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1 Introduction

The regression analysis is a fundamental tool in statistics to �nd relationships bet-

ween several variables. Estimators and tests for parameters in the classical linear

model with independent identically normally distributed errors have already been wi-

dely studied. The ordinary least-squares estimator and tests based on this estimator

yield statistical procedures with optimality properties under the given assumptions,

see Clark (2008); Lehmann and Romano (2005). However, procedures based on the

ordinary least-squares estimator can have a high loss of e�ciency if the assumpti-

ons are not satis�ed. Heteroscedastic, skewed, heavy tailed or correlated errors are

examples for violated assumptions. The research of Marcinko (2014), Scariano and

Davenport (1987) and Rousseeuw and Leroy (1987) are examples for the study of

the loss of e�ciency under such violations.

The literature o�ers a number of other statistical methods which can be used under

possibly violated assumptions, e.g., the MM-estimators and the associated asympto-

tic Wald-tests (Yohai, 1987; Maronna et al., 2006, p. 124). Although these robust

alternatives have consistency properties (Huber and Ronchetti, 2009, p. 126), the

estimation is based on an optimization procedure and thus not trivial to understand

and implement. Furthermore, optimization in high dimensions is very challenging

(Törn and �ilinskas, 1989, p. 11), especially when a high dimensional covariance ma-

trix has to be estimated (Gomez and Gallón, 2011). All in all, the number of robust

tests is still limited in the regression context. Therefore, research for methods with

weak assumptions, which are also easy to comprehend, is worthwhile.

In this thesis, theK-sign depth will be introduced and discussed based on theoretical

and practical aspects. This statistic evaluates the �t of a suggested parameter from

a class of models for observed data. In contrast to the likelihood, this depth is

not computed by density functions of a given class of distributions, but rather by

the sign-structure from the residuals. Under the independence assumption of errors

with a continuous distribution, the statistical behavior of the sign-structure can

be derived. If the number of sign changes is too low, the suggested parameter can

be declared as a bad �t. The choice of the hyper-parameter K denotes how many

consecutive sign changes are counted. For K = 2, we obtain the statistic of the

classical sign test. Hence, tests based on the K-sign depth can be understood as a

class of extended versions of the classical sign test for K > 2.

Apart from the indepedence and continuous distribution, no more essential assump-

tions are needed for applying this depth. The independence can further be weakened

if the errors have su�ciently quickly decaying autocorrelations. The restrictions for
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applying this statistic are very low, so the high �exibility of this depth allows applica-

tions in many contexts potentially. Based on the idea to consider sign-structures, this

depth is not di�cult to comprehend as well. Therefore, research for this depth seems

valuable. Historically, the K-sign depth is developed from the regressions depth in-

troduced by Rousseeuw and Hubert (1999) which can be another motivation for its

research.

This thesis is structured as follows: In Chapter 2, the assumptions on the model

and the K-sign depth will be introduced. Further, a historical background of the

concept of several types of regression depths will be given brie�y. In Chapter 3,

the asymptotic distribution of the K-sign depth will be derived for arbitrary K by

continuing research work from the past: For K = 2 and for the more di�cult case

K = 3, Müller (2005) and Kustosz et al. (2016a) derived the asymptotic distribution,

respectively. In the Master thesis Malcherczyk (2018a), the proof for K = 3 has been

simpli�ed which helped to �nd a proof for K = 4 there as well. In Malcherczyk et al.

(2021), a proof of the derivation for general K has �nally been shown. This proof is

a shortened version of the derivation in Chapter 3.

The computation of the depth by its de�nition leads to an algorithm having an un-

desirable polynomial time complexity of degree K. Therefore, improved algorithms

in linear time will be discussed in Chapter 4 and 5. In Chapter 4, we use a re-

presentation of the K-sign depth from Chapter 3 describing a decomposition of

an asymptotically relevant part and a negligible part. The asymptotic part can be

computed in linear time as an approximation of the K-depth. In Chapter 5, another

idea for an e�cient computation based on summarizing blocks with the same signs

from the residuals will be presented. This algorithm has already been introduced in

Leckey et al. (2020) to compute the K-sign depth without using the results from the

asymptotic derivation. Furthermore, the algorithm from Chapter 5 leads to some

new theoretical results as well.

Chapter 6 will present varieties of test procedures based on the K-sign depth for

applications. Testing the �t of models or independence are possible for example. The

performance of both applications will be discussed. Some conjectures for the choice

of the hyper-parameter K and procedures how to use the K-sign depth in practice

will be presented as well. Generalizations of the K-sign depth are introduced in

Chapter 7 as an outlook for further research.

If the reader is only interested on a theoretical or practical focus, we recommend to

consider Figure 1. The upper path is more focused on theoretical aspects such as the

asymptotic derivation in Chapter 3, the discussion of an interesting conjecture from

Chapter 5.4 or the generalization approaches in Chapter 7. In order to understand

2



2.1 + 2.2

3

5.1 + 5.2, 5.4

5.1 + 5.4

6.1, 6.3 – 6.6

7 theoretical path

practical path

Figure 1: Two di�erent suggested paths for reading this thesis based on a theoretical
or practical focus

Chapter 7, it is highly recommended to read Chapter 3 �rst. Chapter 5 can be

skipped if desired.

The lower path is more focused on the implementation and the statistical methods

based on the K-sign depth. In Chapter 5, the more e�cient implementation is pre-

sented. Chapter 5.4 is theoretical but useful for the interpretations in Chapter 6.

For computations and implementations, R is mostly used in this thesis (R Core

Team, 2021). For some computer algebraic applications, Mathematica is used as well

(Wolfram Research, 2019). All presentend algorithms in this thesis are implemented

by Dennis Malcherczyk and included in the R-package GSignTest Horn (2021b)

which is available on GitHub. These algorithms are implemented in C++ using the

R-package Rcpp for running C++ code in R (Eddelbuettel and Francois, 2011).
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2 The K-sign depth

Chapter 2 is structured as follows. In Chapter 2.1, the class of models we consider

mostly in this thesis will be introduced. Connections between sign changes and the

model �t are explained as well. In Chapter 2.2, the K-sign depth will be de�ned.

In Chapter 2.3, some extra information concerning the historical background of the

K-sign depth will be presented.

2.1 Model and motivation

In the whole thesis, we will consider the following type of models:

Yn = g(Xn,θ
∗) + En for n = 1, . . . , N. (1)

The unknown and true parameter θ∗ is contained in a p-dimensional parameter

space Θ ⊆ Rp. The explanatory variables X1, . . . ,XN have values in Rd. The class

of model functions is denoted by g : Rd ×Θ → R for given explanatory variables

and a parameter in Θ. The additive, unobservable errors E1, . . . , EN are random

variables on a probability space (Ω,A,P). E.g., polynomial regression models of

degree q ∈ N can be expressed by the model function g(x,θ) = θ0 +
∑q

i=1 θix
i with

q + 1 parameters θ = (θ0, θ1, . . . , θq)
> ∈ Rq+1 and x ∈ R.

We allow the explanatory variables X1, . . . ,XN to be random variables with values

in Rd (for the sake of simplicity, also on the same probability space (Ω,A,P) as the

errors) in order to have also stochastic explanatory variables instead of only determi-

nistic planned explanatory variables. Stochastic explanatory variables are common

in various applications. In an example of our research group from technometrics, it is

of interest to model the crack growth of a reinforced-concrete bridge by using the air

temperature, the temperature of the bridge and the tra�c on the bridge as explana-

tory variables (Abbas et al., 2019). All of these explanatory variables (temperatures,

tra�c) cannot be set arbitrarily as in laboratory experiments. Additionally, we can

model time series by allowing stochastic explanatory variables.

E.g., AR(p)-processes (Peña et al., 2001, p. 53) can be modeled by Formula (1) such

that Yn = g((Yn−1, . . . , Yn−p)
>,θ) + En for n = p, . . . , N and given initial values

Y0, . . . , Yp−1 where the last p observations Yn−1, . . . , Yn−p represent the stochastic

explanatory variables for modeling Yn.

Other residual-based models can be considered as well, e.g., nonparametric models

(Hastie et al., 2009, p. 191). Since we will be interested in testing model classes, a

semi-parametric settings as in Formula (1) is considered in this thesis.
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For the errors E1, . . . , EN , the following assumptions are given for Chapter 2 to 6:

Assumption 2.1. Let E1, . . . , EN be random variables in R which satisfy the follo-

wing conditions:

E1, . . . , EN are independent, (A1)

P(En > 0) = P(En < 0) =
1

2
, n = 1, . . . , N. (A2)

The independence of the errors can be assumed in many applications, so assump-

tion (A1) is not very restrictive. Moreover, we will see later in Chapter 7.2 that

assumption (A1) can be weakened if necessary. If the errors have a continuous dis-

tribution with a connected support, the second assumption (A2) is equivalent to

the condition that the median of the errors is zero. If the model has an intercept,

this assumption is no real restriction on the errors. Note that we neither assume

identically distributed random variables nor make assumptions on the moments of

the errors. In particular, skewed, heavy-tailed or heteroscedastic errors are allowed.

The residuals of a model based on θ ∈ Θ are de�ned by

Rn(θ) := Yn − g(Xn,θ) for n = 1, . . . , N. (2)

If we insert the true parameter θ∗, the residuals coincide with the errors:

Rn(θ∗) = En for n = 1, . . . , N. (3)

We often omit the parameter and denote R1, . . . , RN for the residuals instead. Ran-

dom variables will be denoted by capital letters and their realizations by small

letters, e.g., r1, . . . , rN for realizations of the residuals.

Our aim is to construct statistical tests for hypotheses of the following form

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1 (4)

where Θ0 and Θ1 are a disjoint decomposition of the parameter space denoted by

Θ = Θ0 ] Θ1. These statistical tests should only be based on Assumption 2.1

and the functional structure of the model class. According to Formula (3) and

Assumption 2.1, statistical properties of the signs in the residual vector are known

under the true parameter θ∗ and can lead to statistical tests.

Figure 2 visualizes an example for a typical statistical behavior of the residuals under

the true model (left side) and a situation with a poorly �tting model (right side).

The blue points are realizations of the real model, the dashed line represents a �tted
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Figure 2: Sign changes as an indication for a good �t under Assumption 2.1.

model and the red lines are the residuals. On the top of each �gure, the signs of

the residuals are given. Since the errors E1, . . . , EN satisfy the condition in Formula

(A2), we expect N−1
2

sign changes (cf. Lemma 5.13, p. 89, for details) under the true

parameter. Moreover, due to the independence of the errors, we expect no systematic

pattern (left side). For the wrong model, the probability of positive or negative

signs are not necessarily equal and depends on the explanatory variables. Due to

unexplained or badly explained parts of the real model, we obtain block structures

of the same signs which are atypical under Assumption 2.1 for the residual vector

(right side). Thus, signs with such block patterns are an indication for a bad �t of

the given parameter. This leads to the idea to evaluate a model by the resulting

number of sign changes.

2.2 De�nition of the K-sign depth

Based on the notation of the model and the residuals given in Formula (1) and (2),

we will de�ne the K-sign depth, or shortly denoted as K-depth. Before we give the

de�nition, we want to introduce the following notation. For arbitrary coe�cients

a(n1, . . . , nK) ∈ R, we de�ne the ordered sum:

∑
1≤n1<...<nK≤N

a(n1, . . . , nK) :=
N−K+1∑
n1=1

∑
n1+1≤n2<...<nK≤N

a(n1, . . . , nK).

By recursion, we obtain the following representation of K nested sums:

∑
1≤n1<...<nK≤N

a(n1, . . . , nK) =
N−K+1∑
n1=1

N−K+2∑
n2=n1+1

. . .
N∑

nK=nK−1+1

a(n1, . . . , nK).
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De�nition 2.2. Let R(θ) = (R1(θ), . . . , RN(θ))> be a residual vector of the model

under θ ∈ Θ. (We shortly denote R = (R1, . . . , RN)> if the parameter θ is known

from the context.) For K ∈ N \ {1}, we de�ne the K-sign depth as

dK(R) :=
1(
N
K

) ∑
1≤n1<...<nK≤N

(
K∏
k=1

1{Rnk(−1)k > 0}+
K∏
k=1

1{Rnk(−1)k < 0}

)
.

The K-depth is the relative frequency of ordered K-tuples with K − 1 sign chan-

ges. If a K-tuple has K − 1 sign changes, we say that the signs are alternating.

Under Assumption 2.1, we can understand the statistical behavior of the number of

alternating signs and by that the statistical behavior of the K-depth.

At �rst, we can consider boundaries of the K-depth in order to obtain �rst impressi-

ons for interpretations whether a parameter θ �ts well or poorly. The lower boundary

of the K-depth is zero and occurs if there exists no K-tuple with K−1 sign changes.

This is an indication for a bad �t. Conversely, the higher the value of the K-depth,

the more the given parameters �t well. Under residuals R1, . . . , RN with N − 1 sign

changes, the K-depth is supposed to be maximal. The suspected asymptotic upper

boundary 1
2K−1 and the suspected exact upper boundary are computed in Leckey

et al. (2020). However, a suspiciously high number of sign changes is also an indica-

tion for negative correlation. Note further that the depth of a parameter is a very

similar concept to the likelihood.

The next remark explains the in�uence of the order of the residuals.

Remark 2.3. A crucial aspect for the application of the K-depth is the choice of

an ordering criterion for the residual vector R = (R1, . . . , RN)>. The value of the

K-depth can change drastically if we change the ordering afterwards. For K = 3, we

can construct an example of two residual vectors

r(1) := (1,−1, 1)>, r(2) := (1, 1,−1)>,

which contain the same values but in a di�erent order. Due to di�erent orders, we

obtain di�erent values of their 3-depth: d3(r(1)) = 1 and d3(r(2)) = 0.

For regression with univariate explanatory variables X1, . . . , XN , we can use their

natural order on R or the passage of time in time series. However, for multiple

regression, an obvious choice how to order multivariate data is usually not given.

Under the true parameter θ∗ (or for residuals satisfying Assumption 2.1), the dis-

tribution of the K-depth does not depend on the order if the rule of order ful�lls the
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following two su�cient conditions:

1. The rule of order is chosen in advance.

2. If X1, . . . ,XN are independent from E1, . . . , EN , then the realizations

x1, . . . ,xN can be used for ordering the data.

However, the power of the tests based on the K-depth (introduced in Chapter 6)

varies when we use di�erent orders. In Horn (2021b), several orders of multivariate

explanatory variables, e.g., based on the shortest Hamiltonian path or the k-nearest

neighbor algorithm, are considered and the resulting power of tests based on the K-

depth with those ordering approaches are investigated. The results in this thesis are

usually independent from the order criterion if not otherwise speci�ed.

2.3 Excursion to the history of the K-sign depth

Originally, the K-sign depth has a long historical background in the research �eld

of depth functions which we want to introduce here shortly.

Tukey (1975) introduced the halfspace depth as a statistical tool to measure the

depth of a location parameter µ ∈ Rq with respect to a �xed data set x1, . . . ,xN

in Rq. The halfspace depth of µ with respect to the data is de�ned by the minimal

number of data points x1, . . . ,xN which are elements of a halfspace containing µ:

dH(µ, (x1, . . . ,xN)>) :=
1

N
min
u∈Rq
|{n; u>xn ≥ u>µ}|

where |A| denotes the cardinality of a given set A. This depth concept was originally
introduced for the case q = 2 for visualizing bivariate data. Moreover, the set of

elements in Rq with the maximal halfspace depth can be understood as a multivariate

version of the median of x1, . . . ,xN .

Liu (1988) introduced another depth concept called simplicial depth for the loca-

tion of multivariate data. This depth is de�ned by the relative number of (q + 1)-

dimensional simplices with edges in {x1, . . . ,xN} which cover µ:

dS(µ, (x1, . . . ,xN)>) :=
1(
N
q+1

) ∑
1≤n1<...<nq+1≤N

1{µ ∈4(xn1 , . . . ,xnq+1)}

where 4(xn1 , . . . ,xnq+1) ⊆ Rq denotes the set of the simplicial having the edges

xn1 , . . . , xnq+1 . The simplicial depth can be represented by counting all ordered
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(q + 1)-tuples with positive halfspace depths:

dS(µ, (x1, . . . ,xN)>) =
1(
N
q+1

) ∑
1≤n1<...<nq+1≤N

1{dH(µ, (xn1 , . . . ,xnq+1)
>) > 0}.

This connection between the halfspace depth and the simplicial depth is often used

for de�ning new depth concepts from previous depth notions by the sum of all

ordered (q + 1)-tuples (Müller, 2005; Wellmann and Müller, 2010).

Rousseeuw and Hubert (1999) gave further ideas of depth approaches in the re-

gression case for the depth of parameters θ in a given parameter class Θ ⊆ Rp for

observed data points z1 = (x1, y1)>, . . . , zN = (xN , yN)> ∈ Rd+1. For each θ ∈ Θ,

we can de�ne the associated residuals r1(θ), . . . , rN(θ).

The regression depth dR(θ, (z1, . . . , zN)>) of a parameter θ and data (z1, . . . , zN)>

is de�ned by the minimal number of data points that must be omitted to obtain a

regression non-�t. A regression parameter θ is called a regression non-�t for the data

if and only if there exists an a�ne hyperplane V ⊆ Rd such that x1, . . . ,xN /∈ V

and such that rn(θ) > 0 for all n with xn in one of its open halfspace and rn(θ) < 0

for all n with xn in the other halfspace. However, the computational costs for the

regression depth are expensive for increasing p and only approximations are available

for p > 4 (Rousseeuw and Struyf, 1998).

In the case of the linear regression, Rousseeuw and Hubert mentioned that the

regression depth of three data points is positive if and only if the signs of the residuals

are alternating. This leads to the idea to consider only tuples of the data. The

simplicial regression depth is de�ned by counting the relative number of (p + 1)-

tuples which have a positive regression depth (Müller, 2005):

dSR(θ, (z1, . . . , zN)>) :=
1(
N
p+1

) ∑
1≤n1<...<np+1≤N

1{dR(θ, (zn1 , . . . , znp+1)
>) > 0}.

This depth concept is called 'simplicial', because it mimics the theoretical connection

between Tukey's halfspace depth and Liu's simplicial depth for the regression depth.

Mizera (2002) considered the regression depth again and found an equivalent repre-

sentation of a regression non-�t under convexity conditions on the model class by

directional derivatives and introduced the tangent depth:

dT (θ, (z1, . . . , zN)>) :=
1

N
min
u∈Rp

∣∣∣∣{n; u>
∂

∂θ
rn(θ)2 ≥ 0

}∣∣∣∣ .
Originally, also other quality functions than the squares of the residuals are intro-

duced by Mizera (2002).
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Then, the simplicial tangent depth is de�ned by

dST (θ, (z1, . . . , zN)>) :=
1(
N
p+1

) ∑
1≤n1<...<np+1≤N

1{dT (θ, (zn1 , . . . , znp+1)
>) > 0}.

Kustosz et al. (2016b) found conditions on the model class which yields for the

simplicial tangent depth:

dST (θ, (z1, . . . , zN)>) =
1(
N
p+1

) ∑
1≤n1<...<np+1≤N

(
p+1∏
k=1

1{rnk(θ)(−1)k > 0}

+

p+1∏
k=1

1{rnk(θ)(−1)k < 0}+

(
1−

p+1∏
k=1

1{rnk(θ) 6= 0}

))
.

(5)

Thus, the tangent depth of a (p+ 1)-tuple of residuals is positive if and only if their

signs are alternating or if one residual is exactly zero. In the case that the residuals

cannot be zero, we obtain the equality of the simplicial tangent depth and the K-

sign depth for K = p+ 1 from De�nition 2.2. The scenario that residuals are equal

to zero can be usually omitted if the errors of the model are realizations of random

variables with a continuous distribution.

TheK-sign depth has the advantage that it is easier to comprehend than the original

depth functions. Therefore, e�cient computational tools for computation in linear

time can also be constructed as it will be shown in this thesis.

Dealing with zeros in the residual vector

The di�erence between Formula (5) and De�nition 2.2 is the third part in the sum

of Formula (5). This part increases the value of the simplicial tangent depth if at

least one residual of a (p + 1)-tuple is zero. This is a plausible procedure to deal

with zeros since residuals equal to zero denotes a good �t. The K-sign depth in

De�nition 2.2 ignores this case by assuming that zeros never or only sometimes

occur and such cases are neglected therefore. We will assume this in the following

parts of this thesis since an analysis under the third term in Formula (5) would lead

to more complicated derivations which we would like to avoid. For the algorithms

in Chapter 4 and 5, we remove all zeros before computing the K-sign depth.

If the number of zeros is not negligible, the originalK-sign depth can lead to un�tting

results. For the extreme case that each residual is equal to zero, we expect a strong

�t. However, the K-sign depth in De�nition 2.2 is zero in this case which expresses

mistakenly a bad �t.
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There are several ways how to deal with zeros when we apply the K-sign depth:

(i) We can remove zeros as in all implementations in (Horn, 2021b). This proce-

dure should be used under the assumption that zeros rarely occur.

(ii) The original K-sign depth in De�nition 2.2 can be replaced by

d̃K(R) :=
1(
N
K

) ∑
1≤n1<...<nK≤N

(
K∏
k=1

1{ϕ(Rnk)(−1)k > 0}

+
K∏
k=1

1{ϕ(Rnk)(−1)k < 0}

)

with ϕ(x) = 1{x ≥ 0} − 1{x < 0}, i.e., zeros are interpreted as positive

signs. However, the decision to set zeros as positive is arbitrary. Moreover,

this procedure handles residuals with multiple consecutive zeros badly either.

(iii) We can replace zeros by the sign of sampled random variables satisfying (A1)

and (A2). This can be understood as an extension of (ii) by decomposing the

value zero into two possible random values. However, randomized decision rules

only make sense from a theoretical perspective but can be absurd in a practical

context. In the worst case, the decision of the sampled random variables can

be relevant whether a hypothesis is rejected or not.

(iv) In order to eliminate the stochastic components in (iii), we can replace the zeros

by deterministic rules that increase the K-sign depth under the occurrence of

zeros. E.g., we can replace a zero by the reversed sign from the entry before. This

leads to a sign change which increases theK-sign depth. If multiple consecutive

zeros occur, they should have alternating signs. If the �rst entry of the residual

vector is already zero than the next non-zero entry can be used instead and

the signs can be constructed alternating in the reversed direction. If only zeros

occur than we translate this residual vector to a vector with alternating signs.

Note that a high number of sign changes can be misunderstood as negative

correlation although higher number of sign changes are only arti�cially added.

(v) The third part in Formula (5) takes a similar idea as in (iv) in consideration.

Its value is determined by the number of zeros in the data as the third term

in Formula (5) and can be added to De�nition 2.2 as an extra part. But as

mentioned before, this part is more complicated to handle and omitted in this

thesis therefore.
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3 Asymptotic distribution of the K-sign depth

The aim of this chapter is to analyze the asymptotic distribution of the K-depth

under the true parameter θ∗ with errors E = (E1, . . . , EN)> ful�lling Assumption 2.1.

For the true parameter, the errors E = (E1, . . . , EN)> corresponds to the residu-

al vector according to Formula (3), p. 5, and dK(E) denotes their K-depth. The

expected value of the K-depth is then given by

IE(dK(E)) =
1

2K−1

as the following calculation shows:

IE(dK(E)) =
1(
N
K

) ∑
1≤n1<...<nK≤N

IE

(
K∏
k=1

1{Enk(−1)k > 0}+
K∏
k=1

1{Enk(−1)k < 0}

)

=
1(
N
K

) ∑
1≤n1<...<nK≤N

(
P

(
K⋂
k=1

{
Enk(−1)k > 0

})
+ P

(
K⋂
k=1

{
Enk(−1)k < 0

}))
(A1)
=

1(
N
K

) ∑
1≤n1<...<nK≤N

(
K∏
k=1

P
(
Enk(−1)k > 0

)
+

K∏
k=1

P
(
Enk(−1)k < 0

))
(A2)
=

1(
N
K

) ∑
1≤n1<...<nK≤N

(
1

2K
+

1

2K

)
=

1

2K−1
.

Note that the independence of the errors E1, . . . , EN and the probability of observing

positive or negative values are needed to compute this expected value. In order to

obtain a non-degenerated asymptotic distribution of the K-depth, we consider its

rescaled version:

TK(E) = N

(
dK(E)− 1

2K−1

)
. (6)

Centering by the expected value 1
2K−1 and the scaling factor N are necessary to apply

the (Functional) Central Limit Theorem later in the derivation of the asymptotic

distribution.

Chapter 3 is split into three parts. In Chapter 3.1, the derivation of an equivalent

representation of the 3-depth will be derived. Kustosz et al. (2016a) have already

derived an asymptotic distribution, but the derivation has been strongly simpli�ed in

the Master thesis Malcherczyk (2018a). This simpli�cation of the derivation is useful

for an easier understanding of the more general case. It is recommened to study

Chapter 3.1 �rst before reading the general case. Nevertheless, Chapter 3.1 can be

12



skipped, because the more general case also includes the case K = 3. The 2-depth is

equivalent to counting the number of positive or negative signs (Leckey et al., 2020)

so it is straight forward to derive its asymptotic distribution. In Chapter 3.2, the

general case for the previous chapter is presented and references to the special case

K = 3 are given to understand the extension better. In Chapter 3.3, the asymptotic

distribution of the K-depth is derived for general K by using Donsker's invariance

principle. In Malcherczyk et al. (2021), a similar derivation is given, but the resulting

asymptotic representation is given in another form.

Landau-Bachmann notation for asymptotic behavior

In the following, we will use the Landau-Bachmann big-O and small-o notation for

the asymptotic analysis (Sedgewick and Flajolet, 2012).

De�nition 3.1. Let f, g : R→ R be two functions.

(a) g is an asymptotic upper bound for f denoted by f = O(g) if and only if

∃C > 0∃x0 > 0∀x > x0 : |f(x)| ≤ C · |g(x)|.

(b) f is asymptotically less than g denoted by f = o(g) if and only if

∀C > 0∃x0 > 0∀x > x0 : |f(x)| < C · |g(x)|.

(c) f and g are asymptotically equivalent denoted by f = Θ(g) if and only if

f = O(g) and g = O(f).

The original Landau-Bachmann notation does not consider random variables and

their asymptotic behavior. Therefore, we introduce the following notation.

De�nition 3.2. Let (XN)N∈N and (YN)N∈N be two sequences of random variables

in R. Then (XN)N∈N is almost surely asymptotically less than (YN)N∈N denoted by

XN = oa.s.(YN) if and only if

∀C > 0∃N0 ∈ N ∀N > N0 : |XN | < C · |YN | almost surely.

We have usually YN = 1 for N ∈ N in this thesis. This additional notation is

important to di�erentiate the o-terms with and without stochastic components.

Note that such notations are often only used for stochastic convergence and written

by op in the literature, e.g., see van der Vaart (2000).
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3.1 Integral representation for K = 3

In order to derive the asymptotic distributions of the K-depth, we will rewrite the

statistic such that limit theorems can be used. In the �rst step, we use a represen-

tation of the 3-depth containing sign functions.

Lemma 3.3. For (x1, x2, x3)> ∈ R3, xi 6= 0, i ∈ {1, 2, 3}, we have

1{x1 > 0, x2 < 0, x3 > 0}+ 1{x1 < 0, x2 > 0, x3 < 0} − 1

4

=
1

4
(−ψ(x1)ψ(x2) + ψ(x1)ψ(x3)− ψ(x2)ψ(x3)) ,

where ψ(x) := 1{x > 0} − 1{x < 0} de�nes the sign function.

This lemma can be proved by checking all 23 = 8 cases for xi > 0 or xi < 0,

i ∈ {1, 2, 3}. Note that Lemma 3.6, p. 20, will be a generalized version of Lemma 3.3

and a general proof will be provided there as well. The errors E1, . . . , EN are unequal

to zero almost surely since they satisfy (A2) and Lemma 3.3 can be applied:

N

(
d3(E)− 1

4

)
= N

(
1(
N
3

) ∑
1≤n1<n2<n3≤N

(
1{En1 > 0, En2 < 0, En3 > 0}

+ 1{En1 < 0, En2 > 0, En3 < 0} − 1

4

))
=

N

4
(
N
3

) ∑
1≤n1<n2<n3≤N

(−ψ(En1)ψ(En2) + ψ(En1)ψ(En3)− ψ(En2)ψ(En3)) .

In order to simplify the last expression, we split the sum up into three parts. Then,

we omit the third summation index that is not included in each summand and obtain

N

(
d3(E)− 1

4

)
=

N

4
(
N
3

) ∑
1≤n1<n2<n3≤N

(−ψ(En1)ψ(En2) + ψ(En1)ψ(En3)− ψ(En2)ψ(En3))

=
N

4
(
N
3

)(− ∑
1≤n1<n2<n3≤N

ψ(En1)ψ(En2) +
∑

1≤n1<n2<n3≤N

ψ(En1)ψ(En3)

−
∑

1≤n1<n2<n3≤N

ψ(En2)ψ(En3)

)

=
N

4
(
N
3

)(− ∑
1≤n1<n2≤N

(N − n2)ψ(En1)ψ(En2)

+
∑

1≤n1<n3≤N

(n3 − n1 − 1)ψ(En1)ψ(En3)−
∑

1≤n2<n3≤N

(n2 − 1)ψ(En2)ψ(En3)

) (7)
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=
N

4
(
N
3

)(− ∑
1≤n1<n2≤N

(N − n2)ψ(En1)ψ(En2)

+
∑

1≤n1<n2≤N

(n2 − n1 − 1)ψ(En1)ψ(En2)−
∑

1≤n1<n2≤N

(n1 − 1)ψ(En1)ψ(En2)

) (8)

=
N

8
(
N
3

)(− ∑
1≤n1 6=n2≤N

(N −max{n1, n2})ψ(En1)ψ(En2)

+
∑

1≤n1 6=n2≤N

(max{n1, n2} −min{n1, n2} − 1)ψ(En1)ψ(En2)

−
∑

1≤n1 6=n2≤N

(min{n1, n2} − 1)ψ(En1)ψ(En2)

) (9)

=
N

8
(
N
3

) ∑
1≤n1 6=n2≤N

(2 (max{n1, n2} −min{n1, n2})−N)ψ(En1)ψ(En2) (10)

=
N2

8
(
N
3

) ∑
1≤n1 6=n2≤N

(
2|n1 − n2|

N
− 1

)
ψ(En1)ψ(En2). (11)

Formula (7) is obtained by omitting the third summation index that is not included

in the summands. We obtain Formula (8) by renaming all summation indices to

n1, n2. The symmetry between n1 and n2 yields the sums in Formula (9). Note that

n1 and n2 are replaced by min{n1, n2} and max{n1, n2}, respectively, and the factor
1
2
is necessary for compensation. By |n1 − n2| = max{n1, n2} − min{n1, n2} and

factoring N out, we obtain Formula (11).

Remark 3.4. Note �rst that IE(ψ(En)) = 0 and var(ψ(En)) = 1 for n = 1, . . . , N ,

so that the Central Limit Theorem yields

1√
N

N∑
n=1

ψ(En)
D−−−→

N→∞
N (0, 1).

A more simple version of Formula (11) without the factor 2|n1−n2|
N

− 1 would yield

the asymptotic distribution directly by the Continuous Mapping Theorem:

1

N

∑
1≤n1 6=n2≤N

ψ(En1)ψ(En2) + 1

=
1

N

N∑
n1,n2=1

ψ(En1)ψ(En2)−
1

N

N∑
n=1

ψ(En)2 + 1

=

(
1√
N

N∑
n=1

ψ(En)

)2

D−−−→
N→∞

χ2
1
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since ψ(En)2 = 1 for n = 1, . . . , N almost surely. In order to handle the additional

factor in Formula (11), we need to transform the derived representation even further.

Note that the situation in Remark 3.4 occurs for the derivation of the asymptotic

distribution of the 2-depth, see Leckey et al. (2020) or Malcherczyk (2018a). For

K = 3, the weight factor |n1−n2| will be replaced by applying the following lemma.

Lemma 3.5. Let n1, n2 ∈ R with |n1 − n2| ≤ N and N > 0. Then

|n1 − n2|
N

= 1−
∫ ∞
−∞

1
(− 1

2
, 1
2 ]

2

(n1

N
− t, n2

N
− t
)
dt. (12)

Additionally, for n1, n2 ∈ (0, N ]∫ ∞
−∞

1(− 1
2
, 1
2 ]

(n1

N
− t
)
1(− 1

2
, 1
2 ]

(n2

N
− t
)
dt

=

∫ 3
2

− 1
2

1(− 1
2
, 1
2 ]

(n1

N
− t
)
1(− 1

2
, 1
2 ]

(n2

N
− t
)
dt.

Lemma 3.5 describes a convolution-based representation of the absolute value functi-

on and has already been considered in Kustosz et al. (2016a) to derive the asymptotic

distribution of the 3-depth. Since its proof was omitted in Kustosz et al. (2016a) and

the result is crucial for the generalization of arbitrary K, the proof is given here.

Proof of Lemma 3.5.:We begin with an auxiliary calculation. For that, we modify

the conditions of the indicator functions of the right side of Formula (12).

−1

2
<
n1

N
− t ≤ 1

2
and − 1

2
− n2

N
< t ≤ 1

2

⇔ n1

N
− 1

2
≤ t <

n1

N
+

1

2
and

n2

N
− 1

2
≤ t <

n2

N
+

1

2
.

Therefore, we obtain an upper and lower boundary for t with

max{n1, n2}
N

− 1

2
≤ t <

min{n1, n2}
N

+
1

2
. (13)

The assumption |n1 − n2| ≤ N of Lemma 3.5 is crucial here. Otherwise, the upper

bound could be smaller than the lower bound. The boundaries in Formula (13) will

be plugged into the integral boundaries.

|n1 − n2|
N

= 1−
(

min{n1, n2}
N

+
1

2
−
(

max{n1, n2}
N

− 1

2

))

=1−
∫ min{n1,n2}

N + 1
2

max{n1,n2}
N − 1

2

1 dt = 1−
∫ ∞
−∞

1
(− 1

2
, 1
2 ]

2

(n1

N
− t, n2

N
− t
)
dt.
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Note that 0 < n1

N
≤ 1 and 0 < n2

N
≤ 1. Thus

t ≥ max{n1, n2}
N

− 1

2
> −1

2
,

t <
min{n1, n2}

N
+

1

2
≤ 3

2

and by substituting the integral boundaries, the second assertion follows. �

In the following, we illustrate the origin of the formula in Lemma 3.5 as a convolution

formula of f(t) = 1(− 1
2
, 1
2 ](t). By Lemma 3.5, we have for x, y ∈ R with |x− y| ≤ 1

|x− y| = 1−
∫ ∞
−∞

f(x− t)f(y − t) dt.

After substituting v = x− t, we obtain

|x− y| = 1−
∫ ∞
−∞

f(v)f(y − x+ v) dv

= 1−
∫ ∞
−∞

f(v)f(x− y − v) dv = 1− (f ∗ f)(x− y)

since the symmetry f(x) = f(−x) holds under the integral. The last equation yields

a convolution-based formula as a deeper interpretation (Aubin, 2000, p. 128):

1− |x| = (f ∗ f)(x), x ∈ [−1, 1].

Now, we continue considering Formula (11), p. 15,

N

(
d(E)− 1

4

)
=
N2

8
(
N
3

) ∑
1≤n1 6=n2≤N

(
2|n1 − n2|

N
− 1

)
ψ(En1)ψ(En2)

=
N2

4
(
N
3

) N∑
n1,n2=1

(
|n1 − n2|

N
− 1

2

)
ψ(En1)ψ(En2) +

N2

8
(
N
3

) N∑
n=1

ψ(En)2

=
N2

4
(
N
3

) N∑
n1,n2=1

(
|n1 − n2|

N
− 1

2

)
ψ(En1)ψ(En2) +

N3

8
(
N
3

) (14)

almost surely, since ψ(En)2 = 1 holds for n = 1, . . . , N almost surely. Moreover
N3

8(N3 )
= O(1), so we only need to focus on the �rst sum of the last formula for

further asymptotic analysis.
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By using Lemma 3.5, we obtain

N2

4
(
N
3

) N∑
n1,n2=1

(
|n1 − n2|

N
− 1

2

)
ψ(En1)ψ(En2)

=
N3

4
(
N
3

) 1

N

N∑
n1,n2=1

(
1

2
−
∫ 3

2

− 1
2

1(− 1
2
, 1
2

]

(n1

N
− t
)
1(− 1

2
, 1
2

]

(n2

N
− t
)
dt

)
ψ(En1)ψ(En2)

=
N3

4
(
N
3

) 1

N

(
1

2

N∑
n1,n2=1

ψ(En1)ψ(En2)

−
N∑

n1,n2=1

∫ 3
2

− 1
2

1(− 1
2
, 1
2

]

(n1

N
− t
)
1(− 1

2
, 1
2

]

(n2

N
− t
)
ψ(En1)ψ(En2) dt

)

=
N3

4
(
N
3

)(1

2

(
1√
N

N∑
n=1

ψ(En)

)2

−
∫ 3

2

− 1
2

(
1√
N

N∑
n=1

1(− 1
2
, 1
2

]

( n
N
− t
)
ψ(En)

)2

dt

)
. (15)

The asymptotic behavior of the �rst part in Formula (15) can be derived as in

Remark 3.4. The second part will be simpli�ed by considering 1(− 1
2
, 1
2

]

(
n
N
− t
)
:

−1

2
<

n

N
− t ≤ 1

2
⇔ N

(
t− 1

2

)
< n ≤ N

(
t+

1

2

)
.

In combination with n ∈ {1, . . . , N}, this assertion is equivalent to

max

{⌊
N

(
t− 1

2

)⌋
, 0

}
+ 1 ≤ n ≤ min

{⌊
N

(
t+

1

2

)⌋
, N

}
.

For t ∈
(
−1

2
, 1

2

)
, we obtain the following equivalent assertion:

1 ≤ n ≤
⌊
N

(
t+

1

2

)⌋
,

and for t ∈
[

1
2
, 3

2

)
, it is equivalent to:⌊

N

(
t− 1

2

)⌋
+ 1 ≤ n ≤ N.

Then we have:

N∑
n=1

1(− 1
2
, 1
2

]

( n
N
− t
)
ψ(En) =



bN(t+ 1
2)c∑

n=1

ψ(En) for t ∈
(
−1

2
, 1

2

)
,

N∑
n=bN(t− 1

2)c+1

ψ(En) for t ∈
[

1
2
, 3

2

)
,
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=



bN(t+ 1
2)c∑

n=1

ψ(En) for t ∈
(
−1

2
, 1

2

)
,

N∑
n=1

ψ(En)−
bN(t− 1

2)c∑
n=1

ψ(En) for t ∈
[

1
2
, 3

2

)
.

Note that the case t ∈
(
−1

2
, 1

2

)
yields an empty sum for t < −1

2
+ 1

N
, which is set as

zero by de�nition. Further, for t ∈
[

1
2
, 3

2

)
, the second sum after the decomposition

is empty for 1
2
≤ t < 1

2
+ 1

N
.

Using the notation SNt =
1√
N

bNtc∑
n=1

ψ(En), we simplify the following integrands:

∫ 3
2

− 1
2

(
1√
N

N∑
n=1

1(− 1
2
, 1
2)

( n
N
− t
)
ψ(En)

)2

dt

=

∫ 1
2

− 1
2

(
SN
t+ 1

2

)2

dt+

∫ 3
2

1
2

(
SN1 − SNt− 1

2

)2

dt

=

∫ 1

0

(
SNt
)2
dt+

∫ 1

0

(
SN1 − SNt

)2
dt.

(16)

To sum up, we obtain the following representation of the 3-depth according to For-

mula (14), p. 17, and Formula (15), p. 18,

N

(
d3(E)− 1

4

)
=

N3

8
(
N
3

) +
N3

8
(
N
3

) (SN1 )2 − N3

4
(
N
3

) (∫ 1

0

(SNt )2 dt+

∫ 1

0

(SN1 − SNt )2 dt

)
.

At the end of Chapter 3.2, we will see that the K-depth can be represented by a

functional of a random walk (SNt )t∈[0,1] for all K.

3.2 Asymptotic integral representation for general K

The general derivation is structured in three steps.

1. Generalization of a product formula with the sign function ψ as in Lem-

ma 3.3 (Chapter 3.2.1, p. 20)

2. Asymptotic negligence rule for sign products with high length (Chapter

3.2.2, p. 23). This calculation does not occur for the case K = 3

3. Simpli�cation of the asymptotically relevant part - similar to the calcu-

lation after Lemma 3.3 for K = 3 (Chapter 3.2.3, p. 26)
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3.2.1 Representation of the K-depth by products of sign functions

Analogous to K = 3 in Lemma 3.3, we will simplify the K-depth by a representation

with products of the sign functions, see also Leckey et al. (2020). In order to avoid

triple index notations, we write ni(1), . . . , ni(2L) instead of ni1 , . . . , ni2L .

Lemma 3.6. For (x1, . . . , xK)> with xni 6= 0, i = 1, ..., K and K ∈ N we have

K∏
k=1

1{xnk(−1)k > 0}+
K∏
k=1

1{xnk(−1)k < 0} − 1

2K−1

=
1

2K−1

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ(xni(j)),

(17)

where ψ(x) := 1{x > 0} − 1{x < 0} de�nes the sign function.

Formula (17) can be used to rewrite the summands of the K-depth

K∏
k=1

1{Enk(−1)k > 0}+
K∏
k=1

1{Enk(−1)k < 0} − 1

2K−1

by a sum of products with even length up to 2
⌊
K
2

⌋
because it holds Eni 6= 0 al-

most surely for i = 1, . . . , K due to assumption (A2). E.g., we have the following

representation for K ∈ {2, 3, 4}:

K = 2 : −1

2
ψ(En1)ψ(En2),

K = 3 :
1

4
(−ψ(En1)ψ(En2) + ψ(En1)ψ(En3)− ψ(En2)ψ(En3)),

K = 4 :
1

8

( 4∏
i=1

ψ(Eni)− ψ(En1)ψ(En2) + ψ(En1)ψ(En3)

− ψ(En1)ψ(En4)− ψ(En2)ψ(En3) + ψ(En2)ψ(En4)− ψ(En3)ψ(En4)
)
.

