
No. 650 March 2022

Numerical studies of a multigrid version of
the parareal algorithm

L. Warnbach, S. Turek

· ISSN: 2190-1767

Numerical studies of a multigrid version of the
parareal algorithm

Lydia Wambach and Stefan Turek∗

Institut für Angewandte Mathematik, Technische Universität Dortmund, Vogelpothsweg 87,
44227 Dortmund, Germany

E-mail: lydia.wambach@math.tu-dortmund.de

Abstract

In this work, a parallel-in-time method is combined with a multigrid algorithm
and further on with a spatial coarsening strategy. The most famous parallel-in-time
method is the parareal algorithm. Depending on two different operators, it enables the
parallelism of time-dependent problems. The operator with huge effort is carried out
in parallel. But despite parallelization this can lead to long run times for long-term
problems. Since the parareal algorithm has a two-level structure and the time-parallel
multigrid methods are also widespread in the area of parallel time integration, we
combine these approaches. We use the parareal algorithm as a smoothing operator in
the basic framework of a geometrical multigrid method, where we apply a coarsening
strategy in time. So we get a multigrid in time method which is strongly parallelizable.
For partial differential equations we add an extra spatial coarsening strategy to our
multigrid parareal version. All in all we get a method, which has a high parallel
efficiency and converges fast due to the multigrid framework, which is shown in the
numerical studies of this work. So we will get a highly accurate solution and can greatly
reduce the parallel complexity, which is especially important for long-term problems
with a limited number of processors.

1 Introduction

The presentation of the parareal algorithm was in 2001 by Lions, Maday and Turinici [8]. This
new approach allows parallelization in time of ordinary or time-dependent partial differential
equations. The parareal algorithm was developed to calculate initial value problems in real
time by the parallelization in time direction. Therefore, it is called parareal, which is a
combination of parallel and real-time.

The problem with the parallelization of ordinary and time-dependent partial differential
equations and their numerical solution is the time dependence. Starting from one time point,
the solution at the next time point is calculated. Accordingly, the solution of the previous
time point must be given as a necessity in order to calculate the solution of the next time
point. For this reason, initial value problems are approximated by numerical methods serially

1

in time, whereas parallelization in space is already widespread. The decomposition of the
space generates independent problems, which are suitable for parallelization.

The problem of parallelization in time was recognized early and we can divide these meth-
ods into four different types, which is shown in the work of Gander [3] where an detailed
overview of already existing time-parallel algorithms is given. In the first group there is a
variety of direct solution methods. We consider the other three types representing iterative
procedures more detailed. The first type of iterative methods is called Multiple Shooting
Method and was first examined by Nievergelt in 1964. The inaccurate initial value approx-
imations result in more accurate approximations, which are calculated in parallel on the
individual time steps. Therefore the time interval is decomposed. A combination of these
approximations is then carried out by interpolation, which is done serially. This concept
was used several times, always based on an iterative solution of a fixed point equation using
the Newton method. The parareal algorithm by Lions et. al. [8] can be understood as a
special modification of these methods, using the difference of two solutions on the macro
grid to approximate the Jacobian matrix in the Newton method as shown in [4]. The Do-
main Decomposition Methods in Space and Time describe the second group of time-parallel
algorithms. The concept behind this is to split the problem into individual spatial and time
sub-problems, so that a sub-problem consists of a spatial and time sub-problem. These
sub-problems can be calculated in parallel. This is followed by an iterative coupling of the
approximations. A special modification is the Waveform Relaxation algorithm, which was
initially developed for the simulation of integrated circuits. Its main feature is to use many
processors in the space dimension. The fourth category, which is shortly discussed in this
work, consists of the time-parallel multigrid methods, Multigrid Methods in Space-Time.
These algorithms are not naturally parallel, but the execution of the individual components
can be carried out in parallel at space-time intervals. There are a lot of further developments,
however Hackbusch [7] was the first who published a Multigrid only in Time procedure in
1984. The best-known continuations include the PFASST algorithm and the MGRIT al-
gorithm. The PFASST algorithm, Parallel Full Approximation Scheme in Space-Time, was
published by Minion in 2012 [11] and is subject to a parallel Deferred Correction Method
which works as a smoother in a fully approximated multigrid method in space-time dimen-
sion. In 2014 the MGRIT algorithm, Multigrid Reduction in Time Method, was developed by
Falgout and Friedhoff et. al. [1], which creates multiple levels by different smoothing. There
are also connections between the MGRIT algorithm and the parareal algorithm, since the
parareal algorithm can be viewed as a two-level multigrid reduction method in time. There
are several other interpretations of the parareal algorithm as a multigrid method, which is
shown in detail in [6] by Gander, Kwok and Zhang in 2018. But the most important differ-
ence to our multigrid version is, that we do not view the parareal algorithm due to its level
structure as a multilevel or multigrid method, rather we use it to get a parallel access in a
geometrical multigrid in time method. To compare our variant with a similar one, we will
examine a first approach of the multigrid-in-time algorithm, which has been published as a
technical report in 2013 by Falgout and Friedhoff in their work [2] as the MGIT algorithm
in more detail in the numerical studies in chapter 5.

This paper is organized as follows: In Section 2, the parareal algorithm, its main features
and a matrix presentation are introduced. This is followed by our multigrid version of the
parareal algorithm in Section 3. We show the geometrical framework of a multigrid algorithm

2

and its combination with the parareal algorithm to get a parallel approach. In Section 4 we
consider the heat equation and a spatial coarsening strategy in combination with the parareal
algorithm and our multigrid parareal version. Section 5 is devoted to the numerical studies
on an ordinary and a partial differential equation, which were implemented in Matlab. There
we compare our multigrid version with another multigrid method of the parareal algorithm
known from the literature.

2 Parareal algorithm

As a model problem we consider the following ODE system:

du

dt
= au ∈ (0, T), u(0) = u0 (1)

In order to parallelize differential equations in time, the parareal algorithm decomposes
the time interval [0, TN] into N sub-intervals

T0 < T1 < · · · < Tn = n ·∆T < Tn+1 < · · · < TN .

Each processor is assigned to a time interval In = [Tn−1, Tn], for n = 1, . . . , N with the
number of required processors N . The global time step size between the global time points
Tn−1 and Tn is denoted by ∆T . Each of these N sub-intervals solves independently an initial
value problem with the initial condition Un−1, n = 1, 2, . . . , N . Therefore, we need a macro
and a micro time step size δT and δt, which belongs to the macro operator G and the micro
operator F . The micro and the macro time step sizes are defined such that δt� δT ≤ ∆T ,
like in Figure 1.

t
1

t
2

t
3

t
4

t
6

T
n-1

T
0

T
1

.

T
N-1

T
N

t
N

T
n

t

T

δT

δt
= t

5

µ

Δ

Figure 1: Decomposing of the time interval

The micro operator F with the time step size δt calculates with given initial values Un−1

at time point Tn−1 the solution Ũn for the next time point Tn

Ũn = un(Tn) = F(Un−1, Tn, Tn−1).

The micro operator F is due to the smaller time step size an accurate, but also more
expensive solving method. To be more specific, it is a single step method which calculates an
approximation on the next time point. This is done in parallel, because the micro operator is
executed in the interval [Tn−1, Tn] with the micro step size δt for n = 1, . . . , N . The number

3

of micro intervals per global interval [Tn−1, Tn] is denoted as nµ. It is calculated by the
number of global intervals and the used micro time step size nµ = ∆T

δt
.

In order to obtain the initial values U0
n−1, n = 1, . . . , N , for the N initial value problems, a

fast but inaccurate single-step method is applied, the macro operator G(Un−1, Tn−1, Tn) with
the macro step size δT . It is executed serially over the entire interval [0, TN] to approximate
solutions on the global time grid with grid points Tn for n = 1, . . . , N . The number of macro
intervals per global interval is denoted by nM and is calculated by nM = ∆T

δT
.

As soon as we have generated initial values for the N processors by executing the serial
macro operator, the micro operator is executed in parallel on each sub-interval [Tn−1, Tn].
The difference between the micro solution and the macro solution δ0

n−1 = F(U0
n−1)−G(U0

n−1)
is calculated at the time point Tn to correct the old solution U0

n. The correction for the time
point Tn is carried out by reapplying the macro operator to the already corrected solution
U1
n−1. This happens sequentially and we get the new initial values U1

n−1, n = 1, . . . , N per
processor.

