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Abstract

The interest in organic solvent nanofiltration (OSN) increased substantially in both
academia and industry during the last decades, since it provides a great potential
for energy savings. However, despite the advantages, there are still limitations, that
lead to the fact that OSN is rarely considered as a competitive separation operation
in process design. For a reliable evaluation of process design, the uncertainties in lab-
scale measurements and the quantification of model parameter precision are major
factors and the prediction of flux and rejection is additionally essential in order to
reduce experimental effort for feasibility studies during process development. These
challenges are addressed in this thesis.
The evaluation of fluxes through multiple laboratory-scale membrane samples pro-
vides an accurate approximation of flux through an industrial- scale module. The
results prove to be transferable to different membrane types. Furthermore, a collab-
orative study at different facilities demonstrates the comparability of experimental
results obtained with a standardized procedure. Moreover, the consideration of ex-
perimental uncertainties in process design and membrane selection is proven to be
as relevant as for the selection of an appropriate mass transfer model. In the second
part of this work, a newly developed method for automatic development of pre-
dictive models for OSN shows promising results for prediction of solvent flux and
solute rejection in pure and mixed solvents. The method derives the membrane-
specific model structure and discriminates automatically between potential, easily
retrievable descriptors based on available data. For the prediction of solvent flux, a
comparison with existing phenomenological models from literature points out that
the new models are superior and cover effects that are not included in the fixed
model structure of phenomenological models. Models developed for the prediction
of rejection are more complex compared to those for solvent flux but are comparable
accurate.





Zusammenfassung

Durch das große Potential für Energieeinsparungen hat das Interesse an der
organophilen Nanofiltration (ONF) in den letzten Jahrzehnten sowohl im akademis-
chen Bereich als auch in der Industrie stark zugenommen. Trotz der Vorteile führen
noch vorhandene Einschränkungen dazu, dass die ONF nur selten als konkurren-
zfähige Trennoperation während des Prozessdesigns berücksichtigt wird. Für eine
verlässliche Bewertung des Prozessdesigns sind die Unsicherheiten bei Messungen
im Labormaßstab und die Quantifizierung der Präzision von Modellparametern
wesentliche Faktoren. Die Vorhersage von Fluss und Rückhalt ist zusätzlich es-
senziell, um den experimentellen Aufwand für Machbarkeitsstudien während der
Prozessentwicklung zu reduzieren. Diese Herausforderungen werden im Rahmen der
vorliegenden Arbeit adressiert.
Lösungsmittelflüssen, die mit einer eine Vielzahl an Membranausschnitten im Labor-
maßstab ermittelt werden, liefert eine genaue Näherung des Flusses durch ein indus-
trielles Modul. Die Ergebnisse erweisen sich als übertragbar auf verschiedene Mem-
brantypen. Darüber hinaus zeigt eine kollaborativen Studie an verschiedenen Anla-
gen die Vergleichbarkeit von experimentellen, mit einem standardisierten Verfahren
ermittelten Ergebnissen. Außerdem erweist sich die Berücksichtigung von experi-
mentellen Unsicherheiten für das Prozessdesign und Membranauswahl als genauso
relevant, wie für die Auswahl eines geeigneten Stofftransportmodells. Im zweiten
Teil dieser Arbeit wurde eine Methode zur automatischen Entwicklung von prädik-
tiven Modellen für die ONF entwickelt, die vielversprechenden Ergebnisse für die
Vorhersage von Lösungsmittelfluss und Rückhalt gelöster Komponenten in reinen
und gemischten Lösungsmitteln zeigt. Die Methode generiert die membranspezi-
fische Modellstruktur und diskriminiert automatisch zwischen potenziellen, leicht
zugänglichen Deskriptoren auf Basis der verfügbaren Daten. Für die Vorhersage
des Flusses zeigt ein Vergleich mit phänomenologischen Modellen aus der Literatur
deutlich, dass die neuen Modelle überlegen sind und Effekte abdecken, die in der
festen Modellstruktur der phänomenologischen Modelle nicht enthalten sind. Die
für die Vorhersage des Rückhalts entwickelten Modelle sind komplexer als die für
den Fluss, aber vergleichbar genau.





Contents

Contents

List of symbols vii

1 Introduction 1

2 Theoretical Background 5
2.1 Fundamentals of Organic Solvent Nanofiltration . . . . . . . . . . . . 5

2.1.1 Principle and performance factors . . . . . . . . . . . . . . . . 6
2.1.2 Application and Potentials . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Common experimental procedure . . . . . . . . . . . . . . . . 10

2.2 Models for Organic Solvent Nanofiltration . . . . . . . . . . . . . . . 12
2.2.1 Pore-Flow Models . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Solution-Diffusion Models . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Irreversible Thermodynamics Models . . . . . . . . . . . . . . 18
2.2.4 Phenomenological models for solvent flux . . . . . . . . . . . . 19
2.2.5 Phenomenological models for solute rejection . . . . . . . . . . 23

3 Objectives and Approach 25
3.1 Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Reliability of lab-scale experiments for membrane characterization 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



Contents

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Lab-Scale experiments . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Comparison with membrane module . . . . . . . . . . . . . . 39
4.3.3 Evaluation of necessary sample size for meaningful estimates . 40

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Towards a comparable characterization of polymeric OSN mem-
branes 43
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Solvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Solutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.4 Investigated experimental systems . . . . . . . . . . . . . . . . 48

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.1 Experimental procedure following the standardized protocol . 50
5.3.2 Analytical methods for solute concentrations . . . . . . . . . . 51

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.1 Experimental results for flux and rejection using pure solvents 53
5.4.2 Transferability of uncertainty information on flux for various

membranes and solvents . . . . . . . . . . . . . . . . . . . . . 57
5.4.3 Uncertainties in rejection . . . . . . . . . . . . . . . . . . . . . 59
5.4.4 Influence of uncertainty information on membrane selection

and process analysis . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Uncertainties in performance modeling 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Information criterion for model comparison . . . . . . . . . . . 73
6.2.4 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.5 Identifiability analysis . . . . . . . . . . . . . . . . . . . . . . 74
6.2.6 Monte-Carlo simulation . . . . . . . . . . . . . . . . . . . . . 75

ii



Contents

6.3 Results for model discrimination and discussion . . . . . . . . . . . . 76
6.3.1 Model comparison based on Akaike information criterion . . . 77
6.3.2 Parameter variance and identifiability . . . . . . . . . . . . . . 81
6.3.3 Effect of parameter uncertainty . . . . . . . . . . . . . . . . . 84
6.3.4 Summary of results for various membrane-solvent-solute com-

binations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Machine-based learning of predictive models: Flux 91
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Data-driven methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3 A hybrid stochastic-deterministic approach for model development . . 95

7.3.1 Pre-processing of permeation data . . . . . . . . . . . . . . . . 95
7.3.2 Hybrid approach for automatic model development . . . . . . 99
7.3.3 Post-processing for potential model reduction . . . . . . . . . 103
7.3.4 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3.5 Full Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Case Studies for prediction of solvent flux . . . . . . . . . . . . . . . 105
7.4.1 Prediction of pure solvent permeance . . . . . . . . . . . . . . 106
7.4.2 Prediction of mixed solvent permeance . . . . . . . . . . . . . 114

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8 Machine-based learning of predictive models: Rejection 123
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2 Application of hybrid stochastic-deterministic approach for solute re-

jection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2.1 Solute rejection data for ternary solvent mixture . . . . . . . . 125
8.2.2 Pre-processing of rejection data . . . . . . . . . . . . . . . . . 126
8.2.3 Application of hybrid method for model development . . . . . 130

8.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.3.1 Prediction of solute rejection in pure solvents . . . . . . . . . 131
8.3.2 Prediction of solute rejection in mixed solvents . . . . . . . . . 139

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9 Conclusion and Outlook 147

References I

iii



Contents

A Superstructure optimization of process concepts XXI
A.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXI
A.2 Case Study 2 - separation of impurity . . . . . . . . . . . . . . . . . . XXIII

B Experimental investigation XXVII
B.1 Solvent mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXVII

B.1.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . XXVII
B.1.2 Analytical methods for solvent composition . . . . . . . . . . . XXIX
B.1.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . XXX

B.2 Experimental Results for pure solvent flux and rejection . . . . . . . . XXXII

C Discrimination of OSN models XLI
C.1 PuraMem membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . XLI
C.2 DuraMem membranes . . . . . . . . . . . . . . . . . . . . . . . . . . LII
C.3 PDMS based membrane . . . . . . . . . . . . . . . . . . . . . . . . . LVII

D Additional information regarding model development for solvent
flux LXV
D.1 Data-driven methods . . . . . . . . . . . . . . . . . . . . . . . . . . . LXV

D.1.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . LXV
D.1.2 Automated learning of algebraic models for optimization . . . LXVI
D.1.3 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . LXVII

D.2 Translation of syntax trees . . . . . . . . . . . . . . . . . . . . . . . . LXVIII
D.3 Calculation of possible combinations for full enumeration . . . . . . . LXIX
D.4 Additional models for pure solvent permeance . . . . . . . . . . . . . LXIX
D.5 Additional models for permeance of solvent mixtures . . . . . . . . . LXXII
D.6 Properties used for model development . . . . . . . . . . . . . . . . . LXXIII

E Additional information regarding model development for solute
rejection LXXV
E.1 Resulting statistics of the developed model candidates for the different

solute rejection data sets - Pure solvents . . . . . . . . . . . . . . . . LXXV
E.1.1 Solvent-dependent models - polar Solvents . . . . . . . . . . . LXXV
E.1.2 Solvent-dependent models - moderately polar Solvents . . . . LXXVI
E.1.3 Solvent-dependent models - non-polar Solvents . . . . . . . . . LXXIX
E.1.4 Solvent-dependent models - including non-linear parameters . LXXX
E.1.5 Solvent-independent models . . . . . . . . . . . . . . . . . . . LXXXI

iv



Contents

E.2 Resulting statistics of the developed model candidates for the different
solute rejection data sets - Mixed solvents . . . . . . . . . . . . . . . LXXXIV
E.2.1 Solute-independent models . . . . . . . . . . . . . . . . . . . . LXXXIV
E.2.2 Solute-specific models . . . . . . . . . . . . . . . . . . . . . . XCI

E.3 Properties used for model development . . . . . . . . . . . . . . . . . XCVIII

Publications CI

Supervised Theses CV

Declaration CVII

v





List of symbols

Nomenclature

Symbols

AIC Akaike information criterion (-)
AM Membrane area (m2)
a0, b0 Empirical fitting parameter in model of Darvishmanesh et al. [1] (lm−2)
b1, b2, b3 Frictional coupling coefficient in MS model (kgm−2 s−1)
C1, C2, C3 Empirical fitting parameters in model of Marchetti et al. [2]
ConI Connectivity index (-)
CI Confidence interval
c Concentration (molm−3)
c̄ Mean concentration (molm−3)
D Diffusion coefficent (m2 s−1)
DF Driving force
d Diameter (m)
deq Equivalent molecular diameter (m)
~d Dipole moment (debye)
f1 Membrane parameter characteristic for NF layer [3] (m s−1)
f2 Membrane parameter characteristic for UF layer [3] (m s−1)
fc Correction factor in model of Marchetti et al. [2] (-)
J Flux (m3 m−2 s−1)
Jtot Flux (kg h−1 m−2)
K Sortion coefficient (-)
KC Steric hindrance factor for convection (-)
KD Steric hindrance factor for diffusion (-)
KHP Hagen-Poiseuille proportionality constant (m)
KMS Distribution coefficient (m3 mol−1)
Ks Equilibrium swelling of the membrane (-)
k Empirical fitting parameter
kpol Polarizability (-)
Lj Solute permeability coefficent (m3 m−2 s−1)
LIM Mechanical permeability of the imperfections (m3 m−2 s−1 Pa−1)
Lm Mechanical permeability of the matrix (m3 m−2 s−1 Pa−1)
Lp Mechanical permeability coefficient (m3 m−2 s−1 Pa−1)

vii



List of symbols

M Molar mass (gmol−1)
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1
Introduction

Global climate change is one of the greatest challenges of our time. Various studies
have shown that further increases in global temperature will have significant impacts
on all parts of daily life [6]. Therefore, a rethinking of current climate policy and
energy use is inevitable. In the climate protection agreement of Paris, the binding
target has been set to limit global warming to well below two degrees compared
to pre-industrial times [7]. To achieve this goal, it is necessary to shift to environ-
mentally friendly alternatives to energy production and, above all, to reduce energy
consumption. To this end, an improvement in energy efficiency by 20% [7] was set
as a goal in 2012. According to the European Environment Agency, in 2018 the 33
member states of the agency used 24% of energy in the industrial sector [8]. In the
US, in the same year 35% were assigned to the industrial sector [9]. Especially sepa-
ration processes contribute considerably to the energy demand, but at the same time
offer great potential for energy savings of up to 90% by application of membrane
processes [10].
Organic Solvent Nanofiltration (OSN) poses a promising pressure-driven membrane
separation technology for organic mixtures which can be used either as a stand-alone
process or in combination with conventional operations like distillation. Without
the need for phase transitions or high operating temperatures, OSN offers significant
energy saving potential compared to thermal separation processes. This results in
possible applications in a wide variety of industrial sectors, such as the production
of pharmaceutical products or in the petrochemical and food industries [11]. De-
velopments of membrane materials and applications to new chemical systems are
still mostly on laboratory-scale, but various membranes are commercially available
on larger scale in specific modules and several industrial applications have been
reported [12, 13].



1 Introduction

Besides the advantages, there are also some challenges for the implementation of a
separation process based on OSN. Due to complex interactions between the compo-
nents of the system, including not only the membrane but also solvents and solutes
[14], it is currently necessary to experimentally investigate a membrane in the spe-
cific chemical system as there are no suitable predictive models available yet. Since
a larger number of different membranes is available, a feasibility study for a possi-
ble separation process is time-consuming and costly. For the subsequent modeling
of membrane separation, a sufficiently large amount of experimental data must be
available to identify suitable mass transport models and to adapt the model param-
eters. However, there are only a few experimental databases available for different
membranes, which include solvents as well as solutes with different properties, which
were measured in standardized and thus transferable experiments and can be used
for a first estimation of the feasibility of a separation process. Therefore, for each
mixture to be separated corresponding experiments with different membranes are
currently performed, which do not follow a standardized method and thus often
cannot be compared with other data. Simultaneously, fluctuations in the flux were
observed which are oftentimes attributed to fluctuations in the membrane material.
However, a systematic investigation of both the fluctuations and the separation char-
acteristics in various solvents and with a large number of different solutes for OSN
membranes is missing.
Furthermore, the uncertainty of model parameters resulting from the adaption to
experimental data measured according to common, non-standardized methods was
not investigated so far. Nevertheless, these can have a significant effect on the
fluxes and rejections calculated by models and should consequently be taken into
account when mass transport models are applied. In addition, the parameters of
current mass transfer models are adapted to experimental data for the mixture to
be separated and are thus substance-specific, which prevents the use of these models
for predictions for other mixtures. The integration of additional models to calculate
parameters, i.e. diffusion or sorption coefficients of a substance, is a way to avoid
this problem, as it was done for example by Hesse et al. [15]. However, this approach
requires additional experimental data to adjust parameters of these models. Models
using membrane specific parameters adapted to experimental data for the specific
membrane, but different solvents and solutes can be used for predictions for further
substances. The development of such predictive models is a mandatory step towards
enabling the consideration of OSN in early stages of process development and the
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selection of suitable membranes for the specific separation task is facilitated. For
the determination of such models, however, a database is necessary, which comprises
experimental data of a larger number of solvents and dissolved components, which
were determined under the same, standardized experimental conditions. To make
OSN more competitive in comparison to conventional separation processes, it is
inevitable to address these challenges.
This thesis addresses the listed challenges by first investigating the fluctuations of
the flux through a membrane using a large number of samples from one membrane
batch. The measured data are statistically analyzed and evaluated, and the influence
of the fluctuations on the design of processes is studied. Furthermore, experimen-
tal data for different membranes according to a standardized procedure [16] are
generated and thus the available database is extended. The gathered experimental
results are compared to results generated at different facilities following the same
experimental procedure in order to evaluate the comparability of the results and
the value of the new standardized experimental procedure. A further step is the
investigation of the discrimination of different existing mass transport models for
the modeling of separation processes using OSN. The parameters of common mass
transfer models are determined based on experimental data for different systems
and the parameter precision is investigated. Subsequently, the uncertainties for the
flux and rejection determined by the model are investigated. Taking into account
the knowledge gained, in the second part of the thesis a method is presented which
enables an automatic, data-driven development of predictive models for OSN and
thus provides an important contribution to the integration of OSN into the standard
toolbox of separation methods. The method is tested and evaluated using different
case studies for solvents and solvent mixtures.
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2
Theoretical Background

2.1 Fundamentals of Organic Solvent
Nanofiltration

Nanofiltration (NF) in general is a pressure-driven membrane process operating with
transmembrane pressures ranging from 10 to 50 bar and molecules with a molecular
weight between 200 and 1000 gmol−1 [17]. According to the pressure differences and
the molecular size of the rejected component NF can be classified between reverse
osmosis (RO) and ultrafiltration (UF) (cf. Figure 2.1).
In contrast to aqueous nanofiltration, organic solvent nanofiltration (OSN) deals
with the separation of organic solvent mixtures [11]. In comparison to thermal sep-
aration processes, OSN only needs the pressure difference as driving force and no
phase transitions. As a consequence, OSN has the potential to be energy efficient.
Another benefit regarding temperature-sensitive components is a low operating tem-
perature [11, 17].
OSN membranes are produced based on different polymers or ceramics [14]. By
varying the different polymer or ceramic layers and the manufacturing process, a
large number of different membranes with different properties are created. This

Parts of this chapter have already been published in:
R. Goebel, M. Skiborowski, Machine-based learning of predictive models in organic solvent
nanofiltration: Pure and mixed solvent flux, Separation & Purification Technology 237 (2020),
pp. 116363
R. Goebel, T. Glaser, M. Skiborowski, Machine-based learning of predictive models in organic
solvent nanofiltration: Solute rejection in pure and mixed solvents, Separation & Purification
Technology 248 (2020), pp. 117046
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Figure 2.1: Classification of pressure-driven membrane operations (adapted from
[17])

results in a variety of different application for OSN. While the number of commer-
cially available polymeric membranes has increased significantly in recent years, the
supply of ceramic membranes for OSN has not yet been as large, as the develop-
ment of ceramic membranes with pore sizes below 1nm has only made significant
progress in the current century. The advantages and disadvantages of the different
materials and the commercially available membranes have been discussed in detail
by Marchetti et al. [14]. The question of a suitable membrane material for a specific
separation task must be answered individually.

2.1.1 Principle and performance factors

Figure 2.2 shows a schematic of a membrane process. The liquid feed is pressurized
and fed to the module, in which it is contacted with a membrane. At least one com-
ponent or a mixture of different components passes the membrane and is obtained
as permeate on the low pressure side of the membrane. The rejected liquid mixture
leaves the module as retentate [17].
In general, the performance of a membrane in a specific chemical system is evaluated
based on different parameters. These parameters define the membrane permeate
flux and the rejection of the components. The total volumetric flux J through the
membrane material is defined as the ratio of the volumetric flow V̇ and the active
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Figure 2.2: scheme of a membrane separation process (adapted from [17])

membrane area AM :

J = V̇

AM
(2.1)

Analogously, the mass-related flux through the membrane can be calculated using
mass flow and membrane area. Since the flux depends on the driving force of the
process, normalizing the flux on the driving force is reasonable. However, based on
the definition by Koros et al. [18] the thickness of the active membrane needs to
be known, which is oftentimes not the case in OSN [11]. The permeance Pj of a
component j calculated by normalizing the component specific flux Jj by the driving
force DFj (cf. Equation 2.2) is an alternative parameter describing the permeate
flux [11].

Pj = Jj
∆DFj

(2.2)

The rejection Rj is a measure for the separation regarding one solute j, since it is
calculated based on the concentrations of one component in the permeate stream
cPj and the feed stream cFj . The rejection is negative in case the component perme-
ates preferably in comparison to the solvent and the concentration in the permeate
becomes higher as in the feed mixture. On the contrary, positive values signify a
decrease in the concentration from feed to permeate. The concentrations can also
be replaced by molar fractions or weight fractions [17].

Rj = 1− cPj
cFj

(2.3)

Further parameters like the permselectivity and the separation factor were suggested
by Koros et al. [18] as general terminology for membrane processes in analogy to
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other separation processes. Both account for the separation between two different
components. Further, for the characterization of a membrane, the manufacturers
usually specify the molecular weight cutoff (MWCO) of a membrane as defined by
Koros et al. [18]. The MWCO corresponds to the molecular weight of a component,
which is rejected by 90%. Yet, differences in the process conditions like pressure,
temperature and concentrations affect the MWCO and the separation characteristics
of different membranes are hard to compare. Moreover, the properties of the solvents
and solutes show a strong influence on the rejection as well as the flux in organic
solvent nanofiltration. Hence, the MWCO measured in one specific chemical system
cannot be transferred to other systems [14].

2.1.2 Application and Potentials

OSN is still a relatively new unit operation [12], while aqueous nanofiltration has
been investigated and applied since 1980 [11]. A major challenge, which prevented
the use of OSN for a significant period of time, was the lack of solvent-stable mem-
branes. The first solvent-stable membrane was introduced by Koch Membrane Sys-
tems at the beginning of the 1990s [19]. Currently a variety of different polymeric
and ceramic solvent-stable membranes are available and the number of studies fo-
cusing on non-aqueous nanofiltration increased tremendously in the past 20 years
[14].
The first and largest industrial-scale application reported so far is the MAX-
DEWAXTM process installed by ExxonMobile, which recovers dewaxed solvents from
lube oil. It was setup in 1998 and was considered superior to pervaporation during
the process design due to the avoided phase transition [13]. Since the processes in re-
fineries were intensified, dewaxing is no longer necessary and the MAX-DEWAXTM

process is not in operation anymore.
Recently, further application in several industries such as oleo- and petrochemicals,
food and bio products, bulk chemistry and pharmaceutical industry were studied and
several successful applications in industrial-scale have been reported [12]. The fol-
lowing exemplary studies demonstrate the promising application of OSN in various
field of industry. Darvishmanesh et al. [20] developed a membrane based extraction
method for edible oils using renewable solvents. They investigated four conventional
polymeric membranes and demonstrated the possible replacement of non-renewable
toxic solvents like n-hexane by applying OSN. Werth et al. [21] investigated the
application of OSN for solvent recovery and deacidification of low-quality oils in
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order to enable a new feedstock for the oleochemical industry. OSN was applied
successfully for feed streams with fluctuation oil quality. Further, they found the
corresponding process to reduce the energy consumption by about 70% compared
to the conventional process [22]. Hence, the application of OSN offers the possibility
to use crude non-edible and waste oils as a feed stock in oleochemical industry and
the competition with food industry is avoided.
Further, OSN was applied for the concentration of herbal extracts like presented by
Peshev et al. [23]. They used OSN to concentrate rosemary acids and other antiox-
idants solved in ethanol, which were almost completely rejected by the membrane
and no loss in antioxidant capacity was observed. Moreover, since the permeate con-
tained almost no extracts, the solvent could be recycled directly to the extraction
step. Another study was performed by Sereewatthanawut et al. [24] investigating
the enrichment of nutritionals of rice bran by screening different solvent stable mem-
branes. A considerable enrichment of the nutritionals was achieved in a two-stage
membrane cascade.
The recovery of homogeneous catalysts is of main interest in bulk chemistry pro-
cesses like hydroformylation. Dreimann et al. [25] investigated the rejection of a
homogeneous transition metal by a conventional OSN membrane. The application
of OSN enables an efficient separation of the catalyst from the product and energy
efficient process, which can be transferred to further reactions. Peddie et al. [26]
demonstrated the successful application of OSN for two homogeneous catalysts used
in hydroformylations as well and found almost no catalyst in the permeate. Hence,
the OSN-based process shows comparable results to the conventional distillation
process, whereas the energy consumption is significantly lower. Another approach
was investigated by Bertleff et al. [27] for the rejection of a catalyst in an aqueous
mixture in presence of organic components.
For the production of pharmaceuticals, the purification and the non-thermal solvent
recovery is an important step, which can be accomplished by OSN. The separation of
genotoxic impurity during the production of APS was investigated by Székely et al.
[28] by using two different commercially available membranes. They demonstrated
the overall feasibility of OSN for this separation task. Further, Rundquist et al. [29]
demonstrated the feasibility of OSN for the solvent recovery from a crystallization
mother liquor, which can replace a distillation process. They achieve the necessary
purity for the recycle of the solvent to the crystallization and calculated that OSN
requires 25% less energy than the distillation process.
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The studies mentioned above have proven the successful applications of OSN in
various industries. Moreover, the energy demand of industrial processes must be
reduced in the upcoming years [30]. Conventional thermal separation processes like
distillation or evaporation consume about 50% of the energy needed for industrial
processes [10]. The application of membrane processes can contribute significantly
to the reduction of the energy consumption since membrane processes bare the po-
tential to save up to 90% of the energy of a distillation process [10]. Since OSN
bares little potential for sharp separations as standalone process, hybrid applica-
tions are a reasonable alternative, presented by for example Micovic et al. [31], and
combinations with different membrane processes [32]. However, currently intensive
experimental investigations prior to the development of a new OSN process are un-
avoidable [33]. Thus, future studies need to focus on a systematic experimental
characterization of membranes. Moreover, further methods to theoretically inves-
tigate the fundamental feasibility of an OSN process and predict the membrane
performance prior to an experimental screening of membranes are required.

2.1.3 Common experimental procedure

In order to determine the feasibility of a membrane process for a specific separation
task, commonly lab-scale experiments in the specific systems are performed. Hence,
for the design of new processes an extensive experimental investigation of different
membranes is unavoidable. A standardized experimental procedure would allow for
the reconsideration of results of already performed experimental studies at different
facilities for the identification of a suitable membrane for a new separation task,
since the experiments are performed under the same conditions and the results are
comparable. Further, the accuracy of the experimental results of the membrane per-
formance should allow for a precisely determination of model parameters in order
to verify the feasibility of the membrane performance at different process condi-
tions. Experimental characterization of the membrane performance is commonly
determined using molecules with various molecular weight, like linear and branched
alkanes [34], dyes [35, 36] or polystyrene oligomers [37, 38]. However, the results
of these experimental investigations are not comparable, since the molecular struc-
ture of the solutes differs as well as the underlying process conditions like pressure,
temperature and concentration.
See Toh et al. [37] proposed a standard method for the characterization of OSN in
order to determine reliable and comparable results for different membranes and test
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different experimental set-ups. They used five different organic solvents including
polar as well as non-polar solvents and styrene oligomer mixtures. Moreover, they
defined specific experimental conditions for the experimental procedure in a lab-scale
set-up and the analytical method. Using the oligomer styrenes See Toh et al. [37]
obtained rejection curves for different membranes in the five solvents, which provides
a comprehensive description of the membrane performance depending on the solvent
properties. Furthermore, they demonstrated a possible application of the method
to validate an experimental facility by comparison of the rejection curve to former
experimental results within the same facility. Hence, leakages in the membrane cell
can be determined easily. The method proposed by See Toh et al. [37] provides a
first useful tool for membrane and facility comparison and systematic experimental
errors can be determined. However, the method only includes styrene oligomers as
solutes and thus, the influence of the solute properties on the membrane performance
and the influence of different sizes of the membrane test cells were not investigated.
Marchetti et al. [39] suggested to perform experiments for membrane characteriza-
tion in at least one solvent per polarity class and two solvents in the group of aprotic
polar solvents. Moreover, they suggested to extend the number of different solute
groups in order to determine the performance of a membrane in different solvents
and the influence of the solute properties. Based on the available data for different,
systematically selected chemical systems, a first assessment of the separation perfor-
mance of a membrane in a new, not yet investigated system is possible. If this initial
assessment is conducted for different membranes, the selection of possible membrane
candidates for the new separation task can be limited to the most promising ones and
only these have to be examined in further experiments. Thus, although the number
of necessary experiments in the first step of the general membrane characterization
is larger in comparison to experiments for only one specific system, this approach
leads in the following to a reduction of the number of necessary experiments for new
potential application.
However, none of these experimental methods provide a complete standardized pro-
cedure, which includes a detailed description of all parameters for the experiment
and hence, even when applying one of these methods, the operating conditions, con-
centrations or time slots for different tasks do differ. Moreover, the transferability of
the determined experimental results to different facilities and the comparability to
results determined by other persons or using different set-ups was not investigated so
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far. Consequently, the available experimental data in literature might not be com-
parable and hence, not usable as one data set for tasks like model development.

2.2 Models for Organic Solvent Nanofiltration

In order to describe the transport of solvents and solutes through OSN membranes
mainly semi-empirical models are applied. Two of the most common models are the
Solution-Diffusion Model and the Pore-Flow Model. Both differ in the concepts of
mass transport and are used as a basis for various refined models, which therefore
correspond to one of these two model groups. A third group is based on irreversible
thermodynamics assuming the membrane as a black box. The semi-empirical mod-
els are commonly fitted to experimental data of a specific solvent-solute-membrane
system and are generally not able to describe the flux and rejection of a different
system using the same parameter values. In contrast, a number of phenomenolog-
ical models has been proposed, which correlate properties of solvent, solute and
membrane specific parameters with the flux or the rejection of the components and
hence, are applicable to different solvent-solute systems than the parameters were
fitted to. The following sections present the different models and the underlying
assumptions.

2.2.1 Pore-Flow Models

The group of Pore-Flow (PF) Models is derived from the mechanical process of
filtration and considers the membrane to be porous. Pores are defined as free volume
elements which do not change their shape and position in the membrane over time
[40]. The concentration of the solvent as well as the solute in the membrane is
assumed to be constant. Hence, the chemical potential gradient is solely generated
by the pressure gradient ∆p within the liquid in the pores [41] and the solvent flux
can be described using the Hagen-Poiseuille equation:

Js =
εr2
p

8ηsδMτ
·∆p = KHP

ηs
·∆p (2.4)

Since membrane specific properties like the tortuosity τ , the membrane thickness δM ,
the surface porosity ε and the pore diameter rp are rarely known, these parameters
are combined in a proportionality parameter KHP . Hence, viscosity ηs is the only
solvent property influencing solvent flux.

12



2 Theoretical Background

The Donnan Steric Pore-Flow (DSPF) Model proposed by Bowen et al. [42] is based
on the combination of size exclusion and electrical effects in case of charged solutes.
However, the following description is limited to uncharged solutes. For the solute
transport, hindered convective and diffusive transport through the pores are consid-
ered, resulting in Equation 2.5 for the flux of an uncharged solute [43].

Jj = −Dp,j ·KD,j ·
dcj
dx

+KC,j · cj · v̄s (2.5)

In this case the solvent velocity v̄s is calculated based on the Hagen-Poiseuille re-
lationships but also takes the osmotic pressure into account, which is an important
factor in case of multivalent electrolytes and higher concentrations [44]. Hence, the
solvent velocity is calculated as follows:

v̄s =
εr2
p

8ηsδMτ
· (∆p−∆π) (2.6)

Moreover, the steric hindrance factors for convection KC,j( cf. Equation 2.7) and for
diffusion KD,j (cf. Equation 2.8), which depend on the ratio λp,j (cf. Equation 2.9)
between solute radius rj and pore radius rp [44] are applied for calculating the solute
flux.

KC,j = (2−Θj) · (1.0 + 0.054 · λp,j − 0.988 · λ2
p,j + 0.441 · λ3

p,j) (2.7)

KD,j = 1.0− 2.30 · λp,j + 1.154 · λ2
p,j + 0.224 · λ3

p,j (2.8)

λp,j = rj
rp

(2.9)

The solute concentration at the pore inlet and outlet is not the same as in the bulk
solution of the adjacent phases due to steric hindrance. This is described by a steric
partitioning coefficient Θj, which is assumed to be identical at the feed and permeate
side of the membrane (cf. Equation 2.10) [44].

Θj = (1− λp,j)2 (2.10)

By applying the partitioning coefficient, the concentration at the pore inlet and
outlet can be calculated by multiplying the coefficient with the respective bulk con-
centrations of the solute at each side of the membrane [44]. Since the solute flux
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can also be calculated based on the solvent velocity and the concentration of the so-
lute in the pores, a concentration gradient ca be determined based on Equation 2.5,
which leads to the equation for solute rejection (cf. Equation 2.11) after integration
across the membrane thickness and introducing two dimensionless parameters. The
lumped parameter Yj (cf. Equation 2.12), is assumed to be independent of solute
concentration and the modified Péclet number Pej (cf. Equation 2.13) represents
the ratio of convection and diffusion [44].

Rj = 1− [(KC,j − Yj) ·Θj]
(1− [1− (KC,j − Yj) ·Θj] · exp(−Pej)

(2.11)

Yj = Dp,jVm,j8ηp
RgTr2

p

(2.12)

Pej =
(KC,j − Yj) · r2

p

8ηpDp,j

· (∆p−∆π) (2.13)

The viscosity of the solution in the pores ηp differs from that of the bulk solution
η. A mean pore viscosity is obtained by averaging across the pore radius rp (cf.
Equation 2.14) with the diameter of the solvent molecule ds [44].

ηp
η

= 1 + 18 · ds
rp
− 9 · (ds

rp
)2 (2.14)

Further, the diffusion coefficient in the pores Dp,j is influenced by the changed
viscosity as well [44]. It is calculated based on the bulk solution diffusion coefficient
Dj and the hindrance factor for diffusion KD,j.

Dp,j = KD,j ·Dj (2.15)

Based on the DSPF Model, solvent flux and rejection are calculated independently
from each other using the Hagen-Poiseuille Equation 2.4 and Equation 2.11, re-
spectively. The parameters obtained by regression with permeation data are the
Hagen-Poiseuille constant KHP and the pore radius rp.

2.2.2 Solution-Diffusion Models

The classical Solution-Diffusion (CSD) Model was proposed by Lonsdale et al. [45]
and reviewed by Wijmans and Baker [41]. They assumed a dense membrane and
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pressure differences in the membrane material to be balanced in the same way as in
liquids. Hence, the pressure is assumed constant in the membrane and equals the
pressure at the feed side. On the permeate side, a sharp decrease of the pressure is
assumed. Therefore, the chemical potential difference in solution-diffusion models
is caused by a concentration gradient within the membrane. The sharp changes in
pressure and solvent activity at the permeate side of the membrane are attributed
to the equilibrium with the adjacent liquid phase. Hence, the flux of solute and
solvent are calculated based on Equation 2.16.

Ji = DiKi

δM

[
xFi − xPi · exp

(
−Vm,i

pF − pP
RgT

)]
(2.16)

The diffusion coefficient Di and the the sorption coefficient Ki of the component i
in the membrane and the membrane thickness δ either need to be known or they are
handled as one parameter, namely the permeance Pi,CSD, which can be determined
based on experimental data (cf. Equation 2.17).

Ji = PCSD
i

[
xFi − xPi · exp

(
−Vm,i

∆p
RgT

)]
(2.17)

Based on the classical Solution-Diffusion (CSD) Model the Simple Solution-
Diffusion (SSD) Model (cf. Equation 2.19) can be derived, which is a simplified
version of the first classical one. According to Wijmans and Baker [41] in case of
osmotic equilibrium, there is no solvent flux. Taking this into account, the concen-
tration of the solvent in the permeate can be calculated according to Equation 2.18.
Moreover, in case of OSN the simplification 1− exp(x)→ x as x→ 0 is applicable.
Combining this simplification with Equation 2.18 and 2.16, the simplified equation
for the solvent flux (cf. Equation 2.19) is derived.

xPs = xFs · exp
(
−Vm,s

∆π
RgT

)
(2.18)

Js = DiKix
F
i Vm,i

δMRgT
(∆p−∆π) = P SSD

s (∆p−∆π) (2.19)

Further, in diluted solutions the partial molar volume of the solute becomes small
and the exponential term is close to 1 (exp(x)→ 1 as x→ 0), which leads to another
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simplification for the solute flux equation (cf. Equation 2.20).

Jj = DjKj

δM
(xFj − xPj ) = P SSD

j (xFj − xPj ) (2.20)

In contrast to the CSD Model, the Maxwell-Stefan (MS) Model couples the fluxes of
solvent and solute by friction and convection. Thus, it was considered more suitable
than the CSD approach. The general Maxwell-Stefan equation was developed to
describe diffusion in gases with more than two components and has been modified to
be applicable to liquid and polymeric systems [46]. Three mass dependent diffusion
coefficients Dsj, DsM and DjM account for the binary diffusion between solvent
and solute, solvent and membrane as well as solute and membrane, respectively
[46]. Further, equilibrium between the membrane surface and the adjacent phases
is assumed. The frictional coupling effects are described by εf,s and εf,j:

εf,s = DsM

Dsj

(2.21)

εf,j = Mj

Ms

DjM

Dsj

(2.22)

The mass fractions of solvent and solute are calculated using the swelling of the
membrane in equilibrium (cf. Equations 2.23 and 2.24) and the distribution coeffi-
cient of the solute between membrane and adjacent solution (cf. Equations 2.25 and
2.26), respectively [46]. For the mass fractions of the membrane wM at the feed and
permeate interfaces, the normalizing condition is used stating the sum of all mass
fractions to unity.

wF (m)
s = wF (m),eq

s · exp(−Vm,s
πF

RgT
) = Ks (2.23)

wP (m)
s = Ks · exp(−Vm,s

∆p
RgT

) (2.24)

w
F (m)
j = KMS,jc

F (m)
j (2.25)

w
P (m)
j = KMS,jc

P
j · exp(−Vm,j

∆p
RgT

) (2.26)

Marchetti and Livingston [47] introduced new parameters b1, b2 and b3 to reduce
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the number of unknown coefficients, such as the membrane thickness δM :

b1 = ρM ·DsM

δM
; b2 = ρM ·DjM

δM
; b3 = ρM ·Dsj

δM
(2.27)

These parameters are used to replace the frictional coupling coefficients εf,s and εf,j.
Finally, the equations for flux of solvent Js and solute Jj are derived:

Js = 1
ρs

b1(1 + b1
b3

w̄j
w̄M

)(wF (m)
s − wP (m)

s ) + b2( b1
b3

w̄s
w̄M

)(wF (m)
j − wP (m)

j )
w̄M(1 + b1

b3

w̄j
w̄M

+ b1
b3

w̄s
w̄M

)
(2.28)

Jj = 1
ρj

b2(1 + b1
b3

w̄j
w̄M

)(wF (m)
j − wP (m)

j ) + b1(Mj

Ms

b2
b3

w̄s
w̄M

)(wF (m)
s − wP (m)

s )
w̄M(1 + b1

b3

w̄j
w̄M

+ Mj

Ms

b2
b3

w̄s
w̄M

)
(2.29)

The mean mass fractions w̄ are determined assuming linear concentration profiles in
the membrane. Thus, the arithmetical averages of the mass fractions at the feed and
permeate interfaces of the membrane are calculated [46]. The mean mass fraction of
the membrane w̄M is obtained from the logarithmic difference of the mass fraction
of the membrane at the feed and permeate interfaces [47]. In general, the Maxwell-
Stefan (MS) Model incorporates a higher number of different sorption and diffusion
parameters, which either need to be determined by regression to experimental data,
in additional experiments or by using additional models. However, by introducing
the parameters b1, b2 and b3 (cf. Equation 2.27) as suggested by Marchetti and
Livingston [47] the number of parameters, which need to be determined by regression
to experimental flux data is reduced to five parameters. The three parameters b1,
b2 and b3 describe the coupling between solvent and solute flux by friction and
convection. The equilibrium swelling of the membrane Ks and the distribution
coefficient KMS,j can be used to determine the solvent and solute concentrations in
the membrane at the feed and permeate interfaces [47].
A different approach was conducted by Hesse et al. [15] aiming to develop a predictive
model based on the MS Model. The model parameters, such as the binary Maxwell-
Stefan diffusion coefficients were obtained by fitting to independent solubility and
sorption experiments with the respective solvent and membrane [48]. For prediction,
the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of
state was used to calculate the concentration of the solvent in the membrane material
[47].
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Since Solution-Diffusion and Pore-Flow Models built on complementary ideal as-
sumptions regarding the underlying transport mechanism and the structure of the
membrane, these models may not be suitable to describe the mass transport through
real membranes, which consist of both dense and pore-like areas. The Solution-
Diffusion with Imperfections (SDI) Model proposed by Sherwood et al. [49] and
revised by Yaroshchuk [50] combines both transport mechanisms. The structure of
the membrane is considered heterogeneous and free volume elements are formed in a
dense polymeric material due to swelling [50, 51], which are called imperfections. In
contrast to pores, the imperfections are not fixed in place and are affected statistical
fluctuations [47]. Due to the structure of the material, the transport is based on a
combination of diffusion through the dense areas and convective flux through the
imperfections and the following flux equations are derived [50]:

Js = Lm · (∆p−∆π) + LIM ·∆p (2.30)

Jj = Pm · (xFj − xPj ) + LIM · xFj ·∆p (2.31)

In each of these two equations, the first term accounts for the mass transfer by diffu-
sion through the polymeric matrix, according to the simple solution-diffusion model
and the second term describes the convective transport through the free volume ele-
ments. The osmotic pressure difference is not considered since the imperfections are
assumed as non-selective resulting in a constant concentration in the imperfections
[47, 50].

