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Abstract

Advancing technological progress places high demands on engineering structures and
materials. It is important to keep the production costs low and at the same time to ensure
the highest level of safety in practical use. Logistical and ecological aspects also play an
important role. The right choice and utilization of the potential of the used materials is
extremely important in this context. Computer-aided optimization of components and
materials is assigned to the field of structural optimization, which enables improvements
of mechanical structures with regard to selected properties and at the same time taking
important restrictions into account. For this, the design to be changed must be defined
and the desired objective values and constraints have to be formulated mathematically.
On the one hand, this requires knowledge of the stress and strain intensity occurring in
the analyzed component and, on the other hand, the mechanical processes within the
used material must be well understood and captured by mathematical models. Especially
unfavorable phenomena, such as plastic yielding, damage or fatigue, which can ultimately
lead to structural failure, are worth to be analyzed in detail. The development of models
to describe mechanical phenomena is a longstanding scientific tradition and is constantly
being further developed. The performance of scientific experiments is essential in this
context and should be tailored to the mechanical phenomenon to be investigated.
This thesis is about the shape optimization of biaxial test specimen for damage character-
ization of ductile metallic materials. Ductile damage and the driving micromechanical
mechanisms highly depend on the stress state. Therefore, the shape of the biaxial specimen
should be changed in such a way that certain and as homogeneous stress states as possible
arise during the tests. For this purpose, an efficient computer-aided model is prepared
that covers large elastoplastic deformations and, as part of a gradient-based optimization
process, provides the necessary sensitivity information with regard to the change in shape
of the specimen. The determination of the sensitivity information is carried out using a
variational approach and requires deep understanding of the governing equations of the
mechanical model. For validation of the resulting optimal geometries, experiments are
carried out and monitored using digital image correlation. Furthermore, high-resolution
images of the fracture surfaces, which were recorded using a scanning electron microscope,
are examined in order to draw conclusions about the state of stress shortly before failure.



Kurzfassung

Voranschreitender technologischer Fortschritt fordert hohe Ansprüche an ingenieurtechnis-
che Strukturen und Materialien. Dabei ist es wichtig, die Produktionskosten gering zu
halten und gleichzeitig höchste Sicherheit in der praktischen Anwendung zu gewährleisten.
Auch logistische und ökologische Aspekte spielen eine wichtige Rolle. Die richtige Wahl
und Ausnutzung des Potentials der verwendeten Materialien ist in diesen Zusammenhän-
gen enorm wichtig. Die computergestützte Optimierung von Bauteilen und Materialien
ist dem Gebiet der Strukturoptimierung zuzuordnen, welche es ermöglicht, mechanische
Strukturen hinsichtlich gewählter Eigenschaften zu verbessern und gleichzeitig wichtige
Einschränkungen zu berücksichtigen. Dafür muss das zu verändernde Design definiert
und gewünschte Zielwerte und Nebenbedingungen mathematisch formuliert werden. Dies
erfordert zum einen Wissen über den Grad der Beanspruchung des analysierten Bauteils
und zum anderen müssen die mechanischen Vorgänge innerhalb des verwendeten Materi-
als gut verstanden und im Rahmen mathematischer Modelle abbildbar sein. Vor allem
ungünstige Phänomene, wie z.B. plastisches Fließen, Schädigung oder Ermüdung, die
letztendlich zum Strukturversagen führen können, sind es wert detailliert analysiert zu
werden. Die Entwicklung von Modellen zur Beschreibung mechanischer Phänomene ist
langjährige wissenschaftliche Tradition und wird stets weiterentwickelt. Die Durchführung
wissenschaftlicher Experimente ist in diesem Zusammenhang unabdinglich und sollte auf
das zu untersuchende mechanische Phänomen zugeschnitten sein.
In dieser Arbeit geht es um die Formoptimierung biaxialer Versuchskörper zur Charak-
terisierung von Schädigung duktiler metallischer Werkstoffe. Duktile Schädigung und
die treibenden mikromechanischen Mechanismen sind abhängig vom Spannungszustand.
Daher soll die Form der Biaxialprobe so verändert werden, dass sich während der Versuche
bestimmte und möglichst homogene Spannungszustände einstellen. Hierzu wird ein ef-
fizientes computergestütztes Modell aufbereitet, das große elastoplastische Deformationen
berücksichtigt und im Rahmen eines gradientenbasierten Optimierungsverfahrens die
benötigten Sensitivitätsinformationen bezüglich der Formänderung der Probe liefert. Die
Bestimmung der Sensitivitätsinformationen erfolgt mittels eines variationellen Ansatzes
und erfordert tiefes Verständnis der Grundgleichungen des mechanischen Modells. Zur Va-
lidierung der resultierenden optimalen Geometrien werden Experimente durchgeführt und
mittels digitaler Bildkorrelation aufgezeichnet. Anschließend werden hochauflösende Bilder
der Bruchflächen untersucht, die mittels eines Rasterelektronenmikroskops aufgenommen
wurden, um Rückschlüsse auf den Spannungszustand kurz vor dem Versagen zu ziehen.
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Chapter 1

Introduction

This introducing chapter gives an overview on the topics tackled in this thesis.
The main scope, that is, the optimization of specimen design in the context
of plasticity and ductile fracture, is motivated and classified into the scientific
context. The arising problems that need to be solved are formulated and the
main solution methods are presented. Relevant literature and the state of the art
are reviewed in detail.
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2 Chapter 1 Introduction

1.1 Motivation

Demands on materials and engineering structures are growing in modern times. While
high performance is required, lightweight structures and cost efficiency play an important
role. In addition, environmental pollution must be limited in production and use. The
development of better and better engineering structures requires deep knowledge on the
behavior of the deployed materials and the underlying micromechanical mechanisms.
Exploiting the full potential of materials as well as specific structures while ensuring
these important restrictions always state challenging optimization problems within the
designing process. Successfully managing these requirements leads to high performant and
efficient constructions in the sense of costs, lightweight, strength or service lifetime of a
construction tailored for its specific demands.
In this thesis, focus lies on ductile metals, especially aluminium alloys that are widely used
in different engineering disciplines such as civil engineering or the automotive and aerospace
industries, cf. e.g. [121, 195], not least because of its excellent strength to weight ratio,
which makes it an excellent choice for transportation vehicles such as cars, ships, trains and
air- or spacecrafts. In Fig. 1.1 some visual impressions on industrial usage of aluminium
alloys are given. In these industries, especially the safety and security of civilians and
passengers is the ultimate asset. Thus, fulfilling construction efficiency in terms of the
above named aspects is strongly restricted by limitations of critical phenomena like fatigue,
wear behavior, irreversible plastic deformations or material damage and failure. In this
context computer aided simulations play a key role to be able to predict these phenomena
and even more important to avoid or at least limit their occurrence to ensure safe and
substantial constructions. This holds true not only for the final use of the construction
but also and especially for the manufacturing process.
In the past decades, various research has been investigated into understanding mechanical
mechanisms triggering these phenomena and the development of complex models predicting
them. This requires systematic analysis of the material behavior by means of reproducible
tests and corresponding specimens geared towards this objective for the development and
validation of constitutive models. In recent years, various constitutive models incorporating
damage and failure mechanisms have been presented, cf. e.g. [25, 36, 105], where the
choice of the parameters characterizing damage is of great importance. In addition to
isotropic damage models that are based on scalar variables, cf. [99, 146], anisotropic
concepts using tensor-valued variables have also been developed e.g. in [41, 184]. In order
to be able to cover a wide range of applications, an efficient continuum damage model
has been presented in [38]. Here, different damage mechanisms that depend on the stress
state, i.e. for instance growth and coalescence of pores or formation of micro-shear cracks
as well as their interaction, and their influence on the damage and failure behavior can be
taken into account.
In this context, systematic experiments are essential to calibrate and validate the damage
model. Here, the geometry of the test specimen plays an important role. Frequently used
standard test specimen are usually designed in a way that predefined stress states are
generated. For example, tensile specimens with different notches cause increasing stress
triaxialities with decreasing notch radius, cf. [9, 38, 58]. Shear stress states can be achieved
with one-dimensional specimens with single and double joints, see e.g. [38, 58, 70, 144].
As the leading damage mechanism and therefore the overall damage behavior changes at
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of industrial use of aluminium alloys: (a) Farnborough Airport, UK
[177] (b) aluminium car body [7] (c) aluminium ship construction [92], (d) highspeed train
CRH1A-A [106], (e) Boeing 767 [84], (f) Skylab space station [131].

different stress states, specimen geometries covering a wide range of specifically generated
stress states are convenient. First suggestions for this have been made for instance with
the butterfly specimen, cf. [128], which shows significant stress gradients in the damage
and cracking areas. Cruciform specimens have the advantage that it is possible to generate
different stress states with just one geometry. In this context, new biaxial cruciform
specimen geometries have been proposed, cf. [37, 40, 59, 60, 61, 62], of which especially
the X0-specimen is subject of investigations in this work. In Fig. 1.2 the X0-specimen
geometry is illustrated. For the X0-specimen, the localization of deformations and thus
also the damage area is predefined by notches in thickness direction and a wide range of
stress states can be generated through the variation of the loading conditions. However,
for accurate and practicable macroscopic characterization of the damage behavior in
terms of experimentally determined parameters, the corresponding stress state dependent
micromechanical damage mechanisms have to be separated. Thus, distinct and preferably
homogeneous stress states are demanded.

1.2 Goals and scope

This motivates the main objective of this thesis, i.e. the shape optimization of the X0-
specimen with the aim of gaining distinct and preferably homogeneous stress states in
terms of the stress triaxiality. This on the one hand serves as verification of the theoretical
and computational developments founding this work. On the other hand, it emphasizes
the added value of investigating into optimal specimen design by constituting a proof of
concept in this context. However, the development of an efficient and accurate computa-
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tional method required to reach the main goal constitutes the most challenging task and
is therefore the main topic within this thesis. The outcome can not only be used within
the scope of optimal specimen design but constitutes a general computational package
for the structural design optimization considering elastoplastic material beahvior at finite
strains. To achieve this, several tasks have to be accomplished.

Firstly, the overall optimization problem and the corresponding solution procedure
have to be developed. This includes mathematical formulation of the problem in terms
of design controlling quantities and objective quantities as well as potential restrictions.
Furthermore, mathematical solution algorithms have to be chosen that provide adequate
and computationally efficient solutions, i.e. gradient based solutions are demanded.

Secondly, the computational simulation model has to be implemented that captures large
elastoplastic deformations and delivers reliable structural analysis results at reasonably
computational cost while avoiding involuntary numerical defects. Thus, an iterative
solution method has to be implemented to search for thermomechanical equilibrium
described by a geometrically and physically nonlinear equation system.

Thirdly, the gradient information of the solution with respect to the defined design
parametrization has to be determined. Because of their computational efficiency, analytical
methods are preferable to numerical methods. Therefore, governing equations of the
implemented structural analysis problem have to be linearized for consistent determination
of design sensitivity information within the iterative solution procedure.

Finally, the developed computational method has to be applied to the X0-specimen
shape optimization problem. Therefore, the computational geometry model has to be set
up and the mathematical optimization problems have to be defined. The solutions have
to be experimentally verified by comparison of the measurements with the initial basis
X0-specimen geometry.

The latter of the mentioned tasks of course demands the accomplishment of successfully
coupling the three first mentioned computational tasks, of which the determination of the
design sensitivity information constitutes the most challenging and most important in
view of the scientific novelty.

(a)

0 20 [mm]

(b)

Figure 1.2: X0-specimen: (a) photography, (b) sketch.
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1.3 Methodology and state of the art

Reaching the main goals of this thesis requires combinations of different research fields.
This combination should expediently result in an efficient computational method that forms
the framework of design optimization of general elastoplastic structures. Therefore, the
method has to provide information on the elastoplastic structural deformation behavior, as
well as its sensitivity regarding geometrical shape and constitutive design. In the following
the employed methods from different scientific fields are introduced.

Structural mechanics. Structural mechanics deals with numerical computations of defor-
mations, strains, forces and stresses within structures subjected to given loading scenarios.
In this context, from a mathematical point of view, partial differential equations (PDEs)
have to be solved subject to certain boundary conditions leading to a so-called boundary
value problem (BVP). Here, the finite element method (FEM) has well established in
structural solid mechanics as a numerical method for solving PDEs during the past decades.
Briefly, the anlayzed structure is spatially divided into a finite number of so-called finite
elements within a discretization process. The entirety of all finite elements forms the
finite element mesh that constitutes the numerical solution domain. Fundamental details
on structural mechanics and the finite element method can e.g. be found in [21, 31,
33, 47, 80, 172, 190, 191, 198, 199, 200]. The constitutive properties of the analyzed
material is governed by the chosen constitutive material law that numerically describes the
relation between occurring strains and the material’s thermomechanical response. Based
on the class of the material and the phenomena that are to be analyzed, various different
assumptions and approaches exist that capture mulitphysical and multiscale effects. In
this thesis, focus lies solely on elastoplastic deformations, see e.g. [42, 110, 118, 126, 127,
133, 159, 160, 172]. However, the shape optimization of the X0-specimen is motivated
by the idea of tailoring specimen design to experimental damage characterization. That
is, the final results aid the development and calibration of constitutive damage models
in which the choice of the damage characterizing parameters are of great importance, as
e.g. [25, 36, 105]. Due to the assumption of plastic incompressibility within the chosen
elastoplastic model used within this thesis, it is convenient to utilize advanced element
formulations to avoid volumetric locking effects, see e.g. [93]. In this work, the so-called
𝐹 method, see e.g. [49, 55, 172] is conducted because of its simplicity and efficiency.

Structural optimization. Methods from structural optimization (SO) are often used for
assistance in design processes. Utilizing SO, it is possible to computationally identify the
best choice of structural design suited to its demands. Here, mathematical optimization
algorithms are utilized to optimize selected structural properties depending on the mechan-
ical behavior by changing its design in terms of topology, shape or material design. Thus,
it can be seen as a combination of mathematical optimization and structural mechanics.
Some fundamental works providing an excellent overview on structural optimization are
for instance [10, 23, 29, 45, 76, 151]. As the topology of the X0-specimen is predefined
and is not considered to change, topology optimization is not topic of this work. However,
the interested reader is referred to e.g. [1, 24, 86, 136, 156, 157, 183], where besides solid
mechanical problems also multi-physical effects are considered. In this thesis, focus lies on
shape optimization. Here, in contrast to rearrange the material distribution within a fixed
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design space as in topology optimization, only the outer contour of the structure’s geometry
is considered to change. That is, neither additional holes can be created, nor can existing
holes be completely closed. Basics on shape optimization can e.g. be found in [13, 18, 28,
29, 171, 201]. Structural optimization in the context of specimen optimization has been
topic of investigations in several works. For instance in [90] the stress concentration in the
transition zone of a uniaxial tensile test specimen is conducted. The relationship between
the geometric shape and the identification of material parameters has been discussed in
[22, 144]. Optimizing the shape of biaxial specimens is, however, much more complex
and demanding, cf. e.g. [56, 112], since large, inelastic deformations occur in biaxial
tests of ductile metal sheets, which must be taken into account in the constitutive model
and the numerical calculations. Specimen shape optimization considering elastic material
behavior has been e.g. tackled in [51], where Powell’s method [139] is used to search for
the optimum solution, or in [11], in which the direct multi-search method (DMS) has been
used. In [130] a multi-attribute decision making (MADM) method has been conducted to
find an optimum specimen design out of a limited number of alternatives. Some other
contributions connected with optimal cruciform specimen design are for instance [2, 44,
79, 82, 96, 107, 111, 193, 194, 196, 197]. All of the deployed methods have in common
that they are derivative-free. Within the scope of this work a gradient based optimization
strategy considering finite elastoplastic deformations is followed, see e.g. [103, 104, 185,
186, 187]. This ensures efficiency and accuracy of the results. However, additionally to
the elastoplastic structural response, sensitivity information regarding changes of shape
and constitutive design is required.

Design Sensitivity analysis. Design sensitivity analysis (DSA) describes a research field
that deals with the determination of changes of quantities of interest regarding chosen
design parametrizations, see for instance [12, 14, 32, 43, 77, 89, 125, 138, 171, 180, 201]
for a broad overview of different methods and approaches. The different methods differ in
theoretical and computational effort. Analytical methods usually require higher theoretical
cost. However, this often pays off with highly efficient computational procedures in return.
Within the main scope of this thesis, the quantity of interest is the stress state, which
depends on the elastoplastic structural and material behavior. The analytical derivation
of gradient information utilizing the variational approach developed in [18] is used in
this thesis to formulate compact sensitivity relations naturally embedded into the general
structural mechanical framework. This approach is based on an enhanced kinematic
viewpoint that allows rigorous separation of geometrical and physical quantities and
therefore facilitates the analytic derivations by means of variational calculus. This has
been frequently shown in several works in the context of optimal structural design, see e.g.
[14, 63, 116] in the context of hyperleasticity, [124] and [175] in the context of structural
dynamics and the theory of porous media, [87, 88] in the context of multiscale material
design and [103, 104] in the context of finite strain elastoplasticity. For the latter especially
the pioneering works [185, 186, 187] have served as basic requisite in the formulation of
variational design sensitivity information of elastoplastic structures, as well as for the work
at hand.
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Experimental investigations. Although the main focus in this work lies on the mentioned
computational aspects, as the results of the computational method will be experimentally
verified, some remarks on experimental methods should not be missing. The experiments
with the cruciform X0-specimen are performed with the biaxial testing machine LFM-BIAX
20 kN produced by Walter+Bai, Switzerland. The used material is the aluminium alloy
AlMgSi1 (EN AW 6082-T6). During the experiments the deformation behavior is monitored
by means of a digital image correlation (DIC) system Q-400 provided by Limess/Dantec.
Therefore, six cameras are used, each equipped with 6.0 Mpx and 75 mm lenses. After final
fracture, the fracture surfaces are analyzed utilizing scanning electron microscopy (SEM),
which provides detailed visualizations up to magnitudes of 1 000 000 x. The experimental
equipment is located at the laboratories of the Institut für Mechanik und Statik and the
Institut für Werkstoffe des Bauwesens at the Universität der Bundeswehr München. The
opportunity to use this equipment for presentation of the results in this work is gratefully
appreciated. For further details on the experimental techniques the interested reader is
referred to [59, 60, 61, 62], in which the same evaluations have been covered as in this
work utilizing a similar experimental setup.

1.4 Outline

The overall scope of this work is reflected by the outline. The above mentioned deployed
methods are step by step described in detail.

Chapter 2 provides basic preliminaries and introduces the mathematical notation.
Additionally, the deployed hard- and software components and their use for different stages
of the overall method are explained.

Chapter 3 presents the notation of general constrained optimization problems within
the scope of structural optimization. The specific terms and methods used in this context
are explained and the computational treatment is outlined.

Chapter 4 summarizes fundamentals in continuum thermomechanics and solution
algorithms based on the finite element method. The elastoplastic constitutive model is
presented with consistent linearizations needed for the FEM based solution procedure
using Newton’s method. Additionally, remarks on volumetric locking in connection with
plastic incompressibility are given and the 𝐹 -method is exploited for remedy.

Chapter 5 is concerned with the sensitivity analysis. The variational approach is
outlined and detailed continuous derivations of all necessary quantities are presented.
Therefore, an enhanced kinematic viewpoint is exploited that enables naturally embedding
the acquired sensitivity information into the structural mechanical framework.

Chapter 6 aims at transforming the continuously derived sensitivity information into
a compact discrete matrix formulation. Discrete design parametrizations are introduced
and the resulting discrete equations are systematically allocated to the different stages of
the computational algorithm within the finite element method.

Chapter 7 represents the final proof of practicability and accuracy of the developed
computational method. First, the developed method is used to identify constitutive
parameters of the exploited elastoplastic constitutive model to fit the local material
response. Subsequently, the shape optimization of the X0-specimen is performed and
results are opposed with data acquired by the experimental investigations.
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Chapter 8 finally summarizes the theoretical and computational developments in this
thesis and draws conclusions on the findings. Within a closing outlook, hints on future
investigations concerning the addressed research fields are given.

To provide a smooth general flow of reading, lengthy derivations and specific implementation
details that are helpful in view of replication of the results presented in this thesis are
given in the appendix.

Appendix A gives detailed information on lengthy derivations of important variations
in the context of structural and sensitivity analysis.

Appendix B explains details on the numerical treatment in context of the FEM and
gives specific hints on implementations utilizing MATLAB.

Appendix C presents further evaluations of SEM images at different magnitudes of the
specimens fracture surfaces to improve the overall impression of the microscopic texture.



Chapter 2

Preliminaries

In this chapter the general notational conventions used in this thesis are introduced.
Differences in tensor notation of continuous quantities and matrix notation of
discrete quantities are outlined. Additionally, an overview of the hardware
components and software tools used for numerical investigations is given.
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2.1 Notation

Throughout this whole work symbolic tensor notation is used, unless in special cases,
which are indicated separately. To distinguish between the tensorial order of quantities,
different typographies are utilized. The convention in Tab. 2.1 summarizes the typographic
notation. Vectors are bold face italic. Given an 𝑛-dimensional vector space with an
arbitrary covariant basis {𝑔1, 𝑔2, . . . , 𝑔𝑛}, the expression 𝑣 = 𝑣𝑖 𝑔𝑖 represents a vector with
contravariant coefficients 𝑣𝑖 and basis vectors 𝑔𝑖. Second order tensors are written upright
bold face and sans serif, e.g. TTT = 𝑇 𝑖𝑗 𝑔𝑖⊗𝑔𝑗 . Third order tensors have the same topographic
style as second order tensors, but are additionally underscored TTT = 𝑇 𝑖𝑗𝑘 𝑔𝑖 ⊗ 𝑔𝑗 ⊗ 𝑔𝑘 .
Fourth order tensors are blackboard bold characters T = 𝑇 𝑖𝑗𝑘𝑙 𝑔𝑖 ⊗ 𝑔𝑗 ⊗ 𝑔𝑘 ⊗ 𝑔𝑙. In most
cases, quantities are given w.r.t. a Cartesian basis with basis vectors 𝑒𝑖 or 𝐸𝑖. As a
Cartesian basis is orthonormal by definition, the distinction of co- and contravariance is
not necessary. This simplifies the notation of operations between the mentioned quantities
as follows. Note that Einstein’s summation convention applies.
Single contraction is either denoted as dot product for vectors or omitted for higher order
tensors and double contraction is denoted as colon, e.g.

𝑢 · 𝑣 = 𝑢𝑖𝑣𝑖; TTT𝑣 = TTT · 𝑣 = 𝑇𝑖𝑗𝑣𝑗 𝑒𝑖 and A : TTT = 𝐴𝑖𝑗𝑘𝑙𝑇𝑘𝑙 𝑒𝑖 ⊗ 𝑒𝑗 . (2.1)

Special transpositions of third or fourth order tensors are denoted as superscripts, e.g.

T
23

T = 𝑇𝑖𝑘𝑗𝑙 𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 ⊗ 𝑒𝑙, (2.2)

which represents the transposition of the second and third bases of a fourth order tensor.
For instance, the special fourth order projection tensors that map a second order tensor
to itself or its symmetric and deviatoric contribution, respectively, can be written as

4

I = (III⊗ III)
23

T = (𝛿𝑖𝑘 𝛿𝑗𝑙) 𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 ⊗ 𝑒𝑙,

Isym =
1

2

(︂
(III⊗ III)

23

T + (III⊗ IIIT)
23

T

)︂
=

1

2
(𝛿𝑖𝑘 𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝛿𝑗𝑘) 𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 ⊗ 𝑒𝑙,

Idev = Isym − 1

3
III⊗ III =

(︂
𝐼sym𝑖𝑗𝑘𝑙 −

1

3
𝛿𝑖𝑗 𝛿𝑘𝑙

)︂
𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 ⊗ 𝑒𝑙.

(2.3)

In some equations, the special product
ij

* is used, which denotes a single contraction of
the 𝑖-th basis of a fourth order tensor with the 𝑗-th basis of a second order tensor, i.e.

T
21

* AAA = 𝑇𝑖𝑗𝑙𝑚𝐴𝑗𝑘 𝑒𝑖 ⊗ 𝑒𝑘 ⊗ 𝑒𝑙 ⊗ 𝑒𝑚. (2.4)

This notation has been introduced in [103] and is notational convenient in some cases,
as it allows compact representations of complicated terms, e.g. tensor-valued derivatives
of physical quantities defined in the current configuration that are pulled-back to the
reference configuration.
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Table 2.1: Typographic convention.

Example Typography

Scalar 𝑆, 𝑠, 𝛼 italic

Vector 𝑉 , 𝑣, 𝜈 bold face, italic

2nd order tensor TTT, ttt, 𝛽𝛽𝛽 bold face, upright, sans serif

3rd order tensor MMM, mmm, 𝛾𝛾𝛾 underscored, bold face, upright, sans serif

4th order tensor A, a, Σ blackboard

Matrix 𝐾, 𝑘 , 𝜂 bold face, italic, sans serif

Table 2.2: Tensor operations.

Operation Symbol Example

Single contraction · or " " 𝑠 = 𝑢 · 𝑣; AAA = BBB CCC

Double contraction : 𝑠 = AAA : BBB; SSS = C : EEE

Special single contraction
ij

* S = A
21

* BBB

Dyadic product ⊗ TTT = 𝑎⊗ 𝑏

2.1.1 Continuous variations and function spaces

Total variations of functionals are indicated with the 𝛿 symbol. Partial variations receive
an extra subscript indicating the direction of the derivative. Given a three field functional
𝐽(𝑢,𝑠,ℎ), with 𝑢 ∈ U, 𝑠 ∈ S and ℎ ∈ H that is generally nonlinear in all three arguments,
where U, S and H are Hilbert spaces, its total variation is given by the sum of its partial
variations

𝛿𝐽(𝑢,𝑠,ℎ) = 𝛿𝑢𝐽(𝑢,𝑠,ℎ; 𝛿𝑢) + 𝛿𝑠𝐽(𝑢,𝑠,ℎ; 𝛿𝑠) + 𝛿ℎ𝐽(𝑢,𝑠,ℎ; 𝛿ℎ), (2.5)

where the partial variations are defined as the Gâteaux or directional derivatives

𝛿𝑢𝐽 = lim
𝜖→0

1

𝜖
[𝐽(𝑢+ 𝜖 𝛿𝑢,𝑠,ℎ)− 𝐽(𝑢,𝑠,ℎ)] = d

d𝜖
𝐽(𝑢+ 𝜖 𝛿𝑢,𝑠,ℎ)

⃒⃒⃒⃒
𝜖=0

,

𝛿𝑠𝐽 = lim
𝜖→0

1

𝜖
[𝐽(𝑢,𝑠+ 𝜖 𝛿𝑠,ℎ)− 𝐽(𝑢,𝑠,ℎ)] = d

d𝜖
𝐽(𝑢,𝑠+ 𝜖 𝛿𝑠,ℎ)

⃒⃒⃒⃒
𝜖=0

,

𝛿ℎ𝐽 = lim
𝜖→0

1

𝜖
[𝐽(𝑢,𝑠,ℎ+ 𝜖 𝛿ℎ)− 𝐽(𝑢,𝑠,ℎ)] = d

d𝜖
𝐽(𝑢,𝑠,ℎ+ 𝜖 𝛿ℎ)

⃒⃒⃒⃒
𝜖=0

,

(2.6)

with also 𝛿𝑢 ∈ U, 𝛿𝑠 ∈ S and 𝛿ℎ ∈ H. The partial variations are linear w.r.t. the
respective direction of the derivative, which is indicated by the argument following a
semicolon. The resulting operators are called semi-linear forms, as for a fixed set {̂︀𝑢,̂︀𝑠,̂︀ℎ}
they are linear forms, e.g. 𝛿𝑢𝐽(̂︀𝑢,̂︀𝑠,̂︀ℎ; 𝛿𝑢) = 𝛿𝑢𝐽 : V→ R. Partial variations of semi-linear
forms result in semi-bilinear forms, which consequently for a fixed set {̂︀𝑢,̂︀𝑠,̂︀ℎ} become
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bilinear forms. For instance, given a semi-linear form 𝑅(𝑢,𝑠,ℎ;𝑣), with 𝑣 ∈ V, its partial
variation w.r.t. 𝑢 is given by 𝛿𝑢𝑅(̂︀𝑢,̂︀𝑠,̂︀ℎ;𝑣,𝛿𝑢) = 𝛿𝑢𝑅 : V× V→ R. Linear and bilinear
operators can be expressed in matrix form, i.e. e.g.

𝑅(̂︀𝑢,̂︀𝑠,̂︀ℎ;𝑣) = 𝑣T𝑅 and 𝛿𝑢𝑅(̂︀𝑢,̂︀𝑠,̂︀ℎ;𝑣,𝛿𝑢) = 𝑣T𝐾 𝛿𝑢. (2.7)

For details on the function spaces and the notation using linear and bilinear operators,
see e.g. [43, 77, 89, 171].

2.1.2 Discrete quantities

For the numerical implementation of a continuum theory, a discretization of the relevant
quantities is necessary. In this work, the finite element method (FEM) is utilized. For
reasons of simplicity and efficiency the so called Voigt notation is commonly used to reduce
the order of arrays. For instance, the coefficients of a second order tensor AAA = 𝐴𝑖𝑗 𝑒𝑖 ⊗ 𝑒𝑗
can be represented by a matrix

𝐴 =
[︀
𝐴𝑖𝑗

]︀
, for 𝑖,𝑗 = 1,2,3 (2.8)

or by a column matrix (vector) using the convention

𝐴 =
[︀
𝐴11 𝐴21 𝐴31 𝐴12 𝐴22 𝐴32 𝐴31 𝐴32 𝐴33

]︀T (2.9)

for general nonsymmetric coefficients, or by

𝐴 =
[︀
𝐴11 𝐴22 𝐴33 2𝐴12 2𝐴23 2𝐴31

]︀T (2.10)

if the coefficients are symmetric. Note that there are exceptional cases in which the vector
representation is handled differently, cf. e.g. the vector representation of the mechanical
stress tensor in Eq. 6.44. In these cases, the vector notation will be explicitily stated. In
the same manner, matrix representations of fourth order tensor coefficients can be gained,
viz.

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴1111 𝐴1121 𝐴1131 𝐴1112 . . . 𝐴1133

𝐴2111 𝐴2121 . . . . . . 𝐴2133

...
...

. . .
...

...
...

. . .
...

𝐴3311 𝐴3321 𝐴3331 𝐴3312 . . . 𝐴3333

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.11)
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or for symmetric coefficients

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴1111 𝐴1122 𝐴1133 2𝐴1112 2𝐴1123 2𝐴1131

𝐴2211 𝐴2222 . . . . . . 2𝐴2231

...
...

. . .
...

...
...

. . .
...

𝐴3311 𝐴3322 𝐴3333 2𝐴3312 2𝐴3323 2𝐴3331

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.12)

A fourth order tensor might result from a partial derivative of a non-symmetric second
order tensor w.r.t. a symmetric second order tensor, or vice versa. In these cases the
matrix representations in Eq. (2.11) and Eq. (2.12) are mixed, e.g. the matrix form of the

tensor A =
𝜕AAA
𝜕BBB

= 𝐴𝑖𝑗𝑘𝑙 𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 ⊗ 𝑒𝑙, with BBB = sym(AAA), reads

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴1111 𝐴1122 𝐴1133 2𝐴1112 2𝐴1123 2𝐴1131

𝐴2111 𝐴2122 . . . . . . 2𝐴2131

...
...

. . .
...

...
...

. . .
...

𝐴3311 𝐴3322 𝐴3333 2𝐴3312 . . . 2𝐴3331

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.13)

Note that all three space dimensions are considered.

2.2 Computational environment

This section summarizes the hardware and software components used for numerical
computations in this work. First, three different computing machines are presented.
Subsequently, the software tools used for different stages of the simulations are introduced
and their interaction is briefly sketched.

2.2.1 Hardware equipment

All simulations in this work have been performed on one of the three machines specified
below in Tab. 2.3. All of them are running a 64-bit Linux operating system.

2.2.2 Software components

Numerical implementations of the underlying theories of this thesis have been done in
MATLAB R2019b. The in-house code accrued within the past years is called SOAP, which
is an abbreviation for Structural Optimization and Analysis Program. The main focus of
SOAP lies on efficient sensitivity analysis of structures with elastoplastic material behavior.
The structural analysis is performed utilizing the finite element method, thus, sensitivity
relations are discretized in the same manner. Following, three software tools that are
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Table 2.3: Computing machines.

Abbreviation Description

MWS

Dell Precision 7530 Mobile Workstation

Intel® Core™ i9-8950HK (hexa-core @ 2.90GHz)

32GB DDR4 Memory

NVIDIA® Quadro® P3200 Mobile, 6GB

DWS

Fujitsu Celsius Desktop Workstation

2 × Intel® Xeon® E5-2690 (octa-core @ 2.90GHz)

64GB DDR4 Memory

NVIDIA® Tesla® C2075, 6 GB

LiDO3

Linux Cluster Dortmund (3rd generation)

4 × Intel® Xeon® E5-2640v4 (deca-core @ 2.40GHz)

up to 1 024GB DDR4 Memory

NVIDIA® Tesla® K40, 12 GB

essential in different stages - that is preprocessing, processing and postprocessing - of
the simulations are briefly introduced. Note that for the presentation of MATLAB code
examples, within this thesis the M-code LaTeX Package [91] is used.

Gmsh

Gmsh, cf. [64], is an open source three-dimensional finite element mesh generator. It is
distributed under the terms of the GNU Public License (GPL). It comes with a built-in
CAD engine and offers an intuitive graphical user interface (GUI), which can be used to
build up geometries and finite element meshes. Alternatively, Gmsh can be run in batch
mode by passing an ASCII text file with a .geo extension using Gmsh’s own scripting
language. There also exists an application programming interface (API) that makes it
possible to provide code using other programming languages like C/C++, Python or
Julia, which is not used within the scope of this thesis. When run in batch mode,
Gmsh provides the opportunity to provide variables using the -setnumber option, which
parametrizes the input. This becomes crucial in shape optimization, when the shape
defining design parameters are not chosen as nodes of the finite element mesh, but
geometrical quantities that parametrize the underlying geometry. In SOAP, Gmsh is used
in the preprocessing stage for mesh generation, as well as for the computation of numerical
derivatives of the FE mesh w.r.t. design parameters. More details on this are given in
Chap. 6.
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MATLAB

MATLAB, cf. [117], distributed by MathWorks®, is a high-level language and interactive
environment. It enables to perform computationally intensive tasks and differs from
traditionally programming languages, such as C/C++ or Fortran, as it is an interpreter
that processes source code at runtime. The listed traditional languages need an external
compiler to convert source code to machine code, which usually leads to much better
runtime perfomance of the executable program. However, MATLAB also has the oppertunity
to precompile parts of the source code using the MATLAB compiler toolbox. MATLAB’s
system command is useful to control operations of third party software, e.g. for mesh
generation using Gmsh. For structural optimization MATLAB’s optimization toolbox
also contains powerful functions, such as fmincon or lsqnonlin, that takes complex
implementations off the user’s hand. By means of the NURBS toolbox, CAGD based
geometries can be constructed with Bêzier patches, B-Splines or NURBS. Below, Tab. 2.4
summarizes the mendatory MATLAB toolboxes for the usage of SOAP and replication of
the results presented in this thesis.

Table 2.4: MATLAB toolboxes.

Toolbox Version Functions / Directives

MATLAB Coder 4.0 codegen

Optimization Toolbox 8.1 fmincon, lsqnonlin

Parallel Computing Toolbox 6.12 parfor

NURBS Toolbox 1.0

ParaView

The open-source, multi-platform data analysis and visualization application ParaView,
cf. [3, 8], allows users to quickly build visualizations to analyse data using qualitative and
quantitative techniques. Data exploration can be done interactively or in batch mode.
Within the scope of this thesis, ParaView is used to process data like strains or stresses
calculated after the simulation using MATLAB within a postprocessing procedure. The
data is supplied by means of the .vtk file format that can be processed by ParaView.

ISTRA 4D

Monitoring and evaluation of experimental investigations is done using digital image
correlation (DIC) by means of ISTRA 4D. It is a user-friendly software developed by
Dantec Dynamics for simple and repeated shearographic measurements and evaluations. It
allows multi-camera setups and provides high resolution results with high frame rates. Users
can easily define coordinate systems and select measurement points (Gauge points) for
the evaluation of the global deformation behavior of the analyzed specimen. Additionally,
strain fields are computed and can be visualized at the specimen surfaces. With ISTRA
4D it is also possible to view measurements in real time during the experiment.





