
Inference for multivariate and high-
dimensional data in heterogeneous designs

Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Statistik der
Technischen Universität Dortmund

Vorgelegt von

Paavo Aljoscha Nanosch Sattler

geboren in Herrenberg

Dortmund, March 2021

Present Dean of the Faculty:
Prof. Dr. Katja Ickstadt

Reviewers: Date of Defense:
Prof. Dr. Markus Pauly
Prof. Dr. Philipp Doebler



Version February 15, 2022
© 2021 - Paavo Aljoscha Nanosch Sattler

ALL RIGHTS RESERVED.



Abstract
In the presented cumulative thesis, we develop statistical tests to check different
hypotheses for multivariate and high-dimensional data. A suitable way to get
scalar test statistics for multivariate issues are quadratic forms. The most com-
mon are statistics of Wald-type (WTS) or ANOVA-type (ATS) as well as centered
and standardized versions of them. Also, Pauly et al. [2015] and Chen and Qin
[2010] used such quadratic forms to analyze hypotheses regarding the expecta-
tion vector of high-dimensional observations. Thereby, they imposed different
assumptions, but both allowed just one respective two groups.
We expand the approach from Pauly et al. [2015] to multiple groups, which
leads to a multitude of possible asymptotic frameworks allowing even the num-
ber of groups to grow. In the considered split-plot-design with normally dis-
tributed data, we investigate the asymptotic distribution of the standardized
centred quadratic form under different conditions. In most cases, we could
show that between the limit distributions and the specific conditions exists an
“if and only if” relation. For the frequently assumed case of equal covariance
matrices, we also widen the considered asymptotic frameworks, since also set-
tings with partially fixed sample sizes becomes part. Moreover, we add other
cases in which the limit distribution can be calculated. These hold for ho-
moscedasticity of covariance matrices but also for the general case.
This expansion of the asymptotic frameworks is one example on how the as-
sumption of homoscedastic covariance matrices allows widening conclusions.
Moreover, assuming equal covariance matrices also simplifies calculations and
enables us to use a larger statistical toolbox. For the more general issue of test-
ing hypotheses regarding covariance matrices, existing procedures have strict
assumptions (e.g. see Muirhead [1982], Anderson [1984] and Gupta and Xu
[2006]), test only special hypotheses (e.g. see Box [1953]), or are known to have
low power (e.g. see Zhang and Boos [1993]). We introduce an intuitive approach
with fewer restrictions, a multitude of possible null hypotheses, and a convinc-
ing small sample approximation. Thereby, nearly every quadratic form known
from the mean-based analysis can be used, and two bootstrap approaches are
applied to improve their performance. Furthermore, it can be expanded to
many other situations like testing hypotheses of correlation matrices or check
whether the covariance matrix has a particular structure.
We investigated the type-I-error for all developed tests and the power to detect
deviations from the null hypothesis for small sample sizes up to large ones in
extensive simulation studies.
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1 Introduction and Motivation
Multivariate statistical inference is an essential part of modern statistics. In con-
trast to univariate approaches, it allows us to consider various variables simul-
taneously and take their dependency structure into account. A fine example is
repeated measure designs, where the same value is measured, i.e., d times, on
one test subject or object repetitively. Thus, these d measurements are depen-
dent.
To illustrate such a setting, we consider data from a sleep-laboratory (Jordan
et al. [2004]). In this trial, the concentration of an enzyme (prostaglandin-D-
synthase) in the blood of ten young men and ten young women was measured.
The measurements were conducted every four hours over four days, with dif-
ferent sleep conditions (normal sleep, sleep deprivation, recovery sleep, and
REM sleep deprivation) each night. The results of this trial are illustrated in
Figure 1.1 (for the women) and Figure 1.2 (for the men).

Figure 1.1: Prostaglandin-D-synthase (ß-trace) of 10 young women during 4
days under different sleep conditions.

3



CHAPTER 1. INTRODUCTION AND MOTIVATION

Figure 1.2: Prostaglandin-D-synthase (ß-trace) of 10 young men during 4 days
under different sleep conditions.

Here, possible questions of interest are whether there is a gender effect, a time
effect, an effect of the sleep condition, or interaction effects between these fac-
tors.
In such a repeated measure design, it is often easier or cheaper to increase the
number of repetitions instead of the number of test subjects n. But, through
the dependency between the measurements, it is frequently insufficient to only
increase the number of measures and let the number of test subjects be fixed.
Besides, so-called high-dimensional settings with d > n are particularly de-
manding since usual techniques can often not be applied. A typical problem, in
this case, is a singular empirical covariance matrix. Thus, the inverse, as used
within Hotelling’s T 2 test statistic, is not existing. This is particularly true for
the sleep laboratory trial with 24 measurements but only ten test subjects in
each group. For asymptotic frameworks with multiple increasing parameters
such as sample size and dimension, relations between these parameters, like
d/n → c ∈ [0,∞), are often assumed. But such relations between dimension
and sample size are usually difficult to verify in practice. In our sleep laboratory
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trial, a proper asymptotic framework for d/n is unclear. For this reason, condi-
tions on the relation between dimension and sample sizes are often replaced by
other parameters.
In Chen and Qin [2010] for this purpose τCQ is used, which is the relation be-
tween traces containing the covariance matrix and is required to go to zero for
n → ∞. In Pauly et al. [2015], a promising approach for normally distributed
data was introduced, which also has no restriction on the relation between di-
mension d and sample size n and has lower demands on τCQ. This work just
considered the one group case, while it is often more interesting to compare
different groups, such as various treatments or gender. In contrast to Chen and
Qin [2010], who consider only the case of two groups, an arbitrary number of
groups, say a, should be allowed. Often only small numbers of groups are con-
sidered, although, in many areas like genetics or agriculture, comparison of a
large number of groups is of great interest. For example, in Omer et al. [2000],
seed potato plants infected with Verticillium dahliae (resulting in potato early
dying) from 39 different isolates were analyzed regarding the aggressiveness of
the infection. With nearly 40 groups, this is just one example from this area,
where even higher numbers of groups are frequently.
Moreover, a large number of groups occur, among other things, if many dif-
ferent factors are investigated at the same time. Each factor (like gender, pre-
existing disease, age, or similar potentially influencing factor) allows to sepa-
rate the examinees more precisely and therefore increases a substantially. Thus,
in the below mentioned EEG (ElectroEncephaloGram) measurements with two
factors, gender and diagnostic, and two resp. four manifestations, there are al-
ready eight groups. With the additional differentiation age (younger or older
than 70 years), there would be even 16 groups.
For this reason, the number of groups should be allowed to go to infinity in-
stead of being a fixed factor. Such an increasing number of groups was, for
example, investigated in Bathke [2002]. With the possibly increasing number of
groups, there are various potential asymptotic frameworks where the sample
size and at least the dimension or the number of groups go to infinity. These
frameworks are a great challenge since many existing asymptotic approaches
or estimators are developed for concrete frameworks, while it would be prefer-
able if we could use the same one in each framework.

Equal covariance matrices are a special case, which is frequently considered be-
cause this additional condition can simplify some calculations and allow some

5



CHAPTER 1. INTRODUCTION AND MOTIVATION

stronger results. This includes more general asymptotic frameworks, where the
sample size does not necessarily have to grow. Furthermore, the inspection
of such a more straightforward case allows for developing additional proposi-
tions, which can be expanded for the general setting.

Although equal covariances are a widespread assumption, it nevertheless should
be verified in practice through a statistical test.
So, test statistics regarding covariance matrices are a reasonable approach to do
this. However, in the year 1953, George Box described the role of a preliminary
test on the variance as follows:

“To make the preliminary test on variances is rather like putting to sea in a rowingboat
to find out whether conditions are sufficiently calm for an ocean liner to leave port”.

With this statement, he described such tests’ role quite visually: little tools that
get less attention compared with the actual test. This role could be one reason
why most of the existing methods for testing such hypotheses have limitations.
Either they need assumptions that are difficult to justify in practice (see, e.g.,
Box [1953] or Gupta and Xu [2006]), or only allow single hypotheses like Zhu
et al. [2002].
One example for the usage of a preliminary test on the variance is an EEG
dataset included in the R package manova.rm (Friedrich et al. [2019]). In a study
at the University Hospital Salzburg for 160 patients with different diagnoses of
impairments, six EEG were recorded in different brain regions. In each of them,
different measurements were conducted, like z-scores for brain rate. In Bathke
et al. [2018] this dataset was investigated, and therefore the assumption of equal
covariance matrices was questioned. Based on the empirical covariance matrix,
this assumption seemed to be rather unlikely but was not checked statistically.
To do so, an appropriate statistical test should be applied.

If one takes a closer look at this topic, hypotheses regarding covariance ma-
trices offer many opportunities. Not only as a preliminary test for other ap-
proaches but also as an autonomous test procedure. For example, on the first
day of the sleep laboratory trial, the groups seem to have different variability.
This could be investigated by comparing their covariance matrices or employ-
ing other effect measurements based on these matrices, such as traces. Thereby,

6



it is reasonable to allow null hypotheses that are as general as possible, sim-
ilar to mean-based analysis. Thus, a semiparametric model and an approach
comparable to the analysis of means is intuitive and simplifies the application.
In contrast to the high-dimensional cases, we assume no normal distribution,
and the components of the random vectors are allowed to be different kinds of
data. Moreover, in this way, most of the techniques known from the mean-based
analysis are transferable as quadratic forms as ATS (ANOVA-type-statistic) or
bootstrap approaches. Finally, the combination of a rather general kind of null
hypotheses and the construction similar to inference for mean vectors allows
adaption for many other situations like testing hypotheses regarding correla-
tion matrices or testing for a pattern or structure of the covariance matrix. This
versatility allows the application in various settings and questions, especially
in the field of psychology, where analysis of covariances is often of interest. For
example, to analyze the reliability of a psychological test, there is a multitude
of scores based on covariance matrices as Cronbach’s α and many others (see,
e.g., Cronbach [1951] or Guttman [1945]).
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2 Statistical Methods

2.1 Model and Hypotheses

2.1.1 Model

The considered general semiparametric model is based on independent d-dimen-
sional random vectors

Xik = µi + ϵik, (2.1)

where the index i = 1, . . . ,a refers to the treatment group and k = 1, . . . ,ni to
the individual, on which observations are measured. Within each of these a

groups the residuals ϵi1, . . . ,ϵini
are i.i.d. (independent identically distributed)

with E(ϵi1) = 0d, Cov(ϵi1) = Σi > 0 and E(||ϵi1||
4) < ∞. We allow for the dif-

ferent groups, different distributions with various parameters. This generality
enables manifold application. In contrast,in a parametric repeated measure de-
sign all measurements have the same unit and therefore fixed distribution of the
residuals ϵi1, . . . ,ϵini

is presumed. This assumption of a concrete distribution
makes it much easier to obtain mathematical results but can be difficult to verify.

Here, in both models, no structure of the covariance matrices Σi are assumed,
and depending on the specific situation, positive semi-definite covariance ma-
trices can be sufficient.
The number of observation vectors in the i-th group, ni are allowed to differ, as
long as

ni

N
→ κi ∈ (0, 1] i = 1, ...,a,

where N =
∑a

i=1 ni denotes the total sample size overall groups. This condition
ensures, among other things, that all group sample sizes go to infinity and no
single group dominates N. We have κ1 = 1 if and only if a = 1, as κi > 0
holds for all i. By focussing on subsequences, this assumption could even be
weakened to

0 < lim inf
(ni

N

)
⩽ lim sup

(ni

N

)
⩽ 1, (i = 1, ...,a).

9
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For simplicity, we define nmin := min(n1, ...,na) and nmax := max(n1, ...,na).
The group specific expectation vector µi can be estimated by the group mean
Xi = n−1

i

∑ni

k=1 Xi while an estimator for the covariance matrix Σi is given by
the empirical covariance matrix Σ̂i = (ni − 1)−1 ∑ni

k=1(Xik − Xi)(Xik − Xi)
⊤.

To compare the groups, often the pooled expectation vector µ = (µ⊤
1 , ...,µ⊤

a )
⊤

is considered, as well as pooled mean vector X = (X
⊤
1 , ...,X

⊤
a )

⊤, while the co-
variance matrix of

√
N X, given through Σ = ⊕a

i=1N/ni ·Σi can be estimated by
Σ̂ = ⊕a

i=1N/ni · Σ̂i. For the comparison of dependencies, in case of Σ > 0
the correlation matrix of the i-th group Ri = (Σi)

−1/2
0 Σi(Σi)

−1/2
0 should be

considered. This matrix can be estimated by the empirical correlation matrix
R̂i = (Σ̂i)

−1/2
0 Σ̂i(Σ̂i)

−1/2
0 , if Σ−1

i exists. Here, A0 denotes the diagonal ma-
trix given through A0 = diag(a11, ...,add) for a matrix A = (aij)

d
ij. In case

of such symmetric d × d matrices A = (aij)
d
ij like covariances, it is prefer-

able to consider the half-vectorization operation vech, which extracts the vector
(a11,a12, ...,a1d,a22, ...,a2d, ...,add)

⊤ with dimension p = d(d+ 1)/2.

In repeated measure designs, the components of the observation vectors are the
different measurements. These take place at different time points, at different
places of the body, or under different conditions. Therefore, different scales
of the components make no sense. Moreover in the context of repeated mea-
surements at various time points, the expectation vector is often split into its
components αi ∈ R for the i-th group effect, βt ∈ R for the time effect at time
point t and (αβ)it ∈ R for the (i, t)-interaction effect between group and time.
Thus, the expectation values are expanded by

µi,t = µ+ αi + βt + (αβ)it, i = 1, . . . ,a; t = 1, . . . ,d,

with the conditions
∑

i αi =
∑

t βt =
∑

i,t(αβ)it = 0. By further splitting up
the indices i in smaller subindices i1, i2, ..., we can include various other factors
in this model. The resulting more complex factorial treatment structure is called
split-plot-design and was first introduced in Fisher [1925]. Here, the name split-
plot is based on plots from agricultural settings. The easy to change factors are
the so-called sub-plots, while the larger factor, which is more difficult to change,
is called the whole-plot. For example, this includes settings with combinations
of different time points, different areas of the measuring points, and different
treatments.
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An example of such a setting is the sleep-laboratory-trial, which was presented
in the previous section. Since the test subjects are ten women and ten men, there
are a = 2 groups with n1 = n2 = 10 people in each of these groups. Measuring
every four hours results in six repetitions for each sleep condition (normal sleep,
sleep deprivation, recovery sleep, and REM sleep deprivation), which means an
overall dimension of d = 24. These observation vectors consist of two crossed
factors, sleep condition and time, so one measurement per test subject exists for
each combination. Usual hypotheses of interest would be whether there is a
time effect, a gender effect, or an interaction between gender and time. But the
influence of the sleep condition within the group is interesting as well.

2.1.2 Hypotheses

In the classical mean-based analysis, hypotheses of the kind H0 : Hµ = 0m are
considered, where H ∈ Rm×ad with m ⩽ ad is an appropriate hypothesis ma-
trix. Even for simple hypotheses like equality of means in two groups, it is clear
that there exist many different possible matrices corresponding to this hypoth-
esis. Therefore, a test decision would potentially depend on the chosen matrix,
which essentially reduces the reliability. Fortunately, for this kind of hypothe-
sis, there always exists a unique, symmetric and idempotent matrix T ∈ Rad×ad

with H0 : Hµ = 0m ⇔ H0 : Tµ = 0ad. This equality of hypotheses was shown,
for instance, in Brunner and Puri [2001] and is the reason why it is a convention
to use T to get a trustworthy and comparable result. Using the Moore-Penrose1

inverse, this projection matrix T is given through T := H⊤(HH⊤)+H, whereas
each kind of generalized inverse could be used. This matrix is the same for each
kind of generalized inverse as it was shown, for example, in Rao and Mitra
[1971]. While the generalized inverse or g-inverse of a matrix A ∈ Rm×n is each
matrix A− ∈ Rn×m fulfilling

AA−A = A,

for the Moore-Penrose inverse A+ the conditions are stronger through

AA+A = A A+AA+ = A+ (AA+)⊤ = AA+ (A+A)⊤ = A+A.

1This inverse is named after E.H. Moore and R. Penrose, who described the concept inde-
pendently in Moore [1920] resp. Penrose [1955]. Unfortunately, the work of A. Bjerhammar, see
for example Bjerhammar [1951], is usually not taken into account.
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These additional conditions make the Moore-Penrose inverse a subset of the
g-inverses. At the same time, the Moore-Penrose inverse is, in contrast to a g-
inverse, unique.

However, we will demonstrate in Section 3.5.2 that for H0 : Hµ = ζ ̸= 0m the
equality of hypotheses is false. In the mean-based analysis, this is irrelevant be-
cause, with a subtraction of ζ from our data, the necessary structure can always
be ensured. But for hypotheses of similar types, as we use in Sattler et al. [2022],
it is important to keep this in mind. Therein and especially in Section 3.5.2, we
investigate the consequences of such non-unique matrices. We will expose that
this point can create some difficulties but also provide an opportunity to save
computation time.

In factorial repeated measure and split-plot-designs, a common model is given
through H = HW ⊗ HS, where HW ∈ Ra×a refers to the whole-plot and
HS ∈ Rd×d to the subplot, see for example Happ et al. [2016] and Kong and
Harrar [2019]. This composition of the hypothesis matrix is plausible because
all subplot factors are handled in the same way, and it simplifies several com-
putations without being too restrictive. The corresponding projection matrix
in this case is T = TW ⊗ TS, with proper projection matrices TS and TW .
These smaller projection matrices can be formed by TS = H⊤

S (HSH
⊤
S )

+HS resp.
TW = H⊤

W(HWH⊤
W)+HW as it was shown in Sattler and Pauly [2018].

2.2 High-dimensionality

There are different opinions on what exactly is the definition of a high-dimensional
asymptotic framework. All have in common that not only the sample size
is assumed to go to infinity, but also the dimension of the observation vec-
tors. Beyond that accordance, the way how the dimension d goes to infin-
ity is controversial. Frequent assumptions are d3/N → 0 as in Huber [1973],
d/N → c ∈ (0, 1) as in Bai and Saranadasa [1996], d/N → c ∈ (0,∞) as in
Harrar and Kong [2016], or N = O(dδ) for 1/2 < δ < 1 as in Srivastava et al.
[2014]. Restrictions of this kind enable less restrictive conditions in other ways,
but their justification is difficult in most cases. For this reason some work such
as Chen and Qin [2010] or Pauly et al. [2015] completely avoids such assump-
tions.
In practice, often data sets with smaller sample sizes than dimension were re-
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ferred to as high-dimensional data. Approaches such as Hotelling’s T 2 test or
classical linear regression models can not be used in such settings. For example,
the earlier mentioned sleep laboratory trial with d = 24 and n1 = n2 = 10 is
high-dimensional. This example demonstrates that high-dimensionality has to
be considered even for comparably small dimensions and sample sizes, while
the most common examples are genetic data with enormous dimensions.
It has to be taken into account that many common estimators or techniques
can not be used in most of these high-dimensional settings. The reason is that
mostly their convergence can not be guaranteed for an increasing dimension. A
good way to illustrate this is through the empirical covariance matrix Σ̂, which
is a consistent estimator for the unknown covariance matrix Σ for fixed d and
n → ∞. Consequently, Σ̂ is often used to estimate unknown values depending
on this covariance matrix, like eigenvalues or traces. In Table 2.1 some values
are calculated, and averaged over 10,000 simulation runs, based on 20 normally
distributed observations with (Σ1)ij = 0.6|i−j|. The relation to the exact value
shows that except for tr(Σ̂1), all estimators are quite inappropriate in a high-
dimensional setting. As classical plug-in-estimators, these estimators could be
used readily in most settings with fixed d and sufficient sample size.

d
tr(Σ̂1)
tr(Σ1)

tr
(
Σ̂

2
1

)

tr
(
Σ2

1

) max
(

eigen
(
Σ̂1

))

max
(

eigen
(
Σ1

)) max
(

eigen
(
Σ̂

2
1

))

max
(

eigen
(
Σ2

1

))

5 0.999 1.200 1.072 1.252
10 1.000 1.325 1.203 1.539
25 1.001 1.693 1.624 2.721
50 1.001 2.320 2.264 5.225

100 1.000 3.551 3.355 11.375
200 1.000 6.021 5.298 28.227

Table 2.1: Averaged values depending on the empirical covariance matrix in
relation to the exact value, for different dimensions. The estimator is based
on n = 20 normally distributed observations with (Σ1)ij = 0.6|i−j| and was
averaged over 10,000 simulation runs.

This circumstance frequently disables bootstrap usage or other techniques, where
parameters such as covariance matrices or eigenvalues thereof are required.
For estimators in high-dimensional settings, the property of being dimensional-
stable was introduced by Werner [2004] as follows:
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Definition 2.2.1:
An array of estimators θ̂n,d ∈ R of an unknown quantity θn,d ∈ R ̸=0 is called
dimensional-stable if the following conditions hold

1.
∣∣∣E
(

θ̂n,d
θn,d

− 1
) ∣∣∣ ⩽ cn,

2. Var
(

θ̂n,d
θn,d

− 1
)
⩽ cn,

with cn → 0, which is uniformly bounded in d.

This property ensures that the estimator works reliably in settings with increas-
ing dimension, although an estimator’s consistency does not follow from its

dimensional stability. But it directly follows θ̂n,d/θn,d
L2

→ 1, which we will call
ratio-consistency. The necessity of this property was displayed in Table 2.1.

Another challenge dealing with high-dimensional data is the computation time,
which is crucial for a large dimension in general. Fundamental mathematical
methods like empirical covariance matrices or quadratic forms have a compu-
tational complexity of O(nd2) resp. of O(d2). This clarifies that the dimension
is often more relevant for the computational effort than the sample size. Hence,
large sample sizes together with high dimension make some adaption of algo-
rithms necessary and have to be considered in the development of, for example,
useful estimators.
This holds not only for high-dimensional settings but also for all situations with
comparably high dimensions. For example, if vectorized matrices are consid-
ered, and therefore the dimension increases quadratically.
Also, settings with an increasing number of groups, a → ∞ are sometimes
included in a high-dimensional setting, even if the dimension is fixed. The rea-
son for this is that in such a setting, the usage of pooled vectors like the pooled
mean is often almost mandatory. So, in this case, the dimension ad of the pooled
vector is increasing, which leads to a high-dimensional setting for this vector.
Situations like this are for example investigated in Bathke [2002] or Bathke and
Lankowski [2005].
A usual reason for increasing the number of groups can be a large number of
crossed factors. Also, in settings where a is not fixed, relations between sam-
ple size and the number of groups resp. dimension and number of groups are
difficult to justify. Therefore, a high-dimensional setting, where N, d and a are
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allowed to increase independently, is preferable. Some limitations are given
through ni/N → κi ∈ (0, 1] which was mentioned earlier, but can be relaxed
sometimes, for example in case of homogeneity of covariance matrices as it can
be seen in Sattler [2021] or in Section 3.2.

2.3 Quadratic forms

A good way to get a univariate test statistic for a hypothesis on multivariate
parameter is by using a quadratic form. For a random vector Y of dimension
ad with covariance matrix V, a quadratic form is given through

Q = (HY)⊤E(H,V)(HY),

with E(H,V) ∈ Rm×m a symmetric matrix which can depend on the matrices
H and V.

One of the central results for quadratic forms in random vectors is a represen-
tation theorem, which can be found, for example, in Mathai and Provost [1992]
but is repeated here.

Theorem 2.3.1:
Let λℓ, ℓ = 1, . . . ,ad, be the eigenvalues of the ad×ad matrix V1/2H⊤E(H,V)HV1/2.
Then it holds

Q = E(Y)⊤H⊤E(H,V)HE(Y)+2
ad∑
ℓ=1

(
H⊤E(H,V)HE(Y)

)
ℓ
(OZ)ℓ+

ad∑
ℓ=1

λℓ (OZ)
2
ℓ .

Thereby, Z fulfills Y = E(Y) +V1/2Z and O ∈ Rad×ad is the orthogonal matrix with
O⊤V1/2H⊤E(H,V)HV1/2O = diag(λ1, ...., λad).

In case of a centred vector Y , this formula can be simplified, which is for exam-
ple the case for H0 : H · E(Y) = 0ad. This result is the basis for few results like
formulas for expectation value and variance in general settings. For a normally
distributed vector Y , even formulas for all moments of quadratic forms can be
concluded.
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Most frequently, these quadratic forms are used for random vectors Yn which
fulfill Yn

D−→ Nad(0ad,V) under the null hypothesis. Therefore we will focus on
this case. In this situation, the asymptotic distribution of the quadratic form is

a “weighted χ2-distribution”. Thus, it holds Q D−→ ∑ad
ℓ=1 λℓBℓ, where Bℓ

i.i.d.
∼ χ2

1.

Since, in general, the covariance matrix V is unknown, an estimator V̂ is used
instead of estimating E(H,V), and we obtain the estimated quadratic form Q̂.
However, in general, the consistency of E(H, V̂) does not follow from the con-
sistency of V̂. Therefore in some instances, conditions on the covariance matrix
are necessary to get this needed consistency.

One of the most used quadratic forms, named after the statistician Abraham
Wald, is the Wald-Type-Statistic which is defined through

WTS = (HY)⊤
(
HVH⊤)+ (HY).

Since the matrix V1/2H⊤ (HVH⊤)+HV1/2 is a projection matrix in this case,
the limit distribution is χ2

rank(HVH⊤)
. In case of V > 0 through rank(HVH⊤) =

rank(H), the distribution is independent of the unknown covariance matrix of
the original data. A statistic which distribution not depends on the unknown
parameters is called pivot, and helpful for developing tests or confidence re-
gions. This fact is the main reason for the usage of the WTS, but it also has
the big advantage of being invariant against scale transformations. For usage
of the empirical covariance matrix, conditions like V > 0 are required, and
it is a known fact that the WTS leads to highly liberal results except for very
large sample sizes, see, e.g., Brunner et al. [1997] or Vallejo et al. [2010]. There-
fore, Brunner and Puri [2001] introduced another quadratic form, called Anova-
Type-Statistic where the matrix E(H,V) = Im/ tr(HVH⊤) is used, which leads
to

ATS = (HY)⊤(HY)/ tr(HVH⊤).

The trace as a denominator does not necessarily have to be used. Among other
things, this scaled ATS is reasonable because it makes the quadratic form in-
variant against scalar multiplication. In a repeated measure design where all
measurements are done in the same unit, this allows a change of the measuring
unit without influencing the test statistic’s value. But this is not the case in more
general designs, with possibly quite different measuring units.

16



2.3. QUADRATIC FORMS

Although WTS and ATS are the most used quadratic forms by far, there is an-
other interesting one, which can be seen as an intermediate level between them.
The so-called MATS for Modified-Anova-Type-Statistic is given through

MATS = (HY)⊤
(
HV0H

⊤)+ (HY),

where A0 = diag(a11, ....,add) denotes the diagonal matrix containing the diag-
onal elements of the matrix A = (aij)

d
ij. This quadratic form was introduced in

Srivastava and Kubokawa [2013] for particular settings and was later extended
by Friedrich and Pauly [2017] for a general setting.
In contrast to the WTS, this test statistic is less liberal and requires V0 > 0 in-
stead of V > 0 for the usage of the empirical covariance matrix. On the other
hand, it is invariant against scale transformation, but the asymptotic distribu-
tion can not be simplified and is therefore not pivot. As the limit distribution
given through A :=

∑ad
ℓ=1 λℓBℓ follows no known distribution with quantiles

and similar quantities, a Monte-Carlo-based approach should be used to ap-
proximate these unknown quantities. To this end, the following steps were
done:

1. The unknown covariance matrix V is estimated, and therefore also
V1/2H⊤HV1/2/ tr(HVH⊤) resp. V1/2H⊤ (HV0H

⊤)+H⊤V1/2 is estimated.

2. Based on this matrix the eigenvalues λ̂1, ..., λ̂ad are estimated.

3. With ad independently generated χ2
1 random variables one realization A1

of the weighted sum can be calculated.

4. Repeat step 3 often, say B times, and calculate from these B realizations
A1, ...,AB the empirical level α quantile or similar quantities.

Usual choices for B are 10,000 while it depends on the dimension of the vector
Y , and therefore on the required computation time.

For a matrix A, it holds eigen(A⊤A) \ {0} = eigen(AA⊤) \ {0} and also the
multiplicity of these eigenvalues is the same. Therefore, for the ATS we know∑ad

ℓ=1 λℓBℓ
D
=

∑m
ℓ=1 λ

′
ℓB

′
ℓ with B ′

ℓ

i.i.d.
∼ χ2

1 and λ ′
ℓ ∈ eigen(HVH⊤/ tr(HVH⊤)). We

use the latter version in our simulations because of some advantages in calcu-
lating, for example just m eigenvalues and random variables are necessary.
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Since for
√
N X the central limit theorem can be used to show the asymptotic

normality under the null hypothesis H0 : Tµ = 0, this vector is the most fre-
quently used for quadratic forms for tests about means. However, a variety of
possible vectors can be used for quadratic forms, like relative effects see e.g.
Akritas and Brunner [1997], vectorized Kaplan-Meier estimators in Dobler and
Pauly [2020], group-specific survival medians in Ditzhaus et al. [2021] or for
vectorized covariance matrices in Sattler et al. [2022].

Another way to develop a test based on the ATS is a Box-type-approximation,
see e.g. Box et al. [1954], Brunner [2001] or Happ et al. [2016]. Hereby the
estimated scaled ATS, given through (HY)⊤(HY)/ tr(HV̂H⊤), is approximated
by a proper F(f̂, f̂0)-distribution. The estimators for the degrees of freedom are
given by

f̂ =
tr2
(
TV̂
)

tr
((

TV̂
)2
) and f̂0 =

tr2
(
T 0V̂

)

tr
(
T 2

0V̂
2
Λ−1

)

with Λ = diag(n1 − 1, ...,na − 1), see Brunner et al. [2019]. Since here the true
distribution of the estimated scaled ATS under the null hypothesis is just ap-
proximated, we will not use this Box-type-approximation further.

U-Statistics

Since different powers of traces containing the covariance matrix are part of
most moments of quadratic forms( see e.g. Mathai and Provost [1992]), it is
essential to estimate such values. For this and a variety of other situations,
U-statistics are a useful and intuitive approach of estimation and were first in-
troduced by Hoeffding [1948]. The name comes from Unbiased, which is just
one property of this kind of estimator. Thereby, each U-statistic is based on a
real-valued function h : Rm 7→ R, which is called the kernel of order m ∈ N. Let
again X1, ...,Xn be i.i.d. random variables with E(|h(X1, ...Xm)|) < ∞.
The associated U-statistic for a kernel h is defined through

Un :=
(n−m)!

n!

∑
1⩽i1 ̸=i2 ̸=...̸=im⩽n

h(Xi1 , ....,Xim).

For permutational-symmetric kernels this could be simplified to
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Un :=

(
n

m

)−1 ∑
1⩽i1<i2<...<im⩽n

h(Xi1 , ....,Xim),

which is important since each kernel can be symmetrized by hs : Rm 7→ R with

hs(x1, ..., xm) = (m!)−1
∑
π∈Sm

h(xπ(1), ..., xπ(m)).

Each U-statistic is an unbiased estimator for E(h(X1, ...Xm)) while under some
conditions they are even the uniformly minimum-variance unbiased estimator.
Many commonly used estimators are U-statistics, for example, the sample mean
and the empirical covariance. There exist formulas for the variance of U-statistics,
as well as results about their asymptotic distribution. Both can, for example, be
found in Sproule [1974]. This definition can, without further ado, be expanded
for random vectors X1, ...,Xn, wherewith, for example, quadratic forms are pos-
sible kernels.
In the case of a permutation-symmetric kernel, the required number of summa-
tions corresponds to number of possibilies to choose m different indices from
1, ...,n. Since the order has no influence, this number is given through

(
n
m

)
. Be-

cause this is a polynomial in n of degree m, the number can increase very fast.
For computation time, this is one of the main challenges that can occur during
U-statistics usage. We introduce one solution to this difficulty in the following
chapter.

2.4 Resampling techniques

One possibility to handle limit distributions with unknown quantiles is to use
resampling procedures, which is also advantageous in several cases. Essentially,
two important parts of resampling procedures are used for this, bootstrap tech-
niques and permutation techniques. In this thesis, we focus on the bootstrap
approach, which was initially introduced by Efron [1979]. The term bootstrap
comes from the part of the boots with the same name and presumably goes back
to the phrase “pull oneself up by one’s bootstraps”. It means to improve his sit-
uation without external help 2.

2This strongly reminds of an anecdote of “Baron Munchausen”, where he pulls himself out
of a swamp by his own pigtail.
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Since it was first mentioned in 1979, bootstrap became more and more popu-
lar, as illustrated in Figure 2.1. In 2005, Efron’s paper was almost part of the
25 most cited statistical papers, see Ryan and Woodall [2005]. With, up to now,
more than 8900 publications citing 3 the initial paper, bootstrap is an elementary
part of modern statistics, whereby the progress towards efficient algorithms and
computers had major influence.

Figure 2.1: Number of publications with citation of the initial bootstrap pa-
per of Efron [1979] divided according to the year of publication, retrieved at
04.01.2021.
© Copyright Clarivate 2021. All rights reserved 3.

The concept behind a bootstrap approach is that critical values based on the
available data reflect reality better than critical values of limit distributions,
which are independent of the received data.