The parareal algorithm can be understood as a predictor-corrector method by applying
the macro operator to the already corrected solution U1

n−1 as a predictor. Calculating the
difference δ0

n−1 from the application of the micro and macro operator to the solution U0
n−1

is understood as a corrector, see for more details Maday [9]. Accordingly, parareal proceeds
iteratively and corrects the serially calculated inaccurate approximations of the macro oper-
ator through the more accurate micro approximations, which are calculated in parallel using
an iteration formula for k = 0, . . . , K, where K is the maximum number of iterations and
n = 1, . . . , N :

Uk+1
n = G(Uk+1

n−1 , Tn−1, Tn)︸ ︷︷ ︸
Ûk+1
n

+F(Uk
n−1, Tn−1, Tn)︸ ︷︷ ︸

Ũkn

−G(Uk
n−1, Tn−1, Tn)︸ ︷︷ ︸

Ukn

, (2)

U0
n = G(U0

n−1, Tn−1, Tn), with U0
0 = u0 (3)

In Figure 2 one iteration of the parareal algorithm is shown, which runs over the complete
time interval. The solution Uk

n is the solution on the macro time grid with the time step size

... ...

... ...

Iteration k

U
0

k
U

n-1

k
U

n

k
U

n+1

k
U

N

k

U
0

k+1
U

n-1

k+1
U

n

k+1
U

n+1

k+1
U

N

k+1

Iteration k+1

Figure 2: Iteration of the parareal algorithm

4

δT in iteration k. The color red shows the parallel execution per processor, while the color
green stands for the serial execution. The serial green macro operator is executed in the
correction step and is the predictor to the already corrected solution Uk+1

n−1 . The red arrows
represent the corrections δkn−1 = F(Uk

n−1) − G(Uk
n−1). The performance of the red macro

operator can be disregarded, because it represents the execution of the macro operator per
processor, which can be neglected in terms of effort. Thus, in this work we state that in
each iteration k of the parareal algorithm, once the micro operator is executed in parallel
and once the macro operator is executed serially in order to update the initial condition.

For the sake of simplicity the number of macro intervals per global interval is set to one
so that the macro and global step sizes δT = ∆T coincide in this work.

2.1 Parareal in a matrix presentation

Regarding our following multigrid version, we present here the matrix form of the parareal
algorithm. Maday and Turinici introduced it for the heat equation in their work [10]. A
closer look can be found, for example, in the work [6] by Gander, Kwok and Zhang.

We consider the linear model problem in (1). We decompose the time interval into micro
time points t0 < t1 < · · · < tn̂µ < tNµ = TN , n̂µ = 1, . . . , Nµ = Nnµ with the micro step
size δt = tn̂µ − tn̂µ−1 where nµ is the number of micro intervals per global and here also per
macro grid interval. We denote with Nµ the total number of micro grid points. We get a
bi-diagonal system

Aµuµ :=

1
−Φδt 1

.

−Φδt 1

u0

u1
...

uNµ

 =

u0

0
...
0

 =: bµ, (4)

where Φδt is any one-step method with step size δt. The system of equations (4) thus
corresponds to the serial solution of the problem (1) by the selected one-step method with
a micro time step size δt. By eliminating unknowns, we can get a system of equations that
only exists on the macro grid points Tn = tnµ·n. This is done by replacing the nµ micro time
steps by one macro step δT := nµ · δt and using the approximation (Φδt)

nµ ≈ ΦδT . So we
get the following preconditioned iteration

Uk+1 = Uk +M−1
M (bM − AMU

k), (5)

with the following matrices

AM :=

1

−(Φδt)
nµ 1

.

−(Φδt)
nµ 1

 ≈

1
−ΦδT 1

.

−ΦδT 1

 =: MM. (6)

Thus the matrix AM presents the calculation of the micro solution at the macro time points,
when doing the micro calculation serial and the matrix MM presents the calculation of the

5

macro solution at the macro time points. It is shown in [6] that this corresponds to the
correction formula of the parareal algorithm. So if we solve the system MMU

k = bM, we get
the same solution as if we execute the macro operator, G(v, Tn−1, Tn) := ΦδTv. For the micro
operator it is F(v, Tn−1, Tn) := (Φδt)

nµv, so the n-th line of the system AMU
k = bM can be

assigned to the micro operator with start point Tn−1 and endpoint Tn.
Assuming Uk is known, it is obvious that the matrix-vector multiplications can be per-

formed in parallel, while the other operations must be performed serially since they are
calculated from the previous temporal solution.

2.2 Convergence

By calculating the iteration matrix (I −MM
−1AM) from equation (5) we recognize that it is

nil-potent and therefore has a spectral radius of zero. This basically fulfills the property of
a direct procedure which confirms that the parareal algorithm with solution Uk

n converges to
the micro solution Ũk

n of the micro operator for k → N at the latest after N iterations. With
k = N we get the exact solution at the end time TN , which we also obtain if we run the micro
operator serially. Even if the parareal algorithm converges to machine accuracy, it cannot be
more accurate than the serially calculated micro solution un. All this is explained in detail
in Ruprecht [13] and Staff [14] where also a good overview of the convergence properties is
given. The convergence for the model problem (1) was mainly examined in the literature. In
the work of Gander and Vandewalle in [4] and [5] it was shown that the parareal algorithm
converges superlinear if the following requirements are made: TN <∞, the macro operator
G is a method with order p and the number of parareal iterations k is fixed. The error on
the macro grid is known to be limited

max
n=0,1,...,N

|un(Tn)− Uk
n | ≤ Ck∆T

p(k+1),

with the micro serial solution on the macro grid points un and the parareal solution Uk
n .

Additionally, it can be shown that the constant Ck is growing with k. The parareal algorithm
changes the macro operator with order p to a scheme with order p(k + 1). To sum up, the
macro operator is primarily responsible for the number of needed iterations whereas the
micro operator just takes a small part in this. The micro operator is primarily responsible
for the accuracy.

3 Variant of a multigrid parareal algorithm

In this chapter we consider our variant of a multigrid parareal algorithm. The main feature
of the parareal algorithm is the use of a micro and macro grid. The application of different
grids to solve differential equations reminds us of the classic multigrid method. In addition,
Gander and Vandewalle have already shown in [4] that the parareal algorithm can be seen
as a two-level multigrid method in time for a particular choice of smoothing, restriction and
prolongation operator. Friedhoff et. al. [2] also used this approach and developed a multigrid
variant by interpreting the parareal algorithm as a two-level reduction method and extended
towards a multigrid process. This was done, among other things, by coarsening the micro

6

and macro grids. This and further interpretations of the parareal algorithm as a multigrid
method can be found in [6]. There, additionally to the MGRIT algorithm, which views the
parareal algorithm as an algebraic multigrid method, the parareal as a geometric multigrid
method and a multilevel parareal algorithm is shown. Our multigrid version of the parareal
algorithm is not interpreted as a geometrical multigrid in time algorithm, rather we use a
framework of a geometrical multigrid in time method which is combined with the parareal
algorithm to achieve parallelism, which we now show in detail.

We consider the linear inhomogeneous initial value problem

ut = f − au ∈ (0, T) with u(0) = 1, (7)

which is discretized by a one-step method, so that we consider a system of equations of the
form

Aµ,luµ,l = bµ,l, (8)

which is defined on the micro grid, like presented in chapter 2.1 in equation (4). From now
on our variables, which depend on the used coarsening level, obtain a level index l.

. . .

. . .

. . .

δt
1
=2δt

0
δT,

δt
2
=2δt

1
δT,

δt
L

δT= δT

1 2 L

1

Numbers of residual calculations

(restriction part)

Numbers of coarse grid corrections

(prolongation part)

l=0

Level

l=1

l=2

l=L

2 L

δT

δt
0

δT,

Figure 3: Adjusted ‘half’ V-cycle of the MG-parareal algorithm

In our multigrid version, the MG-parareal, the original parareal algorithm was not seen as
a two-level reduction method, but rather as a smoothing operator built into the framework
of a V-cycle of the well-known multigrid method. To get a rough idea of the process, consider
Figure 3. We apply a multigrid approach on the time grid, where we are only coarsening the
micro time grid with step size δtl. One V-cycle or here actually one ‘half’ V-cycle presents
one iteration of the multigrid algorithm. Up to the coarsest multigrid level L = log2(nµ),
where δtL = δT , it is a classic V-cycle. We start on the finest micro grid with time step size
δt0 and go down to the coarsest level, here the macro grid with δT . This left part of the
V-cycle calculations, which are especially the restriction part and the residual calculations,
are executed on the micro grid with time points tn̂µ,l , n̂µ,l = 1, . . . , Nµ,l, where the total
number of micro grid points on the level is denoted with Nµ,l. The macro grid remains the
same in all levels and is just used in the parareal algorithm. It follows that the number of
used processors on each level is also the same. The prolongation part of the V-cycle is not
required in our algorithm in the classical form, since we calculate the solution on the coarsest

7

grid with step size δT , so on our macro grid, due to the parareal algorithm. Thus, level L
will not be changed. This is explained in more detail in the following paragraphs. We start
with the smoothing operator and then describe the coarse grid correction.

Smoother Since we showed that the parareal algorithm is an iteration process, we assign
i smoothing steps to i iterations of the parareal algorithm. In equation (2) it was shown that
one iteration is built up of a micro calculation Ũk−1

n = F(Uk−1
n−1) in parallel and then a macro

calculation Ûk
n = G(Uk

n−1) serially in the correction step. Due to the parareal correction step,
solutions only exist on the macro grid and not on the micro grid. Before the first smoothing
step, we need initial values. Thus, at the beginning of the MG-parareal algorithm, we use
the known initialization by the macro operator like in equation (3). This leads to a multigrid
method in time, whereby a time coarsening is done instead of a spatial coarsening.