2.2.3 Irreversible Thermodynamics Models

Kedem and Katchalsky [52] proposed a transport model based on irreversible ther-
modynamics. The relative movement of solvent and membrane as well as solute and
membrane to each other causes a frictional force which can be quantified by a diffu-
sion coefficient. Due to the structure of the membrane material one of the frictional
forces is favored. Kedem and Katchalsky [52] concluded that solute-membrane-
friction becomes more significant in dense membranes opposed to membranes with
large pores. However, properties of the membrane are not represented in the irre-
versible thermodynamics model, it is rather seen as an irreversible process taking
place in a black box.
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According to Kedem and Katchalsky [52] the solvent and solute flux can be de-
scribed by using three different phenomenological coefficients: the mechanical fil-
tration coefficient Lp, the reflection coefficient σ and a coefficient Lj accounting for
the permeability of the membrane regarding the solute. The solvent flux Js and the
molar solute flux Ṅj can be described using Equation 2.32 and 2.33, respectively.
∆cj denotes the concentration difference of the solute across the membrane and c̄j
the mean solute concentration, respectively.

Js = Lp · (∆p− σIT ·∆π) (2.32)

Ṅj = Lj ·∆cj + (1− σIT ) · Js · c̄j (2.33)

Spiegler and Kedem [53] modified the model by introducing differential gradients
of solute concentration as well as hydrostatic and osmotic pressure across the
membrane and correspondingly differential transport coefficients introducing the
Spiegler-Kedem (SK) Model. They found that the coefficients defined by Kedem
and Katchalsky [52] depend on the solute concentration and thus are not constant
over the considered pressure range. The new model for the solute rejection includes
three parameters (Lp, σ and Lj), which are to be determined by regression to exper-
imental data. The application of the equation for the solute rejection instead of an
equation for solute flux might be beneficial in some cases, since the rejection is the
commonly published measure. The solute rejection is determined based on Equa-
tion 2.34 and 2.35, whereas the solvent flux is calculated the same way as proposed
by Kedem and Katchalsky [52] (cf. Equation 2.32).

Rj = (1− Fj) · σIT
1− σIT · Fj

(2.34)

Fj = exp

(
−Js ·

1− σIT
Lj

)
(2.35)

2.2.4 Phenomenological models for solvent flux

A number of phenomenological models for the prediction of pure solvent flux have
been proposed, e.g. by Darvishmanesh et al. [1], Bhanushali et al. [4], Geens et al.
[5], and Machado et al. [3]. These models correlate different types of descriptors,
addressing the size of the permeating molecule, solvent diffusivity through the mem-
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brane and the interaction between solvent and membrane. Although the same type
of descriptors is considered for the individual models, the specific choice varies for
each of them.
Machado et al. [3] proposed a resistance-in-series model with three resistances for an
OSN membrane, located in a nanofiltration top layer, an intermediate ultrafiltration
layer and a support layer. Two viscous resistances are correlated with the solvent
viscosity η and size as well as the pore size of the different layers, while the surface
resistance is influenced by the difference in polarities of membrane as well as solvent
and is correlated to the surface tensions ∆γ, resulting in the model for the component
specific flux.

J = ∆p
φ [∆γ + f1η] + f2η

. (2.36)

Here, f1 and f2 present membrane-specific parameters that characterize the nanofil-
tration and ultrafiltration layer, while φ relates to the pore diameter of the nanofil-
tration layer and is considered solvent-dependent due to potential swelling of the
membrane, limiting the applicability for solvents that induce different degrees of
swelling.
Building on the simplified solution-diffusion model, Bhanushali et al. [4] proposed
an alternative model, that assumes that the reciprocal of the viscosity η can be used
as an easily measurable indicator for solvent diffusivity in the membrane matrix
and that the combination with the molar volume Vm, as a size defining parameter,
allows for a proportionality with the solvent permeance. In order to be applicable
to hydrophobic and hydrophilic membranes, they further introduced the sorption
value ϕ and the surface tension of the membrane γsv, to account for the interaction
between membrane and solvent, resulting in the model for the component specific
flux.

J = k
Vm

ηϕnγsv
∆p (2.37)

Since the two parameters k and n are considered membrane-specific, the model
is supposed to be applicable independent of the degree of swelling. However, the
sorption value ϕ remains hard to quantify, since it depends on the combination
of solvent and membrane material and therefore requires additional experimental
quantification, unless it can be predicted as well.
While Geens et al. [5] recognized the model of Bhanushali et al. [4] as more ap-
propriate for dense nanofiltration membranes, they challenged the assumptions of
an inverse correlation with the sorption value and the dependence of the membrane
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surface energy. As a result, they proposed a modified version of the Bhanushali et al.
[4] model, which accounts for solvent-membrane interaction in a similar way as the
model of Machado et al. [3], considering the difference in surface tension between
the liquid solvent and the solid membrane surface ∆γ, resulting in the following
model for the local flux.

J = k
Vm
η∆γ∆p. (2.38)

Although, only a single membrane-specific parameter k needs to be regressed from
experimental data, the statistical analysis of a larger data set indicated that the
model is more suitable than its predecessors, particularly for hydrophobic mem-
branes. Nevertheless, Geens et al. [5] gave the remark that for a general application,
the model would need to be expanded with weighting factors to indicate the relative
importance of the different contributions to solvent transport, resulting in additional
fitting parameters.
Darvishmanesh et al. [1] further proposed another phenomenological model for the
prediction of pure solvent flux for polymeric and inorganic membranes. Describing
the transport through the membrane as a combination of diffusive and viscous flow,
considering viscosity η and surface tension of the solvent γS as important factors for
the latter. Recognizing a shortcoming of the preceding models, that similar surface
tensions of membrane and solvent would result in an infinite flux, Darvishmanesh
et al. [1] introduced an exponential function to compensate that. Including polarity
as an important influencing factor for the diffusive flow the model was derived as:

J = a0α

η · exp(1− β)(∆p−∆π) + b0

η · exp(1− β)∆p, (2.39)

which for pure solvents, for which the osmotic pressure difference ∆π becomes zero,
simplifies to

J = a0α + b0

η · exp(1− β)∆p. (2.40)

In contrast to the preceding models, polar (hydrophilic) and non-polar (hydropho-
bic) membranes are treated differently, by a different evaluation of the non-
dimensional coefficients.

αpolar = ε

εwater
βpolar = γ

γM
, (2.41)

αnon−polar = εn−hexane
ε

βnon−polar = γM
γ
. (2.42)
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The polarity coefficient α is determined as the ratio of dielectric constants of the
solvent ε and either water or n-hexane as extremely polar and non-polar reference
components. The ratio of the surface tension of the membrane γM and the solvent
γ is further used for the coefficient β. The remaining two parameters a0 and b0 are
considered as membrane-specific and need to be determined based on experimental
data.
While the model of Darvishmanesh et al. [1] might, in principle, be applied to
solvent mixtures, given the consideration of the osmotic pressure difference, no such
application has been reported. Thus, only the phenomenological model proposed
by Marchetti et al. [2], which has been developed based on permeation data of pure
and mixed solvent flux for ceramic membranes, has been demonstrated for mixed
solvent flux predictions. The model is based on the Hagen-Poiseuille equation,
complemented by a correction factor fc, which is supposed to lump all effects of
the nanopores on the solvent flux.

J = KHP

η
∆p · (1 + fc), (2.43)

fc = C1
2γLV cosθs

rp
+ C2

∣∣∣~d− kpol∣∣∣+ C3

(
rs
rp

)2

. (2.44)

The calculation of fc considers the effect of capillary forces, described by the liquid
surface tension γLV , the contact angle θs and the pore radius of the membrane rp,
dipole interactions, described by the polarizability kpol and the dipole moment ~d
of the solvent, and steric forces, based on the molecular radius of the solvents rs
and the pore size of the membrane rp. The contact angle θs and polarizability
kpol are calculated based on further equations depending on the surface tension of
membrane and solvent, which have to be retrieved either from literature or dedicated
experiments.
In addition to the various descriptors (properties), the comparable complex model
includes four membrane-specific fitting parameters (KHP , C1, C2, C3), which have
to be regressed from permeation data. For the prediction of mixed solvent flux a
mixing rule with molar compositions xs is applied to evaluate fc,mix as

fc,mix = xs,1fc,s,1 + (1− xs,1)fc,s,2. (2.45)
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2.2.5 Phenomenological models for solute rejection

In comparison to modeling solvent flux, only few phenomenological models have been
proposed for solute rejection. Based on their elaborate study of solute transport in
polymeric OSN membranes Geens et al. [54] analyzed the different solvent-solute-
membrane interactions and evaluated the major affecting factors, providing an ex-
planation of the rejection of six reference solutes in methanol and ethanol. Based on
these findings, Geens et al. [55] further concluded that a generalized transport model
needs to account for all these interactions, which are, however, difficult to measure
and quantify. Concluding that solute transport in OSN membranes is mainly in-
duced by convection they applied a simpler empirical approach, modifying different
pore flow models for aqueous nanofiltration by introducing solvent depended ef-
fective pore and solute diameters, introducing an empirical correlation. Based on
rejection data of different aromatic components solved in four different solvents pa-
rameter regression of the empirical correlation was performed, showing relatively
good representation and prediction for the rejection of different solutes in the same
solvents, with deviations to experimental data of less than 13%. While these results
are already considered satisfying, the adapted models require the evaluation of the
membrane pore size for a specific solvent, as well as association parameters for the
quantification of the effective solute radius, potentially limiting the prediction ca-
pability of the models. Since solute polarity was not taken into account, the models
might lack accuracy in case of strong solute-membrane interactions.
In a similar way Blumenschein et al. [56] adapted the model for porous membranes
developed by Bowen and Welfoot [44] to describe and predict the rejection of un-
charged solutes by ceramic OSN membranes. The initial model is based on the
Nernst-Planck equation and was investigated for aqueous nanofiltration by ceramic
OSN membranes. This model was further adapted by Blumenschein et al. [56]
based on several literature correlations for pore size dependent viscosity, pore size
distribution, molar volume and solvent dependent radius of the solute. Thereby, no
additional empirical parameters were introduced, while important membrane prop-
erties were determined experimentally in advance, such as the membrane pore size,
determined by permporometry measurements. While the model showed excellent
agreement with experimentally determined rejection curves for polystyrene stan-
dards as well as good agreement with other, more branched solutes, dissolved in
tetrahydrofurane (THF), it was concluded that the model fails to describe the rejec-
tion in other solvents, such as n-heptane and ethanol. In this context, Blumenschein
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et al. [56] highlighted that the experimental results did not reflect the expectations
resulting from the calculated solvent-dependent solute size and that it has to be
acknowledged that the rejection substantially depends on the specific solvent even
for ceramic membranes.
Another model for solvent and solute transport in nanostructured membranes was
recently presented Darvishmanesh and Van der Bruggen [57]. This new modeling
approach is also based on the assumption of pore flow mechanism with the addition
of a correction of the viscosity inside the pores as well as a correction of the size
exclusion of a solute by the membrane based on the pore size and the size of the
solute molecule. The latter accounts for the pore size distribution and requires the
regression of one parameter based on experimental data for a specific membrane
and range of solute sizes. The described model was able to predict the rejection of
different dyes by ceramic membranes with maximum deviations of less than 25%.
While the different studies showed large prospect for the prediction of solute rejection
in OSN, especially for porous membranes, they also indicate potential limitations,
especially in terms of generalization and applicability to different solvents. Overall,
it can be summarized that accurate predictions were reported when at least some
limitation to types of solvent, membrane and solute was made. While application of
the developed models to polymeric membranes is possible by accounting for solvent-
dependent pore size, as considered by Geens et al. [55], application of the models
of Blumenschein et al. [56] and Darvishmanesh and Van der Bruggen [57] was so
far only demonstrated for ceramic membranes. However, the strong solvent-solute-
membrane interactions described and analyzed by Geens et al. [54] and specifically
the possibility that solute transport might be affected to a considerable margin
by solution and diffusion in dense membranes, raises at least concerns about the
potential generalization and transfer to polymeric membranes.
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Objectives and Approach

3.1 Gap Analysis

The previous chapter provides an overview of the current state of the art for OSN ap-
plications and available models. Although, OSN is considered frequently in academia
and offers a great potential for energy savings and applications in a variety of in-
dustrial fields, industrial-scale applications are rather limited. In order to further
facilitate the application of OSN in industry and enable the consideration of OSN
during conceptual design of new processes, certain challenges need to be overcome.
The aim of this thesis is to address some of these challenges like the reliability of
lab-scale measurements and quantification of model parameter precision, which both
are required for a reliable evaluation of process design studies as well as the potential
prediction of flux and rejection in order to reduce experimental effort contributing
to the competitiveness of OSN in early stages of process development.
Though, a large amount of experimental data for OSN membranes is already avail-
able in the literature, yet these data are usually measured in lab-scale set-ups using
only a few different membrane samples and following the common experimental pro-
cedure described in Section 2.1.3. In addition, information on the reliability of the
measured data or measurement errors is rarely provided, which is however inevitable
considering the complex membrane structure and the possibility of fluctuations in
the membrane material, as described e.g. by Hussain et al. [58], Vandezande et al.
[36], and Tsibranska and Tylkowski [59]. Furthermore, different studies for both
nanofiltration membranes and other membrane processes have shown significant de-
viations between lab-scale and module-scale measurements [60, 61]. Variations in
flux are often attributed to leakage in the set-up or defects in the membrane mate-
rial [37], which clearly indicates evidence for the benefit of using multiple samples



3 Objectives and Approach

in repeated experiments and reporting measurement errors to distinguish between
those measurement errors and variations in the membrane material. Moreover, the
reliability of the measurements should be taken into account when comparing dif-
ferent studies, especially evaluating different membrane materials, adjusting model
parameters and transferring the results to industrial-scale. However, so far no sys-
tematic investigation has been carried out in order to determine the variations in
flux of solvents through organophilic nanofiltration membranes resulting from dif-
ferences in membrane material. Furthermore, the minimum sample size required
to determine an accurate estimate of the mean flux for a membrane that can be
reliably used for industrial-scale transfer has not been specified yet.
In addition to reliable experimental data, reliable models are needed to develop
membrane processes on an industrial-scale. The number of different models (Sec-
tion 2.2) available cannot be limited at this point due to the fact that the transport
of substances through an OSN membrane is influenced by different interactions and
the transport mechanism has not yet been fully identified [11, 17]. In order to iden-
tify the most suitable model for a given system, the different existing models must be
adapted and compared for the available experimental data, as was e.g. investigated
by Marchetti and Livingston [47] for different membranes and mixtures of solute and
solvent. An investigation of the physical correctness of the models was not aimed
at, but the suitability of the different models to represent the experimental data
was investigated. Based on the results obtained, the model complexity required to
describe the OSN was determined. However, Marchetti and Livingston [47] did not
examine the accuracy of the model parameters and the resulting uncertainties in the
models.
One of the biggest challenges to implement OSN as a unit operation for process
development is to enable the prediction of flux and rejection, which is complicated
by the different underlying transport phenomena [14] and potential swelling [62].
The existing semi-empirical models are not applicable for these predictions since the
model parameters are component specific and need to be adapted for the mixture
to be separated. As described in Section 2.2.4 and 2.2.5 some phenomenological
models have been developed so far, allowing for flux and rejection predictions, based
on membrane specific parameters. These models differ both in the properties of
the substances used and in their structure. Since different models are suitable for
different membranes and materials [14], it is unlikely that one model is applicable
for all types of OSN membranes. Therefore, the development of membrane-specific
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models with an optimized model structure seems to be a promising possibility to
develop predictive models. However, since manual development is complex and a
comprehensive knowledge of the existing phenomena is necessary, automatic data-
driven development of such models is a reasonable and promising approach, which
has not yet been pursued.

3.2 Structure of the thesis

In order to overcome some of the challenges addressed in Section 3.1 investigations
and developments in multiple directions have been performed. This work is summa-
rized within this thesis in two parts. The first part focuses on the uncertainties intro-
duced by the experimental characterization of OSN membranes. Chapter 4 presents
an extensive experimental investigation on the reliability of lab-scale experiments,
in order to determine the variations in flux that can be expected by following the
common procedure of experimental investigations as described in Section 2.1.3. Be-
sides the expected variations in flux, determined for a single batch of commercially
available membranes, caused by fluctuations in the membrane material, the neces-
sary sample size needed for accurate determination of the flux through a membrane
is determined based on a statistical evaluation. For this, flux data measured at
two different facilities following the same experimental procedure are evaluated and
supplemented by experiments in industrial-scale. Additionally, the transferability
to different membranes and solutes is investigated and the effect of the variations in
flux on the process design and costs are studied.
In order to provide reliable experimental data for different commercially available
OSN membranes, an extensive experimental study is performed following a newly
developed standardized experimental procedure [16] described in Chapter 5. The
gathered experimental results are examined regarding the comparability with results
obtained in other facilities.
Furthermore, the study on different models for OSN by Marchetti and Livingston
[47] is extended by an identifiability analysis of the model parameters, presented in
Chapter 6. Following the approach of Marchetti and Livingston [47], the parameter
regression is performed and the accuracy of each model is evaluated. Subsequently,
the parameter precision is evaluated based on confidence intervals enabling an iden-
tifiability analysis, which is further investigated in a Monte-Carlo simulation in order
to examine the distinguishability of the models.
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In the second part of the thesis, a new data-driven approach for the development of
predictive models for solvent flux and rejection is presented in Chapter 7, following
the introduction of various data-driven methods. The novel approach is applied to
different case studies including both pure and mixed solvent flux providing a com-
parative evaluation with respect to existing phenomenological models as presented
in Section 2.2.4 and 2.2.5. Finally, the method is extended to the development of
models for the rejection of solutes in pure solvents and solvent mixtures (Chapter 8)
and applied to different case studies in this context as well. The thesis concludes
with a final chapter that provides an outlook on potential future work (Chapter 9).
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4
Reliability of lab-scale experiments
for membrane characterization

While the scale-up from flat-sheet lab-scale experiments to larger modules for an
industrial application requires consideration of the module geometry and hydrody-
namics, it is of high importance that the lab-scale experiments provide an accurate
estimate of the membrane performance at ideal hydrodynamic conditions to make
a proper selection and potentially allow for a model-based evaluation of the process
performance. Due to inhomogeneity of the membrane material, it is however well
known that the membrane flux determined by small samples in lab-scale experiments
may vary in a considerable margin. These variations are investigated with an ex-
tensive experimental screening of lab-scale samples as well as a spiral-wound module
for a commercially available polymeric membrane and pure solvent flux. The exper-
imental results confirm considerable variations for single lab-scale samples, but also
indicate good comparability on the basis of a statistical evaluation of the larger set
of lab-scale samples. Based on this evaluation a minimum number of samples for
an accurate estimate is determined and validated for additional membrane-solvent
combinations.

The parts of this chapter have already been published in:
R. Goebel, M. Schreiber, V. Koleva, M. Horn, A. Górak, M. Skiborowski, On the reliability of
lab-scale experiments for the determination of membrane specific flux measurements in organic
solvent nanofiltration, Chemical and Engineering Research and Design 148 (2019), pp. 271-279



4 Reliability of lab-scale experiments for membrane characterization

4.1 Introduction

While the design of OSN-based separation processes has been deemed reliable, build-
ing on multi-scale modeling and experimental data retrieved from spiral-wound mod-
ules [63], initial data on flux and separation performance for a specific chemical sys-
tem and membrane is usually retrieved from lab-scale experiments with small-scale
samples. The tested sample size is usually in a range of 10 to 100 cm2, depending
on the used equipment. While this data can in principle be used for parameter
regression and subsequent model-based conceptual design, the reliability and the
transferability of the results to industrial-size modules is a considerable concern.
While a tremendous amount of such lab-scale data is reported in literature only
little information on the reliability is available, especially considering the complex
nature of the membrane structure and potential inhomogeneity in the membrane
material. Most experimental studies report on the results of single or repeated mea-
surements for one or in the best case a few membrane samples (two-three), as e.g.
in the study of Marchetti and Livingston [47], providing either no information on
uncertainty or estimates of experimental errors based on Gaussian error propaga-
tion or repeated measurements for the same membrane. E.g. See Toh et al. [37]
and Sereewatthanawut et al. [64] evaluated only single samples and reported consid-
erable differences between lab-scale and module-scale. Recent studies by Schmidt
et al. [65] and Postel et al. [66] applied for instance larger sample sizes of 80 and
100 cm2, but tested only two consecutive samples for the same conditions.
Only few studies evaluated and reported on the deviations between different nanofil-
tration membrane samples and between lab-scale and module-scale experiments.
However, as reported by Hussain et al. [58], who investigated aqueous nanofiltra-
tion membranes, the variations in the active layer can result in considerable vari-
ations in flux for different membrane samples. The studies of Vandezande et al.
[36] on a composite membrane and Tsibranska and Tylkowski [59] for the commer-
cial DuraMem R© 300 evaluated a series of test cells and reported on variations in
solvent flux for the lab-scale test cells of up to 16%, respective 20%. Comparing
lab-scale and module-scale membranes, Wang et al. [60] reported deviations in flux
for ultrafiltration membrane samples of 15%, while Schipolowski et al. [61] reported
deviations for different nanofiltration and a reverse osmosis membrane of up to 23%.
While differences in flux between lab-scale samples and industrial modules are of-
tentimes attributed to possible leakages and defects in the membrane material [37],
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the previous studies indicate the importance of multiple experiments with different
samples of the same membrane, in order to achieve a higher reliability.
This reliability is not only required in order to evaluate different membranes in a
screening process and get an accurate estimate of the membrane performance at
larger scale, but also to compare the results of different studies. While the analysis
of variance and information on confidence intervals is still considered rather as an
option in most chemical engineering publications, other disciplines, like pharmacol-
ogy, epidemiology, human and social sciences or geology require statistical analysis
of reported data, in order to determine whether it is sufficient for the derivation of
significant conclusions [67, 68]. The knowledge about the quality of published data
allows the quantification of data uncertainty and hence, the quality of conclusions
and models based on these data [69]. Therefore, similar requirements would improve
the quality of the reported data on membrane performance as well.
In this chapter the variance of membrane flux measurements determined with small
lab-scale samples is evaluated and a meaningful indication on the necessary sample
size that allows for an accurate quantification of the mean membrane flux is pro-
vided. Therefore, an experimental screening of a large number of lab-scale samples
of a commercially available membrane was performed in two different facilities and
complemented with measurements for an industrial membrane module (Section 4.2).
Based on a detailed statistical analysis the necessary sample size for accurate es-
timates of the mean solvent flux is evaluated (Section 4.3). Finally, Section 4.4
provides the conclusion.

4.2 Materials and Methods

In order to evaluate the necessary sample size, an experimental investigation of a
large number of different lab-scale samples was performed at two different sites,
namely Evonik Resource Efficiency GmbH in Marl (Evonik) and the Laboratory of
Fluid Separations at TU Dortmund (FVT TUDo) and complemented by flux mea-
surements for an industrial scale module. The experimental methods and materials
are described in the following section before the statistical methods used for data
analysis are presented. While further factors like spacer or potting choice for the
module or solvent treatment and exchange can affect the process performance [70],
the focus of this study is the quantification of variations caused by fluctuation in the
membrane material itself, as indicated by Hussain et al. [58]. Therefore, only pure
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solvent flux is investigated, in order to avoid any effect of hydrodynamics, especially
concentration polarization.

4.2.1 Materials

Lab-scale experiments were conducted in cross-flow set-ups manufactured by Evonik
MET with 2.5′′ filtration cells that offer an active membrane area of 14 cm2. In or-
der to exclude hydrodynamic effects from the comparison between lab-scale and
industrial module, only pure solvent flux was investigated. The commercially avail-
able asymmetric polyimide-based membrane DuraMem R© 200 T1 (Evonik Resource
Efficiency GmbH) and the polar solvent ethanol were selected as meaningful com-
bination. Ethanol used at Evonik had a purity of 99%, while ethanol with a purity
of 100% was used at FVT TUDo. For comparison with an industrial membrane
module the ethanol flux was determined for a spiral wound 1812 module with an
active membrane area 1100 cm2 [71]. Thus, the industrial module offers about 80
times the area of the lab-scale samples.

4.2.2 Experimental procedure

For an additional analysis of comparability lab-scale experiments were performed
at two different sites with slightly different experimental procedures. Thereby, it
was possible to evaluate the influence of these differences that are representative
for studies conducted by different research groups reported in literature. At both
sites the same kind of cross-flow set-up was used and fresh membrane samples were
used for each experimental run. The samples were taken from different membrane
flat sheets (Din A4) of the same production batch. For all conducted experiments,
the filtration cells were first equipped with new membrane samples and rinsed with
ethanol at 30 bar and ambient temperature until 50 lm−2 permeate were collected
for each cell.
At FVT TUDo a series of four filtration cells was evaluated simultaneously as shown
in Figure 4.1 (right), whereby the retentate was recycled to the feed tank and the
permeate was constantly withdrawn. Pressure was applied by nitrogen and the pump
was only used for recirculation of feed and retentate. On the permeate side there
was no valve and the permeate was collected in sample tubes but not recirculated.
The flux was measured gravimetrically after a period of 4 h to ensure steady state
conditions, which was validated via comparison to samples taken in previous time
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intervals. The experiment was repeated seven times with four membrane cells each
using fresh membrane samples. Hence, 28 samples were evaluated in total at FVT
TUDo. The feed tank was refilled to maximum holdup in between the experiments.
At Evonik, a series of eight filtration cells was evaluated simultaneously as shown
in Figure 4.1 (left), whereby the retentate and permeate were recycled for up to 4 h,
after which permeate samples were taken and the ethanol flux was determined gravi-
metrically as well. The experiment was repeated three times using eight membrane
cells and fresh membrane samples in each experiment. Thus, the flux through 24
samples was measured at Evonik. As in the FVT TUDo set-up, the system was pres-
surized with nitrogen and a pump was used for recirculation of retentate. A second
pump was installed in an additional permeate recycle to the feed tank. While this
allows for a constant liquid level in the feed tank, the hold-up in the feed tank has
no effect on the conducted experiments, as only pure solvent flux was investigated
and the feed tank always had a sufficiently large holdup in the FVT TuDo set-up.
Since both systems applied nitrogen for pressurization of the whole set-up, while
the recirculation pump only ensured a constant feed flow rate and velocity, the
pressure drop between the cells is considered negligible. This was confirmed by a
trial measurement for the FVT TUDo set-up. As the temperature of the feed tank
was monitored as constant and due to a high recirculation rate of more than 99%,
also a constant temperature in the system was assumed.

Feed 
tank

(800 mL)

N2

Permeate 
vessel

Feed 
tank

(800 mL)

N2

x6
x2

Figure 4.1: Illustration of lab-scale filtration set-ups at Evonik (left) and FVT
TUDo (right).

Moreover, the large-scale experiment was not repeated since the membrane area of
the model is already 80 times the area of the lab-scale samples and variations in the
membrane material will balance each other. The experimental procedure, pressure
and temperature were the same as for the lab-scale experiments. However, the set-up
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for the experiments in large-scale differed from the lab-scale set-ups (cf. Figure 4.2).
The feed tank of the plant offered a higher liquid holdup and the plant was not
pressurized with nitrogen but by using a high-pressure pump. The second pump is
used for recirculation of the retentate. Due to low nitrogen solubility in ethanol at
high pressure (1.225mol% at 35.671 bar [72]), the difference in the pressurization
of the lab-scale and the large-scale set-ups did not influence the measurements.
Moreover, the large-scale experiment was not repeated since the membrane area of
the model is already 80 times the area of the lab-scale samples and variations in the
membrane material will balance each other.

Feed 
tank
(5 L)

1812 
module

Figure 4.2: Illustration of large-scale filtration set-up for the test of the spiral
wound 1812 module.

4.2.3 Data analysis

For the statistical analysis of the results, estimates of the mean ȳ and the standard
deviation σ were calculated as

ȳ = 1
Nsamples

Nsamples∑
i=1

yi, (4.1)

σ =

√√√√√ 1
Nsamples − 1

Nsamples∑
i=1

(yi − ȳ)2, (4.2)

for which Nsamples is the number of samples yi [73]. Prior to further evaluation, the
Shapiro-Wilk test was evaluated based on these estimates, in accordance with the
description of Sen and Srivastava [74] in order to evaluate if the population, which
the samples have been collected from, can be assumed as normally distributed. This
test is applicable for the evaluation of sample sets with a size of less than 50 [74]
and is characterized as strong in relation to comparable other test procedures [75].
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After positive evaluation of the Shapiro-Wilk test, the 95% confidence intervals of
the mean x̄ and the standard deviation σ were determined, in order to evaluate
the accuracy of the estimates. Based on the still limited size of the sample set the
Student’s t-distribution was used for the calculation of the confidence interval of the
mean [73]

ȳ + tα
2 ,(Nsamples−1) ·

σ√
Nsamples

≤ ȳ ≤ ȳ + t1−α2 ,(Nsamples−1) ·
σ√

Nsamples

 , (4.3)

while the calculation of the confidence intervals of the standard deviation (cd. Equa-
tion 4.4), needs to be based on the χ2-distribution [73]

√√√√(Nsamples − 1) · σ2

χ2
1−α2 ,(Nsamples−1)

≤ σ ≤
√√√√(Nsamples − 1) · σ2

χ2
α
2 ,(Nsamples−1)

 .
(4.4)

Additionally, the computed intervals were compared to confidence intervals deter-
mined based on the Wilcoxon test [76], which is a non-parametric test that does not
assume a specific kind of distribution, in order to evaluate possible differences with
respect to the assumption of a normal distribution. Furthermore, the estimated
mean value and the corresponding confidence interval, computed based on the lab-
scale samples, were compared with the flux measurement of the industrial module,
which is considered as representative of the true mean flux. Taking into account the
positive Shapiro-Wilk test and the accuracy information of the confidence interval,
it was also tested, if the estimated mean and standard deviation can provide an
accurate estimate of the distribution of the underlying population. Therefore, it
was checked weather 95% of the samples are located within the range of 2σ [73]
around the mean value and a graphical comparison of the frequency of occurrence
of specific flux measurement within a discrete set of intervals and the estimated
probability density according to the normal distribution.
Finally, indicative values for the necessary sample size, for a certain accuracy of the
flux estimates were determined in two ways. First, the confidence intervals accord-
ing to Equation 4.3 were determined for different sample sizes from 2-15 according
to the mean and standard deviation determined for the full set of lab-scale flux
measurements. The width of the confidence interval thereby quantifies the range of
uncertainty, with respect to the true mean value. In order to analyze the effect of
single measurements, which are less probable, but are still reasonable with respect
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to the analyzed distribution, another estimate of the confidence intervals for the
different sample sizes was determined in a second approach, which performs a ran-
dom sampling from the given full set of lab-scale flux measurements and determines
estimates of mean and standard deviation, for the given sample set. The random
sampling was performed 1000 times for each of the sample sizes. Based on these
1000 estimates of the mean and standard deviation and the resulting confidence in-
tervals one overall estimate of the confidence interval was determined by calculating
the 2.5% quantile of all lower limits of the intervals and the 97.5% quantile of the
upper limits.

4.3 Results and Discussion

The experimental results for lab-scale membrane samples and the industrial size
module are discussed in the following. Subsequent to this analysis an indicative
value for the necessary sample size is determined in order to give a recommendation
for flux experiments. Furthermore, the validity of the determined recommendation is
evaluated for additional membranes and solvents before the effect of a consideration
of the variance is discussed for some representative experimental and theoretical
studies from literature.

4.3.1 Lab-Scale experiments

Overall, 52 membrane samples were evaluated in the lab-scale set-ups at FVT TUDo
and Evonik. Five outliers were identified based on significant deviations of the
measured flux, ranging from 150 to 470% of the mean average flux of the remaining
47 samples. These large deviations were attributed to leakage of the cells, due to
incorrect placement of the seals or damage of the membrane during installation in
the cell. Hence, these outliers were not considered representative and consequently
excluded. The determined flux at30 bar for all of these samples is illustrated in
Figure 4.3, whereas samples evaluated at Evonik are indicated as gray bars and
samples evaluated at FVT TUDo as white bars. The visual comparison confirms
that there are no significant differences between the measurement results determined
at each of the sides and that the measured flux for the different samples is subject to a
considerable variance. This variance cannot be attributed to potential measurement
errors, which based on Gaussian error propagation of balance accuracy (±0.002 g),
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the accuracy of the time measurement (±5 s) and a potential density error (±10 g l−1)
does not exceed 1.5% of the flux measurement.
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Figure 4.3: Illustration of permeate fluxes of ethanol measured for different sam-
ples of the DuraMem R© 200 at 30 bar (grey bars: measurement at
Evonik, white bar: measurement at FVT TUDo, solid line: mean of
the measured fluxes, dashed lines: 2σ-range), with respect to the com-
bined sample set, see Table 4.1

In order to further check whether the population of which the samples were col-
lected may be assumed normally distributed, the Shapiro-Wilk test was performed
considering a level of significance of 5% (confidence level of 95%). Based on the
number of samples within the investigated population and the level of significance a
critical value for the test statistic of the Shapiro-Wilk can be derived from the cor-
responding tables provided by Sen and Srivastava [74]. In this case, a test statistic
lower than 0.946 would result in the rejection of the hypothesis, that the underlying
population is normally distributed. For the investigated population the test statis-
tic was calculated to 0.954 which is slightly higher than the critical value. Hence,
the Shapiro-Wilk test did not reject the assumption of a normally distributed pop-
ulation, so that the standard deviation, as well as the size of the 95% confidence
intervals were calculated for each of the experimental facilities and the combined set
of samples (cf. Table 4.1).
Since the differences between the sample sets were comparably small, it was con-
cluded that the different experimental set-ups did not have a significant effect on
the measured flux data and the combined ensemble was used for further analysis.
In consequence, it was tested if the estimates for the mean and standard deviation
can provide an accurate estimate of the distribution of the underlying population.
Therefore, it was checked weather 95% of the samples were located within the range
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Table 4.1: Estimated mean (µ̂), standard deviation (σ̂) and respective confi-
dence intervals (CI) determined for the flux of ethanol through the
DuraMem R© 200 at 30 bar for the sample sets.

µ̂ CIµ̂ σ̂ CIσ̂ Samples
Lm−2 h−1 Lm−2 h−1 Lm−2 h−1 Lm−2 h−1

Evonik 8.66 ±0.49 1.15 ±0.22 24
FVT TUDo 7.87 ±0.63 1.47 ±0.29 23
Combined 8.27 ±0.40 1.36 ±0.20 47

of 2σ [73] around the estimated mean value. Figure 4.3 indicates the mean of the
measured fluxes of ethanol at 30 bar and the 2σ-interval around the mean. Since
only two out of 47 samples (≈4%) were located slightly outside the 2σ-interval,
96% of the samples fall within the interval. For further analysis, the samples were
divided into intervals with respect to the measured flux and the relative frequency
of occurrence was compared with the estimated probability according to the normal
distribution with the estimated mean and standard deviation (cf. Figure 4.4).
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Figure 4.4: Comparison of relative frequency of occurrence of measured fluxes of
ethanol at 30 bar with the probability distribution, based on the esti-
mated mean and standard deviation.

Due to the noticeable shift to the side of lower fluxes, the relative frequency in
the discredited intervals does not match perfectly to the density function of the
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normal distribution. As described in Section 4.2.3 the Wilcoxon test [76] was applied
additionally to evaluate possible differences of 95% confidence intervals in case a
normal distribution cannot be assumed. However, no significant deviation between
the estimated confidence intervals was determined.

4.3.2 Comparison with membrane module

While the large set of samples evaluated in the lab-scale set-up provide an estimate
of the mean ethanol flux and the deviation that is to be expected for such samples,
it is furthermore of interest to confirm that this estimate is a good approximation
of the real mean flux of the underlying population. For this purpose, a comparison
was made to the industrial membrane module, which provides an active membrane
area that is about 80 times the sample size of the lab-scale experiments. Thus, it
was twice the size than the combined samples from the lab-scale analysis. For the
spiral wound module a flux of 7.9 Lm−2 h−1 was determined at 30 bar, which is just
within the confidence interval of the estimated mean from the lab-scale experiments.
While it might seem disappointing that the estimate from the combined lab-scale
measurements is not an exact fit to the spiral wound module, the difference between
the estimates is just 4.7% and the fact that value for the module is located in the
confidence interval of the lab-scale estimate does prove the value of the confidence
interval for the analysis of the flux measurement.
Even if the measured flux from the industrial module is considered as an accurate
representation of the real mean ethanol flux, the single large-scale experiment does
not provide any information on the variance of the flux. Thus, the larger number of
lab-scale experiments provides added information with respect to the performance
quantification. For comparison purpose an additional estimate of the standard de-
viation was determined, considering that the flux of the spiral-wound module rep-
resents the true mean value and demanding that 95% of all lab-scale samples are
located within a 2σ-interval around this mean value. The resulting interval range
of ±2.61 Lm−2 h−1 was approximately 33% of the mean ethanol flux determined for
the industrial module. As illustrated in Figure 4.5 it is in very good agreement with
the interval determined on the basis of the lab-scale samples.
Overall, it can be concluded that given a sufficient quantity, lab-scale experiments
of appropriate quality provide an accurate estimate of the membrane specific flux,
which is coherent with the performance of the industrial module. They furthermore
provide insight into the possible deviations and allow for a quantification of the
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Figure 4.5: Mean of the permeate fluxes of ethanol at 30 bar determined in lab-
scale experiments (left, the error bar represents the 2σ-range deter-
mined in lab-scale experiments) and for the membrane module (right,
the error bars represent ±33% which includes 95% of all measured
fluxes in lab-scale)

estimate accuracy, which is not possible through an evaluation of a single experiment
with the industrial module. However, the large set of 47 samples requires multiple
experimental runs and is not feasible for an implementation in the usual workflow.
Therefore, the next section addresses the important question, how large a necessary
sample size should be for a reliable estimate of the flux.

