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Zusammenfassung 

Das „three-dimensional reference interaction site model“ (3D RISM) erlaubt es die 

Solvensverteilung, und somit die damit verbundenen thermodynamischen Eigenschaften, 

um ein gegebenes Solvat zu berechnen. Dies kann ein kleines, wirkstoffartiges Molekül sein 

oder ein Protein mit tausenden Atomen. Zusammen mit Methoden, wie Molekulardynamik- 

(MD) Simulationen und Kraftfeldern, ist es möglich, die Unterschiede in der freien Energie 

zwischen Konformeren, Molekülen und Komplexen in biologisch relevanten Systemen zu 

bestimmen. 

In dieser Arbeit werden durch Kombination von 3D RISM und MD Simulationen freie 

Energiedifferenzen zwischen zwei Konformeren eines Antikörpers berechnet und durch 

Tests mit verschiedenen Wassermodellen und Fehlerkorrekturen validiert. Allerdings 

entstehen durch starke strukturelle Fluktuationen während der Simulationen häufig große 

statistische Fehler, was die Anwendungsfelder solcher Methoden limitiert. 

Um das Problem abzuschwächen und um auf explizite Simulationen verzichten zu können, 

werden sogenannte „Localized Free Energies” (LFE) verwendet. Mit ihnen ist es möglich, 

die freie Energie auf ein atomweises Niveau herunter zu brechen, wo angenommen werden 

kann, dass besagte Fluktuationen einen geringeren Einfluss haben. Da eine solche 

Partitionierung rein virtuell ist, gibt es keinen experimentellen Weg, die LFEs zu validieren. 

Aus diesem Grund wird ihre Plausibilität durch Anwendung als Eingabeinformation für 

Methoden des maschinellen Lernens (ML) überprüft, indem der Verlust ihrer 

Vorhersagekraft durch ansteigende Störung der LFEs beobachtet wird. 

Mit bestätigter Plausibilität werden die LFEs beispielhaft auf eine Serie von Thrombin-

Inhibitoren angwendet, um ihr Potential in der Medikamentenentwicklung zu zeigen. 

Darüberhinaus wird der Einfluss von experimentellen Unsicherheiten in den 

Kristallstrukturen sowie die Limitationen des Ansatzes selbst untersucht. 

Von der gleichen formalen Basis, wie sie auch bei den LFEs genutzt wurde, lassen sich auch 

die so genannten „Free Energy Derivatives” (FED) sehr effizient bestimmen. Diese 

beschreiben auf atomarer Ebene, wie sich die freie Energie in Abhängigkeit von 

Kraftfeldparametern verändert. Die LFEs werden ebenfalls anhand eines Thrombin 

Komplexes näher beleuchtet und ihr prädiktiver Einsatz wird anhand eines auf Literaturdaten 

basierenden in-silico Experiments demonstriert.  



 

 

Abstract 

The three-dimensional reference interaction site model (3D RISM) allows to compute the 

solvent distribution, and therefore the associated thermodynamic properties, around a given 

solute. This can be a small, drug-like molecule or a protein with several thousand atoms. 

Combined with other tools like molecular dynamics (MD) simulations and force fields, it is 

possible to study the differences in free energy of conformations, molecules, and complexes 

in biological relevant systems.  

By combining 3D RISM with MD simulations, the free energy difference between two 

structural conformers of an antibody is calculated, and the results are verified by tests with 

different water models and error corrections. However, due to strong structural fluctuation 

during the simulations, the statistical errors are often high, which limits the field of 

applications of such studies.  

To alleviate this problem and to be able to do without explicit simulations, so so-called 

localized free energies (LFE) are employed. With them it is possible to break down free 

energies to an atom-wise level, where said fluctuations can be assumed to have less influence 

on the results. Since such a partitioning is purely virtual, there is no experimental way to 

validate the LFEs. For this reason, their plausibility is checked by using them as input for 

machine learning (ML) models, analyzing the drop in predictive power upon increasing 

levels of perturbation in the LFE input. 

With the plausibility of the method established, the LFEs are applied to an exemplary series 

of thrombin inhibitors to illustrate their potential in a drug discovery context. Here they are 

used to identify the most relevant interactions between host and guest. Furthermore, the 

influence of experimental uncertainties in crystal structures and the limitations of the 

approach get explored. 

Coming from the same formal basis as it was used for the LFEs, it is possible to calculate 

so-called free energy derivatives (FED) very efficiently. They describe how the free energy 

changes with respect to the non-bonded force field parameters on an atomistic level. The 

FEDs are also applied to thrombin complex, exploring the capabilities of the approach and 

investigating the predictive applicability of the FEDs by performing an in-silico experiment 

on literature data.  
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1 Introduction 

1.1 Motivation 

The development of a genuinely new drug has multiple phases in its research or preclinical 

stage, which can be loosely categorized into three tasks: target identification, lead discovery, 

and lead optimization. It is a loose categorization since all three tasks have some overlap to 

each other, and findings made in one step can influence the other two. So are insights made 

during the target identification step, primarily searching for key biological functions and 

molecules to address specific diseases, also informing the search for an optimal compound 

for them. Additionally, the border between lead discovery and optimization is fluent since 

both tasks require detailed knowledge about the biological interactions of the compounds in 

question. Such interactions may be the activation of an enzyme1 or triggering a signal 

cascade, leading to the preprogrammed cell death called apoptosis2. 

Before a candidate molecule can be structurally improved towards optimal activity, 

absorption, distribution, metabolism, excretion, and toxicology (ADMET)3, it must first be 

found, which is in itself a very cost and time-intensive undertaking. Potential candidates can 

be drawn from multiple sources like already published literature on the topic, known active 

natural products, off-target experience4 or, since the late 20th century, from so-called high 

throughput screening (HTS)5,6. Substantial progress in automatization and assay 

development has made it possible to screen vast libraries of compounds against intended 

targets, and with increased efficiency also against several off-targets, tackling fundamental 

toxicologic issues right from the beginning of the drug development process7. Despite 

numbers in the order of 100 thousand tested compounds per day for simple assays, the 

available chemical space and libraries are still too big for a complete screening in most cases 

and need to be narrowed down. This is the domain of virtual screening, which uses 

algorithms based on the idea of a structure-activity relation (SAR) to enrich a set of screening 

candidates with potential hit molecules in silico. Methods like quantitative structure-activity 

relation (QSAR) models try to connect structural elements of a set of molecules with their 

physicochemical and biological properties. Since these models are usually comparably 

simple and therefore fast to evaluate, they are primarily used to filter down large datasets4. 
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More elaborated, but also costly, approaches use a combination of docking (placement of 

compounds in binding sites) and scoring (evaluating placements and compounds) as well as 

3D QSAR (screening methods utilizing 3D informed pharmacophores) where molecules are 

placed in three-dimensional space into an active binding site of a target protein and are then 

rated regarding their fitness8–10. Experimental and virtual screenings are often performed in 

an alternating fashion, each informing and optimizing the other. Once a set of suitable 

candidates is found, the lead optimization can start. 

It is often performed over several iterations of a cyclic workflow, employing methods and 

knowledge from many different disciplines. Here an initial model of the interaction of the 

candidate molecule and the previously identified target leads to a first hypothesis regarding 

potentially beneficial structural elements and corresponding molecules. Those are then 

synthesized and experimentally tested, which results are then used to refine the model of 

interaction4. This very general approach is not new to pharmaceutical research and was 

already used in the late 19th century leading to drugs like chloral hydrate11,12 and 

acetylsalicylic acid13,14, even though the assumptions about the mode of action were not 

always correct. Nonetheless, the basic idea of formulating a relation between structure and 

activity kept the same and is still the basis for the modern structure-based drug design 

(SBDD)3. 

The necessary knowledge to draw such a connection is gained from targeted compound 

synthesis and screening of preselected molecules. Typical elements to look for are hydrogen 

bond donors and acceptors, halogenic and other decorations of aromatic rings, charged 

groups, heteroatoms and cycles, and steric fragments filling voids and thereby influencing 

the water network in the binding site or stabilizing specific conformations.3 The patterns 

arising from the analysis of experimental findings like binding affinities and ADMET 

parameters are used to modify the candidate molecules such that they are believed to perform 

better as their parent generation did before. At the end of the last century, this process was, 

and in parts still is, characterized by chemical intuition, a few rules, like the famous Lipinski 

rule of five15,16, and also not the least by some serendipity.4 Obviously, this is not a reliable 

nor efficient way, so methods from computational chemistry become more and more 

widespread in the workflow, aiding the design and test process and creating the field of 

computer-aided drug design (CADD)17. Methods like quantum mechanics (QM), giving 

insights in extreme detail and accuracy, and molecular mechanics (MM), making even large 
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proteins and short genes accessible for theoretical descriptions, became, among others, 

essential in modern drug development processes.18,19 

Especially molecular dynamics (MD) simulations have seen a tremendous boost in recent 

years by being implemented on powerful computation hardware like graphics processing 

units (GPUs)20. With them, it is possible to model the behavior of target molecules and drug 

candidates and their interactions on an ever-growing scale. With advanced simulation 

protocols like free energy perturbation21,22 (FEP) and thermodynamic integration22,23 (TI), it 

is possible to calculate the binding free energy of a compound upon binding a specific target. 

In general, there are two methods currently used for that task; a physical transformation 

where the binding process is directly simulated in a physically possible way and an 

alchemical transformation where a physically impossible process is calculated.24–26,26. An 

example for an application of such simulations can be found in the publication of Plenker et 

al.27 where the binding affinity of two compounds to the RET kinase is investigated via TI 

simulations. Another in the context of this work important application of free energy 

simulations is the localization of solvation and binding free energies onto individual atoms 

of molecules. Like it was done in the publication of Irwin et al.28. Here the localization was 

performed on the basis of intricate FEP simulations, modeling the protein-ligand system on 

a high level, including conformational variations and entropic contributions. This is a clear 

advantage over the in this work used rigid-body approximation, which is discussed in more 

detail later. Unfortunately, such simulation-based methods are relatively expensive and 

require substantial compute power to achieve reasonable accuracy. This limits their field of 

application to a small set of molecules and forces the practitioner to choose between high 

accuracy or high throughput.29 

Another popular and computationally efficient method is the three-dimensional reference 

interaction site model (3D RISM)30–33. With the significantly increased cost-effective 

compute power of the last two decades34, RISM based approaches became feasible for usage 

in the drug discovery process. By coupling 3D RISM with MD simulations35,36, the 

conformational stability of proteins can be estimated, and the binding free energies of 

protein-ligand complexes be inferred36–39. 3D RISM can also be used to investigate the 

protein-ligand interactions from a solvation perspective in great detail. One of the more 

obvious fields of application in this regard for a granular solvent model is the elucidation of 

the water network involved in the binding process 40–45. Here, several methods for extracting 
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and characterization of water sites from the calculated solvent site densities were introduced 

in the past. One of the most straightforward ways to find discrete water sites is via an analysis 

of the maxima and minima of the continuous solvent distribution obtained by 3D RISM. 

This approach was used in various studies, such as those of Hirano et al.43 and Güssregen et 

al.44, and is the core mechanic in the Placevent algorithm by Sindhikara et al.45,46. The GAsol 

algorithm by Fusani et al.41 follows the same principle to generate initial hydration sites but 

solves the issue of competing maxima in close proximity to eachother with a genetic 

algorithm. Generally speaking, the accuracy in finding crystallographic resolved water 

molecules of such 3D RISM based methods is on par with molecular dynamic simulation-

based methods47–50 while having the advantage of usually requiring fewer computing 

resources. Furthermore, they also generate reliable results for buried or occluded binding 

sites where an analysis derived from explicitly simulated water suffers from statistical 

uncertainties49. The placement and thermodynamic characterization of individual water sites 

can be used to inform SAR studies and to manipulate the binding relevant water network by 

specifically targeted compound modifications44,47,48,51. 

Additionally, fast and reliable 3D RISM based water placement methods can also be used to 

fit ligands in binding sites algorithmically, so-call docking protocols. So could Huang et al.52 

and Hinge et al.53 show that water site informed docking can lead to reliable poses in 

complex binding situations. Another ansatz to the same problem, followed for example by 

Imai et al.54, Nikolic et al. with 3D-RISM-Dock55, and recently Sugita et al.56, is to use a 

ligand-solvent mixture in 3D RISM to identify regions of high ligand or ligand-fragment 

density and orientate the compounds accordingly. Due to convergence issues in the 1D 

RISM solvent calculation, those approaches are limited to small ligands. A way to 

circumvent this problem is the solute-solute, or uu-3D-RISM57 extension. Here both binding 

partners, protein and ligand, are treated as solutes, allowing for a more accurate physical 

description and following interesting applications in structure-based drug design.58,59 An 

interesting example for this was given in a publication by Mrugalla et al.59 and the thesis of 

Mrugalla60 where free energy derivatives (FED), based on the potential of mean force 

(PMF), gets explored in complex formation scenarios. The concept of these FEDs is also an 

important part of this work. Here an alternative way of calculating them is employed, and its 

suitability towards drug design gets tested on protein-ligand complexes. 
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Further applications of RISM like the embedded cluster extension EC-RISM61 can be used 

to calculate molecular properties of small molecules, e.g., solvation free energy, acidity, or 

water-octanol coefficient62,63. Such RISM based approaches often stand between expensive 

but comparably accurate methods, like explicit simulation protocols as full atom FEP and 

TI, and the much faster but more error-prone methods like implicit solvent simulations such 

as MM/PBSA64 and MM/GBSA65. Although they also suffer from approximations and 

intrinsic errors like the overestimation of the solvent- cavity formation66,67, much of these 

can be corrected, in parts even with very little additional compute costs66,68–70. However, 

such methods are more than mere compromises between speed and accuracy regarding the 

targeted task, as they also generate valuable insights into the role of the solvent and thereby 

deepen the understanding of the involved physical processes. This may not be unique to 

RISM and can also be achieved by other methods, but often at much higher costs. Exploring 

this intrinsic potential is a key focus of this work. 

One way of doing so are methods from the field of machine learning, and in particular the 

subfield of deep learning. While by far not new to the field of drug discovery71,72, they found 

extreme, even hype-like interest in recent years73–75. Generative machine learning methods 

are increasingly used to explore the vastness of the chemical space efficiently, and the novel 

approaches to the problem of de novo design are opening new regions in this space.3,76 The 

high speed and accuracy, sometimes even comparable to physics-based methods, of deep 

learning models make them promising tools for predicting protein-ligand affinity and 

molecular properties.77,78 The strengths of these models lay in their directly training on 

experimental data and thereby, in theory, implicitly capturing all necessary properties of the 

underlying problem. Specifying those explicitly is, in the best case, cumbersome and, in the 

worst case, impossible to do when they are not fully known. Nevertheless, this key advantage 

also brings two major downsides. The first is that predictions made by deep learning models 

are, with a few exceptions, cumbersome to explain, and even when they are, there is only 

seldom a chance to learn about the problem itself from them. The second problem, even 

more severe, is the very basis of the training process, the experimental data itself. Deep 

learning models usually require many samples for training and testing, and a notorious lack 

of coherent data leads to datasets that are often compiled from a multitude of sources over 

different labs, scientists, and time, introducing various uncertainties.79 This is especially true 

for physical-chemical properties and biological assays, which have a priori a high 
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experimental uncertainty, as they are often measured indirectly or are influenced by hard-to-

control variances. This circumstance limits the generalizability and applicability of deep 

learning to regions of the chemical space where enough data exists. Currently, this restriction 

cannot be overcome by architectural modeling, and it is doubtful that this is conceptionally 

possible, as every model is limited by the amount of information the training data holds. The 

approach to alleviating the problem taken in this work uses physical knowledge in a hybrid 

modeling fashion, increasing robustness, accuracy, and generalizability. 
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1.2 Aim of this work 

This work focuses primarily on the application of 3D RISM30–33 based methods to 

thermodynamically characterize biological relevant systems. Those range from small drug-

like molecules in solution, over protein-ligand complexes, to full conformationally flexible 

antibodies. 

By combining 3D RISM with MD simulations, conformational changes in the anti-NPRA 

IgG4 antibody are modeled and studied, which would only be possible with an extreme 

expenditure of resources in a pure simulation approach. The learned lessons, especially 

regarding the limitations of such a combination, lead to other methods, focusing on the 

localization of free energies and their derivatives with respect to force field parameters. 

Especially the concept of localized free energies (LFE), localizing the excess chemical 

potential �ex on individual solute sites, is investigated in detail. Due to the novelty and the 

fact that such a localization cannot be measured by physical means prompts the question of 

how reliable such a separation is, and therefore demonstrating the validity of the LFEs is the 

first goal of this work. This question is here answered in two ways. The first is the 

mathematical derivation and description of the method itself, demonstrating a sound 

mathematical foundation based on established physical concepts. The second is the 

utilization of LFEs as model input in two different deep learning approaches, predicting 

solvation free energies of small molecules. By increasing the level of perturbation of the 

localization, the plausibility of the by the LFE method calculated partitioning is verified. 

One can envision multiple-use cases for the LFE and the free energy derivatives (FED) 

method, but the major one discussed here is their application in drug discovery and 

optimization. As a demonstration, they are evaluated on a ligand series of thrombin 

inhibitors80, elucidating the protein-ligand interaction from multiple perspectives, opening 

insights useful for lead discovery, and exploring the potential of the FEDs for lead 

optimization. The added dimensionality of LFEs and FEDs introduces some challenges 

regarding a fast and intuitively comprehendible visualization. This, however, is crucial for a 

successful implementation of the introduced methods in the drug discovery workflow. To 

make the results more accessible and to move towards this goal, this work also makes 

suggestions for suitable visualizations of the results.  
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2 Theory 

2.1 Reference interaction site model 

The reference interaction site model81–83 (RISM) is grounded in the classical density 

functional theory84, which itself is based on the idea to describe the properties of liquid 

matter in terms of individual particle density, often referred to as site-density, distributions. 

The grand canonical potential 

 Ω = � − �� = �[
(�)] − � ∫ 
(�)�� (2.1) 

with the free energy � as functional of the local density 
(�), the chemical potential �, and 

the total number of particles �  reflects this idea in terms of statistical thermodynamics. 

Following this line of reasoning, a specific density distribution 
eq can be defined, at which 

the grand canonical potential has its minimum and 

 
∂Ω∂
(�)|(
=
eq) = 0  (2.2) 

is satisfied. Both equations (2.1) and (2.2) are fundamental to classical density functional 

theory and are the starting point from which its essential equations are derived. This, 

however, is beyond the scope of this work and the reader may be referred to the very 

comprehensive works of Hansen and McDonnald84, Hirata85, and Montroll and Lebowitz86 

for a more detailed mathematical explanation. 

Nonetheless, it is evident from the equations above that the density function is central for 

any such derived theory. The function itself can be expressed as the probability �(2)(�, �′) to 

find a pair of two particles (denoted from here on as (2)) in a homogeneous and isotropic 

fluid of �  particles through: 

 
(2)(�, �′) = �(� − 1)�(2)(�, �′). (2.3) 
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By considering the distribution of one particle only relative to the position of the other one 

and normalizing it by the bulk density 
, the pair distribution function 

 �(�) = 
(�)
  (2.4) 

can be derived. 

Figure 2.1     Illustrative pair distribution �( ) and and the pair potential function !"( ) of a Lennard Jones 

fluid with a reduced density of 
∗ = 0.8 and a reduced temperature of % ∗ = 0.81 obtained by a MonteCarlo 

simulation (periodic boundary conditions, maximal coordinates shift: 0.002 Å, simulation steps: 1 × 107) 

plotted against the normalized distance  /)*+ . 

It is one of the key functions of this work and is visualized in Figure 2.1 for a Lennard-Jones 

fluid. Here its property of representing the discrete phenomenon of solvation shells as a 

continuous and smooth function becomes clear. It can be interpreted as the probability of a 

particle being present at a distance r relative to an undisturbed system, where values greater 

than one stand for high-density regions and those below one for low-density regions. From 

the pair distribution function, the total correlation function 

 ℎ( ) = �( ) − 1 (2.5) 
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can be defined, which converges towards 0 instead of 1 at an infinity large distance  , making 

it behave mathematically more elegant by not having a diverging integral. 

In the early 20th century, Ornstein and Zernike87 formulated a theoretical connection of the 

total correlation function to the direct correlation function - from experimental 

measurements, condensed84 in 

 ℎ( ) = -( ) + 
 ∫ -(|� − �′|)ℎ( ′)��′, (2.6) 

known as the Ornstein-Zernike equation (OZ). Next to the total correlation function, it is 

also using the direct correlation function, which may be defined as  

 -(�, �′) = −! 12�ex[
]1
(�)1
(�′), (2.7) 

showing its characteristic of modeling the response of the excess free energy to changes in 

the local density distribution. It reflects the direct relation between particles and is shorter 

ranged than the pair distribution function and of simpler structure (see Figure 2.1). From (2.7) 

it is clear that the OZ cannot be solved on its own by its two unknowns. For mathematical 

modeling, it is usually paired with a second equation that connects both correlation functions, 

yielding in a closed relation. Such closure relations have the general form of 

 ℎ( ) + 1 = exp [−!"( ) + 
 ∫ -( ′)ℎ(|� − �′|)��′ + 4], (2.8) 

with "( ) as the pairwise potential and ! = 1/6B%  as inverse temperature. The integral term 

describes all correlations up to second-order, and the bridge function 4 is a substitute for all 

higher correlations as those are not be solved analytically. There are three general 

approaches to the bridge function to deal with this problem. First is a numerical 

approximation88, for example, via extraction from simulations89, the second option is an 

analytical approximation, as shown below, and the third is the neglection entirely, which 

leads to the hypernetted-chain closure HNC90–93 consequently written as: 
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 ℎ( ) + 1 = exp [−!"( ) + 
 ∫ -( ′)ℎ(|� − �′|)��′]. (2.9) 

This second equation can be solved iteratively by starting with an initial guess of either the 

direct or total correlation function and using the result as input for the OZ equation (2.6). 

Repeating this process will eventually lead to a converging solution, providing a sound, 

density-based thermodynamic description of the fluid. 

Still, this holds only for fluids of spherical particles, limiting the applicability of the theory 

greatly. For molecules that cannot be described or reasonably approximated by spheres, 

another relation must be found. The first approach to this is the molecular Ornstein-Zernike 

equation (MOZ)84,85,94, which encompasses Euler angles Ω8  and Ω9  and is given by 

 ℎ(�89 , :8 , :9) = -(�89 , :8, :9) + 
8;2 ∬ -(�89′, :8, :9′)ℎ(�9′9 , :9′, :9)��9′�:9′. (2.10) 

The subscripts 8 and 9  denote different particles in the solution where the first is usually 

referring to solute sites, while the latter is used for solvent sites. The resulting high 

dimensionality and angle dependency prevent an analytical or numerical solution, except for 

a few edge cases95,96. For this reason, the reference interaction site model81–83 (RISM) was 

developed, which solves the problem by making the key assumption that spatial and angular 

dimensions can be treated separately from each other. This opens the way to a further 

assumption, treating the solvent as being made of spherical particles, which allows the 

approximation of the direct correlation function as a sum over individual site-wise 

contributions 

 -( ) = ∑ ∑ -89( 89)98 . (2.11) 

This approach eliminates the angular dependence but also removes every information about 

the molecular orientation of the solute84. 

The treatment of the solvent as a mixture of interaction sites itself requires a suitable 

molecular representation. The intramolecular correlation function (here written for the 

solvent) 
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 ?99′( ) = @(| 99′ − B99′|)
4;B99′2  (2.12) 

with the Dirac delta function @, accommodates the mentioned separation while retaining the 

molecular structure by encoding interatomic distances l. With this, the 1D-RISM function85 

can be written as 

 ℎ89( ) = ∑ ∑ ∬ ?88′(|�D − �′|)-8′9′(|�′ − �′′|)E99′(|�′′ − �2|)��′��′′.9′8′  (2.13) 

The reduced solvent susceptibility97 

 E99′( ) = ?99′( ) + 
ℎ99′( ) (2.14) 

itself is also calculated from 1D RISM by treating the solute 8 as one specific solvent 

particle, a procedure known as the Percus trick84. With this in place and together with an 

appropriate closure, it is possible to calculate the one-dimensional total correlation function 

of a molecular solute in a molecular solvent. Nonetheless, there are also drawbacks to the 

1D RISM approach. For once, its numerical stability is rather poor, and it is difficult to 

achieve converging solutions for complex solutes. Secondly, by averaging over all solute 

sites, any site-specific solvent structure is lost, yielding an insufficient description of local 

solvation effects67. In the mid-1990s, multiple groups set out to solve these issues, 

developing the 3D RISM approach30–33. The core idea is to approximate the 6D MOZ by 

integrating over the orientational dimensions and solving the 3D-dependent relation for each 

solvent site67. Usually, those equations are solved for each point of a 3D grid in which the 

molecule of interest is embedded. This approach still leads to a loss of any information about 

angular orientation and a superposition of solvent site correlation functions, but in contrast 

to 1D RISM, it gives access to the local solvent distribution in 3D and makes calculations 

for large molecules like proteins possible. While theoretically possible, such can most often 

not be brought to convergence in 1D RISM. 
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For 3D RISM, the total correlation function is given by 

 ℎ9(�) = 
–1 ∑ ∫ -9′(� − �′)E99′(|�′|) ��′
9′

 (2.15) 

where the solvent site–site susceptibility E99′ is once again calculated from 1D RISM. The 

corresponding HNC closure can be written as 

 ℎ9(�) = exp(−!"9(�) + ℎ9(�) − -9(�)) − 1. (2.16) 

The intermolecular potential "9  is calculated as the sum over all solute sites and taking most 

often the shape of 

 "9 (�) = ∑ I8I94;J0|� − �8| + 4J89 (( )89|� − �8|)
12 − ( )89|� − �8|)

6
)8 , (2.17) 

with the Coulomb potential term on the left and the Lennard-Jones potential term on the 

right. The partial charges I8 and I9  as well as the Lennard-Jones parameter J89  and )89  can 

be taken from typical force fields98,99 or from appropriate quantum mechanical calculations 

in the case of the partial charges for small molecules. 

Because of the diverging nature of its exponent for short distances, the HNC closure can be 

rather unstable, and bringing it to convergence is therefore difficult, especially in its 

application for 3D RISM. A more stable closure is its partial series expansion of order n 

(PSE-n)100 developed by Stefan Kast and Thomas Kloss in the form of 

 ℎ9(�) =
⎩⎪⎪
⎨⎪
⎪⎧∑ (R9R(�))T

T!/ −1 ⇔   R9R(�) > 0Y
T=0exp(R9R(�)) − 1     ⇔   R9R(�) ≤ 0

 (2.18) 

with the renormalized indirect correlation function R9R(�) = ℎ9(�) − -9(�) − !"9 (�). Since the 

excess chemical potential can be written as101–103 
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 �ex = ∑ 
9 ∫ �[ ∫ �� "(�, [)�(�, [)1
09 , (2.19) 

(2.15) together with (2.18) after analytical integration of the coupling parameter [ finally 

yields the closed-form expression 

 

�ex = !−1 ∑ 
9 ∫ ��
⎣⎢⎢
⎢⎡12 ℎ92(�) − -9(�) − 12 ℎ9(�)-9(�) +9

− Θ(ℎ9(�)) (R9R(�))Y+1
(Y + 1)! ⎦⎥⎥

⎥⎤, 
(2.20) 

using the Heaviside step function Θ, being 1 where ℎ9(�) is greater than 0 and 0 everywhere 

else. The free energy of a molecule in solution can be written as 

 csolv = hsol + �ex, (2.21) 

with hsol being its electronic energy. For most parts of this work, the approximation of 

unpolarizable molecules is being made, effectively neglecting the electronic term. However, 

with the embedded-cluster reference interaction site model61 (EC-RISM), this term can be 

calculated using an iterative cycle of quantum mechanical and 3D RISM calculations. Here 

solute’s wavefunction is first calculated in vacuum. The resulting electronic potential is then 

used to approximate the solvent distribution via 3D RISM, which in turn is used to inform a 

renewed calculation of the wavefunction of the solute. This circle is self consistently 

repeated until a convergence criterium is reached and hsol. and �ex are gained. 