Note that these formulas lead to a positive or negative value if the signs of En1 , . . . , EnK
are alternating or not, respectively. In order to prove Lemma 3.6, the following iden-

tity is useful (Leckey et al., 2020):

Lemma 3.7. If a1, ..., aK are arbitrary real numbers, then it holds for K ∈ N

K∏
i=1

(ai + 1) =
K∑
`=1

∑
1≤i(1)<...<i(`)≤K

∏̀
j=1

ai(j) + 1. (18)
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Proof of Lemma 3.7: The assertion will be proved by induction for K. The base

step for K = 1 is clear. If we assume the assertion holds for a �xed K, then it also

holds for K + 1 as the following calculation shows:

K+1∏
i=1

(ai + 1) =

(
K∏
i=1

(ai + 1)

)
(aK+1 + 1)

=

 K∑
`=1

∑
1≤i(1)<...<i(`)≤K

∏̀
j=1

ai(j) + 1

 (aK+1 + 1)

=
K∑
`=1

∑
1≤i(1)<...<i(`)≤K

∏̀
j=1

ai(j)aK+1 +
K∑
`=1

∑
1≤i(1)<...<i(`)≤K

∏̀
j=1

ai(j) + aK+1 + 1

=
K+1∑
`=1

∑
1≤i(1)<...<i(`)≤K+1

∏̀
j=1

ai(j) + 1.

Thus, the assertion follows. �

Proof of Lemma 3.6: Note for x 6= 0:

1{x > 0} =
1

2
(ψ(x) + 1), 1{x < 0} =

1

2
(−ψ(x) + 1). (19)

Formula (19) and Lemma 3.7 imply:

K∏
i=1

1{xi(−1)i > 0} =
1

2K

K∏
i=1

((−1)iψ(xi) + 1)

=
1

2K

 K∑
`=1

∑
1≤i(1)<...<i(`)≤K

∏̀
j=1

(−1)i(j)ψ(xi(j)) + 1

 .

Similarly it holds:

K∏
i=1

1{xi(−1)i < 0} =
1

2K

K∏
i=1

(
(−1)i+1ψ(xi) + 1

)
=

1

2K

 K∑
`=1

∑
1≤i(1)<...<i(`)≤K

(−1)`
∏̀
j=1

(−1)i(j)ψ(xi(j)) + 1


=

1

2K

 K∑
`=1
` even

∑
1≤i(1)<...<i(`)≤K

∏̀
j=1

(−1)i(j)ψ(xi(j)) + 1


− 1

2K

K∑
`=1
` odd

∑
1≤i(1)<...<i(`)≤K

∏̀
j=1

(−1)i(j)ψ(xi(j)).
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That yields:

K∏
i=1

1{xi(−1)i > 0}+
K∏
i=1

1{xi(−1)i < 0}

=
1

2K−1

 K∑
`=1
` even

∑
1≤i(1)<...<i(`)≤K

∏̀
j=1

(−1)i(j)ψ(xi(j)) + 1


=

1

2K−1

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ(xi(j)) +
1

2K−1

and the assertion follows. �

Note that this is an alternative proof for the special case in Lemma 3.3. In the

Master thesis Malcherczyk (2018a), Lemma 3.6 has already been found but proved

by a less elegant induction calculation. We can apply Lemma 3.6 to obtain the

following almost surely representation of the rescaled version of the K-depth.

Theorem 3.8. For a random vector E = (E1, . . . , EN)> satisfying P(En 6= 0) = 1

for n = 1, . . . , N , it holds almost surely

N

(
dK(E)− 1

2K−1

)
=

N

2K−1
(
N
K

) ∑
1≤n1<...<nK≤N

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ(Eni(j)).
(20)

Proof of Theorem 3.8: By a direct consequence of Lemma 3.6, we obtain

N

(
dK(E)− 1

2K−1

)
=
N(
N
K

) ∑
1≤n1<...<nK≤N

(
K∏
k=1

1{Enk(−1)k > 0}+
K∏
k=1

1{Enk(−1)k < 0} − 1

2K−1

)

=
N

2K−1
(
N
K

) ∑
1≤n1<...<nK≤N

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ(Eni(j)). �

We will exchange the sums in Formula (20) in the following by

N

(
dK(E)− 1

2K−1

)
=

N

2K−1
(
N
K

) bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)
∑

1≤n1<...<nK≤N

2L∏
j=1

ψ(Eni(j)).︸ ︷︷ ︸
asymptotic analysis in Chapter 3.2.2

(21)
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Formula (21) will be used to separate asymptotically negligible from asymptotically

relevant parts of the K-depth in Chapter 3.2.2.

3.2.2 Asymptotic neglect of sign-products with higher length

The next theorem shows that the products of length four or higher in Formula (21)

are asymptotic negligible as N → ∞. In the following, m will denote the product

length and M will denote the length of a tuple in the ordered sum.

Lemma 3.9. Let (EN)N∈N be a sequence of random variables satisfying Assumption

2.1. Then for m ∈ {1, . . . ,M} and bN(n1, . . . , nM) = O(NB) with B < m
2
−M and

arbitrary 1 ≤ i(1) < . . . < i(m) ≤M , it holds

∑
1≤n1<...<nM≤N

bN(n1, . . . , nM)
m∏
j=1

ψ(Eni(j)) −→ 0

in probability as N →∞.

If B < m−1
2
−M , then

∑
1≤n1<...<nM≤N

bN(n1, . . . , nM)
m∏
j=1

ψ(Eni(j)) −→ 0

almost surely as N →∞.

Lemma 3.9 describes the relation between B, the asymptotic order of the factor

bN(n1, . . . , nM), and m,M such that the factor is able to dominate the term for large

N . The condition B < m
2
−M shows that the length m of the product term should

be su�ciently high comparing to the number of indices M to have this domination.

Proof of Lemma 3.9: Let m,M be �xed. Since IE(ψ(En)) = 0 and E1, . . . , EN are

independent, we obtain

IE

( ∑
1≤n1<...<nM≤N

b(n1, . . . , nM)
m∏
j=1

ψ(Eni(j))

)
= 0.

Furthermore, ψ(En)2 = 1 almost surely implies

IE

(
m∏
j=1

ψ(Eni(j))ψ(Eñi(j))

)
=

1, if ni(j) = ñi(j) for j = 1, . . . ,m,

0, otherwise.
(22)
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Then

var

( ∑
1≤n1<...<nM≤N

bN(n1, . . . , nM)
m∏
j=1

ψ(Eni(j))

)

=IE

( ∑
1≤n1<...<nM≤N

bN(n1, . . . , nM)
m∏
j=1

ψ(Eni(j))

)2


= IE

 ∑
1≤n1<...<nM≤N
1≤ñ1<...<ñM≤N

bN(n1, . . . , nM)bN(ñ1, . . . , ñM)
m∏
j=1

ψ(Eni(j))ψ(Eñi(j))


=O(N2B)

∑
1≤n1<...<nM≤N
1≤ñ1<...<ñM≤N

IE

(
m∏
j=1

ψ(Eni(j))ψ(Eñi(j))

)

(22)
= O(N2B)

∑
1≤n1<...<nM≤N
1≤ñ1<...<ñM≤N

m∏
j=1

1Ii(1),...,i(m)
(n1, . . . , nM , ñ1, . . . , ñM) (23)

where Ii(1),...,i(m) denotes the set of 2M -tuples (n1, . . . , nM , ñ1, . . . , ñM) with the

property ni(j) = ñi(j) for j ∈ {1, . . . ,m} according to Formula (22).

In the next step, we decompose the previous sum into the sum over indices containing

(ni(1), . . . , ni(m)) and not containing these indices. In order to simplify the combina-

torial situation here, we also consider an upper boundary by allowing ni(1), . . . , ni(m)

to have values from 1 to N and ignoring the restrictions between the other indices:

O(N2B)
∑

1≤n1<...<nM≤N
1≤ñ1<...<ñM≤N

m∏
j=1

1Ii(1),...,i(m)
(n1, . . . , nM , ñ1, . . . , ñM)

≤O(N2B)
∑

1≤n1<...<nM≤N
1≤ñ1<...<ñM≤N

without n`,ñ` : `∈{i(1),...,i(m)}

∑
1≤ni(1)<...<ni(m)≤N

1

=O(N2B)

(
N

M −m

)2(
N

m

)
= O(N2B)O(N2(M−m))O(Nm)

=O(N2B+m+2(M−m)) = O(N2B+2M−m) −−−→
N→∞

0,

(24)

since 2B + 2M − m < 0 is equivalent to the assumption B < m
2
−M . Note that

on the one hand the factor
(
N
m

)
= O(Nm) is obtained by counting the number

of indices 1 ≤ ni(j), ñi(j) ≤ N with ni(j) = ñi(j). On the other hand, the factor(
N

M−m

)2
= O(N2(M−m)) is obtained by counting the number of indices 1 ≤ n`, ñ` ≤ N

with ` /∈ {i(1), . . . , i(m)} and not necessarily n` = ñ` so that we have
(

N
M−m

)
to the

power of two.
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Chebyshev's inequality provides the convergence in probability since for all ε > 0:

P

(∣∣∣∣∣ ∑
1≤n1<...<nM≤N

bN(n1, . . . , nM)
m∏
j=1

ψ(Eni(j))

∣∣∣∣∣ > ε

)

≤ 1

ε2
var

( ∑
1≤n1<...<nM≤N

bN(n1, . . . , nM)
m∏
j=1

ψ(Eni(j))

)
−−−→
N→∞

0.

The convergence in probability can be extended to convergence almost surely if

B < m−1
2
−M . The convergence in probability is then su�ciently quick and Borel-

Cantelli's lemma can be applied. In order to see this consequence, we set for N ≥M

XN :=
∑

1≤n1<...<nM≤N

bN(n1, . . . , nM)
m∏
j=1

ψ(Eni(j))

and XN = 0 otherwise. For arbitrary ε > 0, Chebyshev's inequality provides

∞∑
N=1

P (|XN | ≥ ε) ≤
∞∑
n=1

O(N2B+2M−m) =
∞∑
N=1

O(N−(1+δ)) <∞ (25)

with B = m−1
2
−M − δ

2
for arbitrary δ > 0. The Borel-Cantelli lemma implies

P
(

lim sup
N→∞

{|XN | ≥ ε}
)

= 0 for arbitrary ε > 0

which is an alternative characterization for XN −−−→
N→∞

0 almost surely. �

The next theorem summarizes the asymptotics of the products with higher length.

Theorem 3.10. Let (EN)N∈N be a sequence of random variables satisfying Assump-

tion 2.1 and E = EN = (E1, . . . , EN)>. Then we have almost surely

N

(
dK(E)− 1

2K−1

)
=

N

2K−1
(
N
K

) ∑
1≤i(1)<i(2)≤K

∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(Eni(1))ψ(Eni(2)) + oa.s.(1).

For K ∈ {2, 3}, the o-term is exactly zero.

Proof of Theorem 3.10: According to Formula (21), we have

N

(
dK(E)− 1

2K−1

)
=

N

2K−1
(
N
K

) bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)
∑

1≤n1<...<nK≤N

2L∏
j=1

ψ(Eni(j))
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=
N

2K−1
(
N
K

) ∑
1≤i(1)<i(2)≤K

∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(Eni(1))ψ(Eni(2))

+
N

2K−1
(
N
K

) bK2 c∑
L=2

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=2

(−1)i(j)
∑

1≤n1<...<nK≤N

2L∏
j=1

ψ(Eni(j)) (26)

almost surely. We only have to prove that Formula (26) is asymptotically negligible

as N → ∞. Note that for K ∈ {2, 3} Formula (26) is zero and the proof is trivial

then. For K ≥ 4 and L = 2, . . . ,
⌊
K
2

⌋
, we consider the expression

N(
N
K

) ∑
1≤n1<...<nK≤N

2L∏
j=1

ψ(Eni(j))

and check the conditions of Lemma 3.9. According to the notation of Lemma 3.9,

we have M = K, m = 2L and B = 1−K since

bN(n1, . . . , nK) =
N(
N
K

) = O(N1−K).

Thus, B = 1−K < 2L−1
2
−K is satis�ed for L ≥ 3

2
and therefore, Lemma 3.9 yields

N(
N
K

) ∑
1≤n1<...<nK≤N

2L∏
j=1

ψ(Eni(j)) −→ 0

almost surely as N →∞. �

Theorem 3.10 implies that we can neglect the summands with product length four

and higher in Formula (26) almost surely. In the following chapters, the asymptoti-

cally relevant part in Theorem 3.10 will be investigated for the further asymptotic

analysis. A more detailed discussion of the asymptotically negligible part and e�-

cient algorithms for it are given in Chapter 4.2.1. Due to the fact that this asym-

ptotically negligible part is zero for K ∈ {2, 3}, Lemma 3.6 and Lemma 3.9 have

not been considered in Chapter 3.1.

3.2.3 Miscellaneous simpli�cations

After exchanging sums, Theorem 3.6 and Theorem 3.10 imply almost surely

N

(
dK(E)− 1

2K−1

)
=

N

2K−1
(
N
K

) ∑
1≤n1<...<nK≤N

∑
1≤i(1)<i(2)≤K

(−1)i(1)+i(2)ψ(Eni(1))ψ(Eni(2)) + oa.s.(1).
(27)
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In this chapter, we modify the ordered sum of indices n1 < . . . < nK to an ordinary

summation of only two indices n1, n2 by some combinatorial arguments similar to

the calculations after Lemma 3.3, p. 14, in Chapter 3.1 for K = 3. The reduction to

two summation indices is possible because the representation in Formula (27) only

depends on ni(1), ni(2) and the index of these two summation indices can be shifted

arbitrarily.

Lemma 3.11. For arbitrary (e1, . . . , eN)> ∈ RN and given (i(1), i(2)) ∈ N2 with

1 ≤ i(1) < i(2) ≤ K, it holds∑
1≤n1<...<nK≤N

ψ(eni(1))ψ(eni(2))

=
1

2

∑
1≤n1 6=n2≤N

(
(n1 ∧ n2)− 1

i(1)− 1

)(
|n1 − n2| − 1

i(2)− i(1)− 1

)(
N − (n1 ∨ n2)

K − i(2)

)
ψ(en1)ψ(en2)

where we denote n1 ∧ n2 := min{n1, n2} and n1 ∨ n2 := max{n1, n2}. Note that(
m
n

)
= 0 for m < n.

Proof of Lemma 3.11: Let i(1), i(2) with 1 ≤ i(1) < i(2) ≤ K be �xed. We �rst

determine a suitable integer κ(K, i(1), i(2)) ∈ N0 such that∑
1≤n1<...<nK≤N

ψ(eni(1))ψ(eni(2)) =
∑

1≤ni(1)<ni(2)≤N

κ(K, i(1), i(2))ψ(eni(1))ψ(eni(2)).

Note that κ(K, i(1), i(2)) denotes the number of omitted combinations of the right

sum. In order to compute κ(K, i(1), i(2)), we have to count these combinations

between and around the indices i(1) and i(2). According to Figure 3, there are

1 2 . . . ni(1)−1 ni(1) ni(1)+1 . . . ni(2)−1 ni(2) ni(2)+1 . . . N︸ ︷︷ ︸
ni(1)−1 positions

︸ ︷︷ ︸
ni(2)−ni(1) − 1 positions

︸ ︷︷ ︸
N−ni(2) positions

Figure 3: Number of positions between the indices i(1) and i(2) for general K

positions left from ni(1), between ni(1) and ni(2) and right from ni(2). We can pick

ni(1)− 1 positions from the left part, ni(2)− ni(1)− 1 positions from the middle part

and N − ni(2) positions from the right part.

Figure 4 denotes the numbers of combinations in those three parts. Thus, we obtain

κ(K, i(1), i(2)) =

(
ni(1) − 1

i(1)− 1

)(
ni(2) − ni(1) − 1

i(2)− i(1)− 1

)(
N − ni(2)

K − i(2)

)
.
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1 2 . . . ni(1)−1 ni(1) ni(1)+1 . . . ni(2)−1 ni(2) ni(2)+1 . . . N︸ ︷︷ ︸(
ni(1)−1

i(1)−1

)
choices

︸ ︷︷ ︸(
ni(2)−ni(1)−1

i(2)−i(1)−1

)
choices

︸ ︷︷ ︸(
N−ni(2)
K−i(2)

)
choices

Figure 4: Number of combinations between the indices i(1) and i(2) for general K

By de�nition,
(
m
n

)
= 0 for m < n. This occurs if ni(1) < 1, ni(2) − ni(1) − 1 <

i(2) − i(1) − 1 or ni(2) > N − K + i(2), since it is impossible to have ni(1), ni(2)

with such properties. The expression κ(K, i(1), i(2)) takes these cases into account.

Further note that for i(1) = 1, we have no indices on the left side of i(1), so the �rst

binomial coe�cient would be one (with
(
m
0

)
= 1 for m ∈ N0). For i(1) + 1 = i(2),

the �xed indices are next to each other so there are no indices between them and

the second binomial coe�cient would be one. For i(2) = K, there are no indices

right from i(2), thus the third binomial coe�cient is one then. For K = 3, only one

of these three binomial coe�cients is not one and for K = 4, one of these binomial

coe�cients is always one. For general K, we need this representation with three

binomial coe�cients:∑
1≤n1<...<nK≤N

ψ(eni(1))ψ(eni(2))

=
∑

1≤ni(1)<ni(2)≤N

(
ni(1) − 1

i(1)− 1

)(
ni(2) − ni(1) − 1

i(2)− i(1)− 1

)(
N − ni(2)

K − i(2)

)
ψ(eni(1))ψ(eni(2))

=
∑

1≤n1<n2≤N

(
n1 − 1

i(1)− 1

)(
n2 − n1 − 1

i(2)− i(1)− 1

)(
N − n2

K − i(2)

)
ψ(en1)ψ(en2)

=
1

2

∑
1≤n1 6=n2≤N

(
(n1 ∧ n2)− 1

i(1)− 1

)(
|n1 − n2| − 1

i(2)− i(1)− 1

)(
N − (n1 ∨ n2)

K − i(2)

)
ψ(en1)ψ(en2).

Note that the last equation holds by exchanging n1 and n2 with n1 ∧n2 and n1 ∨n2

and by |n1 − n2| = (n1 ∨ n2)− (n1 ∧ n2). �

We use this auxiliary calculation to prove the next lemma.

Lemma 3.12. For arbitrary (e1, . . . , eN)> ∈ RN and given (i(1), i(2)) ∈ N2 with

1 ≤ i(1) < i(2) ≤ K, it holds∑
1≤i(1)<i(2)≤K

∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(eni(1))ψ(eni(2))

=
1

2

∑
1≤n1 6=n2≤N

(
−

K−2∑
J=0

(−1)J
(
|n1 − n2| − 1

J

)(
N − |n1 − n2| − 1

K − 2− J

))
ψ(en1)ψ(en2).
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This combinatorial derivation can be proved more formal with Vandermonde's con-

volution (Gould and Srivastava, 1997):

Lemma 3.13 (Vandermonde's convolution). For integers m,n, r ≥ 0, we have(
m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
.

Proof of Lemma 3.12: We consider J = i(2)− i(1) ∈ {1, . . . , K − 1}. Note that

(−1)i(1)+i(2) = (−1)2·i(1)+i(2)−i(1) = (−1)J . (28)

Using Lemma 3.11 and Formula (28), we have∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(Eni(1) , Eni(2)) = (−1)J
∑

1≤n1<...<nK≤N

ψ(eni(1))ψ(eni(2))

=
(−1)J

2

∑
1≤n1 6=n2≤N

(
(n1 ∧ n2)− 1

i(1)− 1

)(
|n1 − n2| − 1

J − 1

)(
N − (n1 ∨ n2)

K − i(1)− J

)
ψ(en1)ψ(en2).

Our aim is to sum up over all combinations for i(1) and i(2), see Figure 5. We �x

i(1) = 1 i(1) = 2 . . . i(1) = K − 2 i(1) = K − 1
J = 1 (1,2) (2,3) . . . (K − 2, K − 1) (K − 1, K)
J = 2 (1,3) (2,4) . . . (K − 2, K)
...

...
... . .

.

J = K − 2 (1, K − 1) (2, K)
J = K − 1 (1, K)

Figure 5: Illustration for the summation process of (i(1), i(2)) via i(1) and J in the
current calculation

a row index that is represented by J . We can sum up i(1) ∈ {1, . . . , K − J} for any
�xed row J :

2(−1)J
K−J∑
i(1)=1

∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(eni(1))ψ(eni(2))

=
K−J∑
i(1)=1

∑
1≤n1 6=n2≤N

(
(n1 ∧ n2)− 1

i(1)− 1

)(
|n1 − n2| − 1

J − 1

)(
N − (n1 ∨ n2)

K − i(1)− J

)
ψ(en1)ψ(en2)

=
∑

1≤n1 6=n2≤N

(
|n1 − n2| − 1

J − 1

)K−J−1∑
i(1)=0

(
(n1 ∧ n2)− 1

i(1)

)(
N − (n1 ∨ n2)

K − J − 1− i(1)

)
ψ(en1)ψ(en2)
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=
∑

1≤n1 6=n2≤N

(
|n1 − n2| − 1

J − 1

)(
N − |n1 − n2| − 1

K − J − 1

)
ψ(en1)ψ(en2),

where Vandermonde's convolution (Lemma 3.13) yields the last equality. If we sum

up over J ∈ {1, ..., K − 1}, we obtain all
(
K
2

)
combinations for 1 ≤ i(1) < i(2) ≤ K

so that∑
1≤i(1)<i(2)≤K

∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(eni(1))ψ(eni(2))

=
K−1∑
J=1

(−1)J

2

∑
1≤n1 6=n2≤N

(
|n1 − n2| − 1

J − 1

)(
N − |n1 − n2| − 1

K − J − 1

)
ψ(en1)ψ(en2)

=
1

2

∑
1≤n1 6=n2≤N

(
−

K−2∑
J=0

(−1)J
(
|n1 − n2| − 1

J

)(
N − |n1 − n2| − 1

K − 2− J

))
ψ(en1)ψ(en2).

Thus, the assertion follows. �

Applying Lemma 3.12, we can continue the simpli�cation of the K-depth.

Theorem 3.14. Let (EN)N∈N be a sequence of random variables satisfying Assump-

tion 2.1 and let E = EN = (E1, . . . , EN)>. Then we have almost surely

N

(
dK(E)− 1

2K−1

)
= − N

2K
(
N
K

) ∑
1≤n1 6=n2≤N

αK,N(n1, n2)ψ(En1)ψ(En2) + oa.s.(1) (29)

with αK,N(n1, n2) =
K−2∑
J=0

(−1)J
(
|n1 − n2| − 1

J

)(
N − |n1 − n2| − 1

K − 2− J

)
.

For K ∈ {2, 3}, the o-term is zero in Formula (29).

Note that the result in Formula (29) coincides with the situation in Formula (10),

p. 15, for K = 3 in Chapter 3.1, since α3,N(n1, n2) = N − 2|n1 − n2|.

Proof of Theorem 3.14: According to Theorem 3.10, it holds almost surely

N

(
dK(E)− 1

2K−1

)
=

N

2K−1
(
N
K

) ∑
1≤i(1)<i(2)≤K

∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(Eni(1))ψ(Eni(2)) + oa.s.(1).

Lemma 3.12 then yields

N

2K−1
(
N
K

) ∑
1≤i(1)<i(2)≤K

∑
1≤n1<...<nK≤N

(−1)i(1)+i(2)ψ(Eni(1))ψ(Eni(2)) + oa.s.(1)
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=− N

2K
(
N
K

) ∑
1≤n1 6=n2≤N

αK,N(n1, n2)ψ(En1)ψ(En2) + oa.s.(1)

and the assertion follows. �

Another asymptotic neglect

In the following, the inner factor αK,N(n1, n2) will be decomposed into two parts

for further simpli�cations of Formula (29). We will use the notation of the falling

factorial 〈N〉K := N !
(N−K)!

.

Lemma 3.15. For arbitrary n1, n2 ∈ N with 1 ≤ n1 6= n2 ≤ N , it holds

N

2K
(
N
K

)αK,N(n1, n2) =
N

2K
(
N
K

) K−2∑
J=0

(−1)J
(
|n1 − n2| − 1

J

)(
N − |n1 − n2| − 1

K − 2− J

)
=
NK−1K(K − 1)

4〈N〉K

(
1

2
− |n1 − n2|

N

)K−2

(30)

+
NK−1

2K
(
N
K

) ∑
0≤M1<M2≤K−2

aK(M1,M2)
|n1 − n2|M1

NM2
(31)

for suitable constants aK(M1,M2) ∈ R.

The �rst part of the decomposition in Formula (30) will be investigated in the further

asymptotic analysis. The second part in Formula (31) will be neglected asymptoti-

cally.

Proof of Lemma 3.15: Note that
(
N
K

)
= NK

K!
+O(NK−1) for a �xedK ∈ {0, . . . , N}.

For K = 0, we have
(
N
0

)
= 1 where O(N−1) corresponds to zero then. Further we

have |n1 − n2| = O(N) due to the fact that |n1 − n2| ≤ N . For a more convenient

notation, we set x := |n1 − n2|. We obtain:(
x− 1

J

)
=

(x− 1)J

J !
+O(NJ−1)(

N − x− 1

K − 2− J

)
=

(N − x− 1)K−2−J

(K − 2− J)!
+O(NK−3−J)

(32)

for arbitrary values for x ∈ {0, . . . , N} and J ∈ {0, . . . , K− 2}. Formula (32) yields:(
x− 1

J

)(
N − x− 1

K − 2− J

)
=

(x− 1)J

J !

(N − x− 1)K−2−J

(K − 2− J)!
+O(NK−3)
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=

(
K−2
J

)
(K − 2)!

(x− 1)J(N − x− 1)K−2−J +O(NK−3).

This will be plugged into the sum over J . Then

N

2K
(
N
K

) K−2∑
J=0

(−1)J
(
x− 1

J

)(
N − x− 1

K − 2− J

)

=
N

2K
(
N
K

) (K−2∑
J=0

(
K−2
J

)
(K − 2)!

(1− x)J (N − x− 1)K−2−J +O(NK−3)

)

=
NK(K − 1)

2K〈N〉K
(N − 2x)K−2 +O(NK−3)

=
NK−1K(K − 1)

4〈N〉K

(
1

2
− x

N

)K−2

+O(NK−3),

(33)

where in the second last equation the Binomial Theorem is applied. The left sum-

mand corresponds exactly to Formula (30). Now, we have to identify the O(NK−3)-

term and show that it can be represented as in Formula (31). At �rst, we consider

K−2∑
J=0

(−1)J
(
x− 1

J

)(
N − x− 1

K − 2− J

)

and represent this sum as a polynomial in x and N . We do not need to specify the

coe�cients in detail, but we have to determine the possible degrees of the polynomi-

als. In the second step, we apply the previous calculation from Formula (33). First

note that for each J = 0, . . . , K − 2

(
x− 1

J

)
=

J∑
r=0

kr(J)xr and
(
N − x− 1

K − 2− J

)
=

K−2−J∑
q1=0

K−2−J−q1∑
q2=0

kq1,q2(J)N q1xq2

for suitable constants kr(J), kq1,q2(J). Multiplying these polynomials in x and N

yields

(
x− 1

J

)(
N − x− 1

K − 2− J

)
=

K−2−J∑
q1=0

K−2−J−q1∑
q2=0

J∑
r=0

kr(J)kq1,q2(J)xr+q2N q1 .

Then, we substitute r + q2 by p and q1 by q. Further, we also sum up the constants

kr(J) and kq1,q2(J) to one constant k̃p,q(J):

K−2−J∑
q1=0

K−2−J−q1∑
q2=0

J∑
r=0

kr(J)kq1,q2(J)xr+q2N q1 =
K−2−J∑
q=0

K−2−q∑
p=0

k̃p,q(J)xpN q
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for suitable constants k̃p,q(J). If we sum over all J = 0, . . . , K − 2, we obtain

K−2∑
J=0

(−1)J
(
x− 1

J

)(
N − x− 1

K − 2− J

)
=

K−2∑
J=0

(−1)J
K−2−J∑
q=0

K−2−q∑
p=0

k̃p,q(J)xpN q

=
K−2∑
q=0

K−2−q∑
p=0

cK(p, q)xpN q =
∑

0≤q≤K−2
0≤p≤K−2−q

cK(p, q)xpN q

for suitable constants cK(p, q). According to the �rst calculation of this proof, see

Formula (33), we obtain the following decomposition:

N

2K
(
N
K

) K−2∑
J=0

(−1)J
(
x− 1

J

)(
N − x− 1

K − 2− J

)
=
NK−1K(K − 1)

4〈N〉K

(
1

2
− x

N

)K−2

+
N

2K
(
N
K

) ∑
0≤q≤K−3

0≤p≤K−3−q

cK(p, q)xpN q,

since the case q = K − 2 cannot appear in the second term or otherwise it would be

a contradiction to the order O(NK−3) that we derived in Formula (33). Analogously,

p > K − 3− q would be a contradiction to the order O(NK−3) as well. Further

N

2K
(
N
K

) ∑
0≤q≤K−3

0≤p≤K−3−q

cK(p, q)xpN q =
NK−1

2K
(
N
K

) ∑
0≤q≤K−3

0≤p≤K−3−q

cK(p, q)
xp

NK−2−q .

We substitute with M1 := p and M2 := K − 2− q. Since 0 ≤ q ≤ K − 3, it holds

1 ≤M2 ≤ K − 2

and since 0 ≤ p ≤ K − 3− q, we have

0 ≤M1 ≤ K − 3− q = M2 − 1 < M2.

Further, we also substitute cK(p,K − 2−M2) = aK(M1,M2) and then obtain

NK−1

2K
(
N
K

) ∑
0≤q≤K−3

0≤p≤K−3−q

cK(p, q)
xp

NK−2−q =
NK−1

2K
(
N
K

) ∑
0≤M1<M2≤K−2

aK(M1,M2)
xM1

NM2

and the assertion follows. �

Note that Formula (30) can be included into the sum of Formula (31) for the case
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M1 = M2 according to the binomial theorem:

NK−1K(K − 1)

4〈N〉K

(
1

2
− |n1 − n2|

N

)K−2

=
NK−1K(K − 1)

4〈N〉K

K−2∑
M=0

(
K − 2

M

)
|n1 − n2|M

2K−2+MNM
(−1)M

=
NK−1

2K
(
N
K

) K−2∑
M=0

aK(M,M)
|n1 − n2|M

NM
.

Formula (30) denotes the asymptotically relevant part which will be analyzed in

the following. The constants aK(M1,M2) of Formula (31) do not need to be stated

explicitly for arbitrary K. Nevertheless for given K, they can be computed once

and then be used for computations. Note that the second part does not occur in the

derivation for K = 3, since a3(0, 1) = 0 (cf. Chapter 4.2.2, for more details). For

the asymptotic analysis, we only need to show that Formula (31) is asymptotically

negligible. In order to show this, we apply Lemma 3.9, p. 23, in Chapter 3.2.2 again.

Corollary 3.16. Let (EN)N∈N be a sequence of random variables satisfying Ass-

umption 2.1. For integers M1, M2 with M1 < M2 ≤ K − 2, it holds almost surely

1

N

∑
1≤n1 6=n2≤N

|n1 − n2|M1

NM2
ψ(En1)ψ(En2) −−−→

N→∞
0.

Proof of Corollary 3.16: With the notation of Lemma 3.9, p. 23, we haveM = 2

for the product length and m = 2 for the number of indices in the sum. The choice

of B corresponds to the bound:

bN(n1, n2) =
1

N

|n1 − n2|M1

NM2
= O(NM1−M2−1)

so that B = M1 −M2 − 1. The following inequalities are equivalent:

B <
m

2
−M − 1

2
⇔ M1 −M2 − 1 < 1− 2− 1

2
⇔ M1 < M2 −

1

2
.

As assumed, M1 < M2 holds. Since M1 and M2 are integers, M1 < M2 − 1
2
holds as

well. Thus, the condition of Lemma 3.9 is satis�ed and the assertion follows. �

By Theorem 3.14, p. 30, Lemma 3.15, p. 31, and Corollary 3.16, we obtain the next

theorem which is the extension of Formula (11) of the case K = 3.
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Theorem 3.17. Let (EN)N∈N be a sequence of random variables satisfying Assump-

tion 2.1 and let E = EN = (E1, . . . , EN)>. Then we have almost surely

N

(
dK(E)− 1

2K−1

)
=− NK−1K(K − 1)

4〈N〉K

∑
1≤n1 6=n2≤N

(
1

2
− |n1 − n2|

N

)K−2

ψ(En1)ψ(En2) + oa.s.(1).
(34)

For K ∈ {2, 3}, the o-term is zero in Formula (34).

Note that in Malcherczyk et al. (2021), the asymptotic derivation starts to be dif-

ferent from this thesis at this point. The alternative resulting representation in this

paper will be given in a remark at the end of this chapter.

Last steps to the integral representation for general K

At �rst, we introduce notations for some terms that will appear in the following.

Notation 3.18. .

(i) For n1, n2 ∈ {1, . . . , N} and J ∈ N0, we will have a similar integral represen-

tation to Lemma 3.5, p. 16:

I(J, n1, n2) :=


∫

(− 1
2
, 3
2)
J

J∏
j=1

1
(− 1

2
, 1
2 ]

2

(n1

N
− tj,

n2

N
− tj

)
dt, for J ∈ N,

1, for J = 0.

(ii) For t ∈ [0, 1] and arbitrary x1, . . . , xN ∈ R, we introduce the random walk:

SNt := SNt (x1, . . . , xN) =
1√
N

bNtc∑
n=1

ψ(xn).

For expressing the whole path of a random walk, e.g. for all t ∈ [0, 1] simulta-

neously, we replace t by a bullet point to denote that a function is considered:

SN• :=
(
SNt
)
t∈[0,1]

.

(iii) For t = (t1, . . . , tJ)> ∈ RJ and J ∈ N, we have:

WJ(t) := (t1 ∧ . . . ∧ tJ) +
1

2
, VJ(t) := (t1 ∨ . . . ∨ tJ)− 1

2
. (35)

Recall that x ∧ y denotes the minimum and x ∨ y the maximum of x, y ∈ R.
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(iv) For J,N ∈ N, we will later modify the integration area by:

CJ,N :=

{
t ∈

(
−1

2
,
3

2

)J
; bN · (VJ(t) ∨ 0)c+ 1 ≤ bN · (WJ(t) ∧ 1)c

}

We simplify the factor
(

1
2
− |n1−n2|

N

)K−2

in Formula (34) in the next lemma.

Lemma 3.19. Let (e1, . . . , eN)> ∈ RN with en 6= 0 for n = 1, . . . , N . Then we have

− 1

N

∑
1≤n1 6=n2≤N

(
1

2
− |n1 − n2|

N

)K−2

ψ(en1)ψ(en2)

=−
K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J
(

1

N

N∑
n1,n2=1

I(J, n1, n2)ψ(en1)ψ(en2)

)

−
(
−1

2

)K−2
(

1√
N

N∑
n=1

ψ(en)

)2

+
1

2K−2

where the Notation 3.18 (i), p. 35, is used.

Proof of Lemma 3.19: By adding zero, we have

− 1

N

∑
1≤n1 6=n2≤N

(
1

2
− |n1 − n2|

N

)K−2

ψ(en1)ψ(en2)

=− 1

N

N∑
n1,n2=1

(
1

2
− |n1 − n2|

N

)K−2

ψ(en1)ψ(en2) +
1

2K−2

(36)

since ψ(en)2 = 1 by the fact that en 6= 0 for n = 1, . . . , N . We will simplify the inner

factor of the sum in Formula (36) by applying Lemma 3.5, p. 16, on the inner factor

1

2
− |n1 − n2|

N
= I(1, n1, n2)− 1

2
.

Note that I(1, n1, n2)J = I(J, n1, n2) for J ∈ N0 due to Fubini's Theorem. Then, we

obtain with the Binomial Theorem

−
(

1

2
− |n1 − n2|

N

)K−2

= −
(
I(1, n1, n2)− 1

2

)K−2

=−
K−2∑
J=0

(
K − 2

J

)(
−1

2

)K−2−J

I(1, n1, n2)J = −
K−2∑
J=0

(
K − 2

J

)(
−1

2

)K−2−J

I(J, n1, n2).
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Furthermore, we will simplify Formula (36):

− 1

N

N∑
n1,n2=1

(
1

2
− |n1 − n2|

N

)K−2

ψ(en1)ψ(en2) +
1

2K−2

=− 1

N

K−2∑
J=0

(
K − 2

J

)(
−1

2

)K−2−J
(

N∑
n1,n2=1

I(J, n1, n2)ψ(en1)ψ(en2)

)
+

1

2K−2

=−
K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J
(

1

N

N∑
n1,n2=1

I(J, n1, n2)ψ(en1)ψ(en2)

)

−
(
−1

2

)K−2
(

1√
N

N∑
n=1

ψ(en)

)2

+
1

2K−2
.

(37)

Recall that I(0, n1, n2) = 1 to obtain Formula (37). �

The next lemma shows how the integrals I(J, n1, n2) in Lemma 3.19 can be simpli�ed

in order to obtain a �nal representation that can be handled with the Functional

Central Limit Theorem.

Lemma 3.20. For arbitrary (e1, . . . , eN)> ∈ RN and J ∈ N

1

N

N∑
n1,n2=1

I(J, n1, n2)ψ(en1)ψ(en2) =

∫
CJ,N

(
SNWJ (t)∧1 − SNVJ (t)∨0

)2
dt

where the Notation 3.18, p. 35, is used.

Proof of Lemma 3.20: First note that

1

N

N∑
n1,n2=1

I(J, n1, n2)ψ(en1)ψ(en2)

=

∫
(− 1

2
, 3
2)
J

1

N

N∑
n1,n2=1

J∏
j=1

1
(− 1

2
, 1
2 ]

2

(n1

N
− tj,

n2

N
− tj

)
ψ(en1)ψ(en2) dt

=

∫
(− 1

2
, 3
2)
J

(
1√
N

N∑
n=1

J∏
j=1

1(− 1
2
, 1
2 ]

( n
N
− tj

)
ψ(en)

)2

dt.

It remains to simplify expressions of the form

N∑
n=1

J∏
j=1

1(− 1
2
, 1
2 ]

( n
N
− tj

)
ψ(en)

for J ∈ N and t = (t1, ..., tJ)> ∈
(
−1

2
, 3

2

)J . The condition of the indicator function
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can be rewritten by

−1

2
<

n

N
− tj ≤

1

2
for all j = 1, . . . , J.

⇔ N

(
tj −

1

2

)
< n ≤ N

(
tj +

1

2

)
for all j = 1, . . . , J.

Since n = 1, ..., N , the last proposition is equivalent to⌊
N

(
tj −

1

2

)⌋
+ 1 ≤ n ≤

⌊
N

(
tj +

1

2

)⌋
for all j = 1, . . . , J.

Then, this is equivalent to⌊
N

(
(t1 ∨ . . . ∨ tJ)− 1

2

)⌋
+ 1 ≤ n ≤

⌊
N

(
(t1 ∧ . . . ∧ tJ) +

1

2

)⌋
and according to Notation 3.18 (iii), p. 35, we can rewrite this assertion by

bN · VJ(t)c+ 1 ≤ n ≤ bN ·WJ(t)c .

Now, we can simplify the original expression by:

N∑
n=1

J∏
j=1

1(− 1
2
, 1
2 ]

( n
N
− tj

)
ψ(en) =

bN ·(WJ (t)∧1)c∑
n=bN ·(VJ (t)∨0)c+1

ψ(en). (38)

The sum in Formula (38) can be empty if bN · (VJ(t) ∨ 0)c+ 1 > bN · (WJ(t) ∧ 1)c.
To take care of this case, we only consider t ∈

(
−1

2
, 3

2

)J that are in the set CJ,N from

Notation 3.18 (iv), p. 35. Thus, we have:

bN ·(WJ (t)∧1)c∑
n=bN ·(VJ (t)∨0)c+1

ψ(en) =


bN ·(WJ (t)∧1)c∑

n=1

ψ(en)−
bN ·(VJ (t)∨0)c∑

n=1

ψ(en), t ∈ CJ,N ,

0, otherwise.

(39)

The results in Formula (38) and (39) provide:

1

N

N∑
n1,n2=2

I(J, n1, n2)ψ(en1)ψ(en2)

=

∫
(− 1

2
, 3
2)
J

(
1√
N

N∑
n=1

J∏
j=1

1(− 1
2
, 1
2 ]

( n
N
− tj

)
ψ(en)

)2

dt

=

∫
CJ,N

(
SNWJ (t)∧1 − SNVJ (t)∨0

)2
dt for J ∈ N (40)
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and the assertion follows. �

The resulting integral in Formula (40) will be shortly denoted by:

Notation 3.21. For J,N ∈ N, we introduce the functional:

ΥJ,N(SN• ) :=

∫
CJ,N

(
SNWJ (t)∧1 − SNVJ (t)∨0

)2
dt. (41)

where the Notation 3.18 (ii) - (iv), p. 35, is used.

