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As part of Industry 4.0, workflows in the process industry are becoming increasingly digitalized. In this context, artificial
intelligence (AI) methods are also finding their way into the process development. In this communication, machine learn-
ing (ML) algorithms are used to suggest suitable separation units based on simulated process streams. Simulations that
have been performed earlier are used as training data and the information is learned by machine learning models imple-
mented in Python. The trained models show good, reliable results and are connected to a process simulator using a .NET

framework. For further optimization, a concept for the implementation of user feedback will be assigned. The results will

provide the fundamental basis for future Al-based recommendation systems.
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1 Introduction

The chemical industry is subject to constant change due to
global challenges and rapid product development. New
challenges and needs require new products with related
processes. The development of a digital twin [1] and the
integration of artificial intelligence (AI) offer a multitude of
new opportunities to reduce costs, time and engineering
effort [2]. Particularly in the area of process development,
which is predominantly based on heuristic decisions [3],
data-driven models can find their application for engineer-
ing assistance. However, the increasing digitalization of the
process industry continuously provides new data and
opportunities, which can be used as a basis for Al or, in par-
ticular, machine learning (ML), which is able to learn rules
and regularities from data by using statistical models. Thus,
more and more Al solutions are finding application in the
process industry. Asprion et al. developed a gray-box model
based approach to optimize process simulations for units
where rigorous models are missing [4]. In parallel, AI-based
image recognition is being used from Schuler et al. to moni-
tor multiphase flows [5] or classify crystals by Heisel et al.
[6]. AI offers the opportunity to leverage the know-how that
has been incorporated into process synthesis over the years
and make it available in data-driven models.

In the following, it will be shown how a ML algorithm
can be used to find the most suitable separation unit
according to the prediction accuracy based on process values
of material streams. Here, data from process simulations are
used as training data and processed with various ML algo-
rithms to investigate the potential. Subsequently, the models
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are linked in Python (Python Software Foundation) with the
process simulation software CHEMCAD (Chemstations
Europe GmbH) to prepare a direct prediction of separation
units based on current simulation streams, resulting in a
data-driven support of the process synthesis.

2 Synthesis and Training

The concept is based on a classical ML model, which con-
sists of three parts (see Fig.1). An input part containing a
vector of process values (see Tab. 1), the actual ML model as
a classifier and an output part, which gives the appropriate
separation operation in the form of a class.

For this study, the most popular machine learning algo-
rithms were used and compared against each other:
- K-Nearest-Neighbors [7, 8]
- Multinomial Logistic Regression [9]
- Naive-Bayes [10, 11]
- Decision Tree [12, 13]
— Random Forrest [14]
- Support Vector Machine (SVM) [15, 16]
— Artificial Neural Network (ANN) [17]
— One-vs-One [18]
— One-vs-All [19]
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processes such as extraction, which work with
an additional solvent, are based on different
solubility or polarity of the individual compo-
ML- Model (ANN, SVM, ... nents. The size of a molecule can also be used
for separation from a mixture of substances.
Input

Vector of >

process

values

Zeolites or other molecular sieves, for example,
capture only small molecules, while larger par-
ticles remain in the bulk phase. These considera-
tions result in the substance properties shown in
Tab. 1, which have to be considered for the selec-
tion of a separation operation, as well as the
respective characteristic physicochemical quan-

Figure 1. Structure of the machine learning approach for separation sugges-

tions in process synthesis.

