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Abstract 

In this work, approaches to the identification of high speed forming processes, whose simu-
lation requires models from different parts of physics are discussed. Particularly emphasis 
is laid on situations in which it is possible to break off the coupling and to profit from partial 
solutions for the design of the whole process. Such situations arise if it is possible to select 
relevant features that allow for a stable transfer of information between the different models. 
Creating situations in which a sequential approach to a coupled problem is favourably pos-
sible requires a profound process understanding. As an example, an electromagnetic form-
ing process is considered here. Approaches at identifying a coil geometry for electromag-
netic forming are discussed in case of an exemplary case involving the definition of a suitable 
feature-list and the study of several methods to tackle the electromagnetic subproblem, in-
cluding Nelder Mead Simplex Search, a combination of it with a neural network as surrogate 
model, and optimization via a neural network. These approaches are compared to each 
other, and quantitative results are given.   
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1 Introduction 

Many high speed forming processes are multi-physically coupled since the required momen-
tum is transferred to the workpiece by mechanisms different from the established mechanical 
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transfer of momentum. This is, e.g., the case in electromagnetic forming (EMF), a process 
that is governed by the interaction of a large deformation thermo-elasto-viscoplastic material 
with a transient electro-magnetic field under magneto-quasistatic conditions (e.g., Unger, 
2006). Although a precise prognosis of the process requires a fully coupled simulation, the 
identification of process designs that lead to a desired forming result can in some situations 
be split up in several steps: Just searching for a particular loading scenario that brings a 
mechanical structure in a desired state is usually not efficient, since the answer will lead in 
almost any case to a force distribution that cannot be provided by the process that is to be 
designed. But if instead a template for process forces that can be generated in a particular 
forming operation is at hand, this template can be filled by solving a purely mechanical 
inverse problem and then be used to identify the parameters related to those field that feed 
the required momentum into the material. In the case of EMF this means that the electro-
magnetic field has to be determined for a loading situation that can indeed be realized by 
that technique. Here it becomes obvious that a deep understanding of the process, e.g., in the 
form that can be provided by approximative analytic models, or just some experience-based 
process knowledge is essential to be able to provide such a template. In this work we propose 
the selection of some relevant features of the process force which can be stored in a simple 
data format (a vector of manageable size) and for which simple conditions of feasibility can 
be derived. This vector can then be identified by a purely mechanical inverse problem and 
after that be used as target function for a purely electromagnetic (or, in case of other coupled 
processes, non-mechanical) inverse problem. The proposed paradigm of an effective feature 
selection is a typical step if a machine learning process is prepared, see, e.g., Roy et al. 
(2013). It is required in the input layer of the learning scheme and acts like an input filter 
that turns data into process relevant information. In this work we let both machine learning 
processes and mathematical optimization profit from feature selection and will tackle the 
corresponding inverse problems.  

2 The Model Process 

We will now define a simple electromagnetic forming process for which we will present and 
explain the framework just sketched before. Interest in this contact free high speed forming 
process stems among others from its potential of extending classical quasi-static forming 
limits (e.g., Kiliclar et al., 2016). Moreover, EMF processes are often less expensive than 
other processes and EMF can often easily be integrated in other process steps (see Psyk et 
al., 2011). As process parameters have, however, to be adjusted carefully in order to achieve 
a desired forming result, the interest in finding good designs for EMF is obvious.  

2.1 The Process 

We consider forming situations, in which a metallic work piece is formed by a nearby tool 
coil (see Figure 1). A capacitor bank is discharged into the tool coil which triggers a pulsed 
magnetic field in its environment. The work piece consists of aluminium (conductivity 𝜎𝜎Al =
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 35 MS/m) and the coil of copper (conductivity 𝜎𝜎Cu =  58 MS/m). The radius of the work 
piece amounts in all processes we consider in this work to 150 mm and its thickness to 1 
mm. For the tool coil, three windings with a rectangular cross section are prescribed, which 
may vary in thickness and in the radii of the coils. The three inner and outer radii on some 
radius line and the height of the windings give 9 parameters that have to be identified during 
the design process (see below for the parameter ranges).      

 
Figure 1: Example configuration: three-dimensional model for validation with CST Mi-
crowave Studio (left), flux density (right) for 30 kA after 10 𝜇𝜇𝜇𝜇 computed by a fast ax-
isymmetric FE-Python simulation.  