4.3.3 Evaluation of necessary sample size for meaningful
estimates

In order to determine the necessary sample size, which allows for an acceptable
accuracy of the estimates, the confidence intervals for different sample sizes of 2-15
were determined by the two different approaches described in Section 4.2.3. Table 4.2
shows the lower and upper limits (CIlow|CIup) as well as the relative width (rel.
width) of the derived confidence intervals. Obviously, at least three samples are
required to avoid an extension of the confidence interval beyond a flux of zero.
This means that any estimate that is derived from a single or two samples would
need to be considered statistically insignificant. When considering the mean and
standard deviation determined for the full set of lab-scale samples, a sample size of

40



4 Reliability of lab-scale experiments for membrane characterization

four suffices to reduce the uncertainty with respect to the estimate of the mean to
around ±25%, while a sample size of five results in a further reduction to ±20%.
Using the sampling approach, which reflects the impact of single measurements
with larger, yet reasonable, deviation to the true mean flux, the necessary size of
the sampling set for a relative width of the confidence interval of ±25% increases to
eight. As described in Section 4.2.1, a simultaneous evaluation of this sample size is
still feasible in a lab-scale set-up like the METcell system.

Table 4.2: Estimated intervals for different sample sizes

Sample size Based on lab-scale samples Based on sampling approach
CIlow CIup rel. width CIlow CIup rel. width

2 −3.95 20.49 148% −19.96 38.70 313%
3 4.89 11.65 41% 2.26 15.73 75%
4 6.11 10.43 26% 4.55 12.83 48%
5 6.58 9.96 20% 5.48 11.73 36%
6 6.84 9.70 17% 5.89 11.18 31%
7 7.01 9.53 15% 6.15 10.78 27%
8 7.13 9.41 14% 6.39 10.63 25%
9 7.23 9.32 13% 6.60 10.40 22%

10 7.30 9.24 12% 6.68 10.27 21%
11 7.36 9.18 11% 6.74 10.08 20%
12 7.41 9.13 10% 6.87 10.03 19%
13 7.45 9.09 10% 6.90 9.90 18%
14 7.49 9.06 10% 6.96 9.78 17%
15 7.52 9.02 9% 7.02 9.70 16%

The results indicate that a good approximation of the true mean flux with high
accuracy is feasible with a sample set of four, in case no large deviations occur, while
otherwise an increase to a sample set of eight can compensate for such deviating
experiments, which still are considered reasonable according to the resulting normal
distribution. This does not include outliers that are e.g. the result of a defect of
the membrane sample. Of course, this estimate is based on the small size of the
membrane samples and reflects the properties of the specific membrane. Yet, the
quality of this industrially produced membrane should be considered high and the
size of the individual samples as representative for lab-scale studies.
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4.4 Conclusion

In this chapter the material-dependent variance in solvent flux for lab-scale measure-
ments is analyzed. For this purpose, the pure solvent flux of ethanol was evaluated
for about fifty lab-scale membrane samples and an industrial spiral-wound module.
The evaluation allows for the determination of a minimum sample size that should
be considered for a representative evaluation of the membrane performance. Based
on this investigation it could be shown that the assumption of a normal distribution
with respect to the variations of the membrane material is reasonable and that the
determined estimate for the average flux and its confidence interval provides a good
approximation of the true mean value, represented by the industrial spiral-wound
module. The ensemble of lab-scale samples provides added information on the vari-
ance of the flux, which is not attainable from the spiral-wound module. Based on the
analysis it becomes apparent that a reliable flux estimate with related uncertainty
of the estimate below ±25%, referring to the extension of the confidence interval,
requires a minimum sample size of four. Additional samples should be considered in
case of higher deviations that cannot be attributed to defects and thus excludable
outliers.
Since common lab-scale set-ups like the MET system or the tailored equipment of
Vandezande et al. [36] easily allow for the investigation of a representative number
of samples in a single experimental run, it is appropriate to utilize these set-ups. Al-
though there is still an ongoing debate on the correct use and the potential misinter-
pretation of the information from statistical tests and confidence intervals [77], they
do provide valuable information on the reliability of the derived estimates, which is
of significant value for model-based analysis and conceptual design. The transfer-
ability of the determined uncertainty information to other solvents and membranes
and the influence on process selection is investigated in the subsequent chapter.
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Towards a comparable
characterization of polymeric OSN
membranes

In a cooperative study with different project partners, a standardized experimental
procedure was developed and used in order to determine the comparability of flux and
rejection determined at different facilities. Moreover, different categories for solutes
and solvents have defined in order to create an extensive database for a variety of
different components and applications. In the following chapter, the experiments
contributed to this cooperative study as well as experimental results for additional
solutes are presented and discussed. Moreover, these experimental results are put in
the context of the cooperative study regarding the comparability. The importance of
the uncertainty information derived in Chapter 4 for membrane selection and model-
based conceptual process design is furthermore illustrated for case-studies based on
the experimental results of the cooperative study and studies from literature.

The parts of this chapter have already been/will be published in:
R. Goebel, T. Glaser, M. Skiborowski, Machine-based learning of predictive models in organic
solvent nanofiltration: Solute rejection in pure and mixed solvents, Separation & Purification
Technology 248 (2020), pp. 117046
R. Goebel, M. Schreiber, V. Koleva, M. Horn, A. Górak, M. Skiborowski, On the reliability of
lab-scale experiments for the determination of membrane specific flux measurements in organic
solvent nanofiltration, Chemical and Engineering Research and Design 148 (2019), pp. 271-279
A. Böcking, V. Koleva, J. Wind, Y. Thiermeyer, S. Blumenschein, R. Goebel, M. Skiborowski,
M. Wessling, Can the variance in membrane performance influence the design of organic solvent
nanofiltration processes?, Journal of Membrane Science 575 (2019), pp. 217-228
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5.1 Introduction

The feasibility of a separation process by means of organophilic nanofiltration can
be evaluated using existing data. For this purpose, however, on the one hand a
broad data base is required and on the other hand, these data should be comparable
and reproducible. So far, it is common practice to characterize a membrane either
only for a specific system or for only one or a few different systems (Section 2.1.3).
Consequently, there is a lack of data that allows estimations for different systems and
additionally, the experiments are not performed according to standardized methods,
which makes transferability and comparability difficult.
In order to address these challenges, a standardized measurement method was de-
veloped in a cooperative project, which was used to investigate the comparability of
flux and rejection. Furthermore, categories for solvents and solutes were defined and
individual representatives were selected to create a broad database for OSN mem-
branes using these components and the new measurement method. This database
can be used to estimate the feasibility of separation processes or as a basis for model
development.
In the following chapter, the materials used in the experiments of this thesis are
introduced (Section 5.2) and the experimental procedure is described (Section 5.3).
Subsequently, the results are discussed and presented in the context of the coopera-
tive study of the project. For this, the uncertainty information determined in Chap-
ter 4 is taken into account and extended to rejection. Moreover, the importance of
taking the uncertainty information into account for process analysis is investigated.
Finally, the results are summarized in Section 5.5.

5.2 Materials

For membrane characterization the solvent flux through the membrane as well as
the rejection of different solutes were determined in corresponding experiments.
The different combinations of solvents and solutes used in these experiments are
summarized in the following. Further, the properties of the membranes investigated
in this study are specified.
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5.2.1 Solvents

At first, six solvents were selected based on variations in terms of viscosity and
polarity, considering the solvent dependent solute sensitivity regions reported by
Thiermeyer et al. [78]. Ethanol and isopropanol were selected as common polar
solvents, which are able to form hydrogen bonds. Methyl ethyl ketone (MEK) and
ethyl acetate (EtAc) were selected as moderately polar solvents, which are not able
to form hydrogen bonds. Finally, toluene and heptane were selected as almost non-
polar solvents. The division into polar, moderately polar and non-polar solvents is
in accordance with the polarity index [79] and the categorization listed in Table 5.1.
Nevertheless, it should be noted that based on the Hildebrand or Hansen solubility
parameters, toluene is exactly as polar as ethyl acetate.
In addition to these six solvents, acetone and n-butyl acetate (BuAc) were added
in order to enlarge the data set for each chemical group of solvents. Both solvents
are moderate polar according to the polarity index [79]. All solvents were acquired
with warranted purities of at least 99.5% by Merck KGaA, Carl Roth GmbH + Co.
KG, ChemSolute and VWR Chemicals.

Table 5.1: Hildebrand solubility parameter [80] and Polarity [79] of the solvents
used in this study.

Solvent group Solvent Solubility parameter Polarity
MPa0.5 %

polar Ethanol (EtOH) 26.5 65.4%
Isopropanol (IPA) 23.6 54.6%

moderate polar Methyl ethyl ketone (MEK) 19.1 32.7%
Ethyl acetate (EtAc) 18.2 23.0%

non-polar Toluene (Tol) 18.2 9.9%
n-Heptane (Hep) 14.9 1.2%

additional Acetone (Ace) 19.9 35.5%
Butyl acetate (BuAc) 17.4 24.1%

5.2.2 Solutes

The selection of solutes was based on the variation of molecular size, structure and
polarity, while accounting for the necessary solubility in the selected solvents and
availability. One group of solutes includes styrene oligomers with different molecular
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weight. This solute group allows an insight into the rejection of different molecu-
lar sizes without functional groups changing. Moreover, it is a standard system
for membrane characterization used by membrane manufacturers. For the rejec-
tion experiments the two different polymer standards PSS-ps560 and PSS-ps1.8k
purchased from PSS Polymer Standards Services GmbH are used, offering a molar
mass distribution between 266 and 1800 kg kmol−1.
Additionally, a group of ten linear alkanes (C10-C36) in combination with su-
crose octaacetate (SOA) was used. As a third group (hereinafter referred to
as further solutes) aromatic compounds with different side chains (Isobutylben-
zene (IBB), hexylbenzene (HB), 2-Ethylnaphthalene (EN), Phenyldecane (PD), 2,6-
Diisopropylnaphthalene (DIPN) and Triphenylphosphine (TPP)) as well as vitamin
E (α-tocopherol, VE), the ester Isopropylmyristate (IPM) and the branched iso-
mer of the linear C16 alkane 2,2,4,4,6,8,8-heptamethylnonane(HMN) were selected
as solutes. The alkanes represent non-polar solutes with different chain length but
similar structure, while the remaining molecules are mainly moderate polar solutes
with varying molecular structures. Table 5.2 provides a summary of the solutes and
the corresponding structure as well as important properties like molecular weight
and solubility parameter. According to the vendor specifications (Alfa Aesar, Sigma
Aldrich, Arcos organics, Merck KGaA and Abcam), all solutes had a purity of at
least 98%, except for hexylbenzene for which a minimum purity of 97% was spec-
ified. Although, the solubility of the solutes in the different solutes was taken into
account, not every solute was used in each solvent.

5.2.3 Membranes

The experiments were performed using DuraMem R© 150, DuraMem R© 200,
DuraMem R© 300 and PuraMem R© S600 membranes supplied by Evonik Industries.
Additionally, the PDMS(2 µm) membrane manufactured by the Helmholtz-Zentrum
Geestacht is used. The membranes of the DuraMem R© series are made of polyimide
and are suitable for applications in polar solvents. DuraMem R© membranes are
indicated by the vendor as stable in the solvents ethanol, isopropanol and methyl
ethyl ketone, in which these membranes were used exclusively. The MWCOs of
the DuraMem R© 150, the DuraMem R© 200 and the DuraMem R© 300 membranes are
listed as 150, 200 and 300 gmol−1, respectively, determined using styrene oligomers
dissolved in toluene [81].
The active layer of the PuraMem R© S600 and PDMS(2 µm) membranes are poly-
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Table 5.2: Overview of the solutes and the corresponding molar mass, structure
and Hildebrand solubility parameter (Hildebrand parameter was not
available for SOA)

Solute Molar mass Structure Solubility parameter
gmol−1 MPa0.5

Styrene oligomers 266-1.8k

[ ]
n

-

C10-C36 142.3-507.0
[ ]

n
(n=8,10,12,14,16,
20,22,26,30,34) 15.1-15.6

DIPN 212.3 17.8

EN 156.2 19.2

HB 162.3 18.1

HMN 226.5 14.3

IBB 134.2 20.0

IPM 270.5
O

O 16.2

PD 218.4 18.0

TPP 262.3
P

18.7

VE 430.7
O

HO

25.2

SOA 678.6

O

O

OO

O

O

O
O

O

O O
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O
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dimethylsiloxane (PDMS) based and these membranes are more suitable for appli-
cations in non-polar solvents. The applied solvents are specifically listed by the ven-
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dor as solvents for which the PuraMem R© S600 membranes can be considered stable.
The technical information sheet lists a MWCO of 600 gmol−1 for the PuraMem R©

S600 based on rejection data for styrene oligomers dissolved in toluene, determined
at operating conditions of 30 bar and 30 ◦C [82]. The PDMS(2 µm) membrane is
similar to the membrane described by Ebert et al. [83] and considered stable in all
solvents as well. However, since the MWCO strongly depends on the solvent used,
no MWCO was listed for this membrane type so far.

5.2.4 Investigated experimental systems

The investigated experimental systems differ for the different membranes. Figure 5.1
provides an overview of the different components. Each experimental system con-
sists of a membrane, a solvent and a solute group. Since DuraMem R© membranes
are not applicable in non-polar solvents and ethyl acetate, these membranes were
only used in polar solvents and methyl ethyl ketone. The first experimental in-
vestigations using the DuraMem R© 150 and DuraMem R© 200 in ethanol with the
solute group of styrene oligomers resulted in complete rejection of these solutes al-
though a different solvent was used. A high rejection of solutes is actually very
interesting from application point of view. However, in the context of this study
influencing properties of solvent and solute on flux and rejection are of interest.
Complete rejections of all solutes regardless of molecular size or different properties
do not provide any further insight into the dependence of the rejection on different
solute properties. Therefore, a broader variety in rejections is more purposeful in
the context of this study. For this reason, the focus was on the membranes with a
higher reported MWCO, where fluctuations in rejection were observed for different
components, while the DuraMem R© 150 and DuraMem R© 200 membranes were not
investigated further. Moreover, the styrene oligomers were not used in other solvents
than ethanol and toluene in this study but investigated by project partners after
a successful evaluation of the comparability of experimental results determined at
different facilities [16].
The group of "further solutes" was only used in experiments with the PuraMem R©

S600 and PDMS(2 µm) membrane, since the DuraMem R© 300 membrane was only
usable in a limited number of solvents and hence, the database was small compared
to the other membranes. However, the number of solvents for the experiments with
the group of further solvents has been increased by adding acetone and n-butyl
acetate.
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Experimental
system

Membrane

Solute

Solvent

• PuraMem R© S600
• PDMS(2 µm)
• DuraMem R© 1501

• DuraMem R© 2001

• DuraMem R© 3002

• Styrene oligomers3

• Lineare alkanes + SOA
• Further solutes4

• polar: Ethanol, Isopropanol
• moderate polar: Methyl ethyl ketone,

Ethyl acetate
• nonpolar: Toluene, n-Heptane
• additional5: Acetone, Butyl acetate

Figure 5.1: Investigated chemical systems (1: only with Ethanol + Polystyrene; 2:
not with non-polar solvents and Ethyl acetate; 3: only with Ethanol
and Toluene; 4: not with DuraMem R©; 5: only with further solutes +
PuraMem R© S600 and PDMS(2µm))

5.3 Methods

The experimental procedure used for the experiments presented in this chapter fol-
lows an standardized experimental protocol developed in a collaborative research
project, in which an extensive experimental investigation of various membrane sol-
vent and solute combinations was performed in order to analyze the comparability
of flux and rejection measurements at different laboratories and experimental set-
ups. The different experimental set-ups include the METcell system described in
Chapter 4, but also specifically manufactured set-ups with larger membrane test
cells (up to 100 cm2).
The exact procedure used for determination of flux and rejection in pure solvents for
different membranes is described the Section 5.3.1. The experiments using solvent
mixtures are described in Appendix B. Depending on the solutes used in the exper-
iments, either gaschromatography or high pressure liquid chromatography is used
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for the determination of the concentration of the solutes in permeate and retentate
(Section 5.3.2).

5.3.1 Experimental procedure following the standardized
protocol

The experiments were performed in a cross-flow nanofiltration system of type
LSta60-2LM, illustrated in Figure 5.2, purchased from SIMA-tec GmbH, which was
already used and described by Schmidt et al. [65] and Werth et al. [21]. The cross-
flow system contains a double jacket feed tank with a capacity of 7.5 l and two mem-
brane cells connected in series with an active membrane area of 80 cm2 each, which
both were equipped with 28 mil feed spacers to increase the turbulence on the mem-
brane surface while the cross-flow velocity was maximized using the Hydracell G22
pump by Verder Deutschland GmbH at a frequency of 25Hz. The plant is equipped
with sampling ports for feed, retentate and permeate of both cells separately (cf.
Figure 5.2 as well as the flow diagram of the plant reported by Schmidt et al. [65]).
During the initial operation both permeate and retentate were recycled in order to
maintain constant feed conditions. Moreover, the temperature in the membrane
cells and the pressure in the plant were monitored using DasyLab9.0 (Measurement
Computing, USA) as well as coriolis cross-flow meters (ABB, FCM2000MS-21) and
gravimetric measurement.

Figure 5.2: Illustration of the applied cross-flow nanofiltration system, with the
double jacket feed tank (A), the membrane cells (B), sampling valves
for feed and retentate (C), as well as the permeate (D).
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The experiments were performed in three steps, further considered as standardized
procedure [16]. First, the plant was rinsed with pure solvent to remove remaining
solvents or solutes from the previous experiment. If no solvent change was performed
in between experiments a single rinsing step was considered sufficient, while the plant
was rinsed three times with fresh solvent in case the solvent was changed. After this
initial rinsing of the plant, fresh membranes were installed and again rinsed with
fresh solvent in order to remove conditioning agents from the membrane. Finally, the
actual rejection experiment was performed and the feed tank was filled with 1.5 l of
the specific solution for the experiment. The rejection experiments were performed
in series, using one group of solvents at a time. For each series 0.1 g l−1 of the
different solutes was solved in the solvent, thus not exceeding an initial amount of
dissolved solutes of 1 g l−1 in any experiment. Using the styrene oligomer mixtures,
1 g l−1 of the polymer standards PSS-ps560 was solved in the corresponding solvent
and in experiments using toluene as solvent, 1 g l−1 of the second polymer standard
PSS-ps1.8k was added, which is not soluble in ethanol.
While a constant temperature of 25 ◦C for the feed was kept during all experiments,
solvent flux and solute rejection were determined at a transmembrane pressure of
20, 30 and 40 bar respectively. Both membrane cells were used with samples of
the same membrane sheet in order to keep record of possible variations between the
samples. Prior to the collection of retentate and permeate samples, the feed solution
was circulated for at least two hours to reach steady state conditions. The flux
was determined gravimetrically while the samples of retentate and both permeates
used for rejection determination were analyzed applying different analytical methods
depending on the solute group as described in Section 5.3.2.

5.3.2 Analytical methods for solute concentrations

For the determination of the rejection, the two permeate samples of each cell and
the retentate sample were either analyzed by a gas chromatography (GC) or by
high pressure liquid chromatography (HPLC) depending on the type of solutes used
in the specific experiment. For the determination of the rejection using styrene
oligomers HPLC of Agilent Series 1200 was used. The HPLC was equipped with a
column of the type Agilent ZOBRAX Eclipse Plus C18 (4.6mm x 250mm, 5µm) and
combined with an UV/vis detector set to a wavelength of 264 nm. The analytical
method complies with the method described by See Toh et al. [37] but was modified
in order to achieve higher resolutions for the present set-up. As mobile phase a mix-
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ture of analytical grade water and tetrahydrofurane (THF) are used with 0.1 vol%
triflouroacetic acid. During the analysis of each sample, the composition of the mo-
bile phase was changed according to Table 5.3 to achieve a better resolution and
after each set of two permeate samples and the corresponding retentate sample, one
sample with pure (THF) was inserted to rinse the column.
Since the peak of toluene overlays peaks of the solutes in the chromatogram, toluene
was completely evaporated of the permeate and retentate samples and the samples
were resolved in THF. For samples containing ethanol, this step was not necessary.
The different solutes were identified based on the curves proved by PSS Polymer
Standards Services GmbH. Since the area of the peaks for each solute size corre-
sponds to the concentration, the rejection of each solute is determined based on the
ratio of the areas of the peaks in the permeate and the retentate sample. Each anal-
ysis is repeated three times and the mean of the analyses is used for concentration
determination.

Table 5.3: Composition of mobile phase for the analysis of styrene oligomer samples
with HPLC

Time Solvent composition
Minute 0 to 13 65% THF + 35% H2O
Minute 13 to 23 Change to 90% THF + 10% H2O (gradient)
Minute 23 to 28 90% THF + 10% H2O
Minute 28 to 33 65% THF + 35% H2O (rinsing)

For the determination of the rejection of alkanes, SOA and all further solutes, the
sample were analyzed by offline GC, using a SHIMADZU chromatograph equipped
with a liquid auto sampler, flame ionization detector (FID) and a capillary column
FS Supreme 5ms-HT. The column length was 30m, the inner capillary diameter is
0.32mm and the film thickness of the stationary phase is 0.25 µm. Each sample
was prepared for analysis in vials containing 1.1 g of the sample and 0.1 g of the
internal standard dibuthyl ether. The injection volume of 1.0µl was chosen and
a split ration of 1:100 was applied. The injection temperature was set to 340 ◦C
and temperature of the flame ionization detector (FID) was 360 ◦C. During the
separation the temperature of the column was regulated by an individual profile
depending on the solutes in the sample.
For the group of alkanes and SOA the column temperature was set to 80 ◦C in the
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beginning and raised to 350 ◦C at a rate of 20 ◦Cmin−1. The final temperature was
held for 5.5min in order to provide enough time for each solute to pass the column.
For group of "further" solutes the temperature program was adapted in order to
ensure a high resolution. The initial temperature of the column was 100 ◦C and
raised to 200 ◦C with a rate of 30 ◦Cmin−1. In a second step, the rate was changed to
10 ◦Cmin−1 until a column temperature of 270 ◦C was reached. In the last step, the
temperature rate of 30 ◦Cmin−1 was applied again and the final column temperature
of 370 ◦C was kept constant for 2.5min. Each analysis is repeated three times and
the mean of the analyses is used for concentration determination. The composition
of each sample was determined based on a calibration curve determined beforehand
for each solute.

5.4 Results and Discussion

The results for solvent flux and rejection of the alkanes and further solutes measured
with the PuraMem R© S600 are presented and discussed in the following section.
Experimental results for flux and rejection determined with different membranes
and with solvent mixtures are reported in Appendix B.

5.4.1 Experimental results for flux and rejection using pure
solvents

The measured flux of the different solvents for the membrane PuraMem R© S600 are
discussed below based on the values measured in the experiments with the group
of further solutes at 30 bar. These values correspond to those measured with other
solutes at 30 bar and show the same trends as the fluxes at 20 and 40 bar. Figure 5.3
illustrates the fluxes plotted over the reciprocal of the viscosity and additionally over
the Hildebrand solubility parameter of the solvents.
As already observed in different studies (e.g. [3, 84]), the flux increases signifi-
cantly with decreasing viscosity of the solvent. Only for heptane the measured flux
does not conform this profile. Therefore, measurements for the flux of heptane
through the PuraMem R© S600 membrane were repeated and measurements of the
same membrane-solvent system but measured in a different experimental setup were
taken into account, to confirm the results presented here. It was found that similar
values for heptane were measured in these further experiments. Hence, a measure-
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Figure 5.3: Flux of different solvents through the PuraMem R© S600 membrane at
30 bar vs. reciprocal of the solvent viscosity and the Hildebrand solu-
bility parameter. The vertical line illustrates the Hildebrand solubility
parameter of PDMS.

ment error was excluded at first sight and the low flux of heptane may be the result
of further influencing factors such as molecule structure and effective size of the
molecule or wetting of the membrane. Compared to the other solvents presented
in Figure 5.3, heptane is a more chain-like and the longest molecule. Heptane has
the lowest dipole moment as well as surface tension compared to the other solvents,
which may result in a less good wetting of the membrane surface and a reduction of
the flux. Since Figure 5.3 only provides insights for the dependency of the flux on the
reciprocal of the viscosity and the Hildebrand parameter, a strong influence of the
factors mentioned above is not apparent. Additionally, the properties of the support
material of the membrane may influence the flux through the membrane. Further,
a combination of different factors resulting in a lower flux is also conceivable but
not easy to determine by combining different factors manually. Hence, a method
determining possible influencing factors based on experimental data could provide
further insights. However, the low flux of heptane should be used with caution and
it is reasonable to repeat the experiment for heptane again at another facility or
with membrane samples of another batch to ensure the results found for heptane
here.
Furthermore, a maximum in flux at a solubility parameter of the solvent of approx-
imately 19MPa0.5 is evident. Zeidler et al. [84], Schmidt et al. [65], and Postel et
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al. [66] observed a higher flux of solvents with similar solubility parameters as the
membrane. For the active PDMS layer of the membrane, the solubility parameter is
15.6MPa0.5 which does not correspond to the maximum in flux. On the one hand,
the reason for this can be a significantly higher influence of the viscosity on the
flux, whereby the maximum in the flux corresponds to a higher solubility parame-
ter than expected, which, however, goes in line with the lowest viscosity. On the
other hand, an influence of the polarity of the supporting layer of the membrane
cannot be excluded. If the supporting layer is more polar than the active layer, the
total polarity of the membrane may shift, whereby the maximum flux also shifts to
more polar solvents. Of course, other factors can also influence the flux, which are
not considered here or do not appear significant at first glance. Using data driven
methods, further influencing factors can be identified and considered in models as
discussed in Chapter 7 and 8.
The determined solute rejection data for the six solvents and the linear alkanes
as well as the group of further solutes using the PuraMem R© S600 membrane are
illustrated in Figure 5.4. The data is presented in three subfigures, accounting for
the different polarity ranges of the solvents, showcasing that similar general trends
can be observed, as reported by Thiermeyer et al. [78]. The measurement errors
are not explicitly illustrated, since both the standard deviation determined from
the two membrane cells and the measurement error determined by gaussian error
propagation were evaluated as smaller than an absolute deviation of 3% from the
absolute mean of the measured solute rejection, except for the rejection of alkanes in
ethanol were an absolute deviation of 5% from the absolute mean of the measured
solute rejection was not exceeded. Assuming the maximum absolute deviation of 3%
for all rejection value and comparing these with the results found for the variation
in flux (cf. Chapter 4), these errors are significantly smaller for high rejections
but comparable high for measured rejections around zero. A detailed discussion on
uncertainties in rejection will follow in Section 5.4.3.
While overall solute rejections vary between −40% and 100%, solvent polarity
clearly affects solute rejection, whereas specifically for polar solvents no correla-
tion between the molecular weight and the solute rejection can be observed. As
apparent from the falling rejection of the alkanes with increasing chain length, the
rejection in the polar solvents is dominated by solute polarity, rather than solute
size. This is further supported by the strong variations in solute rejection for so-
lutes of similar molecular weight. While a positive correlation of solute rejection
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and molecular weight can be observed for the moderately polar solvents, rejections
for shorter chain lengths of the alkanes are still negative and the rejection data of
solutes with similar molecular weight in one solvent still vary to a considerable ex-
tend. Only for the non-polar solvents, there seems to be more distinct correlation
between the molecular weight and rejection of a solute in the different solvents.

0 100 200 300 400 500 600−40%

−20%

0%

20%

40%

60%

80%

100%

Mw Solute / g · mol−1

R
ej

ec
tio

n
/

-

Ethanol+alkanes
Isopropanol+alkanes
Ethanol+further
Isopropanol+further

0 100 200 300 400 500 600−20%

0%

20%

40%

60%

80%

100%

Mw Solute / g · mol−1

R
ej

ec
tio

n
/

-

EtAc+alkanes
MEK+alkanes
EtAc+further
MEK+further

0 100 200 300 400 500 6000%

20%

40%

60%

80%

100%

Mw Solute / g · mol−1

R
ej

ec
tio

n
/

-

Heptane+alkanes
Toluene+alkanes
Heptane+further
Toluene+further

Figure 5.4: Solute rejection data of the 19 considered solutes in the 6 considered
solvents for the membrane PuraMem R© S600, divided into three groups
according to solvent polarity (top left: polar solvents, top right: mod-
erate polar solvents, bottom: non-polar solvents).

The experimentally determined solute rejections for the additionally considered sol-
vents acetone and n-butyl acetate are illustrated in Figure 5.5. As observed for
the moderately polar solvents ethyl acetate and MEK, the solute rejection corre-
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lates with the molecular weight, while the rejection varies for solutes with the same
molecular weight.
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Figure 5.5: Solute rejection data of the group of further solutes in the addition-
ally investigated solvents acetone and n-butyl acetate (BuAc) for the
membrane PuraMem R© S600.

5.4.2 Transferability of uncertainty information on flux for
various membranes and solvents

In order to validate transferability of the uncertainty information gained in Chapter 4
to other membrane and solvent combinations, the recommendations for appropriate
sample sizes were evaluated based on the experimental flux measurements deter-
mined in the cooperative study. For the following investigation the measured flux
data for ethanol and toluene for four different commercially available OSN mem-
branes (a PDMS membrane, the PuraMem R© S600, DuraMem R© 300 and DuraMem R©

200) was considered. For each of the solvent-membrane combinations at least 15 data
points were determined at different experimental facilities providing the necessary
data for the evaluation. The distribution of the flux measurements is illustrated in
Figure 5.6.
In order to test the validity of the suggested sample size, a random sampling of
four and eight samples out of the data set for each solvent-membrane system was
performed. Based on a series of 100 random sample sets and the confidence inter-
vals determined for each combination, Table 5.4 lists the percentage of confidence
intervals which were smaller than ±25% of the estimated mean. It was found that
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Figure 5.6: Flux measured with different membranes in toluene and ethanol (sym-
bols), the mean of each data set (horizontal line) and error bars rep-
resenting ±25% of the mean

only for the PDMS membrane used in toluene the percentage of confidence inter-
vals that are smaller than ±25% is already 100% using four samples. For all other
membrane/solvent combinations this is only achieved using 8 samples. The smaller
variation of the measured fluxes for the PDMS membrane can be attributed to the
different manufacturing processes. Considering the rather narrow distribution of the
flux measurements for toluene and the PDMS and PuraMem R© S600 and for ethanol
and the DuraMem R© 200 membrane the high portion of confidence intervals with
elongation of less than ±25% is reasonable. The results for this additional set of
measurements for the DuraMem R© 200 membrane and ethanol, therefore, supports
the hypothesis that the use of larger membrane samples directly results in a reduc-
tion of the required sample set for accurate flux estimates. However, the confidence
interval for four samples still exceeds the ±25% limit in about 10% of the randomly
selected samples. For the other membrane combinations, the ratio of sets with four
samples that resulted in confidence intervals exceeding the ±25% limit was consid-
erably larger. However, for all cases a sample size of eight suffices in keeping the
limit of a maximum ±25% range of the confidence interval for each of the randomly
selected sample sets, confirming the previous sample size recommendations.
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Table 5.4: Percentage of confidence intervals smaller than ±25% derived from
a series of 100 random drawn combinations of the available flux
measurements for pure solvent flux from Böcking et al. [16], for
a PDMS(2 µm), the PuraMem R© S600 (PMS600), DuraMem R© 300
(DM300) and DuraMem R© 200 (DM200) membrane)

Sample size PDMS PMS600 DM300 DM200
Toluene Ethanol Toluene Ethanol Ethanol Ethanol

4 100% 71% 81% 43% 40% 91%
8 100% 100% 100% 100% 100% 100%

5.4.3 Uncertainties in rejection

To ensure the comparability of experimental results of the rejection as well, the
same experiments using polystyrene oligomers measured with ethanol and toluene
as solvents are performed at five different facilities following the same standardized
experimental procedure as described in Section 5.3.1. Additionally, a verification of
the analytical methods by cross validation the analytical results between at the dif-
ferent facilities excluded experimental errors resulting from the analysis. The stan-
dard deviation for the rejection is below 10% [16] and comparability of experimental
results measured in different facilities following the same standardized experimental
procedure was successfully demonstrated in this cooperative study. Finally, all re-
maining experiments were conducted at least at two different experimental facilities.
Figure 5.7 illustrates exemplary the rejection of the linear alkanes in three different
solvents using the PuraMem R© S600 membrane, as included in Figure 5.4 compared
to results determined at RWTH Aachen.
The rejections of the different linear alkanes measured at the two facilities are simi-
lar and do not differ by more than 10%. Hence, the experimental results determined
and presented in Section 5.4.1 contribute to an extended database for different com-
mercially available membranes and can be transferred to different facilities, when
using the same standardized experimental method.

5.4.4 Influence of uncertainty information on membrane
selection and process analysis

In order investigate the effect of a variation in flux on the results of membrane
screenings and the evaluation of process options for OSN, different literature studies
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Figure 5.7: Rejections of linear alkanes in isopropanol, ethyl acetate and n-heptane
using the PuraMem R© S600 membrane measured in this study (black)
and at RWTH Aachen (gray)

are discussed, reevaluating the therein reported data based on the knowledge gained
in this study. For all studies, a variation in flux of ±20% was assumed, which
already mandates a larger set of samples, as illustrated in the previous section. Any
of the subsequent evaluations therefore represent a lower bound that would only
increase for smaller sample sizes.

Membrane selection

Firman et al. [85] performed a membrane screening for the possible application of
OSN for solvent recovery and removal of free fatty acids from an oil-hexane mixture.
Flux and oil rejection were investigated for several tailor-made membranes and a
commercially available membrane, performing lab-scale experiments with flat sheet
membranes at different transmembrane pressures and temperatures. The active
membrane area was 14.6 cm2, which is in the same range as the lab-scale experi-
ments considered in the current study. Based on the results they concluded that
the tailor-made poly(vinylideneflouride) membrane with an active layer of PDMS
(PVDF-12SI), which was coated by a solution of hexane and 12% siloxane, is the
best option. The flux through this membrane was 20.3 Lm−2 h−1 at 20 bar and
30 ◦C and an oil rejection of 80% was determined for the oil/hexane mixture. The
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PVDF-15SI membrane, which is manufactured in the same way but using a coating
solution containing 15% siloxane, provided a flux of 15.6 Lm−2 h−1 and an even
slightly higher rejection of (80.3%). The authors further reported on standard de-
viations for the flux of both membranes (±1.2 and ±1.4 Lm−2 h−1), based on three
repeated experiments with constant samples of each membrane. Thus, these stan-
dard deviations do not reflect on the variance of different samples, but only the
variance related to the experimental set-up and operation (intermediate depressur-
ization, rinsing and cleaning), as well as the analytics. When assuming a variation
of ±20% in flux for different samples, the PVDF-12SI can no longer be considered
superior to the PVDF-15SI membrane with respect to the uncertainty related to the
samples.

Process analysis

Micovic et al. [31] investigated a hybrid distillation-OSN process for the separation
of a wide boiling mixture of n-decane, n-dodecanal and hexacosane. The opti-
mized hybrid separation process was compared to a stand-alone distillation process
based on costs, for which a cost factor of 120BCm−2 a−1 was considered for the OSN
membrane. The estimated costs for the purification of one ton of product by the
stand-alone distillation and the OSN-assisted process were determined as 5.87BCa−1

and 5.74BCa−1, respectively. Hence, a small, yet considerable cost benefit for an
OSN-assisted process was determined. No variance information was considered in
the design study. Considering a variation of ±20% in flux necessary membrane
area for the same separation might either decrease for the higher flux, resulting in
reduced costs of 5.68BCa−1, or they might increase and result in increased costs of
5.85BCa−1, becoming almost equal to the stand-alone distillation process.
In another study by Werth et al. [21, 22] the potential application for OSN mem-
branes in solvent recovery and deacidification of non-edible and waste oils is inves-
tigated. After an initial membrane screening, appropriate flux models are identified
and a comparative process design study is performed to determine the conditions
under which an OSN-assisted evaporation process is competitive with a conventional
two-stage evaporation process. Again, no information on the uncertainty with re-
spect to variance of the membrane flux estimate was considered. A break-even price
for a competitive OSN application of 140BCm−2 was determined. Given that the
variance for the membrane rejection is negligible, the variance of the flux estimate
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directly correlates with the determined break-even price, resulting in a potential
need to decrease the price further to 116BCm−2.

Process design implications of flux and rejection variance

The variance analysis and the determination of the necessary sample size in Chap-
ter 4 specifically focuses on pure solvent flux, in order to avoid any dependency
on hydrodynamics. However, the characterization of the separation performance
usually requires the evaluation of selectivity or rejection. While usually less pro-
nounced, uncertainty related to rejection can have even more severe consequence
on process design, as it was evaluated in two different Case Studies. For this, the
experimental data and the uncertainties determined in Chapter 4 are used and a
superstructure optimization is applied, which determines the optimal process con-
figuration for a given separation task. The superstructure optimization was setup
in GAMS and determines the permeate and retentate of each stage based on flux
and rejection values but does not take any mass transport model into account. The
process configuration is varied in order to minimize the necessary membrane area
and the number of stages for the separation task. The superstructure optimization
is described in detail in Chapter A in the Appendix and applied to two different
Case Studies.
In Case Study 1 a concentration of one component with a molecular weight of
474 gmol−1 solved in ethanol is assessed, considering the experimentally determined
performance metrics of the DuraMem R© 300 membrane and the mixture of ethanol
with styrene oligomers. The flux across the membrane at 30 bar was determined
to 21.10 Lm−2 h−1 while the confidence interval was ±2.14 Lm−2 h−1. The rejection
for the styrene oligomer with a molecular weight of 474 gmol−1 was determined to
95.2% ±2.1%.
For the optimization a feed flowrate of 100 kg h−1, a concentration from 0.05 g g−1

in the feed to 0.1 g g−1 in the final retentate and a solute recovery of at least 98%
was assumed. Overall, nine different scenarios were evaluated, for which Table 5.5
provides in column 1 and 2 the constant values for flux and rejection, which were
applied in each scenario. While in scenario 5 the expected values for flux and
rejection obtained from the experiments are used, in the other scenarios all further
combinations of the expected values or the minimum or maximum values of the
respective confidence intervals of flux and rejection are used. In scenario 1, for
example, the lower bounds of the confidence intervals for both values are used, and in
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scenario 2 the minimum value of the confidence interval of the flux and the expected
value for the rejection are used. Besides the values for flux and rejection, Table 5.5
additionally provides the performance metrics and the key structural results, in
terms of number of required stages and overall membrane area. Figure 5.8 shows
the optimized process structures for one of the case studies, for which an optimal
process design was determined based on constant values for the estimated mean of
flux and rejection as well as the upper and lower limits of the confidence intervals.

Table 5.5: Results for case study 1

Scenario Flux Rejection Nr. stages Membrane area
Lm−2 h−1 % m2

1 18.96 93.1% 3 5.983
2 18.96 95.2% 2 5.157
3 18.96 97.3% 1 3.415
4 21.10 93.1% 2 5.467
5 21.10 95.2% 2 4.628
6 21.10 97.3% 1 3.068
7 23.24 93.1% 3 5.948
8 23.24 95.2% 2 4.973
9 23.24 97.3% 1 2.785

Based on the mean values of flux and rejection the optimized process needs two
stages and a recycle stream of the retentate of the second stage to the feed stream
of the first stage, while for the upper limits a single stage design without recycle
is determined as optimal result and for the lower limits even a three-stage design
with retentate recycles is required and determined as optimal design. The required
membrane area varies by a considerable margin within these different designs from
2.8m2 in the single stage design for the upper limits up to 5.9m2 for the three-stage
design for the lower limits, although the flux and rejection vary only by a relative
margin of ±10% and ±2.3%. The small variance results from a considerable number
of measurements.
For the second case study a PDMS based membrane was used and an impurity
was to be separated from a lower molecular weight molecule. The detailed results
are presented in Chapter A.2 in the Appendix. However, the process structure
again strongly depends on the flux and the rejection and different configurations
were determined as optimized process structures ranging from a simple single stage
set-up without recycle and a complex two stage set-up.
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Figure 5.8: Process structure for three combinations in case study 1

For the considered case studies, even the small, experimentally determined con-
fidence intervals for the rejection of ±2.3% resulted in variations of the optimal
process configuration from a one to a three staged process. Therefore, further eval-
uation of the variance in rejection measurements should be conducted in future
studies, considering that module geometry, hydrodynamic conditions and potential
concentration polarization will affect the transferability of lab-scale measurements
to the module scale.