The functional ΥJ,N maps càdlàg functions f : [0, 1]→ R (i.e., f is right continuous

and its left limits exist) to R. Note that the complete path (SNt )t∈[0,1] is mapped by

ΥJ,N so that we write ΥJ,N(SN• ). The domain set of this functional contains indeed

functions in [0, 1], since WJ(t)∧ 1 ∈ [0, 1] and VJ(t)∨ 0 ∈ [0, 1] for t ∈
(
−1

2
, 3

2

)J . We

will introduce and discuss the function space of the càdlàg-functions and its topology

in Chapter 3.3 in detail. Lemma 3.19 and Lemma 3.20 yield the �nal asymptotic

integral representation of the K-depth:

Theorem 3.22. Let (EN)N∈N be a sequence of random variables satisfying Assump-

tion 2.1. Then there exists a functional ΨK,N such that almost surely

N

(
dK(E)− 1

2K−1

)
= ΨK,N(SN• ) + oa.s.(1) (42)

where ΨK,N is de�ned by

ΨK,N(SN• ) = βK,N

(
−

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ,N(SN• )−
(
−1

2

)K−2(
SN1
)2

+
1

2K−2

)

with βK,N = NKK(K−1)
4〈N〉K

and Notation 3.18 (ii), p. 35, and Notation 3.21, p. 39.

For K ∈ {2, 3}, the o-term is zero in Formula (42).

Proof of Theorem 3.22: The assertion is a direct consequence of Theorem 3.17,

p. 35, Lemma 3.19, p. 36, and Lemma 3.20, p. 37:

N

(
dK(E)− 1

2K−1

)
3.17
= − NK−1K(K − 1)

4〈N〉K

∑
1≤n1 6=n2≤N

(
1

2
− |n1 − n2|

N

)K−2

ψ(En1)ψ(En2) + oa.s.(1)

= − βK,N
N

∑
1≤n1 6=n2≤N

(
1

2
− |n1 − n2|

N

)K−2

ψ(En1)ψ(En2) + oa.s.(1)
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3.19
= − βK,N

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J
(

1

N

N∑
n1,n2=1

I(J, n1, n2)ψ(En1)ψ(En2)

)

− βK,N
(
−1

2

)K−2
(

1√
N

N∑
n=1

ψ(En)

)2

+
βK,N
2K−2

+ oa.s.(1)

3.20
= βK,N

(
−

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ,N(SN• )−
(
−1

2

)K−2(
SN1
)2

+
1

2K−2

)
+ oa.s.(1)

and the assertion follows. �

E.g., Theorem 3.22 yields the following asymptotically equivalent representations

for K ∈ {2, 3} almost surely:

K = 2 :
1

2

(
1−

(
SN1
)2
) N2

〈N〉2
,

K = 3 :
3

2

(
1

2
+

1

2

(
SN1
)2 −Υ1,N(SN• )

)
N3

〈N〉3
.

There, we have Υ1,N(SN• ) =

∫ 3
2

− 1
2

+ 1
N

(
SN(t+ 1

2)∧1
− SN(t− 1

2)∨0

)2

dt due the fact that

C1,N =
[
−1

2
+ 1

N
, 3

2

)
, compare with the derivation on page 18 for details. We can

also rewrite this integral by:

Υ1,N(SN• ) =

∫ 1
2

− 1
2

+ 1
N

(
SN
t+ 1

2

)2

dt+

∫ 3
2

1
2

(
SN1 − SNt− 1

2

)2

dt

=

∫ 1
2

− 1
2

(
SN
t+ 1

2

)2

dt+

∫ 3
2

1
2

(
SN1 − SNt− 1

2

)2

dt.

The last equality holds by SN
t+ 1

2

= 0 for t < −1
2

+ 1
N
. Note that this integral is

equal to the result in Formula (16), p. 19, at the end of Chapter 3.1, where this

expression has already appeared and been simpli�ed. In this case, we can replace

C1,N by C1 :=
(
−1

2
, 3

2

)
under the integral. Thus, we can de�ne Υ1,N = Υ1, since the

region of integration does not depend on N .

For K ∈ {4, 5}, we have:

K = 4 : 3

(
1

4
− 1

4

(
SN1
)2

+ Υ1(SN• )−Υ2,N(SN• )

)
N4

〈N〉4
+ oa.s.(1),

K = 5 : 5

(
1

8
+

1

8

(
SN1
)2 − 3

4
Υ1(SN• ) +

3

2
Υ2,N(SN• )−Υ3,N(SN• )

)
N5

〈N〉5
+ oa.s.(1).

The higher K, the more summands of the form Υk,N with k = 1, . . . , K − 2 appear
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with another scaling. This characteristic of the K-depth will also reappear when we

discuss e�cient computations in Chapter 4.1 and Chapter 5.2.

The derivation in Chapter 3.2 is based on residuals under the true parameter. Note

that the whole derivation can be redone for residuals that are not zero almost surely

since only the limit theorems require more assumptions on the residuals. Then, we

only have to replace the o-terms by rest terms which are not necessarily negligible.

Remark 3.23. Let R(θ) = (R1(θ), . . . , RN(θ))> be a residual vector under an

arbitrary parameter θ ∈ Θ of the model in Formula (1), p. 4, i.e.

Rn(θ) = Yn − g(Xn,θ) = g(Xn,θ
∗)− g(Xn,θ) + En for n ∈ {1, . . . , N}

satisfying the condition

P(Rn(θ) 6= 0) = 1 for n = 1, . . . , N. (43)

Then analogously to the derivation in Chapter 3.2, we can obtain the following re-

presentation

N

(
dK(R(θ))− 1

2K−1

)
=βK,N

(
−

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ,N(SN•,θ)−
(
−1

2

)K−2(
SN1,θ

)2
+

1

2K−2

)
+RN

θ

with SNt,θ :=
1√
N

bNtc∑
n=1

ψ(Rn(θ)), SN•,θ :=
(
SNt,θ
)
t∈[0,1]

.

The term RN
θ denotes the rest terms that can be neglected under Assumption 2.1,

cf. Theorem 3.10, p. 25, and Theorem 3.17, p. 35. Note in this context that all

results from Chapter 3.2 except of those two theorems only require the assumption

in Formula (43) for deriving the given representation.

The representation in Remark 3.23 will be used in Chapter 4 to construct an algo-

rithm for the computation of the K-depth under an arbitrary θ ∈ Θ. A su�cient

condition of the required assumption on the residuals can be derived by

P(Rn(θ) 6= 0) =1− P(g(Xn,θ
∗)− g(Xn,θ) + En = 0)

=1− P(En = g(Xn,θ)− g(Xn,θ
∗))

!
= 1,

⇔ P(En = g(Xn,θ)− g(Xn,θ
∗))

!
= 0.
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This condition is satis�ed for n = 1, . . . , N and arbitrary θ ∈ Θ if the errors

E1, . . . , EN have a continuous distribution, but it does not necessarily hold if errors

have a discrete distribution. E.g., we consider errors with P(En = 1) = 1
2

= P(En =

−1) and the model function g(θ) = θ with θ ∈ R and true parameter θ∗. Then for

θ := θ∗ ± 1, we can obtain residuals equal to zero with positive probability so that

the equality in Remark 3.23 is not correct in this case.

Note also that we can obtain residuals equal to zero under continuous distributed

errors in practice. For g(θ) = θ with θ ∈ R again, we consider continuous distributed

errors in R this time. Then for realizations of the errors e1, . . . , eN ∈ R, we obtain
rn(θ) = 0 for θ = en. Thus, at least one residual can be exactly zero. In practice, this

will often not occur, since the machine grid has to be su�ciently �ne. We neglect

this case in the following.

Remark 3.24. In Malcherczyk et al. (2021), the derivation of the asymptotic dis-

tribution is identical to this thesis up to Theorem 3.17 and then starts to di�er.

Instead of applying Lemma 3.19 and Lemma 3.20, another integral identity similar

to Lemma 3.5, p. 16, is formulated there. For J ≥ 2 and a, b ∈ [c, d], it holds

(b− a)J

=J(J − 1)

∫ d

c

∫ t

c

(t− s)J−21{s ≥ a}1{t < b}+ (s− t)J−21{s ≥ b}1{t < a}dsdt.

It leads to the following representation of the rescaled K-depth for K ≥ 4:

TK(E) =
NK(N −K)!

N !
Ψ̃K(SN• ) + oa.s.(1)

almost surely, where Ψ̃ is de�ned by

Ψ̃K(SN• ) = − K!

2(K − 4)!

∫ 1

1
2

∫ t− 1
2

0

(
1

2
+ s− t

)K−4

SNs
(
SN1 −SNt

)
dsdt

− K!

4(K − 4)!

∫ 1

− 1
2

∫ t+ 1
2

t∨0

(
1

2
+ t− s

)K−4(
(SNs∧1−SNt∨0)2− ((s ∧ 1)−(t ∨ 0))

)
dsdt,

almost surely. A mathematical connection between the representations for K = 3

and K ≥ 4 is not given in contrast to the representation in Theorem 3.22, p. 39.
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3.3 Derivation of the asymptotic distribution

In Theorem 3.22, the rescaled K-depth is rewritten as

TK(E) = ΨK,N(SN• ) + oa.s.(1)

for a suitable chosen functional ΨK,N . The càdlàg-process SN• = (SNt )t∈[0,1] (i.e., the

paths are right continuous and the left limits exist almost surely) has increments

(ψ(EN))N∈N satisfying IE(ψ(EN)) = 0 and var(ψ(EN)) = 1 for N ∈ N. In Chapter

3.3.1, we will introduce a Functional Central Limit Theorem also known as Donsker's

invariance principle which describes the convergence in distribution of such càdlàg-

processes to the standard Brownian motion B• = (Bt)t∈[0,1] with respect to the

Skorokhod topology:

SN• = (SNt )t∈[0,1]
D−−−→

N→∞
(Bt)t∈[0,1] = B•.

In Chapter 3.3.2, we will apply Donsker's invariance principle to prove

TK(E) = ΨK,N(SN• ) + oa.s.(1) −−−→
N→∞

ΨK(B•)

with an additional continuity argument by an extended version of the Continuous

Mapping Theorem. In this extended Continuous Mapping Theorem, the composed

functional ΨK,N is allowed to depend on N in contrast to the standard known

version.

3.3.1 Functional Central Limit Theorem in the Skorokhod space

The Skorokhod space
(
D[0, 1], dD[0,1]

)
is a metric space with

D[0, 1] := {f : [0, 1]→ R ; f is right-continuous and left limits exist}

and equipped with the Skorokhod metric dD[0,1]. In order to de�ne the metric dD[0,1],

we introduce the set of all homeomorphisms from [0, 1] to [0, 1]:

Λ := {λ : [0, 1]→ [0, 1] ; λ is monotonically increasing and bijective}.

Further for any homeomorphism λ ∈ Λ, the term ‖λ‖◦ measures the similarity of λ

to the identity mapping id[0,1] from [0, 1] to [0, 1] by

‖λ‖◦ := sup
s 6=t∈[0,1]

∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣ . (44)
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The quotient in Formula (44) can also be understood as measuring the slope of λ

and how much it varies from 1. The absolute value of the logarithm can also increase

arbitrarily for slopes smaller than 1. Therefore, too small and too large slopes indica-

te di�erences between λ and id[0,1]. This leads to some topological advantages as the

completeness of the Skorokhod space comparing to other de�nitions of Skorokhod

(1956) also introduced originally (Billingsley, 1999, p. 125). Note that ‖λ‖◦ = 0 if

and only if λ is the identity mapping. Then for f, g ∈ D[0, 1], we de�ne

dD[0,1](f, g) := inf
λ∈Λ

{
‖λ‖◦ ∨ sup

t∈[0,1]

|f(t)− g(λ(t))|

}
.

We can understand g(λ(t)) as a reparametrized version of g ∈ D[0, 1] in time by

the homeomorphism λ ∈ Λ. This reparametrization is important in order to have

an appropriate concept of convergence for functions in D[0, 1] with discontinuities.

E.g., the sequence of functions 1[0, 12+ 1
2N ) for N ∈ N converges to 1[0, 12) with respect

to the Skorokhod topology. This convergence would fail if we only considered the

uniform distance by the supremum (Billingsley, 1999, p. 124) since

sup
t∈[0,1]

|1[0, 12+ 1
2N ) − 1[0, 12)| = 1

for arbitrary N due to the discontinuities. For a better comparison, some time dis-

tortions by λ are allowed so that all time points where discontinuities appear can be

matched. In our example, the time distortions have to shift the point 1
2

+ 1
2N

to 1
2

such that a comparison by the supremum makes sense. For increasing N , these time

distortions have to become smaller. The intensity of time distortions is measured

by ‖λ‖◦. Thus, the Skorokhod metric quanti�es the uniform distance between two

functions with this additional su�ciently small parametrization λ. If d[0,1](f, g) ≤ ε

for ε > 0 then there is a function λ with

‖λ‖◦ ≤ ε and sup
t∈[0,1]

|f(t)− g(λ(t))| ≤ ε,

so the deviation of λ from id[0,1] has to be simultaneously su�ciently small. Moreover,

fN −−−→
N→∞

f in D[0, 1] if and only if

there exists a sequence (λN)N∈N ⊆ Λ with supt∈[0,1] |λN(t)− t| −−−→
N→∞

0 such that

sup
t∈[0,1]

|fN(λN(t))− f(t)| −−−→
N→∞

0.
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We de�ne the Borel-σ-�eld D on (D[0, 1], d[0,1]) by the generated σ-�eld from the

open sets. In order to introduce Donsker's invariance principle for càdlàg-processes,

we need to clarify the de�nition of the Wiener measure in the Skorokhod space. Let

C[0, 1] := {f : [0, 1]→ R; f is continuous} with the uniform metric

dC[0,1](f, g) := sup
t∈[0,1]

|f(t)− g(t)| for f, g ∈ C[0, 1].

E.g. in Billingsley (1999), the Wiener measure W on (C[0, 1], dC[0,1]) with σ-�eld C,

the Borel-σ-�eld based on the uniform topology, is constructed. The Wiener measure

on (D[0, 1], dD[0,1]) can be constructed by the pushforward measure of the mapping

H : C[0, 1]→ D[0, 1], H(f) = f

since the mapping H is continuous and thus C-D-measurable. The continuity of H

is a consequence that the Skorokhod topology coincides with the uniform topology

on C[0, 1]. Let (fN)N∈N ⊆ C[0, 1] with fN −−−→
N→∞

f ∈ C[0, 1]. Then

dD[0,1](H(fN), H(f)) = dD[0,1](fN , f) = dC[0,1](fN , f) −−−→
N→∞

0

which implies the continuity of H. We will denote the associated pushward measure

by WH . The associated stochastic processes of W and WH have the same �nite-

dimensional distributions. (Two stochastic processes (Xt)t∈[0,1] and (Yt)t∈[0,1] have

the same �nite-dimensional distributions if for arbitrary 0 ≤ t1 < . . . < tk ≤ 1 and

k ∈ N, the joint distributions (Xt1 , . . . , Xtk) and (Yt1 , . . . , Ytk) are equal). Therefore,

it makes sense to call WH a Wiener measure (Billingsley, 1999, p. 146). Now, we

can formulate Donsker's invariance principle in the Skorokhod space:

Theorem 3.25. If (XN)N∈N is a sequence of i.i.d. random variables with IE(X1) = µ

and var(X1) = σ2 > 0 then for

SN : [0, 1]→ R, SN(t) := SNt :=
1

σ
√
N

bNtc∑
n=1

(Xn − µ)

the following convergence in distribution holds in (D[0, 1],D) with respect to the

Skorokhod topology

SN• = (SNt )t∈[0,1]
D−−−→

N→∞
B•

where B• = (Bt)t∈[0,1] is the standard Brownian motion on D[0, 1] with B• ∼ WH .
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3.3.2 Application of the extended Continuous Mapping Theorem

According to Theorem 3.22, the functional ΨK,N contains a sum of the ΥJ,N

N

(
dK(E)−

(
1

2

)K−1
)

= ΨK,N(SN• ) + oa.s.(1)

=βK,N

(
−

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ,N(SN• )−
(
−1

2

)K−2(
SN1
)2

+
1

2K−2

)
+ oa.s.(1)

with ΥJ,N : D[0, 1] → R, ΥJ,N(f) :=
∫
CJ,N

(f(WJ(t) ∧ 1)− f(VJ(t) ∨ 0))2 dt for

J = 1, . . . , K−2. Note that we can also rewrite (SN1 )2 = Υ0(SN• ) with Υ0(f) = f(1)2

by a functional evaluating (SNt )t∈[0,1]. Applying the Continuous Mapping Theorem,

we obtain immediately

Υ0(SN• )
D−−−→

N→∞
Υ0(B•) = B2

1 ,

since Υ0 is continuous as the square of a projection. It is more complicated to deal

with ΥJ,N , because the original Continuous Mapping Theorem cannot be applied

due to the dependence on N . For this problem, we will use an extended version of

the Continuous Mapping Theorem (Beutner and Zähle, 2016, Theorem C.1.).

Theorem 3.26 (Extended Continuous Mapping Theorem). Let (M,dM) be a se-

parable1 metric space with Borel-σ-�eld M. Let (XN)N∈N be a sequence of random

variables and X a random variable in (M,M) such that

XN
D−−−→

N→∞
X.

Further, let (M̃, dM̃) be a metric space with Borel-σ-�eld M̃. Let ΥN : M → M̃ for

N ∈ N and Υ : M → M̃ be measurable mappings2. Assume that

for every sequence (xN)N∈N ⊆M with dM(xN , x) −−−→
N→∞

0 with x ∈M,

it holds dM̃(ΥN(xN),Υ(x)) −−−→
N→∞

0.

Then ΥN(XN)
D−−−→

N→∞
Υ(X).

The separability of (D[0, 1], dD[0,1]) is proved in Billingsley (1999), p. 128. Therefore,

1A metric space (M,dM ) is called separable if a countable subset M0 ⊆M exists that is dense in
M with respect to the topology induced by dM . (Bogachev and Smolyanov, 2020, p. 7)

2In Beutner and Zähle (2016), a weaker condition on the measurebility on the ΥN is given which
follows from the given condition here in Theorem 3.26.
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Theorem 3.26 can be applied for our situation.

Now, we will introduce some preparations so that we can use the extended Conti-

nuous Mapping Theorem. First of all, we need to clarify how the set CJ,N behaves

asymptotically. The limit of a set can be expressed by the pointwise limit of its

indicator function.

Lemma 3.27. Let

CJ,N =

{
t ∈

(
−1

2
,
3

2

)J
; bN · (VJ(t) ∨ 0)c+ 1 ≤ bN · (WJ(t) ∧ 1)c

}
and

CJ =

{
t ∈

(
−1

2
,
3

2

)J
; max{t1, . . . , tJ} −min{t1, . . . , tJ} < 1

}
.

Then

1CJ,N (t) −−−→
N→∞

1CJ (t) for all t ∈
(
−1

2
,
3

2

)J
.

In Figure 6, the convergence of the indicator functions in Lemma 3.27 for J = 2 is

shown for increasing sample sizes of N ∈ {5, 10, 25}. The white color represents the
areas where the indicator function is 1. The following three cases

(
−1

2
, 1

2

)2,
[

1
2
, 3

2

)2

−0.5 0.0 0.5 1.0 1.5−
0.
5

0.
0

0.
5

1.
0

1.
5

N =  5

t1

t 2

−0.5 0.0 0.5 1.0 1.5−
0.
5

0.
0

0.
5

1.
0

1.
5

N =  10

t1

t 2

−0.5 0.0 0.5 1.0 1.5−
0.
5

0.
0

0.
5

1.
0

1.
5

N =  25

t1

t 2

Figure 6: Illustration of the function 1CJ,N for J = 2. White indicates 1 and black 0.

and
(
−1

2
, 1

2

)
×
[

1
2
, 3

2

)
(the reversed cartesian product is symmetric as the �gure shows)

will be investigated in the following proof. Note also that the characteristic form of

those areas are determined by the position of the maximal and minimal value of the

vector t = (t1, . . . , tJ)>.
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Proof of Lemma 3.27: Note that for J = 1, the assertion is straightforward to

prove since C1,N =
[
−1

2
+ 1

N
, 3

2

)
for all N ∈ N. For J ≥ 2, we consider for each

t ∈
(
−1

2
, 3

2

)J the maximal and minimal value

tmax := max{t1, . . . , tJ} and tmin := min{t1, . . . , tJ}.

The other entries in t can be ignored due to the fact that CJ,N and CJ only depend

on tmax and tmin. Then, we consider several cases for tmax and tmin. In order to prove

1CJ,N (t) −−−→
N→∞

1CJ (t) for arbitrary t ∈
(
−1

2
, 3

2

)J with t ∈ CJ , we have to show that

an integer N∗ exists such that the condition

bN(VJ(t) ∨ 0)c+ 1 ≤ bN(WJ(t) ∧ 1)c (45)

is true for all N ≥ N∗. For t /∈ CJ , we will show that t /∈ CJ,N for all N ∈ N.

Case 1 (tmax, tmin ∈
(
−1

2
, 1

2

)
):

It holds t ∈ CJ for Case 1. We simplify the left and right side of Formula (45):

bN(VJ(t) ∨ 0)c =

⌊
N

((
tmax −

1

2

)
∨ 0

)⌋
= 0,

bN(WJ(t) ∧ 1)c =

⌊
N

((
tmin +

1

2

)
∧ 1

)⌋
=

⌊
N

((
tmin +

1

2

))⌋
.

Thus, Formula (45) can be rewritten as

1 ≤
⌊
N

(
tmin +

1

2

)⌋
.

This inequality holds for all N ≥
⌈

1
tmin+ 1

2

⌉
=: N∗ since N∗ ≥ 1

tmin+ 1
2

.

Case 2 (tmax ∈
[

1
2
, 3

2

)
, tmin ∈

(
−1

2
, 1

2

)
):

Once again, we simplify

bN(VJ(t) ∨ 0)c =

⌊
N

((
tmax −

1

2

)
∨ 0

)⌋
=

⌊
N

(
tmax −

1

2

)⌋
,

bN(WJ(t) ∧ 1)c =

⌊
N

((
tmin +

1

2

))⌋
.

Note that both situations t ∈ CJ and t /∈ CJ can occur in Case 2.

Case 2.1 (tmax ∈
[

1
2
, 3

2

)
, tmin ∈

(
−1

2
, 1

2

)
, t ∈ CJ):

t ∈ CJ implies that −1 < tmin − tmax < 0. According to Formula (45), we will show
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that

bN(WJ(t) ∧ 1)c − bN(VJ(t) ∨ 0)c ≥ 1

for N ≥ N∗ :=
⌈

2
δ

⌉
with δ := tmin − tmax + 1 ∈ (0, 1). We have

bN(WJ(t) ∧ 1)c − bN(VJ(t) ∨ 0)c =

⌊
N

(
tmin +

1

2

)⌋
−
⌊
N

(
tmax −

1

2

)⌋
≥
⌊
N

(
tmin +

1

2

)⌋
−N

(
tmax −

1

2

)
> N

(
tmin +

1

2

)
− 1−N

(
tmax −

1

2

)
=N (tmin − tmax + 1)− 1 = Nδ − 1 ≥ 2

δ
δ − 1 = 1.

Note that this is a strict inequality.

Case 2.2 (tmax ∈
[

1
2
, 3

2

)
, tmin ∈

(
−1

2
, 1

2

)
, t /∈ CJ):

t /∈ CJ yields tmin − tmax ≤ −1. Here, we will prove that for all N ∈ N the negation

of Formula (45) is correct. Note that δ := tmin − tmax + 1 ∈ (−1, 0] in Case 2.2.

bN(WJ(t) ∧ 1)c − bN(VJ(t) ∨ 0)c =

⌊
N

(
tmin +

1

2

)⌋
−
⌊
N

(
tmax −

1

2

)⌋
≤N

(
tmin +

1

2

)
−
⌊
N

(
tmax −

1

2

)⌋
< N

(
tmin +

1

2

)
−N

(
tmax −

1

2

)
+ 1

=Nδ + 1 ≤ 1,

since Nδ ≤ 0. Thus, the negation of Formula (45) holds for arbitrary N .

Case 3 (tmax, tmin ∈
[

1
2
, 3

2

)
):

It holds t ∈ CJ in general for the Case 3 (see also Figure 6). Simplifying Formula

(45) delivers

bN(VJ(t) ∨ 0)c =

⌊
N

(
tmax −

1

2

)⌋
,

bN(WJ(t) ∧ 1)c =

⌊
N

((
tmin +

1

2

)
∧ 1

)⌋
= N.

We consider N ≥ N∗ =
⌈

1
1−δ

⌉
with δ := tmax− 1

2
∈ (0, 1). Note that this also implies

δ ≤ 1− 1
N
. Then, we rewrite Formula (45) as⌊

N

(
tmax −

1

2

)⌋
+ 1 ≤ N

(
tmax −

1

2

)
+ 1 = Nδ + 1 ≤ N

(
1− 1

N

)
+ 1 = N

and the assertion follows. �
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Further, we will need some properties and tools to deal with càdlàg-functions and

their convergence in Skorokhod space (Billingsley, 1999, p. 122-124).

Lemma 3.28 (Properties of càdlàg-functions). Let f ∈ D[0, 1]. Then

(i) f is bounded, that is sup
t∈[0,1]

|f(t)| <∞.

(ii) The set Uf := {t ∈ [0, 1]; f is discontinuous at t} is countable.

(iii) If (fN)N∈N ⊂ D[0, 1] is a sequence with fN −−−→
N→∞

f , then

for t ∈ [0, 1] \ Uf : fN(t) −−−→
N→∞

f(t).

The �rst statement will be needed in order to apply the Dominated Convergence

Theorem. The third assertion yields that the convergence with respect to the Sko-

rokhod metric implies the pointwise convergence at continuity points of the limit f .

The main idea of the following proof will be to neglect the points of discontinuity

under the integral in the functional since they are countable and thus a null set with

respect to the Lebesgue measure on RJ .

Theorem 3.29. Let (EN)N∈N be a sequence of random variables satisfying Assump-

tion 2.1. Then

N

(
d(E)− 1

2K−1

)
D−−−→

N→∞
ΨK(B•)

where ΨK is de�ned as

ΨK(B•) = βK

(
−

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ(B•)−
(
−1

2

)K−2

(B1)2 +
1

2K−2

)

with

βK :=
K(K − 1)

4
and ΥJ(B•) :=

∫
CJ

(
BWJ (t)∧1 −BVJ (t)∨0

)2
dt

with CJ from Lemma 3.27, p. 47.

Proof of Theorem 3.29: Let (fN)N∈N ⊆ D[0, 1] and f ∈ D[0, 1] be such that

fN −−−→
N→∞

f with respect to the Skorokhod topology. According to the extended

Continuous Mapping Theorem 3.26, p. 46, it is su�cient to show that

ΥJ,N(fN) −−−→
N→∞

ΥJ(f)

50



with respect to the canonical topology on R. We have

lim
N→∞

ΥJ,N(fN) = lim
N→∞

∫
CJ,N

(fN(WJ(t) ∧ 1)− fN(VJ(t) ∨ 0))2dt

= lim
N→∞

∫
(− 1

2
, 3
2)
J
1CJ,N (t)(fN(WJ(t) ∧ 1)− fN(VJ(t) ∨ 0))2dt.

Due to Lemma 3.28 (i), there exists a constant C > 0 such that

sup
t∈[0,1]

|f(t)| < C and sup
t∈[0,1]

|fN(t)| < C

for all su�ciently large N ∈ N. Moreover, |1CJ,N | ≤ 1 for all N ∈ N. Thus, the
integrand can be bounded and the Dominated Convergence theorem can be applied.

This and Lemma 3.27, p. 47, imply

lim
N→∞

∫
(− 1

2
, 3
2)
J
1CJ,N (t)(fN(WJ(t) ∧ 1)− fN(VJ(t) ∨ 0))2dt

=

∫
(− 1

2
, 3
2)
J
1CJ (t) lim

N→∞
(fN(WJ(t) ∧ 1)− fN(VJ(t) ∨ 0))2dt

=

∫
CJ

lim
N→∞

(fN(WJ(t) ∧ 1)− fN(VJ(t) ∨ 0))2dt.

The pointwise convergence of the integrand with

lim
N→∞

(fN(WJ(t) ∧ 1)− fN(VJ(t) ∨ 0))2 = (f(WJ(t) ∧ 1)− f(VJ(t) ∨ 0))2

holds for t ∈ CJ ifWJ(t)∧1 and VJ(t)∨0 are continuous points of f , cf. Lemma 3.28

(iii). Our aim is to remove the part of the integration area CJ which leads toWJ(t)∧
1 ∈ Uf or VJ(t) ∨ 0 ∈ Uf where

Uf := {t ∈ [0, 1]; f is discontinuous at t}.

Such an integration area which contains all resulting discountinuous points of f

under the integral can be expressed by

Uf = {t ∈ CJ ;WJ(t) ∧ 1 ∈ Uf or VJ(t) ∨ 0 ∈ Uf}.

If we show that Uf is null set with respect to the Lebesgue measure on RJ then the
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assertion follows from the following derivation:∫
CJ

lim
N→∞

(fN(WJ(t) ∧ 1)− fN(VJ(t) ∨ 0))2dt

=

∫
CJ\Uf

lim
N→∞

(fN(WJ(t) ∧ 1)− fN(VJ(t) ∨ 0))2dt

=

∫
CJ\Uf

(f(WJ(t) ∧ 1)− f(VJ(t) ∨ 0))2dt

=

∫
CJ

(f(WJ(t) ∧ 1)− f(VJ(t) ∨ 0))2dt = ΥJ(f).

In order to show that Uf is a null set with respect to the Lebesgue measure on RJ ,

we give a characterization of Uf by the following countable union

Uf =
⋃
s∈Uf

{t ∈ CJ ;WJ(t) ∧ 1 = s or VJ(t) ∨ 0 = s}.

If we show for arbitrary s ∈ Uf that {t ∈ CJ ;WJ(t) ∧ 1 = s or VJ(t) ∨ 0 = s} is
a null set with respect to the Lebesgue on RJ , then the proof is �nished since the

countable union of null sets yields a null set as well. These sets can be characterized

as follows:

WJ(t) ∧ 1 = s

⇔ t ∈ WJ,s :=
J⋃
j=1

{
t ∈ CJ ; tj +

1

2
= s, ti +

1

2
≥ s for i = 1, . . . , J, i 6= j

}
,

VJ(t) ∨ 0 = s

⇔ t ∈ VJ,s :=
J⋃
j=1

{
t ∈ CJ ; tj −

1

2
= s, ti −

1

2
≤ s for i = 1, . . . , J, i 6= j

}
.

This yields

Uf =
⋃
s∈Uf

(WJ,s ∪ VJ,s) .

Note that WJ,s and VJ,s are null sets with respect to the Lebesgue measure on RJ

since at least one coordinate is kept �xed on s. This proves that Uf is also a null set
with respect to the Lebesgue measure and the assertion follows. �
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3.4 Visualization of the asymptotic distribution

This paragraph presents the shape of the asymptotic distribution and gives a short

overview about its properties. In Figure 7, the estimated densities of theK-depth for

K ∈ {3, 4, 5, 6, 7} are presented. In order to obtain this �gure, we can consider a large
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Figure 7: Estimated densities of the asymptotic distribution of the K-depth

number of realizations of theK-depth with a high sample sizeN . In detail,N = 1,000

and 100,000 repititions of the K-depth's asymptotically equivalent version (given in

Theorem 3.22, p. 39) have been computed for this sample size. The default settings

of the density()-function in R have been used to compute these estimated densities

from the computed K-depths. Note that an e�cient algorithm of the asymptotically

equivalent version has been used here and will be presented in Chapter 4.1.

In Figure 7, we see that the asymptotic distributions of the K-depth are not sym-

metric. The upper boundary is K(K−1)
2K

which is the limit of the rescaled K-depth TK
as N →∞ if the residuals r1, . . . , rN have alternating signs (Leckey et al., 2020):

lim
N→∞

TK(r1, . . . , rN) = lim
N→∞

N

(
dK(r1, . . . , rN)− 1

2K−1

)
=
K(K − 1)

2K
.

Moreover, the asymptotic distribution is unbounded on the other side. Since the

minimal value of the K-depth is zero, we obtain for the rescaled K-depth TK :

− N

2K−1
−−−→
N→∞

−∞.

Further, it is noticeable that the density mass becomes more concentrated around

zero for higher K is. This e�ect is highlighted for K ∈ {3, 7, 10} in Figure 8. Note

that the axis for the density has a di�erent scaling than in Figure 7. This e�ect is

important to know because choosing large K can result in numeric problems. Due
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Figure 8: Estimated densities of the asymptotic distribution for higher K

to the stronger concentration around zero, the realizations of these K-depths vary

by smaller distances the larger K. For su�ciently large K, these distances can be

below the accuracy of the �oating-point arithmetic and numeric errors can occur.
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4 E�cient computation of the K-sign depth based

on its asymptotic derivation

The derivation of the asymptotic distribution yields an (asymptotically equivalent)

integral representation of the K-depth in Theorem 3.22, p. 39. Based on the derived

formulas from Chapter 3.2, we will construct algorithms to compute the K-depth

much more e�ciently than a naive implementation according to De�nition 2.2, p. 7.

Such a naive implementation based on the de�nition has undesirable computational

costs of Θ(NK) since we have to compute K nested loops in order to compute the

ordered sum over the indices 1 ≤ n1 < . . . < nK ≤ N .

In Chapter 4.1, we will show that the asymptotic representation of the K-depth can

be computed in linear time. Moreover, this representation is exact for K ∈ {2, 3}.
In Chapter 4.2, we will derive exact representations of the K-depth for K ∈ {4, 5}
in linear time and for K = 6 in quadratic time by analyzing the asymptotically

neglected parts from Theorem 3.10, p. 25, and Theorem 3.17, p. 35.

In the following, we will use the notation from Remark 3.23, p. 41. For the decom-

position of the K-depth, we assume for the residual vector R = (R1, . . . , RN)> that

P(Rn 6= 0) = 1 for n = 1, . . . , N (the parameter θ will be omitted in the notation):

N

(
dK(R)− 1

2K−1

)
= ΨK,N +RN

1 +RN
2 ,

where ΨK,N is the asymptotically relevant part of the K-depth in Theorem 3.22,

p. 39, and RN
1 and RN

2 are the asymptotically neglected rest components. RN
1 des-

cribes the neglected products of length four or higher in Theorem 3.10, p. 25,

RN
1 :=

N

2K−1
(
N
K

)( ∑
1≤n1<...<nK≤N

bK2 c∑
L=2

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ(Rni(j))

)

which will be discussed in Chapter 4.2.1. RN
2 denotes the rest sum part in Theorem

3.17, p. 35,

RN
2 :=

NK−1

2K
(
N
K

) ∑
1≤n1 6=n2≤N

∑
0≤M1<M2≤K−2

aK(M1,M2)ψ(Rn1)ψ(Rn2).

which will be discussed in Chapter 4.2.2. An implementation of the naive algorithm

will be compared with the other implementations based on simulated runtimes for se-
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veral sample sizes N in Chapter 4.3. All algorithms with linear time from Chapter 4

are included in the R-package GSignTest (Horn, 2021a) available on GitHub and

implemented by the author of this thesis. All algorithms are based on C++ imple-

mentations with the package Rcpp (Eddelbuettel and Francois, 2011).

4.1 Approximate computation

The approximate computation only considers the part ΨK,N . The following lemma

shows that this part can be computed in linear time for all K. Instead of considering

the expression used for deriving the asymptotic distribution in Theorem 3.22, we

investigate and simplify the representation of the K-depth in Theorem 3.17, p. 35.

Lemma 4.1. Let SNn,α =
∑n

k=1

(
k
N

)α
ψ(Rn) for n ∈ {1, . . . , N}, α ≥ 0 and let

R = (R1, . . . , RN)> such that P(Rn 6= 0) = 1 for n ∈ {1, . . . , N}. Then

N

(
dK(R)− 1

2K−1

)
=− NK−1K(K − 1)

2〈N〉K

K−2∑
j=0

(
K − 2

j

) N∑
n=2

(
1

2
− n

N

)K−2−j

ψ(Rn)SNn−1,j +RN

almost surely with RN = RN
1 +RN

2 . For K ∈ {2, 3}, the rest term RN is zero.

Proof of Lemma 4.1: According to Theorem 3.17, p. 35, and Remark 3.23, p. 41,

a representation of the K-depth is given by

N

(
dK(R)− 1

2K−1

)
=− NK−1K(K − 1)

4〈N〉K

∑
1≤n1 6=n2≤N

(
1

2
− |n1 − n2|

N

)K−2

ψ(Rn1)ψ(Rn2) +RN (46)

almost surely. Then

∑
1≤n1 6=n2≤N

(
1

2
− |n1 − n2|

N

)K−2

ψ(Rn1)ψ(Rn2)

=2
N∑

n2=2

n2−1∑
n1=1

(
1

2
− n2 − n1

N

)K−2

ψ(Rn1)ψ(Rn2)

=2
K−2∑
j=0

(
K − 2

j

) N∑
n2=2

(
1

2
− n2

N

)K−2−j

ψ(Rn2)

n2−1∑
n1=1

(n1

N

)j
ψ(Rn1)

=2
K−2∑
j=0

(
K − 2

j

) N∑
n2=2

(
1

2
− n2

N

)K−2−j

ψ(Rn2)S
N
n2−1,j
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and the assertion follows from the recent calculation and Formula (46). �

For an e�cient computation, we have to compute the following matrix in advance:

S :=
(
SN•,0, . . . , S

N
•,K−2

)
,

where SN•,α denotes the column vector (SN1,α, . . . , S
N
N−1,α)> for α = 0, . . . , K−2 which

can be computed in linear time for all α ≥ 0. By memorizing the values of SNn−1,j

only once in a matrix, we avoid to compute them multiple times and obtain a more

e�cient computation. This algorithm is fairly easy to implement for general K.

4.2 Exact computation

In this chapter, we will derive formulas for implementations of the two asymptotically

negligible parts RN
1 (in Chapter 4.2.1) and RN

2 (in Chapter 4.2.2). We will see that

RN
1 is more complicated to compute e�ciently. For K ≤ 5, computations in linear

time are presented and for K ≥ 6, the introduced algorithm has time complexity

Θ(NK−4). In contrast, RN
2 can be computed for arbitrary K in linear time.

4.2.1 E�cient computation of the sign products of higher length

We will analyze RN
1 step by step for K ∈ {4, 5, 6}. Note that RN

1 = 0 for K ∈ {2, 3}
so that we start with the 4-depth.

4-sign depth

By Theorem 3.8, p. 22, we obtain for K = 4 the following decomposition in sign-

products:

N

(
d4(R)− 1

8

)
=

N

8
(
N
4

)( ∑
1≤n1<...<n4≤N

∑
1≤i(1)<i(2)≤4

2∏
j=1

(−1)i(j)ψ(Rni(j))

+
∑

1≤n1<...<n4≤N

4∏
j=1

ψ(Rnj)

)
. (47)

An e�cient computation of the �rst sum can be done as mentioned in the proof of

Lemma 4.1, p. 56 in combination with Theorem 3.17, p. 35. The second summand in

Formula (47) is neglected in the derivation in Chapter 3.2.2 and corresponds to RN
1 .

It can be computed in linear time since it only depends on the number of positive

or negative signs of the residual vector as the next lemma shows.
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Lemma 4.2. Let (x1, . . . , xN)> ∈ Rn with xn 6= 0, n ∈ {1, . . . , N} and let M :=∑N
n=1 1{xn < 0}. Then

∑
1≤n1<...<nK≤N

K∏
j=1

ψ(xnj) =
K∑
k=0

(−1)k
(
M

k

)(
N −M
K − k

)
. (48)

M is the number of negative signs in the residual vector and can be computed in

linear time. The case
(
n
m

)
= 0 for n < m can appear in the formulas of Lemma 4.2

and describes impossible cases.

Proof of Lemma 4.2: Note that
∑K

i=1 1{xni < 0} ∈ {0, 1, . . . , K} for all ordered
indices 1 ≤ n1 < . . . < nK ≤ N for arbitrary K-tuples (xn1 , . . . , xnK )>. Then, we

can split the ordered sum as follows:

∑
1≤n1<...<nK≤N

K∏
j=1

ψ(xnj) =
K∑
k=0

∑
1≤n1<...<nK≤N∑K
i=1 1{xni<0}=k

K∏
j=1

ψ(xnj)

=
K∑
k=0

∑
1≤n1<...<nK≤N∑K
i=1 1{xni<0}=k

(−1)k · 1K−k =
K∑
k=0

(−1)k
(
M

k

)(
N −M
K − k

)
.

The last equality holds by counting all combinations of the given sum for each k. �

Formula (48) uses the fact that the product term only depends on the number of

positive or negative signs. Thus, we have to count how manyK-tuples of the residual

vector exists with 0, . . . , K negative signs by binomial coe�cients. If the number of

negative signs is even, we have a positive resulting value and vice versa for odd

numbers. The �rst factor
(
M
k

)
counts the number of all K-tuples with k negative

indices and the second factor
(
N−M
K−k

)
counts the complementary number K − k of

positive signs in all K-tuples. Note that Lemma 4.2 is formulated for arbitrary K

and will be also used for the computation of the expressions for K ≥ 5.

5-sign depth

By Theorem 3.8, p. 22, we obtain for K = 5

N

(
d5(R)− 1

16

)
=

N

16
(
N
5

)( ∑
1≤n1<...<n5≤N

( ∑
1≤i(1)<i(2)≤5

2∏
j=1

(−1)i(j)ψ(Rni(j))

+
∑

1≤i(1)<...i(4)≤5

4∏
j=1

(−1)i(j)ψ(Rni(j))

))
. (49)
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Analogously to K = 4, we only have to simplify the second part of the sum in

Formula (49). We can simplify the ordered sum over all 5-tuples (n1, . . . , n5)> sin-

ce the summands only contain four of �ve indices. Similarly to the calculations in

Chapter 3.1 after Lemma 3.3, p. 14, the missing index can be omitted by compensa-

ting a multiplying factor corresponding to the number of the omitted combinations.

Table 1 gives an overview o� all possible situations.