 
Due to induction phenomena on the molecular level the fast magnetic field can only 

slowly diffuse into the good conducting material, which evokes a strong spatial gradient of 
the magnetic field. By Ampère’s law which yields under quasi-static conditions without 
Maxwell’s correction, the curl of the magnetic field equals the current density in the material. 
As that the radial e�⃗ ρ-component strongly dominates under the sheet metal, the corresponding 

eddy currents possess azimuthal e�⃗ φ-direction and amount approximately to  𝐽𝐽 = 1
𝜇𝜇0

∂𝐵𝐵𝜌𝜌
∂𝑧𝑧

 e�⃗ φ. 

Consequently, 𝑓𝑓 = 𝐽𝐽 × 𝐵𝐵�⃗ = 1
𝜇𝜇0

d𝐵𝐵𝜌𝜌
d𝑧𝑧

𝐵𝐵𝜌𝜌e�⃗ 𝑧𝑧 is a good approximation to the Lorentz force den-

sity, and integration over the thickness of the sheet metal yields the approximative equivalent 
pressure under the assumption of strong B-field localisation inside the work piece:  

𝑝𝑝 =  
1

2𝜇𝜇0
�𝐵𝐵𝜌𝜌,air

2 −  𝐵𝐵𝜌𝜌,sheet
2  � ≈  

𝐵𝐵𝜌𝜌,air
2

2𝜇𝜇0
≈ 0.4 ×  106

N
(Tm)2 ⋅ 𝐵𝐵𝜌𝜌,air

2    
(1) 

Hence, 1 T, sufficiently fast applied, gives simply speaking a forming pressure of 0.4 MPa 
and a flux density of 2 T correspondingly of 1.6 MPa. 

2.2 Physical Description and Simplifications 

As already indicated, relevant parameters of a complex thermo-mechanical model have to 
be represented by a certain number of features to be provided by the electromagnetic side. 
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While, in a full process identification, these features have to be determined by solving an 
inverse mechanical problem first, here we just set some values for the features that will be 
identified with suitable methods. Nevertheless, we will briefly sketch the mechanical model 
before we concentrate on the electromagnetic part of the process. On the mechanical side, 
energy is both elastically stored and dissipated. The split of both contributions depends at 
any instant on the state of deformation already assumed (in terms of stresses), the tempera-
ture, and – depending on the considered alloy – more or less on the forming velocity. As for 
metallic alloys plastic states usually correspond with large deformations, a large deformation 
elasto-viscoplastic material is relevant that has principally to account for the heating of the 
material. To be able to distinguish between possible and impossible forming procedures, a 
damage model is additionally be required. It can be implemented in a micromechanical mo-
tivated, thermodynamically consistent stressed based formulation as in Vladimirov et al. 
(2014) or less accurately via a phenomenological strain related formulation as in Taebi et al. 
(2011). Additionally, heat production and transfer have to be considered. 

As the lengths of the electromagnetic waves related to the conditions under which 
EMF processes are driven, the magneto-quasistatic approximation applies, and displacement 
currents can be neglected. This leads to the decoupled system Eq. 2 for the magnetic vector 
potential 𝐴𝐴 and the electric scalar potential 𝜙𝜙 with permeability 𝜇𝜇r𝜇𝜇0 and conductivity 𝜇𝜇0 if 
a Coulomb gauge 𝛻𝛻 ⋅ 𝐴𝐴 = 0 is imposed.   

1
𝜇𝜇0
𝛻𝛻 ×

1
𝜇𝜇r
𝛻𝛻 × 𝐴𝐴 + 𝜎𝜎

𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

= 𝜎𝜎𝛻𝛻𝜙𝜙 ,              𝛻𝛻 ∙ (𝜎𝜎𝛻𝛻𝜙𝜙) = 0 ,            𝛻𝛻 ⋅ 𝐴𝐴 = 0 
 
(2) 

The different physical fields are coupled in several ways. The most important phenom-
ena are the Lorentz force between the electromagnetic and the mechanical system, the posi-
tion of the work piece as a boundary condition to the electromagnetic system, thermal ma-
terial softening and the change of the electrical conductivity due to heating. In principle it is 
important to consider the movement of the work piece in the physical process. However, as 
known from previous analysis (e.g., Stiemer et al., 2006, or Unger et al., 2006) the sheet 
metal does not move significantly in the first 10 μs of the process and a significant part of 
the energy transfer into the workpiece happens in this phase. Consequently, an analysis of 
this geometrically simple phase of the forming process is already interesting for its design. 
Later in the forming process, its dynamic will mainly be determined by inertial forces. It is 
already meaningful to consider the spatial distribution of the magnetic field in just one in-
stant, say after 10 μs, since the shape of the electromagnetic field does only vary slightly and 
is basically only scaled. Hence, an optimization of the scaling can be done independently of 
the identification of a good spatial field distribution, since the first can always be adjusted 
in a second step by calibration of the triggering power in the capacitor bank.  