Besides the excess chemical potential, the effective size of a solute in solvation, the so-called 

partial molar volume (PMV), can also be calculated from solvent distribution104,105. It is 

accessible via the total correlation functions with 

 ij,ℎ = !−1k − ∫ ℎ9(�)�� , (2.22) 

and from the direct correlation function104 with 
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 ij,- = !−1k (1 − 
 ∑ ∫ -9(�)�� 9 ), (2.23) 

where � is the isothermal compressibility106. The partial molar volume can be used to correct 

the intrinsic RISM error of overestimating the contribution of the cavity formation to the 

excess chemical potential. 

2.2 Applications of functional derivative of the free energy 

2.2.1 LFE: localization of the free energy onto individual sites 

The formalism to localize individual contributions to the free energy on solute sites 8 is one 

of two key relations for this work. The fundamental equation is derived from functional 

integration, which can be found throughout the field of statistical thermodynamics. The 

general approach leading to (2.32) can be found in a similar form in Molecular Theory of 

Solvation85, but additional derivations can be found in publications of Kast107 and Kast et 

al.100. To illustrate the procedure, an excursion in the mathematical background of functional 

derivatives is necessary. 

To this end, a linear functional F may be defined as 

 F = o�p�q�� (2.24) 

with a functional derivative given by 

 
@F@p (q) = r(q), (2.25) 

where r is also a functional of the form 

 r(q) = r[q, p (q)]. (2.26) 

Since F is defined as linear (hence the form of its derivative in Eq. (2.25)) it can also be 

written as 
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 F = ∫ @F@p (q) p(q)�q. (2.27) 

To introduce the Kirkwood coupling parameter108 [, the definition of F is expanded to give 

F[ = o [[p (q)] with [ ranging between 0 and 1, yielding the respective derivative 

 
�F�
�� = 
����� ��
����� ��, (2.28) 

where r[(q) = r[q, [p (q)] consequently. Despite being mathematically correct, this linear 

[-scaling of p(q) has severe drawbacks when it comes to solving the resulting equation 

numerically, in most cases rendering it even impossible. To avoid these issues later, the [ in 

the second term under the integral is not eliminated and instead, the functions p  and r 

become [-dependent. This opens the way for more elaborated scaling schemes such as 

softcore scaling109–111, which is discussed later. Applying the mentioned modifications to 

Eq. (2.28) yields 

 
�F[
�[ = ∫ r(q, [) �p(q, [)

�[ �q, (2.29) 

The integration of Eq. (2.29) over [ is part of the Kirkwood formalism108 and finally leads 

to 

 F = F0 + 
 �[
 r�q, [� �p�q, [�
�[ �q1

0 . (2.30) 

To make the connection back to statistical mechanics, the Helmholtz free energy � can be 

interpreted as functional of the intermolecular potential between the solute sites 8 and the 

solvent sites 9  which gives the derivative with respect to the pair-wise potential as84,85,112 

 
@�@"89 ( ) = 
0�( ). (2.31) 

Starting from (2.25), r(q) is substituted for 
0�( ), p (q) for "89 ( ) which itself is given in 

(2.17), and o  for � one can follow the outlined mathematics above, which will eventually 

lead to84,85,112 
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 ∆� = 
0 ∑ ∑ ∫ �[ ∫ �9(�, [) �"89(�, [)
�[ �r

1
098 . (2.32) 

The resulting equation is a general approach to calculate the difference in the Helmholtz free 

energy Δ� between the start ([ = 0) and end-point ([ = 1) of a thermodynamic process and 

is a universal connection between the pair distribution function g and Δ�. 

Finally, localizing individual contributions to Δ� on atoms is achieved by simply not 

evaluating the sum over sites 8 in (2.32) which gives an individual free energy for each 

solute site 8 

 ∆�8 = ρ0 ∑ ∫ �[ ∫ g9(�, [) �"89 (�, [)
�[ �r

1
09 , (2.33) 

resulting in the localized free energies (LFE). The connection to the excess chemical 

potential is given by (2.19). 

Equation (2.33) is agnostic regarding the origin of the pair distribution function, and it can 

be calculated from any method modeling the solvent explicitly like molecular dynamics or 

Monte Carlo simulations. Since such approaches would take extensive sampling for each [-

step to achieve a sufficiently smooth function, simulation methods are impractical for the 

task. The 3D RISM method gives access to a more efficient way of calculating the three-

dimensional pair distribution function, as described in 2.1. This, however, means that the 3D 

RISM inherent limitations like the superposition approximation of the solvent sites and the 

over estimation of the cavity formation66,67 also apply to the LFEs. Especially the latter can 

be compensated for whole molecules via a linear regression using the partial molar volume 

(PMV),66,68–70 but how this could be extended to a localization approach is still unknown. 

To introduce a dependence on [ in �9(�), the potential term in Eq. (2.18) is being modified 

such that it gives 0 for [ = 0, decoupling the solute completely from the solvent, and yields 

to standard pair-wise potential, as it is given in (2.17), for [ = 1. Although this can be done, 

in theory, by scaling it linearly with � so that 1"89 (�, [) ∕ 1[ in Eq. (2.33) shortens to 

"89 (�)112, applying this approach on Lennard-Jones- and Coulomb-potentials could cause 

numerical issues near [ = 0 and [ = 1 (depending on the process). This problem is well 
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known in the context of TI simulations and is sometimes called end-point 

catastrophe110,111,113–117. Borrowed from this community, the issue is avoided by 

implementing softcore scaling, which can be written for the Lennard-Jones potential as109–

111 

 "89LJsc = 4{89[
⎣⎢⎢
⎢⎡ 1
(8LJ(1 − [) + ( 89 ∕ )89)6)2 − 1

8LJ(1 − [) + ( 89 ∕ )89)6⎦⎥⎥
⎥⎤, (2.34) 

where the parameter LJα  is adjusting the harshness of the function. When van der Waal and 

electrostatic interactions are treated separately, and in this order, the Coulomb term can stay 

unmodified and is scaled linearly as described above. Eventhough it is a rather stable and 

robust way to scale the potential "89 (�, [) with respect to �, it is not the only one and other 

schemas are possible, which can have an influence on the LFE values themselves. In this 

work, however, only the here shown approach and the, in the corresponding sections for 

computational methods detailed, scalings are used, ensuring consistency between LFEs. 

 

 

 

2.2.2 Localization of derivatives of the free energy with respect to force 

field parameters 

The approach taken above, to localize the contributions to the free energy on solute sites, 

can be extended to derivatives in a straightforward manner. Again, starting from equation 

(2.31) it is written in its general integral form100,118–120 

 @� = 
0 ∫ �( )@"89( )� , (2.35) 

and in analogy to (2.32) the equations for the derivatives with respect to the non-bonded 

force field parameters J, ), and I can be written as 
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��81J8 = 
0 ∑ ∫ �9 (�) 1"89 (�)
1J8 ��9 , 

1�81)8 = 
0 ∑ ∫ �9(�) 1"89 (�)
1)8 ��9 , and 

1�81I8 = 
0 ∑ ∫ �9(�) 1"89 (�)
1I8 ��9 . 

(2.36) 

 

(2.37) 

 

(2.38) 

The derivatives of the pair-wise potential "89 (�) with respect to the corresponding 

parameters of a single solute site are given by 

 

1"89 (�)
1J8 = I8I94;J0|� − �8| + 2 J9J89 (( )89|� − �8|)

12 − ( )89|� − �8|)
6
) , 

1"89 (�)
1)8 = I8I94;J0|� − �8| + 4J89 (

3()8 + )9)11
1024|� − �8|12 − 3()8 + )9)5

32|� − �8|6 ) , 
1"89 (�)

1I8 = I94;J0|� − �8| + 4J89 (( )89|� − �8|)
12 − ( )89|� − �8|)

6
) 

(2.39) 

 

(2.40) 

 

(2.41) 

assuming the mixing rules J89 = √J8J9  and )89 = )8 + )9   2⁄  for the Lennard-Jones 

parameters. 

The core concept of calculating the derivative of the free energy with respect to force field 

parameters like J, ), and q was already introduced by Mrugalla et al.59,60. The novelty of the 

method outlined above is the calculation via analytical derivatives, contrasting the previous 

numerical, uu-3D RISM based approach, and thereby gained computational efficiency. 

To illustrate the behavior of the relevant functions and to help with the interpretation of the 

results, the Coulomb- and Lennard-Jones potential and their derivatives are shown in 

Figure 2.2 as functions of  .  
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Figure 2.2     A: Lennard-Jones potential energy dependent on distance   for ) (in Å) and J (in �� ���⁄ ) = 1 
for both particles i and j as well its end-point derivatives with respect to )T and JT. B: Coulomb potential energy 
for equal and opposite charged particles as well as their derivatives with respect to IT (in e).  

The derivatives of the Lennard-Jones potential energy show very different behavior relative 

to each other while still retraining the core characteristics of the function of the potential 

itself. The minimum of the derivatives with respect to JT is much lower than the one of the 
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derivative with respect to )T but shares its zero-crossing with the parent function. This is in 

line with the fact that interactions via induced dipoles, which are scaled by the J-parameter, 

are relatively weak, and extrapolated to the FEDs one can expect that the free energy will 

change only slightly with varying JT. This is in strong contrast to the derivative with respect 

to )T, as not only its minimum is deeper, but also the zero-crossing occurs at a larger distance 

 . Both characteristics are important for the interpretation of the derivatives with respect to 

)T but especially the shift in the zero-crossing makes the free energy sensitive for close 

contacts. 

For the Coulomb potential energy, shown in Figure 2.2 B, two cases must be distinguished. 

For charges with the same sign, the potential energy is always positive, and at small 

distances, it diverges towards positive infinity. For charges with opposite signs, it is always 

negative and diverges towards negative infinity. The derivatives behave similarly, but their 

sign is set by the partner charge, which remains in the equation. Especially in comparison to 

the Lennard-Jones potential energy, the absolute magnitude and the long-ranged nature of 

the Coulomb potential energy and its derivatives become apparent. Since there is always a 

summation step over multiple charged sites in the calculation of FEDs (and LFEs) involved, 

most contributions cancel each other out, especially over long distances. Nonetheless, the 

derivatives of the Coulomb potential energy with respect to the partial charge of a single site 

most often dominates the FEDs, which must be taken into considerations when it comes to 

interpretation of any results. 
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2.3 Deep learning 

The field of deep learning can be seen as a sub-field of machine learning, which itself is the 

science of developing methods and algorithms that can find and exploit patterns from data 

distributions by statistical means and without explicitly defined rules. In the case of 

supervised algorithms, this is usually done by learning the parameters of a function from 

samples of the provided training distribution. Such a function can then be used to make 

predictions from unseen samples and thereby solve a predefined task. Those tasks most often 

fall in one of two categories, classification and regression, of which only the latter is used in 

this work. 

Deep learning itself refers to a specific type of model, so-called artificial (deep) neural 

networks. Attempts to create artificial neural networks date back to the very beginning of 

the computer age in the early 1950ths when scientists modeled neurons and synapsis in semi-

mechanical-semi digital machines, driven by the question of how to make machines learn. 

This led, for example, to the Stochastic Neural Analog Reinforcement Calculator 

(SNARC)121 by Minsky, Miller, and Edmonds, which was trained to solve mazes or the 

Perceptron122,123 by Rosenblatt classifying images. Those early inventions and innovations 

were often heavily inspired by biological learning processes and cognition in general, which 

gave many concepts in the field their names. However, modern deep learning algorithms 

resemble only vaguely biological neural networks and are optimized fundamentally 

differently. 

The architecture of a general multi-layer neural network, also called multi-layer 

perceptron124 (MLP), can be expressed as a graph of nodes, standing for simple 

computational operations and connecting directional edges, visualized in Figure 2.3. 
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Figure 2.3     General representation of a two-layer MLP The nodes in the graph represent the input layer, 
accepting the input vector �, the two hidden layers with their embedded vectors �1 and �2, as well as the output 
layer with the prediction �.̂ The edges represent the weight matrices, connecting the different layers. 

In a forward path through the compute graph, the input vector � = (q1 … q�)%  first gets 

multiplied by each weight vector �T = (�T1 … �T�) for every node in the first hidden layer. 

This can be done very efficiently, even for very large weight vectors when they are arranged 

as a matrix, making the operation a matrix-vector dot product for which highly optimized 

algorithms and hardware (graphics processing units (GPUs)) can be used. The resulting 

vector serves as input for a non-linear activation function � for which some examples are 

shown in Figure 2.4. Both operations are written together as 

 � = �(��) + �, (2.42) 

giving, together with the optional bias vector �, the embedded vector �. This process is 

repeated for every hidden layer in the graph. The final prediction � ̂is obtained from the last 

layer, the output layer, whose activation function depends on the network's task. In the case 

of classification, a softmax or sigmoidal activation function are usual choices125,126; for 

regression tasks, it is usually can be omitted completely, making the output a linear function. 
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Figure 2.4     Examples for activation functions typically used on hidden layers in deep neural networks. 

The weights, as well as the biases if used, are learnable parameters that give deep neural 

networks their broad field of applications. For a network with a single hidden layer and 

unlimited depth, they can be fitted such that the network can approximate any arbitrary 

function connecting input and output within Euclidian space127–129. To do so, the neural 

network must be trained on a set of samples taken from the input distribution, often called 

the training set. The training process is divided into three separate steps, including the 

calculation of a loss from � ̂and the ground truth �, finding the derivatives of it with respect 

to each learnable parameter in the network, and lastly the optimization of the parameters 

such that the error is reduced. 

The calculation of the loss function (in older literature, sometimes called cost function) 

depends mainly on the task required of the model. So is the Cross-entropy loss, derived from 

maximum likelihood130, for �  classes and �  samples 

 h(�̂, �) = − 1� ∑ ∑ �T,-log(�T̂,-) �
-=1

�
T=1 , (2.43) 
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where �̂ and � are vectors of length �  is a common choice for classification problems. 

Whereas the mean absolute error (MAE) 

 h(�̂, �) = 1� ∑|�T − ��̂|�
T=1 , (2.44) 

and the mean squared error (MSE) 

 h(�̂, �) = 1� ∑(�T − ��̂)2�
T=1 , (2.45) 

on the other hand are often used for regression tasks. For the optimization of the learnable 

parameters the backpropagation algorithm131,132 is used almost exclusively and can be 

written as four separate equations, revolving around the question how to change the weights 

and biases so that the loss changes in a specific way. The first expression 

 �* = 1h1�* �′(�*) = ∇ℎ*h ∘ �′(�*), (2.46) 

computes �*, commonly referred to as the error vector for the output layer *. Where the 

element-wise product, or Hadamard product, is denoted by ∘ and the weighted input to the 

activation function is given by �*. In a similar fashion, this approach is now followed 

backward through the network for each layer B, considering the error vector of the next layer 

in forward direction B + 1 according to 

 �B = �B+1@R+1 ∘ �′(�B). (2.47) 

With the error vectors to each layer at hand, the derivative of the loss with respect to each 

weight in the network can be written as 

 
1h1�T�B

= ℎ�B−1@TB (2.48) 

and to each bias as 
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1h1!TB

= @TB. (2.49) 

These gradients can now be used to optimize the learnable parameters accordingly, for which 

a multitude of algorithms are available133,134. In the simplest case, the weights and biases are 

updated by 

 Δ�T�B = −8 1h1�T�B
 respectivly Δ!TB = −8 1h1!TB

 (2.50) 

with a learning rate 8. 

From the outline of the backpropagation algorithm just given, one can see that finding the 

necessary differentiations for any arbitrary compute graphs is a crucial task and is usually 

done through automatic differentiation algorithms. Two of the most popular software 

libraries providing the required and other algorithms are TensorFlow135 and PyTorch136. 

Since most deep learning applications in chemistry and the natural sciences, like molecular 

property prediction or chemical reaction-related questions, revolve around molecules, it is 

necessary to find a suitable Euclidean input representation for the models. This, however, is 

a non-trivial task, as the very concept of a molecule is not within this space and must 

therefore first be abstracted to be used in a neural network. Multiple concepts have been 

developed in the past to do so, but only the most common shall be mentioned here. 

A very high level of abstraction is the representation of a molecule via its physical properties 

and other, more general descriptors. This approach is comparably long known and was 

popularized by QSAR studies in the 1980s and 90s. Commonly used general features are the 

number of atoms and elements in a molecule or the presence of specific structural elements 

and alike as well as more physical ones like the acidity constant pKa and the n-octanol-water 

partition coefficient, expressed as logP. Structural and conformational information can also 

be captured, as shown by Behler and Parrinello137, but only to a limited extend. After 

calculating these molecular representations, they can then be fed as an input vector to a 

neural network. An advantage of this approach is the need for only small training datasets, 

due to the information provided by the physical features. Nevertheless, this also brings the 

drawback of the potentially high preprocessing costs. Moreover, the calculation of some of 
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the properties, especially the physical ones, can be rather expensive when done towards high 

accuracy, which often makes cheaper approximations unavoidable not to spoil the speed 

advantage of DL, introducing undesired noise to the input. 

It is often far more efficient to let the model learn everything necessary directly from the 

input, utilizing both strong points of deep learning approaches, high versatility, and high 

predictive speed. One way of achieving this is the deployment of molecular fingerprints, 

which encode the molecular structure as a vector algorithmically. There are a vast variety of 

different fingerprints available138 but most commonly used are circular fingerprints138,139, 

often referred to as Morgan fingerprints, and, to a lesser degree, MACCS keys140. Very 

recent approaches are transformer models141,142, taken from natural language processing 

research, which are applied to text-based encodings of molecules like SMILES143,144 and 

SELFIES145,146. The strong performance on various tasks, the mostly agnostic input 

structure, and only little preprocessing make this model type a promising approach for 

chemical tasks in general. Nonetheless, known downsides are a comparably high need for 

large numbers of training samples, which are often unavailable, and the typically large size 

of transformer models, making for longer prediction times. 

One of the two in this work used ways to encode molecules for usage in deep learning 

regression tasks is their representation as three-dimensional point clouds, used as input for 

three-dimensional convolutional neural networks (3D CNN). This has the advantage of the 

direct utilization of conformational information, and different atom-wise input feature can 

be mapped onto different channels of such grids, similar to the color channels of 2D images. 

However, bond-related information is difficult to represent with this approach since it cannot 

be projected onto these channels. The other here used method solves this issue by using 

undirected (in this case equivalent to bi-directed) graphs of nodes and edges to represent 

molecules in a so-called message passing neural network (MPNN)147. Here the nodes are 

loaded with atom information while the edges hold the bond information consequently. Both 

methods are explained in more detail below. 
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2.3.1 3D CNN 

Convolutional neural networks in their modern form were pioneered by Yann LeCun148,149 

and inspired by the Neocognitron of Kunihiko Fukushima150, itself derived from the general 

architecture of the visual cortices of mammals151,152. The core idea is to apply multiple 

kernels with comparably small dimensionality to the given input, filtering it to extract the 

relevant features for the task at hand. Mathematically this can be expressed as 

 �T = �T + ∑ 6T,� ∗ q�  �channels

�=1 , (2.51) 

where the feature map �T is calculated from the �th input channel q�  and �channels kernels, 

denoted by the learnable parameters 6T,�  as well as the bias �T. A kernel can be imagined as 

a single, small layer with learnable parameters, which gets applied stepwise to the full grid. 

The step width is referred to as stride. This is repeated for each channel (or feature map when 

applied to hidden layers) T. The expression “channel” originates here from image analysis, 

referring to the different (color-) channels on a pixel. In practice, the convolution is achieved 

by moving the kernels stepwise over a 2D slice of the volume input with a predetermined 

stride. The dot product with the input is computed on each step, and the result is put through 

a non-linearity function (see above). This process can be repeated over multiple layers with 

the previous layer's output as input for the next. In this way, the network can detect important 

features beginning with relatively simple ones in the first layers like edges in images, 

increasing in complexity throughout the network towards objects and faces in the higher 

layers. To get the final prediction, most applications, like regression and classification, have 

fully connected readout layers at the end of the network, which are fed with the linearized 

output of the convolutional part of the network. 

This general idea of a kernel-based transformation is extremely efficient compared to a direct 

gridpoint-wise computation as the input dimension would be immense (). This way the 

resulting models stay within computationally feasible limits while still generalizing well and 

being applicable to different kinds of input data, given sufficient training data and model 

capacity. 

Most modern CNN architectures153 like ResNet154, EfficientNet155, and UNet156 perform 

dimensional reduction, or downsampling, to improve translational invariance and to reduce 
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the number of learnable parameters. This is usually done architecturally by either dimension 

reducing convolution layers or by using so-called Pooling layers, unifying cells by 

mathematical operations. Two types are used almost exclusively, max pooling and average 

pooling. Like the convolutional kernels, both variants are also moved over the feature maps 

and are applied in a stepwise fashion, reducing the dimensionality of the feature maps and 

increasing the generalizability of the model. 

The extension of the 2D CNN to three dimensions, as they are used in this work, is 

straightforward and simply adds an extra dimension to all operations. 

 

2.3.2 MPNN 

Message passing neural networks (MPNN)147 are a chemistry-specific member of the 

broader family of graph convolutional networks (GCN), which use a graph-based 

representation of molecules. Here atoms and atom-based information are represented by the 

nodes of the graph, or vertices, and bond information is stored on the edges, whereas the 

adjacent matrix gives the connectivity. This approach is very versatile since all-atom- and 

bond-based features can be used as input, and therefore the input can be adapted to the model 

task through feature engineering by presenting the model only specific atom- and edge-based 

information. 

A full path through an MPNN consists of an embedding phase, where the molecular graph 

gets embedded into an internal representation through a iterating process, and a readout 

phase where the latent representation is used to make predictions according to the task of the 

model. The first atom-wise embeddings h�0 are computed for the input features x� by a pass 

through an initial, learnable function U0, 

 h�0 = U0(x�, m�0), (2.52) 

which also includes in the implementation used in this work the calculation of an optional 

initial message m�0. The general approach to a message m is given by 

 m�R+1 = ∑ ¡ R(h�R , h�R , e��)�∈�(�) , (2.53) 
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where a message function ¡ R is evaluated for each connecting edge � of node �, 

incorporating the embedding vector ℎ�R  of the current node at iteration step R as well as the 

ones of its direct neighbors ℎ�R . Since the usage of the MPNN algorithm is focused on a 

specific atom-wise descriptor in this work, no edge-information e�� is needed, and to avoid 

any further self-correlation, the message function shortens to ¡ R = ℎ�R  (assigning rule based 

bond orders, for example, could also introduce ambiguities and/or redundancies in the case 

here). With M R = h�R  as message function, all messages can be calculated at once by 

multiplying hR with the adjacency matrix A. A message-passing step is completed by 

updating the hidden states via 

 h�R+1 = UR(h�R , m�R+1), (2.54) 

where the update function £ R is once again learnable but the same for every iteration. 

Equations (2.53) and (2.54) are evaluated in an integrative manner, leading finally to an 

embedded vector for each node of the input graph. The readout function R, most often a 

simple MLP, takes the sum over those vectors  hR as input and yields the final predictions 

via y ̂ = R(h). 
  



Results
 

 

- 38 - 
 

3 Results 

3.1 3D RISM based estimation of conformational free energy 

differences 

Antibodies (Ab), also referred to as immunoglobulin (Ig), are part of the immune system and 

can be classified into the five functional groups IgA, IgE, IgD, IgG, and IgM for humans. In 

addition, those classes can be broken down into isotopes like IgG into IgG1, IgG2, IgG3, 

and IgG4. Despite their variance, all antibodies share the same principle structure, having 

two heavy chains, linking the fragment crystallizable (Fc) region with the two antigen-

binding fragments (Fab) and two variable light chains. This structure gives them their core 

functionality of binding to specific target molecules, so-called antigens. Once an antigen is 

bound to an antibody, like the IgG-type, they trigger different immune responses. Such are, 

for example, the immobilization of pathogens via agglutination or the activation of the 

complement system, cascading into different pathways of which one is an attack on the 

pathogen membrane through small proteins. Others are the antibody-dependent cellular 

cytotoxicity, where natural killer cells (NK) bind to the Fc region of the antibody, releasing 

cytotoxic factors and killing the target cell, and antibody-dependent cellular phagocytosis, 

effectively marking the pathogen for ingestion by specialized cells, so-called phagocytes.157–

160 

In this chapter, two conformations of the anti-NPRA (natriuretic peptide receptor A) IgG4 

antibody are studied. IgG4 is special in the family of IgG antibodies, as it does not activate 

the complement system and is noninflammatory.161–165 NPRA, on the other hand, is a 

receptor for the atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), both 

elevated in patients with heart failure166, making the anti-NPRA IgG4 monoclonal antibody 

(mAb) an interesting target for therapeutic treatments. 
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Figure 3.1     Anti-NPRA IgG4 mAb in the �- (A) and Y- (B) conformation. The anti-NPRA fragments are 
indicated with the labels Fc, FabKM, and FabHL, while the indices KM and HL stand for the involved heavy 
chains (colored accordingly). This figure was taken from Blech and Hörer et al.167 and is not the work of the 
author.  

In x-ray crystallographic experiments, an unusual conformer of anti-NPRA IgG4 can be 

found. As illustrated in Figure 3.1 (A) does the overall structure significantly differ from the 

usual Y-conformer found in antibodies. Here the Fab-Fc orientation displays a distorted �-

shape where the FabHL region is oriented towards the Fc region. To foster a better 

understanding of this conformational flexibility, both structures are investigated in solution 

via MD simulations and 3D RISM calulations in the following. 

3.1.1 Computational details 

The structures used in the 3D RISM calculations were taken from 63 snapshots of 500 ns 

MD simulations in the NpT-ensemble of the anti-NPRA IgG4 mAb in the λ- and Y-

conformation, generated in the group of Prof. Dr. Lars Schäfer. They were sampled every 

8 ns and are therefore considered uncorrelated. The error estimation of the potential force 

field energy was performed by block averaging168 (implemented in g_analyze of 

GROMACS). These simulations were not performed by the author. Further computational 

details can be found in Blech and Hörer et al.167. 