5.5 Conclusion

In order to determine reliable flux and rejection of various components through OSN
membranes a standardized method is reasonable for enabling the transfer of data
to other applications and systems. Hence, the common experimental procedure
has been revised in a cooperative study and was applied to different membrane-
solvent-solute combinations for the purpose of creating a broad database on the one
hand and for determining the comparability of the experimental results at different
experimental facilities.
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5 Towards a comparable characterization of polymeric OSN membranes

Therefore, the method of See Toh et al. [37] was adapted and extended in a cooper-
ative study taking into account the suggestions of Marchetti et al. [39] and applied
for the experiments presented in this chapter. Besides styrene oligomers, linear n-
alkanes and further solutes to cover a wider range of different functional groups
were used in the experiments performed in this study. Moreover, various solvents
were used to cover a wide range of polarities as well as protic and aprotic solvents
following the suggestions defined within the cooperative study [16]. Besides temper-
ature and concentrations, Böcking et al. [16] proposed the measurement of different
pressure levels in an increasing order as well as the cross-flow velocity in the mem-
brane cells. Further, the experimental procedure is defined precisely starting with
the implementation and rinsing of the fresh membrane sample and the definition of
a minimum operation time. Experiments were performed applying this procedure
at different laboratories using various lab-scale membrane plants. Following the
experimental procedure, the results measured in the different facilities were compa-
rable, but variations were still observed. The results of the collaborative study have
been confirmed by a recent study of Merlet et al. [86]. However, these variations
are within the range of the experimental error and the range of variations in flux
resulting from fluctuations in the membrane material as determined in Chapter 4.
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In order to describe mass-transfer through organic solvent nanofiltration mem-
branes, several models have been proposed and applied in different studies. Marchetti
and Livingston [47] performed an extensive study on models for OSN and compared
these models based on the model accuracy and complexity. However, the precision
and reliability of model parameters has not been taken into account, although it is
an essential aspect for the long-term objective of predictive performance models. In
this chapter, the study of Marchetti and Livingston [47] is extended to include the
aspect of parameter precision and the corresponding influence on the calculated re-
sults using different OSN models. Therefore, the results of parameter estimation
are reproduced based on the available experimental permeation data and the models
are evaluated based on an information criterion. Further, parameter uncertainty is
investigated based on confidence intervals and an identifiability analysis, while the
effect of parameter uncertainty on the model results is investigated in a subsequently
performed Monte-Carlo simulation. The results confirm a significant influence of
parameter precision on the reliability of model results and illustrate the inability to
effectively discriminate the models based on the available experimental data. Con-
sequently, consideration of the parameter precision should be considered crucial for
model selection.

The scientific work published in this chapter was performed by R. Goebel and supported by L.
Lingemann in the framework of a master thesis. Scientific advice was given by M. Skiborowski.



6 Uncertainties in performance modeling

6.1 Introduction

To develop membrane processes for industrial applications, reliable models for dif-
ferent purposes are essential. Besides models for the mass-transfer through the
membrane, the description of fluid dynamics in the membrane module and mod-
els for process scale to allow for an evaluation of the performance of the desired
membrane process and thus an economical comparison with conventional processes
[17, 87] are needed. In the scope of this chapter, models on the membrane scale
are considered to describe mass-transfer of both solvent and solute depending on
the operating conditions. Since mass-transfer in OSN is influenced by numerous
interactions between solvent, solute and membrane, the transfer mechanism has not
yet been identified completely and modeling is accordingly difficult [11, 17]. Thus,
different approaches to model OSN exist which differ in their underlying transport
mechanism and complexity. The approaches base on a physical understanding of
the separation process simplified by idealized assumptions [17]. Several influencing
factors are combined to parameter groups which can be determined by fitting to
experimental permeation data [17]. This offers the advantage of a reduced number
of experiments, which are necessary to determine the parameter values.
Among the semi-empirical models are the well-known solution-diffusion model (Sec-
tion 2.2.2) and the pore-flow models (Section 2.2.1), that consider diffusional and
convective transport through the membrane, respectively. A more complex vari-
ant of the solution-diffusion model is based on Maxwell-Stefan diffusion and takes
frictional and convective coupling between solvent, solute and membrane into ac-
count. A combination of solution-diffusion and pore-flow models is incorporated
in the solution-diffusion with imperfections model where the membrane is consid-
ered as a dense matrix with free volume elements called imperfections. The third
group of OSN models originates from the thermodynamics of irreversible processes
(Section 2.2.3). The membrane is described as a black box and thus membrane
properties are not considered.
These models were investigated and compared in a previous work of Marchetti and
Livingston [47] in order to determine the necessary degree of complexity of the
models to describe experimental data for solvent and solute flux or rejection with
a certain accuracy. For this, the model parameters were estimated by regression
on a limited basis of experimental data, which were acquired using the common
experimental procedure (Section 2.1.3). The evaluation of the models was con-
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ducted regarding the accuracy of parameter estimation and complexity of the mod-
els. Marchetti and Livingston [47] used an information criterion which takes both
the goodness of fit as well as the number of parameters of each model into account.
The aim of this study was not to evaluate the physical correctness of the different
models and the underlying theoretical considerations, but the ability of the models
to represent experimental data.
However, parameter precision and its effect on model results was not considered by
Marchetti and Livingston [47]. Model accuracy describes how well the experimental
data is fitted by the model predictions, whereas parameter precision refers to the
reciprocal of the variance of the parameter estimates [88]. For the design of new
processes, it is crucial to predict the separation characteristics of a membrane for
different process conditions in order to reduce the number of experiments. Thus,
model parameters should be determined as precisely as possible and the uncertainty
of the models should be evaluated before applying the models for process predictions.
The objective of the current study is the extension of the work of Marchetti and
Livingston [47] by an uncertainty analysis of the model parameters. Based on the
experimental data used in the study of Marchetti and Livingston [47], the results
for the parameter regression were reproduced since the parameter values were not
published within the study. Subsequently, an information criterion as well as the
Akaike weights [89] were used to evaluate the accuracy as well as the complexity of
each model to determine the model with the highest probability of being the most
suitable one for the description of present experimental data among the investigated
models. The uncertainty of the model parameters was investigated based on con-
fidence intervals of each model parameter and an identifiability analysis. Finally,
a Monte-Carlo simulation is performed, in which the model parameters are varied
within their confidence intervals in order to investigate the distinguishability of the
different model approaches.
The different available mass-transfer models for OSN have already been described
in Chapter 2. The different applied methods for parameter regression, evaluation
of the information criterion and the Akaike weights as well as the methods for
evaluation of the parameter uncertainty, the identifiability analysis and the Monte-
Carlo simulation are presented in Section 6.2. Section 6.3 presents a discussion of
the results of the applied methods followed by a conclusion in Section 6.4.
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6.2 Methods

This section first introduces the methods used for parameter estimation for the OSN
models described in Section 2.2. Subsequently, methods for model discrimination
are introduced. Besides the information criterion already applied by Marchetti and
Livingston [47], the parameter variance and identifiability were evaluated. Finally,
the method used for the investigation of the influence of the model uncertainties is
described.

6.2.1 Experimental data

Experimental data were taken from the publication of Marchetti and Livingston
[47] and Postel et al. [66]. The flow and rejection from different membrane-solvent-
solute systems are listed in both studies. Marchetti and Livingston [47] investigated
the solvent flux and the rejection of different components by using four different
commercially available polymeric membranes at four different pressure levels. They
investigated the two polar membranes DuraMem R© 200 and DuraMem R© 500 in ace-
tone and acetonitrile (ACN) as well as the two apolar membranes PuraMem R© 280
and PuraMem R© S600 in toluene using a mixture of styrene oligomers as solutes.
Since the quantity of each oligomer solved in the solvent was only reported for
α-methyl styrene, this solute is used as model substance in this study.
Postel et al. [66] investigated a non-commercial polymeric membrane with iso-
propanol, methanol, n-hexane and toluene as solvents and different linear alkanes as
solutes. The results measured with the solute n-tetradecane listed by Postel et al.
[66] were used to extend the study to a non-commercial membrane and to negative
rejections. However, Postel et al. [66] performed rejection experiments at two pres-
sure levels only resulting in a lower number of experimental data points compared
to the data sets of Marchetti and Livingston [47].
For all data sets, further solutes present in the experimental investigations were
neglected for the determination of all compositions, fluxes and rejections. Con-
sequently, the systems were treated as binary systems composed of solvent and
the specific solute. For the application of the models, permeate compositions and
component-specific fluxes were calculated based on the reported experimental data
for feed composition, rejection and flux from Marchetti and Livingston [47] and
Postel et al. [66].
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6.2.2 Parameter estimation

The models described in Section 2.2.1 to 2.2.3 were implemented in Matlab R© and
the nonlinear fitting function nlinfit was used for parameter regression. Besides the
estimated values for the model parameters, the residuals between the model calcula-
tions and the experimental data, the Jacobian, the covariance matrix and the mean
squared error of the obtained solution were determined based on a set of the ex-
perimentally determined fluxes and rejections at different pressure levels and initial
values for the model parameters. The number of experimental data used for regres-
sion was determined by the limited number of available experimental data given by
Marchetti and Livingston [47] and Postel et al. [66]. The former provided four pairs
of values for solvent flux and rejection (at 10, 20, 30 and 40 bar), resulting in eight
data points in total. The latter supplied two pairs of solvent flux and rejection (at
20 and 30 bar) which adds up to four data points. For parameter regression, the
number of data points needs to be higher than the number of parameters. In this
study, parameter regression was performed using all available data points. Never-
theless, it was not possible to fit the Maxwell-Stefan model to the data provided by
Postel et al. [66] since the number of data points was too low.
For parameter regression, the rejections of the solutes were used instead of the solute
fluxes since these are the commonly published values. In case the model itself does
not include a specific equation to calculate the rejection, the rejection was deter-
mined based on the component specific fluxes. Since all values were determined in SI
units, the values for solvent flux and rejection differ in several orders of magnitude.
Hence, to avoid a stronger effect of the rejection compared to that of the smaller
total flux values, the latter ones were scaled by multiplying with specific factors,
which were set to 104 for the data of Marchetti and Livingston [47] and by 105 for
the data of Postel et al. [66]. The objective function was provided in Equation 6.1
and includes the scaled total fluxes J∗s,exp and J∗s,calc. The calculated values J∗s,calc
and Rj,calc depend on the model parameters ~θ and other, experimental values yi like
pressure and concentrations.

obj(~θ) =
Nobs∑
i=1

[J∗s,exp − J∗s,calc(~θ, yi)]2 +
Nobs∑
i=1

[Rj,exp −Rj,calc(~θ, yi)]2 (6.1)

For models, which are linear in parameters, the initial values for the model pa-
rameters were determined based on the order of magnitude of all values taken into
account by the respective model equation. This method was used for the classical
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(cf. Equations 2.16 and 2.17) and simple solution-diffusion model (cf. Equations
2.19 and 2.20) as well as for the solution-diffusion with imperfections model (cf.
Equation 2.30 and 2.31). For the pore radius rp in the Donnan Steric pore-flow
model (cf. Equations 2.6 to 2.15) an initial value of 1 nm was chosen, since OSN
performs a separation on the molecular level. Moreover, the rejection calculated
by the Donnan Steric pore-flow model was independent of the flux and thus, the
two model parameters rp and KHP have been determined independently. Hence,
the model parameter KHP for the description of the flux (cf. Equation 2.4) was
determined separately by using the function mldivide, which is applicable for linear
equations. Moreover, both parameters were scaled by the factor 109 according to
Equations 6.2 in order to avoid small values, which were determined by Matlab R©.

r∗p = 109 · rp;K∗HP = 109 ·KHP (6.2)

The initial values for the irreversible thermodynamics model (cf. Equations 2.32,
2.34 and 2.35) were varied several times for the regressions for the DuraMem R© 200
membrane using acetone and α-methyl styrene. After reasonable results for flux and
rejection have been achieved, the same initial values were used for different systems
and were only changed if no reasonable results were achieved. Whereas for most
of the models the same initial values for different membrane-solvent-solute systems
yielded in reasonable parameter estimates, this was not the case for the Maxwell-
Stefan model (cf. Equations 2.23 to 2.29). Hence, for the Maxwell-Stefan model the
initial parameter values were varied several times for each membrane-solvent-solute
system to achieve positive parameter values if possible.
In some specific cases, using the permeate compositions complying with the exper-
imental results for parameter regression did not result in reasonable rejections. In
these cases, a parabolic course was calculated for the rejection at different transmem-
brane pressures, including a maximum at mean transmembrane pressure. This does
not comply with the experimental observations, where a constant increase of rejec-
tion with increasing transmembrane pressure was observed. Parabolic courses were
calculated for the combination of linear models with only one parameter each for sol-
vent and solute flux, like the simple solution-diffusion model, the classical solution-
diffusion model and systems with low flux, as it is observed with the PuraMem R©

S600 in acetone and ACN. Therefore, these models were implicitly fitted, whereby
the permeate composition was calculated. For this, the model was implemented in
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GAMS and the parameters were determined with the CONOPT solver. The variable
limits were chosen so that the parameters of the models were positive and the other
variables, such as flux, rejection and composition, were within reasonable limits.

6.2.3 Information criterion for model comparison

The accuracy of the models was evaluated calculating the norm of the residuals
(resnorm) for each pair of calculated yi,calc and measured value yi,exp. The average
of the experimental values ȳexp was used to normalize the error.

resnorm =

√√√√Nobs∑
i=1

(
yi,exp − yi,calc

ȳexp

)2

(6.3)

Since resnorm only considers the accuracy of the model, but not the complexity, it
was not suitable for a comparison of different models. Thus, the Akaike Information
Criterion (AIC) was used, which decreases with increasing accuracy of a model.
Marchetti and Livingston [47] use the following definition:

AIC = Nobs · log
(
resnorm2

Nobs

)
+ 2 ·Nparam (6.4)

Nparam denotes the number of parameters in the considered model. Lastly, the
method of model discrimination based on Akaike weights was used. To compare the
accuracy of Nmodels possible model candidates, the Akaike weightsW (Equation 6.5)
have been used to identify the model which is most likely the best one for the present
experimental data among the investigated ones [89]. For this purpose, the difference
of the AIC values ∆AICmodel of the currently evaluated model candidate and the
lowest calculated AIC value of all investigated models was evaluated. Normalization
with the sum of values calculated for all models leaded to the probability of the
considered model to be the right one. Thus, the sum of all weights equals 1, whereas
each weight represents the probability of the corresponding model to be the best
one.

Wmodel = exp(−0.5 ·∆AICmodel)∑Nmodels
i=1 exp(−0.5 ·∆AICi)

(6.5)

6.2.4 Analysis of Variance

An aspect, which was not evaluated by the information criterion, is the precision of
the obtained parameters and the resulting model calculations. Whereas accuracy
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refers to the distance between corresponding calculated and the experimental values,
precision relates to the uncertainty of the model calculations [88], as illustrated in
Figure 6.1.
After obtaining an estimation for a parameter by regression, the confidence inter-
vals were calculated using the Matlab R© function nlparci. This function calculates
the confidence intervals of each parameter in a specific model using the estimated
parameter values, the residuals of the regression and Jacobian matrix. For smaller
levels of significance and for higher degree of freedom (DOF), the confidence inter-
vals become narrower. If a confidence interval contains zero, the parameter is called
non-significant [90]. This may be the case for very high levels of significance or very
small DOFs. The latter can be caused either by few experimental values or by a
large number of parameters in the respective model.

Figure 6.1: Distinction between accuracy and precision, adapted from [88], the line
represents the probability distribution density of the calculated value

6.2.5 Identifiability analysis

Regarding the aspect of reliability of parameter estimations, an analysis of the pa-
rameter identifiability was performed. Thereby, the possibility of determining a
parameter uniquely from a set of experimental data by regression was investigated
[91]. In this context, an estimated set of parameters having no other parameter sets
which yield the same results for the considered model, is considered to be unique
[91, 92].
For the evaluation of the model’s sensitivity towards the respective parameters, the
eigenvalue method was applied. Therefore, the Hessian matrix of the objective func-
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tion (Equation 6.1) was calculated [92]. In Gaussian approximation, Hessian matrix
can be calculated from the Jacobian. By analyzing definiteness of the Hessian ma-
trix, conclusions of the uniqueness of the model parameters are possible. If the
identified model parameters correspond to a locally unique solution, the resulting
Hessian matrix is positive definite. The definiteness of the Hessian matrix can be
determined based on the eigenvalues of the Hessian matrix. For a positive definite
matrix all eigenvalues are positive and hence, the model parameters are identifiable.
However, Quaiser and Mönnigmann [92] state that in application of the eigenvalue
method, all eigenvalues could be positive, but some are close to zero. If the eigenval-
ues differ in several orders of magnitude, a cut-off value can be defined under which
an eigenvalue is effectively treated as zero [92]. The cut-off value was set to 10−10

in this study.
In order to determine the identifiability of the parameters in this study the following
procedure was applied:

1) Calculate the Hessian matrix based on the Jacobian.

2) Determine eigenvalues and eigenvectors.

3) Sort eigenvalues by size: λ1 ≤ λ2 ≤ ... ≤ λNparam

4) If λ1 is greater than zero respectively the cut-off value: for this data set the
model is at-a-point locally identifiable with respect to the parameters.

5) If λ1 is smaller than zero respectively the cut-off value: Determine the position
i of the greatest element of the corresponding eigenvector based on the absolute
values of the elements: u1,i = max(|u1,1|, |u1,2|, ..., |u1,Nparam |)

6) Determine the least identifiable parameter θi: The position of the last identi-
fiable parameter in the vector of model parameters ~θ is equal to the position
of the greatest element in the eigenvector determined in the precious step.

6.2.6 Monte-Carlo simulation

The analysis of parameter uncertainty and identifiability leads to the question of
their effects on the model results. Uncertainties of the parameters can either accu-
mulate to even higher uncertainties of the model results or cancel each other out,
leading to model results which seem to be less uncertain. Therefore, it was not
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sufficient to calculate the model values at the lower and upper bounds of the pa-
rameters’ confidence intervals. To evaluate these effects, a Monte-Carlo simulation
was performed which is based on an algorithm using random numbers. The general
method of Monte-Carlo simulation was primarily developed by Metropolis et al. [93]
and poses an efficient method to evaluate large numerical problems [94]. Parameter
values were sampled randomly from their respective confidence intervals and the
resulting values of the considered model were evaluated. This process was repeated
frequently to provide a high number of different combinations of randomly picked
parameter values. Thus, deviations from the modeled values using the parameter
estimates have been obtained which reflect the model uncertainty.
For this, random sampling of parameter values out of a uniform parameter distribu-
tion using the Matlab R© function makedist and the limits of the confidence intervals
of each parameter was performed 3000 times. The corresponding model was evalu-
ated based on each of these 3000 parameter combinations. For the evaluation of the
model uncertainty, the maximal lower and upper deviations of the solvent fluxes and
rejections were determined. In order to discriminate the considered models for OSN,
the respective uncertainty regions were compared for each membrane-solvent-solute
system. In the case of overlaps between the uncertainty regions of different models,
it was not possible to state which one of them provides the better regression results.

6.3 Results for model discrimination and
discussion

The results of the different steps performed in order to discriminate between the
different models, are described in the following Sections. For this, the focus was on
the results for the four membranes DuraMem R© 200, DuraMem R© 500 used in acetone
supplemented with α-methyl styrene as the solute as a representative example. Since
the results of the parameter regression for the PuraMem R© 280 and PuraMem R©

S600 membranes in the same solvent-solute mixture are significantly different to
those of the DuraMem R© membranes, these results are added to the discussion in
Section 6.3.1. The results of the remaining systems are listed in Chapter C in the
Appendix. First, the results of the parameter estimation reproducing the results of
Marchetti and Livingston [47] are shortly presented in Section 6.3.1. Subsequently,
the results of the analysis of variance and identifiability as well as for the Monte-
Carlo simulation are discussed based on the exemplary systems in Section 6.3.2 and
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Section 6.3.3. Finally, a summary of the results for all membrane-solvent-solute
systems evaluated in this study is given in Section 6.3.4.

6.3.1 Model comparison based on Akaike information
criterion

In Figure 6.2, the symbols represent the experimentally measured fluxes and re-
jections using the commercially available membranes DuraMem R© 200, DuraMem R©

500, PuraMem R© 280 and PuraMem R© S600 in acetone. The results obtained with
the models are represented by the different lines connecting the calculated fluxes
and rejections at the different pressure levels for a better overview.
For the two DuraMem R© membranes (cf. Figure 6.2), all models are in good agree-
ment with the experimental data, especially for the flux. Moreover, no significant
difference in the accuracy of the models become apparent for the DuraMem R© 200-
acetone-α-methyl styrene system. This is also valid for the DuraMem R© 500 mem-
brane except that the fluxes calculated using the Maxwell-Stefan model differs from
the results of the remaining models but are equally accurate. The difference between
calculated and experimental results are in a range of ±20% of the experimental val-
ues, which was found to be a reasonable size of the experimental error in Chapter 4.
Furthermore, the results obtained for both DuraMem R© membranes are comparable
to those obtained by Marchetti and Livingston [47].
The results for the PuraMem R© 280 in acetone with α-methyl styrene as solutes qual-
itatively barely differ from those of the DuraMem R© membranes. To the contrary,
there are clear deviations between calculated and experimentally determined values
for the rejection in the PuraMem R© S600. Especially the simple solution-diffusion
model and the classical solution-diffusion model differ significantly from the ex-
perimental data. The simple solution-diffusion model describes a linear relationship
between the difference of the mole fractions in feed and permeate and the solute flux
(cf. Equation 2.20). However, the experimental data rather show an exponential
course as presented in Figure 6.3.
Since the experimentally determined permeate concentrations were used to adapt
the model parameters, the simple solution-diffusion model is not capable of repro-
ducing the experimental data due to the model structure. The same applies to the
classical solution-diffusion model, which contains an exponential term in addition
to the molar components in feed and permeate (cf. Equation 2.17). Although the
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Figure 6.2: Experimental measured flux and rejection (provided by Marchetti and
Livingston [47]) for the solute α-methyl styrene in acetone through
DuraMem R© (top) and PuraMem R© (bottom) membranes (symbols)
and calculated values for irreversible thermodynamics model, sim-
ple solution-diffusion (SD) model, classical solution-diffusion model,
Maxwell-Stefan model, solution-diffusion with imperfections model and
Donnan Steric pore-flow model (DSPF) connected by different lines
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Figure 6.3: Solute flux plotted over difference in molar fraction of the solute be-
tween feed and permeate for experimental data provided by Marchetti
and Livingston [47] (filled symbols) and simple solution-diffusion (SD)
model (unfilled symbols) for PuraMem R© S600 in acetone with α-methyl
styrene as solute

exponential part reduces the deviations, even in this case the model is not able to
describe the experimental data for rejection if the experimentally determined mole
fractions of the solute in the permeate are used.
Therefore, both models were additionally fitted to the experimental data by solving
an implicit system of equations and calculating the permeate concentration using
GAMS as described in Section 6.2.2. The results shown in Figure 6.4 prove that by
using this approach the simple solution-diffusion model and the classical solution-
diffusion model represent the experimental data with similar accuracy as the other
models. However, the permeate concentrations deviate from the experimentally
determined concentrations, which would lead, for example, to an inaccurate design
of a subsequent process step or the membrane separation step itself. Hence, this
method of parameter regression is not meaningful and the experimental data should
rather be critically questioned, since the measured rejection for α-methyl styrene
stagnates between 20 and 40 bar, which is not to be expected.
The Akaike Information Criterion (AIC) and the Akaike weights (W) are listed
in Table 6.1 for the DuraMem R© membranes and in Table 6.2 for the PuraMem R©

membranes.
Since all models describe the experimental data for the DuraMem R© 200 membrane
with a similarly high accuracy, no model stands out with a particularly high proba-
bility of being the right one among the models examined. For the DuraMem R© 500-
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Figure 6.4: Experimental measured flux and rejection (provided by Marchetti and
Livingston [47]) for the solute α-methyl styrene in acetone through
PuraMem R© S600 (symbols) and calculated values for simple solution-
diffusion (SD) model and classical solution-diffusion model connected
by different lines (implicit calculation)

Table 6.1: Resnorm, AIC and W of the simple Solution-diffusion (SSD) model,
the solution-diffusion with imperfections (SDIM) model, the classical
solution-diffusion (CSD) model, the Donnan Steric pore-flow (DSPF)
model, the irreversible thermodynamics (IT) model and the Maxwell-
Stefan (MS) model for DuraMem R© 200 and DuraMem R© 500 used in
acetone and α-methyl styrene as solute

DuraMem R© 200 DuraMem R© 500
Model Resnorm AIC W Resnorm AIC W
SSD 0.02 −74.07 6.5% 0.34 −29.73 4.3%
SDIM 0.02 −76.98 27.8% 0.34 −27.80 1.6%
CSD 0.02 −74.63 8.6% 0.34 −27.80 1.6%
DSPF 0.02 −76.76 24.9% 0.52 −23.15 0.2%
IT 0.02 −76.96 27.5% 0.21 −35.45 75.5%
MS 0.02 −73.40 4.6% 0.21 −31.57 10.8%
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Table 6.2: Resnorm, AIC and W of the simple Solution-diffusion (SSD) model,
the solution-diffusion with imperfections (SDIM) model, the classical
solution-diffusion (CSD) model, the Donnan Steric pore-flow (DSPF)
model, the irreversible thermodynamics (IT) model and the Maxwell-
Stefan (MS) model for PuraMem R© 280 and PuraMem R© S600 used in
Acetone and with α-methyl styrene as solute

PuraMem R© 280 PuraMem R© S600
Model Resnorm AIC W Resnorm AIC W
SSD 0.19 −39.45 3.5% 1.52 −5.91 0.0%
SDIM 0.16 −39.47 3.5% 0.66 −17.21 0.0%
CSD 0.22 −37.12 3.1% 7.68 19.98 0.0%
DSPF 0.44 −25.85 0.0% 0.47 −24.67 0.0%
IT 0.12 −44.85 51.6% 0.32 −28.82 0.0%
MS 0.10 −44.23 37.8% 0.01 −83.89 100.0%

acetone-α-methyl styrene and the PuraMem R© 280-acetone-α-methyl styrene systems
the irreversible thermodynamics model (Equations 2.32, 2.34 and 2.35) is indicated
to be the best model based on AIC and W. The Maxwell-Stefan model is evaluated
as the most suitable model to describe the experimental data for the PuraMem R©

S600-acetone-α-methyl styrene system. These results differ from those obtained by
Marchetti and Livingston [47], since the calculated norm of residuals already differ
in both studies. Even small differences in the quality of the fit have a significant
influence on the norm of residuals and thus on AIC and W. Hence, the difference in
the indication of the best model can be attributed to even small differences in the
approach to parameter regression. However, since the results for flux and rejection
calculated using the different models are comparable are comparable to those of
Marchetti and Livingston [47], the results of the parameter regression are a reason-
able basis for the investigation of parameter accuracy and identifiability. That also
holds for all the remaining systems listed in the Appendix.

6.3.2 Parameter variance and identifiability

Parameters determined by fitting the model to a limited set of experimental data
are only estimates. However, the model may be able to describe these data points
very accurately whereas the parameter values are not precisely identifiable. For a
different set of parameter values, the model fit might still be as accurate. Thus,
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the parameters cannot be determined uniquely. To evaluate the parameter pre-
cision 95%-confidence intervals are determined. 95% of the confidence intervals
determined in this fashion will include the real value of the parameter. A narrow
confidence interval corresponds to a high parameter precision, while a broad inter-
val implies a high uncertainty and the model might not be accurate in predictions.
Therefore, models with precisely estimated parameter values are to be favored for
predictions.
Table 6.3 lists all parameter values for the different models applied for the data sets
of Marchetti and Livingston [47] for the membranes DuraMem R© 200 and DuraMem R©

500 used in acetone with the solute α-methyl styrene. Confidence intervals marked
with a star in the table are broader than ±100% of the parameter value. This
applies to all five parameters of the Maxwell-Stefan model for both DuraMem R©

membranes in acetone. Hence, it is not possible to determine the model parameters
of the Maxwell-Stefan model without a high uncertainty for the limited data set
provided by Marchetti and Livingston [47]. Even though this data set already
included flux and rejection at four different pressure levels. This does not imply
that the Maxwell-Stefan model is physically incorrect, but rather that the respective
model parameters cannot be determined from the available data. Using a higher
number of data points might contribute to the parameter precision. While it is more
likely that different dedicated measurements for diffusion or sorption may enable a
more accurate estimation of these model parameters, as e.g. done by Hesse et al.
[15].
The relative width of confidence intervals for the less complex solution-diffusion
models (SSD and CSD) are narrower than ±30%. The same applies for the Donnan
Steric pore-flow (DSPF) model. Hence, the parameters of these three models are
considered as appropriately determined based on the data published by Marchetti
and Livingston [47].
For the three model parameters of the solution-diffusion with imperfections model
the broadness of the confidence intervals differs for both membranes in acetone. As
shown in Table 6.3, the confidence interval for the first model parameter, which is
the main parameter to describe the solvent flux, is narrow compared to the others.
The second parameter describes not only the solvent flux but also the solute flux
(cf. Equations 2.30 and 2.31). Considering the equation for the flux, the only
difference between both summands is the osmotic pressure. Hence, the second model
parameter LIM does not have a significant influence on the flux since the effect of
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transmembrane pressure and osmotic pressure are already accounted by the first
term of the solvent flux equation. The same applies to the solute flux, where the
first summand of the equation accounts for the influence of concentration difference
and includes the third model parameter Pm, whereas the second summands including
the parameter LIM does not have a significant effect on the solute flux. Thus, the
second parameter LIM is almost zero and the confidence interval is large, since the
effect of the parameter on the model results is not significant.
For the irreversible thermodynamics model, the confidence interval of the model
parameter Lj is very broad in most cases. Due to the structure of the equation
(cf. Equations 2.32 and 2.33) for the rejection, the effect of small changes of the
parameter value on the accuracy of the model is very small. Hence, changing the
parameter value in a broad range does not show significant effects on the model
accuracy and the confidence intervals become broad.
Based on the evaluation of the confidence intervals, the parameters of the simple and
classical solution-diffusion model and the Donnan Steric pore-flow model can be de-
termined most accurately. The significance of the model parameters was investigated
by the evaluation of the eigenvalues of the Hessian matrix, additionally. Table 6.4
lists the eigenvalues for all models for the two DuraMem R© membranes in acetone.
The listed values for the eigenvalues comply with the results for the confidence inter-
vals. The majority of the eigenvalues for the Maxwell-Stefan model are very small
or even negative. Based on the corresponding eigenvector of the smallest eigenvalue,
the parameter b1 is the least identifiable parameter for the system DuraMem R© 200-
acetone-α-methyl styrene, whereas KMS is the least identifiable parameter for the
system DuraMem R© 500-acetone-α-methyl styrene. Since these parameters include
different properties of the solvent and solutes, such as the diffusion coefficients in
the membranes, further experiments might contribute to the identifiability of these
parameters and increase the certainty of the model as already stated above. For the
other models, the eigenvalues are larger. Hence, for the simple and classical solution-
diffusion model, the solution-diffusion with imperfections model, the Donnan Steric
pore-flow model and the irreversible thermodynamics model a model reduction is
not reasonable. Since for some models broad confidence intervals where determined,
the effect of this on the model results is investigated in a Monte-Carlo simulation in
order to visualize the effects.
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Table 6.3: Parameter values and confidence intervals for DuraMem R© 200 and
DuraMem R© 500 used in acetone with α-methyl styrene as solute
using the different models (simple Solution-diffusion (SSD) model,
the solution-diffusion with imperfections (SDIM) model, the classical
solution-diffusion (CSD) model, the Donnan Steric pore-flow (DSPF)
model, the irreversible thermodynamics (IT) model and the Maxwell-
Stefan (MS))

DuraMem R© 200 DuraMem R© 500
Model Parameter value CI value CI
SSD P SSD

s 6.52e−8 2.17e−9 1.55e−7 2.55e−8
P SSD
j 7.39e−7 2.15e−7 5.42e−5 1.39e−5

SDIM Lm 6.52e−8 2.00e−9 1.55e−7 2.93e−8
LIM 1.54e−13 2.37e−13 −8.89e−13 1.31e−11
Pm 5.06e−7 4.09e−7 5.68e−5 4.17e−5

CSD PCSD
s 2.31 7.42e−2 2.31 7.42e−2
PCSD
j 7.59e−7 2.12e−7 7.59e−7 2.12e−7

DSPF KHP · 109 1.96e−2 3.99e−4 4.64e−2 9.08e−4
rp · 109 3.32e−1 3.53e−3 6.59e−1 1.15e−1

IT Lp 6.52e−8 2.00e−9 1.55e−7 2.25e−8
σ 9.89e−1 1.35e−2 1.00 5.92e−1
Lj 1.68e−7 1.08e−7 1.67e−5 2.05e−5

MS b1 4.33e3 1.77e4 1.20e2 3.28e3
b2 −4.08e−4 1.22e2 5.33e−7 1.34e−5
b3 1.86e3 4.33e3 2.26e2 1.18e4
Ks 8.74e−1 2.83 2.42 6.84e1
KMS,j −8.76e−6 2.62 −1.06e1 3.19e2

6.3.3 Effect of parameter uncertainty

In a last step, the effect of the previously determined parameter uncertainty ac-
counted for by the confidence intervals is investigated in a Monte-Carlo simulation
by varying the parameter values within their confidence intervals and calculate the
model results based on these new parameter values. Although a broad confidence
interval of some parameters was determined, these do not necessarily result in broad
variation in the model results for flux or rejection. On the contrary, a narrow con-
fidence interval does not compulsorily result in only small variations in flux and
rejection, since the variations of the parameters may cancel each other out or mul-
tiply.
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Table 6.4: Eigenvalues for all models and the membranes DuraMem R© 200 and
DuraMem R© 500 used in acetone with α-methyl styrene as solute (sim-
ple Solution-diffusion (SSD) model, the solution-diffusion with imper-
fections (SDIM) model, the classical solution-diffusion (CSD) model,
the Donnan Steric pore-flow (DSPF) model, the irreversible thermody-
namics (IT) model and the Maxwell-Stefan (MS))

Model EV Nr. DuraMem R© 200 DuraMem R© 500
SSD 1 3.06e9 1.01e8

2 3.04e13 5.11e13
SDIM 1 7.19e8 1.48e7

2 3.00e13 3.21e13
3 9.19e21 1.63e21

CSD 1 2.38e−2 2.38e−2
2 2.95e9 1.97e8

DSPF 1 2.70e6 2.70e6
2 2.15e1 7.60

IT 1 6.66e−1 5.28e−2
2 2.81e10 5.15e8
3 3.02e13 3.76e13

MS 1 8.79e−13 −8.41e−9
2 1.47e−11 3.79e−6
3 5.24e−8 1.53e−4
4 3.95e−2 2.59e1
5 2.28e7 1.80e12

The uncertainty regions determined in the Monte-Carlo simulations for the two
DuraMem R© membranes in acetone with α-methyl styrene as solute are shown in
Figure 6.5 as error bars. The origin model results which were calculated using
the estimated parameters are shown as bars. Moreover, the experimental results
of flux and rejection are added to the diagrams. The variation of the parameter
values within their confidence intervals may result in unsymmetrical uncertainty
regions. For the Maxwell-Stefan model, no uncertainty regions are shown since
these were extremely broad for all investigated membrane-solvent-solute systems.
The variations calculated for this model were always higher than ±100% of the
model results calculated with the estimated parameters. The uncertainty regions for
the Donnan Steric pore-flow model are displayed in the diagrams but not necessarily
visible since these were very small.
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Figure 6.5: Experimental data (provided by Marchetti and Livingston [47]) and
calculated values for flux and rejection for the mixture of acetone and
α-methyl styrene using the DuraMem R© 200 (top) and DuraMem R© 500
(bottom), error bars represent the uncertainty regions determined by
Monte-Carlo simulation (no bars are shown for Maxwell-Stefan model,
due to extremely broad uncertainty regions)
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The uncertainty regions for the flux of acetone through the DuraMem R© 200 mem-
brane as well as for the rejection of α-methyl styrene are relatively small for all
models, except for the Maxwell-Stefan model. All uncertainty regions include the
experimental value for each pressure level. Even though, the confidence interval de-
termined for one model parameter of the solution-diffusion with imperfections model
was broader than ±100% of the parameter value, the effect on the final model re-
sult is not as significant. In contrast to this, the broad confidence intervals for the
model parameter of the Maxwell-Stefan model for this system results in very large
fluctuations of the calculated flux and rejection and, thus, is highly uncertain. Since
no significant differences of the broadness of the uncertainty regions for the other
models is observed, it is not possible to discriminate between the different models
for this system based on the available data.
The error bars for the models applied to the flux of acetone and the rejection of
α-methyl styrene using the DuraMem R© 500 membrane are broader Compared to
the results for the DuraMem R© 200 membrane. A reason for this might be the
proportional increase of the flux with the increase of the transmembrane pressure
for the DuraMem R© 200 membrane, which is not as evident as for the DuraMem R©

500. Moreover, the rejection using the DuraMem R© 200 membrane was almost 1 for
all pressure levels while only an intermediate rejection is observed for the DuraMem R©

500 membrane.
For the irreversible thermodynamics model, the uncertainty resulting in broad error
bars for the rejection is caused by the broad confidence interval for one of the model
parameters. Equally large fluctuations were observed for the solution-diffusion with
imperfections model. Hence, estimating the parameter values of these models based
on the available data used in this study, no reliable predictions are possible due to
the significant uncertainty. The uncertainty regions for the rejection observed for
the simple and the classical solution-diffusion model as well as for the Donnan Steric
pore-flow model are significantly narrower but still broader as for the DuraMem R© 200
membrane. The Donnan Steric pore-flow model includes the slightest uncertainty
but also the largest deviation from the experimental error.
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6.3.4 Summary of results for various
membrane-solvent-solute combinations

Summarizing the results of the previous subsections and for all investigated sys-
tems (cf. Appendix C), the Maxwell-Stefan model was often very accurate but also
showed the highest uncertainties and should therefore not be considered as reliable
for predictions based on the limited data from permeation experiments. Neverthe-
less, the precision of the model parameters can be increased by adding measurements
of different sorption or diffusion experiments. The accuracy of the irreversible ther-
modynamics model was also high for many systems. Based on the norm of residuals,
AIC and W, it was the best model for six out of 14 investigated systems. No other
model performed as good as this model, with respect to the considered metrics.
However, the subsequently performed Monte-Carlo simulations showed high uncer-
tainties of this model especially for the rejection.
Evaluating the Donnan Steric pore-flow model based on AIC only, it was rated
adequate to poor, but the model parameters were estimated precisely as the con-
fidence intervals were narrow, which might be attributed to the independence of
flux and rejection. On the other hand, the model was not able to describe negative
rejections. In contrast, the solution-diffusion with imperfections model was always
accurate and additionally able to describe negative rejections, but the confidence
interval of one model parameter was also broad resulting in high fluctuations found
in the Monte-Carlo simulation for many systems.
Almost no differences between the simple and the classical solution-diffusion models
were found. For negative rejections, negative parameter values were necessary, but
using these, the models were able to describe negative rejections in general. For
a minor number of systems, both models were not able to describe the rejections
when the permeate concentrations measured in the experiments were used. This
was the case for systems with constant but low rejection or decreasing and negative
for increasing transmembrane pressure. However, it was possible to describe these
systems successfully when the permeate concentration was calculated as well. The
variations found in Monte-Carlo simulations were always small for these two models.
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6.4 Conclusion

In this chapter a systematic investigation of different models for OSN was presented.
The study did not only evaluate the accuracy of the models in terms of goodness
of fit but also included the investigation of the uncertainty of the model parameters
and the influence of these on the model results. For this, different experimental data
available in literature were used. Six different models commonly used to describe
flux and rejection in OSN were fitted to the available data in order to reproduce the
results of Marchetti and Livingston [47]. Subsequently, the study was extended by
an analysis of variance and identifiability determining the confidence intervals of all
model parameters and performing an eigenvalue analysis. Based on these results,
a Monte-Carlo simulation was performed in order to determine the influence of the
parameter uncertainty on the model results.
It was shown that no clear preference for any of the investigated models was possi-
ble. Determining the most suitable model only based on the goodness of fit neglects
some further important aspects which are essential for identifying the best model for
predictions. In order to identify the most suitable model for a specific membrane-
solvent-solute systems, the measured experimental data should always be selected
carefully and multiple repeated measurements should be performed in order to en-
sure reasonable experimental data. Based on these data, the parameters of different
models can be estimated. For most of the systems, the simple or classical solution-
diffusion model seem to be a good choice, but parameter uncertainties should always
be investigated additionally. Different models, like the Maxwell-Stefan model, or fur-
ther experimental measurements, like sorption or diffusion data, might be beneficial
in order to increase the reliability of the models.
No clear recommendation for one of the models can be given, since the Monte-
Carlo simulation showed that the models cannot be discriminated based on the
available data. However, the current study clearly demonstrates that the parameter
uncertainty has a strong influence on the model results. Thus, for reliable predictions
precisely determined parameters are necessary.
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7
Machine-based learning of
predictive models: Flux

The complex interaction of different phenomena in the mass transfer through the
membrane complicate the prediction of membrane performance severely, such that
OSN is virtually not considered as an option in conceptual process design. Several
attempts have been made to determine predictive models, which allow the determi-
nation of at least pure solvent flux through a given membrane. While these models
correlate different important physical properties of the solvents and are derived from
physical understanding, they provide a limited accuracy and not all of their parame-
ters are identifiable based on available data. In contrast to previous approaches, this
work presents a machine learning based approach for the identification of membrane-
specific models for the prediction of solvent permeance. The data-driven approach,
which is based on genetic programming, generates predictive models that show su-
perior results in terms of accuracy and parameter precision when compared to pre-
viously proposed models. Applied to two respective sets of permeation data, the de-
veloped models were able to describe the permeance of various solvents with a mean
percentage error below 9% and to predict different solvents with a mean percentage
error of 15%. Further, the method was applied to solvent mixtures successfully.