2.3 Feature Selection 

At first glance an optimum force profile determined by a purely mechanical simulation 
should provide good data for transferring relevant information from one subsystem to the 
other. However, such an approach contains severe problems. First, determining an optimum 



9th International Conference on High Speed Forming – 2020 
 
 

  

force profile is an ill posed problem, and possible solutions will usually lack sufficient reg-
ularity. Consequently, mathematical regularization is required. Then, a high dimensional 
target value as a regularized, ideal force distribution may fail to correspond to a feasible 
force distribution, which is to be determined in the electromagnetic simulation. Hence, to 
overcome these problems, we construct here a low dimensional feature vector to exchange 
optimality information from the mechanical to the electromagnetic system. The feature vec-
tor is chosen based on simple physical insights in the forming process. Alternatively, an 
automated determination via convolutional neural networks (CNN) is an option (see below).  

For the considered process, the metal plate is divided into a finite number of zones – 
below we will choose 5 just as an example. For each zone, the total force that should under 
optimum conditions be applied after 10 μs is determined. Such a distribution can be com-
puted with the help of the algorithms discussed below, which can also be applied to a me-
chanical problem. A further legitimation for the proposed method stems from the observa-
tion that a formed geometry does not depend on the spatial variation of forces on a small 
scale. Only averages over larger areas are important.                                                                   

3 Simulation with Different Accuracy and Cost  

We present now three different methods to simulate the system considered as example.  

3.1 Finite Element Simulation 

To be able to perform many evaluations of a chosen objective (or cost) function, a finite 
element (FE) method has been implemented in Python. Bilinear elements on quads (Q1) 
have been used in an axisymmetric situation. Due to the simple geometry, an adapted mesh-
ing parallel to the axes is possible leading to a fast simulation for data generation (ca. 1000 
simulations per hour for 2520 well distributed spatial degrees of freedom and 20 timesteps). 
In the adapted mesh, 7 points are introduced along the air gab between coil and sheet metal 
as well as between to coil windings or over the sheet. Time stepping is done by the backward 
Euler scheme with time steps of 0.5 μs and a GMRES solver is used for solving the resulting 
linear system. Stability with respect to the variation of discretization level and time step size 
has been studied. Forces are determined by integrating the Lorentz force den-

sity  𝑓𝑓 =  𝐽𝐽 × 𝐵𝐵�⃗  = 𝜎𝜎Al
𝜕𝜕�⃗�𝐴
𝜕𝜕𝜕𝜕

× �∇ × 𝐴𝐴�  obtained from the magnetic vector potential first over 
the thickness with the summed trapezoidal rule (thus obtaining the equivalent pressure) and 
later over the 5 radial zones. To be able to work in an axisymmetric context, the coil is 
replaced by a system of 3 rings with corresponding cross sections. Each ring is cut at an 
azimuthal position 𝜑𝜑 = 0 and one cut surface is virtually connected with the other surface 
of the preceding ring (or with a terminal connection), while the other is connected with the 
counterpart on the following ring (or with a terminal connection). A solution of the scalar 
potential equation is first determined from a guess of the potential current and taken as right-
hand side in the eddy current equation. Then it is rescaled so that the total current (sum of 
potential and eddy current) amounts to a prescribed value. The spatial distribution of the 
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potential current density is determined such that all crosscuts through any winding are on 
the same potential and the current density scales according to the changing resistance due to 
a different length of the current paths at different radial position (see Stiemer et al., 2006).   

3.2 Validation with CST Microwave Studio 

The finite element simulation has been validated by a highly accurate simulation with the 
commercial program CST Microwave studio from Dassault Systèmes. Using more than a 
million spatial degrees of freedom, a computing time of 10 h has been required to determine 
a reference solution. In Figure 2, the dominant component of the magnetic fields along the 
radial axis of the CST result and the result of the fast FE-simulation after 25 μs process time 
are compared to each other. The field is triggered such that the total current has the shape of 
a double exponential pulse with rise time of 10 μs,  fall time 100 μs , total duration of 100 
μs, and maximum of 30 kA. Later, however, for the inverse identification of the feature 
vector, a damped sinus has been chosen for the course of the current. All geometric param-
eters are chosen as given before apart from the airgap between tool coil and workpiece. It is 
1 mm in the identification computations and 2 mm in the validation process.   