A specially adapted TIP3P water model with non-zero Lennard-Jones parameters for 

hydrogen and a dielectric constant of 78.4 at T=298.15 K and a density of 0.0333 Å-3 was 

used as the basis for a DRISM/HNC calculation, yielding the E99′-function. The 3D-RISM 
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calculations were performed on a regular grid with a spacing of 0.3 Å and 600 grid points 

on each axis. The PSE closure100 of order two was used and the calculations were performed 

with a convergence criterion of a difference in the residual norm of the direct correlation 

functions of less than 10-5 between two steps. Using the Amber99sb-ILDN/Glycam06j force 

field parameters in 3D RISM ensured consistency with the MD simulations. A particle-

mesh-Ewald approach with Lagrangian interpolation polynomials of order eight was used 

for the long-range reciprocal-space Coulomb potential. Furthermore, for periodic correction 

of the long-range electrostatics Kovalenko and Hirata’s compensating background charge169 

was used. The excess chemical potential was calculated entirely in reciprocal space. The 

partial molar volume (PMV) was calculated from the direct correlation function105 with an 

isothermal compressibility of 0.450183 × 109 Pa−1. The inputs and raw data to each frame 

and both conformers can be found in the electronic appendix under 3.1/Y_conf/RISM/ and 

3.1/lambda_conf/RISM/, respectively.  

To test the solvent dependency of the free energy difference between the λ- and Y-

conformation of the anti-NPRA, the 3D RISM calculations were repeated in the Schäfer-

group with a modified SPC/E water model170,171, including 150 mM NaCl172,173. The density 

was again 0.0333 Å-3 and the dielectric constant 78.4. The employed three-dimensional grid 

had a spacing of 0.5 Å and 384 grid points on each axis. In this experiment the KH-closure174 

(equivalent with the PSE closure100 of order one) was used and a convergence criterion of a 

difference in the residual norm of the direct correlation functions of less than 10-5 between 

two steps was employed. In the 3D RISM calculations utilizing the SPC/E water model the 

chemical excess potential was calculated in real space and were not performed by the author. 

3.1.2 Thermodynamic characterization of IgG4 conformations 

The difference in free energy between the �- and Y-conformer, defined as Δc = c[ − cY, 

can be estimated via 

 Δc = Δ§c − % Δ¨c + Δchyd. (3.1) 

The conformational enthalpies �� can be calculated by averaging the potential energy ���� 
over the MD simulations of the conformers. The potential energy itself consists of the 

bonded and non-bonded force field terms of the full antibody, including the glycan moiety. 
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Neglecting the pV contribution does not affect the results in any meaningful way as it is with 

less than 0.1 kJ/mol comparable small in the condensed phase.175 

Analyzing the development of the potential energy and hydration free energy (assuming 

equivalence of � ! and chyd) over the simulation time and snapshots respectively in 

Figure 3.2, a clear distinction between both conformers can be seen. The running averages 

over the potential energies appear to be stable over the 500 ns with no visible drift. Only 

chyd of the Y-conformer assumes higher values towards the end of the simulation, 

approaching chyd of the �-conformer. This could be the result of the tendency of the Y-

conformer to adopt a third, T-shaped conformer in the simulations. Since the number of 

snapshots for which this is the case is limited, one can nevertheless assume a significant 

difference in chyd between the conformers. 

 

Figure 3.2     The upper plot shows the, from MD simulations extracted, potential energies (bonded and non-
bonded solute force field energies) of the �-conformer (blue) and the Y-conformer (green) of the anti-NPRA 
IgG4 antibody together with a 5 ns running average. The lower plot shows hydration free energies calculated 
with 3D RISM (PSE-2/TIP3P) of 63, from the MD simulations extracted snapshots of the �- (blue) and Y-
conformer (green). The MD simulations, and consequently also the snapshots and potential energies, are not 
the work of the author. This figure was taken from Blech and Hörer et al.167. The raw data for "#$% can be 
found in the electronic appendix under 3.1/Results/. 

The difference in the conformational enthalpy between �- and Y-conformer, as shown in 

Table 3.1 and also visible in Figure 3.2, is with -521 ± 50 kcal mol-1 in clear favor of the �-
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conformer. Apparently, the Fab-Fc interaction and more compact packing of the �-

conformer results in a lower conformational enthalpy as the more spread out Y-conformer. 

To estimate the configurational entropy ¨c of (3.1), the quasi-harmonic approximation 

 ¨c = 6B2 ln(det(1 + 6B% ©2ℏ−2«¬)) (3.2) 

by Schlitter176, with the Boltzmann constant 6B, reduced Planck constant ℏ, and the 3N-

dimensional diagonal mass matrix M can be used. The elements of the particle position 

covariance matrix C are defined as 

 -T� = 〈(qT − 〈qT〉)(q� − 〈q�〉)〉. (3.3) 

The differences in −% ¨c, as shown in Table 3.1, is with -19 ± 12 kcal mol-1 small compared 

to Δ§c and Δchyd but also shows an advantage towards the �-conformation. 
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Table 3.1     Conformational enthalpy, §- , and entropy, −%¨- , (MD simulations) as well as the hydration free 
energy contribution cℎ��  (3D RISM) to the difference in conformational free energy ∆c¯ →[ . To check the 
robustness of the the results, cℎ��  was calculated for the TIP3P water model with a minimum 
(-0.12 kcal mol-1 Å-3)177 and maximum (-0.2 kcal mol-1 Å-3)177 PMV correction and without PMV correction. 
In addition to those checks, cℎ��  was also calculated for a SPC/E water model including 150 mM NaCl. The 
SPC/E 3D RISM calculations, as well as the MD simulation and the extracted properties, are not the work of 
the author. This table was taken from Blech and Hörer et al.167. The raw data for "#$% for the TIP3P experiments 
can be found in the electronic appendix under 3.1/Results/. 

 §c /  
kcal mol-1 

chyd / 
kcal mol-1 

−%¨c /  
kcal mol-1 

∆cY→λ / 
kcal mol-1 

PSE-2/TIP3P 
�-conformer -22703 ± 32  7937 ± 23 -3134 ± 11  
Y-conformer -22182 ± 38 7311 ± 23 -3115 ± 5  ∆(Y → [) -521 ± 50 +626 ± 33 -19 ± 12 +86 ± 61 

     
PSE-2/TIP3P/PMVmin 

�-conformer -22703 ± 32 -7479 ± 24 -3134 ± 11  
Y-conformer -22182 ± 38 -8098 ± 24 -3115 ± 5  ∆(Y → [) -521 ± 50 +619 ± 34 -19 ± 12 +79 ± 61 

     
PSE-2/TIP3P/PMVmax 

�-conformer -22703 ± 32  -17756 ± 24 -3134 ± 11  
Y-conformer -22182 ± 38 -18370 ± 24 -3115 ± 5  ∆(Y → [) -521 ± 50 +614 ± 34 -19 ± 12 +74 ± 61 

     
KH/SPC/E 

�-conformer -22703 ± 32 19159 ± 23 -3134 ± 11  
Y-conformer -22182 ± 38 18584 ± 24 -3115 ± 5  ∆(Y → [) -521 ± 50 +575 ± 33 -19 ± 12 +35 ± 61 

     

 

The difference in hydration free energy, however, is for all four 3D RISM experiments 

strongly positive, overcompensating Δ§c and −% Δ¨c, yielding a positive Δc. The 

reproducibility of this result underlines the robustness of the result that the Y-conformer is 

being favored in solution. The differences in the conformational free energy range between 

+35 ± 61 to +86 ± 61 kcal mol-1, with the SPC/E-NaCl solution having the lowest and the 

uncorrected TIP3P having the highest difference.  

The PMV correction compensates for the well-known RISM inherent error of overestimating 

the cavity formation term of the free energy. (This is also a key factor in chapter 3.2, where 

this error gets compensated for by deep learning models.). Since the correcting parameters 

are usually gained by fitting on the solvation free energy of small molecules177,178, the 



Results
 

 

- 44 - 
 

correction for a large protein like an antibody is approximated by a lower 

(-0.12 kcal mol-1 Å-3)177 and upper (-0.2 kcal mol-1 Å-3)177
 bound for the corresponding 

parameter. With increased PMV correction, the delta between the conformers decreases 

slightly but remains positive, even considering the significant errors assigned to Δc. The 

dependency of the result on the chosen solvent model, as shown in Table 3.1, is with a factor 

of about two not small, but since the experiment with the SPC/E-NaCl solution also yields a 

positive Δc, the Y-conformer can confidently be considered favored in solution. 

This finding, however, stands in contrast to the x-ray crystal structure determination in which 

the anti-NPRA mAb was found to crystallize in the �-conformer. A possible explanation is 

indicated by the negative Δ§c, suggesting a thermodynamic advantage of the �-conformer 

in the crystallized form. While in solution the equilibrium between �- and Y-conformer is 

heavily shifted towards the Y-form, upon crystallization of the antibody the �-form is 

predominantly removed from the solution and is replenished from the Y-form according to 

the principle of Le Chatelier. 

3.1.3 Summary of the subchapter 

The results outlined in this subchapter show that it is possible to calculate free energy 

differences between distinct conformational states of large proteins on a qualitative level 

with 3D RISM when paired with MD simulations. The employed method of running regular 

simulations of only the end-states and sampling from them to calculate the hydration free 

energy separately via 3D RISM, makes usually hard to model substantial conformational 

changes accessible. This finding is also well in line with previous studies36–39, successfully 

using similar methods like MM/3D RISM-KH35 to calculate binding free energies of protein-

ligand complexes. 

However, the shown results also demonstrate the limitations of the method. The large 

statistical errors narrow its field of application to either stable, rigid systems, where 

fluctuations in potential energy and hydration free energy are minimal, or to situations where 

the free energy difference between the endpoints is expected to be sufficiently large to 

overcome the statistical and systematic errors. 

For calculations of the binding free energies between compounds in protein-ligand 

complexes, the second requirement is usually not satisfied, as the differences in the binding 
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free energy tend to be not substantial enough. While there are complexes that are sufficiently 

stable as a whole36–39, it is also not uncommon to find some structural flexibility in loops and 

other semi-free-moving parts of the protein. However, those are often not part of the actual 

binding site and are only seldomly directly involved in the ligand-binding itself. 

Nonetheless, for methods like the one used in this subchapter, this is still a problem since 

such flexibilities still affect the full complex's potential energy and hydration free energy. 

In this work, the problem is approached by the localization of interaction energies and 

solvation free energies on an atom-wise level, focusing on identifying and characterizing 

key interactions between protein and ligand. The for this task employed localized free 

energies (LFE) are discussed in detail in the following chapters. 
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3.2 Free energy localization on small molecules 

3.2.1 Computational details 

Calculation of the localized free energies 

The structures used in this chapter were taken from the SAMPL5 publication178 as well as 

the set of EC-RISM partial charges from the SAMPL6 publication179 of Tielker et al.. 

Further, the Lennard-Jones (LJ) parameters were taken from the general Amber force field 

(GAFF) 1.598, and the calculation of the AM1BCC- and RESP-partial charges were 

performed with AMBER14180 and Gaussian16181, respectively. 

To provide the necessary E99′-function, a specially adapted182 SPC/E water model170 at 

T=298.15 K and a density of 0.0333 Å-3 was used as the basis for a DRISM/HNC calculation. 

The [-dependent 3D-RISM calculations were performed on a regular grid with a spacing of 

0.3 Å and 128 grid points on each axis using the PSE closure100 of order two and a 

convergence criterion of a difference in the residual norm of the direct correlation functions 

of less than 10-5 between two steps. The Lennard-Jones and Coulomb potentials were in full 

real space and scaled separately, increasing the numerical robustness while implementing 

softcore scaling for the Lennard-Jones potential avoids catastrophic divergences at 

endpoints. For the latter, a value of 0.5 for 8LJ was used, as it is well established in TI-

simulations109,110. A particle-mesh-Ewald approach with Lagrangian interpolation 

polynomials of order eight was used for the long-range reciprocal-space Coulomb potential. 

Furthermore, for periodic correction of the long-range electrostatics, a monopole 

renormalization183,184 was used. As for [ itself, each potential was scaled with a step size of 

0.1, totaling 22 independent steps. The preceding results were not carried over to the next 

step since file I/O would have nullified most time savings. The actual LFE calculations were 

done separately and in succession to the 3D-RISM runs, and the partial results were 

integrated over a cubic spline interpolation with the python package SciPy 1.1.0185, using 

the Fortran based quad function. The structures used for the calculations can be found in the 

electronic appendix under 3.2/Struc/. The force field parameters used for the LFE 

calculations can be found in 3.2/AM1BCC/, 3.2/RESP/, 3.2/ECRISM/, and in 

mnsol_atmInf.csv. Latter also contains the LFEs themselves. 
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Both deep learning models, 3D-CNN and MPNN, are coded in python and make extensive 

use of the PyTorch 1.0.1 package136. The Adam optimizer186 was used during training, and 

the relevant hyperparameters for the two in the following used architectures were optimized 

with HpBandSter187, a with Bayesian optimization extended variation of the hyperband 

algorithm188. 

3D CNN 

The architecture of the 3D-CNN model is summarized in Table 3.2 and was trained on the 

experimental solvation free energies of 502 molecules taken from the MNSol database189 

and was kept simple compared to modern computer vision (2D)190 and concurs in this regard 

with those of other publications concerned with similar tasks191,192. An extended series of 

experiments showed a strong tendency to overfit for more complex models probably due to 

the limited size of the available dataset, which also leads to a rather aggressive usage of 

dropout193. The model was trained on 323 grid points over 256 full iterations over the training 

splits of a 5-fold-cross validation, so-called epochs, with a batch size of 64 and a learning 

rate of 3 10-4. 

Table 3.2     Architecture of the 3D-CNN model. The number of channels for the convolution steps, units in 
the hidden fully connected layer, the number of these layers as well as the dropout rate were subject to a 
hyperparameter tuning. 

type channels kernel stride padding activation dropout
input 4

3D-conv 8 3 1 1 relu 0.00
max pooling  2 2 0

3D-conv 72 3 1 1 relu 0.10
max pooling  2 2 0

3D-conv 56 3 1 1 relu 0.15
max pooling  2 2 0

3D-conv 42 3 1 1 relu 0.10
max pooling  2 2 0

3D-conv 16 3 1 1 relu 0.00
max pooling  2 2 0

fully connected 384  relu 0.40
fully connected 1  

 

Mapping 3D coordinates to a regular grid that can be used with 3D CNN’s was done using 

Gaussian function, effectively spreading the information of each input channel onto the grid. 

In contrast to assigning it to the nearest grid point, this has the advantage that the information 

is not carried by only a single of thousands (sometimes millions) points, which is bound to 
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invoke problems with the 3D-CNN192. Mathematically this procedure is equivalent to a 

convolution operation typically defined as 

 (p ∗ �)(�) ∶= ∫ p(�′) �(� − �′)��′. (3.4) 

The function f holds here the LFE information and can be written as 

 p(�) = ∑ LFE(�8)@(� − �8)8  (3.5) 

where @ stands for the Dirac function, which ensures that f is defined everywhere and 

therefore becoming integrable. The function 

 �(� − �´) = 1
√(2;)3 det(µ) exp (− 12 (� − �´)Tµ−1(� − �´)) (3.6) 

is consequently the three-dimensional gaussian f gets folded with. Here µ denotes the 

covariance matrix, which is one on the principal diagonal and zero anywhere else, giving the 

Gaussian a dimension of 1/Å-3. An unnormalized Gaussian radial basis function (RBF), as 

used by Kuzminykh et al.192, was explicitly not chosen since such would shift the total over 

the LFE. For 3D CNN models, this does not matter in most cases, since moderate additive 

shifts, which do not alter the relation between the original points, can be easily adapted for. 

However, for consistency reasons and later usage (see chapter 3.3.3), the computationally 

more demanding option was chosen here nonetheless. 

Additionally, four rotations of 90° on each axis were applied to the grid, resulting in 64 

replicas. While having some translational invariance, 3D-CNNs are not rotationally invariant 

and therefore require this data augmentation. 

MPNN 

The used implementation of the MPNN network was, like the 3D CNN model trained on 

solvation free energies taken from the MNSol database189. It uses only two message-passing 

cycles to keep the model complexity low. Models with more such steps were also tested 

exploratory but tended to overfit, again caused by the limited dataset size. The readout 

function was composed of four fully connected hidden layers (units: 512, 128, 256, 64), each 
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with a ReLU activation function and a fully connected linear layer giving the final estimation 

of the solvation free energies. The number (bounds: 1 to 6) and dimensions (bounds: 26 to 

210) of the individual layers were found through hyperparameter optimization with the 

bounds given in parentheses. Experiments implementing more complex features in the 

model, like a learnable message function ¡R or multiple layers in the update function £R, 
were tested exploratory and did not improve and, to some extent, lead to even worse results 

(instability during training and overfitting). As before with the 3D-CNN, this is a direct 

effect of the limited dataset size. The resulting models were trained over 256 epochs with a 

batch size of 16. All learnable parameters were optimized with the Adam algorithm with 

enabled AMSGrad194, a learning rate of 5 10-4, and a weight decay of 1∙10-8. Batch size 

(bounds: 8 to 128), learning rate (bounds: 1 10-5 to 1 10-3), AMSGrad194 (True or False), and 

weight decay (bounds: 0 to 1 10-5) were subject to hyperparameter optimization with the 

bounds given in parentheses. 

As for the data preparation, the node matrices and the adjacency matrix were padded to 

dimensions of 64 x 64 to have access to batch-wise training. The samples (input features, 

solvation free energy), were normalized to zero mean and standard deviation of one, except 

for the LFE and partial charges, which retained their mean. 

The very limited number of samples and the simultaneously diverse nature of the dataset 

lead to various challenges during training and evaluation. To couple with them, three main 

measures were implemented. A split into training- validation- and test-set was not feasible, 

so a 5-fold-cross-validation (CV) approach was chosen. Seeing a high fluctuation between 

the individual train-test-compilations early on, the partitioning was repeated three times with 

different random seeds to decrease the influence of the inhomogeneous composition and 

increase the statistical reliability. To strengthen the statistical robustness even more and to 

overcome problems associated with some instabilities during training, each experiment was 

repeated five times with different random seeds. To compensate for rather rough training 

curves, a special form of early stopping was deployed, where the models were still trained 

for all epochs, but only those predictions of the test CV split were taken, with the lowest 

corresponding RMSE on the training set, respectively. For the calculation of the error 

metrics, the mean over the five predictions for each molecule was taken, and the three 5-fold 

CV splits were averaged via a quadratic mean. 
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3.2.2 Plausibility check of the localized free energy 

An important part of the scientific method is the independent and rigorous testing of any 

new approach or methodology. While being derived from solid mathematics, as shown in 

the theory part of this work (2.2.1), experimental validation of the LFE and their partitioning 

is not possible. This poses a fundamental problem since the main means of testing theoretical 

methods, especially in chemistry, are still experiments, and unusual but potentially fruitful 

findings would always cast the shadow of doubt on results obtained by a method, judged 

solely on its plausibility. Therefore, to assess the amount and usefulness of the information 

carried by the LFE, they get used as an input feature for deep learning models, which were 

trained on experimental solvation free energies (Δsolvc°) of 502 small molecules. Here it is 

important to note that the by 3D RISM calculated excess chemical potential, and therefore 

the localized free energy, is formally not equivalent to the solvation free energy electronic 

polarization energy Δsolvh, as shown by178 

 Δsolvc° = �ex + Δsolvh. (3.7) 

Furthermore, �ex and the LFEs are also suffering from inherent errors of the RISM 

methodology, and here predominantly from the overestimation of the cavity formation.66,67 

Any model trained on LFEs as input feature to predict solvation free energies must correct 

those errors and compensate for the missing terms. From this, a hypothesis regarding the 

LFEs can be formulated: if the assumption of a correct distribution holds, it should be 

possible to account for inherent errors and missing terms more effectively than with any 

other. The idea behind it is that since the individual terms and errors are connected through 

the physics of the unlaying system of solute and solvent, they can be approximated best when 

the LFE input reflects this system most truthfully. 

3.2.2.1 The LFE as input for deep learning models 

To prove this hypothesis, a suitable ML model has to be selected. Since the partial charge- 

and LFE-calculations already require a 3D-conformation of each molecule, the utilization of 

three-dimensional convolutional neural networks (3D CNN) is a natural choice regarding 

the selection of a suitable model. Analog to the extremely popular and successful 2D version, 

which is used extensively in modern video and picture analysis190, 3D-CNNs work on a 

regular grid and retain the spatial information of their input. 
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To illuminate their influence and to ensure that any observed trend is a general phenomenon 

and not unique to a particular method, each experiment is performed on three individual 

datasets, containing AM1BCC-, RESP- and EC-RISM-partial charges. A dependency on the 

3D-RISM �ex by the method for partial charge calculation is undoubtedly expected. 

However, it is unclear how the different sets of partial charges affect the localization and the 

prediction capabilities of the models. 

Table 3.3     The predictive capabilities of the 3D convolutional neural network (3D-CNN) is evaluated on the 
MNSol data set189, posterior separated in neutral and single positive and negative charged molecules, treated 
with three different methods for partial charge calculation. The used metrics are Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), coefficient of determination (R2), as well as the slope (m) and y-
intercept (b) of a linear fit on the predicted solvation free energies in kcal/mol. All numbers are a (where 
applicable quadratic) average over three different split five-fold cross-validations, each repeated five times. 
The raw data can be found in the electronic appendix under 3.2/mnsol_3DCNN_modelResults.csv and 
collectively under 3.2/mnsol_molInf.csv. The values for the three different CV-splits are also listed in 
Table 6.1. 

3D-CNN 

ML model RMSE MAE R2 m b 

AM1BCC   
All 2.66±0.32 1.50±0.23 0.99±0.00 0.98±0.00 -0.02±0.05 
Neutral 1.41±0.18 0.93±0.15 0.89±0.00 0.90±0.01 -0.29±0.05 
Anions 5.30±0.62 3.71±0.54 0.77±0.01 0.88±0.01 -7.68±0.74 
Cations 3.56±0.43 2.40±0.37 0.78±0.01 0.81±0.01 -11.54±0.69 
RESP      
All 2.42±0.32 1.45±0.25 0.99±0.00 0.97±0.00 -0.11±0.07 
Neutral 1.41±0.22 0.96±0.19 0.88±0.00 0.91±0.01 -0.35±0.06 
Anions 4.47±0.55 3.12±0.45 0.84±0.01 0.90±0.01 -5.54±0.87 
Cations 3.62±0.45 2.55±0.38 0.78±0.01 0.83±0.01 -10.25±0.76 
EC-RISM      
All 2.80±0.29 1.50±0.20 0.99±0.00 0.98±0.00 -0.11±0.03 
Neutral 1.35±0.16 0.92±0.13 0.90±0.00 0.90±0.01 -0.43±0.04 
Anions 4.87±0.56 3.53±0.46 0.78±0.00 0.84±0.01 -11.36±0.67 
Cations 5.35±0.44 2.72±0.34 0.66±0.01 1.01±0.02 2.02±1.10 
 

The data in Table 3.3 shows an advantage of RESP-charges in 3D CNN models over both 

other tested methods for all observed metrics, but most prominent in the RMSE between 

experimental and predicted solvation free energies. Performance-wise they are followed by 

the semi-empirical quantum-mechanic AM1BCC- and only then by the high-level EC-

RISM-charges. While the trend between the partial charge models is mostly reproduced by 

the MPNN architecture (discussed later, see Table 3.4), the assigned errors should kept in 

mind for the comparison. 

A sub-par performance of AM1BCC-charges is, to a certain extent, expected, especially in 

comparison with RESP-charges, as their drawbacks in molecular dynamics simulations195–
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197 and poor recreation of high-level QM observables198 were shown before. With EC-RISM 

having the highest level of theory of the here tested partial charge models, explaining the 

reduced predictive capabilities of those models trained with EC-RISM-charges must have 

different reasons. As described earlier, the task of the ML models is to compensate for 

missing terms and, more importantly, to correct for RISM inherent errors from the provided 

input features like partial charges and LFEs. In the EC-RISM-based data, this connection is 

presumably more complex than in the other two partial charge models due to the high level 

of theory with which the underlying system is characterized. The data in Table 3.3 suggest 

that the capabilities of the neural networks to draw this more complex connection from the 

input over the correcting terms to the solvation free energy is limited, yielding suboptimal 

results compared to RESP-charges-based models. 

For example, a higher polarization of the molecules, like it is the case for EC-RISM-charges, 

leads to a lower �ex and higher electronic energies, partly canceling each other out in their 

effects. But more importantly, the more complex electronic structure influences the solvent 

distribution and thereby the cavity formation accordingly. As discussed in chapter 3.1, this 

plays a significant part in the RISM inherent errors, usually expressed and corrected via the 

partial molar volume (PMV), as shown among others by Tielker et al.66,68–70. Since the input 

for the ML-models contains only very limited information about the underlying quantum 

mechanics, being able to estimate these terms in addition to the already provided �ex is a 

critical factor for an accurate prediction. As EC-RISM employs high-level QM for the 

calculations of the Δsolvc° underlying terms, one can assume their estimation is the most 

challenging compared side by side with the other methods and is, at least, for the 3D CNN 

models, a bottleneck.  
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Figure 3.3     All four plots show predicted versus experimentally measure solvation free energies from the 
MNSol database for water as solvent (exemplary CV). A: Comparison between different sets of partial charges 
used in LFE calculation and as part of the input for the 3D-CNN model. B: Comparison between different sets 
of partial charges used in LFE calculation and as part of the input for the MPNN model. C: Results of the 
MPNN model with full LFE data and RESP charges, colored with respect to molecular charges. D: Comparison 
between MPNN models trained with varying LFE data. The raw data can be found in the electronic appendix 
under (A) 3.2/mnsol_3DCNN_modelResults.csv, (B) 3.2/mnsol_MPNN_modelResults.csv, (C) 
3.2/mnsol_MPNN_modelResults.csv, and (D) 3.2/mnsol_MPNN_LFEtests_modelResults.csv. They can also 
be found collectively under 3.2/mnsol_molInf.csv. 

From Figure 3.3 panel C as well as from Table 3.3, it is evident that the predictions of Δsolvc° 

for neutral molecules are far better than for charged ones. Especially the substantial 

discrepancy between RMSE and MAE for anions and cations compared to neutral molecules 

displays a high variance in all models and therefore a considerable challenge. The most likely 

explanation is the strong imbalance between charged (112) and neutral (390) molecules in 

the used dataset, which is especially tough for the ML-models. Also, the unavoidable 

experimental uncertainty for charged species is increasing the problem. Another reason for 
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the higher values in both error metrics is the significantly higher absolute values for the 

solvation free energies for charged molecules. As the high errors for charged molecules are 

most likely a direct cause of the data set, one could come to the conclusion to omit them and 

turn to bigger datasets like FreeSolv199 containing only neutral molecules. However, since 

charged species are not unusual in aqueous solutions and therefore are indeed relevant (for 

example, in drug discovery) and the LFE are supposed to be tested also for those cases, it is 

important not to neglect them. 

After all, the obtained models for all three partial charge sets predict the solvation free energy 

of a given molecule with acceptable accuracy. Nonetheless, during the preprocessing and 

training phase, some distinct drawbacks and disadvantages of 3D-CNNs become obvious. 

Due to the three-dimensionality of the grids and the rather intricate strategy to increase the 

statistical robustness of our results, it becomes quite cumbersome and time-consuming to 

work with the many large data files. 

This raised the question, whether the native encoding of 3D-conformations of the 3D CNN 

is a significant advantage or approaches omitting this can lead to similar results. Especially 

when some input features already contain information about the three-dimensional structure 

of the molecule like partial charges or LFEs themselves, this seems increasingly plausible. 