Residual calculation To calculate the residual on the micro grid points, we have to
compute for n = 0, . . . , N − 1

rµ,l = bµ,l − Aµ,lukµ,l. (9)

We know the matrix Aµ,l and the right hand side bµ,l from equation (8), which represents the
serially execution of the micro operator. Further this is always solved on the actual micro
grid and varies due to the multigrid approach. To achieve the parallel calculated micro grid
solution ukµ,l, the micro operator F(Uk

n,l) with the initial values Uk
n,l, which we get respectively

from the smoothing step, is executed for n = 0, . . . , N − 1. This can be described by solving
the following system of equation

Ãµ,lu
k
µ,l = b̃µ,l with Ãµ,l ∈ R(Nµ,l+1)(Nµ,l+1) and b̃µ,l ∈ R(Nµ,l+1).

The entry of the r-th row and the s-th column of the matrix Ãµ,l is denoted with Ãµ,l[r, s]
and the r-th item of the right hand side with b̃µ,l[r]. To include the parallelism of the micro
operator in the system, we add to the vector of the right hand side bµ,l[r] one step with the
micro operator on the macro grid solution Uk−1

n−1 . In the serial case, the micro operator would

be executed on the solution ukn−1 which is done in the system Aµ,l[r, s]u
k,[r]
µ,l = −Φδtu

k
r = bµ,l[r].

With r, s = 1, . . . , nnµ,l + j, . . . , Nµ,l + 1 with j = 0, . . . , nµ,l − 1 for each global interval
n = 1, . . . , N − 1, it follows

Ãµ,l[r, s] = Aµ,l[r, s], b̃µ,l[r] = bµ,l[r], with r 6= nnµ,l + 2, s 6= nnµ,l + 1,

Ãµ,l[r, s] = 0, b̃µ,l[r] = bµ,l[r] + Φδt(U
k−1
n−1), with r = nnµ,l + 2, s = nnµ,l + 1.

Accordingly, the residual is only different from zero at the first micro grid point after a

 +1 +1

µ

t
1

t
2

t

T
0

T
1
=

t T

2
T

N

.

t
nµ

µ

-1
t
nµ

j=1 j=1

t
2nµ

j=1j=2 j=n -1

n

Figure 4: Micro grid points for the resuidual calculation

8

macro grid point un·nµ,l+1, which is shown in Figure 4 by the red micro grid points. So we
just have to determine the residual at the micro grid points tn·nµ,l+1 which correspond in our
vectors to the entries in the n · nµ,l + 2 row for n = 0, . . . , N − 1

rµ,l[nnµ,l + 2] =bµ,l[nnµ,l + 2]−
Aµ,l[nnµ,l + 2, nnµ,l + 1 : nnµ,l + 2](Uk−1

n , ukµ,l[nnµ,l + 2])T .
(10)

This calculation runs via the N processors, is independent of each other and can therefore be
performed in parallel again. Thus, the residual corresponds to the error that arises from the
parallel execution of the micro operator. If the micro operator would be executed serially
over the entire time interval T , the residual would be zero everywhere.

l = 0

l = L = 3

l = 2

l = 1

T
0

T
1

T
2

. . .

T
3

T
N-1

T
N

t

t

t

t

T
0

T
1

T
2

T
3

T
N-1

T
N

T
0

T
1

T
2

T
3

T
N-1

T
N

T
0

T
1

T
2

T
3

T
N-1

T
N

δT

δt

δT

δT

δT = δt

. . .

. . .

. . .

δt

δt

Figure 5: Coarsening strategy of the MG-parareal algorithm

Restriction As we already know from the multigrid method, the central element of the
coarse grid correction is the relaxation on the coarser grid. We relax directly on the error
in order to be able to eliminate the oscillating components. We carry out a micro grid
coarsening until the micro grid corresponds to the macro grid, whereby the macro grid
remains unchanged in our variant. So solving on the macro mesh is assumed to be exact on
the lowest level. Let us consider Figure 5 with L = 3. We see that the macro grid with step

9

size δT remains the same at every level l. The micro step size δt is doubled from level to
level

δTl = δT, and δtl+1 = 2 · δtl, ∀ l.

This coarsening strategy allows us to use a large difference between micro and macro grid
and thus already at the starting level in order to keep the serial execution component low.

The calculation of the residual shown in equation (10) also applies to the auxiliary prob-
lems. We therefore do not need a restriction operator to transfer the residuals from one
level to the next level as in the classic multigrid method, since every second micro grid point
can be omitted. Thus nµ,l denotes the number of fine intervals per global interval on level
l which is here given by nµ,l+1 =

nµ,l
2

. We only take the residuals rµ,l[n · nµ + 2] on the grid

point tlnnµl+1on level l, so that the residuals rµ,l+1[n · nµ,l+1 + 2] on the grid point tl+1
nnµ,l+1+1

on level l + 1 are given as

rµ,l+1[nnµ,l+1 + 2] = rµ,l[nnµ,l + 2] ∀ n,
rµ,l+1[nnµ,l+1 + j] = 0 for j 6= 2, ∀ n.

(11)

A relaxation on a coarser grid can also be parallelized, since we consider rµ,l+1 per macro
grid point Tn independently.

This is followed by the recursive call of our multigrid method for the next level l + 1,
which uses the previously relaxed residual rµ,l+1 as the right side of the system of equations

Aµ,l+1êµ,l+1 = rµ,l+1. (12)

The matrix Aµ,l+1 results from the same type of approximation that was used in (6) for AM.
Every second micro grid point of the matrix Aµ,l has now been omitted, so that we use a
one-step method Φl+1

δt2 with time step size δt · 2 in matrix Aµ,l+1, which is approximated by
Φl+1
δt2 ≈ (Φl

δt)
2. In the auxiliary problems we set eM,l+1 = eM = 0 for each processor as initial

values on the fixed macro grid. Through the smoother or respectively when solving by the
micro operator, we get the error solution êµ,l+1 on the micro grid. This is done recursively
until we have reached the coarsest micro grid, level L.

Solve the residual equation At the lowest level L, the residual equation (12) is then
exactly solved by the macro operator, so it holds êµ=M,L = G(eLµ=M). The solution only refers
to the macro grid and is relaxed to the next finer micro grid.

Prolongation We do not need a classical prolongation because the correction of the ap-
proximation is done by ẽM,l−1 = ẽM,l, where we approximate the error on the macro grid.

Correction of the approximation The solution Ũk
M,l−1 = ukµ,l(Tn), n = 0, . . . , N is

the micro solution on the macro grid from equation (9), on the level l − 1, which is now
corrected by the calculated error of the coarser micro grid level l − 1 by the correction
Uk

M,l−1 = Ũk
M,l−1 + ẽM,l−1. This continues until we reach the initial level 0. Starting from

this new solution in the macro grid points Uk
n = Uk

{M,l=0},n, j post-smoothing steps are then
carried out, which are again j steps of the parareal algorithm, with the new solution of the

10

MG-parareal algorithm Uk
n as initial values. To sum up, the pseudocode for the smoothing

algorithm 1, which is identical to the iteration step of the original parareal algorithm, and
the pseudocode of the MG-parareal algorithm 2 are presented.

Algorithm 1: Pseudocode of the smoothing operation
Function: Smoothing
Input: U0 // initial values

Output: UJ // solution of the parareal algorithm

for j = 1 to i do // smoothing iteration

for n = 1 to N do // parallel

Ũ j−1
n ← F(U j−1

n−1) // micro operator

end
for n = 1 to N do // serial

Û jn ← G(U jn−1) // macro operator

U jn ← Û jn + Ũ j−1
n − U j−1

n // correction

end

end

Algorithm 2: Pseudocode of the MG-parareal algorithm
Function: MGparareal
Input: U0 // initial values

Output: Uk // solution of the MG-parareal algorithm

if (k == 0 & l == 0) || l == L then // initialization and solving on level L

for n = 1 to N do // serial

U0
n ← G(U0

n−1) // iteration 0

end

else
l = l + 1 // increase the level

for k = 1 to K do // MG-parareal iteration

Uk−1 = Smoothing(Uk−1) // smoothing

for n = 1 to N do // parallel

ukn ← Fδt(Uk−1
n−1) // micro operator on micro grid

end
for n = 1 to N do // parallel

r(n) = b̃n − Ãn · [Uk−1
n−1 , u

k
n] // residual

end

r̃ = r(1 :
nµ
2 :

Nµ
2) // relaxation of a coarser grid

e = MGparareal(r̃) // recursive request MG-parareal

Ukn = ukn(Tn) + e // grid correction

Uk = Smoothing(Uk) // smoothing

if |Ukn − Uk−1
n | < TOL ∀ n then

BREAK // breaking condition

end

end

end

11

4 Spatial coarsening for partial differential equations

Here we show a variant of the parareal and MG-parareal algorithm, applied to time-dependent
partial differential equations. The heat equation is considered and Ω ⊂ R is a spatial domain
with Dirichlet boundary conditions on ∂Ω: Find u(x, t) : Ω× I → R such that

∂tu−∆u = f in Ω× (0, T),

u = 0 on ∂Ω× I,
u(x, 0) = u0(x) in x ∈ Ω,

(13)

with the initial condition u0. By spatial discretizing using a standard difference scheme, we
get at a system of ordinary differential equations

U̇h(t) + AhU(t) = fh(t), Uh(0) = U0,

which we can solve using the well-known iteration formula of the parareal algorithm (2).