 
Figure 2: Scaled magnetic flux density (left, below and in the sheet after 25 𝜇𝜇𝜇𝜇 triggered 
by a double exponential pulse), current distribution (right) for feature identification.   

Unfortunately, the values computed with the fast FE method remain by a factor of 2𝜋𝜋  
below the CST-values. The computed forces behave correspondingly. A possible cause of 
this problem may lie in the partition of potential- and eddy currents. It does, on the other 
hand, not affect the point of study in the present work: The main concern is an identification 
of a good spatial field distribution. Whenever such a distribution has been found, scaling via 
power supply (capacitor bank) is still possible. Slight spatial deviations in Figure 2 are prob-
ably due to the CST model being fully 3-dimensional. 

3.3 Neural Networks as Surrogate Models 

If a large amount of learning data is at disposal, difficult problems with no clear structure 
can be tackled with machine learning techniques. Among these artificial neural networks 
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belong to the most prominent methods. Authors like and Woo et al. (2018) or Lee et al. 
(2018) use them to identify parameters for high speed forming processes, Lee et al. (2018) 
examined even electromagnetic forming. In this work, a NN is used to learn the prediction 
of the FE model so that it can later be used as faster surrogate model in optimization. In 
addition, we have it also used to solve the feature identification problem itself, i.e., by iden-
tifying electromagnetic process parameters that lead to the desired features. 

4 Numerical Examples 

The previously discussed selected features are now specified by several values which in 
practical applications will be determined by an inverse problem for a mechanical simulation 
framework. Thus, those feature values are computed, which will lead to an optimum forming 
result. This important step is not contained in this paper. However, the corresponding inverse 
problems can be tackled with the same methods as applied here for the electromagnetic sys-
tem. The feature vector contains the following 5 areas, each corresponding to a part of the 
plate confined to a particular radial zone (see Table 1).  

For the 9 parameters to be identified to obtain the prescribed feature vector, the following 
restrictions are implemented: 

5 mm ≤ 𝑢𝑢0 < 𝑜𝑜0 < 𝑢𝑢1 < 𝑜𝑜1 < 𝑢𝑢2 < 𝑜𝑜2 ≤ 130 mm,  
5 mm ≤ 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2 ≤ 11 mm   

(3) 

Here (𝑢𝑢𝑘𝑘)  are the inner, (𝒐𝒐𝒌𝒌) the outer radii, and (𝒃𝒃𝒌𝒌) the heights of the three windings.  

4.1 Use of a Neural Networks as Surrogate Model 

A neural network consisting of an input layer of 9 cells (size of the parameter vector) and an 
output layer of 5 cells (size of the feature vector) has been trained with 10000 data points. 
The quality of the prognosis for unknown test data is depicted in Figure 3 (left) and com-
pared to that of the inverse problem (right) from Section 4.3. All NN employed in this work 
have been implemented by Keras and the TensorFlow library of Python 3. 

Radial Zone Z1 Z2 Z3 Z4 Z5 
Limiting radii 0 ≤ 𝜌𝜌 ≤ 30  

mm 
30 ≤ 𝜌𝜌 ≤ 60 

mm 
60 ≤ 𝜌𝜌 ≤ 90 

mm 
90 ≤ 𝜌𝜌 ≤ 120  

mm 
120 ≤ 𝜌𝜌 ≤ 150 

mm 
Required force 0 kN 5 kN 7 kN 2 kN 0 kN 

Table 1: Radial zones the total force transmitted to the workpiece is computed for. 
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Figure 3: Success of the predicted force in zone Z2 (surrogate model, left) and for the 
position of the inner winding (inverse problem, right).  

Between input and output layer 3 hidden layers with first 64 neurons and then 128 each have 
been placed. The activation function was always the rectified linear unit activation function 
(relu) and a mean squared error (mse) has been taken as cost function. The regression for 
computing the internal weights of the neurons was carried out with the Adam method. For 
about 66% of unknown parameters the prognosis was sufficiently usable. After that, the 
model was employed to compute the objective function in the Nelder Mead algorithm instead 
of the finite element model, which is much faster than using the FE method. The obtained 
results stayed stable when algorithmic parameters were slightly changed (see below). 