So-called message passing neural networks (MPNNs) are proven to cope well with a variety 

of property prediction tasks79,147,200,201 and are therefore a plausible choice to complement 

the experiments with the 3D CNN models. 
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Table 3.4     The predictive capabilities of the message passing neural network (MPNN) is evaluated on the 
MNSol data set189, posterior separated in neutral and single positive and negative charged molecules, treated 
with three different methods for partial charge calculation. The used metrics are Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), coefficient of determination (R2), as well as the slope (m) and y-
intercept (b) of a linear fit on the predicted solvation free energies in kcal/mol. All numbers are a (where 
applicable quadratic) average over three different split five-fold cross-validations, each repeated five times. 
The raw data can be found in the electronic appendix under 3.2/mnsol_MPNN_modelResults.csv and 
collectively under 3.2/mnsol_molInf.csv. The values for the three different CV-splits are also listed in 
Table 6.2. 

MPNN 

ML model RMSE MAE R2 m b 

AM1BCC   
All 2.43±0.30 1.28±0.21 0.99±0.00 1.00±0.00 -0.11±0.02 
Neutral 1.34±0.17 0.82±0.14 0.90±0.00 0.93±0.01 -0.30±0.04 
Anions 5.02±0.59 3.23±0.46 0.77±0.02 0.83±0.01 -12.56±1.09 
Cations 2.59±0.35 1.72±0.30 0.87±0.01 0.89±0.01 -7.02±0.70 
RESP      
All 1.94±0.24 1.19±0.19 1.00±0.00 1.00±0.00 -0.10±0.04 
Neutral 1.28±0.16 0.82±0.14 0.91±0.00 0.94±0.00 -0.31±0.03 
Anions 3.52±0.40 2.54±0.35 0.88±0.00 0.86±0.00 -10.56±0.33 
Cations 2.51±0.38 1.92±0.33 0.88±0.00 0.95±0.01 -3.29±0.77 
EC-RISM      
All 2.23±0.27 1.26±0.19 0.99±0.00 1.00±0.00 -0.09±0.04 
Neutral 1.29±0.16 0.76±0.13 0.91±0.00 0.95±0.01 -0.26±0.03 
Anions 4.31±0.51 3.09±0.38 0.83±0.00 0.89±0.01 -8.65±0.42 
Cations 2.96±0.35 2.22±0.30 0.84±0.01 0.91±0.01 -5.89±0.70 
 

As before, the RESP-charges seem to be the sweet spot for polarization and complexity as 

they once again outperform both other methods. Where the 3D CNN models struggled to 

make use of the high-level EC-RISM data due to its complexity and even fall behind the 

low-level AM1BCC charges, eventhough not by much, the MPNN models are able to 

compensate and reverse the trend. The effect is far less dramatic in the MAE where both 

methods lead to similar numbers with 3D-CNN as well as with MPNN models. This speaks 

for a reduced variance and an improved handling of outliers, i.e., under represented molecule 

types, or in short, a higher generalization capability. This, in turn, could be a cause of the 

more efficient usage of pre-calculated information in the input. 

While it cannot be ruled out that the improved performance of the MPNN-models could be 

a result of a better-suited choice of architecture and hyperparameters, it nonetheless appears 

that the explicit encoding of the 3D-conformations is not a significant advantage in this 

particular instance, under the light of the described trends. Paired with the easier data 

handling and faster training of the MPNN approach, the 3D CNN models were omitted for 

further analysis for those reasons. Regarding the influence of the partial charge model, it has 
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to be noted that, although the performance differences between the charge models can not 

be neglected, they are, in general, not large in the here presented experiments. Therefore, all 

three will be included in the following plausibility check of the LFEs, outlining trends and 

increasing the robustness of the finidings.  

3.2.2.2 Plausibility of the LFE-distribution 

Despite the elucidating results from the investigation of the two deep learning approaches, 

the validation of the earlier formulated hypothesis is still pending. Therefore, a series of 

experiments with different amounts of LFE information was conducted. Four sets of input 

data from each of the three sets of partial charges and the corresponding LFE are trained 

with the MPNN models, following the same protocol as before. The following four 

categories describe the range of test scenarios: 

• LFE: This is the reference and the LFE as it is computed; There is no reason to 

assume that there is more than one correct distribution. Therefore, models trained 

with this input should perform best. 

• LFEmean: The mean over all LFE-values if a molecule is assigned to each atom. This 

is the equivalent to not localize at all and carries the information of a standard 3D 

RISM calculation uniformly spread over the molecule. This set of input data is 

expected to perform better than no thermodynamic input202, but worse than the 

standard LFE. 

• LFErandom: The calculated LFE-values are allocated to randomly chosen atoms. 

Similar to LFEmean, the sum over all atoms equals the standard 3D RISM free energy. 

Following the hypothesis, models trained with this input should perform worse than 

those trained with the correct LFE distribution as well as the LFEmean data. 

• LFEon 0: All values in the LFE input channel are set to 0. This is the baseline model, 

which demonstrates how much performance originates from the model itself and the 

remaining input features. Without any thermodynamic information and only little 

knowledge about the conformation via the partial charges, this is expected to 

perform the worst. 

 

 



Free energy localization on small molecules 
 

 

- 57 - 
 

Table 3.5     To assess the quality of inherent information of the LFE, the MPNN model was fitted with 
diminishing amounts of data on three levels: the mean over the full molecule is assigned to each atom (LFE 
mean), the calculated LFE values are assigned to random atoms (LFE randomized), the LFE channel is set to 
zero for each molecule (LFE set to 0). As a reference, the results utilizing the original data (LFE as calculated) 
are given once again. The raw data can be found in the electronic appendix under 
3.2/mnsol_MPNN_LFEtests_modelResults.csv and collectively under 3.2/mnsol_molInf.csv. The values for 
the three different CV-splits are also listed in Table 6.3. 

 RMSE MAE R2 m b 

AM1BCC   
LFE as calculated 2.43±0.30 1.28±0.21 0.99±0.00 1.00±0.00 -0.11±0.02
LFE mean 2.65±0.26 1.47±0.21 0.99±0.00 1.00±0.00 -0.14±0.05
LFE randomized 2.78±0.33 1.65±0.25 0.99±0.00 0.99±0.00 -0.11±0.03
LFE set to 0 3.29±0.48 1.88±0.33 0.99±0.00 0.98±0.00 -0.23±0.05
RESP   
LFE as calculated 1.94±0.24 1.19±0.19 1.00±0.00 1.00±0.00 -0.10±0.04
LFE mean 2.44±0.26 1.44±0.21 0.99±0.00 1.00±0.00 -0.12±0.03
LFE randomized 2.75±0.32 1.65±0.25 0.99±0.00 1.00±0.00 -0.10±0.03
LFE set to 0 3.32±0.49 1.89±0.33 0.99±0.00 0.98±0.00 -0.23±0.05
EC-RISM   
LFE as calculated 2.23±0.27 1.26±0.19 0.99±0.00 1.00±0.00 -0.09±0.04
LFE mean 3.41±0.40 1.55±0.22 0.99±0.00 0.99±0.00 -0.16±0.05
LFE randomized 2.83±0.36 1.60±0.25 0.99±0.00 0.99±0.00 -0.16±0.04
LFE set to 0 3.43±0.63 1.83±0.36 0.98±0.00 0.98±0.00 -0.28±0.05
 

The corresponding results can be found in Table 3.5 and in panel D of Figure 3.3. The slope 

and intersect of a regression line, fitted on calculated vs. experimental values, is almost equal 

for all experiments. Usually, such uniform results are not overly conclusive; here however, 

they lead to a valuable insight. In situations where the information in the input data is 

insufficient or the model itself cannot find a suitable function connecting input and output, 

often a slope of less than one and an intersect approaching the mean of y in the training set 

can be found. Given that even the fits on the LFEon 0-results are almost perfect, the MPNN-

model can draw this general connection even without thermodynamic input. Nevertheless, 

these experiments show the largest RMSE values within the series, which are particularly 

sensitive to outliers. This gives the impression that those MPNN-models, trained without 

thermodynamic input, are valid estimators of Δsolvc°, but struggle with chemistry under-

represented in the training set. This observation is underlined by the significantly higher 

statistical errors for the experimetns with reduced thermodynamic information. This is an 

unsurprising limitation and is usually overcome by adding more data. However, this is often 

hard to come by, and the lack of it is in chemistry-related, real-world deep learning 

applications a significant, sometimes insurmountable obstacle, which is already hindering 

progress and narrows the paths of advancements. The improved handling of outliers of those 
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models trained with thermodynamic input shows that physical input can reduce this need 

and increase generalizability.  

The above introduced experiments demonstrate this in three gradations, where the individual 

LFE-values of the input modes LFErandom and LFEmean share two imported properties. On the 

one hand, they do correspond to a solvent distribution not found by 3D RISM, and on the 

other, their sum is still equal to �ex calculated with 3D-RISM. The latter is probably 

responsible for the improved RMSE and MAE values compared to models trained with no 

LFE information. The former indicates how important the correctness of the presented 

physics is to the models. Since the force field parameters are unchanged in both cases, the 

@"89 (�, [) @[⁄  term in (2.33) is also untouched, which leaves only the g-function as 

modulating and differing term between both cases. By trying to imagine a g-function 

generating the permuted/altered LFE-values, one must conclude that it cannot be a single 

function for all atoms but rather a unique one for each. This stands in strong contrast to the 

physical basis, which explains not only the worse performance compared to the standard 

LFE-distribution but also the discrepancy between LFErandom and LFEmean. For most 

molecules, the hypothetical g-functions in the LFEmean-set are closer to each other as those 

in the LFErandom-set, and therefore nearer to a physically plausible representation, which 

leads to more accurate predictions (except for the RMSE in the EC-RISM partial charge set 

for unknown reasons). 

This thought experiment shows that an arbitrary distribution of the free energy onto atoms 

will, in almost all cases, break the underlying physics. The numbers in Table 3.5 illustrate the 

significant drawbacks associated with this for all three partial charge models and confirm 

the hypothesis of the calculated LFE being a plausible distribution. The fact that models 

trained with those datasets outperform all other models confirms the assumption that the in 

this work introduced LFE method indeed yields the correct distribution of the full free 

energy. 

3.2.2.3 Summary of the subchapter 

This subchapter introduced the LFE method as a new way of localizing the free energy 

obtained by 3D-RISM onto individual sites. In the absence of a direct experimental method 

to measure the contribution of individual atoms to the total free energy, a deep learning 

approach was used to validate the LFEs and thereby could also demonstrate the benefits of 
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physical input for such models. It could be shown that carefully designed input features can 

improve the performance of (comparably) simple models trained with challenging small and 

heterogeneous datasets. This can be a good solution to the notorious problem in chemistry 

of having too little data to train models with higher complexity and predictive power. The 

described findings show a clear advantage of those models trained with LFE values over 

those trained with the reference input. Taken together with the sound mathematical 

derivation and the clear trend in the deep learning experiments, it can be said that the 

localization of the free energy is indeed valid. This subchapter demonstrates only a small set 

of possible use cases for the LFE, but the concept can be of great use in many other fields of 

application. Since the approach has no theoretical limit to the size of the treated molecules, 

other than computational resources, it can even be applied to protein-ligand complexes and 

help to rationalize experimental trends in compound series and thereby guide the further 

development and design of new drugs. The plausibility being demonstrated, the application 

of the LFEs to such systems is the concern of the next chapter. 
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3.3 Applying FED and LFE to protein-ligand complexes 

Thrombin is produced from prothrombin in the blood coagulation pathway and activates 

fibrinogen (I) to fibrin (Ia) which in turn, together with the also activated XIIIa, forms the 

cross-linked fibrin clot. It is a common part of the intrinsic pathway and the extrinsic 

pathway, why it is of particular interest for therapeutic anti-clogging drugs, as inhibition of 

it can stop both. This is also true for factor X, respectively Xa, for which several inhibiting 

drugs like Apixaban, Edoxaban, and Rivaroxaban are available. 

Commonly used drugs for treatment for patients with an increased risk of strokes, pulmonary 

embolism, deep vein thrombosis, atrial fibrillation, and other thrombosis are heparin and 

warfarin, influencing the thrombin availability indirectly. Unfortunately, those drugs suffer 

from multiple issues. For example, a particularly severe side effect of heparin is the Heparin-

induced thrombocytopenia (HIT), causing thrombosis due to an immune reaction to a 

complex formed with the platelet factor 4203,204. The therapeutic usage of warfarin, on the 

other hand, is problematic for its drug and food interactions, and dosage must be monitored 

strictly205,206. Therefore, several alternative drugs, so-called Direct thrombin inhibitors 

(DTI)207 are becoming more widely used lately208. This including, among others, 

Dabigatran209, Bivalirudin210, and Argatroban211, some of which are even reversible in their 

therapeutic effect. The binding site of thrombin is shown in Figure 3.4. 

 

Figure 3.4     Schematic representation of the thrombin binding site after Baum et al.212. Substituents R1 and 
R2 refer to the variations in the compound series80 discussed in this work. 
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Nonetheless, these drugs are also not without issues. For example, they suffer from narrow 

therapeutic windows, fast degradation, liver213 and kidney toxicity214, and unwanted side 

effects like bleedings and gastritis215,216. For those reasons, the search for new DTIs is still 

ongoing, and the development of new candidate compounds is of outstanding academic and 

industrial interest. 

 

Figure 3.5     Structure of all six thrombin inhibitors80 used in this work. The inhibitory potency of the 
compounds towards human thrombin is given as kinetic inhibition constant Ki. The corresponding relative 
thermodynamic properties, listed over the arrows, were measured via isothermal titration calorimetry (ITC). 
The figure is modeled after Baum et al.80. 

The following chapter applies the localized free energy and free energy derivatives methods 

to a series of thrombin inhibitors as an example of their applicability in computer-aided drug 

discovery and design, focusing on their potential to identify important interaction sites 

between protein and ligand as well as promising features for optimization. First, the concept 

of atom-wise LFEs is explored, and its contributions are discussed in the context of protein-

ligand complexes. Leading from the learned lessons, an alternative visualization method gets 
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proposed and its key features explained. With a solid understanding of the LFEs and their 

interpretation, they get applied to the full series of thrombin inhibitors. The chapter is 

concluded considering likely experimental uncertainties in crystallographic complex 

structures and their effect on the LFEs. 

3.3.1 Thermodynamic background 

The formation of complex AB can formally be written as 

 Aaq + Baq → ABaq (3.8) 

where A and B are placeholders for the host and guest molecules, and AB stands for the 

complex of both consequently. The subscript "aq" specifies the medium in which the binding 

occurs as an aqueous environment. While this is the defacto standard for biologically 

relevant processes like protein-ligand binding, the here described scheme is not limited to 

that. It is also valid for any other solvent that may be of interest in different research fields 

like for example, chemical synthesis and polymer production. 

 

Figure 3.6     Idealized approach to calculate localized binding free energies on protein (orange; denoted A) 
and ligand (blue; denoted B). The circles in both binding partners stand for individual sites, while the in the 
diagram shown numbers give example localized free energies and interaction energies. The labels below the 
pictograms show to which terms the numbers are associated (left: localized hydration free energy of both 
binding partners in free solution, middle: localized hydration free energy of the complex and interaction energy, 
right: localized binding free energy). 

The equation used in this chapter to calculate the binding free energy ∆bindc, defined as the 

difference in the total Gibbs free energy occurring during complex formation, is given by 

 ∆bindcAB = chyd,AB − chyd,A − chyd,B + hAB. (3.9) 

The hydration free energy chyd, is here treated as equivalent to the excess chemical potential 

�ex as calculated by 3D RISM (see chapter 3.1). The interaction energy hAB is modeled as 
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the non-bonded force field terms. This is also a standard, non-localized version of the in the 

following used equations for the localized binding free energy. In contrast to chapter 3.1 the 

complex and both binding partners are here treated as rigid bodies, which means in this case 

that only one structure is used for the calculations of all contributing terms. With this, all 

solute entropy terms are neglected, and conformational fluctuations cannot be represented. 

Furthermore, by assuming the same ligand and protein conformer in free solution as in 

complex, through relaxation process induced changes in the intramolecular energy are not 

considered. The same potential discrepancy between conformers in solution and in complex 

also affects the hydration free energy for the unbound molecules. Those approximations 

inevitably influence the results discussed in this chapter. However, they are made as a 

compromise in the benefit of speed and computational requirements. Especially with the 

goal of the localization of ∆bindc in mind, considering those terms would increase the time 

and compute demands significantly (see the approach taken in chapter 3.1).  

For a full localization of the binding free energy, each of the contributing terms must be 

localized. For chyd this is done with the LFE approach, discussed in chapter 3.2. The atom-

wise calculation of hAB is straight forward, as it is simply the sum over all non-bonded force 

field interaction of an atom with all atoms of the binding partner. The actual localized 

binding free energy calculation is done separately for A and B but follows the same rules as 

the standard, non-localized equation and are given by 

 ∆bindcAB(A) = chyd,AB(A) − chyd,A(A) + hAB(A)
2  (3.10) 

and 

 ∆bindcAB(B) = chyd,AB(B) − chyd,B(B) + hAB(B)
2  (3.11) 

correspondingly. The superscripts (A) and (B) denote the localization of the property on the 

binding partners. The connection of (3.10(3.10) and (3.11) to (3.9) is given by  
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 chyd,A = ∑ chyd,A,T(A)
T , (3.12) 

 chyd,B = ∑ chyd,B,�(B)
� , (3.13) 

 chyd,AB = ∑ chyd,AB,T(A)
T + ∑ chyd,AB,�(B)

� , and (3.14) 

 ∆bindcAB = ∑ ∆bindcAB,T(A)
T + ∑ ∆bindcAB,�(B)

� . (3.15) 

Only the contributions of both hAB,loc(A)  and hAB,loc(B)  must be treated differently as  

 hAB = ∑ hAB,T(A)
T  and hAB = ∑ hAB,�(B)

� . (3.16) 

To avoid double-counting a factor of ½ is introduced in (3.10) and (3.11). 

3.3.2 Computational details 

Preparation of the protein-ligand complex structures 

The following discussed structures are taken from Baum et al.80 and can be found in the 

Protein Data Base (PDB) under the codes 2ZDA, 2ZO3, 3DHK, 2ZFP, 2ZGX, and 2ZC9. 

With a resolution between 1.58 Å (2ZDA) and 1.80 Å (2ZGX) (the only exception is 2ZFP 

with 2.25 Å), they can be considered of high quality, especially within the requirements of 

this work.  

The structure of all six in more detail discusses complexes show only little variance, as 

shown in Figure 3.7. There is only little disagreement between the cartoon representations, 

and even key amino acids in the binding site are crystallized in almost the same position in 

all six complexes, despite structural differences in the corresponding ligands. 
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Figure 3.7     Superposition of cartoon representations of the original PDB structures of 2ZDA, 2ZO3, 3DHK, 
2ZFP, 2ZGX, and 2ZC9.80 Ligands and selected amino acids are shown as sticks and the semi-transparent 
surface is calculated from the 2ZFP structure. 

Nonetheless, as it is common in x-ray structures, the most flexible parts of the proteins could 

not be resolved and create gaps within the structure. For molecular dynamics simulations, 

such unwanted gaps within a structure are a severe problem, which must be resolved in 

preprocessing. 3D RISM is not as strict in this regard, and calculations are still possible even 

without a complete protein even though missing amino acids (AA) influence the solvent 

distribution and, therefore, the obtained results. Luckily, the observed gaps are far from the 

binding site and are unlikely to hinder a reliable characterization of the protein-ligand 

binding process. Nonetheless, for comparison between the individual complexes, the defects 

have to be unified. This could have been achieved easily by deleting those amino acids not 

present in all structures or, more cumbersome, adding all missing residues. Yet, the strategy 

used here was to model only those residues, for which a template was present in at least one 

of the other here used structures. This can be seen as a compromise between the two extremes 

and reduces the risk of introducing potential artifacts, which could occur by modeling 

additional amino acids from homology models or widening already existing gaps. This 
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approach had only one exception of asparagine 14L of chain L in 2ZDA being deleted from 

the sequence instead of being modeled in the other structures, as it was only present in 2ZDA. 

The modeling was done with the software package MODELLER version 9.14217,218. A 

summary of the sequence provided by the x-ray structures as well as the used reference 

sequence to which missing amino acids were modeled is shown in Table 3.6. Each structure 

was modeled with all remaining structures used as templates to inform the modeling process 

with as much experimental evidence as possible. This, and the strategy not to model 

structurally unknown amino acids, rendered an additional force field optimization 

unnecessary and potentially even contra-productive. Such an optimization would alter not 

only the coordinates of the added residues but also those of the already experimentally 

resolved ones. However, as the approach in this chapter uses only one conformation per 

complex, as described earlier, it relies on the latter. The distance between the nearest ligand 

atom and the last C-α carbon before the closest gab in the protein is about 11.6 Å, affecting 

the analysis only minimally. Furthermore, since the gabs are the same for all discussed 

complexes such artifacts are mostly canceled out in direct comparison. For unknown 

reasons, the modeling of single amino acids also introduced artifacts in some of the 

presumably not modeled amino acids, leading to clustered oxygen and hydrogen atoms of 

sidechains. Those artifacts did not occur in direct contact with any of the ligands. The raw 

data and modeling results can be found in the electronic appendix under 

3.3/Param/Model_struc/. 
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Table 3.6     Sequences used for modeling the protein structures with the PDB codes listed under Struct. The 
with Ref. titled sequence lists all residues of the used thrombin variant. Residues not present in the original 
structure, but part of the set of those to be modeled are highlighted in red, while the one deleted from 2ZDA is 
shown in green. Chain breaks are indicated by forward slashes. The raw data and modeling results can be found 
in the electronic appendix under 3.3/Param/Model_struc/. 

Struct. Sequence 
Ref. 

2ZDA 

2ZO3 

2ZC9 

3DHK 

2ZFP 

2ZGX 

 

Ref. 

2ZDA 

2ZO3 

2ZC9 

3DHK 

2ZFP 

2ZGX 

 

Ref. 

2ZDA 

2ZO3 

2ZC9 

3DHK 

2ZFP 

2ZGX 

 

Ref. 

2ZDA 

2ZO3 

2ZC9 

3DHK 

2ZFP 

2ZGX 

 

Ref. 

2ZDA 

2ZO3 

2ZC9 

3DHK 

2ZFP 

2ZGX 

TFGSGEADCGLRPLFEKKSLEDKTERELLESYIDGR/IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWV 

-----EADCGLRPLFEKKSLEDKTERELLESYI---/IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWV 

------ADCGLRPLFEKKSLEDKTERELLESYI---/IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWV 

-----EADCGLRPLFEKKSLEDKTERELLESYI---/IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWV 

------ADCGLRPLFEKKSLEDKTERELLESYI---/IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWV 

-----EADCGLRPLFEKKSLEDKTERELLESYI---/IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWV 

------ADCGLRPLFEKKSLEDKTERELLESYI---/IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWV 

 

LTAAHCLLYPPWDKNFTENDLLVRIGKHSRTRYERNIEKISMLEKIYIHPRYNWRENLDRDIALMKLKKPVAFSD 

LTAAHCLLYPPWDKNFTENDLLVRIGKHSRTRYERNIEKISMLEKIYIHPRYNWRENLDRDIALMKLKKPVAFSD 

LTAAHCLLYPPWDKNFTENDLLVRIGKHSRTRYERNIEKISMLEKIYIHPRYNWRENLDRDIALMKLKKPVAFSD 

LTAAHCLLYPPWDKNFTENDLLVRIGKHSRTRYERNIEKISMLEKIYIHPRYNWRENLDRDIALMKLKKPVAFSD 

LTAAHCLLYPPWDKNFTENDLLVRIGKHSRTRYERNIEKISMLEKIYIHPRYNWRENLDRDIALMKLKKPVAFSD 

LTAAHCLLYPPWDKNFTENDLLVRIGKHSRTRYERNIEKISMLEKIYIHPRYNWRENLDRDIALMKLKKPVAFSD 

LTAAHCLLYPPWDKNFTENDLLVRIGKHSRTRYERNIEKISMLEKIYIHPRYNWRENLDRDIALMKLKKPVAFSD 

 

YIHPVCLPDRETAASLLQAGYKGRVTGWGNLKETWTANVGKGQPSVLQVVNLPIVERPVCKDSTRIRITDNMFCA 

YIHPVCLPDRETAASLLQAGYKGRVTGWGNLKET-------GQPSVLQVVNLPIVERPVCKDSTRIRITDNMFCA 

YIHPVCLPDRETAASLLQAGYKGRVTGWGNLKE--------GQPSVLQVVNLPIVERPVCKDSTRIRITDNMFCA 

YIHPVCLPDRETAASLLQAGYKGRVTGWGNLKET-------GQPSVLQVVNLPIVERPVCKDSTRIRITDNMFCA 

YIHPVCLPDRETAASLLQAGYKGRVTGWGNLKE--------GQPSVLQVVNLPIVERPVCKDSTRIRITDNMFCA 

YIHPVCLPDRETAASLLQAGYKGRVTGWGNLKET-------GQPSVLQVVNLPIVERPVCKDSTRIRITDNMFCA 

YIHPVCLPDRETAASLLQAGYKGRVTGWGNLKE--------GQPSVLQVVNLPIVERPVCKDSTRIRITDNMFCA 

 

GYKPDEGKRGDACEGDSGGPFVMKSPFNNRWYQMGIVSWGEGCDRDGKYGFYTHVFRLKKWIQKVIDQFGE/GDF 

GYKPDEGKRGDACEGDSGGPFVMKSPFNNRWYQMGIVSWGEGCDRDGKYGFYTHVFRLKKWIQKVIDQFG-/GDF 

GYKPDEGKRGDACEGDSGGPFVMKSPFNNRWYQMGIVSWGEGCDRDGKYGFYTHVFRLKKWIQKVIDQFG-/GDF 

GYKPDEGKRGDACEGDSGGPFVMKSPFNNRWYQMGIVSWGEGCDRDGKYGFYTHVFRLKKWIQKVIDQFG-/GDF 

GYKPDEGKRGDACEGDSGGPFVMKSPFNNRWYQMGIVSWGEGCDRDGKYGFYTHVFRLKKWIQKVIDQFG-/-DF 

GYKPDEGKRGDACEGDSGGPFVMKSPFNNRWYQMGIVSWGEGCDRDGKYGFYTHVFRLKKWIQKVIDQFG-/-DF 

GYKPDEGKRGDACEGDSGGPFVMKSPFNNRWYQMGIVSWGEGCDRDGKYGFYTHVFRLKKWIQKVIDQFG-/-DF 

 

EEIPEEYL 

EEIPEEYL 

EEIPEEY- 

EEIPEEY- 

EEIPEEY- 

EEIPEEYL 

EEIPEEYL 

 

Due to a lack of proper parameters, an additional alteration of the published structures was 

performed on the modified O-sulfo-L-tyrosine amino acids (TYS), which were transformed 

into regular tyrosine by removing the sulfonyl group. This was followed by the removal of 

all resolved water molecules, whereas the two sodium ions, which are present in all eight 

structures, were kept. 