Chapter 3

Optimization Strategy

The main goal in this thesis is the optimization of an elastic-plastic structure
undergoing large deformation. This chapter gives a brief overview about the
solution strategy of the main optimization tasks that represents the frame of the
computational procedure within this thesis. The mathematical notation of general
optimization problems is introduced and important mathematical algorithms
used within the solution strategy are sketched.
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3.1 Introduction

This chapter aims at providing basic information on the optimization techniques used
within this thesis to achieve the major goal of the specimen shape optimization and
introducing the mathematical notation for general optimization problems.
The field of structural optimization is concerned with fundamental methods and appli-
cations of mathematical optimization techniques for computer aided optimal design of
structures and mechanical systems in general, cf. e.g. [10, 23, 29, 45, 76, 151]. Within
a structural optimization process mathematical and numerical algorithms are employed
to detect the best design choice regarding a specific optimization goal. That is, in a
mathematical sense, the best choice of a defined set of design variables maximizes or
minimizes the value of an objective function. In the context of structural optimization,
design variables parametrize the thermomechanical response of the underlying structure in
terms of its topology, geometric shape or constitutive properties. In topology optimization,
the densities at discrete elements play the role of design variables, i.e. the optimal material
distribution within a fixed design space is detected. This often leads to creation of new or
coalescence of initial holes in the structure. Several research groups addressed topics of
topology optimization using different approaches not only for solid mechanical problems
but also within a multi physical context. More insight can be found e.g. in [1, 24, 86,
136, 156, 157, 183] to name a few. In structural shape optimization, the topology of
the analyzed structure is fixed and only the shape of the boundary is desired to change.
Design variables are usually lengths, radii or coordinates of geometry controlling points.
General and detailed information concerning shape optimization can be found e.g. in
[13, 18, 28, 29, 171, 201] that have served as orientation within this thesis. Constitutive
properties are concerned with the design of the material’s microstructure, which can be
differently described depending on the desired resolution. That is, generally a distinction
of length scales into macro-, meso- and micro- or even nano-scale is made, cf. e.g. [34, 87,
192]. Within this thesis solely the macro-scale is considered and micromechanical effects
are described via macroscopic constitutive laws. Here, the underlying strain energy and
dissipation functions and the material dependent constitutive parameters needed for their
evaluation completely determine the thermodynamic behavior. Thus, within this thesis
the term constitutive design is introduced meaning a set of parameters controlling the
constitutive material behavior.
Typical optimization goals in solid mechanics are for instance the minimization of weight
or the maximization of the stiffness of a given structure. These optimization goals often
are not only technologically but also economically relevant. Better performing and light
weight structures can save production and shipping costs. However, the choice of the
optimal design process is often limited in the sense that the structure has to fulfil specific
conditions. These constraints might be of technological nature, like limitation of stresses,
manufacturing issues, mass or volume. Also economical aspects often act as constraint
in an optimization process. Constraint functions can be equality or inequality equations.
Additionally, the values of the design variables itself can be limited to lower and upper
bounds acting as box constraints.
The characteristics of the considered objective and constraint functions affect the choice
of the solution strategy. That is, linear programming algorithms (LP) can be used if
both, objective and constraint functions linearly depend on the design variables, quadratic
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programming (QP) is used for quadratic objective functions and linear constraint functions.
Nonlinear programming (NLP) algorithms are used to solve the most general optimization
problems in which the objective function, as well as the constraint functions, can be
nonlinear. In these cases, usually, the solution has to be determined using an iterative
procedure utilizing LP or QP for the solution of a subproblem in each iteration step.
Solution methods can be classified into zero order, first order and second order methods.
Two famous examples of zero order methods are for instance the simplex method, cf. e.g.
[27, 48, 95, 132], or Monte-Carlo simulations, see e.g. [122, 123, 143]. Zero order methods
only require the evaluation of the objective and constraint functions, while first order
methods require the gradient w.r.t. the design variables to establish a search direction.
Prominent examples are for instance the steepest descent method [5, 50, 129] or the
method of conjugated gradients [78, 155, 174, 176]. Second order methods require second
derivatives, additionally. That is, not only the gradient of the Lagrange function is required,
but also the Hessian. In these kinds of methods not a direct increase of the objective
function value is aimed but rather the satisfaction of a vanishing gradient indicating a
stationary point. The most prominent example of a second order method is most likely
Newton’s method, which is commonly used in structural mechanics for the solution of
nonlinear boundary value problems. The procedure of determining gradient information is
called sensitivity analysis. Different approaches exist for this purpose that can be classified
into analytical and numerical methods. For details on different approaches in sensitivity
analysis the interested reader is referred to e.g. [14, 43, 89, 171]. The order of a solution
method goes along with numerical efficiency and accuracy of the solutions. However,
utilizing higher order methods, only local minima can be detected and the theoretical and
in some cases also the numerical effort can be huge. Additionally, often the convexity of
the objective function cannot be guaranteed, which might lead to failure of the solution
algorithm due to a non-positive definite Hessian. To overcome this, Quasi-Newton methods
can be utilized. Here, the Hessian is approximated by means of an update formula that
evolves during the iterations and ensures positive definiteness. In this thesis, focus lies of
the method of sequential quadratic programming (SQP) that constitutes a Quasi-Newton
method utilizing the Broyden-Fletcher-Goldfarb-Shannon (BFGS) update for the Hessian
approximation. The SQP method can be seen as state of the art in nonlinear constrained
optimization. Details on SQP can be found e.g. in [30, 69, 134, 148, 149] and more
information on the BFGS method is given e.g. in [35, 57, 68, 154].
In the following, first the mathematical notation of a general unconstrained optimization
problem is introduced. Secondly, basic fundamentals of the SQP method are briefly
sketched and the solution strategy for the specimen shape optimization is presented.
Here, focus lies on the general approach utilizing the MATLAB functions available in the
Optimization Toolbox.

3.2 General constrained optimization problem

Let 𝐽 be an objective function that depends explicitly on the chosen set of design variables 𝑠 ,
i.e. 𝐽 = 𝐽(𝑠). Further, 𝑐eq𝑗 (𝑠,) and 𝑐in𝑘 (𝑠) constitute the equality and inequality constraints.
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The general optimization problem then reads

min
𝑠∈Rndv

𝐽(𝑠),

subject to 𝑐eq𝑗 (𝑠) = 0, 𝑗 ∈ E := {1, . . . ,𝑛eq},
𝑐in𝑘 (𝑠) ≤ 0, 𝑘 ∈ I := {1, . . . ,𝑛in},

𝑠𝑙𝑖 ≤ 𝑠𝑖 ≤ 𝑠𝑢𝑖 , 𝑖 = 1, . . . , ndv.

(3.1)

Note that if both sets of constraints are empty, i.e. if E = I = ∅, the optimization
problem simplifies to an unconstrained one. In the general constrained case, most solution
algorithms require the reformulation of the constrained problem into an unconstrained
problem by means of the Lagrange formalism. Therefore, the original objective function is
replaced by a manipulated Lagrange function L that additively incorporates the constraint
functions using corresponding Lagrange multipliers 𝜆 and 𝜇, viz.

L(𝑠,𝜆,𝜇) := 𝐽(𝑠) +

𝑛eq∑︁
𝑗=1

𝜆𝑗 𝑐
eq
𝑗 (𝑠) +

𝑛in∑︁
𝑘=1

𝜇𝑘 𝑐
in
𝑘 (𝑠)

= 𝐽(𝑠) + 𝜆T 𝑐eq + 𝜇T 𝑐 in.

(3.2)

The Lagrange multipliers are also known as adjoint variables. A solution point is defined
by the Karush-Kuhn-Tucker (KKT) optimality criteria

∇L(𝑠,𝜆,𝜇) :=

⎡⎣∇𝑠L

∇𝜆L

∇𝜇L

⎤⎦ =

⎡⎣00
0

⎤⎦ . (3.3)

That is, the gradient of the Lagrange function vanishes at a stationary point.

3.3 Solution strategy

The optimization tasks tackled within this thesis are solved by means of MATLAB and the
available Optimization Toolbox. Specially the functions lsqnonlin for the solution of
non-linear least squares problems and fmincon for the solution of general constrained
optimization problems are utilized. These MATLAB functions provide automatic application
of different optimization algorithms chosen by the user. However, the SQP method
constitutes the state of the art in nonlinear programming and is therefore used for the
specimen shape optimization in this thesis. Its fundamentals are briefly sketched in the
following.

3.3.1 Sequential quadratic programming

In the SQP approach, a sequence of quadratic subproblems of the form

min 𝐽𝑘 =
1

2
𝛥𝑠𝑇 ∇2

𝑠𝑠L(𝑠
𝑘,𝜆𝑘,𝜇𝑘)𝛥𝑠 +∇𝐽(𝑠𝑘)𝑇 𝛥𝑠 (3.4)
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subject to the linearized constraints

𝑐eq𝑘 = 𝑐eq𝑘 (𝑠𝑘) +∇𝑐eq𝑘 (𝑠𝑘)𝑇 𝛥𝑠𝑘 = 0,

𝑐 in𝑘 = 𝑐eq𝑘 (𝑠𝑘) +∇𝑐 in𝑘 (𝑠𝑘)𝑇 𝛥𝑠𝑘 ≤ 0,

(𝑠 𝑙 − 𝑠𝑘) ≤ 𝛥𝑠 ≤ (𝑠𝑢 − 𝑠𝑘),
(3.5)

is solved. The solution of the quadratic subproblems in each iteration 𝑘 can be obtained
by means of any QP algorithm and requires the gradient of the objective and constraint
functions, as well as the Hessian of the Lagrange function. In the SQP implementation of
the MATLAB function fmincon, an active set strategy is used cf. e.g. [65, 66]. Within the
Quasi-Newton procedure, the Hessian of the Lagrange function is approximated using the
BFGS update formula as proposed by [75, 140, 149]. The BFGS method ensures positive
definiteness of the Hessian and its approximation becomes more accurate with each global
SQP iteration. The QP solution forms a new iterate following the update formula

𝑠𝑘+1 = 𝑠𝑘 + 𝛼𝑘𝛥𝑠𝑘, (3.6)

where 𝛼𝑘 is the step length parameter and 𝛥𝑠𝑘 denotes the search direction. The step
length parameter can be determined utilizing an appropriate line search procedure to
sufficiently decrease a merit function, cf. e.g. [6, 189].
fmincon provides the possibility to compute the gradient of the objective and constraint
functions automatically by means of the numerical finite difference method. However,
this method is numerically costly due to the amount of function evaluations based on the
number of design variables. Furthermore, results might be inaccurate depending on the
choice of perturbation size. The approach to determine the gradient information pursued
within this thesis is the variational sensitivity analysis, in which analytical gradients
are derived by means of variational calculus and embedded into the numerical solution
framework of the structural analysis problem. Both strategies are briefly explained in the
upcoming section.

3.3.2 Determination of gradient information

In this work, two different ways of establishing design sensitivity information, i.e. the
computation of gradients of the objective and constraint functions, appear. In the following
these two methods are briefly introduced.

Finite difference method. The finite difference method (FDM) is a numerical method
in which differential quotients (gradients) are approximated by difference quotients at
finite equidistant lattice points. That is, the gradient ∇𝑓 of a function 𝑓 is approximated
by ∇FD𝑓 ≈ ∇𝑓 . Therefore, the value of each design variable is perturbed by a small
number 𝜀 and the corresponding function values 𝑓𝜀 are evaluated. This gives information
about the function values in a finite neighbourhood that is used to draw inferences on the
gradient of the function in that point. Three variants of the FDM have to be distinguished
concerning the direction of perturbation. That is, the forward, backward and central FDM
scheme in which the approximations require the function values regarding positive and
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negative perturbations 𝑓𝜀+ and 𝑓𝜀−, as well as the function value at the point itself 𝑓 .
The respective gradient approximations read

Forward FDM: ∇f
FD𝑓 :=

𝑓𝜀+ − 𝑓
𝜀

Backward FDM: ∇b
FD𝑓 :=

𝑓 − 𝑓𝜀−

𝜀

Central FDM: ∇c
FD𝑓 :=

𝑓𝜀+ − 𝑓𝜀−

2 𝜀

(3.7)

The FDM has the advantage of comparatively simple implementation. However, depending
on the complexity of the analyzed function, the FDM might be computationally costly.
Furthermore, the accuracy of the results strongly depend on choice of the perturbation
size. In theory, the smaller the perturbation size becomes, the better the numerical
approximation. In practice, this is connected with the numerical precision of the computing
machine. That is, computations of small differences of large numbers or quotients of large
and small numbers for instance might not be adequately representable.
fmincon offers the possibility of automatic gradient approximation using FDM and
several parameters can be adjusted by setting the appropriate options. However, in this
work FDM is mainly used purposing the verification of analytically derived gradient
information.

Variational design sensitivity analysis. A more reliable approach of computing gradient
information is the analytical way. In connection with discrete methods for the solution
of the underlying structural mechanical problem, two different approaches that lead the
same results have to be distinguished. On the one hand, in the discrete approach already
discretized model equations are taken as basis for the gradient computations, i.e. discrete
quantities are analytically derived. On the other hand, in the variational approach the
continuous quantities of the underlying structural mechanical problem serve as basis for
the gradient derivations. The latter approach is focused within this thesis. The variational
design sensitivity analysis (VDSA) requires deep insight into the governing continuum
mechanical equations to apply variational tensor analysis for consistent linearizations.
The assumption of finite elastoplastic material behavior goes along with highly nonlinear
equations and path dependency of the structural response requiring the solution of an
initial boundary value problem (IBVP) for the elastoplastic state variables, namely the
discrete displacements 𝑢 ∈ Rdof and the set of internal variables connected with dissipative
mechanisms ℎ ∈ Rnhv. Here, dof and nhv represent the number of discrete degrees of
freedom and history variables, respectively. Therefore, the functional dependencies have
to be identified and the VDSA has to be embedded into the solution procedure of the
IBVP, i.e. it has to be consistent with the used discrete time integration scheme. Thus,
for any arbitrary physical function 𝑓 , the total variation takes the form

𝛿𝑓 = 𝛿𝑠𝑓 + 𝛿𝑢𝑓 + 𝛿ℎ𝑛
𝑓 =

𝜕𝑓

𝜕𝑠
𝛿𝑠 +

𝜕𝑓

𝜕𝑢
𝛿𝑢 +

𝜕𝑓

𝜕ℎ𝑛
𝛿ℎ𝑛. (3.8)
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The subscript 𝑛 indicates that the corresponding set of history variables belong to the prior
time step. Obviously, it is necessary to determine the total variations of the structural
response 𝛿𝑢 and the history variables 𝛿ℎ𝑛 representing the elastoplastic state first, before
the total variation can be expressed solely in terms of the design variables. The complete
derivation of analytical gradient information in connection with finite elastoplasticity
is presented in Chap. 5 and the subsequent implementation into the discrete solution
procedure is given in Chap. 6. Here, the sensitivity matrix 𝑆 and the total history design
sensitivity matrices are derived and defined as

𝛿𝑢 = 𝑆 𝛿𝑠 and 𝛿ℎ𝑛 = 𝑍𝑛 𝛿𝑠. (3.9)

With this, the total design variation of any physical function can be obtained by

𝛿𝑓 =

[︂
𝜕𝑓

𝜕𝑠
𝛿𝑠 +

𝜕𝑓

𝜕𝑢
𝑆 +

𝜕𝑓

𝜕ℎ𝑛
𝑍𝑛

]︂
𝛿𝑠 = ∇𝑓 𝛿𝑠. (3.10)

The obtained gradient information can be passed to fmincon by setting the appropriate
options. With this information fmincon can undertake the SQP procedure requiring only
one function evaluation in each iteration.

3.3.3 Design parametrization

In structural shape optimization the geometric boundary of the analyzed structure defines
its design. Considering the finite element method, the most obvious choice of design
variables are the nodal coordinates of the finite element mesh. However, depending on the
continuity of the used shape functions and the number of discrete nodes, this approach
might result in a high number of design variables ndv and non-smooth boundaries. Thus, it
is convenient to parametrize the finite element mesh. Appropriate methods from computer
aided geometric design (CAGD) can for instance be used to mathematically describe
exact geometric curves, surfaces and volumes with prescribed continuity. Most prominent
methods are Bêzier patches, basic splines (B-splines) and non-uniform rational B-splines
(NURBS). Here, a prescribed number of control points define the geometry. Based on
these geometry descriptions, a finite element mesh can be constructed that is parametrized
by the control points. This approach requires a coupling of the geometry description and
the finite element mesh, which results in the so-called design velocity field consisting of
partial derivatives of nodal mesh coordinates w.r.t. the position of the control points.
Details are given in Chap. 6.
For the parametrization of complex geometries by means of more accessible and descriptive
quantities like e.g. simple lengths or radii, it might also be convenient to utilize third
party mesh generation software. In this thesis, for the specimen shape optimization,
Gmsh is used, which offers the possibility to parametrize the underlying geometry for
mesh generation. The coupling between the geometry description and the corresponding
FE mesh, i.e. the corresponding design velocity field, can be determined numerically
e.g. by the FDM. This approach requires often remeshing and is not recommended for
problems with a huge amount of degrees of freedom, in which the meshing procedure
is computationally costly. However, in view of the numerically efficient VDSA and the
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considered mesh sizes, within the entire optimization process this overhead is affordable.
Within this thesis, not only geometric design sensitivities are considered. The simulations
are to be compared to real experiments, which requires the simulation model to fit the
constitutive behavior of the analyzed material. In this case the constitutive parameters of
the elastoplastic model constitute the design variables. Therefore, geometric shape as well
as constitutive design sensitivities have to be derived and computed to be passed to the
corresponding mathematical optimizer.

3.3.4 Algorithmic framework

In Fig. 3.1 the schematic framework of solving stated optimization problems followed in this
work is illustrated. First, the optimization problem is stated and a start design has to be
defined. That is, the structural mechanical problem, the objective and constraint functions,
as well as design variables have to be defined. With this, the mechanical response, as
well as the response sensitivity are determined within an implicit time integration scheme
and the values and gradients of objective and constraint functions can be determined.
This means that after the mechanical response in a specific time step is computed using
Newton’s method, the gradients in the solution point are computed so as to capture the
deformation path and its sensitivity. This is repeated for all chosen discrete time steps.
After the final time step, the function values of the objective and constraint functions, as
well as their gradients w.r.t. the chosen design variables are passed to the mathematical
optimizer, which computes a new design until a defined optimality criterion is fulfilled.
The results of the specimen shape optimization considered in this thesis are obtained by
means of fmincon as mathematical optimizer and are to be validated by comparison
with real experiments. Thus, to ensure the constitutive conformity of the numerical model
and the analyzed material, a preceding inverse parameter identification is conducted. In
this case, a nonlinear objective function of least squares type with only box constraints
has to be minimized and the MATLAB function lsqnonlin is used for the solution, as it
is suited to this kind of optimization problems. However, the schematic framework given
in Fig. 3.1 is still valid as only the mathematical optimizer is changed.
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1: Start design

• Define objective and constraint functions and design variables (𝐽, 𝑐eq,𝑐 in,𝑠)

• Set up the parametrized computational model (CAGD, FEM)

• Start optimization loop (𝑘 = 0, . . . ,𝑘max)

2: Structural and sensitivity analysis

• Initialize start values (𝐴 = {𝑢0, ℎ0}, 𝛿𝐴 = {𝛿𝑢0, 𝛿ℎ0})
• Start implicit time integration loop (𝑛 = 0, . . . , 𝑁)

2a: Structural response

• Apply Newton’s method for
design 𝑠𝑘

• Compute solution increments
(𝛥𝐴 = {𝛥𝑢, 𝛥ℎ})

• Update state 𝐴𝑛+1 = 𝐴𝑛 +𝛥𝐴

2b: Response Sensitivity

• Determine gradient in the
solution state 𝐴𝑛+1

• Compute response variation
𝛿𝑢𝑛+1

• Update history variations 𝛿ℎ𝑛+1

𝑛 = 𝑁?

3: Mathematical optimization

• Solve quadratic subproblem and update 𝑠𝑘+1 = 𝑠𝑘 + 𝛼𝑖𝛥𝑠
𝑘

• Check optimality criteria

Optimum?

Optimal design

𝑘++

𝑛++

yes

no

yes

no

Figure 3.1: General solution procedure of constrained optimization problems utilizing
variational sensitivity analysis. The procedure is mostly automated utilizing the MATLAB
function fmincon.



26 Chapter 3 Optimization Strategy

3.4 Summary

This chapter introduces the mathematical notation for general constrained optimization
problems. Therefore, the terms objective and constraint functions acting as optimization
goal and restrictions on the solution are explained. Additionally, design variables and
possible parametrizations are introduced. Subsequently, the solution strategy followed
in this work is illustrated. The optimization solution strategy forms the frame of the
computational procedures presented in this work. The sequential quadratic programming
(SQP) method is briefly sketched and two different approaches for the determination of
gradient information used in this work are introduced. That is, the numerical approach
utilizing the finite difference method (FDM), in which differential quotients are approx-
imated by quotients of differences, and the analytical variational approach (VDSA), in
which analytical gradients have to be derived based on the underlying governing equations
of the structural mechanical problem. The VDSA constitutes a main topic of the work at
hand and is explained in detail in subsequent chapters.



Chapter 4

Continuum Mechanics and Finite Element
Discretization

The outcome of this chapter represents the solution method for the underlying
structural mechanical initial boundary value problem within the scope of the
global structural optimization strategy outlined in Chap. 3. The basic framework
of continuum mechanics used in this work is outlined. After the description of
kinematics, the governing balance equations as well as the laws of thermodynamics
are briefly sketched. Based on this, the elastoplastic constitutive model is depicted
with its fundamental characteristics. Additionally, as the plastic flow is assumed
incompressible in the presented theory, the method of 𝐹 is utilized to prevent
volumetric locking within the finite element method. Two simple numerical
examples verify the accuracy of the model implementation.
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4.1 Introduction

In continuum mechanics, the physical behavior of a body is assumed to be governed by
partial differential equations of continuous media and described by macroscopic models.
That is, considering astronomically large or quantumly small scales, the theory of continuum
mechanics might lose its validity. In general, three fundamental segments define the theory.
The body and its motion and deformation is mathematically described by kinematics.
The general balance laws together with a material dependent constitutive law govern the
physical response.
This chapter aims at summarizing the general continuum mechanical framework and the
chosen constitutive model used within this thesis to describe the elastoplastic material
behavior. It can be seen as a necessary preparation in view of the subsequent sensitivity
analysis. Thus, in itself, the present chapter does not contain genuinely new results.
Although in view of tailoring the equations to the demands of the subsequent sensitivity
analysis and in preparation of the prevention of volumetric locking using 𝐹 - finite elements,
the consistent linearization of the stresses w.r.t. the deformation gradient is derived, which,
by the best of the author’s knowledge, is not found yet in the relevant literature.
Fundamental basics on general rational thermodynamics can be found in standard works
e.g. [181, 182] or in the specific context of plasticity e.g. in [118, 119, 120], where also
the concept of modelling irreversible processes by means of internal state variables is
reviewed, which goes back to early works like [53, 150]. Continuum mechanics is only
sketched to its very basics in this chapter. For more detailed insight into this subject,
the interested reader is referred to e.g. [4, 26, 31, 135, 173]. The theory of plasticity is
a widespread field of research. Numerous publications dealt with this topic during the
past century. At this point some selected works are mentioned. One early pioneering
work is e.g. [127], in which the basic formulations of the so called von Mises or 𝐽2 flow
theory are presented, which founds on the assumption that the volumetric stress state
has negligible influence on the plastic behavior of metals. This fundamental viewpoint of
metal plasticity is valid and often applied for a wide class of metals. Standard textbooks
like e.g. [42, 110, 159, 172, 190] comprise different approaches of modelling plasticity for
small and finite deformations. Additionally, different solution methods are described. The
elastoplastic constitutive model used within this thesis is excellently described in [159],
which summarizes several works of the authors like e.g. [158, 160, 161, 162, 163, 164, 165,
166, 167, 168, 169, 170]. In several more recent publications, the presented model is used
within the scope of isogeometric analysis (IGA), see e.g. [54, 55, 81].
The numerical solution of underlying differential equations of the structural mechanical
problem is obtained by means of the finite element method (FEM). Numerous textbooks
can be chosen to gain deep insight into the theory of the FEM and advanced topics as e.g.
structural dynamics and inelasticity or advanced element technologies. See e.g. [21, 31, 33,
47, 80, 190, 198, 199, 200] to name a few. Within the context of the FEM, it is a commonly
known issue that using simple low-order displacement based element formulations, an
overstiff structural response is computed for nearly incompressible materials. In [93]
different geometrical locking effects in the context of the FEM are summarized and
solution approaches are described. As in the 𝐽2 flow theory used in this work, the plastic
flow is assumed incompressible, advanced element formulations have to be considered.
Due to its simplicity, the method of 𝐹 is chosen as described in e.g. [49, 54, 55, 172].
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4.2 Kinematics
𝜙

FFF

FFFp FFFe

K𝜕K

{𝐸𝑖}

𝑋

M

𝜕M

{𝑒𝑖}

𝑥

Figure 4.1: Classical kinematics including a local intermediate configuration.

Fig. 4.1 illustrates the classical representation of kinematics in continuum mechanics in
connection with multiplicative elastoplasticity. The material body is represented in a fixed
and stress free reference configuration K with basis {𝐸𝑖} and referential points 𝑋. The
deformation mapping

𝜙 : (𝑋,𝑡) ↦→ 𝑥(𝑋,𝑡), (4.1)

maps the referential points to the current deformed configuration M with basis {𝑒𝑖} and
current points 𝑥. The displacement vector between the points in the current and reference
placements is defined as

𝑢 = 𝑥−𝑋; (4.2)

The gradient of the deformation mapping w.r.t. the referential points is defined as the
deformation gradient

FFF = Grad𝜙 =
𝜕𝑥

𝜕𝑋
=
𝜕(𝑋 + 𝑢)

𝜕𝑋
= III +Grad𝑢 =

𝜕𝑥𝑖
𝜕𝑋𝑗

𝑒𝑖 ⊗𝐸𝑗 . (4.3)

It contains a multiaxial stretch and a rigid body rotation, obtained via a polar decomposi-
tion

FFF = RRRUUU = vvvRRR (4.4)

with the orthogonal rotation tensor RRR ∈ SO(3) and the right and left stretch tensors UUU and
vvv, respectively. Based on the stretch tensors, objective deformation and strain measures
can be defined in the reference and the current configuration, e.g. the right and left
Cauchy-Green tensors

CCC = UUU2 = FFFT FFF and bbb = vvv2 = FFFFFFT (4.5)
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and the Green-Lagrange and Almansi strain tensors

EEE =
1

2
(CCC− III) and eee =

1

2
(III− bbb−1). (4.6)

By means of the deformation gradient, point, area and volume mappings between the
reference and the current configurations can be defined, viz.

d𝑥 = FFF d𝑋, d𝑎 = 𝐽 FFF−Td𝐴, d𝑣 = 𝐽 d𝑉, with 𝐽 = detFFF. (4.7)

For time dependent problems, temporal rates, i.e. derivatives w.r.t. time play an important
role. Time differentiation of the displacement field results in a velocity and an acceleration
field

�̇� = �̇� =
𝜕𝑥

𝜕𝑡
and �̈� = �̈� =

𝜕2𝑥

𝜕𝑡2
. (4.8)

The corresponding referential and spatial velocity gradients are defined as

Grad �̇� = ḞFF and LLL := grad �̇� = ḞFFFFF−1, (4.9)

of which the latter can be decomposed into a symmetric deformation rate ddd and a skew
symmetric spin www

ddd =
1

2

(︀
LLL + LLLT

)︀
and www =

1

2

(︀
LLL− LLLT

)︀
. (4.10)

With this, the rate of the right Cauchy-Green tensor can be formulated

ĊCC = ḞFF
T

FFF + FFFT ḞFF = 2FFFT dddFFF = 2 ĖEE. (4.11)

Plastic intermediate configuration

The local plastic intermediate configuration P is a result of the phenomenological description
of elastoplasticity based on a multiplicative split of the deformation gradient

FFF = FFFe FFFp. (4.12)

This split is micromechanically motivated as the plastic deformation gradient FFFp is related
to lattice dislocation movements connected with the slip of atoms. On the contrary, the
elastic deformation gradient represents lattice distortions. Thus, the plastic intermedi-
ate configuration can be interpreted as a completely elastic relaxation of the deformed
configuration, i.e. FFFp = FFF−1

e FFF. Consequently, it is implicitly assumed stress-free. The
multiplicative kinematic viewpoint has been considered e.g. in [94, 97, 98, 108, 109,
114, 115, 133, 162]. Based on the multiplicative split in Eq. (4.12), elastic and plastic
contributions of the deformation and strain tensors can be obtained in the reference
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configuration

CCCp = FFFT
p FFFp, (4.13)

EEEp =
1

2
(CCCp − III) , (4.14)

and in the current configuration

bbbe = FFFe FFFT
e , (4.15)

eeee =
1

2

(︀
III− bbb−1

e

)︀
. (4.16)

From Eq. (4.12), Eq. (4.13) and Eq. (4.15) the relationship

bbbe = FFFCCC−1
p FFFT ⇔ CCC−1

p = FFF−1 bbbe FFF−T (4.17)

can be derived, which identifies the inverse of the plastic right Cauchy-Green tensor as
the referential counterpart of the elastic left Cauchy-Green tensor.
Inserting Eq. (4.12) into Eq. (4.9) leads to the definition of the spatial elastic and plastic
velocity gradients

LLL = ḞFFe FFF−1
e + FFFe ḞFFp FFF−1

p FFF−1
e = LLLe + LLLp (4.18)

and consequently, in view of Eq. (4.10), to the additive split of the symmetric deformation
rate and skew symmetric spin

ddd = ddde + dddp and www = wwwe +wwwp. (4.19)

It should be noted that without any special assumption on the orientation of the plastic
intermediate configuration, it is only defined up to a rigid body rotation, see e.g. [153,
159]. Consequently, the plastic deformation gradient FFFp cannot be chosen as internal
variable. This issue is overcome with the assumption of elastic and plastic isotropy, cf.
[166, p. 9] or [158], which leads to the identity FFFe = vvve, as the elastic rotation tensor is
simply given by RRRe = III. However, in the model used in this thesis, the arbitrariness of
the plastic deformation gradient has no effect on the computational procedure, cf. [159].
Here, the authors point to the arbitrariness of the plastic spin in the classical infinitesimal
theory of elastoplasticity.
In case that the orientation of the intermediate configuration has to be known even without
the assumption of isotropy, the interested reader is referred to e.g. [113], where a so-called
isoclinic intermediate configuration is defined.

4.3 Governing equations

In the following, the governing mechanical equations are summarized. Basically, the
presented equations represent standard fundamental laws in modern mechanics based on
Newton’s axioms. Note, as within this thesis only solid mechanical problems are considered,
the thermodynamic governing equations are only sketched for the basic needs.
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4.3.1 Mass conservation

Within the scope of this thesis, mass is always assumed to be conserved. That is, Newton’s
first law states the absence of convective mass transfer, such that the mass of a volume
element 𝑀 = 𝜌𝑜 d𝑉 in K is conserved

�̇� =
d

d𝑡
(𝜌𝑜 d𝑉 ) = 0 ⇒ 𝜌𝑜 = const., (4.20)

which leads to a constant density in the reference configuration. Considering the mass
of a volume element in the current configuration 𝑚 = 𝜌d𝑣 and recalling Eq. (4.7), one
obtains the local form of the balance of mass

�̇� =
d

d𝑡
(𝜌d𝑣) =

d

d𝑡
(𝜌 𝐽 d𝑉 ) = 0 ⇔ �̇�+ 𝜌 div �̇� = 0, (4.21)

where 𝐽 = 𝜌 div �̇� has been used. From the comparison of Eq. (4.20) and Eq. (4.21) it
directly follows that

𝐽 =
𝜌𝑜
𝜌
, (4.22)

which means that the density must transform reciprocally to the volume element so as to
conserve mass.

4.3.2 Stresses and momentum

−𝑡
𝑡1
−𝑡1 𝑡2

−𝑡2
𝑡

𝑛1

−𝑛1 𝑛2

−𝑛2

𝑐1 𝑐2

Figure 4.2: 3D rod subjected to traction forces.

Considering two straight cuts (𝑐1, 𝑐2) through a three dimensional rod subjected to traction
forces, as illustrated in Fig. 4.2, Cauchy’s fundamental lemma states that the stress vectors
acting on opposite sides of the same cut have to be equal in magnitude and opposite in
direction. This is equivalent to Newton’s third law of motion, viz.

−𝑡(𝑛) = 𝑡(−𝑛). (4.23)

Obviously, the area of the cutting surface changes with the orientation of the cut defined
by the normal vector 𝑛. Consequently, the stress distribution over the cutting surfaces has
to change, as the resulting stress vector 𝑡 has to stay constant to ensure force equilibrium.
This leads to Cauchy’s fundamental law and the definition of the Cauchy stress tensor 𝜎𝜎𝜎

𝑡 = 𝜎𝜎𝜎𝑛. (4.24)
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The Cauchy stress tensor measures forces in the current configuration regarding the
deformed infinitesimal area element in the current configuration. Therefore, it is often
called true stress tensor. Other stress tensors with slight different physical meanings can
also be defined. Within the scope of this thesis, the important stress measures are the
following. The Kirchhoff stress tensor

𝜏𝜏𝜏 = 𝐽 𝜎𝜎𝜎 (4.25)

weights the Cauchy stress tensor with the determinant of the deformation gradient 𝐽 . The
first Piola-Kirchhoff stress tensor

PPPK = 𝐽 𝜎𝜎𝜎FFF−T = 𝜏𝜏𝜏 FFF−T (4.26)

is also called engineering stress and measures the forces in the current configuration
regarding an infinitesimal undeformed area element in the reference configuration. It is
unsymmetric and a two-point tensor, i.e. one of its basis vectors is located in the reference,
the other in the current configuration. The basis vectors of the second Piola-Kirchhoff
stress tensor are both located in the reference configuration and it measures the forces
pulled back to the reference configuration regarding the infinitesimal area element in the
reference configuration

SSS = FFF−1 PPPK = 𝐽 FFF−1 𝜎𝜎𝜎FFF−T. (4.27)

The momentum balance equation - Newton’s second law of motion - states that an object
accelerates if the forces acting on it are unbalanced. The local form applied to a volume
element in the current configuration is given by

div𝜎𝜎𝜎 + 𝑏 = 𝜌 �̈�, (4.28)

with a distributed body force 𝑏. It can also be expressed in terms of the first Piola-Kirchhoff
stress tensor PPPK in the reference configuration and reads

DivPPPK + 𝑏𝑜 = 𝜌𝑜 �̈�, (4.29)

where 𝑏𝑜 = 𝐽 𝑏 denotes the body forces in the reference configuration. Assuming static
processes, acceleration terms are neglected, thus �̈� = 0, which leads to equilibrium of
internal and external forces.

The balance of angular momentum states that the angular or rotational momentum of
a closed system has to remain constant. The sum of external moments, e.g. caused by
excentrical forces, have to equal the sum of internal moments. An important result of the
angular momentum balance is that the Cauchy stress tensor has to be symmetric

𝜎𝜎𝜎 = 𝜎𝜎𝜎T (4.30)

and consequently

𝜏𝜏𝜏 = 𝜏𝜏𝜏T, PPPK FFFT = FFF (PPPK)T, SSS = SSST. (4.31)
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4.3.3 Thermodynamic principles

The first principle of thermodynamics - the conservation of energy - states that the rate
of internal energy per unit volume in the current configuration has to equal the sum of
stress power and heat production deducting the divergence of the heat flux, viz.

𝜌 �̇� = 𝜎𝜎𝜎 : ddd + 𝜌 𝑟 − div 𝑞. (4.32)

Here, �̇� denotes the rate of the specific energy, 𝑟 represents an internal heat source and 𝑞
is the heat flux. The product 𝜎𝜎𝜎 : ddd denotes the stress power per unit volume in the current
configuration.
The second principle of thermodynamics - the entropy inequality - postulates the irre-
versibility of entropy production

𝜌 �̇�+ div
(︁ 𝑞
𝑇

)︁
− 𝜌 𝑟

𝑇
≥ 0, (4.33)

where �̇� denotes the rate of the specific entropy and 𝑇 is the total temperature. By means
of Eq. (4.32) and with the introduction of the Free Helmholtz energy

𝜓 = 𝑒− 𝑇 𝑠, (4.34)

Eq. (4.33) results in the Clausius-Duhem inequality

𝜎𝜎𝜎 : ddd− 𝜌 (�̇� + 𝑠 �̇� )− 1

𝑇
𝑞 · grad𝑇 ≥ 0. (4.35)

Further, neglecting thermal dissipation and assuming an isothermal process, Eq. (4.35)
together with Eq. (4.22) finally simplifies to the dissipation inequality

Dp = 𝜏𝜏𝜏 : ddd− 𝜌𝑜 �̇� ≥ 0. (4.36)

4.3.4 State and internal variables

By means of the internal variable approach in thermodynamics, cf. e.g. [46, 119], dissipative
mechanisms are described by a set of internal state variables

ℎ = {ℎ𝑖}. (4.37)

The entities ℎ𝑖 correspond to scalar or tensorial quantities associated with dissipation. In
general, a thermodynamic potential 𝜓 depends on the following set of state variables

𝜓 = 𝜓(FFF,𝑇, grad𝑇,ℎ) or ̂︀𝜓 = ̂︀𝜓(CCC,𝑇,Grad𝑇,ℎ). (4.38)

In the context of this thesis, it is sufficient to assume the thermodynamic process as
adiabatic and isothermal, i.e. �̇� = 0 and grad𝑇 = 0. Hence, the thermodynamic state is
completely defined by the knowledge of the deformation state and the internal variables,
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i.e.

𝜓 = 𝜓(FFF,ℎ) or ̂︀𝜓 = ̂︀𝜓(CCC,ℎ). (4.39)

4.4 Elastoplastic constitutive model

Constitutive equations have to fulfil several general thermodynamic axioms. For instance,
the axiom of determinism states that the current material response at a point is determined
by the history of deformation and temperature. Also worth mentioning is the axiom
of objectivity, which states that the material response is independent of the observing
position, i.e. the constitutive equations must be invariant to a rigid body motion with
superimposed rotation of the current configuration. Details on these and other axioms of
thermodynamics can be found e.g. in [172, 181, 182].
The constitutive model presented in this section is the one described in [159, Chap. 9].