Table 1. Relevant substance properties and characteristic physical quantities for

use as input parameters.

tities. Goedecke et al. [3] list these material prop-
erties as relevant decision variables, too. The sub-
stance properties shown in the table represent all
necessary physical relationships and are therefore
extracted from databases stored in CHEMCAD
for training. In case a parameter is not stored in

Substance properties [3] Physical quantities

the database, it is assigned the value 0. It is impor-

Molecular size Gyration radius

Vapor pressure

Polarity Dipole moment

Solubility Solubility parameter according to Hildebrand
Melting point Melting temperature

Boiling point Boiling temperature

Vapor pressure according to Antoine

tant to mention that for nearly all substances,
only a few percent of the parameters (0-4 %) were
not available in the databases. Only for the
gyration radius and the Antoine parameters
between 6-7% of the data were not available,
since these are not measured and stored for these
substances, and were therefore replaced with 0 as
a placeholder. In addition, the actual pressure and
temperature of the process stream are considered

The implementation is done in Python (version 3.8.3)
using the scikit-learn and keras libraries [20]. Since the
present case has only a small amount of data for machine
learning, training and test data will not be representative,
resulting in a variance of the validation data. Cross-valida-
tion is used to minimize this variance. This allows for each
class in the full data set to be represented in approximately
correct proportions in the training and test sets. [21]

3 Database

The database is formed by example processes of the flow-
sheet simulator CHEMCAD. As input data, a vector of
process values is used, which are taken from the respective
process streams and databases stored in CHEMCAD. For
initial validations, the focus is set on the separation of
binary substance systems. In order to achieve an efficient
result, it is important that the input data shows the neces-
sary physical relationships, which are required for the selec-
tion of the separation. Typical separations are based, e.g., on
the fact that at one point in the process the substances to be
separated are present in different aggregate states. The melt-
ing temperature, the boiling temperature and the vapor
pressure as a function of the process temperature are
characteristic for describing such a separation. Separation
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as input values too, to integrate the current opera-
tion conditions.

The output is the corresponding separation unit, where
units that require a further additive for separation (e.g.,
extraction, absorption) are combined into a separation with
additive class. This results in the following classes consid-
ered in the data: phase separator, distillation, multipurpose-
flash, condensation, separation with additive. The set of
example simulations includes a total of 37 flowsheets.

From these simulations, the substances to be separated
and their pure substance data were extracted for each indi-
vidual separation unit and added to a training data set in
tabular form. The substances were decomposed in such a
way that binary separation problems are present and the
pure substance data of the substances (see Tab. 1) represent
the input data. Output data represent the associated separa-
tion unit.

4 Results

The models presented in Sect. 2 were validated and com-
pared using a repeated stratified K-fold cross-validation
with five folds and 100 repetitions. The decision to use five
folds is justified by the fact that the class condensation has
only 5 data sets available. In this way it should be possible
that in each fold the class condensation is represented at
least once.

www.cit-journal.com
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4.1 Binary Substance Systems

The training scores obtained are shown in Fig. 2. The train-
ing score in this paper describes the mean percentage of
correct suggestions over all repetitions of the cross-valida-
tion. It can be seen that all models except the Naive Bayes
(49 %) and the Artificial Neural Network (45 %) are able to
learn the relationships between the process values and the
respective separation units. The best scores with over 90 %
are provided by the Decision Tree and the Random Forest
consisting of a large number of Decision trees. They are fol-
lowed by Support Vector Machines (linear-kernel 85 %,
poly-kernel 82 %, rbf-kernel 80%) and the K-Nearest-
Neighbors algorithm (83 %). One-vs-All and Logistic Re-
gression have scores just below 80 %. For Naive Bayes, the
low training score is probably due to the assumptions made
by the algorithm. On the one hand, there are physically
based correlations between some of the variables being con-
sidered. For example, the vapor pressure depends on the
temperature of the stream. However, the Naive Bayes as-
sumes (conditional) independence of the properties. Fur-
thermore, the normal distribution of the data assumed by
Naive Bayes does not apply to the individual properties. In
addition, the standard deviation across all repetitions of the
cross-validation is shown in Fig. 2. For all models, this is in
similar ranges between four and six percentage points.

Artificial Neural Network -.-.-.-.
Naive Bayes

Logistic Regression
One-vs-All - -

K-Nearest-Neighbors ..