We will only describe the resampling procedures that we will consider during
this thesis: a parametric bootstrap approach, a wild bootstrap approach and
a subsampling technique. Other methods like for example, Efron’s bootstrap,

3 The data are from “Web of Science” and were retrieved on 04.01.2021 Web of Science [2021].
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will not be dealt with further.
In principle, the procedure is the same in all variations of resampling tech-
niques, and we will take quadratic forms as an example. First, a bootstrap sam-
ple is generated, which depends on the real observed data Y1, ...,Yn and has
the same sample size as the original dataset. How to generate this resampling
sample is the main difference between the distinct methods, together with the
degree of dependence between the generated samples and the original sample.
The generated bootstrap sample is used to replace a part of the original test
statistic, like the real data, the centred data, or more complex structures de-
pending on the original dataset. The result Q1 is a bootstrap statistic, based
on the data set. With a large number B of independent bootstrap samples and
therefore bootstrap statistics Q1, ...,QB, critical values can be calculated through
empirical quantiles or similar quantities. With the original test statistic Q and
this critical value, a resampling-based test can be built. For a useful bootstrap
test, it is necessary that for each parameter v ∈ Rad and v0 ∈ Rad fulfilling the
null hypothesis Hv0 = ζ it holds

sup
x∈R

∣∣Pv(Q1 ⩽ x|Y) − Pv0(Q ⩽ x)
∣∣ P−→ 0.

Here, with Pv, we denote the (un)conditional distribution of the quadratic form
in the case v is the true underlying vector.
Overall, it is recommendable to replace a preferably basic part of the test statis-
tic, like the original data, to mimic the original test statistic’s structure best. On
the contrary, replacing a more complex part often reduces computation time.
In addition to the calculation of unknown quantities, resampling procedures
have one more main advantage. Due to the more direct connection to the real
data, bootstrap tests usually require fewer observations than deterministic pro-
cedures to get the same quality of results, see, e.g., Friedrich and Pauly [2017].

2.4.1 Parametric bootstrap

As suggested by the name, this approach is mostly used in parametric settings.
But it is also possible to use it in semiparametric or non-parametric settings.
Here the resampling sample is generated through

X∗
ik ∼ Fi, i = 1, ...,a, k = 1, ...,ni,
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where Fi is an appropriate multivariate distribution which usually depends on
parameters of the real observations like the mean Xi or the empirical covariance
matrix Σ̂i. The used distribution should correspond as much as possible to the
replaced part for good results. Naturally, this is much easier in parametric set-
tings. Otherwise, there are two ways: On the one hand, an arbitrary distribution
could be chosen, which is part of the model, whereby some distributions are
more recommendable, through practical reasons. If this is impossible for some
reason, instead, a part could be replaced by terms from its asymptotic distribu-
tion. Thus, the Monte-Carlo approach for the ATS is also a kind of parametric
bootstrap, where we replace the quadratic form as a whole.

2.4.2 Wild bootstrap

The basic idea of a wild bootstrap is to generate N random weights, which
are independent of the realizations, and use them to weight the original data
or a more complex structure depending on the realizations. The used weights
Wik, i = 1, ...,a k = 1, ...,ni are i.i.d. random variables with E(W11) = 0 and
Var(W11) = 1 while depending on the general setting, further assumptions on
moments or similar are made. Each distribution fulfilling these requirements
can be chosen for these weights, whereby common distributions are the stan-
dard normal distribution or the Rademacher distribution. As the original data’s
distribution does not have to be taken into account, this approach is especially
attractive for non-parametric or semi-parametric settings. Moreover, in contrast
to the parametric bootstrap, no estimated parameters are necessary for generat-
ing the random weights, which enhances the applicability. Finally, generating
a random vector with a corresponding dependency structure is generally much
more time-consuming than generating a random weight and multiplicating it
with an observation vector. Depending on the sample size, the dimension, and
similar factors, this leads to a clear difference in computation time, as can be
seen in Section 6 of Sattler et al. [2022].

2.4.3 Subsampling

While for bootstrap and permutation techniques, a usual purpose is to calculate
data-based values like quantiles, subsampling is additionally used for a differ-
ent reason. In most instances, subsampling allows dealing with a data set that
would otherwise be too extensive for computation time or memory space.
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The idea is based on taking smaller subsamples of a greater superset, and we
will introduce it by using a quadratic form as an example. Let Un be a U-statistic
based on a kernel h of order m, while we also consider the realisations of ran-
dom variables X1, ...,Xn. As mentioned before, the number of necessary sum-
mations

(
n
m

)
can be rather high. So it is often not feasible to consider each index

combination for the calculation of the U-statistic. Instead of this, m observations
were drawn without replacement from the realizations. For these observations,
the value of the kernel is calculated and notated as h1. Then this step is repeated
often, say B ∈ N times. The mean of these subsampled kernels h1, ...,hB is the
subsampling version of the U-statistic. If B → ∞ for N → ∞, this subsampling
version mostly has the same asymptotic properties as the original one. The de-
sired behavior of the repetitions B can be attained by B = g ·N repetitions, with
g ∈ N. Instead of being a polynomial of degree m, the number of summations
is then only linear in N. The proper choice of the factor g, or more general B,
depends on the available computation time as well as on the number of sum-
mations for the deterministic U-statistic. The usage of a subsampling approach
is just advisable if B is significantly smaller than

(
n
m

)
.

In general, we assume that the importance of subsampling will increase over
the next years due to ever-growing data sets. The development in the last years
further suggests this. In 2010 there were about 7.800 citations in Google Scholar
[2021] of subsampling, in 2015 the number were about 12,000 and in 2020 the
number of citations passed 17,000 4.

4These numbers were retrieved at 04.01.2021 .
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3 Summary of the Articles

3.1 Article 1: Inference for high-dimensional split-
plot-designs: A unified approach for small to
large numbers of factor levels

Let’s look at the sleep laboratory trial from the beginning, where the data are
displayed in Figure 1.1 and Figure 1.2. There are two groups, ten subjects, and
six measurements under each sleep condition, which results in 24 time points
for each person. Because of the two crossed factors, time and sleep condition,
questions of interest are whether there is a gender effect, an effect of time, an
effect of sleep condition, or corresponding interactions. This situation is a clas-
sical high-dimensional setting where many usual techniques like Hotellings T 2

can not be used to investigate these hypotheses.
Moreover, the data set and the experimental setup give no indications on the re-
lation between sample size and dimension. This relation is necessary for most
of the existing approaches, in addition to requirements on the structure of the
covariance matrix.

One exception is the test of Chen and Qin [2010], which allows different dis-
tributions but requires τCQ = tr((TΣ)4)/ tr2((TΣ)2) → 0, and just considers the
hypothesis of equal expectation vectors between two groups. However, for the
most interesting hypothesis of no gender effect, τCQ → 1 seems more viable. In
the case of normally distributed observations in Pauly et al. [2015], an approach
handling τCQ → 0 and τCQ → 1 was introduced. The assumption of normally
distributed observations is a common restriction to do without other ones and
is, for example, also used in Harrar and Kong [2016] or Happ et al. [2016].

So we extend the approach of Pauly et al. [2015] to settings with two or more
groups and consider even an increasing number of groups a in our asymptotic
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frameworks, which are then given through

a ∈ N fixed and min(d,N) → ∞,

d ∈ N fixed and min(a,N) → ∞,

or min(a,d,N) → ∞,

with a as the number of independent groups, ni the sample size of the i-th
group and d-dimensional observation vectors.

These frameworks allow using our test for situations with many groups and
therefore expand the applicability. The considered parametric model is given
through independent random vectors Xik ∼ Nd(µi,Σi) with Σi > 0 for i =

1, ...,a, and k = 1, ...,ni. To develop an asymptotic level α-test, we consider a
standardized quadratic form based on the pooled mean, which is given by

WN =
N · X⊤

TX− tr(TΣ)√
2 tr
(
(TΣ)

2
) .

The asymptotic distribution of WN under the null hypothesis was figured out
in Theorem 3.1, where decreasing ordered standardized eigenvalues βi of TΣT
are of particular specific importance. It holds that WN

D−→ Z ∼ N(0, 1) if and
only if β1 → 0, and WN

D−→ Z ∼ (χ2
1 − 1)/

√
2 if and only if β1 → 1. In extension

of Pauly et al. [2015], we could prove the equivalence between the convergence
of the largest standardized eigenvalue and the asymptotic distribution of the
standardized quadratic form. This equivalence confirms that β1 is a decisive
value.

For this parameter β1 it holds τCQ → 0 ⇔ β1 → 0 ⇔ τP → 0 and τCQ → 1 ⇔
β1 → 1 ⇔ τP → 1, with τP = tr3((TΣ)2)/ tr2((TΣ)3). The case of τCQ → 1 is an
important extension since in Pauly et al. [2015] it was shown that its behaviour
depends partially just on the way how the dimension is increased.
Finally, Theorem 3.1 also includes the case where βi → bi ∈ [0, 1] ∀i ∈ Nad,
with

∑∞
i=1 b

2
i = 1 and that the limit distribution in this case is an infinite sum of

standardized and centred χ2
1-variables with the weights given through bi.

For this theorem’s usage, it is necessary to develop proper estimators for the
unknown traces, while the required computation time should not be too high
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for practical use. The development of estimators usable in each of our differ-
ent asymptotic frameworks was one of the main difficulties for working in a
multiple group setting. To this aim, we develop trace estimators based on sym-
metrized U-statistics, which are ratio-consistent in all of our asymptotic frame-
works, regardless if the null hypothesis is true. Here, it is useful to estimate the
different summands of the traces, not only for simplicity but also for practical
reasons. Because the asymptotic frameworks include an increasing number of
groups, it is reasonable to use an estimator allowing for additional groups with-
out calculating everything new.

Concerning the potentially high computation time, we use a subsampling ap-
proach to take care of this. Thereby, the U-statistic is not calculated based on all
index combinations but on a random subset of them.
The number of elements in this subset, which we denote as B, allows control-
ling the number of summations. As a consequence, it influences the needed
time, and therefore should be chosen suitable for the situation.

This technique is especially important for developing an appropriate estimator
for τCQ or τP, which is, among other things, necessary to examine the behav-
ior of τCQ. Moreover, Pauly et al. [2015] showed that critical values based on
Kf = (χ2

f − f)
√

2f improve the small sample properties, if β1 → {0, 1} and with
meaningful degrees of freedom f. One choice is fCQ = τ−1

CQ, while they used
only fP = τ−1

P . With fP there is a concordance of the first three moments. Both
f make a choice unnecessary whether a quantile of a standard normal distribu-
tion or a standardized χ2

1 distribution is better for the test. Since in some tests
fP leads to better results, we also used it, and only shortly mentioned τCQ but
never used it further.

An extensive simulation study with N = 25 (small), N = 50 (medium) and
N = 125 (large) for increasing dimension d between 5 and 800 shows that in
case of the normal distribution our test based on KfP performs mostly better
than the test of Chen and Qin [2010] in case of τCQ → 0, τCQ → 1 or even
τCQ → b ∈ (0, 1). Hereby, different covariance matrices and hypotheses were
used, while the groups were unbalanced.

In summary, we developed estimators and an asymptotic test, usable for gen-
eral split-plot-designs with heteroscedastic covariance settings for normally dis-
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tributed observations. Here an extraordinary combination of asymptotic frame-
works allows us to use the test in many situations without assumptions on the
relation between the three parameters, the sample size N, the dimension d, and
the number of groups a. The usage of a critical value based on Kfp leads to a
good small sample approximation and makes the distinction between β1 → 0
and β1 → 1 unnecessary. Finally, also for β1 → b1 ∈ (0, 1), the type-I-error rate
in simulations was good, while there is no theoretical evidence.
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3.2 Extension of Article 1 to different dimensions

The model of Sattler and Pauly [2018] allows testing of hypotheses regarding
different groups of repeated measurements with the same dimension. However,
there are also situations where not all groups have the same number of mea-
surements and, therefore, the same dimension. So in two studies, there could
be different measurement points in the sleep laboratory or different numbers
of subplot factors. This setting also includes questionnaires with group-specific
questions and, therefore, different lengths. Moreover, this allows investigating
the influence of the number of repetitions on the data. The impact of a question-
naire’s length on the results is a popular topic, see, e.g., Roszkowski and Bean
[1990] or Hallal et al. [2004]. But it also enables, for example, to investigate
whether the number of animals in a litter has an influence on the respective
development status. It is clear that in such situations, some hypotheses like
equality of means make no sense.

We want to adapt the model and the results of Sattler and Pauly [2018] for the
more general setting, also considered in Friedrich et al. [2017]. So we assume

Xi,j = (Xi,j,1, . . . ,Xi,j,di
)⊤

ind
∼ Ndi

(µi,Σ) j = 1, . . . ,ni, i = 1, . . . ,a,

and define the dimension of the pooled mean vector by D =
∑a

i=1 di. Since a
Kronecker product of wholeplot and subplot matrix can not be used in a model
allowing groups with different dimension, the considered hypothesis matrix
and therefore the null hypotheses changes. Therefore, a block matrix

T =




T 11 ... T 1a
... . . . ...

Ta1 · · · Taa


 ∈ RD×D

which is idempotent and symmetric with components T ij ∈ Rdi×dj is used to
formulate our null hypothesis through H0 : Tµ = 0D. The parts of the hy-
pothesis matrix need not be quadratic, neither do they have to be idempotent
or symmetric. However, through the symmetry of T it holds T ij = T⊤

ji for

i, j ∈ Na. With the notations from Sattler and Pauly [2018] we find
√
N TX

H0
∼

ND (0D, TVNT ) and define the standardized quadratic form W̃N. In contrast

29



CHAPTER 3. SUMMARY OF THE ARTICLES

to Sattler and Pauly [2018] for estimation of the unknown expectation value
and variance of the quadratic form we will not consider the individual traces,
which are part of tr(TVNT ) resp. tr

(
(TVNT )

2
)

. The main reason is as pre-
viously mentioned, not all matrices T ij are quadratic, which was part of many
proofs in Sattler and Pauly [2018] to verify the properties of the used estimators.
Instead we estimated the whole trace, similarly as it was done for C1 in Sattler
and Pauly [2018]. To this aim we again use the D-dimensional random vectors
Z,

Z(ℓ1,ℓ2,...,ℓ2a) :=

(√
N

n1
(X1,ℓ1 − X1,ℓ2)

⊤ , . . . ,
√

N

na

(
Xa,ℓ2a−1 − Xa,ℓ2a

)⊤
)⊤

,

for ℓ1 ̸= ℓ2 ∈ Nn1 , ...., ℓ2a−1 ̸= ℓ2a ∈ Nna
. Then

C1 =

n1∑
ℓ1,1,ℓ2,1=1
ℓ1,1 ̸=ℓ2,1

· · ·
na∑

ℓ1,a,ℓ2,a=1
ℓ1,a ̸=ℓ2,a

Z(ℓ1,1,ℓ2,1,...,ℓ1,a,ℓ2,a)
⊤TZ(ℓ1,1,ℓ2,1,...,ℓ1,a,ℓ2,a)

2 ·
a∏

i=1

ni!
(ni−2)!

and

C2 =

n1∑
ℓ1,1,...,ℓ4,1=1
ℓ1,1 ̸=...̸=ℓ4,1

· · ·
na∑

ℓ1,a,...,ℓ4,a=1
ℓ1,a ̸=...̸=ℓ4,a

[
Z(ℓ1,1,ℓ2,1,...,ℓ1,a,ℓ2,a)

⊤TZ(ℓ3,1,ℓ4,1,...,ℓ3,a,ℓ4,a)

]2

4 ·
a∏

i=1

ni!
(ni−4)!

are our new estimators used for the expectation respective the variance.

The assumption of q > 0 with nmin = O(aq) or similar conditions make sure
that

∏a
i=1

(ni−2)!·(ni−2)!
ni!(ni−4)! → 1 holds. Then, these estimators have the same prop-

erties as ÊH0(QN) resp. A4 from Sattler and Pauly [2018]. The proof of this
statement can be found in the appendix together with the subsampling version
of these estimators. Again a too high number of necessary summations for C1

and C2 can make the usage of subsampling attractive.

So the substitution of the estimators used in Sattler and Pauly [2018] by these
new ones makes all their results valid for this changed setting.

Finally, it remains to reconsider the so far used asymptotic frameworks for the
case of different dimensions between the groups. An important element of the
used approach is that the dimension of the pooled mean vector goes to infinity.
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While for equal dimensions, this was ad and therefore needed either the dimen-
sion or number of groups to go to infinity, in this new setting ad is replaced by
D =

∑a
i=1 di. Thus, the number of groups or at least one dimension has to go

to infinity. This allows for very unbalanced dimension and also settings with
fixed dimension in some groups and increasing dimension in other ones, which
can be seen as semi-high-dimensional. This way, data sets from trials with fixed
dimensions can be compared with high-dimensional data sets. To our knowl-
edge, such a comparison has not been part of other papers yet.

But this is not the only way where the original setting from Sattler and Pauly
[2018] can be generalized. As mentioned at the beginning, a usual condition for
designs with several groups is

ni

N
→ κi ∈ (0, 1) i = 1, ...,a,

which is required to get a reasonable covariance matrix for the limit distribution
of

√
NX. Sattler and Pauly [2018] do not need this assumption with the usage of

the standardized quadratic form and the representation theorem. For the con-
vergence of the resulting weighted sum, only the behavior of βi (i = 1, ...,ad) is
of importance. Further, the sample size of each group must go to infinity.
So the new, more general frameworks are

a ∈ N fixed and min(max(d1, ...,da),n1, ...,na) → ∞,

∀i ∈ Na di ∈ N fixed and min(a,n1, ...,na)) → ∞,

or min(a, max(d1, ...,da),n1, ...,na) → ∞,

especially including the semi-high-dimensional settings.

3.2.1 Appendix

The new estimators C1 and C2 can be seen as a combination of the old ones Ai,1

and Ai,3 with the pooled vector Z and the approach introduced for C5. Simi-
lar to C5 and as mentioned in Section 2.3(U-Statistics) the number of necessary
summations, namely

∏a
i=1

ni!
(ni−2)! resp.

∏a
i=1

ni!
(ni−4)! , can increase really fast.

Therefore, the simulation becomes comparatively time consuming and the us-
age of a subsampling approach, as introduced in Section 2.4.3, is reasonable.
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This technique was already used for some of the other estimators in Sattler and
Pauly [2018] and needs B independently drawn random subsamples. For each
i = 1, ...,a and b = 1, ...,B these subsamples σ1i(b),σ2i(b) of length two or
σ1i(b), ...,σ4i(b) of length four are drawn without replacement from ni and used
to define vectors σ(b) = (σ11(b), ...,σ2a(b)) resp. σ(b) = (σ11(b), ...,σ4a(b)).
With this subsampling vectors the subsampling version can be defined.

Theorem 3.2.1:

a) With the two kernels

Λ4(ℓ1,1, . . . , ℓ2,a) = Z(ℓ1,1,ℓ2,1,...,ℓ1,a,ℓ2,a)
⊤TZ(ℓ1,1,ℓ2,1,...,ℓ1,a,ℓ2,a),

Λ5(ℓ1,1, . . . , ℓ4,a) =
[
Z(ℓ1,1,ℓ2,1,...,ℓ1,a,ℓ2,a)

⊤TZ(ℓ3,1,ℓ4,1,...,ℓ3,a,ℓ4,a)

]2
,

based on quadratic forms, we define the corresponding U-statistics through

C1 =

n1∑
ℓ1,1,ℓ2,1=1
ℓ1,1 ̸=ℓ2,1

· · ·
na∑

ℓ1,a,ℓ2,a=1
ℓ1,a ̸=ℓ2,a

Λ4(ℓ1,1, . . . , ℓ2,a)

2 ·
a∏

i=1

ni!
(ni−2)!

and

C2 =

n1∑
ℓ1,1,...,ℓ4,1=1
ℓ1,1 ̸=... ̸=ℓ4,1

· · ·
na∑

ℓ1,a,...,ℓ4,a=1
ℓ1,a ̸=...̸=ℓ4,a

Λ5(ℓ1,1, . . . , ℓ4,a)

4 ·
a∏

i=1

ni!
(ni−4)!

.

b) In addition the subsampling version of these estimators are given by

C⋆
1 (B) =

1
2 · B

B∑
b=1

Λ4(σ(b, 2)),

and

C⋆
2 (B) =

1
4 · B

B∑
b=1

Λ5(σ(b, 4)),

with B ∈ N the number of subsampling steps.
Then, if some q > 0 exists with nmin = O(aq) and B → ∞, C1 and C⋆

1 are
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unbiased and dimensional-stable estimators for tr(TVN). Under these conditions
also C2 and C⋆

2 are unbiased and dimensional-stable estimators for tr
(
(TVN)

2
)

.

Proof:

a) With the formulas for moments of the quadratic forms from Sattler et al.
[2022] and an adaption of estimators therein we calculate

E (C1) = 1

2·
a∏

i=1

ni !
(ni−2)!

n1∑
ℓ1,1,ℓ2,1=1
ℓ1,1 ̸=ℓ2,1

· · ·
na∑

ℓ1,a,ℓ2,a=1
ℓ1,a ̸=ℓ2,a

E (Λ4(ℓ1,1, . . . , ℓ2,a))

= 1

2·
a∏

i=1

ni !
(ni−2)!

n1∑
ℓ1,1,ℓ2,1=1
ℓ1,1 ̸=ℓ2,1

· · ·
na∑

ℓ1,a,ℓ2,a=1
ℓ1,a ̸=ℓ2,a

tr (2TVNT )

= tr (TVNT )

and

Var (C1)

=
n1∑

ℓ1,1,ℓ2,1=1
ℓ1,1 ̸=ℓ2,1

· · ·
na∑

ℓ1,a,ℓ2,a=1
ℓ1,a ̸=ℓ2,a

n1∑
ℓ′

1,1,ℓ′
2,1=1

ℓ′
1,1 ̸=ℓ′

2,1

· · ·
na∑

ℓ′
1,a,ℓ′

2,a=1
ℓ′

1,a ̸=ℓ′
2,a

Cov(Λ4(ℓ1,1,...,ℓ2,a),Λ4(ℓ
′
1,1,...,ℓ ′2,a))(

2·
a∏

i=1

ni !
(ni−2)!

)2

⩽

a∏
i=1

ni !
(ni−2)!

−
a∏

i=1

(ni−2)!
(ni−4)!

2·
a∏

i=1

ni !
(ni−2)!

Var (Λ4(1, . . . , 2))

=

a∏
i=1

ni !
(ni−2)!

−
a∏

i=1

(ni−2)!
(ni−4)!

a∏
i=1

ni !
(ni−2)!

· O
(
tr2 (TVN)

)
.

Similar we get

E (C2) = 1

4·
a∏

i=1

ni !
(ni−4)!

n1∑
ℓ1,1,...,ℓ4,1=1
ℓ1,1 ̸=...̸=ℓ4,1

· · ·
na∑

ℓ1,a,...,ℓ4,a=1
ℓ1,a ̸=... ̸=ℓ4,a

E (Λ5(ℓ1,1, . . . , ℓ2,a))

= 1

4·
a∏

i=1

ni !
(ni−4)!

n1∑
ℓ1,1,...,ℓ4,1=1
ℓ1,1 ̸=...̸=ℓ4,1

· · ·
na∑

ℓ1,a,...,ℓ4,a=1
ℓ1,a ̸=... ̸=ℓ4,a

tr
(
(2TVNT )

2
)

= tr
(
(TVNT )

2
)

and
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Var (C2)

=
n1∑

ℓ1,1,...,ℓ4,1=1
ℓ1,1 ̸=...̸=ℓ4,1

· · ·
na∑

ℓ1,a,...,ℓ4,a=1
ℓ1,a ̸=... ̸=ℓ4,a

n1∑
ℓ′

1,1,...,ℓ′
4,1=1

ℓ′
1,1 ̸=...̸=ℓ′

4,1

· · ·
na∑

ℓ′
1,a,...,ℓ′

4,a=1
ℓ′

1,a ̸=... ̸=ℓ′
4,a

Cov(Λ5(ℓ1,1,...,ℓ4,a),Λ5(ℓ
′
1,1,...,ℓ ′4,a))(

4·
a∏

i=1

ni !
(ni−4)!

)2

⩽

a∏
i=1

ni !
(ni−4)!

−
a∏

i=1

(ni−4)!
(ni−8)!

4·
a∏

i=1

ni !
(ni−4)!

Var (Λ5(1, . . . , 4))

=

a∏
i=1

ni !
(ni−4)!

−
a∏

i=1

(ni−4)!
(ni−8)!

a∏
i=1

ni !
(ni−4)!

· O
(

tr2
(
(TVN)

2
))

.

b) For the subsampling version, we take the same steps as for the compara-
ble estimators from Sattler and Pauly [2018] and use some results shown
therein. Denote with F(σi(B,m)) the smallest σ-field, which contains σi(b,m)

∀b ∈ B. Then we get

E (C⋆
1(B)) = 1

2B

B∑
b=1

E (Λ4(σ(b, 2)))

= 1
2B

B∑
b=1

E (Λ4(ℓ1,1, . . . , ℓ2,a))

= 1
2B

B∑
b=1

tr (2TVN) = tr (TVN)

and

Var (E (C⋆
1(B)|F(σ(B, 2)))) = Var (tr ((TVN))) = 0.

With this and M(B,σ(b, 2)) as the notation of the amount of pairs (k, ℓ) ∈
NB × NB, which fulfill that σ(k, 2) and σ(ℓ, 2) have totally different ele-
ments, we get

Var (C⋆
1(B)) = 0 + E (Var (C⋆

1(B)|F(σ(B, 2))))

⩽ 1
4B2E

( ∑
(j,ℓ)∈NB×NB\M(B,σ(b,2))

Var (Λ4(σ(j, 2))|F(σ(B, 2)))

)

= E(|NB×NB\M(B,σ(b,2))|)
B2 · Var(Z(1,2)

⊤TZ(1,2))
4

⩽

(
1 −

(
1 − 1

B

)
·

a∏
i=1

(ni−2
2 )

(ni
2 )

)
· tr ((TVN)) .
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The same calculations with M(B,σ(b, 4)) for our other estimator lead to

E (C⋆
2(B)) = 1

4B

B∑
b=1

E (Λ5(σ(b, 4)))

= 1
4B

B∑
b=1

E (Λ5(ℓ1,1, . . . , ℓ4,a)) .

= 1
4B

B∑
b=1

tr
(
(2TVN)

2
)
= tr

(
(TVN)

2
)

as well as

Var (E (C⋆
2(B)|F(σ(B, 4)))) = Var

(
tr
(
(TVN)

2
))

= 0

and finally to

Var (C⋆
2(B)) = 0 + E (Var (C⋆

2(B)|F(σ(B, 4))))

⩽ 1
16B2E

( ∑
(j,ℓ)∈NB×NB\M(B,σ(b,4))

Var (Λ5(σ(j, 4))|F(σ(B, 4)))

)

= E(|NB×NB\M(B,σ(b,4))|)
B2 · Var

(
[Z(1,2)

⊤TZ(3,4)]
2)

16

⩽

(
1 −

(
1 − 1

B

)
·

a∏
i=1

(ni−4
4 )

(ni
4 )

)
· 27 tr2

(
(TVN)

2
)

.

These results show that the estimators are unbiased and dimensional-
stable if

(
1 −

(
1 −

1
B

)
·

a∏
i=1

(
ni−2

2

)
(
ni

2

)
)

resp.

(
1 −

(
1 −

1
B

)
·

a∏
i=1

(
ni−4

4

)
(
ni

4

)
)

goes asymptotically to zero. Hence, it is necessary that B → ∞ as well as
the second part of the respective product goes to 1. While the first point is
easy to fulfill, the second one is done through requirements on the relation
between samples sizes and number of groups.
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Remark 3.2.1:
As an alternative to the existence of q > 0 with nmin = O(aq) also other conditions are
possible which make sure

∏a
i=1

(ni−2)!·(ni−2)!
ni!(ni−4)! → 1. This condition is also sufficient for

the corresponding condition for C2 resp C5. If all of these options are not fulfilled, both
estimators C1 and C2 could be adjusted as it was done in Sattler and Pauly [2018] with
C7 for the estimator C5.
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3.3 Article 2: Manifold Asymptotics of Quadratic-
Form-Based Inference in Repeated Measures
Designs

In Sattler and Pauly [2018], three different asymptotic frameworks were inves-
tigated, which all need each group’s sample size to go to infinity. It is of interest
to determine under which conditions our frameworks can be extended, for ex-
ample, containing a → ∞ while ni and d are fixed as considered in screening
experiments. On a closer inspection, the theoretical results reveal that the in-
creasing sample size is only required to estimate the traces containing the single
groups’ covariance matrices and not for the test statistic’s asymptotic distribu-
tion.
Thus, under the assumption of equal covariance matrices, it is sufficient if at
least one group sample size goes to infinity, or if the size of all groups is lim-
ited, but the number of groups increases. Therefore, the different considered
asymptotic frameworks for homogenous covariance matrices are

a → ∞,

min(a,d) → ∞,

min(a,nmax) → ∞,

min(d,nmax) → ∞,

min(a,d,nmax) → ∞,

while the statistical model from Sattler and Pauly [2018] is simplified through
Σi = Σ. For using the standardized quadratic form again as the test statistic,
estimators of the unknown traces under the assumption of equal covariance
matrices in all groups are necessary. In their development, we take into account
that our asymptotic frameworks allow strongly unbalanced sample sizes in the
individual groups. As we allow single groups with limited sample size, while at
the same time the sample size of other groups can go to infinity, the equivalent
assessment of all groups might reduce the quality of our estimators. There-
fore, we developed estimators, where the relation between the group sample
size and the total sample size is used to weight the appropriate estimator from
this group. This choice allows using estimators based on individual groups,
which is the most intuitive approach. Unfortunately, for these symmetrized
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U-statistics, the number of potential index combinations is again too high. The
quite unbalanced sample sizes have to be taken into account for using a subsam-
pling approach, making the task more demanding. This fact is also the reason
why we do not consider estimators using observations from different groups.
The required subsampling combined with the unbalanced groups would make
this kind of estimator quite complicated in practice. The results of Theorem 3.1
from Sattler and Pauly [2018] do not only hold for the more general asymp-
totic frameworks and the new estimators but also could be expanded to a more
general case:

If and only if all βi → bi, where only a finite number r of bi is un-
equal zero, then WN

D−→ Z ∼
∑r

i=1 bi(Ci − 1)/
√

2 +
√

1 −
∑r

i=1 b
2
i · B,

with Ci

i.i.d.
∼ χ2

1 and B ∼ N(0, 1).

This includes the cases with β1 → b1 ∈ {0, 1}, as special cases. Moreover it
makes clearer, how the different limit distributions from Theorem 3.1 are con-
nected. Through this new theorem, we not only expand the situations where the
asymptotic distribution is known but also have an equivalence in cases where
it so far was only a one direction relation.

Since the asymptotic distribution does not require equal covariances or partic-
ular asymptotic frameworks, this result also holds in the setting of Sattler and
Pauly [2018], which allows for generalizing their results. Simulations for an in-
creasing number of unbalanced groups and fixed sample size and dimension
show good results for the type-I-error and the power to detect deviation from
the null hypothesis.

The critical values based on a random variable Kf can also be used in this set-
ting, with the same theoretical results. It was a bit surprising, but through
the simplified structure of fP, we could show that in some cases, the concrete
asymptotic distribution only depends on the setting and the hypotheses and not
on the considered data. Consequently, in these cases, the uncertainty of whether
the limit of τCQ is in {0, 1} or not can be avoided.

All results also hold under the weaker condition of TSΣiTS being the same in
all groups i = 1, ...,a , which depends on the considered hypothesis.
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3.4 Article 3: Testing Hypotheses about Covariance
Matrices in General MANOVA Designs

The assumption of equal covariance matrices between some or all groups is
often used and can simplify many calculations. Nevertheless, it should be sta-
tistically justified. For such a preliminary test on variances, it is impractical to
need a lot of additional requirements. To this end, it is of great importance to
develop a test with nearly no distributional requirements. Therefore, we use
the semiparametric model (2.1) from Section 2.1.1, with Σi ⩾ 0. Here, beyond
the assumption of finite fourth moments, which is difficult to avoid while han-
dling the analysis of covariance matrices, all other assumptions are common
and less restrictive. This fact allows using our approach for many different
kinds of data, such as continuous or discrete data, as long as the empirical
covariance matrix is meaningfully defined. Existing tests, unfortunately, of-
ten have assumptions on the density function or complicated moments that
are difficult to verify. One exception is the test of Zhang and Boos [1992],
which has the same requirement as our approach but is known to have low
power. To this aim, another bootstrap approach is introduced in their paper,
with more power but which also requires severe restrictions through assum-
ing E

([
vech(ϵ11ϵ

⊤
11)
] [

vech(ϵ11ϵ11)
⊤]⊤) = E

([
vech(ϵ21ϵ

⊤
21)
] [

vech(ϵ21ϵ
⊤
21)
]⊤).

This assumption changes the hypothesis of equal covariance matrices to the
subset of equal covariance matrices and equality of this special fourth moment.
Due to this smaller hypothesis, the power increases, but rejection of this null
hypothesis allows no conclusions on the covariance matrices.

