same value of Neff = 2/γ, but
the qualitative behavior is the same. The influence of χ is again small, noticeable
differences are only present for small values of Bext. The physical reason is that for
finite χ, the extra terms in the equations of motion (6.19) and (6.20) become less
important for larger magnetic fields.

The minimal model, which consists of using the box model and setting χ = 0,
is much easier to deal with numerically. First, only the z projection of the trion
pseudospin J enters in the model. If a pulse creates an initial polarization Jz(0),
the pseudospin dynamics for χ = 0 is fully described by

Jz(t) = Jz(0) e−t/τ0 cos(hht) . (6.30)

Thanks to the box model, the dimension of the remaining ODE system is reduced
from 3(Ntr + 1) to 6, rendering the numerical treatment much easier. Thus, larger
and more accurate simulations are possible, or the model can be extended in another
direction. In Chap 7, it constitutes the starting point to investigate the influence
of the isotope composition of InGaAs QDs on the nonequilibrium spin physics.
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6.6 Chapter conclusion

We developed an improved semiclassical model for the spin mode locking effect
in combination with nuclei-induced frequency focusing in QDs, which yields an
improved numerical description of various experimental results. The final model is
the result of a combination of several key points while exploiting various scaling
arguments.

First, we combined an established semiclassical pulse model [113, 122] often used
to describe the excitation of a trion with an efficient approach to the spin dynamics
of the Overhauser field presented in Sec. 4.2.3. But the results do not match our
expectations stemming from a quantum mechanical description of the problem [117],
and they also disagree with the experimental results presented in Refs. [117, 122].

Consequently, we improved the pulse model by introducing a nondeterministic de-
scription (EM I) in which we interpret the pulse as a quantum mechanical measure-
ment. This reduces the discrepancy to a quantum mechanical approach while being
able to cope with large nuclear spin baths. This step led to considerably improved
results, which are in qualitative agreement with what is found in Ref. [117] using
a fully quantum mechanical approach. But there, only a small bath consisting of
N = 6 nuclear spins is studied, which is a disadvantage compared to our semiclas-
sical approach. In this improved model and in agreement with Ref. [117], both
even and odd resonances caused by nuclear focusing are found in the probability
distribution of the effective magnetic field, but they appear for different strengths
of the external magnetic field, not simultaneously. The corresponding nuclear fo-
cusing peaks turn out to be rather broad. For a broad range of magnetic fields,
the resulting NIFF leads to a reduction of the revival amplitude because of the
emergence of odd resonances in the distribution of the effective magnetic field, i.e.,
the interplay of SML and NIFF can be destructive.

We improved our model further by including the dynamics of the trion pseudospin,
resulting in the EM II. It turns out that the Larmor precession of the trion pseu-
dospin acts as a perturbation that suppresses the appearance of the odd resonances.
As a consequence, the behavior of NIFF studied as a function of the magnetic field
is qualitatively different than that of the previous model. In the EM II, NIFF acts
constructively towards SML, except for a very narrow regime around a resonance
condition for the nuclear spins where their Larmor period between consecutive
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pulses matches the pulse repetition time. Even though the g factor of the unpaired
heavy-hole spin of the negatively-charged trion depends strongly on the in-plane
orientation of the QD sample [96, 132], the differences between the results are
minor.

Furthermore, we observed the emergence of DNP of the order of 100mT, i.e., the
formation of a nonzero average polarization of the nuclear spin ensemble, which can
be significantly larger than the typical fluctuations of the Overhauser field. It is
caused by an alignment of the nuclear spins along the external magnetic field. A sim-
ilar behavior can be inferred from the experimental results presented in Ref. [122],
where the spectrum of Larmor frequencies of the localized electron spins is studied.
Importantly, the saturation of the DNP takes about two orders of magnitude longer
than the saturation of the revival amplitude stemming from NIFF. Its emergence
leads to a slight narrowing of the Overhauser field distribution by about one third
and thus, also to a slight increase of the dephasing time. Moreover, the dependence
of the DNP on external magnetic field is very similar to that found for NIFF. The
absolute value of the DNP is minimal (almost zero) whenever the pulse repetition
time is a multiple of half the nuclear Larmor period, i.e., whenever the nuclear
spins perform a multiple of half-turn revolutions about the external field between
consecutive pulses. For a typical experiment, we estimate the maximum DNP to
be 30mT for a magnetic field of 1T, which can be reached by applying pulses for
about 5 minutes. This DNP is noticeably larger than the assumed magnitude of
the Overhauser field fluctuations of about 7mT per component (T ∗

n ≈ 4 ns).

Accounting for an inhomogeneous ensemble of QDs led to the EM III. This exten-
sion in combination with the trion pseudospin dynamics (introduced in the EM II)
is crucial for a correct description of the measured spin dynamics between two con-
secutive pulses. But it does neither lead to a qualitatively different DNP behavior
nor to a different interplay of SML and NIFF.

In all three extended models, the peaks in the Overhauser field distribution are
fairly broad compared to, e.g., the initial model studied in Sec. 6.1. This is similar
to what is found for the quantum mechanical model studied in Ref. [117]. Thus,
we attribute this behavior to quantum fluctuations captured by the randomness of
the nondeterministic pulse description introduced for the EM I. Note that the peak
widths are not determined by some additional relaxation time induced by further
interactions such as the quadrupolar or dipole-dipole interaction. Their finite width
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is intrinsic to the studied model at hand. But such further interactions are another
possible mechanism that could hinder the efficiency of NIFF. For instance, it is
found in Ref. [143] that the quadrupolar interaction acts against nuclear focusing.
Moreover, weak nuclear spin relaxation resulting from such interactions could lead
to a reduced DNP efficiency.

The qualitative behavior of the system can be reproduced by a rather simple, min-
imal model. The essential ingredients are the hyperfine interaction of the electron
spin with the nuclear spin bath (for which a simple box model is sufficient to achieve
a good description), the coupling of all spins to the external magnetic field, the
nondeterministic pulse description to account for the uncertainty principle in the
semiclassical approach. This model should be realizable on a fully quantum me-
chanical level, and the simplification of using the box model might help to overcome
the issue of being limited to a small bath size.

Further extensions of the model are conceivable. First, the model should be ex-
tended to account for the various isotopes in InGaAs QDs so that several NRCs for
the different isotopes act in a combined way. Indeed, we will see in Chap. 7 that
this extension leads to a more complex structure in the magnetic field dependence
of the revival amplitude.

In the present chapter, only the resonant trion excitation is considered. However,
the applied pulse model can be easily generalized to detuned pulses (Sec. 2.2.2) [113].
Thereby, one can account for the influence of the inhomogeneous broadening of the
trion transition energies present in a real QD ensemble [95, 120, 146] and explicitly
calculate the Faraday rotation and ellipticity [113], which show different dependen-
cies on certain parameters [95, 113]. Moreover, this step would enable us to simulate
two-color pump-probe experiments [95, 113, 146]. Detuned pulses can also lead to
the emergence of different resonances as demonstrated in Refs. [145, 148]. There,
the influence of a positive and negative detuning on NIFF is discussed, but a differ-
ent model is used to describe for the spin dynamics. Furthermore, the optical Stark
effect induced by detuned pulses appears to be important to accurately describe
the phenomenon of DNP [98, 149].

A third relevant aspect is the inclusion of a finite pulse duration. It leads to a
reduced efficiency of the pulse for very large magnetic fields and can also induce
phase shifts for the emerging resonances [117, 147].
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From the experimental side, several clarifications could stimulate progress in under-
standing the relevant physics. First, the dependence of the rate with which NIFF
emerges has not been analyzed in experiments yet. Our model suggests that the
rate is proportional to B−2

ext. Second, a systematic comparison of the revival ampli-
tude as a function of the magnetic field for the cases with and without NIFF would
be helpful, accompanied by an analysis of the Larmor frequency spectrum with
respect to the kind of resonance. Such an experimental study could also reveal the
influence of the pulse duration on spin mode locking without NIFF by comparing the
measured revival amplitude with the analytically obtained steady-state value SSML.
In our model, this value does not depend on external magnetic field, but a reduced
pulse efficiency for large fields caused by a finite pulse duration could be revealed
by the suggested experimental analysis. Evers et al. [148] demonstrated that such
experiments are realizable by applying an appropriate radiofrequency field that hin-
ders nuclear focusing to the QDs. But so far, measurements at various strengths
of the magnetic field have not been carried out. Finally, the emergence of DNP in
the system, for which some evidence exists in the experimental data of Ref. [122],
is another subject calling for further investigation.
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Chapter 7

Nuclear magnetic resonance spectroscopy
of nonequilibrium steady states

In the previous chapter, we have established a model that captures various effects
in the context of SML and NIFF observable in experiments. We have also found
that the qualitative nonequilibrium spin physics can be described by the minimal
model described in Sec. 6.5. Notably, a resonance condition for the nuclear spins
determines the magnetic field dependence of the revival amplitude, which has min-
ima at the magnetic fields fulfilling the NRC (6.13). When considering InxGa1−xAs
QDs, there are various NRCs (6.13) arising from the different isotopes present in
the QDs and hence, we expect that the QD composition influences the nonequilib-
rium physics. Up to now, the role of the QD composition was only investigated by
a perturbative quantum mechanical approach comprising a rather small number of
nuclear spins (N = 17) [142], but this approach cannot reach the NESS present in
experiments and it also neglects the dynamics of the unpaired heavy-hole spin in
the excited T− trions.

The main goal of this chapter1 is to establish a model accounting for the various
isotopes in an InxGa1−xAs QD and analyze its influence on the nonequilibrium spin
physics with a particular focus on the various nuclear magnetic resonances. Since we
are facing computational constraints in the exact numerics, a powerful framework
is developed in which the equations of motion governing the spin dynamics are
expanded in the inverse of the magnetic field, speeding up the calculations by two
orders of magnitude.
1This chapter is based on the author’s publication [258], ©2021 Europhysics Letters Association
(EPLA). Preliminary calculations were performed by P. W. Scherer in the context of his master’s
thesis [259], supervised by G. S. Uhrig and by the author.
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7.1 Accounting for the quantum dot composition

We start from the minimal semiclassical model established in Sec. 6.5, which we
extend to account for the various nuclei in InxGa1−xAs QDs. The optical spin orien-
tation is still described by the nondeterministic pulse (6.14) introduced in Sec. 6.2,
i.e., we consider the periodic application (repetition time TR = 13.2 s) of resonant
π pulses with helicity σ− and a pulse duration of the order of picoseconds, which is
much shorter than all other timescales of the system. The nondeterministic pulse
description is required in the semiclassical approach to account for the uncertainty
principle, i.e., each application of a pulse is considered as a quantum mechanical
measurement.

Let us turn to the spin dynamics, which we describe by the classical precession
equations

d
dt
S = (Bov + hex)× S + 1

τ0
Jzez , (7.1a)

d
dt
Bov,j = (AjS + hn,jex)×Bov,j . (7.1b)

The electron spin S precesses in the superposition of the time-dependent Over-
hauser field Bov =

∑N
k=1AkIk, which is the sum over all N nuclear spins Ik weighted

by their individual hyperfine coupling Ak, and the transverse external magnetic field
hex = γeBextex. Here, Bext denotes the magnetic field, γe = geµBℏ−1 the gyromag-
netic ratio, ge = 0.555 [25] the electronic g factor, and µB the Bohr magneton. The
total Overhauser field is the sum of the subfields of each nuclear species numbered
by the index j, i.e., Bov =

∑
j Bov,j. Each subfield precesses in the Knight field AjS

caused by hyperfine interaction with the electron spin and also in the external mag-
netic field with Larmor frequency hn,j = γn,jBext. The gyromagnetic ratios relevant
for the influence of the external field are very small, γn,j/γe = O(10−3) [167]. Yet,
since hn,j can be of similar order of magnitude as Aj, the nuclear Zeeman effect
determines the nonequilibrium spin physics decisively. The strength of the hyper-
fine interaction is proportional to the probability density of the electron at the
position of the nuclei. For simplicity, we approximate this density as a box with a
certain spatial cutoff, i.e., we use the box model [115, 191] as in Sec. 6.5. In this
approximation, all nuclear spins of species j have the same coupling constant Aj.

The optically excited singlet trion T− consists of two electrons in a spin singlet
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and a heavy hole with unpaired spin, which can be described by the pseudospin J

defined in Eq. (2.8) [114, 115]. The dynamics of its z projection is given by

Jz(t) = Jz(0) e−t/τ0 cos(hht) , (7.2)

where hh = γhBext and gh = γhℏ/µB = 0.15 [132] is the g factor of the heavy hole
in the trion. The pseudospin precesses about the transverse magnetic field while
the trion decays radiatively into the ground state, characterized by the electron
spin S. The radiative trion lifetime is τ0 = 400 ps [23, 111]. The hyperfine inter-
action is a magnitude smaller for heavy holes than for electrons and also strongly
anisotropic [93, 156, 157]. As shown in Sec. 6.5, this interaction barely affects the
nonequilibrium physics and hence, we neglect it here for simplicity.

Applying the same semiclassical approach based on the TWA (see Sec. 3.3) as in the
previous chapters, the classical equations of motion (7.1) are solved for M random
configurations of the initial conditions. Averages over the resulting M independent
classical trajectories approximate the quantum mechanical expectation values of the
spin operators. The initial conditions for the electron spin are determined by the
nondeterministic pulse (6.14). The Overhauser field comprising 104−106 effectively
coupled nuclear spins [19, 103–107] is treated as a classical field based on the central
limit theorem [104, 200]. For temperatures of ∼ 4− 6K as in the experiments [23,
25, 117], the nuclear spin bath is completely disordered and its fluctuations follow
a normal distribution with mean value zero. To capture its variance, we define the
dephasing time

T ∗
n :=

√
2
(

N∑
k=1

Ik(Ik + 1)
3

A2
k

)−1/2

(7.3)

based on the hyperfine interaction of the electron with N nuclei with spin Ik. This
definition is an extension of Eq. (3.50) to account for the different nuclear species.
Next, we define the ratios of couplings αj between the different species according to
Aj = αjA with A := A1. Moreover, Nj = njN is the number of nuclei of species j
so that nj describes its relative abundance in an InxGa1−xAs QD. Then, we have

A =
√
2

T ∗
n
√
N

∑
j

njα
2
j

Ij(Ij + 1)
3

−1/2

, (7.4)
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which sets the low-energy scale ∝ 1/(T ∗
n
√
N) here. It depends on T ∗

n , N , sample
specific parameters, and known properties of the various nuclear species. Using the
quantum mechanical second moment of a nuclear spin given by Eq. (3.34b), the
variances for the components of the nuclear subfields result to

Var
[
Bα

ov,j

]
=

Nj∑
j=1

Ij(Ij + 1)
3

A2
j = njNα

2
jA

2 Ij(Ij + 1)
3

, (7.5)

α ∈ {x, y, z}. Since variances are additive, the fluctuations of the Overhauser field
can be characterized by the dephasing time T ∗

n

Var [Bα
ov] =

N∑
k=1

Ik(Ik + 1)
3

A2
k =

2
(T ∗

n )2
. (7.6)

Thus, T ∗
n serves as an input parameter taken from experiments. In contrast to

the previous chapters, we focus on a particular QD sample with approximately
T ∗
n = 4 ns [23, 123]. This dephasing time captures only the dephasing caused the

random Overhauser field. In an inhomogeneous ensemble of QDs, the actually
observed dephasing time T ∗

2 shows a strong magnetic field dependence, which is
caused by a spread of the electronic g factors [23, 123] as discussed at the end
of Sec. 3.3.4. In Sec. 6.4, it turned out that this inhomogeneity barely affects the
revival amplitude in the NESS and hence, we do not account for it here for simplicity.
In the simulations, we use N = 60 nuclear spins because the number of pulses and
therefore also the run time required to reach the NESS scales linearly with N . Note
that the number of equations does not depend on N because all nuclear spins of
the same species have the same coupling constant in the box model, which is the
important feature of this approximation. We will see, however, that a larger number
of nuclei N has only a small influence on the results.

The relevant parameters for the nuclei in InxGa1−xAs QDs are listed in Table 3.1.
We consider an average isotope for 113In and 115In weighted by their natural abun-
dances and denoted by In because their parameters are almost identical. Eventually,
we consider four different nuclear species: 69Ga, 71Ga, 75As, and In. Note that only
the ratios of the hyperfine interaction strength for the various nuclear species enter
in our model. The low-energy scale set by Eq. (7.4) determines the magnitude of
the different coupling constants and is proportional to 1/(T ∗

n
√
N), similar to the

models studied in the previous chapters.

182



7.2 Fast and slow degrees of freedom

7.2 Fast and slow degrees of freedom

The numerical integration of the equations of motion (7.1) seems to be straight-
forward, but it requires massive parallelization to solve them M = O(104) times.
We use M = 32512 if not stated otherwise. Moreover, reaching the NESS for real-
istic parameters requires hundred millions of pulses, rendering a direct simulation
elusive. On the one hand, the fast Larmor frequency of the electron spin needs
to be resolved numerically, so only small time steps proportional to the Larmor
period 2πh−1 ∝ B−1

ext are possible.2 On the other hand, the time to reach the NESS
scales like B2

ext. Eventually, the computational effort scales worse than B3
ext. For

this reason, we split the fast and the slow spin dynamics in the equations of mo-
tion (7.1), solve the fast part analytically and expand the slow dynamics in the
first order of h−1. This expansion turns out to be remarkably accurate for mag-
netic fields Bext ≳ 1T and the simulation runs two orders of magnitude faster than
the brute force approach. This methodical achievement is the key element that
enables us to study the influence of several nuclear species on the nonequilibrium
spin physics under realistic conditions.

We split the equations of motion (7.1) into a part describing the fast Larmor pre-
cession and a part for the slow dynamics by applying a suitable ansatz. Corrections
of the order O(h−2) are neglected because they are strongly suppressed for large
magnetic fields Bext. To this end, we introduce the composite variables

z := Sy + iSz , (7.7a)
bj := By

ov,j + iBz
ov,j , (7.7b)

Bx
j := Bx

ov,j . (7.7c)

2This is also the case when using the rotating frame approach described in Sec. 3.3.3. The reason
is that the fast electronic Larmor precession is transferred to the nuclear spin dynamics via the
interaction with the electron spin.
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In this notation, the classical equations of motion (7.1) have the form

d
dt
z = i(Bx + h)z − ibSx + i 1

τ0
Jz , (7.8a)

d
dt
bj = i(AjS

x + hn,j)bj − iAjzB
x
j , (7.8b)

d
dt
Sx = Im(zb∗) , (7.8c)

d
dt
Bx

j = −Aj Im(zb∗j) , (7.8d)

with b = ∑
j bj, Bx = ∑

j B
x
j , and

Jz(t) = Jz(0) e−t/τ0 cos(hht) . (7.9)

7.2.1 Expansion of the equations of motion in the magnetic field

A suitable ansatz to split the fast and slow degrees has the form

z(t) = z0(t) + z1(t) eiht + z2(t) eihht + z3(t) e−ihht , (7.10a)
bj(t) = b0,j(t) + b1,j(t) eiht , (7.10b)
Sx(t) = Sx

0 (t) + Re
[
Sx
1 (t) eiht

]
= Sx

0 (t) +
1
2
(
Sx
1 eiht + Sx∗

1 e−iht
)
, (7.10c)

Bx
j (t) = Bx

0,j(t) + Re
[
Bx

1,j(t) eiht
]

= Bx
0,j(t) +

1
2
(
Bx

1,j eiht +Bx∗
1,j e−iht

)
. (7.10d)

It already includes all relevant terms stemming from the fast Larmor precession with
frequencies h and hh. This ansatz is inserted into Eq. (7.8). We identify and keep all
terms that are O(1) or O(h−1) and impose O(hh) = O(h) and O(hn,j) = O(1). The
first relation is justified because the g factors of electrons and holes are of similar
magnitude (ge = 0.555 [25], gh = 0.15 [132]). The second relation is justified
because the gyromagnetic ratios of the nuclei in InxGa1−xAs QDs are smaller by
three orders of magnitude than the electronic one [19, 167]. In O(h−1) the resulting
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relations are algebraic,

z0(t) =
1
h
b0S

x
0 , (7.11a)

z2(t) = − Jz(0)
2τ0(h− hh)

e−t/τ0 , (7.11b)

z3(t) = − Jz(0)
2τ0(h+ hh)

e−t/τ0 , (7.11c)

b1,j(t) = −Aj

h
z1B

x
0,j , (7.11d)

Sx
1 (t) = −1

h
z1b

∗
0 , (7.11e)

Bx
1,j(t) =

Aj

h
z1b

∗
0,j , (7.11f)

Sx
0 (t) = Sx

0 (0) , (7.11g)

while in O(1) we obtain the ordinary differential equations

d
dt
z1 = i

(
Bx

0 z1 − b1S
x
0 + 1

2
b0S

x
1

)
, (7.12a)

d
dt
b0,j = i

[
(AjS

x
0 + hn,j)b0,j − Ajz0B

x
0,j −

Aj

2
z1B

x∗
1,j

]
, (7.12b)

d
dt
Bx

0,j = −Aj Im(z0b∗0,j) . (7.12c)

It turns out that z1, b0,j, Sx
0 , and Bx

0,j are of the order O(1), whereas the remaining
variables z0, z2, z3, b1,j, Sx

1 , and Bx
1,j are of the order O(h−1). All other conceivable

corrections are of the order O(h−2). They can be omitted because they are strongly
suppressed for the large magnetic fields to be considered here.

Next, we insert the algebraic relations (7.11) into Eq. (7.12) and obtain

d
dt
z1 = i

Bx
0 +

∑
j

Aj

h
Bx

0,jS
x
0 + |b0|2

2h

 z1 , (7.13a)

d
dt
b0,j = i

[(
AjS

x
0 + hn,j −

A2
j

2h
|z1|2

)
b0,j −

Aj

h
Sx
0B

x
0,jb0

]
, (7.13b)

d
dt
Bx

0,j = −Aj

h
Sx
0 Im

∑
j ̸=l

b0,jb
∗
0,l

 . (7.13c)
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Equation (7.13a) can be simplified by applying the complex exponential ansatz

z1(t) = z1(0) eiφz1 (t) . (7.14)

The result is the new differential equation

d
dt
φz1 = Bx

0 +
∑
j

Aj

h
Bx

0,jS
x
0 + |b0|2

2h
. (7.15)

The set of differential equations (7.13b), (7.13c), and (7.15) needs to be solved
numerically starting from appropriate initial conditions. Note that the correct
initial conditions (see below) must be calculated after each pulse application.

If the case is considered where only a single nuclear species is present, there are no
sums in the equations so that the differential equations can be solved analytically.
In this simpler case, the dynamics in order O(h−1) is fully determined by a set
of algebraic relations, i.e., no numerical integration is required. Details on the
analytical treatment are given in Appendix E.