ψ(Rn1
) ψ(Rn2) ψ(Rn3) ψ(Rn4) ψ(Rn5) sign omitted combinations

3 3 3 3 + (N − n4)
3 3 3 3 − (n5 − n3 − 1)
3 3 3 3 + (n4 − n2 − 1)
3 3 3 3 − (n3 − n1 − 1)

3 3 3 3 + (n2 − 1)

Table 1: Omitted combinations of the products of length four for 5-sign depth

Thus, we can expand Formula (49) as follows:

∑
1≤n1<...<n5≤N

∑
1≤i(1)<...<i(4)≤5

4∏
j=1

(−1)i(j)ψ(Rni(j))

=
∑

1≤n1<...<n4≤N

(N − n4)
5∏
i=1
i 6=5

ψ(Rni)−
∑

1≤n1<n2<n3<n5≤N

(n5 − n3 − 1)
5∏
i=1
i 6=4

ψ(Rni)

+
∑

1≤n1<n2<n4<n5≤N

(n4 − n2 − 1)
5∏
i=1
i 6=3

ψ(Rni)−
∑

1≤n1<n3<n4<n5≤N

(n3 − n1 − 1)
5∏
i=1
i 6=2

ψ(Rni)

+
∑

1≤n2<...<n5≤N

(n2 − 1)
5∏
i=2

ψ(Rni).

We can rename the indices to n1, n2, n3, n4 for all sums. Then, we obtain

∑
1≤n1<...<n4≤N

(N − n4)
4∏
i=1

ψ(Rni)−
∑

1≤n1<...<n4≤N

(n4 − n3 − 1)
4∏
i=1

ψ(Rni)

+
∑

1≤n1<...<n4≤N

(n3 − n2 − 1)
4∏
i=1

ψ(Rni)−
∑

1≤n1<...<n4≤N

(n2 − n1 − 1)
4∏
i=1

ψ(Rni)

+
∑

1≤n1<...<n4≤N

(n1 − 1)
4∏
i=1

ψ(Rni)

=
∑

1≤n1<n2<n3<n4≤N

(N − 2n4 + 2n3 − 2n2 + 2n1)
4∏
i=1

ψ(Rni).
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Finally, we have the following form of the 5-depth:

N

(
d5(R)− 1

16

)
=

N

16
(
N
5

)( ∑
1≤n1<...<n5≤N

∑
1≤i(1)<i(2)≤5

2∏
j=1

(−1)i(j)ψ(Rni(j))

+
∑

1≤n1<n2<n3<n4≤N

(N − 2n4 + 2n3 − 2n2 + 2n1)
4∏
i=1

ψ(Rni)

)
.

Hence it only remains to compute the following term e�ciently:

∑
1≤n1<n2<n3<n4≤N

(N − 2n4 + 2n3 − 2n2 + 2n1)
4∏
i=1

ψ(Rni)

=N
∑

1≤n1<n2<n3<n4≤N

4∏
i=1

ψ(Rni) (50)

−2
4∑

L=1

(−1)L
∑

1≤n1<n2<n3<n4≤N

nL

4∏
i=1

ψ(Rni). (51)

The sum in Formula (50) can be computed in linear time by Lemma 4.2. In For-

mula (51), we have the additional weight-factor nL. Thus, the sum also depends on

the position of the signs so that we cannot count them directly as in Lemma 4.2.

Nevertheless, we can simplify the problem with an analogous idea by summing up

over all values of nL. The next lemma will yield a possibility to compute expressions

of the form in Formula (51) in linear time.

Lemma 4.3. Let (x1, . . . , xN)> ∈ Rn be with xn 6= 0, n ∈ {1, . . . , N}. Further, we
introduce the following notations for j = 1, . . . , N + 1:

M`(j) :=

j−1∑
n=1

1{xn < 0},Mr(j) :=
N∑

n=j+1

1{xn < 0}.

Then for arbitrary mappings g : R→ R, it holds for L ∈ {1, . . . , K}

(a)
∑

1≤n1<...<nK≤N

g(nL)
K∏
i=1

ψ(xni)

=
N−K+L∑
j=L

(
g(j)ψ(xj)

(
L−1∑
k1=0

(−1)k1ιjk1

) (
K−L∑
k2=0

(−1)k2ρjk2

))

with ιjk1 =

(
M`(j)

k1

)(
j −M`(j)− 1

L− 1− k1

)
, ρjk2 =

(
Mr(j)

k2

)(
N − j −Mr(j)

K − L− k2

)
.
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Especially, the cases for L = 1 and L = K can be simpli�ed as follows:

(b)
∑

1≤n1<...<nK≤N

g(n1)
K∏
i=1

ψ(xni) =
N−K+1∑
j=1

g(j)ψ(xj)

(
K−1∑
k=0

(−1)kρjk

)
,

(c)
∑

1≤n1<...<nK≤N

g(nK)
K∏
i=1

ψ(xni) =
N∑
j=K

g(j)ψ(xj)

(
K−1∑
k=0

(−1)kιjk

)
.

Note that the case
(
n
m

)
= 0 for n < m can appear in the formulas of Lemma 4.3 and

describes impossible cases. We set
(

0
0

)
:= 1. According to Formula (51), g : R → R

will be chosen as the identity mapping. Due to further computations of theK-depths

for K ≥ 6, it is useful to formulate Lemma 4.3 for arbitrary g.M`(j) is the number

of negative signs on the left side from the index j. At the beginning

(M`(2), . . . ,M`(N + 1))>

can be simply computed in linear time in N where M`(1) := 0. The number of

negative signs on the right side from the index can be computed with

Mr(j) =M`(N + 1)−M`(j + 1) for j = 1, . . . , N.

The formulas in Lemma 4.3 can be computed in linear time as well and thus we can

reduce the time complexity from Θ(NK) to Θ(N).

Proof of Lemma 4.3:We begin with (a). For every K-tuple (n1, . . . , nK)>, it holds

1 ≤ n1 < . . . < nK ≤ N . This yields that L ≤ nL ≤ N −K + L so that nL can be

replaced by a sum over {L, . . . , N −K + L} as the following equation shows:

∑
1≤n1<...<nK≤N

g(nL)
K∏
i=1

ψ(xni) =
N−K+L∑
j=L

g(j)ψ(xj)
∑

(ni)∈BjL

K∏
i=1
i 6=j

ψ(xni)

where we use the following notation:

BjL := {(ni)i∈{1,...,K}\{L}; (n1, . . . , nK)> ∈ {1, . . . , N}K

with ni(1) < ni(2) for all i(1) < i(2) and nL = j}.

For the next step, we consider the following subsets of BjL:

BjL(k1, k2) :=

{
(ni) ∈ BjL;

L−1∑
i=1

1{xni < 0} = k1 and
K∑

i=L+1

1{xni < 0} = k2

}
.
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BjL(k1, k2) describes the set of vectors with indices (n1, . . . , nL−1, nL+1, . . . , nK)>

which have k1 negative signs in the subvector (n1, . . . , nL−1)> and k2 negative sign

in the subvector (nL+1, . . . , nK)>. Note that

L−1∑
i=1

1{xni < 0} ∈ {0, . . . , L− 1} and
K∑

i=L+1

1{xni < 0} ∈ {0, . . . , K − L}.

Then, we obtain

N−K+L∑
j=L

g(j)ψ(xj)
∑

(ni)∈BjL

K∏
i=1
i 6=j

ψ(xni)

=
N−K+L∑
j=L

g(j)ψ(xj)
L−1∑
k1=0

K−L∑
k2=0

∑
(ni)∈BjL(k1,k2)

K∏
i=1
i 6=j

ψ(xni)

=
N−K+L∑
j=L

g(j)ψ(xj)
L−1∑
k1=0

K−L∑
k2=0

∑
(ni)∈BjL(k1,k2)

(−1)k1+k2

=
N−K+L∑
j=L

g(j)ψ(xj)
L−1∑
k1=0

K−L∑
k2=0

(−1)k1+k2κj(k1,k2)

where the cardinality of the set BjL(k1, k2) is denoted as κj(k1,k2) and can be stated

explicitly for givenM`(j) andMr(j) by the following formula

κj(k1,k2) =

(
M`(j)

k1

)(
j −M`(j)− 1

L− 1− k1

)(
Mr(j)

k2

)(
N − j −Mr(j)

K − L− k2

)
.

We denote ιjk1 =
(M`(j)

k1

)(
j−M`(j)−1
L−1−k1

)
and ρjk2 =

(Mr(j)
k2

)(
N−j−Mr(j)
K−L−k2

)
. Then the asserti-

on follows by splitting κj(k1,k2) to ι
j
k1

and ρjk2 :

N−K+L∑
j=L

g(j)ψ(xj)
L−1∑
k1=0

K−L∑
k2=0

(−1)k1+k2κj(k1,k2) (52)

=
N−K+L∑
j=L

g(j)ψ(xj)

(
L−1∑
k1=0

(−1)k1ιjk1

)(
K−L∑
k2=0

(−1)k2ρjk2

)
. (53)

(b) follows from (a) for L = 1

∑
1≤n1<...<nK≤N

g(nL)
K∏
i=1

ψ(xni) =
N−K+1∑
j=1

g(j)ψ(xj)

(
0∑

k1=0

(−1)k1ιjk1

)(
K−L∑
k2=0

(−1)k2ρjk2

)

=
N−K+L∑
j=L

g(j)ψ(xj)

(
K−L∑
k2=0

(−1)k2ρjk2

)
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since ιj0 = 1 for L = 1.

(c) follows from (a) for L = K analogously to (b). �

Splitting κj(k1,k2) to ιjk1 and ρjk2 is useful for the computation since the number of

arithmetic iterations can thereby be reduced from Formula (52) with (L−1)(K−L)

summands to Formula (53) with K − 1 summands.

6-sign depth

By Theorem 3.8, p. 22, we obtain for K = 6:

N

(
d6(R)− 1

32

)
=

N

32
(
N
6

)( ∑
1≤n1<...<n6≤N

( ∑
1≤i(1)<i(2)≤6

2∏
j=1

(−1)i(j)ψ(Rnj)

+
∑

1≤i(1)<...<i(4)≤6

4∏
j=1

(−1)i(j)ψ(Rni(j)) (54)

−
6∏
j=1

ψ(Rnj)

))
. (55)

We have to simplify the second and third part of the sum in Formula (54) and (55).

The term in Formula (55) can be computed by Lemma 4.2 in linear time since this

lemma has been proved for general product lengths. However, the products of length

4 in Formula (54) are more challenging to compute. At �rst, we reduce the number

of summation indices to four instead of six with an appropriate compensation factor

for the omitted combinations since each summand only depends on four indices.

ψ(Rn1) ψ(Rn2) ψ(Rn3) ψ(Rn4) ψ(Rn5) ψ(Rn6) sign
omitted
combinations

3 3 3 3 +
(
N−n4

2

)
3 3 3 3 −

(
N−n5

1

)(
n5−n3−1

1

)
3 3 3 3 +

(
n6−n3−1

2

)
3 3 3 3 +

(
N−n5

1

)(
n4−n2−1

1

)
3 3 3 3 −

(
n6−n4−1

1

)(
n4−n2−1

1

)
3 3 3 3 +

(
n5−n2−1

2

)
3 3 3 3 −

(
N−n5

1

)(
n3−n1−1

1

)
3 3 3 3 +

(
n6−n4−1

1

)(
n3−n1−1

1

)
3 3 3 3 −

(
n5−n3−1

1

)(
n3−n1−1

1

)
3 3 3 3 +

(
n4−n1−1

2

)
3 3 3 3 +

(
N−n5

1

)(
n2−1

1

)
3 3 3 3 −

(
n6−n4−1

1

)(
n2−1

1

)
3 3 3 3 +

(
n5−n3−1

1

)(
n2−1

1

)
3 3 3 3 −

(
n4−n2−1

1

)(
n2−1

1

)
3 3 3 3 +

(
n3−1

2

)
Table 2: Omitted combinations of the products of length four for 6-sign depth
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Table 2 gives an overview of all possible situations. If we simplify the binomial

coe�cients of the last column and order them, Formula (54) can be represented by:

∑
1≤n1<...<n6≤N

∑
1≤i(1)<...<i(4)≤6

4∏
j=1

(−1)i(j)ψ(Rni(j))

=

(
1

2

(
N2 − 3N

)
+ 2

) ∑
1≤n1<...<n4≤N

4∏
j=1

ψ(Rnj)

− 2N
4∑

L=1

(−1)L
∑

1≤n1<...n4≤N

nL

4∏
j=1

ψ(Rnj)

+4
∑

1≤i(1)<i(2)≤4

(−1)i(1)+i(2)
∑

1≤n1<...<n4≤N

ni(1)ni(2)

4∏
j=1

ψ(Rnj) (56)

+ 2
4∑

L=1

∑
1≤n1<...<n4≤N

n2
L

4∏
j=1

ψ(Rnj). (57)

It is recommended to expand this by computational algebraic tools as Mathematica

(Wolfram Research, 2019). Formula (57) can be computed by Lemma 4.3 in linear

time by choosing g(x) = x2. Beside terms of the form given in Lemma 4.2 and

Lemma 4.3, there are sums with two factors ni(1)ni(2), cf. Formula (56), for which

we do not have provided e�cient computational tools currently. In the following

theorem, we will generalize Lemma 4.3 for multiple weighting factors. Before that,

we want to insert the �nal representation of the 6-depth which can be computed as

e�ciently as possible with our tools:

N

(
d6(R)− 1

32

)
=

N

32
(
N
6

)( ∑
1≤n1<...<n6≤N

∑
1≤i(1)<i(2)≤6

2∏
j=1

(−1)i(j)ψ(Rnj)

+

(
1

2

(
N2 − 3N

)
+ 2

) ∑
1≤n1<...<n4≤N

4∏
j=1

ψ(Rnj)

−2N
4∑

L=1

(−1)L
∑

1≤n1<...n4≤N

nL

4∏
j=1

ψ(Rnj)

+4
∑

1≤i(1)<i(2)≤4

(−1)i(1)+i(2)
∑

1≤n1<...<n4≤N

ni(1)ni(2)

4∏
j=1

ψ(Rnj)

+2
4∑

L=1

∑
1≤n1<...<n4≤N

n2
L

4∏
j=1

ψ(Rnj)

−
∑

1≤n1<...<n6≤N

6∏
j=1

ψ(Rnj)

)
.
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Theorem 4.4. Let (x1, . . . , xN)> be real numbers with xn 6= 0, n = 1, . . . , N and

L = (L1, . . . , LM)> ∈ {1, . . . , K}M with Li(1) < Li(2) for i(1) < i(2). Furthermore,

we introduce the following notations:

J (L) = {(j(1), . . . , j(M))> ∈ {1, . . . , N}M ;L1 ≤ j(1),

j(m)+(Lm+1 − Lm − 1) < j(m+ 1) for m ≤M − 1, j(M) ≤ N −K + LM}

andMm
m−1(j) :=

j(m)−1∑
i=j(m−1)+1

1{xni < 0}, m ∈ {1, . . . ,M + 1}

and j = (j(1), . . . , j(M))> ∈ J (L) and j(0) := 0, j(M + 1) := N + 1. Then for

arbitrary mappings g : RM → R, it holds

∑
1≤n1<...<nK≤N

g(nL1 , . . . , nLM )
K∏
k=1

ψ(xnk)

=
∑

j∈J (L)

j=(j(1),...,j(M))>

g(j)
M∏
m=1

(
ψ(xj(m))

Lm−Lm−1−1∑
km=0

(−1)kmκj
km

)(
K−LM∑
kM+1=0

(−1)kM+1κj
kM+1

)

with κj
km

(m) = κj
km

=

(
Mm

m−1(j)

km

)(
j(m)− j(m− 1)− 1−Mm

m−1(j)

Lm − Lm−1 − 1− km

)
and L0 = 0, LM+1 = K + 1.

The expression Mm
m−1(j) describes the number of negative signs of the residuals

with indices between j(m − 1) and j(m). By computing and memorizingM(n) :=∑n
i=1 1{xni < 0} for n = 1, . . . , N , we obtain allMm

m−1(j) by using

Mm
m−1(j) =M(j(m))−M(j(m− 1)).

Note that the expressions in Theorem 4.4 can be computed in polynomial time with

degree M since an ordered sum with M indices has to be computed. Therefore, the

expressions of the 6-depth with mixed factors can be computed in quadratic time

by using Theorem 4.4. For simplicity, we will consider an example with M = 4 and

L = (2, 4)>. Then, we can compute the following expression in quadratic time:

∑
1≤n1<...<n4≤N

n2n4

4∏
k=1

ψ(xnk)

=
∑

2≤j(1),j(2)≤N
j(1)+1<j(2)

j(1)j(2)
2∏

m=1

ψ(xj(m))

(
1∑

k1=0

1∑
k2=0

0∑
k3=0

(−1)k1+k2+k3κj
k1
κj
k2
κj
k3

)
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=
∑

2≤j(1),j(2)≤N
j(1)+1<j(2)

j(1)j(2)
2∏

m=1

ψ(xj(m))

(
1∑

k1=0

1∑
k2=0

(−1)k1+k2κj
k1
κj
k2

)
.

Proof of Theorem 4.4: Note that (nL1 , . . . , nLM )> have values equal to j ∈ J (L)

so that we can �lter out this vector by a sum over J (L). Further, we introduce the

notation

Bj
L = {(ni)i∈{1,...,K}\{L1,...,LM}; (n1, . . . , nK)> ∈ {1, . . . , N}K

with ni(1) < ni(2) for all i(1) < i(2) and (nL1 , . . . , nLM )> = j}.

and for k = (k1, . . . , kM+1)> ∈ NM+1,

Bj
L(k) =

(ni) ∈ Bj
L;

Lm−1∑
i=Lm−1+1

1{xni < 0} = km, m = 1, . . . ,M + 1

 .

Then

∑
1≤n1<...<nK≤N

g(nL1 , . . . , nLM )
K∏
k=1

ψ(xnk)

=
∑

j∈J (L)

j=(j(1),...,j(M))>

g(j)
M∏
m=1

ψ(xj(m))
∑

(ni)∈BjL

K∏
i=1

i/∈{j(1),...,j(M)}

ψ(xni)

=
∑

j∈J (L)

j=(j(1),...,j(M))>

g(j)
M∏
m=1

ψ(xj(m))

L1−1∑
k1=0

L2−L1−1∑
k2=0

. . .

K−LM∑
kM+1=0

∑
(ni)∈BjL(k)

K∏
i=1

i/∈{j(1),...,j(M)}

ψ(xni)

=
∑

j∈J (L)

j=(j(1),...,j(M))>

g(j)
M∏
m=1

ψ(xj(m))

L1−1∑
k1=0

L2−L1−1∑
k2=0

. . .

K−LM∑
kM+1=0

∑
(ni)∈BjL(k)

M+1∏
i=1

(−1)ki

=
∑

j∈J (L)

j=(j(1),...,j(M))>

g(j)
M∏
m=1

ψ(xj(m))

L1−1∑
k1=0

L2−L1−1∑
k2=0

. . .

K−LM∑
kM+1=0

M+1∏
i=1

(−1)ki×

M+1∏
m=1

(
Mm

m−1(j)

km

)(
j(m)− j(m− 1)− 1−Mm

m−1(j)

Lm − Lm−1 − 1− km

)

where L0 = 0 and LM+1 = K+1. TheM+1 sums can be reordered since they do not

depend on each other. Moreover, we use the notation κj
km

given in the assumptions
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of Theorem 4.4:

∑
j∈J (L)

j=(j(1),...,j(M))>

g(j)
M∏
m=1

ψ(xj(m))

L1−1∑
k1=0

L2−L1−1∑
k2=0

. . .

K−LM∑
kM+1=0

M+1∏
i=1

(−1)ki×

M+1∏
m=1

(
Mm

m−1(j)

km

)(
j(m)− j(m− 1)− 1−Mm

m−1(j)

Lm − Lm−1 − 1− km

)

=
∑

j∈J (L)

j=(j(1),...,j(M))>

g(j)

(
M∏
m=1

ψ(xj(m))

Lm−Lm−1−1∑
km=0

(−1)kmκj
km

)(
K−LM∑
kM+1=0

(−1)kM+1κj
kM+1

)

and the assertion follows. �

The recent results in Chapter 4.2.1 show that we are able to compute the product

parts for K = 4 and K = 5 in linear time. For K ≥ 6, the time complexity will

increase undesirably.

Algorithms for higher K

To sum up, an explicit representation of the product formula of the K-depth for

K ∈ {4, 5, 6} has been derived which can be computed more e�ciently than the

naive implementation. If we considerK-depths for higherK, we will obtain products

with even lengths up to K (e.g., products of length eight for the 8-depth). If the

product length is two, we can apply the algorithm in Chapter 4.1 which has linear

time. The product length of K or K − 1 (depending on whether K is odd or even)

can also be computed in linear time by the algorithms in Chapter 4.2.1. For product

lengths higher than two and less than K−1, the computational situation is di�cult

as the following discussion shows.

Let K̃ ∈ {4, . . . , K} for even K or K̃ ∈ {4, . . . , K − 1} for odd K be the product

length. Analogously to the previous derivations from this chapter, the expression

∑
1≤n1<...<nK≤N

K̃∏
j=1

ψ(Rni(j))

leads for particular 1 ≤ i(1) < . . . < i(K̃) ≤ K to terms of the form

∑
1≤n1<...<nK̃≤N

g(nL1 , . . . , nLmin{K̃,K−K̃}
)
K̃∏
j=1

ψ(Rnj) (58)

for suitable 1 ≤ L1 < . . . < Lmin{K̃,K−K̃} ≤ K̃ and a suitable function g. We obtain
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Formula (58) by reducing the number of indices of the sum from K to K̃ and need

K − K̃ factors for compensation. Note that the maximal number of compensating

factors is K̃ since the sum only depend on K̃ indices so that we take the minimum

of K̃ and K − K̃ here. According to Theorem 4.4, Formula (58) can be computed

with time complexity of Θ(Nmax{min{K̃,K−K̃},1}). Note that min{K̃,K − K̃} can be

zero if K = K̃. Since we always need to compute the sign structure in advance in

general, we always have linear time complexity at least.

The time complexity gets worse the higher the distance between the numbers K

and K̃ is. Moreover, the derivation of the corresponding representations gets more

tedious. E.g. for K = 7,
(

7
4

)
= 35 and

(
7
6

)
= 7 terms need to be calculated in order to

obtain a formula that can be computed by the methods of Chapter 4.2.1. Algebraic

computational tools for expanding polynomials as Mathematica (Wolfram Research,

2019) exist and can be used for more comfort. However, for generalK ≥ 7, we obtain

exploding numbers of combinations to derive a more useful representation.

To sum up, this approach is not appropriate for higher K due to the rising time

complexity and the immense e�ort to derive more e�cient representations. Table 3

gives an overview of the behavior of the product terms for K ∈ {4, . . . , 12}. We can

K
product

lengths K̃

respective runtime

(referring to Chapter 4.2.1)

4 4 Θ(N)

5 4 Θ(N)

6 4,6 Θ(N2),Θ(N)

7 4,6 Θ(N3),Θ(N)

8 4,6,8 Θ(N4),Θ(N2),Θ(N)

9 4,6,8 Θ(N4),Θ(N3),Θ(N)

10 4,6,8,10 Θ(N4),Θ(N4),Θ(N2),Θ(N)

11 4,6,8,10 Θ(N4),Θ(N5),Θ(N3),Θ(N)

12 4,6,8,10,12 Θ(N4),Θ(N6),Θ(N4),Θ(N2),Θ(N)

Table 3: Overlook of the runtimes for variousK to compute di�erent product lengths

conclude that the computational e�ort of all product terms is O(NK∗) with

K∗ = max
4≤K̃≤K
K̃∈2N

{1,min{K̃,K − K̃}}

in worst case for given K, when using the given tools in Chapter 4.2.1. There may

exist other approaches to simplify these products terms similar to the derivations

from Chapter 3 which we have not found.
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4.2.2 Linear computation of the other rest terms

The other neglected part of the K-depth is given in Lemma 3.15, p. 31:

− N

2K
(
N
K

) ∑
1≤n1 6=n2≤N

K−2∑
J=0

(−1)J
(
|n1 − n2| − 1

J

)(
N − |n1 − n2| − 1

K − 2− J

)
=− NK−1K(K − 1)

4〈N〉K

∑
1≤n1 6=n2≤N

(
1

2
− |n1 − n2|

N

)K−2

(59)

− NK−1

2K
(
N
K

) ∑
1≤n1 6=n2≤N

∑
0≤M1<M2≤K−2

aK(M1,M2)
|n1 − n2|M1

NM2
(60)

Chapter 4.1 provides an algorithm in linear time for Formula (59). For Formula (60),

we will also obtain a linear algorithm in the following. The coe�cients aK(M1,M2)

do not depend on the given residuals and only need to be calculated in advance once

theoretically to obtain an exact representation for the K-depth.

K = 3 K = 4 K = 5 K = 6
(0, 1) (0, 1) (1, 2) (0, 1) (1, 2) (2, 3) (0, 1) (1, 2) (2, 3) (3, 4)

(0, 2) (0, 2) (1, 3) (0, 2) (1, 3) (2, 4)
(0, 3) (0, 3) (1, 4)

(0, 4)

Figure 9: Situations for (M1,M2) in Formula (60)

Figure 9 shows for K = 3, 4, 5, 6 the possible situations of 0 ≤ M1 < M2 ≤ K − 2

we have to compute. This can be simply done by expanding the sum

fNK (a) :=
1

NK−2

K−2∑
J=0

(−1)J
(
a− 1

J

)(
N − a− 1

K − 2− J

)
(61)

with a := |n1 − n2| and by ordering the coe�cients in a and N such that:

fNK (a) =
∑

0≤M1≤M2≤K−2

aK(M1,M2)
aM1

NM2

for suitable aK(M1,M2) ∈ R. The coe�cients aM1

NM2
with M1 = M2 correspond to

the asymptotically relevant part in Formula (59) and are not mentioned in Figu-

re 9. It is recommended to use a computational algebraic system as Mathematica

(Wolfram Research, 2019) to expand the terms.
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3-depth

For K = 3, we obtain in Formula (61)

fN3 (a) =
1

N

1∑
J=0

(−1)J
(
a− 1

J

)(
N − a− 1

1− J

)
= 1− 2

a

N
.

No factor of the form a0

N
appears and a3(0, 1) = 0 therefore.

4-depth

For K = 4, we obtain in Formula (61)

fN4 (a) =
1

N2

2∑
J=0

(−1)J
(
a− 1

J

)(
N − a− 1

2− J

)
= 2

a2

N2
− 2

a

N
+

1

N2
− 1

2

1

N
+

1

2
.

We obtain a4(0, 1) = −1
2
, a4(0, 2) = 1 and a4(1, 2) = 0.

5-depth

For K = 5, we obtain in Formula (61)

fN5 (a) =
1

N3

3∑
J=0

(−1)J
(
a− 1

J

)(
N − a− 1

3− J

)
=− 3

4

a3

N3
+ 2

a2

N2
− a

N
+

a

N2
− 8

3

a

N3
+

1

6
− 1

2

1

N
+

4

3

1

N2
.

We obtain a5(0, 1) = −1
2
, a5(0, 2) = 4

3
, a5(0, 3) = 0, a5(1, 2) = 1, a5(1, 3) = −8

3
and

a5(2, 3) = 0.

6-depth

For K = 6, we obtain in Formula (61)

fN6 (a) =
1

N4

4∑
J=0

(−1)J
(
a− 1

J

)(
N − a− 1

4− J

)
=

2

3

a4

N4
− 4

3

a3

N3
+

10

3

a2

N4
− a2

N3
+
a2

N2
− 10

3

a

N3

+
a

N2
− 1

3

a

N
+

1

N4
− 3

4

1

N3
+

23

24

1

N2
− 1

4

1

N
+

1

24
.

Thus, we obtain a6(0, 1) = −1
4
, a6(0, 2) = 23

24
, a6(0, 3) = −3

4
, a6(0, 4) = 1, a6(1, 2) =

1, a6(1, 3) = −10
3
, a6(1, 4) = 0, a6(2, 3) = −1, a6(2, 4) = 10

3
and a6(3, 4) = 0.
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K = 3 K = 4 K = 5 K = 6
0 −1/2 0 −1/2 1 0 −1/4 1 −1 0

1 4/3 −8/3 23/24 −10/3 10/3
0 −3/4 0

1

Figure 10: Values for aK(M1,M2) for K ∈ {3, 4, 5, 6} and 0 ≤M1 < M2 ≤ K − 2

Figure 10 summarizes the values for the coe�cients aK(M1,M2). The rest sums can

be computed similarly to the approximate computation of the K-depth in Lemma

4.1, p. 56. According to Theorem 3.12, p. 28 and Lemma 3.15, p. 31, we have to

derive a simplifcation of the following formula:

− NK−1

2K
(
N
K

) ∑
1≤n1 6=n2≤N

( ∑
0≤M1<M2≤K−2

aK(M1,M2)
|n1 − n2|M1

NM2
ψ(En1)ψ(En2)

)

=− NK−1

2K
(
N
K

) ∑
0≤M1<M2≤K−2

aK(M1,M2)

( ∑
1≤n1 6=n2≤N

|n1 − n2|M1

NM2
ψ(En1)ψ(En2)

)

=− NK−1

2K
(
N
K

) ∑
0≤M1<M2≤K−2

aK(M1,M2)

NM2−M1

( ∑
1≤n1 6=n2≤N

(
|n1 − n2|

N

)M1

ψ(En1)ψ(En2)

)
.

Then analogous to the proof of Lemma 4.1, we obtain

∑
1≤n1 6=n2≤N

(
|n1 − n2|

N

)M1

ψ(En1)ψ(En2) = 2
N−1∑
n1=1

N∑
n2=n1+1

(
n2 − n1

N

)M1

ψ(En1)ψ(En2)

=2

M1∑
m=0

(
M1

m

)
(−1)m

N∑
n2=2

(
−n2

N

)M1−m

ψ(En2)

n2−1∑
n1=1

(n1

N

)m
ψ(En1)

=2

M1∑
m=0

(
M1

m

)
(−1)m

N∑
n2=2

(
−n2

N

)M1−m

ψ(En2)Sn2−1,m.

During the computation of the asymptotic part in Lemma 4.1, p. 56, the matrix

(S•,0, . . . , S•,M1) is already computed since M1 < K − 2. In order to avoid multiple

computations, this stored matrix should be used. The following equation summarizes

the e�cient representation for Formula (60):

− NK−1

2K
(
N
K

) ∑
1≤n1 6=n2≤N

( ∑
0≤M1<M2≤K−2

aK(M1,M2)
|n1 − n2|M1

NM2
ψ(En1)ψ(En2)

)
=− NK−1

2K−1
(
N
K

) ∑
0≤M1<M2≤K−2

aK(M1,M2)

NM2−M−1
×(

M1∑
m=0

(
M1

m

)
(−1)m

N∑
n2=2

(
−n2

N

)M1−m

ψ(En2)Sn2−1,m

)
.
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Although this representation can be computed in linear time, the computational

costs can be high due to the large number of summands for increasing K.

4.3 Runtime comparison

The implementations introduced in Chapter 4.1 and 4.2 will be compared based on

their runtimes. The asymptotic implementations in Chapter 4.1 are obviously faster

than the exact implementations in Chapter 4.2 since the exact implementations have

to compute additional terms. The interesting question is how much faster the asym-

ptotic implementations are compared to the exact implementations for di�erent K.

Additionally, we compare the naive implementation based on the de�nition to under-

line the requirement of the improved implementations. The runtimes will be visuali-

zed for di�erent sample sizesN by boxplots that contain 100 repeated runtimes given

in milliseconds (ms). The default settings of the R-function boxplot() are used with

outline = FALSE in order to omit outliers for clearer presentation. If the algorithms

are linear, we consider samples sizes N ∈ {100, 200, . . . , 10000} and for the imple-

mentation with quadratic or higher complexities, we consider N ∈ {10, 20, . . . , 300}.
For the naive implementation of the 5-depth and 6-depth, we stopped the compu-

tations at N = 200 or N = 150, respectively, due to long computation times.

3-depth

Figure 11 presents the runtimes of the (exact) e�cient implementation in Chapter 4.1

and the naive implementation based on the de�nition. Further, a simple linear re-

0.
0

0.
5

1.
0

1.
5

2.
0

3−depth: efficient implementation

sample size N

ru
nt

im
e 

in
 m

s

100 2000 4000 6000 8000 10000

0
10

20
30

40
50

60

naive implementation

sample size N

ru
nt

im
e 

in
 m

s

10 50 100 150 200 250 300

Figure 11: Simulated runtimes of the e�cient implementation (cf. Chapter 4.1) and
the naive implementation.

72



gression line for the e�cient implementation and a cubic regression line for the

naive implementation are calculated by the medians from each boxplot based on

their theoretical time complexities of Θ(N) and Θ(N3). The di�erence of the runti-

mes from the naive implementation to e�cient implementation is so immense that

plotting them for the same sample sizes N does not make sense. We can conclude

that there is no reason to use the naive implementation.

4-depth

Figure 12 presents the runtimes of the e�cient implementations in Chapter 4.1 and

4.2 and the naive implementation. It also contains the simple linear regression line

or a line of a polynomial regression from degree four, respectively. We conclude
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Figure 12: Simulated runtimes of both e�cient implementations (cf. Chapter 4.1
and 4.2) and the naive implementation

that the di�erences between the runtime of the exact and approximate version are

negligibly small. For N = 10000, both algorithms take about 2ms. This can be

explained by the minor di�erences of both implementations since the additional rest

term in Chapter 4.2 can be computed in constant time. We only need to compute

the number of negative signs in linear time in advance, see Lemma 4.2, p. 58. The

runtimes of the naive implementation show that the higher K, the more e�cient

algorithms are needed.

5-depth

Figure 13 is analogously set up to Figure 12 for K = 5. In contrast, we have he-

re a much higher di�erence between the exact and approximate implementation.
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Figure 13: Simulated runtimes of both e�cient implementations (cf. Chapter 4.1
and 4.2) and the naive implementation

For N = 10000, the runtimes are above 25ms and 3ms, respectively. For larger si-

mulation studies or situations where the 5-depth has to be computed for multiple

parameters, the approximate versions should be preferred due to the computational

costs. Nevertheless, the runtime of the exact implementation also increases linearly.

The runtimes of the naive implementation is only computed until N = 200 since

the runtimes increase more and more. The di�erences between the exact and ap-

proximate implementation of the 5-depth can be explained by the large number of

summations in Lemma 4.3, p. 60 and from the the resulting formula in Chapter 4.2.

6-depth and more

In Figure 14, the runtimes of the other algorithms based on the 6-depths are pre-

sented. The exact algorithm has a quadratic time complexity (cf. Chapter 4.2), so

the exact computation is di�cult for higher sample size N . Comparing to the naive

implementation, we have a large improvement nevertheless. Figure 15 is a summary

of the runtimes of the approximate algorithms for K ∈ {3, 4, 5, 6}. We can conclude

that choosing higher K will not cause computational problems as we had with with

the naive implementation. For N = 10000, we need approximately 0,5ms more time

per K. The result in Chapter 4.1 is a strong improvement for further research since

simulation studies can now be done e�ciently, in contrast to past papers, see Kus-

tosz and Müller (2014), Kustosz et al. (2016a), Kustosz et al. (2016b) or Falkenau

(2016), where naive implementations have been used. These papers only consider

K = 3, probably due to the increasing computational complexity for larger K.
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Figure 14: Simulated runtimes of the (exact) quadratic implementation (cf. Chapter

4.2) and the naive implementation for K = 6
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Figure 15: Simulated runtimes of the linear implementations (cf. Chapter 4.1) for
K ∈ {3, 4, 5, 6}

Based on the approaches of Chapter 4, we can compute the K-depth e�ciently for

all K if an approximation is su�cient. For the exact K-depth, we have only found

e�cient computational tools for K ≤ 5.
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5 E�cient computation of the K-sign depth based

on block structures

This chapter introduces another e�cient implementation of the K-depth based on

the de�nition. As we have seen in Chapter 4, a naive implementation based on the

de�nition provides an algorithm with undesirable time complexity of Θ(NK) since

the alternation property of the signs is checked for all K-tuples in K nested loops.

Some improved approaches of the naive algorithm are considered in Horn (2021b):

A �rst idea to reduce computational costs is to stop checking the condition whether

a K-tuple has alternating signs if two consecutive signs of the residual vectors are

already equal. Although this method can reduce the computational costs, the time

complexity is still of order Θ(NK) in best and worst case due to the number of K-

tuples we have to check. Horn (2021b) shows that this procedure can be improved by

computing the K-tuples recursively and quadratic time complexity can be obtained

in the best case. Nevertheless, the worst case still has a time complexity of O(NK).

In the following, we will take up a similar idea. We extract only K-tuples where

alternating signs could be possible in advance and count them. This can be done by

analyzing the block structure of the signs of the residual vector. A block is a run

of consecutive entries in the residuals with the same signs. Example 5.1 gives an

introduction for this approach:

Example 5.1. Let r = (1, 1, −1,−1,−1, 1, 1, 1, −1,−1, 1, 1, 1)> be the signs of a

residual vector. Then, there are the following �ve blocks:

(+,+︸︷︷︸
block 1

,−,−,−︸ ︷︷ ︸
block 2

,+,+,+︸ ︷︷ ︸
block 3

,−,−︸︷︷︸
block 4

,+,+,+︸ ︷︷ ︸
block 5

).

Let K = 3 as an example. A 3-tuple has alternating signs if and only if its entries

are from one of the following block index combinations:

123, 125, 145, 234, 345.

The parities (parity is the property of whether an integer is even or odd) have to

alternate, i.e., (even, odd, even) or (odd, even, odd), in order to have alternating

signs. In this example, odd block indices correspond to positive signs and even block

indices to negative signs. Therefore, the other block combinations cannot have alter-

nating signs. For a given residual vector and the numbers of elements in each block,
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we can calculate the number of alternating signs simply and quickly:

123 : 2 · 3 · 3 = 18

125 : 2 · 3 · 3 = 18

145 : 2 · 2 · 3 = 12

234 : 3 · 3 · 2 = 18

345 : 3 · 2 · 3 = 18

d3(r) =
1(
13
3

)(18 + 18+12 + 18 + 18) =
84

286
≈ 0.2937.

This approach will be formalized for general K in Chapter 5.1. If B(r) denotes the

number of blocks of the residual vector r, then the exact time complexity of this

algorithm is Θ(B(r)K). However, this procedure is still too naive, since it leads to

a time complexity of O(NK) in the worst case. Therefore, we will develop improve-

ments of this idea based on some strategically used memory storage in Chapter 5.2

that avoids multiple computation of the same terms. This idea yields an algorithm

that can compute the K-depth with linear complexity in the number of blocks B(r).

This linear algorithm is implemented by the author of this thesis and included in

the R-package GSignTest Horn (2021a) based on an Rcpp-implementation. In Chap-

ter 5.3, the runtimes of the methods in the previous chapters will be compared. In

Chapter 5.4, a conjecture concerning a maximality property of the K-depth is dis-

cussed. The formulation of this conjecture is based on the block implementation. It

shows that further theoretical understanding of the K-depth (e.g., its performance

in test scenarios) can be developed by considering the blocks of the residuals.

5.1 Introduction to the block notation and the naive

algorithm based on blocks

The terms from Example 5.1 will be formalized by mathematical de�nitions at �rst.

De�nition 5.2. Let r = (r1, . . . , rN)> ∈ RN be a residual vector with rn 6= 0,

n = 1, . . . , N .

(a) The number of blocks B(r) is de�ned as

B(r) := 1 +
N∑
n=2

1{ψ(rn) 6= ψ(rn−1)} (62)

where ψ(x) := 1{x > 0} − 1{x < 0} de�nes the sign function.
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(b) The starting points of a new block s1(r), . . . , sB(r)+1(r) are de�ned as

s1(r) := 1, sb(r) := min{` > sb−1(r);ψ(r`) 6= ψ(r`−1)} for b = 2, . . . , B(r),

sB(r)+1 := N + 1.

(c) The block lengths q1(r), . . . , qB(r)(r) are de�ned as

qb(r) := sb+1(r)− sb(r) for b = 1, . . . , B(r). (63)

We will also write B, s1, . . . , sB+1 and q1, . . . , qB instead of B(r), s1(r), . . . , sB(r)+1(r)

and q1(r), . . . , qB(r)(r) for a more convenient notation if the residual vector r is known

from the context. Note that B, s1, . . . , sB+1 and q1 . . . , qB can be computed in linear

time in N . Further, we will use the following notations:

De�nition 5.3. Let r = (r1, . . . , rN)> ∈ RN be a residual vector with rn 6= 0,

n = 1, . . . , N . Let B be the number of blocks and let sb be the starting points from

De�nition 5.2.

(a) For an element rn, n ∈ {1, . . . , N}, of r ∈ RN and some b ∈ {1, . . . , B}, we
say that rn belongs to the block number b if sb ≤ n < sb+1.

(b) For arbitrary 1 ≤ i1 < . . . < iK ≤ N , we say that (ri1 , . . . , riK ) belongs to

the vector of blocks (bj1 , . . . , bjK ) if each rik belongs to the block number bjk
for k = 1, . . . , K and suitable 1 ≤ j1 ≤ . . . ≤ jK ≤ B.

In order to illustrate the previous de�nitions, we give the following example.

Example 5.4. For r = (1, 1, −1,−1,−1, 1, 1, 1, −1,−1, 1, 1, 1)>, we have

(a) number of blocks: B = 5,

(b) starting points of a new block: (s1, . . . , s5)> = (1, 3, 6, 9, 11)>,

(c) block lengths: (q1, . . . , q5)> = (2, 3, 3, 2, 3)>.

E.g., the �fth entry r5 of the residual vector (highlighted in red) belongs to block 2

and (r1, r2, r9) (highlighted in blue) belongs to the vector of blocks (1, 1, 4):

(+,+︸ ︷︷ ︸
block 1

,−,−,−︸ ︷︷ ︸
block 2

,+,+,+︸ ︷︷ ︸
block 3

,−,−︸ ︷︷ ︸
block 4

,+,+,+︸ ︷︷ ︸
block 5

).