Protonation and parameterization of the modeled protein structures were done with the 

program teLeap of the AmberTools18 from Amber2018219 using the FF14SB force field99. 
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This also includes the determination of the protonation state of basic and acidic amino acids 

to their default values at pH 7.4. The preparations of the ligands comprised of a protonation 

step using openBabel220, also at pH 7.4, followed by the calculation of RESP charges with 

Gaussian 16221 and teLeap on the basis of Hartree-Fock calculations with the 6-31G* basis 

set222,223. The Lennard-Jones non-bonded parameters were taken from the GAFF98 force 

field. The raw data and resulting parameters can be found in the electronic appendix under 

3.3/Param/. 

Free energy calculations and visualizations 

For the calculation of the LFE values, most of the computational parameters described in 

3.2.1 were reused in this chapter and are therefore not explained in further detail here. This 

includes those regarding the 3D RISM calculation as well as the methods and parameters 

controlling the integration. Only the grid dimension had to be extended to 240 by 250 by 

290 with an equidistant grid point spacing of 0.25 Å to accommodate the significantly larger 

molecules. The parameterization of the proteins was done with the FF14SB99 force field. 

The raw data and resulting parameters can be found in the electronic appendix under 

3.3/Param/. The non-localized calculation of the excess potential was done via a 3D version 

of the Morita-Hiroike formula101,102.  

The individual solvation free energies of the unbound ligand and protein and the one of the 

complex were calculated and on the corresponding sites localized in separate computational 

steps in a semi-trivial parallel way. Since all [-steps are independent of each other, they were 

calculated simultaneously, reducing the calculation time drastically by increasing the 

demand for computational resources. The values for the intermolecular energy were taken 

from the [ = 1.0 step of the electrostatic scaling run of the complex. The 3D RISM results 

and LFEs can be found in the electronic appendix under 3.3/3.3.3/. 

The FED values were calculated on the basis of the derivatives and g-function of the [ = 1.0 

steps of the electrostatic scaling run of each LFE calculation. The raw data and FEDs can be 

found in the electronic appendix under 3.3/3.3.4/Calc/. 

The grid-based three-dimensional convolution of LFE and FED with a Gaussian for the 

volumetric visualizations as well as the calculation of the difference maps were performed 

in Python 3.6224 using the NumPy225 library. All values on the main diagonal of the 

covariance matrix µ of the gaussian were one while all other elements were zero. To keep 
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the computational burden of the convolution manageable on such big grids as they were used 

here, a cutoff of 5 Å (20 grid points) was implemented. 

3.3.3 Protein-ligand binding from the perspective of LFE 

3.3.3.1 Naive atom-wise visualization and interpretation 

The key idea of applying the LFE method on protein-ligand binding free energy is the 

separation of ∆bindc into its components to get a more in-depth insight into the relation 

between host and guest and identify those structures in both molecules having the most 

decisive influence on the binding free energy. The in 3.3.1 introduced approach allows for a 

hierarchical ordering in which each layer brings a higher level of detail. The coarsest layer 

is the separation in protein- and ligand-perspective. It is the uppermost layer since both 

resulting components can be interpreted independently, and it separates both lower layers 

with it. The separation in perspectives is also a unique feature of the here employed 

application of LFE to binding free energies. The second layer of this scheme is the separation 

of the binding free energy into the intermolecular energy and a solvation-driven part. The 

latter is the difference in chyd between bound and unbound state and will be referred to as 

desolvation penalty, describing the thermodynamic penalty arising from suboptimal 

solvation distribution of protein and ligand in the bound state. While positive values 

correspond to unfavorable changes in the solvation situation regarding binding, regions with 

negative values stabilize the binding due to removal of destabilizing solvent density (in this 

case, one could also speak of a desolvation gain). The third layer is the localization of the 

binding free energy and its contributing terms on the atom-wise basis of the LFEs. As an 

example for this interpretation approach, a few key features of the ligand-binding shown in 

Figure 3.8 are discussed in the following. 
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Figure 3.8     Intermolecular energy as well as desolvation and binding free energies mapped on protein and 
ligand of the thrombin complex 2ZFP. Figures A to C show the protein (P) perspective of the solvation (A) 
and intermolecular energy (B) term as well as the binding free energy (C) itself. The bottom row (figures D to 
F) shows the ligand (L) perspective, respectively. The coloring of the LFE and intermolecular energies share 
the same scale, while the binding free energy is scaled in a much narrower range to adjust for the 
compensational effect between the former named two terms. The protein structure is shown in excerpts only 
to improve clarity. The spheres represent the experimentally found sodium ions. The source data for the LFE-
color coding can be found in Table 6.4 and the electronic appendix under 3.3/3.3.3/2ZFP/Loc/. 

The chlorine in the meta position of the terminal phenyl is such a feature. Halogen 

decorations are a common and versatile option in the ligand design toolbox. They are usually 

easy to introduce in synthesis and are simultaneously comparatively stable against metabolic 

breakdown pathways like oxidation through cytochrome p450226. Their tendency to increase 



Applying FED and LFE to protein-ligand complexes 
 

 

- 71 - 
 

the ligand's hydrophobicity is advantageous for the binding affinity since it reduces the 

desolvation penalty caused by the environmental change of the ligand under binding. This 

general rule is also confirmed here and can be seen in Figure 3.8 D by the chlorine's blue color 

and, in fact, of almost the complete phenyl ring. One of the proposed modes of action of the 

specific chlorine in the here discussed ligand is the replacement of a thermodynamically 

unstable water227. (The term refers to water molecules trapped or forced into cavities within 

the protein where they have a higher free energy than their counterparts in bulk phase228–230.) 

Designing a ligand to replace those such water molecules is usually highly desirable since 

releasing them into the bulk is associated with an entropy gain, and the potentially newly 

formed protein-ligand interactions could give an enthalpic advantage. 

Table 3.7     List of atoms of the amino group and their corresponding intermolecular energy, desolvation, and 
binding free energies of the thrombin complex 2ZFP. The hydrogen atoms are listed clockwise from the 
viewer's perspective in Figure 3.8, starting with H1 being the closest one to the oxygen of GLY216. 
Additionally, the sum over all four atoms of the amino group is also given. A full list can be found in Table 6.4 

Atom ∆∆solvcPL−L,loc(L)  / kJ mol-1 hPL,loc(L)  / kJ mol-1 ∆bindcPL,loc(L)  / kJ mol-1 

Cl -10.07 0.48 -9.60 

N -39.07 40.19 1.12 
H1 24.14 -27.07 -2.93 
H2 39.84 -40.13 -0.29 
H3 14.92 -16.96 -2.04 
Amine group 39.83 -43.97 -4.14 

 

The second mode of action discussed in the literature for chlorine in this position is a 

potential Cl-π interaction formed with TYR22880,231–235. Such an interaction cannot be found 

in the here presented results and is even contradicted by a positive hPL(L) on the chlorine atom 

(colored white in Figure 3.8 E; see Table 3.7). This finding is to some degree to be expected in 

the light of the here for the ligand used force field. The GAFF has no representation of the 

sigma-hole effect, causing the interaction between halogen and aromatic ring234–236, and 

therefore neglects all halogen-bond effects. Nonetheless, the desolvation term (-10.07 

kJ/mol) overcompensates the only very slightly positive intermolecular energy strongly 

enough to form a clear picture for the binding free energy where the chlorine atom is one of 

the most beneficial within the ligand, being in good agreement with the literature on this 

topic227,233,237,238. 

Another important structural feature in the ligand series analyzed in this chapter is the amino 

group, which protonated form is assumed to be the dominant one80. While introducing a net 
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positive charge into the ligand is problematic for the oral bioavailability239 and current 

research tries to avoid any such charges227,239, it is a key component in many reported 

compounds238,240–242 and it plays an essential role in the complex at hand. 

The desolvation free energy is, as one would expect for a polar residue, positive, as reported 

in Table 3.7. The outward-pointing hydrogen atoms show a strong desolvation penalty as they 

form the amine group's solvent-accessible surface. Hence, they dominate the solvent 

structure in their direct vicinity in the unbound state by accumulating oxygen density around 

them. The nitrogen, in contrast, now freed from the electrostatic unfavorable oxygen density, 

shows a strong negative desolvation penalty Δchyd,PL−L(L) . Nonetheless, the hydrogen atoms 

combined are overcompensating the negative contribution of the nitrogen by 39.83 kJ/mol, 

being in line with the rational expectation. 

In the literature, amino groups in this position are reported to interact with the oxygen of 

GLY216 of the protein backbone80,231,233,239. This is very clearly reproduced by the 

intermolecular energy, as indicated by the strong blue color of the oxygen and hydrogens in 

Figure 3.8 B and E, as well as by the sum over hPL(L) in Table 3.7 and Table 6.4. Due to this 

strong, charge assisted H-bond, the intermolecular energy can compensate for the severe 

desolvation penalty and resulting in a negativ Δchyd,PL−L(L) .  

The in Table 3.7 shown numbers are exemplary for a common trend throughout the protein 

and ligand. There is a noticeable pattern of alternating blue and red-colored atoms in both 

perspectives, only very seldomly broken. Since this effect originates from differences 

between the atoms' partial charges, it is more pronounced for atom pairs with a high dipole 

moment, making the discussed amino group and the carboxyl group of GLY216 good 

examples. In many cases, the signs of Δchyd,PL−X(X)  and hPL(X) on a given atom are mutually 

inverse, resulting in less drastic numbers for ∆bindcPL(X). There is a strong tendency for 

compensating each other's maxima and minima in the relation between the difference in 

solvation free energy and the intermolecular energy. This can be seen most prominently for 

the sodium ions in Figure 3.8, for which the solvation free energy decreases significantly 

under binding (blue color in A of Fig. 3.2) but have a positive intermolecular energy due to 

the net positive charge of the ligand. Both contributions cancel each other nearly entirely so 

that the sodium ions appear white in the binding free energy. Nonetheless, the mentioned 
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alternating pattern is present for most atoms in the localization of the binding free energy. 

This makes the interpretation of color-coded figures rather difficult, as it not clear which 

color is dominating in a particular part at first sight. The summation of the different terms 

over individual atoms and interpreting the localization solely on those numbers is also not 

reliable. The same pattern, which is supposed to be overcome in the first place, introduces a 

decision problem, usually not to solve in a straightforward manner. Extending or retracting 

the sphere of summation by just one atom can easily flip the result's sign and invert the 

interpretation. Furthermore, the grouping of atoms in chemically logical groups cannot be 

automated and must be done manually, as such an assignment is always subjective and 

depends on the overarching intent of the study at hand. 

3.3.3.2 Volumetric visualization and interpretation approach 

The just described problems make it clear that a more fitting visualization and interpretation 

method is required. An ideal solution should cover the following points: 

• Correctness: A suitable visualization method should map the LFE and intermolecular 

energy information as truthfully as possible. For example, essential cornerstones are 

to retain the sum over all atom-wise energy contributions to preserve the correct 

relation between the perspectives and energetic contributions as well as the spatial 

properties to ensure a correct interpretation. 

• Grouping: As explained above, defining meaningful sets of atoms is inherently error-

prone due to the alternating pattern throughout the molecules and generalizes poorly 

for its subjective nature. A new visualization approach should avoid any such human 

interference but still provide a logical grouping and should smoothen out the 

omnipresent pattern 

• Perspectives: A major drawback in the previously used method is the inability to 

present the localization results while also retain the full information about the 

underlying chemical structure since the element color code gets overwritten. An 

optimized visualization should be capable of displaying the ligand and protein 

perspective separately as well as combined as complex. 

• Comprehension: A replacement visualization method must be more intuitive and 

faster to interpret than the direct atom-wise labeling and color-coding explored above 

without losing any crucial details. 
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In this work, a solution is proposed, considering all four of the listed points. Key is a 

convolution operation with a three-dimensional gaussian, effectively spreading the localized 

information on a 3D grid. This is the same operation already used to create the input for the 

3D convolutional neural networks discussed in 3.2.1. 

Since the LFE values are folded with a normalized Gaussian, the sum over the atom-wise 

localized energies is equal to the integral over the corresponding 3D grid. A numerical 

evaluation of this is shown for the 2ZFP complex in Table 3.8. 

Table 3.8     The table gives the excess chemical potential for the protein, ligand, and complex of 2ZFP (see 
Figure 3.8 and Figure 3.10) in aqueous solution calculated with 3D RISM as a reference as well as the sum 
over all atom-wise contributions and the integral over the 3D grid. The numbers in the round brackets give the 
error relative to the 3D RISM reference in percent. For the complex, no integral is given since the ligand bound 
to the complex is treated separately from the bound protein and therefore, the grid of the complete complex is 
never calculated for the evaluation. The numbers show clearly that the convolution with the 3D gaussian is not 
introducing a significant error, even with a seemingly harsh cutoff at 5 Å. The 3D RISM data as well as the 
corresponding LFE values can be found in the electronic appendix under 3.3/3.3.3/2ZFP/. 

 �Proteinex  / kJ mol-1 �Ligandex  / kJ mol-1 �Complexex  / kJ mol-1 

3D RISM reference 626.63   -70.47   851.07   
Sum over LFE 613.86   (2.04%) -70.63  (0.23%) 836.90  (1.66%) 
Integrated over grid 613.87  (2.04%) -70.63  (0.23%) - 
 

As an example of this visualization method, the localized energies of the previously 

introduced 2ZFP complex are shown in Figure 3.10 as differently sized and colored volumes. 

The method requires a minimum and maximum cutoff, excluding the range in between from 

plotting and showing only those grid points where the localized energy is below the lower 

cutoff (blue) or above the upper (red). This is a critical task to keep the resulting figure 

interpretable and be able to find and focus on the most important regions. A too narrow 

excluded range leads to a confusing abundance or meaningless large volumes (see Figure 3.9), 

while a too-wide range may hide less significant but still interesting areas.  
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Figure 3.9     Demonstration of a homogeneous LFE cutoff choice for desolvation, intermolecular energy, and 
binding free energy. 

To find suitable values for these cutoffs, those values marking the 0.005% and 0.995% 

quantiles of all gridpoints can be used as initial values for the minimum and maximum, as it 

was done in the following examples. This gives a vague idea of where to find the best fitting 

values, but a manual adaptation is recommended. The in Figure 3.10 shown example 

demonstrates the significance of adjusted cutoffs for the different contributions, by using the 

binding free energy cutoff for all three. The resulting volumes in A and B are so extensively 

big that the localization aspect is mostly lost and they become too unspecific to learn much 

from them. The necessity to adjust the cutoffs manually can be considered as a clear 

downside to this approach. However, this drawback is less severe than it may seem on paper, 

since the intended primary usage of the method is to inspect and interpret the results in a 

graphical computer program like PyMol243. Here, the cutoffs and other parameters like the 

view can be easily manipulated, revealing even more detail than can be shown by images in 

this work.  

One of the major benefits of the proposed visualization method is its implicit grouping 

mechanism arising from the blurring effect of the convolution with a gaussian itself. On the 

one hand, atoms located close to each other, like covalently bonded ones, influence one 

another strongly and automatically group together. On the other hand, the sphere of influence 

decays sufficiently fast due to the 1 Å standard deviation in all three dimensions, which 
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retains the localization effects. Furthermore, contributions of the same sign stack, to create 

more emphasized regions, while those with opposing sign cancel each other out. 

An example of this mechanism is the interaction between the protonated amino group and 

GLY216 of the backbone of thrombin. With the naïve atom-wise color coding, it is not clear 

from visual inspection whether the negative or positive contributions within a group of atoms 

dominate. One must perform a summation over manually selected atoms with its previously 

discussed drawbacks to get a clear answer. With the volumetric representation, however, the 

desolvation penalty and the strong beneficial intermolecular energy of both groups becomes 

clear at first glance. This is also true for the analogous interaction between the amid group 

of the ligand (atoms O0A,C09,N0E,H13, see Table 6.4) and the backbone of SER214. The 

volume around the amino group in Figure 3.10 E is an example of the convolution's blurring 

property and illustrates that the whole group interacts with the protein backbone. 

Nonetheless, the localization is not lost either, demonstrated by the small but intense volume 

around the carboxylic oxygen backbone atom. 
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Figure 3.10     The first column from the left shows the desolvation penalty from the perspective of the protein 
of the thrombin complex 2ZFP (top), the ligand (mid), and a combination of both (bottom). The same is the 
for the intermolecular energy (mid column) and the binding free energy (right column). All properties are 
spread onto three-dimensional grids and displayed as volumes, where blue-colored volumes show those gird 
cells with an energy lower or equal to the cutoff given in each figure individually. For red-colored volumes 
applies the same but with higher or equal numbers than the given cutoff. The protein structure is shown in 
excerpts only to improve clarity, and only those residues of highest interest or importance for orientation in the 
binding site are drawn explicitly. 
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The volumetric representation is also helpful for comparing the different perspectives. For 

example, the protein perspective indicates the biggest contributions to the binding free 

energy mostly in regions that are in direct contact with structures of the ligand, one would 

initially expect to show up in the ligand perspective, namely the amino- and amid groups. 

But in contrast to this belief, they are not particularly highlighted in the ligand perspective. 

A plausible explanation could be, that the groups in question are not ideally solvated in the 

apo structure to begin with, and taking solvent density away by the binding process has a 

less pronounced effect on them, as on their ligand counterparts. The solvent site density 

distribution in the binding site is always the result of the interaction of an abundance of 

surrounding solute sites. This, in turn, leaves the protein solute sites with a compromise 

regarding the solvent density distribution and, thus, a less than optimal solvation free energy, 

dampening the desolvation penalty. This effect is much less pronounced for the ligand, 

leading to a stronger desolvation penalty which cancels out the negative intermolecular 

energy on groups like the protonated amino and amid groups.  

In general, the canceling effect between Δchyd,PL−X(X)  and hPL(X) is much more obvious in the 

volumetric representation due to the similar shaped, sized, and positioned volumes (compare 

Figure 3.10 A vs. B, D vs. E, G vs. H). As a result, the included range of ∆bindcPL(X) must be 

narrower to properly visualize the most important regions. On the other side, adjusting the 

cutoffs of both contributions can also generate valuable inside, as demonstrated for the 

ligand perspective in Figure 3.9. The region around the chlorine atom and phenyl ring differs 

between Δchyd,PL−X(L)  and hPL(L), indicating that the negative contribution to ∆bindcPL(L) of the 

chlorine atom origins from its desolvation while the hydrogen atoms of the phenyl ring are 

contributing via a negative hPL(L). A in the literature reported major mode of action is the 

replacement of a thermodynamically unstable water, located in the S1 pocket80,227,237. 

Therefore, one would expect to see some blue-colored volumes in this region for the protein 

perspective too. After all, such a process affects first and foremost the protein. The absence 

of those volumes can be explained by another perspective switch, this time to the water in 

question. Observed on its own, its thermodynamic properties may stand out among other 

water molecules227, marking it as thermodynamic unstable. Nonetheless, in the case of the 

LFEs the thermodynamic information of the water is projected onto the surrounding protein 

atoms, eventually spreading it so thin that it blends with the background. 
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In a first assessment of the volumetric visualization of the localized energies, it can be 

concluded that the requirement of a correct representation is indeed fulfilled. The total 

overall contributions are preserved and the spatial and perspective relations are truthfully 

mapped. Furthermore, the major drawback of the atom-wise color-coding, the necessity of 

manual grouping, is solved by the implicit blurring of the convolution operation, which 

balances generalization and focus nicely, as shown in the previous examples. This also 

enables a quick and effortless comparison between the different perspectives, which in turn 

gives more profound insights into the protein-ligand binding relation. Whether the 

volumetric representation is indeed an improvement over the atom-wise coloring regarding 

comprehension and ease of interpretation is a subjective matter and probably varies from 

person to person. A combination of both would most likely prove most beneficial in many 

research applications since both representations have their individual strong points. 

Nonetheless, in the context of this work, the volumetric representation is favored for its 

comprehensibility and the possibility of manipulating the three-dimensional fields, as 

described in more detail below in 3.3.3.3. 
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3.3.3.3 Application of LFE analysis and difference maps to a compound series 

In the following, the concepts introduced and discussed above shall be applied to the ligand 

series published by Baum et al.80, and shown in Figure 3.5. A collection of all six compounds 

in their bound state can be found in Figure 3.11, together with their volumetric visualized 

localized binding free energy. The series introduces step-wise changes to the ligands at the 

S1 pocket pointing part by replacing the m-chlorobenzyl with a benzamidine and at the S3/S4 

facing part by introducing benzyl-groups. Each of these modifications increases the binding 

affinity to thrombin between 2.4 and 10.7 kJ/mol, as determined by ITC measurements, 

where the introduction of the amidine group is the more potent change. 

 

Figure 3.11     Collection of all compounds used in the ligands series published by Baum et al.80 depicted with 
their corresponding localized binding free energy, shown as red and blue volumes. The upper row shows the 
m-chlorobenzyl based compounds and the step-wise addition of benzene to the compound expanding in the S3 
moiety of thrombin. The bottom row shows the same step-wise additions but for the benzamidine base version 
of the inhibitor.  
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To better grasp the changes caused by these modifications, a further advantage of the 

volumetric representation is being used in addition to the calculations shown in Figure 3.11. 

The underlying three-dimensional fields can be easily manipulated mathematically too. 

Possible operations could be, for example, combining multiple fields by a weighted sum to 

generate a superposition of different host and guest states or visualizing differences between 

compounds by subtracting fields from each other. In cases where all involved fields share 

the same orientation and dimensionality, like it is the case in the here described examples, 

all operations can be done without any prior preparations. In cases where this is not given, 

an alignment and potentially an interpolation between grid points has to be performed. This 

is something to have in mind before any calculation, as it is easy to enforce proper alignment 

and dimensions in the preprocessing, but not so much during analysis. 

The introduction of the protonated and, therefore, positively charged amidine group has 

dramatic effects on the distribution of the LFE, as can be seen in Figure 3.12. The most 

noticeable and obvious is the newly formed salt bride to the deprotonated, negatively 

charged ASP189 residue. In all three cases, the interaction follows the principles outlined 

above very truthfully, by having a strong positive desolvation penalty on both participating 

groups in the ligand and protein. This effect is overcompensated by the strong negative 

intermolecular energy, resulting in a negative binding free energy volume, encompassing the 

entire interaction site. Similar effects occur at the protein-backbone (GLY216, GLY219), 

lowering the local binding free energy by increased coulomb interaction to the additional 

positive charge without an additional desolvation penalty. Far more interesting and less 

expected are the consequences of the formation of this salt bride on the rest of the ligand. 
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Figure 3.12     Comparison between the m-chlorobenzyl based and the benzamidine compounds, each with 
their corresponding benzyl decoration. In the most left column, labeled ‘Compound A’, the reference structures 
are shown from which the alchemical mutation to the structures in the most right column, labeled 
‘Compound B’, accrues. The middle column depicts the volumetric difference maps, overlayed with both 
structures (compound A in yellow, compound B in violet, both protein structures in green). The shown 
processes are labeled by the PDB code (Baum et al.80) of the start and end structures on the left side of the 
panel. The via ITC measure ½½c° for the transition is given in brackets and was taken from Baum et al.80.  
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By pushing the ligand a bit out of the S1/S2 pocket into the protein, it forces the ligand in a 

slightly altered binding conformation, which causes significant changes in the LFEs in turn. 

This rearrangement is mainly limited to the ligand itself, and there are almost no changes in 

the protein conformation and the orientation of sidechains. This is somewhat curious since 

the new binding mode changes the intermolecular energy pattern, which should lead to a 

mutual adaption of both binding partners in 3D space. This becomes most obvious in the 

interaction between one of the ligand hydrogen atoms and the SER195 sidechain oxygen 

atom. For the m-chlorobenzyl based compounds of the series, the distance between both is 

2.3 Å, which is already within contact distance regarding the )-parameter ()mix =
()H + )O)  2⁄ = 2.77 Å). Here the moderately positive Lennard-Jones potential is 

compensated by the negative coulomb potential resulting in a negative localized interaction 

energyfor the hydrogen atom in the 2ZFP compound  (-9.32 kJ/mol). For the amidine-based 

compounds with an H-O distance of around 1.8 Å, however, the repulsion is significant, 

leading to a considerable positive intermolecular energy contribution on the hydrogen atom 

for the 2ZGX compound (127.24 kJ/mol). As one can observe in the B figures of Figure 6.3, 

Figure 6.5, and Figure 6.7, the oxygen does not generate a corresponding red volume, as its 

coulomb energy is dominated by the +2 net charge of the full ligand.  

Nonetheless, this result raises the question, why protein and ligand crystallized consistently 

in this specific configuration and neither of the participated structures moved out of the way. 

Especially for the rather mobile serine sidechain, a slight rotation along the CA-CB bond 

axis seems to be easily possible and collision-free. It is hard to say whether this is an artifact 

deriving from uncertainties in the process of fitting the protein sequence to the 

experimentally determined electron density (despite the general high quality; the used 

structures have a limited resolution between 1.58 and 2.25 Å), or a natural effect modeling 

the reality truthfully. To avoid over-interpretation, the discussion of this particular host-

guest-interaction is best limited to the level of differences between structures, as here most 

potential artifacts should cancel out. 

A very similar but far less pronounced effect of the altered binding mode by the introduction 

of amidine group is visible around the hydrogen-carbon contact between TYR60A and the 

proline part of the ligand. Here the distance between both groups is also lowered, leading to 

repulsion in the Lennard-Jones potential, but this time without the benefit of any 
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compensation by the Coulomb potential since both atoms carry positive partial charges. In 

this particular case, the protein behaves more plausible. Even though the tyrosine sidechain 

has far fewer options to turn away, the crystal structures show a slight bending in CA-CB-

CG angle of the amino acid to avoid even closer contact with the ligand. 

In addition to the direct effects of the introduction of a group, there are also consequences 

of removing atoms from the compounds, in this case the in the S1 pocket binding chlorine. 

As discussed above it is one of the main actors in the binding process of the m-chlorobenzyl 

compounds by its negative desolvation penalty and the replacement of a thermodynamically 

unstable water molecule from the binding site. The amidine-based compounds do not have 

any residue, which could fulfill this task and are even rotated away from the water-bearing 

moiety due to the planarity of the benzylamidine, enforced by the π-electron system. For 

those reasons, one can find the aforementioned unstable water in the experimental structures 

and the chlorine is indeed highlighted by a red volume in the difference maps, shown in 

Figure 3.12. Nonetheless, the experimental ITC measurements of Baum et al., which show a 

clear entropic gain for the transformation from m-chlorobenzyl towards benzylamidine, do 

not fully reflect this line of reasoning, since one would expect a positive −% ∆∆¨° for the 

reintroduction of a thermodynamically unstable water. The original paper, from which the 

structures and number were taken, does not give an explanation for this phenomenon and it 

is unclear how much this has to do with the mentioned water or if it is caused by another, 

unknown effect, detached from the water placement in the S1 pocket. It is possible, and 

judging from the magnitude of the number also plausible, that the change in entropy is 

caused by an increase of the degrees of movement, vibration, and rotation anywhere in 

complex, which cannot be reflected by the LFE calculation, as it only takes solvents related 

entropic terms into account. 
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Figure 3.13     Comparison between different grades of benzylation of the m-chlorobenzyl based (upper two 
rows) and the benzamidine based compounds (lower two rows). In the leftmost column, labeled 
‘Compound A’, the reference structures are shown from which the transition towards the structures in the 
rightmost column, labeled ‘Compound B’, starts. The middle column depicts the volumetric difference maps, 
overlayed with both structures (compound A in yellow, compound B in violet, both protein structures in green). 
The shown processes are labeled by the PDB code (Baum et al.80) of the start and end structures on the left side 
of the panel. The via ITC measure ½½c° for the transition is given in brackets and was taken from Baum et 
al.80. 