7.2.2 Initial conditions of the expansion variables

To determine the initial conditions of all time-dependent variables, we insert t = 0
into the algebraic relations (7.11). For brevity, the time argument t = 0 is omitted
in the following. The initial conditions for the variables z, bj, Sx, Bx

j , and Jz are
known: z, Sx, and Jz are determined by the nondeterministic pulse (6.14), while
bj and Bx

j representing the Overhauser subfields are determined by the Gaussian
initial conditions (7.5). The task is to deduce from them the initial conditions of
the expansion variables z0, z1, b0,j, b1,j, Sx

0 , Sx
1 , Bx

0,j, and Bx
1,j. To this end, we

define the auxiliary quantities

Pj := Re(z1b∗0,j) (7.16)

and insert the relation

b0,j = bj − b1,j = bj +
Aj

h
z1B

x
0,j . (7.17)
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After a few algebraic transformations, we obtain

Pj =
Re(z1b∗j) +

Aj

h
Bx

j |z1|2

1 + A2
j

h2 |z1|2
, (7.18)

which depends only on known initial conditions except z1. In addition, we have

Bx
0,j = Bx

j − Aj

h
Pj , (7.19a)

Sx
0 = Sx + 1

h

∑
j

Pj , (7.19b)

which we insert into z1 = z − z0 − z2 − z3 and find

z1 = z − 1
h

∑
j

[
bk − Aj

h
z1

(
Bx

j − Aj

h
Pj

)]Sx + 1
h

∑
j

Pj


+ Jz

2τ0

( 1
h+ hh

+ 1
h− hh

)
. (7.20)

Since the Pj depend only on z1, the nonlinear and nonpolynomial relation (7.20)
determines z1. All terms on the right-hand side except z are suppressed by at least
a factor of h−1. Hence, the relevant zero for z1 is quickly found by iteration starting
from z1 = z. Fast convergence is reached within approximately five iteration steps.
Afterwards, the quantities Pj can be calculated from z1. Thus, all initial conditions
are now fully determined. The missing ones are given by

z0 = z − z1 +
Jz

2τ0

( 1
h+ hh

+ 1
h− hh

)
, (7.21a)

z2 = − Jz

2τ0(h− hh)
, (7.21b)

z3 = − Jz

2τ0(h+ hh)
, (7.21c)

b1,j = −Aj

h
z1B

x
0,j , (7.21d)

Sx
1 = −1

h
z1
∑
j

b∗0,j , (7.21e)

Bx
1,j =

Aj

h
z1b

∗
0,j . (7.21f)
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Notably, the trion pseudospin component Jz does not appear in any of the equations
governing the time evolution the other quantities; it only has an influence on their
initial values. The reason is that any contribution from the trion pseudospin to
the dynamics is of the order O(h−2) thanks to its precession about the external
magnetic field. In contrast, for hh = 0, i.e., neglecting its Larmor precession, the
contribution from Jz to the dynamics of z0 is of the order O(h−1). Physically,
this implies that the trion pseudospin decouples from the remaining dynamics if it
precesses about the external magnetic field fast enough.

7.2.3 Validity of the expansion

In the following, we establish the validity of the expansion derived above. To this
end, the time evolution of the electron spin S and of the Overhauser field Bov is
calculated for M = 256 random initial conditions by solving the original equations
of motion (7.1) numerically and also applying the expansion in O(h−1). The mean
absolute error calculated for each component at t = T−

R = 13.2 ns, i.e., at the end
of the first pulse period and before the application of the second pulse, is plotted in
Fig. 7.1 in a double logarithmic manner. Linear fits reveal a clear B−2

ext dependence
for all errors. This confirms that the accuracy of the derived equations is of the
order O(h−1) as intended.
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Figure 7.1: Error analysis of the O(h−1) expansion of the equations of motion for the
electron spin S and the Overhauser field Bov. The mean absolute errors calculated
for the M = 256 random configurations at t = T−

R , i.e., at the end of the first pulse
period and before the arrival of the second pulse, are shown in a double logarithmic
plot. The slopes p of the applied linear fits (solid lines) are given in the legends; they
all have a fit error of ±0.02. Clearly, the error scales like B−2

ext ∝ h−2 for all components.
Parameters: N = 200, T ∗

n = 1 ns, x = 0.3.
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Figure 7.2 demonstrates the remarkable accuracy of the expansion in O(h−1) for
the magnetic field dependence of the revival amplitude in the NESS for the case
where only an average isotope (γe/γn = 800) is considered. For magnetic fields
Bext ≳ 1T, the deviations of the results obtained using the O(h−1) approach from
the numerically exact results are within the statistical accuracy displayed by the
error bars. The revival amplitude in the NESS is calculated as the arithmetic
mean over the last 10% data points, the error bar represents the corresponding
root-mean-square deviation.

We also compare the numerically exact results to the approximate results in O(h−1)
for the revival amplitude as a function of the number of nuclei N for various de-
phasing times T ∗

n in Fig. 7.3 for an In0.3Ga0.7As QD sample. The comparison is
only carried out for Bext = 1T because the computational demand for the exact
numerics is too large for larger magnetic fields. The agreement between the nu-
merically exact and approximate results is within the statistical accuracy for all
combinations of N and T ∗

n , but the approximate solution slightly overestimates the
real revival amplitude for this rather small magnetic field. For larger fields, the
agreement is expected to be better because the approximation is based on a sys-
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Figure 7.2: Revival amplitude S⊥
NESS in the NESS as a function of the magnetic field

Bext for the model where only an average isotope is considered. The numerically exact
(spheres, solid lines) and the approximate O(h−1) (squares, dashed lines) results are
shown for various bath sizes N . The agreement is within the statistical accuracy for
magnetic fields Bext ≳ 1T. Parameters: T ∗

n = 1 ns, γe/γn = 800, I = 3/2, M = 10240.
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tematic expansion in h−1 ∝ B−1
ext; see also Fig. 7.2 where the accuracy improves for

larger magnetic fields.

Physically, the results shown in Fig. 7.3 demonstrate the influence of the dephasing
time T ∗

n on the revival amplitude. For T ∗
n = 1 ns, the revival amplitude is only

slightly larger than the SML steady-state value SSML ≈ 0.077 given by Eq. (6.9),
i.e., the degree of NIFF is small. For the value T ∗

n = 4 ns, there is a noticeable
dependence on the number of nuclei. But for our choice N = 60, the revival
amplitude is already close to the maximum value that is in the limit 1/

√
N → 0,

i.e., it does not change significantly for larger bath sizes. For the case of a single
nuclear species studied in Chap. 6, the choice of T ∗

n in the limit of an infinite bath
size has no significant influence on the revival amplitude (Fig. 6.8). This limit is
the experimentally relevant case with 104 − 106 effectively coupled nuclear spins in
a QD [19, 103–107]. But for the case of several nuclear species as considered here,
there is a significant influence of T ∗

n on the revival amplitude, even in the limit of an
infinite bath size. For this reason, we use the value T ∗

n = 4 ns chosen in accordance
with previous analyses [23, 123].
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Figure 7.3: Revival amplitude S⊥
NESS in the NESS as a function of the typical hyperfine

coupling (
√
NT ∗

n )−1 at a magnetic field of Bext = 1T. The numerically exact results
(spheres, solid lines) and approximate results in O(h−1) (squares, dashed lines) are shown
for various dephasing times T ∗

n . The agreement is within the statistical accuracy, but the
approximate solution slightly overestimates the numerically exact result. Parameters:
x = 0.3, M = 11520.

190



7.3 Nonequilibrium spin physics

7.3 Nonequilibrium spin physics

The general nonequilibrium spin physics is very similar to the behavior studied
in detail in Chap. 6. As a brief recapitulation, the electron spin dynamics in
the NESS for various external magnetic fields Bext is shown in Fig. 7.4(a). The
optically induced spin polarization precesses about the external field and dephases
within T ∗

n = 4 ns. As discussed in Sec. 6.1, already O(10) pulses induce a revival
of the spin polarization with amplitude S⊥ = 1/

√
3 − 1/2 = SSML [117, 122, 141]

before the next pulse as a consequence of SML in the random Overhauser field, i.e.,
without any nuclear focusing. The figure shows that applying many more pulses
(for up to minutes in experiments) changes the amplitude S⊥ of the revival as a
consequence of NIFF [25], eventually approaching a NESS. In most cases, the revival
amplitude is enhanced as a consequence of NIFF, but under certain conditions a
destructive effect occurs as analyzed in Chap. 6. For instance, there is barely any
revival at Bext = 8.072T, but for the slightly larger field Bext = 8.5T the revival
has a substantial amplitude even though O(108) pulses are applied in both cases.

The origin of NIFF, which is partially responsible for the revival signal if very long
pulse trains are applied, is visualized in Fig. 7.4(b) by showing the probability
distribution p(Beff) of the effective magnetic field

Beff := |Bov + γeBextex|
γe

(7.22)

for three different external magnetic fields Bext. Initially, it follows a normal distri-
bution with mean value Bext and a variance resulting from the random Overhauser
field described by Eq. (7.6) But the long sequences of pulses train the system to
favor commensurable precession modes so that the distribution evolves towards a
comblike structure until reaching a NESS. Hence, certain polarizations resulting in
commensurable dynamics are selected. The positions of the nuclear focusing peaks
match either the even [Eq. (6.10a)] or the odd [Eq. (6.10b)] resonance condition
for the Larmor precession of the electron spin. The precise behavior of NIFF and
its impact on the revival amplitude strongly depends on the strength of the ap-
plied magnetic field. In most cases, the ERC (6.10a) is fulfilled. But as analyzed
in Sec. 6.3, the system tends towards the ORC (6.10b) if the nuclear resonance
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condition

γn,jBextTR = 2π|k| , k ∈ Z , (7.23)

is met. We refer to this resonance condition, which describes nuclear magnetic
resonances (NMRs) of the species j, as the even NRC because 2|k| is an even integer.
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Figure 7.4: (a) Electron spin dynamics Sz(t) showing spin mode locking in the
NESS after np,NESS = 4.5 × 105 (Bext = 0.5T), 1.174 × 108 (Bext = 8.072T), and
1.301× 108 (Bext = 8.5T) pulses. The envelope is highlighted in orange, the fast Larmor
precession (blue) is not discernible for large fields. A pump pulse arrives at 0 and 13.2ns,
respectively. The In concentration is x = 0.3. (b) Corresponding nonequilibrium proba-
bility distribution p(Beff) of the effective magnetic field (external plus Overhauser field)
revealing the selection of special polarizations in the nuclear spin bath. The solid and
dashed gray lines represent the even and odd resonance conditions (6.10a) and (6.10b) for
the electron spin, respectively. The orange vertical lines highlight the applied magnetic
fields Bext. The initial normal distributions are depicted in brown for comparison.
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In Fig. 7.4, it is fulfilled for Bext = 8.072T, which is the NMR field of the nuclear
spin of In for the mode number k = 1. In this case, the Larmor period of the
In nuclear spins is equal to the pulse repetition time TR = 13.2 ns and the revival
amplitude shows a sharp local minimum when studied as a function of the magnetic
field Bext as we will see below.

If a nuclear spin revolves an odd multiple of half Larmor precessions between two
consecutive pulses, i.e., if

γn,jBextTR = (2|k|+ 1)π , k ∈ Z , (7.24)

is met, the revival amplitude studied as a function of the magnetic field shows a
broad local minimum around the magnetic fields fulfilling this resonance condition.
In the following, we refer to this condition as the odd NRC because 2|k| + 1 is an
odd integer. It describes an odd number of half-turn revolutions of the nuclear spins
about the magnetic field within the pulse interval. But in this regime, the effective
magnetic field still favors the even resonance (6.10a) for the electronic Larmor
precession. So far, we have analyzed the magnetic field dependence of the revival
amplitude only for an average isotope in Chap. 6. In the following, we analyze
the role of simultaneously present different nuclear species j. This extension gives
rise to several possible NRCs and thus, increases the complexity of the results by
a substantial amount.

7.4 Nuclear magnetic resonance spectroscopy

The magnetic field dependence of the revival amplitude

S⊥(np) :=
√[
Sy(npT

−
R )
]2

+
[
Sz(npT

−
R )
]2
, (7.25)

as a function of the number of applied pulses np and of the magnetic field Bext for the
In concentration x = 0.3 is shown in Fig. 7.5(a) as a heatmap; the revival amplitude
is encoded in the color. The notation T−

R indicates that the spin polarization is
probed immediately before the arrival of the pump pulse; the overline denotes the
ensemble-averaged quantity in the semiclassical approach. The revival amplitude
starts at S⊥ = 0 and rises quickly to the SML steady-state value SSML ≈ 0.077
within O(10) pulses. At this stage, the Overhauser field still follows its initial
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normal distribution. Subsequently, the revival amplitude changes as a consequence
of the slowly emerging nuclear focusing over a timescale covered by millions of
pulses, eventually approaching a NESS where the revival amplitude does not change
anymore on average (it still fluctuates because of the nondeterministic pulses). The
deviation of the amplitude from the SML steady state is representative for the
degree of NIFF in most cases; exceptions are discussed below. The number of
pulses np,NESS necessary to reach the NESS scales like B2

ext as before in Sec. 5.3.2
and Chap. 6. For instance, at Bext = 10T one must apply np,NESS = 1.8× 108

pulses to approximately reach the NESS. As discussed before, the dependence of the
revival amplitude on the magnetic field is strongly nonmonotonic. The amplitude
is large at small magnetic fields, then decreases with a broad minimum in the
vicinity of Bext = 4.5T, and increases thereafter. For fields Bext ≳ 8.1T, the
amplitude decreases again. Importantly, several sharp minima are discernible at
larger magnetic fields.

The nonmonotonic behavior is easier to analyze when focusing solely on the NESS
regime, which is shown in Fig. 7.5(b) for various In concentrations x. The sharp
minima are located exactly at the positions determined by the NMRs (7.23) for
k = 1 (vertical dash-dotted lines), i.e., whenever the Larmor period of a nuclear
spin is equal to the pulse repetition time TR. The broad minimum appears in the
range of magnetic fields in which the fields fulfilling the odd NRC (7.24) with k = 1
are located (vertical dashed lines). This minimum appears to be a robust feature: it
also appears in our previous investigations using an average isotope, in the quantum
mechanical model of Ref. [117], and a similar feature is found experimentally for
various QD samples [117, 122]; see also Fig. 2.5(b) taken from Ref. [117]. The key
difference to the previous theoretical studies is the larger number of sharp minima
and the much more complex behavior of the revival amplitude at large magnetic
fields. The depths of these minima strongly depend on the In concentration x.
Only the minimum at the NMR field of about 10.4T, corresponding to the nuclear
spin of As, is almost independent of x. This was to be expected because varying
x does not change the number of As isotopes in the QDs (its relative abundance
in InxGa1−xAs QDs is always 0.5). The more In is present (larger x), the deeper
and sharper is the minimum related to the nuclear spin of In at its NMR field
Bext = 8.072T. In return, the two minima related to the NMR fields of 69Ga and
71Ga become deeper when the concentration of In is decreased. Even for the small
concentration x = 0.03, In prevails over the other isotopes because of its larger
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spin and larger hyperfine coupling strength (see Table 3.1). Obviously, the sharp
minimum at Bext = 8.072T vanishes completely without any In (x = 0). Likewise,
the sharp minima related to the two Ga isotopes at the corresponding NMR fields
Bext = 5.819T and 7.403T vanish without any Ga in the QDs (x = 1). In this
case, the maximum of the revival amplitude at around 8T increases because the
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Figure 7.5: (a) Revival amplitude S⊥ as function of the magnetic field Bext and of
the normalized number of pulses np/np,NESS, where np,NESS ∝ B2

ext denotes the number
of pulses necessary to reach the NESS. The In concentration is x = 0.3. The positions
of the sharp minima coincide with the NMR fields resulting from the even NRC (7.23).
(b) Revival amplitude S⊥

NESS in the NESS regime (averaged over the last 10% data points)
as a function of the magnetic field Bext for various In concentrations x. The fields fulfilling
the NRCs (7.23) (even, dash-dotted) and (7.24) (odd, dashed) for the various nuclear
species in InxGa1−xAs QDs are highlighted by vertical lines. The horizontal dashed line
marks the SML steady-state value SSML as a reference to assess the degree of NIFF.
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odd NRC (7.24) for k = 2 related to 71Ga at around 8.7T plays no role. But if
Ga is present in the QDs (x < 1), this odd NRC limits the degree of NIFF in
the regime around 8.7T. The resulting magnetic field dependence of the revival
amplitude for x = 0.3 has some similarities to the experimental observation [117]
shown in Fig. 2.5(b), where the revival amplitude also has the trend to decrease for
larger magnetic fields. Note that a similar trend could be induced by the reduced
pulse efficiency appearing for large magnetic fields if the pulse duration is not much
shorter than the electronic Larmor period [117]. In our case, they differ by an order
of magnitude as discussed in Sec. 6.1, but still, there could be a small effect.

Overall, the magnetic field dependence of the revival amplitude appears to be fairly
independent of the QD composition up to about 5T. For larger fields, however,
the behavior is complex and strongly depends on the In concentration. In this
regime, various nuclear magnetic resonances influence the NESS and appear as
sharp dips in the revival amplitude studied as a function of the magnetic field.
These sharp resonance suggest themselves to be exploited for a so far not known
kind of NMR spectroscopy.

Figure 7.6 shows the revival amplitude in the NESS around the fields meeting the
even NRC (7.23). Obviously, the widths of the minima are related to the amount of
In in the QD: a larger x corresponds to a narrower minimum. This is also the case for
the dip related to As even though the number of As isotopes does not change with x.

The deviation of the revival amplitude from the SML steady-state value SSML does
not necessarily represent the degree of NIFF for fields close to the NMRs. In these
cases, the probability distribution p(Beff) of the effective field does not always single
out the ERC (6.10a) or the ORC (6.10b). Instead, the nuclear focusing peaks can
appear at slightly irregular positions. This behavior can be seen in Fig. 7.7 where
the probability distribution p(Beff) is shown for external magnetic fields approaching
the NMRs for an In concentration of x = 0.3. Around the NMR fields for In and
As, a change of resonance from the ERC to the ORC (or to a mixture) can be
discerned. In contrast, the degree of NIFF for the two Ga isotopes decreases when
approaching the respective NMR field, but the system sticks to the ERC. But the
details depend on the In concentration, e.g., for smaller x there is also a change of
resonance at the NMR fields for 69Ga and 71Ga (not shown).

Slight shifts of the expectation value of the probability distributions p(Beff) from its
initial value Bext are discernible in Figs. 7.4(b) and 7.7. They stem from dynamic
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Figure 7.6: Revival amplitude S⊥
NESS in the NESS in close vicinity to the NMR fields

fulfilling (7.23) for k = 1 for various In concentrations x. The panels show S⊥
NESS in the

range ±0.13T around the NMR fields (dash-dotted) for 71Ga, 69Ga, In, and 75As. The
SML steady-state value SSML is marked by the horizontal dashed line.

nuclear polarization, i.e., from the formation of a nonzero polarization of the nuclear
spins parallel to the external magnetic field. This phenomenon is analyzed in detail
in Sec. 6.3 for the case of an average isotope. Its analysis for the case of various
nuclear species is beyond the scope of the present chapter, but it is an interesting
subject for future research.

Finally, let us discuss if and how the predicted features are accessible in exper-
iments. The two InxGa1−xAs QD samples studied experimentally in Ref. [117]
[see Fig. 2.5(b)] were thermally annealed at different temperatures, resulting in an
estimated In concentration of x ≈ 0.3 (Sample 1) and x ≈ 0.4 (Sample 2).3 Thus,
all nuclear species are present. Most of the In isotopes should be located in the
center of the QDs [88, 260]. But the applied magnetic field was varied in steps
of 0.5T, which is too coarse to reveal sharp features. In principle, however, the
external field can be tuned with mT accuracy so that sharp features such as those
promoted in Fig. 7.6 should be resolvable. We stress that the inhomogeneity of
self-assembled QD ensembles is not detrimental to these features because the gy-
3The concentrations were estimated by A. Greilich.
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romagnetic ratios γn,j do not depend on details of the QDs, i.e., they are physical
constants. Furthermore, the electronic g factor, which has a small spread in real
QD ensembles, does not influence the NMRs.

Further experimental support could potentially be obtained by applying continuous
radiation at the NMR frequency of a particular isotope for a fixed magnetic field.
Such related experiments were performed recently by Evers et al. [148], demonstrat-
ing that this procedure also leads to a substantial reduction of the revival amplitude
because of a reduced nuclear focusing efficiency.
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Figure 7.7: Probability distribution p(Beff) of the effective magnetic field in the NESS
in the vicinity of the NMR fields fulfilling the even NRC (7.23) at k = 1 for an In
concentration x = 0.3. Each row corresponds to the NMR for 71Ga, 69Ga, In, and 75As,
respectively. In the third column, p(Beff) is shown at the respective NMR field. In the
other columns, this magnetic field is changed by −0.1T (first), −0.025T (second), and
+0.025T (fourth). The applied magnetic field Bext is always highlighted in orange. The
solid and dashed gray lines represent the ERC (6.10a) and ORC (6.10b) for the electron
spin. The initial normal distributions are depicted in brown for comparison.
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7.5 Chapter conclusion

By methodical progress we are able to simulate the dynamics of the localized elec-
tron spin in a QD in presence of a nuclear spin bath comprising several nuclear
species under nonequilibrium conditions where trains of up to O(108) pulses are
applied to the system. Considering the pulse repetition time TR = 13.2 ns, the
simulations cover a real-time scale of the order of seconds, i.e., very close to the
duration of the pulse trains applied in experiments (up to minutes) [25]. The key
step is to separate fast and slow spin dynamics, solve the fast part analytically,
and expand the slow part in the inverse of the applied magnetic field. Numerically,
only the slow dynamics needs to be integrated, which runs two orders of magnitude
faster than the brute force approach. The approximation turns out to be remark-
ably accurate for magnetic fields Bext ≳ 1T and clearly, it can also be applied to
many other related physical problems. For instance, if there is only a single nuclear
species, the spin dynamics between two pulses can be obtained algebraically. This
enables extremely efficient simulations and can be used to deal with other issues
such as the inhomogeneous broadening of the trion transition energies appearing
in real QD ensembles (adding another statistical component), or with two-color
pump-probe experiments [95, 113, 146]. The technique should be also applicable
to the Spectral Density approach (Sec. 4.2.3) for the Overhauser field dynamics.

The periodic application of the pulses for extremely long times drives the system
to a nonequilibrium steady state. This state is imprinted in the nuclear spin bath
and has a lifetime of the order of minutes in experiments [25]. As a consequence
of the spin mode locking effect combined with nuclei-induced frequency focusing,
a revival of the electron spin polarization created by a pulse, which dephases as
a result of the interaction with the random nuclear spin bath, appears before the
arrival of the next pulse. Several resonances related to the Larmor precession of the
different nuclear spins in the QD determine the nonequilibrium behavior decisively.
Whenever the Larmor period of a nuclear spin matches the pulse repetition time,
the amplitude of the revival becomes minimal. This results in a number of very
sharp minima when studying its magnetic field dependence. Similar nonequilibrium
steady states have been proposed to allow for the distillation of quantum coherent
states [253]. We suggest that these minima stemming from nuclear magnetic reso-
nances are observable in tailored experiments. This would constitute a novel kind
of NMR spectroscopy.
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Chapter 8

Spin inertia and polarization recovery:
Influence of pumping strength

The progress in the field of spintronics [77, 78] over the past two decades lead to
several experimental tools for the investigation and characterization of the spin
dynamics in semiconductor nanostructures. One of the main characteristics is the
spin lifetime. Most of the tools are based on the interrelation between the spin of a
charge carrier and the polarization of a photon emitted or absorbed by the semicon-
ductor structure [108]. The most popular ones are the Hanle effect [261] and the
time-resolved pump-probe spectroscopy. The latter is based on the pulsed-laser
excitation [127, 128] and can be extended to detect spin dynamics on arbitrary
timescales with femtosecond resolution [129]. Other powerful tools are the reso-
nant spin amplification [77, 133, 135–137], the spin-noise spectroscopy [262–264],
the spin inertia technique [93, 125, 159], and measurements of the polarization re-
covery [93, 125, 126]. The latter two are the subject of this chapter; see Secs. 2.4.2
and 2.4.3 for an introduction to the corresponding effects. The spin inertia tech-
nique can be used to measure slow spin dynamics on the timescale of microseconds.
Combined with measurements of polarization recovery curves, many parameters
governing the spin dynamics can be determined [93, 125, 126].

The spin inertia technique is based on the pump-probe spectroscopy [159], in
which the spin polarization induced by periodically applied circularly polarized
laser pulses is measured. The spin inertia effect occurs when the helicity of the
circularly polarized pump pulses is modulated with a finite frequency fm. When
this frequency increases and becomes larger than the inverse spin relaxation time,
the spin polarization decreases and eventually vanishes for very large modulation
frequencies. This led to calling the effect spin inertia because it can be understood
as an inertia of the spin polarization that prevents it from following an external
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switching of the pulse helicity arbitrarily quickly. The measurement of the depen-
dence of the spin polarization on the modulation frequency allows one to determine
the spin relaxation time of the resident charge carriers, e.g., the longitudinal spin
relaxation time often denoted as T1.

Generally, this method is useful to measure long spin relaxation times, e.g., of lo-
calized electrons and holes in a longitudinal magnetic field [93]. A natural physical
system for this kind of study are localized charge carriers in ensembles of self-
assembled QDs [19, 38] or localized charge carriers bound to impurities in bulk
semiconductors [36]. The spin dynamics in such systems is mainly driven by the
hyperfine interaction with the nuclear spins of the host lattice [19, 115]. The sim-
ple phenomenological model used for the description of the first experiments [159]
was later extended to account for non-Markovian spin dynamics typical for local-
ized electrons [125]. But up to now, the effects caused by saturation limit of the
spin polarization, where all spins point in the same direction, was not analyzed in
detail.