The parts of this chapter have already been published in:
R. Goebel, M. Skiborowski, Machine-based learning of predictive models in organic solvent
nanofiltration: Pure and mixed solvent flux, Separation & Purification Technology 237 (2020),
pp. 116363
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7.1 Introduction

For OSN a various semi-empirical models considering different physical trans-
port phenomena have been proposed (Section 2.2.1 to 2.2.3), including pore-flow,
solution-diffusion and irreversible thermodynamic models. However, until now, only
few efforts have been made to attempt the prediction of at least pure solvent flux
through a specific membrane. To this extend phenomenological models have been
proposed (Section 2.2.4), derived based on physical insight and correlating different
physical properties of the solvents. The models differ in terms of general structure,
as well in the type and number of solvent independent parameters, which have to
be determined based on an available set of permeation data. While all these mod-
els show considerable differences, they all are intended to be generally applicable,
requiring only the adjustment of membrane specific fitting parameters.
However, knowing that different transport models are superior to other depending
on the type of membrane and membrane material [14] the applicability of a general
model for all membranes and chemical systems is rather unlikely. This is supported
by the differences in the previously proposed phenomenological models and the
considered properties, as well as corresponding statements of the different authors.
Geens et al. [55] indicated a necessary extension of their model by means of weight-
ing factors in order to comply with the different behavior of polar and non-polar
membranes, while Darvishmanesh et al. [1] indicated that the surface tension is less
important for dense membranes but may be important for more porous membranes.
However, due to the solvent-induced swelling of different membrane materials this
differentiation is rather blurry, at least for polymeric OSN membranes. As an alter-
native approach to the previously proposed phenomenological models, the current
study proposes the automatic generation of membrane-specific models, based on
a tailored supervised machine learning approach. In specific, a combination of a
genetic programming approach and a global deterministic optimization approach
for nonlinear parameter regression is proposed, which is further extended by an
additional post-processing for model reduction based on a parameter identifiability
analysis. Based on the findings of an extensive collaborative experimental study
[16] the available permeation data is divided into different classes, which are further
considered for the generation of training, test and validation sets in the scope of a
data pre-processing phase.
The existing phenomenological models for solvent flux and the considered membrane
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and solvent properties were already discussed in in Section 2.2.4. Prior to present-
ing the developed machine learning approach, before a brief summary of available
data-driven methods for model development is provided in Section 7.2. The novel
approach proposed is further presented in detail in Section 7.3, followed by the
application to different case studies for pure and mixed solvent flux predictions in
Section 7.4. The comparison with the previously proposed models, highlight ben-
efits with respect to accuracy of the predictions and identifiability of the model
parameters, while an additional comparison of the introduced hybrid stochastic-
deterministic optimization approach with a full enumeration elucidates the quality
of the results obtained by the proposed algorithmic framework. Finally, Section 7.5
presents major conclusions and proposes further extensions.

7.2 Data-driven methods

While some authors of the studies on phenomenological models presented in Sec-
tion 2.2.4 stated that the previously proposed models were able to describe sol-
vent flux especially for non-polar membranes in good agreement with the consid-
ered experimental data, the proposed modification and categorization in polar and
non-polar membranes, as presented by Darvishmanesh et al. [1], indicate a limited
applicability of a fixed model structure independent of the membrane. Instead of
trying to demystify the highly complex interactions between the different mass trans-
fer phenomena, the derivation of membrane-specific models might provide a more
suitable solution, for which appropriate correlations for solvent flux might be deter-
mined by a machine-based learning approach with a minimum effort. The current
section briefly summarizes the most prominent methods, before the specific hybrid
stochastic-deterministic approach proposed in the current chapter is presented in
the subsequent section.
All of the previously presented phenomenological models represent a correlation of
different properties of the solvents and membrane-specific parameters that are re-
gressed to experimental data. In this sense, they can be interpreted as rather similar
to quantitative structure-property relationships (QSPR) or quantitative structure-
attribute relationships (QSAR) [95]

Response=f(physical properties, chemical structure),

which are usually applied in the context of thermodynamic or physical property
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predictions, based on a data-driven correlation. For the phenomenological mod-
els, the desired response is either the flux or the permeance. The determination of
such a correlation can be posed in a general form as a symbolic regression problem,
which aims at the identification of a function that fits the given data points with-
out making any assumptions about the structure of that function [96]. However,
data-based approaches for the identification of such a correlation most often start
with a pre-defined maximum model structure and evaluate the most appropriate
one based on parameter regression. For a similar application Yangali-Quintanilla et
al. [97] applied a combination of principal component analysis (PCA) and multiple
linear regression (MLR) to derive QSAR models for the prediction of the rejection
of emerging contaminants by aqueous nanofiltration. Shahmansouri and Bellona
[98] applied MLR and artificial neural networks (ANN) to develop QSPRs for the
rejection of nonionic organic compounds in aqueous nanofiltration. In general, a
variety of data-driven models can be applied for the considered purpose, ranging
from simple linear models, such as response surface models (RSM) [99], to highly
nonlinear models, like multi-layer artificial neural networks [100]. Considering sim-
ilar applications and the potential to derive nonlinear models especially ANN, the
automated learning of algebraic models for optimization (ALAMO) approach, pro-
posed by Cozad et al. [101], as well as the less popular genetic programming (GP)
approach proposed by Koza [102], are interesting options for the considered purpose.
A detailed discussion of the methods is provided in Chapter D.1 in the Appendix.
The methods have been successfully applied to different membrane processes like
aqueous nanofiltration, microfiltration and reverse osmosis in order to predict fouling
or the flux based on operating parameters [103, 104] or the rejection of various
organic components [105, 106]. These studies indicate the potential of data-driven
methods. Yet none of them, investigated the application to the prediction of solvent
flux for varying chemical species in organic solvent nanofiltration. However, since the
ALAMO approach does not incorporate nonlinear combinations of basic functions
and ANNs do not provide a transparent model equation, GP shows great potential
to identify suitable compact models that accurately describe the performance of
membrane processes. The subsequent section introduces the developed GP-based
approach for this purpose.
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7.3 A hybrid stochastic-deterministic approach
for model development

In a first pre-processing step, the available permeation data is subdivided into train-
ing, test and validation data and different physical properties are selected as po-
tential descriptors that are to be correlated in the symbolic regression. In order to
determine accurate and solvent flux models with high parameter precision, a hybrid
stochastic-deterministic approach was developed, which performs symbolic regres-
sion based on a modified version of the GP approach proposed by Madár et al.
[107], while parameter regression is performed by means of a deterministic global
optimization approach. The GP approach, which is implemented in Matlab R© incor-
porates an orthogonal least squares (OLS) approach, in order to eliminate branches
of the tree structure that do not contribute to a significant extent to the model
result, as proposed by Madár et al. [107]. While linear regression is performed di-
rectly in Matlab R©, making use of the mldivide operator, which takes advantage of
symmetries in the problem by dispatching to an appropriate solver, nonlinear pa-
rameter regression is performed via an interface with the general algebraic modeling
system (GAMS) making use of either BARON [108] or ANTIGONE [109] as global
deterministic optimization algorithms. Finally, an additional identifiability analy-
sis is performed as post-processing step to further evaluate the potential for model
reduction. A schematic representation of the approach is illustrated in Figure 7.1,
while the different steps are described in the following subsections.

7.3.1 Pre-processing of permeation data

In the first pre-processing step, the available permeation data is subdivided into
training data, which is considered for symbolic and parameter regression, test data
that is considered only for parameter regression and validation data, which is only
considered for evaluation of the predictive power of the developed models, after
symbolic and parameter regression have been performed. In order to avoid severe
extrapolation each solvent group should be represented at least within the training
data set, considering the molecules with the largest and the smallest molecular size,
while remaining data is evenly distributed between test and validation data set.
As described in Section 2.2.4 all of the previously proposed models consider three
types of parameters related to molecular size, solubility and solvent diffusivity. In
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order to identify the most meaningful physical property parameters for the different
categories, a range of widely available parameters is considered as potential descrip-
tor for the symbolic regression. The group of molecular size parameters is formed
by the molar mass M , the molar volume Vm, equivalent molecular diameter deq and
the connectivity index ConI. While the molar mass is also related to the molecular
weight cut-off, the molar volume was considered as important descriptor by several
authors [51, 110, 111, 34] and included in the models of Bhanushali et al. [4] and
Geens et al. [55]. The equivalent molecular diameter

deq = 2
( 3Vm

4πNA

)1/3
, (7.1)

can be calculated based on the molar volume Vm and the Avogadro number NA and
was considered as important descriptor by Van der Bruggen et al. [112]. Finally, the
connectivity index, as introduced by Randic [113] and extended by Kier and Hall
[114], allows to differentiate between linear and branched molecules.
Since the solubility of the solvent was considered of high importance in previously
reported models [1, 2, 55], the dielectric constant ε, dipole moment ~d, surface tension
γ, polarity Pol and the Hildebrand (δHBP ) and Hansen solubility parameters (δd, δp
and δh) are taken into consideration to describe the solubility of the solvent. While
the dielectric constant, considered by Darvishmanesh et al. [1] and Machado et al.
[3], is a bulk property, the dipole moment, considered by Marchetti et al. [2] is rather
a molecular property. The surface tension was considered in various studies [1, 4,
55, 3] as representative of the polarity of the solvent and the membrane, whereas
Blumenschein and Kätzel [33] used the Hildebrand solubility parameter to describe
the interaction of solvent and membrane, similar to Robinson [115], and Tarleton et
al. [116]. In the scope of different investigations, the Hansen solubility parameters,
which are directly related to the Hildebrand solubility parameter

δ2
HBP = δ2

d + δ2
p + δ2

h, (7.2)

were further considered as representative for the swelling of the membrane material
[117] or to explain solvent dependent membrane-solute sensitivity of OSN mem-
branes [78]. Finally, the radius of the interaction sphere Ra

Ra2 = 4(δd − δd,M)2 + (δp − δp,M)2 + (δh − δh,M)2, (7.3)
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as introduced by Hansen [118], can be used to evaluate the interaction between
solvent and membrane, considering the Hansen solubility parameters δd,M , δp,M and
δh,M of the active layer of the membrane, which depending on the material may be
evaluated based on the group contribution method of van Krevelen and Nijenhuis
[119].
In accordance to the solution-diffusion model and as described by Reddy et al.
[120] and Bhanushali et al. [4], the permeance depends also on the diffusivity of the
solvent in the membrane, which depends on the reciprocal of the viscosity of the
solvent. Thus, the viscosity η of the solvent is considered as additional descriptor
and complemented with the density ρ as last descriptor for the symbolic regression.
he descriptors are summarized in Table 7.1, while the respective solvent property
data is provided in Table D.4 in Chapter D in the Appendix. If sufficient data is
available, all descriptors are integrated in the terminal set of the GP approach.

Table 7.1: List of all descriptors and the corresponding symbols used in model
development

Group Descriptor Symbol
Size Molar mass M

Molar volume Vm
Equivalent molecular diameter deq
Connectivity index ConI

Polarity Dielectric constant ε
Surface tension γ
Hildebrand solubility parameter δHBP
Hansen solubility parameters

(dispersive, polar, h-bonds) δd,δp,δh
Difference of Hildebrand solubility parameters

of membrane and solvent ∆δM
Interaction radius Ra

Dipole moment ~d
Polarity Pol

Further Density ρ
Viscosity η
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7.3.2 Hybrid approach for automatic model development

The hybrid approach for automatic model development consists of the GP approach,
that starts with the initialization of a random population of syntax trees, followed
by a subsequent parameter regression, which may employ deterministic global op-
timization for nonlinear parameter regression, prior to the evaluation of the fitness
and the creation of a subsequent generation by means of selection, mutation and
crossover, until a specific termination criterion is met. The individual steps are
explained in the subsequent subsections.

Initialization

Each model candidate is represented as a syntax tree (cf. Figure 7.2), which links
different descriptors by means of additional functions and added parameters. The
tree is modified in the different generations through the application of evolutionary
operators.

[git] • Branch: master @ 436d868• Release: -(2019-12-03)
Head tags: (None)

+

∗ /

X1 X2 X3 X4

Figure 7.2: Tree with a tree depth of 3

In order to include the model candidates of Darvishmanesh et al. [1], Bhanushali
et al. [4], Geens et al. [55], and Machado et al. [3] as well as a wide variety of
alternative correlations, the previously described descriptors (Section 7.3.1) and a
set of different functions {+,−, ∗, /, exp, ln, sqrt} are considered as valid nodes. In
order to avoid numerical problems, the

ln(x) =
 ln(x) , x ≥ 0

1 , x < 0
(7.4)

and

sqrt(x) =

√
x , x ≥ 0

1 , x < 0
(7.5)

functions are defined piecewise, avoiding non-defined and irrational values in case
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of negative arguments. After the maximum tree depth and the population size
are specified, the initial population is generated based on a random selection of
descriptors and functions for each node of an individual syntax tree, except for the
root node and the lowest level nodes. The root node has to be a function, while only
descriptors are allowed for the lowest level nodes. While all intermediate level nodes
may be either functions or descriptors, it is important to note that in the translation
of the syntax tree to a functional program, all nodes on a branch below a descriptor
are ignored. Thus, they do not contribute to the final model, but may become
active again through mutation of the above descriptor node. In order to ensure a
minimum number of trees with maximum tree depth in the initial population, 10%
of the syntax trees in the initial population are generated by limiting the selection
for nodes above the bottom layer to functions only.

Parameter optimization

Parameter estimation is performed with respect to the specified training data set
applying either linear or nonlinear regression, depending on the functional repre-
sentation of the syntax tree. The evaluation is made automatically, based on the
arrangement of the functions in the syntax trees. If no function of the type {+,−}
is detected in the syntax tree below a function of the type {∗, /, exp, ln, sqrt}, the
tree represents a linear function and the linear regression is performed in Matlab R©

using the mldivide operator.
Otherwise, the tree represents a nonlinear function with respect to the parame-
ters and is first translated into a functional representation in which the parameters
are inserted as optimization variables after each {+,−} function. Other parame-
ter locations would result in correlated parameters and are therefore neglected. The
nonlinear parameter regression is performed in GAMS, based on an automatic model
transfer and minimization of the corresponding least squares function as nonlinear
programming problem, using either BARON [108] or ANTIGONE [109]. The re-
sults are transferred back to Matlab R© for further evaluation of the fitness of the
corresponding syntax tree.

Evaluation of fitness

While parameter regression is performed based on the training data, both the train-
ing and test data are used to evaluate the fitness of the different syntax trees. In
accordance with the parsimony principle the best model candidate is not necessary
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the one that provides the highest accuracy with respect to the experimental data,
but rather the one that provides the best approximation with the least number of
parameters. Therefore, the Akaike information criterion (AIC) [121], which takes
the goodness of fit and the number of parameters of each model candidate into
account, is selected as fitness function. In case of least squares estimation with
normally distributed errors the AIC is defined as

AIC = Nobs · ln(
∑(ε̂)2

Nobs

) + 2Nparam, (7.6)

for which Nobs is the number of observations, ε̂ are the residuals of the model and the
experimental values and Nparam is the number of parameters used in the model [121].
Since permeance values for different solvents can vary significantly, the absolute
deviation in terms of the residuals ε̂ are substituted in Equation 7.6 for the relative
errors (cf. Equation 7.7), in order to avoid emphasis on larger permeance values.

RE =
Nexp∑
i=1

Pcalc,i − Pexp,i
Pexp,i

(7.7)

Each evaluated tree is stored in a separate file and hence are accessible after the
run is finished. This allows for a detailed investigation of the evaluated trees and
possible additional model candidates.

Creation of new generation

After the evaluation of the fitness, the best 10% of the current generation are directly
copied to the next generation, ensuring that the best solutions are preserved in
subsequent generations. The remaining 90% of the new generation are filled by
syntax trees created by crossover or mutation, from syntax trees of the current
generation, applying tournament selection [96]. Thereby, possible parent trees are
selected as those with the best fitness of a subset selected by random drawing from
a uniform distribution of the current generation, offering the possibility of constant
selection pressure for all generations. Due to the repeated random drawing from
the uniform distribution of all syntax trees in the current generation one tree can
be considered several times, while others are not considered at all.
New syntax trees are generated from the selected parents, with additional application
of either mutation or crossover, with a given probability for mutation, corresponding
to the number of new trees created by mutation. In case of mutation a single

101



7 Machine-based learning of predictive models: Flux

parent tree is selected, whilst for crossover two parent trees are selected, performing
tournament selection with a subset size of two for the selection of each parent tree.
The selected trees are copied to the new generation and subsequently modified. Both
operators are only applied to active nodes, whereas node type and node content are
handled separately. The node type is either ’function’ or ’descriptor’, while the
content specifies the selected descriptor or function.
In case of mutation, one of the active nodes is selected by random drawing from
a uniform distribution and type and content of this selected node are randomly
modified, considering each option with equal probability (cf. Figure 7.3). Only for
the root node and the lowest level nodes the node type is fixed, such that only the
content is modified.

[git] • Branch: master @ 436d868• Release: -(2019-12-03)
Head tags: (None)

/

+

X1 X2

−

X3 X4

/

−

X1 X2

−

X3 X4

Figure 7.3: Mutation of GP tree [122]: Selected parent tree is copied and one
selected node is modified by mutation to create the new syntax tree
(the Xi represent different descriptors).

For crossover both selected trees are modified, based on the selection of an active
node with similar node type in both syntax trees, exchanging the branch below this
node between both of the selected syntax trees (cf. Figure 7.4). Thus, this one-point
crossover operator requires two parent trees and generates two syntax trees for the
new generation.

[git] • Branch: master @ 436d868• Release: -(2019-12-03)
Head tags: (None)
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Figure 7.4: Crossover of GP trees [122]: Selected parent trees are copied and
branches below a selected node are exchanged between both trees to
create new syntax trees (the Ai and Bi represent different descriptors
of the two parents).

In the first generations the probability of mutation is set to a high value to increase
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diversity and ensure an adequate exploration phase [123]. In the subsequent gen-
erations, the probability of mutation pm is gradually reduced from the initial value
pm,0 by

pm = −0.1 · ln(generation) + pm,0, (7.8)

enforcing a focused exploitation phase in the end [123]. The change in mutation
probability stops at a threshold value of 0.05 to uphold a small contribution of
mutation.

Termination

Termination is either induced because a predefined maximum number of generations
is reached or because of a maximum number of consecutive generations with a lack
of improvement of the fitness. For all of the computations in the current study a
maximum of 100 generations and 25 consecutive generations without improvement
were defined.

7.3.3 Post-processing for potential model reduction

Since the fitness function (eq. Equation 7.6) already accounts for the number of
parameters, models with fewer parameters are favored during the symbolic and pa-
rameter regression. Nevertheless, parameter precision is not accounted for in this
process. Since models with accurately identifiable parameters are expected to be
more reliable, the 95% confidence intervals of the parameter estimates are calcu-
lated using the Matlab R©-function nlparci. Furthermore, the eigenvalues of the Hes-
sian matrix of the fitness function with respect to the parameters are evaluated, as
suggested by Quaiser and Mönnigmann [92] in order to evaluate the precision of the
parameter estimates. By canceling (setting to zero) parameters for which estimates
are highly unprecise, the model complexity is systematically reduced. The reduced
models are further refined by additional parameter regression (as in Section 7.3.2)
and evaluation of the fitness function (as in Section 7.3.2).

7.3.4 Model Selection

While the specified objective function is sought to evaluate the best model and
the developed hybrid approach allows for a global search, the genetic programming
approach has an inherent stochastic character and does not guarantee to find the
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global optimum. Hence, several runs should be performed to validate the quality of
the determined solutions, while different measures, apart from the specified objec-
tive function, can be used to evaluate the most promising model candidates, which
provide almost equal fitness in terms of the specified objective function.
Out of these runs, the most promising model candidates are further evaluated based
on the mean percentage error

ε̄ = 1
Nobs

Nexp∑
i=1

|Pcalc,i − Pexp,i|
Pexp,i

, (7.9)

between the calculated Pcalc,i and the experimental permeance values Pexp,i for the
training and test data set, as well as the validation data set. Moreover, the best
model candidate, according to the fitness function, is compared with the preceding
literature models, based on Akaike weights and an analysis of parameter identifia-
bility, as described in the post-processing step (Section 7.3.3). By using the Akaike
weights

W =
exp(−∆

2 )∑Nmodels
i=1 exp(−∆i

2 )
with ∆ = AIC − AICbest, (7.10)

the Akaike values are normalized [121]. The weights take on values between 0 and 1,
which can be interpreted as the probability that one model is the best choice for the
investigated data set.[121], making it possible to identify the most probable models
in a set of various models [124].

7.3.5 Full Enumeration

In order to verify the quality of the developed hybrid approach for model develop-
ment and to evaluate its effectiveness, a comparison is made with a full evaluation
of all possible model candidates, resulting from the set of functions and operators.
For this purpose, the same training set as for the hybrid approach was used. Sub-
sequently, all possible syntax trees up to the predefined tree depth are generated by
systematically changing the nodes. The translation of the models and parameter
regression are performed as for the hybrid approach, while the evaluation is also
based on the same criteria, as specified in Section 7.3.2. Based on the fitness, the
best model is identified and the post-processing steps are applied as described in
Section 7.3.3. The total number of possible combinations for each tree depth is
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defined by

Ncomb =
level∏
i=1

(nkii ), (7.11)

with n being the number of different options for filling a node (functions and/or
descriptors), k being the number of different positions in each level of the tree i.
Considering completely filled trees with a tree depth of 2, where only functions are
allowed in the first level and both positions in level two can only be filled with
descriptors, the number of possible combinations is 1792. However, for complete
filled trees of a higher tree depth of 3 (only functions in level one and two and only
descriptors in level tree) the number of possible combinations increases to 22.478.848.
Since not completely filled trees with a tree depth of 3 are additionally possible, the
number sums up to 22.882.048 trees in total. Further details can be found in the
Appendix in Section D.3.

7.4 Case Studies for prediction of solvent flux

In order to evaluate the automatic approach for model development, it was applied
for three case studies, comprising the prediction of pure solvent flux, based on per-
meation data for PDMS-based polymeric membranes published by Dijkstra et al.
[51] and Machado et al. [62], and mixed solvent fluxes for permeation data for ce-
ramic membranes, published by Marchetti et al. [2]. While all of the previously
described descriptors (Section 7.3.1) were considered for the first two case stud-
ies, the Hildebrand solubility parameters of the solvent and membrane, as well as
the interaction radius were neglected for the third case study on the mixed solvent
fluxes for ceramic membranes. For each case study, the results of ten runs of the
hybrid approach for model development were evaluated, and the most promising
model candidates were compared based on the mean (ε̄) and maximum percentage
error (εmax), while the best model was further compared with the existing literature
models, based on Akaike weights. In accordance with suggestions by Poli et al.
[96] a population size of 1000 individuals were considered for each run, which was
initially verified by test runs with lower population sizes. If not stated otherwise, a
maximum tree depth of three was considered.
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7.4.1 Prediction of pure solvent permeance

Application of the approach is first illustrated for permeation data of polymeric
membranes reported by Dijkstra et al. [51] and Machado et al. [3].

Permeance for PDMS-based membrane

The permeation data published by Dijkstra et al. [51] describes the pure solvent
fluxes of a homologous series of alcohols, alkanes and ketones for a PDMS-based
membrane with a support layer of Polyacrylonitrile (PAN). The permeation data
were assigned to training, test and validation data set as described in Table 7.2,
following the criteria described in Section 7.3.1.

Table 7.2: Allocation of training, test and validation data sets for Dijkstra et al.
[51]

Alkanes Alcohols Ketones
Training n-pentane ethanol acetone

n-octane 2-butanol MIBK
n-dodecane

Test n-hexane 1-propanol MEK
n-nonane 1-butanol

Validation n-heptane isopropanol diethyl ketone
n-decane

Table 7.3 provides an overview of the results of the ten consecutive runs and the
resulting models, ordered according to their fitness, first limiting the models to
linear parameter relationships. Besides the fitness, the mean (ε̄) and maximum
percentage error (εmax) for training and test data as well as validation data are
listed. While most runs determine the same model candidate, some determine a
slightly inferior model, for which the mean percentage error of the training and test
data only deviates by at most 2%. Repeated execution of 100 runs validated that
the best model candidate was found with a comparable frequency, confirming that
the results of the ten runs are representative and that no further improvement of the
objective function was obtained in the increased number of runs. While the third
best model interestingly provides the lowest mean percentage error for the validation
data set, the best model provides both, the lowest mean and maximum percentage
error for the test and training data sets.
All runs terminated due to lack of improvement in 25 subsequent generations, within
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Table 7.3: Results for the ten consecutive runs for models with linear parameter
relationships for the data set of Dijkstra et al. [51].

Training & test Validation
Model Nr. Run Fitness ε̄ εmax ε̄

1 2-6,8 −51.33 7.0% 16.5% 11.5%
2 1,9 −47.71 8.8% 22.0% 14.2%
3 7 −46.76 8.5% 28.3% 7.3%
4 10 −46.04 9.0% 30.3% 14.4%

the maximum of 100 generations. As an example, Figure 7.5 illustrates the progress
curve of the fitness plotted over the number of generations for the first model. While
an initial plateau is passed around the 10th generation, the fitness further improves
until generation 22, before staying constant until the final 47th generation. A single
run converged within 2min, while all ten runs were executed in 16 minutes.
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Figure 7.5: Progress curve for the first run for the data set of Dijkstra et al. [51].

The best model candidate

P 1
D = 0.33 · δd

η
+ 0.87 · η − 0.34 · δp − 1.04 (7.12)

correlates the viscosity η, the Hansen solubility parameter for polar interactions δp
and for dispersive interactions δd of the solvent and results in average mean percent-
age errors ε̄ well below the expected experimental variation of ±20% (Chapter 4).

107



7 Machine-based learning of predictive models: Flux

The second-best model

P 2
D = 9.65 · deq

η
+ 4.42 · deq · log(η)− 3.76 (7.13)

correlates only the equivalent molecular diameter deq and the viscosity η of the sol-
vent, while resulting in almost the same accuracy as the model with the best fitness
(cf. Equation 7.12). Evaluation of the different models indicates the importance of
the viscosity, as especially the inverse proportional relation, which fits the expec-
tation and is in accordance with all previously proposed phenomenological models
listed in Section 2.2.4. However, the models differ with respect to the other prop-
erties and the general model structure. Despite these differences, the permeance
estimates derived from both models are generally within a range of ±15% with
respect to the experimental data, as illustrated in Figure 7.6. Only for the lowest
permeance values this limit is exceeded for three solvents, while the deviation is
still in the range of ±20%, highlighting the excellent agreement between model and
experimental data.
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Figure 7.6: Calculated vs. experimental permeance values for training and test
(filled) as well as validation (unfilled) data [51] for model P 1

D (cf. Equa-
tion 7.12) (left) and model P 2

D (cf. Equation 7.13) (right).

In order to evaluate the quality of the determined models further, they are com-
pared with the results of a full enumeration of all models with linear parameter
relationships, as well as the best model that was determined, when accounting for
nonlinear parameter relationships. The results of this comparison are summarized
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in Table 7.4. The full enumeration of all model candidates with linear parameter re-
lationships validates that the previously determined best model candidate is in fact
the global optimum of all models with a linear parameter relationship. Since this
model was frequently determined in the ten (respective 100) runs, we can further
assume that the approach with a set of ten individual runs provides the best model
candidate with high probability, while the required computational effort (16min) is
much lower compared to the 12 h (factor of 45) required for the full enumeration.

Table 7.4: Comparison of results of run 1 (new method, linear parameters) with
additional run with nonlinear models (new method, linear and nonlin-
ear parameters) and the a full enumeration of all models with linear
parameter relationships.

Training & test Validation
Model Nr. Fitness ε̄ εmax ε̄

run 2-6,8 −51.33 7.0% 16.5% 11.5%
run 1,9 −47.71 8.8% 22.0% 14.2%
run (NL) −53.64 7.2% 14.1% 8.7%
full −51.33 7.0% 16.5% 11.5%

The considering of nonlinear parameter relationships does not only increase the
number possible model candidates but mandates the more complicated global opti-
mization for parameter regression. As a consequence, a single run with 1000 individ-
uals per generation exceeds 48 h of computational time. The best model candidate,
listed for run (NL) in Table 7.4, was determined after 45 h in the 29th generation of
a single run and confirmed by 9 consecutive runs. Interestingly, this model

PNL
D = 2.62 · δHBP ·

√
δd

δh + 2.02 · ConI − 10.62 (7.14)

does not include the viscosity but the connectivity index ConI, as well as several
properties in relation to the polarity of the solvent, such as the Hildebrand solubility
parameter δHBP and the Hansen solubility parameters for dispersive interactions δd
and hydrogen bonds δh. While it does neither improve ε̄ nor εmax much for the test
and training data, it shows a considerable improvement in terms of ε̄ for the test
and validation data.
Prior to a final evaluation, the fitness values and theW of the best model candidates,
as well as the 95% confidence intervals and eigenvalues of the model parameters are
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evaluated. The results are listed in Table 7.5, together with the respective values of
different literature models, for which parameter regression was performed based on
the training and test data. While the fitness values already indicate that all of the
derived models outperform the literature models in terms of accuracy, this is further
highlighted by the Akaike weights, which indicate that model PNL

D is the most likely
the best candidate, while the probability for the literature models is practically zero.
Since the size of the 95% confidence intervals of the models proposed by Geens et al.
[5] and Darvishmanesh et al. [1] exceed the parameter values, it is further concluded
that these models lack parameter precision. This is however also the case for the
second and fourth parameter of model P 1

D. Performing model reduction with respect
to these parameters, canceling out unidentifiable parameters and re-regressing the
remaining parameters, the fitness drops to considerable below that of P 2

D.

Table 7.5: Summary of fitness, mean percentage error (ε̄), AIC weight (W ), pa-
rameter value (θ), size of 95% confidence interval (CI) and eigenvalues
(λ) for the different models, considering training and test set.

Model Fitness ε̄ W θ CI λ

Model P 1
D −51.33 7.0% 23.0% 0.34 0.07 0.50

0.87 1.39 12.58
−0.34 0.27 189.23
−1.04 3.94 9.09×103

Model P 2
D −47.71 8.8% 3.8% 9.65 1.55 0.22

4.42 2.41 3.09
−3.76 1.68 25.04

Model PNL
D −53.64 7.2% 73.2% 2.62 0.37 0.50

2.02 0.19 38.53
−10.62 1.81 820.44

Bhanushali −24.95 25.6% 0.0% 0.37 0.07 7.95×105

Geens −16.85 36.4% 0.0% 0.24 0.32 1.81×104

Darvishmanesh −19.48 23.8% 0.0% 0.52 7.70 46.49
6.37 5.07 386.90

Based on this post-processing step it can be concluded that with respect to the
quality of fit and parameter precision P 2

D is identified as best model with linear pa-
rameter relationship, which is slightly outperformed by model PNL

D , with nonlinear
parameter relationship. Note that the ranking and results of the identifiability anal-
ysis are based on the available data and that the identifiability of the parameters
of model P 1

D might be improved based on additional data, for which a model-based
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experimental design approach could be used to determine suitable solvent candi-
dates [125]. Yet, this is not part of the current study. While the results prove
that an improved model candidate can be determined when considering nonlinear
relationships, the rather small improvement does not necessarily justify the high
computational load compared to the simpler linear relationship models, for which
the possibility to determine the global has been validated by the full enumeration.
Therefore, it is suggested to first derive model candidates with linear relationships
and switch to the expensive derivation of nonlinear model candidates in case the de-
rived models with linear relationships lack quality of fit or parameter precision. The
subsequent examples indicate however that linear relationships result in sufficient
model accuracy and parameter precision in most cases.

Permeance for MPF-50 Koch membrane

For the second case study, permeation data published by Machado et al. [3] for
the PDMS/PAN membrane MPF-50, produced by Koch Membrane Systems U.S,
is analyzed. Again, flux data of various solvents including alkanes, alcohols, and
different acetates was reported. The division into the three data sets is indicated in
Table 7.6.

Table 7.6: Training, test and validation data set for the data of Machado et al. [3]
Alkanes Alcohols Acetates

Training n-pentane methanol butyl acetate
n-decane ethanol methyl acetate
1-pentanol

Test n-heptane 1-butanol ethyl acetate
Validation n-octane 1-propanol

Based on the results of the first case study only models with linear parameter re-
lationships are derived in ten consecutive runs of the method. The results of these
runs are listed in Table 7.7. The best model is determined in three of the ten runs,
while nine of the ten runs result in model candidates with almost equal fitness and
ε̄. Only model 4, which was created in run 5 drops out to a recognizable extent.
However, all models show mean percentage errors ε̄ below the expected deviation of
20% (Chapter 4).
Figure 7.7 illustrates again a representative progress curve of the second run, indi-
cating that the best model candidate is determined after nine generations and that
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Table 7.7: Results of ten runs with maximum tree depth three for the data set of
Machado et al. [62] without ketones sorted by fitness

Training & test Validation
Model Nr. Run Fitness ε̄ εmax ε̄

1 2,7,9 −52.33 3.2% 11.0% 17.4%
2 8 −51.94 3.0% 10.3% 14.8%
3 1,3,4,6,10 −50.37 3.6% 13.9% 9.2%
4 5 −47.11 6.9% 13.9% 3.8%

the algorithm terminates after 33 generations due to a lack of improvement in the
fitness function.
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Figure 7.7: Progress curve for the second run for the data set of Machado et al.
[62].

The determined model

P 1
M = 0.02 · Ra∆δM

− 1.22 · δh − 76.70 · deq + 71.6 (7.15)

correlates the radius of the interaction sphere Ra and the difference of the Hilde-
brand solubility parameters ∆δM of solvent and membrane, the equivalent molecular
diameter deq and the Hansen solubility parameter for hydrogen bonds δh of the sol-
vent. It does not only show the best fitness value, but also the lowest mean (ε̄) and
maximum percentage error (εmax) for training and test data as well as validation
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data. The second best model candidate

P 2
M = 9.24 · ConI − 0.05 · ρ− 3.43 ·∆δM − 243.35 · deq + 204.22 (7.16)

correlates the connectivity index ConI, the density ρ, the equivalent molecular di-
ameter ρ of the solvent and the difference of the Hildebrand solubility parameters of
solvent and membrane ∆δM . Unlike the models created for the PDMS-based mem-
brane in the first case study, none of the most promising models for the MPF-50
Koch membrane includes the viscosity. Rather, both models are based on differ-
ent properties describing size and polarity of the solvent, indicating the benefit of
membrane-specific models.
However, the third and fourth best model found for the data set of Machado et al.
[62] include the reciprocal of the viscosity but were rated worse than the models
that do not include the viscosity. The equations for these models as well as a
figure illustrating the permeance plotted over the reciprocal of the viscosity of the
solvents are provided in the Appendix (cf. Figure D.2). Comparing both data
sets, the relation of the reciprocal of the viscosity and the permeance is stronger
for the data set of Dijkstra et al. [51] such that the reciprocal of the viscosity is
determined as significant factor for the most promising models. Nevertheless, the
viscosity does have a similar influence on the permeance of solvents through the
MPF-50 Koch membrane as well, but this is not as significant for the available data.
If further data or other solvent groups are considered, this influence might appear
more significant and could therefore be considered in the most promising models.
Yet, based on the criteria of accuracy and parameter precision, other factors are
deemed more significant for the permeance of solvents through the MPF-50 Koch
membrane.
While the structure of model P 1

M and P 2
M is apparently different, there is no sig-

nificant difference in the quality of the predicted permeance values. This is further
illustrated in Figure 7.8 which provides parity plots of the calculated and experi-
mentally measured permeance for the training and test data set (filled symbols) and
the validation data set (unfilled symbols).
A deviation of ±15% is exceeded only for one solvent from the validation data set in
both cases. Since there are no significant difference between the quality of fit of both
models, both are further evaluated in the post processing step, together with several
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Figure 7.8: Calculated vs. experimental permeance values for training and test
(filled) as well as validation (unfilled) data [62] for model P 1

M (cf. Equa-
tion 7.15) (left) and model P 2

M (cf. Equation 7.16) (right).

literature models with additional parameter regression. The results are summarized
in Table 7.8.
According to the Akaike weights W both determined model candidates P 1

M and P 2
M

are clearly favored over the respective literature models, while P 1
M has a slightly

higher probability compared to model P 2
M . While none of the confidence intervals

includes zero for both models, parameter precision for model P 1
M is extremely high,

according to the tight confidence intervals. This is apparently not the case for the
literature models of Geens et al. [55] and Darvishmanesh et al. [1], which also show
a considerable worse fit of the experimental data according to the mean percentage
error ε̄. Only for the model of Bhanushali et al. [4] the single parameter can be
identified accurately, while the quality of fit is still considerable worse, compared to
the two developed model candidates P 1

M and P 2
M .

7.4.2 Prediction of mixed solvent permeance

After illustrating the successful application of the method for the prediction of pure
solvent permeance for polymeric membranes, the last case study illustrates the ap-
plication to the prediction of pure and mixed solvent permeance for ceramic mem-
branes, considering permeation data reported by Marchetti et al. [2]. The article
reports data for eleven solvents, as well as different binary mixtures, for four ce-
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Table 7.8: Summary of fitness, mean percentage error (ε̄), AIC weight (W ), pa-
rameter value (θ), size of 95% confidence interval (CI) and eigenvalues
(λ) for the different models, considering training and test set.