Results
 

 

- 86 - 
 

The benzylation of the ethyl group in the S3 facing part of the compounds is, like the 

replacement of m-chlorobenzyl by benzamidine too, associated with a gain in the binding 

affinity to thrombin. However, the modifications also increase the experimental uncertainty 

to a point where the assigned errors to the Kd are overlapping between the mono and 

bis(phenyl)methane m-chlorobenzyl inhibitors (see Figure 3.5). 

For the first benzylation, three major modes of action can be identified: altered distribution 

of partial charges throughout the ligand, a T-shaped π-π stacking interaction with a 

tryptophane, and the replacement of a thermodynamically unstable water. 

The change in the partial charge distribution is mainly visible in Figure 3.13 E (and K for the 

second benzylation) by mitigating the clashing ligand-hydrogen with the oxygen of the 

SER195 sidechain. The introduction of the additional aromatic ring polarized the C-H bond 

more, leading to a more positively charges hydrogen and ultimately to a less severe positive 

localized binding free energy on both atoms, visualized by the blue volume in the difference 

map. 

Indicated by a small blue volume, the π-π stacking interaction between the phenyl ring and 

TRP215 is at the chosen cutoff of 0.4 kJ Å-3 only visible in the difference map of the 

2ZFP→2ZC9 transformation (Figure 3.13 B) and not even in corresponding amidine 

transformation of 2ZGX→2ZDA. This observation is backed by the experimental ITC 

measurements, where enthalpic contribution to ∆∆c° is more negative for the 

transformation of the m-chlorobenzyl inhibitors (-3.6 kJ mol-1 vs. -1.4 kJ mol-1; see 

Figure 3.5). 

The entropic contribution to ∆∆c° is for the insertion of the first phenyl ring in both cases 

negative (-0.5 kJ mol-1 and -4.7 kJ mol-1), which hints towards the aforementioned 

replacement of water in the binding process, although as described above, this line of 

reasoning is not without doubt. Nonetheless, the crystallographic structures support the 

replacement and seem plausible, given the hydrophobic surrounding of ILE174, TRP215, 

and LEU99. As discussed in 3.3.3.2, only the LFE contributions on the host perspective can 
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show a reaction to such a replacement, which is usually too far spread out over the protein 

residues to generate a visible volume at a sensible displaying cutoff*.  

The way the second benzylation of the compounds affects binding is less well understood 

than the first one and explanations from experimental results and the LFE approach are 

inconclusive. The positioning of the phenyl ring is already quite solvent-exposed as it is not 

as deeply buried in the binding pocket, resulting in a high B-factor and movement compared 

to the rest of the ligand. Nonetheless, the corresponding transformations show a positive 

−% ∆∆¨° (see Figure 3.5), again raising questions about a not yet understood mode of action. 

In the original paper, Baum et al. propose the rotation of GLU217 towards LSY224 and the 

so potential formation of a salt bridge as the main cause for the increased binding affinity. 

While this is indeed in line with the negative ∆∆§° in both transformations, it is hard to 

verify the theory from any crystal structure-based approach, as the lysine in question is most 

likely affected by crystal packing effects, and thereby also hampering the expressiveness of 

the LFE. With this in mind, the contributions to the binding free energy around GLU217 

have to be interpreted with caution.  

Here most noticeable is the intricate pattern in volumes of the localized binding free energy 

of the 3DHK complex. It arises from an unusual, incomplete cancelation between the 

desolvation penalty and the intermolecular energy and is not nearly as fragmented in either 

one of those. This is even more interesting, since the normal compensation between both 

contributors to the binding free energy does occur in the amidine counterpart, as expected. 

Analyzing the different perspectives and contributions in Figure 6.6 the observed results can 

be rationalized with the explanations outlined above, but why the magnitudes of the involved 

fields do not match as well as in other regions and complexes is not entirely clear. In the 

2ZO3 complex, where the amidine group introduces an additional positive charge, the 

intermolecular energy lines up much more closely, leaving only a small volume around the 

phenyl ring itself, introduced by the guest perspective (see Figure 3.13). 

 

 

* An exception to this can be found in Figure 3.12 and Figure 3.13 F as well as in Figure 6.5 C and I. Here a 
small volume around the propyl group of LEU99 can be spotted, actually indicating the positive effect of 
releasing the unstable water into the bulk. 
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For the benzamidine-based compound, the most prominent change occurs once again around 

the clashing hydrogen and oxygen atom, like before with the first benzylation. The 

explanation is also the same as before, where the additional aromatic ring alters the partial 

charge distribution within the ligand, polarizing the C-H-bond even more and thereby 

reducing the energetic penalty introduced by the close contact. 

As one of the main goals of this chapter is to introduce a new tool to investigate biological 

binding processes and help design new ligands, the following subchapters are dedicated to 

the investigation of various roadblocks and vagueness which one might encounter in a real-

world application of the method. 

3.3.3.4 Influence of experimental uncertainties in the complex structures 

Crystallography is often referred to as “voodoo” and "black magic"244, and even the most 

carefully laid out experiments performed by well-trained experts lack reproducibility to a 

certain degree. It is common and by no means a sign of bad practice, that atoms, amino acids 

and smaller fragments of the complexes are missing in some structures within a ligand series, 

investigated by x-ray crystallographic experiments. This is often the case for parts that are 

in between to be too flexible and dislocated to be resolved from the crystal at all and stable 

enough to be modeled from the electron density field. Several examples can be found in 

Table 3.6, which had to be added to the structures beforehand to make them comparable to 

each other. For an accurate interpretation of the localized energies and, even more important, 

for a fair comparison between different ligands, such variations have to be controlled and 

aligned. This exceptionally true for ionic amino acids (e.g., arginine, histidine, lysine, 

aspartic acid, glutamic acid), as their erratic appearance and disappearance in the structure, 

would vary the net charge of the protein, which in turn has implications for the LFE and 

intermolecular energy as will be shown in this subchapter. The same is true for co-

crystallized and resolved salt ions originating from buffers and crystallization agents. 

Depending on the protein and the crystallization conditions, those ions are prone to this 

unsteady behavior within a ligand series let alone between different publications, 

researchers, and labs. This is actually also the case for one of the sodium ions in the here 

used ligand series. In the structure 3DUX (not part of the ligand series and therefor not used 

in this work), one of the two sodium ions which can be found in all of the other structures is 

not resolved and instead, a Na+ is located in the vicinity of the thrombin light chain. (This 

does not apply to catalytic metal ions and other functional ions as they are usually strong 
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enough bound to be resolved and their absence most often qualifies for a failed experiment 

which in turn is not published.) 

Effects of different net charges of the host system on localized energies 

The effect of a changed net charge of the host system is here demonstrated by adding a 

sodium ion to generate a net positively charged host and a chlorine ion for a net negatively 

charged host. To find suitable coordinates for the extra ions, a 3D RISM calculation (same 

parameters as described in 3.3.2) with a 1M aqueous sodium chloride solution245 as solvent 

was performed and the additional ions were placed at the coordinates with the highest density 

of the corresponding species (see Figure 6.1). To explore the influence of the ion positioning, 

one of the experimentally resolved sodium ions gets deleted and replaced by the mentioned 

additional ion, effectively moved to different coordinates. For consistency reasons and 

facilitating easy comparison of structural features to the neutral reference host system, the 

already introduced thrombin complex was chosen to investigate both influence factors. 

However, sodium is discussed in the literature to influence the activity of thrombin via 

conformational changes.  

Sodium is bound to thrombin in the allosteric Na+-binding site246–249, located between the 

186-loop and the 220-loop, in which for all the here treated complexes a sodium ion is bound. 

This specific ion is kept untouched in all of the here described experiments, to avoid the 

introduction of artifacts. Nonetheless, this subchapter should mainly be seen as a methodical 

demonstration of the concept and not as a biochemical assessment of the role of sodium ions 

for the functionality of thrombin.  
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Figure 3.14     Comparison of different net charges of the host system as well as the effect of a relocated 
charge. The three columns show from left to right the on the ligand localized desolvation penalty, the 
intermolecular energy, and binding free energy. The first row shows the 2ZFP complex with an additional 
chlorine ion (green), demonstrating a host net charge of -1. The second row shows the complex with a relocated 
sodium ion, while the third row shows the unchanged 2ZFP complex as a reference. The bottom row shows 
the binding process for a net positive charged host system with one additional sodium ion (not visible). The 
raw data can be found in the electronic appendix under 3.3/3.3.3/IonPlacement/. 
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The effect of a changed net charge of the host system is shown in Figure 3.14, which shows 

the ligand perspective for a net negatively and net positively charged host system as well as 

the already introduced neutral variant for direct comparison. The focus is here on the ligand 

for the simple reason, that almost all changes are located on it while the protein perspective 

stays unchanged, regardless of its net charge. This does not come as a surprise, since from 

the protein perspective, only little changes throughout this experiment series, as the ligand 

stays the same after all and the addition and removal of ions is sufficiently far from the 

binding site. 

Upon visual inspection of Figure 3.14 two, seemingly contradictory observations stand out. 

On the one hand, the desolvation free energy and intermolecular energy show a clear trend 

of decreasing volume size by constant cutoffs with growing charge and, on the other hand, 

visually indistinguishable volumes in the binding free energy figures of the panel. 

The first phenomenon is especially, but by far not exclusively, present around the NH3- and 

amide-groups and can also be found in the significantly higher absolute LFE and 

intermolecular energy values on the atoms of those groups, listed in Table 6.4. It is important 

to note that this trend is only limited to the intensity and does not change the signs of the 

energy values nor the relations between atoms and groups, visualized by the coherent 

positioning and arrangement of the corresponding volumes. In this regard, the trend is 

remarkably consistent throughout the molecule, as it affects all atoms and even follows a 

linear function through observed charge range for almost all of them. Due to the fact that 

this is true for both the desolvation free energy and the intermolecular energy, only in 

opposite directions, it becomes clear why the atom wise binding free energy values and 

consequently also the aforementioned volumes are as consistent for all host charges as they 

are depicted in Figure 3.14, explaining the second phenomenon. 

However, the very reason for the more dramatic response of the ligand upon binding in host 

systems with lower charge is not yet explained. To do so, it is worthwhile to have a look on 

the way the desolvation free energy is calculated. In principle, it is referenced to the net 

positive charge ligand and describes the difference in the solvation free energy upon binding 

by subtracting the reference from the complex state. The more different those states are, the 

higher the magnitude of the desolvation energy will become. For example, the environment 

for the ligand bound to a net negatively charged host system is, farther away from its 
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reference state as a net neutrally charged one, resulting in stronger differences resulting in a 

higher desolvation penalty. The effect is reversed for net positively charged hosts, which 

brings the complex environment nearer to the ligand reference state. 

Regarding the second term of binding free energy, it is important to note that the 

intermolecular energy is negative for the binding process in all three charge states of the 

host. From a global point of view, the introduction of a net charge into the host system by 

an additional ion just shifts these values either up in case of a positive charge or down in 

case of a negative one. This is fairly expected, as the ligand itself is positively charged and 

for a sufficiently distanced interaction site, it can be approximated as a single point charge, 

since the relative differences in the distance to the ion between the ligand atoms become 

comparably small and can therefore not overcome any general, molecule wide trend. On an 

atomistic-level the in Table 6.4 and Figure 3.14 observed trends are also quite comprehensible, 

since it again comes down to a simple interaction with a single additional site. Once again, 

the effect is mostly limited to a simple offset to each atom, depending on the sign and 

magnitude of its partial charge, while its special position plays only a minor role for the 

reason just explained. 

Here one can also find a second, more technical motivated explanation for the very efficient 

cancelation effect between Δchyd,PL−L(L)  and hPL(L), in addition to the physical one outlined 

above. The mentioned offset generated by an additional charge occurs not only in the 

interaction between host and guest but also eventually affects the interaction between solvent 

and solute and therefore influences the with 3D RISM calculated �ex and consequently the 

localized free energies. A sufficiently far distanced ion, so that it has only a very limited 

influence on the solvent structure itself, shifts the LFE in the same way it does it with the 

interaction energy by giving each atom a simple positive or negative offset, depending on its 

partial charge. This, in turn, leads to only very minor differences in the localized and total 

binding free energy as both effects are opposing each other (see Table 6.4), leading eventually 

to indistinguishable volumetric representations throughout the charge experiments. 
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Importance of ion positioning in the preprocessing 

As already mentioned, the positioning of additional ions is of some significance. If they are 

placed too close to the binding site, they could alter the solvent structure in relevant areas, 

which would affect Δchyd,PL−L(L)  and hPL(L) in such ways that the relations between atoms could 

be changed, introducing unwanted artifacts. Thus, to limit their influence to mere offsets, 

they have to be placed sufficiently far away from the binding site, effectively normalizing 

the energies and making comparisons possible. This shall here be demonstrated by 

effectively moving one of the sodium ions experimentally found in 2ZFP to the far side of 

the protein. This new position is taken from 3DUX, in which the second sodium ion not 

bound to the sodium binding site is not crystallized in the usual place for this experimental 

series but on the other side of the protein. This setup was chosen to emphasize that this kind 

of experimental hiccup is indeed a common part of the scientific process and to demonstrate 

that such considerations are of importance for the applicability of the method. 

One of the most noticeable features of the results shown in Figure 3.14 D to F is their 

resemblance to the experiment conducted with the net negatively charged host system. 

Especially, ΔcPL−L(L)  and hPL(L) are here of special interest since their similarity is, other than 

the virtual identicalness of the binding free energy for reasons explained above, somewhat 

unexpected. After all, the net charge of the host system is still zero and the naïve expectation 

would have been a close resemblance to the experimentally found standard. The nonetheless 

present differences are once again limited to the size of the volumes and therefore to the 

intensity of the LFEs while the relations between the atoms are unchanged, compared to the 

net negative host experiment and therefore to all three others too. 

The explanation for the described observations is also very similar to the previous line of 

argument for the differences between the charge experiments. The removal of a cation near 

to the binding site introduces an offset to ΔcPL−L(L)  and hPL(L) as seen before, which in turn can 

not be fully compensated by the now more distant ion, ultimately having the same effect as 

the introduction of an additional anion. With this in mind, it becomes clear why the localized 

binding free energies are yet again indistinguishable compared to the other experiments, at 

least in the case of the volumetric representation. Furthermore, even though some small 

changes certainly occur due to the long-ranged nature of the Coulomb energy, it appears that 

the relocation of the ion does not significantly change the solvent structure of the binding 
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site. There are some smaller variations in the LFE values (see Table 6.4), but since there is 

usually not more room in the binding site for more than two, maximum three solvent shells, 

the solvent distribution function in the binding site is mostly dominated by the atoms in the 

immediate surrounding and only very little by ions further out, like it is the case here. 

3.3.3.5 Summary of the subchapter 

This subchapter focused on a practical application of the LFE method to a realistic example, 

in this case, a thrombin inhibitor series. 

Especially in the context of medicinal chemistry and protein-ligand binding the visual 

inspection and interpretation of results is of great importance. Therefore, the first question 

asked in this subchapter was how the LFEs are best visualized such that the provided 

information can be naturally and quickly comprehended. Next to the naïve color-coded 

atom-wise method, this search led to a volumetric representation, which checked all the 

predefined requirements and gave easily interpretable figures. 

With a suitable visualization method established, the protein-ligand interactions occurring 

throughout the compound series could be discussed in full detail. In doing so, the binding 

situation was investigated from the protein, ligand, and combined perspective, as well as for 

each contribution to the binding free energy separately. Separating and observing the host-

guest binding on multiple, gradually finer layers, right down to the atomic level, 

demonstrated the significant knowledge gain possible with the LFE approach. This 

knowledge could, for example, be used to identify promising interactions for compound 

optimization or to understand potential drug resistance. Nonetheless, the presented method 

has its limitations and how much the neglection of the solute entropic terms and the rigid 

body assumption influences the final results is not easily to be determined. However, the 

only little correlation between the LFEs and the experimental trend regarding the addition 

of phenyl rings to the S3/S4 pocket can be seen as an indication. One could speculate that 

the lack of conformational diversity in those regions limits the expressiveness of the LFEs 

on these rings. While no solution to the missing entropic terms or PMV correction of the 

hydration free energy, the coupling with MD simulations could alleviate some of these 

problems, as described previously. 

Since the basis for calculations as they are presented here, are usually experimental 

structures of the complexes in question and therefore suffer from inevitable uncertainties, 
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the robustness of the visualization and interpretation against variations in the net charge of 

the host was also checked in this subchapter. While a change in this regard does indeed lead 

to a global shift in the LFEs, it does not alter the relations between groups. This means that 

as long as all members of a series are treated the same, the net charge and ion positioning is 

of small significance to the overall interpretation. 
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3.3.4 Free energy derivatives with respect to the non-bonded force field 

parameters applied to protein-ligand binding 

In the development of new protein inhibitors, one often does not have to start from the 

ground up without any knowledge about the complexed state but can sample from a wide 

variety of compounds already binding to the target. Those can come from previous research 

on the topic, in the form of published structures (as was the case in the compound series used 

here) or already registered and buyable drugs. Alternatively, they come from nature, for 

example, as natural substrates of the target protein or known pharmacological active 

substances from plants and fungi250. Especially in the latter case, where no previous targeted 

optimization in the area of selective inhibition or activation other than natural selection via 

evolutionary processes was performed in the past, the obvious question arises, how the 

compound can be modified to make it bind even stronger and more selective towards the 

target. 

In an attempt to answer such questions, often so-called structure-activity-relation (SAR) 

studies are performed, in which several structurally similar compounds are screened against 

the target (sometimes also against some off-targets251,252) to derive a relationship between 

molecular features and the affinity/selectivity towards the target protein. However, such 

studies are extremely expensive in means of time requirements, and for the high monetary 

costs involved in the synthesis of the test compounds, the acquisition of the protein by either 

buying it from a supplier or producing it through biochemical means, and the measurements 

themselves, for which highly trained personal and specialized equipment is required. For 

those reasons, it is of utmost importance for industry and academia alike to select the test 

compounds very carefully before entering this costly process and perform the task iteratively 

in small batches to make informed decisions from round to round.  

The here proposed method of calculating the derivative of the binding free energy and its 

terms with respect to (w.r.t.) the non-bonded forcefield parameter can help with such design 

decisions by driving exploration through sparking new ideas for optimization and steer 

exploitation by giving directions and reasoning. Those strengths combined can help 

scientists develop optimal binders in fewer iterations and with fewer failing compounds 

along the way. 
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3.3.4.1 Introduction to the concept and interpretation of free energy derivatives 

To demonstrate the concept and explain the interpretation of FEDs, there are all three types 

of derivatives of the solvation free energy shown in Figure 3.15 for the 2ZFP compound in 

free solution. Each column shows one type, and the upper and lower row shows both 

visualization methods, already introduced in 3.3.3.1 and 3.3.3.2. For depicting negative and 

positive derivatives, the same color code as the one for the LFE was deployed, red for 

positive, blue for negative numbers. However, the meaning of them is wildly different and 

even from derivative to derivative, they cannot be interpreted the same. The alternative, 

using three new and independent color ranges for each derivative would have been quite 

confusing and hindering in the assessment of the results. Since the sensitivity of the solvation 

free energy is also vastly different between the nonbonded force field parameters, the range 

in which the resulting values are distributed is also parameter specific and therefore needs 

its own range, respectively cutoff for the color-coding to give a useful visualization. 

 

Figure 3.15     Derivatives wrt. to the nonbonded force field parameters of the solvation free energy of the 
2ZFP compound in its binding conformation. The upper row shows the atom-wise visualization of the 
derivatives with cutoffs chosen to include the highest and lowest values and are centered around zero. The 
bottom row shows the volumetric visualization for which cutoffs were chosen, to demonstrate the most 
important aspects of FEDs. 
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All derivatives with respect to the non-bonded force field parameter were calculated for the 

ones of the solute, and therefore the correct annotation would be )8, J8, and I8, where the 

subscript 8 denotes solute sites. For easier readability, those subscripts are omitted in the 

following, and since the derivatives with respect to the solvent sites are not of interest here, 

there is no chance for any confusion. 

Derivative of the solvation free energy with respect to the (-parameter 

The (-parameter of the Lennard-Jones potential can be seen as a scaling factor for the size 

of an atom, with bigger values for ) corresponding to larger atoms. The derivative 1chyd  1)⁄  

can therefore be interpreted in which way the solvation free energy would change, if one 

would change the size of the atom at hand. In the 2ZFP compound the most extreme values 

for 1chyd (L)  1)⁄  are focused on the chlorine (10.04 kJ mol-1 Å-1), amid oxygen atoms (22.17 

and 24.92 kJ mol-1 Å-1), and on the nitrogen of the amino group (42.46 kJ mol-1 Å-1), the rest 

of the molecule is compared to those almost neutral and values range around -5 and 

5 kJ mol-1 Å-1. The fact that it is mostly the nitrogen and not the outward-facing hydrogen 

atoms of the amino group lighting up is explained by the size difference of those atoms. With 

its ) of 3.25 Å the nitrogen atom simply swallows the smaller and tightly bond (~1 Å) 

hydrogen atoms with their ( of 1.07 Å. Positive values indicate close contacts between 

solute and solvent, and thereby high solvent density in close proximity to those atoms. In the 

current example, the most positive derivative values can be found on atoms strongest 

polarized throughout the compound with high absolute partial charges. This leads to strong 

Coulomb interactions with the polar solvent, drawing the corresponding site density closer 

towards the atom until the Lennard-Jones repulsion term negates any further energy gain, 

finally leading to positive values for 1chyd (L)  1)⁄ . The strong influence of charge on density 

functional theory methods like 3D RISM is well documented68,178,253, and the effective 

volumetric contraction found for net charged particles is in line with experimental findings, 

such as the higher density of water with higher salinity.  

Regarding the interpretation of 1chyd (L)  1)⁄  one can find general observations. The first is, that 

negative values are limited in their magnitude while positives are not restricted in that regard 

thanks to the diverging and very steep repulsive term of the Lennard-Jones potential. The 

second, somewhat related observation, is that, in theory, one can always lower the solvation 
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free energy for a charged particle in polar solvents by shrinking its size. Followed through, 

this would lead to so-called point charges, which have the lowest theoretical solvation free 

energy (for 3D RISM, this would be minus infinity). Obviously, this does not have real-

world correspondence, but for interpreting the derivatives and understanding their meaning, 

it is useful to have this tendency in mind. 

Derivative of the solvation free energy with respect to the {-parameter 

The { parameter of the Lennard-Jones potential can be interpreted as the capability to form 

an induced dipole or polarizability of an atom. The higher this value gets, the deeper is the 

energy well of the Lennard-Jones potential, but since the parameter applies to both, the 

attractive and repulsive term, it also scales the energy barrier. 

In the currently discussed example, both visualization methods let the molecule appear blue, 

suggesting a mostly negative derivative. However, the apparent size of the hydrogen atoms 

is quite small in this particular drawing style, making this a bit misleading. In fact, many of 

them have positive derivatives, since they are closest to the solvent and therefore in close 

contact, shielding most of the heavy atoms from repulsive short-ranged interactions. Those 

are within the energy well of the LJ potential and would profit from a higher { parameter, 

carrying mostly negative derivatives. An exception to this are the heteroatoms already 

known from the (-derivative, especially the amino group, which have a solvent density in 

the repulsive zone. Here an increased { would yield a higher solvation free energy. 

In contrast to the (-parameter, there is no good analogy like the size of an atom for the 

interpretation of 1chyd (L)  1{⁄ . Besides this, the solvation free energy is also the least sensitive 

to changes in the {-parameter, and any potential change would have only marginal effects. 

This is to keep in mind for the interpretation of protein-ligand complexes, where this 

phenomenon is also occurring. Although this seems a bit underwhelming at first glance, it is 

indeed a great advantage for any optimization based on the derivatives. Modification of the 

molecules cannot be done for each parameter independently but have to be done through 

adding, subtracting, or replacing atoms and since each atom type brings its own combination 

of the (- and )-parameter, it is, therefore, easier to change the size of certain parts of the 

molecule based on 1chyd (L)  1)⁄  without worrying too much about the consequences in regard 

to 1chyd (L)  1{⁄ . 



Results
 

 

- 100 - 
 

Derivative of the solvation free energy with respect to the partial charges 

The free energy derivative with respect to the partial charge does not behave as the other two 

parameters already introduced. The sensitivity of chyd (L)  is much higher compared to the LJ 

parameters, and consequently, the necessary range and cutoff for the visualization are orders 

of magnitude greater. Furthermore, here every atom of the compound carries a negative 

derivative, coloring the whole molecule in blue. The most negative values are found around 

the amine group, with a relatively gradual distribution towards it. To explain this, one can 

come back to the theoretical model of point charges. The stronger a sizeless particle is 

charged, the lower its solvation free energy will be. Extrapolating from this back to the 

compound at hand and keeping in mind that 1chyd (L)  1I⁄  is independent from the LJ potential, 

it makes sense that a higher partial charge would decrease the solvation free energy.  

For a more phenomenological explanation, one can imagine that each solute will arrange its 

surrounding solvent density so that the resulting system has the lowest possible energy under 

the given conditions. For the given net positively charged molecule in water, this will involve 

a high oxygen density in near proximity. And since the here discussed derivatives are 

calculated for one such static state, increasing the charge would foster this arranged 

interaction even more, albeit not for every atom equally, focusing on those already charged 

the strongest. 

Interpreting 1chyd (L)  1I⁄  is less straightforward than it is with the LJ counterparts. One reason 

for that is, that partial charges are a less well-defined concept and the true distribution is 

difficult to determine (assuming that there is a true distribution). For common amino acids, 

most for the task adequate force fields provide a given set of charges for each atom type, 

regardless of the environment and conformation. This is fundamentally different from those 

for small molecules, where partial charges get calculated for every compound individually. 

To do so, various different methods can be used, often utilizing quantum mechanics in one 

form or the other (see 3.2.2.1 for an in-detail analysis on how the choice of method influences 

LFE values). In addition to the used method for calculating the final set of charges, they also 

depend on the exact conformation used as input. Furthermore, potential changes done to the 

molecule in one position, like they are proposed by the FEDs, likely change the partial charge 

distribution everywhere throughout the compound. Thus, modifications in structure do affect 

the rest of the molecule not only via an altered solvent distribution, as is the case for the LJ 
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parameter but also via intramolecular effects. These effects make it hard to derive clear 

optimization pathways from 1chyd (L)  1I⁄ . Promising strategies most likely focus on broader 

trends and dismiss local effects, as they are likely to change with slightly altered input 

conformations or parameters. 

3.3.4.2 In-depth analysis of the binding free energy derivatives of a thrombin inhibitor 

As seen in the last subchapter, the atom-wise visualizations of the FEDs are, in general, more 

comprehendible than the ones of the corresponding LFE counterparts. They tend, even 

though not completely, much less to the notorious alternating pattern and are much easier to 

interpret. Nonetheless, the volumetric visualization is still a useful tool since the involved 

terms, especially the Coulomb potential, are acting over distances, and potential changes in 

the molecular structure often affect full regions rather than points in space. However, since 

the in a drug development context most interesting effects likely affect single sites, it is the 

default visualization method for this subchapter. 