To allow a variety of possible hypotheses in addition to homoscedasticity of co-
variance matrices of multiple groups, we consider H0 : Cv = ζ with C ∈ Rm×ap

for m ⩽ p. This model is comparable to the ANOVA-based analysis, in which
usual idempotent and symmetric quadratic hypothesis matrices are used. It al-
lows to compare covariance matrices of multiple groups as well as parts of them
and moreover comparisons of effect measurements like the trace of the covari-
ance matrix. For one group, this model contains testing for a given trace of the
covariance matrix, for a given covariance matrix and whether components are
uncorrelated. Also, testing equality of all diagonal elements and many other
interesting hypotheses is part of the null hypothesis class. The procedure to
check all the considered hypothesis is based on the asymptotic distribution of
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the vectorized empirical covariance matrix vech(Σ̂i), which is given in Theorem
3.1 through

√
ni(vech(Σ̂i) − vech(Σi))

D−→ Np(0p,Vi).

Hereby, Vi = Cov(vech((Xi1 − µi)(Xi1 − µi)
⊤), which makes it harder to check

important properties such as positive definiteness. Based on this asymptotic
distribution, all quadratic forms known from the mean-based analysis can be
used if their requirements are fulfilled. With V̂i as the empirical covariance
matrix of vech

(
[Xik − Xi][Xik − Xi]

⊤) and V = ⊕a
i=1N/niVi estimated through

V̂ = ⊕a
i=1N/niV̂i quadratic forms given by

Q̂v = N


C




vech(Σ̂1)
...

vech(Σ̂a)


− ζ




⊤

E(C, V̂)


C




vech(Σ̂1)
...

vech(Σ̂a)


− ζ


 ,

are used. Here, E(C, V̂) is the quadratic form defining matrix, where we study
the specific choices E(C, V̂) = (CV̂C⊤)+ for the WTS, E(C, V̂) = Im/ tr(CV̂C⊤)

for the ATS and E(C, V̂) = (CV̂0C
⊤)+ for the MATS.

Since some of these quadratic forms are asymptotic non-pivot or exhibit bad
small sample approximations, resampling techniques are essential to solve both
difficulties. We consider a parametric bootstrap approach on the one hand and a
wild bootstrap approach on the other hand. Hereby, some adaptions are neces-
sary due to the focus on the covariance matrix instead of the expectation value.
One other challenge was the adaption of the class of considered null hypotheses
from mean-based analysis to vectorized covariance matrices. For hypotheses
Cv = ζ, where ζ is allowed to have nonzero values, the frequently used unique
hypothesis matrix does not have to exist. As a consequence, the choice of the
appropriate hypothesis matrix turned out to be of particular importance. In
particular, a closer look at this topic reveals that the choice of hypothesis matrix
can save an essential amount of computation time.

Since the dimension p of the vectorized covariance matrix grows quadratically
in dimension d of the observation vector, small sample behavior and computa-
tion time are essential aspects of a test statistic. Therefore an extensive simula-
tion is conducted to check these and other properties. Here, various hypotheses
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are considered for one, two, and three groups and four different distributions
together with two different covariance matrices. To see the properties for dif-
ferent combinations, we consider dimensions 5 and 7, which means that the
vectorized matrix has dimensions 15 and 21. Sample sizes depending on the
dimension, such as 5d and 50d, enable comparability.

Different quadratic forms with both bootstrap approaches are simulated and
compared with existing procedures regarding their type-I-error and their power
to detect deviations from the null hypotheses. Hereby, the ATS given through
E(C, V̂) = Ip/ tr(CV̂C⊤) shows the best results in terms of type-I error con-
trol and power to detect deviations from the null hypothesis. The ATS with
parametric bootstrap has the best properties, while a Monte-Carlo-based ap-
proach is hardly less favorable but has clear advantages regarding computation
time. In almost every setting, both are better than the two tests from Zhang and
Boos [1992], which also allow other hypotheses than equal covariance matrices
but give no information about the required test statistics. Even the very pop-
ular Box’s M-test, which is only applicable for normal distribution, has for the
normal distribution no better large sample approximation than our ATS with
parametric bootstrap, but worse small sample approximation.

Since our approach is similar to the classical mean-based analysis in many as-
pects, it is intuitive and understandable for potential users. Furthermore, the
requirements are comparatively low, and the considered null hypotheses are
rather general. Together with the convincing simulation results, this work is
preferable to most of the existing procedures and enables a variety of expan-
sions and applications.
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3.5 Extensions and further results based on Article 3

In Sattler et al. [2022] many hypotheses were considered, extensive simulations
were done, and further questions like saving time through the choice of an ap-
propriate hypotheses matrix were investigated. Nevertheless, a few issues were
left pending. We want to take a closer look at several of these issues, which are:

1. For testing equality of covariance matrices between multiple groups, we
had convincing simulation results in the case of equal distributions be-
tween groups. It is of great interest to investigate the performance in
settings where the groups have different distributions since this violates
the conditions of one of the tests from Zhang and Boos [1993]. Moreover,
we want to examine the type-I-error rate for the challenging hypothesis
of testing for a given covariance matrix, which was, e.g., investigated in
Gupta and Xu [2006]. Such hypotheses are rare, but as we will see after-
wards, there exist some useful applications.

2. It was mentioned that the hypothesis matrices are, in general, not unique.
Therefore, the qualities of alternative non-quadratic hypothesis matrices
were pointed out. This makes it necessary to investigate the influence of
the chosen hypothesis matrix on the test decision.

3. After developing a test to examine hypotheses regarding the covariance
matrix, it is an enticing project to adapt the approach for testing hypothe-
ses regarding correlation matrices. They contain much information about
the dependency structure of the underlying data set without being influ-
enced by most multiplications. Thus, depending on the situation, it is
more suitable to consider them instead of the covariance matrix.

4. In many situations, the covariance matrix structure (like being an autore-
gressive matrix, a compound symmetry matrix, or a Toeplitz matrix) is of
greater interest than, for example, comparing the covariance matrix with
another matrix. Since the pattern of a covariance matrix contains lots of
information about the dependency structure and, therefore, about an ap-
propriate model, this extends the test procedure’s applicability substan-
tially.

5. As could be seen in Section 6 of Sattler et al. [2022], computation time is an
essential factor for choosing the adequate test statistic for a hypothesis in
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the individual situation. This aspect is, in particular relevant for hypothe-
ses regarding the covariance matrix, since the dimension of the vectorized
covariance matrix grows quadratically in d.
In this section, it was also shown that a non-quadratic hypothesis matrix
could save a substantial amount of time in many cases. The influence of
this change is investigated in Section 3.5.2. Therefore, we want to intro-
duce some tricks and techniques to further reduce the computation time
and use the capability of the non-quadratic matrix without lowering the
quality of our approach.

6. Finally, it is of interest whether the assumptions of the statistical model can
be reduced. Since there are few requirements, the only condition which
can be relaxed is the equal dimension in each group.

3.5.1 Simulating one more setting and another hypothesis

First, we want to analyze how the different test statistics perform for the hy-
pothesis of equal covariance matrices of two groups if the distributions are from
two different families. This setting is more challenging and also violates the ad-
ditional requirement for the pooled bootstrap from Zhang and Boos [1993]. To
investigate the behavior in this setting, we build all different pairs from our four
distributions, which are based on t9, normal distribution, skew normal distri-
bution, and gamma distribution. As in Sattler et al. [2022] we use two different
covariance matrices (V)ij = 0.6|i−j| and V = I5 + J5. The results are displayed
in Tables 3.1-3.4, where values in the 95% binomial interval [0.047, 0.053] are
printed bold.

It is apparent that for all our differing test-statistics, the results are compara-
ble with the results from observations with the same distribution, and in some
cases, even slightly better. This result is of great importance because such mixed
distributions appear to be more demanding and allow us to contrast different
kinds of data.

The ATS with parametric bootstrap and our Monte-Carlo ATS have convincing
results even for the smaller sample size of N = 100, while for N = 50, the bet-
ter small sample approximation of the parametric bootstrap ATS can be seen.
Also, the MATS with parametric bootstrap shows good results for some com-
binations. Interestingly, the Box’s M tests perform somewhat better for t9 vs.
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Normal and Normal vs. Skew Normal, where at least a trend can be seen. But
in all combinations with the gamma distribution, the error rate is higher than
17%, even if the normal distribution is involved. These values show one more
time that both groups have to be normally distributed for Box’s M-test.

t9 vs. Normal t9 vs. Skew normal t9 vs. Gamma

N 50 100 250 500 50 100 250 500 50 100 250 500

ATS-Para .0540 .0501 .0488 .0484 .0539 .0516 .0504 .0497 .0570 .0500 .0493 .0493
ATS-Wild .0803 .0647 .0562 .0526 .0887 .0676 .0575 .0551 .0961 .0752 .0637 .0571
ATS .0589 .0514 .0489 .0483 .0602 .0525 .0503 .0498 .0621 .0507 .0492 .0491
WTS-Para .0613 .0567 .0514 .0454 .0641 .0616 .0554 .0537 .0831 .0904 .0899 .0786
WTS-Wild .0911 .0753 .0618 .0508 .0984 .0852 .0670 .0617 .1330 .1298 .1106 .0899
WTS-χ2

15 .4877 .2011 .0888 .0630 .5006 .2140 .0973 .0716 .5445 .2682 .1419 .0976
MATS-Para .0613 .0540 .0520 .0506 .0631 .0588 .0539 .0524 .0729 .0665 .0625 .0590
MATS-Wild .0846 .0653 .0558 .0530 .0900 .0716 .0607 .0566 .1053 .0857 .0717 .0657
Bartlett-S .0147 .0381 .0494 .0481 .0161 .0420 .0537 .0522 .0235 .0536 .0653 .0602
Bartlett-P .0213 .0298 .0354 .0347 .0232 .0361 .0417 .0412 .0353 .0524 .0628 .0634
Box’s M-χ2

15 .0914 .0798 .0824 .0764 .1167 .1098 .1119 .1104 .2098 .2216 .2433 .2488
Box’s M-F .0865 .0788 .0822 .0763 .1098 .1083 .1117 .1103 .2015 .2197 .2429 .2488

Table 3.1: Simulated type-I-error rates (α = 5%) in scenario A) (Hv
0 : V1 = V2)

for ATS, WTS, MATS, Bartletts test and Box’s M-test. The observation vectors
have dimension 5, covariance matrix (V)ij = 0.6|i−j| and there is always the
same relation between group sample sizes with n1 := 0.6 ·N resp. n2 := 0.4 ·N.

Now it remains to inspect the performance of both Bartlett test-statistics, where
we expect an effect, at least for the pooled bootstrap. For the Bartlett test-
statistic with separate bootstrap, these mixed distributions’ performance is a
bit worse than for groups from the same distributional family. For example,
this can be seen through the number of error-rates within the 95% binomial in-
terval [0.047, 0.053]. This number is identical to Sattler et al. [2022] even though
the number of different distributions was one and a half times larger. As a com-
parison for φ∗

ATS, this number increased from 16 to 27, which is even more than
the factor 1.5 .

But for the pooled bootstrap, the consequences are significantly stronger than
for the separate bootstrap. For some of the distribution pairs like t9 vs. Normal,
the rate is lower than 3.6% over all sample sizes. In most other distributional
settings, the error rate started lower and ended higher than the theoretical 5%-
level, up to values of 8.2%.
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Normal vs. Skew Normal Normal vs. Gamma Skew Normal vs. Gamma

N 50 100 250 500 50 100 250 500 50 100 250 500

ATS-Para .0615 .0568 .0516 .0524 .0637 .0552 .0514 .0502 .0577 .0526 .0504 .0518
ATS-Wild .0906 .0706 .0579 .0553 .1002 .0768 .0651 .0577 .0979 .0786 .0631 .0586
ATS .0661 .0581 .0520 .0513 .0700 .0569 .0505 .0497 .0634 .0549 .0511 .0505
WTS-Para .0781 .0831 .0689 .0662 .1139 .1381 .1269 .1072 .1025 .1142 .1032 .0928
WTS-Wild .1183 .1079 .0802 .0727 .1711 .1800 .1501 .1203 .1543 .1558 .1250 .1058
WTS-χ2

15 .5226 .2456 .1144 .0845 .5941 .3316 .1850 .1309 .5759 .3003 .1564 .1132
MATS-Para .0719 .0647 .0576 .0556 .0857 .0795 .0705 .0637 .0764 .0751 .0643 .0605
MATS-Wild .0970 .0771 .0616 .0591 .1197 .0971 .0787 .0693 .1100 .0945 .0736 .0671
Bartlett-S .0143 .0391 .0483 .0498 .0220 .0519 .0612 .0585 .0231 .0539 .0631 .0613
Bartlett-P .0283 .0423 .0507 .0539 .0425 .0655 .0777 .0821 .0347 .0556 .0672 .0720
Box’s M-χ2

15 .0888 .0785 .0757 .0729 .1775 .1795 .1975 .2018 .1971 .2093 .2187 .2291
Box’s M-F .0826 .0775 .0755 .0729 .1692 .1780 .1971 .2018 .1885 .2070 .2183 .2291

Table 3.2: Simulated type-I-error rates (α = 5%) in scenario A) (Hv
0 : V1 = V2)

for ATS, WTS, MATS, Bartletts test and Box’s M-test. The observation vectors
have dimension 5, covariance matrix (V)ij = 0.6|i−j| and there is always the
same relation between group samples size with n1 := 0.6 ·N resp. n2 := 0.4 ·N.

t9 vs. Normal t9 vs. Skew normal t9 vs. Gamma

N 50 100 250 500 50 100 250 500 50 100 250 500

ATS-Para .0594 .0524 .0509 .0498 .0584 .0542 .0512 .0504 .0594 .0535 .0533 .0511
ATS-Wild .0815 .0620 .0551 .0531 .0856 .0688 .0575 .0538 .0919 .0744 .0646 .0566
ATS .0641 .0525 .0504 .0494 .0639 .0571 .0519 .0496 .0635 .0546 .0531 .0502
WTS-Para .0616 .0567 .0511 .0455 .0641 .0616 .0564 .0544 .0823 .0903 .0894 .0795
WTS-Wild .0911 .0753 .0618 .0508 .0984 .0852 .0670 .0617 .1330 .1298 .1106 .0899
WTS-χ2

15 .4877 .2011 .0888 .0630 .5006 .2140 .0973 .0716 .5445 .2682 .1419 .0976
MATS-Para .0651 .0554 .0521 .0514 .0653 .0601 .0560 .0532 .0760 .0695 .0633 .0594
MATS-Wild .0830 .0646 .0554 .0537 .0867 .0701 .0604 .0550 .0982 .0825 .0703 .0640
Bartlett-S .0145 .0383 .0495 .0481 .0160 .0423 .0534 .0524 .0233 .0534 .0649 .0600
Bartlett-P .0213 .0298 .0354 .0347 .0232 .0361 .0417 .0412 .0353 .0524 .0628 .0634
Box’s M-χ2

15 .0914 .0798 .0824 .0764 .1167 .1098 .1119 .1104 .2098 .2216 .2433 .2488
Box’s M-F .0865 .0788 .0822 .0763 .1098 .1083 .1117 .1103 .2015 .2197 .2429 .2488

Table 3.3: Simulated type-I-error rates (α = 5%) in scenario A) (Hv
0 : V1 = V2)

for ATS, WTS, MATS, Bartletts test and Box’s M-test. The observation vectors
have dimension 5, covariance matrix V = I5 + J5 and there is always the same
relation between group samples size with n1 := 0.6 ·N resp. n2 := 0.4 ·N.
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Normal vs. Skew Normal Normal vs. Gamma Skew Normal vs. Gamma

N 50 100 250 500 50 100 250 500 50 100 250 500

ATS-Para .0646 .0584 .0534 .0521 .0667 .0573 .0523 .0497 .0608 .0559 .0528 .0521
ATS-Wild .0858 .0685 .0577 .0544 .0982 .0766 .0622 .0569 .0952 .0777 .0627 .0595
ATS .0696 .0598 .0535 .0513 .0730 .0587 .0524 .0501 .0663 .0574 .0525 .0514
WTS-Para .0799 .0837 .0693 .0656 .1151 .1369 .1259 .1068 .0999 .1146 .1025 .0929
WTS-Wild .1183 .1079 .0802 .0727 .1711 .1800 .1501 .1203 .1543 .1558 .1250 .1058
WTS-χ2

15 .5226 .2456 .1144 .0845 .5941 .3316 .1850 .1309 .5759 .3003 .1564 .1132
MATS-Para .0726 .0657 .0575 .0548 .0885 .0760 .0693 .0615 .0782 .0747 .0644 .0608
MATS-Wild .0893 .0741 .0606 .0560 .1103 .0891 .0763 .0657 .1031 .0895 .0709 .0655
Bartlett-S .0144 .0394 .0484 .0498 .0219 .0517 .0617 .0585 .0229 .0540 .0628 .0614
Bartlett-P .0283 .0423 .0507 .0539 .0425 .0655 .0777 .0821 .0347 .0556 .0672 .0720
Box’s M-χ2

15 .0888 .0785 .0757 .0729 .1775 .1795 .1975 .2018 .1971 .2093 .2187 .2291
Box’s M-F .0826 .0775 .0755 .0729 .1692 .1780 .1971 .2018 .1885 .2070 .2183 .2291

Table 3.4: Simulated type-I-error rates (α = 5%) in scenario A) (Hv
0 : V1 = V2)

for ATS, WTS, MATS, Bartletts test and Box’s M-test. The observation vectors
have dimension 5, covariance matrix V = I5 + J5 and there is always the same
relation between group samples size with n1 := 0.6 ·N resp. n2 := 0.4 ·N.

This is not surprising, since their method requires the additional condition of
E
(
[vech(ϵ11ϵ

⊤
11)][vech(ϵ11ϵ

⊤
11)]

⊤) = E
(
[vech(ϵ21ϵ

⊤
21)][vech(ϵ21ϵ

⊤
21)]

⊤).
Through this condition, they test a considerably larger null hypothesis, which
is rejected if the additional condition is violated, as well as if the covariance
matrices differ. And due to the larger null hypothesis, the power increases, but
rejection allows no conclusions on the homoscedasticity of covariance matrices.
This fact, together with the simulation results, clearly demonstrates that the
pooled bootstrap approach from Zhang and Boos [1993] should be used with
caution.

The above results show that φ∗
ATS and φATS are appropriate procedures for sit-

uations with possibly different kinds of distributions in the groups. Thereby,
φ∗

ATS shows better results, especially for smaller sample sizes, but needs more
computation time, see Section 3.5.5 and Sattler et al. [2022]. Overall, this is
one more argument to favor these tests over existing procedures, in addition to
generally better approximation for small sample sizes and the wide variety of
possible null hypotheses.

46



3.5. EXTENSIONS AND FURTHER RESULTS BASED ON ARTICLE 3

Moreover we want to investigate another hypothesis:

F) a = 1 Hv
0 : V1 = V for given V,

where also scenario F) can be formulated with an idempotent symmetric matrix
C(F) = I15.
The new hypothesis of testing for a given matrix is particularly interesting be-
cause it seems quite challenging. The values in Table 3.5 and Table 3.6 con-
firmed this assumption, especially for the WTS, which always had type-I-error
rates higher than 15%. The other tests were too liberal as well but to a much
lesser extent. Considering the demanding nature of this hypothesis, the type-I-
error rates of φ∗

ATS seem to be acceptable for higher sample sizes as n1 = 125
or n1 = 250 as they fulfill, for example, Bradley’s liberal criterion from Bradley
[1978]. In this work, Bradley considered a statistical test as robust, if the em-
pirical type I error rate is between 0.5α and 1.5α 1. This kind of hypothesis is
comparably rare, but we consider similar hypotheses in Section 3.5.3 and Sec-
tion 3.5.4.

3.5.2 Influence of the used hypothesis matrix

To investigate the influence of the chosen hypothesis matrix on the test result,
we use tests with different matrices for the same data with the same seed to strip
out all other influences on the test decision. For this simulation, we use 1,000
bootstrap runs for the tests based on parametric and wild bootstrap and 10,000
runs for the Monte-Carlo test. To get results that are as generic as possible, we
use 10,000 repetitions, each with four distributions (based on t9-distribution,
Normal-distribution, Skew Normal-distribution, and Gamma-distribution) and
two covariance matrices ((V)ij = 0.6|i−j| and V = I5 + J5). The considered
dimension was d = 5 and the sample size depending on the hypothesis was
n = 50, n = (60, 40) or n = (64, 40, 56). We calculate the congruity of the test
decisions, i.e., the proportion of both tests resulting in the same test decision.
Moreover, we consider different summary statistics for the difference of the p-
values like quantiles or the maximum. We do not differentiate between the
different distributions or covariance matrices for all these values but consider
the whole set of all 80,000 test decisions.

1This criterion was described by himself as “The most liberal criterion that I am able to take
seriously" (Bradley [1978], page 146).
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t9 Normal

N 25 50 125 250 25 50 125 250

ATS-Para .0795 .0668 .0548 .0560 .0804 .0673 .0609 .0512
ATS-Wild .1166 .0905 .0656 .0617 .1125 .0840 .0690 .0563
ATS .0851 .0696 .0552 .0559 .0874 .0698 .0618 .0512
WTS-Para .6914 .5576 .3256 .2077 .6152 .4438 .2413 .1429
WTS-Wild .7383 .6020 .3581 .2275 .6582 .4857 .2622 .1542
WTS-χ2

15 .9813 .8014 .4445 .2608 .9673 .7269 .3556 .1929
MATS-Para .2191 .1542 .1007 .0812 .1786 .1224 .0850 .0643
MATS-Wild .2679 .1812 .1103 .0878 .2167 .1425 .0925 .0684

Skew Normal Gamma

N 25 50 125 250 25 50 125 250

ATS-Para .0816 .0657 .0585 .0522 .0910 .0735 .0537 .0517
ATS-Wild .1226 .0877 .0692 .0587 .1418 .1098 .0716 .0626
ATS .0871 .0678 .0585 .0531 .0978 .0744 .0543 .0521
WTS-Para .6623 .5217 .3012 .1876 .7911 .6948 .4613 .3028
WTS-Wild .7060 .5639 .3298 .2053 .8234 .7392 .5047 .3330
WTS-χ2

15 .9759 .7772 .4186 .2375 .9889 .8831 .5737 .3587
MATS-Para .2163 .1463 .0956 .0750 .3110 .2280 .1407 .1059
MATS-Wild .2620 .1707 .1044 .0806 .3687 .2675 .1616 .1172

Table 3.5: Simulated type-I-error rates (α = 5%) in scenario F) (Hv
0 : V1 = V) for

ATS, WTS and MATS with 5-dimensional vectors and (V)ij = 0.6|i−j|.
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t9 Normal

N 25 50 125 250 25 50 125 250

ATS-Para .0940 .0759 .0625 .0600 .0962 .0763 .0644 .0555
ATS-Wild .1283 .0966 .0702 .0659 .1241 .0889 .0690 .0589
ATS .1006 .0777 .0617 .0603 .1029 .0786 .0643 .0553
WTS-Para .6924 .5585 .3247 .2085 .6145 .4451 .2414 .1435
WTS-Wild .7383 .6020 .3581 .2275 .6582 .4857 .2622 .1542
WTS-χ2

15 .9813 .8014 .4445 .2608 .9673 .7269 .3556 .1929
MATS-Para .2177 .1534 .0986 .0810 .1870 .1241 .0866 .0668
MATS-Wild .2546 .1744 .1066 .0843 .2168 .1373 .0929 .0688

Skew Normal Gamma

N 25 50 125 250 25 50 125 250

ATS-Para .0952 .0758 .0631 .0561 .1041 .0827 .0607 .0554
ATS-Wild .1294 .0952 .0709 .0602 .1476 .1138 .0767 .0656
ATS .1015 .0786 .0624 .0548 .1100 .0857 .0611 .0547
WTS-Para .6620 .5226 .3021 .1879 .7902 .6947 .4618 .3032
WTS-Wild .7060 .5639 .3298 .2053 .8234 .7392 .5047 .3330
WTS-χ2

15 .9759 .7772 .4186 .2375 .9889 .8831 .5737 .3587
MATS-Para .2133 .1468 .0938 .0756 .2932 .2165 .1379 .1028
MATS-Wild .2474 .1667 .1017 .0799 .3367 .2454 .1514 .1090

Table 3.6: Simulated type-I-error rates (α = 5%) in scenario F) (Hv
0 : V1 = V) for

ATS, WTS and MATS with 5-dimensional vectors and V = I5 + J5.
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Obviously, all tests based on bootstrap or Monte-Carlo-simulation have a slightly
random behavior due to the influence of the used realizations of considered
random variables. To analyze this potential randomness’s influence, we also
simulate our bootstrap-based test statistic for the same data but with another
seed. Overall considered distributions, hypotheses, and test statistics for 1,000
bootstrap runs, the test decisions’ congruity is in this case always about 99.1%.
For the Monte-Carlo-simulation with 10,000 simulation runs, it is about 99.7%.
Due to the higher number of runs and, therefore, reduced importance of the
individual realizations, this second value is higher. For 500 bootstrap runs, the
congruity is about 98.8%, and for 5,000 bootstrap runs, it is about 99.6%. We
should keep this behavior in mind for the decision of the used number of boot-
strap runs.

In scenario C) (Hv
0 : tr(V1) = tr(V2)) the only reasonable way to get hypothesis

matrices with less rows, is to remove the rows which only contain zeros. It is
not surprising that this does not change the decision of our tests. For scenario
A) (Hv

0 : V1 = V2) there is also just one way to reduce the hypothesis matrix,
by removing the second row of HW . Multiplied with the mean vector this just
simplifies the vector (v1 −v2,−(v1 −v2))

⊤ so we get v1 −v2 and identical for the
matrix CΣC⊤. This repetition does not influence the quadratic form’s value, so
the chosen hypothesis matrix without this repetition again has no impact.

There is only one exception for all these hypotheses where the used matrix has
a small impact, the Monte-Carlo test in the ATS. This effect presumably has nu-
merical reasons. Although the reduction of the size of the hypothesis matrix
does not change the non-zero eigenvalues of the matrix CΣC⊤, it eliminates
the eigenvalues that are zero. From a theoretical point of view, this does not
influence the considered weighted sum of independent χ2

1 random variables.
However, these values are estimated for this test’s application and therefore are
close to zero but not exactly zero. Dependent on the χ2

1 random variables, this
can have a slight influence on the weighted sum, and therefore on the test deci-
sion. In our simulation, this difference in the weighted sum influences the test
decision in about 0.3% of the cases. As this is comparatively rare and proba-
bly can be remedied through smart coding, for all these hypotheses and also
for comparable hypotheses, the matrices with fewer rows can be used without
worrying.
For other hypotheses, partially there are much more useful hypothesis matrices.
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We want to examine two of these hypotheses. On one hand, there is equality of
the covariance matrices of three groups E) (Hv

0 : V1 = V2 = V3). Here, different
options for a hypothesis matrix are given by

C1(E) = P3 ⊗ I5, C2(E) =
1
2
·
(

2 −1 −1

−1 2 −1

)
⊗ I5, C3(E) =

(
1 −1 0

1 0 −1

)
⊗ I5.

It can be seen that there is an increased focus on the first group in C2(E) and
C3(E). Similarly, we could define matrices with a focus on the second or third
group, which is, in this case, only a permutation of columns. Since the influence
of such permutation is investigated subsequently for scenario B), we renounce
to do this here.

On the other hand, there is the hypothesis from scenario B) (Hv
0 : V111 = ... =

V155), which enables many different matrices. Here we considered the following
potential hypothesis matrices:

C1(B) = diag(hd) − hd · h⊤
d/d,

C2(B) = (1d−1, 0d−1×d−1,−e1, 0d−1×d−2,−e2, ..., 0d−1,ed−1) ∈ Rd−1×p,

C3(B) =




C1(B)1•

C1(B)6•

C1(B)10•

C1(B)13•




, C4(B) =




C1(B)1•

C1(B)6•

C1(B)10•

C1(B)15•




.

We focus on φ∗
ATS,φ⋆

ATS and φATS, because for the WTS and the MATS, the con-
gruity between all these different hypotheses matrices was 100%. The results of
these simulations can be seen in Table 3.7 and Table 3.8 where the hypothesis
with a different seed value is marked by C ′

1(B) resp. C ′
1(E).

In Table 3.7 it can be seen that for all hypotheses with identical seed again, the
φ∗

ATS and φATS have very similar results. Moreover, the results for all pairs of
covariance matrices for hypothesis E) are comparable. The values of the wild
bootstrap approach are always worse than the other two. Therefore, it could
be concluded that the applied hypothesis matrix has more effect on the wild
bootstrap. But it is more likely to be due to the more liberal behavior of the
bootstrap. A liberal test has clearly less congruity than a more conservative test.
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Congruity 25% Quantile Median

ATS-Para ATS-Wild ATS ATS-Para ATS-Wild ATS ATS-Para ATS-Wild ATS

C2(E) vs. C3(E) .961 .949 .961 .030 .031 .030 .070 .075 .070
C1(E) vs. C2(E) .967 .955 .966 .029 .029 .029 .067 .072 .067
C1(E) vs. C3(E) .963 .947 .962 .032 .032 .032 .073 .078 .074
C1(E) vs. C ′

1(E) .992 .990 .997 .005 .005 .002 .012 .011 .004

Mean 75% Quantile Maximum

ATS-Para ATS-Wild ATS ATS-Para ATS-Wild ATS ATS-Para ATS-Wild ATS

C2(E) vs. C3(E) .086 .095 .086 .127 .140 .127 .457 .580 .449
C1(E) vs. C2(E) .083 .091 .083 .121 .134 .121 .463 .564 .461
C1(E) vs. C3(E) .089 .098 .089 .132 .145 .132 .467 .511 .445
C1(E) vs. C ′

1(E) .015 .014 .005 .021 .020 .007 .098 .095 .026

Table 3.7: Comparison of various ATS-test-statistics based on different hypoth-
esis matrices with distinct number of rows by reference to congruity of the test
decisions and different summary statistics for the difference of the p-values. The
hypothesis is E) (Hv

0 : V1 = V2 = V3) for dimension d = 5 and n = (64, 40, 56).

Similar for the differences of the p-values. For all three pairs with congruity
values between 0.947 and 0.967, the matrix’s impact is quite high, compared
with the seed’s effect. Moreover, summary statistics with average differences
of p-values over 0.08 and maximal differences over 0.44 show that different test
decisions appear not only in situations with pretty close p-values.
For hypothesis B) again Table 3.8 shows worse results for the wild bootstrap, for
the same reason as before. It should be noted that C1(B) vs. C3(B) and C1(B) vs.
C4(B) have better values than the other pairs. Since C3(B) and C4(B) emerge
from C1(B) by removing all-zero rows and for each of them one other row, this
makes sense.
It is interesting that C3(B) vs. C4(B) has, with congruity value between 0.945
and 0.959, clearly lower values than C1(B) vs. C3(B). In particular, the structure
of both matrices C1(B) and C3(B) is very similar. Therefore, we might have
expected that the results are better than for other more different hypotheses,
but the comparison C3(B) vs. C4(B) shows the highest maximal difference in
p-values. With values up to 0.839, this is nearly the whole range of p-values,
while all other summary statistics, in this case, are less extreme compared to the
other pairs of hypothesis matrices.
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Congruity 25% Quantile Median

ATS-Para ATS-Wild ATS ATS-Para ATS-Wild ATS ATS-Para ATS-Wild ATS

C1(B) vs. C2(B) .942 .927 .940 .046 .044 .046 .107 .110 .107
C2(B) vs. C3(B) .942 .924 .938 .044 .043 .044 .105 .109 .105
C3(B) vs. C4(B) .959 .945 .957 .031 .032 .031 .082 .087 .082
C1(B) vs. C3(B) .974 .963 .972 .027 .027 .027 .061 .065 .062
C1(B) vs. C4(B) .976 .968 .975 .024 .024 .024 .055 .058 .055
C1(B) vs. C

′
1(B) .992 .990 .997 .005 .005 .002 .012 .011 .004

Mean 75% Quantile Maximum

ATS-Para ATS-Wild ATS ATS-Para ATS-Wild ATS ATS-Para ATS-Wild ATS

C1(B) vs. C2(B) .123 .132 .123 .184 .199 .185 .581 .839 .570
C2(B) vs. C3(B) .127 .136 .127 .192 .206 .192 .593 .780 .575
C3(B) vs. C4(B) .121 .130 .121 .177 .190 .177 .703 .839 .695
C1(B) vs. C3(B) .081 .087 .081 .108 .116 .108 .612 .651 .615
C1(B) vs. C4(B) .074 .079 .074 .097 .105 .098 .585 .659 .586
C1(B) vs. C

′
1(B) .014 .014 .005 .021 .020 .007 .104 .097 .029

Table 3.8: Comparison of various ATS-test-statistics based on different hypoth-
esis matrices with distinct number of rows by reference to congruity of the test
decisions and different summary statistics for the difference of the p-values.
The hypothesis is B) (Hv

0 : V111 = ... = V155) for dimension d = 5 and n = 50.
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In comparison to the values of C1(B) vs. C3(B) and C1(B) vs. C4(B) this sug-
gests more fluctuation in the p-values.
Finally, the pairs C1(B) vs. C2(B) and C2(B) vs. C3(B) have similar values, al-
though C2(B) in contrast to the other matrices uses pairwise comparison of the
diagonal elements with the first diagonal element. Compared with hypothesis
E), hypothesis B) shows clearly more concordance except for C1(B) vs. C3(B)

and C1(B) vs. C4(B). Again, the reason is the more conservative behavior of
hypothesis E) compared to hypothesis B). All simulations were also conducted
with n = 125 resp. n = (160, 100, 140) which lead to very similar results.