ML Model

SWM (rbf Kemel)

SVWM (poly Kernel)

SVWM (linear Kernel)

0 20 40 60 80 100

Prediction Accuracy [%]

Figure 2. Comparison of the model performance (training
scores, percentage of correct suggestions) based on a repeated
stratified K-fold cross-validation.

In addition to the actual training score, there are other
features that should be used to analyze the quality of the
classification. For instance, the output of a confusion matrix
provides information about how many results were cor-
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rectly classified and in which situations a false positive or
false negative classification took place. Fig.3 shows the
confusion matrix for a decision tree after training with a
repeated stratified K-fold cross-validation. The entries rep-
resent the averaged absolute values for the test data over all
folds and repetitions.

distillation - 001 058 021 041 1

condensation - 000 091 008 001 000

Jaquinu abelane

separator - 012 006

actual separation unit

12

10

multipurpose-flash - 082 001 PILE 008 080 8
6

4

separation with additive - 034 000 2
0

)

predicted separation unit

Figure 3. Average confusion matrix of classification results for a
decision tree after cross-validation.

The actual separation units are placed vertically, while the
predicted classes are horizontally arranged in Fig.3. The
diagonal of the matrix thus maps the correctly predicted
classes. Assignments in fields outside the diagonal have thus
been recognized incorrectly. A closer look at the matrix
shows that almost all separation operations could be classi-
fied correctly. At the same time, it is noticeable that the data
set has an uneven distribution of classes. Operations such as
distillation, separation and separation with additive, which
are more common in process plants, are clearly more preva-
lent in the test data than separation or condensation, which
is due to the fact that the data set is a representative cross-
section. The underrepresentation of certain classes affects
training, so their influence needs to be further investigated.

The results presented show that the most reliable predic-
tions are obtained using Decision Tree based models as well
as Support Vector Machines. Consequently, these are used
for further optimization and examined with respect to their
optimization potential by adjusting hyperparameters. Hy-
perparameters are higher-level specifications of machine
learning models, which show a high impact of its learning
speed, results and complexity [22]. For this purpose, a grid
search algorithm in combination with the previously
described cross-validation is used. A grid is created contain-
ing discrete values for relevant hyperparameters. For the
Decision Tree, as well as the Random Forest algorithm,
three parameters were tuned. The criterion, which influ-
ences the quality of the split. The minimal impurity decrease
that occurs when a node is split. The minimal amount of
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samples required at a leaf node. Additionally, for the ran-
dom forest the number of trees will be considered in tuning.
For the tuning of the SVMs with linear- and rbf-kernel the
kernel coefficient gamma as well as the regularization
parameter C will be changed over the grid. Also, for the
SVM with the poly-kernel the degree of the polynomial ker-
nel function and its independent term coef0 will be consid-
ered. The tuning parameters used during the hyperpara-
meter tuning are shown in Tab.2. The values that provide
the best performance in terms of the prediction accuracy
are underlined. It can be seen that more often the outer
parameters in the grid give the best results, so further con-
sideration of values outside the chosen intervals could pos-
sibly give better results.

Based on this grid search, the algorithm trains and vali-
dates all possible combinations of hyperparameters and
compares them against each other. In this way, the best
hyperparameters among the grid explored were selected for
each model [22]. The results of the tuning are shown in
Fig. 4. The deviations of the score after hyperparameter tun-
ing are shown in comparison to the scores before tuning.

It is obvious that the Support Vector Machines benefit
from the tuning. In this way, the scores can be increased by
up to 6.1% (poly-kernel). At the same time, the optimiza-
tion of the Decision Tree does not show a significant
increase in the score. The Random Forrest algorithm even
loses —1.2 % although the default parameters in the grid are
assigned for tuning. The decrease of the score is caused by
the fact that the training scores, due to the small data base,
show a fluctuation of about 1 % despite cross-validation.