T
0

T
1

T
N-1

T
N

t

x

. . .

y

Figure 6: Time interval for the two-dimensional heat equation with a given spatial grid

In Figure 6 the decomposition of the time interval with a two-dimensional spatial mesh,
which is presented instead of a one-dimensional spatial mesh for reasons of illustration, is
shown. We solve on each macro grid point Tn a system depending on the spatial grid, which
is pictured as a rectangle. For each time grid point all spatial grid points are considered.

4.1 Parareal with spatial coarsening

When considering partial differential equations, the parareal algorithm enables a coarsening
strategy in the spatial domain. The convergence behavior of the parareal algorithm with a
spatial coarsening strategy was published by Ruprecht in [12]. This coarsening in space is
subsequently used in combination with the parareal algorithm, as shown in his work. It is
done using different spatial grids for the micro and macro operator. The spatial step size of
the macro operator is chosen to be larger than the spatial step size of the micro operator.
The spatial grid of the micro operator is used for the solution Uk

n of the parareal algorithm.
Therefore, we need spatial transfer operators to perform the parareal correction between the
macro and micro solution. To transfer the macro grid solution, which now uses a coarser
spatial grid, to the fine spatial grid, we use the interpolation operator P . In order to transfer

12

the parareal solution Uk
n from the fine spatial grid to the coarse spatial grid, we rely on the

restriction operator R. The correction formula of the parareal algorithm (2) thus changes to

Uk+1
n = PG(RUk+1

n−1 , Tn−1, Tn) + F(Uk
n−1, Tn−1, Tn)−PG(RUk

n−1, Tn−1, Tn),

U0
0 = u0, n = 1, . . . , N, k = 0, . . . , K − 1.

(14)

The time grid used by the parareal algorithm remains unchanged. Only the coarse spatial
step size has been changed. In addition, the solution of the parareal algorithm is approx-
imated with coarsening in space on the fine spatial grid. In particular with regard to the
complexity of the parareal algorithm, the coarsening of the space results in a shortening of
the serially required execution time. This was also the basic idea of Ruprecht in [12].

Here this approach is called SC-parareal. For reasons of simplification, the coarse spatial
step size hc was taken as the double of the fine spatial step size hf in the numerical studies

hc = 2 · hf . (15)

4.2 MG-parareal with spatial coarsening

Since we use the basic framework of a geometrical multigrid method, we can easily apply
the coarsening strategy in time also in space. So in this section we consider the possibilities
of spatial coarsening in the MG-parareal algorithm. Two variants are presented, whereby in
the first approach two fixed spatial grids are used. In the second one the fine spatial grid
is doubled in the individual levels. Due to the fact, that spatial coarsening only affects the
spatial grid, all of our variants of MG-parareal algorithm with spatial coarsening have the
same time coarsening strategy.

4.2.1 MG-SC-parareal

The first variant is called MG-parareal with spatial coarsening and is shortened by MG-SC-
parareal. This approach results from the assignment of a finer spatial grid hf to the micro
operator, regardless of the micro time step size used and a coarser spatial grid hc to the macro
operator, which remains the same in the lower levels, when solving the auxiliary problems.
For reasons of simplification, the coarsening strategy in time is graphically neglected and only
the macro time grid with the grid points Tn is shown in Figure 7. The coarsening strategy
in time remains unchanged in all of our multigrid variants and leads to the individual level
l. The rectangles form the fine spatial grid and the red dots in the rectangle show the coarse
spatial grid points. We see that the coarse and fine spatial grid remains the same in all
auxiliary problems. So from now on whenever we run the macro operator, we use a coarse
spatial grid and analogously a fine spatial grid for the micro operator. Consequently, as
smoothing operator, we take the SC-parareal algorithm shown in equation (14).

The solution of the parareal algorithm Uk
n corresponds to the macro time points and the

fine spatial points. The coarse grid correction in the multigrid framework is on the fine spatial
grid. So the only difference between the MG-parareal and the MG-SC-parareal algorithm
is the behavior on the lowest level L. There, the solution is calculated on the macro time
points and coarse spatial grid points by the macro operator. This is followed by a single

13

T
0

T
1

T
N-1

T
N

x

y
l = 0

T
0

T
1

T
N-1

T
N

x

l = 1 y

. . .
t

t
. . .

Figure 7: Spatial coarsening of MG-SC-parareal algorithm

prolongation to move from the coarse spatial grid to the fine spatial grid. The residual
calculation, the relaxation on a coarser micro time grid and the coarse grid correction are
always carried out on the fine spatial grid.

T
0

T
1

T
N-1

T
N

x
l = 0

T
0

T
1

T
N-1

T
N

x

T
0

T
1

T
N-1

T
N

x
y

l = 1

l = 2

y

y

. . .
t

. . .
t

. . .
t

Figure 8: Spatial coarsening of the MG-LSC-parareal algorithm

14

4.2.2 MG-LSC-parareal

The second and more interesting variant is called MG-parareal with spatial coarsening in
level and is shorted with MG-LSC-parareal. With this approach, the coarsening strategy
of the micro time step size is also carried out for the spatial step sizes. Thus, we now use
different and increasingly coarser spatial step sizes in the lower levels, when calculating the
auxiliary problems. The fine and the coarse spatial step sizes are now doubled per level and
with equation (15) it follows with an added level index l

hf,l+1 = 2 · hf,l = hc,l and hc,l+1 = 2 · hf,l+1 = 2 · hc,l.

This is shown in Figure 8, where the red coarse spatial grid points on the finer level correspond
to the fine grid points on the coarser level. These time and spatial coarsening strategies lead
to the MG-LSC-parareal algorithm with the SC-parareal algorithm as a smoother and so
two small adjustments of the MG-parareal algorithm arise. Since we coarsen the fine and
coarse spatial grid from level to level, we also need restriction and prolongation operators
when transferring residuals and errors between the different levels.

Starting from equation (10) and equation (11), where we calculate the residual and then
restrict it to the next finer micro time grid, we now restrict this residual to the next coarser
fine spatial grid and later on, the approximated error is prolongated to next finer fine spatial
grid. Since we are only using the restriction and prolongation operators for the spatial
coarsening, we can do this in parallel for each time interval.

The number of levels is still determined by the time step size and is therefore independent
of the original spatial grid. We only coarsen the spatial grid until we either reach the macro
time grid, level L, or the coarse spatial grid is discretized as a matrix of size one, so that
a coarsening of the spatial grid is no longer possible and we are already using the largest
possible spatial step size. In this case, the remaining level with the largest possible spatial
step size is used in the macro operator and accordingly the half of it in the micro operator.

4.3 Numerical complexity

In this section we consider the computational complexity of the parareal algorithm and
present a cost estimate for the one-dimensional heat equation. The key feature of the parareal
algorithm is the parallelization so that the computing time is reduced. Without paralleliza-
tion, it is clear that this iterative algorithm cannot be faster than the execution of the purely
sequential micro operator. Therefore it has no application in a complete serial use.

We only consider the use of the macro and micro operator here, since the correction step
can be disregarded in terms of effort. With aG and aF we denote the computational effort
of executing the macro and micro operators per global interval and per spatial grid point.
We denote the size of the fine spatial grid by m. Only the fine spatial step size is used
in the original parareal algorithm. For the methods with coarsening of the spatial domain
the cost of prolongation or restriction to move from one spatial grid to the other is added
with m · aT as the expense of transfer. The number of pre- and post-smoothing steps of the
smoothing operator are called g. The effort for the residual calculation and relaxation per
level is denoted by aR.

15

Table 1: Comparison of numerical complexity

Method Complexity

parareal mNaG +mk(NaG + aF)

SC-parareal m
2 NaG +mk(NaG2 + aF + 2aT)

MG-parareal mNaG +mk((1 + Lg)NaG + (g + 1)2aF + 2aR)

MG-SC-parareal m
2 NaG +mk((1 + Lg)NaG2 + 2(g + 1)aF + 2aR + 2L(1 + g)aT)

MG-LSC-parareal (m2 + k)NaG +mk(gNaG + 4
3 (g + 1)aF + 4

3aR + 4(1 + g)aT)

We compare the methods in Table 1. For the parareal algorithm we get the effort NaG
and aF for the macro and the micro operator over the complete time interval [0, T]. The
number of intervals is disregarded for the micro operator, since it calculates in parallel. In
the initialization step, the macro operator is executed once and then once in each iteration.
The micro operator is executed once in each iteration, too.

