

Prediction of adiabatic blanking process properties with temperature dependent fracture criterion

F. Schmitz, T. Rakshit, M. Hahn, T. Clausmeyer, A. E. Tekkaya

EICHSF21 INTERNATIONAL CONFERENCE ON HIGH SPEED FORMING Online 15.10.2021

Motivation / Vision

Challenges

Blanking of sheets

 Influence of sheared edge on process chain

Trimming of formed parts

- Inhomogeneous mechanical properties (hardening)
- Damage

Knowledge and prediction of adiabatic shear bands and their properties is necessary for process design

Local deformation rate in blanking

Conventional blanking

(0.1 m/s) (5.3 m/s) 60 60 *t*_{fracture} *t*_{fracture} Clearance Clearance 50 1/S 50 Strain rate in 1/s Strain rate in 10³ 1/S 40 40 Strain rate in 30 30 20 20 t_0 t_0 10 10 0 0 0.4 0.6 0.2 0.4 0.6 0.2 0.8 0.8 1 0 0 1 Position in mm Position in mm

High speed blanking

Institute of Forming Technology and Lightweight Components

Experiment

Known:

- Energy
- Velocity
- Affected area

Unknown:

- Local strain(rate)
- Temperature

Plasticity $\sigma_{\rm f}(\dot{\varepsilon},\varepsilon,T)$

Simulation

BC from Experiments

Fracture modeling

No in-situ meassurements of T and $\dot{\varepsilon}$ possible \leftarrow Post mortem determination

Material: 20MnB5

Material science

Technological aspects

Highly localized strains

5

- Dynamic recrystallization
- Local properties (hardness)

Material modeling

- JMatPro $(E(T), c_p(T), ...)$
- Flow curves $(T, \dot{\varepsilon}, \varepsilon)$

Modeling of adiabatic blanking in FORGE

Strain rate sensitivity

Shear band initialisation

Lightweight Components

Shear band initialisation

Source: CIRP Annals Schmitz et al.

Shear band properties

Lightweight Components

Shear band properties (Nanoindentation)

Temperature dependent fracture criterion

$$C_{\rm T}^{\rm Exp} \stackrel{!}{=} C_{\rm T}^{\rm Sim}(T) = \int_{0}^{\overline{\varepsilon}_{\rm p}} f(T) \frac{\sigma_1}{\overline{\sigma}} d\overline{\varepsilon}_{\rm p}$$

Conclusion

Excellent prediction of product properties needs

- Material characterization
- Process knowledge
- Advanced modeling

EICHSF21 INTERNATIONAL CONFERENCE ON HIGH SPEED FORMING

Thank you for your attention.

Deutsche Forschungsgesellschaft (German Research Foundation)

DFG Project: Effect of pre deformation on adiabatic blanking and their properties (edge crack sensitivity)

DFG number: TE 508/84-1