Model Fitness ε̄ W θ CI λ

Model P 1
M −52.33 3.2% 54.7% 0.02 0.00 0.01

−1.22 0.05 792.15
−76.70 3.21 2.30
71.60 2.70 7.31×104

Model P 2
M −51.94 3.0% 44.9% 9.24 3.09 0.00

−0.05 0.01 0.10
−3.43 0.37 5.91

−243.35 48.59 141.94
204.22 29.64 3.86×106

Bhanushali −30.27 23.0% 0.0% 0.49 0.06 4.92×103

Geens −13.13 50.2% 0.0% 0.26 0.40 1.53×104

Darvishmanesh −42.09 12.9% 3.3% 0.27 13.21 29.15
7.13 7.65 391.03

ramic membranes (Inopor Nano 450Da and 750Da, Inopor Ultra 2000Da and Sulzer
1000Da). In order to compare the derived models with the advanced phenomenolog-
ical model proposed by Marchetti et al. [2] (Section 2.2.4), the five solvents, which
were considered for parameter estimation by Marchetti et al. [2], are allocated to
the training data set, while all remaining data reported for a specific membrane
was evenly distributed between the test and validation data set. Thereby, the test
data set was composed of six pure solvents and 8 to 18 different binary mixtures,
while the validation data set included data for 18 to 25 binary systems, depending
on the specific membrane. Before summarizing the results for all four membranes,
including a comparison with the phenomenological model proposed by Marchetti
et al. [2], a more detailed description of the results for the Sulzer 1000Da membrane
is given first.
In order to apply the model development approach to the prediction of mixed sol-
vent permeance, either a mixing rule can be applied or a combined permeance for
the solvent mixture is determined based on properties of the mixtures. The latter
was applied in the current case and the same literature data [126, 127, 128, 129, 130,
131] as considered by Marchetti et al. [2] was used for density, viscosity and surface
tension of the mixtures. For those mixtures for which the compositions in literature
differed from those investigated in this study linear interpolation was applied. The

115



7 Machine-based learning of predictive models: Flux

remaining properties were determined by mixing rules based on the molar composi-
tion of the mixtures as it was done by Marchetti et al. [2] for the correction factor
(Equation 2.45), except for molar volume and molecular diameter, which were de-
termined based on the density and the molar mass, as well as the molar volume.
Since no solubility parameters for ceramic membranes are available, the difference of
the solubility parameters of the solvent and the membrane ∆δM and the interaction
radius Ra were not used for ceramic membranes.
Application of the model development approach, with similar settings as for the
previous case studies, did provide the results summarized in Table 7.9 for ten con-
secutive runs.

Table 7.9: Results of ten runs with maximum tree depth three for the data set of
Marchetti et al. [2] measured with the membrane Sulzer 1000Da sorted
by fitness

Training & test Validation
Model Nr. Run Fitness ε̄ εmax ε̄

1 1,3,5-7,9-10 −75.9 9.0% 36.9% 6.3%
2 8 −74.7 10.8% 30.0% 10.9%
3 2 −73.9 10.4% 33.1% 11.2%
4 4 −73.3 10.6% 31.7% 11.0%

While the best model candidates from each run show almost equivalent fitness, the
best model is identified in seven of the ten runs. This model

P 1
Mix = 119.41 · deq

η
+ 0.70 · Pol · √η − 57.56 (7.17)

correlates the molecular diameter deq, the viscosity η and the polarity Pol of the
solvent or solvent mixture and has three parameters, while the second model

P 2
Mix = 0.75 · Pol

~d
+ 96.07 · deq

η
− 24.41 (7.18)

correlates the same properties with the additional dipole moment ~d, showing also
three individual parameters. Since both models show almost equivalent fitness, the
identifiability of the model parameters was further evaluated providing the data
on confidence intervals and eigenvalues reported in Table 7.10. While the size of
the 95% confidence intervals for the parameters of both models are by far not as
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narrow as in the previous case studies, they exceed the parameter values for two
of the parameters of model P 2

Mix. Consequently, model candidate P 1
Mix, which is

determined in the majority of runs is also considered favorable in terms of parameter
precision.

Table 7.10: Summary of fitness, mean percentage error (ε̄), parameter values (θ),
size of the corresponding 95% confidence interval (CI) and eigenvalues
(λ) for the different models, considering training and test set from
Marchetti et al. [2] for the Sulzer 1000Da membrane.

Model Fitness ε̄ θ CI λ

Model P 1
Mix −75.9 9.0% 119.41 27.15 0.10

0.70 0.38 3.82
−57.52 41.27 1.68×104

Model P 2
Mix −76.7 10.8% 0.75 2.48 0.14

96.07 88.00 4.12
−24.41 140.59 5339.14

In order to further illustrate the quality of fit of the developed model a parity plot of
the model-based and experimentally measured permeances for the pure and mixed
solvents is illustrated in Figure 7.9 for model P 1

Mix. As indicated by the dashed lines,
only three of the overall 32 data points exceed a deviation of 20%. These three data
points correspond to binary mixtures, for which the approximation of the properties
of the mixtures may result in slightly larger deviations, yet still within an acceptable
error margin.
Through application of the proposed model generation approach, dedicated models
with a comparable quality of fit and good parameter precision could be identified
for all four membranes. The best model candidates for each of the membranes are
listed in the Appendix in Table D.3. Table 7.11 further summarizes the results
of a comparison of the newly developed models with the improved phenomenolog-
ical model proposed by Marchetti et al. [2]. The evaluation of the latter model is
based on the published parameters KHP for each membrane, fc of the solvents and
the viscosity of the solvents or binary mixtures according to Equation 2.43. While
a single model capable of accurately describing the different membranes would of
course be favorable and the phenomenological model might provide higher accu-
racy for further extrapolations, parameter regression was performed on the basis
of the same subset of the available data. The results indicate that for each of the
membranes the individually derived model results in considerably lower mean per-
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Figure 7.9: Calculated (filled) and predicted (unfilled) permeance using the model
P 1
Mix vs. experimental data reported for the Sulzer 1000Da membrane

by Marchetti et al. [2].

centage error ε̄, while the Akaike weights W indicate clearly that the individual
models are favored over the improved phenomenological model of Marchetti et al.
[2], based on the considered data sets. Given the differences in model structure and
enclosed descriptors, it might be concluded that different phenomena dominate the
mass transfer for the different membranes, which indicates a potential limitation of
a single membrane-independent model.

Table 7.11: Comparison of the newly developed individual models for each of the
four membranes with the improved phenomenological model proposed
by Marchetti et al. [2] considering training, test and validation data.

New model Marchetti et al. [2]
Membrane ε̄ W ε̄ W

Innopor Nano 450 Da 25.9% 100.0% 35.8% 0.0%
Innopor Nano 750 Da 16.9% 100.0% 24.2% 0.0%
Innopor Ultra 2000 Da 15.6% 99.8% 15.0% 0.2%
Sulzer 1000 Da 9.0% 100.0% 11.9% 0.0%

Taking a closer look at the results it becomes obvious that interdependent of the
model, the mean percentage error ε̄ increases for the Inopor Ultra 2000Da, Nano
750Da and Nano 450Da. One potential reason for the decreasing accuracy is related
to the increasing number of binary data points for the latter membranes and the
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larger deviation form a linear combination of the particular pure solvent permeance,
which holds almost entirely for the Sulzer 1000Da membrane. Nevertheless, even for
most of the binary mixtures with minima in the permeance, the overall course of the
permeance is represented more accurate with the newly developed model, compared
to the phenomenological model of Marchetti et al. [2]. This is exemplarily illustrated
for three binary mixtures in Figure 7.10 for the Inopor Nano 750Da membrane.
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Figure 7.10: Experimentally measured (symbols) and calculated permeance values
for the new individual model P 1

Mix (cf. Equation7.17) (solid lines) and
the phenomenological model of Marchetti et al. [2] (dashed lines) for
the Inopor Nano 750Da membrane.

7.5 Conclusion

Previous studies have primarily tried to develop a general phenomenological model
for predicting the solvent flux for organic solvent nanofiltration membranes, based
on the correlation of different thermodynamic and physical properties. However, the
dominating mass transfer phenomena may vary for different types of membranes and
the interaction with the different solvents, such that a single model structure can be
insufficient for an accurate description of solvent flux. On the other hand, the limited
availability of permeation data, as well as the variety of alternative descriptors for
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molecular size and solubility of solvent molecules, limits the applicability of highly
parameterized models, such as general response surface models and artificial neural
networks, for the derivation of reliable quantitative structure-property relationships.
In order to overcome the aforementioned limitations, a new hybrid stochastic-
deterministic approach for model development was presented, which combines ge-
netic programming with global deterministic optimization for parameter regression,
as well as an analysis of parameter identifiability. The possibility to derive com-
pact models which provide a good quality of fit with high parameter precision is
demonstrated for three different case studies, covering polymeric membranes as well
as ceramic membranes. For the latter also mixed solvent flux predictions are per-
formed with high accuracy. The results for the different case studies indicate the
potential for membrane-specific models, which in all cases outperformed the avail-
able phenomenological models, which were proposed in literature. Unlike the de-
rived data-based models and with the sole exception of the correlation proposed by
Bhanushali et al. [4], none of the available correlations showed sufficient identifia-
bility of the regressed parameters, based on the available data sets.
The developed models represent an excellent tool to derive membrane rejection
maps with significantly reduced experimental effort. Any membrane performance
data available in literature can be used to derive possible data-based models us-
ing the presented approach, while membrane manufacturers are probably the most
appropriate user of such a tool, building on in-house performance data, available
for their membranes. Due to the consistent quality of commercially manufactured
membranes, it is expected that membrane samples can be from the same or devi-
ating batches, which follow the same production protocol and standards, as long
as variations in membrane performance are within reasonable bounds (Chapter 4).
However, the experiments should be conducted at the same conditions, to which
the standardized measurement method described in Chapter 5 can be applied. The
available amount of data should however at least reflect the diversity expected from
the range of solvents that are to be evaluated, resulting in the challenge to produce
meaningful interpolations that can be adapted to the desired scope of application.
The more diverse data is included, the broader the potential range of applications
for which the model can be applied. Yet the proposed method enables a reevaluation
of a suitable model for an increasing amount of data at any time.
The most important next step is of course to extend the approach to the prediction

120



7 Machine-based learning of predictive models: Flux

of permselectivity and rejection of dissolved solutes, in order to enable a prediction
of the separation performance. These extensions are presented in Chapter 8.
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8
Machine-based learning of
predictive models: Rejection

For the prediction of solute rejection, a few phenomenological models have been de-
veloped, primarily for ceramic membranes, based on the assumption of a dominating
size exclusion mechanism. However, especially for polymeric membranes the mutual
interactions between membrane material, solvent and solute, need to be accounted
for in order to accurately describe solvent flux and solute rejection. The dominating
phenomena may strongly depend on the specific membrane, as well as the considered
chemical systems. Building on the previous work on the automatic development of
membrane-specific models for pure and mixed solvent flux, this chapter addresses
the extension towards the prediction of solute rejection in pure and mixed solvents.
For this purpose, automatically derived model candidates are evaluated with respect
to accuracy and parameter precision for experimental data for the PuraMem R© S600
membrane. Furthermore, the possibility to predict solute rejection in mixed solvent
systems is evaluated based on the concept of membrane rejection maps, evaluating
previously reported permeation data for a PuraMem R© 280 membrane. The derived
models show excellent accuracy and decent parameter precision, with deviations be-
tween measured and predicted solute rejection of less than 10% for most of the
experimental data, while predictions for mixed solvents are in a similar range.

The parts of this chapter have already been/will be published in:
R. Goebel, T. Glaser, M. Skiborowski, Machine-based learning of predictive models in organic
solvent nanofiltration: Solute rejection in pure and mixed solvents, Separation & Purification
Technology 248 (2020), pp. 117046
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8.1 Introduction

In contrast to solvent flux through OSN membranes, as discussed in Section 2.2.4
and the previous Chapter 7, phenomenological models for solute rejection are rarely
described in literature. Available studies [54, 132, 133] primarily focused on the
analysis of the most important parameters influencing the rejection and the identi-
fication of interaction parameters between the membrane, solvent and solute as well
as size parameters of the solutes affecting the separation (Section 2.2.5). Correlation
of these parameters is consequently a logical step towards the prediction of solute
rejection for OSN membranes. Yet, this correlation is not straightforward, since
the number of potentially important parameters is high and the model structure is
neither known a-priori, nor is it likely that a general model structure is valid for
all membranes. Still, data-based methods for the development of solute rejection
models in aqueous nanofiltration and reverse osmosis have shown promising results
in different applications [47].
In the scope of this chapter, the method developed in Chapter 7 is extended in order
to derive correlations for the prediction of the solute rejection in pure and mixed
solvent systems. The investigations build on the determined rejection data for the
PuraMem R© S600 membrane, reported in Section 5.4 as well as previously reported
permeation data of Schmidt et al. [65] for the PuraMem R© 280 membrane. For the
theoretical background, including available models and important parameters affect-
ing solute rejection the reader is referred to Section 2.2.5, while the general approach
for model development method is discussed in Section 8.2. The subsequent sections
describe the application of the approach to the prediction of solute rejection (Sec-
tion 8.2) and illustrate and discuss the results for the obtained models (Section 8.3).
The resulting models allow for the prediction of the so-called membrane-rejection
maps, which were experimentally derived by Schmidt et al. [65]. Finally, some con-
clusions and an outlook on future work are provided in Section 8.4.

8.2 Application of hybrid stochastic-deterministic
approach for solute rejection

In order to evaluate the potential of an automatic model generation, two sets of
solute rejection data were considered. The first set of data described in Section 5.4
considers a range of specifically selected solutes with different properties, solved

124



8 Machine-based learning of predictive models: Rejection

in six different solvents. The second set of data was extracted from the article of
Schmidt et al. [65], who reported the rejection for five different solvents dissolved in
the solvents toluene, hexane and isopropanol, as well binary and ternary mixtures
of these solvents. The illustration of the so-called membrane rejection maps (MRM)
allows for a graphical evaluation of the capability of the generated models to predict
the rejection of the solutes in the ternary solvent mixtures. A brief summary of the
experiments and the use of the proposed MRM of Schmidt et al. [65] is provided in
Section 8.2.1. Finally, Sections 8.2.2 and 8.2.3 provide a summary of the application
of the previously developed hybrid method for model development (Chapter 7).

8.2.1 Solute rejection data for ternary solvent mixture

The data set for ternary solvent mixtures used in this study was taken from Schmidt
et al. [65], who determined the rejection of five different solutes (n-hexadecane
(HD), 2,2,4,4,6,8,8-heptamethylnonane (HMN), phenyldodecane (PDD), 2,6-
Diisopropylnaphthalene (DIPN), Triphenylphosphine(TPP)) solved in the solvents
toluene, hexane and isopropanol, as well as binary and ternary mixtures of these
solvents. Important solvent and solute properties are listed in table 1 and 2 of
the article of Schmidt et al. [65]. The rejection experiments were conducted in the
cross-flow system presented in Section 5.3.1.
For the investigated PuraMem R© 280 (PM280) a MWCO of 280 gmol−1 is reported
by the vendor determined under similar conditions as stated in Section 5.2 for the
PuraMem R© S600. Overall, 21 rejection experiments were reported for pressures of
20, 30 and 40 bar at 25 ◦C. While all five solutes were solved in the solvent for each
of the measurements, the solvent was varied between the three pure solvents, binary
mixtures at 25, 50 and 75% of the primary solvent and nine compositions of ternary
mixtures distributed in the Gibbs triangle, as illustrated in Figure 8.1.
Based on the measured solute rejections Schmidt et al. [65] proposed the so called
MRM, which were obtained by smoothing and interpolating the measured rejections
and which provide a useful insight of the rejection behavior of a solute in different
solvent mixtures. In a subsequent publication, Schmidt et al. [134] illustrated how
MRM can be used in order to identify solvent mixtures that enhance a specific
separation task and applied them in a conceptual design work flow for the recycling
of homogeneous catalysts in hydroformylation.
While the data set of Schmidt et al. [65] is by far not as diverse in terms of the
considered solutes as that reported in Section 5.3 and 5.4, the available rejection
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Figure 8.1: Composition of the different solvent mixtures for which solute rejection
was evaluated (black circle: training data, blue square: test data, red
diamond: validation data).

data for solvent mixtures allows for an evaluation of the potential prediction of solute
rejection in mixed solvent systems and the possibility to predict the MRM proposed
by Schmidt et al. [65] based on considerably less data.

8.2.2 Pre-processing of rejection data

The pre-processing for the rejection data was based on the steps presented in Sec-
tion 7.3. The allocation of the rejection data of the solutes to the different data
sets used for model development in the current study ensures that each functional
group is considered within the training data (cf. Figure 8.2). The same allocation
was used for all solvents. For the rejection data that was extracted from the article
of Schmidt et al. [65] the evaluation was focused on the potential prediction of the
solute rejection in the mixed solvent systems. Therefore, the training data set was
based on the rejection data of all solutes solved in the pure solvents as well as the
equimolar binary solvent mixtures. The remaining rejection data for the binary sol-
vent mixtures was allocated to the test data, while the rejection data for all ternary
mixtures was considered as validation data (cf. Figure 8.1).
As second preparation step, the potential descriptors for the model generation need
to be defined. As previously described in Section 2.2.5, solute transport is influenced
by solvent-solute-membrane interactions, for which Geens et al. [54] already pointed
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Figure 8.2: Allocations of the rejection data of the solutes solved in pure solvents to
the different data sets. (black: training data, gray: test data, unfilled:
validation data).

out important physical and chemical properties of solute, solvent and membrane,
affecting solvent-solute, solute-membrane and solvent-membrane interactions. In a
similar fashion Marchetti et al. [14] classified and highlighted important properties,
as presented in Figure 8.3. Apart from the direct solute-membrane interactions,
which according to Geens et al. [54] are expressed by polarity and charge effects,
especially the interaction of the solvent with the solute and the membrane need to
be accounted for, since solute rejection depends strongly on the solvent [135].
The most prominent property linked to these interactions is the solubility, for which
mostly Hildebrand and Hansen solubility parameters are considered. A comparison
between the difference between solute, solvent and membrane solubility parameters
provide an indication of the preferred permeating component, in case solubility has
a predominant effect on the mass transfer. E.g. Zeidler et al. [84] showed con-
siderable variations in solute rejection for a GMT-oNF-2 (PDMS-PAN composite)
membrane for three different solvents (THF, n-heptane, ethanol). They specifically
indicated that negative rejections are linked to a smaller distance between the sol-
ubility parameters of the solute and the membrane compared to the solvent and
the membrane. In a more recent study, Thiermeyer et al. [78] found an increasing
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Figure 8.3: Properties affecting the interactions between Membrane, Solvent and
Solutes [14]

influence of the solute properties on the rejection with increasing hydrogen bonding
capacity of the solvent, characterized by the Hansen solubility parameter for hydro-
gen bonds δh,i. Based on the experimental study of solute rejections of a PDMS
and a PI-based membrane, for 5 solvents and 17 solutes, Thiermeyer et al. [78]
evaluated three different solvent dependent solute sensitivity regions, in which the
effect of functional groups of the solutes differs significantly. While the rejection of
a solute mainly depended on the molecular size for the non-polar solvents heptane
and toluene, solute rejection was strongly affected by the functional groups of the
solutes in the polar solvents ethanol and isopropanol. In moderate polar solvents
like ethyl acetate or methyl ethyl ketone these dependencies were still observable
but much weaker.
In summary, the impact of solubilities on the solute rejection, characterized by the
Hildebrand and Hansen solubility parameters, has been demonstrated by several
studies and in multiple ways. Consequently, these parameters should be included in
the development of solute rejection models, as already described in different publi-
cations [136, 84, 117].
Another important property that has been characterized as strongly affecting so-
lute rejection is the dipole moment ~d of the solute [137]. Van der Bruggen et al.
[133] already observed a decreasing rejection with increasing dipole moment of the
solutes in their study of solute rejection for a variety of organic solutes in aqueous
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nanofiltration. They attributed the dependency to the electrostatic interaction of
the molecules, which results in different orientations of the solutes relative to the
membrane. More recently [137] confirmed these results for OSN, also reporting a
relationship between dipole moment and solute rejection.
Finally, the size of the solute is of crucial importance for the rejection. Commonly,
as for aqueous nanofiltration, the molecular weight M is used as an indicator for
the size of the solutes and molecular weight cut off (MWCO) values, referring to
the molecular weight of a solute that is rejected by at least 90%, are reported by
manufactures to characterize the filtration performance of the membrane. However,
as already stated by Geens et al. [55], the MWCO specified in water is not of much
use for non-aqueous systems, while the statement holds generally true for varying
solvents, since the effective solvent diameter differs due to salvation effects Geens et
al. [54]. While different studies consequently promote the use of an effective solvent-
dependent solute diameter [112, 54, 57], other reports indicate that the predicted
effects on solute size were not reflected by the measured solute rejection [20, 56]. In
any way, correlations for the calculation of solvent dependent solute size, require ad-
ditional parameters, such as the association parameter of the solvent, which may be
hard to retrieve, such that simple parameters for the molecular size are much more
practical for application. Such parameters were evaluated in the study of Van der
Bruggen et al. [133], evaluating the correlation between solute rejection, the molecu-
lar weight, the Stokes diameter, the equivalent molar diameter, as well as a diameter
obtained with energy minimization calculations. They concluded that a good corre-
lation with each of the parameters was feasible for the investigated organic solutes
and three of four investigated membranes for aqueous nanofiltration. While the
molecular weight is the easiest accessible parameter, the equivalent molar diameter
deq provided a better correlation with solute rejection [112]. While Darvishmanesh
et al. [137] also reported a good correlation between equivalent molar diameter deq
and rejection. It needs to be noted that the resulting plots were slightly scattered.
Yet, the equivalent molar diameter describes the size of a molecule, but it neglects
the molecular structure [133].
In the scope of this study 29 different solvent and solute properties were selected
based on the discussion above and the previous application for the generation of sol-
vent flux models (Chapter 7). These descriptors are summarized in Table 8.1, while
the respective solvent and solute property data is provided in Table D.4 in Chap-
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ter D and Table E.21 in Chapter E in the Appendix. Properties of solvent mixtures
were estimated by using a linear mixing rule and the pure solvent properties.

Table 8.1: List of all descriptors and the corresponding symbol used in model de-
velopment (Polarity is only used for solvents)

Group Descriptor Symbol
Size Molar mass M

Molar volume Vm
Equivalent molecular diameter deq

Polarity Dielectric constant ε
Surface tension γ
Hildebrand solubility parameter δ
Hansen solubility parameters

(dispersive, polar, h-bonds) δd,δp,δh
Difference of Hildebrand solubility parameters

of membrane and solute/solvent ∆δM
Interaction radius Ra

Dipole moment ~d
Polarity Pol

Further Density ρ
Viscosity η

8.2.3 Application of hybrid method for model development

The hybrid method for automatic model development introduced in Section 7.3 was
adapted by the previous modification of the pre-processing of the rejection data and
further extended by dedication routines that allow for the prediction of the MRM
for ternary systems, building solely on experimental data for pure and binary solvent
systems.

8.3 Results and Discussion

The results of the model development approach are evaluated accounting for solute
rejection in the different solvents, as well as in specific solvent groups. Finally, an
evaluation of the model development approach for the solute rejection in mixed sol-
vent systems according to the solute rejection data of Schmidt et al. [65] is presented
in Section 8.3.2.
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8.3.1 Prediction of solute rejection in pure solvents

The potential of the data-based model development approach is evaluated in two
scenarios. The first scenario evaluates the application to solvent-group dependent
rejection models, with respective division into training, test and validation data (cf.
Figure 8.2) for each individual solvent group. In order to evaluate the possibility of
deriving a model with higher predictive power also a solvent independent model was
determined in the second scenario, considering rejection data from all six solvents.

Development of solvent-dependent solute rejection models

In order to develop solute rejection models for the specific types of solvents, the
available rejection data was divided according to the three described solvent groups
of polar, moderate polar and non-polar solvents. For each solvent group individual
solute rejection models were determined based on repeated runs of the automatic
model development approach, considering only linear parameters in a first step and
a tree depth of tree. The tree depth was further increased in case a mean absolute
deviation of 5% was exceeded in the post-processing of the most promising candi-
date. The resulting statistics of the most promising model candidates are further
listed in Section E.1.1-E.1.3 in Table E.1-E.6 of the Appendix, while parity plots for
these models and the different solvent groups are illustrated in Figure 8.4.

Polar solvents
For polar solvents a maximum tree depth of three sufficed. In total, five different
models were identified in the ten runs for polar solvents, which barely differ in their
fitness (cf. Table E.2 in Section E.1.1 of the Appendix). Each model candidate
includes at least the difference of the Hildebrand parameters of membrane and solute
∆δM,i, as well as another, varying polarity parameter of the solute. As a property of
the solvent, the size or the polarity is considered in each of the models, however, in
this case both properties are correlated with each other, since both solvents belong
to the homologous series of alcohols. This leads to the fact that there is no clear
indication to take only one of these properties into account and therefore, even if the
size of the solvent molecule is included, the polarity is represented to a certain extent
as well. Overall, it can be stated that the polarity of solute and solvent is crucial,
which is consistent with the observations from the experiments (Section 5.4.1) and
those of Thiermeyer et al. [78]. Furthermore, the Akaike weights for these models
indicate that the best and the second-best model with a similarly high probability
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Figure 8.4: Calculated vs. experimental rejection of all solutes in the different
solvent groups for the individual models: polar solvents and R3

p,i (top
left), moderately polar solvents and R4

m,i (top right) and non-polar
solvents and R3

np,i (bottom).

are the most suitable ones among the five models for the available data. While the
parameter identifiability for the second-best model is limited, all parameters of the
model with the best fitness are identifiable. Therefore, this model is examined in
more detail in the following.
The parameter precision of the best model, according to AIC, is high, since the
confidence intervals are small (cf. Table E.1 in Section E.1.1 of the Appendix). The
best model in these metrics

R3
p,i = 1.067 · δh,i

γi
+ 1.750 · ∆δM,i

δs
− 0.376, (8.1)
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results in mean (ε̂) and maximum absolute deviation (εmax) of less than 4% and 15%
respectively. The resulting model is rather simple, correlating the Hansen solubility
parameter δh,i of the solute accounting for hydrogen bonds, the surface tension of the
solute γi, as well as the difference in Hildebrand parameters of membrane and solute
∆δM,i and the Hildebrand parameter of the solvent δs, using three fitting parameters.
Hence, only polarity properties are taken into account in this model and the model
allows for a considerably accurate representation of the experimental data, for which
an absolute deviation of ±10% is only exceeded for the solute heptamethylnonane
in ethanol, which is allocated to the test data.

Moderately polar solvents
Because none of the model candidates with a tree depth of three did result in mean
absolute deviation of less than 5%, model candidates with a tree depth of four were
created for the group of moderately polar solvents. These models allowed for a
significant improvement in terms of the AIC, as well as the mean and maximum
absolute deviation. In the ten performed runs for a tree depth of four, ten different
models with comparable accuracy were identified (cf. Table E.4 in Section E.1.2
of the Appendix). Each of these model candidates includes at least one polarity
parameter of solvent and solute, as well as one size parameter of the solute, while
the particularly selected property parameter of these groups differs. As indicated
by the experimental data (Section 5.4.1) and mentioned by Thiermeyer et al. [78],
for the group of moderately polar solvents, both size and polarity of the solute is
crucial, since solutes with equal molecular weights as well as solutes with comparable
polarity like the alkanes differ in their measured rejections. Moreover, a significant
influence of the solvent is observed, which in this case is considered by polarity
parameters, since the size of the solvents does not differ significantly. Taking the
Akaike weights into account, the model with the highest fitness is indicated to be
the most suitable one among these ten model candidates by an Akaike weight of
98.8%. Hence, this model is selected for more detailed discussion.
The parameters of the best model in terms of accuracy

R4
m,i = −0.0173·δh,i·∆δM,i+0.003·∆δM,i·Pols−0.181·Vm,i

Ms

+0.044·δh,i+0.004·Mi−0.434,
(8.2)

are determined precisely (cf. Table E.3 in Section E.1.2 of the Appendix), which is
another advantage of this model compared to the best model determined for a tree
depth of three. Model R4

m,i shows a mean and maximum absolute deviations of less
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than 4% and 10% respectively. The resulting model correlates the Hansen solubility
parameter δh,i of the solute accounting for hydrogen bonds, the difference between
the Hildebrand parameters of the membrane and the solute ∆δM,i the molecular
mass Mi and the molar volume Vm,i of the solute, as well as the Polarity Pols and
the molar mass Ms of the solvent and six fitting parameters. The model is more
complex than R3

p,i and accounts for both size and polarity properties of the solute
and the solvent.

Non-polar solvents
In ten consecutive runs for non-polar solvents with a tree depth of three only two dif-
ferent models with comparable fitness were identified (cf. Table E.6 in Section E.1.3
of the Appendix). Both models include the size of the solute as an influencing fac-
tor, but differ in the remaining incorporated properties, which complies again with
the experimental results, revealing a strong correlation of solute size and rejection.
However, the rejection of the same solute differs for different solvents, indicating
an influence of the solvent as well. While the model with the best fitness includes
the molecular weight of the solvent, the dispersive Hansen solubility parameter of
the solvent is included in the second-best model. Since both properties account for
the difference of the solvents, the method is not able to distinguish between these
properties due to the empirical character and one out of these options is selected
based on the effect on the fitness, although this does not necessarily have to cor-
respond to the underlying physical effect. In this case, both the molecular weight
and the dispersive Hansen solubility parameter of the solvent are indicated as useful
properties to characterize the difference of the solvents.
The Akaike weights identify the model with the best fitness to be the most suitable
one with a probability of 63.8%. Moreover, the second-best model lacks in terms of
parameter precision. Hence, the most promising model with a maximum tree depth
of three

R3
np,i = 0.0021 · ρi · deq,i − 0.0004 · Vm,s · δi − 0.744 (8.3)

is discussed in detail. This model shows high parameter precision and mean and
maximum absolute deviations of less than 5% and 15% respectively (cf. Table E.5 in
Section E.1.3 in the Appendix). The model is of similar complexity than R3

p,i, while
correlating the density ρi, equivalent molecular diameter deq,i and the Hildebrand
solubility parameter δi of the solute with the molar volume Vm,s of the solvent. Thus,
both size and polarity of the solute are considered, while solvent size is accounted
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for as well. As illustrated in Figure 8.4, the data is more scattered compared to
the results of polar and moderately polar solvents. However, except for one data
point, all deviation between 10% and 14% are allocated to the solvent heptane,
indicating that the solvent properties might not be represented well enough. Al-
though, increasing the tree depth to four did not result in a more accurate model
(cf. Table E.5 in Section E.1.3 in the Appendix).

Evaluation of non-linear parameter models
The results for models with non-linear parameter relations are summarized in detail
in Table E.7 and E.8 in Section E.1.4 in the Appendix. For polar and non-polar
solvents the best identified models were exactly the same as determined considering
only linear parameter relations (cf. R3

p,i and R3
np,i). This was confirmed in ten and

five consecutive runs for these solvent groups. For the groups of moderately polar
solvents, the consideration of non-linear parameter relations did not result in an
improved model, but rather resulted in an alternative model with similar accuracy
to model R4

m,i in terms of mean and maximum absolute deviation (3.8% and 10.5%),
including five linear parameters, rather than the six fitting parameters

RNL,4
m,i = 0.011 ·Mi−0.001 · γi

δp,i
−4.155e−4 ·∆δM,s ·Vm,i−1.441e−4 ·Rai ·Ms−0.052

(8.4)
However, the confidence intervals of the different parameters indicate that at least
two of the five parameters cannot be identified precisely from the available data.
Besides the number of empirical parameters, the models differ in the incorporated
solvent polarity parameter. Both models include the molar mass of the soluteMi and
solvent Ms and the molar volume of the solute Vm,i. Additionally, in model R4

m,i the
Hansen solubility parameter for hydrogen bonds of the solute, the difference between
the Hildebrand parameter of the membrane and the solute and the polarity of the
solvent are included, while model RNL,4

m,i incorporates the polar Hansen solubility
parameter δp,i, the interaction radius Rai and the surface tension γi of the solute, as
well as the Hildebrand solubility parameter ∆δM,s of the solvent. Hence, both models
share a decisive dependency on polarity parameters, while the specific parameters
differ for both models. Consequently, it may be argued that the experimental data
is reflected approximately equally well by different model candidates, considering
the same property groups, but different property parameters.
As already reported for model development of pure and mixed solvent flux in the
previous chapter the evaluation of non-linear parameter relations results in a signif-
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icant increase in computational effort, requiring 2 to 16 h depending on the data set
and tree depth, instead of an average 2min, required for the evaluation of models
with only linear parameter relations. As the results of the exemplary runs for non-
linear parameter relations do not indicate a considerable improvement in terms of
accuracy and parameter precision, the subsequent investigations focused on models
with linear parameter relations only.

Predictions for solvents not included in model development
Model R4

m,i is further evaluated for experimentally determined rejection data for
the solvents acetone and n-butyl acetate, which were not considered at all for model
development. Figure 8.5 illustrates the parity plot for the experimentally determined
and predicted solute rejections in the two moderately polar solvents.
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Figure 8.5: Calculated vs. experimental rejection of the solutes in the solvents
acetone and n-butyl acetate using model R4

m,i

While the deviations are slightly higher compared to the results for the solvents ethyl
acetate and methyl ethyl ketone, which were considered for model development, the
mean deviation is still below 8% and a deviation of 15% is never exceeded. Hence,
the predicted rejections in different solvents, not included in the data sets for model
development are in excellent agreement with the experimental data, proving the
applicability of the model for predictions.

Development of a solvent independent solute rejection model

While the rejection models for the polarity-based solvent classes show very good
performance, a solvent-independent model would of course allow for a broader ap-
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plication. For this purpose, the model development methodology was applied to an
extended data set for all considered solvents, performing ten runs with a maximum
tree depth of four and five, allowing for more complex correlations. For both tree
depth nine different models were identified in ten consecutive runs each (cf. Ta-
ble E.10 and E.11 in Section E.1.5 in the Appendix). Regardless of the tree depth,
each model includes at least parameters characterizing the size of the solute and
the polarity of both solvent and solute, which matches the combined results for the
three solvent groups. Considering only models with tree depth of four, the model
with the best fitness is the most suitable one with a probability of 100%, while for
a tree depth of five the model with the best and second-best fitness is rated with a
probability of 71.9% and 28.1% to be the most suitable one respectively.
The best model candidates according to the AIC were further evaluated based on
their mean and maximum absolute deviation, with respect to training and test data,
as well as parameter precision. Although the best model in terms of accuracy for
a tree depth of five did not provide sufficient parameter precision, the second-best
model did provide considerable smaller intervals, while still resulting in comparable
a mean and maximum absolute deviation (cf. Table E.9 in Section E.1.5 in the
Appendix). Thus, the second best model is evaluated further. The most promising
model candidates determined for a tree depth of four

R4
all,i = −2.457e−7 ·(γi−Ms) ·Vm,s ·Mi+0.002 ·δd,i ·γs+0.011 · ~di ·δp,s−0.912 (8.5)

and five

R5.2
all,i =

~ds
∆δM,s

· (0.085 · εs+2.085e−4 ·ρi · ~di)+0.606 · Mi

Vm,s · εs
+0.024 ·∆δM,i−0.295

(8.6)
are rated almost equivalent in terms of mean (ε̂ ≈ 8.2% and 8.7%) and maximum
absolute deviation (εmax ≈ 35% and 30%), whereas the more complex correlation
enables an improved AIC value. The resulting model statistics are listed in more
detail in Table E.9 in Section E.1.5 in the Appendix. Both models account for the
molecular weight Mi of the solute, the dipole moment ~di of the solute and the molar
volume Vm,s of the solvent. Model R4

all,i, however, also includes the surface tensions
of the solute γi and solvent γs, the molar mass of the solvent Ms, as well as the
dispersive Hansen parameter of the solute δd,i and the polar Hansen parameter of
the solvent δp,s. While considering the same number of property parameters, model
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R5.2
all,i includes the difference of the Hildebrand parameter of solute and membrane

∆δM,i, as well as solvent and membrane ∆δM,s, the dielectric constant εs and the
dipole moment ~ds of the solvent, as well as the density of the solute ρi.
While presenting much more complex correlations, model R4

all,i and R5.2
all,i have a

comparable number of fitting parameters as the solvent-dependent models R3
p,i, R4

m,i

and R3
np,i.

However, as expected an extended applicability to a wider solvent space, comes
at the cost of a reduced accuracy. As indicated by the parity plots in Figure 8.6,
both models allow for good approximations for solute rejections. For both models
≈ 70% of the model predictions deviate by less than 10% and more than 90% of
the calculated rejection values do not differ more than 20% from the experimental
values.
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Figure 8.6: Calculated vs. experimental rejection of all solutes in each solvent
using model R4

all,i (left) and model R5.2
all,i (right)

As both models do reflect the effect of solvent properties, the predicted solute re-
jections for the solvents acetone and n-butyl acetate, are expected to deviate from
the previously derived model R4

m,i. This deviation is illustrated in the parity plots
in Figure 8.7 (compare with Figure 8.5). While there is a distinct tendency of the
model R4

all,i to over- and underestimate the solute rejection depending on the sol-
vent, the model predictions of model R5.2

all,i are considerably more accurate, showing
a mean deviation of 7.2% and deviations of generally less than 15%. Hence, the
predictions for the additional solvents using model R5.2

all,i are as accurate as using
model R4

m,i derived based on only one solvent group.
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Figure 8.7: Calculated vs. experimental rejection of the solutes in the solvents
acetone and n-butyl acetate using model R4

all,i (left) and model R5.2
all,i

(right)

8.3.2 Prediction of solute rejection in mixed solvents

After showcasing the potential of the data-based modeling approach to derive models
for solute rejection in pure solvents, the capability of deriving models for mixed
solvents is investigated. The investigation is based on the rejection data published
by Schmidt et al. [65] that covers solute rejection in isopropanol, toluene and hexane,
which are considered as polar and non-polar solvents [78]. At first the generation
of a more general solute-independent model is considered, before the potential of
more accurate predictions by means of solute-specific models for the ternary solvent
system is evaluated.