Spatial coarsening leads to halving of the coarse effort, since the macro operator only
uses m

2
grid points. We will see later in the numerical studies on the SC-parareal algorithm

that the transfer costs are low compared to the serial costs of the macro operator due to
parallelization of restriction and prolongation. This time coarsening strategy leads particular
with a large serial effort to a reduction in the computing time. The serial execution time
can be reduced by a maximum of half in comparison to the original parareal algorithm.

In the MG-parareal algorithm, the macro operator is carried out in the correction step
per level and iteration and requires an effort of kgLNaG. Due to the coarsening strategy of
doubling the micro grid per level, the effort of the micro operator and residual calculation
per level is halved

L−1∑
i=0

aF
2i
≈ 2aF ,

L−1∑
i=0

aR
2i
≈ 2aR.

In the coarse grid correction, the micro operator per level and iteration is performed again and
the effort is halved. At the lowest level, the macro operator is executed per iteration which
has an effort of kNaG. Because of the term kNaG(1 +Lg), it can be assumed that the MG-
parareal approach has a significantly higher effort than the parareal algorithm per iteration.
But the MG-parareal algorithm has a smaller number of iterations until convergence because
of its multigrid structure, since it has better convergence properties. We will see in the
numerical investigations that the MG-parareal approach shows advantages especially for
long-term problems and problems with very small micro step sizes. But the serial part is
very large due to the macro operator in the smoothing steps in the levels. The spatial
coarsening gives us the opportunity to solve exactly this problem.

To get an estimation of complexity for the MG-SC-parareal, we just halve the effort of the
coarse operator and add the transfer cost per level and smoothing step. If we now additionally
apply the spatial coarsening strategy in connection with the MG-parareal algorithm, we can
see for the MG-LSC-parareal algorithm that the complexity of the micro operator and of

16

the residual calculation are no longer multiplied by a factor of 2, due to reduction of spatial
size per level and smoothing step

L−1∑
i=0

aF
2i
m

2i
≈ 4

3
maF ,

L−1∑
i=0

aR
2i
m

2i
≈ 4

3
maR.

Similarly, the transfer and macro costs are halved per level and iteration, so that we can
approximate it with a factor of 2 and now it is independent of the number of levels. Fur-
thermore on the level L it holds that m = 1. We significantly reduced the serial execution
time. In addition, we were also able to reduce all other costs. After presenting and analyzing
several multigrid variants, we now consider them in detail.

5 Numerical studies

In this work the presented methods are analyzed for an ordinary differential equation and a
partial differential equation. In the last section, a comparison is made between our multigrid
variants of the parareal algorithm and a multigrid variant from the work of Friedhoff [2].

Our methods are firstly investigated with the iteration error

max
n̂µ

(||ukn̂µ − un̂µ ||L2(Ω)),

where ukn̂µ denotes the micro parareal solution on the micro grid points for the iteration k and
un̂µ is the discrete micro solution, which results from a purely serial execution of the micro
operator. We define the error with the analytic solution u(tn̂µ) on the micro grid points and
the the defect as in equation (9)

max
n̂µ

(||ukn̂µ − u(tn̂µ)||L2(Ω)) and max
n̂µ

(||b− A · ukn̂µ ||L2(Ω)).

We test our multigrid versions for different configurations of number of processors and this
results in different macro step sizes, which coincides with the global time step size.

5.1 ODE

We consider the following ordinary differential equation (7)

ut = f − au = −ae(−at) +
nπ(t+ T)cos(nπt) + sin(nπt)

T
∈ (0, T] with u(0) = 1,

which is discretized by the backward Euler method in the time interval (0, T]. The analytic
solution is given by u(t) = sin(nπt)(1 + t/T) + exp(−at). We fix the parameters as n = 50
and a = 5. Furthermore the stopping criteria are removed in the following figures to analyze
the convergence and stagnation behavior better.

17

Parareal We start with a different number of processors N = 4, 16, 64, 256, 1024 and thus
for different macro step sizes with a fixed end time of T = 16. In order to investigate the
dependence of the convergence behavior with respect to the macro and micro step size, the
iteration error, the error and the defect of the parareal algorithm for different micro time
step sizes per column are shown in Figure 9. In a) we see for a number of processors of 4
and 16 that the parareal algorithm converges after 4 and 16 iterations corresponding due
to the fact that parareal converges after N iterations at the latest. For a larger number of
processors and the resulting smaller macro step size, the number of iterations decreases. If
we look at the whole line, we see that the convergence behavior does not change for different
micro step sizes. The iteration error and the defect are in the size range 10−15 for all macro

0 10 20 30
10

-20

10
-10

10
0

(a) Iteration error

0 10 20 30
10

-20

10
-10

10
0

(b) Iteration error

0 10 20 30
10

-20

10
-10

10
0

(c) Iteration error

0 10 20 30
10

-2

10
-1

10
0

10
1

10
2

(d) Error

0 10 20 30
10

-2

10
-1

10
0

10
1

10
2

(e) Error

0 10 20 30
10

-2

10
-1

10
0

10
1

10
2

(f) Error

0 10 20 30
10

-20

10
-10

10
0

(g) Defect

0 10 20 30
10

-20

10
-10

10
0

(h) Defect

0 10 20 30
10

-20

10
-10

10
0

(i) Defect

Figure 9: Iteration error, error and defect of the parareal algorithm for δt = 2−8, 2−10, 2−12 per
column with T = 16.

18

step sizes. If we illustrate the second line, we see that the smaller the micro step size, the
smaller the error. The error does not change for smaller macro step sizes. The defect is
shown in line three and it has an analogous behavior like the iteration error.

MG-parareal We consider the MG-parareal algorithm in Figure 10. One pre-smoothing
step and no post-smoothing is used, because as we will see, the number of iterations required
is already relatively small. The number of iterations required decreases as the number of
processors increases. If we now consider the complete line and thus the behavior for smaller
micro step sizes, we see that the number of iterations is reduced. This is justified by the
number of levels used. The smaller the micro step size is, the higher the number of levels

0 1 2 3 4 5
10

-20

10
-10

10
0

(a) Iteration error

0 1 2 3 4 5
10

-20

10
-10

10
0

(b) Iteration error

0 1 2 3 4 5
10

-20

10
-10

10
0

(c) Iteration error

0 1 2 3 4 5
10

-2

10
-1

10
0

10
1

10
2

(d) Error

0 1 2 3 4 5
10

-2

10
-1

10
0

10
1

10
2

(e) Error

0 1 2 3 4 5
10

-2

10
-1

10
0

10
1

10
2

(f) Error

0 1 2 3 4 5
10

-20

10
-10

10
0

(g) Defect

0 1 2 3 4 5
10

-20

10
-10

10
0

(h) Defect

0 1 2 3 4 5
10

-20

10
-10

10
0

(i) Defect

Figure 10: Iteration error, error and defect of the MG-parareal algorithm for δt = 2−8, 2−10, 2−12

per column with T = 16.

19

in which the residual is calculated, compare Table 2. The smaller the micro step size is, the
smaller is the error too. Also here the error is independent of the macro step size.

Table 2: Number of levels for T = 16

N
δt

2−8 2−10 2−12

4 10 12 14
16 8 10 12
64 6 8 10
256 4 6 8
1024 2 4 6

Parareal vs. MG-parareal In order to investigate the convergence behavior depending
on the end time T , we now compare the defects of the parareal and MG-parareal algorithm
for different end times T = 16 and T = 64 in Figure 11. Since the end time only has an effect
on the macro step size and not on the micro step size, the error is not considered. We see in a)
and d) for a large number of processors N = 64, 256, 1024 that with the same micro step size,
the number of iterations increases strongly for a larger end time and thus for a larger macro
step size. The MG-parareal algorithm in g) and j) has the same behavior, but the number of
iterations increases only slightly. Accordingly, the convergence behavior depends on the end
time. The second difference is that the behavior of the parareal algorithm remains the same
for smaller micro step sizes, whereas the MG-parareal algorithm converges faster, because
of the larger number of levels. Let us now consider a comparison of the number of parareal
iterations. An iteration of the MG-parareal algorithm corresponds to two iterations of the
parareal algorithm due to the number of pre-smoothing steps and the one execution of the
micro operator based on the residual calculation. By illustrating the small macro step sizes
with N = 64, 256, 1024 in the last column with the smallest step size, the parareal algorithm
requires approximately 25, 27 and 15 iterations and the MG-parareal 4, 5 and 4, which are
8, 10 and 8 parareal iterations. The number of required iterations for the MG-parareal is
significantly lower.