4.4.1 Free energy and elastic stress response

The free energy function is assumed to locally depend on the elastic deformation. Addi-
tionally assuming uncoupled hardening mechanisms, leads to the functional form

𝜌𝑜 𝜓(FFFe,ℎ) :=𝑊 (CCCe) + 𝜑(ℎ), (4.40)

with the elastic strain energy 𝑊 (CCCe) and the plastic hardening potential 𝜑(ℎ). Forming
the time derivative of Eq. (4.40)

�̇� =
𝜕𝜓

𝜕CCCe
: ĊCCe +

𝜕𝜑

𝜕ℎ
ℎ̇ (4.41)

and using the rate of the elastic right Cauchy-Green tensor

ĊCCe = 2FFFT
e ddde FFFe, (4.42)

which can be obtained by means of Eq. (4.11) and Eq. (4.19), the dissipation inequality
reads

Dp =

(︂
𝜏𝜏𝜏 − 2FFFe

𝜕𝑊

𝜕CCCe
FFFT
e

)︂
: ddde + 𝜏𝜏𝜏 : dddp +

𝜕𝜑

𝜕ℎ
ℎ̇ ≥ 0. (4.43)

Using standard arguments from thermodynamics, i.e. assuming that elastic deformations
do not produce dissipation, this leads to the constitutive function for the Kirchhoff stress
tensor

𝜏𝜏𝜏 = 2FFFe
𝜕𝑊

𝜕CCCe
FFFT
e . (4.44)
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The elastic strain energy is further split into uncoupled volumetric and isochoric contribu-
tions

𝑊 = 𝑈(𝐽𝑒) +̃︁𝑊 (̃︀CCCe), (4.45)

with

𝑈(𝐽e) =
1

2
𝐾

[︂
1

2
(𝐽2

e − 1)− ln 𝐽e

]︂
, ̃︁𝑊 (̃︀CCCe) =

1

2
𝐺
[︁
tr ̃︀CCCe − 3

]︁
, (4.46)

which directly yields the volumetric and deviatoric stress contributions

𝑝 = 𝐽e 𝑈
′(𝐽e) and 𝜏𝜏𝜏dev = 2dev

[︃̃︀FFFe
𝜕̃︁𝑊
𝜕̃︀CCCe

̃︀FFFT

e

]︃
= 𝐺deṽ︀bbbe. (4.47)

Here, 𝐾 and 𝐺 denote the compression and shear moduli, respectively, and ̃︀bbbe is the elastic
isochoric left Cauchy-Green tensor. The uncoupled strain energy function can be found
e.g. in [162, 164] and can be interpreted as an extension of the Neo-Hookean model in
the compressible range. It has the advantage of poly-convexity and is suitable for large
deformations and strains, cf. [162].

4.4.2 Yielding and hardening

Onset of plastic yielding is described by the classical Mises-Huber yielding criterion

𝑓(𝜏𝜏𝜏dev ,𝛼) = ||𝜏𝜏𝜏dev || −
√︂

2

3
𝑘(𝛼) ≤ 0, (4.48)

with the internal isotropic hardening variable 𝛼, which describes a uniform diameter
extension of the von Mises yield cylinder in principal stress space. As it only depends
on the Kirchhoff stress deviator 𝜏𝜏𝜏dev , it is independent on the hydrostatic stress. The
non-linear function

𝑘(𝛼) = 𝜎0 + 𝜎∞ [1− exp(−𝑑𝛼)] +𝐻 𝛼 (4.49)

describes isotropic hardening during plastic flow. The material parameters 𝜎0 and 𝜎∞
denote the initial and limit yield stress, respectively. 𝐻 is the linear hardening modulus
and 𝑑 is a dimensionless parameter.
As a result of the maximum dissipation principle

max Dp = 𝜏𝜏𝜏 : dddp +
𝜕𝜑

𝜕𝛼
�̇�, (4.50)
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the plastic potential is chosen as the yield function Eq. (4.48) (𝜑 = 𝑓), which together
with Eq. (4.40) leads to the associative flow rule in the current configuration

LV
̃︀bbbe = −

2

3
𝛾 tr̃︀bbbe nnn. (4.51)

By means of Eq. (4.17), the flow rule can be pulled-back to the reference configuration

d

d𝑡
̃︀CCC−1

p = −2

3
𝛾trbbbe FFF−1 nnnFFF−T =: ċccp, (4.52)

where nnn denotes the flow direction

nnn =
𝜏𝜏𝜏dev
||𝜏𝜏𝜏dev ||

. (4.53)

The solution is defined by the Kuhn-Tucker loading/unloading and consistency conditions

𝛾 ≥ 0, 𝑓(𝜏𝜏𝜏 ,𝛼) ≤ 0, 𝛾 𝑓(𝜏𝜏𝜏 ,𝛼) = 0 and 𝛾 𝑓(𝜏𝜏𝜏 ,𝛼) = 0. (4.54)

Here, 𝛾 denotes the consistency parameter, often called plastic multiplier. The isotropic
hardening law describes the evolution of the isotropic hardening variable 𝛼

�̇� =

√︂
2

3
𝛾. (4.55)

Note that in Eq. (4.52) the tensor cccp is introduced as an abbreviation for the isochoric

tensor ̃︀CCC−1

p for notational convenience.

4.5 Numerical treatment

Following, the continuum constitutive equations are embedded into a computational
framework. First, the implicit time integration scheme is introduced in order to solve
the rate equations. See e.g. [74] or [142] for more information about numerical solution
methods of initial boundary value problems. Subsequently, the classical stress return
mapping procedure is sketched. Finally, the continuum equations are spatially discretized
using finite elements.

4.5.1 Time integration

The deformation process is assumed quasi-static, i.e. considering time but neglecting
inertial effects. Therefore, a discrete pseudo time interval 𝐼𝑡 = [𝑡0,...,𝑡𝑁 ] is introduced in
order to solve the evolution of the rate equations Eq. (4.52) and Eq. (4.55). An implicit
backward Euler time integration scheme is used, in which the actual values at time 𝑡𝑛+1

are computed from the values of the prior discrete time step 𝑡𝑛, with 𝑛 = 0,...,𝑁 . This
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results in the discrete evolution equations

̃︀bbbe,𝑛+1 = ̃︀bbbe,𝑛 −
2

3
𝛥𝛾 tr (̃︀bbbe,𝑛+1)nnn𝑛+1 (4.56)

cccp,𝑛+1 = cccp,𝑛 −
2

3
𝛥𝛾 tr (̃︀bbbe,𝑛+1)FFF−1

𝑛+1 nnn𝑛+1 FFF−T
𝑛+1 (4.57)

and

𝛼𝑛+1 = 𝛼𝑛 +

√︂
2

3
𝛥𝛾, (4.58)

where 𝛥𝛾 denotes the increment of the plastic multiplier. Within this time integration
scheme, the stress state at the end of each time step has to satisfy the discrete version of
the Kuhn-Tucker conditions

𝛥𝛾 ≥ 0, 𝑓(𝜏𝜏𝜏𝑛+1,𝛼𝑛+1) ≤ 0, 𝛥𝛾 𝑓(𝜏𝜏𝜏𝑛+1,𝛼𝑛+1) = 0. (4.59)

Remark 4.1 (Notation) For notational convenience, in the following, quantities evalu-
ated in the prior time step receive the subscript 𝑛, whereas the index 𝑛+ 1 is omitted for
actual values in the actual time step, that is, e.g. cccp := cccp,𝑛+1 and 𝛼 := 𝛼𝑛+1.

4.5.2 Stress return

The local stress response is computed within a two step algorithm called return-mapping-
algorithm. First, the deformation state is assumed to be solely elastic and the so-called
elastic trial state is computed within the elastic predictor step

𝛼tr = 𝛼𝑛, (4.60)
ccctrp = cccp,𝑛, (4.61)̃︀bbbtr

e = 𝐽− 2
3 FFFccctrp FFFT, (4.62)

𝜏𝜏𝜏 trdev = 𝐺deṽ︀bbbtr

e . (4.63)

It is obvious that not only the total deformation gradient FFF but also the quantities cccp,𝑛
and 𝛼𝑛 from the prior pseudo time step have to be known to be able to compute the trial
state. Therefore, a history field ℎ := {cccp,𝛼} is introduced, in which the values of cccp and
𝛼 are saved at the end of a converged pseudo time step. The values are initialized with
cccp,𝑜 = III and 𝛼𝑜 = 0 at time 𝑡𝑜, that is, assuming an unplasticized initial configuration.
In view of the Kuhn-Tucker complementary conditions, cf. Eq. (4.59), two cases have to
be considered.
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Elastic loading/unloading If the yielding condition is fulfilled, i.e. whenever

𝑓(𝜏𝜏𝜏 trdev ,𝛼
tr) = ||𝜏𝜏𝜏 trdev || −

√︂
2

3
𝑘(𝛼tr) ≤ 0, (4.64)

with 𝛥𝛾 = 0, the stress state satisfies the Kuhn-Tucker conditions. Then, Eqs. (4.60) -
(4.63) are valid and represent the solution point. In this case, no evolution of the history
variables appears.

Plastic loading Contrary, if the trial state violates the yielding condition

𝑓(𝜏𝜏𝜏 trdev ,𝛼
tr) = ||𝜏𝜏𝜏 trdev || −

√︂
2

3
𝑘(𝛼tr) > 0, (4.65)

from the discrete Kuhn-Tucker conditions it is obvious that the trial state can not be
the solution. Consequently, the history variables evolve following the discrete evolution
equations Eq. (4.57) and Eq. (4.58), which implies that 𝛥𝛾 > 0.

Radial return As in the case of plastic loading the increment of the plastic multiplier is
non-zero, it directly follows from Eq. (4.59) that

𝑓(𝜏𝜏𝜏 ,𝛼) = 0. (4.66)

It can be shown that due to the isotropic 𝐽2 theory

tr̃︀bbbe = tr̃︀bbbtr

e and nnn = nnntr, (4.67)

which leads to the consistency equation

̂︀𝑓(𝛥𝛾) := ||𝜏𝜏𝜏 trdev || −√︂2

3
𝑘(𝛼𝑛+

√
2
3 𝛥𝛾)− 2𝜇𝛥𝛾 = 0, (4.68)

where the abbreviation

𝜇 =
1

3
𝐺 tr̃︀bbbtr

e (4.69)

has been used, see e.g. [159] for details. Due to the non-linear hardening function, cf.
Eq. (4.49), Eq. (4.68) has to be solved for 𝛥𝛾 within a local Newton-Raphson scheme.
The specific update formula reads

𝛥𝛾(𝑖+1) = 𝛥𝛾(𝑖) −
̂︀𝑓(𝛥𝛾(𝑖))̂︀𝑓 ′(𝛥𝛾(𝑖)) (4.70)
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with the explicit derivatives of Eq. (4.68) and Eq. (4.49), respectively

̂︀𝑓 ′(𝛥𝛾(𝑖)) = −2𝜇− 2

3
𝑘′(𝛥𝛾(𝑖)) (4.71)

𝑘′(𝛥𝛾(𝑖)) = 𝑑 exp
(︁
−𝑑 (𝛼𝑛 +

√︀
2
3 𝛥𝛾

(𝑖))
)︁
𝜎∞ +𝐻. (4.72)

The solution algorithm for the plastic multiplier is given in Alg. 4.4 in pseudo code format.
With the increment of the plastic multiplier at hand, the update of the deviatoric stress
tensor can be determined

𝜏𝜏𝜏dev = 𝜏𝜏𝜏 trdev − 2𝜇𝛥𝛾 nnn, nnn =
𝜏𝜏𝜏 trdev
||𝜏𝜏𝜏 trdev ||

, (4.73)

Due to the assumption of incompressible plastic flow (𝐽 = 𝐽e), the hydrostatic pressure
can easily be computed to

𝑝 = 𝑝tr = 𝐽 𝑈 ′(𝐽) =
1

2
𝐾
(︀
𝐽2 − 1

)︀
(4.74)

and the total Kirchhoff stress tensor reads

𝜏𝜏𝜏 = 𝑝 III + 𝜏𝜏𝜏dev . (4.75)

Consequently, the first Piola-Kirchhoff stress tensor is given by

PPPK = 𝑝FFF−T + 𝜏𝜏𝜏dev FFF−T. (4.76)

4.5.3 Weak form and linearization

The non-linear weak form of equilibrium is obtained by taking the weak derivative of
the momentum balance Eq. (4.29) obtained by multiplication with a test function 𝑣 ∈ V,
integrating over the volume and utilizing the divergence theorem in connection with partial
integration, which leads to the residual equation regarding the reference configuration

𝑅(𝑢,ℎ𝑛;𝑣) =

ˆ

K

PPPK(𝑢,ℎ𝑛) : Grad𝑣 d𝑉 − 𝜆

⎡⎣ˆ
K

𝑏0 · 𝑣 d𝑉 +

ˆ

𝜕K

𝑡0 · 𝑣 d𝐴

⎤⎦
= 𝑅int(𝑢,ℎ𝑛;𝑣)− 𝜆𝑅ext(𝑣) = 0,

(4.77)

where Grad𝑣 is the gradient of the test function and 𝑅int and 𝑅ext denote the internal
and external part. The parameter 𝜆 is introduced as a scaling parameter to represent
different load levels at different pseudo time steps witin the implicit time integration
scheme. As the primary unknown displacements and the test function are chosen from the
same function space, i.e. 𝑢,𝑣 ∈ V, this procedure is known as the Bubnov-Galerkin method.
The functional dependencies in Eq. (4.77) indicate that the external forces are assumed
deformation and history independent, i.e. 𝛿𝑢𝑏0 = 𝛿𝑢𝑡0 = 0. The solution of the nonlinear
equilibrium equation is obtained utilizing Newton’s method. Therefore, Eq. (4.77) has to
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be linearized in direction of the displacement increments 𝛥𝑢 ∈ V, viz.

𝑅int(𝑢,ℎ𝑛;𝑣) + 𝛿𝑢𝑅
int(𝑢,ℎ𝑛;𝑣,𝛥𝑢) = 𝜆𝑅ext(𝑣). (4.78)

The partial variation of the internal residual is called tangent stiffness operator and for a
fixed set {̂︀𝑢,̂︀ℎ𝑛} constitutes a bilinear form 𝑘 : V× V→ R

𝑘(𝑢,ℎ𝑛;𝑣,𝛥𝑢) = 𝛿𝑢𝑅
int =

ˆ
K

𝛿𝑢PPPK(𝑢,ℎ𝑛;𝛥𝑢) : Grad𝑣 d𝑉. (4.79)

With the variation of the first Piola-Kirchhoff stress tensor and the deformation gradient

𝛿𝑢PPPK(𝑢,ℎ𝑛;𝛥𝑢) =
𝜕PPPK

𝜕FFF
: 𝛿𝑢FFF = A(𝑢,ℎ𝑛) : 𝛿𝑢FFF(𝛥𝑢) = A(𝑢,ℎ𝑛) : Grad𝛥𝑢, (4.80)

where the fourth order tensor A denotes the elastoplastic tangent operator consistent with
the algorithm to compute the first Piola-Kirchhoff stress tensor, cf. Eq. (4.76), the tangent
stiffness operator can finally be written as

𝑘(𝑢,ℎ𝑛;𝑣,𝛥𝑢) =

ˆ
K

Grad𝑣T : A(𝑢,ℎ𝑛) : Grad𝛥𝑢d𝑉. (4.81)

Consistent tangent operator

The linearization of the first Piola-Kirchhoff stress tensor PPPK w.r.t. the displacements
has to be consistent with the stress return algorithm described earlier. Thus, the implicit
update formulae for the volumetric and deviatoric contribution represent the starting
point of the derivation, which is performed in App. A.1 in detail. The explicit form of the
tangent can be expressed in compact form as

A :=
𝜕PPPK

𝜕FFF
=

[︃
𝐾 𝐽2 FFF−T ⊗ FFF−T − 𝜏𝜏𝜏

(︀
FFF−T ⊗ FFF−T

)︀24T
+ (S : B𝐹 )

21

* FFF−T

]︃
, (4.82)

where the fourth order tensor S is given by

S := 𝐺

[︂
𝛽0 Idev −

2

3
𝛥𝛾 𝛽1 nnn⊗ III + 𝛽2 nnn⊗ nnn

]︂
, (4.83)

with the factors

𝛽0 = 1− 2𝛥𝛾
𝜇

||𝜏𝜏𝜏 trdev ||
, 𝛽1 = 1 + 2

𝜇

𝑓 ′
, 𝛽2 = 𝛽1 − 𝛽0 (4.84)

and the identities

B𝐹 :=

[︂
F

21

* (cccp,𝑛 ̃︀FFFT
) + ̃︀FFFcccp,𝑛 F

12

T

]︂
, F := 𝐽− 1

3

[︂
(III⊗ III)

23

T − 1

3
FFF⊗ FFF−T

]︂
. (4.85)



42 Chapter 4 Continuum Mechanics and Finite Element Discretization

Elastoplastic stress projection algorithm

Input: {𝑚,FFF,ℎ𝑛}

// Elastic predictor
◁ Compute elastic trial stress

1: 𝐽 = detFFF, ̃︀FFF = 𝐽− 1
3 FFF, ̃︀bbbtr

e = ̃︀FFFcccp,𝑛 ̃︀FFFT
, 𝜏𝜏𝜏 trdev = 𝐺deṽ︀bbbtr

e ,

2: 𝜇 = 1
3 𝐺 tr̃︀bbbtr

e , nnn =
𝜏𝜏𝜏 trdev
||𝜏𝜏𝜏 trdev ||

◁ Check for plastic loading

3: if 𝑓 tr = ||𝜏𝜏𝜏 trdev || −
√︂

2

3
𝑘(𝛼𝑛) ≤ 0 then

◁ Elastic state → update (·) = (·)tr

4: else

// Stress return mapping (plastic corrector)
◁ Compute 𝛥𝛾 by solving Eq. (4.68), see Fig. 4.4

5: {𝛥𝛾} ← LocalNewton(𝛼𝑛,𝑚,𝜇)

◁ Update elastoplastic state

6:
𝜏𝜏𝜏dev = 𝜏𝜏𝜏 trdev − 2𝜇𝛥𝛾 nnn, 𝛼 = 𝛼𝑛 +

√︂
2

3
𝛥𝛾,

̃︀bbbe = 𝐺−1 (𝜏𝜏𝜏dev + 𝜇 III) , cccp = ̃︀FFF−1 ̃︀bbbe
̃︀FFF−T

◁ Update history variables
7: ℎ = {cccp, 𝛼}
8: end if

// Stress response and tangent operator
◁ Stress update

9: 𝑝 =
𝐾

2
(𝐽2 − 1), PPPK = 𝑝FFF−1 + 𝜏𝜏𝜏dev FFF−T

◁ Compute consistent tangent

10: F = 𝐽− 1
3

[︂
(III⊗ III)

23

T − 1
3 FFF⊗ FFF−T

]︂
, B𝐹 =

[︂
F

21

* (cccp,𝑛 ̃︀FFFT
) + ̃︀FFFcccp,𝑛 F

12

T

]︂
11: 𝛽0 = 1− 2𝛥𝛾

𝜇

||𝜏𝜏𝜏 trdev ||
, 𝛽1 = 1 + 2

𝜇

𝑓 ′
, 𝛽2 = 𝛽1 − 𝛽0

12: S = 𝐺

[︂
𝛽0 Idev −

2

3
𝛥𝛾 𝛽1 nnn⊗ III + 𝛽2 nnn⊗ nnn

]︂
13: A =

[︃
𝐾 𝐽2 FFF−T ⊗ FFF−T − 𝜏𝜏𝜏

(︀
FFF−T ⊗ FFF−T

)︀24T
+ (S : B𝐹 )

21

* FFF−T

]︃
Figure 4.3: Elastoplastic stress projection algorithm.
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Local Newton-Raphson procedure

Input: {𝛼𝑛,𝑚,𝜇}

// Initialize values

◁ Load constitutive parameters
1: {𝜎0,𝜎∞,𝑑,𝐻} ← 𝑚

◁ Set start value
2: 𝑖 = 0, 𝛥𝛾(0) = 0

// Start iteration loop
3: while 𝑓(𝛥𝛾(𝑖)) > 0

4: 𝑘(𝛥𝛾(𝑖)) = 𝜎0+𝜎∞ [1− exp
(︁
−𝑑 (𝛼𝑛 +

√︁
2
3 𝛥𝛾

(𝑖))
)︁
]+𝐻 (𝛼𝑛+

√︁
2
3 𝛥𝛾

(𝑖))

5: 𝑓(𝛥𝛾(𝑖)) = ||𝜏𝜏𝜏 trdev || −
√︂

2

3
𝑘(𝛥𝛾(𝑖))− 2𝜇𝛥𝛾(𝑖)

6: 𝑘′(𝛥𝛾(𝑖)) = 𝑑 exp
(︀
−𝑑 (𝛼𝑛 +

√
2
3 𝛥𝛾

(𝑖))
)︀
𝜎∞ +𝐻

7: 𝑓 ′(𝛥𝛾(𝑖)) = −2𝜇− 2

3
𝑘′(𝛥𝛾(𝑖))

8: 𝛥𝛾(𝑖+1) = 𝛥𝛾(𝑖) − 𝑓(𝛥𝛾(𝑖))

𝑓 ′(𝛥𝛾(𝑖))

9: 𝑖 = 𝑖+ 1

10: end while

Figure 4.4: Local Newton-Raphson procedure.

The entire computational procedure is summarized in Fig. 4.3 in pseudo code format. The
complete derivation of the algorithmic tangent can be found in App. A.1.

4.5.4 Finite element equations

The spatial continuum equations are discretized by means of isoparametric finite elements.
Note that for notational convenience, in the following approximations only linear arguments
are given. Recalling the definitions mentioned in Sec. 2.1.2 and utilizing standard relations
from the finite element method, sketched in App. B.1, the discrete element matrix forms of
the weak equilibrium and the tangent stiffness operator are approximated by, respectively,

𝑅ℎ(𝑣ℎ) =
⋃︁
𝑒

𝑣𝑇𝑒

(︂ˆ
𝛺𝑒

𝐺𝑇 𝑃𝐾 d𝑉 − 𝜆
[︂ˆ

𝛺𝑒

𝑁𝑇 𝑏0 d𝑉 +

ˆ
𝜕𝛺𝑒

𝑁𝑇 𝑡0 d𝐴

]︂)︂
=
⋃︁
𝑒

𝑣𝑇𝑒 (𝑅int
𝑒 − 𝜆𝑅

ext
𝑒 ) =

⋃︁
𝑒

𝑣𝑇𝑒 𝑅𝑒 = 𝑣
𝑇 𝑅

(4.86)
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and

𝑘ℎ(𝑣ℎ,𝛥𝑢ℎ) =
⋃︁
𝑒

𝑣𝑇𝑒

ˆ
𝛺𝑒

𝐺𝑇𝐴𝐺 d𝑉 𝛥𝑢𝑒

=
⋃︁
𝑒

𝑣T𝑒 𝐾𝑒𝛥𝑢𝑒 = 𝑣
𝑇 𝐾𝛥𝑢.

(4.87)

The resulting linear equation system that has to be solved within each Newton iteration
reads

𝑅ℎ(𝑣ℎ) + 𝑘(𝑣ℎ,𝛥𝑢ℎ) = 𝑣𝑇 (𝑅 +𝐾𝛥𝑢) = 0, (4.88)

which, excluding the trivial solution (𝑣 = 0), implies

𝐾𝛥𝑢 = −𝑅 = −(𝑅int + 𝜆𝑅ext). (4.89)

Here, the scaling factor 𝜆 represents different load levels within the implicit time integration
procedure. To ensure positive definiteness of the tangent stiffness matrix 𝐾, the applied
Dirichlet boundary conditions have to be incorporated by partitioning the equation system
as follows[︂

𝐾𝑎𝑎 𝐾𝑎𝑏

𝐾𝑏𝑎 𝐾𝑏𝑏

]︂ [︂
𝛥𝑢𝑎
𝛥𝑢𝑏

]︂
= −

[︂
𝑅𝑎

𝑅𝑏

]︂
. (4.90)

Here, the indices 𝑎 and 𝑏 correspond to the unknown and prescribed degrees of freedom,
respectively. The reduced tangent stiffness matrix 𝐾𝑎𝑎 is positive definite and the linearized
equation system can be solved for the unknown displacement increment within each Newton
iteration

𝛥𝑢𝑎 = −𝐾−1
𝑎𝑎 (𝑅𝑎 +𝐾𝑎𝑏𝛥𝑢𝑏). (4.91)

4.6 Volumetric locking and advanced finite elements

It is commonly known that within the solution procedure of the finite element method,
volumetric locking effects occur in the case of incompressible material behavior, especially
using low order displacement elements. As in the described 𝐽2 flow theory, plastic yielding
is assumed to be incompressible, it is convenient to use advanced finite elements that
prevent those locking effects and are therefore more efficient as reasonable results are
obtained with comparatively coarser meshes. There are many approaches to overcome
different locking effects in finite elements. Often, these are based on multi-field functionals
like e.g. the Hellinger-Reissner or Hu-Washizu functionals. A good overview of different
element technologies can be found, e.g. in [93]. Most approaches to prevent volumetric
locking have in common that the volumetric part of the deformation is somehow under-
integrated resulting in constant volumetric stress response throughout an element, if linear
shape functions are used.
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4.6.1 Method of modified deformation gradient

Within this thesis, the so-called FFF method is used because of its simple implementation
and efficiency. An additional advantage is that the approach is independent on the choice
of the constitutive model. The formulation presented is oriented towards [49, 172] that
share the basic ideas with [54, 55].
The main idea is to evaluate the volumetric contribution of the deformation gradient at
the element centroid, which leads to the modified deformation gradient FFF

FFF =

(︂
𝐽0

𝐽

)︂ 1
3

FFF. (4.92)

Here, 𝐽0 = detFFF0 denotes the determinant of the deformation gradient evaluated at the
element centroid and thus is constant throughout the element. Evaluating all constitutive
equations presented in this chapter for FFF = FFF, that is, PPPK(FFF), ℎ(FFF) prevents volumetric
locking in the stress response of the finite element. Consequently, the consistent tangent
in Eq. (4.82) has to be evaluated at FFF = FFF. Consistent linearization leads to the necessity
to compute the derivatives of FFF w.r.t. FFF and FFF0, which are straight forward and read

𝛿FFF =
𝜕FFF
𝜕FFF

: 𝛿FFF +
𝜕FFF
𝜕FFF0

: 𝛿FFF0 =

[︂
3 (III⊗ III)

23

T − FFF⊗ FFF−T

]︂
: 𝛿FFF +

[︀
FFF⊗ FFF−T

0

]︀
: 𝛿FFF0

=D : 𝛿FFF + D0 : 𝛿FFF0.

(4.93)

Following the convention in Chap. 2 for general unsymmetric matrix representations of
fourth order tensors, the modified gradient operator for the 𝐹 element can be written as

𝐺𝑖 = 𝐷𝐺𝑖 +𝐷0 𝐺0,𝑖, (4.94)

for each integration point 𝑖. Consequently, the element contributions of the residual inner
force vector and the stiffness matrix are given by

𝑅𝑒 =

ˆ
𝛺𝑒

𝐺T 𝑃
K
d𝑉 and 𝐾𝑒 =

ˆ
𝛺𝑒

𝐺T 𝐴𝐺 d𝑉, (4.95)

where the overlining of 𝑃
K

and 𝐴 indicate that these quantities are evaluated for the
modified tensor FFF rather than FFF.

4.6.2 Verifications

To verify the accuracy of the model implementation and the corresponding novelly derived
tangent operator, two prevalent examples from literature are chosen. First, the Cook’s
membrane problem is analyzed in plane strain conditions. Secondly, the necking of a
circular bar in 3D is simulated. The material properties used for both model problems are
summarized in Tab. 4.1.
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Table 4.1: Material properties for finite deformation plasticity.

𝐾 𝐺 𝜎0 𝜎∞ 𝑑 𝐻

164.21GPa 80.193 8GPa 450MPa 715MPa 16.93 129.24MPa

Plane strain Cook’s membrane

A tapered panel is clamped on the left and subjected to a shearing load on the right end.
This plane strain problem constitutes a standard test for bending dominated structural
response. The load 𝐹 = 5kN is applied within 10 linear steps and equally distributed on
the right edge nodes. Fig. 4.5(a) shows the initial mesh consisting of 144 𝐹 -elements and
the corresponding boundary conditions. The deformed structure is plotted in Fig. 4.5(b),
where also the volumetric stress distribution is pictured. No volumetric locking effect is
noticeable. Neither the stress distribution shows localizations, nor the top displacement
is underestimated. For comparison, in Fig. 4.6(a) the results using linear displacement
elements are displayed. Obviously, the structural deformation is underestimated, which
can be explained by examining the volumetric stress distribution. At the upper left corner
the volumetric stress localizes due to the over stiff volumetric response. Fig. 4.6(b) displays
the top displacement monitored over increasing mesh sizes, starting from 2× 2 and ending
with 128 × 128, for the pure displacement formulation and the 𝐹 -formulation. It can
clearly be seen that the 𝐹 -formulation shows better results than the displacement element
for coarse meshes, although both formulations seem to converge to the same solution.
Reviewing the relevant literature, cf. e.g. [67, 141, 158, 172], the computed simulation
results concur with the results documented in literature. See also [54, 55] for simulations
within an isogeometric framework.

Necking of cylindrical bar

A full 3D analysis of the necking of a cylindrical bar is conducted. This example is well
documented in literature and constitutes one of the most common benchmarks for finite
strain plasticity, see e.g. [152, 159, 163, 165, 172]. The bar has a length of 53.334mm
and a radius of 6.413mm. To trigger the necking, a geometric imperfection in form of a
small linear tapering of 0.982 % of the radius in the centre of the bar is provided. Due to
symmetry, only one octant of the bar is modelled. The mesh consisting of 960 𝐹 elements
and the corresponding symmetric boundary conditions are pictured in Fig. 4.7(a). In this
simulation a top displacement of 7 mm is applied within 2 main steps, each consisting of 10
substeps. Firstly, a top displacement of 5.6 mm is applied within 10 linear steps, secondly
the top displacement is increased to 7 mm also within 10 linear steps. The deformed
structure as well as the von Mises stress response and the plastic strain distribution are
illustrated in Fig. 4.7(b). The necking behavior can clearly be observed. In the load-
displacement diagram, cf. Fig. 4.8(a), the beginning of the phenomenon appears in form
of a decreasing reaction force at about 3 mm top displacement. The normalized central
radius is plotted against the top displacements in Fig. 4.8(b), which emphasizes this and
clearly shows the necking effect. In contrast, using pure displacement finite elements, the
necking phenomenon can not be captured adequately.
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Figure 4.5: Cook’s membrane example: (a) initial mesh 12×12, (b) deformed configuration
and volumetric stress distribution (𝐹 formulation.)
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Figure 4.6: Cook’s membrane example: (a) deformed configuration and volumetric stress
distribution (std. displacement formulation), (b) top displacement for different mesh sizes.
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Figure 4.7: Necking of cylindrical bar example: (a) initial mesh and symm. boundary
conditions, (b) final deformation, von Mises stress (top) and equiv. plast. strain (bottom).
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4.7 Summary

This chapter provides a compact summary of the general continuum mechanical framework
needed for the solution of the elastoplastic structural mechanical problem. Beginning
with the introduction of kinematics that is based on a multiplicative decomposition of
elastic and plastic contributions of the deformation gradient, FFF = FFFe FFFp, the governing
balance equations and fundamental thermodynamic laws are sketched. The most important
characteristics of the chosen elastoplastic constitutive model are depicted and the solution
method, i.e. the implicit stress return-mapping-algorithm, for the resulting initial value
problem is described. Consistent linearization of the first Piola-Kirchoff stress tensor is
stated. Note that a complete derivation is given in App. A.1. Although the presented model
does not contain genuine novelties, it is worth mentioning that the formulation in this
work slightly differs from the original, cf. [159], where the authors indicate the formulation
regarding the reference configuration, which has been done in this work. Formulations of
the model regarding the reference configuration have already been presented in [103, 104]
and also [81]. After standard finite element discretization of the global model equations,
the method of 𝐹 , used to prevent volumetric locking in connection with low order finite
elements and the incompressible 𝐽2 flow theory, is briefly described and all necessary
linearizations are given. Finally, two well documented benchmark problems verify the
accuracy of the model. The plane strain Cook’s membrane problem represents a standard
test for bending dominated structural response. The second example, the necking of a
cylindrical bar problem, is one of the most common benchmark problems in 3D finite
strain plasticity. The simulations of both examples provide reasonable results compared
with results in literature.





Chapter 5

Variational Design Sensitivities

The most challenging and main task of this research is the sensitivity analysis of the
elastoplastic material model introduced in Chap. 4. This includes the analytical
derivations presented in this chapter, as well as the numerical implementation,
discussed in the subsequent Chap. 6. The variational approach described in
the following is based on an enhanced viewpoint of kinematics. Briefly, a third
configuration is added that parametrizes the design of the reference configuration
in a continuum mechanical framework. All structural and physical sensitivities
are derived consistent with the computational algorithm. Special focus lies on the
deformation history captured by the internal history variables as their variations
have to be considered for all total design variations.
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5.1 Introduction

Utilizing gradient based methods for the solution of a structural optimization problem,
it is necessary to determine the gradient of the objective and constraint functions. In
fact, these gradients answer the question how the considered function values change by
variations of model inputs that include the geometrical shape, topology or thermodynamic
properties of the underlying structural analysis problem. Obviously, the more complex
the model description becomes, the more input variables exist, of which not all are desired
to change. Thus, usually a selection is defined and called design variables. The entirety of
all design variables then parametrize the design of the considered problem.
The determination procedure of the mentioned gradients w.r.t. the defined design variables
is called design sensitivity analysis (DSA). Different approaches have come up in the
past decades, cf. e.g. [12, 14, 32, 43, 77, 89, 125, 138, 171, 180, 201]. It is important to
distinguish between local and global approaches, cf. e.g. [32]. While local DSA approaches
in a mathematical sense focus on the sensitivity of a design around a certain point of
interest, global approaches are to analyze uncertainties of model inputs and their effect on
the outputs. Clearly, local methods are used in the case of deterministic models, whereas
global methods are needed in a probabilistic setting. The authors in [147] complain
that the term sensitivity analysis is often misused in literature, as it is frequently used
although no analysis in a mathematical sense has been performed. Further, local methods
- for instance one at a time (OAT) methods - are utilized for obtaining sensitivities of
probabilistic models, where a global method should be consulted.
Global methods are not part of discussion in this work. Reviewing Chap. 4, it is obvious
that the class of tackled structural analysis problems is all through deterministic. For
more details about global sensitivity analysis methods, see e.g. [32, 83, 147] and references
therein.
Focussing on local DSA methods, further distinctions have to be processed. Methods
can either be analytical, numerical or semi-analytical. All of these classes can further
be split into continuum and discrete formulations. While continuum approaches take
the continuum equations of the underlying structural analysis problem as basis, discrete
approaches build up on already discretized equations. A prominent example of a numerical
DSA method is the finite differences method (FDM), in which continuous derivatives,
i.e. differential quotients, are replaced by difference quotients. This method is somewhat
simple and constitutes an OAT method, as the gradient w.r.t. each design variable is
computed individually, while fixing all the others. Depending on the model complexity and
the effective number of design variables, the FDM can become computationally expensive.

In this thesis, attention is drawn to a continuous, analytical approach utilizing variational
calculus. Based on an advanced viewpoint of kinematics formulated in [13, 18], sensitivity
formulations can naturally be embedded into the continuum mechanical framework. The
kinematic viewpoint is gained by taking one step back from the usual observation frame
of a thermodynamic process in a space-time continuum. This step offers a new dimension
of the event horizon leading to a design-space-time continuum illustrated in Fig. 5.1.
Here, two observation frames, i.e. thermodynamic space-time-continua, are illustrated at
two different designs. In each observation frame (F0 = F(𝑠0) and F𝑠 = F(𝑠)) the usual
continuum mechanical framework as described in Chap. 4 holds. Thus, the deformation
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Figure 5.1: Design-space-time continuum. Rework of original illustration in [18, p. 21].

mappings 𝜙0 = 𝜙(𝑠0,𝑡) and 𝜙𝑠 = 𝜙(𝑠,𝑡) describe the motion of the material points from
the reference to the current position of the respective design. The two design trajectories
describe continuous design changes at a fixed time, i.e. 𝛷0 = 𝛷(𝑠,𝑡0) and 𝛷𝑡 = 𝛷(𝑠,𝑡).
Understanding the configurations of a material body as a differentiable manifold, enables
the possibility to introduce a design independent local configuration, see [12, 13, 16, 18]
for details. Herewith, it is possible to separate geometrical and physical quantities so as
to avoid the occurrence of implicit dependencies while performing analytical derivations.
In the original work, this kinematic concept is called local-convective. In the following, it
will be termed enhanced kinematics.
The presented variational approach has been successfully applied in different fields of
computational solid mechanics. For instance in [87] the approach is applied in the context
of multi-scale problems, or in [63] in the context of buckling of hyperelastic shells. The
article [14] gives an excellent overview on the approach in the context of linear and
nonlinear elasticity, see also [116]. Dynamic problems have been tackled in e.g. [124]. In
[175] variational sensitivities are derived in the context of the theory of porous media.
Isotropic damage is tackled in [19] and growth phenomena are discussed in [17].
Elastoplastic design sensitivities are addressed in the pioneering contributions [20, 185,
186, 187] that constitute the basis of the approach presented in this thesis, although
it differs in the choice of the mechanical material model and in computational details.
Clearly, the work at hand shares the basic concepts, i.e. the variational approach based
on the enhanced kinematic viewpoint and the treatment of internal variables and their
variations, with the mentioned preparatory works. However, in this work a more modern
constitutive model that includes non-linear isotropic hardening is considered. As it is
not based on a logarithmic strain measure, no complicated isotropic tensor functions like
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the tensor logarithm, or the tensor exponential function appears, which avoids expensive
spectral decompositions for linearizations. Moreover, sensitivities are not only derived
w.r.t. geometric design variables, but also w.r.t. constitutive parameters. This widens
the field of applications and structural design. General continuous derivations of physical
design variations are given and computational details will be addressed in the subsequent
Chap. 6.
The proposed approach is distinct from other variational techniques but shares ideas and
therefore can be linked to prominent methods such as the Material Derivative Approach -
also called speed method -, cf. e.g. [201] and the Domain Parametrization Approach, cf.
e.g. [138]. Numerous investigations address theoretical and computational details that are
linked to pioneering contributions such as [125]. More information about design sensitivity
analysis and different methods can be found e.g. in [43, 77, 89, 171, 202] and references
therein. Important aspects and equations of the variational method at hand have already
been published by the author, cf. [100, 101, 102, 103, 104], and are derived here in more
detail.
Recalling Fig. 5.1 and considering the structural analysis problem in each frame to be
path dependent - as in the present case of elastoplasticity -, the sensitivity analysis has to
follow that path, too. Thus, in each time step, the gradient of the desired functions that
are somehow described by the design trajectories has to be computed. Note that within
a structural optimization problem the design of a material body describes its topology,
shape and thermodynamic properties, which is indicated in Fig. 5.1 by the different shape
and microstructure colours.