Motivated by the recent experiments presented in Ref. [93] (see also Secs. 2.4.2
and 2.4.3), we develop a theory of the spin inertia effect for electrons and holes
localized in QDs and account for an arbitrarily strong pumping of the system. We
take into account the interplay between the hyperfine interaction of the localized
charge carrier with the nuclear spin bath and the external magnetic field for both
the ground state and the excited trion state. The simulations and analytical calcu-
lations demonstrate a decrease of the effective spin relaxation time with an increase
of the pump power, which is also found in pump-probe experiments [124, 265] and
in measurements of the spin inertia [93, 159]. We also study the dependence of the
spin polarization on the applied longitudinal magnetic field and discuss possible
effects that could be induced by nonresonant pump pulses. Finally, a regime is pre-
dicted where resonant spin amplification occurs, i.e., the probed spin polarization
resonantly depends on whether the Larmor period of the localized carrier spins is
commensurable with the time between consecutive pump pulses [135]. Thanks to
the contribution from the random Overhauser field, such a Larmor precession takes
place in spite of the pulses orienting the localized carrier spin along the axis of the
longitudinal magnetic field (Faraday geometry).
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The chapter is set up as follows.1 In the next section, we present the model that we
consider for simulations of the spin inertia effect and its analytical description in
limiting cases. Two different methods that we apply for this purpose are introduced
in Sec. 8.2. In Sec. 8.3, we first consider the limit of a strong magnetic field in
which the hyperfine interaction can be neglected. Afterwards, the dependence of
the spin polarization on the magnetic field is studied and possible effects induced
by nonresonant pump pulses are discussed. Finally, we predict and describe the
emergence of resonant spin amplification in Faraday geometry. The results are
summarized in Sec. 8.4.

8.1 Phenomenological model

We consider a homogeneous ensemble of singly-charged QDs subjected to a longi-
tudinal magnetic field under the condition of a pump-probe experiment [93]. The
QDs can be charged either by electrons (n doped) or by holes (p doped). We treat
these two cases, for which the parameters governing the spin dynamics are drasti-
cally different [93], on equal footing. The pump pulses excite singlet trion states,
leading to the spin orientation of the resident charge carriers as discussed in Sec. 2.2.
The spin polarization can be probed by weak linearly polarized pulses measuring
the Faraday rotation or ellipticity [113, 114].

In measurements of the spin inertia, the QDs are excited by a long train of np ≫ 1
pump pulses following one another with the repetition time TR = 13.2 ns [93, 159].
Each pulse is circularly polarized and the helicity of the pulses is alternated with
the frequency fm. The spin inertia effect manifests itself in the dependence of the
spin polarization on fm. The spin polarization is probed by weak probe pulses
with the same repetition time. Experimentally, they arrive shortly before the next
pump pulse, e.g., with a delay of τd = −50 ps [93]. In our model, we assume an
infinitesimal negative delay τd = −0 for simplicity, but the influence of a small delay
is minor [125]. The Faraday ellipticity or rotation measured for the probe pulses
yields the projection of the spin polarization on the axis of light propagation, which
is also the growth direction of the QDs. As in the previous chapters, we refer to it
1This chapter is based on the author’s publication [255], published by the American Physical
Society under the terms of the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0).
All numerical calculations were conducted by the author. Analytical support based on the steady-
state approach was provided by D. S. Smirnov.
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as the z axis. The spin inertia signal as a function of the modulation frequency fm
as measured in experiments is defined as [125, 159]

L(fm) :=
1
np

∣∣∣∣∣
np∑
k=1

Sz(kTR + τd) ei2πfm(kTR+τd)
∣∣∣∣∣ , (8.1)

where np is the total number of applied pump pulses. The overline denotes the
required ensemble average over the Overhauser field distribution introduced later
in this section. Qualitatively, the expression describes the amplitude of the Fourier
component of the spin polarization Sz(kTR + τd) at the modulation frequency fm.
Note that the probed spin polarization as defined by Eq. (8.1) is also modulated
with frequency fm. Otherwise, the time-averaged spin polarization would vanish
because the helicity of the pump pulses is modulated with the same frequency.

The goal is to describe the relevant spin dynamics and calculate L(fm) for various
system parameters and magnetic fields. In order to address experimentally relevant
conditions, we take into account the hyperfine interaction and the external magnetic
field. Spin relaxation induced by other mechanisms is accounted for by phenomeno-
logical relaxation terms. In contrast to the theory presented in Ref. [125], we do
not impose any restrictions on the system parameters. In particular, we do not
assume that the pump pulses are infinitely weak. We will see that avoiding this
simplification gives rise to interesting and new effects. In contrast to the previous
chapters, the model presented in the following has a partially phenomenological
character. But it has turned out that it describes the experiments of interest quite
well [93, 125], and we extend it further to achieve an even better description.

We describe the spin dynamics of the resident charge carrier in a QD between
consecutive pump pulses by the equation of motion2

d
dt
S = (Ωn +ΩL)× S − S

τs
+ Jz

τ0
ez , (8.2)

where Ωn represents the frequency of the spin precession about the Overhauser
field, ΩL = gzµBℏ−1Bextez represents the Larmor frequency of the spin precession
about the longitudinal magnetic field Bextez, gz is the longitudinal g factor of the
resident charge carrier, µB is the Bohr magneton, and eα is the unit vector in
2The notation used in this and the following chapter differs slightly from that used in the previous
chapters to facilitate a comparison with the literature [93, 94, 125, 126, 255]. The Overhauser
field is referred to as Ωn (instead of Bov) and the Larmor frequency as ΩL (instead of h).

206



8.1 Phenomenological model

α ∈ {x, y, z} direction. The phenomenological term −S/τs describes the typically
slow spin relaxation unrelated to the hyperfine interaction. Possible mechanisms re-
sult from the spin-orbit, dipolar, or quadrupolar interaction. Phonon-assisted spin
relaxation is another possible mechanism, which could also explain the observed
temperature dependence of the polarization recovery curves presented in Ref. [93].
The component Jz is the z projection of the trion pseudospin J and τ0 is the trion
lifetime related to the radiative trion recombination. The last term in Eq. (8.2) de-
scribes the input of spin polarization caused by this process [113, 124]. In contrast
to Ref. [125], we neglect the dynamics of the Overhauser field, i.e., we consider it to
be frozen in time as in Sec. 3.3.4. At least for the time TR between two pulses, this
approximation is justified, and we assume that no nonequilibrium effects similar
to those studied in Part II become important on long timescales. Possible effects
stemming from the nuclear spin dynamics are studied in Refs. [125, 126], but they
appear to be of minor importance.

In the presence of an external longitudinal magnetic field, the Zeeman effect will
lead to a residual spin polarization Sz

0ez = tanh[gzµBBext/(2kBT )]/2 ez, where T is
the temperature and kB is the Boltzmann constant. This residual polarization could
be accounted for in the equations of motion, but its contribution is negligibly small
under experimental conditions. For instance, in a magnetic field of Bext = 200mT
at temperature T = 4K [93], the thermal equilibrium spin polarization amounts
to only 1% of the maximum possible value. Moreover, the thermal contribution
to the spin polarization increases the polarization slightly for one helicity of the
pump pulse but decreases it for the other one so that the total effect cancels in
linear order for the measured quantity defined in Eq. (8.1). Only in second order,
a minute effect can occur.

Similarly to Eq. (8.2), the dynamics of the trion pseudospin between the pump
pulses can be described by

d
dt
J =

(
ΩT

n +ΩT
L

)
× J − J

τTs
− J

τ0
. (8.3)

The superscript ‘T’ refers to the parameters of the unpaired charge carrier spin in
the trion. For resident electrons the trion consists of the two electrons in a spin
singlet state and a hole with unpaired spin, while for resident holes it consists of
two holes in a spin singlet state and an electron with unpaired spin. Thus, the
effective type of the charge carrier in the trion state is opposite to the type of
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the resident charge carrier. The spin relaxation unrelated to the hyperfine interac-
tion is accounted for by the phenomenological relaxation time τTs . Combined with
Eq. (8.2), only the z component of the trion pseudospin J is transferred back to
the spin polarization Sz in the ground state during the trion recombination. This
follows from the optical selection rules for the optical transitions between the bands
Γ6 and Γ8 in GaAs-based semiconductors [114, 124].

The Overhauser field caused by the hyperfine interaction with the nuclear spins is
treated as a random classical field. Since it comprises 104 − 106 effectively coupled
nuclear spins [19, 103–107], its probability distribution is a multivariate normal
distribution as a consequence of the central limit theorem [104, 200, 219],

p(Ωn) =
λ2

(
√
πωn)3

exp
(
−λ2 (Ω

x
n)2 + (Ωy

n)2

ω2
n

− (Ωz
n)2

ω2
n

)
. (8.4)

Its variance is characterized by ω2
n and the potential anisotropy of the hyperfine

interaction is parameterized by λ. Thus, ωn is a measure for the typical fluctuation
strength of the Overhauser field and characterizes the typical precession frequency
of the resident charge carrier spin in this field. In the case of electrons λ = 1
holds, while for heavy holes λ≫ 1 (see Sec. 3.1). The hyperfine interaction for the
trion pseudospin is related to the same nuclear spin bath and we assume that it is
given by

ΩT,x
n = χ

λ

λT
Ωx

n , (8.5a)

ΩT,y
n = χ

λ

λT
Ωy

n , (8.5b)

ΩT,z
n = χΩz

n , (8.5c)

where χ = ωT
n /ωn describes the relative strength of the hyperfine interaction for

the trion state and λT quantifies the degree of anisotropy. These relations are exact
when the trion wave function is a product of identical wave functions of the three
charge carriers forming the trion, which is a reasonable approximation for QDs
providing a strong confinement, i.e., small QDs [266].

Let us turn to the description of the pump pulses of arbitrary strength. For this pur-
pose, we apply the pulse model developed in Ref. [113] and presented in Sec. 2.2.2.
We still assume that the trion state is unoccupied at the arrival of a pump pulse.
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This assumption is perfectly valid in the usual case τ0 ≪ TR, but it needs to be
lifted in Chap. 9 where pulses with repetition time TR = 1 ns instead of 13.2 ns are
considered. In the experiments of Ref. [93], the pulses have a duration of 1.5 ps,
which is much shorter than all the above time scales of the spin dynamics. Under
these conditions, the action of a pump pulse can be described by a relation between
the spin components before (Sb, Jb) and after (Sa, Ja) the pulse [113],

Sz
a = −P 1−Q2

4
+ 1 +Q2

2
Sz
b , (8.6a)

Sx
a = Q cos(Φ)Sx

b + PQ sin(Φ)Sy
b , (8.6b)

Sy
a = Q cos(Φ)Sy

b − PQ sin(Φ)Sx
b , (8.6c)

Jz
a = Sz

b − Sz
a , (8.6d)

Jx
a = Jy

a = 0 . (8.6e)

The probability not to excite a trion is given by 0 ≤ Q2 ≤ 1 and −π ≤ Φ ≤ ϕ

describes the angle of a spin rotation induced by detuned pulses. The helicity of the
circularly polarized light is represented by P = ±1. The parameter Q is a measure
for the pumping strength. Previous theoretical treatment [125] assumed the limit
Q → 1 and Φ = 0, which corresponds to very weak pulses. In this limit, the pulse
adds a constant spin polarization to the value Sz

b before the pulse while preserving
the transverse components. But here, we are interested in arbitrarily strong pulses
and particularly in π pulses corresponding to Q = 0, which is the most efficient
case.

Note that there is a difference between the semiclassical approach used here and
the semiclassical approach used in Part II. As discussed at the end of Sec. 3.3.2,
the averaging over random initial conditions does not only mimic the quantum
mechanical behavior of the system. In experiments, the spin polarization is accu-
mulated over repeated measurements to obtain a decent signal-to-noise ratio. Since
the Overhauser field is not static but fluctuates, mainly as a consequence of the
hyperfine interaction, its temporal fluctuations but also the fluctuations in a ho-
mogeneous ensemble of QDs can be modeled by the probability distribution (8.4).
Here, we consider S and J to represent the average spin polarizations in a single
QD while also accounting for phenomenological relaxation terms, but we do not
account for the nuclear spin dynamics. The pulse relations are directly applicable
to this case because they describe the action of a pump pulse on the quantum
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mechanical averages of the spins (see Sec. 2.2.2) [113]. In contrast, in the previ-
ous chapters, the quantum mechanical spin dynamics without phenomenological
terms is mimicked by applying the Gaussian TWA to account for the uncertainty
principle whenever a pump pulse acts on the electron spin (see Sec. 6.2), which is
important to account for its non-classical backaction on the nuclear spins in the
semiclassical approach. Since we neglect this backaction here, it is not necessary
to include the additional statistical overhead imposed by the resulting nondeter-
ministic pulse description. Note that we still apply the Gaussian TWA to the
Overhauser field, for which this approximation is very well justified thanks to the
central limit theorem [183, 200, 229], but it happens automatically when averaging
over the distribution (8.4).

8.2 Methods

We apply the following two approaches to analyze the spin inertia signal for various
parameters: the full solution of the equations governing the spin dynamics for finite
modulation frequency and a simplified approach for the steady-state limit. Overall,
we have checked that our results are in agreement with the approach developed
in Ref. [125] for weak pump pulses. Slight deviations are found only when the
assumptions made in Ref. [125] are not completely valid.

8.2.1 Finite modulation frequency

In order to calculate the spin inertia signal defined by Eq. (8.1) for a finite modula-
tion frequency fm, we solve the equations of motion (8.2) and (8.3) numerically by
applying the Dormand-Prince method [241], which is an adaptive fifth-order Runge-
Kutta algorithm. The numerical calculation of the spin dynamics is performed for
M = 105 random initial conditions of the Overhauser field Ωn sampled from the
normal distribution (8.4). All components of the vectors S and J are set equal to
zero before the arrival of the first pump pulse, i.e., the system is in the ground state
and unpolarized. Then, periodic pulses are applied with repetition time TR by solv-
ing the equations of motion on a grid given by the intervals t ∈ [kTR, (k+1)TR] and
applying the pulse (8.6) at the boundaries. The helicity of the pulse is alternated
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between σ+ and σ− by switching the sign of P in the pulse relation (8.6) every
Tm/2 = 1/(2fm). Finally, we calculate the average

Sz(t) = 1
M

M∑
m=1

Sz
m(t) (8.7)

over all M trajectories Sz
m(t) resulting from the random initial conditions of the

Overhauser field and calculate from it the spin inertia signal L using Eq. (8.1).
The numerical effort is realized by massive parallelization. General remarks on the
numerical treatment are given in Sec. 3.3.3.

Depending on the modulation frequency, the number of pulses to be simulated can
become fairly large. For instance, at fm = 40 kHz and TR = 13.2 ns, about 1894
pulses fit into a single modulation period, whereas for fm = 4000 kHz, the number
of pulses reduces to roughly 19. In Chap. 9, the combination of fm = 10 kHz with
TR = 1 ns is studied in detail. In this case, 106 pulses fit into a modulation period.
In the experiments analyzed there, however, the magnetic field is varied with a
rate of 45mTmin−1 with a minimal resolution of approximately 0.1mT [94]. This
implies that a single measurement is averaged at least over a time of 133.3ms, which
translates to np = 1333 modulation periods, i.e., more than 109 pulses. Fortunately,
it is not required to replicate this situation because the first few modulation periods
already contain the relevant information.

In practice, we simulate nperiod = 5 modulation periods and calculate L using
only the last two periods for the summation in Eq. (8.1) to exclude effects of
transient behavior (occurring because every simulation starts from the equilibrium
initial condition S(0) = 0). This procedure provides a good compromise between
efficiency and accuracy and in most cases, the relative error of L is well below 1%.
For high modulation frequencies where only a few pulses fit into a modulation
period, the relative error can grow because of the generic non-commensurability of
Tm and TR. It is difficult to give an error estimate, but using fm ≈ 4000 kHz and
TR = 13.2 ns as an example, the error can be as large as ∼ 5%, depending on the
precise choice of nperiod in combination with fm. As a trend, the error is smaller
for larger magnetic fields. The influence of the non-commensurability is reduced
for smaller fm because the impact of a single pulse on L is diminished when more
pulses fall into the modulation period. Overall, we have checked that the error does
not have a noticeable influence on the results presented in this chapter.
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For very small modulation frequencies, the computational effort can still be quite
large. In this case, it is sufficient to consider only nperiod = 2 modulation periods
and consider only the second (final) one to calculate L. This is what we do in
Chap. 9 because the simulations would be too expensive otherwise. We still neglect
the first period because of the transient behavior. Its influence on L vanishes in
the steady-state limit fm → 0.

8.2.2 Steady-state limit

When considering the limit of zero modulation frequency fm → 0, it is not necessary
to solve the equations for the spin dynamics explicitly over a time interval covered
by many pump pulses. Instead, one can exploit the fact that in this case the spin
polarization is a periodic function with period TR [114], i.e., the system approaches a
steady state if the pump helicity is not modulated. Provided the spin polarization
Sb before a pulse is known, one can calculate the polarizations Sa and Ja after
the pulse using Eq. (8.6) and then solve Eqs. (8.2) and (8.3) on the time interval
t ∈ [0, TR] for a given Overhauser field Ωn. In the steady state, the result at
t = TR has to coincide with Sb because of the periodicity, which we exploit to
find the steady-state value for Sb. Finally, the spin inertia signal L(fm → 0) is
proportional to the steady-state value Sz

b,NESS averaged over the Overhauser field
distribution (8.4). To be precise, L(fm → 0) = 2Sz

b,NESS/π, which follows from the
definition (8.1).

The analytical integration of Eq. (8.3) yields the time evolution of the trion pseu-
dospin. The dynamics of its z component after a pump pulse are described by

Jz(t) = Jz
a

[
cos2

(
θT
)
+ sin2

(
θT
)
cos

(
ΩT

efft
)]

e−t/τTs e−t/τ0 . (8.8)

Here, ΩT
eff = ΩT

n +ΩT
L is the total precession frequency of the trion pseudospin and

θT is the angle between ΩT
eff and the z axis. Analogously, we define θ as the angle

between Ωeff = Ωn +ΩL and the z axis.

The spin dynamics of the resident charge carrier between consecutive pulses is
determined by Eq. (8.2). In the steady state, its solution at time t = TR must
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coincide with Sb [24, 112, 113], leading to the equations [255]

Sx
b = Sx

a

[
sin2(θ) + cos2(θ) cos(ΩeffTR)

]
e−TR/τs − Sy

a cos(θ) sin(ΩeffTR) e−TR/τs

+
∫ (

Sz
aδ(τ) +

Jz(τ)
τ0

)
cos(θ) sin(θ) {1− cos [Ωeff(TR − τ)]} e−(TR−τ)/τs dτ ,

(8.9a)

Sy
b = Sx

a cos(θ) sin(ΩeffTR) e−TR/τs + Sy
a cos(ΩeffTR) e−TR/τs

−
∫ (

Sz
aδ(τ) +

Jz(τ)
τ0

)
sin(θ) sin [Ωeff(TR − τ)] e−(TR−τ)/τs dτ , (8.9b)

Sz
b = Sx

a cos(θ) sin(θ) [1− cos(ΩeffTR)] e−TR/τs + Sy
a sin(θ) sin(ΩeffTR) e−TR/τs

+
∫ (

Sz
aδ(τ) +

Jz(τ)
τ0

){
cos2(θ) + sin2(θ) cos [Ωeff(TR − τ)]

}
e−(TR−τ)/τs dτ .

(8.9c)

Here, without loss of generality, we assume that both Ωeff and ΩT
eff lie in the

(xz) plane. We also assume that τ0 is much shorter than τs and Jz(τ) = 0 at τ < 0,
so the limits of the integration over τ can be extended to run from −∞ to +∞.
Both assumptions are valid in InGaAs QDs; see Table 8.1 for typical parameters.
After inserting Jz(t) given by Eq. (8.8), the integrals can be solved analytically by
a computer algebra system such as Wolfram Mathematica, but the solution is
lengthy. The spin polarization Sz

b,NESS in the steady state results from solving the
coupled set of linear equations (8.6) and (8.9). Finally, averaging the steady-state
value Sz

b,NESS over the distribution of the Overhauser field (8.4) yields the spin in-
ertia signal L(fm → 0) = 2Sz

b,NESS/π in the limit of zero modulation frequency.
We point out that a similar approach is used, e.g., in Refs. [23–25].

Note that in order to correctly obtain the limit fm → 0, the solution has to be
averaged over the two pump helicities P = ±1. Technically, this is equivalent
to averaging over two opposite detunings corresponding to opposite signs of the
rotation angle Φ as can be seen from the pulse relation (8.6). Thus, calculating the
average is only required for Φ ̸= 0.
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8.3 Results

In this section, we analyze the spin inertia signal for various parameters, in par-
ticular for different pumping strengths and as function of the applied longitudinal
magnetic field. First, we illustrate the typical spin dynamics arising from the mod-
ulated pumping scheme. We then focus on the case of a strong magnetic field using
resonant pulses. Afterwards, the dependence of the spin polarization on the mag-
netic field is discussed and possible effects resulting from the application of detuned
pulses are highlighted. At the end of this section, we predict and describe the effect
of resonant spin amplification in Faraday geometry.

The calculations are performed for the two sets of parameters summarized in Ta-
ble 8.1. The parameters correspond to n-doped and p-doped InGaAs QD sam-
ples [93, 97] and illustrate the qualitative differences between these two kinds of
systems. The main difference is the strength of the hyperfine interaction ωn. In
n-doped QDs, the electrons are in an s-type Bloch band and the hyperfine interac-
tion stems from the Fermi-contact interaction, which is strong thanks to the confine-
ment provided by the QD. For holes (p doped) the hyperfine interaction is caused by
the dipole-dipole interaction, which is much weaker and anisotropic [97, 156–158, 184].
The different interactions are discussed in detail in Sec. 3.1. As mentioned above,
the effective type of charge carrier in the trion state is opposite to the type of the
resident charge carrier. The longitudinal g factors of electrons and holes are of the

Table 8.1: Choice of parameters and their physical meaning used for the n- and p-doped
QDs. The values are based on the experimental results of Ref. [93].

Parameter n doped p doped Physical meaning
ωn/(2π) 70MHz 16 MHz hyperfine interaction strength (ground state)
ωT
n /(2π) 16MHz 70 MHz hyperfine interaction strength (trion state)
λ 1 5 hyperfine interaction anisotropy (ground state)
λT 5 1 hyperfine interaction anisotropy (trion state)
gz −0.61 −0.45 longitudinal g factor (ground state)
gTz −0.45 −0.4 longitudinal g factor (trion state)
τs 500 ns 5200 ns spin relaxation time (ground state)
τTs 10 ns 35 ns spin relaxation time (trion state)
τ0 0.4 ns 0.4 ns radiative trion lifetime
TR 13.2 ns 13.2 ns pulse repetition time
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same order, but the spin relaxation time in the ground state τs is found experimen-
tally to be about one order shorter for electrons than for holes. For both kinds of
QDs (n or p doped), the spin relaxation time τTs in the trion state is much shorter
than the spin relaxation time τs in the ground states.

8.3.1 Typical spin dynamics resulting from modulated pumping

The characteristic behavior of the spin polarization Sz(npT
−
R ) caused by the modu-

lated pumping scheme, where the notation T−
R means that the spin polarization is

probed immediately before the arrival of a pump pulse, is shown in Fig. 8.1. for two
different modulation frequencies fm while applying a strong longitudinal magnetic
field of Bext = 300mT. Here, we use the parameters typical for n-doped QDs given
in Table 8.1. The switching of the helicity takes place at the positions highlighted
by the vertical dashed lines.