Development of solute-independent rejection models

In order to derive the data-based model, the available experimental rejection data
is subdivided into training, test and validation data. It is important to note that
only rejection data for pure solvents and equimolar binary solvent mixtures was
considered for training data set, as illustrated in Figure 8.1. The remaining binary
mixtures were allocated to the test data set. Based on the evaluation of different tree
depths, a tree depth of four is deemed as preferred choice, resulting in significantly
improved accuracy compared to model candidates derived for a tree depth of three.
In ten consecutive runs for a tree depth of three, three different models were identi-
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fied, all of which include the difference of the Hildebrand parameters of membrane
and solvent ∆δM,i and at least one additional solvent and solute polarity parameter
each (cf. Table E.13 in Section E.2.1 in the Appendix). Hence, both solvent and
solute polarity is taken into account in each model with a tree depth of three for the
data set of mixed solvents. This complies with the model with a tree depth of four
(cf. Table E.14 in Section E.2.1 in the Appendix). However, besides solvent and
solute polarity, most of the models with a tree depth of four additionally incorporate
a property parameter for the solvent size. Due to a higher tree depth and hence
more available nodes in the tree, more complex models can be considered, in which
additional effects like the solvent size can be included. Moreover, only half of these
models include the difference of Hildebrand solubility parameters of the membrane
and the solvent. The reason for this may be the statistical character of the method,
but also the fact that, due to the higher complexity, the influence of solvent polarity
is similarly well covered with other polarity parameters. On the other hand, trees
with a higher depth also offer more possibilities for combining property parameters,
which in this case led to ten different models with comparable fitness being found
in ten runs. The considerable higher fitness of the models with a tree depth of four
compared to the models with a tree depth of tree indicate the value of including
these parameters in the models.
Moreover, the results are consistent with the results of Schmidt et al. [65] for the
influence of the solvent and solute polarity, but not for the solute size. Only a few
model candidates include the solute size as an influencing factor, while Schmidt et al.
[65] observed a correlation between the solute size and the rejection, which was not
completely independent of solvent polarity and of varying significance for the solutes
and solvent mixtures. By combining the observations of Schmidt and the results for
different model candidates, it is apparent that the influence of solvent and solute
polarity either clearly predominates or that there is a correlation between solute
polarity and size, thus no consideration of the solute size as an additional property
is necessary.
While for a tree depth of three the Akaike weights do not clearly indicate one model
to be favorable (probability of 47.1% of the best model and 31.9% for the second
best model), the best model found with a tree depth of four is indicated to be the
most suitable one among the models with the same tree depth with a probability
of 99.9%. Table E.12 in Section E.2.1 in the Appendix presents a more elaborate
overview of the according model statistics.
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Overall, the model

R4
t,i = −2.582· εs

δh,i
+3.721· Rai

Pols
+178.395·

~ds
ηs

+686.443·deq,s−0.083·Vm,s−511.291

(8.7)

is evaluated as most promising. Model R4
t,i includes six fitting parameters and corre-

late a range of solute and solvent properties, including different solubility parameters
as well as size related properties. While the correlation appears comparable com-
plex, compared to the models derived in Section 8.3.1, the calculated rejections are
in excellent agreement with the reported experimental data. As illustrated in the
parity plot in Figure 8.8 the majority of the calculated rejections does not exceed
an absolute deviation of 10%, while even for the remaining data points deviations
are always below 20%.
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Figure 8.8: Calculated vs. experimental rejection of all solutes in ternary solvent
mixtures of isopropanol, toluene and hexane using model R4

t,i

The developed model further enables the prediction of the MRM introduced by
Schmidt et al. [65]. This is illustrated exemplarily in Figure 8.9 for the rejection
data of HMN. The top left diagram in the figure illustrates the MRM, based on
smoothing and interpolating the measured rejections in the ternary system, while
the top right diagram illustrates the predicted MRM, based on the developed model
R4
t,i, which is based solely on the rejection data obtained for pure and equimolar

binary solvent mixtures. As highlighted by the third ternary graph on the bot-
tom of Figure 8.9, the differences are mostly negligible. Similar illustrations of the
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MRM for the remaining solutes are provided in Section E.2.1 in the Appendix. The
derived data-based model does not only allow for remarkably accurate predictions
of the experimentally determined rejections in the mixed solvent system, but also
incorporates well identifiable parameters with respect to the confidence intervals.
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Figure 8.9: MRM for HMN, according to smoothing and interpolating of the mea-
sured rejections in the ternary system (top left) and model predictions
of R4

t,i (top right), as well as absolute difference between both MRM
(bottom).

Development of solute-specific rejection models

In order to evaluate the potential improvement in terms of model accuracy and pa-
rameter precision that may be achieved by a limitation of the validity range, solute-
specific models were derived for the solute-specific experimental data. While this
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limitation does of course reduce the range of applicability of the derived models, it
offers the possibility to evaluate the potential improvement in terms of accuracy and
potential simplicity, by considering a maximum tree depth of only three requiring
fewer fitting parameters that are determined with narrow confidence intervals.
Including all identified models of ten runs for each solute in a subsequent evaluation
of the included effects and parameters shows, that the main effect in these models is
the solvent polarity and in some models the size of the solvent molecules is included
as well (cf. Table E.16 to E.20 in Section E.2.2 in the Appendix). The specific
property parameters for solvent polarity or size varies for the different models. Since
the models are solute-specific, solute parameters are equivalent to constants in the
generated models. While they are still considered as potential descriptors for model
development, they do not have a considerable impact on the quality of the generated
models.
While the best model for each solute is identified based on both fitness and parameter
precision, the selected model always reflects the best fitness, except for TPP. For
TPP the models with the best and second-best fitness show insufficient parameter
precision and hence, the third best model is selected as the most promising one.
The corresponding model candidates for the remaining solutes are summarized in
Table E.15 in Section E.2.2 in the Appendix.
The results are further discussed based on the most promising model identified for
HMN

R3
HMN = −0.293 · (δp,s −∆δM,s) · ~ds · γs + 61.884. (8.8)

Model R3
HMN includes only two fitting parameters and correlates the difference of

the Hildebrand parameters of solvent and membrane ∆δM,s and the polar Hansen
solubility parameter δp,s of the solvent with the Dipole moment ~ds and surface ten-
sion γs of the solvent. Comparing the effects included in model R3

HMN , R4
t,i and

the remaining model candidates for HMN (cf. Table E.16 in Section E.2.2 in the
Appendix), it becomes apparent that each model includes at least the solvent polar-
ity by incorporating at least to different solvent properties. Moreover, four model
candidates of the solute-specific models include solute properties, which are similar
to constants as discussed above. The solvent size is only included in the two solute-
specific models with the lowest fitness and the model R4

t,i, but not in model R3
HMN ,

which leads to the conclusion that this effect is less prominent here.
While the model is much simpler compared to R4

t,i, the potential improvement for
the prediction of the MRM, illustrated in Figure 8.10, is limited, since the solute re-
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jection predicted by model R4
t,i was already in good agreement with the experimental

data.
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Figure 8.10: MRM for HMN, according to smoothing and interpolating of the
measured rejections in the ternary system (top left) and model pre-
dictions of R3

HMN (top right), as well as absolute difference between
both MRM (bottom).

As illustrated by the resulting statistics and the MRM illustrations in Table E.15
and Figure E.5-E.8 of Chapter E in the Appendix, similar results are obtained when
generating solute-specific models for the other four solutes. The restriction to a
specific solute allows for a slightly improved model accuracy, based on the reduced
data set, as well as improved parameter precision, but at the cost of a limited
validity range. In general, it can be concluded, that the presented approach allows
for the derivation of either simplified solute-specific, as well as more general solute-
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independent correlations for solute rejection, which enable an appropriate prediction
of the solute rejection in the ternary mixed solvent systems, building only on the
rejection data in pure solvents and equimolar binary solvent mixtures. Thus, the
model development approach presents an excellent tool to derive the MRM presented
by Schmidt et al. [65] with significantly reduced experimental effort.

8.4 Conclusion

While several correlations have been proposed for the prediction of solvent flux and
various studies have addressed the analysis of prominent physicochemical properties
that affect the rejection of solutes in organic solvent nanofiltration, no correlations
for solute rejection modeling have been proposed so far. Building on the previous
chapter for the automatic derivation of data-based models for pure and mixed solvent
flux (Chapter 7), which outperformed previously proposed general phenomenological
models in respect to model accuracy and parameter precision, the current chapter
illustrated the possibility to derive appropriate correlations for solute rejections.
The derived models accurately describe and predict solute rejections solved in pure
solvents with various polarities. Constraining the range of application to solvent
groups with consistent topology, as proposed by Thiermeyer et al. [78], allows for
further increased model accuracy, while resulting in less complex correlations, in-
dicating varying dominating transport mechanisms for the different solvent classes.
The application of the model-development approach for solute rejection in mixed
solvent systems further enables the prediction of membrane rejection maps [65],
building solely on the rejection data in the pure solvents and equimolar binary sol-
vent mixtures.

145





9
Conclusion and Outlook

To reduce the energy consumption in separation processes, it is essential to consider
separation techniques that offer great potential for energy savings. These methods
also include pressure driven membrane processes, such as organic solvent nanofil-
tration. However, in early stage of process design OSN is only rarely considered,
due to still existing limitations. In order to overcome current limitations to some
extend this thesis provided progress on the quantification and evaluation of the
uncertainty related to experimental characterization of membrane performance in
OSN and modeling of flux and rejection as well as the potential prediction of these
quantities based on known experimental data for different chemical systems.
An elaborate evaluation of pure solvent flux measurements allowed for the first
statistically valid quantification of the material-based uncertainty related to lab-scale
measurements and the derivation of a minimal sample size for reliable quantification
of solvent flux. The results indicated that the mean flux through the membrane
estimated based on lab-scale data is an accurate approximation of the flux through
an industrial scale module and provides additional information on the variance of the
flux compared to an experimental investigation only based on the module. Based on
a statistical evaluation of the experimental data a reasonable minimal sample size
of four membrane samples was indicated to result in reliable estimations of the flux.
While it has to be noted that these results are specific for the considered mem-
branes and the size of the samples, the validation case studies support the derived
recommendations. Although larger membrane samples can of course reduce the
necessary sample size, the derived recommendations, based on the investigation of
commercially produced membranes and appropriately selected solvents, should be
considered as a best-case approximation. Considering the potential variations, the
use of an appropriate number of samples in order to derive information on the stan-
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dard deviation and allow for an estimation of the confidence intervals is generally
recommended and easily possible in a single experimental run in common lab-scale
set-ups offering multiple membrane cells. In future studies, the transferability of
the minimum sample size found in this thesis to other membrane types and the
comparability with commercial modules is of additional interest and may provide
further insight into the influence of variations in membrane material during lab-scale
experiments.
Further, the application of a standardized experimental procedure developed in a
collaborative study with multiple partners enabled the comparability of experimen-
tal data within the range of the experimental error and the fluctuations caused by
variations in the membrane material. This pointed out the transferability of experi-
mental results to different facilities and hence, the possibility to combine the results
in one large database. An expansion of the database in future studies is highly
recommended in order to develop a global database for various membranes, solvents
and solutes, which can be used as a basis for model development as well as for initial
feasibility studies. The additionally performed evaluation of the influence of uncer-
tainty information on process analysis and membrane selections demonstrated the
importance of the consideration of this information.
Subsequently, the examination of the influence of the experimental uncertainties on
modeling results of six different mass transfer models based on experimental data
from literature, which were determined using common, non-standardized methods,
revealed that none of the models was superior to the others taking into account
the accuracy of the representation of experimental data and the uncertainties of
the parameters. Hence, no clear recommendation for one of the models could be
given. However, this clearly points out the effect of uncertainties in parameter
regression on the model results and hence, in future studies, the precision and iden-
tifiability of the parameters should therefore always be taken into account, as these
can strongly influence the model results and thus also predictions for other process
conditions. An improvement in the accuracy by considering more complex models
is conceivable in future studies if additional experimental data at further pressure
levels are available. Moreover, the additional experimental data points as well as
sorption or diffusion experiments could result in an increasing parameters precision,
which should be investigated in future studies. However, model reduction should
always be considered in cases of non-identifiable parameters. To enable predictions
of flux and rejection, in the second part of this thesis a method to automatically
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develop membrane-specific, predictive models was proposed. Comparing the newly
developed models for solvent flux with existing models from literature based on
accuracy and the parameter uncertainties, the results clearly indicated the poten-
tial of these membrane-specific models, which in all case studies outperformed the
existing models. Extending the method to solute rejection, a prediction of the rejec-
tion in different solvents was possible but required a complex model structure, while
solvent-dependent or solute-dependent models were less complex and more accurate.
While the results showcase the potential of the developed method to automatically
derive membrane-specific correlations for solvent flux and solute rejection, in pure
and mixed solvent systems, the application should always be pursued with appro-
priate caution, as data-based models can only reflect dependencies that are depicted
by the underlying data. Consequently, phenomenological models derived from phys-
ical reasoning, such as the model of Marchetti et al. [2], are more likely to provide
reliable extrapolation for molecules that are not representing interpolations of the
initially considered data set. However, the presented method is able to automati-
cally derive different model structures and discriminate between potential molecular
descriptors, based on the available data, covering effects that have not been included
in the fixed model structure of the phenomenological models. Furthermore, the con-
sidered molecular descriptors are much easier retrieved, compared to properties like
surface tension and polarizability considered by Marchetti et al. [2].
An improvement of the methodology is conceivable in the future by parallelizing the
parameter optimization for the model candidates, especially with regard to nonlinear
parameters. Further, the consideration of other parameters and descriptors based on
quantum chemistry or thermodynamic models to describe the interactions between
membrane, solvent and solutes might enable more accurate predictions. Further-
more, additional experimental data should be utilized in order to improve them and
expand the applicability of the models. While a variety of literature studies report
membrane performance data that can be exploited for model development, it can
be assumed that even more data is available at membrane manufacturers, which
frequently test the performance of their membranes for customer requests. Hence,
membrane manufacturers are probably the most appropriate user of such a tool.
Building a database of membrane-specific models enables a quick estimation of the
feasibility of a membrane for a specific separation task and brings organic solvent
nanofiltration membranes one step closer to a regular consideration in conceptual
design studies.
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A
Superstructure optimization of
process concepts

A.1 Method

In order to elucidate the effect of uncertainties of flux and rejection measurement on
subsequent process design, two different case studies were investigated using a super-
structure optimization approach. The superstructure represents a so-called state-
space approach [138] and builds on a previous implementation for the optimization
of reverse osmosis processes for seawater desalination [139]. Similar superstructures
have been used for the optimization of gas permeation processes for natural gas
upgrading [140] and nitrogen removal from natural gas [141]. An illustration of the
superstructure, which consists of a generic distribution network and a number of
OSN membrane stages is provided in Figure A.1.
The distribution network allows distribution of the entering streams, which are the
overall feed stream and all product streams from the membrane stages to all out-
going streams that are the feed streams of the OSN stages and the final permeate
and retentate product streams. Thereby any kind of combination between the dif-
ferent membrane stages is possible. For splitters mass balances are used, while for
mixers mass and component balances are utilized. Furthermore, a total mass and

Parts of this chapter have already been published in:
A. Böcking, V. Koleva, J. Wind, Y. Thiermeyer, S. Blumenschein, R. Goebel, M. Skiborowski,
M. Wessling, Can the variance in membrane performance influence the design of organic solvent
nanofiltration processes?, Journal of Membrane Science 575 (2019), pp. 217-228
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Final Permeate

Final Retentate

Feed

Mixer

Splitter OSN-stages

Feed

Splitter
Final Permeate
Final Retentate

Mixer OSN-Stages

Figure A.1: Superstructure for membrane network optimization.

component balance between the feed and the final permeate and retentate is consid-
ered. The performance of each membrane stage is modeled based on the available
performance metrics from the experimental data, which are an overall flux as well
as solute-specific rejection. Furthermore, a concretization of the membrane stage
in terms of 100 finite elements is performed to account for the composition changes
along the membrane length. The permeate flux of each discrete is calculated as
follows:

ṁP
discrete = AM,stage

Ndiscretes

· Jtot (A.1)

The retentate stream of each discrete is calculated based in mass balances. The con-
centration of each component in the retentate of the discrete is determined based on
component balances, taking into account the rejection of the components. Further,
the feed of each membrane discrete corresponds to the retentate of the previous
discrete, except for the first discrete, where the feed of the discrete corresponds to
the feed of the stage. The permeate of each stage is finally calculated based on the
feed and the retentate of the stage, again by utilizing mass and component balances.
However, a constant performance in terms of the experimentally determined values
is assumed and concentration polarization and pressure drop are neglected, since
no information on module geometry and hydrodynamics is considered. Operating
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A Superstructure optimization of process concepts

temperature and pressure are also fixed to the experimental conditions, such that
only the membrane area remains as a degree of freedom for every membrane stage.
For the current study, a maximum membrane area of 50m2 per stage and a total of
three possible stages was considered. Further constraints for optimization are that
the membrane area decreases gradually in successive stages as well as the feed of
each stage. The objective of the optimization is to perform a specific separation, in
terms of purity and recovery constraints depending on the separation task, with a
minimum number of membrane stages and membrane area. The objective function,
which is minimized, is therefore as follows:

Atotal =
Nstage∑
i=1

AM,stage +Nstages (A.2)

The superstructure optimization model is implemented in the general modeling
framework GAMS as a mixed integer nonlinear programming problem (MINLP).
The discrete decisions account for the existence of the different membrane stages,
for which additional Big-M constraints enforce a minimum feed flowrate for existing
membranes, while further constraints introduce additional cuts in order to eliminate
topologically equivalent solutions by enforcing a specific order on the available mem-
brane stages [139]. This is important to avoid multiplicity of equivalent optima in the
solution space, which severely complicate global deterministic optimization. The re-
sulting MINLP problem is solved using the global deterministic solver ANTIGONE
in order to determine the best possible solution. In order to evaluate the effect of the
extend of uncertainty related to the experimentally determined performance metrics,
different scenarios are evaluated with the superstructure optimization approach con-
sidering a sampling within the ranges of the determined confidence intervals around
the estimated mean values.

A.2 Case Study 2 - separation of impurity

As a second case study a separation step of two solutes solved in ethanol was chosen.
The solute size equals 474 and 1098 gmol−1. The smaller solute is assumed to
be the product while the bigger solute represents an impurity. The feed contains
0.05 g g−1 of the product and 0.003 g g−1 of the impurity while the flow rate is set to
100 kg h−1. The final permeate needs to contain at least 98% of the product and the
concentration of the impurity in the permeate needs to be lower than 0.001 g g−1.
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For this case study the experimental values determined with the PDMS membrane
and the mixture of ethanol with styrene oligomers are used. For this system the flux
at 30 bar was experimentally determined to be 4.925Lm−2 h−1 ±0.331Lm−2 h−1.
The rejection of the styrene oligomer with a molecular weight of 474 gmol−1 equals
−11.8% ±6.6% and the rejection of the styrene oligomer with a molecular weight
of 1098 gmol−1 equals 88.2% ±6.2%. Compared to the first case study the flux is
much smaller and additionally the experimentally determined confidence intervals
were broader. The optimal process configuration was again determined using the
means of the flux and the rejections but also for various combinations of the mean
and the upper and lower limits of the confidence intervals. Overall, 27 different
combinations of flux and rejections were evaluated. A summary of the results for
these combinations are listed in Table A.1. Moreover, for three combinations the
optimal process structure is shown in Figure A.2.

[git] • Branch: master @ 4da6205• Release: -(2019-06-04)
Head tags: (None)
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Figure A.2: Process structure for three combinations in case study 2

Considering the mean values of flux and rejection, the desired purity of the product
is achieved using a single stage set-up with a recycle of 17% of the permeate which
is a rather simple set-up. Further the optimal process configurations for worst and
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best combination of flux and rejection values are shown in Figure A.2 (top left).
These combinations do not correspond to the combination of lower and upper limits
of flux and rejection. The separation task is less complex for a high flux and high
rejection of the impurity, whereas the rejection of the product is low. The optimal
process configuration for this combination of flux and rejection values is shown in
Figure A.2 (top right) and only a single stage without any recycle is sufficient in order
to achieve the purity of the product. In comparison the process structure becomes
very complex taking into account the worst combination of flux and rejection values,
which are a low flux and a low rejection of the impurity while the rejection of the
product is closer to zero (cf. Figure A.2 bottom). Moreover, the necessary membrane
area ranges from 23.231 to 47.849m2. Hence, determining the feasibility of an OSN
process is hard to determine taking into account the uncertainty of the experimental
values.
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Table A.1: Results for case study 2

Flux Rejection Nr. stages Membrane area
Lm−2 h−1 product impurity m2

4.59 −18.4% 82.0% 2 47.342
4.59 −18.4% 88.2% 1 28.970
4.59 −18.4% 94.4% 1 26.559
4.59 −11.8% 82.0% 2 50.616
4.59 −11.8% 88.2% 1 32.272
4.59 −11.8% 94.4% 1 26.730
4.59 −5.2% 82.0% 2 47.849
4.59 −5.2% 88.2% 1 36.519
4.59 −5.2% 94.4% 1 26.886
4.93 −18.4% 82.0% 2 44.154
4.93 −18.4% 88.2% 1 27.034
4.93 −18.4% 94.4% 1 24.784
4.93 −11.8% 82.0% 2 30.801
4.93 −11.8% 88.2% 1 30.115
4.93 −11.8% 94.4% 1 24.943
4.93 −5.2% 82.0% 2 31.820
4.93 −5.2% 88.2% 1 34.078
4.93 −5.2% 94.4% 1 25.089
5.26 −18.4% 82.0% 2 41.407
5.26 −18.4% 88.2% 1 25.340
5.26 −18.4% 94.4% 1 23.231
5.26 −11.8% 82.0% 2 44.240
5.26 −11.8% 88.2% 1 28.228
5.26 −11.8% 94.4% 1 23.381
5.26 −5.2% 82.0% 3 48.400
5.26 −5.2% 88.2% 1 31.943
5.26 −5.2% 94.4% 1 23.517
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B.1 Solvent mixtures

Additionally, the flux of solvents mixtures using one of the membranes were de-
termined using a different experimental set-up and procedure as described in Sec-
tion B.1.1. In experimental series with mixed solvents no solutes were used and
hence, no rejection was determined. However, the composition of the permeate was
determined using gas chromatography (Section B.1.2).

B.1.1 Experimental procedure

The permeate fluxes of the solvent mixtures are determined using the METcell
CrossFlow System of Evonik Resource Efficiency GmbH [142]. Within a larger
study, the plant was classified as comparable to a larger laboratory plant [16]. The
experimental set-up is illustrated in Figure B.1.
The system includes a feed mix reservoir that holds a maximum volume of 800mL
[142]. The design of the METcell CrossFlow system allows batch experiments using
up to six different membrane cells. Four METcells with a size of 2.5′′ and an active
membrane area of 14 cm2 were used for measurements with solvent mixtures. A
solvent-stable gear pump circulates the feed mixture with a constant volume flow

Parts of this chapter have already been be published in:
R. Goebel, T. Glaser, M. Skiborowski, Machine-based learning of predictive models in organic
solvent nanofiltration: Solute rejection in pure and mixed solvents, Separation & Purification
Technology 248 (2020), pp. 117046
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Figure B.1: Illustration of the METcell CrossFlow System

of 60 Lh−1 (based on a solvent with a viscosity of 0.6mPa s). The pressure in the
plant is applied by means of nitrogen, which is adjusted using a pressure regulator.
A maximum pressure of 69 bar is permissible for the METcell CrossFlow system.
The feed mixture flows across the membrane cells (METcells) arranged in series and
is recirculated as retentate into the feed tank. Each METcell is equipped with a
permeate outlet at which the permeate can be collected separately for each cell. In
addition, there is a tap behind the pump which can be used to drain the feed mix-
ture if required. Since the permeate is not recirculated, this design is less suitable
for experiments with solutes, as the feed conditions change continuously without
permeate recirculation. However, this system offers the advantage of investigat-
ing several membrane samples in a single experiment and, at the same time, the
required quantities of solvent are lower than in the system used for the rejection
measurements.
As solvents ethanol, ethyl acetate and n-heptane are used as pure solvents as well
as binary and ternary mixtures. The compositions of the solvent mixtures used are
shown in Figure B.2. A total of twelve binary and six ternary mixtures are used.
The experiments are performed in the order given in Figure B.2, starting with pure
ethanol.
Prior to the start of the experiment, samples of the PuraMem R© S600 are cut to the
appropriate size and built into the METcells. Subsequently, the solvent or solvent
mixture is filled into the feed tank, the pump is started and the tank is closed. The
system is supplied with nitrogen via the pressure control valve and a pressure of
30 bar is applied. The pressure is constantly monitored and readjusted during the
experiment. The temperature in the system corresponds to the ambient tempera-
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Figure B.2: Compositions of the solvent mixtures

ture of 25 ◦C. First, the membrane is rinsed until approximately 85mL of permeate
per cell is collected to remove conservatives. This permeate is discarded. After rins-
ing, the system is filled with 700mL fresh solvent and the system is restarted. The
permeate is collected over the entire duration of the test and the flux is determined
gravimetrically. Once the flux in each cell is constant, the system reached steady
state and samples are taken from all permeates and the feed. When changing to a
new solvent mixture, the plant with the membrane samples of the previous measure-
ment is first rinsed twice with 200mL of the new mixture before the new membrane
samples are installed.

B.1.2 Analytical methods for solvent composition

The weight fractions of the different solvents in a solvent mixture are determined
by gas chromatography. The gas chromatograph GC-14B of the company Shimadzu
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Europa GmbH is used for this purpose, which is equipped with a liquid auto sam-
pler, flame ionization detector (FID) and a capillary column FS Supreme 5ms-HT.
The column length was 30m, the inner capillary diameter is 0.32mm and the film
thickness of the stationary phase is 0.25µm. The mobile phase is formed by helium
as carrier gas. Each sample was prepared for analysis in vials containing 0.8 g of
the sample and 0.4 g of the internal standard dibuthyl ether. The injection volume
of 0.5µl was chosen and a split ration of 1:90 was applied. The temperature of the
detector is constant at 280 ◦C and the injector is operated at 250 ◦C. During analysis
a temperature program is applied. The column is first heated to a temperature of
70 ◦C, which is maintained for two minutes. The column is then heated to a tem-
perature of 90 ◦C at a constant rate of 10 ◦Cmin−1, which is kept constant for one
minute. Each analysis is repeated three times and the concentration of the sample
is evaluated based in the mean of the analyses and a calibration curve.

B.1.3 Experimental results

Figure B.3: Flux of the solvent mixtures of ethanol, ethyl acetate and n-heptane
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Table B.1: Flux of ternary solvent mixtures of ethanol (EtOH), ethyl acetate
(EtAc) and n-heptane (Hep) using the PuraMem R© S600 membrane
at 30 bar and the corresponding compositions of the feed and permeate
as determined by gas chromatography

Mass fraction feed Mass fraction permeate Flux/Lm−2 h−1

EtOH EtAc Hep EtOH EtAc Hep
1 0 0 1 0 0 10.07
0 1 0 0 1 0 81.45
0 0 1 0 0 1 44.39
0.79 0.21 0 0.76 0.24 0 20.87
0.60 0.40 0 0.56 0.44 0 28.72
0.40 0.60 0 0.37 0.63 0 47.13
0.21 0.79 0 0.19 0.81 0 60.35
0 0.78 0.22 0 0.77 0.23 83.94
0 0.63 0.37 0 0.63 0.37 85.23
0 0.38 0.62 0 0.41 0.59 85.16
0 0.20 0.80 0 0.21 0.79 70.59
0.20 0 0.80 0.17 0 0.83 40.15
0.47 0 0.53 0.29 0 0.71 40.54
0.68 0 0.34 0.49 0 0.51 40.72
0.83 0 0.17 0.78 0 0.22 39.94
0.61 0.20 0.18 0.54 0.22 0.24 32.01
0.43 0.39 0.18 0.36 0.41 0.23 44.62
0.22 0.58 0.20 0.19 0.59 0.21 65.46
0.23 0.40 0.37 0.19 0.41 0.40 65.81
0.42 0.21 0.37 0.32 0.21 0.47 48.41
0.22 0.19 0.59 0.18 0.19 0.62 64.34
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B.2 Experimental Results for pure solvent flux
and rejection
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B Experimental investigation

Table B.8: Flux and rejection of styrene oligomers solved in ethanol using the
DuraMem R© 150, DuraMem R© 200 and DuraMem R© 300 membranes

Ethanol
Membrane Mw / gmol−1 20 bar 30 bar 40 bar

D
ur
aM

em
R ©
30
0

R
ej
ec
tio

n
266 0.86 0.86 0.79
370 0.85 0.86 0.80
474 0.85 0.85 0.79
578 1.00 1.00 1.00
682 1.00 1.00 1.00
786 1.00 1.00 1.00
890 1.00 1.00 1.00
994 1.00 1.00 1.00
1098 1.00 1.00 1.00
1800

Flux / Lm−2 h−1 0.76 0.83 1.07

D
ur
aM

em
R ©
20
0

R
ej
ec
tio

n

266 0.88 0.83 0.88
370 0.89 0.85 0.89
474 0.89 0.85 0.89
578 0.90 0.85 0.89
682 1.00 1.00 1.00
786 1.00 1.00 1.00
890 1.00 1.00 1.00
994 1.00 1.00 1.00
1098 1.00 1.00 1.00
1800

Flux / Lm−2 h−1 6.19 9.08 12.10

D
ur
aM

em
R ©
30
0

R
ej
ec
tio

n

266 0.97 0.96 0.96
370 0.97 0.96 0.96
474 0.96 0.96 0.97
578 0.96 0.97 0.96
682 0.96 0.96 0.97
786 1.00 1.00 1.00
890 1.00 1.00 1.00
994 1.00 1.00 1.00
1098 1.00 1.00 1.00
1800

Flux [Lm−2 h−1] 10.44 13.99 19.52
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C
Discrimination of OSN models

C.1 PuraMem membranes

Additionally to the results presented in Section 6.3, the parameter values of the mod-
els, the corresponding confidence intervals and the eigenvalues for the membranes
PuraMem R© 280 and PuraMem R© S600 used in acetone with α-methyl styrene as
solute are listed in Table C.1 and C.2. The results of the Monte-Carlo simulation
for these data sets are illustrated in Figure C.1 and C.2.
Further, the membranes were used in ACN and toluene with α-methyl styrene as
solute. The determined values for Resnorm, AIC and W of the different models
fitted to these data sets are listed in Table C.3 to C.4. Moreover, the parameter
values of the models, the corresponding confidence intervals and the eigenvalues are
listed in Table C.5 to C.7 and the results of the Monte-Carlo simulation are displayed
in Figure C.3 to C.6.



C Discrimination of OSN models

Table C.1: Parameter values and confidence intervals for PuraMem R© 280 and
PuraMem R© S600 used in Acetone and with α-methyl styrene as solute

PuraMem R© 280 PuraMem R© S600
Model Parameter value CI value CI
SSD P SSD

s 2.22e−7 1.85e−8 5.58e−8 4.68e−8
P SSD
j 4.35e−5 9.73e−6 7.48e−5 6.43e−5

SDIM Lm 2.22e−7 2.01e−8 5.58e−8 2.40e−8
LIM −3.41e−12 1.09e−11 7.97e−12 5.69e−12
Pm 5.15e−5 2.76e−5 2.58e−5 3.10e−5

CSD PCSD
s 7.89 6.01e−1 1.98 1.22
PCSD
j 4.23e−5 8.64e−6 5.65e−5 3.57e−5

DSPF KHP · 109 6.67e−2 1.36e−3 1.68e−2 3.43e−4
rp · 109 5.85e−1 1.01e−1 1.02 1.42e−1

IT Lp 2.22e−7 1.77e−8 5.58e−8 1.25e−8
σ 1.10 4.92e−1 4.61e−1 1.50e−1
Lj 1.66e−5 1.68e−5 7.13e−6 5.93e−6

MS b1 1.61e2 9.88e2 −1.59e7 3.10e10
b2 3.97e−8 3.41e−7 2.32e−6 7.78e−5
b3 1.46e3 4.43e3 2.39e3 5.33e3
Ks 1.45 1.30 −3.38e−1 1.27e1
KMS,j −8.38 2.10e1 1.81e−3 3.56
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C Discrimination of OSN models

Table C.2: Eigenvalues for all models and the for membranes PuraMem R© 280 and
PuraMem R© S600 used in Acetone and with α-methyl styrene as solute

Model EV Nr. PuraMem R© 280 PuraMem R© S600
SSD 1 1.09e8 1.59e7

2 3.48e13 5.84e14
SDIM 1 1.58e7 1.79e7

2 3.09e13 3.44e13
3 7.90e20 1.25e22

CSD 1 2.38e−2 2.38e−2
2 1.34e8 5.50e8

DSPF 1 2.70e6 2.70e6
2 9.58 1.05

IT 1 3.73e−2 2.13e−1
2 4.84e8 7.33e8
3 3.30e13 4.99e13

MS 1 −2.03e−9 1.03e−24
2 1.76e−8 2.00e−9
3 3.04e−4 1.24e−3
4 1.67e3 1.79e4
5 1.55e14 3.32e11

Table C.3: Resnorm, AIC and W of the simple Solution-diffusion (SSD) model,
the solution-diffusion with imperfections (SDIM) model, the classical
solution-diffusion (CSD) model, the Donnan Steric pore-flow (DSPF)
model, the irreversible thermodynamics (IT) model and the Maxwell-
Stefan (MS) model for PuraMem R© 280 and PuraMem R© S600 used in
ACN and α-methyl styrene as solute

PuraMem R© 280 PuraMem R© S600
Model Resnorm AIC W Resnorm AIC W
SSD 0.23 −36.24 2.0% 24.19 38.34 0.0%
SDIM 0.14 −42.03 36.0% 1.63 −2.79 0.0%
CSD 0.06 −56.38 0.0% 0.42 −26.44 0.4%
DSPF 0.22 −37.13 3.1% 1.61 −5.04 0.0%
IT 0.13 −42.90 55.6% 1.10 −9.17 0.0%
MS 0.21 −31.34 0.2% 0.18 −34.20 100.0%
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Figure C.1: Experimental data (provided by Marchetti and Livingston [47]) and
calculated values for flux and rejection for the mixture of acetone
and α-methyl styrene using the PuraMem R© 280, error bars represent
the uncertainty regions determined by Monte-Carlo simulation (no
bars are shown for Maxwell-Stefan model, due to extremely broad
uncertainty regions)

Table C.4: Resnorm, AIC and W of the simple Solution-diffusion (SSD) model,
the solution-diffusion with imperfections (SDIM) model, the classical
solution-diffusion (CSD) model, the Donnan Steric pore-flow (DSPF)
model, the irreversible thermodynamics (IT) model and the Maxwell-
Stefan (MS) model for PuraMem R© 200 and PuraMem R© 500 used in
Toluene and α-methyl styrene as solute

PuraMem R© 280 PuraMem R© S600
Model Resnorm AIC W Resnorm AIC W
SSD 0.05 −59.37 0.0% 0.56 −21.83 0.0%
SDIM 0.02 −71.44 19.4% 0.43 −24.20 0.1%
CSD 1.12 −10.88 0.0% 0.00 0.00 0.0%
DSPF 0.31 −31.18 0.0% 0.66 −19.37 0.0%
IT 0.02 −74.26 79.5% 0.19 −37.29 99.4%
MS 0.03 −65.64 1.1% 0.81 −10.10 0.0%
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C Discrimination of OSN models

Table C.5: Parameter values and confidence intervals for PuraMem R© 280 and
PuraMem R© S600 used in ACN and with α-methyl styrene as solute

PuraMem R© 280 PuraMem R© S600
Model Parameter value CI value CI
SSD P SSD

s 2.14e−7 3.60e−8 1.17e−8 1.30e−7
P SSD
j 3.76e−5 2.19e−5 1.63e−4 1.81e−3

SDIM Lm 2.14e−7 3.84e−8 1.17e−8 1.01e−8
LIM 8.20e−12 2.32e−11 5.07e−12 4.40e−12
Pm 2.19e−5 4.99e−5 1.16e−6 1.37e−5

CSD PCSD
s 1.08e1 1.72 5.92e−1 2.08
PCSD
j 3.73e−5 2.04e−5 4.77e−5 1.68e−4

DSPF KHP · 109 7.27e−2 1.17e−3 3.99e−3 6.35e−5
rp · 109 5.47e−1 5.39e−2 2.89 1.11

IT Lp 2.14e−7 3.82e−8 1.17e−8 6.83e−9
σ 8.95e−1 2.94e−1 1.73e1 1.00e4
Lj 5.45e−6 1.11e−5 8.67e−4 5.04e−1

MS b1 2.40e1 1.09e2 −4.55 1.88
b2 4.16 1.83e1 1.88e3 1.38e3
b3 2.40e1 1.08e2 −4.59 1.91
Ks −4.45e8 1.48e15 1.31e8 6.58e12
KMS,j 3.83e−1 1.27e6 4.49e2 2.26e7
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Table C.6: Parameter values and confidence intervals for PuraMem R© 280 and
PuraMem R© S600 used in Toluene and with α-methyl styrene as solute

PuraMem R© 280 PuraMem R© S600
Model Parameter value CI value CI
SSD P SSD

s 7.71e−8 6.27e−9 7.40e−8 2.26e−8
P SSD
j 5.95e−6 7.96e−7 4.76e−5 1.54e−5

SDIM Lm 7.71e−8 5.71e−9 7.40e−8 2.01e−8
LIM −4.37e−13 6.52e−13 2.59e−12 3.69e−12
Pm 6.81e−6 1.49e−6 3.50e−5 2.05e−5

CSD PCSD
s 1.94 1.72e−1 1.86 4.32e−1
PCSD
j 5.98e−6 8.71e−7 3.92e−5 9.66e−6

DSPF KHP · 109 4.55e−2 2.40e−4 4.37e−2 2.31e−4
rp · 109 5.29e−1 8.43e−2 8.70e−1 1.71e−1

IT Lp 7.71e−8 5.60e−9 7.40e−8 1.01e−8
σ 1.06 1.18e−1 9.31e−1 5.60e−1
Lj 3.17e−6 1.12e−6 2.00e−5 1.85e−5

MS b1 6.93e2 3.84e3 3.96e8 1.51e14
b2 3.13e−3 1.50e3 −3.97e5 5.90e11
b3 5.29e2 3.52e3 1.49e3 2.28e3
Ks 8.04 1.89e2 4.34e7 1.67e17
KMS,j −1.72e−3 8.27e2 −3.14e−6 1.20e4
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C Discrimination of OSN models
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C Discrimination of OSN models
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Figure C.2: Experimental data (provided by Marchetti and Livingston [47]) and
calculated values for flux and rejection for the mixture of acetone
and α-methyl styrene using the PuraMem R© S600, error bars represent
the uncertainty regions determined by Monte-Carlo simulation (no
bars are shown for Maxwell-Stefan model, due to extremely broad
uncertainty regions)
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Figure C.3: Experimental data (provided by Marchetti and Livingston [47]) and
calculated values for flux and rejection for the mixture of ACN and
α-methyl styrene using the PuraMem R© 280, error bars represent the
uncertainty regions determined by Monte-Carlo simulation (no bars
are shown for Maxwell-Stefan model, due to extremely broad uncer-
tainty regions)
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Figure C.4: Experimental data (provided by Marchetti and Livingston [47]) and
calculated values for flux and rejection for the mixture of ACN and
α-methyl styrene using the PuraMem R© S600, error bars represent the
uncertainty regions determined by Monte-Carlo simulation (no bars
are shown for Maxwell-Stefan model, due to extremely broad uncer-
tainty regions)
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Figure C.5: Experimental data (provided by Marchetti and Livingston [47]) and
calculated values for flux and rejection for the mixture of toluene and
α-methyl styrene using the PuraMem R© 280, error bars represent the
uncertainty regions determined by Monte-Carlo simulation (no bars
are shown for Maxwell-Stefan model, due to extremely broad uncer-
tainty regions)
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Figure C.6: Experimental data (provided by Marchetti and Livingston [47]) and
calculated values for flux and rejection for the mixture of toluene and
α-methyl styrene using the PuraMem R© S600, error bars represent the
uncertainty regions determined by Monte-Carlo simulation (no bars
are shown for Maxwell-Stefan model, due to extremely broad uncer-
tainty regions)
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C Discrimination of OSN models

C.2 DuraMem membranes

The results of the parameter estimation, the confidence intervals and the eigen values
for the membranes DuraMem R© 200 and DuraMem R© 500 used in ACN are listed in
the following tables. Figure C.7 and C.8 illustrates the results of the corresponding
Monte-Carlo simulations.
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C Discrimination of OSN models

Table C.8: Resnorm, AIC and W of the simple Solution-diffusion (SSD) model,
the solution-diffusion with imperfections (SDIM) model, the classical
solution-diffusion (CSD) model, the Donnan Steric pore-flow (DSPF)
model, the irreversible thermodynamics (IT) model and the Maxwell-
Stefan (MS) model for DuraMem R© 200 and DuraMem R© 500 used in
ACN and α-methyl styrene as solute