Numerical complexity We consider the computing time of the methods. The stopping
tolerance was set to 10−9 and the CPU time is given in seconds. The required time for the
macro operator is shown with τG and the total time with τ . Since the micro operator and
the residual calculation can be executed in parallel the execution times τF and τR represent
the required CPU time per processor. The number of required iterations is called k.

We start with a configuration with a small end time T = 16 and a relatively large micro
step size δt = 2−12 in Table 3. The higher the number of processors is, the lower is the
CPU time of the micro operator and the higher is the macro time. The total execution time
depends mostly on the macro operator for a larger number of processors, so that the total
execution time of the MG-parareal is slightly longer than of the parareal algorithm. The
MG-parareal algorithm runs through fewer iterations, but the use of the macro and micro
operator in the individual levels and so in the auxiliary problems leads to an increase in effort.
The computing time of the residual is very short, which is guaranteed by the parallelism.

20

0 10 20 30
10

-20

10
-10

10
0

(a) Parareal T = 16

0 10 20 30
10

-20

10
-10

10
0

(b) Parareal T = 16

0 10 20 30
10

-20

10
-10

10
0

(c) Parareal T = 16

0 10 20 30
10

-20

10
-10

10
0

(d) Parareal T = 64

0 10 20 30
10

-20

10
-10

10
0

(e) Parareal T = 64

0 10 20 30
10

-20

10
-10

10
0

(f) Parareal T = 64

0 1 2 3 4 5
10

-20

10
-10

10
0

(g) MG-parareal T = 16

0 1 2 3 4 5
10

-20

10
-10

10
0

(h) MG-parareal T = 16

0 1 2 3 4 5
10

-20

10
-10

10
0

(i) MG-parareal T = 16

0 1 2 3 4 5
10

-20

10
-10

10
0

(j) MG-parareal T = 64

0 1 2 3 4 5
10

-20

10
-10

10
0

(k) MG-parareal T = 64

0 1 2 3 4 5
10

-20

10
-10

10
0

(l) MG-parareal T = 64

Figure 11: Defect of the parareal and MG-parareal algorithm for δt = 2−8, 2−10, 2−12 per column
and per line for T = 16, 64.

21

Table 3: CPU-time in seconds for T = 16 and δt = 2−12

N 4 16 64 256 1024

Parareal

k 5 15 18 11 7
τG 0.0300 0.0060 0.0126 0.0206 0.0516
τF 0.0717 0.0597 0.0159 0.0024 0.0005
τ 0.1018 0.0657 0.0285 0.0230 0.0520

MG-parareal

k 2 3 4 4 3
τG 0.0047 0.0081 0.0158 0.0208 0.0517
τF 0.0724 0.0426 0.0130 0.0043 0.0059
τR 0.0210 0.0020 0.0026 0.0019 0.0027
τ 0.0981 0.0527 0.0314 0.0269 0.0603

Table 4: CPU-time in seconds with T = 256 and δt = 2−18

N 4 16 64 256 1024

Parareal

k 5 7 10 17 18
τG 0.0158 0.0052 0.0125 0.0332 0.1272
τF 81.4292 28.2369 10.2307 4.0663 1.0413
τ 81.4450 28.2421 10.2432 4.0996 1.1685

MG-parareal

k 2 2 2 3 3
τG 0.0037 0.0074 0.0109 0.0380 0.1465
τF 68.5853 15.1890 4.0014 1.5279 0.3603
τR 0.0128 0.0082 0.0113 0.0088 0.0108
τ 68.6019 15.2047 4.0236 1.5747 0.5176

This configuration does not use the main advantage of the parareal algorithm, since such
problems can easily be performed without parallelization. Accordingly, configurations of
long-term simulations with very small micro step sizes, are more interesting. In addition, we
saw in the previous numerical tests that the parareal algorithm produces worse results for
a large end time and does not produce any change for small micro step sizes, in contrast to
the MG-parareal algorithm, which gets better. We now consider in Table 4 an outrider of
long-term simulation with a very small micro step size δt = 2−18 and an end time of T = 256.
Here the total execution time depends on the micro run time, which is for the MG-parareal
algorithm approximately half the size of the parareal algorithm. The total run time is also
significantly shorter.

5.2 Heat equation

We consider the heat equation (13) in one dimension for a domain Ω ⊂ R with Dirichlet
boundary condition ∂Ω. Find u(x, t) : Ω× (0, T]→ R such that

∂tu−∆u = f = −2(6x2 − 6x+ 1)sin(nπt) + πncos(nπt)x2(1− x)2 in Ω× (0, T],

with u = 0 on ∂Ω× I and u(x, 0) = u0(x) in x ∈ Ω = [0, 1],

with u(x, t) = x2(1−x)2sin(nπt). We set n = 5. Finite Differences were used for the spatial
discretization.

22

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(a) Iteration error

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(b) Iteration error

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(c) Iteration error

0 10 20 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(d) Error

0 10 20 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(e) Error

0 10 20 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(f) Error

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(g) Defect

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(h) Defect

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(i) Defect

Figure 12: Iteration error, error and defect of the parareal algorithm for δt = 2−8, 2−10, 2−12 and
hf = 2−4, 2−6, 2−8 per column with T = 16.

Parareal Firstly we study the iteration error, the error and the defect in Figure 12 for an
end time of T = 16. Different micro step sizes and spatial step sizes are shown per column.
In line one and three, the number of required iterations decreases for smaller macro steps and
thus for a larger number of processors. Further on small macro step sizes, like for N = 1024,
require more iterations, the smaller the micro step size is. The error does not change for
different macro step sizes, but decreases for smaller micro step sizes and spatial step sizes.

MG-parareal Figure 13 shows the MG-parareal algorithm with one pre- and one post-
smoothing step, which is fixed in this study. We recognize that the smaller the macro step
size is, the more iterations are required and the slightly higher the size of the iteration error
and of the defect are by reaching stagnation. The smaller the micro step size is, the fewer
iterations are required due to the arising number of levels. The error is independent of the
macro step size, but it gets smaller for smaller micro time step sizes and spatial step sizes.

23

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(a) Iteration error

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(b) Iteration error

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(c) Iteration error

0 2 4 6 8 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(d) Error

0 2 4 6 8 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(e) Error

0 5 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(f) Error

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(g) Defect

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(h) Defect

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(i) Defect

Figure 13: Iteration error, error and defect of the MG-parareal algorithm for δt = 2−8, 2−10, 2−12

and hf = 2−4, 2−6, 2−8 per column with T = 16.

Parareal vs. MG-parareal We recognize in Figure 14 that for smaller macro steps, the
number of iterations of the parareal algorithm increases and of the MG-parareal decreases,
the larger the end time is. Also the smaller the micro time step size is and now with a constant
spatial step size, the better the convergence behavior for the MG-parareal algorithm is. By
using the parareal algorithm, the number of iterations either remains constant or increases.

Parareal and SC-parareal We consider an overview of the parareal algorithm and the
SC-parareal algorithm for different spatial and micro step sizes per column in Figure 15. In
line one and two we see the known behavior of the defect. The number of iterations of both
methods increases for smaller micro time step sizes and fine spatial step sizes. The coarsening
in space therefore does not necessarily lead to a degradation of the speed of convergence.

24

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(a) Parareal T = 16

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(b) Parareal T = 16

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(c) Parareal T = 16

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(d) Parareal T = 64

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(e) Parareal T = 64

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(f) Parareal T = 64

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(g) MG-parareal T = 16

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(h) MG-parareal T = 16

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(i) MG-parareal T = 16

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(j) MG-parareal T = 64

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(k) MG-parareal T = 64

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(l) MG-parareal T = 64

Figure 14: Defect of the parareal and MG-parareal algorithm for δt = 2−8, 2−10, 2−12 and hf = 2−6

per column with T = 16, 64.

25

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(a) Parareal

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(b) Parareal

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(c) Parareal

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(d) SC-parareal

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(e) SC-parareal

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(f) SC-parareal

0 10 20 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(g) Parareal

0 10 20 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(h) Parareal

0 10 20 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(i) Parareal

0 10 20 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(j) SC-parareal

0 10 20 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(k) SC-parareal

0 10 20 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(l) SC-parareal

Figure 15: Defect (line one and two) and error (line three and four) of the parareal and SC-parareal
algorithm for δt = 2−8, 2−10, 2−12 and hf = 2−4, 2−6, 2−8 per column with T = 16.

26

The size of the defect also increases for smaller spatial step sizes and micro time step sizes.
The errors of the methods in lines three and four are identical.

MG-parareal, MG-SC-parareal and MG-LSC-parareal If we compare the defects of
our multigrid versions in Figure 16, there is almost no difference. With all of our multigrid
variants, the convergence speed is better for a smaller micro time step size and spatial step
size. The level of stagnation of the defect also increases minimally in all procedures. The
errors that we see in Figure 17 are identical. The spatial coarsening strategy has no influence
on the errors, since it only influences the spatial step sizes and not the micro time step size.