The derivatives of the binding free energy can be calculated with 

 �∆bindcAB(X)
�Á = �chyd,AB(X)

�Á − �chyd,X
�Á + �hAB(X)

�Á , (3.17) 

where X is a placeholder for the localization either on the host (A) or guest (B) and P can be 

one of the LJ-parameter ) and J, or the partial charge q. The equation follows the same logic 

as it was used for the localized binding free energy and also yields a host-guest separated 

localization. 

While the resulting branches were not independent from each other in the LFE approach, 

meaning the total binding free energy could only be derived from summing both branches, 

there are so in the FED approach. The derivatives on one of both partners stand for the 

tendency of the full system to react according to sign and magnitude of the particular value. 

Due to the nature of the data source, only the ligand perspective is discussed in the following. 

Nonetheless, a similar analysis could also be made for the protein. Such could be, for 

example, of interest for mutation-induced drug resistance or protein editing. This is, 

however, is beyond the scope of this work. 
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Figure 3.16     Free energy derivatives (FED) of the ligand atoms of the 2ZFP thrombin complex. The first 
row (A-C) shows the derivatives with respect to the Lennard-Jones )-parameter, the second (D-F) those with 
respect to the J-parameter, and the third (G-I) with respect to the partial charge q. The first column shows the 
derivatives of the desolvation penalty, the second the derivative of the intermolecular energy, and the third the 
derivatives of the binding free energy. The coloring ranges are adapted to the minimum and maximum values 
of the particular derivatives but clip outliers (B, C, E, and F). The raw data can be found in Table 6.5 and in 
the electronic appendix under 3.3/3.3.4/Loc/2ZFP/. 
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Derivatives with respect to partial charges: desolvation penalty 

When calculating the derivative of the desolvation penalty w.r.t. the partial charges, every 

atom carries a positive value. This can be interpreted in the sense that a more negatively, or 

in other words, less positively charged compound would lead to a lower desolvation penalty. 

In itself, this is a relatively direct result because, generally spoken, neutral molecules have a 

smaller desolvation penalty to pay since they tend to have a higher solvation free energy. To 

achieve neutrality, the net charge of the compound hand must be decreased by one, following 

the direction of the derivatives. The lower desolvation penalty is one, but often not the only 

reason, for modern drug design to focus on non-charged compounds for their often 

advantageous ADME properties.227 The red coloring in Figure 3.16 G is most pronounced on 

the S1-pocket binding part of the ligand, which initially seems quite curious since the 

corresponding, most blueish derivatives on the free ligand can be found around the amino 

group, far from the S1-pocket. The unexpected shift is most likely caused by the negatively 

charged ASP189, which is dominating the S1-pocket. Its negative charge attracts hydrogen 

density between protein and ligand, where is indeed enough room for a water molecule, 

confirmed by crystal structures from multiple studies (PDB-structures: 2ZFP, 2ZC9, 

3DHK80, 6ZUG227, 4UDW254) and shown in Figure 3.17. 
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Figure 3.17     Oxygen (orange) and hydrogen (blue-white) distribution around the binding site of the thrombin 
complex 2ZFP. The complex is shown in desaturated colors. The experimentally resolved water molecules 
from the x-ray crystal structure of 2ZFP are shown as red spheres. The solvent density presumably causing the 
positive derivative of the desolvation penalty with respect to partial charges is highlighted by a blue circle. 

The positive derivatives of the solvation free energy of the ligand in complex with thrombin 

is likely reflecting this interaction. In contrast, the amino group carries strong negative 

derivatives, just like the free ligand, because of its solvent accessibility, partially 

compensating the derivatives of the free ligand, finally leading to the observed gradient. 

Derivatives with respect to partial charges: intermolecular energy 

The derivative of the intermolecular energy between ligand and protein w.r.t charge 

(Figure 3.16 H) shows a clear trend and is therefore straightforward interpretable. The net 

negative charged aspartic acid in the S1 pocket leads to a negative derivative on every atom 

of the ligand with increased intensity in its direct proximity. A more positive charge, 

especially in this region, leads without a doubt to a stronger interaction, which was also 

experimentally proven237,255 and theoretically shown in this work through the benzamidine 

based compounds (see Figure 3.12 and Figure 3.13). 
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Derivatives with respect to partial charges: binding free energy 

Knowing that compounds introducing a positive charge in the S1 pocket increase the binding 

affinity by a significant margin, one is naturally compelled to look for negative derivatives 

w.r.t q in this general area (Figure 3.16 I). However, all derivatives found in this part of the 

ligand are positive, not confirming this very reasonable assumption. This is because of the 

same effect causing 1Δchyd,PL−L(L) 1I⁄  to be exclusively positive. 3D RISM assigns hydrogen 

density in the area between ligand and ASP189, giving this part of the ligand a net positive 

derivative. This example testifies to a fundamental limitation of the FED approach to 

compound optimization. Interactions that are not yet established or are at least formed in 

some form of protostage (a thinkable example would be an alcohol group, forming a 

hydrogen bond with ASP189. Some other candidates are explored by Lumma et al. 242) will 

most likely not be found by analyzing FEDs. They should be thought of as a means to find 

potential point-wise changes, strengthening preexisting constructive effects and weakening 

deconstructive ones.  

Such points are, for example, the ortho-hydrogen and carbon in the m-chlorobenzyl, which 

stand out as significantly more strongly red-colored within the ring. A possible explanation 

for their unusual high positive derivatives can be found in the apo form of thrombin 

(2UUF256, 3D49257, 2GP9258). In the absence of a binding ligand, one can repeatedly find a 

water molecule in the same position within the binding site, in which the positive 

1∆bindcPL(L) 1I⁄  values are located. This water is not flag as particularly unstable in the 

literature227,255, but gets replaced anyway, thereby increasing the desolvation penalty. So it 

seems that an atom or a group, being more locally polarized in this area, making it effectively 

more similar to a water-oxygen, could decrease the binding free energy. (A similar argument 

could be made for the 9-carbon and hydrogen of the proline in the S2 pocket, but much less 

pronounced since the replaced water is in this case known to be unstable227,255). Indications 

towards this initial idea are the orientation of the nitrogen, oxygen, and sulfur in several 

ligand fragments in the S1 pocket, which orient themselves in the described way259–261. 

However, to verify this hypothesis, there are more and deeper investigations needed. 

This concept of using the FEDs points-wise changes is demonstrated later in this chapter, 

comparing the through FEDs predicted trends with experimental ligand series. 
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Derivatives with respect to the J-parameter: desolvation penalty 

The derivative of the desolvation penalty w.r.t. the J-parameter (Figure 3.16 D) is on almost 

all atoms positive and reflects the findings from the discussion about the derivative of the 

solvation free energy of the free ligand quite accurately. To decrease the desolvation penalty, 

either the interaction with the solvent in the bound state must be strengthened or weakened 

in the unbound state. And since the magnitude of those interactions is much higher in the 

unbound state, the derivative is following this for the desolvation penalty. 

Derivatives with respect to the J-parameter: intermolecular energy 

One can assume that the ligand will settle in the binding site during crystallization in the 

conformation with the, under consideration of solvation effects, lowest possible 

intermolecular energy, which means most atoms end up in the attractive part of the LJ-

potential. And since the derivative of the LJ potential w.r.t the J-parameter shares its zero-

crossing with the original potential (see Figure 2.2), 1hPL(L)  1J⁄  shows directly which atom has 

a total negative or positive LJ energy. With this in mind, it is easy to see why most of the 

ligand in Figure 3.16 E is colored blue. Nonetheless, in the S2 pocket, two red-colored 

hydrogens are clashing with the protein. This is something already observed and discussed 

in the LFE analysis and is therefore not explained in further detail here. 

The overlap between 1hPL(L)  1J⁄  and 1hPL(L)  1)⁄  in contrast, and especially the absence of it, is 

worth mentioning. Because the positive part of the 1hPL(L)  1J⁄ -function is already within 

contact distance (see Figure 2.2) of two atoms, every positive derivative w.r.t the J-parameter 

has a corresponding positive derivative w.r.t the )-parameter on the same atom, always 

leading to a positive derivative w.r.t. the )-parameter. Conversely, a positive value in 

1hPL(L)  1)⁄  does not have to have a positive correspondence in 1hPL(L)  1J⁄ . The zero-crossing 

of its function is at a larger distance r and is, therefore, more sensitive to such close contacts. 

Derivatives with respect to the J-parameter: binding free energy 

The most noticeable atoms regarding the derivative of the binding free are already known 

from the last paragraph, with two exceptions. The meta- and para-hydrogen of the 

m-chlorobenzyl carry comparably high negative values in Figure 3.16 F. They underline the 

argument made in the part of the derivatives of the desolvation penalty and binding free 

energy w.r.t the charge, where the high absolute values in the ring were found to possibly be 
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caused by accumulated solvent-hydrogen density in between ligand and protein, with which 

the two atoms likely interact. 

Derivatives with respect to the )-parameter: desolvation penalty 

Regarding the derivative of the desolvation penalty w.r.t. the )-parameter, blue colored 

atoms in Figure 3.16 A indicate that a group or an atom with a larger radius than the status 

quo would decrease the desolvation penalty by either increasing the solvation free energy of 

the ligand or decreasing it for the complex. Red-colored atoms are indicating the inverse. 

Analyzing the coloring in Figure 3.16 A, the ligand appears mostly neutral with a slight 

tendency towards smaller radii. At first glance, this may seem relatively unexciting, but at 

least for the in the S2 pocket binding proline-like substructure of the ligand, this is actually 

noticeable. In the apo form of the protein, here one can find a thermodynamically unstable 

water227,255, which gets replaced by the ligand upon binding. The fact that 1Δchyd,PL−L(L) 1)⁄  is 

near zero on atoms in this region, shows that the ligand is replacing the water almost 

perfectly regarding the difference in solvation free energy and the spacial requirements of it. 

In the discussion of 1ΔbindcPL(L) 1I⁄  it is shown that this is not necessarily the case for all non-

bonded force field parameters. 

Derivatives with respect to the )-parameter: intermolecular energy 

The mostly blueish coloring in the visualization of 1Einter 1)⁄  in Figure 3.16 B is somewhat 

misleading at first glance. Due to the licorice drawing style of the molecule, heavy atoms 

have a higher visual weight than hydrogen atoms do have. However, those hydrogen atoms 

are the ones, in most cases at least, in direct contact with the solvent or binding partner. A 

negative derivative on a carbon atom can easily be accompanied by a hydrogen atom already 

interacting in the repulsive part of the LJ-potential and thereby carrying a high positive 

derivative w.r.t ). The following red coloring is visually underrepresented, though, giving 

the impression of a general tendency towards higher atom radii. This shows once again the 

importance of how results are visualized, especially for methods like LFE and FED. In this 

particular case, a volumetric visualization might have been better suited, but with the 

problem in mind, a reliable analysis is still possible. 

Nonetheless, there are exceptions to the just described phenomenon. Some atom types in the 

GAFF force field have )-parameters large enough to swallow their accompanying hydrogen 
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atoms. This can be seen for example on one of the amid nitrogen in the compound, lighting 

up in a bright red color, indicating a very high 1EPL(L) 1)⁄  and thereby a very close contact. 

This is also true for the amine nitrogen, although to a lesser extend. The S2 pocket, in 

general, is known to cause steric clashes between protein and ligand, as investigated in detail 

by Hillisch et al.227. By optimizing compounds in this regard, the binding affinity was 

increased, which suggests that the derivative of the intermolecular energy w.r.t the 

)-parameter (and J-parameter) could indeed be useful for lead structure optimization. 

Derivatives with respect to the )-parameter: binding free energy 

The in the S1 pocket binding parts of thrombin inhibiting ligands are intensely studied and 

discussed in the literature and explored by multiple experimental compound series. This 

makes the distinctive blue color in Figure 3.16 C of the derivative of the binding free energy 

w.r.t the )-parameter of the chlorine atom especially interesting. As explained before, one 

of its functions is to replace a thermodynamically unstable water molecule and it is therefore 

considered crucial for the binding affinity of compounds equipped with this particular 

feature. 

The apparent negative 1ΔbindcPL(L) 1)⁄  suggest, that the binding free energy would be 

decreased even further by a slightly bigger atom or increased by a smaller atom in this 

position. 

To test this hypothesis, there are experimental binding constants from multiple studies 

collected in Table 3.9. Additionally, there are derivatives for alternative decoration listed to 

check whether the trend is consistent within the FED method. These structures were 

artificially generated with the software Avogadro262, and the Carbon-X distance is adapted 

to the corresponding bound element (H, F, Cl, and Br). Everything else was kept the same 

as for the regular 2ZFP complex treated above. 
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Figure 3.18     Base structures used in the experimental essays of Burgey et al.259 (A), Lumma et al.242 (B), 
Baum et al.237 (C). Theoretical calculations were performed on compounds derived from base structure D, 
taken from Baum et al.80 

Table 3.9     The table gives the experimental binding affinities of compounds from three different publications 
towards the thrombin serine protease. In the columns for structure D there are the derivatives of the binding 
free energy with respect to the Lennard-Jones )-parameter and the corresponding LFE value given. 

R Struc. A259 (Ki) Struc. B242 (IC50) Struc. C237 (Ki) 
Struc. D 

(�∆bindcPL(L) �(⁄ ) 

Struc. D  

(∆bindcPL(L)) 
H 7.0 nM 130 nM 11.21 µM ± 6.70 1.22 kJ mol-1 Å-1 2.58 kJ mol-1 

F 7.3 nM - 3.99 µM ± 2.12 -13.94 kJ mol-1 Å-1 -2.02 kJ mol-1 

Cl 0.26 nM 12 nM 180 nM ± 140 -10.02 kJ mol-1 Å-1 -9.64 kJ mol-1 

Br 0.19 nM 10 nM 560 nM ± 147 26.19 kJ mol-1 Å-1 -9.28 kJ mol-1 

 

Despite that, the base-structure A is structurally significantly different to B and C, and their 

data origins from three different publications, more than ten years apart, the trend in the 

experimental findings is mostly uniform. Compared to hydrogen and fluorine, chlorine and 

bromine are by an order of magnitude better-suited decorations concerning the binding 

affinity of the corresponding compound. However, within these two groups, the trends differ 

between the base structures and publications. For base-structure A, benzyl and 

m-fluorobenzyl are virtually indistinguishable from each other based on their Ki. At the same 

time, the binding affinity is increased by the fluorine decoration in base-structure C. 

Similarly, for A and B m-chlorine- and m-brominebenzyl are fairly similar, whereas they 

differ in C by threefold. The discrepancy between A and C could very well be explained by 

the quite large structural distance, while the different experimental methods (IC50 vs. Ki) and 
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ten years of scientific progress may account for B and C. Either way, the experimental 

binding affinity seems to increase with the size of the atom in meta position of the in the 

S1pocket binding benzyl, with a possible, but also debatable, sweet spot at chlorine. 

Nevertheless, the in silico calculated derivatives agree well with the reported values from 

base-structure C. Same is true for the also given LFE values. The derivative on the meta 

hydrogen is slightly positive, seemingly breaking the trend of decreasing values with 

shrinking atom size. However, this is indeed in line with theoretical and experimental results 

in the literature. The unchanged benzyl group does not replace the aforementioned described 

unstable water from the binding site, as it can be seen in the PDB structures of the in this 

work used amidine-based protein-ligand complexes and was proven by Abel et al.255 through 

simulations and crystal structures. With this water still in place, the S1 pocket becomes quite 

crowded, making the presents of the water molecule even more disadvantageous, which 

explains the positive derivative on the hydrogen. Furthermore, the non-halogenic variant 

carries the highest LFE value of the here tested compounds, underlining the analysis of the 

derivative and being in line with the corresponding experimental results. 

The fluorine atom carries the most negative derivative of the four test substituents, 

suggesting that the replacement of the unstable water takes place, although sub-optimally. 

The corresponding LFE value fits this explanation too. By releasing the water molecule into 

the bulk phase, a cavity is created in the S1 pocket, into which the ligand can be expanded. 

It is worth noting that the potential energy gain originates not primarily from the protein-

ligand interaction, but from the increased solvation free energy and thereby decreased 

desolvation penalty of the ligand, caused by a larger volume while keeping the dipole 

moment of the ligand more or less the same. 

The good agreement with the literature shows, when the calculated derivative is taken 

literally and the ΔΔbindc is calculated from it. Treating the m-fluorobenzyl as start and the 

m-chlorobenzyl as end state, 

 

ΔΔbindcapprox. = �Δbindc
�)start ()end − )start) 

= −13.94 kJmol Å (3.4709 Å − 3.1181 Å) 
= −4.88 kJmol 

(3.13) 
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can be formulated. This is only a quick and rough estimation of the difference in binding 

free energy, but even so, it comes close to the experimental value of -7.68 kJ mol-1 

(ΔΔbindcexp = −Ã% ln �i,end  �i,start⁄ ), especially considering the relatively high standard 

deviations of the experimental values. The difference in the LFE values for the aromatic 

substituent recreates the experimental value even more truthfully with 

 

ΔΔbindcapprox.,LFE = ΔbindcPL(Cl) − ΔbindcPL(F) 
= −9.64 kJmol − (−2.02 kJmol) 
= −7.62 kJmol. 

(3.13) 

The negative derivative on the chlorine in the original compound was already mentioned 

before and initiated this more detailed case study. From this, two hypotheses can be 

formulated; for once, that a compound with a smaller )-parameter would lead to a weaker 

binding affinity, and secondly, that a higher )-parameter would lead to a stronger binding 

affinity. The first statement did hold true, backed by all three experimental studies. The 

second, that an atom with a bigger radius would strengthen the binding affinity does not have 

an explicit experimental confirmation, as described above. However, the derivative of the 

binding free energy is a theoretical concept, which is not constrained by the incremental 

nature of the periodical table and so the optimal size may not be the one of bromine but 

somewhere in-between. The calculated derivative on the bromine atom is 26.19 kJ mol-1 Å-1, 

a strongly positive value, indicating that the theoretical, but physically impossible, sweet 

spot is already surpassed by its size†. Once again, the LFE value for bromine in this position 

confirms the FED, but this time only by a slight margin. This makes chlorine the best 

physical possible substituent of the halogens from a FED point of view, which is indeed 

confirmed by the experimental results described above. 

 

 

 

† The considerable absolute magnitude is presumably caused by the artificial placement of the bromine and the 
following missing conformational relaxation of protein and bound ligand. 



Results
 

 

- 112 - 
 

3.3.4.3 Summary of the subchapter 

Since free energy derivatives are rather seldomly encountered in computational chemistry, 

this subchapter featured an introduction to the concept, visualization, and interpretation. The 

application of them to the already known thrombin complexes demonstrated a potential 

usecases in drug development, underlined by experimentally validated results from an in-

silico experiment. This short excursion in a hypothetical compound optimization shows the 

potential of the FEDs for optimizing compounds.  

While there are clear limitations to the method, for example, the relative blindness towards 

categorically new interactions, the FEDs can be interpreted quite intuitively. They can help 

rationalize the protein-ligand binding, being at times even more sensitive to problematic 

interactions than the LFE approach. The primary application is to guide compound design, 

including in-silico approaches as well as traditional optimization, done by experts, but the 

potential use cases do not end here. Other possibly profiting fields include, for example, 

pharmacophore-based docking, virtual screening, or machine learning, informing statistical 

models with an even more detailed physical model. Especially the latter could profit from 

FEDs (also of molecules in free solution), informing generative models and enabling them 

to propose compounds with better ADMET properties. Furthermore, the protein atom FEDs, 

a topic not touched here, can also be of great value. Pressing questions in toxicology and 

drug resistance could be helped to answer by analyzing tendencies within the protein 

structure, thereby identifying specificity issues and potentially dangerous mutation spots. 

Depending on the intended field of application, there are also possible extensions to the here 

demonstrated method of utilization of FED. As they were applied to only one conformation 

of the complex and the rigid-body assumption was used in this chapter, the results suffer 

from the same problems with this approach as LFE results do and could therefore profit from 

a combination with MD simulations. Furthermore, FED calculations are much less 

computational demanding as it is the case with the LFE, since here no integration over �-

steps is required, making this extension more feasible. 
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4 Summary and conclusion 

This work focused on applying 3D RISM based methods to thermodynamically 

characterizing biologically relevant systems on multiple scales, regarding not only the size 

of the studied molecules but also the level of detail. 

The combination of 3D RISM with MD simulations enables the study of large systems like 

the anti-NPRA IgG4 antibody and the calculation of the free energy difference between its 

�- and Y-conformer.167 Running simulations of only these endpoints and estimating the 

hydration free energy from snapshots with 3D RISM could be demonstrated to be a valid 

way of treating such large systems, previously only shown for smaller proteins and 

complexes35–39. Tests with an alternative water model and PMV corrections all yielded the 

same trend between the conformers, underlining the robustness of the method. Nonetheless, 

the presented results also revealed the limitations of this approach through significant 

statistical errors due to structural fluctuation in the simulations. The approach taken in this 

work to cope with this problem was to redirect the focus towards a finer detailed description 

of the systems of interest. This was done by employing the so-called localized free energies 

(LFE), breaking down thermodynamic properties like the hydration free energy and, together 

with force field energies, binding free energy onto individual sites. 

To demonstrate the plausibility of the localized free energies beyond mathematical 

soundness, they were used as input features for deep learning models to predict solvation 

free energies. To explore their applicability and limitations in a real-world scenario, they 

were used to explain experimental trends in a thrombin ligand series retrospectively. 

Complexes taken from this series were also used to investigate the influence of some key 

factors on the results and their potential interpretation. The second method introduced in this 

work calculates so-called free energy derivatives, describing the derivative of the excess 

chemical potential with respect to the non-bonded force field parameters. The FEDs were 

also applied to the thrombin ligand series, explaining the experimental shifts caused by 

changes between ligands. Their potential for compound design guidance was also 

demonstrated by correlating the in-silico suggestions with experimental results from 

multiple studies. 
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To verify the plausibility of the LFE partitioned excess chemical potential, two deep learning 

approaches were implemented and trained on solvation free energies, taken from the MNSol 

dataset189. The LFE values were used as input for the machine learning models and were 

tested against a random and equal distribution. It could be shown that the LFE distribution 

indeed gives the best results compared to all other partitionings of the excess chemical 

potential tried in this work. Even an equal distribution of the calculated total excess chemical 

potential on all sites gives only subpar results. This means, that the models can differentiate 

between correct and incorrect LFE distributions, which not only confirms the plausibility of 

LFE approach itself, but also hints towards the possibility that the models can learn about 

the physics behind solvation from the LFE distribution, even from such a small dataset as it 

was used here. Such a learned connection could be used to infer LFEs directly from pair 

distribution functions, without the necessity of calculating and integrating over multiple �-

steps, providing a, probably less accurate, but much faster access to LFEs as the in this work 

introduced full method. Further, the inverse direction could also be an interesting way to 

infer an approximate pair distribution function. In either case, more research has to be 

conducted in this direction. The conducted machine learning experiments also showed the 

advantages coming from the utilization of first principle methods like 3D RISM in machine 

learning approaches. This so-called hybrid modeling is especially useful when experimental 

data is limited or sparse, as it is often the case with chemistry-related tasks like the prediction 

of solvation free energies. The results shown in this work, underline this mainly for the 

strongly underrepresented ionic species in the MNSol dataset, where RMSE and MAE 

values, comparable with those of high-level methods178, could only be achieved with the 

physics-based input like the excess chemical potential and LFEs. 

The plausibility confirmed, the LFE approach was then applied to protein-ligand complexes 

on a ligand series of thrombin inhibitors. On the basis of a suitable visualization strategy, 

the potential knowledge gain from the LFE method and its plausibility in a protein-ligand 

binding context was demonstrated by in-depth discussions of the results. It could be shown 

that the separation of the binding free energy in its contributions and the separate 

interpretation of the protein and ligand perspective can bring additional insights. This also 

extends to the comparisons between the ligands within the series and observations relative 

to each other, where the direct and indirect influence of structural changes was illuminated. 

With the introduced method, a rationalization of interactions between host and guest and 
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their contribution to the binding is possible right down to an atomic level. Nonetheless, there 

are still limiting factors to the method. The calculation of the localized binding free energy 

neglected not only the solute entropic terms, but also could not make use of the PMV 

corrections, as both terms could not be localized. (Approaches for the localization of entropic 

terms were studied by Fabian Sendzik in his masters thesis263 during time of writing of this 

work. Furthermore, the LFEs were applied to only the minimally modeled crystal structures 

in a sacrifice for speed, treating them as rigid bodies. In addition, the conformations of ligand 

and protein were kept the same for both bound and unbound states, which is also only a first 

approximation. To overcome both problems, MD simulations could be employed in future 

extensions, similar to the procedure described for the antibody. However, with this, the 

computational burden would increase drastically, as not only the MD simulations would 

have to be performed but also the localization of the free energy for multiple snapshots be 

done. Concentrating on only the ligand and neglecting the protein perspective could 

therefore be an acceptable compromise. 

The investigation of influence factors was focused on the net charge of the host as well as 

the positioning of free ions in the system, as they are often found in structures from 

crystallographic experiments. The findings suggest that some thought regarding net charge 

and ion potioning is required in the preprocessing, but also that the effect is mostly limited 

to global shifts and is not altering the relations between sites in meaningful ways. 

Sticking with drug discovery as a general example application for the introduced methods 

the, from analytical derivatives, calculated FEDs, were also applied to the thrombin inhibitor 

series. By investigating the derivative of the binding free energy once again from multiple 

perspectives and the contributions to it individually, the key properties of structural elements 

occurring in the series could be identified. This led to an in-silico experiment in which 

multiple halogenic substituents were tested for one of the ligands in the studied series, 

sparked by the derivatives with respect to the (-parameter of a chlorine atom. The correlation 

of the calculated derivatives with findings from multiple experimental studies could confirm 

the sign of the derivative and its magnitude, suggesting, although physically not possible, 

that an optimal substituent would be in between chlorine and bromine. 

The examples in this work demonstrate the potential application of the LFEs and FEDs in a 

drug development environment by identifying the most important protein-ligand interactions 
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and the significant properties of these structural elements. Furthermore, the splitting into 

different perspectives and contributions to the binding free energy grants deep insights into 

the interaction. With these options in mind, both methods could be used to boost virtual 

screening applications starting from a few initial binders by first identifying important 

structures to look for in large databases with the LFE method and also hinting towards 

relevant properties in potential hits extracted from the FEDs. Docking and 3D QSAR are 

also applications that can benefit from, especially the volumetric LFEs. With them, 

pharmacophores could be defined from LFEs of the protein binding site, to which 

compounds could then be aligned and ultimately be scored. An initial exploration of LFEs 

and FEDs as input for machine learning models was conducted with the plausibility check 

of the LFEs, but possibilities in this field go much further than this. For example, generative 

models could be informed by atom-wise localized thermodynamic properties to improve 

properties like binding affinities and ADMET parameters of the generated molecules. 
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6 Attachment 

Table 6.1     Results of the, with the 3D-CNN models, made predictions measured against the MNSol data 
set189. Posterior separated in neutral and single positive and negative charged molecules, treated with three 
different methods for partial charge calculation. The used metrics are Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), coefficient of determination (R2), as well as the slope (m) and y-intercept (b) of a linear 
fit on the predicted solvation free energies in kcal/mol. All numbers are an average over five repetitions and 
for each of the three five-fold cross-validations (A, B, and C). The raw data can be found in the electronic 
appendix under 3.2/mnsol_3DCNN_modelResults.csv and collectively under 3.2/mnsol_molInf.csv. 