DuraMem R© 200 DuraMem R© 500
Model Resnorm AIC W Resnorm AIC W
SSD 0.01 −93.43 26.4% 0.15 −43.50 18.6%
SDIM 0.01 −91.45 9.8% 0.14 −41.54 7.0%
CSD 0.01 −93.44 26.5% 0.19 −39.55 3.6%
DSPF 0.01 −93.40 26.0% 0.39 −27.66 0.0%
IT 0.01 −91.47 9.9% 0.11 −45.45 49.3%
MS 0.01 −87.37 1.3% 0.15 −37.40 0.9%

Table C.9: Parameter values and confidence intervals for DuraMem R© 200 and
DuraMem R© 500 used in ACN and with α-methyl styrene as solute

DuraMem R© 200 DuraMem R© 500
Model Parameter value CI value CI
SSD P SSD

s 1.01e−7 3.58e−9 1.74e−7 2.72e−8
P SSD
j 1.42e−7 7.71e−7 4.33e−5 1.57e−5

SDIM Lm 1.01e−7 4.12e−9 1.74e−7 3.12e−8
LIM 8.04e−15 1.08e−12 −4.14e−13 1.74e−11
Pm 1.31e−7 1.82e−6 4.42e−5 4.22e−5

CSD PCSD
s 5.12 1.57e−1 8.79 1.30
PCSD
j 1.45e−7 6.83e−7 4.21e−5 1.45e−5

DSPF KHP · 109 3.45e−2 5.48e−4 5.91e−2 9.49e−4
rp · 109 3.47e−1 6.33e−3 5.73e−1 9.18e−2

IT Lp 1.01e−7 4.12e−9 1.74e−7 3.03e−8
σ 1.00 4.18e−2 1.04 6.56e−1
Lj 2.92e−8 3.79e−7 1.05e−5 1.73e−5

MS b1 8.94e1 7.32e2 1.86e3 1.07e4
b2 −3.75 1.47e7 9.49e−8 1.13e−6
b3 8.74e1 6.99e2 5.19e2 1.16e4
Ks −8.03e9 1.45e17 3.80e4 6.27e9
KMS,j −5.90 1.00e8 −6.01e5 9.92e10
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C Discrimination of OSN models

Table C.10: Eigenvalues for all models and the for membranes DuraMem R© 200 and
DuraMem R© 500 used in ACN and with α-methyl styrene as solute

Model EV Nr. DuraMem R© 200 DuraMem R© 500
SSD 1 6.45e8 8.93e7

2 3.00e13 3.68e13
SDIM 1 1.53e8 1.64e7

2 3.00e13 3.11e13
3 1.82e21 6.19e20

CSD 1 1.18e−2 1.18e−2
2 6.22e8 1.16e8

DSPF 1 3.47e6 3.47e6
2 8.65e−1 9.62

IT 1 2.87e−1 6.80e−2
2 1.37e10 9.68e8
3 3.00e13 3.40e13

MS 1 −8.96e−18 −4.39e−6
2 4.65e−18 1.72e−13
3 9.84e−10 3.65e−10
4 3.93e−7 9.20e−7
5 1.40e−1 2.28e133
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C Discrimination of OSN models
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Figure C.7: Experimental data (provided by Marchetti and Livingston [47]) and
calculated values for flux and rejection for the mixture of ACN and
α-methyl styrene using the DuraMem R© 200, error bars represent the
uncertainty regions determined by Monte-Carlo simulation (no bars
are shown for Maxwell-Stefan model, due to extremely broad uncer-
tainty regions)
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Figure C.8: Experimental data (provided by Marchetti and Livingston [47]) and
calculated values for flux and rejection for the mixture of ACN and
α-methyl styrene using the DuraMem R© 500, error bars represent the
uncertainty regions determined by Monte-Carlo simulation (no bars
are shown for Maxwell-Stefan model, due to extremely broad uncer-
tainty regions)
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C Discrimination of OSN models

C.3 PDMS based membrane

The data set of Postel et al. [66] includes rejection and flux data for a PDMS
based membrane used in Isopropanol (IPA), Methanol (MeOH), Toluene (Tol) and
n-Hexane (Hex) with n-tetradecane as the solute. The results for the Resnorm,
the AIC and W are listed in Table C.11. Estimated model parameters, confidence
intervals and eigenvalues are listed in Table C.12 and C.14. Moreover, Figure C.9
to C.12 illustrate the results of the Monte-Carlo simulation. Due to the limited
number of experimental data points, the Maxwell-Steffan model was not applicable
for these data sets.
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C Discrimination of OSN models

Table C.14: Eigenvalues for all models and the data set of Postel et al. [66]

Model EV Nr. IPA MeOH Tol Hex
SSD 1 4.73e7 2.67e7 2.39e8 5.05e8

2 1.72e14 1.31e14 1.71e13 1.37e13
SDIM 1 4.56e6 1.24e6 7.22e6 2.06e7

2 1.34e13 1.31e13 1.30e13 1.29e13
3 9.40e22 1.68e22 1.61e22 3.01e21

CSD 1 3.21e−3 1.12e−2 2.10e−2 3.01e−2
2 8.08e7 2.14e6 6.39e8 5.28e8

DSPF 1 5.03e7 3.77e6 4.51e6 1.24e6
2 3.18e−16 3.04e−16 9.88e−2 4.97e−1

IT 1 5.06e−3 −1.53e−10 1.40e−2 1.61e−1
2 2.51e9 2.23e−1 1.51e8 1.26e8
3 2.44e13 3.64e16 1.30e13 1.30e13
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Figure C.9: Experimental data (provided by Postel et al. [66]) and calculated val-
ues for flux and rejection for the mixture of IPA and n-tetradecane of
the data set of Postel et al. [66], error bars represent the uncertainty
regions determined by Monte-Carlo simulation
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Figure C.10: Experimental data (provided by Postel et al. [66]) and calculated

values for flux and rejection for the mixture of Methanol and n-
tetradecane of the data set of Postel et al. [66], error bars represent
the uncertainty regions determined by Monte-Carlo simulation
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Figure C.11: Experimental data (provided by Postel et al. [66]) and calculated
values for flux and rejection for the mixture of Toluene and n-
tetradecane of the data set of Postel et al. [66], error bars represent
the uncertainty regions determined by Monte-Carlo simulation
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Figure C.12: Experimental data (provided by Postel et al. [66]) and calculated
values for flux and rejection for the mixture of n-Hexane and n-
tetradecane of the data set of Postel et al. [66], error bars represent
the uncertainty regions determined by Monte-Carlo simulation
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D
Additional information regarding
model development for solvent flux

D.1 Data-driven methods

The following subsections provide a detailed discussion of the different data-driven
methods. Moreover, successful applications of the methods to membrane processes
are included.

D.1.1 Artificial Neural Networks (ANN)

Artificial neural networks (ANN) process inputs based on a specific network archi-
tecture, inspired by the biological neural networks. An ANN consists of different
neurons arranged in one or multiple layers. Neurons are used for data processing
and information is handed over to the next layer by a specific weighted connection,
whereas there is no connection between the neurons of one layer. The network is
further trained to map the inputs to outputs based on a training data set [143].
Nowadays, especially deep neural networks with a multitude of layers are experi-
encing an increasing popularity in current machine learning applications but require
extensive data for an appropriate fitting [100].

The parts of this chapter have been published as Supporting information to:
R. Goebel, M. Skiborowski, Machine-based learning of predictive models in organic solvent
nanofiltration: Pure and mixed solvent flux, Separation & Purification Technology 237 (2020),
pp. 116363
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ANNs have previously been applied in a similar context as covered by the cur-
rent article. Yangali-Quintanilla et al. [105] did apply a three-step approach for
the derivation of predictive models for the rejection of organic compounds in water
by polyamide NF and RO membranes. The first determined important descriptors
through the derivation of a QSAR model, based on PCA and MLR, before using
the identified descriptors in order to determine a suitable ANN structure, evalu-
ating different transfer functions and training methods. They concluded that the
application of ANNs is highly promising for the prediction of the rejection of dif-
ferent compounds. Similarly, Ammi et al. [106] used ANNs to predict the rejection
of organic compounds solved in water. However, other than Yangali-Quintanilla
et al. [105], they did not apply PCA and MLR for a first determination of impor-
tant descriptors and rather used 11 descriptors as input for a feed-forward ANN.
By comparing the ANN with the previously proposed QSAR models developed by
Yangali-Quintanilla et al. [97] and Yangali-Quintanilla et al. [105] the increased accu-
racy of the ANN models was illustrated. Agatonovic-Kustrin et al. [144] further used
ANNs to estimate the permeability of drug components through polydimethylsilox-
ane (PDMS) membranes based on molecular descriptors. Other than the previous
approaches they applied a genetic algorithm in order to determine the relevant set of
descriptors, for which a feed-forward ANN with backpropagation rule and multilayer
perception was trained and evaluated with respect to experimental data. Using this
hybrid approach a 12-descriptor nonlinear ANN was developed, based on a data set
of 254 compounds and 42 structural descriptors, considering 200 compounds for the
ANN training.
Despite the success of using ANNs in related applications and the reported increased
accuracy with respect to the PCA and MLE derived QSAR models it has to be con-
sidered that the ANN models are much larger in size and number of parameters and
that despite relative importance evaluations of single descriptors [106] the relation-
ships between input and output of the ANN is rather non-transparent.

D.1.2 Automated learning of algebraic models for
optimization (ALAMO)

The ALAMO approach presented by Cozad et al. [101] was primarily developed to
derive simple and accurate surrogate models with a functional form tailored for an
optimization framework, considering the automated learning based on data derived
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from available but rather complex simulation models. Yet, the approach can also be
used to derive rather simple explicit models from experimental data, as opposed to
ANN. The developed surrogate models represent a linear combination of nonlinear
basis functions, which is optimized using a corrected Akaike information criterion
[145] as objective function. The best solution is further determined by application of
a global deterministic optimization approach using BARON [108]. The additional
adaptive sampling methodology is able to make efficient use of small amounts of
data and outperform space-filling models with larger training set [146], considering
that the data is not available beforehand. While the approach is generally suited for
a well-structured and efficient identification of high-quality correlations it does not
allow for the identification of models that include a nonlinear combination of basic
functions, such as those represented by the phenomenological models presented in
Section 2.2.4. Yet, it would be of interest to include these models in the search space
for the development of improved model candidates.

D.1.3 Genetic Programming (GP)

GP is an evolutionary computation technique, which evolves a population of com-
puter programs, which are expressed as syntax trees rather than as lines of code [96].
The computer programs can represent the desired correlations that accordingly are
stored in a syntax tree (cf. Figure D.1), which is modified in the different genera-
tions through the application of evolutionary operators. The tree-like representation
made GP particularly suitable for symbolic regression problems starting from the
earliest applications [147]. Compared to ANNs, models identified with GP are often
more compact, use fewer parameters and are considered more useful for predictions
[148]. As required for any metaheuristic, the application of GP requires the specifi-
cation of various control parameters, including the maximum number of generations,
population size, tree depth, probabilities for crossover and mutation and generation
gap. Additionally, the terminal set containing the independent descriptors for the
model, and the set of operators have to be defined initially [148]. However, unlike
ANN and the ALAMO approach GP provides the capability to perform a direct
symbolic regression.

GP was already successfully applied in the context of membrane processes.
Shokrkar et al. [149] used GP for identifying a model for the prediction of flux de-
cline in microfiltration (MF) process, identifying a correlation between the flux and
different operating parameters, which was highly accurate (error of less than 5%).
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Figure D.1: Tree with a tree depth of 3

Fouladitajar et al. [103] identified a correlation between the operating conditions of
a MF process and water flux and oil rejection, which outperformed other models in
terms of accuracy. Hwang et al. [104] applied GP to model and predict membrane
fouling in a MF-based drinking water production system, providing good agreement
with experimental data, based on a correlation of the operating conditions with foul-
ing. Park et al. [150] further demonstrated the ability of GP to identify a correlation
of operating parameters and membrane permeability for a desalination plant, show-
ing that the GP-based model was more accurate in representing the experimental
data as the simple semi-empirical model, including two empirically determined pa-
rameters. Finally, Okhovat and Mousavi [151] investigated the application of GP for
the identification of a model for ion rejection in aqueous nanofiltration, correlating
feed concentration and transmembrane pressure with the rejection.

D.2 Translation of syntax trees

The following figures illustrate the translation of syntax trees including the functions
exp,√ and ln.
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D.3 Calculation of possible combinations for full
enumeration

For the determination of the number of possible combinations of 16 descriptors and 7
different functions in a syntax tree of the maximum tree depth of 3, the calculations
are performed subsequently for the different options in the following. First, all
complete filled trees with a tree depth of 2 and 3 are considered. Subsequently, trees
with a tree depth of 3, which are not completely filled, are considered. The root of
all trees can only be filled with one out of the seven functions and for the lowest
nodes of the trees only descriptors are allowed. Moreover, for complete filled trees
with a tree depth of 3 only functions are allowed in level 2, which is also valid for
one out of two positions in level 2 in not completely filled trees with a tree depth
of 3. For clarification, the nodes of the trees are marked with ’f’ (function) or ’d’
(descriptor), indicating the allowed type of the node.

D.4 Additional models for pure solvent
permeance

For each data set different models were identified as the best models in each of the
ten runs performed for the data sets. The third and fourth best model found for the
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data set of Dijkstra et al. [51] are shown in Equation D.1 and D.2, respectively.

P 3
D = −7.88 · ∆δM − δd

η
√

(ρ)
+ 0.60 (D.1)

P 4
D = 0.70 · η

deq
+ 7.92 · deq

η
− 3.53 (D.2)

Moreover, the method provides a large variety of different model candidates in each
run, since each model candidate is evaluated and stored afterward. Table D.1 pro-
vides a list of the five best models found in run 1 of the method for the data set of
Dijkstra et al. [51]. Table D.2 lists the results for run 2.

All model candidates listed include the viscosity of the solvent. Moreover, the main
part includes the fraction of the molecular diameter deq and the viscosity η. The re-
maining model parts differ in both, structure and incorporated parameters. The top
five models evaluated in run 1 include either the molecular weight M , the density
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Table D.1: Five best models evaluated in run 1 for the data set of [51].

Fitness Model equation

-47.71 PD = 9.65 · deq
η

+ 4.42 · deq · ln(η)− 3.76

-46.03 PD = 8.89 · deq
η

+ 0.03 ·M · ln(η)− 3.09

-45.68 PD = 7.52 · deq
η
− 0.008 · ρ+ 1.09 · η + 3.15

-44.39 PD = 8.97 · deq
η

+ 0.003 · ρ · ln(η)− 3.17

-44.28 PD = 8.03 · deq
η

+ 0.42 · η · ln(δd)− 3.85

Table D.2: Five best models evaluated in run 2 for the data set of [51].

Fitness Model equation

-51.33 PD = 0.33 · δd
η
− 0.34 · δp + 0.87 · η − 1.04

-43.89 PD = 8.11 · deq
η

+ 1.70 · δd + 1.04 · η − 30.42

-41.34 PD = 7.85 · deq
η
− 0.08 · δp + 1.09 · η − 3.16

-37.64 PD = 7.85 · deq
η
− 0.04 · ε+ 1.13 · η − 3.14

-34.15 PD = 0.32 · δHBP
η
− 0.71 · δp + 1.15 · η − 0.68

ρ or the Hansen solubility parameter for dispersive interactions δd. In contrast to
this, each of the top five models evaluated in run 2 include a parameter accounting
for the polarity of the solvent, which is either the Hansen solubility parameter for
dispersive interactions δd or the dielectric constant ε.
The third and fourth best model found for the data set of Machado et al. [62] are
shown in Equation D.3 and D.4, respectively.

P 3
M = 9.01 · deq

η
− 0.36 · γ − 0.05 · δh + 9.93 (D.3)

P 4
M = 2.98 δd · deq

η · ln(ρ) − 0.16 (D.4)

Figure D.2 illustrate the relationship between the reciprocal value of viscosity and
the permeance for the data sets of Dijkstra et al. [51] and Machado et al. [62]. In
addition, a trend line is added to both diagrams which correlates the reciprocal value
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of viscosity directly with the permeance. The scattering for the data set of Machado
et al. [62] is significantly greater, suggesting that the correlation between permeance
and reciprocal of viscosity is not as clear as for the data set of Dijkstra et al. [51].
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Figure D.2: Experimental permeance values vs. reciprocal of the viscosity of the
solvent for training and test (filled) as well as validation (unfilled)
data for the data set of Dijkstra et al. [51] (left) and Machado et al.
[62] (right). The dashed lines represent trendlines.

D.5 Additional models for permeance of solvent
mixtures

The fitness and the model equation of the best models found for the data sets
for the membranes Inopor Nano 450 Da, Inopor Nano 750 Da and Inopor Ultra
2000 Da published by Marchetti et al. [2] are listed in Table D.3. The fitness of
the models depends on the number of data points used for the application of the
method, which differs for the different membranes. Hence, the fitness of the models
is not comparable to each other.
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Table D.3: Best models found in ten runs each for the data sets of [2].

Membrane Fitness Model equation

Inopor Nano 450 Da -50.45 PMix,450 = 40.47 · δHBP

Vm·η·
√

(δh)
− 0.37

Inopor Nano 750 Da -87.04 PMix,750 = 501.29 · δd
Vm·η·√γ − 0.48

Inopor Ultra 2000 Da -58.95 PMix,Ultra = −44.73 · Pol·ln(η)
δh
√
γ

+ 31.56

D.6 Properties used for model development

The pure solvent properties used for model development are listed in Table D.4.
Additionally, the molar volume Vm, the equivalent molecular diameter deq, the total
Hildebrand solubility parameter δM , the difference of the solubility parameters of
solvent and membrane ∆δM and the interaction radius Ra are calculated using
Equations D.5-D.9. For density, viscosity and surface tension of mixed solvents, the
same literature data [126, 127, 128, 129, 130, 131] as considered by Marchetti et al.
[2] was used. For different compositions as provided in the literature data, linear
interpolation was applied. The remaining mixed solvent properties were determined
based on mixing rules. The solubility parameters of PDMS were estimated using the
group contribution method of van Krevelen and Nijenhuis [119] resulting in values
of δd,PDMS = 13.9 (MPa)0.5, δp,PDMS = 0.3 (MPa)0.5, δh,PDMS = 6.9 (MPa)0.5 and
δHBP,PDMS = 15.6 (MPa)0.5. Since no solubility parameters for ceramic membranes
are available, the descriptors ∆δM and Ra were not used for ceramic membranes.

Vm = M

ρ
(D.5)

deq = 2 ·
( 3 · Vm

4 · π ·NA

) 1
3

(D.6)

δHBP =
√
δ2
d + δ2

p + δ2
h (D.7)

∆δM = |δHBP − δHBP,PDM | (D.8)

Ra =
√

4 · (δd − δd,PDMS)2 + (δp − δp,PDMS)2 + (δh − δh,PDMS)2 (D.9)
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E
Additional information regarding
model development for solute
rejection

E.1 Resulting statistics of the developed model
candidates for the different solute rejection
data sets - Pure solvents

For each of the investigated cases in the article the results of the post-processing
step are listed in the following subsections.

E.1.1 Solvent-dependent models - polar Solvents

Table E.1 provides a summary of the post-processing results of the most promising
model candidates for solute rejection from the automatic model development pro-
cess, considering the solute rejection data of the polar solvents. For polar solvents
the maximum tree size of three is sufficient. The mean absolute deviation ε̂ between
experimental and calculated rejections of the training and test data set is 3.5%,

The parts of this chapter have already been be published as Supporting information to:
R. Goebel, T. Glaser, M. Skiborowski, Machine-based learning of predictive models in organic
solvent nanofiltration: Solute rejection in pure and mixed solvents, Separation & Purification
Technology 248 (2020), pp. 117046
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while an absolute deviation of 9% was only exceeded for one solute within the test
data set. All three parameters of this model are identifiable.

Table E.1: Summary of fitness, tree depth (TD), mean (ε̂) and maximum absolute
deviation(εmax), parameter value (θ), size of 95% confidence interval
(CI) and eigenvalues (λ) for the best model with a maximum tree depth
of 3 (R3

p,i) for the group of polar solvents

Model TD Fitness ε̂ εmax θ CI λ

R3
p,i 3. −53.98 3.5% 15.3% 1.07 5.01×10−1 3.64×10−2

1.75 2.18×10−1 2.21×10−1

−3.76×10−1 5.06×10−2 1.53×101

Table E.2 lists the fitness, the Akaike weight W and the model equations of all
models identified in ten consecutive runs.

Table E.2: Fitness, Akaike weightW and the model found in ten runs for the group
of polar solvents sorted by fitness

Run Fitness W Model

5,10 −53.98 38.5%Ri = 1.067 · δh,i
γi

+ 1.750 · ∆δM,i
δs
− 0.376

4, 6, 7 −53.83 35.7%Ri = 3.872 · deq,s
Rai
− 4.369E-4 ·Mi + 0.116 ·∆δM,i − 0.570

1, 8 −51.42 10.7%Ri = 0.007 ·∆δM,i · δd,i − 0.032 · Rai
deq,s

+ 0.045
2, 9 −51.41 10.7%Ri = 5.913 · ∆δM,i

Pols
+ 0.146 · δd,i

Rai
− 0.670

3 −49.67 4.5%Ri = 0.006 · δi ·∆δM,i − 1.168 · ~ds − 0.051 ·Rai + 1.987

E.1.2 Solvent-dependent models - moderately polar
Solvents

Table E.3 provides a summary of the post-processing results of the most promising
model candidates for solute rejection from the automatic model development pro-
cess, considering the solute rejection data of the moderately polar solvents. Two of
the parameters of the most promising model with a tree depth of tree R3

m,i were not
identifiable according to the confidence intervals and the mean absolute deviation
exceeded the limit of 5%, such that further models with a tree depth of four were
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generated. These allowed for a significant improvement in terms of fitness, ε̂ and
εmax for the training and test data set. Moreover, model R4

m,i shows much better
parameter precision compared to model R3

m,i although the number of parameters is
increased.

Table E.3: Summary of fitness, tree depth (TD), mean (ε̂) and maximum absolute
deviation (εmax), parameter value (θ), size of 95% confidence interval
(CI) and eigenvalues (λ) for the best models with a maximum tree
depth of 3 (R3

m,i and R4
m,i) for the group of moderately polar solvents

Model TD Fitness ε̂ εmax θ CI λ

R3
m,i 3. −25.35 5.2% 14.7%−2.96×10−1 1.71×10−1 9.74×10−1

2.06×10−2 3.08×10−2 1.29
4.90×10−3 2.44×10−3 9.57×101

−1.70×10−1 1.97×10−1 1.21×106

R4
m,i 4. −59.83 3.1% 9.6%−1.73×10−2 9.89×10−3 4.18×10−1

3.40×10−3 1.47×10−3 3.54
−1.81×10−1 7.30×10−2 3.48×101

4.37×10−2 3.23×10−2 4.35×102

4.40×10−3 1.32×10−3 7.42×104

−4.34×10−1 2.12×10−1 1.33×106

R3
m,i = −0.296 · Mi

Vm,s
+ 0.021 ·∆δM,i + 0.005 ·Mi − 0.170 (E.1)

Table E.4 lists the fitness, the Akaike weight W and the model equations of all
models identified in ten consecutive runs.
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E.1.3 Solvent-dependent models - non-polar Solvents

Table E.5 provides a summary of the post-processing results of the most promising
model candidates for solute rejection from the automatic model development pro-
cess, considering the solute rejection data of the non-polar solvents. For non-polar
solvents the maximum tree size of three is also sufficient. The mean absolute de-
viation ε̂ between experimental and calculated rejections of training and test data
set is 4.8% (cf. Table E.5), while an absolute deviation of 14.2% was determined.
All four parameters of this model are identifiable. Although, the limit of 5% for
the mean absolute deviation was not exceeded, models with a maximum tree depth
of four have been evaluated in order to determine modes with a lower maximum
absolute deviation. However, the best identified model with a tree depth of four
(R4

np,i) did show significant lower mean and maximum absolute deviations.

Table E.5: Summary of fitness, tree depth (TD), mean (ε̂) and maximum absolute
deviation (εmax), parameter value (θ), size of 95% confidence interval
(CI) and eigenvalues (λ) for the best model with a maximum tree depth
of 3 (R3

np,i) and 4 (R4
np,i) for the group of non-polar solvents

Model TD Fitness ε̂ εmax θ CI λ

R3
np,i 3. −73.96 4.8% 14.2% 2.12×10−3 3.25×10−4 3.41×10−1

−3.58×10−4 1.35×10−4 2.47×105

−7.44×10−1 2.43×10−1 5.73×107

R4
np,i 4. −80.23 4.6% 14.3% 2.26×10−3 3.96×10−4 3.63×10−3

8.84×10−1 2.55 2.57×10−1

−3.08×10−4 1.29×10−4 1.84×106

−1.39 3.35×10−1 1.34×106

R4
np,i = 0.002 · deq,i · ρi + 0.884 · Pols

Vm,i
− 3.08E-4 ·∆δM,i · Vm,s − 1.392 (E.2)

Table E.6 lists the fitness, the Akaike weight W and the model equations of all
models identified in ten consecutive runs.
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Table E.6: Fitness, Akaike weightW and the model found in ten runs for the group
of non-polar solvents sorted by fitness

Run Fitness W Model
1, 3, 8 −73.96 63.8%Ri = 0.00 · ρi · deq,i − 0.0004 · Vm,s · δi − 0.744
2, 4-7, 9, 10 −72.82 36.2%Ri = −264.648 · deq,i

Mi
+ 0.009 · δd,s

ηi
+ 1.436

E.1.4 Solvent-dependent models - including non-linear
parameters

The following table provides a summary of the results of runs including nonlinear
parameter relationships for the different data sets of solute rejections in pure solvents
used for model development.

Table E.7: Summary of fitness, tree depth (TD) and Runtime for the runs including
nonlinear parameter relationships

Data set TD Fitness Runtime
polar solvents 3 -53.98 2 h
moderate polar solvents 4 -44.79 14 h
non-polar solvents 3 -73.96 3.75 h

Table E.8: Summary of fitness, tree depth (TD), mean (ε̂) and maximum absolute
deviation (εmax), parameter value (θ), size of 95% confidence interval
(CI) and eigenvalues (λ) for the best model with a maximum tree depth
of 4 (R4

np,i) for the group of moderately polar solvents including non-
linear parameter relationships

Model TD Fitness ε̂ εmax θ CI λ

RNL,4
m,i 4. −44.79 3.8% 10.5% 1.06×10−2 3.39×10−3 7.52×10−1

−1.41×10−3 8.73×10−4 2.47×103

−4.15×10−4 1.47×10−4 1.35×105

−1.44×10−4 2.02×10−4 1.84×106

−5.20×10−2 1.66×10−1 5.59×108
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E.1.5 Solvent-independent models

Table E.9 provides a summary of the post-processing results of the most promising
model candidates for solute rejection from the automatic model development pro-
cess, considering the solute rejection data of all six solvents simultaneously.

Table E.9: Summary of fitness, mean (ε̂) and maximum absolute deviation (εmax),
parameter value (θ), size of 95% confidence interval (CI) and eigenval-
ues (λ) for the best models with a maximum tree depth of 4 (R4

all,i) and
5 (R5.1

all,i and R5.2
all,i)

Model TD Fitness ε̂ εmax θ CI λ

R4
all,i 4. −96.30 8.2% 35.1%−2.46×10−7 3.52×10−8 1.74

1.78×10−3 4.83×10−4 1.54×103

1.06×10−2 6.65×10−3 3.36×106

−9.12×10−1 1.94×10−1 1.48×1014

R5.1
all,i 5. −116.68 8.4% 30.0% 6.04×10−6 1.06×10−6 2.97

5.00×10−3 5.03×10−3 7.85×101

1.05×10−1 6.72×10−2 5.61×102

5.68×10−2 1.30×10−2 3.70×103

−4.16×10−1 1.41×10−1 2.79×1011

R5.2
all,i 5. −114.80 8.7% 27.9% 8.47×10−2 6.08×10−2 4.63

2.09×10−4 1.09×10−4 2.26×101

6.06×10−1 9.03×10−2 5.04×101

2.37×10−2 1.48×10−2 4.40×102

−2.95×10−1 8.44×10−2 1.25×107

R5.1
all,i = 6.037E-6·Vm,i ·

ρs − ηi
εs

+0.005·δp,i · ~di · ~d2
s+0.105·deq,i · ~ds+0.057·∆δM,i−0.416

(E.3)
Table E.10 and E.11 lists the fitness, the Akaike weight W and the model equations
of all models identified in ten consecutive runs for both tree sizes.
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E.2 Resulting statistics of the developed model
candidates for the different solute rejection
data sets - Mixed solvents

E.2.1 Solute-independent models

The models found for differing maximum tree depth vary in their complexity, the
accuracy and the number of necessary parameters as listed in Table E.12. Using a
maximum tree depth of three, the best model found describes the rejection for train-
ing and test data set with a mean absolute deviation of ±12%. The mean absolute
deviation decreases and the fitness and number of parameters increase with increas-
ing maximum three depth. The most promising model candidate (R4

t,i) describes the
rejection for training and test data accurate, while providing a comparable fitness
and low mean and maximum absolute deviation, while showing a much lower maxi-
mum absolute deviation between experimental and calculated rejection of ±17.4%.
Furthermore, the confidence intervals of the parameters are narrow and the param-
eters are well identifiable.

Table E.12: Summary of fitness, tree depth (TD), mean (ε̂) and maximum absolute
deviation (εmax), parameter value (θ), size of 95% confidence interval
(CI) and eigenvalues (λ) for the best models with a maximum tree
depth of 3 (R3

t,i) and 4 (R4
t,i) for ternary solvent mixtures

Model TD Fitness ε̂ εmax θ CI λ

R3
t,i 3. −153.88 10.1% 36.9%−1.66×102 3.92×101 3.61×10−1

7.62×101 5.17 3.02×101

R4
t.i 4. −233.22 4.7% 17.4%−2.58 4.60×10−1 2.95×10−3

3.72 1.31 1.21×10−1

1.78×102 3.61×101 1.70×101

6.86×102 1.32×102 7.02×102

−8.32×10−2 4.73×10−2 1.60×103

−5.11×102 1.11×102 1.73×105

R3
t,i = 1.067 · δh,i

γi
+ 1.750 · ∆δM,i

δs
− 0.376 (E.4)
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Table E.13 and E.14 lists the fitness, the Akaike weight W and the model equations
of all models identified in ten consecutive runs for both tree sizes.

Table E.13: Fitness, Akaike weight W and the model found in ten runs for the
mixed solvents and a tree depth of three sorted by fitness

Run Fitness W Model

2, 10 −153.88 47.1%Ri = 1.067 · δh,i
γi

+ 1.750 · ∆δM,i
δs
− 0.376

1, 3-7, 9 −153.10 31.9%Ri = −1.055 · εs·∆δM,i
∆δM,s·δh,i + 76.238

8 −153.26 20.9%Ri = −0.65114 · δh,s·Rai
∆δM,s·δh,i + 75.413
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Figure E.1: MRM for DIPN, according to smoothing and interpolating of the mea-
sured rejections in the ternary system (top left) and model predictions
of R4

t,i (top right), as well as absolute difference between both MRM
(bottom).
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Figure E.2: MRM for HD, according to smoothing and interpolating of the mea-
sured rejections in the ternary system (top left) and model predictions
of R4

t,i (top right), as well as absolute difference between both MRM
(bottom).
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Figure E.3: MRM for PDD, according to smoothing and interpolating of the mea-
sured rejections in the ternary system (top left) and model predictions
of R4

t,i (top right), as well as absolute difference between both MRM
(bottom).
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Figure E.4: MRM for TPP, according to smoothing and interpolating of the mea-
sured rejections in the ternary system (top left) and model predictions
of R4

t,i (top right), as well as absolute difference between both MRM
(bottom).
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E.2.2 Solute-specific models

For the identification of solute specific models the distribution of the solvent mix-
tures as described in Section 8.2 is used, but only the rejection value of one solvent
at a time was included. The solute specific models were already comparably accu-
rate as the model presented in Section 8.3 using a maximum tree depth of three
(Table E.15). All solute specific models incorporate less parameters of which the
confidence intervals are narrow. The results are further discussed based on HMN
as an example.

Table E.15: Summary of fitness, tree depth (TD), mean (ε̂) and maximum absolute
deviation(εmax), parameter value (θ), size of 95% confidence interval
(CI) and eigenvalues (λ) for the best solute specific models with a max-
imum tree depth of 3 for DIPN (R3

DIPN), HD (R3
HD), HMN (R3

HMN),
PDD (R3

DIPN) and TPP (R3
TPP ) for ternary solvent mixtures

Model TD Fitness ε̂ εmax θ CI λ

R3
DIPN 3. −36.90 6.4% 18.7%−7.07×10−1 2.58×10−1 2.87

4.66×101 8.12 5.94×103

R3
HD 3. −51.14 7.9% 16.5% 2.94×10−1 2.58×10−1 2.87

5.98×101 8.12 5.94×103

R3
HMN 3. −52.69 4.7% 12.5%−2.93×10−1 8.31×10−2 5.53

6.19×101 5.70 2.83×104

R3
PDD 3. −47.26 3.7% 12.5%−3.34×10−1 1.08×10−1 7.26×10−3

−2.29 6.15×10−1 2.03×104

6.19×102 1.76×102 1.13×107

R3
TPP 3. −41.65 5.9% 19.9% 2.18×10−2 1.19×10−2 5.71×10−1

3.97×101 2.01×101 1.71×107

R3
DIPN = −0.707 · (εs − δd,s) · ~ds ·∆δM,s + 46.584 (E.5)

R3
HD = 0.294 · γs · ~ds · (∆δM,s − δp,s) + 59.806 (E.6)

R3
PDD = −0.334 ·Ms ·Ras − 2.286 · δs · δp,s + 619.385 (E.7)

R3
TPP = 0.022 · (δs −∆δM,s) · γs ·∆δM,s + 39.726 (E.8)

Table E.16 to E.20 lists the fitness, the Akaike weight W and the model equations
of all models identified in ten consecutive runs for each solute.
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Table E.16: Fitness, Akaike weight W and the model found in ten runs for HMN
in mixed solvents and a tree depth of three sorted by fitness

Run Fitness W Model

3, 4, 6 −52.69 29.4%Ri = −0.293 · (δp,s −∆δM,s) · ~ds · γs + 61.884
8 −52.17 22.6%Ri = −1.630 · (∆δM,s − ηs) · (∆δM,s − δd,i) + 12.66
9 −51.53 16.5%Ri = 0.068 · (δp,i + ∆δM,s) · δ2

s +−132.331
2 −50.87 11.8%Ri = 0.968 · δs · εi · (γi + ∆δM,s)− 556.666
7, 10 −50.86 11.7%Ri = −240.829 · δi

deq,s
+ 0.044 · Vm,s

−7090.752 · deq,s + 9965.139
1, 5 −50.09 8.0%Ri = −238.575 · εs

Ras
+ 230.880 · deq,s · ηs + 34.913

Table E.17: Fitness, Akaike weight W and the model found in ten runs for DIPN
in mixed solvents and a tree depth of three sorted by fitness

Run Fitness W Model

3, 9 −36.90 21.5%Ri = −0.707 · (εs − δd,s) · ~ds ·∆δM,s + 46.584
4, 6 −36.76 20.1%Ri = −2087.2067 · δh,i

deq,s
− 7173.204 · deq,s

+0.079 · Vm,s + 9954.813
2 −36.57 18.2%Ri = −6.105 · δd,s ·∆δM,s − 0.062 · δh,s · ρs + 1102.007
5, 7 −36.51 17.7%Ri = −2.036 · δ2

s + 0.077 · Vm,s + 76.454 · δs − 642.772
1, 10 −36.15 14.8%Ri = −908.034 · δp,s

Ras
− 5.319 ·Ras · δd,s + 1649.587

8 −34.84 7.7%Ri = −321.4367 · εs
Ras

+ 3704.961 · ηs
δi

+ 17.857

Table E.18: Fitness, Akaike weight W and the model found in ten runs for HD in
mixed solvents and a tree depth of three sorted by fitness

Run Fitness W Model

5 −51.14 43.6%Ri = 0.294 · γs · ~ds · (∆δM,s − δp,s) + 59.806
9, 10 −50.05 25.3%Ri = −1712.202 · εi

deq,s
− 7220.566 · deq,s

+0.049 · Vm,s + 10138.936
2, 4, 6-8 −49.31 17.4%Ri = 2.074 · δs ·∆δM,s + 0.045 · Vm,s

−20.820 ·∆δM,s − 58.1967
1, 3 −48.82 13.7%Ri = −220.883 · εs

Ras
+ 6.498 · Pols · deq,s + 78.389
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Table E.19: Fitness, Akaike weight W and the model found in ten runs for PDD
in mixed solvents and a tree depth of three sorted by fitness

Run Fitness W Model
5, 10 −47.26 49.1%Ri = −0.334 ·Ms ·Ras − 2.286 · δs · δp,s + 619.385
3, 4, 6-9 −45.60 21.4%Ri = −53.975 · δs

deq,s
+ 27.491 ·Mi − 7589.604 · deq,s

1 −44.86 14.8%Ri = −50.056 · δh,s + 23.159 · Pols · deq,s + 25.851
2 −44.86 14.8%Ri = 23.159 · deq,s · Pols − 94.607 · δh,s

δp,s
+ 25.8506

Table E.20: Fitness, Akaike weight W and the model found in ten runs for TPP
in mixed solvents and a tree depth of three sorted by fitness

Run Fitness W Model
1-3, 9 −44.73 57.3%Ri = 0.009 · γs·Pols

εs−δp,i + 66.1664
10 −42.82 13.4%Ri = −0.231 · δh,s·γs

deq,s−δh,s + 67.126
8 −41.65 12.3%Ri = 0.022 · (δs −∆δM,s) · γs ·∆δM,s + 39.726
4 −41.45 11.1%Ri = 0.365 · εs ·∆δM,s · (γs − εs) + 57.471
5-7 −40.22 6.0%Ri = 0.214 ·Ms · δs + 11.650 · Vm,i

γs
− 364.358
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Figure E.5: MRM for DIPN, according to smoothing and interpolating of the mea-
sured rejections in the ternary system (top left) and model predictions
ofR3

DIPM (top right), as well as absolute difference between both MRM
(bottom).
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Figure E.6: MRM for HD, according to smoothing and interpolating of the mea-
sured rejections in the ternary system (top left) and model predictions
of R3

HD (top right), as well as absolute difference between both MRM
(bottom).
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Figure E.7: MRM for PDD, according to smoothing and interpolating of the mea-
sured rejections in the ternary system (top left) and model predictions
of R3

PDD (top right), as well as absolute difference between both MRM
(bottom).
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Figure E.8: MRM for TPP, according to smoothing and interpolating of the mea-
sured rejections in the ternary system (top left) and model predictions
of R3

TPP (top right), as well as absolute difference between both MRM
(bottom).
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E.3 Properties used for model development

The solvent and solute properties used for model development are listed in Table D.4
in Chapter D and Table E.21. Additionally, the molar volume Vm, the equivalent
molecular diameter deq, the total Hildebrand solubility parameter δ, the difference of
the Solubility parameters of solvent/solute and membrane ∆δM,s and the interaction
radius Ra are calculated using Equations D.5-D.9. The solubility parameters of
PDMS and PI were estimated using the group contribution method of van Krevelen
and Nijenhuis [119] resulting in values of δd,PDMS = 13.9 (MPa)0.5, δp,PDMS = 0.3
(MPa)0.5, δh,PDMS = 6.9 (MPa)0.5, δd,PI20.2 (MPa)0.5, δp,PI = 14.8 (MPa)0.5 and
δh,PI = 8.4 (MPa)0.5.
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