SVM (rbf Kernel)

SVM (poly Kernel)

SVM (linear Kernel)

Decision Tree

Random Forrest

S5 -3 -1 1 3 5 7 9
Training Score Deviation [%]

Figure 4. Deviation of training scores after hyperparameter
tuning for different ML models.

4.2 Multi-substance Systems

Binary substance systems rarely occur in chemical industry.
Because of this the ML models are tested on tertiary and
quaternary substance systems, too. The necessary data is
generated from the example processes mentioned in Sect. 3.
For this purpose, tertiary and quaternary substance systems
were derived from the previously used process streams and
their pure substance data were defined as input and the as-
sociated separation unit as output. Fig. 5 shows the compar-
ison of the performance of different ML models using bina-
ry, tertiary and quaternary systems. The tested models are

Table 2. Parameters used in hyperparameter tuning performed with grid search. The used algorithms are part of the python sklearn
library. The underlined parameters provide the best results in terms of prediction accuracy.

Hyperparameter

Tested values

Decision Tree [13] criterion
min_impurity_decrease
min_samples_leaf

Random Forest [14] criterion
min_impurity_decrease
min_samples_leaf
n_estimators

SVM linear [15] C
gamma

SVM poly [15] C
degree
gamma
coef0

SVM rbf [15] C

gamma

gini, entropy

0, 0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1
1,2,3,4,56,7,8,9,10

gini, entropy

0, 0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1
1,2,3,4,56,7,8,9,10

50, 100, 150

0.01,0.1, 1, 10

auto, scale

0.01,0.1, 1, 10

1,2,3,4

auto, scale

0,1

0.01,0.1,1, 10

auto, scale
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Figure 5. Comparison of the best model performance for multi-
substance systems (training scores, percentage of correct sug-
gestions) including standard deviation based on a repeated
stratified K-fold cross-validation with tuned hyperparameters.

chosen based on the previous mentioned results of binary
systems. For the quaternary substance systems, the class of
condensation was not mentioned because of a lack of data.

The different ML models can learn coherences and gener-
ate suitable suggestions of separation operations for tertiary
and quaternary substance systems. The scores reach high
values between 94 % and 99 %. These high scores near to
perfect suggestion accuracy (100 %) can be an indication for
a possible overfitting. In this case, the ML models learn the
coherences of the used data quite properly and often gener-
ate matching suggestions for the test data, because the dif-
ferent records are similar to each other. The algorithms
reach high scores for data that is quite like the used training
data. In the considered case, the test data fulfills this criteri-
on because of the way the data is generated at the beginning
and then used during the repeated stratified K-fold cross-
validation. Based on this assumption, the scores for tertiary
and quaternary substance systems must be interpreted as
unrealistic high. Nevertheless, these ML models have a high
potential to be used for multi-substance systems, too. The
results of the presented studies show that the Decision Tree,
Random Forest and SVM models are able to learn the rela-
tionships present in the data for all used datasets. However,
since overfitting occurs for tertiary and quaternary sub-
stance systems, they need to be further analyzed and
adapted in the future.

5 Feedback Optimization

The available training data set is quite small and non-uni-
formly distributed. For example, the class of condensation

www.cit-journal.com
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is underrepresented, and reliable results cannot be guaran-
teed even on new input data that deviate significantly from
the training data due to their small amount. For this reason,
a constant adaptation and improvement of the algorithm,
respectively of the ML model, is performed during the
usage. Therefore, a Python algorithm is developed, which is
adapted by interaction with the user, similar to reinforce-
ment learning [23]. The principle of this program is shown
in Fig. 6.