For congruity with values partially under 0.95, it remains the question whether
all tests show similar type-I-error rates or if some matrices lead to more conser-
vative or liberal behavior. To investigate this issue, we compare the error rates
of three tests based on different matrices, but again with the same seed and
the same data in Table 3.9 and 3.10. Again the error rates in the 95% binomial
interval are printed bold, while for 10,000 runs, the interval is given through
[0.0458, 0.0543].

ATS-Para ATS-Wild ATS

C1(B) C2(B) C3(B) C1(B) C2(B) C3(B) C1(B) C2(B) C3(B)

t9 .039 .061 .041 .057 .074 .058 .042 .064 .044
Normal .050 .066 .050 .061 .069 .060 .054 .069 .052
Skew normal .045 .063 .049 .064 .077 .066 .047 .067 .053
Gamma .032 .060 .036 .063 .087 .064 .036 .064 .038

Table 3.9: Comparison of various ATS-test-statistics based on different hypoth-
esis matrices with distinct number of rows by their type-I-error rate. The hy-
pothesis is B) (Hv

0 : V111 = ... = V155) for dimension d = 5 and n = 50 with
covariance matrix (V)ij = 0.6|i−j|.

The results from Table 3.9 and Table 3.10 display that tests based on C1(B) and
C3(B) have almost the same values, while C2(B) has a more liberal behavior.
For φ⋆

ATS, which is always liberal, this makes the test presumable to liberal. On
the other hand φ∗

ATS and φATS with a slightly conservative behavior for C1(B),
using C2(B) could be reasonable. Overall distributions, the level seems to be
comparable, but either negligible conservative or liberal.
Although B) and E) are hypotheses with ζ = 0 and, therefore, can be formu-
lated with unique projection matrices, the results show an apparent influence
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ATS-Para ATS-Wild ATS

C1(B) C2(B) C3(B) C1(B) C2(B) C3(B) C1(B) C2(B) C3(B)

t9 .037 .057 .038 .058 .074 .055 .040 .062 .041
Normal .049 .064 .048 .060 .071 .058 .052 .067 .050
Skew normal .043 .063 .046 .064 .077 .066 .046 .066 .049
Gamma .032 .054 .033 .061 .086 .065 .034 .058 .037

Table 3.10: Comparison of various ATS-test-statistics based on different hypoth-
esis matrices with distinct number of rows by reference to congruity of the test
decisions, the average difference of the p-values, and the maximum difference
of the p-values. The hypothesis is B) (Hv

0 : V111 = ... = V155) for dimension
d = 5 and n = 50 with covariance matrix V = I5 + J5.

of the chosen hypothesis matrix. This behavior causes problems in the analy-
sis of data for hypotheses with ζ ̸= 0. Because this never happens in classical
mean-based analysis, there are no conventions on how to choose the matrix.
For testing for a given covariance matrix, it seems obvious to choose the iden-
tity matrix. But if we are interested, for example, in testing for a given trace,
it could be less plausible which matrix to choose. So until there are clear con-
ventions, in situations with ζ ̸= 0, the hypothesis matrices should be chosen
consciously and should be mentioned in the statistical interpretation. This also
holds for situations with ζ = 0, where non-quadratic matrices are used. For
example, non-quadratic matrices, as we introduced for hypothesis E), are often
used in the profile analysis. Thus, results from this area could be influenced by
the use of a non-unique hypothesis matrix. Users should know this issue and
use some kind of unique matrix as far as possible. Moreover, the choice of a
non-unique hypothesis matrix gives an option to adapt the test to get a more
conservative or more liberal test. The fact that WTS and MATS have the same
results for all hypotheses matrices in our simulations is useful even if especially
the WTS has comparably worse simulation results.

Furthermore, we can conclude from our simulations together with Section 6
from Sattler et al. [2022], that the traditional way how for ζ = 0 unique hy-
pothesis matrices are chosen should be adjusted to optimize the computation
time.
Usually, the unique projection matrix is chosen and used to calculate all quadratic
forms without considering the number of zero rows or rows that are just mul-
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tiple rows. Our simulations showed that removing such rows does not change
the result but considerably reduces the computation time, especially for higher
dimensions. Thus, it would be desirable that the unique projection matrix is
not used in such a situation, but the used matrix is formed by removing the
previously mentioned rows. Through this clear procedure, uniqueness is not
violated. In this way for the example in B) instead of a unique p×p matrix or a
not unique (d− 1)× p matrix we would use a unique d× p matrix. This choice
leads to considerable time reductions, although the test decision is the same as
for the unique projection matrix.

At last, we want to deal with the question whether a projection matrix P ∈ Rp×p

does always exist to formulate a hypothesis like Pv = ζ or similar. Such matri-
ces exist always, independent of the vector ζ. If for any matrix C ∈ Rp×p it holds
Cv = ζ̃ we also know C⊤(CC⊤)+Cv = C⊤(CC⊤)+ζ̃ with usage of the Moore-
Penrose-inverse. Obviously with P := C⊤(CC⊤)+C and ζ := C⊤(CC⊤)+ζ̃ it
fulfills Pv = ζ, and P is a projection matrix. For ζ̃ = 0p the other direction is
also true, but in general for ζ̃ ̸= 0p the hypothesis using C⊤(CC⊤)+C is larger
than the original one. An example of this can be found in the appendix. So
in some situations choosing a hypothesis matrix bears the risk of accidentally
expanding the null hypothesis and should be done with the requisite care.

3.5.3 Testing hypotheses regarding the correlation matrix

Although the covariance matrix contains much information about the variation
of random vectors or similar aspects, there are some disadvantages if we want
to analyze the dependency structure of the underlying random vectors. For
example, a simple change of the measuring unit can completely change the ma-
trix. This fact is one reason why it is useful to consider the correlation matrix if
we are more interested in the dependency structure, which is, for example, an
essential part of a statistical model. Therefore, we want to develop test statistics
to examine hypotheses regarding the correlation matrix.

To this aim, we first remember our general semiparametric model, given by
independent d-dimensional random vectors of the shape

Xik = µi + ϵik,
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where the index i = 1, . . . ,a refers to the treatment group and k = 1, . . . ,ni to
the individual, on which d-variate observations are measured. Of course, it is
useless to analyze a scalar’s correlation, so we assume d ⩾ 2.
The residuals ϵi1, . . . ,ϵini

are assumed to be centred E(ϵi1) = 0d and i.i.d.
within each group, with finite fourth moment E(||ϵi1||

4) < ∞. Finally, we need
again:

(A1) ni

N
→ κi ∈ (0, 1], i = 1, ...,a for min(n1, . . . ,na) → ∞ with N =

∑a
i=1 ni.

The only difference to the conditions for testing hypotheses regarding the co-
variance is that the covariance matrix here has to be strictly positive definite
and not just semidefinite. So we require Cov(ϵi1) = Vi > 0, i = 1, . . . ,a. While
we used the so-call half-vectorization operation vech for the covariance matrix,
this is not the best choice here. For a correlation matrix, the diagonal elements
are always one and therefore contain no information. Hence, a new vectoriza-
tion operation vech− is defined, which we will call the upper-half-vectorization.
With Ri the correlation matrix for the i-th group, this vectorization operation al-
lows us to define

ri = vech−(Ri) = (ri12, . . . , ri1d, ri23, . . . , ri2d, . . . , ri(d−1)d)
⊤, i = 1, . . . ,a,

containing just the upper triangular entries of Ri which are not on the diagonal.
The resulting vector has the dimension pu = d(d − 1)/2 which is substantially
smaller than p. Therewith, we formulate hypotheses in terms of the pooled
correlation vector r = (r⊤1 , . . . , r⊤a )⊤ as

Hr
0 : Cr = ζ, (3.1)

with a proper hypothesis matrix C ∈ Rm×apu and a vector ζ ∈ Rm. Hypotheses
which are part of this model are among others:
(a) Testing Homogeneity of correlation matrices:

Hr
0 : R1 = · · · = Ra, resp. Hr

0 : r1 = · · · = ra,

as for example investigated in Jennrich [1970].
For d = 2 this includes the problem of testing the null hypothesis

Hr
0 : ρ1 = ρ2 = · · · = ρa
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of equal correlations ρi = Corr(Xi11,Xi12), i = 1, . . . ,a within (3.1), which con-
tains testing equality of correlations between two groups. See e.g. Gupta and
Xu [2006] or Omelka and Pauly [2012].

(b) Testing a diagonal correlation matrix:

Hr
0 : R1 = Id, resp. Hr

0 : r1 = 0pu
.

A test, whether the correlations in a single group are zero, was analyzed, e.g.,
introduced in Bartlett [1951]. With this hypothesis, we can evaluate the suitabil-
ity of a dataset or correlation matrix for factor analysis.

More hypotheses on the structure of the covariance matrix can be found for ex-
ample in Joereskog [1978], Steiger [1980] and Wu et al. [2018].

(c) Testing for a given correlation: Let R be a given correlation matrix, like an
autoregressive or compound symmetry matrix. For a = 1, we then also cover
testing the null hypothesis

Hr
0 : R1 = R resp. r1 = vech−(R) for a given matrix R.

For d = 2, this also contains the issue of testing the null hypothesis

Hr
0 : ρ1 = 0

of uncorrelated random variables with ρ1 = Corr(X111,X112), see e.g. Aitkin
et al. [1968].

As explained in Sattler et al. [2022], C does not have to be a projection matrix as
ζ is allowed to be different from the zero vector.

Asymptotics regarding the vectorized correlation

To check null hypotheses of the kind Hr
0 : Cr = ζ, it is necessary to first investi-

gate the asymptotic distribution of Cr̂.
To this end, a result from Sattler et al. [2022] is shortly repeated first. For
v = (v⊤

1 , ..., v⊤
a )

⊤ = (vech(V1)
⊤, ..., vech(Va)

⊤)⊤ and v̂ as the empirical coun-
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terpart, it holds √
NC(v̂− v)

D−→ Nap

(
0ap,CΣC⊤) ,

where Σ =
⊕a

i=1
1
ki
Σi and Σi = Cov(vech(ϵi1ϵ

⊤
i1)

⊤) for i = 1, . . . ,a.

To use this result for the correlation, first, some matrices have to be defined. Let
ek,p = (δkℓ)

p
ℓ=1 define the p-dimensional vector which contains a one in the k-th

component and zeros elsewhere. Moreover, we need a d-dimensional auxiliary
vector a = (a1, ...,ad), given through ak = 1 +

∑k−1
j=1 (d + 1 − j), k = 1, ...,d. It

contains the position of components in the half-vectorized matrix which are the
diagonal elements of the original matrix. In accordance to this, we define the
pu-dimensional vector b which contains the numbers from one to p in ascend-
ing order without the elements from a. This vector b contains the position of
components in the half-vectorized matrix which are non diagonal elements.
With these vectors we are able to define a d×d matrix H = 1d ·a and the vectors
h1 = vech−(H) and h2 = vech−(H⊤). Finally, we can define the matrices

M1 =

pu∑
ℓ=1

eℓ,pu
· (eh1ℓ,p + eh2ℓ,p)

⊤ and Lu
p =

pu∑
ℓ=1

eℓ,pu
· e⊤

bℓ,p.

This allows us to formulate a connection between the vech operator and the
vech− operator, since the matrix Lu

p fulfills Lu
p vech(A) = vech−(A) for each ar-

bitrary matrix A ∈ Rp×p. This matrix is comparable to the elimination matrix
from Magnus and Neudecker [1980] and adapted to this special kind of half-
vectorization.

With all these matrices, a conjunction can be found between
√
ni(v̂i − vi) and√

ni(r̂i − ri), which allows to get the requested result by applying Theorem 3.1
from Sattler et al. [2022]. The approach to connect vectorized correlation and
vectorized covariance is based on Browne and Shapiro [1986] and Nel [1985],
and adapted to the setting of our work.

Theorem 3.5.1:
With the previously defined matrices Lu

p , M1 and

M(vi, ri) :=
[
Lu
p −

1
2

diag(ri)M1

]
· diag(vech((vi11, ..., vidd)⊤ · (vi11, ..., vidd)))−

1
2 ,
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it holds √
ni(r̂i − ri) = M(vi, ri) ·

√
ni(v̂i − vi) +OP(1).

Thus

√
ni(r̂i − ri)

D−→ Zi ∼ Npu


0pu

,M(vi, ri)ΣiM(vi, ri)⊤︸ ︷︷ ︸
=:Υi




and
√
N(r̂− r)

D−→ Z ∼ Napu

(
0apu

,
a⊕

i=1

1
κi

Υi

)
= Napu

(0apu
,Υ).

To use this result, we have to estimate the matrices Υ1, ...,Υa, which is done by
using

Υ̂i = M(v̂i, r̂i)Σ̂iM(v̂i, r̂i)⊤,

and Υ̂ :=
⊕a

i=1
ni

N
Υ̂i. It is obvious that these estimators are consistent, since

they consist of consistent estimators and continous functions applied to them.
With this asymptotic result, test statistics based on quadratic forms can be for-
mulated through:

Theorem 3.5.2:
Let E(C, Υ̂) ∈ Rm×m be some symmetric matrix which can be written as a func-
tion of the hypothesis matrix C ∈ Rm×apu and the covariance matrix estimator Υ̂ ∈
Rapu×apu . Additionally, it holds E(C, Υ̂)

P−→ E(C,Υ). Then, under the null hypoth-
esis Hr

0 : Cr = ζ, the quadratic form Q̂r defined by

Q̂r = N [Cr̂− ζ]
⊤
E(C, Υ̂) [Cr̂− ζ]

has asymptotically a “weighted χ2-distribution”, i.e. for N → ∞ it holds that

Q̂r
D−→

apu∑
ℓ=1

λℓBℓ,

where Bℓ

i.i.d.
∼ χ2

1 and λℓ, ℓ = 1, . . . ,apu, are the eigenvalues of Υ1/2C⊤E(C,Υ)CΥ1/2.
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So all quadratic forms from Sattler et al. [2022] can also be formulated for the
correlation, for example

WTSr = N [C(r̂− r)]
⊤
(
CΥ̂C⊤

)+
[C(r̂− r)] ,

ATSr = N [C(r̂− r)]
⊤
[C(r̂− r)] / tr

(
CΥ̂C⊤

)
,

or

MATSr = N [C(r̂− r)]
⊤
(
CΥ̂0C

⊤
)+

[C(r̂− r)] ,
while A0 denotes a matrix which only contains the diagonal elements of A. This
leads to φWTSr

= 11{WTSr /∈ (−∞,χ2
rank(C);1−α]}, which needs Υ > 0. The simu-

lation results from Sattler et al. [2022] as well as from Section 3.5.1 suggest to use
a Monte-Carlo version of the ATSr given by φATSr

:= 11{ATSr /∈ (−∞,qMC
1−α]}.

It would be more convenient to find a direct connection between r̂ − r and
vech−(V̂ − V), instead of having a result for the half vectorization and using
this for developing results for the upper half-vectorization. Unfortunately, this
has not been possible so far, although a result for

√
Nvech−(V̂ − V) could be

developed analogue to Theorem 3.1 from Sattler et al. [2022]. However, it has to
be taken into account that we need the covariance matrix’s diagonal elements to
calculate the correlation matrix. Moreover, dependencies between components,
as well as the structure of R̂ − R, make this task quite challenging. Therefore,
this kind of workaround has to be done, which has just minimal impact on the
computation time or similar aspects.

Resampling Procedures

Again a resampling procedure may be useful, on the one hand, for a better small
sample approximation and, on the other hand, for quadratic forms with critical
values that are difficult to calculate. Since the simulations from Sattler et al.
[2022] showed clear advantages of the parametric bootstrap, we only consider
this approach.
Thus, for every group with realisations Xi1, ...,Xini

we calculate the covariance
matrix Υ̂i. With this covariance matrix we generate random vectors Y∗

i1, ...,Y∗
ini

i.i.d
∼ Npu

(0pu
, Υ̂i) which are independent from the realisations and calculate

their sample covariance Υ̂
∗
i respectively Υ̂

∗
:=
⊕a

i=1
1
κi
Υ̂

∗
i . For these random

vectors we now consider the asymptotic distribution.
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Theorem 3.5.3:
If Assumption (A1) is fulfilled, it holds:
(a) For i = 1, ...,a, the conditional distribution of

√
N Y

∗
i , given the data, converges

weakly to Npu

(
0pu

, κi
−1 ·Υi

)
in probability. Since we have Υ̂

∗
i → Υi in probability,

the unknown covariance matrix Υi can be estimated through Υ̂
∗
i .

(b) The conditional distribution of
√
N Y

∗
, given the data, converges weakly to

Napu
(0apu

,Υ) in probability. Since we have Υ̂
∗ → Υ in probability, the unknown

covariance matrix Υ can be estimated through Υ̂
∗
.

In consequence of Theorem 3.5.3 it is reasonable to calculate the bootstrap ver-
sion of the previous quadratic forms, which are

Q∗
r= N

[
CY

∗]⊤
E(C, Υ̂

∗
)
[
C Y

∗]
.

Similar to Sattler et al. [2022], two important quadratic forms are given by

ATS∗
r = N

[
CY

∗]⊤ [
CY

∗]
/ tr
(
CΥ̂

∗
C⊤
)

,

WTS∗
r= N

[
CY

∗]⊤ (
CΥ̂

∗
C⊤
)+ [

CY
∗]

.

The bootstrap versions approximate the null distribution of Q̂r, as established
below.

Corollary 3.5.1:
For each parameter vector r ∈ Rapu and r0 ∈ Rapu with Cr0 = ζ, under Assumption
(A1) we have

sup
x∈R

∣∣Pr(Q
∗
r ⩽ x|X) − Pr0(Q̂r ⩽ x)

∣∣ P−→ 0,

where Pr denotes the (un)conditional distribution of the test statistic when r is the true
underlying vector.

This motivates the definition of various bootstrap tests like φ∗
ATSr

:= 11{ATSr /∈
(−∞, cATS∗

r,1−α]} as asymptotic level α test, with cATS∗
r,1−α the conditional quan-

tile of ATS∗
r given the data and similar for WTS and MATS.
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As it could be seen in Sattler et al. [2022], in case of just one group it could be
useful to generate the bootstrap observations with a Nm

(
0m,CΥ̂1C

⊤
)

distri-
bution and adapt the quadratic form for this. From a theoretical point of view,
it changes nothing, but depending on the hypothesis matrix’s dimension, this
positively affects the computation time. This will be treated in more detail in
Section 3.5.5.

In the analysis of correlation matrices, Fisher z-transformed vectors are often
used instead of the original vectorized correlation matrices. Although the root
of this approach is the distribution of the Fisher z-transformed correlation in the
case of normally distributed observations, it is also used for tests without this
distributional restriction, see, e.g., Steiger [1980]. So we could also consider our
tests together with the transformed vector. This approach assumes that all com-
ponents of ζ differ from one, which is always possible to ensure. We can define
tests based on the transformation for each of our quadratic forms, including the
tests based on bootstrap or Monte-Carlo simulations.
Our simulations showed that the tests based on this transformation have more
liberal behavior than the original one. Since all of our test statistics were already
a bit liberal, it is not useful to consider these versions further.

Simulations

To investigate the performance we analyze the type-I-error rate of the following
two hypotheses

Ar) Homogeneity of correlation matrices: Hr
0 : R1 = R2,

Br) Diagonal structure of the covariance matrix Hr
0 : R1 = Ip resp. r1 = 0pu

,

with α = 0.05. The hypothesis matrices are chosen as the projection matrices
C(Ar) = P2 ⊗ Ipu

and C(Br) = Ipu
while ζ is in both cases a zero vector with

appropriate dimension.

The setting is very similar to Sattler et al. [2022] so we used d=5 and therefore
pu = 10, while for one group we have n ∈ {25, 50, 125, 250} and for two groups
we have n1 = 0.6 ·N and n2 = 0.4 ·N with N ∈ {50, 100, 250, 500}. The used error
terms are based on
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• a standard normal distribution, i.e. Zikj ∼ N(0, 1).

• a standardized centred gamma distribution i.e. (
√

2Zikj + 2) ∼ G(2, 1)

• a standardized centred skew normal distribution with location parameter
ξ = 0, scale parameter ω = 1 and α = 4. The density of a skew normal
distribution is given through 2

ω
φ
(
x−ξ
ω

)
Φ
(
α
(
x−ξ
ω

))
, where φ denotes the

density of a standard normal distribution and Φ the according distribu-
tion function.

• a standardized centred t-distribution with 9 degrees of freedom,

together with different covariance matrices for the varying hypotheses. For Ar)
we use (V1)ij = 0.6|i−j| resp. V1 = Id + 0.5Jd for the first group and for the sec-
ond group we multiply these covariance matrices with diag(1, 1.2, ..., 1.8). Here
we have a setting where the covariance matrices are different but the correla-
tion matrices are equal. To investigate Br) we just consider one matrix, given by
V3 = diag(1, 1.2, ..., 1.8).

For both hypotheses there exist already tests, while some of them are part of the
R-package psych by Revelle [2019]. We want to compare the type-I-error rate
of our tests with φJennrich from Jennrich [1970] and φSteiger resp. φSteigerFz

from Steiger [1980] for equality of correlation matrices. Hereby φSteigerFz is the
same test statistic as φSteiger but uses a Fisher z-transformation on the vector-
ized correlation matrices.

Testing wheter the correlation matrix is equal to the identity matrix can be
investigated with φBartlett from Bartlett [1951] and again with φSteiger resp.
φSteigerFz .

We use 1,000 bootstrap steps for our parametric bootstrap, 10,000 simulation
steps for the Monte-Carlo approach and 10,000 runs for all tests to get reliable
results. Hereby, the actual test statistic is multiplied with the factor (N− 3)/N
for φSteiger and φSteigerFz . This approach is based on a specific result of the
Fisher z-transformation of the correlation vector of normal distributed random
vectors. This multiplication’s main purpose seems to be the less liberal behavior
of the test, while it has asymptotically no effect. To get a better impression of the
impact of such a multiplication, we also include our ATS with parametric boot-
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strap using such multiplication and denote this with an m for multiplication.
This also simplifies the comparison of the tests under equal conditions.
The results of hypothesis Ar) can be seen in Table 3.11 and Table 3.12 for the
different covariance matrices. It is interesting to note that the type-I-error rate
of φSteiferFz differs more and more from the 5% rate for increasing sample sizes.
Therefore, this test should not be used, at least for our setting. However, with-
out the Fisher z-transformation, Steiger’s test is way too conservative, especially
for larger sample sizes. In contrast, φATS∗ and φATS are too liberal but show
the best type-I-error rate for N greater than 50. Moreover, these tests are the
only ones of the considered tests which fulfill Bradley’s liberal criterion (from
Bradley [1978]) stably for N larger than 100. Similar to the results for covariance
matrices, the bootstrap version has slightly better results than Monte-Carlo-
based tests, while the error rates get closer for greater sample sizes. Again the
WTS is way too liberal and needs large sample sizes, despite the bootstrap ap-
proach. The less known MATS statistic based on a parametric bootstrap is better
but clearly worse than both tests based on the ATS. Hence as well as the WTS,
this test seems not to be recommendable for testing equality of correlation ma-
trices. However, except for the gamma-distribution, it fulfills Bradley’s liberal
criterion for N larger than 100. At last, the test of Jennrich is even more liberal
than the ATS-based test. For (V)ij = 0.6|i−j| the error rates are always higher
than 24% even for the sample size N = 500. All in all, the only tests among the
considered ones that should be used for this hypothesis are φATS and φATS∗ .
It can be seen that with a correction factor, like (N − 3)/N, their small sample
performance could be clearly improved. Even without any correction, they are
preferable to tests based on Steiger [1980], using this factor.

For hypothesis Br), the results are included in Table 3.13. Again φATSr
and

φATS∗
r

have the best results of all our test statistics, while the results are consid-
erably better than for hypothesis Ar). For example, Bradley’s liberal criterion
holds for all sample sizes except for n1 = 25. Moreover, the better performance
in hypothesis Br) than hypothesis Ar) can be observed through the number of
values in the 95% binomial interval [0.0458, 0.0543]. With the correction factor,
this test has a better type-I-error rate than φSteiger and comparable to φSteigerFz .
Nevertheless, φBartlett is a test only developed for this one hypothesis and
therefore has an excellent error rate through all distributions.

Both hypotheses show that our developed tests are useful in many situations,
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although partwise large sample sizes are necessary to get good results. This is
a known fact for testing hypotheses regarding correlation matrices, which was,
for example, mentioned in Steiger [1980].

In addition to the type-I-error rate, the ability to detect deviations from the null
hypothesis is an important criterion of a test. To this aim, we also investigate
the power of some of the tests mentioned above. We choose a quite simple
kind of alternative, which is suitable for our situation. As covariance matrix
we consider V1 + δ · Jd for δ ∈ [0, 2.5] in hypothesis Ar) and for δ ∈ [0, 0.65]
in hypothesis Br). The reason for this considerable difference in the δ range is
that for hypothesis Br), the addition changes the setting from uncorrelated to
correlated. For hypothesis Ar), it just increases the correlations, which is clearly
more challenging to detect.
Due to computation time, we simulate only one sample size, which is N = 250
resp. n1 = 125 and consider error terms based on the skew normal distribution
and the Gamma distribution. The Monte-Carlo steps, bootstrap steps and the
simulation runs are the same as before. We simulate only the test with good
results for its type-I-error rate, which was for Ar) φATS∗

r
, and as comparisons

φSteiger and φJennrich.
Based on the results from Table 3.13 for hypothesis Br) we only consider φATS∗

as well as φSteigerFz and φBartlett while the setting is the same. Because of the
similarity of the results from the parametric bootstrap and the Monte-Carlo-
based approach, we use just one. But for both hypotheses, we also investigate
the ATS with parametric bootstrap and the multiplied factor to see the influence
of the multiplication again.
For hypothesis Ar) Figure 3.1 shows that despite the very liberal behaviour of
φJennrich, for δ ⩾ 1 the power is nearly the same as φATS∗

r
. Given the fact that

φJennrich has a type-I-error rate of about 0.28, which is more than 0.2 higher
than both tests based on the ATS. With such a high type-I-error rate, the test
based on Jennrich [1970] can not be recommended. On the contrary, φSteiger

has little power due to its conservative behavior and therefore needs δ to be
larger than 2.5 to reach power close to one. For all of the considered tests, both
tests based on the ATS, show by far the best power because of the relatively
steep slope. This slope allows detecting deviations from the null hypothesis
without being too liberal. The multiplication makes the test slightly less liberal
and therefore lowers the power.
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t9 Normal

N 50 100 250 500 50 100 250 500

ATS-Para .1096 .0821 .0589 .0562 .1085 .0739 .0579 .0566
ATS-Wild .1327 .0938 .0638 .0576 .1309 .0830 .0607 .0587
ATS-Para-m .0932 .0761 .0566 .0556 .0918 .0659 .0547 .0553
ATS .1166 .0832 .0590 .0544 .1160 .0746 .0585 .0560
ATSFz .1092 .0809 .0588 .0537 .1080 .0715 .0565 .0560
ATSFz-m .0929 .0732 .0559 .0529 .0900 .0662 .0541 .0545
WTS .4700 .2443 .1118 .0861 .4257 .2061 .0988 .0769
Steiger .0108 .0206 .0224 .0245 .0109 .0176 .0215 .0287
SteigerFz .0606 .0821 .0873 .0928 .0601 .0744 .0861 .0954
Jennrich .3341 .2837 .2533 .2582 .3306 .2808 .2515 .2472

Skew Normal Gamma

N 50 100 250 500 50 100 250 500

ATS-Para .1104 .0804 .0613 .0590 .1230 .0899 .0632 .0596
ATS-Wild .1329 .0898 .0640 .0610 .1462 .1030 .0689 .0619
ATS-Para-m .0941 .0736 .0583 .0577 .1054 .0829 .0598 .0585
ATS .1179 .0822 .0593 .0588 .1293 .0920 .0633 .0583
ATSFz .1117 .0800 .0586 .0580 .1243 .0901 .0621 .0582
ATSFz-m .0934 .0727 .0560 .0563 .1055 .0813 .0593 .0573
WTS .4563 .2364 .1186 .0853 .5257 .3074 .1498 .1028
Steiger .0101 .0187 .0222 .0294 .0098 .0183 .0208 .0261
SteigerFz .0569 .0803 .0872 .0952 .0654 .0828 .0894 .0929
Jennrich .3375 .2858 .2590 .2476 .3424 .2942 .2651 .2538

Table 3.11: Simulated type-I-error rates (α = 5%) in scenario Ar) (Hv
0 : R1 =

R2) for ATS, WTS, Steiger’s and Jennrich’s test. The observation vectors have
dimension 5, covariance matrix (V1)ij = 0.6|i−j| resp. V2 = diag(1, 1.2, ..., 1.8)·V1

and and it always holds n1 := 0.6 ·N resp. n2 := 0.4 ·N.
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t9 Normal

N 50 100 250 500 50 100 250 500

ATS-Para .1180 .0847 .0596 .0546 .1102 .0714 .0556 .0601
ATS-Wild .1590 .1024 .0669 .0596 .1482 .0881 .0611 .0616
ATS-Para-m .0959 .0759 .0575 .0532 .0897 .0645 .0533 .0588
ATS .1262 .0872 .0595 .0550 .1170 .0730 .0558 .0601
ATSFz .1193 .0859 .0589 .0545 .1132 .0709 .0552 .0593
ATSFz-m .0966 .0757 .0562 .0521 .0929 .0633 .0531 .0577
WTS .5194 .2776 .1249 .0912 .4784 .2339 .1063 .0814
Steiger .0099 .0181 .0242 .0276 .0097 .0167 .0205 .0287
SteigerFz .0431 .0648 .0689 .0749 .0410 .0562 .0658 .0768
Jennrich .1341 .0977 .0805 .0810 .1319 .0983 .0767 .0805

Skew Normal Gamma

N 50 100 250 500 50 100 250 500

ATS-Para .1168 .0842 .0606 .0593 .1312 .0959 .0612 .0595
ATS-Wild .1549 .1016 .0675 .0620 .1746 .1203 .0703 .0667
ATS-Para-m .0973 .0749 .0574 .0580 .1079 .0872 .0586 .0586
ATS .1233 .0851 .0595 .0590 .1384 .0992 .0614 .0591
ATSFz .1201 .0828 .0588 .0592 .1332 .0973 .0615 .0589
ATSFz-m .0983 .0741 .0561 .0577 .1108 .0870 .0579 .0574
WTS .5103 .2648 .1272 .0891 .5720 .3299 .1586 .1040
Steiger .0080 .0186 .0242 .0297 .0061 .0167 .0199 .0243
SteigerFz .0432 .0626 .0698 .0768 .0445 .0624 .0661 .0754
Jennrich .1275 .0975 .0812 .0806 .1277 .0961 .0768 .0782

Table 3.12: Simulated type-I-error rates (α = 5%) in scenario Ar) (Hr
0 : R1 =

R2) for ATS, WTS, Steiger’s and Jennrich’s test. The observation vectors have
dimension 5, covariance matrices (V1) = I5+0.5·J5 resp. V2 = diag(1, 1.2, ..., 1.8)·
V1 and it always holds n1 := 0.6 ·N resp. n2 := 0.4 ·N.
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t9 Normal

ATS-Para .0928 .0639 .0515 .0543 .0798 .0587 .0486 .0526
ATS-Wild .1859 .1128 .0768 .0662 .1584 .0984 .0644 .0579
ATS-Para-m .0507 .0450 .0445 .0502 .0430 .0415 .0423 .0479
ATS .1050 .0681 .0531 .0532 .0893 .0617 .0480 .0514
ATSFz .0989 .0642 .0516 .0526 .0860 .0589 .0467 .0508
ATSFz-m .0539 .0432 .0451 .0486 .0464 .0419 .0413 .0467
ATS-PCov .0755 .0541 .0464 .0482 .0733 .0531 .0436 .0470
ATS-WCov .0826 .0666 .0628 .0598 .0798 .0673 .0557 .0562
ATS-Cov .0878 .0562 .0461 .0476 .0806 .0544 .0440 .0464
WTS .8423 .5194 .2332 .1393 .8142 .4794 .2021 .1173
Steiger .0245 .0343 .0436 .0481 .0223 .0330 .0419 .0458
SteigerFz .0546 .0499 .0509 .0528 .0528 .0491 .0485 .0488
Bartlett .0543 .0493 .0520 .0519 .0516 .0482 .0467 .0488

Skew Normal Gamma

ATS-Para .0872 .0630 .0568 .0516 .1066 .0740 .0573 .0519
ATS-Wild .1686 .1079 .0792 .0601 .2132 .1342 .0810 .0663
ATS-Para-m .0457 .0444 .0489 .0488 .0582 .0559 .0495 .0479
ATS .0966 .0674 .0575 .0507 .1169 .0776 .0563 .0511
ATSFz .0936 .0639 .0564 .0497 .1059 .0710 .0549 .0504
ATSFz-m .0493 .0445 .0492 .0461 .0572 .0540 .0483 .0474
ATS-PCov .0715 .0564 .0507 .0458 .0760 .0595 .0477 .0464
ATS-WCov .0785 .0672 .0634 .0566 .0714 .0668 .0620 .0569
ATS-Cov .0819 .0586 .0516 .0461 .0899 .0639 .0482 .0469
WTS .8206 .4994 .2252 .1260 .8518 .5661 .2680 .1544
Steiger .0226 .0349 .0492 .0455 .0246 .0385 .0473 .0487
SteigerFz .0532 .0515 .0555 .0494 .0574 .0547 .0534 .0506
Bartlett .0479 .0504 .0544 .0500 .0551 .0515 .0541 .0487

Table 3.13: Simulated type-I-error rates (α = 5%) in scenario Br) (Hr
0 : r =

010) for ATS, WTS, Steiger’s and Bartlett’s test. The observation vectors have
dimension 5 and covariance matrix V = diag(1, 1.2, 1.4, 1.6, 1.8).
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In Figure 3.2 for hypothesis Br) it can be seen that φATS∗
r

has clearly more
power than φBartlett which even grows faster. While Bartlett’s test is preferable
with regard to the type-I-error rate, our tests are favorable while concerning the
power. The test based on the Fisher z-transformation has a similar slope to our
test but is less liberal. However, it could be seen, that with such a factor, our test
have the best type-I-error rate. The slope of the corresponding power curve is
similar to φATS∗

r
and φSteigerFz. For power, the chosen distribution hardly has

any influence.