The next lemma describes how the block structure can be used to compute the

K-depth as mentioned in Example 5.1.
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Lemma 5.5. Let r = (r1, . . . , rN)> ∈ RN be a residual vector with rn 6= 0, n =

1, . . . , N and K ≥ 2. According to De�nition 5.2, the number of blocks is denoted by

B and the block lengths are denoted by q1, . . . , qB. We de�ne the set of all K-tuples

containing block indices with alternating parities by

AK,B := {(i1, . . . , iK)> ∈ {1, . . . , B}K ; ik − ik−1 is odd, ik − ik−1 > 0, k = 2, . . . , K}.

Then the K-depth can be computed by

dK(r) =
1(
N
K

) ∑
(i1,...,iK)∈AK,B

K∏
k=1

qik .

The elements of AK,B represent all K-tuples which contain block indices with alter-

nating parities. This follows from the fact that ik − ik−1 is odd which implies that

neighbored indices have di�erent parities. Note further that the parity of the block

index indicates the sign of its block. If the �rst entry of the residual has a positive

sign, then an odd block index corresponds to a positive sign and an even block index

corresponds to a negative sign and vice versa.

Before proving Lemma 5.5, we will highlight the case B < K. Then AK,B = ∅ so
that the sum in Lemma 5.5 is zero:

Lemma 5.6. Let r = (r1, . . . , rN)> ∈ RN be an arbitrary residual vector with rn 6= 0,

n = 1, . . . , N and let B(r) the number of blocks. Then

B(r) ≤ K − 1 ⇔ dK(r) = 0.

Proof of Lemma 5.6: If there are K − 1 blocks or less, it is impossible to choose

K-tuples with K − 1 sign changes, so the K-depth will be zero. For the reversed

implication, suppose B(r) ≥ K. Then, we can construct one K-tuple which elements

are from the �rst K di�erent blocks. In particular, this K-tuple has alternating signs

which implies dK(r) > 0. �

Proof of Lemma 5.5: According to Lemma 5.6, we only need to focus on the case

B ≥ K. For 1 ≤ n1 < . . . < nK ≤ N , let (rn1 , . . . , rnK )> be an arbitrary K-tuple of

the residual vector. Let

BK,B := {(n1, . . . , nK)> ∈ {1, . . . , N}K ; 1 ≤ n1 < . . . < nK ≤ N,

(rn1 , . . . , rnK )> belongs to the blocks (bj1 , . . . , bjK )> with (j1, . . . , jK)> ∈ AK,B}.

The set BK,B only contains K-tuples from the residual vector with alternating signs.
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I.e., for a K-tuple (rn1 , . . . , rnK )> with (n1, . . . , nK)> ∈ BK,B, we have

K∏
k=1

1{rnk(−1)k > 0}+
K∏
k=1

1{rnk(−1)k < 0} = 1.

For (rn1 , . . . , rnK )> with (n1, . . . , nK)> /∈ BK,B and 1 ≤ n1 < . . . < nK ≤ N

K∏
k=1

1{rnk(−1)k > 0}+
K∏
k=1

1{rnk(−1)k < 0} = 0,

since the parities of a block index indicate the sign of the block. Therefore, we would

have the same parities for at least two consecutive block indices which yields the same

sign for these two consecutive entries and alternating signs would be impossible.

Thus, we only need to consider the indices in BK,B in the de�nition of the K-depth:

dK(r) =
1(
N
K

) ∑
1≤n1<...<nK≤N

(
K∏
k=1

1{rnk(−1)k > 0}+
K∏
k=1

1{rnk(−1)k < 0}

)

=
1(
N
K

) ∑
(n1,...,nK)>∈BK,B

(
K∏
k=1

1{rnk(−1)k > 0}+
K∏
k=1

1{rnk(−1)k < 0}

)

=
1(
N
K

) ∑
(n1,...,nK)>∈BK,B

1.

Further, we consider an arbitrary vector (i1, . . . , iK)> ∈ AK,B and corresponding

K-tuples (n1, . . . , nK)> ∈ BK,B which lead to residual vectors (rn1 , . . . , rnK )> that

belongs to the block vector (bi1 , . . . , biK )>. By elementary combinatorics, we have

∑
(n1,...,nK)>∈BK,B with

(rn1 ,...,rnK )> belonging to (bi1 ,...,biK )>

1 =
K∏
k=1

qik .

Then, we can split the elements in BK,B as follows:

dK(r) =
1(
N
K

) ∑
(n1,...,nK)>∈BK,B

1

=
1(
N
K

) ∑
(i1,...,iK)>∈AK,B

∑
(n1,...,nK)>∈BK,B with

(rn1 ,...,rnK )> belonging to (bi1 ,...,biK )>

1

=
1(
N
K

) ∑
(i1,...,iK)>∈AK,B

K∏
k=1

qik
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and the assertion follows. �

The algorithm based on Lemma 5.5 will be called naive block-algorithm in the fol-

lowing since it will be improved immensely, cf. Chapter 5.2. Before that, we discuss

the time complexity of it.

Computational complexity of the naive block-algorithm

For the analysis of the computational complexity of the naive block-algorithm, we

use the following lemma:

Lemma 5.7. Let r = (r1, . . . , rN)> ∈ RN be a residual vector with alternating signs,

i.e., ψ(rn) = −ψ(rn+1) for n = 1, . . . , N − 1. Then, for all K ≤ N

dK(r) =
1(
N
K

) ((b(N +K)/2c
K

)
+

(
d(N +K − 2)/2e

K

))
.

The proof of Lemma 5.7 is given in Leckey et al. (2020). The main idea for this

proof is to distinct the two cases whether the �rst entry of a K-tuple in AK,N is an

even or odd number. The number of K-tuples in AK,N with an odd �rst entry is(b(N+K)/2c
K

)
and the number of K-tuples with an even �rst entry is

(d(N+K−2)/2e
K

)
.

This lemma leads to the cardinality of the set AK,B from Lemma 5.5.

Corollary 5.8. For K ≥ 2

|AK,B| =
(
b(B +K)/2c

K

)
+

(
d(B +K − 2)/2e

K

)
.

Proof of Corollary 5.8: Let r be a residual vector of length B with alternating

signs, i.e., q1 = . . . = qB = 1. According to Lemma 5.5, we have for the K-depth(
B

K

)
dK(r) =

∑
(i1,...,iK)>∈AK,B

1 = |AK,B|

and according to Lemma 5.7, we have(
B

K

)
dK(r) =

(
b(B +K)/2c

K

)
+

(
d(B +K − 2)/2e

K

)
.

Since the left side of both equations are equal, this implies the assertion. Note that

the set AK,B does not depend on the particular residual vector and its length but

only on the block structure. �

If we assume that the block structure is already computed (this has always time

complexity Θ(N)), then the algorithm based on Lemma 5.5 has a computational
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complexity of Θ(BK) since, according to Corollary 5.8, we have to compute the

product of block lengths |AK,B| = Θ(BK) times. In the worst case, this is O(NK)

due to the fact that B ≤ N .

5.2 Exact computation of the K-depth in linear time based

on blocks

The representation of the K-depth in Lemma 5.5 can be used to construct an exact

algorithm in linear time. This can be realized by reorganizing the sums in a nested

structure. Then, we compute the inner sum and memorize the results in vectors of

cumulated sums. If we compute outer sums, we can use these memorized values to

avoid multiple computations of them.

For K = 3, this idea is very simple:

Example 5.9. Let r = (r1, . . . , rN)> be a realization of the residual vector with B

blocks and with blocks lengths q1, . . . , qB and K = 3. According to Lemma 5.5, the

3-depth can be represented by

(
N

3

)
d3(r) =

∑
(i1,i2,i3)>∈A3,B

qi1qi2qi3 =
B−2∑
i1=1

B−1∑
i2=i1+1
i2−i1 odd

B∑
i3=i2+1
i3−i2 odd

qi1qi2qi3 .

We exchange the sums by putting the sum with the index i2 into the front. Thus, the

other two sums only depend on i2:

B−2∑
i1=1

B−1∑
i2=i1+1
i2−i1 odd

B∑
i3=i2+1
i3−i2 odd

qi1qi2qi3 =
B−1∑
i2=2

qi2

 i2−1∑
i1=1

i2−i1 odd

qi1


 B∑

i3=i2+1
i3−i2 odd

qi3

 =
B−1∑
i2=2

qi2F(i2)G(i2)

with F(i2) :=

i2−1∑
i1=1

i2−i1 odd

qi1 and G(i2) :=
B∑

i3=i2+1
i3−i2 odd

qi3, i2 = 2, . . . , B − 1.

The values of (F(i2),G(i2))i2=2,...,B−1 can be computed with time complexity of Θ(B)

by a cumulative sum. Note that these values will be computed separately for the cases

i2 odd or even. This cumulative sum will be stored. Then computing the 3-depth by

d3(r) =
1(
N
3

) B−1∑
i2=2

qi2F(i2)G(i2)
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has time complexity Θ(B). Note that the computation of q1, . . . , qB has time com-

plexity Θ(N) and the total computation of the 3-depth is linear in N .

For K ≥ 4, we have to store nested cumulated sums. Before the general case will be

introduced, we will give another example for K = 4 for an easier understanding.

Example 5.10. Let r = (r1, . . . , rN)> be a realization of the residual vector with B

blocks and with blocks lengths q1, . . . , qB and K = 4. Then, according to Lemma 5.5,

we obtain

(
N

4

)
d4(r) =

B−3∑
i1=1

qi1

 B−2∑
i2=i1+1
i2−i1 odd

qi2

B−1∑
i3=i2+1
i3−i2 odd

qi3

B∑
i4=i3+1
i4−i3 odd

qi4


=

B−3∑
i1=1

qi1G3(i1), (64)

where G3(i1), i1 = 1, . . . , B − 3, is de�ned in three steps recursively:

G3(i1) =
B−2∑

i2=i1+1
i2−i1 odd

qi2G2(i2), i1 = 1, . . . , B − 3,

G2(i2) =
B−1∑

i3=i2+1
i3−i2 odd

qi3G1(i3), i2 = 2, . . . , B − 2,

G1(i3) =
B∑

i4=i3+1
i4−i3 odd

qi4 , i3 = 3, . . . , B − 1, .

In the �rst step, G1(i3), i3 = 3, . . . , B − 1 can be computed with time complexity

Θ(B) by a cumulated sum and stored. We can compute G2(i2), i2 = 2, . . . , B−2 with

linear time complexity in B as well by using the memorized values of G1(i3) from the

�rst step. Analogously, we can compute G3(i1), i1 = 1, . . . , B − 3 with a Θ(B) time

complexity. Finally, we also obtain a linear computation of the sum in Formula (64).

Note that (i1, i2, i3, i4) with parities (even, odd, even, odd) and (odd, even, odd, even)

have to be considered separately, see the explanations after Theorem 5.11 for more

details.

This procedure in Example 5.10 by factorizing qi1 can also be done for K = 3.

However, the procedure in Example 5.9 can appear to be more natural. Therefore,

we also wanted to introduce Example 5.9 done in another manner. The next theorem

summarizes the general procedure for all K.
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Theorem 5.11. Let r = (r1, . . . , rN)> be a realization of the residual vector with B

blocks and with blocks lengths q1, . . . , qB. Then

dK(r) =
1(
N
K

) B−K+1∑
i1=1

qi1GK−1(i1) with

G0 ≡ 1,Gj(iK−j) :=

B−j+1∑
iK−j+1=iK−j+1
iK−j+1−iK−j odd

qiK−j+1
Gj−1(iK−j+1), j = 1, . . . , K − 1.

Proof of Theorem 5.11: This theorem can be proven by a simple induction of the

following assertion for all given i1 = 1, . . . , B −K + 1:

GK−1(i1) =
∑

(i2,...,iK)>∈AK−1,B

i2>i1,i2−i1 odd

K∏
k=2

qik for all K ≥ 2. (65)

The base step for K = 2 follows by de�ning A1,B := {1, . . . , B}:

G1(i1) =
B∑

i2=i1+1
i2−i1 odd

qi2G0(i2) =
∑

i2∈A1,B

i2>i1,i2−i1 odd

qi2 .

We assume now that Formula (65) holds for a �xed K. Then, we have to prove this

formula for K + 1. By de�nition, we have:

GK(i1) =
B−K∑
i2=i1+1
i2−i1 odd

qi2GK−1(i2). (66)

Then, the induction step implies

GK−1(i2) =
∑

(i3,...,iK+1)>∈AK−1,B

i3>i2,i3−i2 odd

K+1∏
k=3

qik (67)

and by plugging Formula (67) into Formula (66), we obtain

GK(i1) =
B−K∑
i2=i1+1
i2−i1 odd

qi2

 ∑
(i3,...,iK+1)>∈AK−1,B

i3>i2,i3−i2 odd

K+1∏
k=3

qik

 =
∑

(i2,...,iK+1)>∈AK,B
i2>i1,i2−i1 odd

K+1∏
k=2

qik .

Using Formula (65), the main assertion of Theorem 5.11 follows as well. �
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We will discuss brie�y the implementation based on Theorem 5.11. First of all, we

split the main sum into the odd and even parts:

B−K+1∑
i1=1

qi1GK−1(i1) =
B−K+1∑
i1=1
i1 odd

qi1GK−1(i1) +
B−K+1∑
i1=2
i1 even

qi1GK−1(i1).

This separation is practicable since we have to consider the terms GK−1(i1) distinctly

for i1 odd or even. The values Gj(iK−j) for j = 1, . . . , K−1, iK−j ∈ {K−j, . . . , B−j}
can be memorized in two matrices based on these two cases for i1.

Moreover, we consider the two cases K + B even and odd. If K + B is even, we

compute the following two matrices:

Q1 =


G1(B) G1(B − 2) · · · G1(K)

G2(B − 1) G2(B − 3) · · · G2(K − 1)
...

...
. . .

...

GK−1(B −K + 2) GK−1(B −K) · · · GK−1(2)

 ∈ N(K−1)×(B−K2 +1),

Q2 =


G1(B − 1) G1(B − 3) · · · G1(K + 1)

G2(B − 2) G2(B − 4) · · · G2(K)
...

...
. . .

...

GK−1(B −K + 1) GK−1(B −K − 1) · · · GK−1(3)

 ∈ N(K−1)×(B−K2 ).

The �rst line from each matrix can be computed in linear time in B by a cumulative

sum. Each of the following lines has to be computed by the above one in order to

have linear time in B. If K + B is odd, we reduce computing the K-depth to the

above case by the following lemma (Leckey et al., 2020):

Lemma 5.12. Let K ≥ 3, B ≥ K and N ≥ B. We de�ne the function:

dK,N,B : (0, N)B → R, dK,N,B(q1, . . . , qB) =
1(
N
K

) ∑
(i1,...,iK)>∈AK,B

K∏
k=1

qik .

If K +B is odd, then

dK,N,B(q1, . . . , qB) = dK,N,B−1(q1 + qB, q2, . . . , qB−1). (68)

Note that dK,N,B has values in the B-dimensional cube (0, N)B although we will just

need it for (0, N)B ∩ NB in this chapter. However, Lemma 5.12 will be applied in

Chapter 5.4 with the B-dimensional cube as the domain of dK,N,B.
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Proof of Lemma 5.12: For this proof, all column vectors are written as row vectors.

For x ∈ R and w = (w1, . . . , wJ) ∈ RJ , we de�ne

(x,w) := (x,w1, . . . , wJ) and (w, x) := (w1, . . . , wJ , x).

First, we will prove for K +B odd and i ∈ {2, . . . , B − 1}K−1:

(a) (1, i) ∈ AK,B if and only if (i, B) ∈ AK,B,

(b) there is no vector j ∈ {2, . . . , B − 1}K−2 with (1, j, B) ∈ AK,B.

For (a) note that (1, i) ∈ AK,B requires i = (i1, . . . , iK−1) to start with an even

index i1. Now, we have to consider the two cases K odd, B even and K even, B

odd such that K + B is odd. For the case K odd and B even, the length K − 1 of

i is even. Therefore, the last index iK−1 of the vector has to be odd if i1 is even.

Since B is even, B and iK−1 alternate between even and odd. Hence (i, B) ∈ AK,B.
Similarly, (i, B) ∈ AK,B requires iK−1 to be odd and thus i1 has to be even. This

implies (1, i) ∈ AK,B. For the case K even and B odd, the length K − 1 of i is

odd. If i1 is even, then iK−1 has to be even as well. Since B is odd, B and iK−1

alternate between odd and even and thus (i, B) ∈ AK,B. The reversed implication

for (i, B) ∈ AK,B follows analogously.

For (b) assume for the sake of contradiction that (1, j, B) ∈ AK,B for a vector

j = (j1, . . . , jK−2) ∈ {2, . . . , B − 1}K−2. Since 1 is odd, j1 is always even. For K

odd and B even, the length K − 2 of j is odd. Thus, j1 and jK−2 have the same

parity and jK−2 must be even as well. However, B has to be odd in order to have

(1, j, B) ∈ AK,B, which leads to a contradiction to the assumption that B is even.

If K is even and B is odd, (1, j, B) ∈ AK,B implies that j1 is even and jK−2 is odd,

since K − 2 is even. This leads analogously to a contradiction since jK−2 and B are

both odd.

For the next part of the proof, we consider the following sets:

VK,B := {i ∈ {2, . . . , B − 1}K−1; (1, i) ∈ AK,B},

WK,B := AK,B ∩ {2, . . . , B − 1}K .

We split AK,B into three parts

(i) A(1)
K,B := {1} × VK,B,

(ii) A(2)
K,B := VK,B × {B},

(iii) A(3)
K,B :=WK,B.
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Vectors of the form (i1, . . . , iK) ∈ AK,B with i1 = 1 and iK = B are impossible

according to (b). Then (a) implies the following disjoint decomposition:

AK,B = A(1)
K,B ] A

(2)
K,B ] A

(3)
K,B.

Then

∑
(i1,...,iK)∈AK,B

K∏
k=1

qik = (q1 + qB)
∑

(i1,...,iK−1)∈VK,B

K−1∏
k=1

qik +
∑

(i1,...,iK)∈WK,B

K∏
k=1

qik .

Furthermore, note that

AK,B−1 = A(1)
K,B ] A

(3)
K,B.

In particular, if q̃1 = q1 + qB and q̃j = qj for j = 2, . . . , B − 1, then

∑
(i1,...,iK)∈AK,B−1

K∏
k=1

q̃ik = q̃1

∑
(i1,...,iK−1)∈VK,B

K−1∏
k=1

q̃ik +
∑

(i1,...,iK)∈WK,B

K∏
k=1

q̃ik .

Hence dK,N,B(q1, . . . , qB) = dK,N,B−1(q̃1, . . . , q̃B−1), which is the assertion. �

According to Lemma 5.12, we can merge the �rst and last block and consider the

block number B − 1 for the above algorithm if K + B is odd since K + B − 1 is

even then. Moreover, we should treat the special cases for K ≤ B + 1 separately.

For K < B, we can conclude that the sum is zero by Lemma 5.6, p. 79. For K = B,

we only have the compute the product:

dK(r) =
1(
N
K

) B∏
k=1

qk.

Note that in this case, the �rst matrix Q1 only contains one column and the second

matrix Q2 cannot be considered, because we would have zero columns. The case

K = B+ 1 can be reduced to the case K = B as well since K +B is always odd for

K = B + 1.

Although, we only have integers in the matrices Q1 and Q2, it is not recommendable

to implement this algorithm by �lling the matrix with variables declared as integers.

The computed numbers in the matrices will have large values which can cause an

over�ow for increasing N orK. E.g., the usual machine grid is [−231+1, 231−1]∩Z in

R, see the R-documentation of integer. Therefore, we implemented this algorithm

by �lling the matrix with variables declared as doubles. R provides values from
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about 2−1023 to 21023 and −21023 to −2−1023, see the R-documentation of double.

This accuracy of the �oating point arithmetic is su�cient for the most applications.

Nevertheless, note that for even larger N or K in big data situations, an in�nite

value can occur as an output. In this case, the algorithm could be extended with

some case distinction for large N and K where we would divide the block lengths

by 10−a for some a ∈ N in order to not obtain too high values. At the end, we would

multiply the result with a suitable compensation.

5.3 Runtime comparison between the algorithms from

Chapter 4 and Chapter 5.2

In this chapter, we compare the di�erent algorithms from Chapter 4 and 5.2 based

on their runtimes. Chapter 4.1 o�ers an approximate algorithm for the K-depth

with linear time complexity Θ(N) for all K. In Chapter 4.2, an exact computati-

on of the K-depth with linear time complexity in N is derived for K ∈ {3, 4, 5}.
In Chapter 5.2, we have found another linear and exact algorithm for all K. It is

interesting to conclude for which K which algorithm is more recommendable. The-

refore, we will analyze the runtimes by repeated computations. In contrast to the

algorithms from Chapter 4, the time complexity of the algorithm from Chapter 5.2

depends on the number of blocks. Due to this dependency, we will consider a worst

case scenario and an average case scenario for the algorithm from Chapter 5.2.

1. B = N describes the worst case for the block implementation. The

residual vector has then alternating signs. Situation with many blocks

occurs e.g. in the case of negative correlations.

2. B = N+1
2

describes the expected behavior under the true parameter as

an average case. In the runtimes studie, N will be even and
⌊
N+1

2

⌋
will be

considered therefore. We will consider residual vectors with the following

sign structure for the sake of simplicity:

r = (1, 1,−1,−1, 1, 1,−1,−1, . . .)>.

Note that the algorithm from Chapter 5.2 is faster the smaller B. The best case

scenario occurs when B < K since only the signs of the residual vector and its

block structure have to be computed then, since it is then clear that the K-depth is

zero according to Lemma 5.6. The expected number of blocks are computed in the

following lemma in order to explain the average case.
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Lemma 5.13. For a random vector R = (R1, . . . , RN)> of independent random

variables with P(Rn > 0) = pn and P(Rn < 0) = 1− pn

IE(B(R)) = 1 +
N∑
n=2

(pn(1− pn−1) + (1− pn)pn−1).

For the special case of P(Rn > 0) = 1
2

= P(Rn < 0)

IE(B(R)) =
N + 1

2
.

Proof of Lemma 5.13: By the law of total probability and the independence of

R1, . . . , RN , we obtain

P(ψ(Rn) 6= ψ(Rn−1))

= P(ψ(Rn) 6= ψ(Rn−1) | ψ(Rn) > 0, ψ(Rn−1) > 0) · P(ψ(Rn) > 0, ψ(Rn−1) > 0)

+P(ψ(Rn) 6= ψ(Rn−1) | ψ(Rn) > 0, ψ(Rn−1) < 0) · P(ψ(Rn) > 0, ψ(Rn−1) < 0)

+P(ψ(Rn) 6= ψ(Rn−1) | ψ(Rn) < 0, ψ(Rn−1) > 0) · P(ψ(Rn) < 0, ψ(Rn−1) > 0)

+P(ψ(Rn) 6= ψ(Rn−1) | ψ(Rn) < 0, ψ(Rn−1) < 0) · P(ψ(Rn) < 0, ψ(Rn−1) < 0)

= 0 + 1 · P(ψ(Rn) > 0, ψ(Rn−1) < 0) + 1 · P(ψ(Rn) < 0, ψ(Rn−1) > 0) + 0

= P(ψ(Rn) > 0, ψ(Rn−1) < 0) + P(ψ(Rn) < 0, ψ(Rn−1) > 0)

= pn(1− pn−1) + (1− pn)pn−1.

Then, the expected value of the number of blocks is

IE(B(R)) = IE

(
1 +

N∑
n=2

1{ψ(Rn) 6= ψ(Rn−1)}

)

= 1 +
N∑
n=2

P(ψ(Rn) 6= ψ(Rn−1)) = 1 +
N∑
n=2

(pn(1− pn−1) + (1− pn)pn−1).

If pn = 1
2
for all n = 1, . . . , N , then

IE(B(R)) = 1 +
N∑
n=2

(pn(1− pn−1) + (1− pn)pn−1) = 1 +
N − 1

2
=
N + 1

2

and the assertion follows. �

We want to underline the interpretation of the expected value. The summands in

Lemma 5.13 can be rewritten by pn(1− pn−1) + (1− pn)pn−1 = pn− 2pnpn−1 + pn−1.

Figure 16 illustrates the behavior of the block lengths by considering neighbored
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probabilities. The higher the distance between pn−1 and pn, the more probable a
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Figure 16: A visualization of the functional behavior of a summand of the expected
block length for two neighbored probabilities

sign change occurs and thus a new block.

The blue edges in Figure 16 correspond to situations with similar consecutive proba-

bilities and the red edges for alternating probabilities, i.e., probabilities with opposite

values. Thus, the number of expected blocks can be computed for positively or ne-

gatively correlated residuals under some assumptions on the dependency structure

of R in Lemma 5.13 (e.g., an autoregressive time series).

In Figure 17, the runtimes of the approximate algorithm from Chapter 4.1 and the

algorithm from Chapter 5.2 are compared. The algorithm from Chapter 5.2 is even

in the worst case situation (i.e., alternating signs) better than the algorithms in

Chapter 4.1. Since these are only the worst and average cases, we can conclude

that the block algorithm is clearly better. Moreover, the improvements between the

average and worst case are not high. The boxplots are omitted here compared to

Chapter 4.3 since the distinction between the lines is better visible without boxplots

in the �gure.

We further see that for increasing K, the computational costs do not increase that

much if the block implementation is used. Therefore, we compare the runtimes for

K ∈ {3, 5, 7} in Figure 18. This result leads to the conclusion that increasing K

does not have much in�uence on the runtime. Compared to the algorithms from

Chapter 4, this algorithm is clearly better from every perspective. Thus, the block
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Figure 17: The simulated runtimes of the approximate algorithm in Chapter 4.1 and
the exact algorithm in Chapter 5.2 for K ∈ {3, 4, 5, 6}

algorithm from Chapter 5.2 is recommended to use generally.

As an explanation for the better performance of the algorithm from Chapter 5.2, we

will subsequently analyze the number of arithmetic operations in each implementa-

tion. Recall that the formula from Lemma 4.1, p. 56, needs to compute the following

expression in advance:

SNn,α =
n∑
k=1

(
k

N

)α
ψ(rn) for n ∈ {1, . . . , N} and α ∈ {0, . . . , K − 2}. (69)

In the block algorithm, we compute Q1 and Q2 in advance. We consider the case

B = N here to compare the algorithm from Chapter 4.2 with the block algorithm

in the worst case. The additional power functions in Formula (69) increase the

computational costs compared to the algorithm from Chapter 5 where only the signs
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Figure 18: The simulated runtimes of the algorithm in Chapter 5.2 for K ∈ {3, 5, 7}

for the worst case and the average case

of the residuals are summed up. The number of arithmetic operations to compute

Sn,α for α ∈ {0, . . . , K−1} and for Q1,Q2 (with B = N) are for both approximately

N · (K − 1) iterations nevertheless.

Furthermore, the resulting value of the K-depth can be computed by

N

(
dK(r)− 1

2K−1

)
=− NK−1K(K − 1)

2〈N〉K

K−2∑
j=0

(
K − 2

j

) N∑
n=2

(
1

2
− n

N

)K−2−j

ψ(rn)SNn−1,j.

Approximately N · (K−1) additional iterations are needed to compute this term. In

contrast, the block algorithm only needs approximately N iterations by computing

dK(r) =
1(
N
K

) N−K+1∑
i1=1

qi1GK−1(i1)

from Theorem 5.11, p. 84. We can see that the preparation step only depends onK in

the block algorithm, i.e., the asymptotic algorithm has more arithmetic operations.

5.4 Further impact of the block implementation

The block algorithm does not only provide an e�cient computation of the K-depth

but also a better understanding of theoretical properties. According to Lemma 5.6,

p. 79, we obtain conditions on the block structures when the K-depth is zero. The-
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refore, the following simple heuristic seems to be plausible: The lower the number of

blocks is, the lower the value of the K-depth since a smaller number of alternating

signs occur. On the other hand, the more blocks exist, the more elements the set

AK,B has and we expect high values for the K-depth.

In Leckey et al. (2020), various properties of the K-depth are given in dependence of

the block structure. In this subsection, we will highlight one conjecture from this pa-

per that is based on the block representation, because it implies some con�rmations

of the maximality and minimality properties of the K-depth. This understanding

can have impact for further theoretical research, e.g., for consistency analysis of

statistical tests based on the K-depth.

Conjecture 5.14. Let K ≥ 3, B ≥ K and N ≥ B. We de�ne

dK,N,B : (0, N)B → R, dK,N,B(q1, . . . , qB) =
1(
N
K

) ∑
(i1,...,iK)>∈AK,B

K∏
k=1

qik and

LK,N,B = argmax

{
dK,N,B(q1, . . . , qB); (q1, . . . , qB)> ∈ (0, N)B;

B∑
b=1

qb = N

}
.

Then the following holds:

(a) If K +B is even then:

LK,N,B =

{(
N

B
, . . . ,

N

B

)>}
with dK,N,B

(
N

B
, . . . ,

N

B

)
=
〈B+K−2

2
〉K−1

BK−1

NK

〈N〉K
(70)

where 〈x〉k := x!
(x−k)!

for x, k ∈ N. If N
B
∈ N, then this is the maximal K-depth

for residuals of length N with B blocks.

(b) If K +B is odd then:

LK,N,B =

{(
βN

B − 1
,

N

B − 1
, . . . ,

N

B − 1
,
(1− β)N

B − 1

)>
; β ∈ (0, 1)

}
with

dK,N,B

(
βN

B − 1
,

N

B − 1
, . . . ,

N

B − 1
,
(1− β)N

B − 1

)
=
〈B+K−3

2
〉K−1

(B − 1)K−1

NK

〈N〉K
. (71)

If N
B−1
∈ N and βN

B−1
∈ N for β ∈ (0, 1), then this is the maximal K-depth for

residuals of length N with B blocks.

Conjecture 5.14 yields the block con�guration for maximal dK,N,B under �xed K,N

and B. The values of the function dK,N,B for its assumed maximal points in Formula

(70) and (71) can be derived by Corollary 5.8, p. 81, cf. Leckey et al. (2020). For
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some N and B, we cannot construct blocks q1, . . . , qB ∈ N such that we obtain the

maximum of dK,N,B. In these cases, the conjecture only delivers an upper bound. The

case K = 2 is excluded in this conjecture since the 2-depth is maximal if the sum

of the signs from the residuals is minimal (Leckey et al., 2020). This is the case if

the number of positive and negative signs are equal (or nearly equal for odd N).

The distinction between the cases K + B odd or even may be surprising, but it

gets intuitive if Lemma 5.12, p. 85 is recalled. Thus, maximizing under the situation

in (b), i.e. K + B is odd, can be translated to the situation (a) for K + B − 1.

Therefore, if Conjecture 5.14 (a) is correct, then Lemma 5.12 implies the statement

in Conjecture 5.14 (b) as well.

Finding a proof for this conjecture might be easy at �rst glance by a Lagrange

optimization approach. The members of our research group could so far prove that

the points in the set LK,N,B from the conjecture are critical points. For K ≤ 4, we

could also prove that the points in LK,N,B are the only critical points by solving the

resulting system of nonlinear equations from the Lagrange approach analytically.

However, we have not been successful to prove the uniqueness for K ≥ 5 yet.

The next lemma shows the monotony of the maximal values of dK,N,B in N .

Lemma 5.15. Let K ≥ 3. We de�ne the function

fK : N ∩ [K,∞)→ R, fK(B) :=


〈B+K−2

2
〉K−1

BK−1 for K +B even,
〈B+K−3

2
〉K−1

(B−1)K−1 for K +B odd.

Then fK is monotonously increasing.

Proof of Lemma 5.15: First, we consider the case K +B even and show that

fK(B) ≤ fK(B + 2).

This inequality is equivalent to

1

BK−1

K−2∏
i=0

(
B +K − 2− 2i

2

)
≤ 1

(B + 2)K−1

K−2∏
i=0

(
B +K − 2i

2

)
.

We can divide the inequality by
∏K−3

i=0

(
B+K−2−2i

2

)
and obtain:

B −K + 2

BK−1
≤ B +K

(B + 2)K−1
.
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After applying the logarithm, we obtain the following equivalent formula:

log(B +K) + (K − 1) log(B)− log(B −K + 2)− (K − 1) log(B + 2) ≥ 0. (72)

We prove this inequality by the following argumentation. Let

hK(B) := log(B +K) + (K − 1) log(B)− log(B −K + 2)− (K − 1) log(B + 2).

For K = B, K + B = 2K is still even. It is straight forward to obtain by using

elementary logarithm identities:

hK(K) = log

(
KK

(K + 2)K−1

)
.

For K ≥ 3, it holds KK

(K+2)K−1 > 1 and thus hK(K) > 0. Taking the derivative of hK
yields

h′K(B) =
1

B +K
+
K − 1

B
− 1

B −K + 2
− K − 1

B + 2

!
< 0.

It is straight forward to show that h′K(B)
!
< 0 for K ≥ 3 is equivalent to

2(K − 1)(−K2 + 2K)
!
< 0 (73)

by �nding the common denominator of all fractions. Formula (73) is correct for

K ≥ 3 since (K − 1) > 0 and (−K2 + 2K) < 0. By lim
B→∞

hK(B) = 0, hK(K) > 0

and hK(B) is monotonically decreasing for increasing B ≥ K, Formula (72) follows.

Furthermore, it is straight forward to check that

fK(B) = fK(B + 1) for K +B even.

This implies that fK is monotonously increasing in B for B ≥ K. �

Multiplying fK with N
〈N〉K

leads to the supposed maximal values of dK,N,B. Since

fK is increasing in B, the maximal values are increasing in B as well. Thus, the

K-depth is maximal under alternating signs for N + K even. For N + K odd, this

argumentation does not yield the conclusion of the maximality under alternating

signs since the upper bounds are not sharp. Due to Lemma 5.12, alternating signs

are not the only situation where the K-depth is maximal for N +K odd especially.

95



6 Tests based on the K-sign depth

In this chapter, two types of tests based on the K-depth will be introduced. We can

test the �t of a model parameter or the independence of residuals which is basically

testing one of the two conditions from Assumption 2.1. For the �rst test, we assume

that (A1) is correct and we test (A2) or vice versa for the second test. These two

types of tests are presented in Chapter 6.1.

In Chapter 6.2, we discuss how to compute the asymptotic quantiles for K ≥ 3.

For small sample sizes, we can consider the exact distribution of the K-depth and

compute its quantiles exactly. The exact distribution can be computed since the K-

depth is distribution free under the true parameter. For medium-sized sample sizes,

we can simulate the �nite sample quantiles by a large number of repeated evaluati-

ons of the K-depth. In Chapter 6.3, we study the type-I errors of tests based on the

asymptotic quantiles. The type-I errors are estimated in simulation studies by the

rate of rejections under residuals satisfying Assumption 2.1. In Chapter 6.4, we con-

sider testing the assumption (A2) under several polynomial models and compute the

power under several parameters by simulation studies. The hypotheses are referred

as point hypotheses since the null hypothesis only contains a single parameter:

H0 : θ = θ0, H1 : θ 6= θ0. (74)

This simulation study leads to conclusions how to choose the hyper-parameter K

for a given model class. Moreover, we will understand the behavior of the power

functions under several sign change structures for givenK. In Chapter 6.5, we extend

the class of tested hypotheses by set hypotheses :

H0 : θ ∈ Θ0, H1 : θ /∈ Θ0.

In contrast to Formula (74), the null hypothesis is not restricted to a single para-

meter. For this method, we will introduce an approach to test H0 by solving an

optimization problem with the highest K-depth under Θ0 as a test statistic.

In Chapter 6.6, we consider tests for stochastic independence or also known as tests

for randomness for residuals R1, . . . , RN with a particular order (e.g., the time):

H0 : R1, . . . , RN are independent, H1 : R1, . . . , RN are not independent.

Tests based on the K-depth and some modi�cations will be presented.
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6.1 Types of tests based on the K-sign depth

Let qKα,N be the α-quantile of the exact distribution of the K-depth and let qKα be

the asymptotic α-quantile. The K-depth is distribution free for all types of errors

satisfying Assumption 2.1. This implies that the �nite sample quantiles are available

for every sample size N and should be used for small N in particular. Two main

types of tests will be presented in this chapter. Recall that TK denotes the rescaled

K-depth given in Formula (6), p. 12.

6.1.1 Testing the �t of the model parameters

In the �rst case, we assume that the residuals satisfy (A1), i.e., the errors are inde-

pendent. Then, we can test the �t of a suggested parameter θ0 ∈ Θ.

Theorem 6.1. Let Y1, . . . , YN be random variables that can be described by the model

equation (1), p. 4, from Chapter 2.1:

Yn = g(Xn,θ
∗) + En for n = 1, . . . , N

with true parameter θ∗ ∈ Θ. Let E1, . . . , EN satisfy Assumption 2.1.

(a) Consider the point-hypotheses

H0 : θ = θ0, H1 : θ 6= θ0

for a given θ0 ∈ Θ. Then we obtain an α-level test for the following decision

rule based on the residual vector R(θ0) for θ0:

Reject H0 if TK(R(θ0)) < qKα,N .

(b) Consider the set-hypotheses

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1

such that Θ0]Θ1 = Θ (disjoint union). Then we obtain an α-level test for the

following decision rule based on the residual vector R(θ) for arbitrary θ ∈ Θ0:

Reject H0 if sup
θ∈Θ0

TK(R(θ)) < qKα,N .

If we exchange qKα,N by qKα , we have asymptotic α-level tests.
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Since the test statistic is discrete, we have to consider a strict inequality with the

α-quantile in the decision rule. Note that tests with an analogous structure based

on other depth functions have already been considered, e.g., for tests based on the

Likelihood depth in Müller (2005).

Proof of Theorem 6.1: (a) holds by de�nition of the quantile. For proving (b),

let θ∗ ∈ Θ0 be the true parameter. Then we have for the type-I-error:

P
(

sup
θ∈Θ0

TK(R(θ)) < qKα,N

)
≤ P

(
TK(R(θ∗)) < qKα,N

)
≤ α

since qKα,N is the �nite sample quantile. Exchanging qKα,N by qKα yields analogously:

P
(

sup
θ∈Θ0

TK(R(θ)) < qKα

)
≤ P

(
TK(R(θ∗)) < qKα

)
−−−→
N→∞

α

since qKα is the asymptotic quantile. �

Test (a) keeps the required type-I-error of α due to the �nite sample quantiles.

Since the statistic has a discrete distribution, the type-I-error is not exactly α. The

convergence of the type-I-errors to α for the asymptotic test can be from above and

below, see Chapter 6.3. For test (b), the behavior of the type-I-error does not only

depend on N and K, but rather on the model and Θ0. Moreover, the inequality

in the proof of Theorem 6.1 may be rough in general. More details concerning the

computation of the supremum can be found in Chapter 6.5.

6.1.2 Test for independence

The literature o�ers a large pool of tests for independence. One popular test for

independence is the Durbin-Watson test based on an estimation of the Bravais-

Pearson correlation coe�cient under normality (Verbeek, 2012, p. 102). The asym-

ptotic Ljung-Box test is based on estimated autocorrelations with a hyper-parameter

for the number of considered lags (Ljung and Box, 1978). The Wald-Wolfowitz runs-

test is based on dichotomous data. The signs of the residuals can also be interpreted

as dichotomous data and used for the runs-test. Runs of the same signs is an iden-

tical term for 'blocks' from Chapter 5. This test checks if the number of blocks

is too small or high. The critical values of this test are based on the conditional

distribution of the number of blocks given the number of positive or negative si-

gns which leads asymptotically to a normal distribution (Gibbons and Chakraborti,

2003, p. 78-85). Note that this is very close to the concept of the K-depth. The Von-

Neumann-Ratio-Rank test modi�es the Von-Neumann test statistic by ranks as a
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robusti�cation of the original test (Bartels, 1982). The distance correlation (Székely

et al., 2007) detects general classes of dependencies which are not only correlated.

A test procedure for independence can also be applied for the K-depth as the next

theorem presents.

Theorem 6.2. Let Z = (Z1, . . . , ZN)> be a random vector in R with

P(Zn > µ) = P(Zn < µ) =
1

2
for n = 1, . . . , N.

Consider the hypotheses

H0 : Z1, . . . , ZN are independent, H1 : Z1, . . . , ZN are not independent.

Then we obtain an α-level test for the following decision rule based on the residuals

R = (Z1 − µ, . . . , ZN − µ)>:

Reject H0 if TK(R) < qKα1,N
or TK(R) > qK1−α2,N

with α1, α2 ∈ [0, α] and α1 + α2 = α. If we exchange qKαi,N by qKαi for i = 1, 2, we

have an asymptotic α-level test.

The main idea of this test is that under H0, Assumption 2.1 is satis�ed. Positively

or negatively correlated residuals lead to a lower or higher number of sign changes,

respectively, with untypical values of the K-depth under H0. In practice, we have to

estimate µ, e.g., by the sample median, in order to apply the test in Theorem 6.2.

Note that other structures as trends or seasonal components from a time series

should be removed before using this test (Neusser, 2016, p. 332).

The test in Theorem 6.2 is two-sided in contrast to the test in Theorem 6.1. We

choose usually α1 = α2 = α
2
. A too small test statistic is an indication for positive

correlation since consecutive signs are more frequently the same and the number of

blocks smaller then. In contrast, too large values of the K-depth indicate negative

correlation since a suspiciously high number of sign changes occur then.

6.2 Quantiles and their computation

The asymptotic quantiles of the 2-depth can be derived easily since we can state its

asymptotic distribution explicitly. Theorem 3.29, p. 50, yields for a random vector

E = (E1, . . . , EN)> satisfying Assumption 2.1:

N

(
d2(E)− 1

2

)
=

1

2

(
1− (SN1 )2

) N2

〈N〉2
D−−−→

N→∞

1

2

(
1−X2

)
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with X ∼ N (0, 1) due to the Central Limit Theorem and N2

〈N〉2 −−−→N→∞
1. We obtain

the asymptotic quantiles of the 2-depth from this transformed χ2
1-distribution direct-

ly. For K ≥ 3, the asymptotic distribution does not have an easy closed form, as in

Theorem 3.29, p. 50, already mentioned. The algorithms in Chapter 4 and 5 do not

provide formulas that lead to a direct computation of realizations of the asymptotic

distribution either.