In Fig. 8.1(a) with fm = 100 kHz, the spin polarization reaches a steady state
before the helicity is switched. After switching from P = +1 to −1, the spin
polarization approaches a steady state with the same absolute value but opposite
sign. Generally, the spin polarization is smaller for weaker pulses corresponding to
larger values of Q. Simply integrating over the full time interval essentially yields
zero if the pulse sequence is applied long enough. Hence, the probed spin inertia
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Figure 8.1: Spin polarization Sz(npT
−
R ) for n-doped QDs probed immediately before

the arrival of the next pump pulse while a longitudinal magnetic field of Bext = 300mT
is applied. The pump helicity P is modulated with frequency (a) fm = 100 kHz and
(b) fm = 1000 kHz, respectively. The vertical dashed lines highlight the moments in time
at which the helicity is switched.
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signal needs to be modulated as described by Eq. 8.1 to obtain a nonzero value.
If the modulation frequency is chosen large enough, e.g., fm = 1000 kHz as in
Fig. 8.1(b), the helicity is switched before the spin polarization can reach a steady
state. The result is that the spin inertia signal 8.1 yields a smaller value. Generally,
the dependency on the modulation frequency depends on the spin relaxation rate,
which is the essence of the spin inertia effect. It is described in detail in the following
section.

Since the spin polarization S(0) = 0 is zero at the start of a simulation, there is a
transient behavior for the first few modulation periods (mainly in the first one). As
discussed in Sec. 8.2.1, this transient part needs to be omitted when calculating the
spin inertia signal. In the limit of zero modulation frequency fm → 0, the influence
of the initial buildup on the spin inertia signal vanishes so that we can simply apply
the steady-state approach introduced in Sec. 8.2.2.

8.3.2 Spin inertia in a strong longitudinal magnetic field

As discussed in Sec. 3.3.4, the application of a strong longitudinal magnetic field
ΩL ≫ Ωn suppresses the nuclei-induced spin relaxation. In this limit, the influence
of the hyperfine interaction can be neglected. Instead of Eqs. (8.2) and (8.3), the
spin dynamics can be described by the two coupled scalar equations

d
dt
Sz = −S

z

τs
+ Jz

τ0
, (8.10a)

d
dt
Jz = −J

z

τTs
− Jz

τ0
. (8.10b)

In the realistic situation τs ≫ TR, Eq. (8.10) can be solved for the initial conditions
determined by the pulse relation (8.6). For now, we consider resonant pulses with
Φ = 0. For t≫ τ0 and t < TR, the solution is given by

Sz(t) = (Sz
b +∆Sz) e−t/τs , (8.11)

where

∆Sz = −
(P
4
+ Sz

b
2

)
(1−Q2)

(
τ0

τTs + τ0
− τ0
τs

)
(8.12)
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is the difference of the spin polarization after the trion recombination and before
the arrival of the next pump pulse. In contrast to the theory of Ref. [125], the
time τTs can be comparable to τ0.

Still assuming τs ≫ TR and t ≫ τ0, the train of pump pulses can be replaced on
average by a continuous pumping such that the spin dynamics is described by

d
dt
Sz = ∆Sz

TR
− Sz

τs
. (8.13)

The first term represents the generation rate of the spin polarization. In this limit,
the spin inertia dependency is described by the relation [159]

L(fm) =
L(0)√

1 + (2πτ ∗s fm)2
, (8.14)

where τ ∗s is the effective spin relaxation time defined by [125]

1
τ ∗s

= 1
τs

+ (1−Q2)τ0
2TR(τTs + τ0)

. (8.15)

In the limit of weak pulses with Q → 1, the intrinsic spin relaxation time τs is
retained. But for Q < 1, the effective spin relaxation time τ ∗s is shorter than τs be-
cause of an effective quenching of the spin relaxation time induced by strong pump
pulses. This effect can be seen by insert Eq. (8.12) into Eq. (8.13) and assuming
τs ≫ τTs . The spin inertia signal at zero modulation frequency is determined by
the balance between spin generation and spin relaxation

L(0) = 1−Q2

2π
τ ∗s
TR

∣∣∣∣∣ τ0
τTs + τ0

− τ0
τs

∣∣∣∣∣ , (8.16)

where we take into account that according to the definition (8.1) the steady-state
spin polarization is π/2 times larger than L(0) [125]. The pump pulse creates a
spin polarization proportional to (1 − Q2), which has opposite directions in the
ground and trion states as can be seen from Eq. (8.6d), e.g., for Sz

b = 0. Hence,
the spin relaxations in the ground and trion states during the trion lifetime result
in two competing contributions to the total spin polarization as described by the
two terms under the modulus.

Note that it can be deduced from Eq. (8.12) that the effect of spin polarization
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Figure 8.2: Dependence of the spin inertia signal L on the modulation frequency fm
at a magnetic field of Bext = 300mT for (a) n-doped and (b) p-doped QDs, calculated
by numerical simulations (solid lines) and by Eqs. (8.14) and (8.15) (dashed lines). The
vertical dash-dotted lines represent the corresponding cutoff frequencies 1/(2πτ∗s ), where
the effective spin relaxation time τ∗s is calculated using Eq. (8.15). The inset shows the
inverse effective spin relaxation time 1/τ∗s as a function of Q and P/Pπ, calculated by
fitting Eq. (8.14) to data obtained from the numerical simulation for Bext = 300mT (blue
solid line) and calculated according to Eq. (8.15) (red dashed line).

saturation results from an effective decrease of the spin generation rate. However,
it is not straightforward in this interpretation to explain the change of the cutoff
frequency 1/(2πτ ∗s ) in Eq. (8.14). Thus, we prefer the interpretation based on the
effective decrease of the spin relaxation time for stronger pump pulses as described
by Eq. (8.15). But sometimes, the other interpretation is also convenient to explain
certain effects.

The spin inertia dependence L(fm) at a strong magnetic field of Bext = 300mT
using different pumping efficiencies Q is shown in Fig. 8.2 for n- and p-doped QDs.
The dependence described by Eq. (8.14) combined with Eq. (8.15) is depicted by
the dashed curves in Fig. 8.2. The spin polarization decreases significantly when
the modulation frequency fm becomes larger than the cutoff frequency 1/(2πτ ∗s ),
which is the essence of the spin inertia effect. For fm ≫ 1/(2πτ ∗s ), the dependence
on the modulation frequency is reciprocal, L(fm) ∝ 1/fm. In the opposite limit, the
system approaches the steady-state spin polarization L(0). The small differences
between the analytical (dashed lines) and numerical (solid lines) results are related
to the large but finite ratio of the external magnetic field and the Overhauser field
in the numerical simulations.
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Since the hyperfine interaction can be neglected in the limit of a strong longitudinal
magnetic field, the results are very similar for n- and p-doped QDs. The main
difference is a shift of the spin inertia dependence to smaller modulation frequencies
for the p-doped case, which results from the ground state spin relaxation time τs
being larger by one order of magnitude than in the n-doped case (see Table 8.1).

Let us turn to the dependence on the pump power. In the case of resonant pulses,
the pumping efficiency is determined by Q = cos(Θ/2), where Θ is the effective
area of the pump pulse [113]; see Sec. 2.2.2 for more details and for the definition
of Θ given in Eq. (2.14). In parallel, the pump pulse power scales like Ppu ∝ Θ2 for
small powers [23, 113, 135]. Thus, for a power smaller than the power of a π pulse
(Θ = π ⇒ Q = 0), denoted by Pπ, we obtain the relation

Q = cos
(
π

2

√
Ppu

Pπ

)
, (8.17)

which facilitates the investigation of the spin inertia as a function of the pump
power Ppu because the proportionality factor depends on many details related to the
specific QD sample. The power Pπ can be determined in experiments by increasing
Ppu until the spin polarization shows a maximum (pulses with Θ = π are most
efficient) [23].

Measurements of the spin inertia allow one to determine the effective spin relaxation
time τ ∗s in the limit of a large magnetic field because the only other relevant param-
eter in this limit is the modulation frequency fm. The inset in Fig. 8.2 shows the
dependence of the inverse effective spin relaxation time on Q and on the normalized
pump power Ppu/Pπ, which is related to Q by Eq. (8.17). The solid line is obtained
from the numerical simulation by fitting the dependence L(fm) for Bext = 300mT
with Eq. (8.14), and the dashed lines are calculated using Eq. (8.15). In the limit
of zero pump power (Q → 1), τ ∗s is equal to the intrinsic spin relaxation time τs,
as expected. With an increase of the pump power, the rate of spin relaxation effec-
tively increases. Its dependence on the pump power in the regime of small powers
appears to be linear. This justifies a linear extrapolation to zero pump power in
order to extract the intrinsic spin relaxation time τs from measurements of the spin
inertia as performed in Refs. [93, 159]; see also the insets in Figs. 2.6(c) and 2.6(d)
taken from Ref. [93].

The dependence of the spin inertia signal on the pump power in the strong field
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Figure 8.3: Dependence of the spin inertia signal L on the normalized pump power
Ppu/Pπ at a magnetic field of Bext = 300mT in the steady-state limit for various trion
spin relaxation times τTs and remaining parameters chosen to represent (a) n-doped and
(b) p-doped QDs. For comparison, the limiting cases of large and small τTs , described by
Eqs. (8.19) and (8.20), are depicted as dashed lines.

limit is shown in Fig. 8.3 for n- and p-doped QDs in the steady-state limit fm → 0.
The slope depends on the ratio τTs /τ0 of the trion spin relaxation time and the trion
recombination time and is larger for smaller ratios. The reason is that a smaller
ratio implies that a larger degree of spin polarization remains in the ground state
after the trion recombination, i.e., spin generation rate is increased as can be seen
from Eq. (8.12) for τs ≫ τTs ≫ τ0. Potentially, this allows one to determine this
ratio by measuring the dependence of the spin polarization on the pump power. If
the recombination time τ0 is known, e.g., from time-dependent photoluminescence
measurements, this dependence gives access to the spin relaxation time τTs of the
trion, which is not easy to determine by other means. Note that in Fig. 8.3, we
vary only τTs while keeping τ0 constant, but we have checked that varying 1/τ0 by
the same factors has the same effect.

Let us analyze L(0) given by Eq. (8.16), which describes the spin polarization in the
steady state induced by an infinite train of pulses with the same helicity. Usually,
the spin relaxation in the trion state is much faster than in the ground state so that
τTs ≪ τs holds and it follows

L(0) = (1−Q2)τ ∗s τ0
2πTR(τTs + τ0)

. (8.18)

The dependence of L(0) on the pump power Ppu in a large external magnetic field
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stems directly from the multiplier 1−Q2 = sin2
(√

Ppu/Pππ/2
)

and also from the
dependence of the effective spin relaxation time τ ∗s on Ppu. For long trion spin
relaxation times τTs ≫ τsτ0/TR, the latter dependence is negligible and it follows

L(Ppu)
L(Pπ)

= sin2
(
π

2

√
Ppu

Pπ

)
. (8.19)

This function, which does not depend on any system parameter besides the pump
power, is displayed by the red dashed curve in Fig. 8.3. In the opposite limit
τTs ≪ τ0, we obtain

L(Ppu)
L(Pπ)

=
sin2

(
π
2

√
Ppu/Pπ

)
sin2

(
π
2

√
Ppu/Pπ

)
+ 2TR/τs

. (8.20)

This dependence is displayed by the purple dashed curve in Fig. 8.3. In this limit,
the spin inertia signal quickly increases for powers Ppu ≳ PπTR/τs until saturation
because an increase of the pump power not only increases the spin generation
efficiency but also shortens the effective spin relaxation time τ ∗s so that both effects
compensate each other. Since the spin relaxation times τs for n- and p-doped QDs
differ by one order of magnitude, saturation is reached faster for the p-doped case.
For intermediate values of τTs , the dependence on the pump power of the spin inertia
signal smoothly changes from one limit to the other as demonstrated in Fig. 8.3.

8.3.3 Polarization recovery

Next, we analyze the dependence of the spin inertia signal on the strength of the
applied longitudinal magnetic field. It is commonly accepted that the application
of an external magnetic field in Faraday geometry suppresses nuclei-induced spin
relaxation. Hence, increasing its strength typically leads to an increase of the spin
polarization [104, 115]. This effect is known as polarization recovery and the related
dependence is referred to as polarization recovery curve (PRC). Recently, it was
shown that the polarization recovery can manifest itself in a surprising nonmono-
tonic way for p-doped QDs [93, 125]; see also Fig. 2.6(b) taken from Ref. [93].

Figure 8.4 depicts the spin inertia signal as a function of the external magnetic
field Bext. The calculations are performed for n-doped and p-doped QDs at low
and high modulations frequencies fm combined with various pumping strengths Q.
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Figure 8.4: Polarization recovery curves: spin inertia signal L as a function of the exter-
nal magnetic field Bext at low and high modulation frequencies fm for various pumping
strengths Q. The parameter choice for n- and p-doped QDs are listed in Table 8.1. The
gray dashed line in (b) indicates the maximum possible value Lmax = 1/π.
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Figure 8.5: Normalized version of Fig. 8.4 to highlight changes in the shapes of the PRCs
resulting from the variation of the pumping strength Q or the modulation frequency fm.
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Obviously, the shapes of the PRCs displayed in Fig. 8.4 are qualitatively different
for the two sets of system parameters: for n-doped QDs the PRC is monotonic,
whereas for p-doped QDs the spin polarization has a maximum at Bext ≈ 15mT.
Because the spin inertia signal is an even function of Bext, these shapes are referred
to as V- and M-like, respectively [93, 125].

As discussed in Sec. 2.4.2, the different PRC shapes are caused by differing mech-
anisms leading to the spin polarization generation [93, 125], which is related to
the complete relaxation mechanism of the trion state. For p-doped QDs, in con-
trast to the n-doped case, a major part of the relaxation stems from the hyperfine
interaction of the unpaired electron spin in the positively-charged trion with the
surrounding nuclei. Therefore, the application of a longitudinal magnetic field sup-
presses a part of the total trion relaxation mechanism, which leads to a reduced
spin polarization generation rate. As a result, the probed spin polarization is re-
duced for large magnetic fields, leading to the characteristic M-like shape of the
PRC for p-doped QDs. In contrast, for n-doped QDs, the hyperfine interaction of
the hole in the trion with the surrounding nuclei is weak so that a reduction of
the spin polarization is not observed for large magnetic fields. The result is the
well-known V-like shape of the PRC, which is the shape that also follows from the
frozen Overhauser field approximation under equilibrium conditions (see Fig. 3.3).
But here, the nonequilibrium situation gives rise to several interesting effects.

Let us analyze the dependence of the PRCs on the pumping strength Q and on
the modulation frequency fm. Complementary to Fig. 8.4, normalized versions
of the PRCs are shown in Fig. 8.5, which make it easier to notice changes of
the PRC shapes. For the n-doped case at fm = 40 kHz, a strong broadening
of the zero-field minimum is visible for stronger pulses corresponding to smaller
values of Q. No broadening can be discerned when using the large modulation
frequency fm = 4000 kHz. But when fixing, e.g., Q = 0 while decreasing fm, a
strong broadening is evident again. A similar but less pronounced behavior is
also visible for the p-doped case. This phenomenon is closely related to the pulse
properties. Strong pulses with Q → 0 destroy the transverse spin components as
can be seen from Eq. 8.6. But as discussed in Sec. 8.3.2, these components are
only important if the magnetic field is not too large. For finite magnetic fields, the
Overhauser field contributes to the effective magnetic field Ωeff = ΩL +Ωn, which
results in a tilt from the z axis. Thus, the transverse spin components are larger
on average for smaller external magnetic fields so that more spin polarization is
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destroyed by strong pulses. The result is the observed broadening of the zero-field
minimum.

The broadening observed for smaller modulation frequencies is related to the satu-
ration limit of the spin polarization (all spins pointing in the same direction). The
relative change of Sz induced by a single pulse (8.6a), which is responsible for the
buildup of the spin polarization, reduces while approaching the saturation limit.
But at the same time, the relative change of the transverse components does not
depend on the degree of spin polarization. Hence, the broadening effect becomes
more pronounced for a spin polarization closer to the saturation limit therefore for
small modulation frequencies.

Notably, a similar broadening effect is observed in Ref. [93] for a decreasing mod-
ulation frequency, which could not be explained by the theory. The respective
PRCs are visible in Fig. 2.6(a). Our results suggest that accounting for a finite
pump power could lead to an improved agreement between experiment and theory.
While we do not try to obtain better fits for these experimental results here, we
will see in Chap. 9 that our extended theory can indeed describe the broadening of
the zero-field minimum observed in experiments.

In the limit of very small spin polarization, i.e., when the modulation frequency
is very large or when very weak pulses are applied, the width of the zero-field
minimum of the PRC is determined by the frequency ωn characterizing the hyperfine
interaction of the resident charge carriers. Often, the PRC described by Eq. (3.47),
which follows from the frozen Overhauser field approximation under equilibrium
conditions [88], is fitted to measured data to determine ωn [88]. We will see in
Chap. 9 that this procedure is not sufficient if strong pump pulses are applied. At
least an extrapolation to zero pump power is required.

The nonequilibrium conditions are responsible for another interesting effect. As
demonstrated in Fig. 8.5(b), the application of stronger pulses can result in a change
of the PRC shape from M- to V-like for p-type QDs. The reason for this behavior is
similar to the mechanism leading to the broadening of the zero-field minimum. The
larger the spin polarization, the less efficient is the spin generation of a single pump
pulse as described by Eq. (8.6a). Thus, starting from a pronounced M-like shape,
an increase of the pumping strength has a reduced effect on the regime around
Bext ≈ 15mT where the spin polarization is already large. In contrast, the spin
polarization at large magnetic fields is much smaller so that the spin generation is
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more efficient at large magnetic fields than at Bext ≈ 15mT. The consequence is
that the PRC shape evolves from M- to V-like. This means that the decrease of
the total trion spin relaxation rate by an increase of the magnetic field does not
necessarily lead to a significant decrease of the spin polarization in the limit of
strong pumping if the overall degree of spin polarization is large. The maximum
possible value of the spin inertia signal corresponds to the case in which the spin
polarization amounts to Sz

b = −P/2 before a pump pulse. In this case, Eq. (8.1)
yields L = 1/π, which is highlighted in Fig. 8.4(b) as upper bound (gray dashed
line).

In Fig. 8.5, it can be also seen that the pumping strength affects the depth of
the zero magnetic field for both the n- and p-doped case. The expected ratio for
n-doped QDs in the limit of small spin polarization is L(0mT)/L(Bext → ∞) = 1/3
as described by Eq. (3.47). But for small modulation frequencies or strong pulses,
we clearly find a difference from this ratio. This effect is similar to what is observed
when including slow nuclear spin dynamics in the model [125]. Thus, the finite
nuclear spin correlation time of about 200 ns obtained in Ref. [93] could be related
to the assumption of very weak pumping. Certainly, there is an effect stemming
from nuclear spin dynamics, which is omitted in our approach. But our results
demonstrate that other effects can lead to a similar behavior so that the importance
of the nuclear spin dynamics is difficult to judge in this context.

8.3.4 Nonresonant pumping

Up to now, we have considered resonant pump pulses by setting Φ = 0 in the
pulse relation (8.6). Let us briefly discuss the role of detuned pulses with Φ ̸= 0.
Figure 8.6 shows the normalized PRCs for n-doped and p-doped QDs for moderate
pump pulses with Q = 0.7 in combination with various values of the rotation
angle Φ. There are a number of changes visible in the PRCs when increasing Φ,
but they are qualitatively similar for large (solid lines) and zero (dash-dotted lines)
modulation frequencies.

In the first place, an increase of Φ leads to an increase of the spin polarization for
small to intermediate magnetic fields. From the unscaled versions of the PRCs in
Fig. 8.6 (not shown), we find that the degree of spin polarization does not depend
on Φ at large magnetic fields. To explain this effect, we recall that a finite value
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Figure 8.6: PRCs for various rotation angles Φ using moderate pump pulses with
Q = 0.7 for n- and p-doped QDs. The numerical simulations (solid lines) are performed
at fm = 4000 kHz (n doped) and fm = 250 kHz (p doped) and for the steady-state limit
fm → 0 (dash-dotted lines). The vertical lines in panel (b) represent the phase synchro-
nization condition (8.24). The parameter choices for n- and p-doped QDs are listed in
Table 8.1.

of Φ corresponds to a spin rotation in the (xy) plane as described by the pulse
relation (8.6). We recall that the spin rotation be understood as a consequence of a
dynamic Zeeman effect: The electric field of the circularly polarized light induces a
splitting of the spin states with z projections ±1/2 through the optical Stark effect,
which is equivalent to an additional magnetic field parallel to the z axis acting only
in the presence of the pump pulse [115, 118]. Qualitatively, this effective magnetic
field increases the spin polarization similarly to the external magnetic field, i.e., it
effectively suppresses the role of the random Overhauser field.

As discussed above, strong pump pulses partially destroy the transverse components
of the spin polarization; see Eq. (8.6) for Q→ 0. Thus, the influence of Φ is reduced
for smaller values of Q, i.e., the in-plane spin rotation becomes less important for
stronger pulses.

In order to describe the effect of a finite rotation angle Φ on the spin polarization
analytically, we consider the limit of very short trion spin relaxation time τTs ≪ τ0

for isotropic hyperfine interaction in the ground state (λ = 1), long spin relaxation
time τs ≫ TR, strong hyperfine interaction ωnTR ≫ 1, and weak pump pulses with
(1−Q2)τs/TR ≪ 1. The precession of the trion pseudospin has no effect in this limit
because the assumption τTs ≪ τ0 implies that it its decay is basically immediate and
also nonradiative. Under these assumptions, the system of equations (8.6) and (8.9)
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can be solved analytically in the steady-state limit, yielding

Sz
b,NESS = −P

4
(1−Q2) τs

TR

κ2

κ2 + sin2(θ) sin2(ϕ/2)
, (8.21)

with

κ = cos(θ) cos(Φ/2) sin(ϕ/2)− P cos(ϕ/2) sin(Φ/2) (8.22)

and ϕ = ΩeffTR. Averaging this solution over the Overhauser field distribution (8.4)
yields the ratio

L(Bext = 0mT)
L(Bext → ∞)

= 1− 2
sin2(Φ/2)

+ 2π sin4(Φ/4) + |Φ| cos(Φ/2)
sin3(|Φ|/2)

(8.23)

for 0 < |Φ| < π. At Φ = 0 and Φ = π, we obtain L(0mT)/L(Bext → ∞) = 1/3 and
π/2−1, respectively, with a monotonic increase described by Eq. (8.23) in between.
Thus, a finite rotation angle Φ leads to an increase of the spin polarization at zero
magnetic field relative to its value at large field.
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Figure 8.7: Ratio L(Bext = 0mT)/L(500mT) in the steady-state limit as a function
of Φ for various pumping strengths Q. The trion spin relaxation time is chosen to be
τTs = 0.04ns, the other parameters are taken from Table 8.1 for n-doped QDs. The gray
dashed curve represents the analytical solution for the limit of weak pump pulses given
by Eq. (8.23).
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In order to check the validity of Eq. (8.23), we compare it to the numerical cal-
culations with appropriate parameter choices (τTs = 0.01 ns) in Fig. 8.7. The con-
vergence to the weak pump pulse limit Q → 1, which was used for the derivation
of Eq. (8.23), is evident. In the case of resonant pulses with Φ = 0, we obtain
L(Bext = 0mT)/L(500mT) ≈ 1/3, which is the ratio following from the frozen
Overhauser field approximation [88, 104]; see Eq. (3.48b) and Fig. 3.3. Notably, an
increase of Φ leads to a deviation from the ratio 1/3 in agreement with Eq. (8.23).
At the same time, an increase of the pump power (or a decrease of Q) leads to a
flattening of this dependence and to a slight deviation of the ratio from 1/3 even for
Φ = 0. For π pulses (Q = 0), a finite value of Φ has no effect because the transverse
spin components in the pulse relation (8.6) vanish for Q = 0. In summary, we find
that detuned pulses with fixed Q > 0 and Φ ̸= 0 lead to an increase of the spin
polarization at zero magnetic field relative to the polarization at large field.

The most interesting effect is a qualitative change of the PRC shapes shown in
Fig. 8.6 for larger values of Φ. For the n-doped case, the PRC can become non-
monotonic, while for p-doped QDs, additional modulations appear in the PRC. The
additional modulations are the result of a novel effect that we term resonant spin
amplification in Faraday geometry. It is studied in the following section and also
in Chap. 9.