5.2 Design parametrization

Structural design is a quite far reaching term. In the context of structural optimization it
often stands for the geometrical layout of a structure, i.e. size, topology or shape. Within
this work, two different kinds of design layout are presented. These are the geometrical
shape and the constitutive parameters of the underlying mechanical model. The topology
of all analyzed structures is assumed to remain unchanged. Topology optimization is
therefore not tackled within this thesis.
In the following, the different design parametrizations used in this work are explained.
Note that it is even possible to choose all design parametrizations simultaneously, which
results in an equation system with different kinds of unknowns. However, the issues arising
are that the design variables and gradients might have to be scaled due to numerical
difficulties computing very large and very small values. Additionally, the optimization
problem should be well stated to be able to identify a unique optimum. This will be
further discussed in Chap. 6.

5.2.1 Geometry

Within a continuum mechanical framework, geometric shape sensitivities can be obtained
variationally by choosing the referential coordinates 𝑋 as design variables. Geometric
design variations are therefore denoted by 𝛿𝑋. As any physical response of the mechanical
system depends on its geometry, implicit dependencies arise and the total variations of the
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quantities of interest are demanded. Due to the enhanced kinematic viewpoint explained
in Sec. 5.3, elegant formulations can be found that avoid these implicit dependencies.

Remark 5.1 (Geometry, mesh and CAGD) In context of the finite element method,
geometric sensitivities can be determined regarding the nodal coordinates of the finite
element mesh. If nodal coordinates are the chosen design variables, updating the mesh
within the structural optimization procedure might cause non-smooth boundaries. Addi-
tionally, based on the refinement of the finite element mesh, the number of design variables
might be huge. Therefore, for efficient computations, it is convenient to parametrize the
FE mesh, e.g. by means of CAGD, where the control points of the curves, surfaces and
volumes can be chosen as design variables. On element level, geometric shape sensitivities
are still computed regarding the nodal coordinates but can be easily mapped to the CAGD
control points by means of the so called design velocity field, which in fact represents
the partial derivative of the FE mesh coordinates w.r.t. the control point coordinates
and thus describes the change of the mesh coordinates by variations of the control point
coordinates. These topics will be part of discussion in Chap. 6.

5.2.2 Constitutive properties

By choosing the constitutive parameters as design variables, sensitivities of quantities
of interest w.r.t. material properties can be obtained. These parameters are defined by
the underlying mechanical material model. For the present model, the elastic material
behavior is described via the bulk and shear moduli 𝐾 and 𝐺. In the plastic regime, the
material behavior is described by four additional parameters, namely the initial yield
stress 𝜎0, the limit yield stress 𝜎∞, the linear hardening modulus 𝐻 and a dimensionless
parameter 𝑑. All these plastic constitutive parameters control the exponential hardening
curve 𝑘(𝛼), cf. Eq. (4.49). Thus, it is convenient to introduce the constitutive design
vector 𝑚 and its variation 𝛿𝑚 of the form

𝑚 =
[︀
𝐾 𝐺 𝑘

]︀
and 𝛿𝑚 =

[︀
𝛿𝐾 𝛿𝐺 𝛿𝑘

]︀
. (5.1)

Remark 5.2 (Notation) In the following, variations and derivatives w.r.t. general
design parameters are indicated by the vector 𝛿𝑠. Depending on the choice of design
parametrization, at the respective passages the design vector is replaced by the specific
chosen design vector, i.e.

𝛿𝑠 := 𝛿𝑋 (geometry) or 𝛿𝑠 := 𝛿𝑚 (const. parameters). (5.2)

With the choice of design parametrization, functional dependencies change, which is
mentioned separately at the relevant points.

5.3 Enhanced kinematics

In the context of structural optimization, the material body is not considered with a fixed
reference configuration. Thus, it is convenient to work with an enhanced kinematic concept.
Therefore, in the lower part of Fig. 4.1 another configuration is added. This configuration
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parametrizes the reference configuration in terms of arbitrary design parameters 𝑠𝑖 and
represents a fixed parameter space B with Cartesian basis {𝑍𝑖} and local coordinates 𝛩.
This improved viewpoint on the material body is motivated by arguments from differential
geometry and goes back to the works [18, 26, 135]. By means of the parameter space,
it is possible to rigorously separate physical and geometrical quantities. Consequently,
the classical deformation mapping in Eq. (4.1) can be decomposed into two independent
mappings, i.e. the design dependent geometry mapping 𝜅(𝛩,𝑠) and the time dependent
motion mapping 𝜇(𝛩,𝑡)

𝜅 : (𝛩,𝑠) ↦→𝑋(𝛩,𝑠) and 𝜇 : (𝛩,𝑡) ↦→ 𝑥(𝛩,𝑡). (5.3)

With the corresponding tangent mappings

KKK = GRAD𝜅 =
𝜕𝑋𝑖

𝜕𝛩𝑗
𝐸𝑖 ⊗𝑍𝑗 and MMM = GRAD𝜇 =

𝜕𝑥𝑖
𝜕𝛩𝑗

𝑒𝑖 ⊗𝑍𝑗 , (5.4)

not only the deformation mapping but also the deformation gradient can be decomposed
and written as

𝜙 = 𝜇 ∘ 𝜅−1 and FFF = MMMKKK−1 =
𝜕𝑥

𝜕𝛩

(︂
𝜕𝑋

𝜕𝛩

)︂−1

=
𝜕𝑥𝑖
𝜕𝛩𝑘

(︂
𝜕𝑋𝑗

𝜕𝛩𝑘

)︂−1

𝑒𝑖 ⊗𝐸𝑗 . (5.5)

Mappings of infinitesimal line elements are therefore defined as

d𝑥 = FFF d𝑋 = MMMKKK−1 d𝑋 = MMMd𝛩 (5.6)
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and infinitesimal area elements can be transformed using the relations

d𝑎 = 𝐽 FFF−T d𝐴 = 𝐽 𝐽K FFF−T KKK−T d𝐴𝛩 = 𝐽M MMM−T d𝐴𝛩. (5.7)

Consequently, volumes can be mapped using the determinants of the tangent mappings

d𝑣 = 𝐽 d𝑉 = 𝐽 𝐽K d𝑉𝛩 = 𝐽M d𝑉𝛩, (5.8)

with

𝐽 = detFFF, 𝐽K = detKKK, 𝐽M = detMMM. (5.9)

Remark 5.3 (Local intermediate configuration and parameter space) Note that
in general it is possible to define a mapping between the parameter space and the plastic
intermediate configuration, presuming that the tensors FFFe and FFFp are uniquely defined.
As within the computational procedure explained in Chap. 4, all essential quantities are
either defined in the reference or the current configuration, there is no need to define such
a mapping and is therefore neglected within this thesis.

5.4 Elastoplastic response sensitivity

Usually, the objective function and often also constraint functions depend on the mechanical
response of the investigated structure. Thus, the elastoplastic response sensitivities are
desired. It can be obtained utilizing variational principles at continuous level.

5.4.1 Weak equilibrium requirement

The solution of Eq. (4.77) represents a global equilibrium point (̂︀𝑠,𝑢*,ℎ*) for a fixed design̂︀𝑠. At such a point, response sensitivities are obtained variationally at continuous level, i.e.
continuous in space, as the computational algorithm has to be consistent with the time
discretization used to solve the mechanical behavior in structural analysis. As Eq. (4.77)
has to hold for any design change 𝛿𝑠, its total variation has to vanish, cf. [18, 102, 185],
which yields

𝛿𝑅 = 𝛿𝑢𝑅+ 𝛿𝑠𝑅+ 𝛿ℎ𝑛𝑅 = 𝑘(𝑣,𝛿𝑢) + 𝑝(𝑣,𝛿𝑠) + ℎ(𝑣,𝛿ℎ𝑛) = 0, (5.10)

where the bilinear form 𝑘 : V × V → R is the tangent stiffness operator already known
from structural analysis. The tangent pseudoload operator 𝑝 : V× S→ R represents the
partial variation of the weak equilibrium w.r.t. design and also is a bilinear form. The
third bilinear form ℎ : V× G→ R corresponds to the deformation history represented by
the internal variables that has to be captured and considered for all total variations, cf.
[100, 101, 102, 103, 104, 185], and is called history sensitivity operator. Note that the
operators introduced above are generally semi-bilinear. However, as the sensitivities are
derived in a solution point of a fixed design, they become bilinear forms.
In the following, the general equations for the mentioned tangent operators are given and
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explicit formulas considering the constitutive model described in Chap. 4 are presented.
At some points, a distinction of the choice of design variable type has to be made.

5.4.2 Tangent pseudoload

The tangent pseudoload operator represents the partial variation of the global weak
equilibrium w.r.t. to the chosen design parametrization. Independent on the choice of
design variables, the general form of this partial variation regarding the parameter space
B reads

𝛿𝑠𝑅 =

ˆ

𝜕B

𝛿𝑠PPP
K : Grad𝑣 𝐽K d𝑉𝛩

+

ˆ

𝜕B

PPPK : 𝛿𝑠 Grad𝑣 𝐽K d𝑉𝛩

+

ˆ

𝜕B

PPPK : Grad𝑣 𝛿𝑠𝐽K d𝑉𝛩.

(5.11)

The arising functional dependencies differ with the choice of design variables. In the follow-
ing the specific pseudoload operators regarding the three mentioned design parametrizations
are derived.

Geometric shape design. Geometric shape sensitivities are derived by choosing the vector
of referential coordinates as design vector 𝑠 := 𝑋. The three partial variations of Eq. (5.11)
depend on the geometric shape, which leads to

𝛿𝑋𝑅 =

ˆ

𝜕B

𝛿𝑋PPPK : Grad𝑣 𝐽K d𝑉𝛩

+

ˆ

𝜕B

PPPK : 𝛿𝑋 Grad𝑣 𝐽K d𝑉𝛩

+

ˆ

𝜕B

PPPK : Grad𝑣 𝛿𝑋𝐽K d𝑉𝛩.

(5.12)

The partial variation of the gradient of the test function can easily be identified to

𝛿𝑋 Grad𝑣 = −Grad𝑣 Grad 𝛿𝑋, (5.13)

cf. e.g. [18, 116], where also the partial variation of the determinant of the geometry
gradient is derived to

𝛿𝑋𝐽K = 𝐽K Div 𝛿𝑋. (5.14)

The partial variation of the first Piola-Kirchhoff stress tensor w.r.t. geometric shape
design is already partially known from structural analysis. Recalling Eq. (4.80), the
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consistent tangent operator, which is derived in the appendix, cf. A.1, represents the
partial derivative of the first Piola-Kirchhoff stress tensor w.r.t. the deformation gradient
FFF. Thus, the partial variation w.r.t. the geometric coordinates can simply be written as

𝛿𝑋PPPK =
𝜕PPPK

𝜕FFF
: 𝛿𝑋FFF = A : 𝛿𝑋FFF, (5.15)

where

𝛿𝑋FFF = −Grad𝑢 Grad 𝛿𝑋, (5.16)

which can be easily derived by means of the enhanced kinematic viewpoint, cf. e.g. [18,
87, 116]. Finally, the pseudoload operator for geometric shape design reads

𝛿𝑋𝑅 =−
ˆ

𝜕K

[A : (Grad𝑢 Grad 𝛿𝑋)] : Grad𝑣 d𝑉

−
ˆ

𝜕K

PPPK : Grad𝑣 Grad 𝛿𝑋 d𝑉

+

ˆ

𝜕K

PPPK : Grad𝑣 Div 𝛿𝑋 d𝑉,

(5.17)

where the identity d𝑉 = 𝐽K d𝑉𝛩 has been used to express the term regarding the reference
configuration K.

Constitutive design. For the sensitivity regarding material parameters, the design vector
is chosen as the vector containing the material parameters 𝑠 := 𝑚. In this case, only the
stress tensor depends on the chosen design parametrization, thus

𝛿𝑚𝑅 =

ˆ

K

𝛿𝑚PPPK Grad𝑣T d𝑉 and 𝛿𝑚 Grad𝑣 = 0, 𝛿𝑚𝐽K = 0. (5.18)

The partial variation of the first Piola-Kirchhoff stress tensor w.r.t. the constitutive
parameters can be expressed as

𝛿𝑚PPPK =
𝜕PPPK

𝜕𝑚
𝛿𝑚 =

𝜕PPPK

𝜕𝐾
𝛿𝐾 +

𝜕PPPK

𝜕𝐺
𝛿𝐺+

𝜕PPPK

𝜕𝑘
𝛿𝑘

=
𝐽2 − 1

2
FFF−T 𝛿𝐾 +HHHm FFF−T 𝛿𝐺− 2

√︂
2

3
𝜇nnnFFF−T 𝛿𝑘 =: MMM 𝛿𝑚,

(5.19)

with the second order tensor

HHHm =(𝛽0Idev + 𝛽2nnn⊗ nnn) : dev (̃︀bbbtr

e )− 2𝛥𝛾
𝜇

𝐺
𝛽1nnn, (5.20)

which is derived in detail in App. A.2. Consequently, the constitutive pseudoload operator
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is given by

𝛿𝑚𝑅 =

ˆ

K

(︃
𝐽2 − 1

2
FFF−T 𝛿𝐾 +HHHm FFF−T 𝛿𝐺− 2

√︂
2

3
𝜇nnnFFF−T 𝛿𝑘

)︃
: Grad𝑣 d𝑉. (5.21)

5.4.3 History sensitivity

In the present model of elastoplasticity, dissipation processes are captured by the evolution
of internal variables. Within the implicit time integration scheme, the actual mechanical
response at time 𝑡𝑛+1 depends on the values of the internal variables stored at the end of
the prior discrete time step 𝑡𝑛. Algorithmically consistent design linearization necessitates
the computation of the influence of the internal variables on the structural response, as
well as the influence of the chosen design concerning the evolution of the internal variables.
The history sensitivity operator denotes the partial variation of the global weak equilibrium
w.r.t. the internal history variables of the prior pseudo-time step ℎ𝑛 and reads

𝛿ℎ𝑛
𝑅 =

ˆ

𝜕K

𝛿ℎ𝑛
PPPK : Grad𝑣 d𝑉 (5.22)

as only the first Piola-Kirchhoff stress tensor depends on the history variables, i.e.
𝛿ℎ𝑛 Grad𝑣 = 000 and 𝛿ℎ𝑛𝐽K = 0. Recalling the set of internal history variables ℎ = {cccp,𝛼},
the partial variation of the first Piola-Kirchhoff stress tensor w.r.t. the history variables
reads

𝛿ℎ𝑛
PPPK =

𝜕PPPK

𝜕ℎ𝑛
𝛿ℎ𝑛 =

𝜕PPPK

𝜕cccp,𝑛
: 𝛿cccp,𝑛 +

𝜕PPPK

𝜕𝛼𝑛
𝛿𝛼𝑛. (5.23)

The partial variations are derived in detail in App. A.3.1 and respectively read

qc :=
𝜕PPPK

𝜕cccp,𝑛
= (S : B𝐶)

21

* FFF−T and qqq𝛼 :=
𝜕PPPK

𝜕𝛼𝑛
=

√︂
2

3
𝑘′ (1− 𝛽1)nnnFFF−T, (5.24)

with the identity

B𝐶 := ̃︀FFF I𝑠
21

* ̃︀FFFT (5.25)

and the tensor S from Eq. (4.83). The first derivative of the scalar hardening function, cf.
Eq. (4.49), is straight forward and reads

𝑘′ = 𝜎∞ 𝑑 exp(−𝑑𝛼) +𝐻. (5.26)

Hence, the history sensitivity operator finally reads

𝛿ℎ𝑛
𝑅 =

ˆ

𝜕K

[qc : 𝛿cccp,𝑛 + qqq𝛼 𝛿𝛼𝑛] : Grad𝑣 d𝑉. (5.27)
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The total variations of the history variables of the prior time step 𝑡𝑛 have to be known to
be able to compute the variation Eq. (5.23). Thus, it is essential to update these total
variations at the end of a converged time step.

5.4.4 Update of history variations

As the internal variables evolve within a solution step, their variations do likewise. Thus,
at the end of a time step that has caused plastic yielding, the variations of the history
variables have to be updated and stored for the subsequent step. The general update
formula for the total variations stored in the vector 𝛿ℎ = {𝛿cccp, 𝛿𝛼} reads

𝛿ℎ = 𝛿𝑢ℎ+ 𝛿𝑠ℎ+ 𝛿ℎ𝑛ℎ =
𝜕ℎ

𝜕𝑢
𝛿𝑢+

𝜕ℎ

𝜕𝑠
𝛿𝑠+

𝜕ℎ

𝜕ℎ𝑛
𝛿ℎ𝑛. (5.28)

Just as for the derivation of the different pseudo load operators for different design
parametrizations, the functional dependencies in Eq. (5.28) change with the choice of
design variables. Therefore, a distinction is necessary at this point.

Geometric shape design. For geometric design, i.e. 𝑠 := 𝑋, Eq. (5.28) takes the form

𝛿ℎ =
𝜕ℎ

𝜕FFF
: (𝛿𝑢FFF + 𝛿𝑋FFF) +

𝜕ℎ

𝜕ℎ𝑛
𝛿ℎ𝑛, (5.29)

where the partial variations 𝛿𝑢FFF and 𝛿𝑋FFF are already known , cf. Eq. (4.80) and Eq. (5.16).
The partial derivatives of the internal history variables w.r.t. the deformation gradient
are derived in App. A.3.2. For the internal history variable cccp one obtains

𝜕cccp
𝜕FFF

= ̃︀FFF−1
C

21

* ̃︀FFF−T
−

⎡⎣(︁̃︀FFF−1
⊗ ̃︀FFF−T

)︁23

T 21

*
(︁̃︀bbbe

̃︀FFF−T
)︁
+ ̃︀FFF−1 ̃︀bbbe

(︁̃︀FFF−T
⊗ ̃︀FFF−T

)︁24

T

⎤⎦ : F

=: A𝑐,

(5.30)

where the tensor F is defined in Eq. (4.85) and the tensor C represents the partial derivative
of the isochoric elastic left Cauchy-Green deformation tensor ̃︀bbbe w.r.t. the deformation
gradient and is given by

C :=
𝜕̃︀bbbe

𝜕FFF
=

(︂
1

𝐺
S +

1

3
III⊗ III

)︂
: B𝐹 , (5.31)

see App. A.3.2 for a detailed derivation. The partial derivative of the isochoric hardening
variable can be written as

𝜕𝛼

𝜕FFF
=

√︂
2

3

𝐺

𝑓 ′

(︂
2

3
𝛥𝛾 III− nnn

)︂
: B𝐹 =: AAA𝛼, (5.32)

with the already known tensor B𝐹 , cf. Eq. (4.85).
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Constitutive design. Choosing the constitutive parameters as design variables, i.e. 𝑠 := 𝑚,
Eq. (5.28) takes the form

𝛿ℎ =
𝜕ℎ

𝜕FFF
: 𝛿𝑢FFF +

𝜕ℎ

𝜕𝑚
𝛿𝑚+

𝜕ℎ

𝜕ℎ𝑛
𝛿ℎ𝑛. (5.33)

The partial derivatives of the internal history variables w.r.t. the material parameters can
be identified to

𝛿𝑚cccp =
1

𝐺2
B−1
𝐶 :

[︃
(𝐺HHHm − 𝜏𝜏𝜏dev ) 𝛿𝐺−

√︂
2

3
𝐺 (1− 𝛽1)nnn 𝛿𝑘

]︃
(5.34)

for the internal variable cccp, where the second order tensor HHHm has been used, cf. Eq. (5.20).
For the isochoric hardening variable 𝛼 the partial variation reads

𝛿𝑚𝛼 =

√︂
2

3

[︂
𝛥𝛾

𝐺
(𝛽1 − 1)− 1

𝑓 ′
nnn : deṽ︀bbbtr

e

]︂
𝛿𝐺+

2

3 𝑓 ′
𝛿𝑘. (5.35)

A complete derivation of Eq. (5.34) and Eq. (5.35) can be found in App. A.3.2.

Independent on the choice of design variables, in all cases, the partial variations of the
internal variables w.r.t. their counterparts from the previous pseudo-time step are needed
and read

𝛿ℎ𝑛
cccp =

1

𝐺
B−1
𝐶 :

(︂
S +

1

3
III⊗ III

)︂
: B𝐶 : 𝛿cccp,𝑛 +

√︂
2

3
𝑘′ (1− 𝛽1)B−1

𝐶 : nnn 𝛿𝛼𝑛

= Cc : 𝛿cccp,𝑛 +CCC𝛼 𝛿𝛼𝑛,

(5.36)

and

𝛿ℎ𝑛𝛼 =

√︂
2

3

𝐺

𝑓 ′

(︂
2

3
𝛥𝛾 III− nnn

)︂
: B𝐶 : 𝛿cccp,𝑛 +

(︂
1 +

2

3

𝑘′

𝑓 ′

)︂
𝛿𝛼𝑛

= TTTc : 𝛿cccp,𝑛 + 𝑇𝛼 𝛿𝛼𝑛,

(5.37)

for the internal history variables cccp and 𝛼, respectively, with the identity

B−1
𝐶 := ̃︀FFF−1

I𝑠
21

* ̃︀FFF−T (5.38)

and the fourth order tensor B𝐶 from Eq. (5.25). Detailed derivations of Eq. (5.36) and
Eq. (5.37) can also be found in App. A.3.2.

5.5 Physical sensitivities

Usually, a structural optimization problem depends on the physical behavior of the analyzed
structure. The physical state of a given design is defined by the set (𝑢,ℎ𝑛). Physical
quantities not only depend on the geometry of the structural analysis problem, but also
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on the deformation and constitutive response, e.g strains or stresses, and can either be the
objective that is to be minimized or play the role of constraints. Following, the general
steps to compute sensitivities of physical quantities are presented and applied to two
exemplary scalar stress measures, i.e. the von Mises equivalent stress and the mean stress.

5.5.1 General variational form

Considering an arbitrary nonlinear physical functional 𝑓(𝑠,𝑢,ℎ𝑛), its total variation is
given by

𝛿𝑓 = 𝛿𝑠𝑓 + 𝛿𝑢𝑓 + 𝛿ℎ𝑛
𝑓 = 𝑎(𝑠,𝑢,ℎ𝑛; 𝛿𝑠) + 𝑏(𝑠,𝑢,ℎ𝑛; 𝛿𝑢) + 𝑐(𝑠,𝑢,ℎ𝑛; 𝛿ℎ𝑛). (5.39)

The operators 𝑎,𝑏 and 𝑐 have to be evaluated at a global solution point (̂︀𝑠,𝑢*,ℎ*
𝑛) with

fixed design ̂︀𝑠 and hence are linear forms 𝑎 : S→ R, 𝑏 : V→ R and 𝑐 : H→ R and read

𝛿𝑓 = 𝛿𝑠𝑓 + 𝛿𝑢𝑓 + 𝛿ℎ𝑛𝑓 =
𝜕𝑓

𝜕𝑠
𝛿𝑠+

𝜕𝑓

𝜕𝑢
𝛿𝑢+

𝜕𝑓

𝜕ℎ𝑛
𝛿ℎ𝑛. (5.40)

The computation of the partial derivatives of 𝑓 w.r.t. 𝑠, 𝑢 and ℎ𝑛 is usually straight
forward and not further focussed on in this paragraph. However, the total variations of
the displacements and the history variables are examined more closely.
Assuming that Eq. (4.78) has a real solution implies that also a solution can be found for
𝛿𝑢 from Eq. (5.10). With the definition of the implicit sensitivity operator, cf. [87],

𝛿𝑢 =: 𝑆(̂︀𝑠,𝑢*,ℎ*
𝑛; 𝛿𝑠), (5.41)

further thoughts can be made on the total history variations. Recalling Eq. (5.28) and
considering Eq. (5.41) one obtains

𝛿ℎ =
𝜕ℎ

𝜕𝑠
𝛿𝑠+

𝜕ℎ

𝜕𝑢
∘ 𝑆 +

𝜕ℎ

𝜕ℎ𝑛
𝛿ℎ𝑛 =: 𝑍(̂︀𝑠,𝑢*,ℎ*

𝑛; 𝛿𝑠), (5.42)

where the implicit history design sensitivity operator 𝑍 is defined. Note that as a
consequence of Eq. (5.42), 𝛿ℎ𝑛 = 𝑍𝑛(̂︀𝑠,𝑢*

𝑛,ℎ𝑛−1; 𝛿𝑠). Now it is possible to express the
total variation of a physical quantity solely w.r.t. the design 𝑠, which leads to the total
design variation of the history variables

𝛿ℎ =
𝜕ℎ

𝜕𝑠
𝛿𝑠+

𝜕ℎ

𝜕𝑢
∘ 𝑆 +

𝜕ℎ

𝜕ℎ𝑛
∘ 𝑍𝑛. (5.43)

Finally, Eq. (5.40) takes the form

𝛿𝑓 =
𝜕𝑓

𝜕𝑠
𝛿𝑠+

𝜕𝑓

𝜕𝑢
∘ 𝑆 +

𝜕𝑓

𝜕ℎ𝑛
∘ 𝑍𝑛. (5.44)
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Note that 𝛿ℎ𝑛 = 𝑍𝑛(̂︀𝑠,𝑢*
𝑛,ℎ

*
𝑛−1; 𝛿𝑠) and by assuming 𝛿ℎ0 = 0 at time 𝑡0, the update

formula Eq. (5.43) simplifies to

𝛿ℎ =
𝜕ℎ

𝜕𝑢
∘ 𝑆 +

𝜕ℎ

𝜕𝑠
𝛿𝑠 (5.45)

in the very first pseudo-time step. Consequently, the influence of the history variables
on the design variation of any physical quantity only appears subsequent to a plastic
step. Thus, it is important to update the history variations at the end of each pseudo
time step. Depending on the type of chosen design variables, the implicit operators are
denoted with the superscript 𝑋 for geometric and 𝑚 for constitutive design, i.e. e.g.
𝑆𝑋 = 𝑆(̂︀𝑠,𝑢,ℎ𝑛; 𝛿𝑋) or 𝑍𝑚

𝑛 = 𝑍𝑛(̂︀𝑠,𝑢,ℎ𝑛; 𝛿𝑚).

Remark 5.4 (Implicit operators) The implicit operators 𝑆 and 𝑍 can be explicitly
determined after reformulation of the continuum equations into a discrete matrix form.
The resulting matrices are essential for the presented approach and contain important
information on the structural and physical behavior of the analyzed problem. Details on
the computation of these explicit matrices are given in Sec. 6.3.3.

5.5.2 Stress variations

The general variational form of a total design variation of a physical quantity is applied to
two stress measures, namely the equivalent von Mises stress 𝜎eq and the mean stress 𝜎m,
which are respectively given by

𝜎eq =
√︀
3 𝐽2(𝜏𝜏𝜏dev ) and 𝜎m =

1

3
𝐼1(𝜏𝜏𝜏), (5.46)

with 𝐼1(𝜏𝜏𝜏) = tr (𝜏𝜏𝜏) and 𝐽2(𝜏𝜏𝜏dev ) = 1
2 𝜏𝜏𝜏dev : 𝜏𝜏𝜏dev denoting the first and second invariants

of the Kirchhoff stress tensor and its deviatoric contribution, respectively. Their total
variations 𝛿𝜎m and 𝛿𝜎eq can be expressed as

𝛿𝜎m =
𝜕𝜎m
𝜕𝜏𝜏𝜏

: 𝛿𝜏𝜏𝜏 =
1

3
III : 𝛿𝜏𝜏𝜏 and 𝛿𝜎eq =

𝜕𝜎eq
𝜕𝜏𝜏𝜏

: 𝛿𝜏𝜏𝜏 =
3

2𝜎eq
𝜏𝜏𝜏dev : 𝛿𝜏𝜏𝜏 , (5.47)

respectively. For both, the physical variation of interest is the total design variation of the
Kirchhoff stres stensor 𝛿𝜏𝜏𝜏 , which in its general form reads

𝛿𝜏𝜏𝜏 = 𝛿𝑠𝜏𝜏𝜏 + 𝛿𝑢𝜏𝜏𝜏 + 𝛿ℎ𝑛
𝜏𝜏𝜏 =

𝜕𝜏𝜏𝜏

𝜕𝑠
𝛿𝑠+

𝜕𝜏𝜏𝜏

𝜕𝑢
∘ 𝑆 +

𝜕𝜏𝜏𝜏

𝜕ℎ𝑛
∘ 𝑍𝑛. (5.48)

At this point a distinction on the choice of design parametrization has to be made.

Geometric shape design. For geometric design (𝑠 := 𝑋), the Kirchhoff stress tensor
depends on the geometric design as well as on the displacements via the deformation
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gradient. Thus, Eq. (5.48) can be written as

𝛿𝜏𝜏𝜏 =
𝜕𝜏𝜏𝜏

𝜕FFF
: (𝛿𝑋FFF + 𝛿𝑢FFF ∘ 𝑆𝑋) +

𝜕𝜏𝜏𝜏

𝜕ℎ𝑛
∘ 𝑍𝑋

𝑛 . (5.49)

Constitutive design. For constitutive design, the Kirchhoff stress tensor explicitly depends
on the design variables. Therefore, Eq. (5.48) takes the form

𝛿𝜏𝜏𝜏 =
𝜕𝜏𝜏𝜏

𝜕𝑚
𝛿𝑚+

𝜕𝜏𝜏𝜏

𝜕FFF
: 𝛿𝑢FFF ∘ 𝑆𝑚 +

𝜕𝜏𝜏𝜏

𝜕ℎ𝑛
∘ 𝑍𝑚

𝑛 . (5.50)

Here, the partial variation of the Kirchhoff stress tensor w.r.t. the constitutive parameters
can be obtained considering Eq. (5.19) and Eq. (4.26). One obtains

𝛿𝑚𝜏𝜏𝜏 = 𝛿𝑚PPPK FFFT =
𝐽2 − 1

2
III 𝛿𝐾 +HHHm 𝛿𝐺− 2

√︂
2

3
𝜇nnn 𝛿𝑘 =: MMM𝜏 𝛿ℎ𝑛. (5.51)

By means of Eq. (4.83) and Eq. (A.3), the partial derivative of the Kirchhoff stress tensor
w.r.t. the deformation gradient for the presented model can be revealed as

a :=
𝜕𝜏𝜏𝜏

𝜕FFF
= 𝐾 𝐽2 III⊗ FFF−T + S. (5.52)

The partial derivatives of the Kirchhoff stress tensor w.r.t. the internal variables are given
in App. A.3.1 and read

𝜕𝜏𝜏𝜏

𝜕cccp,𝑛
= S : B𝐶 =: Dc and

𝜕𝜏𝜏𝜏

𝜕𝛼𝑛
=

√︂
2

3
(1− 𝛽1)nnn =: DDD𝛼. (5.53)

5.6 Summary and concluding remarks

This chapter presents a complete derivation of design sensitivities utilizing a variational
approach. The term design is explained to parametrize the geometrical and thermodynamic
properties of the material body. Within the scope of this thesis, thermodynamic properties
are described by the constitutive parameters 𝑚 governing the elastic and plastic response
behavior, whereas the referential coordinates 𝑋 define the geometry. Based on the
enhanced viewpoint of kinematics, it is possible to separate geometrical from physical
quantities, which avoids complicated implicit dependencies, if geometrical sensitivities are
required, and additionally allows a compact representation of total design variations of
any physical quantity.
The essential equation 𝛿𝑅 = 0, cf. Eq. (5.10), restricts a design variation to constitute
an equilibrium point and is therefore used to identify the total design sensitivity of
the structural response. The arising tangent operators are given with all corresponding
variations. Special attention has to be drawn on the deformation history that is captured
by the internal history variables. Their influence on the structural response must not be
disregarded. Thus, total design variations of the history variables have to be determined.
Within the implicit time integration scheme, all linearizations are performed consistent
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with the stress projection algorithm presented in Sec. 4.5.2. As the design variations of the
history variables of the prior pseudo-time step are required in most of the arising design
variations, it is important to update those at the end of the current pseudo-time step and
save them for the subsequent.
The fact that the variation of the structural response has to be known for the computation
of physical sensitivities, including the update of the variations of internal history variables,
gives rise to a staggered scheme for the computations. The computational treatment
including discretization and embedding of the appearing matrix forms into the finite
element framework is presented in Chap. 6. Here, additionally the possibility of a semi-
analytical approach is described that is generally valid for the choice of any constitutive
model with dissipative mechanisms described via local internal history variables within an
implicit time integration procedure.



Chapter 6

Computation of Design Sensitivities

This chapter aims at embedding the continuously derived design sensitivities in
Chap. 5 into the computational framework of the finite element method, sketched
briefly in Chap. 4. Therefore, it constitutes the second main part in this thesis, i.e.
efficient design sensitivity computations. The continuum equations are discretized
utilizing finite element approximations analogously to the discretization of the
structural analysis problem. The essential matrix representations of sensitivity
operators are derived and the computation algorithms are presented. Additionally,
a semi-analytical way of computing the demanded sensitivities is sketched. Finally,
some benchmark examples compare the efficiency and quality of the obtained
gradient information with the numerical method of finite differences.
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6.1 Introduction

In Chap. 5, the sensitivity relations of the structural response and arbitrary physical
functions have been derived analytically by means of a variational approach. For the
numerical implementation, the resulting equations have to be embedded into the computa-
tional framework, that is, the finite element method (FEM). For details on the numerical
approximations, the interested reader is referred to the relevant standard literature e.g.
[21, 31, 80, 172, 190, 199] to name a few. Most relevant aspects and notations for the
work at hand can also be found in App. B.1.
The approximations of the sensitivity relations follow the same concepts mentioned above,
see for example [14, 63, 88, 116]. However, within the finite element method, the un-
derlying real geometry of the considered structure is not directly available. This means
that in the case of optimal shape design, only the nodal coordinates of the discrete mesh
nodes can be adapted. Depending on the degree of the interpolating shape functions, this
might result in non-smooth boundaries and additionally, depending on the discretization
density, a high number of design variables might occur. Therefore, it is convenient to
parametrize the underlying geometry from which the FE mesh is constructed. In this
context, approaches used in computer aided geometric design (CAGD), e.g. Bézier splines,
basis splines (B-splines) or non-uniform rational B-Splines (NURBS) have been proven
to constitute good alternatives, cf. e.g. [63, 87, 116]. However, as the computational
results are obtained by means of the FEM, a coupling between CAGD and FEM has to
be established. This leads to the so-called design velocity field that couples continuous
CAGD geometry descriptions and discrete FE approximations.
This chapter aims at the discrete formulation of the sensitivity relations regarding the finite
element approximations, as well as the projection to continuous geometry descriptions by
means of design velocity fields. Further, computational and algorithmic details are given
and corresponding pseudo code is provided. Finally, the possibility of semi-analytical
computations of design sensitivity information in the context of implicit path dependent
material behavior is presented. Some numerical benchmarks are performed in order to
emphasize the accuracy and applicability of the presented approach.

6.2 Discrete design parametrization

In the following, the different discrete design parametrizations are introduced. For the
case of geometric design, the concept of the so-called design velocity field is explained. For
constitutive design, the discrete design vector 𝑚 including all elastic and plastic parameters
of the material model explained in Chap. 4 is introduced.

6.2.1 Geometry and FE mesh

Mathematical exact geometry descriptions can be obtained by means of computer aided
geometric design (CAGD). Curves, surfaces and volumes can for instance be described
by Bézier splines, basis splines (B-Splines) or, more general, non-uniform rational B-
Splines (NURBS). All of these have in common that the displayed curves and surfaces are
controlled by a set of control points. Choosing these control points as design variables
in shape optimization has two main advantages. First, continuity of boundaries can be
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controlled and thus can be ensured smooth. Secondly, the number of design variables can
be decreased drastically as a few control points can be used to describe complex geometries
for which plenty FE nodes must be used to gain a reasonable approximation.
NURBS represent the most general and most versatile geometry description, as additional
factors are used to weight control points, which results in higher or lower attraction of
the respective knot on the curve compared to B-Splines. However, in shape optimization
these additional weighting factors constitute additional unknowns and the uniqueness of
the description is not guaranteed. Therefore, within the work at hand B-Spline geometry
descriptions are used.
As the finite element method is used to solve the physical initial boundary value problem
and to compute the sensitivities in a solution point, the obtained gradients have to be
transformed to control point coordinates of the geometry description. This can be gained
by taking the partial derivative of the nodal FE coordinates 𝑋 w.r.t. the control points of
the mesh controlling geometry description 𝑝. The resulting matrix is called design velocity
matrix and reads

𝐷v :=

[︂
𝜕𝑋

𝜕𝑝

]︂
. (6.1)

The NURBS toolbox [137] can be used in Matlab to construct NURBS and B-Spline
geometries and additionally offers functions that evaluate partial derivatives. Solely the
coordinates of the control points and the corresponding knot vectors for each spatial
direction are needed to invoke the function nrbmak, which produces a Matlab struct
that can be used to construct a visualization mesh by means of the function nrbeval. The
constructed mesh can also be used for the FE discretization. Finally, the design velocity
matrix can be computed by means of the function nrbeval_der_p, which computes
the partial derivatives of the NURBS geometry evaluated at the mesh nodes w.r.t. the
coordinates of the control points. An example of constructing a NURBS geometry and
the corresponding FE mesh utilizing the NURBS toolbox is given in Fig. B.1 in App. B.2.

6.2.2 Discrete constitutive design

The constitutive parameters that can be chosen as design variables are prescribed by
the underlying constitutive model. In the present elastoplastic model, the two elastic
parameters (𝐾,𝐺), as well as the four plastic parameters (𝜎0, 𝜎∞, 𝐻, 𝑑), describe the
material behavior. All of these parameters are chosen as design variables, thus the discrete
vectors of constitutive design variables and their variations read

𝑚 =
[︀
𝐾 𝐺 𝜎0 𝜎∞ 𝐻 𝑑

]︀
,

𝛿𝑚 =
[︀
𝛿𝐾 𝛿𝐺 𝛿𝜎0 𝛿𝜎∞ 𝛿𝐻 𝛿𝑑

]︀
.