The quantiles of the K-depth can be simulated by computing the multiple integrals

of simulated paths of Brownian motions by Riemann approximations. Computing

a J-dimensional integral by the Riemann sums with N steps has usually a time

complexity of Θ(NJ). If a path of the Brownian motion is divided into N parts

in the Riemann approximation, then computing a realization of the asymptotic

representation of the K-depth has a time complexity of Θ(NK−2) based on naive

Riemann sums (cf. the (K−2)-dimensional integral in Theorem 3.29). We will show

that the integrals from the asymptotic representation can be computed in linear

time Θ(N) by combinatorial arguments to sum up the Riemann sums e�ciently.

In practice, it is often more handy to simulate a high number of realizations of the

K-depth from large residual vectors satisfying Assumption 2.1 since the K-depth

can be computed e�ciently with the algorithms from Chapter 4 and 5. Then the

empirical quantiles can be computed and approximate the asymptotic quantiles.

However, the following results may be useful for some generalized versions of the

K-depth, cf. Chapter 7.1.

Computation of the integral terms based on combinatorics

In the following, we will write t = (t1, . . . , tJ) for the integration variable and

WJ(t) := (t1 ∧ . . . ∧ tJ) +
1

2
,

VJ(t) := (t1 ∨ . . . ∨ tJ)− 1

2
.

Further, we want to consider projections of WJ and VJ such that

W i
j (t) := (ti ∧ . . . ∧ tj) +

1

2
,

V i
j (t) := (ti ∨ . . . ∨ tj)−

1

2
,

for 1 ≤ i < j ≤ J . If i = 1, we will omit notating this index, i.e.,

Wj(t) := W 1
j (t) and Vj(t) := V 1

j (t).
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The following calculation will be done for paths from a càdlàg-process (SNt )t∈[0,1]

with a �nite number of equidistant jumps at t = 1
N
, . . . , N−1

N
, 1. Without loss of

generality, the following calculation can be done for paths from a Brownian motion

(Bt)t∈[0,1] since we can consider the Brownian motion on N �xed time points and

approximate it by a step function as follows:

B n
N

= SNn
N
for n ∈ {0, 1, . . . , N}.

By increasing N , the continuous paths of the Brownian motion can be approximated

arbitrarily precisely by step functions. Further, recall the de�nition of the sets CJ,N
and CJ , see Lemma 3.27, p. 47, and that the asymptotic integral representation of

the K-depth from Theorem 3.22, p. 39, contains terms of the form:∫
(− 1

2
, 3
2)
J
1CJ (t)

(
SNWJ (t)∧1 − SNVJ (t)∨0

)2
dt for J = 1, . . . , K − 2.

Note that for �nite N , we actually have to consider 1CJ,N instead of 1CJ . Since 1CJ,N
is more complicated to deal with and we want to consider the asymptotic integrals,

we simplify 1CJ,N ≈ 1CJ . In the next step, we split this J-dimensional integral into

three parts by splitting the domain
(
−1

2
, 3

2

)J up such that:∫
(− 1

2
, 3
2)
J
1CJ (t)

(
SNWJ (t)∧1 − SNVJ (t)∨0

)2
dt

=

∫
(− 1

2
, 1
2)
J

(
SNWJ (t)

)2
dt +

∫
[ 12 ,

3
2)
J

(
SN1 − SNVJ (t)

)2
dt

+
J−1∑
L=1

(
J

L

)∫
(− 1

2
, 1
2)
J−L
×[ 12 ,

3
2)
L

∏
i=1,...,J−L

j=J−L+1,...,J

1{|tj − ti| < 1}
(
SNWJ (t)∧1 − SNVJ (t)∨0

)2
dt.

Without loss of generality, the indices i = 1, . . . , J − L and j = J − L + 1, . . . , J

should correspond to ti ∈
(
−1

2
, 1

2

)
or tj ∈

[
1
2
, 3

2

)
, respectively. Therefore, we can

simplify for any L = 1, . . . , J − 1:∫
(− 1

2
, 1
2)
J−L
×[ 12 ,

3
2)
L

∏
i=1,...,J−L

j=J−L+1,...,J

1{|tj − ti| < 1}
(
SNWJ (t)∧1 − SNVJ (t)∨0

)2
dt

=

∫
(− 1

2
, 1
2)
J−L
×[ 12 ,

3
2)
L

∏
i=1,...,J−L

j=J−L+1,...,J

1{tj − ti < 1}
(
SNWJ−L(t) − SNV J−L+1

J (t)

)2

dt.
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Then, each integral can be rewritten by∫
(− 1

2
, 1
2)
J

(
SNWJ (t)

)2
dt +

∫
[ 12 ,

3
2)
J

(
SN1 − SNVJ (t)

)2
dt

+
J−1∑
L=1

(
J

L

)∫
(− 1

2
, 1
2)
J−L
×[ 12 ,

3
2)
L

∏
i=1,...,J−L

j=J−L+1,...,J

1{|tj − ti| < 1}
(
SNWJ (t)∧1 − SNVJ (t)∨0

)2
dt

=

∫
(0,1)J

(
SN
WJ (t)− 1

2

)2

dt +

∫
(0,1)J

(
SN1 − SNVJ (t)+ 1

2

)2

dt

+
J−1∑
L=1

(
J

L

)∫
(0,1)J

∏
i=1,...,J−L

j=J−L+1,...,J

1{tj < ti}
(
SN
WJ−L(t)− 1

2
− SN

V J−L+1
J (t)+ 1

2

)2

dt

The next lemma shows that each part can be computed in linear time.

Lemma 6.3. Let (SNt )t∈[0,1] be a càdlàg-process with deterministic jump points in

t = 1
N
, . . . , N−1

N
, 1. Let J ∈ N and L ∈ {1, . . . , J − 1}. Then

(a)

∫
(0,1)J

(
SN
WJ (t)− 1

2

)2

dt =
1

NJ

N∑
m=1

(
(N −m+ 1)J − (N −m)J

) (
SNm/N

)2
,

(b)

∫
(0,1)J

(
SN1 − SNVJ (t)+ 1

2

)2

dt =
1

NJ

N∑
m=1

(mJ − (m− 1)J)
(
SN1 − SNm/N

)2

(c)

∫
(0,1)J

∏
i=1,...,J−L

j=J−L+1,...,J

1{tj < ti}
(
SN
WJ−L(t)− 1

2
− SN

V J−L+1
J (t)+ 1

2

)2

dt

=
1

NJ

(
N∑

m2=1

mL
2

(
(N −m2 + 1)J−L − (N −m2)J−L

) (
Sm2/N

)2

+
N∑

m1=1

(N −m1 + 1)J−L(mL
1 − (m1 − 1)L)

(
SNm1/N

)2

− 2
N∑

m2=1

(
(N −m2 + 1)J−L − (N −m2)J−L

)
SNm2/N

S̃L(m2)

)
(75)

where we de�ne S̃L(m) :=
∑m

`=1(mL − (m− 1)L)SNm/N for m = 1, . . . , N .

This lemma shows that all integrals can be computed in linear time in N . The vector(
S̃L(1), . . . , S̃L(N)

)>
can be computed in advance in linear time and stored. Such

as in the algorithms in Lemma 4.1, p. 56, and Theorem 5.11, p. 84, we use the

memorized vector so that we can compute the sum in Formula (75) with linear time

complexity in N as well. The equations are also correct if we have Brownian motions

as integrands on the left side and the limit for N →∞ on the right side.
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Proof of Lemma 6.3: First, we can rewrite all integrals by sums over J indices:

(a)

∫
(0,1)J

(
SN
WJ (t)− 1

2

)2

dt =
1

NJ

N∑
n1,...,nJ=1

(
SNmin{n1,...,nJ}/N

)2

(b)

∫
(0,1)J

(
SN1 − SNVJ (t)+ 1

2

)2

dt =
1

NJ

N∑
n1,...,nJ=1

(
SN1 − SNmax{n1,...,nJ}/N

)2

(c)

∫
(0,1)J

∏
i=1,...,J−L

j=J−L+1,...,J

1{tj < ti}
(
SN
WJ−L(t)− 1

2
− SN

V J−L+1
J (t)+ 1

2

)2

dt

=
1

NJ

N∑
n1,...,nJ=1

n1,...,nJ−L≥nJ−L+1,...,nJ

(
SNmin{n1,...,nJ−L}/N − S

N
max{nJ−L+1,...,nJ}/N

)2

We will consider (a) - (c) separately. In the following, L will denote the number of

ti in the vector t so that ti ∈
[

1
2
, 3

2

)
. Then, the three cases are L = 0, L = J and

L ∈ {1, . . . , J − 1} are of interest for the assertions (a) - (c), respectively.

(a) Case L = 0:

We consider the �rst part:

∫
(− 1

2
, 1
2)
J

(
SNWJ (t)

)2
dt =

1

NJ

N∑
n1,...,nJ=1

(
SNmin{n1,...,nJ}/N

)2
.

In order to simplify this sum, we consider the set VJ(m) for m ∈ {1, . . . , N}:

VJ(m) :=
{

(n1, . . . , nJ) ∈ {1, . . . , N}J ; min{n1, . . . , nJ} = m
}
.

The cardinality of VJ(m) can be obtained by counting all J-tuples where exactly j

entries are equal to m and the other J − j entries are greater than m:

|VJ(m)| =
J∑
j=1

(
J

j

)
(N −m)J−j = (N −m+ 1)J − (N −m)J .

In the last equation, the binomial theorem is applied. Then, we obtain

1

NJ

N∑
n1,...,nJ=1

(
SNmin{n1,...,nJ}/N

)2
=

1

NJ

N∑
m=1

|VJ(m)|
(
SNm/N

)2

=
1

NJ

N∑
m=1

(
(N −m+ 1)J − (N −m)J

) (
SNm/N

)2
.
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(b) Case L = J:

We consider the second part:

∫
[ 12 ,

3
2)
J

(
SN1 − SNVJ (t)

)2
dt =

1

NJ

N∑
n1,...,nJ=1

(
SN1 − SNmax{n1,...,nJ}/N

)2
.

Analogously, we simplify the sum by considering the cardinality of the set WJ(m)

for m ∈ {1, . . . , N}:

WJ(m) :=
{

(n1, . . . , nJ) ∈ {1, . . . , N}J ; max{n1, . . . , nJ} = m
}
.

The number of elements inWJ(m) can be counted by considering all J-tuples where

exactly j entries are equal to m and the other J − j entries are smaller than m:

|WJ(m)| =
J∑
j=1

(
J

j

)
(m− 1)J−j = mJ − (m− 1)J .

We obtain the result:

1

NJ

N∑
n1,...,nJ=1

(
SN1 − SNmax{n1,...,nJ}/N

)2
=

1

NJ

N∑
m=1

|WJ(m)|
(
SN1 − SNm/N

)2

=
1

NJ

N∑
m=1

(mJ − (m− 1)J)
(
SN1 − SNm/N

)2
.

(c) Case L ∈ {1, . . . , J − 1}:
We consider the last and more complicated part:∫

(− 1
2
, 1
2)
J−L
×[ 12 ,

3
2)
L

∏
i=1,...,J−L

j=J−L+1,...,J

1{|tj − ti| < 1}
(
SNWJ (t)∧1 − SNVJ (t)∨0

)2
dt

=
1

NJ

N∑
n1,...,nJ=1

n1,...,nJ−L≥nJ−L+1,...,nJ

(
SNmin{n1,...,nJ−L}/N − S

N
max{nJ−L+1,...,nJ}/N

)2

. (76)

Now, we �x pairs (m1,m2) with 1 ≤ m1 ≤ m2 ≤ N such that

min {n1, . . . , nJ−L} = m2 and max {nJ−L+1, . . . , nJ} = m1.

In order to count all of possible J-tuples with these values for �xed (m1,m2), we
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can consider the cartesian product of the sets

VJ−L(m2) :=
{

(n1, . . . , nJ−L) ∈ {1, . . . , N}J−L; min{n1, . . . , nJ−L} = m2

}
WJ−L+1

J (m1) :=
{

(nJ−L+1, . . . , nJ) ∈ {1, . . . , N}L; max{n1, . . . , nJ} = m1

}
which are projections of VJ(m2) and WJ(m1) from the previous cases in L = 0 and

L = J to the �rst J −L or last L coordinates, respectively. In particular, VJ−L(m2)

contains (J−L)-tuples andWJ−L+1
J (m1) contains L-tuples such that their cartesian

product contains J-tuples. For the cardinality of the cartesian product:

|VJ−L(m2)×WJ−L+1
J (m1)| = |VJ−L(m2)| · |WJ−L+1

J (m1)|

=((N −m2 + 1)J − (N −m2)J)(mL
1 − (m1 − 1)L).

Then, we can simplify the sum in Formula (76) by:

1

NJ

N∑
n1,...,nJ=1

n1,...,nJ−L≥nJ−L+1,...,nJ

(
SNmin{n1,...,nJ−L}/N − S

N
max{nJ−L+1,...,nJ}/N

)2

=
1

NJ

N∑
m2=1

m2∑
m1=1

|VJ−L(m2)| · |WJ−L+1
J (m1)| ·

(
SNm2/N

− SNm1/N

)2
.

We split
(
SNm2

N

− SNm1
N

)2

into the three parts

(
SNm2/N

− SNm1/N

)2
=
(
SNm2/N

)2
+
(
SNm1/N

)2 − 2SNm2/N
SNm1/N

(77)

and consider these parts separately:(
SNm2/N

)2

:

N∑
m2=1

m2∑
m1=1

|VJ−L(m2)| · |WJ−L+1
J (m1)| ·

(
SNm2/N

)2

=
N∑

m2=1

m2∑
m1=1

(
(N −m2 + 1)J−L − (N −m2)J−L

) (
mL

1 − (m1 − 1)L
) (
Sm2/N

)2

=
N∑

m2=1

mL
2

(
(N −m2 + 1)J−L − (N −m2)J−L

) (
Sm2/N

)2
.
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(
SNm1/N

)2

:

N∑
m2=1

m2∑
m1=1

|VJ−L(m2)| · |WJ−L+1
J (m1)| ·

(
SNm1/N

)2

=
N∑

m1=1

N∑
m2=m1

(
(N −m2 + 1)J−L − (N −m2)J−L

) (
mL

1 − (m1 − 1)L
) (
SNm1/N

)2

=
N∑

m1=1

(N −m1 + 1)J−L(mL
1 − (m1 − 1)L)

(
SNm1/N

)2
.

−2SNm2/N
SNm1/N

:

− 2
N∑

m2=1

m2∑
m1=1

(
(N −m2 + 1)J−L − (N −m2)J−L

) (
mL

1 − (m1 − 1)L
)
SNm2/N

SNm1/N

=− 2
N∑

m2=1

(
(N −m2 + 1)J−L − (N −m2)J−L

)
SNm2/N

S̃L(m2).

Inserting all three parts into Formula (77) yields (c). �

For the 4-depth, this representation can be further simpli�ed such that this storage

method is not necessary (Malcherczyk, 2018a, p. 65-71). In particular, we consider

the third part of Formula (77) from the previous proof for K = 4, J = 2 and L = 1:

N∑
m2=1

m2∑
m1=1

((N −m2 + 1)− (N −m2)) (m1 − (m1 − 1))SNm2/N
SNm1/N

=
N∑

m2=1

m2∑
m1=1

SNm2/N
SNm1/N

=
1

2

N∑
m2=1

N∑
m1=1

SNm2/N
SNm1/N

+
1

2

N∑
m=1

(
SNm/N

)2

=
1

2

(
N∑
m=1

SNm/N

)2

+
1

2

N∑
m=1

(
SNm/N

)2

which can also be computed in linear time in N and only requires storing SNm/N for

m ∈ {1, . . . , N}.

Computation of the �nite sample quantiles

The �nite sample quantiles qKα,N can be computed by observing all 2N combinations

for residuals with elements in {1,−1} since the signs are only relevant for the re-

sulting value of the K-depth. However, this method is not recommended for large
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sample sizes, since the number of possible elements 2N increases exponentially. In

the package GSignTest Horn (2021a), the �nite sample quantiles qKα,N are computed

for N ∈ {K, . . . , 25} and K ∈ {3, 4, 5}. For larger N , the �nite sample quantiles are

approximated by 1,000,000 of repeatedly computed realizations of the rescaled K-

depth TK under the Assumption 2.1. For this thesis, the �nite sample are computed

by 100,000 repetitions of the K-depth under Assumption 2.1. We always use �nite

sample quantiles if not mentioned otherwise.

The �nite sample quantiles have the drawback that they can only be computed ex-

actly for small sample sizes and that we have to compute them for each N compared

to the asymptotic quantiles. On the other hand, the �nite sample quantiles always

provides the α-level while the asymptotic quantiles only approximately provide this

property (see also the proof of Theorem 6.1).

6.3 Type-I-error and required sample sizes

If we apply the K-depth test with asymptotic quantiles, we should check how large

the sample size N has to be for a particularly given type-I-error. The type-I-error

is the probability that we reject the null hypothesis H0 although it is actually true.

In Chapter 6.3.1, the type-I-errors will be computed by simulations for various K.

We consider the asymptotic point-hypotheses test in Theorem 6.1 (a), p. 97, for

commonly used levels α ∈ {0.1, 0.05, 0.01}. In Chapter 6.3.2, we will also discuss the

problem that the null hypothesis cannot be rejected for any residuals if the sample

size N is too small due to the discrete distribution of the K-depth.

6.3.1 Type-I-error simulations

At �rst, we give an overview of the following simulation study for computing the

type-I-errors. ForN ∈ {10, 15, . . . , 200},K ∈ {3, 4, . . . , 11} and α ∈ {0.1, 0.05, 0.01},
we check 1,000,000 times if H0 is rejected under errors E1, . . . , EN satisfying Ass-

umption 2.1 applying the test in Theorem 6.1 with the asymptotic quantiles. The

case K = 2 is not considered here since the 2-depth is equivalent to counting the

number of positive signs (Leckey et al., 2020). Due to the law of large numbers,

the relative number of rejections approximates the type-I-error. These type-I-errors

are presented in Figure 19, 20 and 21 for respective α ∈ {0.1, 0.05, 0.01}. The red
dashed line represents the benchmark of the di�erent levels α ∈ {0.1, 0.05, 0.01}.
In Figure 19, the case α = 0.1 is considered. The type-I-errors converge from above

to the desired level so that the tests are liberal for too small N . Note also that for too

small N , H0 can never be rejected. Therefore, the curves for K ≥ 7 start at zero and
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Figure 19: Simulated type-I-errors of the asymptotic K-depth test for α = 0.1

jump to a value over the dashed line. It is noticeable that for K ∈ {6, 8}, the type-I-
errors are very high for small sample sizes compared to the other K. For K ∈ {5, 7},
we can also recognize higher results but not that extreme. For increasing K, the

type-I-errors are not that high for small N , but rejections are only for higher N

possible. For approximately N ≥ 100, we have acceptable type-I-errors for general

K. For K ∈ {3, 4}, we could have also for smaller N , e.g., N ≥ 50, acceptable

type-I-errors. Otherwise, the �nite sample quantiles should be used instead.

The case α = 0.05 is presented in Figure 20. This case yields similar results to

α = 0.1, but the type-I-errors are relatively smaller compared to the other case. We
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α = 0.05:
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Figure 20: Simulated type-I-errors of the asymptotic K-depth test for α = 0.05

can further notice that the necessary sample size N for possible rejections of H0

increases for decreasing α.

The situation for α = 0.01 in Figure 21 shows convergence from below for K ≥ 4, in

contrast to the previous scenarios. Especially, the tests are conservative. We suggest

N ≥ 100 for higher K and also N ≥ 50 for smaller K as a proper choice. However,

a clear choice of N for all K is not possible and has to be concluded in advance.

The changing behavior of the convergence from above and below of the type-I-

errors can be explained by a comparison of the exact and asymptotic α-quantiles for

several α, e.g., by comparing the distribution functions. If a �nite sample quantile
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α = 0.01:
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Figure 21: Simulated type-I-errors of the asymptotic K-depth test for α = 0.01

converges from below to the asymptotic quantile, then the type-I-errors will converge

from above so that the test will be liberal for small N and vice versa.

If the type-I-errors are too high, we should consider �nite sample quantiles which

will lead to tests with type-I-errors equal or less than a given α-level. However,

testing with the �nite sample quantiles can also fail if the sample sizes are too small

since H0 can never be rejected then. This problem will be discussed in the next

subsection.
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6.3.2 Required sample sizes

We will now focus on the problem that for too small sample sizes, the K-depth test

never rejects H0. The next lemma gives a condition when the K-depth test is able

to reject the null hypotheses for given α-level and K for the test in Theorem 6.1 (a).

Lemma 6.4. Let α ∈ (0, 1) and K ∈ N \ {1} and N ∈ N. Only if the condition

− N

2K−1
< qKα,N , (78)

is satis�ed, the K-depth test in Theorem 6.1 (a), p. 97, can reject the null hypothesis

under some residuals. Formula (78) is satis�ed if

pNK ≤ α for pNK = P(XN ≤ K − 2) with XN ∼ Bin(N − 1, 1
2
).

Proof of Lemma 6.4: The left side of Formula (78) is the minimum of the rescaled

K-depth TK for sample size N . If the α-quantile coincides with its minimum, the

condition for rejecting the null hypothesis can never be ful�lled.

According to Lemma 5.6, p. 79, the K-depth is minimal for residuals with K − 1

or less blocks. Therefore, the probability that the K-depth is minimal for residuals

under Assumption 2.1 is given by

pNK = P(XN ≤ K − 2) with XN ∼ Bin(N − 1, 1
2
)

since XN + 1 describes the number of blocks and pNK = P(XN + 1 ≤ K − 1) is the

probability that K − 1 or less blocks occur. For given K and α, the smallest sample

size N which satis�es Formula (78) can be obtained by computing the smallest N

such that pNK ≤ α. �

The problem that an α-quantile coincides with the minimum of the distribution

occurs for most tests based on discrete statistics, because the statistics have only a

few number of possible values. E.g., the Wilcoxon rank-sum test cannot reject the

null hypothesis for too small sample sizes either (Corder and Foreman, 2009, p. 228).

When N increases and α is not too small, there will be more possible values for the

statistics such that the α-quantiles starts to di�er from the minimal value.

Table 4 shows the results of the required sample sizes for α ∈ {0.1, 0.05, 0.01}. E.g.
for K = 7 and α = 0.05, a sample size of N ≥ 19 satis�es the necessary condition.

Note that the cut o� points in Table 4 do not coincide exactly with cut o� points

in Figure 19, 20 and 21, because the exact distribution is considered here instead of

the asymptotic distribution. If we want to apply the K-depth for large K, we have
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α
K

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.1 8 10 13 15 18 20 22 25 27 29 31 34 36 38 40

0.05 9 12 14 17 19 22 24 27 29 32 34 36 39 41 43

0.01 12 15 18 20 23 26 28 31 34 36 39 41 44 46 48

Table 4: Required sample sizes for given K and α

to consider the needed sample size in the planning of an experiment in best case.

According to Figure 22, we conclude that the necessary sample sizes can be linearly
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Figure 22: Required sample sizes for several α and K

extrapolated for higher K by the following equations obtained by regression lines:

for α = 0.01 :N0.01(K) = 4.8 + 2.6 ·K,

for α = 0.05 :N0.05(K) = 2.1 + 2.4 ·K,

for α = 0.1 :N0.1(K) = 1.3 + 2.3 ·K.

Nevertheless, these regression lines are only approximate rules and should always be

con�rmed by the procedure in Lemma 6.4.

Required sample sizes for the two-sided test

The previous procedure only considers the one-sided test from Theorem 6.1, but

we also want to consider the two-sided test in Theorem 6.2. For α ∈ (0, 1), we

usually have the quantiles qKα
2
,N and qK1−α

2
,N as the lower and upper critical value.

The same procedure as before can be done for �nding the required sample sizes

that exceeding is possible. However, the required sample size for deceeding the lower

value or exceeding the upper value can be di�erent. Therefore, we will analyze both

situations. For �nding the necessary sample size to exceed the upper critical value,

we have to check if the upper critical value is equal to the maximal K-depth. We
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suppose that the K-depth is maximal under alternating signs, but note that we have

not already proven this assertion, cf. Conjecture 5.14 and Lemma 5.15. Therefore,

we only provide the following conjecture for �nding the required sample sizes.

Conjecture 6.5. Let α ∈ (0, 1) and K ∈ N \ {1} and N ∈ N. Let r ∈ RN be a

residual vector with alternating signs. Only if the condition

qK1−α
2
,N < TK(r)

is satis�ed, the test statistic from the K-depth test in Theorem 6.2 can exceed the

upper critical value.

In Table 5, the required sample sizes from the procedure in Lemma 6.4 are lis-

ted such that deceeding the lower critical value can be possible. Table 6 and 7

present the required sample sizes for the possibility to exceed the upper critical

value. The simulations show here that a distinction between even and odd N is

necessary. Therefore, the �rst even sample sizes for the possibility to exceed the

upper critical value are given in Table 6 and the �rst odd sample sizes are given

in Table 7. According to Conjecture 5.14, this distinction may not be surprising

since the solution sets for the maximal K-depth are also di�erent for even or odd

number of blocks. It is noticeable that the required sample sizes in Table 6 and

α
2

K
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.05 9 12 14 17 19 22 24 27 29 32 34 36 39 41 43

0.025 10 13 16 18 21 23 26 29 31 33 36 38 41 43 45

0.005 13 16 19 22 25 27 30 33 35 38 40 43 45 48 50

Table 5: Required sample sizes for the two-sided K-depth test (possibility to deceed
the lower critical value qKα

2
,N) for given K and α

2

1− α
2

K
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.95 12 6 10 6 10 8 10 10 12 12 14 14 16 16 18

0.975 14 8 10 8 10 8 10 10 12 12 14 14 16 16 18

0.995 18 10 14 10 14 10 14 10 14 12 14 14 16 16 18

Table 6: Required sample sizes (even N) for the two-sided K-depth test (possibility
to exceed the upper critical value qK1−α

2
,N) for given K and 1− α

2

7 are smaller than in Table 5. For K + N even, we can conclude the rule that

the upper critical value qK1−α
2
can be exceeded if the condition 1

2N−1 < α
2
holds.

Note that P((X1, . . . , XN) has alternating signs) = 1
2N−1 for i.i.d. random variables
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1− α
2

K
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.95 7 9 7 9 7 9 9 11 11 13 13 15 15 17 17

0.975 7 11 7 11 7 11 9 11 11 13 13 15 15 17 17

0.995 9 13 9 13 9 13 9 13 11 13 13 15 15 17 17

Table 7: Required sample sizes (odd N) for the two-sided K-depth test (possibility
to exceed the upper critical value qK1−α

2
,N) for given K and 1− α

2

X1, . . . , XN ∼ Bin(1, 1
2
) which is the supposed probability to have maximalK-depth

under H0 according to Conjecture 5.14 (a) and Lemma 5.15. Thus, ful�lling this con-

dition leads to upper (1− α
2
)-quantiles which are smaller than the maximal K-depth.

For K + N odd, similar explanations may be concluded based on Conjecture 5.14

(b). Since this case is more complicated, we leave out a detailed explanation. The

regressions lines for the required sample sizes in Table 5 are given by:

for
α

2
= 0.005 :N0.005(K) = 6 + 2.6 ·K,

for
α

2
= 0.025 :N0.025(K) = 3.2 + 2.5 ·K.

In Figure 23, the corresponding required sample sizes for exceeding the upper critical

value are given. The distinction between the even and odd sample sizes is visualized
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Figure 23: Required sample sizes for several α and K

by plotting squares and triangles. The plot shows the required sample sizes for

K ≤ 27. For smaller K, the required sample sizes are alternating between the even

and odd case. Up to K ≥ 12, the required samples are well located on the lines

N(K) = K (lower line) or N(K) = 1 +K (upper line).
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6.4 Choice of the hyper-parameter K

In this chapter, we will test the �t of parameters in several polynomial models and

compute the type-II-errors by simulations. The general model equation is

Yn = g(Xn,θ
∗) + En, n = 1, . . . N

with the true parameter θ∗, cf. Chapter 2.1. Point-hypotheses of the form:

H0 : θ ∈ Θ0 = {θ0}, H1 : θ ∈ Θ1

will be tested in this chapter. One central aim is to answer these questions:

- How should we choose the hyper-parameter K for a particular model class?

- Can we conclude rules for the power functions in dependence of K?

- Are there mathematical explanations for the answers of these questions?

The answers of the �rst two questions will depend on the sign structure of the

di�erence function between the correct model and a suggested model denoted by θ:

D(x,θ∗,θ) = g(x,θ∗)− g(x,θ) for arbitrary explanatory variables x ∈ R.

The sign structure of the residuals under alternatives depends strongly on the func-

tion D since it contains information about areas of the true model that cannot be

explained by the alternative parameter. In other words, the function D corresponds

to the residuals omitting the errors. Thus, if D has a high number of sign changes,

then the residual vector will also have a great chance for a high number of sign

changes. In this case, the alternative under the parameter θ will be harder to reject

since the K-depth will be higher according to the heuristics from Conjecture 5.14,

p. 93. Furthermore, Lemma 5.6, p. 79, leads to the idea that the K-depth is small if

we expect K − 2 or less sign changes in D. To summarize these ideas, we conclude:

The K-depth test may have a high power for an alternative indicated by θ if

the di�erence function D(• ,θ∗,θ) has K − 2 or less sign changes.

The simulation study in Chapter 6.4.1 will consider models with alternatives that

have a �xed number of sign changes denoted by Q. In order to answer the upper

questions, we will vary the number of sign changes in di�erent models and conclude

how K should be chosen. Considering polynomial regression models has the advan-

tage that we can construct easily alternatives with �xed number of sign changes.
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More complex continuous model functions can often be approximated locally by

polynomial models. Therefore, our results can be transferred for other models in

certain ways. In Chapter 6.4.2, the results and the impact for the practice will be

discussed. The choice for the hyper-parameter K will also be concluded.

6.4.1 Simulation study with �xed numbers of sign changes

In the following simulation study, we �x subclasses of polynomial regression functions

in order to understand the in�uence of the number of sign changes to the power of

the tests better. We consider polynomial models such that the di�erence functions

have Q sign changes with Q ∈ {1, 2, 3, 4, 5}. The alternatives are produced by scaled

versions of the true polynomial models or by alternatives with a reversed sign and

shifted then.

The explanatory variables are equidistant in the �xed interval [−3, 3] for samples

sizes N ∈ {25, 50, 100, 200}. The situation of expanding intervals of the explanatory

variables for increasing N will not be considered since polynomial functions are

strictly monotonous for su�ciently high input values. This will lead to uninteresting,

constant sign structures for su�ciently high explanatory variables and the K-depth

will be rejected easily for several alternatives.

Moreover, we have independent Cauchy distributed errors E1, . . . , EN ∼ Cau(0, 1)

to express the outlier robustness of the methods. Note that under other symmetric

distributions, such as the normal distribution, the results are similar. The simu-

lations of the power are 1,000 times repeated for each alternative based on the

test in Theorem 6.1 (a) using the �nite sample quantiles. The parameter areas va-

ry in several cases but are always discretized in steps of length 0.1. We consider

K ∈ {3, . . . , 10}, but for N = 25, we omit the case K = 10 due to the small sample

size and the impossible rejection, cf. Table 4, p. 112, in Chapter 6.3.2. The 2-depth

test is omitted due to its bad performance. Simulations based on the 2-depth test

can be found in Leckey et al. (2020).

Furthermore, Table 8, p. 117, lists all considered models. The models with a variation

of scaling are indexed by �a� and the models with variation of the intercept are

indexed by �b�. The true parameters are denoted by θ∗ and Θ1 describes the set

of the alternatives. We choose here polynomials of degree Q since they can at most

have Q intersections with another polynomial of the same degree. The number of

intersections corresponds to the number of sign changes in the di�erence function.

An illustration of the model situations are given combined with the results of the

power functions for a better overview.
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Results of the simulation study

1-sign change model (I)

In order to have only one sign change, several linear functions are considered for

model (I), cf. Figure 24. The model equation is given by g(x, θ) = θx, θ ∈ [−4, 4].
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Figure 24: Illustration of the model class I with true parameter θ∗ = 1 (black),
alternatives θ = 3 (red) and θ = −2 (green)

Considering one parameter and determining the intercept to zero has the advantage

that the simulations run faster and the visualization of the one-dimensional para-

meter space for the power functions are more convenient. On the right side of this

�gure, we see the di�erence functions for the two examples θ ∈ {3,−2} from the

alternative space Θ1 = [−4, 4] \ {1}. In Table 9, the mean of the computed power

N K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
25 0.86 0.73 0.84 0.75 0.82 0.74 0.79 0.00
50 0.93 0.87 0.92 0.88 0.91 0.88 0.91 0.88
100 0.96 0.93 0.95 0.94 0.95 0.94 0.95 0.93
200 0.98 0.96 0.97 0.96 0.97 0.96 0.97 0.96

Table 9: Mean of the simulated power for the 1-sign change alternatives (I)

of all alternatives in Θ1 are given. Figure 25 contains the computed power for each

alternative parameter. We can conclude that the K-depth has slightly higher power

for odd K. These di�erences are especially noticeable for N = 25. Moreover, incre-

asing the sample size N can compensate the power loss of even K. For N ≥ 50, the

di�erences between even and odd K exist but they become less relevant. In parti-

cular, the case K = 3 delivers the best result, cf. Table 9. Further, the mean power

decreases for increasing odd K and does not vary for di�erent even K.
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Figure 25: Power functions for the 1-sign change alternatives (I)

2-sign changes model (IIa)

In Figure 26, the black line shows the true model g(x,θ∗) = x2− 1. The parameters

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
6

2−sign changes (IIa)

x

g(
x,

 θ
)

−3 −2 −1 0 1 2 3

−
4

−
3

−
2

−
1

0
1

2
3

difference functions

x

di
ffe

re
nc

e 
fu

nc
tio

n 
D

Figure 26: Illustration of the model class IIa with true parameter θ∗ = (−1, 1)>

(black), alternatives θ = (−2, 2)> (red) and θ = (−4, 4)> (green)
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in Θ1 = {(−θ, θ)>; θ ∈ [0, 4], θ 6= 1} describe scaled versions of this quadratic

function by g(x,θ) = θ ·g(x,θ∗) for θ ∈ [0, 4]\{1}. This scaling leads to compressed

or stretched parabolas. In all cases, the di�erence function has exactly two sign

changes. The power functions in Figure 27 show that the K-depths perform the

best for even K. Especially for N = 25, this e�ect is noticeable. The case K = 4

is slightly the best, cf. Table 10. For odd K ≥ 5, the power increases strongly for

N K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
25 0.03 0.79 0.53 0.78 0.59 0.75 0.59 0.00
50 0.07 0.91 0.78 0.90 0.82 0.90 0.83 0.89
100 0.46 0.96 0.90 0.96 0.91 0.95 0.92 0.95
200 0.82 0.98 0.95 0.98 0.96 0.98 0.96 0.98

Table 10: Mean of the simulated power for 2-sign change alternatives (IIa)
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Figure 27: Power functions for the 2-sign changes alternatives (IIa)

increasing N and the di�erences of the power are not that high compared to even

K. The case K = 3 performs still badly. Even for N = 200, the power function is

noticeably worse than for the other cases. The bad performance for K = 3 is not
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surprising based on the conjecture that the K-depth does not perform well if the

number of sign changes in D is higher than K − 2.

2-sign changes model (IIb)

Figure 28 shows the alternatives with two sign changes by shifts of the true model

with negative sign. In particular, the true model is here also g(x,θ∗) = x2 − 1 and
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Figure 28: Illustration of the model class IIb with true parameter θ∗ = (−1, 1)>

(black), alternatives θ = (7,−1)> (red) and θ = (3,−1)> (green)

the alternative have the form g(x,θ) = −x2 + 1 + θ for θ ∈ [1, 7]. Note that we

do not obtain the true parameter (situation of H0) for any θ in Figure 29 so that

the power functions should have a power of 1 for all θ. We see similar results as
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Figure 29: Power functions for the 2-sign change alternatives (IIb)

in Figure 27, especially that odd K perform worse than even K. Nevertheless, the

power functions are clearly higher here for smaller N which can be caused by the fact

that the functions are easier to distinguish based on their sign structure. Therefore,
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the �gures for N ∈ {100, 200} are not shown since the power function is almost at

one everywhere, cf. Table 11.

N K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
25 0.27 0.98 0.85 0.98 0.90 0.97 0.90 0.00
50 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 11: Mean of the simulated power for 2-sign change alternatives (IIb)

3-sign changes model (IIIa)

Figure 30 shows the 3-sign changes alternatives which are rescaled versions of the

true model g(x,θ∗) = x3 − 2x. In particular, the alternatives are analogously to

model (IIa) generated by multiplying this model equation with θ ∈ [0, 4] \ {1}. In
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Figure 30: Illustration of the model class IIIa with true parameter θ∗ = (−2, 1)>

(black), alternatives θ = (−1, 0.5)> (red) and θ = (−7, 3.5)> (green)

N K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
25 0.63 0.05 0.83 0.50 0.82 0.60 0.79 0.00
50 0.92 0.27 0.95 0.82 0.95 0.86 0.94 0.88
100 0.98 0.83 0.99 0.94 0.99 0.95 0.99 0.96
200 1.00 0.95 1.00 0.98 1.00 0.99 1.00 0.99

Table 12: Mean of the simulated power for 3-sign change alternatives (IIIa)

Table 12 and Figure 31, we obtain reversed results concerning the performance of

the parity of K. Odd K ≥ 5 are here better than even K. We can also see that the

results are better for K = 3 than for K = 4 but also slightly worse than for higher

odd K. This can be explained by the mentioned conjecture that the 3-depth cannot
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Figure 31: Power functions for the 3-sign changes alternatives (IIIa)

reject model situations with more than two sign changes under small N . However,

this de�cit of the 3-depth is compensated by increasing N . For even K ≥ 6, the

results are also noticeably better up N ≥ 50 and also the 4-depth gets better for

N ≥ 100.

3-sign changes model (IIIb)

Figure 32 shows the true model equation g(x,θ∗) = x3 − 2x in black again. The

N K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
25 0.87 0.35 0.98 0.82 0.98 0.88 0.97 0.00
50 1.00 0.77 1.00 1.00 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 13: Mean of the simulated power for 3-sign change alternatives (IIIb)

alternatives are given by g(x,θ) = −g(x,θ∗) + θ for θ ∈ [−3, 3]. Figure 33 presents

a similar results to the other 3-sign changes case (IIIa). The power functions for the

K-depth with odd K are higher than for even K. The 3-depth performs worse than
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Figure 32: Illustration of the model class IIIb with true parameter θ∗ = (0,−2, 1)>

(black), alternatives θ = (0, 2,−1)> (red) and θ = (1.5, 2,−1)> (green)
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Figure 33: Power functions for the 3-sign change alternatives (IIIb)

the K-depth for odd K ≥ 5. The case K = 4 is here noticeably worse than the other

even K ≥ 6. For N ≥ 100, all power function are almost equal to one, cf. Table 13.

4-sign changes model (IVa)

Figure 34 shows 4-sign changes alternatives generated by rescaling the true model

equation g(x,θ∗) = 1
2
− 2x2 + x4 with θ · g(x,θ∗) for θ ∈ [0, 4] \ {1}.

Similar results to the alternatives with 2-sign changes are given in Figure 35 for the

power functions. However, it is noticeable that the 5-depth performs worse than for

the 2-sign change case for N = 25. For N = 50, the power for all K ≥ 4 is very

high. For K = 3, the sample sizes N ∈ {50, 100} do not deliver good results.

The worse performance of the 5-depth can be explained by the fact that the dif-

ference functions have four intersections. Therefore, we expect �ve blocks in the

residuals which explains the better performance of the K-depths for odd K ≥ 7 as
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Figure 34: Illustration of the model class IVa with true parameter θ∗ = (0.5,−2, 1)>

(black), alternatives θ = (2,−8, 4)> (red) and θ = (0.25,−1, 0.5)>

(green)
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Figure 35: Power functions for the 4-sign changes alternatives (IVa)

well. Nevertheless, the 4-depth has a surprisingly high power although the hyper-

parameter K = 4 is too small compared to the number of sign changes. E.g., the

3-depth performed much worse in the (IIIa)-model. However, similar e�ects, we see

for the 3-depth in the (IIIa)-model, could be obtained for the 4-depth in the (IVa)-
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model by extending the distances between the intersections. Table 14 presents the

average power values.