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(a) MG-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(b) MG-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(c) MG-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(d) MG-SC-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(e) MG-SC-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(f) MG-SC-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(g) MG-LSC-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(h) MG-LSC-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(i) MG-LSC-parareal

Figure 16: Defect of the multigrid versions for δt = 2−8, 2−10, 2−12 and hf = 2−4, 2−6, 2−8 per
column with T = 16.

27

0 2 4 6 8 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(a) MG-parareal

0 2 4 6 8 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(b) MG-parareal

0 5 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(c) MG-parareal

0 2 4 6 8 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(d) MG-SC-parareal

0 2 4 6 8 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(e) MG-SC-parareal

0 5 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(f) MG-SC-parareal

0 2 4 6 8 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(g) MG-LSC-parareal

0 5 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(h) MG-LSC-parareal

0 2 4 6 8 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(i) MG-LSC-parareal

Figure 17: Error of the multigrid versions for δt = 2−8, 2−10, 2−12 and hf = 2−4, 2−6, 2−8 per
column with T = 16.

Spatial coarsening variants In Figure 18 we present a comparison of the SC-parareal
algorithm, the MG-SC-parareal algorithm and the MG-LSC-parareal algorithm. Small micro
time and spatial step sizes were used for each column. If we compare the two MG-parareal
variants with the parareal algorithm, we see that both multigrid variants converge better.
Again, we can convert the MG-parareal iterations into parareal iteration, so that with a
smoothing step, a pre- and post-smoothing step, one MG-parareal step represents three
parareal steps. In the last column, the SC-parareal needs 25, 19 and 21 iterations for the
smallest macro step sizes with N = 64, 256, 1024. The MG-SC-parareal and the MG-LSC-
parareal use only 9, 9 and 12 parareal iterations.

28

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(a) SC-parareal

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(b) SC-parareal

0 10 20 30
10

-20

10
-15

10
-10

10
-5

10
0

(c) SC-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(d) MG-SC-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(e) MG-SC-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(f) MG-SC-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(g) MG-LSC-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(h) MG-LSC-parareal

0 5 10
10

-20

10
-15

10
-10

10
-5

10
0

(i) MG-LSC-parareal

Figure 18: Defect of the variants with spatial coarsening for δt = 2−8, 2−10, 2−12 and hf =
2−4, 2−6, 2−8 per column with T = 16.

Numerical complexity We consider all the presented methods for a small spatial step
size and a medium micro step size. The stopping tolerance is set as 10−9 and the CPU time
is given in seconds. The MG-variants are carried out with one pre- and post-smoothing step.
The CPU time of the micro operator, the residual calculation and the spatial transfer per
processor are given, since this is calculated in parallel.

We start with a small spatial step size and medium micro time step size in Table 5.
The required CPU time by the macro operator increases and that of the micro operator
decreases for a higher number of processors. The total run time is slightly shorter with the
SC-parareal algorithm than with the parareal algorithm. Since we only generate a change
in the macro operator’s CPU time due to coarsening in space, the macro execution time
is reduced. The MG-parareal requires a longer execution time compared to the parareal

29

Table 5: CPU-time in seconds with T = 16, δt = 2−12 and hf = 2−10

N 16 64 256 1024

Parareal

k 9 14 11 11
τG 0.0278 0.1323 0.7101 2.4147
τF 6.0201 2.2132 0.4611 0.0942
τ 6.0480 2.3454 1.1711 2.5089

SC-parareal

k 9 14 11 11
τG 0.0147 0.1111 0.2686 2.0049
τF 5.9633 2.2183 0.4537 0.0893
τT 0.0067 0.0093 0.0066 0.0077
τ 5.9846 2.3388 0.7289 2.1018

MG-parareal

k 2 3 3 3
τG 0.1115 0.5229 2.7167 4.2189
τF 6.5548 2.5070 0.6763 0.1425
τR 0.0482 0.2605 0.2354 0.5882
τ 6.7144 3.2904 3.6284 4.9497

MG-SC-parareal

k 2 3 3 3
τG 0.0806 0.3772 0.9795 3.3632
τF 6.5270 2.5946 0.6451 0.1392
τR 0.0172 0.0522 0.1052 0.4809
τT 0.0784 0.0958 0.0757 0.1492
τ 6.7032 3.1198 1.8056 4.1326

MG-LSC-parareal

k 2 3 3 3
τG 0.0411 0.1696 0.5694 1.8051
τF 4.7100 1.8022 0.3104 0.0987
τR 0.0092 0.0114 0.0227 0.0942
τT 0.0370 0.0543 0.0373 0.0380
τ 4.7973 2.0375 0.9397 2.0360

algorithm, since the difference between macro and micro step size is not large enough to
generate enough levels. The spatial coarsening has a positive effect on the macro execution
time of the MG-SC-parareal algorithm whereas the micro execution time remains almost
unchanged in comparison with the MG-parareal. The transfer costs of the MG-SC-parareal
are higher than for the SC-parareal, because we perform the transfer on the levels. The
MG-LSC-parareal algorithm requires the shortest micro and macro CPU time and so as well
total CPU time of all shown methods.

Table 6: CPU-time in seconds with T = 16, δt = 2−14 and hf = 2−10

Methods k τG τF τR τT τ
Parareal 14 0.1416 8.1760 - - 8.3176

SC-parareal 14 0.0976 8.1810 - 0.0084 8.2870
MG-parareal 3 0.6656 9.2204 0.0626 - 9.9487

MG-SC-parareal 3 0.4029 9.2200 0.0604 0.1946 9.8779
MG-LSC-parareal 3 0.2219 6.9472 0.0141 0.0690 7.2522

In order to be able to recognize a clear effect of the MG-LSC-parareal algorithm, we
consider a smaller micro step size δt = 2−14 in Table 6. Here we can see that the MG-LSC-
parareal approach requires the least total CPU time. In addition, the micro work is much
less compared to the other processes. Even if the multigrid variants resulted from the spatial

30

coarsening in order to reduce the serial execution time, we see in the table and also in the
theoretical complexity that the micro work is the central issue. The macro effort in long-term
simulations with a very small micro time step size is much less than the micro effort, so we
can assume that the macro effort is negligible. Accordingly, the MG-LSC-parareal algorithm
has huge advantages, since the parallel execution time also drops significantly.

5.3 Comparison with results from the literature

In order to better assess the efficiency of our methods, we compare them with another
interpretation of a multigrid in time algorithm, which was published by S. Friedhoff, R. D.
Falgout, T. V. Kolev, S. MacLachlan, J. B. Schroder in 2013 [2]. They present in their
work, A Multigrid-in-Time Algorithm for Solving Evolution Equations in parallel, a similar
development of the parareal algorithm, which is denoted by full multilevel algorithm. This
algorithm was referred to as the MGIT algorithm and represents the first publication as
an technical report of the MGRIT algorithm, which was published in [1]. They interpreted
the parareal algorithm as two level reduction method, which resulted in an optimally scaled
multigrid method over time.

Similar to our MG-parareal algorithm, it uses a V-cycle. The difference between our
version and the full multilevel algorithm lies among others in the coarsening strategy of the
micro and macro time grids and the parallel access. In our MG-parareal algorithm, the macro
step size is not changed and the micro step size is doubled per level. Thus our multigrid level
hierarchy arises from using a coarser micro grid where we achieve a parallel access through
the parareal algorithm, as the smoother. In their version they use for the parallel access
an FCF-relaxation, which also decomposes the time interval in micro and macro time steps,
but the multigrid hierarchy is achieved by seeing this macro grid on level l as the coarser
micro grid on level l + 1. So the macro steps are always selected as m times the micro step
size: ∆T = mδt. On the next level, the micro step size is set as the macro step size on the
higher level δtl = ∆Tl−1. We used the same strategy in our spatial coarsening with m = 2.
Furthermore the FCF-relaxation is carried out parallel and also here each macro interval
is assigned to a processor. But the number of used processors is reduced per level due to
their smaller macro grid. One F-relaxation describes the execution of the micro operator
and so the update of the micro time points based on the previous macro time points. The
C-relaxation is an update of the macro time points based on the previous micro time points.
If we only use an F-relaxation, this would lead to the original parareal algorithm.

The one-dimensional heat equation was considered in [2]

ut = κuxx + b(x, t), κ > 0, x ∈ [0, π], t ∈ [0, T], (16)

with homogeneous Dirichlet boundary conditions and an initial condition

u(x, 0) = u0(x), x ∈ [0, π]

u(0, t) = u(π, t) = 0, t ∈ [0, T].

In the numerical tests in [2], the right hand side was set to zero and the initial condition to
u(0, x) = sin(x). As stopping condition the tolerance 10−9 was used. The grid points were

31

identified with xj = j∆x, j = 0, 1, . . . , Nx + 1 with a number of spatial grid points Nx + 1.
The micro step size is δt = (∆x)2 and the macro step size is δT = 2δt. In our notations,
this results in a number of micro intervals per macro interval of nµ = 2. The parameters
Nx and Nt are varied in the following tables, where Nt describes the number of total micro
intervals. The micro grid points were given with ti = iδt, i = 0, 1, . . . , Nt = N · nµ = N · 2.
Furthermore, the number of processors is N = Nt

2
and the end time is T = δt ·Nt. Now the

end time changes when the total micro grid points Nt are varied and the macro step size
remains constant.