(6.2)
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With these, the variations of the bulk modulus and the shear modulus, as well as the
hardening function, see Eq. (5.1), can in a discrete setting be expressed by

𝛿𝐾 :=
𝜕𝐾

𝜕𝑚
𝛿𝑚 =

[︀
1 0 0 0 0 0

]︀
𝛿𝑚,

𝛿𝐺 :=
𝜕𝐺

𝜕𝑚
𝛿𝑚 =

[︀
0 1 0 0 0 0

]︀
𝛿𝑚,

𝛿𝑘 :=
𝜕𝑘

𝜕𝑚
𝛿𝑚 =

[︀
0 0 1 (1− exp(−𝑑𝛼)) 𝛼 𝜎∞ exp(−𝑑𝛼)

]︀
𝛿𝑚.

(6.3)

6.3 Discrete sensitivities

In App. B.1, the standard finite element discretization is sketched and the approximations
of the geometry, displacements and test functions are given. Following the same concepts,
the following approximations of the geometry and displacement variations can be defined

𝛿𝑋ℎ =

nnode∑︁
𝑖=1

𝑁𝑖 𝛿𝑋𝑖 and 𝛿𝑢ℎ =

nnode∑︁
𝑖=1

𝑁𝑖 𝛿𝑢𝑖, (6.4)

as well as their referential gradients and divergences

Grad 𝛿𝑋ℎ =

nnode∑︁
𝑖=1

𝛿𝑋𝑖 𝐿
𝑇
𝑖 , Div 𝛿𝑋ℎ =

nnode∑︁
𝑖=1

𝐿𝑇𝑖 𝛿𝑋𝑖 and (6.5)

Grad 𝛿𝑢ℎ =

nnode∑︁
𝑖=1

𝛿𝑢𝑖 𝐿
𝑇
𝑖 , Div 𝛿𝑢ℎ =

nnode∑︁
𝑖=1

𝐿𝑇𝑖 𝛿𝑢𝑖, (6.6)

respectively. Based on these approximations, discrete matrix forms of the continuously
derived sensitivities for the different design parametrizations can be constructed. Note that
for the partial variation of the deformation gradient w.r.t. geometric design, cf. Eq. (5.16),
the discrete version of the form

𝛿𝑋𝐹 = −
∑︁
𝑖

𝐺𝑖 Grad 𝑢ℎ 𝛿𝑋𝑖 = −
∑︁
𝑖

𝐺𝑋
𝑖 𝛿𝑋𝑖 = −𝐺𝑋 𝛿𝑋 (6.7)

can be defined. Choosing control point coordinates as design variables, Eq. (6.8) can be
transformed to

𝛿𝑝𝐹 = −
∑︁
𝑖

𝐺𝑋
𝑖 𝐷

v
𝑖 𝛿𝑝 = −𝐺

𝑝 𝛿𝑝. (6.8)



6.3 Discrete sensitivities 71

In connection with the 𝐹 method the consistent discrete gradient operators then read

𝛿𝑋𝐹 = −
∑︁
𝑖

𝐺𝑖 Grad 𝑢ℎ 𝛿𝑋𝑖 = −
∑︁
𝑖

𝐺
𝑋

𝑖 𝛿𝑋𝑖 = −𝐺
𝑋
𝛿𝑋, (6.9)

𝛿𝑝𝐹 = −
∑︁
𝑖

𝐺
𝑋

𝑖 𝐷
v
𝑖 𝛿𝑝 = −𝐺

𝑝
𝛿𝑝, (6.10)

see also Eq. (4.94).

6.3.1 Discrete pseudoload

By means of the discrete approximations in Eqs. (6.4), (6.5) and (6.6), the discrete matrix
forms of the geometric and constitutive pseudoload operators can be composed. At this
point, again a distinction of the chosen design parametrizations has to be made.

Geometric shape design. The continuous geometric pseudoload operator has been derived
in Sec. 5.4.2 and is given in Eq. (5.17). Considering the discrete gradient and divergence
operators, the discrete geometric pseudoload operator reads

𝑝ℎ𝑋(𝑣ℎ,𝛿𝑋ℎ) =
⋃︁
𝑒

∑︁
𝑖

∑︁
𝑗

𝑣𝑇𝑖

[︂ˆ
𝛺𝑒

−𝐺T
𝑖 𝐴𝐺

𝑋

𝑗 −PPP
K
(︁
𝐿𝑗 𝐿

T
𝑖 − 𝐿𝑖 𝐿

T
𝑗

)︁
d𝑉

]︂
𝛿𝑋ℎ

𝑗

=
⋃︁
𝑒

𝑣𝑇𝑒 𝑃
X

𝑒 𝛿𝑋
ℎ
𝑒 = 𝑣𝑇 𝑃

X
𝛿𝑋ℎ,

(6.11)

with the nodal based discrete geometric pseudoload matrix 𝑃
X ∈ Rndof×ndof . Choosing

mesh controlling geometric parameters, i.e. e.g. the control points 𝑝 of the underlying
geometry description, as design variables and utilizing the design velocity matrix on
element level, leads to the discrete geometric pseudoload operator

𝑝ℎ𝑝(𝑣
ℎ,𝛿𝑝) =

⋃︁
𝑒

𝑣𝑇𝑒 𝑃
X

𝑒 𝐷
v
𝑒 𝛿𝑝 =

⋃︁
𝑒

𝑣𝑇𝑒 𝑃
p

𝑒 𝛿𝑝 = 𝑣
𝑇 𝑃

p
𝛿𝑝, (6.12)

with the control point based discrete geometric pseudoload matrix 𝑃
p ∈ Rndof×ndv.

Constitutive design. In the discrete setting, the constitutive sensitivity operator from
Eq. (5.21) can be approximated by

𝑝ℎ𝑚(𝑣ℎ,𝛿𝑚) =
⋃︁
𝑒

∑︁
𝑖

𝑣𝑇𝑖

⎡⎣ˆ
𝛺𝑒

𝐺T
𝑖 𝑀 d𝑉

⎤⎦ 𝛿𝑚 =
⋃︁
𝑒

𝑣T𝑒 𝑃
m

𝑒 𝛿𝑚 = 𝑣𝑇 𝑃
m
𝛿𝑚, (6.13)

where the matrix form 𝑀 of the partial derivative of the first Piola Kirchhoff stress tensor
w.r.t. constitutive parameters is given in Eq. (A.38).
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6.3.2 Discrete history sensitivity

At each integration point the discrete vector of internal variables is defined as

ℎ :=
[︀
𝑐𝑇p 𝛼

]︀𝑇
=
[︀
𝑐p11 𝑐p22 . . . 2 𝑐p31 𝛼

]︀𝑇
, (6.14)

with the symmetric components 𝑐p𝑖𝑗 of the matrix form of the internal variable cccp that are
sorted corresponding to Eq. (2.9) and the isochoric hardening variable 𝛼. Analogously,
the vector of variations of internal history variables is introduced, viz.

𝛿ℎ :=
[︀
𝛿𝑐𝑇p 𝛿𝛼

]︀𝑇
=
[︀
𝛿𝑐p11 𝛿𝑐p22 . . . 2 𝛿𝑐p31 𝛿𝛼

]︀𝑇
. (6.15)

The discrete version of the history sensitivity operator, cf. Eq. (5.27), is then given by

ℎ(𝑣 ,𝛿ℎ𝑛) =
⋃︁
𝑒

∑︁
𝑖

𝑣𝑇𝑖

[︂ˆ
𝛺𝑒

𝐺𝑇𝑖

[︂
𝜕𝑃

K

𝜕ℎ𝑛

]︂
d𝑉

]︂
𝛿ℎ𝑛 =

⋃︁
𝑒

𝑣𝑇𝑒 𝐻𝑒 𝛿ℎ𝑛, (6.16)

where the partial variations of the first Piola-Kirchhoff stress tensor w.r.t. the internal
history variables are given by the matrix forms of the tensors qqqc and qqq𝛼 from Eq. (5.24),
corresponding to the conventions in Sec. 2.1.2, viz.

𝑞c :=

[︃
𝜕𝑃

K

𝜕𝑐p,𝑛

]︃
∈ R9×6, 𝑞𝛼 :=

[︃
𝜕𝑃

K

𝜕𝛼𝑛

]︃
∈ R9×1. (6.17)

Note that the vector of variations of internal history variables can be expressed in terms
of design changes, considering that it is evaluated in a solution point of the structural
analysis problem with fixed design. Recalling Eq. (5.42), its discrete version becomes

𝛿ℎ =

[︂
𝜕ℎ

𝜕𝑢
𝑆 +

𝜕ℎ

𝜕ℎ𝑛
𝑍𝑛 +

𝜕ℎ

𝜕𝑠

]︂
𝛿𝑠 = 𝑍 𝛿𝑠, (6.18)

regardless of whether geometric shape or constitutive design is chosen. Here, the matrix
𝑍 has the structure

𝑍 :=

[︂
𝑍c

𝑍𝛼

]︂
∈ R7×ndv with 𝑍c =

[︂
d𝑐p
d𝑠

]︂
∈ R6×ndv and 𝑍𝛼 =

[︂
d𝛼

d𝑠

]︂
∈ R1×ndv

(6.19)

and contains the values that have to be saved in each integration point of each finite
element in every pseudo-time step for the subsequent step. On element level the entries of
the matrix 𝑍 are loaded and Eq. (6.16) can be transformed to

ℎ(𝑣 ,𝛿𝑠) =
⋃︁
𝑒

𝑣𝑇𝑒 𝐻𝑒 𝑍𝑛 𝛿𝑠 =
⋃︁
𝑒

𝑣𝑇𝑒 𝑄𝑒 𝛿𝑠 = 𝑣
𝑇 𝑄 𝛿𝑠. (6.20)
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Here, the matrix 𝑄 ∈ Rndof×ndv directly connects the structural response with respect to
design changes that effect the deformation history and on element level reads

𝑄𝑒 =

ˆ
𝛺𝑒

𝐺𝑇 (𝑞c 𝑍
c
𝑛 + 𝑞𝛼 𝑍

𝛼
𝑛) d𝑉 =

ˆ
𝛺𝑒

𝐺𝑇 𝑞 𝑍𝑛 d𝑉, (6.21)

with 𝑞 =
[︀
𝑞c 𝑞𝛼

]︀
∈ R9×7. The matrices 𝑆 and 𝑍 are further declared in the following.

6.3.3 Total sensitivity matrix

From the matrix form of Eq. (5.10)

𝛿𝑅 =

[︂
𝜕𝑅

𝜕𝑢

]︂
𝛿𝑢 +

[︂
𝜕𝑅

𝜕𝑠

]︂
𝛿𝑠 +

[︂
𝜕𝑅

𝜕ℎ𝑛

]︂
𝛿ℎ𝑛 = 0

= 𝐾 𝛿𝑢 + 𝑃 𝛿𝑠 +𝐻 𝛿ℎ𝑛,

(6.22)

where 𝑅 ∈ Rndof , the total sensitivity matrix 𝑆 ∈ Rndof×ndv can be derived, that connects
the total variation of the structural response 𝛿𝑢 with design variations 𝛿𝑠

𝛿𝑢 = −𝐾−1 [𝑃 𝛿𝑠 +𝐻 𝛿ℎ𝑛]

= −𝐾−1 [𝑃 +𝑄] 𝛿𝑠 = 𝑆 𝛿𝑠.
(6.23)

Here, the matrix 𝐾 ∈ Rndof×ndof denotes the tangent stiffness matrix, cf. Eq. (4.87),
𝐻 ∈ Rndof×nhv is the history sensitivity matrix and 𝑃 ∈ Rndof×ndv constitutes the pseudoload
matrix. Note that all equations in this subsection are valid regardless of the chosen design
parametrization. Hence, 𝑃 can either be the geometric or the constitutive pseudo load
matrix, or even a combination of both. The matrix 𝑍𝑛 ∈ Rnhv×ndv is the total design
derivative of the history variables and is obtained utilizing the discrete update formula in
Eq. (6.18). In the algorithmic manner, by assuming ℎ0 = 0 and 𝑍0 = 0 at time 𝑡 = 𝑡0,
from Eq. (6.23) one obtains

𝑆1 = −𝐾−1
1 (𝑃 1 +𝑄1) = −𝐾−1

1 𝑃 1, (6.24)

as also 𝑄1 = 0 , and therefore

𝛿ℎ1 =

[︂
𝜕ℎ1
𝜕𝑢
𝑆1 +

𝜕ℎ1
𝜕𝑠

]︂
𝛿𝑠 = 𝑍1 𝛿𝑠, (6.25)

for the first pseudo-time step, i.e. 𝑡 = 𝑡1. The sensitivities corresponding to the deformation
history have to be evaluated at the end of each time step that causes plastic yielding and
saved for the subsequent step.

6.3.4 Discrete history sensitivity update

At the end of each pseudo time step that causes plastic yielding, the discrete values of
sensitivities of the internal variables have to be updated and saved following Eq. (6.18).
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The partial derivatives needed are derived in Sec. 5.4.4. The update formulae for the
variations of the internal history variables 𝑐p and 𝛼 respectively read

𝛿𝑐p = 𝛿𝑢𝑐p + 𝛿𝑠𝑐p + 𝛿ℎ𝑛𝑐p and 𝛿𝛼 = 𝛿𝑢𝛼+ 𝛿𝑠𝛼+ 𝛿ℎ𝑛𝛼. (6.26)

Before a distinction of the chosen design description has to be made, the discrete partial
variations of the internal history variables w.r.t. their counterparts of the prior load step
are given, as these are demanded regardless of the choice of design parametrization.
Recalling Eq. (5.36) and Eq. (5.37), their discrete versions read

𝛿ℎ𝑛𝑐p = 𝐶c 𝛿𝑐p,𝑛 + 𝐶𝛼 𝛿𝛼𝑛 = (𝐶c 𝑍
c
𝑛 + 𝐶𝛼 𝑍

𝛼
𝑛) 𝛿𝑠 = 𝐶 𝑍𝑛 𝛿𝑠 (6.27)

and

𝛿ℎ𝑛
𝛼 = 𝑇 c 𝛿𝑐p,𝑛 + 𝑇𝛼 𝛿𝛼𝑛 = (𝑇 c 𝑍

c
𝑛 + 𝑇𝛼 𝑍

𝛼
𝑛) 𝛿𝑠 = 𝑇 𝑍𝑛 𝛿𝑠, (6.28)

with 𝐶 =
[︀
𝐶c 𝐶𝛼

]︀
∈ R6×7 and 𝑇 =

[︀
𝑇 c 𝑇𝛼

]︀
∈ R1×7, respectively, where 𝐶c, 𝐶𝛼 and

𝑇c, 𝑇𝛼 are matrix forms of the tensors in Eq. (5.36) and Eq. (5.37) corresponding to the
conventions mentioned in Chap. 2.

Remark 6.1 Note that 𝑍𝑛 ∈ R7×ndv automatically inherits the correct size depending on
the design parametrization. That is, by assuming ℎ𝑛 = 0 in the current time step 𝑡𝑛+1,
only the partial variations w.r.t. displacements and design come into action. Therefore,
the size of 𝑍𝑛 is prescribed by the size of the sensitivity matrix 𝑆 ∈ Rndof×ndv. Depending
on the choice of design variables, the corresponding sensitivity matrix is indicated with
subscripts as follows. For geometric design 𝑆𝑋 and 𝑆𝑝 are used, while 𝑆𝑚 is used in the
case of constitutive design. Such a distinction is not made for the matrix 𝑍𝑛, as its size
and meaning is obvious by context.

Geometric shape design. In the case of geometric design, the design variables can either
be chosen as the nodal coordinates of the FE nodes, or mesh controlling control point
coordinates based on a CAGD geometry description. The discrete versions of the update
formulae for the variations of the internal variables cccp and 𝛼, are respectively given by

𝛿𝑐p = 𝛿𝑢𝑐p + 𝛿𝑋𝑐p + 𝛿ℎ𝑛
𝑐p = 𝐴c (𝛿𝑢𝐹 + 𝛿𝑋𝐹 ) + 𝐶 𝑍𝑛 𝛿𝑋

= [𝐴c (𝐺 𝑆𝑋 − 𝐺
𝑋
) + 𝐶 𝑍𝑛] 𝛿𝑋

(6.29)

and

𝛿𝛼 = 𝛿𝑢𝛼+ 𝛿𝑋𝛼+ 𝛿ℎ𝑛𝛼 = 𝐴𝛼 (𝛿𝑢𝐹 + 𝛿𝑋𝐹 ) + 𝑇 𝑍𝑛 𝛿𝑋

= [𝐴𝛼 (𝐺 𝑆𝑋 − 𝐺
𝑋
) + 𝑇 𝑍𝑛] 𝛿𝑋.

(6.30)

regarding the nodal mesh coordinates, or by

𝛿𝑐p = 𝛿𝑢𝑐p + 𝛿𝑝𝑐p + 𝛿ℎ𝑛
𝑐p = 𝐴c (𝛿𝑢𝐹 + 𝛿𝑝𝐹 ) + 𝛿ℎ𝑛

𝑐p

= [𝐴c (𝐺 𝑆𝑝 − 𝐺
𝑝
) + 𝐶 𝑍𝑛] 𝛿𝑝

(6.31)
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and

𝛿𝛼 = 𝛿𝑢𝛼+ 𝛿𝑝𝛼+ 𝛿ℎ𝑛
𝛼 = 𝐴𝛼 (𝛿𝑢𝐹 + 𝛿𝑝𝐹 ) + 𝛿ℎ𝑛

𝛼

= [𝐴𝛼 (𝐺 𝑆𝑝 − 𝐺
𝑝
) + 𝑇 𝑍𝑛] 𝛿𝑝,

(6.32)

where the gradient information w.r.t. the nodal coordinates are already transformed
to the control point coordinates using the design velocity matrix. Here, 𝐴c and 𝐴𝛼 are
matrix forms of the tensors in Eq. (5.30) and Eq. (5.32) evaluated for 𝐹 , respectively. By
definition of the matrices

𝐴h =

[︂
𝜕ℎ

𝜕𝐹

]︂
=

[︂
𝐴c

𝐴𝛼

]︂
∈ R7×9 and 𝐶h =

[︂
𝜕ℎ

𝜕ℎ𝑛

]︂
=

[︂
𝐶
𝑇

]︂
∈ R7×7, (6.33)

the update formulae can be written in compact form for the discrete vector of variations
of history variables, cf. Eq. (6.15), and reads

𝛿ℎ = 𝛿𝑢ℎ + 𝛿𝑋ℎ + 𝛿ℎ𝑛
ℎ = [𝐴h (𝐺 𝑆𝑋 − 𝐺

𝑋
) + 𝐶h 𝑍𝑛] 𝛿𝑋 (6.34)

or

𝛿ℎ = 𝛿𝑢ℎ + 𝛿𝑝ℎ + 𝛿ℎ𝑛
ℎ = [𝐴h (𝐺 𝑆𝑝 − 𝐺

𝑝
) + 𝐶h 𝑍𝑛] 𝛿𝑝 (6.35)

depending on the chosen geometric design parametrization.

Constitutive design. The algorithmic update formulae in the case of constitutive design
are given in Eq. (5.34) and Eq. (5.35) and in a discrete setting can be expressed by

𝛿𝑐p = 𝛿𝑢𝑐p + 𝛿𝑚𝑐p + 𝛿ℎ𝑛𝑐p = 𝐴c 𝛿𝑢𝐹 +𝑚c 𝛿𝑚 + 𝐶 𝑍𝑛 𝛿𝑚

=
[︀
𝐴c 𝐺 𝑆𝑚 +𝑚c + 𝐶 𝑍𝑛

]︀
𝛿𝑚

(6.36)

and

𝛿𝛼 = 𝛿𝑢𝛼+ 𝛿𝑚𝛼+ 𝛿ℎ𝑛𝛼 = 𝐴𝛼 𝛿𝑢𝐹 +𝑚𝛼 𝛿𝑚 + 𝑇 𝑍𝑛 𝛿𝑚

=
[︀
𝐴𝛼 𝐺 𝑆𝑚 +𝑚𝛼 + 𝑇 𝑍𝑛

]︀
𝛿𝑚,

(6.37)

see also App. A.3.2 for details on the matrices 𝑚c and 𝑚𝛼. Note that the overlining
notation is used here to indicate that these quantities have to be evaluated for 𝐹 for the
present case that the 𝐹 -method is utilized to prevent volumetric locking. Analogously to
the update formula in the geometric shape design case, with the definition of the matrix

𝑚h =

[︂
𝜕ℎ

𝜕𝑚

]︂
=

[︂
𝑚c

𝑚𝛼

]︂
∈ R7×6 (6.38)

it is possible to formulate the compact form

𝛿ℎ = 𝛿𝑢ℎ + 𝛿𝑚ℎ + 𝛿ℎ𝑛ℎ =
[︀
𝐴h 𝐺 𝑆𝑚 +𝑚h + 𝐶h 𝑍𝑛

]︀
𝛿𝑚. (6.39)
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6.4 Discrete objective and constraint function sensitivity

The general variational form of any arbitrary physical function has been derived in Sec. 5.5.
In the following the discrete counterparts are given and demonstrated on the two stress
measures analogously to Sec. 5.5.2.

6.4.1 General discrete form

Recalling the general variational form of a physical functional, cf. Eq. (5.40), the implicit
operators 𝑆 and 𝑍𝑛 can be explicitly determined in the discrete setting. That is, as
explained in Sec. 6.3.3, the sensitivity matrix 𝑆 and the total design derivative matrix of
the internal history variables 𝑍𝑛 are their discrete counterparts. Thus, the relations

𝛿𝑢 = 𝑆 𝛿𝑠 and 𝛿ℎ𝑛 = 𝑍𝑛𝛿𝑠 (6.40)

apply and the general discrete form of the total design variation of any physical quantity
can be written as

𝛿𝑓 =
𝜕𝑓

𝜕𝑠
𝛿𝑠 +

𝜕𝑓

𝜕𝑢
𝛿𝑢 +

𝜕𝑓

𝜕ℎ𝑛
𝛿ℎ𝑛 =

(︂
𝜕𝑓

𝜕𝑠
+
𝜕𝑓

𝜕𝑢
𝑆 +

𝜕𝑓

𝜕ℎ𝑛
𝑍𝑛

)︂
𝛿𝑠. (6.41)

6.4.2 Discrete stress variations

As an example for the sensitivity computation of a physical quantity, the two stress
measures already introduced in Sec. 5.5.2, i.e. the mean stress 𝜎m and the von Mises
equivalent stress 𝜎eq, are considered. Recalling the continuous variations in Eq. (5.47),
their discrete counterparts read

𝛿𝜎m =
1

3
𝐼𝑇 𝛿𝜏 and 𝛿𝜎eq =

2

3𝜎eq
dev 𝜏𝑇 𝛿𝜏 , (6.42)

where

𝐼 =
[︀
1 1 1 0 0 0

]︀T (6.43)

and

dev 𝜏 =
[︀
dev 𝜏11 dev 𝜏22 dev 𝜏33 dev 𝜏12 dev 𝜏23 dev 𝜏31

]︀𝑇 (6.44)

are the column matrix forms of the identity tensor and the deviatoric Kirchhoff stress
tensor, respectively. As already mentioned in Sec. 5.5.2, for both stress measures, the
total variation of the Kirchhoff stresses is demanded. Its total variation in the discrete
framework is given by

𝛿𝜏 = 𝛿𝑢𝜏 + 𝛿𝑠𝜏 + 𝛿ℎ𝑛
𝜏 . (6.45)

Regardless of the choice of design parametrization, the partial variations of the Kirchhoff
stress tensor w.r.t. the internal history variables have to be computed. The discrete



6.5 Numerical implementation 77

equation reads

𝛿ℎ𝑛
𝜏 = 𝐷c 𝛿𝑐

p
𝑛 +𝐷𝛼 𝛿𝛼𝑛 = 𝐷h 𝛿ℎ𝑛, (6.46)

where 𝐷h =
[︀
𝐷c 𝐷𝛼

]︀
∈ R6×7 is a hypervector containing the matrix forms 𝐷c ∈ R6×6

and 𝐷𝛼 ∈ R6×1 of the tensors Dc and DDD𝛼 from Eq. (5.53).
For the computations of the partial variations w.r.t. displacements and design, a distinction
between the different design parametrizations has to be made.

Geometric shape design. In the case of geometric shape design, the discrete counterpart
of the total variation in Eq. (5.49) is given by

𝛿𝜏 = 𝑎 (𝛿𝑢𝐹 + 𝛿𝑋𝐹 ) +𝐷𝑍𝑛 𝛿𝑋

= [𝑎 (𝐺 𝑆𝑋 − 𝐺
𝑋
) +𝐷𝑍𝑛] 𝛿𝑋,

(6.47)

or by means of a mesh controlling geometry description

𝛿𝜏 = 𝑎 (𝛿𝑢𝐹 + 𝛿𝑝𝐹 ) +𝐷𝑍𝑛 𝛿𝑝

= [𝑎 (𝐺 𝑆𝑝 − 𝐺
𝑝
) +𝐷𝑍𝑛] 𝛿𝑝,

(6.48)

with the discrete vector of control point coordinates 𝑝. Here,

𝑎 :=

[︂
𝜕𝜏

𝜕𝐹

]︂
(6.49)

represents the matrix form of the tensor aaa in Eq. (5.52) evaluated at 𝐹 .

Constitutive design. In the case of constitutive design, the discrete counterpart of the
total variation in Eq. (5.50) reads

𝛿𝜏 = 𝑎 𝛿𝑢𝐹 + 𝛿𝑚𝜏 +𝐷𝑍𝑛 𝛿𝑝

= [𝑎 𝐺 𝑆𝑝 +𝑀𝜏 +𝐷𝑍𝑛] 𝛿𝑚,
(6.50)

where 𝑀𝜏 is the matrix form of the tensor MMM𝜏 in Eq. (5.51) evaluated at 𝐹 and has the
same structure as the matrix 𝑀 in Eq. (A.38) with the only difference that 𝜏𝜏𝜏 is symmetric
and therefore its rows are sorted in the symmetric way, cf. Sec. 2.1.2.

6.5 Numerical implementation

In the following, some fundamental details on the numerical implementation are presented.
First, the global staggered procedure to compute the demanded global sensitivities is
explained. Further, the necessary computations on finite element level are briefly summa-
rized. Subsequently, the necessary augmentation of the stress projection algorithm for the
consistent local sensitivity computations are sketched. Finally, a semi-analytical method
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is presented that preserves the overall framework but replaces some complex analytical
derivatives by numerical difference quotients by means of the finite difference method.

6.5.1 Staggered computation procedure

Reviewing previous sections in this chapter, it becomes clear that the sensitivity information
of the global structural response has to be known to be able to compute the sensitivity
information of any physical quantity that might act as objective or constraint function
within an optimization task. This motivates the staggered computation procedure. That
is, firstly, the element contributions of the pseudoload and history sensitivity matrices are
assembled to their global counterparts. Secondly, the global response sensitivity matrix
is calculated by solving Eq. (6.23). Finally, the element contributions of any arbitrary
physical function sensitivity can be computed and assembled to the global quantity. Note
that it is important to update the history variables as well as their sensitivity information
afterwards and not before any of the mentioned steps. Fig. 6.1 summarizes the necessary
steps in pseudocode format. Note that for the different tasks on finite element level, task
switches (tsw) are introduced. That is, the task switches distinguish between computing
response sensitivities ('res_sens'), update history sensitivities ('upd_hist'), or
compute objective or constraint sensitivities ('obj_constr').

Remark 6.2 (Element design velocity matrix) For the case of geometric shape de-
sign, it is convenient to evaluate the global design velocity matrix for each finite element
and project sensitivity information from nodal FE coordinates to the chosen geometry
description. This reduces respective matrix sizes of all geometric sensitivities and therefore
saves memory as the sensitivity information of the internal variables has to be saved at the
end of each pseudo time step. This does not hold true if the number of design variables is
higher than the number of degrees of freedom in the finite element model (ndv > dof).

6.5.2 Computation of element contributions

On finite element level, the element contributions of the pseudoload and history sensitivity
matrices have to be computed, as well as the physical function sensitivity and the updates
of the internal variable sensitivity, depending on the corresponding task that is identified
by means of the value of the task switch (tsw), cf. Sec 6.5.1. In Fig. 6.2 the respective
computations are presented in pseudocode format. Note that an additional sensitivity
switch (ssw) is introduced to distinguish between geometric ('geo') and constitutive
('mat') design variables.

6.5.3 Augmentation of the stress projection algorithm

In the context of the presented approach, it is necessary to enhance the return mapping
algorithm, cf. Fig. 4.3, to additionally compute the demanded gradients in the context
of design sensitivity analysis. That is, besides the stress projection and the consistent
tangent, the algorithm has to compute additional partial variations depending on the
respective task switch (tsw).
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Computation of global design sensitivities

Input: {ssw,𝑋,𝑚,𝐾,𝑢,H𝑛,𝐷
v}

// Assemble pseudo load and history sensitivity matrices
◁ Element loop

1: for 𝑖𝑒 = 1 : nel
2: Set tsw = 'res_sens'

◁ Call to element routine
3: {𝑃 𝑖𝑒,𝑄𝑖𝑒} ← element(tsw,ssw,𝑚,𝑢[𝑖𝑒],H𝑛[𝑖𝑒],𝐷

v[𝑖𝑒],[ ])
◁ Assemble 𝑃 and 𝑄

4: 𝑃 [𝑖𝑒]← 𝑃 [𝑖𝑒] + 𝑃 𝑖𝑒

5: 𝑄[𝑖𝑒]← 𝑄[𝑖𝑒] +𝑄𝑖𝑒

6: end for

// Solve global response sensitivity
◁ Global sensitivity matrix

7: 𝑆 = −𝐾−1 (𝑃 +𝑄)

// Assemble physical function and sensitivity and update history field
◁ Element loop

8: for 𝑖𝑒 = 1 : nel
9: Set tsw = 'obj_constr'

◁ Call to element routine
10: {𝑓 𝑖𝑒,∇𝑓 𝑖𝑒} ← element(tsw,ssw,𝑚,𝑢[𝑖𝑒],H𝑛[𝑖𝑒],𝐷

v[𝑖𝑒],𝑆[𝑖𝑒])
◁ Assemble physical function and gradient

11: 𝑓 [𝑖𝑒]← 𝑓 [𝑖𝑒] + 𝑓 𝑖𝑒
12: ∇𝑓 [𝑖𝑒]← ∇𝑓 [𝑖𝑒] +∇𝑓 𝑖𝑒
13: Set tsw = 'upd_hist'

◁ Call to element routine
14: {ℎ𝑖𝑒,𝑍𝑖𝑒} ← element(tsw,ssw,𝑚,𝑢[𝑖𝑒],H𝑛[𝑖𝑒],𝐷

v[𝑖𝑒],𝑆[𝑖𝑒])
◁ Assemble history field

15: H[𝑖𝑒]← {ℎ𝑖𝑒,𝑍𝑖𝑒}
16: end for

Output: {𝑓 ,∇𝑓 ,𝑆,H}

Figure 6.1: Staggered global design sensitivity computation procedure.
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Computation of element design sensitivities

1: function Element(tsw,ssw𝑋𝑖𝑒,𝑚,𝑢𝑖𝑒,H𝑛,𝑖𝑒)

2: Load {ℎ𝑛,𝑍𝑛} ← H𝑛,𝑖𝑒

◁ Compute isoparametric shape functions and gradient operators
3: {𝐺,𝐿,det 𝐽} ← (𝑋)

◁ Compute modified deformation gradient and gradient operators
4: {𝐹 ,𝐺,𝐺𝑋} ← (𝑢𝑖𝑒,𝐺)

◁ Integration loop
5: for 𝑖𝑝 = 1 : ngp

◁ Volume element
6: d𝑉 = det 𝐽 𝑤𝑖𝑝

7: switch tsw
8: case 'res_sens'

9: {𝑃K
,𝐴,𝑞,𝑀} ← stress_proj_sens(tsw,𝑚,𝐹 ,ℎ𝑛[𝑖𝑝])

10: switch ssw
11: case 'geo'

12: 𝑃 𝑖𝑒 = 𝑃 𝑖𝑒 − 𝐺𝑇 𝐴𝐺
𝑋 −PPP

K
(
∑︀

𝑖

∑︀
𝑗 𝐿𝑗𝐿

𝑇
𝑖 − 𝐿𝑖 𝐿

𝑇
𝑗 ) d𝑉

13: case 'mat'
14: 𝑃 𝑖𝑒 = 𝑃 𝑖𝑒 + 𝐺

𝑇 𝑀 d𝑉

15: end switch ◁ ssw
16: 𝑄𝑖𝑒 = 𝑄𝑖𝑒 + 𝐺

𝑇 𝑞 𝑍𝑛[𝑖𝑝] d𝑉

17: case 'upd_hist'
18: {𝐴h,𝑚h,𝐶h,ℎ[𝑖𝑝]} ← stress_proj_sens(tsw,𝑚,𝐹 ,ℎ𝑛[𝑖𝑝])
19: switch ssw
20: case 'geo'

21: 𝑍𝑖𝑒[𝑖𝑝] = 𝐴h (𝐺 𝑆𝑖𝑒 − 𝐺
𝑋
) + 𝐶h 𝑍𝑛[𝑖𝑝]

22: case 'mat'
23: 𝑍𝑖𝑒[𝑖𝑝] = 𝐴h 𝐺 𝑆𝑖𝑒 +𝑚h + 𝐶h 𝑍𝑛[𝑖𝑝]

24: end switch ◁ ssw

25: case 'obj_constr'
26: {𝜏 ,𝑎,𝑀𝜏 ,𝐷} ← stress_proj_sens(tsw,𝑚,𝐹 ,ℎ𝑛[𝑖𝑝])

27: 𝜎eq[𝑖𝑝] =
√︁

3
2 dev 𝜏

𝑇dev 𝜏

28: switch ssw
29: case 'geo'

30: ∇𝜎eq[𝑖𝑝] = 3
2𝜎eq

dev 𝜏𝑇 (𝑎 (𝐺 𝑆 − 𝐺𝑋
) +𝐷𝑍𝑛[𝑖𝑝])

31: case 'mat'
32: ∇𝜎eq[𝑖𝑝] = 3

2𝜎eq
dev 𝜏𝑇 (𝑎 𝐺 𝑆 +𝑀𝜏 +𝐷𝑍𝑛[𝑖𝑝])

33: end switch ◁ ssw
34: end switch ◁ tsw
35: end for

36: return (𝑅𝑖𝑒,𝐾𝑖𝑒,𝑃 𝑖𝑒,𝑄𝑖𝑒,H𝑖𝑒,𝜏 ,∇𝜏 )

Figure 6.2: Essential design sensitivity computations on finite element level.
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Computation of stress projection design sensitivities

Input: {tsw,𝑚,𝐹 ,ℎ𝑖𝑝𝑛 }

// Apply standard stress projection algorithm, cf. Fig. 4.3
1: {𝑃K,𝐴,ℎ𝑖𝑝} ← stress_projection(𝑚,𝐹 ,ℎ𝑖𝑝𝑛 )

// Compute additional sensitivity information
2: switch tsw
3: case 'res_sensi'

◁ Additional matrix forms for response sensitivity

4: 𝑞 =

[︃
𝜕𝑃K

𝜕ℎ𝑖𝑝𝑛

]︃
, see Eq. (6.17)

5: switch ssw
6: case 'mat'

7: 𝑀 =

[︃
𝜕𝑃K

𝜕𝑚

]︃
, see Eq. (A.38)

8: end switch
9: case 'upd_hist'

◁ Additional matrix forms for history sensitivity update

10: 𝐴h =

[︃
𝜕ℎ𝑖𝑝

𝜕𝐹

]︃
and 𝐶h =

[︃
𝜕ℎ𝑖𝑝

𝜕ℎ𝑖𝑝𝑛

]︃
see Eq. (6.33)

11: switch ssw
12: case 'mat'

13: 𝑚h =

[︃
𝜕ℎ𝑖𝑝

𝜕𝑚

]︃
, see Eq. (6.38)

14: end switch
15: case 'obj_constr'

◁ Additional matrix forms for obj/constr sensitivity

16: 𝑎 =

[︂
𝜕𝜏

𝜕𝐹

]︂
and 𝐷h =

[︂
𝜕𝜏

𝜕ℎ𝑖𝑝𝑛

]︂
, see Eq. (6.49) and Eq. (6.46)

17: switch ssw
18: case 'mat'

19: 𝑀𝜏 =

[︂
𝜕𝜏

𝜕𝑚

]︂
, see Eq. (6.50)

20: end switch
21: end switch

Output: {𝑃K,𝐴,𝑞,𝑀,𝐴h,𝑚h,𝐶h,𝜏 ,𝑎,𝑀𝜏 ,𝐷}

Figure 6.3: Design sensitivity augmentations on stress projection level.
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6.5.4 Semi-analytical computations

In this section a semi-analytical approach is discussed in which parts of the necessary
sensitivity information is computed numerically by means of the finite difference method.
Strictly speaking, only parts of the matrix forms that represent partial design and history
derivatives on stress projection level are numerically determined. Therefore, the overall
framework for the computation of sensitivity information as explained previously on
element and global level still keeps its structure. For reasons of brevity, the presented
semi-analytical approach focuses only on geometric design parametrizations. However,
it can easily be adapted to any type of design parametrization. Although basically any
quantity that is an outcome of the stress projection algorithm can be derived numerically,
in this approach it is assumed that the consistent analytical tangent stiffness operator is
known, which also implies the knowledge of the partial derivatives of the internal history
variables w.r.t. the deformation, e.g. in form of the deformation gradient. Thus, the
explicit matrix forms representing the demanded partial derivatives that are numerically
obtained are 𝑞 and 𝐶h. Additionally, considering a stress measure depending on the
Kirchhoff stress tensor as objective or constraint function, the matrix 𝐷h can be obtained
numerically. Instead of computing the analytically derived matrix forms as shown in line 9
of Fig. 6.2, a local finite difference scheme is deployed for the numerical determination of
the demanded derivatives. In Fig. 6.4, the specific changes of the algorithm to incorporate
the semi-analytical approach are highlighted. Note that of course the computations of
the sensitivity information regarding the internal variables as shown in Fig. 6.3 in the
semi-analytical case becomes redundant. That is, the part of the algorithm on finite
element level sketched in Fig. 6.4 replaces lines 9,18 and 26 in Fig. 6.2. Note that only
the standard stress projection algorithm, cf. Fig. 4.3, has to be conducted.
The major advantages of the semi-analytical approach are on the one hand its imple-
mentation simplicity and on the other hand it offers the possibility to consider different
constitutive laws that describe micromechanical phenomena by means of local internal
variables, as in the elastoplasic model deployed in this work. However, it comes with
additional computational cost, as many evaluations on the lowest algorithmic level have to
be performed. At the end of the following section the analytical and the semi-analytical ap-
proaches are compared in terms of accuracy and performance considering the elastoplastic
constitutive model explained in Chap. 4.