3D-CNN 
  RMSE MAE R2 m b

AM1BCC    
 
All 

A 2.49±0.35 1.45±0.24 0.99±0.00 0.98±0.00 0.07±0.06 
B 2.85±0.29 1.53±0.22 0.99±0.00 0.97±0.00 -0.14±0.04 
C 2.64±0.32 1.52±0.23 0.99±0.00 0.98±0.00 0.01±0.04 

 
Neutral 

A 1.40±0.18 0.93±0.15 0.89±0.00 0.91±0.01 -0.19±0.05 
B 1.43±0.17 0.93±0.14 0.88±0.00 0.92±0.01 -0.33±0.06 
C 1.40±0.18 0.93±0.15 0.89±0.00 0.88±0.01 -0.36±0.03 

 
Anions 

A 4.79±0.68 3.36±0.55 0.80±0.01 0.89±0.01 -7.13±0.77 
B 5.89±0.54 3.95±0.50 0.74±0.01 0.90±0.01 -6.10±0.78 
C 5.15±0.63 3.78±0.57 0.77±0.01 0.85±0.01 -9.82±0.67 

 
Cations 

A 3.48±0.48 2.40±0.40 0.79±0.01 0.82±0.01 -10.37±0.76 
B 3.47±0.41 2.34±0.37 0.80±0.01 0.78±0.01 -13.58±0.55 
C 3.74±0.40 2.46±0.33 0.75±0.01 0.82±0.01 -10.67±0.73 

RESP       
 
All 

A 2.36±0.34 1.42±0.26 0.99±0.00 0.97±0.00 -0.03±0.11 
B 2.50±0.29 1.46±0.23 0.99±0.00 0.97±0.00 -0.18±0.02 
C 2.41±0.33 1.47±0.25 0.99±0.00 0.97±0.00 -0.13±0.06 

 
Neutral 

A 1.40±0.23 0.95±0.20 0.89±0.00 0.91±0.01 -0.28±0.09 
B 1.46±0.21 0.98±0.17 0.88±0.00 0.92±0.01 -0.34±0.02 
C 1.38±0.23 0.96±0.19 0.88±0.00 0.89±0.01 -0.43±0.06 

 
Anions 

A 4.24±0.60 2.94±0.46 0.86±0.01 0.91±0.02 -5.18±1.12 
B 4.75±0.50 3.17±0.44 0.83±0.01 0.91±0.01 -4.53±0.66 
C 4.40±0.54 3.24±0.45 0.84±0.01 0.88±0.01 -6.91±0.76 

 
Cations 

A 3.69±0.46 2.61±0.38 0.78±0.02 0.84±0.01 -9.23±0.90 
B 3.42±0.39 2.43±0.34 0.81±0.01 0.82±0.01 -10.25±0.67 
C 3.74±0.50 2.59±0.40 0.75±0.02 0.81±0.01 -11.26±0.70 

EC-RISM       
 
All 

A 2.83±0.28 1.52±0.20 0.99±0.00 0.98±0.00 -0.08±0.04 
B 2.69±0.29 1.48±0.21 0.99±0.00 0.98±0.00 -0.14±0.02 
C 2.87±0.31 1.50±0.20 0.99±0.00 0.98±0.00 -0.10±0.03 

 
Neutral 

A 1.29±0.15 0.92±0.13 0.91±0.00 0.90±0.01 -0.39±0.06 
B 1.33±0.16 0.93±0.14 0.90±0.00 0.91±0.01 -0.43±0.02 
C 1.42±0.16 0.91±0.13 0.89±0.00 0.89±0.01 -0.47±0.04 

 
Anions 

A 5.17±0.52 3.66±0.42 0.76±0.00 0.84±0.01 -11.25±0.62 
B 4.66±0.54 3.51±0.47 0.80±0.00 0.83±0.01 -12.33±0.60 
C 4.77±0.62 3.42±0.49 0.79±0.01 0.85±0.01 -10.50±0.76 

 
Cations 

A 5.20±0.46 2.74±0.34 0.67±0.01 1.00±0.02 1.47±1.38 
B 5.12±0.42 2.46±0.35 0.68±0.01 1.01±0.01 2.11±0.82 
C 5.71±0.43 2.95±0.32 0.64±0.01 1.02±0.02 2.47±1.01 
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Table 6.2     Results of the, with the MPNN models, made predictions measured against the MNSol data set189. 
Posterior separated in neutral and single positive and negative charged molecules, treated with three different 
methods for partial charge calculation. The used metrics are Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), coefficient of determination (R2), as well as the slope (m) and y-intercept (b) of a linear fit on 
the predicted solvation free energies in kcal/mol. All numbers are an average over five repetitions and for each 
of the three five-fold cross-validations (A, B, and C). The raw data can be found in the electronic appendix 
under 3.2/mnsol_MPNN_modelResults.csv and collectively under 3.2/mnsol_molInf.csv. 

MPNN 
  RMSE MAE R2 m b 
AM1BCC    
 
All 

A 2.33±0.29 1.25±0.21 0.99±0.00 0.99±0.00 -0.16±0.02 
B 2.26±0.29 1.25±0.20 0.99±0.00 0.99±0.00 -0.10±0.02 
C 2.68±0.31 1.34±0.21 0.99±0.00 1.00±0.00 -0.06±0.02 

 
Neutral 

A 1.12±0.17 0.77±0.15 0.93±0.00 0.95±0.00 -0.31±0.03 
B 1.31±0.18 0.85±0.14 0.90±0.00 0.97±0.01 -0.15±0.03 
C 1.55±0.17 0.84±0.14 0.86±0.01 0.88±0.01 -0.45±0.06 

 
Anions 

A 4.94±0.57 3.15±0.44 0.78±0.01 0.88±0.01 -9.19±0.66 
B 4.60±0.55 2.97±0.44 0.80±0.01 0.88±0.01 -9.22±0.80 
C 5.49±0.64 3.53±0.50 0.72±0.02 0.75±0.02 -19.27±1.57 

 
Cations 

A 2.71±0.35 1.90±0.32 0.86±0.01 0.89±0.01 -7.14±0.58 
B 2.35±0.38 1.55±0.30 0.89±0.01 0.91±0.01 -5.89±0.83 
C 2.68±0.33 1.71±0.29 0.86±0.01 0.88±0.01 -8.03±0.66 

RESP     
 
All 

A 1.92±0.24 1.21±0.19 1.00±0.00 1.00±0.00 -0.09±0.03 
B 1.89±0.23 1.18±0.19 1.00±0.00 1.00±0.00 -0.17±0.03 
C 2.01±0.25 1.18±0.19 1.00±0.00 1.00±0.00 -0.04±0.05 

 
Neutral 

A 1.14±0.16 0.79±0.14 0.92±0.00 0.95±0.01 -0.23±0.03 
B 1.26±0.16 0.83±0.14 0.91±0.00 0.97±0.00 -0.25±0.02 
C 1.43±0.16 0.83±0.14 0.88±0.00 0.89±0.00 -0.43±0.04 

 
Anions 

A 3.58±0.38 2.65±0.34 0.88±0.01 0.86±0.01 -10.93±0.33 
B 3.47±0.36 2.54±0.33 0.89±0.00 0.87±0.00 -10.10±0.30 
C 3.49±0.45 2.42±0.37 0.88±0.00 0.86±0.01 -10.64±0.34 

 
Cations 

A 2.69±0.41 2.10±0.35 0.86±0.01 0.94±0.01 -3.48±0.84 
B 2.30±0.37 1.68±0.32 0.90±0.00 0.98±0.01 -1.30±0.76 
C 2.52±0.35 1.95±0.32 0.88±0.00 0.93±0.01 -5.10±0.70 

EC-RISM     
 
All 

A 2.24±0.26 1.28±0.18 0.99±0.00 0.99±0.00 -0.12±0.04 
B 2.21±0.27 1.27±0.19 0.99±0.00 1.00±0.00 -0.07±0.02 
C 2.25±0.26 1.25±0.19 0.99±0.00 1.00±0.00 -0.08±0.04 

 
Neutral 

A 1.10±0.14 0.71±0.12 0.93±0.00 0.96±0.01 -0.23±0.04 
B 1.30±0.15 0.80±0.13 0.91±0.00 0.96±0.00 -0.16±0.03 
C 1.46±0.17 0.78±0.14 0.88±0.00 0.92±0.01 -0.38±0.01 

 
Anions 

A 4.49±0.51 3.19±0.38 0.81±0.01 0.87±0.00 -9.70±0.36 
B 4.24±0.55 3.08±0.40 0.83±0.00 0.87±0.00 -9.88±0.30 
C 4.18±0.47 3.01±0.37 0.84±0.00 0.92±0.01 -6.35±0.54 

 
Cations 

A 3.18±0.36 2.56±0.30 0.81±0.00 0.91±0.01 -5.41±0.99 
B 2.88±0.33 2.00±0.28 0.85±0.01 0.94±0.01 -4.04±0.57 
C 2.79±0.37 2.06±0.33 0.85±0.00 0.88±0.01 -8.22±0.38 

 

 

 



Applying FED and LFE to protein-ligand complexes 
 

 

- 139 - 
 

Table 6.3     Results of the MPNN model predictions with diminishing amounts of LFE data on three levels: the 
mean over the full molecule is assigned to each atom (LFE mean), the calculated LFE values are assigned to 
random atoms (LFE randomized), the LFE channel is set to zero for each molecule (LFE set to 0). As a 
reference, the results utilizing the original data (LFE as calculated) are given once again. The labels A, B, and 
C stand for the three five-fold cross-validations. The values are averaged over five repetitions with different 
random seeds. The raw data can be found in the electronic appendix under 
3.2/mnsol_MPNN_LFEtests_modelResults.csv and collectively under 3.2/mnsol_molInf.csv. 

 RMSE MAE R2 m b 

AM1BCC   
 
LFE as calculated 

A 2.33±0.29 1.25±0.21 0.99±0.00 0.99±0.00 -0.16±0.02
B 2.26±0.29 1.25±0.20 0.99±0.00 0.99±0.00 -0.10±0.02
C 2.68±0.31 1.34±0.21 0.99±0.00 1.00±0.00 -0.06±0.02

 
LFE mean 

A 2.60±0.27 1.47±0.21 0.99±0.00 1.00±0.00 -0.11±0.04
B 2.57±0.26 1.43±0.21 0.99±0.00 1.00±0.00 -0.15±0.05
C 2.77±0.25 1.51±0.20 0.99±0.00 0.99±0.00 -0.15±0.05

 
LFE randomized 

A 2.62±0.34 1.58±0.26 0.99±0.00 0.99±0.00 -0.03±0.03
B 2.69±0.33 1.62±0.25 0.99±0.00 0.99±0.00 -0.20±0.04
C 3.01±0.31 1.73±0.24 0.99±0.00 0.99±0.00 -0.09±0.02

 
LFE set to 0 

A 3.08±0.47 1.82±0.34 0.99±0.00 0.99±0.00 -0.21±0.04
B 3.35±0.53 1.87±0.34 0.99±0.00 0.98±0.00 -0.31±0.04
C 3.41±0.43 1.95±0.31 0.99±0.00 0.98±0.00 -0.17±0.07

RESP     
 
LFE as calculated 

A 1.92±0.24 1.21±0.19 1.00±0.00 1.00±0.00 -0.09±0.03
B 1.89±0.23 1.18±0.19 1.00±0.00 1.00±0.00 -0.17±0.03
C 2.01±0.25 1.18±0.19 1.00±0.00 1.00±0.00 -0.04±0.05

 
LFE mean 

A 2.48±0.24 1.44±0.20 0.99±0.00 1.00±0.00 -0.06±0.03
B 2.37±0.27 1.42±0.22 0.99±0.00 0.99±0.00 -0.14±0.01
C 2.49±0.26 1.45±0.20 0.99±0.00 0.99±0.00 -0.18±0.04

 
LFE randomized 

A 2.68±0.31 1.64±0.24 0.99±0.00 1.00±0.00 -0.06±0.04
B 2.62±0.34 1.59±0.26 0.99±0.00 0.99±0.00 -0.14±0.01
C 2.95±0.32 1.72±0.25 0.99±0.00 1.00±0.00 -0.10±0.01

 
LFE set to 0 

A 3.08±0.47 1.82±0.34 0.99±0.00 0.99±0.00 -0.21±0.04
B 3.41±0.51 1.89±0.33 0.99±0.00 0.98±0.00 -0.31±0.02
C 3.45±0.47 1.97±0.32 0.99±0.00 0.99±0.00 -0.18±0.07

EC-RISM     
 
LFE as calculated 

A 2.24±0.26 1.28±0.18 0.99±0.00 0.99±0.00 -0.12±0.04
B 2.21±0.27 1.27±0.19 0.99±0.00 1.00±0.00 -0.07±0.02
C 2.25±0.26 1.25±0.19 0.99±0.00 1.00±0.00 -0.08±0.04

 
LFE mean 

A 3.43±0.37 1.54±0.22 0.99±0.00 0.99±0.00 -0.13±0.04
B 3.47±0.40 1.58±0.22 0.99±0.00 0.98±0.00 -0.24±0.05
C 3.34±0.43 1.54±0.23 0.99±0.00 0.99±0.00 -0.12±0.05

 
LFE randomized 

A 2.90±0.38 1.63±0.26 0.99±0.00 0.99±0.00 -0.14±0.02
B 2.79±0.33 1.59±0.25 0.99±0.00 0.99±0.00 -0.19±0.06
C 2.79±0.35 1.58±0.25 0.99±0.00 0.99±0.00 -0.15±0.01

 
LFE set to 0 

A 3.39±0.61 1.80±0.34 0.99±0.00 0.99±0.00 -0.16±0.03
B 3.36±0.62 1.82±0.35 0.99±0.00 0.98±0.00 -0.47±0.03
C 3.54±0.67 1.87±0.38 0.98±0.00 0.98±0.00 -0.20±0.08
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Figure 6.1     Sodium (purpile) and chlorine (orange) densities around the thombin complex 2ZDA (protein 
surface shown in green; ligand shown in licorice) 
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Table 6.4     All ligand atoms of the thrombin complex 2ZFP. For each the desolvation penalty (left), 
intermolecular energy (mid), and binding free energy (right) is given. Each of these columns shows also the 
corresponding values for the differently charged host systems. 

Atom Δchyd,PL−L(L)  / kJ mol-1 hPL(L) / kJ mol-1 ∆bindcPL(L) / kJ mol-1 

Host net charge -1 0 +1 -1 0 +1 -1 0 +1 

 N01 -66.42 -39.07 -24.39  67.87  40.19  25.46  1.45  1.12  1.07 
 C02   6.75   4.48   3.29  -6.74  -4.45  -3.25  0.00  0.03  0.04 
 C03  74.64  44.52  28.27 -73.06 -42.57 -26.05  1.59  1.95  2.22 
 O04 -61.52 -35.75 -22.11  56.41  30.33  16.45 -5.11 -5.42 -5.66 
 C05   2.56   2.91   3.08  -2.22  -2.58  -2.74  0.34  0.33  0.33 
 C06  -8.63  -0.22   3.80   8.40  -0.12  -4.19 -0.23 -0.34 -0.39 
 N07 -45.89 -27.25 -16.59  43.30  24.44  13.59 -2.59 -2.82 -3.00 
 C08  -4.61  -2.16  -0.68   3.70   1.21  -0.29 -0.92 -0.95 -0.97 
 C09  96.49  69.43  52.68 -99.32 -71.94 -54.95 -2.83 -2.50 -2.27 
 O0A -68.03 -46.61 -33.11  71.11  49.44  35.75  3.08  2.82  2.64 
 C0B  -3.32  -1.11   0.32   2.36   0.13  -1.32 -0.96 -0.98 -1.00 
 C0C   1.92   2.73   3.24  -2.98  -3.81  -4.32 -1.06 -1.07 -1.08 
 C0D  31.11  19.02  11.98 -30.48 -18.24 -11.08  0.63  0.78  0.90 
 N0E -94.05 -71.58 -57.56  93.24  70.50  56.27 -0.81 -1.08 -1.29 
 C0F  21.90  17.50  14.64 -22.36 -17.90 -15.00 -0.46 -0.40 -0.36 
 C0G  17.36  14.06  12.05 -16.98 -13.64 -11.60  0.38  0.42  0.45 
 C0H -20.80 -15.29 -11.96  19.06  13.48  10.10 -1.75 -1.81 -1.86 
 C0I -26.81 -20.99 -17.63  23.66  17.77  14.36 -3.15 -3.22 -3.27 
 C0J -11.24  -8.44  -6.89   7.56   4.73   3.15 -3.68 -3.72 -3.74 
 C0K  16.14  12.54  10.51 -18.32 -14.67 -12.62 -2.18 -2.14 -2.11 
 C0L -29.08 -20.83 -15.97  23.13  14.79   9.85 -5.94 -6.04 -6.11 
Cl0M -15.88 -10.07  -6.98   6.35   0.48  -2.67 -9.53 -9.60 -9.64 
 H0N  39.56  24.14  15.34 -42.68 -27.07 -18.22 -3.12 -2.93 -2.88 
 H0O  56.59  39.84  31.26 -57.08 -40.13 -31.55 -0.50 -0.29 -0.29 
 H0P  31.06  14.92   6.08 -33.29 -16.96  -8.03 -2.24 -2.04 -1.95 
 H0Q   8.05   3.83   1.51  -8.38  -4.11  -1.79 -0.33 -0.28 -0.29 
 H0R   5.52   2.96   1.74  -4.24  -1.64  -0.42  1.28  1.31  1.32 
 H0S   3.80   1.10  -0.14  -5.09  -2.36  -1.10 -1.29 -1.26 -1.24 
 H0T   4.14   1.01  -0.55  -4.18  -1.01   0.57 -0.04  0.00  0.01 
 H0U   7.00   3.50   1.94  -4.53  -0.99   0.60  2.47  2.51  2.54 
 H0V   4.80   1.51  -0.11  -5.51  -2.18  -0.54 -0.71 -0.67 -0.64 
 H0W  13.13   9.09   6.75 -15.05 -10.96  -8.58 -1.92 -1.87 -1.84 
 H0X   4.61   2.32   0.79  -7.06  -4.75  -3.19 -2.45 -2.42 -2.40 
 H0Y   3.20   0.81  -0.80   0.60   3.02   4.65  3.79  3.82  3.85 
 H0Z   0.56  -0.75  -1.54  -2.52  -1.19  -0.39 -1.96 -1.94 -1.93 
 H10   1.84   0.64  -0.14  -3.85  -2.63  -1.85 -2.01 -2.00 -1.99 
 H11  -3.10  -1.35  -0.38   2.68   0.91  -0.07 -0.42 -0.44 -0.45 
 H12  -4.42  -2.82  -1.86   3.22   1.60   0.63 -1.20 -1.22 -1.23 
 H13  63.43  50.36  42.35 -67.03 -53.80 -45.67 -3.60 -3.44 -3.32 
 H14   7.27   5.48   4.30  -7.94  -6.13  -4.94 -0.67 -0.65 -0.63 
 H15   7.45   5.62   4.37  -6.52  -4.66  -3.39  0.94  0.96  0.98 
 H16 22.88  18.06  15.07 -21.89 -17.01 -13.98  0.99  1.05  1.09 
 H17 28.77  23.62  20.65 -32.23 -27.02 -24.00 -3.46 -3.39 -3.35 
 H18 25.95  21.21  18.65 -27.65 -22.84 -20.24 -1.69 -1.63 -1.59 
 H19 22.18  15.75  11.91 -20.50 -14.00 -10.10  1.68  1.76  1.81 
Sum 166.86 128.67 107.18 -217.03 -178.34 -156.7 -50.19 -49.7 -49.52 
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Figure 6.2     Volumetric LFE representation in the protein- (top) and ligand- (mid) perspective of the thrombin 
complex 2ZFP, as well as their combination (bottom). For each perspective, the desolvation penalty (left 
column), intermolecular energy (mid column), and binding free energy (right column) is given.  
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Figure 6.3     Volumetric LFE representation in the protein- (top) and ligand- (mid) perspective of the thrombin 
complex 2ZGX, as well as their combination (bottom). For each perspective, the desolvation penalty (left 
column), intermolecular energy (mid column), and binding free energy (right column) is given. 
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Figure 6.4     Volumetric LFE representation in the protein- (top) and ligand- (mid) perspective of the thrombin 
complex 2ZC9, as well as their combination (bottom). For each perspective, the desolvation penalty (left 
column), intermolecular energy (mid column), and binding free energy (right column) is given. 
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Figure 6.5     Volumetric LFE representation in the protein- (top) and ligand- (mid) perspective of the thrombin 
complex 2ZDA, as well as their combination (bottom). For each perspective, the desolvation penalty (left 
column), intermolecular energy (mid column), and binding free energy (right column) is given. 
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Figure 6.6     Volumetric LFE representation in the protein- (top) and ligand- (mid) perspective of the thrombin 
complex 3DHK, as well as their combination (bottom). For each perspective, the desolvation penalty (left 
column), intermolecular energy (mid column), and binding free energy (right column) is given. 
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Figure 6.7     Volumetric LFE representation in the protein- (top) and ligand- (mid) perspective of the thrombin 
complex 2ZO3, as well as their combination (bottom). For each perspective, the desolvation penalty (left 
column), intermolecular energy (mid column), and binding free energy (right column) is given. 
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Table 6.5     Ligand atoms of the thrombin complex 2ZFP. For each the derivatives of the desolvation penalty 
(left), intermolecular energy (mid), and binding free energy (right) with respect to the force field parameters q, J, and ) are given. The unit are of the derivatives w.r.t. q is kJ mol−1e−1 and for ( is kJ mol−1Å−1. The 
derivatives w.r.t. J is unitless. The raw data can be found in the electronic appendix under 3.3/3.3.4/Loc/2ZFP/. 

Atom 1Δchyd,PL−L(L) 1Á⁄  1hPL(L) 1Á⁄  1ΔbindcPL(L) 1Á⁄  

Host net charge Á = I Á = J Á = ) Á = I Á = J Á = ) Á = I Á = J Á = ) 

 N01 119.02 0.01 -6.41 -115.27 -0.96 5.16 3.75 -0.96 -1.25 
 C02 92.33 2.17 3.05 -81.61  -2.76 -3.34 10.72 -0.6 -0.29 
 C03 117.25 2.84 2.36 -104.98 -4.23 -3.07 12.27 -1.39 -0.71 
 O04 106.09 -0.44 -18.82 -101.99 -1.53 11.79 4.1 -1.97 -7.03 
 C05 72.2 2.58 1.63 -49.45  -3.65 -4.15 22.75 -1.07 -2.52 
 C06 41.37 2.81 3.2 -25.93  -3.44 -4.31 15.44 -0.62 -1.11 
 N07 130.83 1.71 2.85 -113.47 -2.62 -5.28 17.36 -0.91 -2.43 
 C08 177.55 2.91 2.03 -163.78 -5.32 -5.48 13.77 -2.41 -3.45 
 C09 190.66 3.09 2.45 -188.21 -5.41 -4.31 2.45 -2.32 -1.86 
 O0A 166.51 1.4 4.57 -170.89 -1.62 -4.43 -4.38 -0.22 0.14 
 C0B 144.62 3.4 2.32 -133.45 -5.18 -3.29 11.17 -1.78 -0.97 
 C0C 121.4 3.55 1.07 -92.93  -6.36 -6.16 28.48 -2.81 -5.09 
 C0D 109.24 2.55 1.23 -93.52  -4.19 -4.76 15.72 -1.63 -3.53 
 N0E 250.97 0.99 -5.68 -239.50 -0.57 19.88 11.47 0.42 14.2 
 C0F 238.32 3.47 1.75 -228.85 -5.2 -2.22 9.46 -1.73 -0.46 
 C0G 233.41 4.27 2.5 -208.51 -7.47 -6.46 24.9 -3.19 -3.96 
 C0H 249.29 3.63 0.43 -234.64 -7.27 -6.14 14.65 -3.64 -5.7 
 C0I 303.98 3.54 -2.4 -291.86 -8.63 -5.68 12.12 -5.09 -8.07 
 C0J 303.57 4.12 -1.13 -284.03 -9.11 -5.95 19.54 -4.98 -7.08 
 C0K 233.86 4.93 1.47 -210.04 -8.9 -4.36 23.82 -3.98 -2.89 
 C0L 227.5 4.13 -0.48 -188.03 -8.08 -1.48 39.48 -3.95 -1.96 
Cl0M 192.29 2.48 -10.36 -171.93 -5.99 -0.48 20.36 -3.52 -10.84 
 H0N 119.53 -0.08 -0.15 -126.86 -0.68 -0.21 -7.33 -0.76 -0.35 
 H0O 199.09 -4.16 -4.34 -188.99 0.71 2.99 10.1 -3.45 -1.35 
 H0P 75.36 2.5 1.56 -79.35  -0.68 -0.21 -3.99 1.82 1.35 
 H0Q 72.99 0.94 0.26 -71.28  -1.25 -0.32 1.71 -0.31 -0.06 
 H0R 47.95 6.85 1.87 -38.76  -4.35 -0.94 9.19 2.5 0.94 
 H0S 99.95 -1.65 -4 -54.69  -6.5 0.71 45.26 -8.16 -3.29 
 H0T 22.59 2.42 0.32 -16.88  -3.4 -0.74 5.72 -0.98 -0.41 
 H0U 15.69 14.29 5.66  -9.15  -5.91 -1.25 6.54 8.38 4.41 
 H0V 71.37 -0.7 -2.46 -38.00  -6.89 -1.22 33.37 -7.59 -3.68 
 H0W 225.27 -2.73 -4.35 -202.13 -7.83 0.73 23.14 -10.56 -3.62 
 H0X 125.58 -0.48 -2.57 -118.83 -7.39 -0.68 6.75 -7.88 -3.24 
 H0Y 148.9 -2.12 -4.31 -144.28 71.49 39.73 4.61 69.37 35.42 
 H0Z 121.12 -1.02 -4.19 -71.73  0.17 5.91 49.4 -0.86 1.72 
 H10 106.96 0.75 -3.24 -87.17  -10.68 -0.34 19.79 -9.93 -3.58 
 H11 84.5 2.19 -0.31 -64.79  -4.96 -1.03 19.7 -2.77 -1.34 
 H12 103.29 -0.03 -2.14 -100.22 -5.86 -0.68 3.06 -5.89 -2.82 
 H13 317.13 -0.07 -1.48 -328.54 6.47 8.47 -11.41 6.4 6.99 
 H14 215.59 2.09 -0.75 -209.08 -6.83 -1.39 6.5 -4.73 -2.14 
 H15 256.74 2.45 -2.04 -273.74 21.96 16.35 -16.99 24.41 14.31 
 H16 243.67 7.85 1.78 -232.65 -8.86 -1.62 11.02 -1.01 0.16 
 H17 370.26 -1.05 -4.2 -358.61 -13.06 -1.18 11.65 -14.11 -5.38 
 H18 384.8 2.27 -2.36 -355.55 -14.19 -2.15 29.25 -11.92 -4.51 
 H19 237.58 0.63 -3.39 -167.70 -6.04 4.52 69.88 -5.42 1.14 
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