All in all, the simulation showed that our developed test has better performance
than the existing test in hypothesis Ar), while for Br), there is no clear choice
between our test and the test based on Bartlett [1951]. It depends on whether
type-I-error or the capability of detecting deviation from the null hypothesis has
a higher priority.
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Figure 3.1: Simulated power curves of different tests for the hypothesis Ar)
(Hr

0 : R1 = R2), with d = 5, N = 100 and n1 = 0.6 · N. The covariance matrix
is (V2)ij = 0.6|i−j| resp. V1 = V2 + δJ5 and the error terms are based on skew
normal distribution (left side) or gamma distribution (right side).
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Figure 3.2: Simulated power curves of different tests for the hypothesis Br (Hr
0 :

r1 = 010), with d = 5 and n1 = 50. The covariance matrix is V1 = I5 + δJ5

and the error terms are based on skew normal distribution (left side) or gamma
distribution (right side).

ILLUSTRATIVE DATA ANALYSIS

After using the proposed method in a simulation study, we apply it to a real
data set. To this aim, we take a closer look at the EEG data set from the R-
package manova.rm by Friedrich et al. [2019], which was already mentioned
in the first section. In this study from Staffen et al. [2014], conducted at the
University Clinic of Salzburg (Department of Neurology), electroencephalog-
raphy (EEG) data from 160 patients with different diagnoses of impairments
were measured. These are Alzheimer’s disease (AD), mild cognitive impair-
ment (MCI), and subjective cognitive complaints (SCC). Thereby, this last di-
agnosis is differentiated between subjective cognitive complaints with minimal
cognitive dysfunction (SCC+) and without (SCC-).
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The number of patients divided by sex and diagnosis can be found in Table 3.14.
Since in Bathke et al. [2018] and Sattler [2021] there was no distinction between
SCC+ and SCC-, we consider both together as diagnosis SCC.

Table 3.14: Number of observations for the different factor level combinations
of sex and diagnosis.

AD MCI SCC+ SCC-
male 12 27 14 6
female 24 30 31 16

With two kinds of measurements (z-score for brain rate and Hjorth complexity)
and three different electrode positions (frontal, temporal and central), the ob-
servation vector’s dimension is d = 6 and therefore pu = 15. In relation to this
dimension, all sample sizes are rather small, which we should keep in mind for
the evaluation of our results.
The considered hypotheses, are:

a) Homogeneity of correlation matrices between different diagnoses,

b) Homogeneity of correlation matrices between different sexes,

while we will denote the corresponding hypothesis regarding the covariance
matrix with Hv

0 .
In Sattler [2021] homogeneity of covariance matrices between different diag-
noses as well as different sexes were investigated. Here, we consider the more
general hypothesis of equal correlation matrices between the diagnoses and the
sexes. Thereby it is of interest to compare the results from homogeneity of co-
variance matrices with them from testing homogeneity of correlation matrices.
We expect higher p-values for equality of correlation through the larger hy-
pothesis, but each rejection of equal correlation matrices directly allows us to
reject the corresponding equality of covariance matrices. In Table 3.15 for both
hypotheses, the p-values for the ATS with parametric bootstrap are displayed,
while for both bootstrap tests, 10,000 bootstrap runs are done.

It is interesting that for two hypotheses, the p-value of equal correlation matri-
ces are rejected at level 5%, while we could not reject the smaller hypothesis of
equal covariance matrices. But for both hypotheses, the sample sizes are rather
small with N < 40. Our simulation results for d = 5 showed that the ATS with
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ATS-Para for Hv
0 ATS-Para for Hr

0

p-value p-value

male AD vs. MCI .1000 .0389
male AD vs. SCC .0452 .0073
male MCI vs. SCC .0289 .0753
female AD vs. MCI .0613 .3601
female AD vs. SCC .0128 .4882
female MCI vs. SCC .5656 .8799
AD male vs. female .1008 .0346
MCI male vs. female .2455 .6703
SCC male vs. female .2066 .1748

Table 3.15: P-values of ATS with parametric bootstrap for testing equality of
correlation matrices and equality of covariance matrices.

parametric bootstrap is too liberal for small sample sizes, which might be the
reason why the larger hypotheses can be rejected, and the smaller ones can not.
Moreover, it can be seen that the difference between some hypotheses is rela-
tively small, like for the first three hypotheses, but it can also be quite large as
for the comparison of women with AD and with SCC. This shows that from a
rejection of Hv

0 no conclusion on Hr
0 can be drawn.

Through the small sample size in relation to the dimension of the vectorized
correlation matrix pu = 15, the rejections are not as reliable as for the covariance
matrix. Still, they are helpful in selecting hypotheses for further analysis.

Conclusion

In the previous section, a series of new test statistics was developed. They could
be used for many different kinds of null hypotheses with hardly any restrictions
and could be expanded easily, for example, by using a Fisher z-transformation.
In our simulation study, it could be seen that our tests based on the ATS are
appropriate for many different hypotheses. This holds for critical values based
on a parametric bootstrap as well as on a Monte-Carlo simulation. The de-
veloped tests outperform existing procedures for some hypotheses, while they
offer good and interesting alternatives for other ones. One more time, these re-
sults show the flexibility of the approach introduced in Sattler et al. [2022] and

74



3.5. EXTENSIONS AND FURTHER RESULTS BASED ON ARTICLE 3

the multitude of possible applications.

3.5.4 Testing for covariance patterns

In Sattler et al. [2022], some hypotheses, together with suitable hypothesis ma-
trices, were introduced. But because of the very general model, there are various
other possible hypotheses. For example, these include a pattern in the covari-
ance matrix or a particular type of covariance matrix. We will focus on the latter
while applying our approach for these hypotheses gives a good impression of
how it can be used for other patterns. This topic is of great interest, and there-
fore there are already several more or less detailed approaches. For instance,
for high-dimensional data, Zhong et al. [2017] allows general hypotheses under
normality while for non-high-dimensional data, Gupta and Xu [2006] checks
for sphericity, but with some conditions on the characteristic function. Finally,
Wakaki et al. [1990] allows for testing all of the existing structures with fewer
distributional restrictions. Unfortunately, their procedure is quite complex since
many parameters need to be calculated or estimated. Together with the fact that
the concrete test is never mentioned, this approach is challenging to use in prac-
tice. This is also mentioned in Yuan [2005] or Herzog et al. [2007]. Thus, our new
test based on Sattler et al. [2022] should allow tests for a wide range of possible
structures, with less distributional conditions and comparatively clear and in-
tuitive usage.
This section will shortly introduce the most common covariance structures, to-
gether with an appropriate hypothesis matrix for the particular case. For select-
ing the covariance structures, we follows Kincaid [2005], which gives a good
overview of the most important models without being too detailed.
It is quite clear that the correlation matrix structure could be of interest besides
the covariance matrix structure. We do not treat this because of the direct con-
nection between hypotheses regarding the correlation matrix and regarding the
covariance matrix from Theorem 3.5.1. Thereby it can be easily adapted from
the following.
Many authors mention the hypothesis regarding structures or patterns of co-
variance/correlation matrix without explaining their test’s concrete usage for
this hypothesis more precisely, for example, by introducing the necessitated hy-
pothesis matrices. So, e.g., Steiger [1980] simulated for the hypothesis whether
a correlation matrix has the structure of a Toeplitz matrix. But neither the repre-
sentation of this hypothesis in the underlying model nor the hypothesis matrix
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was mentioned. In most cases, this increases the readability and avoids the
need for extensive definitions. But unfortunately, at the same time, this com-
plicates the application of the procedure by users. Therefore, the following part
aims to provide the necessary hypothesis matrices for the most common covari-
ance structures. To this end, we define some general matrices that are part of
different null hypotheses and limit ourselves to auxiliary vectors introduced in
Section 3.5.3. On the one hand, we use the vector a containing the indices of
components in the half-vectorized matrix which belong to diagonal elements of
the original matrix. These indices are given through ak = 1 +

∑k−1
j=1 (d + 1 − j),

k = 1, ...,d, so the vector is defined as a = (a1, ...,ad). On the other hand, the
pu-dimensional vector b containing all other indices in ascending order, which
belong to non-diagonal elements of the original matrix.

All of the following hypothesis matrices are formulated most comprehensively
and intuitively, without using projection matrices. If ζ = 0 holds (which will be
true except for the autoregressive structure), a unique projection matrix exists.
Based on the results from Section 3.5.2 we recommend for these matrices to
remove zero rows and to use the so formed matrices.

Sphericity

The sphericity of a covariance matrix denotes that the covariance matrix is the
product of a scalar and the identity matrix. This is a necessary assumption in
many repeated measurement approaches, like the ANOVA. It can be seen as a
special case of a compound symmetry matrix with the additional requirement
that the non-diagonal elements are equal and have the value 0. One way to for-
mulate this hypothesis would be to expand the hypothesis matrix of the com-
pound symmetry structure. But it is more consistent to treat this structure as
the combination of equal diagonal elements and zeros elsewhere which leads to
CS = (C⊤

S1,C⊤
S2)

⊤ with

CS1 =

d−1∑
k=1

ek,d−1 · (e⊤
ak,pu+1 − e⊤

ak+1,p) and CS2 =

pu∑
ℓ=1

eℓ,pu
· e⊤

bℓ,p.

Thereby with Hv
0 (S) : CSv = 0p−1 we express the hypothesis of H0 : {sphericity

of the covariance matrix V}.
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Diagonality

As well as the sphericity of a matrix, the more general hypothesis of a diag-
onal covariance matrix is of great interest. It shows that all components are
uncorrelated, which allows many conclusions on the underlying model. The
hypothesis of diagonality, also known as variance components, was considered
in Section 3.5.3 as Br) and was given through Hr

0 (D) : r = 0pu
.

Compound Symmetry

This widespread covariance matrix structure, which is especially known from
split-plot-designs, is characterized by two conditions: the equality of all diag-
onal elements and all non-diagonal elements’ equality. As a consequence, the
appropriate hypothesis matrix is also composed of two parts through

CCS =

(
CS1

CCS1

)
with CCS1 =

pu−1∑
ℓ=1

eℓ,pu−1 · (e⊤
bℓ,p − e⊤

bℓ+1,p).

With this matrix we can formulate H0 : {V is a compound symmetry matrix}
through Hv

0 (CS) : CCSv = 0p−2.
A variation of this structure is the so-called Heterogenous Compound Sym-
metry. Hereby, the classical compound symmetry matrix is multiplied from
both sides with a diagonal matrix diag(σ1, ...,σd) with all components being
positive real numbers. Fortunately, the hypothesis Hv

0 : {V is a heterogenous
compound symmetry matrix} can be formulated with the correlation matrix as
Hr

0 (HCS) : Ppu
r = 0pu

.

Toeplitz

This matrix is defined through the fact that the diagonal elements are equal as
well as all the secondary diagonals, which is why it is also called a diagonal-
constant matrix. In contrast to the compound symmetry matrix, not all non-
diagonal elements need to have the same value, just within the individual sec-
ondary diagonals, they have to be equal. For the covariance matrix construc-
tion, we use the vector h1 from Section 3.5.3. With this and

CT1 =

d−2∑
k=1

d−k−1∑
ℓ=1

eh1,k−d−k+ℓ,pu−d+1 · (e⊤
ak+1+ℓ,p − e⊤

bℓ,p),
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we get CT = (C⊤
S1,C⊤

T1)
⊤. In this case, the hypothesis of Hv

0 : {V is a Toeplitz
matrix} can be formulated as Hv

0 (T) : CTv = 0pu
. Again, there exists a heteroge-

nous Toeplitz matrix which can be tested through

CHT =

d−2∑
k=1

d−k−1∑
ℓ=1

eh1,k−d−k+ℓ,pu−d+1 · (e⊤
ak+1+ℓ−k−1,p − e⊤

bℓ−1,p)

and Hr
0 (HT) : CHTr = 0pu−d+1.

Autoregressive

This last structure can be seen as a special case of a Toeplitz matrix. However,
there is a kind of proportionality between the different secondary diagonals for
an autoregressive covariance matrix. The whole matrix depends just on one
parameter σ ∈ (0, 1) and is given through (V)ij = σ|i−j|, which shows that the
correlation of the components decreases exponentially with the distance. This is
useful, for example, if consecutive components belong to neighboring measure
points. Moreover, this structure is often used for repeated measurements at
different time points, since it is reasonable that measurements that are further
apart in time have a smaller correlation. While the equal secondary diagonals
could be tested similar to the case of a Toeplitz matrix, the proportionality, as
mentioned above, is much more complicated. Each kind of proportionality can
just be considered if all components are different from zero. Therefore, this
test can not be used if one component of the empirical covariance matrix has
zero value. If a component is zero, the null hypothesis of an autoregressive
covariance matrix should be received.
First, we define the function f : R̸=0

p → Rp, (x1, ..., xp) 7→ (ln(|x1|), ..., ln(|xp|)),
where R̸=0

p denotes the real values p-dimensional vectors with only positive
components. With the δ-method it holds

√
N (f(v) − f(v̂)) =

√
N(ln(|v|) − ln(|v̂|)) D−→ Np(0p, diag(v)−1Σ diag(v)−1).

The absolute values ensure that the logarithm can be calculated, even if the
estimated covariance vector has negative components. Moreover, we define

CAR1 =

d−1∑
k=1

d−k∑
ℓ=1

eak−k+ℓ,p · (eak+ℓ−1,p − ·eak+ℓ,p)
⊤
+

d∑
k=1

epu+k,p · e⊤
ak,p
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as the first part of our hypothesis matrix. The first sum builds differences be-
tween components, corresponding to elements of the covariance matrix, which
are neighbouring and from the same row. The second sum picks the compo-
nents corresponding to diagonal elements of the original covariance matrix, to
verify that V11 = V22 = ... = Vaa = 1.

Under the null hypothesis of an autoregressive covariance matrix with unknown
parameter σ, it holds CAR1f(v) = (ln(σ)Ipu

, 0⊤
d )

⊤. To check whether the first
pu components of this vector are equal, we use CAR2 = Ppu

⊕ Id and define
CAR = CAR2CAR1. With this matrix, we formulate our null hypothesis through
Hv

0 (AR) : CARf(v) = 0p. With CAR∇f(v̂)Σ̂∇f(v̂)⊤C⊤
AR as a consistent estimator

for the unknown covariance matrix and the asymptotic distribution, it is pos-
sible to define the usual quadratic forms. The Monte-Carlo based ATS can be
directly formulated while the parametric bootstrap can be adapted easily.

For the sake of completeness, we want to present another function that also
could be used to check this null hypothesis. To this end, we define the continu-
ous function

g : R ̸=0
p → Rp, x 7→

(
xa1+1

xa1

, ...,
xa1+d−1

xa1+d−2
,
xa2+1

xa2

, ...,
xa2+d−2

xa2+d−3
, ...,

xad−1

xad−1+1
, xa1 , ..., xad

)
.

For the first pu components the relation between the components and follow-
ing components is calculated, except this corresponds to a relation between two
components, which are in different rows in the original matrix. The last d com-
ponents are the identity for the diagonal elements of the original matrix. Again,
because of the δ-method it holds

√
N (g(v) − g(v̂))

D−→ Np(0p,∇g(v)Σ∇g(v)⊤),

with

∇g(x) =
d−1∑
k=1

d−k∑
ℓ=1

eak−k+ℓ,p ·
(

1
xak+ℓ−1

· eak+ℓ,p −
xak+ℓ

x2
ak+ℓ−1

· eak+ℓ−1,p

)⊤

+
d∑

k=1
epu+k,p · e⊤

ak,p.

It remains to test whether the first pu components of g(v) are equal and the last d
components have the value one. Because of this we build the hypothesis matrix
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through C̃AR = Ppu
⊕Id. Hence, under the null hypothesis of an autoregressive

covariance matrix, it holds

√
N

(
C̃ARg(v̂) −

(
0pu

1d

))
D−→ Np(0p, C̃AR∇g(v)Σ∇g(v)⊤C̃

⊤
AR),

whereby C̃AR∇g(v̂)Σ̂∇g(v̂)⊤C̃
⊤
AR is a consistent estimator for the unknown co-

variance matrix. Based on this, once more quadratic forms like the ATS can be
defined to examine the hypothesis Hv

0 (AR) : C̃ARv = (0⊤
pu

, 1⊤
d )

⊤.
Also, for this structure, a heterogeneous version exists, which can be tested with
similar matrices and the vectorized correlation matrix. Then, the second part of
the matrices CAR1 and CAR2 is unnecessary. The first part can be reduced be-
cause the correlation matrix’s diagonal does not have to be compared regarding
the proportionality. Similarly, the function g, as well as the corresponding hy-
pothesis matrix, could be simplified.
Finally, there exists one more version of the autoregressive structure, called first
order autoregressive. Here, the elements are given through (V)ij = ρ · σ|i−j|,
with ρ,σ > 0. This is a more general case, since the diagonal elements have to
be equal but are allowed to have other values than one. To check whether the
covariance matrix has this structure, we replace CAR2 with Ppu

⊕ Pd. Under
the null hypothesis of a first order autoregressive structure, it holds CAR1f(v) =

(ln(σ)Ipu
, ln(ρ)Id)⊤ and therefore CAR2CAR1f(v) = 0p.

Simulations

Finally, we want to investigate these tests’ performance through their type-I-
error rate. Diagonality was already tested in Section 3.5.3, so we test for an au-
toregressive structure and a Toeplitz matrix, based on the above-introduced ma-
trices. For the Toeplitz matrix, we use the hypothesis matrix, which is formed
by removing zero rows from the existing unique projection matrix. Here, we
have one structure based on just one parameter and one based on five parame-
ters, which is interesting as a comparison. In Herzog et al. [2007], they assumed
a relation between the number of parameters and the required sample size for
a sufficient approximation of the asymptotic distribution.
For the autoregressive structure, we chose the parameter σ = 0.6, and for the
Toeplitz matrix, we use (V)ij = 1− |i− j|/d. We simulate for dimension five and
error terms based on
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• a standard normal distribution, i.e. Zikj ∼ N(0, 1),

• a standardized centered gamma distribution i.e. (
√

2Zikj + 2) ∼ G(2, 1),

• a standardized centered skew normal distribution with location parame-
ter ξ = 0, scale parameter ω = 1 and α = 4. The density of a skew normal
distribution is given through 2

ω
φ
(
x−ξ
ω

)
Φ
(
α
(
x−ξ
ω

))
, where φ denotes the

densitiy of a standard normal distribution and Φ the according distribu-
tion function,

• a standardized centered t-distribution with 9 degrees of freedom,

while the sample size are n = (25, 50, 100, 250). On the basis of the previous
results, we only consider the ATS with parametric bootstrap and with Monte-
Carlo-based critical values. Here we use 1,000 bootstrap runs and 10,000 Monte-
Carlo steps. The type-I-error rates, based on 20,000 simulation runs, can be seen
in Table 3.16 and Table 3.17 for α = 5%. For the autoregressive structure both
approaches, based on the function f and the function g, are used. Finally, for the
Toeplitz structure, we use the hypothesis matrix, which is formed by removing
zero rows from the unique projection matrix.

For testing whether the covariance matrix is a Toeplitz matrix, the paramet-
ric bootstrap has a better small sample performance than the Monte-Carlo ap-
proach. For larger sample sizes, their type-I-error rates approach. Both tests
fulfill Bradley’s liberal criterion in all cases and have small error rates, espe-
cially for the t9 distribution.

For the considerably more challenging hypothesis of an autoregressive struc-
ture, both tests are quite conservative. The liberal criterion is only fulfilled for
n1 = 250 for most of the considered distributions. For the normal distribution,
even higher sample sizes are needed. This result is not surprising because the
proportionality, which is the only difference to the Toeplitz matrix, is difficult
to check between all secondary diagonals. In contrast to all other hypotheses,
here, the Monte-Carlo approach has a better small sample performance than the
parametric bootstrap ATS. This holds for both approaches based on the function
f and g.

While for n1 < 250 the function f seems more recommendable overall, for
n1 = 250 the function g has a better type-I-error control in most cases. These
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ATS-Para ATS

N 25 50 100 250 25 50 100 250

t9 .0493 .0481 .0472 .0505 .0569 .0513 .0474 .0508
Normal .0556 .0525 .0544 .0524 .0635 .0555 .0551 .0521
Skew normal .0557 .0531 .0514 .0491 .0639 .0559 .0515 .0496
Gamma .0458 .0443 .0435 .0485 .0522 .0466 .0444 .0492

Table 3.16: Simulated type-I-error rates (α = 5%) for testing whether the covari-
ance matrix has a Toeplitz structure, with ATS based on parametric bootstrap
and based on Monte-Carlo simulation. The observation vectors have dimension
5, covariance matrix (V)ij = 1 − |i− j|/5 and different distributions and sample
sizes are considered.

ATS-Para-f ATS-f

N 25 50 100 250 25 50 100 250

t9 .0127 .0133 .0197 .0252 .0137 .0138 .0198 .0252
Normal .0073 .0099 .0161 .0222 .0083 .0105 .0163 .0221
Skew normal .0109 .0122 .0187 .0260 .0121 .0131 .0188 .0256
Gamma .0254 .0261 .0298 .0328 .0285 .0264 .0304 .0328

ATS-Para-g ATS-g

N 25 50 100 250 25 50 100 250

t9 .0094 .0111 .0155 .0278 .0106 .0121 .0162 .0270
Normal .0093 .0113 .0197 .0260 .0105 .0122 .0198 .0254
Skew normal .0085 .0116 .0185 .0286 .0102 .0125 .0184 .0289
Gamma .0107 .0126 .0199 .0280 .0124 .0131 .0202 .0275

Table 3.17: Simulated type-I-error rates (α = 5%) for testing whether the co-
variance matrix has an autoregressive structure, with ATS based on parametric
bootstrap and based on Monte-Carlo simulation. The observation vectors have
dimension 5, covariance matrix (V)ij = 0.6|i−j| and different distributions and
sample sizes are considered.
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values, together with the easier application, make the f function a more reason-
able choice. Simultaneously, these are just some proposals since there are many
other possible functions and matrices to check this hypothesis.
Since our tests are quite conservative for this hypothesis, it could be useful to
apply the wild bootstrap approach, which had a more liberal behavior than the
parametric bootstrap in Sattler et al. [2022], and therefore could balance the per-
formance.

This section shows that with our approach, hypotheses regarding the structure
or a pattern of the covariance matrix can be checked with a suitable hypothesis
matrix. For some more complex structures, some adaption has to be done, and
a large sample size is recommended to get reliable results.

ILLUSTRATIVE DATA ANALYSIS

After introducing these tests for covariance matrix patterns, we want to illus-
trate their application and the resulting conclusions. To this aim, we reconsider
the EEG-data set from Friedrich et al. [2019], but this time focus on another as-
pect.
The z-score of the brain rate and the Hjorth complexity are measured at three
different locations, namely temporal, frontal and central. Here we want to in-
vestigate whether the position of the measuring points influences the measured
values. Similar questions are often considered in repeated measure designs,
where the repetitions have a temporal context, to investigate wheater there is a
time effect. One way to check such an impact is to compare the means of the
three locations and use thereto, for example, a one-sample Hotelling’s T 2 test
Anderson [2003]. But this is not the only way how the position of the measure-
ment points can influence the measurements. It could also have an effect on
the variance of the individual measure points, as well as on the dependency
structure between them.
Therefore, we also want to consider the covariance matrix and investigate which
conclusions can be drawn out of it. This is done by testing whether the covari-
ance matrix has a compound symmetry structure. A rejection of this structure
means that the variances are different or the correlation between the locations
is different. Therefore, the locations are not exchangeable, which shows an in-
fluence of the measuring point’s position. For the sake of completeness, we are
also testing whether the covariance matrix has a Toeplitz structure. In contrast
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to a compound symmetry matrix, this would mean that there are systematical
differences in the correlations. This would make sense to represent the distance
between the measurement points, which is not useful in our setting since all lo-
cations are neighboring.
Through the low dimension d = 3 and therefore p = 6, we expect reliable re-
sults of our test, even for the sample size of only 12 observations.

The one sample Hotelling’s T 2 test, based on an χ2 distribution, is for example
part of the R-package ICSNP(Nordhausen et al. [2018]). To apply this test, we
use the matrix CHT2 ∈ R2×3, given through

CHT2 = 1/2

(
1 −1 0

0 1 −1

)
.

For both structures, we use the ATS with parametric bootstrap based on 10,000
bootstrap runs and calculate the p-values. The results, together with the results
of the one-sample Hotelling’s T 2 test, are displayed in Table 3.18 and Table 3.19.

Brain rate Hotelling’s T 2 ATS-Para for Hv
0 (CS) ATS-Para for Hv

0 (T)
p-value p-value p-value

male AD 0.9881 0.4056 0.4883
male MCI 0.7472 0.4869 0.5882
male SCC 0.0162 0.2380 0.2395
female AD 0.6483 0.5845 0.5553
female MCI 0.9261 0.8014 0.7572
female SCC 0.9391 0.6938 0.6634

Table 3.18: P-values of one sample Hotelling’s T 2 test and φ∗
ATS to check wheater

the covariance matrix has a compound symmetry structure resp. a Toeplitz
structure.

For the brain rate in the group of men with SCC, a difference in the mean can
be verified at level 5%, while for the covariance, no structure can be rejected.
In contrast, for the Hjorth complexity, for women with SCC, the location’s in-
fluence can be proven for the mean and the covariance since both structures
are rejected. The influence on the covariance matrix here is clearer than on the
mean and could also be verified for level 1%.

84



3.5. EXTENSIONS AND FURTHER RESULTS BASED ON ARTICLE 3

Hjorth Hotelling’s T 2 ATS-Para for Hv
0 (CS) ATS-Para for Hv

0 (T)
complexity p-value p-value p-value

male AD 0.4372 0.4029 0.4110
male MCI 0.1276 0.1113 0.1142
male SCC 0.1273 0.1412 0.1453
female AD 0.3139 0.3809 0.3491
female MCI 0.9328 0.1172 0.1207
female SCC 0.0213 0.0073 0.0079

Table 3.19: P-values of one sample Hotelling’s T 2 test and φ∗
ATS to check wheater

the covariance matrix has a compound symmetry structure resp. a Toeplitz
structure.

To investigate this group in more detail, further hypotheses could be tested,
as equal variances of all components. One could thereto apply the test from
Sattler [2021]. Rejection of this or similar larger null hypotheses would allow
us better to understand the location’s influence on the covariance matrix. Since
the compound symmetry structure is a special case of the Toeplitz structure, it
has lower p-values in most groups. But for these 3 × 3 covariance matrices, the
difference in structure is relatively small, and therefore this relation does not
hold for all groups.
All in all, the noticeable difference in p-values between mean and covariance
matrix structure shows, that for the verification of an effect, both aspects should
be considered, the mean and the covariance matrix. This example illustrates,
how both kinds of hypotheses can be used to investigate two aspects of the
same question.

Conclusion

It could be seen that the hypothesis matrices for testing the presented structures
differ in complexity and the matrix rank. Interestingly, this has no relation to
the number of parameters from which the covariance matrix is built.

Some less common patterns are treated in other works, e.g. Steiger [1980],
where a so-called circumplex hypothesis is checked, which tests for a Toeplitz
matrix with diagonal elements one and a so-called equicorrelation hypotheses,
which means that all non-diagonal elements are equal. The example shows that
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most of the not considered patterns are related to the treated structures and,
therefore, can be investigated similarly. Moreover, while we focused on covari-
ance matrices’ structure, a correlation matrix structure could also be of great
interest. However, through the heterogeneous version of our hypotheses, these
hypotheses’ adaption for correlations was already done.

We are convinced that nearly every kind of covariance matrix or correlation
matrix pattern can be tested based on the approach published in Sattler et al.
[2022] resp. Section 3.5.3. Partially the usage is a bit more complicated or needs
techniques like the δ-method, comparable to the autoregressive structure.

3.5.5 Efficient implementation of the developed tests

Computation time is an essential factor for choosing the adequate test statistic
for a hypothesis in the individual situation. This is particularly relevant for hy-
potheses regarding the covariance matrix, since the dimension of the vectorized
covariance matrix grows quadratically in d.
As seen in Section 6 of Sattler et al. [2022], in many cases the choice of a non-
quadratic hypothesis matrix could save a substantial amount of time. The in-
fluence of this change on the test result was investigated in Section 3.5.2. This
passage showed which kind of non-quadratic matrix does not change the test
result. The saved time through such non-quadratic matrices varied widely. In
detail, the percentage of saved time for hypothesis D)(Hν

0 : tr(V1) = γ) is sig-
nificantly greater than for C)(Hν

0 : tr(V1) = tr(V2)).
One reason for this is a trick that is usable for one group. Our goal is to gen-
eralize it for more groups if the hypothesis matrix has a special structure. We
also found other ways to make the calculation more efficient for non-quadratic
matrices without changing the results’ validity.

Consider hypotheses of the kind C = CW ⊗ CS with CW ∈ Rm1×a and CS ∈
Rm2×p, while m1 ∈ Na and m2 ∈ Np. This kind of hypothesis is very popular,
for example, in the context of repeated measurement. All hypotheses simulated
in Sattler et al. [2022] can be written in this way. Moreover, each hypothesis for
just one group is part of this model.
In many settings estimating the variance of Cs vech((Xi1 −µi)(Xi1 −µi)

⊤)C⊤
S is

more efficient than estimating Σi and afterwards calculate CSΣ̂iC
⊤
S , especially

for m2 < p. More details on when this approach is useful can be found in the
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appendix of this section.

Since it holds

CΣ̂C⊤ = (CW ⊗ Im2)

(
a⊕

i=1

CSΣ̂iC
⊤
S

)
(CW ⊗ Im2)

⊤ ,

with an efficient calculation of CSΣ̂iCS, the computation of the matrix can be
simplified.

In a similar way the generation of the bootstrap samples can be transformed
for the parametric bootstrap approach as well as the wild bootstrap. In Sattler
et al. [2022] we generated Y∗

1ni
, ...,Y∗

ini
∼ Np(0p, Σ̂i) for the parametric bootstrap

and used them to calculate quadratic forms in CY
∗

with Y
∗
= (Y

∗
1
⊤

, ...,Y
∗
a

⊤
)⊤.

Instead of these bootstrap variables, Z∗
1ni

, ...,Z∗
ini

∼ Nm2(0m2 ,CSΣ̂iC
⊤
S ) can be

generated and used to calculate quadratic forms in (CW ⊗ Im2)Z
∗
. This does

not only save time through generation of smaller random variables, but above
all through use of the empirical covariance of Z∗

i1, ...,Z∗
ini

which is denoted as
Σ̂

∗
i (Z). Hence, in ATS, WTS, and MATS we can replace CΣ̂

∗
C⊤ by

(CW ⊗ Im2)
(⊕a

i=1 Σ̂
∗
i (Z)

)
(CW ⊗ Im2)

⊤. Hereby for each m1 and m2, the num-
ber of necessary multiplications can be reduced considerably, which is also
shown more detailed in the appendix.
Since the bootstrap part is repeated B times, the time reduction in this part
greatly influences the total calculation time. Although the distribution is the
same, this other kind of bootstrap variables can influence the test’s behavior.
This was checked, and the differences were negligible.

For the wild bootstrap approach this can be done in a similar manner, by us-

ing Z⋆
ik = Wik · CS

[
vech(X̃iiX̃

⊤
ik) − n−1

i

∑ni

ℓ=1 vech(X̃iiX̃
⊤
ik)
]

and the empirical
covariance matrices based on Z⋆

i1, ...,Z⋆
ini

.
Since these alternative bootstrap approaches do not change the distribution of
the vectors used for the quadratic forms, all results from Sattler et al. [2022]
remain valid.

To illustrate the influence of these and other small changes, we repeat the time
computation from Sattler et al. [2022] for all hypotheses and quadratic hypothe-
sis matrices as well as non-quadratic, implemented in the previously explained
way. The results of hypothesis C)(Hν

0 : tr(V1) = tr(V2)) can be seen in Table 3.20
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while for other hypotheses it can be found in the appendix of this section.

C(C) C̃(C)

d 2 5 10 20 2 5 10 20

ATS-Para 0.476 0.862 17.620 141.163 0.409 0.408 0.411 0.449
ATS-Wild 0.415 0.536 10.370 111.671 0.394 0.393 0.396 0.435
ATS 0.085 0.195 0.388 1.177 0.032 0.034 0.034 0.042
WTS-Para 0.585 1.074 30.496 336.538 0.492 0.491 0.496 0.519
WTS-Wild 0.531 0.709 21.997 300.008 0.487 0.489 0.488 0.529
WTS-χ2 0.002 0.003 0.040 0.343 0.002 0.002 0.003 0.028

Table 3.20: Required time in seconds for various tests statistics and different di-
mensions for hypothesis C) (Hv

0 : tr(V1) = tr(V2)) with a quadratic hypothesis
matrix on the left side and a non-quadratic hypothesis matrix on the right sight.
Here some methods are used to increase efficiency.