N K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
25 0.13 0.92 0.35 0.92 0.62 0.90 0.64 0.00
50 0.30 0.99 0.87 0.99 0.94 0.99 0.95 0.99
100 0.73 1.00 0.98 1.00 0.99 1.00 0.99 1.00
200 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 14: Mean of the simulated power for 4-sign change alternatives (IVa)

4-sign changes model (IVb)

Figure 36 presents alternatives based on the same true model (IVa) with reversed

signs given by g(x,θ∗) = 1
2
− 2x2 + x4 and alternatives generated by −g(x,θ∗) + θ

for θ ∈ [−3, 3]. In Figure 37 and Table 15, we can see that for N = 25 and odd K,

the power function are worse than for even K.
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Figure 36: Illustration of the model class IVb with true parameter θ∗ = (0.5,−2, 1)>

(black), alternatives θ = (0, 2,−1)> (red) and θ = (−1, 2,−1)> (green)

N K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
25 0.32 0.99 0.69 1.00 0.88 0.99 0.89 0.00
50 0.53 1.00 0.99 1.00 1.00 1.00 1.00 1.00
100 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 15: Mean of the simulated power for 4-sign change alternatives (IVb)
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Figure 37: Power functions for the 4-sign change alternatives (IVb)

5-sign changes model (Va)

Analogously, the 5-sign change alternatives by scalings and their power functions are

presented in Figure 38 and Figure 39, respectively. Table 16 gives an overview of
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Figure 38: Illustration of the model class Va with true parameter θ∗ = (2,−3, 0.75)>

(black), alternatives θ = (4,−6, 1.5)> (red) and θ = (1,−1.5, 0.375)>

(green)

the average power values. We have again the result that for odd K with K ≥ Q+ 2,

N K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
25 0.34 0.02 0.69 0.07 0.86 0.37 0.85 0.00
50 0.94 0.06 0.99 0.67 0.99 0.90 0.99 0.93
100 1.00 0.44 1.00 0.97 1.00 0.99 1.00 0.99
200 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Table 16: Mean of the simulated power for 5-sign change alternatives (Va)

the power functions are high for smaller N and even K perform worse.
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Figure 39: Power functions for the 5-sign change alternatives (Va)

5-sign changes model (Vb)

Further, the 5-sign change alternatives by shifts and their power functions are pre-

sented in Figure 40 and Figure 41, respectively.
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Figure 40: Illustration of the model class Vb with true parameter θ∗ =
(0, 2,−3, 0.75)> (black), alternatives θ = (1,−2, 3,−0.75)> (red) and
θ = (−1,−2, 3,−0.75)> (green)
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Figure 41: Power functions for the 5-sign change alternatives (Vb)

Table 17 gives an overview of the average power values.

N K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
25 0.73 0.35 0.91 0.47 0.96 0.65 0.96 0.00
50 0.99 0.63 1.00 0.92 1.00 1.00 1.00 1.00
100 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 17: Mean of the simulated power for 5-sign change alternatives (Vb)

6.4.2 Conclusions for the choice of K

Let Q be the number of sign changes in the di�erence function of a given alternative

parameter. Then the simulation study leads to the following conclusions:

The K-sign tests have the highest power for K = Q+ 2. For K = Q+ 2 + 2q

with q ∈ N, the power will be slightly lower for increasing q. If we considerK =

Q+ 2 + 2q− 1, then the power is worse compared to K with reversed parities.

However, if K < Q + 2, then the power will be low, especially for K and Q

with di�erent parities. This low power can be compensated by increasing the

sample size N . The results of the simulation study lead to the suggestion of

consistency properties for all K ≥ 3 in these scenarios. The convergence rate

seems to be higher for K ≥ Q+ 2, i.e., we do not need such high sample sizes

to gain higher powers.

Note that the case K = 2 yields a bad power and inconsistency properties in many

situations since the 2-depth is asymptotically equivalent to counting the signs of the

residuals (Leckey et al., 2020). The only situation the 2-depth performs well is the
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case of constant models with model function g(θ) = θ which �ts also to the above

conjectures since Q = 0 then (Lehmann and Romano, 2005, p. 701).

We want to give an illustration how to explain these results. Therefore, we consider

the quadratic function g(x) = x2 − 1 as the true model and h(x) = −x2 + 1 as an

alternative, cf. Figure 42. On the vertical coordinate axis of this �gure, we see the sign
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Figure 42: Example of two functions with two intersections

structure of the di�erence function. The di�erence function g− h has positive signs

for main block 1 and 3 and negative signs for main block 2. Due to the additionally

given errors, we will expect a qualitative structure of the signs of the residuals as

given in Figure 43. We have three main blocks, i.e., these blocks are the longest

+ + . . . +
mixed
signs

- - . . . -
mixed
signs

+ + . . . +

︸ ︷︷ ︸
main block 1

︸ ︷︷ ︸
main block 2

︸ ︷︷ ︸
main block 3

Figure 43: Overview of the scenario with the three main blocks

and have a high impact on the value of the depth. Between these main blocks, we

have mixed signs since near to the intersections of the functions, the probability

of a positive and negative sign is approximately equal and block lengths are small.

If we consider K = 3, then according to the block representation:

d3(r1, . . . , rN) =
1(
N
3

) ∑
(i1,i2,i3)∈A3,B

3∏
k=1

qik
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all main blocks are once multiplied as one summand in the above sum. This will

also be the case for other odd K which can have even more K-tuples containing the

main blocks. The multiplication of the three main blocks leads to a strong increase

of the K-depth. Especially for small N , the multiplication of the three main blocks

in one summand dominates the resulting depth. For increasing odd K, there may

occur the situation that the number of blocks in the mostly alternating parts are

such small that combinations with all main blocks are not possible and the K-depth

decreases. For even K, it is not possible to construct a K-tuple containing all main

blocks since the block index of the �rst and last need to have di�erent parities.

However, the �rst and last main block index share the same parities and therefore,

we can only combine two main blocks for each summand at most.

This interpretation can be done for other number of sign changes analogously. Espe-

cially for odd number of sign changes, we will obtain reversed conclusions for the

parities. The bad results for K ≤ Q + 1 can be explained as well since there are

more than one combination of large blocks multiplied with each other.

Note that these explanations are only heuristics and based on some examples. How-

ever, these heuristics can be useful for future research to understand the performance

of tests theoretically and for the choice of the hyper-parameter K in general. Fur-

thermore, the proportions of the main blocks are constant as N → ∞ for such

scenarios. This property may lead to an explanation for the consistency. Proofs for

the consistency and the other conclusions are beyond this thesis and are tasks for

further research.

model Qmax K = Qmax+ 2 N ≥ Nα(K)

Figure 44: Proceeding for using the K-depth in practice

Figure 44 presents how the K-depth can be applied for statistical analysis. The

model, the associated parameters and the hypotheses have to be chosen at �rst.

Then, the maximal number of intersections Qmax between the model function under

the null hypothesis H0 and an alternative can be derived. The previous simulation

study concludes the choice K = Qmax + 2. For given K and α-level, Chapter 6.3

gives the smallest sample size Nα(K) which can be used for a convenient test.

The simulations show that the power functions of the K-depth should be considered

separately for odd K and even K. However, models with di�erent numbers of sign

changes are not included. For further research it should be investigated how the
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di�erent behavior of the K-depth for even and odd K appears in this case. In

scenarios with various numbers of sign changes, multiple testing with even and odd

K could be an idea to increase the power globally. On the other hand, the power

would decrease due to a Bonferroni correction of the level. The choice of K should

also be investigated for the multiple regeression (Horn, 2021b).

6.5 Testing the �t of set hypotheses

Instead of null hypotheses with |Θ0| = 1 as in Chapter 6.4, we also want to consider

set hypotheses. From a practical perspective, set hypotheses are commonly used.

E.g., we can test if one parameter is zero when the other parameters can be arbitrary

so that Θ0 is a (p − 1)-dimensionale subset of Θ = Rp. Testing these kinds of

hypotheses is useful to test if an explanatory variable can be declared as signi�cant

for the model. Furthermore, comparing some parameters from each other by null

hypotheses of the form H0 : θ1 = θ2 or H0 : θ1 = . . . = θp is typical in the

ANOVA (Paolella, 2018, p. 87). As presented in Theorem 6.1 (b), these type of null

hypotheses can be tested by replacing the K-depth under one �xed parameter in

Θ0 with the supremum of the K-depth under all parameters in Θ0. In order to

compute the supremum of all K-depths with parameters in Θ0, we have to solve an

optimization problem. Due to the discontinuity of the objective functions, we need

derivative-free optimization algorithms (also known as gradient-free algorithms), i.e.,

they do not require the derivatives of the objective functions (Conn et al., 2009). In

Chapter 6.5.1, such optimization algorithms will be shortly listed. In Chapter 6.5.2,

a situation for a two-sample relevance test based on the K-depth is presented and

compared with a t-test for this context.

6.5.1 Optimization procedures

For an introductory example, we will consider the model

Yn = θ∗ + En for n = 1, . . . , 20

with θ∗ ∈ R as the true parameter and i.i.d. E1, . . . , E20 ∼ N (0, 1). For θ ∈ R and

realizations y1, . . . , y20 , the residuals r1(θ), . . . , r20(θ) are de�ned as usual by

rn(θ) := yn − θ for n = 1, . . . , 20

and their K-depth can be computed. Figure 45 presents the 3-depth for several

parameters in {−3,−2.99,−2.98, . . . , 3.99, 4} for a single simulation based on the
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model θ∗ = 1. These kinds of discontinuous functions have to be optimized in the

following. For multidimensional parameter spaces, similar functions can be obtained.

In the following lemma, we formalize and prove the discontinuity.

Lemma 6.6. Let e1, . . . , eN ∈ R and x1, . . . ,xN ∈ Rd be arbitrary and Θ a connec-

ted subset in Rp.3 Moreover, let

yn = g(xn,θ
∗) + en, n = 1, . . . , N

for some model function g : Rd ×Θ→ R and θ∗ ∈ Θ. We de�ne the function

L : Θ→ R, L(θ) = dK(r1(θ), . . . , rN(θ))

for rn(θ) = yn − g(xn,θ), n = 1, . . . , N . Then L is discontinuous or constant.

Proof of Lemma 6.6: For arbitrary N , the K-depth dK(r1(θ), . . . , rN(θ)) can only

provide a �nite number of di�erent values. If L takes at least two di�erent values,

then the image of L is disconnected since the K-depth only delivers a �nite number

of values and thus, the points are isolated. Therefore, L must be discontinuous since

this would lead to a contradiction to the intermediate value theorem for general

topological spaces otherwise (Yan, 2016, p. 138). This theorem implies that for

continuous f : X → R with X connected, f(X) is connected as well (Yan, 2016, p.

138). If L takes only one value, then L is constant. �
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Figure 45: 3-depths for several alternative paramters for illustration of the objective
function

3The connectedness of Θ avoids isolated points. The concept of continuity in Rp according to the
canonical topology would not make sense under isolated points.
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According to Lemma 6.6, typical optimization procedures as the Newton's method

cannot be used since we especially would need di�erentiable functions (Aragón et al.,

2018, p. 209). Note that there exists research that generalizes the theory of di�eren-

tation for discontinuous functions, see Moreau and Aeyels (2000). Nevertheless, the

usual approaches for solving optimization problems for discontinuous functions are

derivative-free algorithms. Before we will introduce some prominent optimization

procedures, the following estimator should be mentioned in this context as well.

Remark 6.7. In Figure 45, we see that the highest 3-depths leads also to the true

parameter. The idea of using the K-depth as an estimator by �nding the maximal

depth is intuitive. This approach is known as the maximum-depth estimator:

θ̂dK := argmax
θ∈Θ

dK(R1(θ), . . . , RN(θ)).

This estimator is applied for K = 3 in Falkenau (2016) for example. However,

these estimations are generally not unique and θ̂dK is a set therefore. Historically,

this approach has already been considered for estimating the center of a multivariate

data set as multivariate generalizations of the median. E.g., the halfspace median

of Tukey (1975) is the set of x ∈ Rq with the highest halfspace depth or Van Aelst

et al. (2002) considers the regression depth median (also known as deepest regression

method) as the parameters with the highest regression depth, cf. Chapter 2.3.

List of derivative-free optimization procedures

The number of derivative-free optimization procedures is large and it is beyond this

thesis to discuss every method in detail. Therefore, we only will give a brief list of

some methods the literature o�ers.

• Grid search: This is a simple algorithm which considers a discrete grid of all

parameters in Θ0 ⊆ Rp or an approximation if Θ0 is unbounded for example.

The major drawback of this method are the high computational costs for

increasing dimensions of Θ0 (Audet and Hare, 2017, p. 35).

• Nelder-Mead method (Downhill simplex method): This algorithm uses

simplices which rotate and shrink to the direction with the largest descent

(Conn et al., 2009, p. 141). Note that there exists several examples where this

algorithm does not converge (McKinnon, 1998) or can be very slow (Baudin,

2009). Although the lack of convergence theory for this algorithm is often

claimed as a major drawback, there exists research where conditions for the

convergence is studied (Lagarias et al., 1998).
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• Simulated annealing: In contrast to a deterministic grid search, simulated

annealing is a stochastic algorithm considering several points of Θ0. It is mo-

tivated on the idea of slowly cooling material. After an initial evaluation, this

algorithm evaluates nearby solutions by a random choice based on weighted

probabilities. Bad directions with smaller probabilities are also possible in or-

der to avoid being stuck in local optima. At the beginning, the jumps between

several solutions can be very high. Towards the end, the jumps get smaller

until the algorithm 'cooled down' and ends. Simulated annealing is often used

for �nding the global optimum and the convergence of the algorithm is studied

for several models (Dekkers and Aarts, 1991). However, this algorithm invol-

ves many tuning parameters in�uencing the quality of the solution. Therefore,

Siarry (2016) gives practical suggestions for the parameter settings.

• Particle swarm: This stochastic algorithm was introduced by Kennedy and

Eberhart (1995). At the beginning of the algorithm, randomly initialized eva-

luations are considered as particles of a population where each particle gets a

random momentary direction. After each further iteration, a particle changes

its position by a combination of some directions, e.g.:

� the direction from the previous iteration,

� the best direction a particle had in its past,

� the direction of the swarm.

The idea is that the swarm will converge to an optimal point which is inspired

by the phenomenon of collective intelligence in biology. Qian and Li (2018)

present this class of algorithms in its standard and improved forms and analyze

their convergence.

• Genetic algorithms: This class of algorithms is inspired by the process of

natural selection. We consider a random initial population and some �tness

function (this can also be the objective function) evaluating each individual.

Then biological processes such as recombination, mutation and selection are

applied based on the Darwinian evolution theory (Chambers, 2001). In parti-

cular, individuals from the population with a high �tness are more likely to be

selected for recombination to produce new individuals for the next generation.

Moreover, individuals change randomly causing genetic diversity. Similar to

the Nelder-Mead method, a guarantee of convergence is not given (Audet and

Hare, 2017, p. 55).
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There are other derivative-free algorithms such as the great deluge algorithm (Dueck,

1993) or Bayesian optimization (Frazier, 2018). For a further discussion of derivative-

free optimization algorithms, we refer to Audet and Hare (2017). The correct choice

of an optimization algorithm depends on the properties of the objective function. In

the next chapter, we will show for an example how a speci�c and simple optimization

algorithm can be constructed for a class of objective functions. In other situations,

the previously mentioned algorithms could be applied instead.

6.5.2 Example: Two-sample test for relevant di�erences

We consider two samples given by

Yn = θ1 + En for n = 1, . . . ,M

Yn = θ2 + En for n = M + 1, . . . , N

so that θ = (θ1, θ2)> ∈ R2 is the unknown parameter vector and E1, . . . , EN satisfy

Assumption 2.1. We can sum up this model equation to one equation by

Yn = θ11{1 ≤ n ≤M}+ θ21{M + 1 ≤ n ≤ N}+ En for n = 1, . . . , N.

We are interested in testing the following hypotheses

H0 : |θ1 − θ2| ≤ δ,H1 : |θ1 − θ2| > δ (79)

for a given relevance parameter δ ≥ 0. For δ = 0, we have a standard two-sample

test with H0 : θ1 = θ2. E.g., this type of test can be used to detect a change point

between Y1, . . . , YM and YM+1, . . . , YN with jump height δ or more (Dette and Kutta,

2021). The set of parameters under which H0 in Formula (79) is correct has the form:

Θ0 = {θ ∈ R2; |θ1 − θ2| ≤ δ}. (80)

For realizations of the residual vector under any θ ∈ Θ0, we can consider the test

procedure

reject H0 if sup
θ∈Θ0

dK(r1(θ), . . . , rN(θ)) < qKα,N

where qKα,N denotes the exact α-quantile of the K-depth. In the following, we will

always assume that M = N
2
. Figure 46 shows the behavior of the objective function

L(θ) = dK(r1(θ) . . . , rN(θ)) in an 101 × 101 grid when the location parameters θ1
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and θ2 change. The area surrounded by the red lines corresponds to Θ1 = R2\Θ0 also
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Figure 46: The objective function L(θ) for two cases for the location parameters

known as the relevance area. In contrast, Θ0 is referred to the non-relevance area.

Both functions were simulated under the same random seed for better comparability.

The values of the function L show parallel contour lines and the depth is decreasing

for shifts along the θ1-axis or θ2-axis from the maximal value. We can take advantage

of this property for the next optimization procedure based on a simple heuristic

ideas.

Remark 6.8. The optimization under Θ0 in Formula (80) will be done in two steps.

1. The maximum K-depth in the whole parameter space Θ is approximately

computed by the median of each sample:

θ̂max = (med(y1, . . . , yM),med(yM+1, . . . , yN))>.

In Figure 47, this point is presented by a triangle. However, this value can be

outside Θ0. If this happens, we consider Step 2.

2. One coordinate of θ̂max is �xed and the other coordinate is shifted such that

the absolute distance between the two coordinates is lower than δ. This will be

done for both coordinates. Formally, we consider the union of the two sets:

{(θ1, θ2)> ∈ R2; θ2 = med(yM+1, . . . , yN), |θ1 − θ2| ≤ δ}

{(θ1, θ2)> ∈ R2; θ1 = med(y1, . . . , yM), |θ1 − θ2| ≤ δ}

and consider a grid search. In Figure 47, these points from the grid search are

highlighted.
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Figure 47: Visulization of an optimization approach from the objective functions
from Figure 46

Note that this optimization approach will not work in general. E.g., the objective

function L can also have rotated structures in other models and therefore, the shape

of L has to be studied in advance.

This remark illustrates how using geometric properties of the objective functions

can replace similar information we would obtain from derivatives. For other models

and objective functions, similar approaches should be developed.
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Figure 48: The objective function L(θ) for two di�erent sample sizes

In Figure 48, the objective functions for higher sample sizes are given. In Figure 49,

the cases for K = 4 and K = 7 are presented. Note that the legends change in

these �gures. On the one hand, higher sample sizes yield an objective function with
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Figure 49: The objective function L(θ) for di�erent K

more values which leads to a smoother shape. On the other hand, increasing K

leads to functions more concentrated to the center similar to the estimated density

functions of the K-depth in Chapter 3.4. Other scenarios as Cauchy distributed

errors or di�erent sizes of groups yield similar �gures. A more careful simulation

study show that the decision for rejection under H0 for the optimal depth from the

procedure in Remark 6.8 is mostly the same as for the maximal depth based on a

grid search in Θ0. Therefore, we assume that the presented optimization procedure

in Remark 6.8 is valid to use in practice for this model. A proof for the convergence

of this algorithm to the true maximum depth in Θ0 is beyond this thesis.

The tests based on the K-depth are compared with a relevance test based on the t-

test. This two-sample relevance t-test is applied by testing the following hypotheses:

H
(1)
0 : θ1 − θ2 ≤ δ,H

(1)
1 : θ1 − θ2 > δ,

H
(2)
0 : θ1 − θ2 ≥ δ,H

(2)
1 : θ1 − θ2 < δ.

Each pair of hypotheses is tested by a two-sample t-test. Based on the Bonferroni

correction, both tests are adjusted to α
2
-level tests for testing the null hypothesis

H0 in Formula (79) with level α. H0 is rejected if either H(1)
0 or H(2)

0 is rejected.

Another two-sample t-test for relevant di�erences is presented in the Bachelor thesis

Malcherczyk (2018b). This test yields similar results compared to the other t-test

but the variance is assumed to be known. This is a too restrictive assumption for

many applications and problematic if the second moment of the errors do not exist

either. Therefore, we do not consider the second t-test from this thesis.
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Results of the simulation study

Figure 50 and 51 present the resulting power functions of a simulation study. The

parameter θ2 = 1 is �xed while θ1 ∈ {−4,−3.9, . . . , 4.9, 5} is varied and the null

hypothesis H0 : |θ1 − θ2| ≤ 1 is tested 100 times per parameter.
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Figure 50: The power function of the relevance tests under N (0, 1)-distribution
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Figure 51: The power function of the relevance tests under Cau(0, 1)-distribution

In Figure 50 and Figure 51, the sample sizes N = 50 and N = 100 with two equal

groups and N (0, 1)- or Cau(0, 1)-distributed errors, respectively, are considered. For

normally distributed errors, the t-test yields better results. The tests based on the
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K-depth have only slight di�erences. A more careful consideration on the power

function shows that the power is higher for even K than in all other presented

scenarios. Especially, the power function is uniformly the highest for K = 4. Fur-

thermore, the K-depth shows consistency properties, i.e., the power increases to one

for increasing sample sizes. Similar to the explanations in Chapter 6.4.2, one sign

change in the di�erence function can be expected under several alternatives which

explains the better performance of even K.

For Cauchy distributed errors, the t-test fails and seems not to have consistency

properties. This is not very surprising since the moments of the Cauchy distribution

do not exist. However, the t-statistic is based on the mean and empirical variance

in order to estimate the expected value and the variance, respectively, which is not

suitable for Cauchy distributed random variables. The K-depth tests yield similar

results to the normally distributed case but the improvement from the case N = 100

to N = 50 is more noticeable. The case K = 4 also performs best here.

Outlook for relevance tests based on the K-depth

We will focus on a particular class of parameter constellations in Θ1 which may

be a di�cult situation for the K-depth for rejecting the null hypothesis. There

exists always an alternative parameter such that one coordinate can be part of the

true parameter. Therefore, one group has nearly alternating signs. If the location

parameters of both groups have a high distance from each other, the signs of the

other group are nearly constant (i.e., the most of them are positive or negative).

Such a scenario is given in Figure 52. Note that the associated random walk which

+ - + - . . . + - + + + + . . . + +︸ ︷︷ ︸
�rst group

︸ ︷︷ ︸
second group

Figure 52: A di�cult scenario for the relevance test based on the K-depth

sums up the signs of the residuals, cf. Theorem 3.22, p. 39, tends to∞ for increasing

N under this situation if the relative size of both groups keeps constant. Therefore,

the relevance test based on the K-depth can be improved more since considering

the depth of the combined samples can yield a power loss. Associated parameters to

Figure 52 have not a depth equal to zero although one component of the parameter

vector �ts poorly. Therefore, the minimum of the depths for each sample seems to

be more natural to consider since this will lead to a more sensitive statistic. The

next theorem describes how a test can be constructed based on the minimal depth.

For the situation of more than two groups, the minimum is also more natural if the
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order of the groups is not clearly given. Note that the distribution changes under

the minimum so that the quantiles have to be corrected accordingly. As an outlook,

we formulate the following test:

Theorem 6.9. Let N be an even integer and M = N
2
. Let Y1, . . . , YM , YM+1, . . . , YN

be random variables such that

Yn =

µ∗1 + En, for n = 1, . . . ,M

µ∗2 + En, for n = M + 1, . . . , N

with (µ∗1, µ
∗
2)> ∈ R2. Let E1, . . . , EN satisfy Assumption 2.1. Consider the hypotheses

H0 : |µ1 − µ2| ≤ δ,H1 : |µ1 − µ2| > δ

for δ ≥ 0. For (µ1, µ2)> ∈ R2, we de�ne the residual vectors by

R(1)(µ1) := (Y1 − µ1, . . . , YM − µ1)>,R(2)(µ2) := (YM+1 − µ2, . . . , YN − µ2)>.

Then we obtain an α-level test for the following decision rule:

Reject H0 if sup
|µ1−µ2|≤δ

min{TK(R(1)(µ1)), TK(R(2)(µ2))} < qKα̃,N

for α̃ = 1−
√

1− α and qKα,N as the �nite sample quantile of the K-depth.

Proof of Theorem 6.9: Let (µ∗1, µ
∗
2) ∈ R2 be under H0, i.e., |µ∗1 − µ∗2| ≤ δ. By

using the independence of R(1)(µ∗1) and R(2)(µ∗2), we obtain

P

(
sup

|µ1−µ2|≤δ
min{TK(R(1)(µ1)), TK(R(2)(µ2))} < qKα̃,N

)
≤P

(
min{TK(R(1)(µ∗1)), TK(R(2)(µ∗2))} < qKα̃,N

)
= 1− (1− P

(
TK(R(1)(µ∗1)) < qKα̃,N

)
) · (1− P

(
TK(R(2)(µ∗2)) < qKα̃,N

)
)

≤ 1− (1− α̃)(1− α̃) = 1− (1− α̃)2 = α

which implies that we have an α-level test. �

If M 6= N
2
then the quantile qα̃ in Theorem 6.9 cannot be used. Instead of this, the

quantiles of the statistic have to be simulated under the true parameter. Theorem 6.9

can be extended for more than two samples to an ANOVA-type test based on the mi-

nimum of the K-depths. Nevertheless, computing the supremum is still challenging

in higher dimensional spaces and more research has to be done in future.
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6.6 Independence test approaches based on the K-sign depth

In this chapter, we will give a short overview of several notions of sign depths which

can be used for testing independence. In the Master thesis Dohme (2021) and in

Dohme et al. (2021), the power of the test in Theorem 6.2 for independence is

simulated for various situations and compared with other popular tests from this

context. Figure 53 shows an example of this result for the following AR(1)-model

Y0 = 0 and Yn = θ · Yn−1 + En, n ∈ {1, . . . , N}

with i.i.d. En ∼ N (0, 1). The parameter θ ∈ (−1, 1) denotes the correlation between
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Figure 53: Simulated power functions of the K-depth tests for independence in an
AR(1)-model.

Yn−1 and Yn. For θ = 0, Y1, . . . , YN are independent random variables and for θ > 0

or θ < 0, they are positively or negatively correlated, respectively. The hypotheses

H0 : Y1, . . . , YN are independent, H1 : Y1, . . . , YN are not independent

can be reformulated to the hypotheses

H0 : θ = 0, H1 : θ 6= 0.

The power functions are computed by 100 simulated time series of an AR(1)-

model for each θ ∈ {−0.99,−0.98, . . . , 0.98, 0.99}, K ∈ {3, . . . , 8, 20, 30, 40} and

N ∈ {100, 500}. The simulation studies show that the K-depth from De�nition 2.2
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only detect highly positive or negative correlations. Moreover, increasing the sam-

ple size does not improve the power under lower positive or negative correlations

so that consistency properties cannot be followed. However, increasing K leads to

more sensitive detections of lower correlations.

The supposed inconsistency in N of the K-depth test for �xed K can be explained

as follows. The dependencies of the AR-model vanish exponentially and therefore,

the AR-model is called short-memory process (Shumway and Sto�er, 2017, p. 241).

I.e., these dependencies are only locally noticeable while the K-depth considers all

K-tuples with distant entries from each other. Detecting local dependency structures

with quickly vanishing autocorrelations based on K-tuples with distant entries does

not make sense. This implies that short-memory dependencies cannot be detected

suitably by the original K-depth for �xed K. Instead of increasing N , we need to

increase also K as high as possible. Thus, we assume consistency properties for

simultaneously increasing N and K instead. Moreover, recall the necessary sample

sizes for rejecting the null hypothesis (cf. Chapter 6.3.1) which lists restrictions how

high K can be chosen for given N .

Due to the missing improvements for increasing N and �xed K, we will consider a

simpli�ed version to compensate this weakness. This simpli�ed version has already

been de�ned in (Kustosz et al., 2016b) and considers onlyK-tuples with neighboring

entries in windows of length K.

De�nition 6.10. Let R = (R1, . . . , RN)> be a residual vector. For K ∈ N \ {1}, we
de�ne the simpli�ed K-sign depth as

dSK(R) :=
1

N −K + 1

N−K+1∑
n=1

(
K∏
k=1

1{Rn+k−1(−1)k > 0}

+
K∏
k=1

1{Rn+k−1(−1)k < 0}

)
.

The original K-sign depth from De�nition 2.2 is referred as the full K-sign depth

for the rest of this chapter. The simpli�ed K-depth has been introduced to mimic

the full K-depth due to the lack of e�cient computations in the past research. The

simpli�ed K-depth can be directly computed in linear time by de�nition compared

to the full K-depth which needed more e�ort as in Chapter 4 and 5 shown.

An asymptotic analysis of the simpli�ed K-depth is given in Kustosz et al. (2016b)

based on a Central Limit Theorem for m-dependent random variables, i.e., the ran-

dom variables are only independent outside windows of length m (Hoe�ding and

Robbins, 1948).
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Theorem 6.11. For a random vector E = (E1, . . . , EN)> satisfying Assumption 2.1

T SK(E) =
√
N −K + 1

dSK(E)− 1
2K−1√

1
2K−1

(
3− K

2K−2 − 3
2K−1

) D−−−→
N→∞

N (0, 1).

For the proof of Theorem 6.11, the expected value and variance of the simpli�ed

K-depth have to be derived. Then the assumptions of the Central Limit Theorem

for m-dependent random variables have to be checked. The tests in Theorem 6.1 and

6.2 can be reformulate with the simpli�ed K-sign depth by replacing the respective

test statistic and the quantiles of a standard normal distribution.

Simulation studies in Kustosz et al. (2016b) and Falkenau (2016) consider testing

model parameters by Theorem 6.1 and yield that the full K-depth is more powerful

than the simpli�ed K-depth. After the improvement of the computational tools

for the full K-depth, the simpli�ed depth seemed to be obsolete for application.

However, the simulation studies in Dohme et al. (2021) show that the simpli�ed 2-

depth performs well for testing independence. Moreover, the simpli�ed 2-depth test

and the Wald-Wolfowitz runs-test are similar since both tests consider an equivalent

test statistic. The only di�erence between these two tests are the critical values,

since the Wald-Wolfowitz runs-test considers the conditional distribution based on

the number of negative or positive signs in the complete residual vector (Gibbons

and Chakraborti, 2003, p. 78). Dohme et al. (2021) conclude that the power of both

tests is very similar and supposes that both tests are asymptotically equivalent. For

K > 2, the simpli�ed K-depths are inappropriate for testing independence based on

the results in Dohme et al. (2021). The higher K is chosen, the worse positive and

negative correlations can be detected.

Since the simpli�ed 2-depth test is more meant to detect dependencies in AR(1)-

or MA(1)-model situations, extending the window length in the simpli�ed K-depth

seems to be an intuitive generalization. We introduce a trade-o� between the sim-

pli�ed and full K-depth as an outlook for future research.

De�nition 6.12. Let R = (R1, . . . , RN)> be a residual vector. For K ∈ N\{1} and
K ≤ L ≤ N , we de�ne the simpli�ed (K,L)-sign depth as

dSK,L(R) :=
1

(N − L+ 1)
(
L−1
K−1

)
+
(
L−1
K

) ∑
1≤n1<...<nK≤N
nK−n1≤L−1

(
K∏
k=1

1{Rnk(−1)k > 0}

+
K∏
k=1

1{Rnk(−1)k < 0}

)
.

(81)
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The main idea of Formula (81) is to consider all K-tuples of the residual vectors

with entries in a window of length L. Therefore, the �rst and last entry of a K-tuple

can have a maximum distance of L− 1. Formula (81) yields the simpli�ed K-depth

for L = K and the full K-depth for L = N . Note also that the normalization factor

coincides for L = K to

(N − L+ 1)

(
L− 1

K − 1

)
+

(
L− 1

K

)
=(N −K + 1)

(
K − 1

K − 1

)
+

(
K − 1

K

)
= N −K + 1

since
(
K−1
K

)
= 0 and for L = N

(N − L+ 1)

(
L− 1

K − 1

)
+

(
L− 1

K

)
=

(
N − 1

K − 1

)
+

(
N − 1

K

)
=

(
N

K

)
.

In order to see that this number corresponds to the number of summands of the

simpli�ed (K,L)-depth, sort allK-tuples by the �rst index. If n1 ∈ {1, . . . , N−L+1}
is �xed, then there are

(
L−1
K−1

)
combinations for the other K − 1 indices n2, . . . , nK .

Since the �rst index is �xed, we can count up to (N − L + 1)
(
L−1
K−1

)
combinations.

However, we have not counted
(
L−1
K

)
combinations from the remaining L− 1 values

which cannot occur as a �rst index.

Further discussion of the simpli�ed (K,L)-depths is beyond this thesis. Their asym-

ptotic derivation and e�cient computation can be content for future research. The

proof strategies from this thesis can be useful for analyzing this statistic. Moreover,

the performance for longer temporal dependencies as in AR(p)-models for greater p

is assumed to be better since longer windows are considered. We still expect that

the case K = 2 will have the best performance for testing independence. Note that

this approach may have connections to the procedure in Dürre et al. (2015).

Can the sign function only detect correlations?

The author of this thesis wants to thank gratefully to the referee Prof. Dr. Cars-

ten Jentsch for the following comment. He mentioned that sign depths may only

detect correlations but not general dependency structures. E.g., GARCH-processes

having autoregressive heteroskedasticity and dependency structures in the varian-

ce do not have correlations (Verbeek, 2012, p. 298-299). Dohme (2021) shows that

the sign depths are not able to detect the dependencies of the GARCH-process.

This may also be caused by the fact that the sign function is not able to detect

di�erent scaled variations in the data either. The literature o�ers other methods

146



as the distance correlations to detect general classes of dependencies which are not

necessarily correlated Székely et al. (2007). An answer to the comment will not be

given in the following. Nevertheless, we want to illustrate the following property of

random variables having only two di�erent values as the sign function.

Lemma 6.13. Let X1, . . . , XN be uncorrelated random variables with

P(Xn = a) = P(Xn = b) =
1

2
for n = 1, . . . , N and a > 0, b < 0.

Then X1, . . . , XN are pairwise stochastically independent.

Proof of Lemma 6.13: SinceX1, . . . , XN are uncorrelated and their expected value

is IE(Xn) = 1
2
(a+ b), we obtain

IE(XmXn) = 1
4
(a+ b)2 for m 6= n ∈ {1, . . . , N}. (82)

By de�ning p := P(Xm = a,Xn = a), we obtain the following probabilities:

y

P(Xm = x,Xn = y) a b P(Xm = x)

x
a p 1

2
− p 1

2

b 1
2
− p p 1

2

P(Xn = y) 1
2

1
2

Table 18: Probabilities based on Xm and Xn

By Formula (82) and the following representation

IE(XmXn) =
∑

(x,y)∈{a,b}2
xy · P(Xm = x,Xn = y),

we obtain with the probabilities from Table 18 the equation

1
4
(a+ b)2 = p(a2 + b2) + 2

(
1
2
− p
)
ab

which has the solution p = 1
4
. This implies that Xm and Xn are independent. �

It cannot be followed that X1, . . . , XN are mutually independent, since the inter-

section of three or more events is not clearly determined by the assumption of

uncorrelated random variables. Thus, counter examples can be constructed.

This result shows that uncorrelated signs (for a = 1 and b = −1) lead to pairwise

independence. This can be an indication that the sign structure cannot give relevant

information about dependency structures without having correlations.
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7 Generalization approaches based on the K-sign

depth for further research

This chapter will illustrate approaches for generalizations of the K-sign depth for

further research. In Chapter 7.1, we exchange the sign function by other robust score

functions and understand the sign function as a special case. The sign function is

outlier robust, but much information can be lost from the data in general. Under

some additional assumptions, the generalized approaches have the same asymptotic

distribution as the one in Chapter 3. Only an additional unknown scaling factor

has to be estimated which is one for the sign function. If the scores are based on

ranks, the scaling factor does not depend on the distribution of the errors and can be

derived theoretically in advance. However, the asymptotic analysis is more di�cult

due to dependent random variables then. In Chapter 7.2, we consider Donsker's

invariance principle for temporally dependent random variables with short memories.

We obtain the same asymptotic distribution with an additional correction factor.

The correction factor can be estimated from the data. This leads to the possibility

to test models under particularly correlated errors.

The entire chapter should be understood as an outlook highlighting the impact of

the previous results for further research. Therefore, the ideas are presented shortly

since the execution of each detail is beyond this thesis.

7.1 Generalizations of the K-sign depth

According to Chapter 3, Theorem 3.8, p. 22, the K-sign depth can be represented

by a sum of products with the signs of the residuals:

N

(
dK(E)− 1

2K−1

)

=
N

2K−1
(
N
K

) ∑
1≤n1<...<nK≤N

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ(Eni(j)) almost surely.

This representation can be considered as an alternative de�nition of the K-sign

depth under errors which are not zero almost surely. This formula yields positive

summands for K-tuples with alternating signs and negative summands otherwise.

Further, it delivers a new perspective how the K-sign depth can be generalized

or modi�ed. By replacing the sign function ψ with another score function for the

residuals, we can extend the class of depth functions.
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7.1.1 K-score depth

The sign function regularizes random variables with heavy-tailed distributions such

that the moments exist afterwards and the Central Limit Theorem can be applied.

Outliers and heteroscedasticity can be handled as well. However, the signs have the

drawback that much information is lost compared to the original residuals. Thus, the

e�ciency towards other methods can su�er drastically. Therefore, we will consider

generalizations of the K-sign depth by replacing ψ with score functions which are

outlier robust and provide the existence of the moments of the residuals but also

contain more information to obtain higher e�ciency. This is the typical trade-o�

between robustness and e�ciency in robust statistics (Maronna et al., 2006, p. 27).

De�nition 7.1. Let R = (R1, . . . , RN)> be a residual vector. For K ∈ N \ {1} and
score function ψ : R→ R, we de�ne the K-score depth with score ψ by

TK,ψ(R) :=
N

2K−1
(
N
K

) ∑
1≤n1<...<nK≤N

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ(Rni(j)).

Note that we use the symbol ψ for a more general class of functions compared

to the previous chapters. The class of score functions should be identi�ed such

that an asymptotic distribution can be obtained. This question also depends on

the distribution of the errors. In the following, we discuss some properties which the

errors and ψ have to satisfy simultaneously and how the asymptotic distribution can

be derived then. Compared to Assumption 2.1, p. 5, we will need more assumptions

on the errors for the K-score depth.

Assumption 7.2. Let E1, . . . , EN be random variables in R which satisfy the follo-

wing conditions:

ψ(E1), . . . , ψ(EN) are independent, (A1)

P(ψ(En) = 0) = 0, n = 1, . . . , N, (A2∗)

ψ(E1), . . . , ψ(EN) are identically distributed, (A3)

IE(ψ(En)) = 0, n = 1, . . . , N, (A4)

σ2
ψ := var(ψ(En)) <∞, n = 1, . . . , N. (A5)

Formula (A1) is the same as in Assumption 2.1. If ψ is the sign function, then (A2∗)

and (A4) imply (A2) from Assumption 2.1. Assuming (A2) implies Formula (A3)

and thus (A5) directly if ψ is the sign function. For more general scores, (A3) - (A5)

have to be assumed additionally in general.
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E.g., for ψ(x) = x and En ∼ Cau(0, γn), n = 1, . . . , N , the assumptions (A3) - (A5)

are violated. The Assumption (A3) is usually inherited by assuming identically distri-

buted errors E1, . . . , EN . Assumption (A4) is usually given due to under symmetric

errors and scores. For Assumption (A5), the scores have to be robustifying if the

second moment of the errors do not exist. Note that each variance should be equal.

Derivation of the asymptotic distribution

The most part of the following derivation is similar to Chapter 3. Therefore, we will

only highlight the di�erences between the derivation from Chapter 3 to keep this

chapter as short as possible.

Theorem 7.3. Let (EN)N∈N be a sequence of random variables and ψ : R → R
a score function such that Assumption 7.2 is satis�ed. Let βK,N := NKK(K−1)

4〈N〉K
and

βK := K(K−1)
4

. We denote E = EN = (E1, . . . , EN)>. Then, we have

(a) TK,ψ(E) = −βK,N
∑

1≤n1 6=n2≤N

(
1

2
− |n1 − n2|

N

)K−2

ψ(En1)ψ(En2) + oa.s.(1),

(b) TK,ψ(E) = βK,N

(
−

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ,N(SNψ,•)

−
(
−1

2

)K−2(
SNψ,1

)2
+

1

N2K−2

N∑
n=1

ψ(En)2

)
+ oa.s.(1) almost surely

with the same notation as in Theorem 3.22, p. 39, and

SNψ,t =
1√
N

bNtc∑
n=1

ψ(En) for t ∈ [0, 1].

(c)
TK,ψ(E)

σ2
ψ

D−−−→
N→∞

βK

(
−

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ(B•)−
(
−1

2

)K−2

B2
1 +

1

2K−2

)

where (Bt)t∈[0,1] denotes the standard Brownian motion. For K ∈ {2, 3}, the o-terms
are equal to zero.

Assertion (a) is the more general version of Theorem 3.17, p. 35, which is also useful

for an e�cient computation similar to Chapter 4.1 and (b) and (c) are the pendants

of Theorem 3.22, p. 39, and Theorem 3.29, p. 50, respectively.

Proof of Theorem 7.3: For (a), we need to prove Lemma 3.9, p. 23, for score

functions ψ and errors E1, . . . , EN that satisfy (A1) - (A5) from Assumption 7.2.
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Compared to the proof of this lemma, only Formula (22), p. 23, changes to

IE

(
m∏
j=1

ψ(Eni(j))ψ(Eñi(j))

)
=

σ2m
ψ , if ni(j) = ñi(j) for j = 1, . . . ,m,

0, otherwise,

for arbitrary indices i(1), . . . , i(m) by (A4) and (A5). If ψ is the sign function,

we have σ2m
ψ = 1. Since this expected value is constant and does not depend on

ni(1), . . . , ni(m) or N , the proof can be continued analogously. The rest of the deri-

vation until Theorem 3.17, p. 35, can then be done completely identically for the

remaining proof of (a).

For (b), we can obtain the same result as in Lemma 3.19, p. 36, except for the

constant 1
2K−2 in Formula (36), p. 36:

− 1

N

∑
1≤n1 6=n2≤N

(
1

2
− |n1 − n2|

N

)K−2

ψ(En1)ψ(En2)

=− 1

N

N∑
n1,n2=1

(
1

2
− |n1 − n2|

N

)K−2

ψ(En1)ψ(En2) +
1

N2K−2

N∑
n=1

ψ(En)2

since ψ(En)2 cannot be simpli�ed further in general. Apart from that, the other

results up to Theorem 3.22, p. 39, can be derived identically for (b) by using (A2∗).