Table 7: Number of iterations for the spatial grid Nx = 16 and different time grids Nt. The results
of the two level and full multilevel methods are from Friedhoff et. al. [2], Table one and three.

Methods
Nt 25 26 27 28 29 210 211

Parareal 9 9 9 9 9 9 9
SC-parareal 11 11 11 11 11 11 11
MG-parareal 5 5 5 5 5 5 5
MG-SC-parareal 6 6 6 6 6 6 6
MG-LSC -parareal 6 6 6 6 6 6 6
FCF-relaxation two level 6 7 7 7 7 7 7
FCF-relaxation full multilevel 6 7 7 8 8 8 9
F-relaxation two level 9 9 9 9 9 9 9
F-rexation full multilevel 10 13 16 20 23 23 25

In order to be able to compare our processes better, we solve the same problem (16).
Our multigrid parareal variants are carried out with one pre- and post-smoothing step. In
Table 7, a comparison of the number of required iterations of the algorithms from this work
as well as the results from the paper by Friedhoff [2] (Table one and three), with the two
level and full multilevel Versions of their multigrid-in-time algorithm with coarsening factor
two with F-relaxation and FCF-relaxation, is shown. The number of time intervals varies for
a fixed number of spatial intervals and this changes the number of processors and the end
time points while the macro time step size is fixed. This test was carried out by Friedhoff
et. al. to see if the convergence is independent of the problem size. The results show that
our methods, the methods with the FCF-relaxation as well as the two level algorithm with
F-relaxation are independent of the problem size. Only the full multilevel approach with
F-relaxation has a large and increasing number of iterations. The two level with F-relaxation
corresponds to the classic parareal algorithm, so the results are the same. The number of
required iterations does not change for any of our multigrid variants for a larger number
of processors. Although the number of levels is only two, which is too low to expect good
results from the multigrid parareal variants, the number of required iterations is slightly less
than the number of multilevel procedures from the other paper.

Table 8 shows our results and the results from the paper [2], Table two, with the two level
and full multilevel versions of the multigrid-in- time algorithm with coarsening factor two
and FCF-relaxation. Here the number of time- and spatial intervals have now been varied.
We see that all tested methods are independent of the problem size.

Table 9 presents a comparison of the algorithms from this work as well as the results from
the paper by Friedhoff [2], Table four, with coarsening factor four and FCF-relaxation. The

32

Table 8: Number of iterations for different spatial grids Nx and time grids Nt. The results of the
two level and full multilevel methods are from Friedhoff et. al. [2], Table two.

Methods

Nx
Nt

24

25
25

27
26

29
27

211

Parareal 9 9 9 9
SC-parareal 11 12 13 13
MG-parareal 5 5 5 5
MG-SC-parareal 6 7 6 6
MG-LSC-parareal 6 7 6 6
FCF-relaxation two level 6 7 7 6
FCF-relaxation full multilevel 6 8 9 9

Table 9: Number of iterations for a spatial grid Nx = 16 and time grids Nt. The results of the two
level and full multilevel methods are from Friedhoff et. al. [2], Table four.

Methods
Nt 43 44 45 46 47

Parareal 12 12 12 12 12
SC-parareal 10 10 10 10 10
MG-parareal 5 5 5 5 5
MG-SC-parareal 4 4 4 4 4
MG-LSC-parareal 4 4 4 4 4
FCF-relaxation two level 7 7 7 7 7
FCF-relaxation full multilevel 7 7 9 9 9

authors thus showed that the results of their multilevel procedures seem to be independent
of the coarsening factor. For our algorithms, this test means that we have a higher difference
between micro and macro operators and therefore a larger number of levels. The number
of iterations of our multigrid variants has decreased accordingly. The two level and full
multilevel methods tend to use macro and micro operators with a small difference in contrast
to our variants which are getting better for a bigger difference. So we can expect better results
for our multigrid variants especially for the MG-LSC-parareal algorithm when the number
of processors is limited and we postulate to achieve high accuracy.

6 Conclusions

In this work we introduced new multigrid variants of the parareal algorithm. We used
the parareal algorithm as a smoother and a coarsening strategy in time, which resulted
from doubling the micro grid and keeping the macro grid fixed. In the case of an ordinary
differential equation and the heat equation, it should be emphasized that, in contrast to the
classical parareal algorithm, the MG-parareal algorithm takes advantage of a small micro
time step size. In the heat equation, we added an additional spatial coarsening strategy to
the MG-parareal algorithm. Even if they resulted from spatial coarsening in order to reduce
the serial execution time, the MG-LSC-parareal algorithm has for small spatial and micro
time step sizes the lowest micro computing time and so the lowest total CPU time. This
is of great importance because in long-term simulations with a very small micro time step

33

size, it is not the serial computing time that is problematic, but the parallel computing time,
so the effort of the micro operator. From this, we concluded that the macro effort for such
problems can be neglected. The strength of our multigrid variants is the large difference
between the macro and micro operator and can thus be used optimally for problems with
a limited number of processors, which should achieve a high accuracy of the solution. The
MG-LSC-parareal algorithm has very good results in reducing the required computing time
for this type of problems.

From the comparison with the work of Friedhoff et. al. [2], in which a full multilevel
algorithm was also presented, we were able to conclude that our multigrid variants produce
good results and are comparable to other methods. Further comparisons with other time-
parallel algorithms must be examined in future, as well as the application to more complex
differential equations.

References

(1) R. D. Falgout, S. Friedhoff, TZ. V. Kolev, S. P. MacLachlan, J. B.
Schroder. PARALLEL TIME INTEGRATION WITH MULTIGRID. SIAM Jour-
nal on Scientific Computing, 36, No.6, pp. C635–C661, 2014

(2) R. D. Falgout, S. Friedhoff, T. V. Kolev, S. MacLachlan, J. B.
Schroder. A Multigrid-in-Time Algorithm for Solving Evolution Equations in Par-
allel. Student paper winner, Sixteenth Copper Mountain Conference on Multigrid
Methods, Copper Mountain, Colorado. March, 2013. LLNL-CONF-606952, 2013

(3) M. J. Gander. 50 years of Time Parallel Time Integration. Multiple Shooting
and Time Domain Decomposition Methods, pp.69–113, Springer, 2015

(4) M. J. Gander, S. Vandewalle. Analysis of the parareal time-parallel time-
integration method. SIAM Journal on Scientific Computing, 29(2), 556–578, 2007

(5) M. J. Gander, S. Vandewalle. On the superlinear and linear convergence of the
parareal algorithm. In Domain Decomposition Methods in Science and Engineering
XVI, Springer, pp. 291–298, 2007

(6) M. J. Gander, F. Kwok, H. Zhang. Multigrid interpretations of the parareal
algorithm leading to an overlapping variant and MGRIT. Computing and Visualiza-
tion in Science, 19 (2018), pp. 59–74, 2018

(7) W. Hackbusch. Parabolic multi-grid methods. In Computing Methods in Applied
Sciences and Engineering, VI, R. Glowinski and J.-L. Lions, eds., North-Holland,
1984, pp. 189–197, 1984

(8) J.-L. Lions, Y. Maday, and G. Turinici. A “Parareal” in time discretization
of PDE’s. C. R. Math. Acad. Sci. Paris, 332, no. 7, pp. 661-668, 2001

(9) Y. Maday The parareal in time algorithm. Technical Report R08030, Universite
Pierré et Marie Curie, 2008

34

(10) Y. Maday, G. Turinici. A parareal in time procedure for the control of partial
differential equations. Comptes Rendus Mathematique - C R MATH, vol. 335, no.
4, pp. 387-392, 2002

(11) M. L. Minion. A hybrid parareal spectral deferred corrections method. Communi-
cations in Applied Mathematics and Computational Science, 5 (2010), pp. 265–301,
2012

(12) D. Ruprecht. Convergence of Parareal with spatial coarsening. PAMM 14, Nr. 1,
1031–1034, 2014

(13) D. Ruprecht, R. Speck, R. Krause. Parareal for diffusion problems with space-
and time-dependent coefficients. Domain Decomposition Methods in Science and
Engineering XXII, pp. 371-378, Springer, 2016

(14) G. A. Staff. The Parareal Algorithm- A survey of present work. Technical report,
Norwegian University of Science and Technology, Trondheim, Norway, 2003

(15) K. Stüben, U. Trottenberg. Multigrid methods: Fundamental algorithms,
model problem analysis and applications. In W. Hackbusch and U. Trottenberg
(Eds.), Multigrid Methods, volume 960 of Lecture Notes in Mathematics, pp. 1-176,
Springer, 1982

35

	EB 650 1. Seite
	EB 650