4.2 Optimization with Nelder Mead Method  

Within 100 iterations the Nelder Mead method arrived successfully close to the feature vec-
tor (0.00 kN, 4.97 kN, 7.00 kN, 2.00 kN, 0.00 kN) with a mean squared deviation of less 
than 0.0025 kN. The target function was simulated via finite element simulation as described 
in Section 4.1. The optimization took approximately half an hour.  

Replacing the finite element-based target function by a surrogate model according to 
Section 4.1 did not lead to good results. The optimization time was drastically reduced to 
some seconds. Although the mean squared error was reduced to a bit more than 1/630 of its 
starting value, no reasonable results could be obtained. In contrast to the FE target function, 
the Nelder Mead algorithm showed the tendency to choose parameters far away from rea-
sonable values. In an extended approach it is now planned to filter out non-compliant values 
and to work with combinations of a surrogate model and an exact FE-based model, such that 
the fraction of FE-based model evaluations increases continuously. With each FE- model 
evaluation, the surrogate model can be further trained such that its accuracy is also aug-
mented. A larger NN (128 neurons per layer instead of 64) did not change the findings. 
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4.3 Treating an Inverse Problem by a Neural Network 

Next, we treat the identification problem for the feature vector just by changing the role of 
the parameters and the feature vector. Consequently, instances of the latter are now consid-
ered as input data, while approximations to the corresponding parameters created by a model 
are the output. The aim is to obtain a scheme to determine a suitable parameter vector for a 
given feature vector, i.e., to solve an inverse problem to the given model. While such an 
inverse problem is generally not uniquely solvable, we may profit from a bias in the learning 
data: the data pairs provided as learning data stem from reasonable forward problems. When 
the neural network learns from these data, it is likely that the NN only produces reasonable 
solutions during the test- and application phase. In fact, we got an accuracy of 98% on an 
unknown training set (see Figure 3, right). Remarkably, with the feature extraction per-
formed here, the inverse problem (finding parameters that lead to the force distribution 
searched for) was easier to learn for the NN than the original problem. However, as for the 
direct surrogate model, compliance of the proposed parameters will have to be enforced in 
further developments.  

4.4 Automatic Feature Extraction 

Feature extraction is a common process in machine learning. It is usually not explicitly re-
ferred to in mathematical optimization, where the optimization problem is formally de-
scribed by constraints and an objective function. However, the effect of a feature extraction 
enters into a mathematical framework often via regularization of ill-posed problems. Here, 
we concentrate on feature extraction to render the approach to the parameter identification 
problem via separation into partial problems feasible. In contrast to a manual, experience-
based feature selection, this task could also be done automatically by a CNN (see, e.g., Al-
bawi et al., 2017). This can be used as an encoder in front of a fully connected multi-layered 
network. Complex data as, e.g., the pressure distribution over the surface of a workpiece, 
can be processed by the CNN and rendered into a meaningful low dimensional structure to 
be used as input to the full layers of the network. The other way round, a conjugated network 
can act as a decoder to restore complex data from the output of the fully connected layers.  

5 Conclusion and Perspectives 

In this paper approaches at dividing a coupled problem in a series of identification problems, 
which are easier to solve than the whole problem, are discussed. Some part of a comprehen-
sive proposal for EMF is implemented and tested. The method relies on project knowledge 
and a physical insight into it. This is the basis on which important features can be identified. 
To solve the identification problems, a fast FE method together with the Nelder Meat sim-
plex search performed well. Also, the application of the NN to the solution of the inverse 
problem worked surprisingly well. The next step to do will be the identification of a feature 
map for EMF by a mechanical simulation (e.g., LS-Dyna) and a validation of the complete 
identified parameter set in the end. Moreover, different designs of optimization algorithms 



9th International Conference on High Speed Forming – 2020 
 
 

  

will be tested. It seems to be of particular interest to reduce computing power by introducing 
surrogate models in a controlled way up to a reasonable point. This is related to impulse 
forming, since process knowledge will also play an important role in the design of such 
hybrid identification schemes. 

In the long term, it is expected that all kind of technological devices will rely on a 
digital twin, who already organizes parts of the design process before a device is produced. 
In such a context, optimization algorithm would play an important role, both in the classical 
form as well as in form of machine learning processes. The latter have become an alternative 
due to the high availability of large amounts of data. In engineering, however, data are much 
more expensive to obtain than in classical areas of data analytics. Here error-controlled sim-
ulation will play an important role as well as consequent data recycling, i.e., collecting of all 
types of data that occur. Design problems do not always require accurate models to identify 
good configurations. Accordingly, various types of models may coexist and may be used as 
different tools in a toolbox.     
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