8.3.5 Resonant spin amplification in Faraday geometry

The spin polarization studied as a function of the longitudinal magnetic field in
Fig. 8.6(b) shows additional periodic modulations for large values of Φ. They are
the result of resonant spin amplification (RSA) in Faraday geometry. The RSA
effect is well established in Voigt geometry where a transverse external magnetic
field is applied [77, 133, 135–137]. This effect leads to a considerable enhancement
of the spin polarization whenever the Larmor frequency ΩL = µB|gzBext|ℏ−1 fulfills
the phase synchronization condition (PSC)

ΩLTR = 2π|k| , k ∈ Z . (8.24)

If this condition is fulfilled, the Larmor period of the resident charge carrier spin
is a multiple of the pulse repetition time, which leads to a constructive interplay
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Figure 8.8: Illustration of the mechanism lead-
ing to RSA in Faraday geometry. The transverse
component of the Overhauser field Ωn tilts the ef-
fective field Ωeff = Ωn+ΩL from the z axis, induc-
ing a precession of the spin S with frequency Ωeff .
As a result, the z projection of S oscillates with
the same frequency and the amplitude of this os-
cillation depends on the tilt angle. Thanks to the
properties of the pulse (8.6), its application results
in RSA for a single QD whenever the PSC (8.25)
is fulfilled.

between the spin polarizations induced by consecutive pulses. We label these dis-
crete resonance frequencies by their mode number k. The magnetic fields fulfilling
this condition are highlighted as vertical lines in Fig. 8.6(b), perfectly matching the
periodicity of the modulations.

In Ref. [137], it is demonstrated that applying a magnetic field that is slightly tilted
from the longitudinal configuration reveals RSA in measurements of the PRC. In
the setup under study, however, the external field is applied purely along the z axis
without any tilt, so the spin component Sz does not precess on average and one
expects that no RSA takes place. But in reality, the Overhauser field tilts the
resulting effective magnetic field slightly from the z axis in each QD as illustrated in
Fig. 8.8. This mechanism renders RSA in Faraday geometry possible under certain
conditions. It is the same mechanism that is responsible for the visible oscillations
in the time domain of an initially created spin polarization Sz in QDs subjected to
a finite, longitudinal magnetic field (see Fig. 3.2). One requirement to observe this
effect is that Ωn and ΩL are of similar magnitude because the tilt from the z axis
vanishes for ΩL ≫ Ωn. Thus, the effect vanishes for large external magnetic fields,
i.e., for large ratios ΩLλ/ωn because ωn/λ characterizes the transverse component
of the Overhauser field in the ensemble of QDs according to its distribution (8.4).
Typically, the random Overhauser field smears out the RSA modes so that they are
not visible, e.g., for the n-doped case where ωn is quite large. Hence, only a very
small modulation is discernible in Fig. 8.4(a) for Q = 0.

A rough estimate of a condition under which RSA in Faraday geometry should be
observable is ωn ≲

√
2π/TR. Otherwise, the potential RSA modes are too broad.

This estimate is motivated by Ref. [135], where the regimes for the standard RSA
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and spin mode locking in Voigt geometry are established. Consequently, decreasing
the pulse repetition time TR should lead to an increase of the visibility of the RSA
modes. Indeed, we will see in Chap. 9 that this is the guiding idea to reveal RSA
in Faraday geometry under experimental conditions.

As explained above, the RSA modes result from the transverse components Ωx
n

and Ωy
n of the Overhauser field. If these components are small because of a large

anisotropy degree λ [see Eq. (8.4)], the RSA modes are less pronounced. Figure 8.9
shows the spin polarization in the steady-state limit for π pulses (Q = 0) for various
anisotropies of the hyperfine interaction λ. For comparison, vertical lines represent
the values of Bext that fulfill the PSC (8.24), which perfectly match the positions
of the periodic maxima. As expected, smaller values of λ are favorable to observe
the RSA modes because the transverse components of the Overhauser field are less
suppressed.

A tiny shift of the peak position from the PSC (8.24) can be discerned for the first
maximum at |k| = 1. This deviation is expected for small magnetic fields. For each
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Figure 8.9: PRCs in the steady-state limit showing RSA in Faraday geometry for var-
ious anisotropy degrees λ while using π pulses with Q = 0. The other parameters are
representative for p-doped QDs (see Table 8.1). The vertical lines represent the values of
Bext that fulfill the PSC (8.24) for the mode numbers |k|.
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individual QD of the ensemble, the relevant PSC is given by

ΩeffTR = |ΩL +Ωn|TR = 2π|k| , k ∈ Z , (8.25)

because the precession takes place about the complete magnetic field consisting of
the external magnetic field plus the Overhauser field. Assuming that the external
field is nevertheless larger than the characteristic value ωn of the Overhauser field,
ΩL ≳ ωn, one can expand the modulus in Eq. (8.25) in powers of ωn and average
the resulting expression over the distribution (8.4), yielding

|ΩL +Ωn| = ΩL

[
1 + ω2

n
2λ2Ω2

L
+O

(
ω4
n

Ω4
L

)]
. (8.26)

Contributions from odd orders cancel because of the symmetry of the distribu-
tion (8.4). Qualitatively, the expansion implies that the real resonance frequen-
cies are actually slightly larger than the bare resonant Larmor frequency resulting
from the PSC (8.24). This slight deviation can be discerned in the vicinity of the
mode |k| = 1 in Fig. 8.9. For larger magnetic fields, the deviation vanishes as
described by the expansion.

Resonant spin amplification is less pronounced for weaker pulses corresponding to
larger values of Q. This can be easily understood because strong pump pulses
generate a spin polarization parallel to the z axis as can be seen from the pulse re-
lation (8.6) for Q→ 0. The consequence is the resonant buildup of spin polarization
in a single QD whenever the PSC (8.25) is fulfilled. But for weaker pulses corre-
sponding to larger values of Q, the resonant buildup of the spin polarization has
less of an effect because weak pulses do not push the spin polarization towards the
z axis. Since rather weak pulses were applied for the PRC measurements presented
in Ref. [93], it is no surprise that indications of RSA are not observed.

We stress that the assumption of a static Overhauser field does not restrict the
observation of RSA in Faraday geometry. The nuclear spin dynamics in QDs with
104−106 effectively coupled nuclear spins takes place on a timescale of the order of
100 to 1000 ns [104], which is much larger than the pulse repetition time TR. Hence,
it has no noticeable effect on the resonant buildup of the spin polarization and it
does not lead to a further smearing of the RSA modes either.

The effect of RSA in Faraday geometry is not restricted to ensembles of QDs. We

231



Chapter 8 Spin inertia and polarization recovery: Influence of pumping
strength

recall that the averaging over the Overhauser field distribution (8.4) models two
physical scenarios: (i) the average over a homogeneous ensemble of QDs and (ii) the
time average in an experiment where the signal is probed over a time much longer
than the typical correlation time of the nuclei. Since single QDs can be modeled
by the latter scenario, the effect should also take place for them.

From a methodical perspective, RSA in Faraday geometry opens the possibility
to measure the longitudinal g factor gz of the resident charge carriers in small
to intermediate magnetic fields3 with high accuracy. It is the only uncontrollable
parameter appearing in the PSC (8.24) so that gz can be determined from the
periodicity of the RSA modes. In Chap. 9, we will see that this novel effect can
indeed be measured and modeled by theory.

8.4 Chapter conclusion

We have developed an extension of the theory of Ref. [125] to describe the spin in-
ertia and polarization recovery effect for localized charge carriers in singly-charged
QDs while taking into account a finite pump power and also nonresonant pump
pulses. In strong longitudinal magnetic fields, the spin dynamics can be described
by a single effective spin relaxation time that shortens if the pump power is in-
creased. In this limit, the dependence of the spin polarization on the pump power
can help to determine the ratio of the trion spin relaxation time and the radiative
trion lifetime.

The dependence of the spin polarization on the longitudinal magnetic field, called
the polarization recovery curve, can be V- or M-like for the parameters generic
for n- or p-doped QDs, respectively. For small modulation frequencies, an increase
of the pump power leads to a gradual change of the shape from M-like to V-like.
Furthermore, the application of strong pump pulses can increase the width of the
zero-field minimum of the PRC if the degree of spin polarization is large, e.g., for
small modulation frequencies. Vice versa, since the modulation frequency has a
strong impact on the degree of spin polarization, this broadening is also visible
when reducing the modulation frequency while applying strong pulses. All these
effects result from the spin polarization approaching the saturation limit where all
3The effective g factor in a real system may change at large magnetic fields as a result of band
mixing.
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spins point in the same direction. But it needs to be stressed that they also appear
when the saturation limit is fairly far away. The effects vanish only in the limit
where the degree of spin polarization is very small.

Furthermore, the application of nonresonant pulses leads to an increase of the spin
polarization at zero magnetic field relative to its value at large field. Notably,
this generalizes the established ratio 1/3 appearing under equilibrium conditions.
Generally, also for resonant pulses, the depth of the zero-field minimum of the PRC
depends strongly on the pumping strength. The ratio 1/3 is approximately retained
for n-doped QDs in the limit of very weak pulses.

Finally, we have predicted the emergence of resonant spin amplification in Fara-
day geometry. This effect, which is enabled by the transverse component of the
Overhauser field, manifests itself as a periodic modulation of the spin polariza-
tion studied as a function of the external magnetic field. It is a clear identifying
characteristic of the commensurability of the Larmor precession with the periodic
pumping. In the following chapter, this novel effect is analyzed in more detail.
There, we analyze recent measurements performed on an inhomogeneous ensemble
of QDs, which demonstrate its realization.

The observation of RSA in our calculations highlights the importance of commen-
surability also in Faraday geometry. Hence, it is an interesting subject for future
research to investigate whether effects similar to nuclear focusing can emerge. Ob-
viously, such a study requires the inclusion of the nuclear spin dynamics in the
simulations, which is beyond the scope of this thesis.
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Chapter 9

Resonant spin amplification in Faraday
geometry in inhomogeneous ensembles
of quantum dots

The g factor is one of the most basic parameters for the spin dynamics in QDs
or generally in semiconductor nanostructures. By means of the standard RSA
method [136], it is possible to measure its transverse component with high accu-
racy. This technique is based on the pump-probe technique (see Sec. 2.3) while a
magnetic field is applied perpendicular to the optical axis (Voigt geometry). As
a consequence of RSA, the spin polarization is resonantly amplified whenever the
Larmor period is multiple integer of the laser repetition time [77]. The RSA effect
is not only suitable to determine the transverse g factor but also to evaluate pa-
rameters such as its spread, spin relaxation times, or the strength of the hyperfine
interaction [267]. This method has been successfully applied to a variety of systems,
e.g., bulk GaAs [136], III-V and II-VI quantum wells and epilayers [137, 265, 268],
and also QDs [133, 135].

In Faraday geometry where the magnetic field is parallel to the optical axis, there is
no spin precession of the resident charge carriers on average so that it is difficult to
determine their g factor. Up to now, it needs to be measured indirectly: First, the
transverse g factor is determined in Voigt geometry, e.g., by standard RSA [136]
or from time-resolved measurement of quantum beats [23, 132, 269]. Repeating
the measurements in an oblique geometry (e.g., tilted by 45◦) gives access to the
longitudinal g factor [137, 269]. But the method suggested in Sec. 8.3.5 based on
RSA in Faraday geometry can be used to measure the longitudinal g factor directly
and with high accuracy.
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Chapter 9 Resonant spin amplification in Faraday geometry in
inhomogeneous ensembles of quantum dots

In this chapter, we model and analyze recent measurements, which confirm exper-
imentally that RSA can indeed emerge in Faraday geometry for an ensemble of
n-doped InGaAs QDs.1 For this purpose, the model used in Chap. 8 is extended to
account for inhomogeneous ensembles of QDs based on the formalism of Ref. [113].
We analyze results of experiments performed for two different samples of n-doped
InGaAs QDs. Sample B is the n-doped QD ensemble studied in Ref. [93], whose
parameters also motivated the choice of parameters in Chap. 8. Sample A is a QD
ensemble with a stronger hyperfine interaction and longer spin relaxation times.

9.1 Modeling an inhomogeneous ensemble of quantum dots

We describe the spin dynamics in the n-doped QDs by the phenomenological model
introduced in Sec. 8.1. To account for the experimental situation of an inhomoge-
neous ensemble of QDs, we apply the formalism of Ref. [113], which allows for a
detailed description of the pumping and probing of the spins as a function of the
trion transition energy. Since a pulse repetition time of TR = 1 ns is used in the
experiments (instead of the common choice TR = 13.2 ns), we need to account for
trion states that have a finite population at the arrival of a pump pulse. For this
reason, we resort to the pulse relations (2.9), (2.10), and (2.11), which are derived in
Sec. 2.2.2 and generalize the pulse relations derived in Ref. [113] to this situation.

For n-doped QDs, it is typically sufficient to neglect the precession term in the
equation of motion (8.3). The reason is that in this case, the trion pseudospin
stems from the heavy hole with weak and anisotropic hyperfine interaction, i.e., its
contribution to the generation rate of spin polarization is minor [125]. The ensemble
of InGaAs QDs studied in Sec. 9.3 (Sample B) is well characterized [93]. This is
not the case for Sample A so that more parameters need to be fitted. Hence, we
neglect the unimportant precession term in Eq. (8.3) in the analysis of Sample A
but include it for Sample B for which the relevant parameters are already known.
Despite the better characterization of Sample B, the results for Sample A are more
suitable to demonstrate the effect of RSA in Faraday geometry because the stronger
hyperfine interaction leads to larger number of visible RSA modes.
1This chapter is based on the author’s publication [94], ©2021 American Physical Society. The
author performed the numerical simulations to analyze the experimental data and to study the
RSA visibility. The analysis of the spin inertia dependence was performed by A. Greilich. The
experiments were performed by E. Evers, V. Nedelea, and A. Greilich.
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In our model calculations presented in Sec. 9.3 and 9.2, we use the parameters listed
in Table 9.1. The two fit parameters varied to reproduce the experimental results
for Sample B are the longitudinal electronic g factor, which is determined by the
positions of the experimentally observed RSA modes, and the trion spin relaxation
time τTs (estimated in Ref. [93] to be τTs < 1000 ns). For Sample A, the longitudinal
electronic g factor is also determined by the positions of the RSA modes. The spin
relaxation time τs is determined from measurements of the spin inertia, the value
of ωn is determined such that the width of the RSA modes fits the experimental
results.

It should be mentioned that the simulated PRCs are fairly sensitive to the choice
of the trion spin relaxation time τTs and of the effective pulse area Θ entering in the
pulse relations, and both quantities can only be estimated. It is possible that there
are other combinations that yield a similarly good agreement between experiment
and theory.

Table 9.1: Parameters and their physical meaning used in the model calculations for the
two different n-doped InGaAs QD ensembles. The parameters for Sample B are based
on the previous sample characterization of Ref. [93].

Parameter Value Physical meaning
Sample A:
ωn/(2π) 140MHz hyperfine interaction strength (electron)
τs 22µs spin relaxation time (electron)
τTs 0.45µs spin relaxation time (hole in trion)
gz −0.69 longitudinal g factor (electron)
Sample B:
ωn/(2π) 70MHz hyperfine interaction strength (electron)
ωT
n /(2π) 16MHz hyperfine interaction strength (hole in trion)
λT 5 hyperfine interaction anisotropy (hole in trion)
τs 1.3µs spin relaxation time (electron)
τTs 0.06µs spin relaxation time (hole in trion)
gz −0.64 longitudinal g factor (electron)
gTz −0.45 longitudinal g factor (hole in trion)
Common parameters:
τ0 0.4 ns radiative trion lifetime
λ 1 hyperfine interaction anisotropy (electron)
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9.1.1 Inhomogeneous ensemble of quantum dots

All QDs in a real ensemble are slightly different, e.g., in size, shape, composition,
and strain. In particular, as a consequence of the inhomogeneous broadening of the
trion transition, each QD of the ensemble has a slightly different trion transition
energy ET. We model this situation by assuming that the transition energies follow
the normal distribution

p(ET) =
1√

2π∆ET
exp

−1
2

(
ET − ET

∆ET

)2 (9.1)

with mean value ET and variance (∆ET)2. The situation implies that for a fixed
energy of the pump pulses, each QD of the ensemble is pumped with a different
efficiency because of the inevitable detuning between the trion transition and the
pump energy. Eventually, this can be described by an associated pair {Q,Φ} of the
pulse parameters for each QD. Similarly, different QDs have a different contribution
to the probed Faraday ellipticity or rotation. Tuning the pump and probe energies
allows one to analyze different subsets of the QD ensemble. For more details, we
refer the interested reader to Ref. [113], where this formalism is established.

9.1.2 Pulse parameters for a single quantum dot

We now turn to the pulse parameter pair {Q,Φ} for a single QD, which must
be known to apply the pump pulse relations (2.9), (2.10), and (2.11) for a given
detuning. The energies of the pump and probe pulses are denoted as Epu and Epr,
respectively. In the experiments to be analyzed, a degenerate pump-probe setup is
used so that Epu = Epr. The duration of the pulses is much smaller than all other
time scales of the system. The finite spectral width of the pulses is accounted for by
the inverse pulse duration τ−1

p , i.e., we assume that the pulses are Fourier-transform
limited. For simplicity, we model the pulses to have a hyperbolic secant shape [270]
because for this case, analytical expressions for the pulse parameters Q and Φ can
be derived [113]. The envelope of the electric field of such a pulse with duration τp
has the form

f(t) = µ sech
(
π
t

τp

)
, (9.2)
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9.1 Modeling an inhomogeneous ensemble of quantum dots

where µ is a measure for the electric field strength. In the experiments, the value of µ
is not known. Furthermore, the actual pulse shape is a Gaussian and the pulses are
not perfectly Fourier-transform limited. However, the shape of a hyperbolic secant
is qualitatively very similar to a Gaussian, with slightly more pronounced tails if
the FWHMs are identical.

In the simulations, we use the pulse duration τp = 1.3 ps. The proper value to
account for the FWHM of 1.3meV of the photoluminescence intensity of the pulses,
which is proportional to |f(ω)|2, would actually be τp ≈ 1.8 ps. But we have
checked that the difference between the results is only of statistical nature and
therefore negligible.2 This value corresponds to the minimal pulse duration that
results from the minimal time-bandwidth product δtδω ≈ 1.978 for a pulse with an
intensity profile |f(x)|2 ∝ sech2(x/X), where δt and δω are the FWHM in the time
(x = t) and frequency (x = ω) domain, respectively [270]. The FWHM of |f(x)|2

is δx ≈ 1.763X.

As mentioned above, the pulse parameters Q and Φ can be calculated analytically
for pulses with a hyperbolic secant shape. For the corresponding envelope f(t) of
the electric field given in Eq. (9.2), it follows [113]

Q =

√√√√1− sin2(Θ/2)
cosh2(πy)

, (9.3a)

Φ = arg

 Γ2
(
1
2 − iy

)
Γ
(
1
2 −

Θ
2π − iy

)
Γ
(
1
2 +

Θ
2π − iy

)
 , (9.3b)

with the Gamma function Γ(z), the effective pulse area

Θ = 2
∫ ∞

−∞
f(t) dt = 2µτp (9.4)

and the dimensionless detuning of the pump pulse

y = (Epu − ET)τp
2πℏ

. (9.5)

The parameters Q and Φ along with the probability 1 − Q2 to excite a trion are
plotted in Fig. 9.1 as a function of the dimensionless pump detuning y for various
2The simulations are computationally too expensive to redo all calculations.
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Figure 9.1: Pump pulse parameters Q and Φ resulting from Eq. (9.3) along with the
probability 1−Q2 to excite a trion as a function of the dimensionless pump detuning y
defined in Eq. (9.5) for various effective pulse areas Θ.

effective pulse areas Θ. The value 1 − Q2 has a major influence on the spin po-
larization after a pulse as can be seen from Eq. (2.9c). Pulses with Θ = π (we
do not consider Θ > π here) without detuning (y = 0) are most efficient because
this combination yields Q = 0. This is, of course, only a theoretical consideration
because Epu = ET will never be exactly fulfilled for an inhomogeneous ensemble
of QDs. The rotation induced by the pulse also depends on the pulse area, with
a decreasing rotation angle Φ for small pulse areas. Pulses with a strong detuning
from the trion transition energy barely influence the spin polarization in the QD
because Q→ 1 and Φ → 0 results in this case.

For small pump powers, the pulse area scales like Θ ∝
√
Ppu [23, 113, 135]. If the

pulse area at a some pump power is already known from previous experiments, this
scaling can be used to estimate the effective pulse area prevalent in new experi-
ments.

9.1.3 Probing the Faraday ellipticity and rotation

The Faraday ellipticity and rotation, which are proportional to the spin polarization,
can be probed by weak linearly polarized pulses. Depending on the energy Epr of the
probe pulse, different subsets of the QD ensemble are probed, i.e., the contribution
of a single QD to the probed signal depends on the detuning of the probe pulse
from the trion transition energy ET. In the experiments to be analyzed, the energy
of pump and probe are degenerate, Epu = Epr.
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9.1 Modeling an inhomogeneous ensemble of quantum dots

For a single QD, the Faraday ellipticity E and rotation R are proportional to the
spin polarization Jz − Sz weighted by an additional function that depends on the
probe detuning and pulse duration [113],

E ∝ (Jz − Sz) ReG(Epr − ET, τp) , (9.6a)
R ∝ (Jz − Sz) ImG(Epr − ET, τp) , (9.6b)

with

G(Epr − ET, τp) =
τ 2p
π2 ζ

(
2, 1

2
− i (Epr − ET)τp

2πℏ

)
, (9.7)

where ζ(z) is the Hurwitz Zeta function. The prefactors in Eq. (9.6) are identical but
sample dependent. Their exact values do not matter for our considerations because
we scale the simulated PRCs to the experimental data by a global factor.

With respect to the probe detuning Epr − ET, the real part of G(Epr − ET, τp) is
an even function, whereas the imaginary part is an odd function as can be seen in
Fig. 9.2. Clearly, the Faraday ellipticity has the largest response if the spin polar-
ization in QD is probed without detuning. In contrast, the Faraday rotation yields
zero in this case; its response is the largest for a small but finite probe detuning.
In an inhomogeneous ensemble of QDs, however, it is inevitable that each QD is
probed (and also pumped) with a finite detuning. For the Faraday rotation, the
situation becomes more complicated because the fact that ImG is an odd function
results in contributions with opposite signs for opposite detunings. This results in
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Figure 9.2: Visualization of
the real and imaginary part
of the function G(Epr − ET, τp)
given by Eq. (9.7). The real part
is an even function of the probe
detuning, whereas the imagi-
nary part is an odd function.
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a certain cancellation effect that depends on the shape of the distribution p(ET) of
the trion transition energies (modeled as a normal distribution), on the difference
between the probe energy Epr and the mean trion transition energy ET, on the
pump energy Epu (determines which subset of the QD ensemble is excited), and
also on the spectral pulse width proportional to τ−1

p . For instance, the Faraday
rotation yields zero if Epr = Epu = ET as a consequence of the symmetry of the as-
sumed normal distribution p(ET). If Epr = Epu is shifted to the low or high energy
flank of this distribution, there is a finite but small Faraday rotation because the
contributions from most but not all QDs cancel out. For this reason, calculating
the Faraday rotation numerically is computationally much more expensive than cal-
culating the Faraday ellipticity: The required Monte Carlo sampling suffers from
a sign problem because of the cancellation of the probed spin polarizations with
opposite signs so that the relative statistical error increases. In the case of a finite
pump-probe detuning, this is less of an issue because the spin polarization of the
QDs that are pumped with a finite detuning is probed. In this chapter, however,
we only consider degenerate pump-probe setups.

9.1.4 Averaging over the inhomogeneous ensemble

Accounting for an inhomogeneous ensemble of QDs requires the calculation of two
averages. First, we have to average over the random Overhauser field described
by the distribution (8.4). Second, we have to average over the distribution (9.1)
of the trion transition energies. If not stated otherwise, we calculate the ensemble
average over M = 2.6 × 105 (Sample A) or M = 5 × 106 (Sample B) independent
trajectories starting from random initial conditions that are sampled from these
two distributions. Numerically, this is extremely expensive and requires massive
parallelization; see Sec. 3.3.3 for general remarks on the numerical treatment. The
parameters ET, ∆ET, Epu, and Epr are obtained from fits to the photoluminescence
spectra.