It can be seen for the projection matrix that the alternative approach is faster
than the earlier one, especially for the parametric bootstrap approaches. Here,
sometimes 40% or more can be saved, while for the WTS with a wild bootstrap,
nearly no time is saved. However, in comparison to the non-quadratic matrix,
the required computation time is enormous. Simultaneously, the result is iden-
tical if the non-quadratic matrix is chosen in the right way, as it could be seen in
Section 3.5.2. It is clear, that with m1 = 1 and m2 = 1 this is an extreme example
but there exist several other hypotheses with m2 < p as it could be seen in Sat-
tler et al. [2022]. Moreover, other measurements based on the covariance matrix
exist, which have small values for m2, like the determinant or parameter to rate
the quality of psychological questionnaires, see Pauly et al. [2016] for the latter.
In this context, the saved time through the non-quadratic matrix and the other
techniques is crucial since a dimension higher than 20 is often the case.
So for hypotheses which can be written as C = CW ⊗CS, the parametric boot-
strap approaches are usable even for a larger dimension as d = 5. The right
choice between the parametric bootstrap and Monte-Carlo approach depends
on the hypotheses and the used hypothesis matrix, as well as the available time
and the required accuracy. Also, as can be seen in the appendix, the saved
computation time is not always that high, each possibility to reduce the time
without loss of quality should be used. And for our preferable test, the ATS
with parametric bootstrap, the saved proportion is often up to 50%, like in the
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test for equal covariance matrices, which is the most important hypothesis.

3.5.6 Different dimensions between the groups

Similar to the situation of Section 3.2 it could also be of interest to compare
parts of covariance matrices with different dimensions. As a direct comparison
between covariance matrices makes less sense, such parts could be single com-
ponents or terms which directly depend on the covariance matrix. For example,
the trace as an effect measure for the total variance could be used to compare
multiple groups with different dimensions.

The adaptions of Sattler et al. [2022] are minimal, because with di as the di-
mension of the i-th group and pi = di(di + 1)/2 all results for the single groups
are valid. And with p = p1 + ... + pa the dimension of the pooled vector of co-
variances and appropriate hypothesis matrix C ∈ Rm×p this holds for all results
from Sattler et al. [2022] involving more than one group.
The same holds for testing hypotheses regarding the correlation matrix, as is
was done in Section 3.5.3.

3.5.7 Appendix

Influence of the used hypothesis matrix

Consider for the case of one group and dimension d=3 the matrices

C =




1 0 0 1 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




and C⊤(CC⊤)+ =
1
3




1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0




.

For ζ̃ = (0, 1, 0, 0, 0, 0)⊤ it follows ζ = 06 and the equation C⊤(CC⊤)+Cv =

0 has ker(C⊤(CC⊤)+C) as solution, which is a 5-dimensional subspace. On
the contrary Cv = ζ̃ has no solution, which shows impressively the difference
between both hypotheses.
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Testing hypotheses regarding the correlation matrix

Proof of Theorem 3.5.1: This proof is based on the proof from Browne and Shapiro
[1986] and Nel [1985], where a similar situation is considered. Because we are
just interested in the matrix’s upper triangular, some adaptions have to be done.

With ∆i :=
√
ni(V̂i −Vi) and Ui = V

−1/2
i,0 ∆iV

−1/2
i,0 , it can be calculated

R̂i = V̂
−1/2
i,0 V̂iV̂

−1/2
i,0

=
(
Vi,0 +

1√
ni
∆i,0

)−1/2 (
Vi +

1√
ni
∆i

)(
Σ0 +

1√
ni
∆i,0

)−1/2

=
(
Ip + 1√

ni
Ui,0

)−1/2 (
Ri +

1√
ni
Ui

)(
Ip + 1√

ni
Ui,0

)−1/2
.

The Taylor series of x 7→ x−1/2 in point 1 leads to x−1/2 = 1−(x−1)/2+O((x−1)2).
For using this for the diagonal matrices with x = 1 + n

−1/2
i Ui,0, we first con-

sider the corresponding remainder. Since Ui,0 converges to a normally dis-
tributed random variable from Slutzky’s theorem we know that the remainder
is OP

(
n
−1/2
i

)
. This leads to

(
Ip +

1√
ni

Ui,0

)−1/2

=

(
Ip −

1
2
√
ni

Ui,0

)
+OP

(
n
−1/2
i

)

and hence

R̂i =
(
Ip − 1

2
√
ni
Ui,0

)(
Ri +

1√
ni
Ui

)(
Ip − 1

2
√
ni
Ui,0

)

+OP

(
n
−1/2
i

)
·
[(

Ip − 1
2
√
ni
Ui,0

)(
Ri +

1√
ni
Ui

)]

+OP

(
n
−1/2
i

)
·
[(

Ri +
1√
ni
Ui

)(
Ip − 1

2
√
ni
Ui,0

)]

+OP

(
n
−1/2
i

)
·
[
OP

(
n
−1/2
i

)(
Ri +

1√
ni
Ui

)]

=
(
Ip − 1

2
√
ni
Ui,0

)(
Ri +

1√
ni
Ui

)(
Ip − 1

2
√
ni
Ui,0

)
+OP

(
n
−1/2
i

)
,

where again Slutzky’s theorem is used. Multiplication with
√
ni leads to
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√
ni R̂i

=
√
ni Ri +

[
Ui −

1
2 (Ui,0Ri + RiU0)

]
+
√
ni ·OP

(
n
−1/2
i

)

=
√
ni Ri +

[
Ui −

1
2 (Ui,0Ri + RiUi,0)

]
+OP (1) .

We define

M1 =

pu∑
ℓ=1

eℓ,pu
· (eh1ℓ,p + eh2ℓ,p)

⊤

and

M2 :=

p∑
ℓ=1

eℓ,p · e⊤
h4ℓ,p M3 :=

p∑
ℓ=1

eℓ,p · e⊤
h3ℓ,p

M4 := M2 +M3 M5 := diag(vech(Id)).

With these matrices it is easy to check that the following equations

vech(Ui,0Ri) = diag(vech(Ri)) ·M2 · vech(Ui,0),

vech(RiUi,0) = diag(vech(Ri)) ·M3 · vech(Ui,0)

and
vech(Ui,0Ri) + vech(RiUi,0) = vech(Ri)) · (M2 +M3)

hold, and therefore with vech(Ui,0) = M5 vech(Ui)

√
ni vech(R̂i − Ri)

=
[
vech(Ui) −

1
2 (vech(Ui,0Ri) + vech(RiUi,0))

]
+OP(1)

=
[
vech(Ui) −

1
2 diag(vech(Ri)) · (M2 +M3)vech(Ui,0)

]
+OP(1)

=
[
vech(Ui) −

1
2 diag(vech(Ri)) · (M2 +M3)M5 vech(Ui)

]
+OP(1)

=
[
Ip − 1

2 diag(vech(Ri) · (M2 +M3)M5
]

vech(Ui) +OP(1).

Multiplication with the matrix M5 changes nothing in this case because it just
picks the columns which are unequal to zero and drops the rest. So all in all
with M4 = M2 +M3 it holds
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√
ni vech(R̂i − Ri) =

[
Ip − 1

2 diag(vech(Ri)) ·M4
]

vech(Ui) +OP(1)

Now to adapt this result for the upper-half-vectorization, we use the special
elimination matrix Lu

p which gives a connection between vech and vech−

√
ni(r̂i − ri)

= Lu
p

[
Ip − 1

2 diag(vech(Ri)) ·M4
]

vech(Ui) +OP(1)

=
[
Lu
p − 1

2 diag(ri) · Lu
p ·M4

]
vech(Ui) +OP(1)

=
[
Lu
p − 1

2 diag(ri) ·M1
]

vech(Ui) +OP(1).

Here, we used the relation Lu
p ·M4 = M1 and because of

vech(Ui) = diag(vech((vi11, ..., vidd)⊤ · (vi11, ..., vidd)))−
1
2 vech(∆i)

it is useful to define

M(vi, ri) =
[
Lu
p −

1
2

diag(ri)M1

]
diag(vech((vi11, ..., vidd)⊤ · (vi11, ..., vidd)))−

1
2 .

Therefore, it holds

√
ni(r̂i − ri)M(vi, ri)vech(∆i) +OP(1)

and because of Theorem 1 from Sattler et al. [2022] it follows

√
ni(r̂i − ri)

D−→ Zi ∼ Npu


0pu

,M(vi, ri)ΣiM(vi, ri)⊤︸ ︷︷ ︸
=:Υi


 .

We could get the same result by using the δ-method on the results for the vector-
ized covariance matrices. In our opinion, the approach of Browne and Shapiro
[1986], together with Nel [1985], is preferable due to its stepwise structure.
Therefore it is more suitable to get an understanding of the used matrices.

Proof of Theorem 3.5.2: With the result from Theorem 3.5.1, the asymptotic dis-
tribution of the quadratic form follows exactly from Theorem 2 from Sattler
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et al. [2022].

Proof of Theorem 3.5.3: We prove only the first part because the second part fol-
lows directly from the single groups’ result.
For an application of the multivariate Lindeberg-Feller-Theorem (given the data),
we need to check the conditions. As Y∗

ik under X is pu-dimensional normal dis-
tributed with expectation 0pu

and variance Υ̂i:

1.)=
ni∑
k=1

E
(√

N
ni

Y∗
ik

∣∣∣X
)
=

ni∑
k=1

√
N

ni
· E
(
Y∗

ik

∣∣∣X
)
= 0.

2.)=
ni∑
k=1

Cov
(√

N
ni

Y∗
ik

∣∣∣X
)
=

ni∑
k=1

N
n2

i

Υ̂i
P−→ 1

κi
Υi.

3). lim
N→∞

ni∑
k=1

E
(∣∣∣
∣∣∣
√
N

ni
Y∗

ik

∣∣∣
∣∣∣
2
· 11∣∣∣∣√N

ni
Y∗

ik

∣∣∣∣>δ

∣∣∣X
)

= lim
N→∞ N

n2
i

ni∑
k=1

E
(∣∣∣∣Y∗

i1

∣∣∣∣2 · 11||Y∗
i1||>δ

ni√
N

∣∣∣X
)

= 1
κi

· lim
N→∞E

(∣∣∣∣Y∗
i1

∣∣∣∣2 · 11||Y∗
i1||>δ

ni√
N

∣∣∣X
)

⩽ 1
κi

· lim
N→∞

√
E (||Y∗

i1||
4 |X) ·

√
E
(

11||Y∗
i1||>δ

ni√
N

∣∣∣X
)
= 0.

For the last part, we used the Cauchy-Bunjakowski-Schwarz-Inequality and
that we know E

(∣∣∣∣Y∗
i1

∣∣∣∣4 ∣∣X
)
< ∞. Finally through ni/N → κi and therefore

δ ·ni/
√
N → ∞, it holds P

(∣∣∣∣Y∗
i1

∣∣∣∣ > δ · ni/
√
N
)
→ 0, which leads to the result.

Given the data X, it follows that
√
N Y

∗
i converges in distribution to

Zi ∼ Npu
(0pu

, 1/κi ·Υi) and therefore because of independence of groups
√
N Y

∗

converges in distribution to Z ∼ Napu
(0apu

,Υ).

Because the empirical covariance matrix of the bootstrap sample is consistent,
it follows Υ̂

∗
i

P−→ Υ̂i. From the construction of Υ̂i and the properties of Σ̂i it
is clear that Υ̂i

P−→ Υi. The result follows with the triangle inequality and the
continuous mapping theorem.

93



CHAPTER 3. SUMMARY OF THE ARTICLES

Efficient implementation of the developed tests

For testing hypotheses regarding the covariance matrix, we use quadratic forms.
Here, we want to investigate more detailed the required number of multiplica-
tions for their calculation in different ways.
Thereby, the presented numbers should be seen as heuristic and can potentially
be reduced through smart implementation.

For the classical way to calculate CSΣ̂iC
⊤
S , the calculation of the empirical co-

variance needs nip
2 multiplications while for the calculation of the matrix prod-

uct p2m2 + m2
2p multiplications are needed. Thereby, this "classical" approach

needs nip
2 + p2m2 +m2

2p multiplications.
For the alternative approach, first CSXi1, ...,CSXini

, and afterwards, the empir-
ical covariance matrix of these vectors have to be calculated. All in all, these
are nipm2 + nim

2
2 multiplications. For ni ⩽ p, our alternative is more efficient

while for ni > p it depends on the concrete setting.
Since for the bootstrap approaches, the bootstrap sample has not to be multi-
plied with CS, the number is reduced to nim

2
2, which is clearly lower than for

the classical approach, even for p = m2.

Finally, it remains to check, wheter (CW ⊗ Im2)
(⊕a

i=1 CSΣ̂iC
⊤
S

)
(CW ⊗ Im2)

⊤

or CΣ̂C⊤ need more multiplications, because the latter representation is neces-
sary for our alternative approach. For the classical approach, we need p2a2m1m2+

m2
1m

2
2+m2

1m
2
2pa multiplications while the alternative approach requires m3

2m1a+

m1m
2
2a

2 ·2 multiplications. Since p2a2m1m2 > m1m
2
2a·2 and m2

1m
2
2pa > m3

2m1a

the required number of multiplications can be substantially reduced, which
makes this way clearly faster.

The following tables show the required computation times for a time measure-
ment with the same setting as in Section 6 in Sattler et al. [2022]. We will show
the hypothesis matrices for the used hypotheses again.

A) Equal Covariance Matrices: Testing the hypothesis Hv
0 : {V1 = V2} =

{C(A)v = 0} is most of the time described by C(A) = P2 ⊗ Ip, but an
alternative choice would be C̃(A) = (1,−1)⊗ Ip ∈ Rp×2p.

B) Equal Diagonal Elements: The hypothesis Hv
0 : {V111 = ... = V1dd} =

{C(B)v = 0} can, e.g., be described by C(B) = diag(hd) − hd · h⊤
d/d, but
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the same hypothesis is tested by chosing the a1-th row up to the ad-th
row of C(B) and build C̃(B) this way. Here again for k = 1, ...,d, we use
ak = 1 +

∑k−1
j=1 (d+ 1 − j).

D) Test for a given trace: Hv
0 : {tr(V1) = γ}{C(D)v = hd · γ} for a given value

γ ∈ R can be described by C(D) = [hd · h⊤
d ]/d or C̃(D) = h⊤

d/d ∈ R1×p

through Hv
0 : {tr(V1) = γ}{C̃(D)v = γ}.

In contrast to the investigation of the computation time from Sattler et al. [2022],
for hypothesis B) we use another matrix with d rows instead of d−1 rows. Here,
just the zero-rows are removed, which does not change the result.

Again, we take the average time of eight different configurations, which consist
of four distributions (t9, normal, skew normal, and gamma) and two covari-
ance matrices ((V1)ij = 0.6|i−j| and V2 = Id + Jd), to get more reliable results.
Moreover, this was calculated 100 times and afterwards averaged, while 1,000
bootstrap steps resp. 10,000 Monte-Carlo repetitions were used.

C(A) C̃(A)

d 2 5 10 20 2 5 10 20

ATS-Para 0.525 0.905 17.560 142.577 0.521 0.884 16.902 114.385
ATS-Wild 0.410 0.540 10.144 112.359 0.410 0.521 9.493 85.180
ATS 0.084 0.196 0.387 1.199 0.058 0.153 0.275 0.691
WTS-Para 0.607 1.202 34.023 384.415 0.589 1.078 24.477 196.349
WTS-Wild 0.539 0.867 26.929 356.703 0.514 0.743 17.366 168.426
WTS-χ2 0.002 0.003 0.043 0.408 0.002 0.003 0.035 0.207

Table 3.21: Required time in seconds for various tests statistics and different
dimensions for hypothesis A) (Hv

0 : {V1 = V2}) with a quadratic hypothesis
matrix on the left side and a non-quadratic hypothesis matrix on the right sight.
Here some methods are used to increase efficiency.

This way, a remarkable time reduction can be achieved, allowing bootstrap ap-
proaches for higher dimensions.

95



CHAPTER 3. SUMMARY OF THE ARTICLES

C(B) C̃(B)

d 2 5 10 20 2 5 10 20

ATS-Para 0.250 0.402 5.424 39.496 0.241 0.302 0.850 1.337
ATS-Wild 0.231 0.279 1.404 12.660 0.228 0.259 0.646 0.845
ATS 0.027 0.087 0.313 1.077 0.020 0.038 0.111 0.181
WTS-Para 0.330 0.525 11.842 101.937 0.319 0.386 1.075 2.055
WTS-Wild 0.291 0.393 8.610 84.960 0.286 0.335 0.896 1.584
WTS-χ2 0.001 0.001 0.015 0.100 0.001 0.001 0.004 0.006

Table 3.22: Required time in seconds for various tests statistics and different
dimensions for hypothesis B) (Hv

0 : {V111 = ... = V1dd}) with a quadratic hy-
pothesis matrix on the left side and a non-quadratic hypothesis matrix on the
right sight. Here some methods are used to increase efficiency.

C(D) C̃(D)

d 2 5 10 20 2 5 10 20

ATS-Para 0.314 0.527 9.348 57.335 0.298 0.350 0.435 0.634
ATS-Wild 0.275 0.336 0.861 40.259 0.271 0.285 0.305 0.373
ATS 0.047 0.152 0.257 0.626 0.037 0.068 0.123 0.163
WTS-Para 0.401 0.677 13.245 104.695 0.383 0.455 0.585 0.937
WTS-Wild 0.351 0.471 8.939 83.664 0.345 0.377 0.442 0.669
WTS-χ2 0.001 0.002 0.018 0.104 0.001 0.001 0.002 0.003

Table 3.23: Required time in seconds for various tests statistics and different
dimensions for hypothesis D) (Hv

0 : {tr(V1) = γ}) with a quadratic hypothesis
matrix on the left side and a non-quadratic hypothesis matrix on the right sight.
Here some methods are used to increase efficiency.
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4 Discussion and Outlook

4.1 Discussion

This thesis expands and complements existing procedures to analyze repeated
measure and general MANOVA designs. Thereby, a specific focus is on high-
dimensional repeated measure designs, for which especially the manifold asymp-
totic frameworks are exceptional for heterogeneous covariance matrices as well
as for homogeneous ones. Moreover, it was possible to expand our approach
for groups with different numbers of repetitions, where equal covariance ma-
trices would make no sense. The normality assumption in high-dimensional
data is rather restrictive and needs to be verified. However, it allows us to work
without many other requirements, which usually are even harder to justify.
Under the additional assumption of equal covariance matrices, we considered
more asymptotic frameworks and relinquished some conditions. In some set-
tings, we could even work without estimating τP, since τP → 0 can be con-
ducted from known values.

The validation of the used homoscedasticity of covariance matrices leads to
the topic of preliminary tests on variances and more general hypotheses re-
garding covariance matrices. Here, innovative considerations were made to
develop a family of test statistics with few requirements and a wide field of
possible applications. The simulation results were compelling, especially for
more groups, higher dimensions, or cases where the considered groups have
different distributions. The latter one is more challenging than equal distri-
butions and violates the assumption E

(
[vech(ϵ11ϵ

⊤
11)][vech(ϵ11ϵ11)

⊤]⊤
)
= ... =

E
(
[vech(ϵa1ϵa1)

⊤)][vech(ϵa1ϵ
⊤
a1)]

⊤). The equality of this moment in all groups
is part of some tests from Zhang and Boos [1992]. This violation has consid-
erable effects on these tests and makes them nearly unusable, while even their
bootstrap approach without this condition performs clearly worse in this set-
ting.

Since not always a unique hypothesis matrix could be chosen in the considered
model, we investigated how this influences the test’s final result. It turned out
that the usual way to choose the unique projection matrix as the hypothesis ma-
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trix can, in some cases, be improved with regard to the required time. This fact
needs to be kept in mind while working with quadratic forms in vectors with
high dimension, regardless of whether they are means, vectorized matrices, or
something else.
Due to our general model, it was possible to expand our approach to the related
testing of hypotheses formulated in correlation matrices. A correlation matrix
is focused on the underlying dependency structure and therefore is sometimes
more suitable. It performed quite well compared to existing procedures, while
it is more flexible and allows various applications.
Moreover, with this additional result, it is possible to examine whether the co-
variance or correlation matrix has a particular structure, like an autoregres-
sive or a compound symmetry matrix. More generally, many different kinds
of patterns can be checked by choosing a proper hypothesis matrix. Simula-
tions showed our test’s good properties, while for testing the diagonality of the
covariance matrix, the test of Bartlett [1951] had even better values. Since this
test is designed only for this concrete structure and the number of other tests
tackling this problem is limited, our test is very useful for modeling. It allows
checking for given data, whether the covariance matrix has a specific structure,
corresponding with some model assumptions. For example, an autoregressive
matrix or a Toeplitz matrix shows that all components have the same variance
and the covariance between components only depends on the distance between
them. This conforms to a repeated measure design, where all time points have
the same variance, and only the time difference is relevant for the covariance
of two components, not the concrete time. Finally, it was essential to investi-
gate how the required computation time for testing hypotheses regarding the
covariance matrix could be reduced. The presented possibilities are applicable
to all the expansions of the original approach. Besides, they are substantially in
the development of an R-package to make the tests accessible for users, see the
end of 4.2 below.

4.2 Outlook

In Theorem 3.1 a) from Sattler [2021] there is an “if and only if”-relation while
part b) is only if. Finding expansion for it to be “if and only if” will complete
the theorem and is another future research point. A solution was not found yet,
and it remains an open task. Also, to further decompose part b) and prove it for
these smaller parts might be useful. Other goals are to widen the applicability
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of this theorem further, include more settings of the standardized eigenvalues
βi, and investigate the behavior of KfP in settings with β1 ∈ (0, 1).
Moreover, the work of Chen and Qin [2010] is, in our opinion, one of the most
important papers in the area of inferring means of high-dimensional data since
they do not have any condition on the relation between sample size and di-
mension and further, have a semi-parametric model. On the other hand, they
consider only two groups and need β1 → 0. This restriction on two groups fol-
lows from the fact that hypotheses for two groups always can be expressed as
subtraction of the means of the groups. Since this subtraction of two means is a
key component of their work, it is interesting to expand this to more groups.
Also, their test statistic’s behavior in the case of β1 → 1 should be investigated
to allow the application in many more situations.

Our approach for testing hypotheses regarding the covariance matrix is quite
general and can be used for various other situations. Testing hypotheses regard-
ing the correlation matrix or testing for the structure of the covariance matrix is,
in our opinion, just the beginning. There is a variety of situations for which this
approach can be adapted. For example, there are some measurements based
on the covariance matrix respective correlation matrix, like Cronbach’s alpha.
With this value, the dependency between questions in questionnaires is evalu-
ated. In Pauly et al. [2016], a permutation-based approach for comparing two
Cronbach’s alphas was introduced, so it is of interest for future research to com-
pare their performance with an adaption of our bootstrap-based procedure.
Moreover, many existing issues can be reformulated regarding a covariance ma-
trix. For example, the occurrence of a random block effect can be investigated
by analyzing corresponding covariance matrices.
As has been mentioned several times, the computation time is a usual difficulty
in analyzing vectors with a larger dimension. This led to a closer look at a topic
otherwise given relatively little attention: choosing the hypothesis matrix. Since
there is the necessity of well-founded statements on the influence of the chosen
hypothesis matrix on the test statistic, further considerations will be made.

It is especially interesting to combine both presented main topics to find an ap-
proach for testing hypotheses regarding covariance and correlation matrices of
high-dimensional observations. This is rather difficult for two main reasons.
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First, since the empirical covariance matrix performs not reliable in situations
with increasing dimension (which was illustrated in Table 2.1) an expansion of
Theorem 1 from Sattler et al. [2022] for increasing dimension will be challeng-
ing. Under additional conditions on the covariance matrix Σi, covariance esti-
mators for high-dimensional settings like banding estimators, were developed
in Bickel and Levina [2008] and Cai et al. [2016]. Such an estimator Σ̃i could
be used to replace Σ̂i and therefore to investigate the asymptotic distribution of√
N(vech(Σi) − vech(Σ̃i)) under the null hypothesis.

The second difficulty is the subsequent estimation of Cov(vech(Σ̃i)), which is
necessary for building test statistics. Again, under additional requirements on
Cov(vech(Σ̃i)) existing estimator for structured high-dimensional covariance
can be applied. But, since we expect a quite complex structure of Cov(vech(Σ̃i)),
comparable to Vi = Cov(vech([Xi1 − E(Xi1)][Xi1 − E(Xi1)]

⊤)), all assumptions
here are difficult to verify. Nevertheless, this should be further investigated in
future research. An interesting competitor would be Bai et al. [2019], which
have a quite general high-dimensional semi-parametric setting, but allow only
hypotheses regarding linear combinations of covariance matrices.

Since we were able to expand the results from Sattler and Pauly [2018] and
Sattler et al. [2022] for groups with different dimensions, it remains an open
question whether it is possible to adapt these approaches for the case of ob-
servations with different dimensions within the groups. This kind of data is
sometimes called clustered data1. For mean-based analysis, we are currently
working on an approach based on a permutation technique that can handle in-
creasing dimensions under some conditions.

Finally, for the usage of our approaches from Sattler and Pauly [2018] and Sat-
tler et al. [2022] in practice, it is helpful to have an R-package, including the
corresponding functions. We plan such a package for the future. It makes sense
to include the test for correlation matrices, introduced in Section 3.5.3, or even
the test for a particular structure of the covariance/correlation matrix from Sec-
tion 3.5.4.

1This should not be confused with the cluster-analysis, which is, for example, used to group
big sets of objects.
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1. Introduction

In our current century of data, statisticians increasingly face the problem to re-
consider the adaptability of classical inferential techniques. In particular, diverse
types of high-dimensional data structures are observed in various research ar-
eas; disclosing the boundaries of conventional multivariate data analysis. Here,
the curse of high dimensionality or the large d small N problem is especially
encountered in life sciences whenever it is easier (or cheaper) to repeatedly gen-
erate a large number d of observations per subject than recruiting many, say N ,
subjects. Similar observations can be made in industrial sciences with subjects
replaced by units. Such designs, where experimental units are repeatedly ob-
served under different conditions or at different time points, are called repeated
measures designs or (if two or more groups are observed) split-plot designs. In
these trials, one likes to answer questions about the occurrence of certain group
or time effects or about particular profiles. Conventionally, for d < N , corre-
sponding null hypotheses are inferred with Hotelling’s T 2 (one or two sample
case) or Wilks’s Λ, see e.g. Davis [14][Section 4.3] or Johnson & Wichern [24]
[Section 6.8]. Besides normality, these procedures heavily rely on the assumption
of equal covariance matrices and particularly break down in high-dimensional
settings with N < d. While there exist several promising approaches to ade-
quately deal with the problem of covariance heterogeneity in the classical case
with d < N (see e.g. Box [6], Geisser & Greenhouse [17], Greenhouse & Geisser
[18], Huynh & Feldt [23], Lecoutre [30], Vallejo & Ato [40], Ahmad et al. [1], Ken-
ward & Roger [27], Brunner et al. [9], Pesarin & Salmaso [35], Skene & Kenward
[38], Konietschke et al. [29], Happ et al. [20], Harden [21], Friedrich et al. [16])
most procedures for high-dimensional repeated measures designs rely on certain
sparsity conditions (see e.g. Bai & Saranadasa [2], Chen & Qin [11], Katayama
et al. [26], Nishiyama et al. [33], Secchi et al. [37], Cai et al. [10], Harrar &
Kong [22] and the references cited therein). In particular, in an asymptotic
(d, N) → ∞ framework, typical assumptions restrict the way the sample size
N and/or various powers of traces of the underlying covariances increase with
respect to d. These type of sparsity conditions guarantee central limit theorems
that lead to approximations of underlying test statistics by a fixed limit dis-
tribution. However, as illustrated in Pauly et al. [34] for one-sample repeated
measures these conditions can in general not be regarded as regularity assump-
tions. In particular, they may even fail for classical covariance structures. To
this end, the authors proposed a novel approximation technique that showed
considerably accurate results and investigated its asymptotic behavior in a flex-
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ible and non-restrictive (d, N) → ∞ framework. Here, no assumptions regarding
the dependence between d and N or the covariance matrix were made. In the
current paper, we follow this approach and extend the results of Pauly et al.
[34] to general heteroscedastic split-plot designs with a independent groups of
repeated measurements. To even allow a large number of groups as in Bathke
& Harrar [3], Bathke et al. [4] or Zhan & Hart [43], we do not only consider the
case with a fixed number a ∈ N of samples but additionally allow for situations
with a → ∞. The latter case is of particular interest if most groups are rather
small (as in screening trials) such that a classical test would essentially possess
no power for fixed a. Here increasing the number of groups implies increasing
the total sample size from which a power increase might be expected as well.
This leads to one of the following asymptotic frameworks

a ∈ N fixed and (d, N) → ∞,

d ∈ N fixed and (a, N) → ∞,

or (a, d, N) → ∞

which we handle simultaneously in the sequel. For all considerations, the ade-
quate and dimension-stable estimation of traces of certain powers of combined
covariances turned out to be a major problem. It is tackled by introducing sym-
metrized estimates of U -statistics-type which possess nice asymptotic properties
under all asymptotic frameworks given above.

The paper is organized as follows. The statistical model together with the
considered hypotheses of interest are introduced in Section 2. The test statis-
tic and its asymptotic behavior is investigated in Section 3, where also novel
dimension-stable trace estimators are introduced. Additional approximations
for small sample sizes are theoretically discussed in Section 4 and their perfor-
mance is studied in simulations in Section 5. Afterwards, the new methods will
be applied to analyze a high-dimensional data set from a sleep-laboratory trial
in Section 6. The paper closes with a discussion and an outlook. All proofs in
this paper are shifted to the Appendix.

2. Statistical model and hypotheses

We consider a split-plot design given by a independent groups of d-dimensional
random vectors

Xi,j = (Xi,j,1, . . . , Xi,j,d)
� ind∼ Nd (μi,Σi) j = 1, . . . , ni, i = 1, . . . , a (1)

with mean vectors E(Xi,1) = μi = (μi,t)
d
t=1 ∈ Rd and positive definite co-

variance matrices Cov(Xi,1) = Σi. Here j = 1, . . . , ni denotes the individual
subject or unit in group i = 1, . . . , a, ni, a ∈ N, where no specific structure of the
group-specific covariance matrices Σi is assumed. In particular, they are even
allowed to differ completely. Altogether we have a total number of N =

∑a
i=1 ni

random vectors representing observations from independent subjects. Within
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this framework, a factorial structure on the factors group or time can be incor-
porated by splitting up indices. Also, a group-specific random subject effect can
be incorporated as outlined in Pauly et al. [34][Equation (2.2)].

Writing μ = (μ�
1 , . . . , μ�

a )�, linear hypotheses of interest in this general
split-plot model are formulated as

H0(H) : Hμ = 0 (2)

for a proper hypothesis matrix H. It is of the form H = HW ⊗ HS , where
HW and HS refer to whole-plot (group) and/or subplot (time) effects. For
theoretical considerations it is often more convenient to reformulate H0(H) by
means of the corresponding projection matrix T = H�[HH�]−H, see e.g.
Pauly et al. [34]. Here (·)− denotes some generalized inverse of the matrix and
H0(H) can equivalently be written as H0(T ) : Tμ = 0. It is a simple exercise
to prove that the matrix T is of the form T = T W ⊗T S for projection matrices
T W and T S , see Lemma A.1 (p.2766) in the Appendix. Typical examples are
given by

(a) No group effect: Ha
0 :
(
P a ⊗ 1

dJd

)
μ = 0,

(b) No time effect: Hb
0 :
(

1
aJa ⊗ P d

)
μ = 0,

(c) No interaction effect between time and group: Hab
0 : (P a ⊗ P d) μ = 0,

where Jd is the d-dimensional matrix only containing 1s and P d := Id−Jd/d
is the centring matrix. For interpretational purposes it is sometimes helpful to
decompose the component-wise means as

μi,t = μ + αi + βt + (αβ)it, i = 1, . . . , a, t = 1, . . . , d,

where αi ∈ R represents the i-th group effect, βt ∈ R the time effect at time
point t and (αβ)it ∈ R the (i, t)-interaction effect between group and time with
the usual side conditions

∑
i αi =

∑
t βt =

∑
i,t(αβ)it = 0. With this notation

the above null hypothesis can be rewritten as (a) Ha
0 : αi ≡ 0 for all i, (b)

Hb
0 : βt ≡ 0 for all t and (c) Hab

0 : (αβ)it ≡ 0 for all i, t, respectively.
These and other hypotheses will be utilized in the data analysis Section 6.

3. The test statistic and its asymptotics

We derive appropriate inference procedures for H0(T ) and analyze their asymp-
totic properties under the following asymptotic frameworks

a ∈ N fixed and min(d, n1, . . . , na) → ∞, (3)

d ∈ N fixed and min(a, n1, . . . , na) → ∞, (4)

or min(a, d, n1, . . . , na) → ∞, (5)

as N → ∞. Here, no dependency on how the dimension d = d(N) in (3) and
(5) or the number of groups a = a(N) in (4)–(5) converges to infinity with
respect to the sample sizes ni and N is postulated. In particular, we cover high-
dimensional (d > ni or even d > N) as well as low-dimensional settings. For
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a lucid presentation of subsequent results and proofs we additionally assume
throughout that

ni

N
→ ρi ∈ (0, 1), i = 1, . . . , a. (6)

However, by turning to convergent subsequences, all main results can be shown
to hold under the more general condition

0 < lim inf ni/N ≤ lim sup ni/N < 1, (i = 1, . . . , a).