6.6 Benchmarks

This section aims at verifying the accuracy of the presented variational approach of the
computation of elastoplastic design sensitivity information. For this, firstly the analytical
partial derivatives on stress projection level are compared with the solution of the numerical
finite difference method. Secondly, a benchmark example is chosen so as to verify the
analytical global response sensitivity accuracy. Finally, a constrained shape optimization
problem is conducted.
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Computation of element design sensitivities (semi-analytical)

1: function Element(tsw,ssw𝑋𝑖𝑒,𝑚,𝑢𝑖𝑒,H𝑛,𝑖𝑒)

2: Load {ℎ𝑛,𝑍𝑛} ← H𝑛,𝑖𝑒

. . .
9: {𝑃K,𝐴,ℎ𝑖𝑝} ← stress_projection(𝑚,𝐹 ,ℎ𝑖𝑝𝑛 )

9.1: for 𝑖ℎ = 1 : nhv
9.2: ℎ𝑖𝑝+

𝑛 [𝑖ℎ] = ℎ
𝑖𝑝
𝑛 [𝑖ℎ] + 𝜀

9.3: switch tsw
9.4: case 'res_sensi'

9.5: {𝑃K+} ← stress_projection(𝑚,𝐹 ,ℎ𝑖𝑝+
𝑛 )

9.6: 𝑞[𝑖ℎ] =
(︁
𝑃

K+ − 𝑃K
)︁
/𝜀

9.7: case 'update_history'
9.8: {ℎ𝑖𝑝+} ← stress_projection(𝑚,𝐹 ,ℎ𝑖𝑝+

𝑛 )
9.9: 𝐶h[𝑖ℎ] =

(︀
ℎ𝑖𝑝+ − ℎ𝑖𝑝

)︀
/𝜀

9.10: case 'obj_constr'
9.11: {𝜏 𝑖𝑝+} ← stress_projection(𝑚,𝐹 ,ℎ𝑖𝑝+

𝑛 )
9.12: 𝐷h[𝑖ℎ] =

(︀
𝜏 𝑖𝑝+ − 𝜏 𝑖𝑝

)︀
/𝜀

9.13: end switch
9.14: end for

. . .

Figure 6.4: Algorithmic changes on finite element level for semi-analytical approach.

Stress projection level

To test the derived partial design derivatives on stress projection level, a randomly chosen
deformation gradient that leads to an elastoplastic stress update is prescribed

𝐹test =

⎡⎣0.991 −0.019 0.000
0.026 1.084 0.000
0.400 −0.100 1.000

⎤⎦ . (6.51)

The values of the internal history variables are initialized to

𝑐p =
[︀
1.028 0.642 1.117 −0.043 0.032 −0.106

]︀𝑇 and 𝛼 = 0.142 (6.52)

and the constitutive parameters are the same as in the examples in Chap. 4. The
method of finite differences is used to verify the accuracy of the analytically derived
design sensitivities of the stress tensors 𝑃K and 𝜏 , as well as the internal history variables
ℎ = {𝑐p, 𝛼}. Therefore, the demanded partial derivatives of the mentioned quantities w.r.t.
the deformation gradient 𝐹 , the internal history variables of the prior load step and the
constitutive parameters are numerically approximated. These quantities correspond to the
matrices 𝐴, 𝐴h, 𝑎 and 𝑞, 𝐶h, 𝐷h, as well as 𝑀, 𝑚h, 𝑀𝜏 in Fig. 6.3, respectively. Fig. 6.5
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shows the relative error

𝑒rel𝑥 =
‖𝑥an − 𝑥num‖
‖𝑥num‖

(6.53)

between the analytical solution matrix 𝑥an and the corresponding numerical solution matrix
𝑥num obtained by a central finite difference scheme, for different perturbation values ranging
from 𝜀 ∈ [1×10−14, . . . , 1×10−1]. By examining each sub-figure individually, it can clearly
be observed that the smallest relative errors for all three quantities correspond to almost
the same perturbation value. That is, for the partial derivatives w.r.t. the deformation
gradient and the internal history variables, the best numerical results are obtained for
perturbation values between 𝜀 ≈ 1×10−6 and 𝜀 ≈ 1×10−4, while for the partial derivatives
w.r.t. the constitutive parameters best results correspond to perturbation values between
𝜀 ≈ 1× 10−4 and 𝜀 ≈ 1× 10−5. Below and above these values, the relative errors increase
and the numerical results become inaccurate. Note that the optimal perturbation size
might change with the variation of any model parameter, i.e. in most cases they are not
known in advance. This emphasizes the convenience of the proposed variational approach
for the analytical derivation, as the results are independent of the choice of numerical
parameters.

Global and element level

The accuracy of the global and element matrices representing different design sensitivities
is verified by means of the comparison with numerical results obtained utilizing a central
finite difference scheme. In this case, a benchmark example of a flat uniaxial tensile test
specimen is conducted and the partial derivatives w.r.t. geometric shape and constitutive
design are examined. The 200 mm long specimen has a width of 50 mm and a thickness of
2 mm and has a central hole with a 10 mm diameter. Due to symmetry, only one octant of
the geometry has to be modelled. In Fig. 6.6 the specimen B-Spline geometry model and
the finite element mesh with indicated symmetric boundary conditions are illustrated. In
total, 20 control points (CP) define the geometry, of which the ndv = 17 indicated by the
red circles are chosen as design variables, see also Tab. 6.1. Corresponding MATLAB code
for the construction of the geometry description and the finite element mesh, as well as the
corresponding design velocity matrix utilizing the NURBS Toolbox, is given in Fig. B.1
in App. B.1. In this benchmark example, a displacement of 3 mm is applied at the outer
edge of the specimen within 20 linear increasing steps. Subsequently, 60 % of the applied
displacement is released also within 20 linear steps, so as to construct a loading/unloading
scenario. The chosen initial constitutive parameters are 𝐾 = 54.17GPa, 𝐺 = 25GPa,
𝜎0 = 340MPa, 𝜎∞ = 480MPa, 𝑑 = 25.5, 𝐻 = 650MPa. The global quantities that are
tested are the global pseudoload and history sensitivity matrices 𝑃 and 𝑄, the global
sensitivity matrix 𝑆, as well as the gradient of the von Mises stresses ∇𝜎eq representing a
physical function. Note that it is not possible to directly test the history sensitivity matrix
within a finite difference scheme. Therefore, its values are indirectly computed by means
of Eq. (6.23). Rearranging this equation and inserting the finite difference approximations
of the pseudoload matrix and the sensitivity matrix, as well as the analytical stiffness
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Figure 6.5: Sensitivity verifications: Relative error on stress projection level. Partial
derivatives, (a) w.r.t. deformation gradient [𝐴, 𝐴h and 𝑎], (b) w.r.t. prior internal history
variables [𝑞, 𝐶h and 𝐷h], (c) w.r.t. constitutive parameters [𝑀, 𝑚h, 𝑀𝜏 ].

matrix leads to the following approximation of the history sensitivity matrix

𝑄fd = 𝐾 𝑆fd − 𝑃 fd. (6.54)

A central finite difference scheme is used and the respective relative errors are computed
following Eq. (6.53) and are plotted over the total 40 linear load steps in Fig. 6.7. It
can clearly be seen that the error increases drastically at load step 16. At this point the
necking phenomenon elevates and large plastic deformations occur. The clearly recognizable
increased error can be explained by the fact that the method of finite differences no longer
delivers adequate results in this region, since very small design changes have very large
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Figure 6.6: Uniaxial tensile test specimen: Initial design, (a) geometry model, (b) FE mesh
and boundary conditions.

effects on the structural behavior. Contrary, the accuracy of the analytical variational
approach is not to be doubted, as the error decreases after load step 16 and the sensitivity
information provided depends on the values of the prior load steps within the implicit time
integration scheme. That is, an error in the analytical approach would have increased over
time. Therefore, this emphasizes the superiority of the analytical variational approach as
it is numerically more efficient and delivers much more accurate and reliable sensitivity
information independent from the choice of numerical parameters.

Constrained shape optimization

In this section the shape of the uniaxial tensile test specimen represented by a B-Spline
geometry description, cf. Fig. 6.6, is optimized. The aim of the optimization is to increase
plastic strain localization in the central zone of the specimen, while limiting the stress
intensity in the end zone of the specimen. Therefore, the accumulative plastic strain
values in the central area of the specimen are collected into a vector 𝛼c and its length is
maximized. The central specimen zone is defined by all FE nodes located at 𝑦 ≥ 85mm.
Additionally, inequality constraints on the values of the equivalent von Mises stress are
chosen to eliminate any plastic deformations in the end zone, which contrary to the central
zone is defined by all FE nodes located at 𝑦 < 85mm. Furthermore, the central specimen
cross section area 𝐴cs must not be less than 10 mm2 and shall remain a regular rectangle.
For the structural analysis problem, in this case no unloading is considered and the number
of load steps is increased to 200 ensuring stability of the implicit structural mechanical
solution algorithm, as considerably higher plastic deformations can be expected. The
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Figure 6.7: Sensitivity verifications: Relative error on global level, (a) geometric shape
design, (b) constitutive design.

optimization problem reads

max 𝐽(𝑠) = ‖𝛼c(𝑠)‖22
s.t. 𝜎𝑘

eq ≤ 340MPa, 𝑘 = 1, . . . ,𝑛𝑘

𝐴cs ≥ 10mm2, 𝐴lin 𝑠 = 0 , 𝑠 𝑙 ≤ 𝑠 ≤ 𝑠𝑢,

(6.55)

with appropriate lower and upper bounds on the chosen design variables, given in Tab. 6.1.
The matrix 𝐴lin represents a set of linear equality constraints to ensure the rectangular
cross section shape, i.e. to ensure 9𝑥 = 19𝑥, 10𝑥 =20𝑥, 19𝑧 = 20𝑧. The solution of
the problem is obtained utilizing the SQP algorithm provided by the MATLAB function
fmincon. The two solution methods developed in this work, i.e. the analytical and the
semi-analytical approach, are employed and the results are compared in terms of accuracy
and computational efficiency. Note that for the semi-analytical approach a central finite
difference scheme with a perturbation size of 1 × 10−6 is used. The resulting optimal
geometry and the corresponding FE mesh are illustrated in Fig. 6.8. The history of the
objective function values are plotted in Fig. 6.9(a). Note that the objective function values
are plotted negatively as the maximization problem is transformed to a minimization
problem by inverting the sign of the scalar objective function. Providing gradient infor-
mation based on the semi-analytical approach obviously results in less accuracy, which
becomes clear by comparing the number of iterations needed to find the optimum. Using
the semi-analytical approach, 25 iterations are necessary to finally reach convergence,
while in the analytical approach only 9 iterations are necessary. In total, the analytical
approach has been ∼ 2.5 times faster in terms of measured CPU time. Thus, it is obvious
that the analytical approach is numerically much more efficient than the semi-analytical
approach and additionally provides most accurate results. However, the semi-analytical
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approach does not require deep knowledge on the underlying mechanical model and can
easily be implemented. It also delivers reliable results, whereby particular attention must
be paid to the perturbation size and the type of finite difference scheme. In some cases,
the forward and backward FDM might not be accurate enough and the optimization might
fail. The central finite difference scheme used in this benchmark example constitutes the
most accurate but also most time consuming FDM scheme. Furthermore, a good choice
for the perturbation size is generally not known in advance. Therefore, some studies are
necessary in advance.
In Tab. 6.1, the optimal values of the chosen design variables are shown. Additionally, in
Fig. 6.9(b), the full initial and optimal geometries are plotted, as well as the accumulative
plastic strain contribution and the equivalent von Mises stress contribution. The optimal
design is characterized by a smooth notch in thickness direction and a tapered central
zone leading to a decreased cross section area. Both results in triggering localization
in the central zone of the specimen, which has been the goal of the shape optimization.
Additionally, it can be seen that the von Mises stress distribution in the end zone of the
optimized specimen has been drastically decreased compared to the initial design of the
specimen. The value of the objective function could be increased from 𝐽 init = 4.5184 to
𝐽opt = 9.04, which is a relative change of ∼ 100%. Additionally, the cross section area has
a value of 𝐴cs = 10mm, which intuitively makes sense from an engineering point of view,
as the highest stresses can be expected for the lowest possible area. The chosen stress
constraints on the von Mises stresses at the FE nodes in the end zone of the specimen have
entirely been fulfilled and the constraint violation value could be decreased from 20 to 0.

Table 6.1: Uniaxial specimen optimization: Design variables.

DV No. CP No. Direction 𝑠𝑙 𝑠𝑢 𝑠init 𝑠opt

1 4 x 15 25 25 25

2 6 x 15 25 25 25

3 7 x 5 20 12.5 10

4 8 x 15 25 25 15

5 9 x 5 20 12.5 10

6 10 x 15 25 25 15

7 14 x 15 25 25 25

8 16 x 15 25 25 25

9 17 x 5 20 12.5 10

10 18 x 15 25 25 15

11 19 x 5 20 12.5 10

12 20 x 15 25 25 15

13 15 z 1 2 2 2

14 17 z 1 2 2 1

15 18 z 1 2 2 1

16 19 z 1 2 2 1

17 20 z 1 2 2 1
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Figure 6.8: Uniaxial specimen optimization: Optimal design, (a) geometry model, (b) FE
mesh and boundary conditions.
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6.7 Summary

The continuously derived design sensitivity information is embedded into the finite element
framework in this chapter. Therefore, the discrete design parametrization used within this
thesis is introduced and discrete design approximations are presented. From the important
equilibrium constraint in Eq. (6.23), the total response sensitivity matrix can be derived
that depends on the pseudoload and history sensitivity matrices constituting the discrete
versions of the pseudoload and history sensitivity operators. Specific matrix forms of all
demanded quantities are explicitly stated. Furthermore, the developed algorithm for the
computations of design sensitivity information consistent with the finite element method is
presented and pseudocode is provided at three levels, i.e. global, element and integration
point level. Firstly, the stress projection algorithm presented in Chap. 4 is augmented for
the computations of the demanded partial derivatives of stresses and history variables at
each integration point. Secondly, the computations of the element contributions of the
pseudoload and history sensitivity matrices are presented, as well as the computations
needed for the update of the history sensitivity information on finite element level. Finally,
the staggered computation procedure is shown consisting of the assemblage of the element
contributions and the computation of the total sensitivity matrix that is then used for
the evaluation of design sensitivities of any physical function, as well as the update of the
history sensitivities. All of the presented parts of the overall algorithm are verified by
comparison of the analytically obtained results with numerically obtained results within
specific benchmark examples.
Further, a semi-analytical approach is presented, in which the demanded partial derivatives
w.r.t. the internal history variables are gained numerically by means of the FDM. The
advantage of the semi-analytical approach is that it is valid for the computations of design
sensitivities for any constitutive law that uses local internal variables to capture dissipative
mechanisms within an implicit time integration scheme.
An academic benchmark example of a volume minimization of a uniaxial tensile test
specimen is presented and the solution using the analytical and semi-analytical approach are
compared in terms of accuracy and numerical cost. The results emphasize the advantages
of the variational design sensitivity approach for which comparatively high theoretical
effort is needed, which is paid back by highest accuracy and low computational cost.
Furthermore, the method does not rely on the adequate choice of numerical parameters
that might affect the results drastically.



Chapter 7

Optimal Specimen Design

In this chapter the presented gradient based optimization strategy is used to
improve the shape of the cruciform X0-specimen for biaxial experiments. Before
the shape optimization is conducted, the presented approach is used to identify
the constitutive parameters of the mechanical model to accurately describe the
behavior of the aluminium alloy AlMgSi1 (EN AW 6082-T6) that is used for the
experiments. This demands the solution of a first inverse problem, that is, a
parameter identification in which the elastoplastic constitutive parameters are
chosen as design variables and the global numerically determined deformation
response of a uniaxial tensile test is fitted to experimental data. Thereafter,
the geometric shape optimization is performed considering two different biaxial
loading scenarios. Numerical results of the optimization are presented and
compared to experimental results of the initial and optimized specimen shapes.
The experiments have been monitored by means of digital image correlation (DIC)
for the visualization of displacement and strain fields. Subsequently, a scanning
electron microscope (SEM) has been used to examine the fracture surfaces in
detail.
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7.1 Introduction

For the macroscopic description of the onset and evolution of damage in the material
behavior of ductile metals, adequate damage models have to be developed and calibrated
by means of experimental investigations. For instance, in the damage function in [36] that
is used to describe the onset of damage - similar to the yielding condition indicating onset
of plastic flow in elastoplasticity - two damage mode parameters 𝛼da and 𝛽da capture the
stress state dependence of the ductile damage behavior, viz.

𝑓da(𝜏𝜏𝜏) = 𝛼da 𝐼1 + 𝛽da
√︀
𝐽2 − 𝜎da

0 . (7.1)

Here, 𝜎da
0 is the initial damage threshold and 𝐼1 and 𝐽2 denote the first invariant and the

second deviatoric invariant of the Kirchhoff stress tensor, respectively. The damage mode
parameters are connected with damage mechanisms occurring on micro scale level, cf. e.g.
[36, 38, 39]. Additionally, the evolution of damage is described by means of material and
stress state dependent parameters 𝛼da, 𝛽

da
and 𝛾da

ḢHH
da

= �̇�

(︂
𝛼da

√
3

III + 𝛽
da

NNNda + 𝛾da MMMda

)︂
. (7.2)

Here, 𝜇 is the equivalent damage variable indicating the amount of damage and NNNda and
MMMda are normalized stress tensors. All these stress state dependent parameters are related
to the examined material and characterize its damage behavior. Due to the dependency
of the examined material, these parameters have to be identified by experiments.
In Fig. 7.1, a selection of widely used test specimen is shown that have been designed
for different purposes. The pictured uniaxial specimens have for instance been designed
for the characterization of elastoplastic deformation behavior at high stress states or for
the examination of shear stress states. The pictured biaxial specimens can be used in
different loading scenarios that can also be non-proportional. Conducting experiments with
differently designed specimen, specific material dependent parameters can be identified
that characterize the material behavior. The cruciform shaped X0-specimen developed
in [59] is made for biaxial testing and tailored for damage characterization. That is, the
experimental identification of the stress state dependent damage parameters mentioned
earlier. One mentionable advantage of the X0-specimen is that it can be applied to different
loading scenarios resulting in a wide range of different stress states. This is crucial for
the isolation of different damage mechanisms and for the identification of the connected
damage parameters, see also [62].
The goal of the shape optimization is to further improve the X0-specimen shape for two
different load cases producing tension and shear dominated stress states, respectively, so as
to obtain more distinct and preferably homogeneous stress states. The tension dominated
stress state, i.e. load case 1/1, is produced by equal tension loads at both in plane axis
of the specimen. The shear dominated stress state, i.e. load case -1/1, is produced by
inverting the loading direction of one axis. In a first attempt in this thesis, focus lies on
the stress triaxiality for which a high correlation to damage mechanisms can be observed.
The stress triaxiality is defined as the ratio of the mean stress 𝜎m and the von Mises
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Figure 7.1: Standard and X0-specimen geometries: (a) standard uniaxial (top) and biaxial
(bottom) specimen geometries [62], (b) X0-specimen geometry [61].

equivalent stress 𝜎eq, viz.

𝜂 =
𝜎m
𝜎eq

=
𝐼1

3
√
3 𝐽2

. (7.3)

With this definition, a posivive stress triaxiality means that the stress state is tension
dominated, while a negative stress triaxiality indicates a compression stress state. Shear
stress dominance correlates to a stress triaxiality around 𝜂 ≈ 0. It can be observed
that for high stress triaxialities the leading damage mechanism is nucleation, growth and
coalescence of voids. In contrast, for low or even negative stress triaxialities, formation
and evolution of micro-shear cracks trigger damage as leading mechanism, cf. Fig. 7.2 in
which schematic impressions on the local damage behavior and different micromechanical
damage mechanisms occurring at different stress triaxiality levels are sketched. With
increasing strains plastic deformations follow primarily elastic deformations, which at
further stress levels leads to onset and evolution of damage until final failure. Hereby, the
stress state and intensity triggers the leading damage mechanism. By maximization or
minimization of the stress triaxiality as the objective of the optimization problem, the stress
states and therefore the leading damage mechanisms can be isolated and experimentally
evaluated. After the solution of the optimization problems, experiments with the initial
and the two optimized X0-specimen geometries are conducted. Results obtained by digital
image correlation (DIC) during the experiment, as well as scanning electron microscopy
(SEM) of the fracture surfaces are compared to the simulation results. Note that for the
accurate simulation of real world experiments, it is important to calibrate the parameters
of the underlying constitutive model. To achieve this, in advance to the geometric shape
optimization of the X0-specimen, the elastoplastic constitutive parameters are identified
by solving an inverse curve fitting problem. That is, the global deformation behavior of
the simulation of a uniaxial tensile test is fitted to experimental data. The examined
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Figure 7.2: Local damage mechanisms: (a) local material behavior at different stress-strain
levels, (b) micromechanical damage mechanisms at different stress triaxiality levels [59].

material used is the aluminium alloy AlMgSi1 (EN AW 6082-T6).
Parts of the results of the shape optimization of the X0-specimen have already been
published in the authors contributions [103, 104].

7.2 Identification of constitutive parameters

For the studies with the X0-specimen, the aluminium alloy AlMgSi1 (EN AW 6082-T6)
is used. To ensure reasonable results of the simulation data within the optimization
process, the constitutive parameters that control the material behavior of the mechanical
model have to be calibrated. Therefore, a standard uniaxial tensile test of a flat specimen
is considered, cf. Fig. 7.3(a). Experimental data, in form of load-displacement curves
measured at specific Gauge points utilizing a DIC system, are taken as a reference to fit
the material behavior.

7.2.1 Structural analysis problem

The corresponding discrete FE model is pictured in Fig. 7.3(b). Here, also the location
of the Gauge point that is used for the displacement measurements is indicated. Note
that due to reasons of symmetry, only one octant of the specimen has to be modelled
incorporating symmetric boundary conditions. Thus, the displacement of the chosen
Gauge point 𝛥𝑢ref has to be doubled for the comparison with the experimental data.
The FE mesh consists of 1 539 hexahedral 𝐹 elements and thus, the discrete FE problem
counts 4 872 degrees of freedom. An initial guess of the constitutive parameters for the
examined aluminium alloy is taken from [59], in which parameters have been identified for
a similar alloy and a similar constitutive law. The parameters are summarized in Tab. 7.1.
A maximum displacement of 3.8 mm is prescribed at the edge within 200 linear steps. This
time discretization implies that the number of data points that are compared with the
experimental measurements is 𝑛dp = 200.
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Figure 7.3: Parameter identification: Uniaxial specimen, (a) technical drawing, (b) FE
mesh and symmetric boundary conditions ( 1

8
th geometry).

Table 7.1: Initial set of constitutive parameters.

𝐾 𝐺 𝜎0 𝜎∞ 𝑑 𝐻

57.5 GPa 26.54 GPa 320MPa 420MPa 30 650MPa

7.2.2 Inverse problem

The optimization problem is to minimize the error between the experimentally measured
and numerically simulated data. That is, the measured and simulated load-displacement
curves are fitted by adjusting the constitutive parameters. Thus, the inverse parameter
identification problem is defined as

min
𝑚

𝐽(𝑚) = ||𝑓R(𝑚)− 𝐹 R||22, s.t. 𝑚𝑖
𝑙 ≤ 𝑚𝑖 ≤ 𝑚𝑖

𝑢, (7.4)

with the vectors 𝐹 R containing the measured reaction forces and 𝑓R(𝑚) containing the
simulated reaction forces in longitudinal direction that depend on the set of constitutive
parameters. For a gradient based solution of this inverse problem, the sensitivity informa-
tion of the reaction forces w.r.t. constitutive parameters 𝑚 =

[︀
𝐾 𝐺 𝜎0 𝜎∞ 𝑑 𝐻

]︀
are demanded. Details on this can be found in [87]. Briefly, concerning to Eq. (4.90) the
partitioning of the total residual and its variation can be split into an internal and an
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external part, viz.

𝑅 =

[︂
𝑅int

𝑎

𝑅int
𝑏

]︂
− 𝜆

[︂
𝑅ext

𝑎

𝑅ext
𝑏

]︂
and 𝛿𝑅 =

[︂
𝛿𝑅int

𝑎

𝛿𝑅int
𝑏

]︂
− 𝜆

[︂
𝛿𝑅ext

𝑎

𝛿𝑅ext
𝑏

]︂
, (7.5)

for the corresponding load level represented by the scaling factor 𝜆. The demanded
reaction forces are stored in the external residual part corresponding to the known degrees
of freedom 𝑅ext

𝑏 , which is indicated by the index 𝑏. Considering an equilibrium point, i.e.
𝑅(𝑢,ℎ𝑛) = 0 , it is obvious that 𝑅int

𝑏 = 𝜆𝑅ext
𝑏 . Recalling Eq. (6.23) and Eq. (6.22) and

taking into account that 𝛿𝑢𝑏 = 0 , finally leads to the conditional equation

𝛿𝑅ext
𝑏 = [𝐾𝑏𝑎 𝑆𝑎 + 𝑃 𝑏 +𝑄𝑏] 𝛿𝑚. (7.6)

The solution of the inverse parameter identification problem is obtained by means of the
MATLAB solver lsqnonlin and the built-in trust-region-reflective algorithm. Details
on selected options and usage of lsqnonlin are given Fig. 7.4 in MATLAB code format,
where also the chosen values of the box constraints for the design variables are declared.
The function @Obj is a separate MATLAB routine that evaluates the objective function 𝐽
in Eq. (7.4), as well as its gradient for the actual set of constitutive parameters.

1 % Set initial point
2 K = 57.5; % [GPa]
3 G = 26.54; % [GPa]
4 sig0 = 0.32; % [GPa]
5 sig8 = 0.1; % [GPa]
6 d = 30; % [-]
7 H = 0.65; % [GPa]
8

9 m0 = [ K G sig0 sigd d H ];
10 % Set box constraints
11 % K G sig0 H sig8 d
12 Lb = [ 40 0.1 0.2 0.10 0.05 10.0 ];
13 Ub = [ 70 0.49 0.5 100 0.2 50.0 ];
14

15 % Set options for lsqnonlin
16 options = optimoptions('lsqnonlin',...
17 'Algorithm','trust-region-reflective',...
18 'FunctionTolerance',1e-6,...
19 'OptimalityTolerance',1e-6,...
20 'SpecifyObjectiveGradient',true,...
21 'TypicalX',x0);
22 % Invoke lsqnonlin
23 [m,normr,r,exit,out,lambda,jac] = lsqnonlin(@Obj,x0,Lb,Ub,options);

Figure 7.4: MATLAB code example: Call to lsqnonlin.
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7.2.3 Curve fitting results

The curve fitting process reached convergence after 22 iterations, i.e. the chosen tolerance
on the relative change of the value of the objective function compared to the prior iteration
has reached the chosen tolerance of 𝑡𝑜𝑙 = 1×10−6, cf. Fig. 7.4. The history of the objective
function value over the 22 iterations is plotted in Fig. 7.5(a). The rapid decrease of the
function value emphasizes the accuracy of the supplied gradient information. In Fig. 7.5(b)
the load-displacement curves are displayed for the initial guess, the first iteration and the
converged iteration. The constitutive parameters identified in the final converged iteration
are summarized in Tab. 7.2. The value of the objective function could be decreased
from 534.6 to 2.329 8, which is a relative improvement of ∼ 99.6%. With the identified
constitutive parameters at hand, the main shape optimization of the X0-specimen can be
conducted.

Table 7.2: Identified set of constitutive parameters.

𝐾 𝐺 𝜎0 𝜎∞ 𝑑 𝐻

61.4GPa 26.7GPa 277MPa 64.3MPa 23.7 292MPa
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Figure 7.5: Parameter identification: Results, (a) history of the objective function value,
(b) load-displacement diagrams in different iterations.

7.3 Shape optimization of the X0-specimen

The main task in this section is the application of the presented gradient based optimiza-
tion strategy to the shape improvement of the X0-specimen. In Sec. 7.2 the constitutive
parameters for the AlMgSi1 (EN AW 6082-T6) aluminium alloy have been identified within a
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preceding inverse curve fitting procedure. In the current section the geometric shape of the
X0-specimen is optimized considering two different loading scenarios. Firstly, the loading
conditions of both axes are equal 1/1, which leads to a tension dominated stress state in
the notched area of the specimen. In this case, the shape is optimized so as to maximize
the tension dominance, i.e. to increase the stress triaxiality in the controlled cross section
area. Secondly, the loading conditions of both axes are contrary -1/1, which leads to a
shear dominated stress state in the notched specimen area. In this case, optimizing the
specimen shape is to maximize the shear dominance, i.e. to decrease the stress triaxiality.
After presenting the structural analysis problems, the corresponding inverse shape opti-
mization problems are stated and the solution strategy is explained. Subsequently, the
resulting optimal specimen shapes are experimentally examined and measurement data is
compared to the simulation data.

7.3.1 Structural analysis problem

Fig. 7.6 illustrates the FE model, where symmetries in longitudinal, lateral and thickness
direction are exploited, i.e. one octant of the geometry is modelled. Thus, symmetric
boundary conditions are exploited at the symmetry planes. The FE mesh consists of
nel = 5376 𝐹 -finite elements and the total number of degrees of freedom is ndof = 21 375.
Predefined displacements are applied at nodes on the top and the right edges of the mesh.
The maximum values are 𝑢max

1/1 = 0.15mm and 𝑢max
-1/1 = ± 0.625mm for the corresponding

load case, respectively. The mesh is constructed utilizing Gmsh and the solution is
processed by means of MATLAB. The solution of the discrete boundary value problem 𝑢 is
used in a post processing step to evaluate the stress triaxiality, cf Eq. (7.3).
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Figure 7.6: X0-specimen: FE mesh and boundary conditions.

7.3.2 Inverse problems

The goal of the shape optimization is to gain a distinct and preferably homogeneous
stress triaxiality distribution in the notched specimen area, where it is assumed to fail.
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To achieve this, the stress triaxiality is to be maximized or minimized depending on the
respective load case (1/1 or -1/1), while keeping the cross section area constant. The
changes of the geometric shape have to fulfil certain producibility constraints at reasonable
costs, i.e. the fabrication process constrains the choice and limits of design variables. On
that account, the design variables are chosen as the inner (𝑅𝑖) and outer (𝑅𝑜) in plane
radii, as well as the radius of the notch in thickness direction (𝑅𝑡) and the penetration
depth (𝐷), cf. Fig 7.7. Thus, the discrete vector of design variables reads

𝑝 :=
[︀
𝑅𝑖 𝑅𝑜 𝑅𝑡 𝐷

]︀
, (7.7)

that is, the number of design variables is ndv = 4. As two different load scenarios are
considered, as already mentioned, two inverse shape optimization problems are stated.

Load case 1/1. In this load case, both axis are equally loaded, which leads to tension
dominance and a comparatively high stress triaxiality in the notched specimen area.
Thus, the optimization goal is the maximization of the stress triaxiality in this area. The
corresponding optimization problem reads

max
𝑝

𝐽 (𝑢(𝑝)) = ||𝜂cs (𝑢(𝑝)) ||

s.t. 𝑐eq(𝑝) = 0,

𝑐in(𝑝) ≤ 0,

𝑝𝑖l ≤ 𝑝𝑖 ≤ 𝑝𝑖u, 𝑖 = 1, . . . ndv,

(7.8)

with the box constraints

𝑝l =
[︀
1.0 1.0 1.0 1.0

]︀
, 𝑝u =

[︀
4.0 4.0 3.0 1.5

]︀
. (7.9)
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Figure 7.7: Design variables in the notched area.
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Load case -1/1. In contrast to the former load case, inverting the direction of the loading
of one axis, the stress state in the notched specimen area is shear dominated. In this
case, the stress triaxiality is near zero. Hence, the goal of the shape optimization is a
minimization of the stress triaxiality in the notched specimen area, which leads to the
following optimization problem

min
𝑝

𝐽(𝑢(𝑝)) = ||𝜂cs(𝑢(𝑝)) ||

s.t. 𝑐eq(𝑝) = 0,

𝑐in(𝑝) ≤ 0,

𝑝𝑖l ≤ 𝑝𝑖 ≤ 𝑝𝑖u, 𝑖 = 1, . . . ndv,

(7.10)

with the box constraints

𝑝l =
[︀
1.0 1.0 1.0 0.5

]︀
, 𝑝u =

[︀
5.5 5.5 4.0 1.5

]︀
. (7.11)

In both optimization problems, the objective function that is to be maximized or
minimized is chosen as the Euclidean norm of the vector 𝜂cs that collects the values of
the stress triaxiality at the FE nodes located at the cross section in the notched specimen
area. The equality and inequality constraints for both problems are identical. A constant
cross section area is ensured by the equality constraint

𝑐eq = 𝑙cs · 𝑡cs − 12mm2 = 0. (7.12)

Further, three inequality constraints are chosen for producibility reasons, as well as
to prevent destruction of the geometry and FE mesh during the optimization process.
Therefore, the inner and outer in plane radii are said to be greater than the radius in
thickness direction and the penetration depth shall remain smaller than the radius in
thickness direction. This leads to the three inequality constraints

𝑐in =

⎡⎣𝑅𝑡 −𝑅𝑖

𝑅𝑡 −𝑅𝑜

𝐷 −𝑅𝑡

⎤⎦ ≤ 0. (7.13)

For the gradient based solution of the two above shape optimization problems, the gradient
of the objective function has to be provided, which includes the computation of the design
velocity matrix connecting the chosen design variables with the FE mesh. As the FE
mesh is constructed by means of Gmsh, the design velocity matrix has to be computed
numerically. For this purpose, the finite difference method is conducted as it is simple to
implement and sufficiently accurate in this context. The MATLAB implementation utilizing
the built in system command that allows communication with third party software -
presuming the correct system setup - is illustrated in Fig. B.2 for the FE mesh of the
X0-specimen and the chosen design variables. Recalling Eq. (6.42) and Eq. (6.48), the
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1 %% Make sure gmsh is on PATH
2 a = system('gmsh --version');
3 switch a
4 case 0
5 fprintf('gmsh found \n')
6 otherwise
7 error('gmsh not found!')
8 end
9 %% Mesh geometry parameterized by design vector p

10 system(['gmsh '...
11 ' -setnumber Ri ',num2str(p(1),10),...
12 ' -setnumber Ro ',num2str(p(2),10),...
13 ' -setnumber Rt ',num2str(p(3),10),...
14 ' -setnumber D ',num2str(p(4),10),...
15 ' -format m -3 -o X0.m X0.geo']);
16 % Nodes stored in array POS
17 run('X0.m');
18 % Number degrees of freedom
19 ndof = size(POS,1)*size(POS,2);
20 % Store nodal coordinates in vector X
21 X = reshape(POS,ndof,1);
22

23 %% Compute design velocity matrix using forward finite differences
24 % Initialize Q
25 Q = zeros(ndof,length(p));
26

27 % Set perturbation value
28 e = sqrt(eps);
29 for i=1:length(p)
30 pp = x;
31 % perturb parameters
32 pp(i) = pp(i)+e;
33 system(['gmsh '...
34 ' -setnumber Ri ',num2str(pp(1),10),...
35 ' -setnumber Ro ',num2str(pp(2),10),...
36 ' -setnumber Rt ',num2str(pp(3),10),...
37 ' -setnumber d ',num2str(pp(4),10),...
38 ' -format m -3 -o X0p.m X0.geo']);
39 run(X0p.m)
40 Xp = reshape(POS,ndof,1);
41

42 Q(:,i) = (Xp-X)/e;
43 end

Figure 7.8: MATLAB code example: Numerical design velocity matrix.
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gradient of the stress triaxiality is straight forward and reads

𝛿𝜂 =
1

3𝜎eq

(︂
𝐼𝑇 − 2 𝜂

𝜎eq
dev 𝜏𝑇

)︂
𝛿𝜏

=
1

3𝜎eq

(︂
𝐼𝑇 − 2 𝜂

𝜎eq
dev 𝜏𝑇

)︂
[𝑎 (𝐺 𝑆𝑝 − 𝐺

𝑝
) +𝐷𝑍𝑛] 𝛿𝑝.

(7.14)

This, together with the partial derivative of the Euclidean vector norm finally leads to the
gradient of the objective function, viz.

𝛿𝐽 =
1

||𝜂cs ||
𝜂Tcs 𝛿𝜂cs, (7.15)

with Eq. (7.14) constituting the entries of the vector 𝛿𝜂cs at each of the chosen FE nodes
located at the cross section area. The gradient based solutions of both shape optimization
problems is obtained utilizing the MATLAB function fmincon and the built-in SQP
solution algorithm available through the Optimization Toolbox. However, for comparison,
the optimizations have also been conducted utilizing the built-in ’interior-point’ algorithm.
In both cases, the gradient information is provided utilizing the methods described in
earlier chapters. Note that for the solution of the maximization problem in Eq. (7.8), the
problem is transformed into a minimization problem by changing the sign of the objective
function. This results in

min
𝑝

𝐽 (𝑢(𝑝)) = −||𝜂cs (𝑢(𝑝)) || (7.16)

subject to the same constraints as in Eq. (7.9).

7.3.3 Optimization results

The solutions of the above stated shape optimization problems, cf. Eq. (7.8) and Eq. (7.10)
are given in Tab. 7.3. Both algorithms, the SQP and the interior-point algorithm converged
to almost the same optimal solutions. However, the SQP algorithm has been more efficient
in terms of function evaluations and overall computation time. The variants of optimal
shapes with round off values are illustrated in Fig. 7.10 for the respective maximization
and minimization problem. On this basis, the specimen geometries have been fabricated.
Corresponding to load case 1/1, the optimized geometry is denoted by V11 and analogously,
V-11 denotes the optimized geometry for load case -1/1.