The main component of the interactive algorithm is a ML
model trained according to Sect. 2, which receives the data
of a stream from a process simulator. The model calculates
the most suitable separation unit based on the relationships

Simulation of

separation unit

Extension of
ML-Model

Selection of
— correct
separation unit

Process
stream

ML-Model for .
Process Separation
process ¥
values . unit
synthesis

Figure 6. Structure of an interactive script for user feedback
optimization.

learned from the training data and could suggest also sec-
ond and third ranked separation processes. Afterwards, the
user decides whether the suggested separation unit is suit-
able. If this is the case, the separation unit is simulated, and
the output stream determined in the simulation can be used
in a next step as a new input for the ML model and the pro-
gram runs again. In this way, sequential design of separa-
tion processes can be performed with the help of the ML
model. In parallel, the input values and the results are
appended to the training data set and the model is trained
again to further improve the prediction accuracy. If the pre-
diction is wrong, the user selects the most suitable separa-
tion unit by a manual input and the training data set is
extended by the input vector and the selected unit. Subse-
quently, the extension is used to train the model, which
results in an optimized and robust model. At the same time,
the extension allows the model to continue learning with
each new application and to be able to cover new use cases.

Initial feasibility studies in our group show a reliable
extension of the data set with further adjustments to
increase efficiency in the future. For example, care must be
taken to ensure that the expansion of the training data does
not result in too large and uneven distribution within the
data set. Correction factors may have to be inserted to give
more weight to underrepresented classes.

Chem. Ing. Tech. 2021, 93, No. 12, 1930-1936
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6 Implementation in Process Simulation

As shown in Fig.7 a link to CHEMCAD via the CC-API
NET Python interface [24] is implemented into the feed-
back optimization as well. This amplifies the using options
of the algorithm. The user must hand over an existing
CHEMCAD flowsheet and an appropriate internal stream
number to the script. Based on the information stored in
CHEMCAD the algorithm calls up the necessary data and
generates a suggestion of a separation operation for the cho-
sen stream. The feedback optimization process is analogous
to the representation in Fig. 6.

CHEMCAD simulation

Python-model

Figure 7. Connection of the Python-model in CHEMCAD via
.NET Python API.

7 Conclusion and Outlook

With increasing digitalization, data is becoming more and
more important in the process industry. As a result, more
and more data can be made available and the know-how
contained therein can be extracted for further use. In this
paper, an ML approach for data-driven process develop-
ment was demonstrated to predict suitable separation units
based on substance properties of the material streams. First
validations show promising results. Thus, separation units
can be predicted with an accuracy of more than 90 % using
the developed approach. Not only binary systems were con-
sidered, but also multi-substance systems and their opera-
tion were verified. In addition, an optimization was imple-
mented that continuously extends the model with the help
of user feedback. This allows an increase of the robustness
and optimization during the application to substance sys-
tems that strongly deviate from the training data set. In
addition to pure optimization, it is also interesting to inves-
tigate which parameters are particularly strongly involved
in the decision-making process by the ML model. These
should be given more attention in the future and their val-
ues should be experimentally determined if information is
missing in databases.

Regarding future applications, it is important to keep in
mind that trustworthy results will only be achieved if the
previously human-generated data is reliable. For this rea-
son, the training data must be verified and provided with
metadata or a quality code that provides information about
the trustworthiness of the data. The same applies to the user
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feedback and the resulting optimization. The need for
approaches to reliable data storage is also propagated out-
side the KEEN project by the German Catalysis Society
(GeCatS) [25].

Therefore, the developed approach is a recommending
system, which supports the user during the process develop-
ment. The decision whether a separation unit is suitable or
not is thus still made by the user, which means that the
question of the trustworthiness of the training data can play
a subsidiary role. If the explainability of the results can be
ensured by verified and reliable data, it is conceivable to
extend the approach so that an autonomous synthesis of
separation sequences takes place. However, then the ques-
tion arises, who is responsible for the decisions from the
program for a non-successful plant installation.

The BMWi is acknowledged for funding this KEEN
project initiative (Support code: 01MK20014S). Open
access funding enabled and organized by Projekt DEAL.

I Abbreviations

Al Artificial intelligence
ML Machine learning
SVM  Support vector machine
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