As discussed above, the Faraday ellipticity and rotation reveal the spin dynamics of
different subsets of the QD ensemble. In the experiments performed on Sample B
(Sec. 9.3), a degenerate pump-probe setup is used with the pulse energy shifted
by 2.4meV to the low-energy flank of the average trion transition energy of about
1.3908 eV (see Fig. 9.9). In this case, the probed Faraday rotation effectively reveals
the spin dynamics of the QDs that are pumped by detuned pulses for which the
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9.1 Modeling an inhomogeneous ensemble of quantum dots

pumping strength is rather weak (large Q). However, as demonstrated in Sec. 8.3.4,
the spin rotation induced by detuned pulses can lead to an increase of the visibil-
ity of RSA in Faraday geometry, which could potentially counter the detrimental
influence of the reduced pumping strength.

9.1.5 Signal accumulation in the modulated pulse scheme

In the experiments, the helicity of the pump pulses is modulated with frequency fm.
As discussed in Sec. 8.3.1, this modulation scheme results in an alternating spin
polarization that is zero on average if it is simply integrated. For this reason,
the probed signal is also modulated. Analogously to spin inertia signal defined
in Eq. (8.1), the actually measured Faraday ellipticity E or rotation R is given
by [125, 159]

E(fm) =
1
np

∣∣∣∣∣
np∑
k=1

E(kTR + τd) ei2πfm(kTR+τd)
∣∣∣∣∣ , (9.8a)

R(fm) =
1
np

∣∣∣∣∣
np∑
k=1

R(kTR + τd) ei2πfm(kTR+τd)
∣∣∣∣∣ . (9.8b)

These expressions represent the accumulation of the probed signal for the ensemble
of QDs (ensemble average denoted by the overline), modulated with frequency fm
and averaged over the number of applied pulses np ≫ 1. The spin polarization
is probed slightly before the arrival of each pump pulse with a negative delay
τd = −60 ps (Sample A) or −50 ps (Sample B).

In the numerical simulations, it is again not feasible to calculate the spin dynamics
for more than a few modulation periods 1/fm, whereas in the experiments, many
modulation periods take place (see the discussion in Sec. 8.2.1). However, for small
enough modulation frequencies as studied in this chapter, it is sufficient to simulate
only two modulation periods and then to calculate E or F by summing only over
the second (last) period. The first period is neglected because it shows a transient
behavior as discussed in Sec. 8.3.1.
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9.2 Analysis of Sample A

In the following two sections, experiments [94] performed on two different sam-
ples of InGaAs QDs are analyzed. First, we analyze the experiments performed
on Sample A. The important experimental details for the theoretical analysis are
summarized in the following.

9.2.1 Experimental details

Sample A consists of 20 layers of InGaAs QDs that are separated by 70 nm barriers
of GaAs and grown by molecular beam epitaxy on an (100)-oriented GaAs substrate.
The QD density per layer is 1010 cm−2. On average, each QD is singly-charged by
an electron, which is provided by a δ-doping layer of Si 16 nm above each QD layer.
The sample was thermally annealed at 880 ◦C for 30 s, which homogenized the QD
size distribution and shifted the average trion transition energy to 1.3662 eV. The
photoluminescence spectrum for this sample is shown in Fig. 9.3.

The sample is cooled to 5.3K. An external magnetic field Bextez is applied in
the direction of light incidence, i.e., along the optical z axis with an accuracy
of 2◦ (Faraday geometry). Periodic laser pulses with a mean photon energy of
Epu = Epr = 1.3655 eV and a FWHM of 1.3meV are applied to the sample. The
pulses are emitted with a repetition frequency of 1GHz, corresponding to a repe-
tition time of TR = 1 ns. They are split into degenerate pump and probe pulses,

Figure 9.3: Sample A: Photo-
luminescence (PL) spectrum of
the InGaAs QD ensemble (gray)
at temperature T = 5.3K along
with the spectrum of the laser
used in the pump-probe exper-
iments (blue). The pump and
probe pulses are degenerate in
photon energy.
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9.2 Analysis of Sample A

which are shifted by 0.7meV to the low-energy flank of the QD photoluminescence
spectrum (see Fig. 9.3 for a visualization). A double modulation scheme is used to
reduce the noise arising from separate detection of the scattered pump and probe
light. The helicity of the pump is modulated between σ+ and σ− with frequency
fm = 0.1− 104 kHz, preventing the buildup of significant dynamic nuclear polariza-
tion [271]. The Faraday ellipticity amplitude of the linearly-polarized probe pulses
is measured at a delay of τd = −60 ps, i.e., slightly before the arrival of the pump
pulses. Further details on the experimental setup are given in Ref. [94].

9.2.2 Spin inertia dependence

As described in detail in Chap. 8, measurements of the spin inertia dependence
yield the effective spin relaxation time τ ∗s of the resident charge carrier. Figure 9.4
shows the dependence of the measured Faraday ellipticity on the pump modu-
lation frequency fm at a magnetic field of Bext = 400mT while using a pump
power of Ppu = 7mW [94]. Typically, the spin inertia dependence can be described

Figure 9.4: Spin inertia dependence measured for Sample A: Faraday ellipticity as a
function of the pump modulation frequency fm at a magnetic field of Bext = 400mT for
a pump power of Ppu = 7mW measured with a pump-probe delay of −60ps (blue circles).
The black line represents the fit using two-components of Eq. (8.14). The contribution of
each component are shown by the solid-orange and dashed-green curves. The inset shows
the power dependence of the two corresponding inverse effective spin lifetimes 1/τ∗s . A
linear extrapolation to zero power (black lines) yields τs = (22 ± 1)µs (orange) and
τs = (250 ± 27)µs (green) for the intrinsic spin relaxation times. The figure, created by
A. Greilich, is reprinted with permission from Ref. [94], ©2021 American Physical Society.
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by Eq. (8.14), but such a fit does not work properly here. Probably, there is a con-
tinuous distribution of spin relaxation times caused by the inhomogeneous character
of the QD ensemble, but this situation is difficult to describe by our model in which
only a single spin relaxation time enters for the resident charge carrier. Hence, we
use a two-component fit of the spin inertia dependence, which works much better
than a single-component fit and captures all effects important for the following
analysis. Concretely, we assume that the ensemble can be described by two subsets
of electrons, each following the spin inertia dependence (8.14). As demonstrated
in Fig. 9.4, this two-component fit describes the measured dependence fairly well.
Both components are described by different effective spin relaxation times τ ∗s , which
are plotted in the inset as a function of the pump power Ppu. A linear extrapolation
to zero power yields the intrinsic spin relaxation times τs = (22 ± 1)µs (orange)
and τs = (250± 27)µs (green).

Nevertheless, the straightforward application of our model is only possible for a
single component, i.e., a single spin relaxation time.3 But for pump modulation
frequencies fm ≥ 5 kHz, only the shorter living sub-ensemble with τs = 22µs has a
significant contribution. For this reason, we focus on this regime in the following
and use τs = 22µs in the simulations.

9.2.3 Polarization recovery curves

Let us turn to the PRCs displayed in Fig. 9.5, which were measured using various
pump powers at fm = 10 kHz. The colored data depicts the measured Faraday
ellipticity E, the black curves represent the simulated PRCs. All PRCs have a
V-like shape, which is typical for n-doped QDs, and generally, the spin polarization
increases if a larger pump power is used. As predicted in Chap. 8, the width of
the zero-field minimum broadens when stronger pulses are applied so that a larger
magnetic field is required to reach saturation. The characteristic frequency ωn,
which describes the strength of the hyperfine interaction of the electron spins, is
determined to be ωn/(2π) = 140MHz (equivalent to a magnetic field of 14.5mT).
This value is obtained by fitting simulated PRCS to the measured ones. Since there
appear to be contributions from resident or photoexcited holes in the experimental
data at small magnetic fields (discussed below), ωn cannot be deduced reliably from
3Both components could be simulated separately, but it requires to know their contribution to
the joint signal. This could be estimated based on the fit parameters.
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Figure 9.5: PRCs measured and simulated for Sample A using different pump powers Ppu
(given next to the curves) at a pump modulation frequency of fm = 10 kHz. The colored
data depicts the experimentally measured Faraday ellipticity E, the smooth black curves
represent the corresponding simulated PRCs. The pulse area in the simulations is chosen
to fit the experimentally obtained power dependence of the Faraday ellipticity at large
magnetic field (Θ = 0.07π at Ppu = 8.5mW). The positions of the small peaks visible in
the PRCs for larger pump powers match the positions resulting from the PSC (9.9) for
the kth RSA modes (vertical gray lines).

the width of the zero-field minimum. For this reason, ωn is tuned such that the
simulated PRCs reproduce the width of the RSA modes, which appears to be robust
against variations of the other parameters.

Most strikingly, there are small additional peaks in the PRCs at certain values of
the magnetic field for large pump powers. They are the result of RSA in Faraday
geometry and appear at magnetic fields Bext that fulfill the PSC

ΩLTR = 2π|k| , k ∈ Z , (9.9)

where ΩL = µB|gzBext|ℏ−1 is the electronic Larmor frequency. These discrete res-
onance frequencies are multiples of the laser repetition frequency ωR = 2π/TR; we
label them by their mode number k. The corresponding magnetic fields are high-
lighted in Fig. 9.5 as vertical lines. Generally, the amplitude of the peaks decreases
for larger ratios ΩLλ/ωn as explained in Sec. 8.3.5. This behavior is also evident
in Fig. 9.5 for both experiment and theory. Importantly, the mode positions are
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solely determined by the longitudinal electronic g factor |gz|. While we cannot de-
termine its sign from this effect, we know that the longitudinal g factor is negative
in similar InGaAs QDs [132]. By taking all peak positions into account, we obtain
gz = −0.69± 0.01. For comparison, the transverse g factor of the electrons in this
sample amounts to g⊥ = −0.599± 0.001 [94].

The numerical simulations, depicted by the smooth black curves in Fig. 9.5, repro-
duce the experimental data very well for magnetic fields |Bext| ≳ 75mT. The main
deviation is found in the regime of small magnetic fields. It has a narrow M-like
shape, which is typical for p-doped QD samples [93, 125]. Hence, we attribute the
deviation to resident or photoexcited hole spins with weak hyperfine interaction
that contribute to the measured Faraday ellipticity. The applied parameters are
listed in Table 9.1. The effective pulse area is Θ = 0.07π at a pump power of
Ppu = 8.5mW; for the other pump powers, the pulse area is adjusted to fit the
Faraday ellipticity at large magnetic fields.

9.2.4 Visibility of resonant spin amplification in Faraday geometry

The prerequisites to observe RSA in Faraday geometry are

(i) a strong hyperfine interaction of the resident charge carriers,

(ii) application of strong pump pulses,

(iii) and a laser repetition time TR that on the one hand allows for RSA modes
that are separated enough not to overlap significantly, but on the other hand
fall into magnetic field ranges where the spin polarization is not yet saturated.

The conditions (i) and (ii) are typically fulfilled for singly-charged n-type InGaAs
QDs [19]. For p-type QDs with a strongly anisotropic hyperfine interaction [93, 97,
156–158, 184], the effect is expected to be much harder to observe (see Fig. 8.9). In
Sec. 8.3.5, the condition ωnTR ≲

√
2π known from standard RSA [135] is mentioned

as a first estimate for the realization of RSA in Faraday geometry. Thus, the
condition (iii) requires to choose a proper laser source, which is of course interrelated
with the condition (i). In the experiments studied here, a laser source that emits
pulses with repetition time TR = 1 ns is implemented.
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Figure 9.6: Visibility map of the RSA mode |k| = 1 of Sample A modeled for detection
by Faraday ellipticity. The pump-probe delay is set to τd = −0, the pump modulation
frequency to fm = 10 kHz. The white cross marks the experimental conditions for a
pump power of Ppu = 8.5mW (Θ = 0.07π) and a pulse repetition time of TR = 1 ns with
ωn/(2π) = 140MHz. The vertical dotted line marks the value ωnTR =

√
2π.

To provide a quantitative basis for the prerequisites (ii) and (iii), we study the RSA
visibility defined as [126]

VE := Emax − Emin

Emax
, (9.10)

where Emax is the Faraday ellipticity of the first maximum at the RSA mode |k| = 1
and Emin denotes the adjacent minimum for larger magnetic field |Bext|. In order
to average out statistical fluctuations in both the model and experiment, we fit
polynomials to the region around the |k| = 1 mode to calculate its visibility. A map
of the RSA visibility in dependence of the pulse area Θ and of the product ωnTR is
shown in Fig. 9.6. Note that TR is varied while ωn is kept constant. The visibility
map reveals that the visibility is enhanced by an increase of the pulse area Θ
corresponding to stronger pulses. For a too large or too small repetition time TR,
the visibility decreases. The condition ωnTR ≲

√
2π turns out to be only a first

rough estimate; the situation is more complex. Observing RSA in Faraday geometry
turns out to be easiest in the intermediate regime ωnTR ∼ 1 − 2. The white
cross on the heatmap indicates that the laser source used in the experiments is
operating at a too small power, with a resulting visibility of merely VE ≈ 0.02 at
Ppu = 8.5mW. Under optimal conditions, the visibility could reach unity. For the
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commonly used pulse repetition times TR = 13.2 and 6.6 ns (ωnTR ≈ 10.6 and 5.8),
the RSA modes overlap significantly so that they are not visible for Sample A with
ωn/(2π) = 140MHz.

The main obstacle to reach a larger visibility is the small pulse area realized by
the pump pulses because a too large pump power would heat the sample too much.
Possibly, it could be enhanced by focusing the pump beam on a smaller spot di-
ameter. Yet, we can study the power dependence of the experimentally seen and
theoretically modeled visibility in the accessible range. Clearly, as demonstrated
in Fig. 9.7(a) by experiment and theory, a reduction of the pump power results in
the disappearance of the RSA modes represented by a vanishing visibility.

Remarkably, the RSA visibility can be enhanced by exploiting the spin inertia
effect. This is demonstrated in Fig. 9.8 where PRCs for various pump modulation
frequencies fm are plotted using a pump power of Ppu = 8.5mW. The PRCs are
normalized with respect to the Faraday ellipticity at Bext = ±500mT to highlight
the enhanced visibility of the RSA modes for larger fm. The deviation between
experiment (colored) and theory (black) for large fm is related to the fact that
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Figure 9.7: RSA visibility VE of the RSA mode |k| = 1 of Sample A as a function of
the (a) pump power Ppu and (b) pump modulation frequency fm. The experimental data
is plotted as blue squares (k = −1) and orange circles (k = 1), the theoretical data in
black. The error bars represent the root-mean-square deviations of the polynomial fits
around the respective RSA mode. Panel (c) shows the visibility for a broader range of
modulation frequencies fm at Ppu = 8.5mW.
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the spin inertia dependence for the QD sample is not perfectly captured by the
monoexponential spin relaxation entering in our model. But generally, the spin
inertia effect leads to a reduction of the average degree of spin polarization when
increasing the modulation frequency fm as shown earlier in Fig. 9.4. The key idea is
the following: The application of a larger modulation frequency results in a decrease
of the average absolute spin polarization and in turn, each pump pulse can better
orient the spins along the optical axis because a larger number is disordered. In
a nutshell, the spin inertia effect allows one to reduce the influence of saturation
limit of the spin polarization where all spins already point along the same direction.
Clearly, this limit is detrimental to RSA in Faraday geometry because there are
simply less spins to be resonantly amplified. Note also that for a similar reason, a
larger modulation frequency results in a narrowing of the zero-field minimum of the
PRCs as visible in Fig. 9.8. This behavior is predicted and explained in Chap. 8.

To be more quantitative, we plot the extracted RSA visibility VE as a function of fm
in Fig. 9.7(b). Clearly, an increase of the modulation frequency results in a signifi-
cant increase of the visibility VE, in agreement with the theoretical prediction. For
instance, the visibility in the experiment for the k = +1 mode using fm = 40 kHz
amounts to V = 0.08± 0.02. From Fig. 9.7(c), we assess the maximum possible
enhancement that can be achieved by exploiting the spin inertia effect at a pump
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Figure 9.8: Normalized PRCs for sample A using various pump modulation frequen-
cies fm at a pump power of Ppu = 8.5mW. Except for the normalization with respect to
the Faraday ellipticity E at Bext = 500mT, the layout of the plot is analogous to Fig. 9.5.
Clearly, the RSA modes are more pronounced for larger modulation frequencies.
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power of Ppu = 8.5mW. The largest visibility VE ≈ 0.17 is found at a pump mod-
ulation frequency of fm = 320 kHz. For larger frequencies, the visibility decreases
slightly until it saturates at VE ≈ 0.13. This decrease seems confusing at first glance.
It results from the fact that in this particular case, the RSA mode |k| = 1 falls into
a range of magnetic fields that belongs to the zero-field minimum, which becomes
narrower for larger modulation frequencies as discussed above. For instance, the
‘hump’ is less pronounced when using, e.g., ωn/(2π) = 70MHz, implying a narrower
zero-field minimum also for the smaller modulation frequencies. In experiments, a
limitation of enhancing the visibility by means of the spin inertia effect, especially
for the higher RSA modes |k|, is imposed by the deteriorated signal-to-noise ratio
in the PRCs for larger frequencies as noticeable in Fig. 9.8. The signal-to-noise
ratio can be improved by accumulating the signal over a longer period of time for
each data point.

9.3 Analysis of Sample B

In this section, we provide and analyze complementary results demonstrating RSA
in Faraday geometry for another QD ensemble (Sample B) with weaker hyperfine
interaction. In contrast to the previous section, the Faraday rotation instead of the
ellipticity is measured in the experiments.

9.3.1 Experimental details

Sample B consists of 20 layers of InGaAs QDs separated by 60 nm barriers of GaAs
and grown by molecular beam epitaxy on a (100)-oriented GaAs substrate. A
δ-doping layer of Si 16 nm above each QD layer provides a single electron per QD
on average. The QD density per layer amounts to 1010 cm−2. The sample was
thermally annealed at 945 ◦C for 30 s, which homogenized the QD size distribution
and shifted the average emission energy to 1.3908 eV.

The experimental setup is very similar to the one described in Sec. 9.2.1; the dif-
ferences are the following (see the Supplemental Material of Ref. [94] for details).
The sample is illuminated with a mean photon energy of 1.3884 eV and a FWHM
of 1.3meV. The pump and the probe pulses are degenerate in photon energy, which
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Figure 9.9: Sample B: Photo-
luminescence (PL) spectrum of
the InGaAs QD ensemble (gray)
at temperature T = 5.3K along
with the spectra of the pump
(blue) and probe (red) pulses
used in the pump-probe exper-
iments, which are degenerate in
photon energy.

is shifted by 2.4meV to the low-energy flank of the QD photoluminescence as vi-
sualized in Fig. 9.9. The helicity of the pump pulses is modulated with frequency
fm = 84 kHz between σ+ and σ−. The Faraday rotation amplitude of the linearly
polarized probe pulses is measured with a delay of τd = −50 ps, i.e., slightly before
the arrival of the pump pulses.

9.3.2 Polarization recovery curves

The Faraday rotation R measured as a function of the magnetic field Bext for a wide
range of pump powers is shown in Fig. 9.10. The colored data depicts the experimen-
tally measured Faraday rotation, the smooth black curves represent the simulated
PRCs. The very good agreement between experiment and theory is achieved de-
spite having only three fit parameters: the effective pulse area Θ, the trion spin
relaxation time τTs = 0.06µs, and the longitudinal electronic g factor gz = −0.64.
The remaining parameters are taken from the earlier sample characterization of
Ref. [93]; they are listed in Table 9.1.

All PRCs have a V-like shape, which is typical for n-doped QDs. Often, the PRC
given by Eq. (3.48b) is used to characterize such PRCs [88], but it fixes the ratio
of the spin polarizations at zero and large magnetic field to 1/3. But the ratio
for the PRCs shown in Fig. 9.10 clearly differs from this value because we are
dealing with nonequilibrium conditions thanks to the periodic application of strong
pump pulses. For this reason, we fit the measured and simulated PRCs using the
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generalized dependence

R(Bext) = A

(
1− C

1 + (Bext − B0)2/∆B2

)
. (9.11)

The parameter A describes the saturation level for large magnetic fields, 1 − C is
the ratio of spin polarizations at zero and large field (if B0 ≈ 0), ∆B characterizes
the width of the zero-field minimum of the PRC, and B0 accounts for a potential
shift (there is almost none). The fit parameters are shown in Fig. 9.11 as a function
of the pump power Ppu. Figure 9.11(a) shows the increase of the saturation level A
caused by the increase of the pump power. As predicted in Chap. 8, the application
of a larger pump power results in a broadening of the zero-field minimum, which is
displayed in Fig. 9.11(b) by an increase of ∆B. The width of the zero-field minimum
in the limit of zero pump power is determined by random Overhauser field charac-
terized by the characteristic frequency ωn, corresponding to ∆B ≈ 11mT. From the
previous sample characterization of Refs. [93, 97], we know that ωn/(2π) = 70MHz,
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Figure 9.10: PRCs measured and modeled for Sample B for different pump powers Ppu
(given next to the curves) at a pump modulation frequency of fm = 84 kHz. The colored
data depicts the experimentally measured Faraday rotation R, the smooth black curves
are the simulated curves. The simulated PRCs are smoothed by a moving average over
a range of 7mT, the pulse area in the simulations is chosen to fit the experimentally
obtained power dependence of the saturation level A as shown in Fig. 9.11(a). The
positions of the small peaks at around Bext = −112mT, 112mT, and 224mT match the
positions resulting from the PSC (9.9) for the kth RSA modes (vertical gray lines).
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Figure 9.11: Characterization of the PRCs for Sample B for experiment (blue spheres)
and theory (black lines). The saturation level A, the width ∆B of the zero-field minimum,
the ratio 1−C describing the depth of the zero-field minimum relative to A, and the pulse
area Θ are shown as a function of the pump power Ppu. The pulse area in the simulations
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√
Ppu, as expected.
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which is equivalent to a field of 7.8mT. In the limit of very weak pump pulses
where Eq. (3.48b) is applicable, we find ∆B =

√
2ωn/(gzµBℏ−1) ≈ 11mT, which is

in excellent agreement with the previous sample characterization. The ratio 1−C

shown in Fig. 9.11(c) deviates from the standard ratio 1/3 [88, 104] appearing in
Eq. (3.48b), which is only valid in the limit of very weak pulses [126]. As demon-
strated in Fig. 9.11(d), the pulse area scales like Θ ∝

√
Ppu for small pump powers

up to approximately PmW = 2mW [23, 113, 135]. The pulse area at Ppu = 5mW is
estimated very roughly to be Θ ≈ 0.18π; the pulse areas at the other pump pow-
ers are fitted such that the saturation level A fits to the experimentally observed
dependence; see Fig. 9.11(a).

Very similar to the PRCs measured for Sample A, additional modulations of the spin
polarization are visible in the PRCs for large pump power at magnetic fields Bext

fulfilling the PSC (9.9). This is again the result of RSA in Faraday geometry. By
determining the maxima of the RSA modes, we deduce gz = −0.64± 0.01 for the
longitudinal electronic g factor. In comparison, a value of gz = −0.61 is obtained
in Refs. [93, 132, 272] for the same sample. The difference could be related to a
better accuracy of our novel technique or to the varying g factor and its spread in
the inhomogeneous ensemble of QDs, i.e., different spots on the sample could be
analyzed.