For proving (c), we are going to use Donsker's invariance principle. According to As-

sumption 7.2 (A1) and (A3), ψ(E1), . . . , ψ(EN) are i.i.d. random variables. Further,

(A4) and (A5) imply IE(ψ(En)) = 0 and var(ψ(En)) = σ2
ψ. For Donsker's invariance

principle, we need to rescale the variance of the random walk SNt to one:

S̃Nt =
1

σψ
√
N

bNtc∑
n=1

ψ(En).

Then, Donsker's invariance principle implies

(S̃Nt )t∈[0,1]
D−−−→

N→∞
B•

where B• denotes the standard Brownian motion. According to (b)

TK,ψ(E)

σ2
ψ

=βK,N

(
K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ,N(S̃N• )

−
(
−1

2

)K−2(
S̃N1

)2

+
1

N2K−2σ2
ψ

N∑
n=1

ψ(En)2

)
+ oa.s.(1).
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Note that c2ΥJ,N(f) = ΥJ,N(cf) for arbitrary c ∈ R and f ∈ D[0, 1] is used here.

Since βK,N −−−→
N→∞

βK and by the strong law of large numbers:

1

N

N∑
n=1

ψ(En)2 −−−→
N→∞

σ2
ψ almost surely.

Therefore, the assertion follows analogously to the proof of Theorem 3.29, p. 50. �

Estimation of the variance factor σ2
ψ

The variance σ2
ψ is unknown in general and has to be estimated for a test based on

the K-score depth. For the sign function ψsgn, this is not necessary since σ2
ψsgn

= 1.

Some estimators for σ2
ψ are listed in Table 19. The interquartile range (IQR) and

estimator relative e�ciency breakdown point

empirical standard deviation 1 1
N

IQR 0.37 1
N

⌈
N
4

⌉
MAD 0.37 1

N

⌊
N−1
2

⌋
Q-estimator 0.82 1

N

⌊
N
2

⌋
Table 19: Overview of several estimators for scaling compared with their relative

e�ciency to the empirical standard deviation (under i.i.d. normally dis-
tributed random variables) and their breakdown points.

median of the absolute derivations from the median (MAD) are multiplied by 1
2Φ−1( 3

4
)

or 1
Φ−1( 3

4
)
, respectively, for a consistent estimation under i.i.d normally distributed

random variables (Maronna et al., 2006, p. 33). Here, Φ denotes the distribution

function of the standard normal distribution. The Q-estimator is introduced by

Rousseeuw and Croux (1993) and based on the 25%-quantile of the pairwise absolute

di�erences of the data. As the table shows, the Q-estimator is an improved estimator

in both categories e�ciency and robustness. The R-function Qn() from the package

robustbase provides a linear implementation of the Q-estimator. For a consistent

estimation under the normal distribution, the Q-estimator should be corrected with

a factor that depends on the sample size with asymptotic value 1√
2Φ−1( 5

8)
.

The relative e�ciency of two unbiased estimators T1 and T2 is de�ned by the quotient

of the variances of the considered estimators and taking its limit for increasing

sample sizes if it exists (Staudte and Sheather, 1990, p. 74):

var(T2(X1, . . . , XN))

var(T1(X1, . . . , XN))
−−−→
N→∞

e(T1, T2).
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In Table 19, the estimator T2 is always the empirical standard deviation since it

is the best estimator for σ2 under the normal distribution. Under this situation,

var(T2(X1, . . . , XN)) < var(T1(X1, . . . , XN)) and e(T1, T2) ∈ [0, 1] if the limit exists.

The closer e(T1, T2) is to one, the closer the performance of estimator T1 is to the em-

pirical standard deviation under normally distributed random variables. The break-

down point for a scale estimation is de�ned by the minimum of the explosion and

implosion point of the estimator (Maronna et al., 2006, p. 59). The explosion or im-

plosion point are de�ned by the minimal relative number of data we have to modify

arbitrarily such that the estimation can tend to ∞ or zero, respectively. For obtai-

ning an explosion, several data points are modi�ed to reach high values tending to

in�nity. For an implosion, multiple data points are usually chosen to have the same

values since many scale estimators are zero then. Note that 1
N

⌊
N
2

⌋
is the highest

breakdown point for scale-equivariant and location-invariant estimators.

In order to estimate σ2
ψ, we propose considering the scored residuals under a well

�tting parameter estimated in advance, similar to the MM-estimation (Yohai, 1987).

This estimation can be based on the maximal K-score depth or on another robust

estimator. Since the residuals should be robusti�ed by applying the score function,

the empirical standard deviation for the residuals can be used. However, the estima-

tion of σ2
ψ can have two problems. If the model class is too simple then no parameter

could explain the model reasonably well and σ2
ψ can be overestimated. The second

problem is a possibly too high type-I-error of the asymptotic test for too small N

since the estimation of σ2
ψ is not considered in the quantiles. If we assume that the

variance factor is estimated consistently and the correct model class is chosen, then

we have an asymptotic test which controls the level for su�ciently high N .

E�cient computation of the K-score depth

The computation of the K-score depth by De�nition 7.1 leads to an algorithm with

time complexity Θ(NK). As in Lemma 4.1, p. 56, with the K-sign depth, we use

Theorem 7.3 (b) for an approximation of the depth with lesser computational costs.

Lemma 7.4. Let SNn,ψ,α =
∑n

k=1

(
k
N

)α
ψ(Rn) for n ∈ {1, . . . , N}, α ≥ 0 and let

R = (R1, . . . , RN)> such that P(ψ(Rn) 6= 0) = 1 for n ∈ {1, . . . , N}. We de�ne

βK,N := NK−1K(K−1)
2〈N〉K

. Then

TK,ψ(R) =− βK,N
K−2∑
j=0

(
K − 2

j

) N∑
n=2

(
1

2
− n

N

)K−2−j

ψ(Rn)SNn−1,ψ,j + oa.s.(1)

almost surely. For K ∈ {2, 3}, the o-term is exactly zero.
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Lemma 7.4 leads to an algorithm in linear time for the K-score depth. The proof is

identical to the proof of Lemma 4.1, p. 56. The only di�erence is that the proof of

Lemma 7.4 is based on Theorem 3.17, p. 35, instead of Theorem 7.3 (b).

Examples of score functions

The choice of a score function can be focused on its robustness and also on the level

of information it includes from the residual vector. Two extreme scores are the sign

function and the identity:

ψsgn(x) := 1{x > 0} − 1{x < 0},

ψid(x) := x.

An idea for a better trade-o� between these two functions is the Huber-score.

Example 7.5. For some tuning constant b > 0, we de�ne the Huber-score as

ψHub(x) :=

x, for |x| ≤ b,

b · ψsgn(x), for |x| > b.

Errors with larger absolute values than b can be understood as outliers. Therefore,

the in�uence of large outliers is reduced by this class of functions. Additionally, the

main information of the residuals is included for the estimation. This score function

is inspired by the Huber-M-estimator and has the same form as the weight function

from the Huber-M-estimation (Maronna et al., 2006, p. 26).

Note that the score functions ψsgn and ψid are also considered as weight functions

for M-estimators corresponding to the ordinary-least-squares estimator or the least-

absolute distances, respectively (Maronna et al., 2006, p. 23). Other weight functions,

such as in the Hampel-M-estimator, can be considered further. Note that some

of them set residuals to zero. This property has to be avoided since Theorem 7.3

assumes that no residuals are equal to zero almost surely. E.g., the function can be

modi�ed or Theorem 7.3 has to be extended for residuals equal to zero otherwise. A

crucial point using these scores is the choice of the tuning constants, e.g., b for the

Huber-score. A detailed discussion of this choice is beyond this thesis but there exists

research for similar situations, e.g., Kelly (1992, 1996). In the literature, rescaling

the residuals is often done before applying some robustifying function, i.e.:

TK,ψ(E) =
N

2K−1
(
N
K

) ∑
1≤n1<...<nk≤N

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψ

(
En(j)

σ

)
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and σ is a scale parameter of the density function of E1, . . . , EN (Maronna et al.,

2006, p. 38). This formulation by a scale parameter avoids particularly to assume

the existence of the second moment of the errors and general classes of distributions

can still be considered. This approach can lead to easier rules for the choice of tuning

constants which should be discussed in further research as well.

Further ideas for the K-score depth

The type-I-error of the K-score depth test should be studied since it only can be

used with the asymptotic quantiles. By simulation studies, the necessary sample

size N should be derived. Such cut o� values for a su�ciently high sample size

can depend on K (cf. Chapter 6.3.1) but also on the chosen score function and the

estimation of σ2
ψ. A detailed focus on the estimation of σ2

ψ should be discussed as

well. For obtaining a faster approximation of the asymptotic distribution, the paths

of the random walk (SNt )t∈[0,1] can be linearly interpolated before evaluating them by

the functional. According to Donsker's invariance principle for linearly interpolated

random walks, this statistic has the same asymptotic distribution (Billingsley, 1999,

p. 90). The results from Chapter 6.2 can be helpful for considering the linearly

interpolated versions since Lemma 7.4 cannot be used for the computation.

7.1.2 K-rank depth

Instead of choosing deterministic score functions, we can consider the signed ranks

of the absolute residuals. This has the advantage that we do not have to estimate

a scaling factor and have a distribution free test statistic as well so that the exact

distribution can be computed. In particular, we consider for R = (R1, . . . , RN)>:

rkNn (R) := rk(Rn) := 1
N+1

∑N
j=1 1{|Rj| ≤ |Rn|} for n = 1, . . . , N. (83)

If N and R are �xed, we shortly write rk(Rn). Note that the division by N + 1

yields values in (0, 1). This avoids that the ranks tend to ∞ for N →∞.

De�nition 7.6. Let R = (R1, . . . , RN)> be a residual vector. For K ∈ N \ {1} and
score ϕ : (0, 1)→ [0,∞), we de�ne the K-rank depth with score ϕ by

T rkK,ϕ(R)

:=
N

2K−1
(
N
K

) ∑
1≤n1<...<nK≤N

bK2 c∑
L=1

∑
1≤i(1)<...<i(2L)≤K

2L∏
j=1

(−1)i(j)ψsgn(Rni(j))ϕ(rk(Rni(j))).
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The function ϕ is a score function for the ranks. For ϕ(u) = u, we have the original

ranks also known as the Wilcoxon ranks. Moreover, the van der Waerden ranks are

de�ned by ϕ(u) = Φ−1(u+1
2

) where Φ is the standard normal distribution functi-

on (Antille, 1979). Note that the van der Waerden ranks could not be applied if

Formula (83) was rescaled by 1
N

since lim
x→1

Φ−1(x) = ∞. Rank tests based on the

van der Waerden scores often show a good performance under normally distribu-

ted errors and have also robust properties under other distributions (Hodges and

Lehmann, 1961). Moreover, we can set ϕ(u) ≡ 1 to obtain the original K-sign depth.

This K-rank depth can also be robust. Compared to the K-sign depth, the K-rank

depth has the advantage that it contains more information of the residual vector

such as the monotony structure. If a K-tuple has no alternating signs, the penalty

is higher for absolutely larger values. Moreover, it has also the advantage that the

distribution of the K-rank depth is distribution free under the true parameter and

some additional assumptions compared to deterministic scores from Chapter 7.1.1.

However, the current form in De�nition 7.6 has to be simpli�ed further since the

time complexity is Θ(NK). Before computational simpli�cations can be considered,

we introduce some assumptions.

Assumption 7.7. Let E1, . . . , EN be random variables in R which satisfy the follo-

wing conditions:

E1, . . . , EN are independent, (A1)

P(En = 0) = 0, n = 1, . . . , N, (A2∗)

E1, . . . , EN are identically distributed, (A3)

E1, . . . , EN are symmetric around 0. (S)

Compared to Assumption 7.2, the symmetry assumption (S) is given, but (A4)

and (A5) are not needed due to the ranks. Further, (S) and (A2∗) imply (A2) in

Assumption 2.1. Under Assumption 7.7, the ranks from Formula (83) and the sign

of the residuals are independent as the next lemma shows:

Lemma 7.8. Let E1, . . . , EN be random variables satisfying Assumption 7.7. Then

(ψsgn(E1), . . . , ψsgn(EN)) is stochastically independent from (rk(E1), . . . , rk(EN))

where rk(En) denotes the rank of En of the absolute values from E1, . . . , EN as

de�ned in Formula (83).
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Proof of Lemma 7.8: First, consider En and a ∈ R and prove that rk(En) and

ψsgn(En) are independent. Due to the symmetry property (S) of En, we have

P(0 < En ≤ a) = P(−a ≤ En < 0).

From (A2∗), we obtain P(|En| ≤ a) = P(−a ≤ En < 0) + P(0 < En ≤ a) and thus

P(|En| ≤ a) = 2 · P(0 < En ≤ a) ⇔ 1

2
· P(|En| ≤ a) = P(0 < En ≤ a).

Assumption (A2∗) and (S) imply P(ψsgn(En) = 1) = 1
2
so that

P(|En| ≤ a, ψsgn(En) = 1) = P(0 < |En| ≤ a) = P(|En| ≤ a)P(ψsgn(En) = 1). (84)

Formula (84) can be shown for the event ψsgn(En) = −1 similarly by applying

P(En ≥ a) = P(En ≤ −a). Therefore, |En| and ψsgn(En) are independent. Assump-

tion (A1) yields that (|E1|, . . . , |EN |) and (ψsgn(E1), . . . , ψsgn(EN)) are independent

as well. Since (rk(E1), . . . , rk(EN)) is a measurable function of (|E1|, . . . , |EN |), the
assertion follows. �

Note that Lemma 7.8 does not hold if the normal ranks of R1, . . . , RN are considered

(i.e., not based on the absolute values) or the symmetry property (S) is not given.

Theorem 7.9. Let (EN)N∈N be a sequence of random variables satisfying Assump-

tion 7.7, ϕ : (0, 1) → [0,∞) and βK,N := NKK(K−1)
4〈N〉K

. We denote E = EN =

(E1, . . . , EN)>. Assume that for each m ∈ {4, . . . , K} a sequence (γN)N∈N exists

such that

ϕ

(
n

N + 1

)
≤ γN for n = 1, . . . , N,

with γ2m
N = o

(
Nm−2

)
.

(R1)

Then

(a) T rkK,ϕ(E) = βK,N
∑

1≤n1 6=n2≤N

(
1

2
− |n1 − n2|

N

)K−2 2∏
i=1

ψsgn(Eni)ϕ(rk(Eni)) + oa.s.(1),

(b) T rkK,ϕ(E) = βK,N

(
−

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ,N(SNrk,ϕ,•)

−
(
−1

2

)K−2(
SNrk,ϕ,1

)2
+

1

N2K−2

N∑
n=1

ϕ(rkNn (EN))2

)
+ oa.s.(1)

with similar notations as in Theorem 3.22, p. 39, and
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SNrk,ϕ,t =
1√
N

bNtc∑
n=1

ψsgn(En)ϕ(rkNn (EN)) for t ∈ [0, 1].

For K ∈ {2, 3}, the o-terms are equal to zero.

Proof of Theorem 7.9: For (a), we need to modify the proof of Lemma 3.9, p. 23,

for the signed ranks with score ϕ. Formula (22), p. 23, changes to

IE

(
m∏
j=1

ψsgn(Eni(j))ϕ(rk(Eni(j)))ψsgn(Eñi(j))ϕ(rk(Eñi(j)))

)

≤

γ2m
N , if ni(j) = ñi(j) for j = 1, . . . ,m,

0, otherwise
(85)

almost surely for arbitrary indices i(1), . . . , i(m). For the �rst case in Formula (85),

the inequality (R1) is used. The second case is also an equality and follows from the

independence of the signs and signed ranks, cf. Lemma 7.8. A deterministic upper

bound for the expected value exists for each m which does not depend on the indices

ni(1), . . . , ni(m). Therefore, the proof can be continued similarly to Lemma 3.9. The

di�erence is here that the upper bound may depend additionally on N and thus, we

will need γ2m
N = o(Nm−2) in (R1) here. Based on the notation from Lemma 3.9, we

have M = K and B = 1−K. Analogously to the proof of Lemma 3.9:

var

( ∑
1≤n1<...<nK≤N

O(N1−K)
m∏
j=1

ψsgn(Eni(j))ϕ(rk(Eni(j)))

)
≤O(N2−2K)

∑
1≤n1<...<nK≤N
1≤ñ1<...<ñK≤N

γ2m
N · 1Ii(1),...,i(m)

(n1, . . . , nM , ñ1, . . . , ñM)

where Ii(1),...,i(m) denotes the set of 2M -tuples with ni(j) = ñi(j) for j ∈ {1, . . . ,m}
according Formula (85). The remaining proof in Lemma 3.9 can be done identically

up to Formula (24):

O(N2−2K)
∑

1≤n1<...<nK≤N
1≤ñ1<...<ñK≤N

γ2m
N · 1Ii(1),...,i(m)

(n1, . . . , nM , ñ1, . . . , ñM)

(24)

≤ O(N2−2K)O(N2(K−m))O(Nm)γ2m
N = O(N2−m)γ2m

N

(R1)−−−→
N→∞

0.

The last convergence is given if and only if (R1) is correct. The rest of the derivation

up to Theorem 3.17, p. 35, can be continued identically for proving (a).

For (b), we can do completely the same derivation as in Chapter 3 using (A2∗).
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Compared to Theorem 3.22, p. 39, only the factor
∑N

n=1 ϕ(rk(En))2 changes, since

it cannot be simpli�ed further. �

The condition (R1) in Theorem 7.9 is discussed in the next example.

Example 7.10. The condition (R1) in Theorem 7.9 is satis�ed for the Wilcoxon

ranks with score ϕ(u) = u and for the van der Waerden ranks with score ϕ(u) =

Φ−1(u+1
2

) where Φ is the standard normal distribution function.

(a) For the Wilcoxon ranks, let γN ≡ 1 since rk(en) ≤ N
N+1

< 1 for arbitrary

vectors (e1, . . . , eN)> and n = 1, . . . , N .

(b) For the van der Waerden ranks, we can set γN = log(N + 1) which is an

asymptotic upper bound for the quantile function of the standard normal dis-

tribution. For proving this assertion, we will show for su�ciently large N

Φ−1

(
1 + N

N+1

2

)
≤ log(N + 1) ⇔ 0 ≤ 2Φ(log(N + 1)) +

1

N + 1
− 2. (86)

Let f : (0,∞)→ R, f(N) = 2Φ(log(N + 1)) + 1
N+1
− 2 and take its derivative:

f ′(N) = 2Φ′(log(N + 1))
1

N + 1
− 1

(N + 1)2

!
= 0

⇒ 2Φ′(log(N + 1))
!

=
1

N + 1
.

After substituting x = log(N + 1), we obtain:

2Φ′(x)
!

= exp(−x).

By solving a quadratic equation, we obtain the following solutions:

x1,2 = 1±
√

1 + log
(

2
π

)
and obtain after resubstituting:

N1,2 = exp

(
1±

√
1 + log

(
2
π

))
− 1.

According to the previous calculation, f can only have for N1 or N2 local

extrema. The solution N1 = exp
(

1 +
√

1 + log
(

2
π

))
− 1 is larger than N2.

Moreover, we can compute f(N1) ≈ 0.094 > 0 in R. Since lim
N→∞

f(N) = 0 and

no other extremum occurs after N1, we obtain f(N) ≥ 0 for N ≥ N1 which
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implies Formula (86) for su�ciently large N . Figure 54 presents the graph of

the function f in order to follow the previous argumentation better.

0 5 10 15 20 25

0.
00
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f(
N

)

N2

N1

Figure 54: The graph of the function f(N) = 2Φ(log(N + 1)) + 1
N+1
− 2

Completely analogously to Lemma 7.4, in Chapter 7.1, a representation for the K-

rank depth in linear time can be derived.

Lemma 7.11. Let SNn,rk,ϕ,α =
∑n

k=1

(
k
N

)α
ψsgn(Rn)ϕ(rk(Rn)) for n ∈ {1, . . . , N},

α ≥ 0 and let R = (R1, . . . , RN)> such that P(Rn = 0) = 0 for n ∈ {1, . . . , N}. We

de�ne βK,N := NK−1K(K−1)
2〈N〉K

. Then

T rkK,ϕ(R) = −βK,N
K−2∑
j=0

(
K − 2

j

) N∑
n=2

(
1

2
− n

N

)K−2−j

×

ψsgn(Rn)ϕ(rk(Rn))SNn−1,rk,ϕ,j + oa.s.(1)

almost surely. For K ∈ {2, 3}, the o-term is exactly zero.

Testing, ties and the asymptotic distribution

In the context of statistics based on ranks, it is often assumed that E1, . . . , EN ha-

ve no ties almost surely in the literature (i.e., there does not exist any equal value

between the errors). This holds in particular for a continuous error distribution. Mo-

reover, this assumption is useful when applying the K-rank depth since the statistic

is then distribution free under the true parameter. Thus, we can simulate the exact

distribution similar to the way described in Chapter 6.2 for the K-sign depth by

considering all N ! · 2N combinations for permutations of (1, . . . , N) component wise

multiplied by all vectors in {1,−1}N for the residuals.
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However, ties can occur in real data applications because the data is actually discrete

or due to restrictions of the measuring accuracy (Gibbons and Chakraborti, 2003, p.

194). For the computation of Formula (83) and De�nition 7.6, ties can be handled

without problems. The literature o�ers several of procedures such as considering the

mean of the ranks with ties (midranks) or by randomizing the order. Note that the

distribution under the null hypothesis is a�ected by using midranks.

For the discussions of the asymptotic analysis, we consider Theorem 7.9. First of all,

we have to ensure that the following sum converges as N →∞:

lim
N→∞

1

N

N∑
n=1

ϕ(rkNn (EN))2 =: σ2
ϕ (R2)

such that the corresponding part in Theorem 7.9 (b) can be handled asymptotically.

For the Wilcoxon ranks and the van der Waerden ranks, (R2) is satis�ed as the next

example shows.

Example 7.12. The condition (R2) is satis�ed for the (a) Wilcoxon ranks with

score ϕ(u) = u with σ2
ϕ = 1

3
and (b) for the van der Waerden ranks with score

ϕ(u) = Φ−1(u+1
2

) with σ2
ϕ = 1 when no ties occur almost surely.

(a) For the Wilcoxon ranks, the sum in (R2) can be simpli�ed to a polynomial of

degree 3 according to Faulhaber's formula (Knuth, 1993):

1

N

N∑
n=1

ϕ(rkNn (EN))2 =
1

N(N + 1)2

N∑
n=1

n2 =
N3

3
+ N2

2
+ N

6

N(N + 1)2
−−−→
N→∞

1

3
.

(b) For the Van der Waerden ranks, we consider the limit of the sum as an integral:

lim
N→∞

1

N

N∑
n=1

ϕ(rkNn (EN))2 = lim
N→∞

1

N

N∑
n=1

Φ−1

(
1 + n

N+1

2

)2

=

∫ 1

0

Φ−1

(
1 + u

2

)2

du = 2

∫ 1

1
2

Φ−1 (v)2 dv = 2

∫ ∞
0

w2Φ′(w) dw = 1.

Note that the substitutions u := 2v − 1 and v := Φ(w) are used for the deri-

vation. Furthermore,
∫∞

0
w2Φ′(w) dw = 1

2
IE(Z2) for Z ∼ N (0, 1) due to the

symmetry around 0 of the standard normal distribution.

Example 7.12 (b) shows that (R2) implies the quadratic integrability of ϕ on [0, 1].

Further, the asymptotic behavior of Υ(SNrk,ϕ,•) should be discussed. An asymptotic
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distribution cannot be derived directly since the ranks are correlated and Dons-

ker's invariance principle cannot be applied in its standard version as it is done in

Theorem 3.29, p. 50, or Theorem 7.3 (c), p. 150.

Sen (1974), Sen (1981), and Hájek et al. (1999) provide a theory of invariance prin-

ciples based on several type of ranks. However, the provided invariance principles

have not exactly the form of SNrk,ϕ,• in Theorem 7.9 (b). An asymptotic analysis

should be content for future research for proving the following conjecture:

Conjecture 7.13. Let (EN)N∈N be a sequence of random variables satisfying Ass-

umption 7.7 and let ϕ : (0, 1) → [0,∞) be a score function that satis�es (R1) and

(R2). We denote E = EN = (E1, . . . , EN)>. Then, we have

T rkK,ϕ(E)

σ2
ϕ

D−−−→
N→∞

βK

(
−

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ,N(B•)−
(
−1

2

)K−2

(B1)2 +
1

2K−2

)

where σ2
ϕ is de�ned in Formula (R2) and (Bt)t∈[0,1] is the standard Brownian motion.

If the convergence 1
σϕ
SNrk,ϕ,•

D−−−→
N→∞

B• with respect to the Skorokhod topology is

proven, then Conjecture 7.13 follows directly. Dividing T rkK,ϕ by the variance factor σ
2
ϕ

has also been done for other invariance principles to have increments with variance 1

as in Sen (1981). The assumptions on ϕ may need to be �xed with more restrictions.

Remark 7.14. A test based on Conjecture 7.13 for K = 2, ϕ(u) = u and the model

Yn = µ+ En for n = 1, . . . , N

is equivalent to the one-sample Wilcoxon signed-rank test for testing the value of

the median µ ∈ R since both test statistics sum up the signed rank of the absolute

valued data. The asymptotic result of this conjecture is especially the same as for the

Wilcoxon signed-rank statistic (Gibbons and Chakraborti, 2003, p. 197-203). Thus,

the K-rank depth tests can be understood as a generalization of the Wilcoxon signed-

rank test as for the K-sign depth and the sign test.

7.1.3 Simulation study for the generalized depth approaches

The approaches in Chapter 7.1.1 and 7.1.2 will be compared in a short simulation

study with the F -test for linear models and a robust Wald-test based on the MM-

estimator (Yohai, 1987). We consider the model

Yn = θ · xn + En for n = 1, . . . , 25 (87)
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for equidistant x1, . . . , x25 in the interval [−3, 3]. The errors are i.i.d. with distributi-

on En ∼ N (0, 4) or En ∼ Cau(0, 1). For each parameter θ ∈ {−1,−0.95, . . . , 2.95, 3}
(for normal distribution) or θ ∈ {−3,−2.95, . . . , 4.95, 5} (for Cauchy distribution),

1,000 repetitions are considered to compute the power of testing H0 : θ = 1.

In Figure 55, we compare the resulting power functions of the 3-sign depth from De�-

nition 2.2, the 3-score depth with Huber-scores from De�nition 7.1 and Example 7.5

with tuning constants b = 3 and the 3-rank depths in De�nition 7.6 for the Wil-

coxon ranks and van der Waerden ranks. For the distribution free depth notions,

the exact distributions are computed by 1,000,000 repetitions of samples under the

required assumptions. The 3-score depth test with Huber-scores uses the asymptotic

quantiles. The true scaling factors σ2
ψHub
∈ {1.75, 1.7} (for the particular normal and

Cauchy distribution, respectively) under H0 are used in order to see the performance

of the score-depth tests without bias due to the scale estimation. This scaling factor

is obtained by a simulation study of 1,000,000 repetitions of the empirical standard

deviation of scored residuals under H0. (For real data application, an estimation is

necessary in advance.) For the depths from Chapter 7, an exact or asymptotic test

can be completely analogously constructed as in Theorem 6.1. The MM-estimator

and the covariance matrix for the robust Wald-test are computed by lmRob from

the package robust using the default settings (Wang et al., 2020).
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Figure 55: A comparison of the power functions testing H0 : θ = 1 among the F -
test (lm), the robust Wald-test (lmRob), the sign depth test (sign), the
Huber-score depth test with tuning constant b = 3 (Hub(b=3)) and the
rank depth tests based on the Wilcoxon ranks (rank) and the van der
Waerden ranks (rankNorm)

The F -test delivers the best power under the normal distribution and the worst

power under the Cauchy distribution among the considered tests. The robust Wald-

test has a slightly lower power than the Huber-score depth test under the normal
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distribution and a slightly higher power under the Cauchy distribution. In each case,

the Huber-score depth test is better than the other depth tests. However, the power

of the Wilcoxon rank depth is still very high in both cases. The van der Waerden rank

depth is under normality a bit better than the Wilcoxon ranks but struggles more

under the Cauchy distribution. The sign depth performs the worst under the normal

distribution but is better than the rank approaches under the Cauchy distribution.

Note also that the optimization of the M-estimator has not always converged using

the default settings which could be tuned to obtain higher power values.

Based on this results, the Huber-score depth and the rank depth (as a distribution

free statistic) show the best performance among the depth tests. The Huber-score

depth has the drawback that the variance has actually to be estimated which has

not been done here. Therefore, the comparison with the Wald-test, which estimates

the variance as well, should only be understood as a demonstration of the potential

of the Huber-score depth but is in the current execution not fair. The construction

of a detailed estimation procedure of σ2
ψ will be investigated in further research. This

drawback can be compensated by the rank depth which performs consistently well.

In a second simulation study, we consider the model

Yn = θ1xn + θ2x
2
n + En for n = 1, . . . , 25

with θ1 = 1 �xed in all scenarios and θ2 ∈ {−3,−2.95, . . . , 2.95, 3}. However, we still
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Figure 56: A comparison of the power functions testing H0 : θ1 = 1 under vary-
ing θ2 among the F -test (lm), the robust Wald-test (lmRob), the sign
depth test (sign), the Huber-score depth test with tuning constant b = 3
(Hub(b=3)) and the rank depth tests based on the Wilcoxon ranks (rank)
and the van der Waerden ranks (rankNorm) for K = 4

assume that the model in Formula (87) is correct and test H0 : θ1 = 1 which can
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be understood as an under�tted model or a forgotten variable. For the depths, we

consider the cases K = 4. The other settings are the same as in the previous case.

Figure 56 shows that the depth function are very sensitive for rejecting the model.

In contrast, the robust Wald-test rejects only under absolutely higher values of

θ2 and the F -test never rejects the model. The F -test and robust Wald-test are

based on comparing the suggested (aspect of the) parameter with an estimation of

it. Moreover, the estimated covariance matrix depends on the suggest model class

which can lead to overestimated variances under forgotten variables. The estimation

for θ1 is here especially for the F -test always very close to one so that no rejection

happen for varying θ2 from zero. Compared to the F -test, the Wald-test rejects the

null hypothesis because the estimation of θ1 gets unstable for a strong variation of

θ2. On the other hand, the depth tests only depend on the residuals so that actually

H0 : θ1 = 1 ∧ θ2 = 0 is tested although we do not know that other parameters

can be given possibly. This behavior seems to be more �tting for tests which should

check the complete model and not only the parameter. An interesting point here is

that we have parametric assumptions on the model but we can test hypotheses in a

nonparametric manner. For application, this knowledge is very important in order

to know what rejecting H0 actually implies.

Figure 57 shows the noticeably worse results for K = 3. According to Chapter 6.4,
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Figure 57: A comparison of the power functions testing H0 : θ1 = 1 under vary-
ing θ2 among the F -test (lm), the robust Wald-test (lmRob), the sign
depth test (sign), the Huber-score depth test with tuning constant b = 3
(Hub(b=3)) and the rank depth tests based on the Wilcoxon ranks (rank)
and the van der Waerden ranks (rankNorm) for K = 3

the number of intersections between the suggested model and the alternative a�ects

the power for di�erentK. Between a linear and quadratic regression line, we can have

up to two intersections such that the di�erence function can have two sign changes.
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Therefore, K = 4 should lead to the highest power. However, the choice of K is

usually based on the model assumption (cf. Chapter 6.4.2) so that we would except

to choose K = 3. Therefore, the results compared to the robust Wald-test may not

be that impressive on the �rst glance (expect of the Huber-score depth which may

have worse variance estimations) if we choose strictly the hyper-parameter based

on the model assumption. Varying the hyper-parameter K for the depth tests is

nevertheless a more convenient method for detecting bad model suggestions than

extending the model with more unknown parameters or variables for the F -test or

robust Wald-test, especially in higher dimensions. An odd and even candidate for

K can be considered and the α-level controlled by a Bonferroni correction.

7.2 Errors with weak correlations

Assumption (A1) can be weakened by applying a more general version of Donsker's

invariance principle allowing short memory dependencies (Billingsley, 1999, p. 196).

Theorem 7.15. Let (XN)N∈N be a stationary stochastic process, i.e., for each j ∈ N
the distribution of (Xk, . . . , Xk+j) is the same for arbitrary k ∈ N (Billingsley, 1999,

p. 88), with IE(Xn) = 0 and IE(X2
n) <∞. Moreover, we de�ne

ρm := IE(X1Xm) for m ∈ N and suppose
∞∑
m=2

ρm <∞.

Then, the following convergence in distribution holds in (D[0, 1],D[0, 1]) with respect

to the Skorokhod topology

1

σ
√
N

bNtc∑
n=1

Xn
D−−−→

N→∞
B•

where B• = (Bt)t∈[0,1] is the standard Brownian motion on D[0, 1] with B• ∼ WH

(cf. Chapter 3.3.1 for more details) and

σ2 := IE(X2
1 ) + 2

∞∑
m=2

ρm.

In Theorem 7.15, the variance factor σ2 also contains the autocorrelations ρm. Note

that Theorem 7.15 is a generalization of Theorem 3.25. For an i.i.d. sequence (Xn)n∈N
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of random variables with IE(X1) = 0, it follows

∞∑
m=2

IE(X1Xm) =
∞∑
m=2

IE(X1)IE(Xm) = 0 <∞,

i.e., the autocorrelations vanish and the assumptions of Theorem 7.15 hold. The

scaling factor σ2 also coincides with the variance in this case:

σ2 = IE(X2
1 ) + 2

∞∑
m=2

IE(X1Xm) = var(X1).

Analogous to the proof of Theorem 3.29, p. 50, we can derive the asymptotic dis-

tribution of the K-sign depth for a model under more general assumptions as in

Assumption 2.1:

Assumption 7.16. Let (EN)N∈N be a stationary stochastic process with values in

R which satisfy the following conditions:

∞∑
m=2

IE(ψ(E1)ψ(Em)) <∞, (A1∗)

P(ψ(En) > 0) = P(ψ(En) < 0) =
1

2
, n = 1, . . . , N. (A2)

In Assumption 7.16, ψ(x) = 1{x > 0} − 1{x < 0} can be considered as the sign

function but other scores from Chapter 7.1 can be considered with additional ass-

umptions we will not specify here. Note especially that the existence of each expected

value IE(ψ(E1)ψ(Em)) in Assumption (A1∗) for each m ∈ N has to be ensured for

general scores.

Formula (A1∗) is satis�ed for some short memory processes (En)n∈N with vanishing

autocorrelations. E.g., MA models (moving-average models) have autocorrelations

jumping to zero as the lag is su�ciently high so that almost all summands are

zero (Hamilton, 1994, p. 51). In practice, this dependency structure can describe

some shortly temporal e�ects. These temporal e�ects should disappear su�ciently

quickly as Formula (A1∗) requires. If ψ denotes the sign function, the summands in

Formula (A1∗) can be rewritten by

IE(ψ(E1)ψ(Em)) = IE ((1{E1 > 0} − 1{E1 < 0})(1{Em > 0} − 1{Em < 0}))

=P(E1 and Em have the same signs)− P(E1 and Em have di�erent signs).

In the next limit theorem, we consider directly the asymptotic representation of

the K-sign depth given in Theorem 3.22, p. 39, in order to avoid the discussion
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whether the rest terms are asymptotically negligible. This theorem can be applied

by considering the asymptotic representation for computing the test statistic, as

Lemma 4.1 delivers, and ignoring the rest terms.

Theorem 7.17. Let (EN)N∈N be a stochastic process satisfying Assumption 7.16

and E = EN = (E1, . . . , EN)>. Consider the approximated K-sign depth:

T̃K(E) := ΨK,N(SN• ) (88)

where ΨK,N is de�ned by

ΨK,N(SN• ) = βK,N

(
−

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ,N(SN• )−
(
−1

2

)K−2(
SN1
)2

+
1

2K−2

)

with βK,N = NKK(K−1)
4〈N〉K

and Notation 3.18 (ii), p. 35, and Notation 3.21, p. 39. Then

T̃K(E)

σ2

D−−−→
N→∞

βK

(
−

K−2∑
J=1

(
K − 2

J

)(
−1

2

)K−2−J

ΥJ(B•)−
(
−1

2

)K−2

B2
1 +

1

2K−2

)

where (Bt)t∈[0,1] denotes the standard Brownian motion, βK := K(K−1)
4

and

σ2 = 1 + 2
∞∑
m=2

IE(ψ(E1)ψ(Em)).

Note that we have to estimate σ2 to compute the asymptotic distribution under

dependencies since σ2 is usually unknown. Furthermore, we require assumptions on

the dependency structure of the errors to estimate σ2. However, Theorem 7.17 justi-

�es the application of the K-sign depth under the occurrence of weak dependency

structures of the errors and how the necessary correction has to be. In particular, we

can test the �t of a parameter and allow the occurrence of particularly given class

of dependency structures. E.g., we can consider the null hypothesis of the form:

H0 : θ ∈ Θ0 ∧ ρ ∈ [0, ρmax]

where ρ denotes the true value of the series of autocorrelations between the errors

and ρmax is the maximal allowed positive correlation. However, the discussion of this

application and other ones as simultaneous testing the model and independence is

beyond this thesis and content of further research.
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8 Summary and outlook for future research

Until the year 2018, asymptotic results for the K-sign depth were limited to the

cases K ∈ {2, 3}. Additionally, the lack of e�cient computational tools hindered

strongly research based on simulation studies for performance analysis or real data

applications with high sample sizes. This thesis yields solutions for both problems

and the basis for further research.

The derivation of the asymptotic distribution for all K delivers an applicable tool for

testing the �t of parameters for data with large sample sizes. Generalized versions

of the K-sign depth (cf. Chapter 7.1) also have the same asymptotic distribution

except for a scaling factor. Therefore, these results have major impact on future

research. Furthermore, the theoretical results deliver an approximative algorithm in

linear time. For K ≤ 5, this algorithm can also compute the K-sign depth exactly

with some additional e�ort for the cases K ∈ {4, 5} (cf. Chapter 4).
Analyzing the block structure of the signs of the residual vector yields a deeper un-

derstanding of the K-sign depth and leads to a highly e�cient and exact algorithm

in linear time for all K. Moreover, this algorithm is even faster if the number of

blocks is small. While studying several e�cient algorithms in Chapter 4, 5 or 6.2, it

is noticeable that all of them have in common that they store terms in advance. This

strategy may also be useful for other statistics with similar structures to the K-sign

depth as U -statistics (Lee, 1990). Besides that, theoretical analyses of the K-sign

depth based on considering the block structures were done in the last years as well.

From this research, the conjecture in Chapter 5.4 about maximality properties of

the K-sign depth was obtained, which may have implications for consistency pro-

perties but its detailed analysis is beyond this thesis. Suggestions for applications

and further research are given instead such as the choice of the hyper-parameter K

in polynomial models (cf. Chapter 6.4), an example of a two-sample relevance test

based on the K-sign depth (cf. Chapter 6.5), how to modify the K-sign depth for

nonparametric tests for independence and the connections to the runs-test (cf. Chap-

ter 6.6) or generalizations by score functions, ranks or weakening the independence

assumption (cf. Chapter 7).

The applications in this thesis are only mentioned for the univariate case, i.e., the

models contain one explanatory variable. Horn (2021b) proposes applications based

on the K-sign depth for models with multiple explanatory variables in lower and

higher dimensions. By computing paths through the explanatory variables in higher

dimensional spaces based on distance measures (shortest Hamiltonian path, nearest

neighbors, hierarchical clustering), an order of the explanatory variable can be found
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which is used as the order of the residuals evaluated for the K-sign depth. Note that

these ordering approaches increase the computational costs in dependence of the

dimension. Especially the shortest Hamiltonian path algorithm has exponential time

complexity in worst case (Held and Karp, 1962). Horn (2021b) shows in simulation

studies that distance based measures are a suitable approach for tests based on the

depth for several arrangments in the higher dimensional space. Compared to other

popular methods, evaluating the K-sign depth of a parameter neither depends on

the design matrix (full model) nor estimations of the parameter and covariance

matrix are done. Therefore, sparse linear models can be evaluated as well since no

matrices needs to be inverted. Further research should combine the results of Horn

(2021b) and this thesis. Furthermore, (Horn, 2021b) provides an analysis based on

the K-sign depth in a real data application for bridge monitoring where a model is

discussed which describes the relationship between the current crack width and the

temperature, tra�c, time and the crack width 24 hours ago Abbas et al. (2019). A

real data application is not considered in this thesis since Horn (2021b) provides the

necessary tools for multiple regression analysis based on the K-sign depth.

The generalized depth notions from Chapter 7.1 should be investigated in several

model classes due to their potentially higher e�ciency. Furthermore, more �exible

null hypotheses than hypotheses with only a single point (cf. Chapter 6.1,6.4, 6.5)

are important to construct for the applications, e.g., for having ANOVA-type tests.

Research for �nding an e�cient estimator based on theK-sign depth and generaliza-

tions (cf. Chapter 6.5.1) or the discussion of the robustness based on the breakdown

point or by simulation studies with contaminations can be focused as well. Modern

robust statistic considers outliers in higher dimension in all explanatory variables

than in just some contaminated explanatory variables or only the explained varia-

bles (Raymaekers and Rousseeuw, 2021) which can lead to discussions for robustness

based on �nding robust orderings of the explanatory variables. Moreover, the per-

formance in other real data examples with outliers for outlier detection should be

investigated. Note that also nonparametric models based on kernel smoothing esti-

mations, neural networks or random forests (Hastie et al., 2009, p. 191, p. 389, p.

587), can be tested by the K-sign depth as long as the models are residual-based.

This class of models can be considered for future research as well.

This thesis cannot answer the question if the K-sign depth and its generalizations

will have a large impact in applied statistics, but the results of this thesis and Horn

(2021b) deliver tools to answer this question in future research. At this point, the

variety for applications of the K-sign depth is notable. Its large �exibility due to

the small number of assumptions on the model leads to many possible research.
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