Load case 1/1. V11 is characterized by a smaller notch radius in thickness direction
𝑅𝑡 = 1.0mm, whereas the penetration depth remains constant at 𝐷 = 1.0mm. The outer
in plane radius has been reduced to 𝑅𝑜 = 1.0mm and the inner in plane radius remains
constant at 𝑅𝑖 = 3.0mm. A more elevated stress triaxiality under 1/1-loading and a more
reduced zone with increased strains can be expected for V11 due to the reduced notch
radii, which indicates more brittle fracture behavior.
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1 % Set initial point
2 R1 = 3.0; R2 = 3.0; R3 = 2.0; d = 1.0;
3 p0 = [ R1 R2 R3 d ]';
4

5 % Box constraints
6 % R1 R2 R3 d
7 Lb = [ 1.0 1.0 0.5 0.5 ];
8 Ub = [ 5.5 5.5 4.0 1.5 ];
9

10 % Options for fmincon
11 options = optimoptions('fmincon',...
12 'Algorithm','sqp',... % or 'interior-point'
13 'OptimalityTolerance',1e-6,...
14 'ConstraintTolerance',1e-6,...
15 'SpecifyObjectiveGradient',true,...
16 'SpecifyConstraintGradient',true,...
17 'StepTolerance',1e-6);
18 % Invoke fmincon
19 [p,fval,exit,out,lambda,grad,hess] = fmincon(@Obj,p0,[],[],[],[], ...
20 Lb,Ub,@Constr,options);
21 %% Simultaneous computation of objective and constraint functions
22 % Initialize shared variables
23 xLast = []; obj_it = []; gobj_it = [];
24 c_it = []; gc_it = []; ceq_it = []; gceq_it = [];
25 function [y,dy] = Obj(x)
26 % Evaluate objective function at iteration it
27 if ~isequal(x,xLast) % Check if computation is necessary
28 [obj_it,gobj_it,c_it,gc_it,ceq_it,gceq_it] = cmp_objconstr(x);
29 xLast = x;
30 end
31 % Set output for objective function and gradient
32 y = obj_it;
33 dy = gobj_it;
34 end
35

36 function [c,ceq,gc,gceq] = Constr(x)
37 % Evaluate constraint functions at iteration it
38 if ~isequal(x,xLast) % Check if computation is necessary
39 [obj_it,gobj_it,c_it,gc_it,ceq_it,gceq_it] = cmp_objconstr(x);
40 xLast = x;
41 end
42 % Set output for constraint functions and gradients
43 c = c_it;
44 gc = gc_it;
45 ceq = ceq_it;
46 gceq = gceq_it;
47 end

Figure 7.9: MATLAB code example: Call to fmincon.
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Figure 7.10: Initial and optimized X0-specimen geometries: (a) initial geometry, (b)
optimized geometry V11 , (c) optimized geometry V-11 ,(d) initial X0-specimen photography,
(e) V11 photography, (d) V-11 photography.

Load case -1/1. In contrast, V-11 is characterized by a reduced penetration depth of
𝐷 = 0.5mm, which leads to a smaller width of the notched area of 4.0mm based on
the constant cross section of 12.0mm2, see Eq. (7.12). Additionally, the notch radius in
thickness direction 𝑅𝑡 = 3.0mm and the outer in plane radius 𝑅𝑜 = 4.0mm have been
enlarged, whereas the inner in plane radius remains constant at 𝑅𝑖 = 3.0mm. Hence, it
can be expected that for V-11 zones with elevated strain increase, i.e. it is likely to observe
more ductile behavior. Consequently, under 1/1-loading a reduced stress triaxiality can
be expected for V-11.

In Tab. 7.3, the relative change of the objective function is given as

𝑐rel =
| 𝐽 init − 𝐽opt |
| 𝐽 init |

=
𝛥𝐽

| 𝐽init |
. (7.17)

Here, 𝐽* denotes the value of the objective function in the converged solution point.
Fig. 7.11 illustrates the history of the value of the objective function during the two
optimization processes. In both cases, the optimization procedure stopped after reaching
the relative step tolerance of 𝑡𝑜𝑙 = 1× 10−6. Details on stopping criteria can be found e.g.
in [134].
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Table 7.3: Initial and optimal values of the design variables.

𝑅𝑖 [mm] 𝑅𝑜 [mm] 𝑅𝑡 [mm] 𝐷 [mm] 𝑐rel [%]
Initial 3.000 3.000 2.000 1.000 -

SQP
V11 3.108 1.000 1.000 0.964 25.15
V-11 4.003 5.500 4.000 0.500 16.67

IP
V11 3.049 1.000 1.000 0.985 24.95
V-11 4.003 5.499 3.999 0.500 16.67
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Figure 7.11: Objective function value history: (a) load case 1/1, (b) load case -1/1.

The stress triaxiality distributions at the cross section of the notched specimen area are
displayed in Fig. 7.12 at the end of the simulations for all three geometries and both load
cases, respectively. Note that consequently in Fig. 7.12(b) and Fig. 7.12(e) the objective
quantity 𝜂 on the optimized geometry corresponding to the respective load case are shown;
further results serve as reference.
The optimized geometry V11, cf. Fig. 7.12(b) for 1/1-loading indicates stress triaxialities
up to 𝜂 ≈ 1.12 at the centre of the cross section, whereas the initial geometry in Fig. 7.12(a)
indicates values up to 𝜂 ≈ 0.8. Hence, the geometry changes, i.e. primarily the sharp notch
in thickness direction, lead to substantially higher tension dominated stress triaxialities. In
contrast, V-11 shown in Fig. 7.12(c) that has been optimized for -1/1-loading only reaches
values up to 𝜂 ≈ 0.68. Hence, the effect of the optimization process can be clearly seen for
load case 1/1.
As opposed to this, for −1/1 loading, see Fig. 7.12(c) to 7.12(e), the influence of the
optimization process is less obvious. Here, all three geometries show values ranging from
𝜂 ≈ 0.04 to 0.2 in a similar distribution throughout the cross section characterizing a shear
dominated stress state.
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(c) Basis (d) V11 (e) V-11

𝜂

Figure 7.12: Stress triaxiality distribution at the cross section area: (a)-(c) load case 1/1,
(d)-(f) load case -1/1.

For reference, in Fig. 7.13, also the values of the lode parameter 𝜔, which is defined by

𝜔 =
2 𝜏2 − 𝜏1 − 𝜏3

𝜏1 − 𝜏3
, with 𝜏1 ≤ 𝜏2 ≤ 𝜏3, (7.18)

where 𝜏𝑖 represent the principal Kirchhoff stress components, are illustrated at the cross
section area for all three geometries and both load cases, although it has not been involved
into the optimization process. However, besides the stress triaxiality it also characterizes
the stress state. That is, a value of 𝜔 = 0 indicates a shear dominated stress state, whereas
values of 𝜔 = −1 and 𝜔 = 1 indicate biaxial tension or compression, respectively. For
1/1-loading, the influence of shape optimization can clearly be noted, see Fig. 7.13(a)
to 7.13(c). Both, the initial geometry and V11 with a cross sectional area of 6.0mm by
2.0mm, show values between 𝜔 ≈ −0.2 and 𝜔 ≈ −1.0, whereas V-11 in Fig. 7.13 (c) with
a cross-sectional area of 4.0mm by 3.0mm shows values close to 𝜔 ≈ −1. Again, under
−1/1-loading the influence of the shape optimization is less significant and a homogeneous
distribution with mainly values around 𝜔 ≈ 0 can be observed for all three geometries.

(a) Basis (b) V11 (c) V-11

𝜔

(c) Basis (d) V11 (e) V-11

𝜔

Figure 7.13: Lode parameter distribution at the cross section area: (a)-(c) load case 1/1,
(d)-(f) load case -1/1.

7.4 Experimental investigations

For verification of the simulation results, the initial as well as the two optimized X0-
specimen geometries have been fabricated and examined experimentally. Each geometry
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has been tested three times for each load step. Hence, in total, 18 biaxial experiments
haven been performed. In the following, after introducing the experimental equipment,
the experimentally measured and simulated results are compared and discussed.

7.4.1 Experimental setup

The experiments have been performed with the biaxial test machine LFM-BIAX 20 kN
produced by Walter+Bai, Switzerland. The specimens are clamped in the four cylinder
heads and the machine reports the cylinder displacements and applied forces. For avoidance
of non-symmetric behavior during the experimental process, a stable displacement driven
procedure has been used as described in [59]. The relative nominal displacements 𝛥𝑢ref.𝑖 =
𝑢𝑖.1−𝑢𝑖.2 are introduced, with the nominal displacements 𝑢𝑖.𝑗 of the Gauge points indicated
by red dots in Fig. 7.14, as well as the averaged forces 𝐹𝑖 = 0.5 (𝐹𝑖.1 + 𝐹𝑖.2), that serve as
adequate displacement and force measures.

The displacement fields have been monitored at the specimen surfaces during the
experiments by means of a Q-400 digital image correlation (DIC) system provided by
Limess/Dantec. Therefore, four cameras have been used from the upside and two additional
cameras monitoring displacement fields from the downside of the specimen. The cameras
are equipped with 6.0 Mpx and 75mm lenses, respectively and monitor the movement of
randomly distributed small discrete points that have been applied to the specimen surfaces
before the experiments in form of a speckle pattern. Forces 𝐹𝑖.𝑗 and machine displacements
𝑢M𝑖.𝑗 have been transmitted to the DIC system and stored within the corresponding data
sets. Subsequently, by post processing the DIC data using ISTRA 4D, the nominal
displacements have been extracted.
After the biaxial experiments, macro photographs have been taken of the fractured
specimen and furthermore, the fracture surface has been examined in detail by means of
scanning electron microscopy (SEM). Therefore, the scanning electron microscope Zeiss
EVO LS15, located at the laboratory of the Institut für Werkstoffe des Bauwesens at the
Universität der Bundeswehr München has been used. The electrons used by SEM have
a wave length of approximately 0.008 nm compared to visible light with a wave length
between approximately 400-800 nm in a light microscope. This allows magnifications of

Figure 7.14: Notation of experimental technique [61].



108 Chapter 7 Optimal Specimen Design

surfaces up to 1 000 000 x. Further details on the experimental techniques can be found in
[61]. Visual impressions of the experimental equipment are given in Fig. 7.15.

(a) (b) (c)

(d) (e) (f)

Figure 7.15: Experimental equipment: (a) biaxial testing machine, (b) clamped specimen
(bottom view), (c) camera positioning, (d) clamped specimen (top view), (e) DIC system,
(f) Scanning Electron Microscope.

7.4.2 Results and comparison

Next, the experimental results are presented and compared with the results of the sim-
ulations with focus on the global force-displacement response, as well as on the local
deformation and fracture behavior.

Forces and displacements

In Fig. 7.16 the numerically (sim) and experimentally (exp) obtained force-displacement
curves for 1/1-loading (a) and -1/1-loading (b) are displayed. Note that the relative nominal
displacements of the numerical simulations have been extracted at the corresponding nodes
of the FE mesh matching the Gauge points of the experimental measurements and simply
doubled due to symmetry.
Within the elastic region the influence of the geometry changes can clearly be observed in
both loading scenarios. V11 shows the stiffest response due to the sharper notch radius
in thickness direction with 𝑅𝑡 = 1.0mm that causes a relatively small region of elevated
elastic deformations. Contrary, V-11 shows the softest response caused by a radius in
thickness direction of 𝑅𝑡 = 1.0mm and a reduced penetration depth of 𝐷 = 0.5mm. As
expected, the response of the initial geometry is located in between the two optimized
geometries. This effect is obvious for 1/1-loading and also present for -1/1-loading, although
less pronounced. Overall, a good agreement can be observed of the simulated and the
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Figure 7.16: X0-specimen: Load vs. displacements, (a) load case 1/1, (b) load case -1/1.

experimentally measured forces and displacements in the elastic region.
In the inelastic region, the behavior is reasonably predicted, considering the fact that the
constitutive parameters have been identified by fitting the global load-displacement curves
of a uniaxial tension test and keeping in mind that elastic-plastic material behavior based
on the von Mises yield criterion and isochoric inelastic deformations have been considered
in the simulations. Hence, material degradation due to damage has not been included in
the numerical model. For 1/1-loading it can be observed that the simulations of the initial
geometry and V-11 underestimate the load, whereas in the simulation of V11 the load is
overestimated. This can be seen as related to the increased stress triaxiality of V11 under
1/1-loading, see Fig. 7.12. In the -1/1 load case more elevated relative displacements
𝛥𝑢ref.𝑖 occur, see Fig. 7.16(b). For both, the tension as well as the compression axis, the
elastic behavior is estimated in good accordance. The inelastic behavior is estimated in
a reasonable way, while for the tension axis the loads are overestimated starting from a
relative displacement at about 𝛥𝑢ref.2 ≈ 0.4mm , see Fig. 7.16(b).

Deformation and fracture behavior

In the photos of the resulting fractured specimens shown in Fig. 7.17, a good impression
on the overall deformation behavior in the central specimen part can be gained. Here, a
hierarchy with respect to the macroscopic deformation behavior can clearly be observed.
That is, regardless of the load case, V-11 behaves most ductile and V11 behaves most
brittle. Note that the fracture occurs in different parallel notch pairs at the vertical or the
horizontal symmetry axis. This is due to natural material and experimental imperfections
and does not have any effect on the evaluations. By means of the DIC system, the
deformation behavior of the specimen surfaces can be monitored during the experiment.
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(a) Initial (1/1) (b) V11 (1/1) (c) V-11 (1/1)

(d) Initial (-1/1) (e) V11 (-1/1) (f) V-11 (-1/1)

Figure 7.17: Fractured specimens: All three geometries for the different load cases: (a)-(c)
load case 1/1, (d)-(e) load case -1/1.

In Fig. 7.18 the first principal strains for the three different geometries and both load cases
are displayed that have been reported by the DIC system just before fracture occurrence.
Significant influence of the geometry on the deformation and fracture behavior can be
observed. Especially, for V11 the sharp notch in thickness direction causes a reduced
area of elevated strains and consequently less overall deformation before fracture. That
is, the fracture behavior is more brittle. For comparison in Fig. 7.19 the corresponding
first principal strains obtained from the FE simulations are shown. The qualitative and
quantitative conformity can clearly be observed, especially for the 1/1 load case for all
three geometries. In the load case -1/1, the simulations of the initial geometry and V11

overestimate the strains at the notch surfaces compared to the measured DIC data.

After completing the experiments, the fracture surfaces have been analyzed by SEM.
The fracture surfaces have been examined at different positions at the boundary and
the centre of the fracture surface with three magnification factors, namely 500 x, 2 000 x
and 10 000 x. Representative pictures are given in Fig. 7.20 and Fig. 7.21 for 1/1-loading
and -1/1-loading, respectively. Here, in the upper row (a-c) a representative area at the
centre of the fracture surface is represented and the lower row reflects a representative
area towards the outer radius 𝑅𝑜.
For 1/1-loading the texture of all fracture surfaces point to nucleation, growth and coales-
cence of voids. This relates to the indicated tension dominated stress state, that is, a high
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(a) Initial (1/1) (b) V11 (1/1) (c) V-11 (1/1)

(d) Initial (-1/1) (e) V11 (-1/1) (f) V-11 (-1/1)

Figure 7.18: First principal strains reported by digital image correlation (DIC). All three
geometries for the different load cases: (a)-(c) load case 1/1, (d)-(e) load case -1/1.

stress triaxiality, cf. Fig. 7.12(a) to 7.12(c) and low Lode parameter, cf. Fig. 7.13(a) to
7.13(c). For V11 that has been optimized for the 1/1-load case, significantly higher stress
triaxialities have been predicted, which is reflected by the failure behavior, as Fig. 7.20(b)
indicates remarkably larger voids and a more brittle behavior compared to the initial
geometry, cf. Fig. 7.20(a), and V-11 , see Fig. 7.20(c). For all three geometries similar
stress triaxiality values of approximately 𝜂 = 0.4 have been predicted towards the outer
radius. The SEM images in Fig. 7.20(d) to 7.20(f) indicate the corresponding material
failure characterized by smaller voids. No significant differences between the different
geometries occur in this region. Further SEM images of the fracture surfaces are presented
in App. C.
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(a) Initial (1/1) (b) V11 (1/1) (c) V-11 (1/1)

(d) Initial (-1/1) (e) V11 (-1/1) (f) V-11 (-1/1)

Figure 7.19: First principal strains calculated numerically. All three geometries for the
different load cases: (a)-(c) load case 1/1, (d)-(e) load case -1/1.

(a) Initial (center) (b) V11 (center) (c) V-11 (center)

(d) Initial (boundary) (e) V11 (boundary) (f) V-11 (boundary)

Figure 7.20: Scanning electron microscopy images: Load case 1/1, (a) initial geometry,
central; (b) V11 geometry, central; (c) V-11 geometry, central; (d) initial geometry, boundary;
(e) V-11 geometry, boundary; (f) V-11 geometry, boundary.
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Under -1/1-loading the numerical simulations have predicted stress triaxialities of approxi-
mately 𝜂 = 0.05, cf. Fig. 7.12(c) to 7.12(e) and values of the Lode parameter mainly around
𝜔 = 0, cf. Fig. 7.13(c) to 7.13(e). This reflects a shear dominated stress state, which
corresponds to the SEM images of the fracture surfaces that indicate fracture behavior
initiated by micro shear cracks. However, the SEM images look rather homogeneous and
no significant differences can be observed between the three different geometries in all
three evaluation positions, cf. Fig. 7.21.

(a) Initial (center) (b) V11 (center) (c) V-11 (center)

(d) Initial (boundary) (e) V11 (boundary) (f) V-11 (boundary)

Figure 7.21: Scanning electron microscopy images: Load case -1/1, (a) initial geometry,
central; (b) V11 geometry, central; (c) V-11 geometry, central; (d) initial geometry, boundary;
(e) V11 geometry, boundary; (f) V-11 geometry, boundary.

7.5 Summary

This chapter discusses the shape optimization of the biaxially loaded X0-specimen with
the objective of distinct and preferably homogeneous stress states for two different load
cases so as to isolate corresponding damage mechanisms acting on the micro level. Under
1/1-loading both axis are under traction, which leads to a tension dominated stress state
and high stress triaxialites in the notched specimen area. In this case the leading damage
mechanism is nucleation, growth and coalescence of voids. Contrary, for -1/1-loading one
axis is under traction and the other under compression. This leads to a shear dominated
stress state and stress triaxialities around 𝜂 ≈ 0. In shear dominated stress states the
leading damage mechanism is evolution of micro shear cracks.
The shape optimization focuses on the maximization and minimization of the stress
triaxiality in the cross section of the specimen notches corresponding to the respective load
case. That is, for 1/1-loading the stress triaxiality has been maximized and for -1/1-loading
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it has been minimized. Therefore, the geometry is parametrized by three radii and one
penetration depth. The cross section is kept constant during the optimization process to
maintain preferably homogeneous stress states. The solutions of the optimization problems
have been obtained by means of gradient based methods utilizing the Matlab function
fmincon. Elastoplastic constitutive parameters are identified in advance by fitting the
global force-displacement curve of a uniaxial tensile test made of the aluminium alloy
AlMgSi1 (EN AW 6082-T6) used for the studies of the X0-specimen. The desired values
and gradients of objective and constraint functions for both, the shape optimization and
the parameter identification, are provided by the FEM based elastoplastic structural and
corresponding design sensitivity analysis explained in Chap. 4, 5 and 6. The objective
values of the shape optimization tasks could be improved by ∼ 25% for 1/1-loading and
∼ 17% for -1/1-loading. Due to the variational approach for the sensitivity analysis,
the optimization problems modelling the mechanical intention of distinct and preferably
homogeneous stress ensured limited numerical cost and reasonable computation times
and only a small number of iterations to convergence of the algorithms are needed. This
emphasizes the practicability and convenience of the chosen computational approach that
generates quantitative results that are not available by engineering intuition.
Furthermore, experiments with the initial X0-specimen geometry, as well as the two load
case dependent optimal geometries, V11 and V-11 , are conducted and evaluated. By
means of a DIC system, the global deformation behavior is tracked during the experiment.
Further, the fracture surfaces are examined by SEM. Simulation and experimental results
are compared and discussed. Overall, the experiments confirmed the numerically predicted
results. The geometry optimized for the 1/1 load case V11 shows the most brittle
deformation behavior in both load cases, while V-11 that is optimized for the -1/1 load case
shows the most ductile deformation behavior. The SEM pictures of the fracture surfaces
especially indicate the increased stress triaxiality of V11 under 1/1-loading. However, the
effect of the optimization on the fracture behavior is less obvious for the -1/1 load case.



Chapter 8

Concluding Summary and Outlook

This final chapter aims at summarizing the developments and findings acquired
within this thesis and drawing conclusions. All tackled topics are briefly reviewed
and the obtained results are highlighted. A concluding outlook gives hints and
inspirations for future research investigations.

Within this thesis, a complete structural optimization strategy based on variational
design sensitivity analysis considering finite elestoplastic deformations for geometric shape
and macroscopic constitutive design has been developed. In order to maintain the main
goal of this thesis, i.e. the shape optimization of the X0-specimen, the solution framework
of a general constrained optimization problem has been presented in Chap. 3. The choice
of the SQP algorithm in combination with the BFGS Hessian approximation constitutes a
state-of-the-art method and requires the computation of objective and constraint function
values, as well as their gradient information regarding the chosen design parametrization.
The theoretical and computational tasks consisting of the structural analysis and varia-
tional design sensitivity analysis (VDSA) have been clearly designated.
For preparation, in Chap. 4 the continuum thermomechanical framework has been sketched.
The deployed elastoplastic constitutive model suited for finite deformations has been ex-
plained and the solution of the structural mechanical problem utilizing the finite element
method has been outlined. Due to the assumption of plastic incompressibility and the
known locking effects occurring at utilizing low order finite elements, the so-called 𝐹 -
method has been chosen for remedy. Complete consistent linearizations have been provided
and the numerical model has been undertaken selected standard benchmarks.
Based on these preparations, the main topic, i.e. the VDSA of the elastoplastic model has
been focused in Chap. 5. Here, the fundamental idea of the variational approach based on
an enhanced viewpoint of kinematics has been sketched. The fundamental principles have
been applied to the spatially continuous model equations of the elastoplastic structural
analysis problem. The enhanced kinematic viewpoint allows for strict separation of geomet-
rical and physical properties within the natural framework of continuum mechanics. This
makes complex derivations significantly easier, as implicit dependencies can be elegantly
circumvented. The approach has first been used to derive the sensitivity information of
the elastoplastic structural response. Based on this, the approach to determine demanded
physical function sensitivities like stress measures has been presented. The VDSA requires
deep knowledge of the underlying governing equations, as well as numerical implementation
techniques, especially due to the non-linear elastoplastic material behavior.
The continuous sensitivity relations derived in Chap. 5 had to be implemented into
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the general finite element framework for the solution of the structural analysis problem.
Therefore, in Chap. 6, discrete design parametrizations based on CAGD-FEM coupling
have been introduced and the discrete approximations for the design variations have
been stated. Consistent with the 𝐹 -method, all necessary design sensitivity quantities
have been derived and formulated in a compact matrix notation. The computational
algorithms needed for embedding the additional sensitivity information into the finite
element framework have been explained and pseudo code examples were provided for each
algorithmic level. Additionally to the analytical approach, the possibility of computing
semi-analytical sensitivity information has been presented. Here, parts of the sensitivity
information corresponding to the deformation history can be obtained numerically by
means of the finite difference method. Both approaches are validated and compared by
means of numerical benchmarks.
In Chap. 7 the main shape optimization of the X0-specimen has been performed. Based on
the general structural optimization framework prepared in the previous chapters, two dif-
ferent kinds of inverse design problems were tackled. Before the actual shape optimization,
the constitutive parameters controlling the elastoplastic structural response had to be fitted
to the material used for the experiments. Therefore, an inverse parameter identification
fitting the global force-displacement response of a uniaxial tension test had to be solved
in advance. The main shape optimization with the aim to obtain distinct and preferably
homogeneous stress states in terms of the stress triaxiality has successfully been realized
subsequently. For the two different loading scenarios, i.e. 1/1-loading producing tensile
stress states and high stress triaxialities and -1/1-loading producing shear stress states
and low stress triaxialities, two different optimization problems have been stated. For the
1/1-load case the stress triaxiality in the notched specimen area was maximized, contrary,
for the -1/1-load case the stress triaxiality in that area was minimized. The two respective
optimal solutions V11 and V-11 that have been optimized for the corresponding load case
show improvements of ∼ 25% and ∼ 17% regarding the value of the objective functions
compared to the initial geometry. The accuracy of the numerically obtained optima have
been experimentally validated. The experiments with all three geometries for both loading
scenarios have been monitored by digital image correlation (DIC) and furthermore the
fracture surfaces have been examined by means of scanning electron microscopy (SEM) for
examination of the deformation and fracture behavior. Overall, the experimental results
lined up well with the numerical predictions. For V11 in both loading scenarios the most
brittle fracture behavior could be observed numerically and experimentally, while V-11
showed the most ductile response. However, in the -1/1 load case the numerical model
overestimates the stress response especially for the tension axis. Additionally, the compar-
ison of the principle strains obtained numerically and measured by the DIC shows better
similarities in the 1/1-load case. This is also reflected by the examination of the fracture
surfaces. For V11 , the SEM images show significantly larger and well-pronounced voids
in the 1/1-load case indicating the increased stress triaxiality due to the shape optimization.

In the context of optimal specimen shape design, the work at hand has proposed a
computationally efficient method for the solution of optimal geometric design considering
finite elastoplastic deformations. The obtained optimal geometries can be used to fur-
ther develop and calibrate complex constitutive models covering micromechanical effects
coupled to specific stress states. The developed method can also be used for parameter
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identification purposes and shape optimization of any elastoplastic structure. That is, it is
not limited to the special case of optimal specimen design. Linking to other structural
mechanical topics in the context of VDSA is very conceivable and could open a variety of
applications. For instance in [63] hyperelastic solid shell finite elements are used and the
idea of design exploration is formulated. Here, singular value decomposition is utilized
to explore the inner structure of the structural response sensitivity. This can be used
to identify major and minor influencing design parameters and could therefore be used
to calibrate the resolution of the optimization problem. In [88] the basic VDSA ideas
are applied to multiscale design. That is, the structural analysis problem considers the
geometric design of the microstructure. It could be shown that the VDSA could suc-
cessfully be applied within the FE2 method. Combination with topology optimization
approaches as e.g. proposed in e.g. [15, 145, 188] have also proven to be promising. Here,
the basic idea of the extended finite element method (XFEM) is extended to the so-called
modified extended finite element method (YFEM). Utilizing topological derivatives, it is
possible that additionally to changing the shape, also voids or inclusions can occur based
on the values of defined level-set functions. That is, simultaneous topology and shape
changes can be considered. The class of materials is limited in this thesis to elastoplastic
metals. Extensions of the constitutive model can be challenging in view of the consistent
VDSA, however in [71, 73] a gradient-enhanced non-local damage model could successfully
be used within a similar structural optimization setup in the context of metal forming.
Due to the modular formulation of the algorithms in the VDSA framework, adaption
of new and established developments is uncomplicated. For instance, in [72, 100, 102],
external load scaling parameters have been chosen as design variables. However, modern
technologies offer ways of developing better methods in all of the tackled research fields.
The presented geometric shape parametrization based on an computer aided geometry
description is used for the optimization in this work. Calculations, i.e. the structural
and sensitivity analysis are performed based on a geometry approximation within the
finite element method. In the recent decade, the method of isogeometric analysis (IGA)
has gained popularity. Here, the underlying CAGD geometry is directly used for the
computational analysis as the underlying basis spline interpolation functions represent
the solution space of the underlying boundary value problem. Isogeometric sensitivity
analysis of elastoplastic structures based on VDSA could have the advantage of even more
efficiency and flexibility of the computational model as even with lower degrees of freedom
complex geometries are exactly represented. Re-meshing and the necessity to determine a
design velocity field within the iterative optimization procedure omits completely. Modern
manufacturers are able to directly process the CAGD data for production in high resolution.

In the sense of optimal specimen design this might lead to novel designing techniques
and explorations of innovative specimen and experimental design in general.
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Appendix A

Detailed Derivations and Important Variations

A.1 Consistent tangent operator

In this section, the linearization of the First Piola-Kirchhoff stress tensor is derived,
consistent with the implicit stress integration scheme described in Chap. 4. Due to the
type of strain energy function, cf. Eq. (4.46), the first Piola Kirchhoff stress tensor can
easily be split in to a volumetric and a deviatoric contribution

PPPK = PPPK
vol +PPPK

dev = 𝐽 𝑝FFF−T + sssFFF−T = 𝑝
+
FFF +sssFFF−T, (A.1)

with the cofactor of the deformation gradient
+
FFF= 𝐽 FFF−T. The linearization w.r.t. dis-

placements is then performed on each contribution separately. The volumetric part is
independent of the internal variables, due to the isochosric plastic flow. Thus, the partial
variation of the volumetric part reads

𝛿𝑢PPPK
vol = 𝛿𝑢𝑝

+
FFF +𝑝 𝛿𝑢

+
FFF . (A.2)

The partial variation of the hydrostatic pressure 𝑝 = 𝑈 ′(𝐽) is straight forward and reads

𝛿𝑢𝑝 = 𝑈 ′′(𝐽)
𝜕𝐽

𝜕FFF
: 𝛿𝑢FFF =

𝐾

2 𝐽

(︀
𝐽2 + 1

)︀
FFF−T : 𝛿𝑢FFF. (A.3)

The partial derivative of the cofactor of a tensor w.r.t. the tensor itself can be found e.g.
in [85] and its partial variation reads

𝛿𝑢
+
FFF= 𝐽

[︃(︀
FFF−T ⊗ FFF−T

)︀
+
(︀
FFF−T ⊗ FFF−T

)︀24T]︃
: 𝛿𝑢FFF. (A.4)

Inserting Eq. (A.3) and Eq. (A.4) into Eq. (A.2), finally leads to

𝛿𝑢PPPK
vol =

[︃
𝐾 𝐽2

(︀
FFF−T ⊗ FFF−T

)︀
− 𝐽 𝑝

(︀
1− 𝐽2

)︀ (︀
FFF−T ⊗ FFF−T

)︀24T]︃
: 𝛿𝑢FFF

= Avol : 𝛿𝑢FFF.

(A.5)

For the linearization of the deviatoric part, the evolution of the internal variables have to
be considered, i.e. the dependencies of the deviatoric stress w.r.t. the elastic trial state
has to be elaborated carefully. The partial variation of the deviatoric First Piola-Kirchhoff
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stress tensor reads

𝛿𝑢PPPK
dev = 𝛿𝑢sssFFF−T + sss 𝛿𝑢FFF−T. (A.6)

Here, the partial variation of the inverser transpose deformation gradient is given by

𝛿𝑢FFF−T =
𝜕FFF−T

𝜕FFF
: 𝛿𝑢FFF = −

(︀
FFF−T ⊗ FFF−T

)︀24T
: 𝛿𝑢FFF. (A.7)

The partial variation of the Kirchhoff stress deviator sss depends on the evolution of the
internal variables, viz.

𝛿𝑢sss =
𝜕sss
𝜕ssstr

: 𝛿𝑢ssstr +
𝜕sss
𝜕𝜇

𝛿𝑢𝜇+
𝜕sss
𝜕𝛥𝛾

𝛿𝑢𝛥𝛾 +
𝜕sss
𝜕nnn

: 𝛿𝑢nnn, (A.8)

with the partial derivatives

𝜕sss
𝜕ssstr

= Isym,
𝜕sss
𝜕𝜇

= −2𝛥𝛾 nnn,
𝜕sss
𝜕𝛥𝛾

= −2𝜇nnn,
𝜕sss
𝜕nnn

= −2𝜇𝛥𝛾 Isym (A.9)

and the partial variations of the elastic trial values

𝛿𝑢ssstr =
𝜕ssstr

𝜕̃︀bbbtr

e

: 𝛿𝑢̃︀bbbtr

e , (A.10)

𝛿𝑢𝜇 =
𝜕𝜇

𝜕̃︀bbbtr

e

: 𝛿𝑢̃︀bbbtr

e = 𝐺 Idev : 𝛿𝑢̃︀bbbtr

e =
1

3
𝐺 III : 𝛿𝑢̃︀bbbtr

e , (A.11)

𝛿𝑢nnn =
𝜕nnn
𝜕ssstr

: 𝛿𝑢ssstr =
1

‖ssstr ‖
(Isym − nnn⊗ nnn) : 𝛿𝑢ssstr , (A.12)

𝛿𝑢𝛥𝛾 =
𝜕𝛥𝛾

𝜕𝜇
𝛿𝑢𝜇+

𝜕𝛥𝛾

𝜕ssstr
: 𝛿𝑢ssstr =

2𝛥𝛾*

𝑓 ′(𝛥𝛾*)
𝛿𝑢𝜇−

nnn
𝑓 ′(𝛥𝛾*)

: 𝛿𝑢ssstr . (A.13)

Here, the partial derivatives of the plastic multiplier 𝛥𝛾 are obtained by linearization of
its update formula within the local Newton-Raphson method

𝛥𝛾𝑘+1 = 𝛥𝛾𝑘 − 𝑓(𝛥𝛾𝑘)

𝑓 ′(𝛥𝛾𝑘)
. (A.14)

As the value of the yield function in the solution point is zero (𝑓(𝛥𝛾*) = 0), the partial
variation w.r.t. any quantity (∙) simply reads

𝛿(∙)𝛥𝛾 = − 1

𝑓 ′(𝛥𝛾*)
𝛿(∙)𝑓(𝛥𝛾

*). (A.15)
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Inserting all these partial variations and derivations into Eq. (A.8) and keeping in mind
the identities

Idev : Isym = Isym : Idev = Idev , (A.16)
Idev : (nnn⊗ nnn) = Isym : (nnn⊗ nnn) = nnn⊗ nnn, (A.17)

the partial variation of the deviatoric Kirchhoff stress tensor reads

𝛿sss = 𝐺

[︂(︂
1− 2𝜇𝛥𝛾

‖ssstr ‖

)︂
Idev +

(︂
2𝜇

𝑓 ′
+

2𝜇𝛥𝛾

‖ssstr ‖

)︂
nnn⊗ nnn− 2

3
𝛥𝛾

(︂
1 +

2𝜇

𝑓 ′

)︂
III⊗ nnn

]︂
: 𝛿𝑢̃︀bbbtr

e .

(A.18)

With the introduction of the factors 𝛽0, 𝛽2 and 𝛽3

𝛽0 = 1− 2𝜇𝛥𝛾

‖ssstr ‖
, 𝛽1 = 1 +

2𝜇

𝑓 ′
, 𝛽2 = 𝛽1 − 𝛽0, (A.19)

the consistent deviatoric tangent operator can be written in compact form as

𝛿𝑢sss = 𝐺

[︂
𝛽0 Idev −

2

3
𝛥𝛾 𝛽1 III⊗ nnn + 𝛽2 nnn⊗ nnn

]︂
: 𝛿𝑢̃︀bbbtr

e = S : 𝛿𝑢̃︀bbbtr

e . (A.20)

Next, the partial variation of the isochoric left Cauchy-Green deformation tensor is needed.
Considering the definition of the trial state ̃︀bbbtr

e = ̃︀FFFcccp,𝑛 ̃︀FFFT
, its partial variation is given by

𝛿𝑢̃︀bbbtr

e =
𝜕̃︀bbbtr

e

𝜕̃︀FFF : 𝛿𝑢FFF =

[︂
4

I
21

* (cccp,𝑛 ̃︀FFFT
) + ̃︀FFFcccp,𝑛

4

I
12

T

]︂
: 𝛿𝑢̃︀FFF = B : 𝛿𝑢̃︀FFF, (A.21)

where the ischoric projection tensor of the deformation gradient can be derived to

𝛿𝑢̃︀FFF =
𝜕̃︀FFF
𝜕FFF

: 𝛿𝑢FFF = 𝐽− 1
3

[︂
4

I −1

3
FFF⊗ FFF−T

]︂
: 𝛿𝑢FFF = F : 𝛿𝑢FFF. (A.22)

Hence, it is possible to define a fourth order tensor B𝐹 given by

𝛿𝑢̃︀bbbtr

e = B : F : 𝛿𝑢FFF =

[︂
F

21

* (cccp,𝑛 ̃︀FFFT
) + ̃︀FFFcccp,𝑛 F

12

T

]︂
: 𝛿𝑢FFF = B𝐹 : 𝛿𝑢FFF. (A.23)

The deviatoric linearization of the First Piola-Kirchhoff stress tensor therefore reads

𝛿𝑢PPPK
dev =

[︃
(S : B𝐹 )

21

* FFF−T − sss
(︀
FFF−T ⊗ FFF−T

)︀24T]︃
: 𝛿𝑢FFF = Adev : 𝛿𝑢FFF. (A.24)
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Finally, the addition of the volumetric and deviatoric contributions results in the total
consistent tangent operator A

𝛿𝑢PPPK = [Avol + Adev ] : 𝛿𝑢FFF

=

[︃
𝐾 𝐽2 FFF−T ⊗ FFF−T − 𝜏𝜏𝜏

(︀
FFF−T ⊗ FFF−T

)︀24T
+ (S : B𝐹 )

21

* FFF−T

]︃
: 𝛿𝑢FFF

= A : 𝛿𝑢FFF.