9.3.3 Visibility of resonant spin amplification in Faraday geometry

Analogously to Sec. 9.2.4, we study the RSA visibility [126]

VR := Rmax −Rmin

Rmax
, (9.12)

where Rmax is the Faraday rotation of the first maximum at the RSA mode |k| = 1
and Rmin denotes the adjacent minimum at a larger magnetic field |Bext|. As
explained in Sec. 9.1.3, the numerical calculation of the Faraday rotation is much
more difficult than calculating the Faraday ellipticity. The reason is a sign problem
arising in the applied Monte Carlo sampling, which results in much larger statistical
fluctuations in the Faraday rotation than in the ellipticity. Since these fluctuations
hinder the reliable detection of physical minima and maxima in the simulated PRCs,
we set VR = 0 whenever VR < 0.02. A map of the RSA visibility in dependence
of the pulse area Θ and of the product ωnTR with ωn/(2π) = 70MHz is shown in
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Fig. 9.12(a). The visibility becomes larger when the pulse area is increased, which
corresponds to the usage of a larger pump power. For a too large or too small
repetition time TR, the visibility vanishes. Observing RSA in Faraday geometry by
measuring the Faraday rotation appears to be easiest in the intermediate regime
ωnTR ∼ 1. As indicated by the white cross on the heatmap, the laser source used
in the experiments does not operate at optimal conditions. For a pump power of
Ppu = 5mW, the experimentally observed visibility amounts to only VR ≈ 0.02.
Under better conditions, the visibility could reach up to VR ≈ 0.51. No RSA
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Figure 9.12: Visibility map of the RSA mode |k| = 1 for Sample B modeled for de-
tection by (a) Faraday rotation (visibility VR) and (b) Faraday ellipticity (visibility VE).
The white cross marks the experimental conditions for a pump power of Ppu = 5mW
(Θ ≈ 0.18π) and a pulse repetition time of TR = 1 ns with ωn/(2π) = 70MHz. The pump-
probe delay is set to τd = −0 and the number of configurations to M = 106.
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modes are visible for the commonly used repetition times TR = 13.2 and 6.6 ns
(ωnTR ≈ 5.8 and 2.9) in theory nor in experiment.

The RSA visibility for Sample B with ωn/(2π) = 70MHz can be improved by in-
creasing the pump power and by using a laser with a slightly larger repetition time
of about TR = 2 − 3 ns. A larger repetition time would also increase the number
of visible RSA modes, allowing for an even more accurate determination of the
longitudinal electronic g factor. In contrast, the choice TR = 1 ns is perfectly suited
to reveal the RSA modes for Sample A because the Overhauser field characterized
by ωn/(2π) = 140MHz is twice as large on average. The larger value also results
in a broader zero-field minimum of the PRC and hence, the RSA modes are also
visible at larger magnetic fields.

The theoretical modeling reveals that measuring the Faraday ellipticity instead of
the Faraday rotation for the applied degenerate pump-probe setup yields a larger
RSA visibility of up to VE ≈ 0.77. This is visualized in the corresponding visi-
bility map displayed in Fig. 9.12(b), which needs to be compared to Fig. 9.12(a).
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Figure 9.13: Comparison of the simulated PRCs for Sample B when probing the Faraday
rotation R (solid curves) or the Faraday ellipticity E (dash-dotted curves) for various
pump powers Ppu given next to the curves; see Fig. 9.11(d) for the corresponding pulse
areas Θ. The PRCs are scaled such that R(Bext = 300mT, Ppu = 5mW) is equal to
E(Bext = 300mT, Ppu = 5mW) and they are smoothed by a moving average over a range
of 7mT. The vertical gray lines highlight the values of the magnetic field Bext that fulfill
the PSC (9.9) for the mode numbers k.
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Under the best realized experimental conditions (white cross), we find a visibility
of VE ≈ 0.05 for the Faraday ellipticity and VR ≈ 0.03 for the Faraday rotation.
We point out that the situation could be different if a controlled pump-probe de-
tuning is used [146], which is question for future research. Another possibility to
enhance the visibility consists of exploiting the spin inertia effect as demonstrated
for Sample A.

For completeness, we compare in Fig. 9.13 the PRCs for the Faraday rotation R

(solid curves) and Faraday ellipticity E (dash-dotted curves) for the pump powers
used in Fig. 9.10. The PRCs are scaled such that R(Bext = 300mT, Ppu = 5mW) is
equal to E(Bext = 300mT, Ppu = 5mW); the Faraday rotation is actually smaller
by approximately a factor of 40. Clearly, the RSA modes are more pronounced
when probing the Faraday ellipticity instead of the rotation. Moreover, the zero-
field minimum of E(Bext) is broader than the zero-field minimum of F (Bext). The
better visibility of the RSA modes results from the fact that in a degenerate pump-
probe setup, the Faraday ellipticity probes the QDs that are pumped with minimal
detuning and hence, with a better efficiency (smaller values of Q on average). At the
same time, the average degree of spin polarization in these QDs is also larger, i.e.,
closer to the saturation limit, so that the zero-field minimum is broader. Similarly,
the PRCs for R and E do not differ much when a small pump power is applied
because the degree of spin polarization is small.

As a final point, let us briefly discuss the role of the trion spin relaxation time τTs .
Approaching the saturation limit of the spin polarization is detrimental for RSA
in Faraday geometry and hence, its visibility is fairly sensitive to the value of τTs .
Smaller values result in a larger degree of spin polarization, which implies less
pronounced RSA modes. In this sense, it should be beneficial to exploit the spin
inertia effect to decrease the degree of spin polarization when trying to reveal RSA
modes for samples with a fast trion spin relaxation.

9.4 Chapter conclusion

Measurements on two different ensembles of n-doped InGaAs QDs reveal RSA in
Faraday geometry under experimental conditions. The experimental results can be
described very well by our model. The positions of the RSA modes directly yield
the longitudinal electronic g factor, which we determine to be gz = −0.69 ± 0.01
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for Sample A and gz = −0.64 ± 0.01 for Sample B. Using strong pump pulses in
combination with a suitable pulse repetition time (ωnTR ∼ 1−2) is the requirement
to reveal RSA modes. A significant enhancement can be achieved by exploiting the
spin inertia effect, which allows one to reduce the degree of spin polarization as a
consequence of the modulated helicity of the pump pulses. For the considered de-
generate pump-probe setup, probing the Faraday ellipticity instead of the rotation
turns out to yield a better RSA visibility.

In order to understand the effect in more detail, a systematical analysis of the
influence of important parameters (such as the spin relaxation times) on the vis-
ibility and on the width of the RSA modes is called for. For the mode width, a
finite spread of the longitudinal electronic g factor, which we did not account for in
our analysis, certainly plays a role for the higher modes. Analytical support [126]
would be beneficial because the current approach relies on expensive numerical
simulations.

An important task for future research is to enhance the RSA visibility further.
Thanks to the very good agreement between experiment and theory, our model can
be used to guide future experiments. For instance, the suggestion to exploit the spin
inertia effect turned out to be successful. Another option is to study the influence
of a controlled pump-probe detuning. As an exciting alternative, one could try to
conceive advanced pulse protocols. Typically, laser sources with a specific repetition
time are at one’s disposal, but they do not necessarily represent the optimal choice
for a particular sample. By adding a second laser with the same repetition time
but with a pump incidence shifted by a certain delay, it could be possible to enforce
the appearance of certain RSA modes. The idea is to tune the delay to enforce a
different commensurability than the one imposed by the pulse repetition time. In
a second step, the helicity of the two laser sources could be modulated in different
ways, e.g., such that the helicity of consecutive pulses is alternating.

260



Chapter 10

Conclusion

Several nonequilibrium spin phenomena in quantum dots (QDs) arising in pump-
probe experiments are addressed theoretically in this thesis. The studied experimen-
tal setups can be classified into two types: application of (i) a transverse magnetic
field (Chaps. 5, 6, and 7) or of (ii) a longitudinal magnetic field (Chaps. 8 and 9).
Both types require different approaches to describe the arising effects theoretically,
but they share the underlying central spin model (CSM) describing the hyperfine
interaction of a central spin with a surrounding spin bath. Depending on which
particular effect shall be described, further influences need to be taken into account
and sometimes, a phenomenological description can be sufficient.

One major goal of this thesis is the description of the nuclei-induced frequency focus-
ing effect, which requires the description of the nuclear spin dynamics in the QDs
caused by the hyperfine interaction with the spin of a localized charge carrier. But
the number of effectively coupled nuclear spins Neff = 104−106 [19, 103–107] is huge
in a QD and hence, it is not feasible to treat realistic system sizes fully quantum
mechanically. To study the spin dynamics nevertheless, we apply a semiclassical
approach based on the truncated Wigner approximation (TWA, Sec. 3.3), which
amounts to solving classical equations of motion starting from random initial con-
ditions. The ensemble average over all trajectories mimics the quantum mechanical
expectation value. Even though the numerical effort scales linearly with the system
size in this approach (instead of exponentially), the effort is still too large to calcu-
late the dynamics for up to 13 orders of magnitude in time. Massive parallelization
enabled by high-performance computing is one of the key solutions to this tremen-
dous task, but it would not have been sufficient without significant progress on the
algorithmic side. The application of the efficient algorithms to the spin dynamics
in the semiclassical CSM established in Chap. 4 to reduce the complexity of the
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classical equations of motion is the other key component. The most advanced algo-
rithm, the Spectral Density approach, enables the simulation of an infinite number
of bath spins by accounting for a limited number of auxiliary dynamic variables,
whereas the number of effectively coupled bath spins Neff remains large but finite.
By analyzing the long-time dynamics of the central spin, we identify the low-energy
scale AQ/

√
Neff arising from the slow nuclear spin dynamics, which also appears in

other investigations [163, 178]. The short-time dynamics of the central spin in the
Overhauser field is governed by the energy scale AQ.

10.1 Transverse magnetic field

Starting in Chap. 5, we put the efficient semiclassical Spectral Density approach to
use to analyze the effect of nuclei-induced frequency focusing (NIFF), which arises
from the application of long trains of pulses to a central spin coupled to a nuclear
spin bath while a strong transverse magnetic field is applied (Voigt geometry). This
nonequilibrium effect leads to the appearance of a revival signal of a dephasing spin
polarization before the arrival of the pulse. It is caused by a selection of certain po-
larizations in the Overhauser field (referred to as nuclear focusing) as a consequence
of the periodic application of pulses. Two generic pulse models are considered in
this chapter. The first one is a classical pulse that simply rotates the classical cen-
tral spin vector onto the z axis while preserving its length. For the second pulse
model, each application is considered as a quantum mechanical measurement with
the definite outcome of a spin state |↑⟩. Because of the uncertainty principle, a
statistical component for the transverse spin components needs to be included in
the semiclassical description, which can be realized by means of the Gaussian TWA.
The first crucial insight gained in this chapter is that the properties of the pulse have
a strong impact on the arising nonequilibrium spin physics. While the application
of both pulse models results in the emergence of nuclear focusing, the qualitative
behavior differs substantially. For instance, different classes of resonances (even or
odd, corresponding to an integer or half-integer number of Larmor periods between
two pulses) can appear and the nuclear focusing can be perfect (pulse model I)
or imperfect (pulse model II). Perfect nuclear focusing means that the emerging
nuclear focusing peaks in the probability distribution of the effective magnetic field
(sum of external and Overhauser field) approach δ peaks. Imperfect nuclear focus-
ing means that the peaks retain a finite width even in the nonequilibrium steady
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state. Another crucial component is the inclusion of the nuclear Zeeman effect,
which changes the scaling behavior of the long-time dynamics. Upon its inclusion,
the low-energy scale is proportional to 1/Neff and the scaling with the applied mag-
netic field Bext is proportional to B2

ext. Without the nuclear Zeeman effect, the
low-energy scale is proportional to 1/

√
Neff and the scaling with the magnetic field

is proportional to Bext (pulse model I) or B2
ext (pulse model II). The combination of

the nondeterministic pulse with the nuclear Zeeman effect constitutes a model that
yields a nonmonotonic magnetic field dependence of the revival amplitude arising
as a consequence of NIFF. Pronounced minima are visible whenever the pulse rep-
etition time is a multiple of half the nuclear Larmor period. This dependence has
strong similarities with experimental results [117, 122] and quantum mechanical
calculations performed for very a small number of nuclear spins [117].

Motivated by these similarities, a more elaborate model is established in Chap. 6.
For instance, it is well known that a sizable revival amplitude can appear even
without NIFF, simply as a consequence of pulse properties that describe the opti-
cal excitation of trion states [24, 113, 117, 122, 135, 141], which result in a selection
of Larmor frequencies that are commensurable with the pulse repetition rate. This
behavior cannot be described by the models studied in Chap. 5. This more general
phenomenon, to which the effect of NIFF can contribute, is known as spin mode
locking (SML). To study the interplay of SML and NIFF, a well known pulse model
describing the resonant excitation of trion states [24, 113, 122] is combined with the
efficient Spectral Density approach to the nuclear spin dynamics. The results are
rich, e.g., the different classes of resonances (even and odd) appear simultaneously
and there is a sizable revival amplitude after a few pulses without nuclear focus-
ing. However, the magnetic field dependence of the revival amplitude contradicts
the previous experimental [117, 122] and theoretical results [117]. Inspired by the
pulse model II used in Chap. 5, the action of each pump pulse is treated as a quan-
tum mechanical measurement as a first improvement of the semiclassical approach.
This interpretation requires nondeterministic pulse description to account for the
uncertainty principle, which can be realized by means of the Gaussian TWA. This
step has a significant impact on the qualitative physics. Now, the two classes of
resonances do not appear simultaneously anymore and the magnetic field depen-
dence of the revival amplitude resembles the previous experimental and theoretical
results much better. Importantly, a revival signal still appears after application
of a few pulses without any nuclear focusing, which is the main improvement over
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pulse model II used in Chap. 5. Interestingly, there can be a destructive interplay
of SML and NIFF such that the revival amplitude is smaller than its value without
NIFF for certain ranges of magnetic fields. In some cases, the revival amplitude
can actually vanish as a consequence of NIFF.

The next improvement of the model consists in the inclusion of the trion pseudospin
dynamics stemming from the unpaired heavy-hole in the trion. It is a crucial compo-
nent to describe the spin dynamics between two pulses observed in experiments, but
also to describe measurements of the polarization recovery effect for p-doped QDs.
Especially the Larmor precession of the trion pseudospin turns out to be important
for the qualitative nonequilibrium behavior because it acts as a perturbation to the
trion recombination dynamics. The result is that only even resonances appear in
the probability distribution of the effective magnetic field, with the only exception
of a narrow range of magnetic fields where the nuclear Larmor period is almost
equal to the pulse repetition time. But for the majority of magnetic fields, the
interplay of SML and NIFF is constructive, i.e., NIFF leads to an enhancement of
the revival signal. As a side effect, the emergence of dynamic nuclear polarization
is observed, i.e., the formation of a nonzero average polarization of the Overhauser
field parallel to the external magnetic field. The DNP can be larger than the typ-
ical magnitude of the random Overhauser field, leading to a small increase of the
dephasing time. Interestingly, the magnetic field dependence has strong similari-
ties with the one of the revival amplitude. But since the buildup of this effect is
two order of magnitude slower than nuclear focusing, the corresponding nonequi-
librium steady states can only be investigated for rather small magnetic fields of
up to 1T. Studying the steady states for larger fields is an interesting subject for
future research, but methodical progress is required. As a promising outlook, the
simulations can potentially be sped up significantly by resorting to the equations
of motion expanded in the magnetic field (Chap. 7) in combination with their al-
gebraic solution (Appendix E). Yet, the validity on the longer timescale must be
verified first.

The influence of the finite g factor spread of an inhomogeneous ensemble of QDs on
the behavior of NIFF is investigated next. While its inclusion is crucial to describe
the experimentally observed spin dynamics between two pulses, it has no qualita-
tive influence on the revival amplitude and the actual differences are only minor.
Furthermore, it turns out that the actual distribution of the hyperfine couplings
is only important on a quantitative level. Compiling all the gained knowledge, a
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minimal model is established in which the nondeterministic pulse model describing
the resonant trion excitation is combined with a simplified semiclassical model for
the spin dynamics. Here, all hyperfine couplings are considered to be identical (box
model) and the hyperfine interaction of the heavy-hole spin in the trion with the
nuclear spin bath is neglected. Especially the application of the box model facil-
itates the numerical treatment because it reduces the dimension of the system of
differential equations from O(200) to 6.

Building on this foundation, the influence of nuclear magnetic resonances on the
nonequilibrium behavior is investigated in Chap. 7. Here, we take the isotope
composition of InxGa1−xAs QDs into account. It turns out that the width of the
Overhauser field distribution, characterized by the inverse dephasing time 1/T ∗

n ,
has a relevant influence on the revival amplitude. This is not the case for the mod-
els analyzed in Chap. 6 in the limit of an infinite effective bath size and it is related
to the inclusion of multiple nuclear species in the model. Motivated by previous
investigations [23, 123], a QD sample with T ∗

n = 4 ns is studied here, whereas the
generic value T ∗

n = 1 ns is considered in Chap. 6. But the numerical effort scales
worse than (T ∗

n )3 so that further methodical progress is required despite building on
the previously established minimal model. In order to simulate the nonequilibrium
steady states prevalent under experimental conditions nevertheless, we split the
classical equations of motion into two parts: one part describing the fast Larmor
precession, which is numerically expensive, and another part describing the slow dy-
namics. The fast Larmor precession with frequency h ∝ Bext is treated analytically,
whereas the slow part of the dynamics is expanded in the large magnetic field while
neglecting corrections of the order O(h−2). This approach turns out to work with
a remarkable accuracy for large magnetic fields while reducing the runtime by two
orders of magnitude. As a side product, an algebraic solution is derived for the case
where only a single nuclear species is considered (Appendix E), opening promising
routes for future research. By putting the efficient approach to use, the magnetic
field dependence of the revival amplitude is analyzed for various compositions of
InxGa1−xAs QDs, i.e., for various In concentrations x. Generally, the magnetic
field dependence becomes more complex and better resembles the experimental re-
sults [117]. Several nuclear magnetic resonances are responsible for this behavior,
which reveal themselves as narrow minima in the magnetic field dependence. Their
depth and width depend on the isotope composition of the QDs. This opens up the
possibility of a novel kind of nuclear magnetic resonance spectroscopy of the aris-
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ing nonequilibrium steady states. It would be very interesting to see if these sharp
minima can be observed experimentally to test the model and its predictions.

In conclusion, a sophisticated semiclassical model is developed that describes several
effects related to spin mode locking and nuclei-induced frequency focusing in QDs.
The key components are:

• the hyperfine interaction between the localized electron spin and the surround-
ing nuclear spins,

• the excitation of negatively-charged trions by the pump pulses,

• the interpretation of the pump pulse action as a quantum mechanical measure-
ment to account for the uncertainty principle in the semiclassical approach,

• the Zeeman effect for all spins, including the unpaired heavy-hole spin of a
negatively-charged trion,

• the isotope composition of the QDs, giving rise to several nuclear magnetic
resonances with respect to the repetition rate of the pump pulses.

Possible extensions of the model are pointed out in the outlook given in Sec. 10.3.

10.2 Longitudinal magnetic field

In Chap. 8, the focus shifts to a different type of pump-probe experiment in which a
longitudinal magnetic field is applied to the QDs (Faraday geometry). The polariza-
tion recovery effect is one of the effects to be described for n- and p-doped QDs [93].
It describes the dependence of the spin polarization on the strength of the longi-
tudinal magnetic field. In addition, the helicity of the pump pulses is modulated,
giving rise to the spin inertia effect [93, 125]. The spin inertia effect describes the
dependence of the spin polarization on the modulation frequency and enables the
measurement of long spin relaxation times. Our model developed in Chap. 8 ac-
counts for an arbitrary pumping strength, extending the theory of Ref. [125] valid
in the limit of weak pump pulses. Moreover, it accounts for the hyperfine inter-
action of the resident and photoexcited charge carrier spins with the Overhauser
field, which is assumed to be static, the coupling to the external magnetic field, and
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for the radiative trion recombination. Further spin relaxation induced by other in-
teractions are accounted for by phenomenological relaxation terms. Notably, the
approach does not impose any restrictions on the model parameters.

In our analysis, we find that the pumping strength has a significant effect on the
effective spin relaxation time of the resident charge carriers. The extrapolation of
this time to the limit of zero pump power yields the intrinsic spin relaxation time.
Turning to the polarization recovery curves (PRCs), the model reproduces the
V- and M-like shapes characteristic for n- and p-doped QDs, respectively [93, 125].
Importantly, an increase of the pump power influences the shape of the PRCs as a
consequence of the spin polarization approaching the saturation limit in which all
spins point in the same direction. Various effects are the result: First, a broadening
of the zero field minimum of the PRCs is found for larger pump powers, which is
also confirmed by an analysis of the experiments in Chap. 9. The same behavior
is observed when the pump modulation frequency is reduced. Furthermore, a pro-
nounced M-like shape can gradually change towards a V-like shape when increasing
the pump power. All these effects are more pronounced if the degree of spin po-
larization is large, e.g., if the pump power is large or if the modulation frequency
of the pump pulses is small. To mitigate the influence of the saturation limit of
spin polarization, it is advised to apply very weak pulses combined with a large
modulation frequency. In this limit, the width of the zero field minimum of the
PRC is solely determined by the strength of the hyperfine interaction ωn [88, 125]
so that ωn can be determined from measured PRCs without an extrapolation to
zero pump power

Most strikingly, we predict the emergence resonant spin amplification (RSA) in
Faraday geometry, which is enabled by the transverse component of the random
Overhauser field under certain conditions. The effect reveals itself as an additional
periodic modulation of the spin polarization in the PRCs and allows for a direct and
accurate measurement of the longitudinal g factor of the resident charge carriers.
Recent experiments demonstrate the realization of this novel effect for two different
ensembles of n-doped InGaAs QDs [94]. These experiments are analyzed in Chap. 9,
wherefore the model used in Chap. 8 is extended to account for the inhomogeneous
broadening of the trion transition energy in inhomogeneous ensembles of QDs by
resorting to the formalism developed in Ref. [113]. Furthermore, the pulse model
developed in Ref. [113], which describes the excitation of trion states, is generalized
in Sec. 2.2.2 to account for a finite trion population at the arrival of a pump
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pulse. This extension is required because a laser with a short pulse repetition
time of TR = 1 ns is used in the experiments to reveal RSA in Faraday geometry.
The comparison of simulations with the experimental data shows a remarkable
agreement. An analysis of the RSA visibility reveals the optimal conditions to
observe the effect, which helps to guide future experiments. The best visibility can
be achieved by using a laser with a suitable pulse repetition time (ωnTR ∼ 1 − 2)
together with a large pump power. It is expected to be hard to observe the effect
in QDs with a strongly anisotropic hyperfine interaction, e.g., in p-doped QDs,
because the transverse component of the Overhauser field ∝ ωn/λ (λ ≫ 1) is
smaller than the longitudinal one ∝ ωn that smears the RSA modes. A significant
further enhancement of the RSA visibility can be achieved by exploiting the spin
inertia effect, which leads to a substantial decrease of the degree of spin polarization
if the pump modulation frequency is larger than the spin relaxation rate. In turn,
the RSA visibility increases because it is less influenced by the saturation limit of
the spin polarization in which no polarization can be resonantly amplified.

In conclusion, the analysis demonstrates that our model is capable of describing
measurements of the spin inertia and polarization recovery. Accounting for the
pumping strength instead of assuming the weak pulse limit has a significant effect
on the results. Most importantly, the effect of resonant spin amplification in Fara-
day geometry is predicted. Optimal conditions to achieve an optimal RSA visibility
are explored. Recent measurements confirm the existence of this effect under ex-
perimental conditions [94], with a remarkable agreement between experiment and
theory.

10.3 Outlook

As always, the description of different effects requires tailored effective models. To
model the effect of NIFF, the nuclear spin dynamics caused by the hyperfine inter-
action need to be taken into account, requiring a microscopic theory. In contrast,
it appears to be sufficient for the description of polarization recovery and spin in-
ertia measurements to consider a static nuclear spin bath, but phenomenological
relaxation terms need to be included to describe slow but relevant spin relaxation
processes. Nevertheless, effects stemming from nuclear spin dynamics can have an
impact for small magnetic fields [125, 126]. But since there are other mechanisms
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that can lead to similar effects, it is not straightforward to judge the importance of
the nuclear spin dynamics for the PRCs. Yet, the different approaches also display
synergetic effects: The inclusion of the trion pseudospin dynamics in Sec. 6.3 is mo-
tivated by the description of the M-shaped PRCs characteristic for p-doped QDs,
for which this dynamics is the key component to describe the generation of spin
polarization correctly. Importantly, the commensurability of the pulse repetition
time and the Larmor period of the resident charge carriers plays a central role in
all different types of pump-probe experiments studied in this thesis.

First, let us focus on the pump-probe experiments in which a transverse magnetic
field is applied. Since our approach is based on a microscopic theory, several ex-
tensions are conceivable. For instance, the quadrupolar interaction of nuclear spins
with I > 1/2 (see Sec. 3.1.5) could be taken into account [97, 185–190]. A recent
theoretical study [143] shows that this interaction acts against nuclear focusing.