It is convenient to measure deviations from the null hypothesis H0(T ) : Tμ = 0
by means of the quadratic form

QN = N · X
�

TX, (7)

where X
�

= (X
�
1 , . . . X

�
a ) with Xi = n−1

i

∑ni

j=1 Xi,j , i = 1, . . . , a, denotes the
vector of pooled group means.

Since QN is in general asymptotically degenerated under (3)–(5) we study its
standardized version. To this end, note that under the null hypothesis it holds
that

√
N · TX

H0∼ Nad

(
0ad, T

[
a⊕

i=1

N

ni
Σi

]
T

)
,

due to assumption (1). Thus, it follows from classical theorems about moments of
quadratic forms, see e.g. Mathai & Provost [32] or Theorem A.4 in the Appendix,
that its mean and variance under the null hypothesis can be expressed as

EH0 (QN ) = tr

(
T

[
a⊕

i=1

N

ni
Σi

])
=

a∑

i=1

N

ni
(T W )ii tr (T SΣi) , (8)

VarH0 (QN ) = 2 tr

⎛
⎝
(

T

[
a⊕

i=1

N

ni
Σi

])2
⎞
⎠ (9)

= 2

a∑

i=1

a∑

r=1

N2

ninr
(T W )ir(T W )ri tr (T SΣiT SΣr)

= 2

a∑

i=1

a∑

r=1

N2

ninr
(T W )ir

2
tr (T SΣiT SΣr) (10)

= 4

a∑

i,r=1,r<i

N2

ninr
(T W )ir

2
tr (T SΣiT SΣr)

+ 2

a∑

i=1

N2

n2
i

(T W )ii
2
tr
(
(T SΣi)

2
)

.

Henceworth we investigate the asymptotic behaviour (under H0(T )) of the

standardized quadratic form W̃N = {QN − EH0(QN )}/VarH0 (QN )
1/2

. Denot-
ing by V N :=

⊕a
i=1

N
ni

Σi the inversely weighted combined covariance matrix,
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the representation theorem for quadratic forms given in Mathai & Provost
[32][p.90], implies that

W̃N =
QN − EH0(QN )

VarH0 (QN )
1/2

D
=

ad∑

s=1

λs√∑ad
�=1 λ2

�

(
Cs − 1√

2

)
. (11)

Here ‘
D
=’ denotes equality in distribution, λs are the eigenvalues of TV NT in

decreasing order, and (Cs)s is a sequence of independent χ2
1-distributed random

variables. Note, that the eigenvalues λs also depend on the dimension d and
the sample sizes ni. Transferring the results of [34] for the one-group design
with a = 1 to our general setting, we obtain the subsequent asymptotic null
distributions of the standardized quadratic form for all asymptotic settings (3)–
(5).

Theorem 3.1. Let βs = λs

/√∑ad
�=1 λ2

� for s = 1, . . . , ad. Then W̃N has, under

H0(T ), and one of the frameworks (3)–(5) asymptotically

a) a standard normal distribution if and only if

β1 = max
s≤ad

βs → 0 as N → ∞,

b) a standardized
(
χ2

1 − 1
)
/
√

2 distribution if and only if

β1 → 1 as N → ∞,

c) the same distribution as the random variable
∑∞

s=1 bs (Cs − 1) /
√

2, if

for all s ∈ N βs → bs as N → ∞,

for a decreasing sequence (bs)s in [0, 1] with
∑∞

s=1 b2
s = 1.

It is worth to note that the influence of the different asymptotic frameworks
is hidden in the corresponding conditions on the sequence of standardized eigen-
values (βs)s, which depend on both, a and d.

Moreover, for the specific one-group case with a = 1 the equivalent statements
in a) and b) even complement the results of Pauly et al. [34] who only proved
the sufficient part.

While Theorem 3.1 studies the asymptotic null distribution of W̃N , it is of
additional interest to study its behaviour under local alternatives. To this end,
we adopt two local situations already considered in Chen & Qin [11] for the case
a = 2 and H0 = P 2 ⊗ 1

dJd to our present design.

Theorem 3.2.

i) Under the local alternative H1(T ) : Tμ 
=0ad it holds with N ·μ�TV NTμ ∈
O
(
tr
(
(TV N )

2
))

that

W̃N
D
= WN (H0) +

N · μ�Tμ√
2 tr
(
(TV N )

2
) +OP(1).
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Here, WN (H0) denotes a statistic that possesses the same distribution as

W̃N under H0, i.e. L(WN (H0)) = L(W̃N |H0).
ii) Under the local alternative H1(T ) : Tμ 
= 0ad it holds with N · μ�Tμ ∈

O
(√

tr
(
(TV N )

2
))

and β1 → 0, that

W̃N
D
=

√√√√1 + 2N
μ�TV NTμ

tr
(
(TV N )

2
) · WN (H0) +

N · μ�Tμ√
2 tr
(
(TV N )

2
) +OP(1).

Consulting the results of Theorems 3.1 and 3.2 it is easy to calculate asymp-
totic power functions of W̃N -tests. In particular, for a = 2, H0 = P ⊗ 1

dJd and
β1 → 0 we obtain the power functions stated in Chen & Qin [11]; noting that
their asymptotic framework is contained in ours if β1 → 0.

Since the eigenvalues λs and standardized eigenvalues βs are unknown in
general we cannot apply the result directly. In particular, we are not even able
to calculate the test statistic W̃N , not to mention to choose its correct limit
distribution. To this end, we first introduce novel unbiased estimates of the un-
known traces involved in (8)–(10) and discuss their mathematical properties.
Plugging them into (8)–(10) leads to the calculation of adequately standard-
ized test statistics. Finally, the choice of proper critical values is discussed in
Section 4.

3.1. Symmetrized trace estimators

Here we derive unbiased and ratio-consistent estimates for the unknown traces
tr (T SΣi) , tr ((T SΣi)

2
) and tr (T SΣiT SΣr) , i 
= r, given in (8)–(10). Since

it is not obvious that the usual plug-in estimates that are based on empiri-
cal covariance matrices are useful in high-dimensional settings we follow the
approach of Brunner et al. [8] and Pauly et al. [34] and directly estimate the
traces. Different to the one-sample design studied therein, we face the prob-
lem of additional nuisance parameters – the mean vectors μi. To avoid their
estimation we adopt Tyler’s symmetrization trick from M -estimates of scatter
(see e.g. Croux et al. [13], Dümbgen [15] or Tyler et al. [39]) to the present
situation, see also Brunner [7] and Harden [21]. In particular, we consider dif-
ferences of observation pairs (�1, �2), �1 
= �2, from the same group which fulfill
(Xi,�1 − Xi,�2) ∼ Nd (0d, 2Σi) and introduce the following novel estimators for
i = 1, . . . , a :

Ai,1 =
1

2 ·
(
ni

2

)
ni∑

�1,�2=1
�1>�2

(Xi,�1 − Xi,�2)
�

T S (Xi,�1 − Xi,�2) , (12)

Ai,r,2 =
1

4 ·
(
ni

2

)(
nr

2

)
ni∑

�1,�2=1
�1>�2

nr∑

k1,k2=1
k1>k2

[
(Xi,�1 − Xi,�2)

�
T S (Xr,k1 − Xr,k2)

]2
,

(13)
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Ai,3 =
1

24
(
ni

4

)
ni∑

�1,�2=1
�1>�2

ni−1∑

k2=1
k2 �=�1,�2

ni∑

k1=k2+1
�2,�1 �=k1

[
(Xi,�1 − Xi,�2)

�
T S (Xi,k1 − Xi,k2)

]2
,

(14)

A4 =

a∑

i=1

(
N

ni

)2

(T W )ii
2
Ai,3 + 2

a−1∑

i=1

a∑

r=i+1

N2

ninr
(T W )ir

2
Ai,r,2. (15)

Here and throughout the paper expressions of the kind a 
= b 
= c mean that
the indices are pairwise different. In this sense all estimators (12)–(15) are sym-
metrized U-statistics, where the kernel is given by a specific quadratic or bilinear
form. Their properties are analyzed below.

Lemma 3.3. For any μ ∈ Rad and i 
= r = 1, . . . , a it holds that

1. ÊH0(QN ) :=
∑a

i=1
N
ni

(T W )iiAi,1 is an unbiased and ratio-consistent esti-
mator for EH0(QN ).

2. A4 is an unbiased and ratio-consistent estimator for tr
(
(TV N )

2
)

.

3. Ai,1, Ai,r,2 and Ai,3 are unbiased and ratio-consistent estimators for

tr (T SΣi), tr (T SΣiT SΣr) and tr
(
(T SΣi)

2
)

, respectively.

Remark 3.4. (a) Recall that an R-valued estimator θ̂N is ratio-consistent for

a sequence of real parameters θN if θ̂N/θN → 1 in probability as N → ∞. Here
the estimators and parameters may depend on a = a(N) and/or d = d(N).

(b) Studying the proof of Lemma 3.3 given in the Appendix, we see that
all these estimators are even (dimension-)stable in the sense of Brunner et al.

[8], i.e. they fulfill |E(θ̂N/θN − 1)| ≤ bN and Var(θ̂N/θN ) ≤ cN for sequences
bN , cN ↓ 0 not depending on a and d.

It follows from Lemma 3.3 that

V̂ arH0(QN ) := 2

a∑

i=1

(
N

ni

)2

(T W )ii
2
Ai,3+4

a−1∑

i=1

a∑

r=i+1

N2

ninr
(T W )ir

2
Ai,r,2 = 2A4

is an unbiased estimator of V arH0(QN ). This motivates to study the standard-
ized quadratic form

WN =
QN − ÊH0(QN )

V̂ arH0(QN )1/2

for testing H0(T ). Its asymptotic behaviour (under H0(T ) : Tμ = 0ad) is sum-
marized below.

Theorem 3.5.

a) Under H0(T ) : Tμ = 0ad and one of the frameworks (3)–(5) the statistic

WN has the same asymptotic limit distribution as W̃N , if the respective
conditions (a)–(c) from Theorem 3.1 are fulfilled.
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b) Under the asymptotic frameworks (3)–(5) the statistic WN has the same

asymptotic limit distribution as W̃N , if the respective local alternative con-
dition a) or b) from Theorem 3.2 is fulfilled.

The result shows that it is not reasonable to approximate the unknown dis-
tribution of the test statistic with a fixed distribution to obtain a valid test pro-
cedure. For example, choosing z1−α, the (1−α)-quantile of the standard-normal
distribution (α ∈ (0, 1)), as critical value would lead to a valid asymptotic level
α test ψz = 1{WN > z1−α} in case of β1 → 0, i.e. EH0(ψz) → α. However,
for β1 → 1 we would obtain EH0(ψz) → P (χ2

1 >
√

2z1−α + 1) which may lead
to an asymptotically liberal (α = 0.01 or 0.05) or conservative (α = 0.1) test
decision, see Table 1. Contrary, choosing c1−α = (χ2

1;1−α − 1)/
√

2 as critical
value (where χ2

1;1−α denotes the (1 − α)-quantile of the χ2
1-distribution) for

the test ψχ = 1{WN > c1−α}, it follows that EH0(ψχ) → α if β1 → 1 but
EH0(ψχ) → 1 − Φ(c1−α) for β1 → 0, where Φ denotes the cumulative distribu-
tion function of N (0, 1). Again we obtain an asymptotically liberal (α = 0.1) or
extremely conservative (α = 0.05 or 0.01) test decision, see the last column of
Table 1.

Table 1
Asymptotic levels of the tests ψz and ψχ with fixed critical values under the null hypothesis

and all asymptotic frameworks (3)–(5).

chosen True asymptotic level of the test
level α ψz (β1 → 0) ψz (β1 → 1) ψχ (β1 → 0) ψχ (β1 → 1)
0.10 0.10 0.09354 0.11391 0.10
0.05 0.05 0.06819 0.02226 0.05
0.01 0.01 0.03834 0.00003 0.01

Hence, an indicator (i.e. estimator) for whether β1 → 0, β1 → 1 or betwixt
would be desirable. Nevertheless, even if the tests with fixed critical values are
asymptotically correct (ψz in case of β1 → 0 or ψχ in case of β1 → 1), their true
type-I error control may be poor for small sample sizes, see the simulations in
Section 5.1.

Thus, in any case, it seems more appropriate to approximate WN by a se-
quence of standardized distributions as already advocated in Pauly et al. [34]
for the case of a = 1. We will propose such approximations in the next sections,
where also a check criterion for β1 → 0 or β1 → 1 is presented.

4. Better approximations

To motivate the subsequent approximation, recall from (11) that W̃N is of
weighted χ2

1-form. Following Zhang [44] it is reasonable to approximate statis-
tics of this form by a standardized (χ2

f −1)/
√

2f -distribution, while f is selected
such that the first three moments coincide. Straightforward calculations show
that this is achieved by approximating with
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KfP
=

χ2
fP

− fP√
2fP

such that fP =
tr3
(
(TV N )

2
)

tr2
(
(TV N )

3
) , (16)

where fP is called the Pearson approximation. In case of a = 1 this simplifies to
the method presented in Pauly et al. [34]. There it has already been seen that
the approximation (16) performs much better for smaller sample sizes and/or
dimensions than the above approaches with a fixed distribution. We will later
rediscover this observation in Section 5 for our present design with general a.
The next theorem gives a mathematical reason for this approximation.

Theorem 4.1. Under the conditions of Lemma 3.1 and one of the frameworks
(3)–(5) we have that KfP

given in (16) has, under H0 : Tμ = 0ad, asymptoti-
cally

a) a standard normal distribution if β1 → 0 as N → ∞,
b) a standardized

(
χ2

1 − 1
)
/
√

2 distribution if β1 → 1 as N → ∞.

Thus, compared to the approximation with a fixed limit distribution, the
KfP

-approach would at least be asymptotically correct whenever β1 → γ ∈
{0, 1}, while always providing a three moment approximation to the test statis-
tic. To apply this result, an estimator for f in (16) is needed. Since we have

already found A4 as unbiased and ratio-consistent estimator for tr((TV N )
2
), it

remains to find an adequate one for tr((TV N )
3
). A combination of both will

then lead to a proper estimator for fP and τP = fP
−1, respectively. Again

we prefer a direct estimation of the involved traces. To this end, we introduce
random vectors

Z(�1,�2,...,�2a) :=

(√
N

n1
(X1,�1 − X1,�2)

�
, . . . ,

√
N

na

(
Xa,�2a−1 − Xa,�2a

)�
)�

with 1 ≤ �2i−1 
= �2i ≤ ni for all i = 1 . . . , a. Note, that this vectors are mul-
tivariate normally distributed with E(Z(�1,�2,...,�2a−1,�2a)) = 0ad and covariance

matrix Cov
(
Z(�1,�2,...,�2a−1,�2a)

)
= 2
⊕a

i=1
N
ni

Σi = 2V N . Utilizing their par-
ticular form, it is shown in the Appendix, that a cyclic combination of these
random vectors yields an unbiased estimator for tr((TV N )

3
). In particular,

writing Z(�1,�2) for Z(�1,�2,�1,�2,...,�1,�2) we have

E
(
Z(1,2)

�TZ(3,4)Z(3,4)
�TZ(5,6)Z(5,6)

�TZ(1,2)

)
= 8 tr((TV N )

3
). (17)

This motivates the definition of (for ni ≥ 6)

C5 =

n1∑

�1,1,...,�6,1=1
�1,1 �=···�=�6,1

. . .

na∑

�1,a,...,�6,a=1
�1,a �=···�=�6,a

∏3
m=1 Λm(�1,1, . . . , �6,a)

8 ·∏a
i=1

ni!
(ni−6)!

, (18)

where

Λ1(�1,1, . . . , �6,a) = Z(�1,1,�2,1,...,�1,a,�2,a)
�TZ(�3,1,�4,1,...,�3,a,�4,a),

Λ2(�1,1, . . . , �6,a) = Z(�3,1,�4,1,...,�3,a,�4,a)
�TZ(�5,1,�6,1,...,�5,a,�6,a),
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Λ3(�1,1, . . . , �6,a) = Z(�5,1,�6,1,...,�5,a,�6,a)
�TZ(�1,1,�2,1,...,�1,a,�2,a).

Its properties together with a consistent estimator for fP are summarized below.

Lemma 4.2. (a) The estimator C5 given in (18) is unbiased for tr((TV N )
3
).

(b) Suppose that a ∈ N is fixed. Then τ̂P := C2
5/A3

4 is a consistent esti-
mator for τP = 1/fP as min(d, n1, . . . , na) → ∞, i.e. we have convergence in
probability

τ̂P − τP =
C2

5

A3
4

−
tr2
(
(TV N )

3
)

tr3
(
(TV N )

2
) P−→ 0. (19)

(c) Now suppose that a → ∞ and that there exists some q > 1 which fulfills
min(n1, . . . , na) = O (aq). Then (19) even holds under the asymptotic frame-
works (4) - (5).

Theorem 4.3. Suppose (19). Then, Theorem 4.1 remains valid if we replace

fP by its estimator f̂P = 1/τ̂P .

Remark 4.4. (a) Using similar arguments as in the proof of Lemma 8.1. of
Pauly et al. [34] we obtain the equivalences β1 → 0 ⇔ τP → 0 and β1 → 1 ⇔
τP → 1. Thus, τ̂P can also be used as check criterion for these two cases.

(b) It is also possible to derive a consistent estimator for τCQ= 1/fCQ =

tr((TV N )
4
)/tr2((TV N )

2
), a key quantity in Chen & Qin [11], see the Ap-

pendix for details concerning the estimator. The corresponding approximation
by the sequence KfCQ

even shares the same asymptotic properties of the Pearson
approximation (16) stated in Theorem 4.1 and Theorem 4.3. However, it only
provides a two moment approximation which turned out to perform worse in
simulations (results not shown).

(c) In the Appendix, we additionally present an unbiased estimator C7 for

tr((TV N )
3
) such that C2

7/A3
4 is consistent for τP in all asymptotic frame-

works (3) - (5). Particularly, the extra condition min(n1, . . . , na) = O (aq) is
not needed. However, it is computationally more expensive compared to C5 and
thus omitted here.

In practical applications, the computation costs for C5 are nevertheless rather
high. This leads to disproportional waiting times for p-values of the correspond-
ing approximate test ϕN = 1{WN > Kf̂P ;1−α}, where the critical value is

given as (1 − α)-quantile of Kf̂P
. Therefore, we propose a certain subsampling-

type method. Since the unbiasedness of C5 clearly stems from (17), it seems
reasonable to proceed as follows: For each i = 1, . . . , a and b = 1, . . . , B we
independently draw random subsamples {σ1i(b), . . . , σ6i(b)} of length 6 from
{1, . . . , ni} and store them in a joint random vector σ(b) = (σ11(b), . . . , σ6a(b)).
Then, a subsampling-version of the estimator C5 is given by

C�
5 = C�

5 (B) =
1

8 · B
B∑

b=1

Λ1(σ(b)) · Λ2(σ(b)) · Λ3(σ(b)).



2754 P. Sattler and M. Pauly

Letting B = B(N) → ∞ as N → ∞ it is easy to see (cf. the Appendix for
details), that C�

5 has the same asymptotic properties as C5. In particular, it is

stated in the Appendix that τ̂�
P := 1/f̂�

P := C�2
5 /A3

4 is a consistent estimator
for τP and that the approximation Kf̂�

P
has the same weak limits as Kf̂P

stated

in Theorem 4.3. This leads to ϕ�
N = 1{WN > Kf̂�

P ;1−α} which is an asymptot-

ically exact test whenever β1 → γ ∈ {0, 1}. The finite sample, dimension and
group size performance of this approximation are investigated in the subsequent
section.

5. Simulations

In the previous sections, we considered the asymptotic properties of the proposed
inference methods which are valid for large sample and fixed or possibly large
dimension and/or group sizes. Here we investigate the small sample properties of
our proposed approximation procedure ϕ�

N = 1{WN > Kf̂�
P ;1−α} in comparison

to the statistical tests ψz = 1{WN > z1−α} and ψχ = 1{WN > c1−α} based on
fixed critical values.

Furthermore, we consider versions of the Chen & Qin [11] test ψCQ =
1{TCQ/σ̂ > z1−α} which was originally only developed for the high-dimensional
two-sample mean comparison. Their procedure is based on the test statistic

TCQ =

∑n1

�1 �=�2
X�

1�1X1�2

n1(n1 − 1)
+

∑n2

k1 �=k2
X�

2k1
X2k2

n2(n2 − 1)
− 2

∑n1

�=1

∑n2

k=1 X�
1�X2k

n1n2
,

and the variance estimator

σ̂ =
2

n1(n1 − 1)
t̂r(Σ2

1) +
2

n2(n2 − 1)
t̂r(Σ2

2) +
4

n1n2

̂tr (Σ1Σ2)

using

t̂r(Σ2
i ) =

1

ni(ni − 1)
· tr

⎛
⎝

ni∑

j �=k

(Xij − Xi(j,k))X
�
ij(Xik − Xi(j,k))X

�
ik

⎞
⎠ ,

̂tr(Σ1Σ2) =
1

n1n2
· tr
(

n1∑

�=1

n2∑

k=1

(X1� − Xi(�))X
�
1�(X2k − X2(k))X

�
2k

)
.

Here, Xi(j,k) denotes the i-th sample mean after excluding Xij and Xik, and
Xi(�) is the i-th sample mean without Xi�.

It is apparent, that ψCQ and ψz use the same critical z-value. In particu-
lar, Chen & Qin [11] have proven that ψCQ is asymptotically valid if β1 → 0,
i.e. in the same situation as ψz. Its behaviour has, however, not been inves-
tigated in the case of β1 � 0. As the enumerator TCQ of the Chen-Qin test
statistic is basically ours (with T = P 2 ⊗ 1

2Jd) after subtracting the mixed

terms
∑n1

�1=1 X�
1�1X1�1 ,

∑n2

k1=1 X�
2k1

X2k1 , the key difference is the choice of
variance estimator. While ours is of symmetrized U-statistics-type, σ̂ is more of
a jackknife-type estimator and it is of interest to see how both compare in our
general setting.
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In particular, we below compare all testing procedures in simulation studies
with respect to

(a) their type-I error rate control under the null hypothesis (Section 5.1) and
(b) their power behaviour under various alternatives (Section 5.2).

All simulations were performed with the help of the R computing environment
(R Development Core Team, 2013), each with nsim = 104 simulation runs.

5.1. Asymptotic distribution and type-I error control

First, we study the speed of convergence, i.e. type-I error control, of the three
different tests under the null hypothesis. To be in line with the simulation results
presented in Pauly et al. [34] for the case a = 1 we also multiplied the statistic
WN by

√
N/(N − 1) to avoid a slightly liberal behaviour.

Due to the abundance of different split-plot designs and the more method-
ological focus of the paper, we restrict our simulation study to three specific null
hypotheses and a high dimensional and heteroscedastic two-sample setting.

In particular, we investigate the type-I error behaviour of all four tests for
the null hypotheses

• Ha
0 :
(
P 2 ⊗ 1

dJd

)
μ = 02d,

• Hb
0 :
(

1
2J2 ⊗ P d

)
μ = 02d and

• Hab
0 : (P a ⊗ P d) μ = 02d.

Since the Chen & Qin [11] test ψCQ is only applicable for Ha
0 , we additionally

translate their procedure to also test the other two hypotheses Hb
0 and Hab

0 .
This is possible by recognizing that Hb

0 :
(

1
aJa ⊗ P d

)
μ = 02·d can be written

as E(P dX11) = E(P dX21) while Hab
0 : (P a ⊗ P d) μ = 02·d can be expressed by

E(P dX11) = −E(P dX21). Thus, carrying out ψCQ in the transformed vectors
Y ik = P dXik (for Hb

0) and Y 1k = P dX1k, Y 2k = P dX2k (for Hab
0 ), k =

1, . . . , ni, i = 1, 2, respectively, allows us to also use their procedure for testing
Hb

0 and Hab
0 . The resulting test will again be denoted as ψCQ.

In all cases sample sizes were chosen from n1 ∈ {10, 20, 50} and n2 ∈
{15, 30, 75} combined with various choices of dimensions d ∈ {5, 10, 20, 40, 70,
100, 150, 200, 300, 450, 600, 800}. For the covariance matrices a heteroscedastic
setting with autoregressive structures (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|

was chosen and for each simulation run B(N) = 500·N, N = n1+n2, subsamples
were drawn.

Note that these settings imply β1 → 1 for Ha
0 and β1 → 0 for Hb

0 , Hab
0 , see

the Appendix for details.
Thus, ϕ�

N is asymptotically exact in both cases while ψχ and ψz possess the
asymptotic behaviour given in Table 1. In particular, the z-test ψz should be
rather liberal for testing for Ha

0 and ψχ strongly conservative for Hb
0 . All these

theoretical findings can be recovered in our simulations: The results for Ha
0 ,

displayed in Figure 1, show an inflated type-I error level control of ψz around 8%
for smaller samples sizes (N = 25). For larger sample sizes (N = 125) it stabilizes
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Fig 1. Simulated type-I error rates (α = 5%) for the statistic WN ·
√

N/(N − 1) compared
with the critical values of a standard normal, standardized χ2

1 and Kf -distribution and the

test ψCQ of Chen & Qin under the null hypothesis Ha
0 :
(
P 2 ⊗ 1

d
Jd

)
μ = 0 for increasing

dimension and covariance matrices (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|. The sample

sizes are increased from left (n1 = 10, n2 = 15) to right (n1 = 20, n2 = 30) to bottom
(n1 = 50, n2 = 75).

in the region of its asymptotic level of 7.2% ± 0.3%. The other z-test ψCQ leads
to nearly the same results. For both tests, the error control is only slightly
affected by the varying dimensions under investigation. In comparison, (in this
situation) the two asymptotically correct tests ϕ�

N and ψχ are slightly liberal
for smaller sample sizes and more or less asymptotically correct for moderate
(N = 50) to larger sample sizes. Here, it is astonishing that both procedures
are nearly superposable, suggesting a fast convergence of the degrees of freedom

estimator f̂P .
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Fig 2. Simulated type-I error rates (α = 5%) for the statistic WN ·
√

N/(N − 1) compared
with the critical values of a standard normal, standardized χ2

1 and Kf -distribution and the

test ψCQ of Chen & Qin under the null hypothesis Hb
0 :
(

1
2
J2 ⊗ P d

)
μ = 0 for increasing

dimension and covariance matrices (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|. The sample

sizes are increased from left (n1 = 10, n2 = 15) to right (n1 = 20, n2 = 30) to bottom
(n1 = 50, n2 = 75).

The results for Hb
0 , presented in Figure 2, are slightly different. In particular,

all the tests ψχ, ψz and ψCQ depending on fixed critical values are more affected
by the underlying dimension: For smaller d < 100 the true level is considerably
larger than their asymptotic level given in Table 1; resulting in a rather liberal
behaviour of ψz and ψCQ and close to exact type-I error control for ψχ. This ef-
fect is decreased with increasing sample sizes with clear advantages for ψCQ over
ψz. Moreover, for larger dimension (d ≥ 200) all tests approach their asymptotic
level. In comparison, the procedure ϕ�

N based on the Kf̂� approximation shows
a fairly good α level control through all dimension and sample size settings.
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Fig 3. Simulated type-I error rates (α = 5%) for the statistic WN ·
√

N/(N − 1) compared
with the critical values of a standard normal, standardized χ2

1 and Kf -distribution and the

test ψCQ of Chen & Qin, under the null hypothesis Hab
0 :

(
1
2
J2 ⊗ P d

)
μ = 0 for increasing

dimension and covariance matrices (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|. The sample

sizes are increased from left (n1 = 10, n2 = 15) to right (n1 = 20, n2 = 30) to bottom
(n1 = 50, n2 = 75).

In case of the interaction hypothesis Hab
0 (Figure 3) similar observations can

be made: The proposed approximation test ϕ�
N controls the type-I error level

fairly well over all settings while ψχ exhibits a rather conservative behaviour,
particularly for increasing d. The behaviour of the two z-tests ψz and ψCQ is
now almost equal: Both show a quite liberal behaviour for smaller dimensions
d which decreases for larger d. To sum up, judging from Figures 1–3, ϕ�

N seems
to be the method of choice regardless of whether β1 → 0 or β1 → 1.

To also get an idea about the behaviour of all procedures in between those
two cases we finally investigate a situation with β1 → b1 /∈ {0, 1}. To this
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Fig 4. Simulated type-I error rates (α = 5%) for the statistic WN ·
√

N/(N − 1) compared
with the critical values of a standard normal, standardized χ2

1 and Kf -distribution and the

test ψCQ of Chen & Qin, under the null hypothesis Hb
0 :
(

1
2
J2 ⊗ P d

)
μ = 0 for increasing

dimension and covariance matrices (Σ1)i,j = 0.6|i−j|/d and (Σ2)i,j = 0.65|i−j|/d. The sam-

ple sizes are increased from left (n1 = 10, n2 = 15) to right (n1 = 20, n2 = 30) to bottom
(n1 = 50, n2 = 75).

end, we again test for the hypothesis Hb
0 but now consider covariance matrices

(Σ1)i,j = 0.6|i−j|/d and (Σ2)i,j = 0.65|i−j|/d for the two groups. Here, b1 ≈ 0.76,
see Table 5 in the Appendix for details.

The simulation results are displayed in Figure 4. It is apparent that the
behaviour of the two z-tests ψz and ψCQ is now considerably different for d ≤
200: While ψz behaves fairly liberal for all dimensions and sample size settings
with error rates between 6.8% and 8.5% (d ≤ 50), ψCQ is pretty conservative
for smaller dimensions (d ≤ 100) with error rates close to 0% (d ≤ 20) and
finally coincides with ψz for larger d > 200. This large differences for smaller



2760 P. Sattler and M. Pauly

d may be explained by the different variance estimators involved in WN and
ψCQ. In contrast, ϕ�

N and ψχ exhibit close to identical error rates for all choices
of d and sample sizes. While both are slightly liberal for the smallest sample
sizes the type-I error rate is close to the asymptotic level for N = 50 and even
improves with increasing dimension and sample size. Because of this, we can
also recommend ϕ�

N in this situation.

5.2. Power performance

For ease of presentation and due to its favorable type-I error control we only
examined the power of ϕ�

N based on the test statistic WN and estimated critical
values from KfP

.

Again a heteroscedastic two group split-plot design with autoregressive co-
variance structures ( (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|) was selected. The

alpha level (5%) and the null hypotheses were restricted to Ha
0 :
(
P 2 ⊗ 1

dJd

)
μ =

0 and Hb
0 :
(

1
2J2 ⊗ P d

)
μ = 0. The investigated alternatives were

• a trend alternative for both hypotheses with μ2 = 0d and μ1,t = t·δ/d, 1 ≤
t ≤ d and additionally

• a shift alternative for Ha
0 with μ2 = 0d and μ1 = 1d · δ and

• a one-point alternative for Ha
0 and Hb

0 , with μ2 = 0d and μ1 = e1 · δ,

each with increased δ ∈ [0, 3]. Moreover, we only considered the moderate sample
size setting with n1 = 20 and n2 = 30 together with three choices of dimensions
d = {10, 40, 100}. Because of this sample sizes, a critical value based on fP

is chosen and the results can be found in Figures 5–7. It can be readily seen
that the power depends on the type of alternative: For the trend (Figure 5) and
the shift alternative (Figure 7) the power gets larger with increasing dimension.
This is essentially apparent for the shift alternative, where the power increases
considerably from d = 10 to d = 40. Contrary, for the one-point alternative the
power becomes smaller for higher dimensions d (Figure 6). However, this is as
expected since a difference in one single component can be detected more easily
for smaller d.

Especially for testing Ha
0 in the one-point alternative the power is poor even

for d = 10. However this is completely in line with the result from Theorem 3.2:
Calculating the corresponding values involved in the local alternative we get

• N ·μ�T T μ√
tr((T V N )2)

= O
(

N
d2

)
for Ha

0 and

• N ·μ�T T μ√
tr((T V N )2)

= O
(

N√
d

)
for Hb

0 .

This explains the power decrease with increasing dimension which is more
pronounced when testing Ha

0 in comparison to testing for Hb
0 .
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Fig 5. Simulated power curves for the statistic WN ·
√

(N − 1)/N in 104 simulation runs for

different dimensions with n1 = 20, n2 = 30 and an autoregressive structure((Σ1)i,j = 0.6|i−j|

and (Σ2)i,j = 0.65|i−j|).

6. Analysis of a sleep laboratory data set

Finally, the new methods are exemplified on the sleep laboratory trial reported
in Jordan et al. [25]. In this two-armed repeated measures trial, the activity of
prostaglandin-D-synthase (β-trace) was measured every 4 hours over a period of
4 days. The grouping factor was gender and the above d = 24 repeated measures
were observed on ni = 10 young healthy women (group i = 1) and men (group
i = 2). Since each day presented a certain sleep condition the repeated measures
are structured by two crossed fixed factors:

• intervention (with 4 levels: normal sleep, sleep deprivation, recovery sleep
and REM sleep deprivation) and

• time (with the 6 levels/time points 24h, 4h, 8h, 12h, 16h and 20h).