(A.25)

A.2 Constitutive sensitivity operator

In this section, derivations of important quantities in the context of constitutive sensitivities
are presented. The starting point is Eq. (5.18) and the vectors of constitutive parameters
and their variations are given as

𝑚 :=
[︀
𝐾 𝐺 𝑘

]︀𝑇 and 𝛿𝑚 :=
[︀
𝛿𝐾 𝛿𝐺 𝛿𝑘

]︀𝑇
. (A.26)

The partial variation of the first Piola-Kirchhoff stress tensor is demanded and reads

𝛿𝑚PPPK = 𝐽 𝛿𝑚𝑝FFF−T + 𝛿𝑚sssFFF−T. (A.27)

The partial variation of the volumetric stress regarding the constitutive parameters is
straight forward and can be written as

𝛿𝑚𝑝 =
𝐽2 − 1

2 𝐽
𝛿𝐾. (A.28)

The partial derivative of the deviatoric Kirchhoff stress tensor is more complex, as the
evolution of plastic flow has to be considered. The partial variation w.r.t. the constitutive
parameters takes the form

𝛿𝑚sss = 𝛿𝑚(ssstr − 2𝜇𝛥𝛾 nnn)

= 𝛿𝑚ssstr − 2 𝛿𝑚𝜇𝛥𝛾 nnn− 2𝜇 𝛿𝑚𝛥𝛾 nnn− 2𝜇𝛥𝛾 𝛿𝑚nnn.
(A.29)

The trial deviatoric Kirchhoff stress as well as the the scaling factor 𝜇 and the flow direction
nnn only depend on the shear modulus and their partial variations can be identified to

𝛿𝑚ssstr = deṽ︀bbbtr

e 𝛿𝐺,

𝛿𝑚𝜇 =
𝜇

𝐺
𝛿𝐺,

𝛿𝑚nnn =
𝜕nnn
𝜕ssstr

: 𝛿𝑚ssstr =
1

‖ssstr ‖
(Idev − nnn⊗ nnn) : deṽ︀bbbtr

e 𝛿𝐺.

(A.30)

The partial variation of the plastic multiplier 𝛥𝛾 w.r.t. constitutive parameters can be
obtained following the same arguments shown in App. A.2, cf. Eq. (A.14) and Eq. (A.15),
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and reads

𝛿𝑚𝛥𝛾 = − 1

𝑓 ′

[︃(︂
nnn : deṽ︀bbbtr

e − 2𝛥𝛾
𝜇

𝐺

)︂
𝛿𝐺−

√︂
2

3
𝛿𝑘

]︃
. (A.31)

With this, the partial variation in Eq. (A.29) reads

𝛿𝑚sss =

[︂(︂
1− 2𝛥𝛾

𝜇

‖ssstr ‖

)︂
Idev +

(︂
2
𝜇

𝑓 ′
+ 2

𝜇

‖ssstr ‖
𝛥𝛾

)︂
nnn⊗ nnn

]︂
: deṽ︀bbbtr

e 𝛿𝐺

− 2𝛥𝛾
𝜇

𝐺

(︂
1 + 2

𝜇

𝑓 ′

)︂
nnn 𝛿𝐺− 2

√︂
2

3

𝜇

𝑓 ′
nnn 𝛿𝑘.

(A.32)

Utilizing the factors 𝛽0, 𝛽1 and 𝛽2, cf. Eq. (A.19), the second order tensor HHH𝑚 can be
defined as

𝛿𝑚sss =

[︂
(𝛽0Idev + 𝛽2nnn⊗ nnn) : dev (̃︀bbbtr

e )− 2𝛥𝛾
𝜇

𝐺
𝛽1nnn

]︂
𝛿𝐺− 2

√︂
2

3

𝜇

𝑓 ′
nnn 𝛿𝑘

= HHHm 𝛿𝐺+

√︂
2

3
(1− 𝛽1)nnn 𝛿𝑘.

(A.33)

In a discrete setting the discrete vector of constitutive parameters is introduced as

𝑚 :=
[︀
𝐾 𝐺 𝜎0 𝜎∞ 𝐻 𝑑

]︀𝑇
,

𝛿𝑚 :=
[︀
𝛿𝐾 𝛿𝐺 𝛿𝜎0 𝛿𝜎∞ 𝛿𝐻 𝛿𝑑

]︀𝑇
.

(A.34)

With the partial variations of the bulk and shear moduli, as well as the hardening function

𝛿𝐾 :=
𝜕𝐾

𝜕𝑚
𝛿𝑚 =

[︀
1 0 0 0 0 0

]︀
𝛿𝑚,

𝛿𝐺 :=
𝜕𝐺

𝜕𝑚
𝛿𝑚 =

[︀
0 1 0 0 0 0

]︀
𝛿𝑚,

𝛿𝑘 :=
𝜕𝑘

𝜕𝑚
𝛿𝑚 =

[︀
0 0 1 (1− exp(−𝑑𝛼)) 𝛼 𝛼𝜎∞ exp(−𝑑𝛼)

]︀
𝛿𝑚,

(A.35)

the third order array MMM connecting the first Piola Kirchhoff stress tensor with changes in
the discrete vector constitutive parameters of the underlying mechanical model can be
defined

𝛿𝑚𝑃
K =

[︃
𝐽2 − 1

2
FFF−T ⊗ 𝜕𝐾

𝜕𝑚
+HHHm FFF−T ⊗ 𝜕𝐺

𝜕𝑚
+

√︂
2

3
(1− 𝑒𝑡𝑎1)nnnFFF−T ⊗ 𝜕𝑘

𝜕𝑚

]︃
𝛿𝑚 = MMM 𝛿𝑚,

(A.36)
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of which, in conjunction with the conventions introduced in Sec. 2.1.2, see especially
Eq. (2.9), the matrix form can be found

𝛿𝑚𝑃
K =

[︃
𝜕𝑃K

𝜕𝑚

]︃
𝛿𝑚 =𝑀 𝛿𝑚, (A.37)

where the matrix 𝑀 has the following structure

𝑀 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑃K
11

𝜕𝐾

𝜕𝑃K
11

𝜕𝐺

𝜕𝑃K
11

𝜕𝜎0

𝜕𝑃K
11

𝜕𝜎∞

𝜕𝑃K
11

𝜕𝐻

𝜕𝑃K
11

𝜕𝑑
𝜕𝑃K

21

𝜕𝐾

𝜕𝑃K
21

𝜕𝐺
. . . . . .

𝜕𝑃K
21

𝜕𝑑
...

...
. . .

...

...
...

. . .
...

𝜕𝑃K
33

𝜕𝐾

𝜕𝑃K
33

𝜕𝐺
. . . . . .

𝜕𝑃K
33

𝜕𝑑

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.38)

A.3 History sensitivity

A.3.1 History sensitivity operator

In this section, the history sensitivity operator is derived. The starting point is Eq. (5.23),
i.e. the partial variation of the First Piola-Kirchhoff stress tensor w.r.t. the internal
history variables. Due to the 𝐽2 elastoplasticity, the volumetric stress is independent of
plastic flow, and thus the partial variation w.r.t. the internal variables consists solely on
the deviatoric stress contribution, viz.

𝛿ℎ𝑛
PPPK = 𝛿ℎ𝑛

sssFFF−T. (A.39)

Here, the partial variation of the Kirchhoff stress tensor can be written as

𝛿ℎ𝑛sss =
𝜕sss
𝜕ssstr

: 𝛿ℎ𝑛ssstr +
𝜕sss
𝜕𝜇

: 𝛿ℎ𝑛𝜇+
𝜕sss
𝜕𝛥𝛾

: 𝛿ℎ𝑛𝛥𝛾 +
𝜕sss
𝜕nnn

: 𝛿ℎ𝑛 nnn. (A.40)

Basically, the derivation follows the same arguments as the derivation of the consistent
elastoplastic tangent operator, cf. App. A.1. Thus, most of the partial derivatives are
already known, cf. Eqs. (A.9) to (A.13), and the partial variations of the elastic trial
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values read

𝛿ℎ𝑛
ssstr =

𝜕ssstr

𝜕̃︀bbbtr

e

: 𝛿ℎ𝑛
̃︀bbbtr

e = 𝐺 Idev : 𝛿ℎ𝑛
̃︀bbbtr

e , (A.41)

𝛿ℎ𝑛
𝜇 =

𝜕𝜇

𝜕̃︀bbbtr

e

: 𝛿ℎ𝑛
̃︀bbbtr

e = 𝐺 Idev : 𝛿ℎ𝑛
̃︀bbbtr

e =
1

3
𝐺 III : 𝛿ℎ𝑛

̃︀bbbtr

e , (A.42)

𝛿ℎ𝑛nnn =
𝜕nnn
𝜕ssstr

: 𝛿ℎ𝑛ssstr =
1

‖ssstr ‖
(Isym − nnn⊗ nnn) : 𝛿ℎ𝑛ssstr , (A.43)

𝛿ℎ𝑛𝛥𝛾 =
𝜕𝛥𝛾

𝜕𝜇
𝛿ℎ𝑛𝜇+

𝜕𝛥𝛾

𝜕ssstr
: 𝛿ℎ𝑛ssstr +

𝜕𝛥𝛾

𝜕𝛼𝑛
𝛿𝛼𝑛

=
2𝛥𝛾*

𝑓 ′(𝛥𝛾*)
𝛿ℎ𝑛

𝜇− nnn
𝑓 ′(𝛥𝛾*)

: 𝛿ℎ𝑛
ssstr +

√︂
2

3

𝑘′

𝑓 ′
𝛿𝛼𝑛.

(A.44)

Inserting these partial variations, as well as the known partial derivatives and scaling
factors 𝛽0, 𝛽1 and 𝛽2 into Eq. (A.40), one ends up with the following expression

𝛿ℎ𝑛
sss = 𝐺

[︂
𝛽0 Idev −

2

3
𝛥𝛾 𝛽1 III⊗ nnn + 𝛽2 nnn⊗ nnn

]︂
: 𝛿ℎ𝑛

̃︀bbbtr

e − 2

√︂
2

3
𝜇
𝑘′

𝑓 ′
nnn 𝛿𝛼𝑛

= S : 𝛿ℎ𝑛
̃︀bbbtr

e +

√︂
2

3
𝑘′ (1− 𝛽1)nnn 𝛿𝛼𝑛

(A.45)

for the partial history variation of the deviatoric Kirchhoff stress tensor. The partial
variation of the isochoric trial left Cauchy-Green tensor can further be identified to

𝛿ℎ𝑛
̃︀bbbtr

e =
𝜕
(︁̃︀FFFcccp,𝑛 ̃︀FFFT

)︁
𝜕cccp,𝑛

: 𝛿cccp,𝑛 =

(︂̃︀FFF Isym
21

* ̃︀FFFT
)︂

: 𝛿cccp,𝑛 = B𝑐 : 𝛿cccp,𝑛. (A.46)

Finally, Eq. (A.39) can be written in compact form, viz

𝛿ℎ𝑛
PPPK =

𝜕PPPK

𝜕ℎ𝑛
𝛿ℎ𝑛 =

𝜕PPPK

𝜕cccp,𝑛
: 𝛿cccp,𝑛 +

𝜕PPPK

𝜕𝛼𝑛
𝛿𝛼𝑛

= (S : B𝑐)
21

* FFF−T : 𝛿cccp,𝑛 +

√︂
2

3
𝑘′ (1− 𝛽1)nnnFFF−T 𝛿𝛼𝑛

= qqqc : cccp,𝑛 + qqq𝛼 𝛿𝛼𝑛.

(A.47)

A.3.2 Partial history sensitivities

For the update of the variations of the internal history variables, some important partial
derivatives and variations have to be derived. This section shows a step by step derivation
of the important quantities.
In Eq. (5.29) the partial derivatives of internal variables cccp and 𝛼 w.r.t. the deformation
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gradient are demanded. For the internal variable cccp the partial derivative takes the form

𝜕cccp
𝜕FFF

=
𝜕
(︁̃︀FFF−1 ̃︀bbbe

̃︀FFF−T
)︁

𝜕FFF
=
𝜕̃︀FFF−1

𝜕FFF

21

*
(︁̃︀bbbe

̃︀FFF−T
)︁
+ ̃︀FFF−1 𝜕̃︀bbbe

𝜕FFF

21

* ̃︀FFF−T
+ ̃︀FFF−1 ̃︀bbbe

𝜕̃︀FFF−T

𝜕FFF
.

(A.48)

Here, the the partial derivatives of the inverse and inverse transpose deformation gradient
w.r.t. the deformation gradient itself are lengthy, but straight forward and can be identified
to

𝜕̃︀FFF−1

𝜕FFF
= −

(︁̃︀FFF−1
⊗ ̃︀FFF−T

)︁23

T
: F and

𝜕̃︀FFF−T

𝜕FFF
= −

(︁̃︀FFF−T
⊗ ̃︀FFF−T

)︁24

T
: F, (A.49)

respectively, where the isochoric projection tensor for the deformation gradient F has been
used, cf. Eq. (A.22). The partial derivative of the isochoric elastic left Cauchy-Green
tensor takes the form

𝜕̃︀bbbe

𝜕FFF
=
𝜕̃︀bbbe

𝜕sss
:
𝜕sss
𝜕FFF

+
𝜕̃︀bbbe

𝜕𝜇
⊗ 𝜕𝜇

𝜕FFF
=

1

𝐺
Idev :

𝜕sss
𝜕FFF

+
1

𝐺
⊗ 𝜕𝜇

𝜕FFF
. (A.50)

The partial variations of the deviatoric Kirchhoff stress tensor and the scaling factor 𝜇 w.r.t.
the deformation gradient are already known from App. A.1, as the partial variations needed
for the derivation of the consistent tangent operator only depend on the displacements via
the deformation gradient. Thus, considering Eqs. (A.11), (A.20) and (A.21) one arrives at

𝜕̃︀bbbe

𝜕FFF
=

(︂
1

𝐺
S +

1

3
III⊗ III

)︂
: B𝐹 =: C. (A.51)

Consequently, Eq. (A.48) becomes

𝜕cccp
𝜕FFF

= ̃︀FFF−1
C

21

* ̃︀FFF−T
−

⎡⎣(︁̃︀FFF−1
⊗ ̃︀FFF−T

)︁23

T 21

*
(︁̃︀bbbe

̃︀FFF−T
)︁
+ ̃︀FFF−1 ̃︀bbbe

(︁̃︀FFF−T
⊗ ̃︀FFF−T

)︁24

T

⎤⎦ : F

=: A𝑐.

(A.52)

The partial derivative of the isochoric hardening variable 𝛼 w.r.t the deformation gradient
is comparatively simple and takes the form

𝜕𝛼

𝜕FFF
=

𝜕𝛼

𝜕𝛥𝛾

𝜕𝛥𝛾

𝜕FFF
=

√︂
2

3

𝜕𝛥𝛾

𝜕FFF
. (A.53)

Here, again, the partial derivative of the plastic multiplier increment is already known, cf.
Eq. (A.13). Hence, one obtains

𝜕𝛼

𝜕FFF
=

√︂
2

3

𝐺

𝑓 ′

(︂
2

3
𝛥𝛾 III− nnn

)︂
: B𝐹 =: AAA𝛼. (A.54)
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Partial history variations. The partial variations of the internal history variables w.r.t.
the history variables of the prior load step are required for the update of their variations.
The partial variation of the internal history variable cccp takes the form

𝛿ℎ𝑛
cccp =

𝜕cccp
𝜕̃︀bbbe

: 𝛿ℎ𝑛
̃︀bbbe. (A.55)

Here, The partial derivative of the internal variable cccp w.r.t. the isochoric elastic left
Cauchy-Green tensor can be resolved to

𝜕cccp
𝜕̃︀bbbe

= ̃︀FFF−1
I𝑠

21

* ̃︀FFF−T
=: B−1

𝑐 . (A.56)

The partial variation of the isochoric elastic left Cauchy-Green tensor can be expressed in
terms of the partial variations of the deviatoric Kirchhoff stress tensor sss and the scaling
factor 𝜇

𝛿ℎ𝑛
̃︀bbbe =

𝜕̃︀bbbe

𝜕sss
: 𝛿ℎ𝑛

sss +
𝜕̃︀bbbe

𝜕𝜇
𝛿ℎ𝑛

𝜇. (A.57)

Making use of Eq. (A.42), Eq. (A.45) and Eq. (A.46) yields

𝛿ℎ𝑛
̃︀bbbe =

1

𝐺

(︂
S +

1

3
III⊗ III

)︂
: B𝑐 : 𝛿cccp,𝑛 +

√︂
2

3
𝑘′ (1− 𝛽1)nnn 𝛿𝛼𝑛 (A.58)

and thus,

𝛿ℎ𝑛
cccp =

1

𝐺
B−1
𝑐 :

(︂
S +

1

3
III⊗ III

)︂
: B𝑐 : 𝛿cccp,𝑛 +

√︂
2

3
𝑘′ (1− 𝛽1)B−1

𝑐 : nnn 𝛿𝛼𝑛

= C𝑐 : 𝛿cccp,𝑛 +CCC𝑐 𝛿𝛼𝑛.

(A.59)

The partial history variation of the isochoric hardening variable 𝛼 takes the form

𝛿ℎ𝑛𝛼 =
𝜕𝛼

𝜕𝛼𝑛
: 𝛿𝛼𝑛 +

𝜕𝛼

𝜕𝛥𝛾
𝛿ℎ𝑛𝛥𝛾 = 𝛿𝛼𝑛 +

√︂
2

3
𝛿ℎ𝑛𝛥𝛾, (A.60)

which by means of Eq. (A.44) can be expressed as

𝛿ℎ𝑛𝛼 = 𝛿𝛼𝑛 +

√︂
2

3

[︃
2𝛥𝛾

𝑓 ′
𝛿ℎ𝑛𝜇−

1

𝑓 ′
nnn : 𝛿ℎ𝑛ssstr +

√︂
2

3

𝑘′

𝑓 ′
𝛿𝛼𝑛

]︃
. (A.61)

As the partial variations of the trial deviatoric Kirchhoff stress tensor ssstr and the scaling
factor 𝜇 are already known, cf. Eq. (A.41) and Eq. (A.42), one finally arrives at

𝛿ℎ𝑛𝛼 =

√︂
2

3

𝐺

𝑓 ′

(︂
2

3
𝛥𝛾 III− nnn

)︂
: B𝑐 : 𝛿cccp,𝑛 +

(︂
1 +

2

3

𝑘′

𝑓 ′

)︂
𝛿𝛼𝑛

= TTT𝑐 : 𝛿cccp,𝑛 + 𝑇𝛼 𝛿𝛼𝑛.

(A.62)
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Constitutive history variations. The partial variations of the internal history variables
w.r.t. the constitutive parameters are needed in the case of constitutive design sensitivity
analysis. Most of the necessary variations and derivatives are already known from the
previous sections. By means of Eq. (A.56), the constitutive variation of the internal
variable cccp takes the form

𝛿𝑚cccp =
𝜕cccp
𝜕̃︀bbbe

: 𝛿𝑚̃︀bbbe = B−1
𝑐 : 𝛿𝑚̃︀bbbe. (A.63)

Here, the constitutive variation of the elastic isochoric left Cauchy-Green tensor is given
by

𝛿𝑚̃︀bbbe =
𝜕̃︀bbbe

𝜕𝐺
𝛿𝑚𝐺+

𝜕̃︀bbbe

𝜕sss
: 𝛿𝑚sss +

𝜕̃︀bbbe

𝜕𝜇
𝛿𝑚𝜇

= − 1

𝐺2
(sss + 𝜇 III) 𝛿𝑚𝐺+

1

𝐺
Isym : 𝛿𝑚sss +

1

𝐺
III 𝛿𝑚𝜇

(A.64)

and can, by means of Eqs. (A.30) and (A.33), easily identified to

𝛿𝑚̃︀bbbe =
1

𝐺2
(𝐺HHH𝑚 − sss) 𝛿𝑚𝐺+

1

𝐺

√︂
2

3
(1− 𝛽1)nnn 𝛿𝑚𝑘. (A.65)

Finally, the resulting constitutive variation of the internal variable cccp reads

𝛿𝑚cccp =
1

𝐺2
B−1
𝑐 :

[︃
(𝐺HHH𝑚 − sss) 𝛿𝑚𝐺+𝐺

√︂
2

3
(1− 𝛽1)nnn 𝛿𝑚𝑘

]︃
. (A.66)

The derivation of the constitutive variation of the internal variable 𝛼 is even simpler and
takes the form

𝛿𝑚𝛼 =
𝜕𝛼

𝜕𝛥𝛾
𝛿𝑚𝛥𝛾. (A.67)

The only needed variation is already known from Eq. (A.31). After insertion and straight
forward transformations, the constitutive variation of the internal variable 𝛼 reads

𝛿𝑚𝛼 =

√︂
2

3

[︂
𝛥𝛾

𝐺
(𝛽1 − 1)− 1

𝑓 ′
nnn : deṽ︀bbbtr

e

]︂
𝛿𝑚𝐺+

2

3 𝑓 ′
𝛿𝑚𝑘. (A.68)

In a discrete setting, with the discrete vectors of constitutive parameters and their variations
and by means of Eq. (A.35), the discrete matrix forms of Eq. (A.66) and Eq. (A.68) can
be found and read

𝛿𝑚𝑐
p =

[︃
1

𝐺2
𝐵−1

𝑐

(︃
(𝐺𝐻𝑚 − 𝑠)⊗

𝜕𝐺

𝜕𝑚
+𝐺

√︂
2

3
(1− 𝛽1) 𝑛 ⊗

𝜕𝑘

𝜕𝑚

)︃]︃
𝛿𝑚

= 𝑚c 𝛿𝑚,

(A.69)
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𝛿𝑚𝛼 =

[︃√︂
2

3

(︂
𝛥𝛾

𝐺
(𝛽1 − 1)− 1

𝑓 ′
𝑛 : dev 𝑏tre

)︂
⊗ 𝜕𝐺

𝜕𝑚
+

2

3 𝑓 ′
⊗ 𝜕𝑘

𝜕𝑚

]︃
= 𝑚𝛼 𝛿𝑚.

(A.70)

Here, 𝐵−1
c is the symmetric matrix form of the fourth order tensor B−1

𝑐 following Eq. (2.12)
the symmetric matrix forms of the tensors 𝐻𝑚, 𝑠 , 𝑛 and dev 𝑏tre result in column matrices
corresponding to Eq. (2.10).
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Details on Numerical Implementation

B.1 Finite element discretization

This section briefly summarizes important basics regarding the discretization of continuous
quantities using finite elements considering all three space dimensions. Further details can
be found in the relevant literature, see e.g. [21, 31, 80, 172, 190, 199] among others. In
the context of the finite element method (FEM), a continuous domain 𝛺, as well as its
boundary 𝜕𝛺 is approximated by a mesh 𝛺ℎ consisting of a finite number nel of finite
elements 𝛺𝑒, viz.

𝛺 ≈ 𝛺ℎ =

nel⋃︁
𝑒=1

𝛺𝑒 and 𝜕𝛺 ≈ 𝜕𝛺ℎ =

nboun⋃︁
𝑒=1

𝜕𝛺𝑒, (B.1)

where nboun denotes the number of elements located at the boundary of 𝛺ℎ. Each finite
element consists of nnode finite element nodes. Further, let ndofe denote the number
of degrees of freedom per element, i.e. ndofe = 3 · nnode. Additionally, approximations
of field quantities constituting the solution of the underlying boundary value problem
have to be defined. Following the isoparametric concept, approximations of the geometric
domain, as well as the field quantities are carried out using the same shape functions. In
accordance with the Bubnov-Galerkin method, also the test functions are approximated
using the same shape functions. The approximations read

𝑋ℎ =

nnode∑︁
𝑖=1

𝑁𝑖(𝜉)𝑋𝑖, 𝑢
ℎ =

nnode∑︁
𝑖=1

𝑁𝑖(𝜉) 𝑢𝑖, 𝑣
ℎ =

nnode∑︁
𝑖=1

𝑁𝑖(𝜉) 𝑣 𝑖, ∈ Rnnode×1. (B.2)

Here, nnode denotes the number of nodes per element. The shape functions 𝑁𝑖 are defined
on a fixed parameter space 𝛺□ that is a regular hexahedron with coordinates 𝜉 = {𝜉, 𝜂, 𝜁}
and edge length of 2. The column vectors 𝑋𝑖, 𝑢𝑖, 𝑢𝑖 are the discrete values of the geometry,
displacements and test functions

𝑋𝑖 =
[︀
𝑋1

𝑖 𝑋2
𝑖 𝑋3

𝑖

]︀𝑇
, 𝑢𝑖 =

[︀
𝑢1𝑖 𝑢2𝑖 𝑢3𝑖

]︀𝑇
, 𝑣 𝑖 =

[︀
𝑣1𝑖 𝑣2𝑖 𝑣3𝑖

]︀𝑇
. (B.3)

Within the scope of this thesis, the finite elements require 𝐶0-continuity, i.e. simple
continuity of the displacement field across the element edges. 𝐶0 shape functions have to
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fulfil polynomial completeness, i.e. with 𝑖 ̸= 𝑗

𝑁𝑖(𝜉𝑖) = 1, 𝑁𝑖(𝜉𝑗) = 0,

nnode∑︁
𝑖

𝑁𝑖(𝜉) = 1, and
nnode∑︁

𝑖

𝑁𝑖,𝜉 = 0. (B.4)

Considering the simple 8-node hexahedron finite element, the linear shape functions of the
form

𝑁𝑖(𝜉) =
1

8
(1 + 𝜉𝑖 𝜉) (1 + 𝜂𝑖 𝜂) (1 + 𝜁𝑖 𝜁) (B.5)

fulfil these requirements and are used in this work. By means of a Jacobian transformation,
it is possible to determine the gradient of the shape functions regarding the discrete
referential coordinates 𝑋, viz.

𝐿𝑖 := Grad𝑁𝑖 = 𝐽
−𝑇

⎡⎣𝑁𝑖,𝜉

𝑁𝑖,𝜂

𝑁𝑖,𝜁

⎤⎦ =

⎡⎣𝑁𝑖,1

𝑁𝑖,2

𝑁𝑖,3

⎤⎦ , (B.6)

with the transformation (Jacobi) matrix

𝐽 =

⎡⎣𝑋1,𝜉 𝑋1,𝜂 𝑋1,𝜁

𝑋2,𝜉 𝑋2,𝜂 𝑋2,𝜁

𝑋3,𝜉 𝑋3,𝜂 𝑋3,𝜁

⎤⎦ =

⎡⎣𝑋1𝑁,𝜉 𝑋1𝑁,𝜂 𝑋1𝑁,𝜁

𝑋2𝑁,𝜉 𝑋2𝑁,𝜂 𝑋2𝑁,𝜁

𝑋3𝑁,𝜉 𝑋3𝑁,𝜂 𝑋3𝑁,𝜁

⎤⎦ . (B.7)

Consequently, Eq. (B.6) represents a discrete gradient operator regarding the referential
coordinates and one obtains the discrete gradients and divergence of the field quantities

Grad 𝑢ℎ =

nnode∑︁
𝑖=1

𝑢𝑖 𝐿
𝑇
𝑖 , Grad 𝑣ℎ =

nnode∑︁
𝑖=1

𝑣 𝑖 𝐿
𝑇
𝑖 ∈ R3×3,

Div 𝑢ℎ =

nnode∑︁
𝑖=1

𝐿𝑇𝑖 𝑢𝑖, Div 𝑣ℎ =

nnode∑︁
𝑖=1

𝐿𝑇𝑖 𝑣 𝑖 ∈ R1×1.

(B.8)

With the definition of the nodal gradient operator matrix 𝐺𝑖

𝐺𝑖 =
[︀
diag(𝑁𝑖,1) diag(𝑁𝑖,2) diag(𝑁𝑖,3)

]︀𝑇 ∈ R9×3, (B.9)

the gradients of vector valued field quantities can directly be expressed as a column matrix

Grad 𝑢ℎ =

nnode∑︁
𝑖=1

𝐺𝑖 𝑢𝑖, Grad 𝑣ℎ =

nnode∑︁
𝑖=1

𝐺𝑖 𝑣 𝑖 ∈ R9×1. (B.10)
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Further, defining the element coordinate, displacement and test function vectors

𝑋𝑒 =

⎡⎢⎢⎢⎣
𝑋1

𝑋2

...
𝑋nnode

⎤⎥⎥⎥⎦ , 𝑢𝑒 =
⎡⎢⎢⎢⎣
𝑢1
𝑢2
...

𝑢nnode

⎤⎥⎥⎥⎦ , 𝑣 𝑒 =
⎡⎢⎢⎢⎣
𝑣1
𝑣2
...

𝑣nnode

⎤⎥⎥⎥⎦ ∈ Rndofe×1 (B.11)

and the element interpolation matrix

𝑁 =
[︀
diag(𝑁1) diag(𝑁2) . . . diag(𝑁nnode)

]︀
∈ Rndofe×3, (B.12)

the summations in Eq. (B.2) can be replaced by matrix multiplications, viz.

𝑋ℎ = 𝑁 𝑋𝑒, 𝑢
ℎ = 𝑁 𝑢𝑒, 𝑣

ℎ = 𝑁 𝑣 𝑒. (B.13)

This can also be done for approximations of gradients by means of the element gradient
operator matrix 𝐺 of the form

𝐺 =
[︀
𝐺1 𝐺2 . . . 𝐺nnode

]︀𝑇 ∈ R9×ndofe, (B.14)

where ndofe = 3 · nnode is the number of degrees of freedom per element. Herewith,
Eq. (B.10) can easily be written as

Grad 𝑢ℎ = 𝐺𝑒 𝑢𝑒, Grad 𝑣ℎ = 𝐺𝑒 𝑣 𝑒 ∈ R9×1. (B.15)

The discrete weak form of equilibrium and its variations that have to be computed
for structural and sensitivity analysis must be integrated in each finite element. The
integration is done numerically by means of the Gauss quadrature. For any function 𝑓(𝑥)
the integration reads

ˆ
𝛺𝑒

𝑓(𝑋ℎ) d𝑉 =

ˆ
𝛺□

𝑓(𝑋ℎ(𝜉)) det 𝐽 d𝑉□ ≈
∑︁
𝑖=1

𝑓(𝜉𝑖,𝜂𝑖𝜁𝑖)𝑤𝑖 det 𝐽, (B.16)

where det 𝐽 is the determinant of the transformation matrix in Eq. (B.7) and 𝑤𝑖 are
weighting factors corresponding to the coordinates of the Gaussian integration points with
coordinates 𝜉.

B.2 MATLAB specifics

In this section, in view of replication of the results presented in this work, some implemen-
tation details specific to MATLAB are given.

Compilation of element routine. Within the finite element method, usually the routine
computing the element contributions of global system matrices has to be called most
frequently. Considering sensitivity analysis, even more evaluations on element level are
necessary. Thus, fast execution of the element routine is very convenient. MATLAB provides
the opportunity to compile standard .m files using the built in compiler to so-called .mex
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files. This can be done either using a script in batch mode, or using the graphical user
interface (GUI) provided by MATLAB. Routines compiled to .mex usually execute much
faster than standard MATLAB routines, as the just in time interpretation of the source code
is omitted. Additionally, .mex files can be used for compilation of C/C++ or Fortran
routines to be run in MATLAB. Details can e.g. be found in [52].

Parallel element evaluations. The MATLAB Parallel Computing Toolbox [179], among
others, provides the possibility to execute for loops in parallel. In this work, for this
purpose the parfor construct is utilized. Hereby, it is very important to pass arguments
in a sliced manner. That is, the parallel workers have to be served with one unique slice
of the argument based on the current value of the control variable. This ensures that
multiple workers cannot write into the same memory. However, utilizing parfor loops
broadcast variables, i.e. entire variables that are shared by all workers, should be avoided,
as each worker has to receive a copy of the variable, which leads to unnecessary memory
overhead and slow execution times.

Utilization of cell arrays. Slicing of variables can easily be done utilizing cell arrays. This
data type can contain any other type of data, including the cell array data type itself, in
each of the indexed data containers called cells. That is, different data types can be mixed,
or same data types of different dimension can be stored in just one variable. Depending on
the containing data, cell arrays can be homogeneous or heterogeneous. More information
can be found e.g. in [178].

Geometric modeling using the NURBS Toolbox. Using the NURBS Toolbox [137], ge-
ometry descriptions based on NURBS and B-Splines can easily be constructed and used
for mesh generation and manipulations within a shape optimization procedure. Hereby,
the essential functions are nrbmak and nrbeval. Providing control point coordinates
and corresponding knot vectors, nrbmak builds up the NURBS structure. Subsequently,
nrbeval evaluates corresponding mesh coordinates based on the chosen discretization.
An example is given in Fig. B.1 that creates the geometry and mesh shown in Fig. 6.6
of Chap. 6. Furthermore, the function nrbeval_der_p is used to evaluate the first
derivative of the mesh coordinates w.r.t. the control point coordinates, i.e. the design
velocity matrix as shown in Fig. B.1.
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1 % Control point coordinates
2 CP = [
3 0 25 0 25 0 25 12.5 25 12.5 25 0 25 0 25 0 25 12.5 25 12.5 25
4 0 0 40 40 90 60 90 90 100 100 0 0 40 40 90 60 90 90 100 100
5 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2
6 ]';
7 % Knot vectors
8 knt{1} = [0 0 1 1]; % x-direction
9 knt{2} = [0 0 0 0.5 0.5 1 1 1 ]; % y-direction

10 knt{3} = [0 0 1 1]; % z-direction
11 % Number of control points
12 % x-dir. y-dir. z-dir.
13 ncp{1} = 2; ncp{2} = 5; ncp{3} = 2;
14 % Number of elements
15 % x-dir. y-dir. z-dir.
16 nel{1} = 6; nel{2} = 30; nel{3} = 6;
17 % Utilizing the NURBS toolbox
18 coefs = reshape(CP',ndim,ncp{1},ncp{2},ncp{3});
19 coefs(4,:,:) = 1; % Weights: 1 --> B-Spline
20 %% NURBS volume
21 nrb = nrbmak(coefs,Knots);
22 % Convert the number of elements in number of points
23 subd = cell2mat(nel)+1; pnts = cell(1,3); order = nrb.order;
24 for i=1:3
25 pnts{i} = linspace(knt{i}(order(i)),knt{i}(end-order(i)+1),subd(i));
26 end
27 % Build FE mesh
28 p = nrbeval (nrb, pnts);
29 x1=squeeze(p(1,:,:)); x2=squeeze(p(2,:,:)); x3=squeeze(p(3,:,:));
30 coord = [x1(:) x2(:) x3(:)];
31 nelem = nel{1}*nel{2}*nel{3};
32 elem = zeros(nelem,8); % 8-node hexahedron elements
33 for i=1:nel{1}
34 for j=1:nel{2}
35 for k=1:nel{3}
36 ie = (k-1)*nel{1}*nel{2}+(j-1)*nel{1}+i;
37 elem(ie,1) = (j-1)*(nel{1}+1)+i +(nel{1}+1)*(nel{2}+1)*(k-1);
38 elem(ie,2)=(j-1)*(nel{1}+1)+i+1 +(nel{1}+1)*(nel{2}+1)*(k-1);
39 elem(ie,4)=j*(nel{1}+1)+i +(nel{1}+1)*(nel{2}+1)*(k-1);
40 elem(ie,3)=j*(nel{1}+1)+i+1 +(nel{1}+1)*(nel{2}+1)*(k-1);
41 elem(ie,5)=elem(ie,1)+(nel{1}+1)*(nel{2}+1) ;
42 elem(ie,6)=elem(ie,2)+(nel{1}+1)*(nel{2}+1) ;
43 elem(ie,7)=elem(ie,3)+(nel{1}+1)*(nel{2}+1) ;
44 elem(ie,8)=elem(ie,4)+(nel{1}+1)*(nel{2}+1) ;
45 end
46 end
47 end

Figure B.1: MATLAB code example: NURBS geometry and FE mesh construction.
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1 % Design velocity matrix
2 ndim=3;
3 pncp = prod([ncp{:}]); der = zeros(prod(subd),pncp);
4 for i=1:pncp
5 [der(:,i)] = nrbeval_der_p (nrb, i, pnts);
6 end
7 Dv=zeros(prod(subd)*ndim,ndim*pncp);
8 Dv(1:3:end,1:3:end) = der;
9 Dv(2:3:end,2:3:end) = der;

10 Dv(3:3:end,3:3:end) = der;

Figure B.2: MATLAB code example: Computation of design velocity matrix.



Appendix C

Scanning Electron Microscopy Evaluations

In Chap. 7 representative SEM images of the fracture surfaces of the initial and optimized
X0-specimen geometries are presented for a specific magnification factor. In this appendix
further evaluated SEM images at different magnification factors are presented to improve
the overall impression of the microscopic texture of the fracture surfaces. The images are
taken at magnification factors of 500 x, 2 000 x and 10 000 x and three different evaluation
areas located on the left (L), at the center (C), and on the right (R) of the fracture surfaces.
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(a) Full fracture surface

(b) L 500 x (c) C 500 x (d) R 500 x

(e) L 2 000 x (f) C 2000 x (g) R 2000 x

(h) L 10 000 x (i) C 10 000 x (j) R 10 000 x

Figure C.1: SEM images: Initial geometry, load case 1/1.
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(a) Full fracture surface

(b) L 500 x (c) C 500 x (d) R 500 x

(e) L 2 000 x (f) C 2000 x (g) R 2000 x

(h) L 10 000 x (i) C 10 000 x (j) R 10 000 x

Figure C.2: SEM images: Initial geometry, load case -1/1.
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(a) Full fracture surface

(b) L 500 x (c) C 500 x (d) R 500 x

(e) L 2 000 x (f) C 2000 x (g) R 2000 x

(h) L 10 000 x (i) C 10 000 x (j) R 10 000 x

Figure C.3: SEM images: V11 geometry, load case 1/1.
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(a) Full fracture surface

(b) L 500 x (c) C 500 x (d) R 500 x

(e) L 2 000 x (f) C 2000 x (g) R 2000 x

(h) L 10 000 x (i) C 10 000 x (j) R 10 000 x

Figure C.4: SEM images: V11 geometry, load case -1/1.
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(a) Full fracture surface

(b) L 500 x (c) C 500 x (d) R 500 x

(e) L 2 000 x (f) C 2000 x (g) R 2000 x

(h) L 10 000 x (i) C 10 000 x (j) R 10 000 x

Figure C.5: SEM images: V-11 geometry, load case 1/1.
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(a) Full fracture surface

(b) L 500 x (c) C 500 x (d) R 500 x

(e) L 2 000 x (f) C 2000 x (g) R 2000 x

(h) L 10 000 x (i) C 10 000 x (j) R 10 000 x

Figure C.6: SEM images: V-11 geometry, load case -1/1.
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