Another area for improvements is the description of QD ensembles with an inhomo-
geneous broadening of the trion transition energy. For this purpose, the formalism
developed in Ref. [113] can be applied again. This extension would allow one to
investigate the influence of the type of measurement (Faraday rotation versus Fara-
day ellipticity) and also the influence of the pump-probe detuning on the magnetic
field dependence of the revival amplitude [95, 113, 146]. Furthermore, other effects
related to detuning could be analyzed [98, 148]. The algebraic approach derived in
Appendix E provides a suitable foundation provided the external magnetic field is
large enough to justify the expansion in the external magnetic field (Bext ≳ 1T).

Recently, it was demonstrated that by applying periodic pulses with repetition time
TR = 1 ns in Voigt geometry, it is possible to drive the electron spins in an ensemble
of singly-charged InGaAs QDs towards a single Larmor precession mode, resulting
in a substantial increase of the dephasing time [76]. The underlying idea is that
the width of the Overhauser field distribution needs to be small compared to the
distance between adjacent commensurable precession modes, which is proportional
to T−1

R . Earlier experiments used TR = 6.6 ns [75], i.e., the distance between the
modes is smaller compared to the experiments with TR = 1 ns. It needs to be
tested if our model is capable of describing this effect in a suitable manner or
whether further extensions are required.

In a related experimental and theoretical study [130] also using a pulse repetition
time of TR = 1 ns, two novel phenomena termed ‘mode dragging’ and ‘mode pick-up’
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are proposed. Combined, they can be used to generate a substantial dynamic
nuclear polarization. In this exciting experiment, a sweeping transverse magnetic
field is applied. Certainly, an investigation of this novel experimental setup with
the aid of our model, potentially with the aforementioned extension to account for
detuned pulses, is a very interesting subject for future research.

Turning to RSA in Faraday geometry, the current model is already capable of
describing the relevant effects observed in experiments quantitatively and it can
also predict conditions to achieve the optimal RSA visibility. Hence, it can be
used to conceive advanced pulse protocols that potentially render the effect easier
to observe for a variety of semiconductor nanostructures. First ideas consist in
applying two pump beams with the same repetition time, but with a tunable delay
to enforce a certain commensurability of the Larmor precession. Potentially, the
helicity of the two different pump pulses could be modulated in different ways, e.g.,
such that the helicity of consecutive pulses is alternating. It might also be worth
exploring whether a controlled pump-probe detuning can be used to increase the
RSA visibility. Further support from analytical considerations such as the ones
presented in Ref. [126] is certainly helpful to understand this novel effect better. A
different question to be explored is whether nonequilibrium effects similar to nuclear
focusing occur when the nuclear spin dynamics caused by the hyperfine interaction
is taken into account.

Clearly, there is a variety of fascinating effects in the field of spin physics in QDs to
be analyzed and probably, there are even more effects to be discovered. Since the
models developed in this thesis for the different magnetic field orientations already
explain many effects, they provide a promising foundation for future research.
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Appendix A

Derivation of the classical equations of
motion

In the following, we derive the classical equations of motion for the spin dynam-
ics resulting from the classical Hamiltonian (3.32). For this purpose, we use the
notation

HQD =
(

N∑
k=1

AkIk + h

)
· S +

N∑
k=1

hn,k · Ik , (A.1)

with h = γeBextnB and hn,k = γn,kBextnB. The classical equations of motion
follow from the application of Eq. (3.31). For the central spin components Sα,
α ∈ {x, y, z, }, we deduce

d
dt
Sα =

∑
β,γ

εαβγ
∂HQD

∂Sβ
Sγ (A.2a)

=
∑
β,γ

εαβγ

(
N∑
k=1

Iβk + hβ
)
Sγ . (A.2b)

Analogously, the equations of motion for the components Iαk of the bath spins result
to

d
dt
Iαk =

∑
β,γ

εαβγ
∂HQD

∂Iβk
Iγk (A.3a)

=
∑
β,γ

εαβγ
(
Sβ + hβn,k

)
Iγk . (A.3b)

It is clear from the properties of the Levi-Civita symbol εαβγ that for fixed α while
summing over β and γ, only two terms with opposite signs remain. In fact, the
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structure of the equation is identical to the structure of the cross product

(a× b)α =
∑
β,γ

εαβγa
βbγ (A.4)

of the three-dimensional vectors a and b. The notation (a × b)α refers to the
α component of the cross product. Making use of this property, we can write the
full system of equations of motion in the compact form

d
dt
S =

(
N∑
k=1

AkIk + h

)
× S , (A.5a)

d
dt
Ik = (AkS + hn,k)× Ik , k ∈ {1, 2, . . . , N} . (A.5b)

These equations are essentially Bloch equations describing precessions about time-
dependent, effective magnetic fields. The time dependence results from the interre-
lated dynamics of the central spin S and the N bath spins Ik.
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Appendix B

Phase shifts at the pulse boundaries

Extending the resonance analysis of Chap. 5, we calculate the phase shift ∆φ of the
central spin precession at the pulse boundaries to determine the occurring resonance
by fitting the function

Sfit(t) = |A| exp
[
−
5A2

Q

8
(t− t0)2

]
cos (ht− φ) (B.1)

to the autocorrelation function Szz(t) before and after the pulse separately. The fit
parameters are A, t0, and φ. Generally, they are different for the fits of the dynamics
before and after the pulse. The function Sfit(t) is chosen to comprise a Gaussian
envelope modulating the amplitude of the Larmor precession with frequency h.
Figure B.1 illustrates this kind of fit, displaying a very nice agreement with the
numerical data. From the two fits, the phase shift ∆φ at the pulse boundary can
be calculated as

∆φ = |φbefore − φafter| mod 2π. (B.2)

The labels ‘before’ and ‘after’ refer to the fit parameter φ obtained before and after
the pulse, respectively.

For pulse model I without nuclear Zeeman effect (Sec. 5.2.1), we always find phase
shifts of ∆φ ≈ π with deviations of up to 3%, i.e., odd resonances in accordance
with the analysis of the weight Σeven < 0.5.

For pulse model II without nuclear Zeeman effect (Sec. 5.2.2), the phase shift
takes values of zero or π depending on the combination of γ and h. The cor-
responding resonance always matches the resonance displayed by the weight Σeven.
Table B.1 provides some phase shifts obtained for different combinations of h and γ.

275



Appendix B Phase shifts at the pulse boundaries

Note that for combinations of h and γ close to the resonance transition marked by
P = hγ2 = 9× 10−5AQ, e.g., {h = 80AQ, γ = 1/

√
2× 10−3}, it is hard to obtain a

reliable value for ∆φ because the revival signal and its statistical error are of the
same order of magnitude. In this regime, barely any nuclear focusing takes place.

In the presence of the nuclear Zeeman effect (Sec. 5.3), we always find ∆φ ≈ 0 for
both pulse models I and II, i.e., even resonances in accordance with the analysis of
the weight Σeven > 0.5.
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Figure B.1: Example of fitting Eq. (B.1) to the simulated autocorrelation Szz(t) before
and after the pulse (fitted separately) to determine the phase shift ∆φ at the pulse
boundary, which is highlighted by the black vertical line. The phase shift follows from
Eq. (B.2), yielding ∆φ ≈ 1.03π. The data stems from a simulation using pulse model I
without nuclear Zeeman effect and setting h = 40AQ and γ = 10−2.

Table B.1: Phase shifts ∆φ for various combinations of g and γ calculated after
np = 10000 pulses of type II without nuclear Zeeman effect (Sec. 5.2.2).

h γ P = hγ2 ∆φ

40AQ 10−2 4× 10−3AQ 0.005π
40AQ 3× 10−3 3.6× 10−4AQ 0.077π
40AQ 10−3 4× 10−5AQ 0.832π
40AQ 3× 10−4 3.6× 10−6AQ 1.024π
40AQ 10−4 4× 10−7AQ 1.028π
80AQ 3/

√
2× 10−3 3.6× 10−4AQ 0.009π

80AQ 1/
√
2× 10−3 4× 10−5AQ 1.237π

80AQ 1/(3
√
2)× 10−3 4.4× 10−4AQ 1.027π

160AQ 10−2 1.6× 10−2AQ 0.005π
240AQ 10−2 2.4× 10−2AQ 0.011π

276



Appendix C

Alternative nondeterministic pulse
descriptions

It is not straightforward to establish a nondeterministic semiclassical pulse descrip-
tion that on average retains the properties of the deterministic pulse (6.6). In
this appendix, we discuss three alternatives to the nondeterministic pulse descrip-
tion (6.14) introduced in Sec. 6.2, which is based on the Gaussian TWA, and
benchmark them against the deterministic pulse (6.6) and its quantum mechan-
ical counterpart used by Kleinjohann et al. [117] in the SML regime without NIFF.
We point out that the relations (6.6c) and (6.6d) for the trion pseudospin Ja remain
unchanged in all approaches.

C.1 Discrete truncated Wigner approximation

As a first alternative, the deterministic pulse (6.6) is extended by applying the
discrete truncated Wigner approximation (DTWA) [232] instead of the Gaussian
TWA whenever a pulse is applied. This method acts on a discrete phase space,
which, in turn, comprises certain benefits but also disadvantages.

In this approach, each spin component Sα, α ∈ {x, y, z}, is sampled from the
discrete phase space {+1/2, −1/2} so that all quantum mechanical moments of
the spin of the same component are taken into account correctly. Moreover, the
spin length after a pulse is always given by |Sa| =

√
3/2, not only on average. The
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ensuring discrete probability distribution is defined by the probabilities

P
(
Sα
a = +1

2

)
= 1

2
+ E[Sα

a ], (C.1a)

P
(
Sα
a = −1

2

)
= 1

2
− E[Sα

a ], (C.1b)

where E[Sα
a ] is the mathematical expectation value of this probability distribution

given by Eq. (6.14).

The approach works as long as |Sα| ≤ 1/2, e.g., for the first pulse. But since the
spin with initial length

√
3/2 precesses according to the equation of motion (6.2a),

this condition does not necessarily hold for every pulse, leading to the appearance
of negative probabilities in Eq. (C.1). Our heuristic solution consists of effectively
truncating the probability distribution, i.e., we set P (Sz

a = 1/2) = 1 when Sz
b >

1/2. However, this changes the resulting expectation value of the distribution and
thereby, also the revival amplitude in SML steady state without NIFF. Another
drawback of the DTWA is the broken rotational spin symmetry resulting from the
fact that certain spin axes are treated in a special way.

C.2 Trion probability approach

In another approach, we use Sz
b to determine the probability to excite a trion. In

this interpretation, the system realizes either the ground state electron spin S or
the trion pseudospin J directly after the pulse.

The circularly polarized pump pulse σ− excites a trion only if the electron spin is
in the state |↓⟩. In the classical picture, this means that Sz

b = −1/2 leads to the
excitation of a trion and thus, Sz

a = 0 and Jz
a = −1/2. For Sz

b = +1/2, no trion can
be excited so that Sz

a = +1/2 and Jz
a = 0 follows. More generally, the probability

to find the spin in the state |↓⟩ and therefore to excite a trion is given by

P↓ =
1
2
− Sz

b. (C.2)

If no trion is excited, the z component of the electron spin simply takes the value
Sz
a = +1/2, whereas the x and y component are sampled from a normal distribution

with mean value zero and variance 1/4 to account for the uncertainty principle as

278



C.3 Comparison to established pulse descriptions

before in the approach based on the Gaussian TWA. Sampling from the discrete
phase space introduced in Sec. C.1 is another option, but the results turn out to
be worse.

Mathematically, this procedure leads to expectation values that are identical to the
deterministic pulse relation (6.6), but the same issue as discussed in Sec. C.1 arises.
Since negative probabilities can appear, the probability distribution needs to be
truncated, i.e., we set P↓ = 1 if Sz

b < −1/2 and P↓ = 0 if Sz
b > 1/2. Eventually,

this leads to a deviation of the expectation value from Eq. (6.6) and consequently
also to a deviation from the correct revival amplitude in the SML steady state
without NIFF.

A potential solution consists of scaling the spin Sb to the Bloch sphere of spin
length 1/2 before applying the pulse. We will see, however, that this procedure
leads to the emergence of an unwanted phase shift.

C.3 Comparison to established pulse descriptions

Let us compare the various nondeterministic pulse descriptions to the established
deterministic pulse relation (6.6) [113] and its quantum mechanical counterpart
used by Kleinjohann et al. [117] in the SML regime without NIFF. Note that we
do not include the trion pseudospin dynamics introduced in Sec. 6.3 because it has
no relevant influence on revival amplitude in this regime.

Figure C.1 shows the revival amplitude S⊥ (upper panel) and the corresponding
z component Sz (lower panel) for the following pulse descriptions: quantum mechan-
ical (black), deterministic [green, Eq. (6.6)], Gaussian TWA [orange, Eq. (6.14)],
DTWA [blue, Eq. (C.1)], trion probability approach (TPA) [red, Eq. (C.2)], and
TPA with scaling to the Bloch sphere (see end of Sec C.2, brown).

As expected, the quantum mechanical and the deterministic results are almost
identical. Small deviations stem from the fact that the quantum mechanical results
are obtained for only N = 6 nuclear spins, which requires the calculation of an
additional ensemble average to reduce finite-size effects [117]. These results serve
as our benchmark. They show the expected behavior of the revival amplitude, i.e.,
it approaches the SML steady-state value SSML ≈ 0.07735 given by Eq. (6.9), and
there is almost no difference between S⊥ and Sz so that there is no phase shift.
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The results for the nondeterministic pulse based on the Gaussian TWA, which
is introduced in Sec. 6.2 for the EM I, are in perfect agreement with the bench-
mark results (quantum mechanical and deterministic). Small deviations stem from
the statistical nature of the ensemble average in our approach. We average over
M = 106 configurations here; the statistical deviations scale like 1/

√
M .

For the remaining nondeterministic pulse descriptions, we find no satisfying agree-
ment with the benchmark results. As expected, the DTWA and TPA yield a too
small revival amplitude in the steady state. By scaling the spin vector Sb to the
Bloch sphere of spin length 1/2 before applying the TPA, the revival amplitude S⊥

reaches the correct steady-state value. But it turns out that the revival amplitude
is about two times larger than Sz, i.e., a significant phase shift is introduced by
scaling to the Bloch sphere. Such a phase shift does not appear in the benchmark
results. Since only the pulse based on the Gaussian TWA yields convincing results,
it is the nondeterministic pulse description that we put to use in Chap. 6.
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Figure C.1: Buildup of the revival amplitude S⊥ (upper panel) and its z component
(lower panel) to the SML steady state without NIFF for the different pulse descriptions
discussed in Appendix C, combined with the equations of motion of the initial model
used in Sec. 6.1. The gray horizontal dashed line represents the analytical SML steady
state value SSML ≈ 0.07735. Parameters: Bext = 1T, γ = 0.01, averaged over M = 106
configurations. The quantum mechanical results are provided by I. Kleinjohann.
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Appendix D

Role of the in-plane orientation of the
quantum dot sample

The g factor gh of the unpaired heavy-hole spin in the negatively-charged trion T−

strongly depends on the in-plane orientation of the QD sample, with values ranging
from gh = 0.05 to 0.15 [96, 132]. In the extended models (EM) II and III studied in
Chap. 6, the precession of this hole spin about the external magnetic field described
by Eq. (6.19) acts as a perturbation to the recombination dynamics responsible for
the appearance of the ORC (6.10b) in the results of the initial model and of the
the EM I.

D.1 Magnetic field dependence of the revival amplitude

In Fig. D.1(a), we compare the revival amplitude S⊥
NESS as a function of the external

magnetic field Bext resulting from the EM II for gh = 0.15 and gh = 0.05 at
γ = 0.004. We also study the influence of a finite spread of the g factors existing in
an inhomogeneous ensemble of QDs (EM III).1 We use ∆ge = 0.005 [24, 123] and
∆gh = 0.05 [132] as in Sec. 6.4. The results for gh = 0.15 with (EM III, orange) and
without (EM II, blue) the spread of the g factors are identical within the accuracy
of the data. For gh = 0.05, the inclusion of the spread results in a larger revival
amplitude (red versus green). The observation is very similar for the limit of an
infinite bath size (γ → 0, not shown). For γ = 0.01 at Bext = 7.8T while using
gh = 0.05, we find S⊥

NESS > SSML (not by much), hinting at the emergence of a
weak ERC instead of the usual ORC at this particular magnetic field (or at no
NIFF at all). In the limit γ → 0 and also at γ = 0.004, the revival amplitude at
1For simplicity, the notation ge = ge and gh = gh is used here for the EM III.
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Bext = 7.8T is larger than zero but smaller than SSML, implying that the system
chooses the ORC.

Comparing gh = 0.05 (red) to 0.15 (orange) for the EM III, the revival amplitude
is slightly larger for gh = 0.05. Differences between two samples of QD ensembles
were reported in Ref. [117]. In this context, it would be interesting to study the
influence of the in-plane orientation of the samples experimentally.

D.2 Dynamic nuclear polarization

Complementary, we compare the results for the DNP BDNP as a function of the
magnetic field Bext in Fig. D.1(b). Here, we plot the DNP reached after S⊥

NESS is
approximately in saturation, i.e., BDNP is not in its steady state. For the broad
range of magnetic fields, reaching the steady state of BDNP is computationally out
of reach because two orders of magnitude more pulses need to be simulated. Again,
no significant differences are found between the EMs II and III for gh = 0.15. For
gh = 0.05, the DNP for the majority of magnetic fields is slightly smaller than for
gh = 0.15. This is also the case in the DNP saturation regime at Bext = 0.5T
and 1T (not shown).

Interestingly, for gh = 0.05 when using the EM III, there is a slight buckling around
Bext ≈ 3.9T, where no DNP is found for the other cases. There is also a rather
large DNP at Bext = 7.8T, where again no DNP is found for the other cases. But
note that this particular case needs to be treated cautiously because the spread
∆gh = 0.05 was obtained for gh = 0.15 [132]. Probably, the behavior is related
to the fact that we have combined gh = 0.05 with ∆gh = gh = 0.05 so that the
g factor can change its sign or be very close to zero in many cases. Especially when
it is close to zero, there is no fast Larmor precession of the trion pseudospin about
the external magnetic field that can act as a perturbation to the recombination
dynamics, i.e., the qualitative behavior of the nonequilibrium spin dynamics can
change.
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Figure D.1: Influence of the g factor of the trion pseudospin gh on NIFF and DNP for the
extended models (EM) II and III at γ = 0.004: (a) Limiting values S⊥

NESS of the revival
amplitude as a function of the magnetic field Bext. The vertical dashed lines represent
the NRC (6.13) for k = 1 and 2, the horizontal dashed line indicates the SML steady-
statue value SSML. (b) DNP BDNP as a function of the external magnetic field Bext. The
number of pulses is chosen such that S⊥

NESS is approximately in its NESS.
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Appendix E

Algebraic solution of the equations of
motion expanded in the magnetic field
for a single nuclear species

When considering only a single nuclear species in the O(h−1) expansion of the
classical equations of motion (7.8) introduced in Sec. 7.2, it is possible to describe
the dynamics by a set of algebraic relations. For a single isotope, i.e., without any
sums over different nuclear species and using the notation A = Aj, we have the
algebraic relations

z0(t) =
1
h
b0S

x
0 , (E.1a)

z2(t) = − Jz(0)
2τ0(h− hh)

e−t/τ0 , (E.1b)

z3(t) = − Jz(0)
2τ0(h+ hh)

e−t/τ0 , (E.1c)

b1(t) = −A
h
z1B

x
0 , (E.1d)

Sx
1 (t) = −1

h
z1b

∗
0 , (E.1e)

Bx
1 (t) =

A

h
z1b

∗
0 , (E.1f)

Sx
0 (t) = Sx

0 (0) , (E.1g)
Bx

0 (t) = Bx
0 (0) , (E.1h)
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and the two ordinary differential equations

d
dt
z1 = i

(
Bx

0 + A

h
Bx

0S
x
0 + |b0|2

2h

)
z1 , (E.2a)

d
dt
b0 = i

[
ASx

0

(
1− Bx

0
h

)
+ hn −

A2

2h
|z1|2

]
b0 . (E.2b)

The differential equations imply that z1 and b0 only change their phase but not their
length. Hence, they can be solved by inserting the complex exponential functions

z1(t) = z1(0) eiφz1 (t) , (E.3a)
b0(t) = b0(0) eiφb0 (t) , (E.3b)

yielding the two new ordinary differential equations

d
dt
φz1 = Bx

0 + A

h
Sx
0B

x
0 + |b0|2

2h
, (E.4a)

d
dt
φb0 = ASx

0

(
1− Bx

0
h

)
+ hn −

A2

2h
|z1|2 , (E.4b)

with |z1(t)|2 = |z1(0)|2 and |b0(t)|2 = |b0(0)|2. Thanks to Sx
0 (t) = Sx

0 (0) and
Bx

0 (t) = Bx
0 (0), the right-hand sides of the two differential equations are time-

independent so that their integration simply yields the two linear equations

φz1(t) =
(
Bx

0 (0) +
A

h
Sx
0 (0)Bx

0 (0) +
|b0(0)|2

2h

)
t , (E.5a)

φb0(t) =
[
ASx

0 (0)
(
1− Bx

0 (0)
h

)
+ hn −

A2

2h
|z1(0)|2

]
t , (E.5b)

starting from the initial conditions φz1(0) = φb0(0) = 0.

Provided all initial conditions are known, the dynamics in O(h−1) is fully deter-
mined by the algebraic relations (E.1) and (E.5), i.e., no numerical integration of
differential equations is required.

The procedure to determine the correct initial conditions is very similar to the one
used in Sec. 7.2.2. We determine the initial values by inserting t = 0 into the
algebraic relations (E.1). The time argument t = 0 is omitted for brevity in the
following. The known initial conditions are z, b, Sx, Bx, and Jz, from which we
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have to deduce the initial conditions of the expansion variables z0, z1, b0, b1, Sx
0 ,

Sx
1 , Bx

0 , and Bx
1 . First, we know that z1 = z− z0 − z2 − z3 and b0 = b− b1, with

z0 =
1
h
b0S

x
0 , (E.6a)

z2 = − Jz

2τ0(h− hh)
, (E.6b)

z3 = − Jz

2τ0(h+ hh)
, (E.6c)

b1 = −A
h
z1B

x
0 . (E.6d)

The initial conditions for z2 and z3 are known, but this is not the case for z0 and b1.
They depend on b0 and z1, for which we have

z1 = z − 1
h
b0S

x
0 + Jz

2τ0

( 1
h+ hh

+ 1
h− hh

)
, (E.7)

b0 = b+ A

h
z1B

x
0 . (E.8)

Thus, we need to find either b0 or z1; we opt for b0. To this end, we define

F := Re(z1b∗0) (E.9a)

= Re
[
z∗b0 +

Jz

2τ0
b0

( 1
h+ hh

+ 1
h− hh

)]
− |b0|2

h

(
Sx + F

h

)
. (E.9b)

and express the initial conditions for Sx
0 and Bx

0 as

Sx
0 = Sx + 1

h
F , (E.10a)

Bx
0 = Bx − A

h
F . (E.10b)

Next, we can express Eq. (E.9b) solely via b0 besides other known quantities. After
a few algebraic transformations, we find

F =
Re

[
z∗b0 + Jz

2τ0 b0
(

1
h+hh

+ 1
h−hh

)]
− |b0|2

h
Sx

1 + |b0|2
h

. (E.11)
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But we can also express b0 via F , which results in

b0 = b+ A

h

[
z − 1

h
b0

(
Sx + 1

h
F
)
+ Jz

2τ0

( 1
h+ hh

+ 1
h− hh

)](
Bx − A

h
F
)
. (E.12)

Since F depends only on b0, this expression also depends only on b0, but in a non-
linear and nonpolynomial way. However, all corrections on the right-hand side are
suppressed by at least a factor of h−1 so that the relevant zero for b0 is quickly found
by iteration starting from b0 = b. Fast convergence is reached within approximately
five iteration steps. Afterwards, F can be calculated by using Eq. (E.11). Thus, all
initial conditions are now fully determined. The missing ones are given by

Sx
1 = −1

h
z1b

∗
0 , (E.13a)

Bx
1 = A

h
z1b

∗
0 . (E.13b)
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