Due to d > ni we are thus dealing with a high-dimensional split-plot design
with a = 2 groups and d = 24 repeated measurements. The time profiles of each
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Fig 6. Simulated power curves for the statistic WN ·
√

(N − 1)/N in 104 simulation runs for

different dimensions with n1 = 20, n2 = 30 and an autoregressive structure((Σ1)i,j = 0.6|i−j|

and (Σ2)i,j = 0.65|i−j|).

subject are displayed in Figure 8 (for the female group 1) and Figure 9 (for the
male group 2). We note, that group-specific profile analysis could already be
performed by the methods given in Pauly et al. [34]. In particular, they found a
significant intervention and a borderline time effect for the male group. For the
current two-sample design additional questions concern (1) whether there is a
gender effect, i.e. the time profiles of the groups differ, and if so (2) whether they
differ with respect to certain interventions. Moreover, investigations regarding
(3) a general effect of time and (4) interactions between the different factors are
of equal interest. Utilizing the notation from Section 2, the corresponding null
hypotheses can be formalized via adequate contrast matrices. In particular, we
are interested in testing the null hypotheses

(a) No gender effect: Ha
0 :
(
P 2 ⊗ 1

24J24

)
μ = 0,

(b) No time effect: Hb
0 :
(

1
2J2 ⊗ P 24

)
μ = 0,

(c) No interaction effect between time and group: Hab
0 : (P 2 ⊗ P 24) μ = 0,
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Fig 7. Simulated power curves for the statistic WN ·
√

(N − 1)/N in 104 simulation runs for

different dimensions with n1 = 20, n2 = 30 and an autoregressive structure((Σ1)i,j = 0.6|i−j|

and (Σ2)i,j = 0.65|i−j|).

(d) No time effect for intervention �, � ∈ {1, . . . , 4}:
Ht�

0 :
(
P 2 ⊗

((
el · e�

l

)
⊗ P 6

))
μ = 0,

(e) No effect between interventions � and k, � 
= k ∈ {1, . . . , 4}:
H�×k

0 :
(
P 2 ⊗

((
e� · e�

� − e� · e�
k

)
⊗ 1

6J6

))
μ = 0,

where e� denotes the � − th d-dimensional unit vector with all entries zero but
the �-th one. Applying the test ϕ�

N based on the standardized quadratic form
WN as test statistic and the proposed Kf̂�

P
-approximation with B = 50000 ·N =

100, 000 subsamples we obtain the results summarized in Table 2.
There it can be readily seen that most hypotheses cannot be rejected at

level α = 5%. In particular, there is no evidence for an overall gender effect,
so that we have not performed post-hoc analyses on the interventions. Only a
highly significant time effect, as well as a significant effect between the first two
interventions (normal sleep and sleep deprivation), could be detected. However,
applying a multiplicity adjustment (Bonferroni or Holm) only the time effect
remained significant.
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Fig 8. Prostaglandin-D-synthase (ß-trace) of 10 young women during 4 days under different
sleep conditions.

Fig 9. Prostaglandin-D-synthase (ß-trace) of 10 young men during 4 days under different
sleep conditions.
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Table 2
Analysis of the sleep lab trial from Figures 8–9: Shown are the values of the test statistic

WN and the estimator f̂�
P as well as the p-values of the test ϕ�

N = 1{WN > Kf̂�
P

;1−α} for

different null hypotheses of interest.

Hypothesis W A
N f̂�

P p-value
Ha

0 -0.45671 1.19030 0.55832

Hb
0 6.24114 7.07832 0.00008

Hab
0 0.74578 7.21217 0.20120

Ht1
0 -0.795083 461.874 0.784463

Ht2
0 -0.591851 360.048 0.71764

Ht3
0 -0.43381 223.24000 0.65845

Ht4
0 -1.18382 426.083 0.88385

H1×2
0 2.37921 155.89025 0.01285

H1×3
0 0.23757 156.64141 0.39240

H1×4
0 –0.49984 143.57718 0.68099

H2×3
0 -0.72716 91.83337 0.75968

H2×4
0 -0.56510 79.78169 0.70183

H3×4
0 -0.66704 130.56430 0.74046

7. Conclusion & outlook

In this paper we have investigated inference procedures for general split-plot
models, allowing for unbalanced and/or heteroscedastic covariance settings as
well as a factorial structure on the whole- and sub-plot factors. Inspired by
the work of Pauly et al. [34] for one group repeated measures designs the test
statistics were based on standardized quadratic forms. However, different to their
work novel symmetrized U -statistics were introduced to adequately handle the
problem of additional nuisance parameters in the multiple sample case.

To jointly cover low and highdimensional models as well as situations with a
small or large number of groups, we conducted an in-depth study of their asymp-
totic behaviour under a unified asymptotic framework. In particular, the number
of groups a and dimensions d may be fixed as in classical asymptotic settings, or
even converge to infinity. Here we do neither postulate any assumptions on how
d and/or a and the underlying sample sizes converge to infinity nor any sparsity
conditions on the covariance structures since such assumptions are usually hard
to check for a practical data set at hand. As a consequence, it turned out that the
test statistic possess a whole continuum of asymptotic limits that depends on
the eigenvalues of the underlying covariances. We thus argued that an approxi-
mation by a fixed critical value is not adequate and proposed an approximation
by a sequence of standardized χ2-distributions with estimated degrees of free-
dom. For computational efficiency, we additionally provided a subsampling-type
version of the degrees of freedom estimator. Our approach provides a reasonably
good three-moment approximation of the test statistic and is even asymptoti-
cally exact if the influence of the largest eigenvalue is negligible (leading to a
standard normal limit) or decisive (leading to a standardized χ2

1 limit).

Apart from these asymptotic considerations, we evaluated the finite sample
and dimension performance of our approximation technique. In particular, for
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varying combinations of sample sizes and dimensions, we compared its power
and type-I error control with test procedures based on fixed critical values.
In all designs it showed a quite accurate error control over all low- (d ≤ 10) to
highdimensional situations (with up to d = 800). In comparison, its performance
was considerably better than that of the other tests which partially disclosed a
rather liberal or conservative behaviour.

In future research, we like to extend the current results to general highdimen-
sional MANOVA designs, where we also like to relax the involved assumption
of multivariate normality and/or even test simultaneously for mean and covari-
ance effects as recently proposed in Liu et al. [31]. These investigations, however,
require completely different (e.g., martingale) techniques and estimators of the
involved traces. Moreover, we also plan to conduct more detailed simulations
(especially for larger group sizes a and other covariance matrices) in a more
applied paper.
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Appendix A: Basics

In Section 2 of the main paper we claimed that the unique projection matrix T
which describes the equivalent null hypotheses as H = HS ⊗ HW is given by
the product of two projection matrices T S ⊗ T W . We start with the proof of
this claim:

Lemma A.1. Let be H = HW ⊗ HS with H ∈ Rad×ad, HW ∈ Ra×a, HS ∈
Rd×d. For each hypothesis Hμ = 0ad with such a matrix H exist projectors
T ∈ Rad×ad, T W ∈ Ra×a, T S ∈ Rd×d which can be used to formulate the same
null hypothesis Tμ = 0ad with T = T W ⊗ T S.

Proof. It is known that the projector T = H�[HH�]−H fulfills Tμ = 0ad ⇐⇒
Hμ = 0ad. For this reason and utilizing well known rules (see for example Rao
& Mitra [36]) for generalized inverses we obtain

T = H�[HH�]−H

= (HW ⊗ HS)�[(HW ⊗ HS)(HW ⊗ HS)�]−(HW ⊗ HS)

= (H�
W ⊗ H�

S )[(HW ⊗ HS)(H�
W ⊗ H�

S )]−(HW ⊗ HS)

= (H�
W ⊗ H�

S )[(HW H�
W ) ⊗ (HSH�

S )]−(HW ⊗ HS)

= (H�
W ⊗ H�

S )([HW H�
W )]− ⊗ [HSH�

S ]−)(HW ⊗ HS)

= (H�
W ⊗ H�

S )([HW H�
W )]−HW ⊗ [HSH�

S ]−HS)

= H�
W [HW H�

W ]−HW ⊗ H�
S [HSH�

S ]−HS
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= T W ⊗ T S .

Thus, T W := H�
W [HW H�

W ]−HW and T S := H�
S [HSH�

S ]−HS are projec-
tors, i.e. idempotent and symmetric.

For proofing our main results we have to compare various traces of powers of
combinations underlying covariance matrices. To this end, we will particularly
apply the following inequalities:

Lemma A.2. For positive real numbers a,b and a symmetric matrix A ∈ Rd×d

it holds

tr2
(
Aa+b

)
≤ tr

(
A2a
)
tr
(
A2b
)

.

For A ∈ Rd×d symmetric with eigenvalues λ1, . . . , λd ≥ 0 it holds that

tr
(
A2
)

≤ tr2 (A) .

If Σi ∈ Rd×d is positive definite and symmetric and T ∈ Rd×d is idempotent
and symmetric it holds for every k ∈ N that

tr
(
(TΣi)

2k
)

≤ tr2
(
(TΣi)

k
)

.

Proof. The first part is an application of the Cauchy–Bunyakovsky–Schwarz
inequality, with the Frobenius inner product. Therefore

tr2
(
Aa+b

)
= tr2

(
AaAb

)
= tr2

(
AaAb�)

≤
(√

tr
(
AaAa�

)
·
√

tr
(
AbAb�)

)2

= tr (AaAa) · tr
(
AbAb

)

= tr
(
A2a
)
tr
(
A2b
)

.

The second part just uses the binomial theorem together with the condition
λt ≥ 0 for t = 1, . . . , d:

tr(A2) =

d∑

t=1

λ2
t ≤

d∑

t1=1

λ2
t1 +

d∑

t1=1

d∑

t2=1,t2 �=t1

λt1λt2 =

(
d∑

t=1

λt

)2

= tr2(A).

Finally, the last inequality follows from the second one, if we show that all
conditions are fulfilled. With idempotence of T and invariance of the trace under
cyclic permutations, it follows for all k ∈ N that

tr
(
(TΣi)

2k
)

= tr
(
T 2Σi · · · · · T 2Σi

)
= tr

(
(TΣiT )

2k
)

.

Thus, it is sufficient to consider this term. Since TΣiT is symmetric all
powers are symmetric too and it follows with k′ = �k/2� that
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∀x ∈ Rd : x� (TΣiT )
k
x = x� (TΣiT )

k′
TΣk−2k′

i T (TΣiT )
k′

x

=
[
T (TΣiT )

k′
x
]�

Σk−2k′

i

[
T (TΣiT )

k′
x
]

≥ 0

since Σi and Id are positive definite and k − 2k′ ∈ {0, 1}. So both conditions of
the second inequation are shown and

tr
(
(TΣi)

2k
)

= tr

([
(TΣiT )

k
]2)

≤ tr2
(
(TΣiT )

k
)

= tr2
(
(TΣi)

k
)

.

Furthermore, an inequality for traces which contain Σi and Σr is needed.

Lemma A.3. Let Σi,Σr ∈ Rd×d be positive definite and symmetric matrices
and suppose that T ∈ Rd×d is idempotent and symmetric. Then it holds for
i 
= r that

tr
(
(TΣiTΣr)

2
)

≤ tr2 (TΣiTΣr) .

Proof. As shown before TΣiT and TΣrT are symmetric and positive semidefi-
nite. For this reason, it exists a symmetric matrix W with WW = TΣrT . Due
to the fact that all matrices are symmetric, it holds

(WTΣiTW )� = W �T �Σ�
i T �W � = WTΣiTW

and because TΣiT is positive semidefinite also

∀x ∈ Rd x�WTΣiTWx = (Wx)�TΣiT (Wx) = y�TΣiTy ≥ 0.

This allows to use the inequalities from above for this matrix, and again utilizing
the invariance of the trace under cyclic permutations we obtain

tr
(
(TΣiTΣr)

2
)

= tr (TΣiTTΣrT · TΣiTTΣrT ) = tr (TΣiTWWTΣiTWW )

= tr (WTΣiTWWTΣiTW ) = tr
(
(WTΣiTW )

2
)

≤ tr2 (WTΣiTW ) = tr2 (TΣiTWW ) = tr2 (TΣiTTΣrT )

= tr2 (TΣiTΣr) .

To standardize the quadratic form we also have to calculate its moments.
Here, the following theorem helps:

Theorem A.4. Let T ∈ Rd×d be a symmetric matrix and X ∼ Nd (μX ,ΣX) ,
where ΣX is positive definite. Then with r ∈ N it holds,

E
((

X�TX
)r)

=

r−1∑

r1=0

(
r − 1

r1

)
g(r−1−r1)

r1−1∑

r2=0

(
r1 − 1

r2

)
g(r1−1−r2) . . .
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with g(k) = 2kk!
[
tr
(
(TΣ)

k+1
)

+ (k + 1) μX (TΣ)
k
TμX

]
for k ∈ N and g(0) =

tr (TΣX) + μX
�TμX .

Proof. The proof can be found on page 53 in Mathai & Provost [32].

Corollary A.5. Let T ∈ Rd×d be a symmetric matrix and X ∼ Nd (0d,ΣX)
and Y ∼ Nd (0d,ΣY ) independent, where ΣX ,ΣY ∈ Rd×d are positive definite.
Then we have for all ni, nr, N ∈ N that

E
((

X�TX
)1
)

= tr (TΣX) ,

E
((

X�TX
)2
)

= 2 tr
(
(TΣX)

2
)

+ tr2 (TΣX)
A.2
= O

(
tr2 (TΣX)

)
,

Var
(
X�TX

)
= O

(
tr2 (TΣX)

)
,

E
((

X�TY
)1
)

= 0,

E
((

X�TY
)2
)

= tr (TΣXTΣY ) ,

E
((

X�TY
)3
)

= 0,

E
((

X�TY
)4
)

= 6 tr
(
(TΣXTΣY )

2
)

+ 3 tr2 (TΣXTΣY ) ,

Var
(
X�TY

)
= tr (TΣXTΣY ) ,

Var

((
X�TY

)2
)

= 6 tr
(
(TΣXTΣY )

2
)

+ 2 tr2 (TΣXTΣY ) ,

4N

n2
i n

2
r

Var

((
X�TY

)2
)
A.3
= O

(
tr2

((
N

ni
TΣX · N

nr
TΣY

)2
))

.

Moreover, for ΣX = ΣY

Var
(
X�TY

)
= tr (TΣXTΣX) = O

(
tr2 (TΣXTΣX)

)
,

Var

((
X�TY

)2
)
A.2
= O

(
tr2 (TΣXTΣX)

)
.

Proof. Using the inequalities for traces and with the bilinear form written as

X�TY =
1

2

(
X
Y

)�(
0 T
T 0

)(
X
Y

)
,

(
X
Y

)
∼ N2d

((
μX

μY

)
,

(
ΣX ΣXY

ΣXY ΣY

))

all equations follows with the previous theorem.
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Lemma A.6. Let Xn ∈ L2 be a real random variable with E(Xn) = μ, bn,d

a sequence with limn,d→∞ bn,d = 0, and furthermore ca,d,nmin a sequence with
lima,d,nmin→∞ ca,d,nmin = 0 then it holds

• Var (Xn) ≤ bn,d ⇒ Xn is an consistent estimator for μ, if n, d → ∞,
• Var (Xn) ≤ ca,d,nmin ⇒ Xn is an consistent estimator for μ, if a, d,

nmin → ∞.

For μ 
= 0 they are especially ratio-consistent.

Proof. For arbitrary ε > 0 the Tschebyscheff inequality leads to

P (|Xn − μ| ≥ ε) ≤ E
(
|Xn − μ|2

)

ε2
=

Var (Xn)

ε2
≤ bn,d

ε2
.

Consider the limit for n, d → ∞ justifies the consistency and using this for Xn/μ
leads to ratio-consistency. The second part follows identically.

This result is especially true if bn,d or ca,d,nmin only depends on n resp.
nmin. For completeness we state a straightforward application of the Cauchy–
Bunyakovsky–Schwarz inequality:

Lemma A.7. For real random variables X, Y ∈ L2 it holds

Cov (X, Y ) ≤
√

Var (X)
√

Var (Y )

and so for X, Y identically distributed

Cov (X, Y ) ≤ Var (X).

The next result gives equivalent conditions for β1 → γ ∈ {0, 1}:

Lemma A.8. Let be λ� again the eigenvalues of TV NT sorted so that λ1 is
the biggest one. Then it follows

lim
N,d→∞

β1 = 1 ⇔ lim
N,d→∞

tr2
(
(TV N )

3
)

tr3
(
(TV N )

2
) = 1 ⇔ lim

N,d→∞

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) = 1,

lim
N,d→∞

β1 = 0 ⇔ lim
N,d→∞

tr2
(
(TV N )

3
)

tr3
(
(TV N )

2
) = 0 ⇔ lim

N,d→∞

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) = 0.

Moreover we know 0 ≤ tr2((T V N )3)
tr3((T V N )2)

= τP ≤ 1. This Lemma also holds if

limN,d→∞ is replaced by lima,N → ∞ or lima,d,N→∞.

Proof. This follows from Lemma 8.1 given in the supplement in Pauly et al.
[34][page 21] since their result does not depend on the concrete matrix, i.e. can
be directly applied for V N . Moreover, the different asymptotic frameworks do
not influence the proof since they are hidden within the above convergences.
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To prove the properties of the subsampling-type estimators some auxiliaries
are needed. In particular, the following lemma allows us to decompose the vari-
ances and to use conditional terms for the calculation.

Lemma A.9. Let X be a real random variable and denote by F a σ-field. Then
it holds that

Var(X) = E (Var (X|F)) + Var (E (X|F)) .

Proof. With the rules for conditional expectations we calculate

E (Var (X|F)) = E
(
E
(
X2|F

))
− E
(
[E (X|F)]

2
)

= E
(
X2
)

− E
(
[E (X|F)]

2
)

,

Var (E (X|F)) = E
(
[E (X|F)]

2
)

− [E (E (X|F))]
2

= E
(
[E (X|F)]

2
)

− [E (X)]
2
.

The result follows by sum up this both parts.

We will apply the result for certain amounts (i.e. numbers) of pairs below.
There, for each i = 1, . . . , a and b = 1, . . . , B we independently draw random
subsamples {σ1i(b), . . . , σmi(b)} of length m from {1, . . . , ni} and store them in a
joint random vector σ(b, m) = (σ1(b, m), . . . , σa(b, m)) = (σ11(b), . . . , σma(b)).
Besides we define Nk = {1, . . . , k}.

Lemma A.10. Let M(B, σ(b, m)) be the amount of pairs (k, �) ∈ N2
B, which

fulfill σi(k, m) and σi(�, m) have totally different elements for all i = 1, ..., a
and analogue M(B, σi(b, m)). As long as m ≤ ni for all i ∈ Na, it holds

E
(
|N2

B \ M(B, σ(b, m))|
)

B2
= 1 −

(
1 − 1

B

)
·

a∏

i=1

(
ni−m

m

)
(
ni

m

)

and
E
(
|N2

B \ M(B, σi(b, m))|
)

B2
= 1 −

(
1 − 1

B

)
·
(
ni−m

m

)
(
ni

m

)

where | · | denotes the number of elements.

Let M(B, (σi(b, m), σr(b, m))) be the amount of pairs (k, �) ∈ N2
B fulfilling

σi(k, m) and σi(�, m) and moreover σr(k, m) and σr(�, m) have totally different
elements. If m ≤ ni it holds

E
(
|N2

B \ M(B, (σi(b, m), σr(b, m)))|
)

B2
= 1 −

(
1 − 1

B

)
·
(
ni−m

m

)
(
ni

m

) ·
(
nr−m

m

)
(
nr

m

) .

Proof. Because M(B, σ(b, m)) never contains pairs of the kind (k, k) the max-
imal number of elements is B2 − B. The fact that two vectors a, b ∈ Rn have
no element in common, even at different components, is denoted as a 
=! b.

The number of totally different pairs can be seen as a binomial distribution
with B2 − B elements, and to calculate the necessary probability independence
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is used. With the fact that all combinations in this situation have the same
probability it follows that

P (σ(k, m) 
=! σ(�, m)) = P

(
a⋂

i=1

(σi(k, m) 
=! σi(�, m))

)

=

a∏

i=1

P (σi(k, m) 
=! σi(�, m)) =

a∏

i=1

(
ni

m

)
·
(
ni−m

m

)
(
ni

m

)2 =

a∏

i=1

(
ni−m

m

)
(
ni

m

) .

If two times m elements are picked from Nni there are
(
ni

m

)2
possibilities, where

in
(
ni

m

)
·
(
ni−m

m

)
of them both m-tuples are totally different. This leads to the

stated probability and with the mean of the binomial distribution we get

E (|M(B, σ(b, m))|)) = (B2 − B) ·
a∏

i=1

(
ni−m

m

)
(
ni

m

) .

All in all we calculate

E
(
|N2

B \ M(B, σ(b, m))|
)

B2
=

|N2
B| − E (|M(B, σ(b, m))|)

B2

= 1 −
(

1 − 1

B

)
·

a∏

i=1

(
ni−m

m

)
(
ni

m

) .

For M(B, (σi(b, m), σr(b, m))) and M(B, σi(b, m)) less multiplications are
necessary, so the results follow.

If B(N) → ∞ (for example B could be chosen proportional to N) these terms
converge to zero, disregarding the number of groups or of m.

Appendix B: Proofs of Section 3

Proof of Theorem 3.1 (p.2748). The proof of this lemma is very similar to the
one from Pauly et al. [34][Theorem 2.1]. Due to the fact that a finite sum of
multivariate normally distributed random variables is again multivariate nor-
mally distributed, the representation theorem can be used to (distributionally

equivalently) express the quadratic form as WN =
∑ad

s=1
λs√∑ad
�=1 λ2

�

(
Cs−1√

2

)
.

The only differences to Pauly et al. [34][Theorem 2.1] are that in the case of
more groups the eigenvalues do not only depend on d but also on the ni and a
and that there are more terms to sum. The first point has only an influence on
the limit of the βs. The higher number of summands does not matter because we
observe the asymptotic under the asymptotic frameworks (4)–(5), for which at
least a or d converge to infinity. The proofs from Pauly et al. [34][Theorem 2.1]
only need the representation from above, a number of summations which goes
to infinity and the conditions on the limits of the βs. Since these are fulfilled
the proof can be conducted in the same way.

Finally, it remains to prove the if and only if result stated in a) and b) for
which we underline the dependence of βi on N by writing βi(N).
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Part (a) Suppose that QN
D→ Z ∼ N (0, 1). Then this convergence also holds

for all subsequences N ′ of N , i.e. QN ′
D→ Z, for all N ′ → ∞. Now we consider

β1(N). Due to β1(N) ∈ [0, 1] there exists an arbitrary convergent subsequence
which we denote as β1(N

′) → b1 ∈ [0, 1].

We define Z ′(N ′) := QN ′ − β1(N
′) · (C1 − 1)/

√
2. From Lévy’s continuity

theorem it follows that ϕQN′ (t) → ϕZ(t) for all t ∈ R for the corresponding
characteristic function. Due to independence we calculate for all t ∈ R:

ϕQN′ (t) = ϕβ1(N ′)·(C1−1)/
√

2+Z′(N ′)(t) = ϕβ1(N ′)·(C1−1)/
√

2(t) + ϕZ′(N ′)(t).

Because ϕQN′ (t) → ϕZ(t) and ϕβ1(N ′)·(C1−1)/
√

2(t) → ϕb1·(C1−1)/
√

2(t) holds for

all t ∈ R, we also know that ϕZ′(N ′)(t) converges to some ϕΥ(t). Moreover there
exists a random variable Υ with the characteristic function ϕΥ(t) and therefore

Z ′(N ′)
D→ Υ. All in all we have

QN ′
D→ b1 · (C1 − 1)/

√
2 + Υ and QN ′

D→ Z ∼ N (0, 1)

while b1 · (C1 − 1)/
√

2 and Υ are independent. With Cramér’s Theorem (see
Cramér [12]), the sum of a scaled standardized χ2

1-distributed random variable
and another independent random variable can never be normally distributed.
Therefore b1 = 0 follows for all convergent subsequences of β1(N) and so
β1(N) → 0.

Part (b) Now assume that for N → ∞, we have QN
D→ (C1 − 1)/

√
2 with

C1 ∼ χ2
1. Then we can obvious exclude β1(N)2 → 0, because in this case

the asymptotic distribution of the quadratic form would be a standard normal

distribution by part (a). The characteristic function of WN = QN −tr(T V N )√
2 tr((T V N )2)

is,

e.g., given in Witting & Müller-Funke [42], Section 5. With the help of Lévy’s
continuity theorem this leads for all t ∈ R to

ϕWN
(t) =

ad∏

�=1

(
1 − 2iβ�(N)t√

2

)−1/2

exp

(
−it

β�(N)√
2

)

→
(

1 − 2it√
2

)−1/2

exp

(
− it√

2

)
= ϕ(C1−1)/

√
2(t).

Thus, applying the continuous mapping theorem we have for all t ∈ R

∣∣∣
ad∏

�=1

(
1 − 2iβ�(N)t√

2

)−1/2

exp

(
− iβ�(N)t√

2

) ∣∣∣
−4

=

ad∏

�=1

∣∣∣1 − 2iβ�(N)t√
2

∣∣∣
2

=

ad∏

�=1

(
1 +

4β�(N)2t2

2

)
→ 1 +

4

2
t2 =

∣∣∣
(

1 − 2i√
2
t

)−1/2

exp

(
− i√

2
t

) ∣∣∣
−4

.
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In the special case t = 1 this means

ad∏

�=1

(1 + 2β�(N)2) → 3.

But we can size up the product by

ad∏

�=1

(1 + 2β�(N)2) ≥ 1 + 2 ·
ad∑

�=1

β�(N)2 + 4β1(N)2

(
ad∑

�=2

β�(N)2

)

= 1 + 2 · 1 + 4β1(N)2
(
1 − β1(N)2

)

= 3 + 4β1(N)2
(
1 − β1(N)2

)
≥ 3.

Now we again consider an arbitrary convergent subsequence β1(N
′) → b1 ∈

(0, 1]. Since the above inequality, also holds for all subsequences, the product
only converges if limN→∞ β1(N

′)2(1 − β1(N
′)2) = b2

1(1 − b2
1) = 0, which implies

b1 = 1. Due to β1(N) ∈ [0, 1] we deduce β1(N) → 1.

Proof of Theorem 3.2 (p.2748). First we consider the distribution of the stan-

dardized quadratic form W̃N under H1 : Tμ 
= 0 with Z ∼ Nad(0, V N )

QN = NX
�

TX=N(X − μ + μ)�T (X − μ + μ)

D
= Z�TZ + Z�√

NTμ +
√

Nμ�TZ + Nμ�T �Tμ.

For part a) we calculate

W̃N
D
=

Z�TZ + 2
√

Nμ�TZ + Nμ�Tμ − tr (TV N )√
2 tr
(
(TV N )

2
) .

The second summand fulfills

E

⎛
⎜⎜⎝

2
√

Nμ�TZ√
2 tr
(
(TV N )

2
)

⎞
⎟⎟⎠ = 0,

Var

⎛
⎜⎜⎝

2
√

Nμ�TZ√
2 tr
(
(TV N )

2
)

⎞
⎟⎟⎠ = 2

Nμ�TV NTμ

tr
(
(TV N )

2
) ∈O(1)

under the given local alternative. Thus, by Tschebyscheff inequality this means

W̃N
D
=

Z�TZ − tr (TV N )√
2 tr
(
(TV N )

2
) +

N · μ�Tμ√
2 tr
(
(TV N )

2
) +OP(1).
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Now the first part has exactly the same distribution as the standardized quadrat-
ic form Q̃N under the null hypothesis and therefore the result follows.

For part b) we consider again the quadratic form and calculate with Mathai
& Provost [32]

QN
D
=

ad∑

�=1

λ�C̃� C̃� ∼ χ2
1((

√
NONV

−1/2
N Tμ)2�︸ ︷︷ ︸

:=δ2
�

),

where ON is the orthogonal matrix which diagonalizes V
1/2
N TV

1/2
N and λ� are

the eigenvalues of V
1/2
N TV

1/2
N in decreasing order. The involved non-central chi-

square distributed random variables have expectation E(C̃�) = 1 + δ2
� and vari-

ance Var(C̃�) = 2(1 + 2δ2
� ). Defining λ̃� = λ�

√
1 + 2δ2

� and β̃� = λ̃�

/√∑ad
k=1 λ̃2

k

we calculate

W̃N =

ad∑

�=1

λ�√∑ad
k=1 λ2

k

(
C̃� − (1 + δ2

� )√
2

)
+

ad∑

�=1

λ�√∑ad
k=1 λ2

k

(
δ2
�√
2

)

=

√√√√
∑ad

k=1 λ̃2
k∑ad

k=1 λ2
k

·
ad∑

�=1

λ� ·
√

1 + 2δ2
�√∑ad

k=1 λ̃2
k

(
C̃� − (1 + δ2

� )√
2 ·
√

1 + 2δ2
�

)
+

ad∑

�=1

β�

(
δ2
�√
2

)

=

√√√√1 + 2N
μ�TV NTμ

tr
(
(TV N )

2
) ·

ad∑

�=1

β̃�

(
C̃� − (1 + δ2

� )√
2 ·
√

1 + 2δ2
�

)
+

N · μ�Tμ√
2 tr
(
(TV N )

2
) .

Now, if β1 → 0 ⇔ β� → 0 ∀l ∈ Nad it holds for arbitrary β̃2
� that

0 ≤ β̃2
� =

λ2
�(1 + 2δ2

� )

tr
(
(TV N )

2
)

+ 2
∑ad

k=1 λ2
kδ2

k

≤ β2
� + 2

λ2
�δ

2
�

tr
(
(TV N )

2
) = β2

� + 2β�
λ�δ

2
�√

tr
(
(TV N )

2
)

≤ β2
� + 2β�

∑ad
�=1 λ�δ

2
�√

tr
(
(TV N )

2
) = β2

� + 2β�
N · μ�Tμ√
tr
(
(TV N )

2
) → 0.

Because all requirements are fulfilled we can use Theorem 1 from Hajek et al.
[19] to deduce the asymptotic distribution of

ad∑

�=1

β̃�

(
C̃� − (1 + δ2

� )√
2 ·
√

1 + 2δ2
�

)
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as before. This evidently leads to

W̃N
D
=

√√√√1 + 2N
μ�TV NTμ

tr
(
(TV N )

2
) · Z +

N · μ�Tμ√
2 tr
(
(TV N )

2
) +OP(1)

for a normally distributed random variable Z ∼ N (0, 1). For β1 → 0 we know

that WN (H0)
D→ N (0, 1) and therefore the result follows.

Proof of Lemma 3.3 (p.2750). Remember that with Y i,�,k := T S(Xi,� − Xi,k)
and i 
= r ∈ Na, a > 1 trace estimators were defined by

Ai,1 =
1

2 ·
(
ni

2

)
ni∑

�1,�2=1
�1>�2

(Xi,�1 − Xi,�2)
�

T S (Xi,�1 − Xi,�2) ,

Ai,r,2 =
1

4 ·
(
ni

2

)(
nr

2

)
ni∑

�1,�2=1
�1>�2

nr∑

k1,k2=1
k1>k2

[
(Xi,�1 − Xi,�2)

�
T S (Xr,k1 − Xr,k2)

]2
,

Ai,3 =
1

4 · 6
(
ni

4

)
ni∑

�1,�2=1
�1>�2

ni−1∑

k2=1
k2 �=�1,�2

ni∑

k1=k2+1
k1 �=�1,�2

×
[
(Xi,�1 − Xi,�2)

�
T S (Xi,k1 − Xi,k2)

]2
,

A4 =

a∑

i=1

(
N

ni

)2

(T W )ii
2
Ai,3 + 2

a−1∑

i=1

a∑

r=i+1

N2

ninr
(T W )ir

2
Ai,r,2.

For � 
= k we know Y i,�,k ∼ N (0d, 2T SΣiT S) and for totally different indices
the Y i,�,k are statistically independent. So the previous lemmata can be used
to calculate the moments. The unbiasedness can be shown by calculating the
expectation values for each estimator

E (Ai,1) =
1

2 ·
(
ni

2

)
ni∑

�1,�2=1
�1>�2

E
[
Y i,�1,�2

�Y i,�1,�2

]
A.5
= tr (T SΣi) .

The following argument will be used several times in this work with small dif-
ferences, so incidentally it will be more detailed.

We recognize first that Cov
[
Y i,�1,�2

�Y i,�1,�2;Y i,�′
1,�′

2

�Y i,�′
1,�′

2

]
is 0 if all in-

dices are totally different, so just
(
ni

2

) ((
ni

2

)
−
(
ni−2

2

))
combinations remain. In-

stead of calculating the covariances of the remaining quadratic forms it is easier
to use lemmata from above. By using the fact that all quadratic forms are iden-
tically distributed, we can calculate the variances which are all the same so it is
just the number of remaining combinations multiplied with the variances. This
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leads to:

Var (Ai,1) =
1

4 ·
(
ni

2

)2
ni∑

�1,�2=1
�1>�2

ni∑

�′
1,�′

2=1

�′
1>�′

2

Cov
[
Y i,�1,�2

�Y i,�1,�2 ;Y i,�′
1,�′

2

�Y i,�′
1,�′

2

]

A.7
≤
(
ni

2

)
−
(
ni−2

2

)

4
(
ni

2

) Var
[
Y i,1,2

�Y i,1,2

]
+

(
ni−2

2

)

4
(
ni

2

) · 0

A.5
=

(
ni

2

)
−
(
ni−2

2

)

4
(
ni

2

) O
(
tr2 (2T SΣi)

)

= O
(
n−1

i

)
· O
(
tr2 (T SΣi)

)
.

With these values we know for V N =
⊕a

i=1
N
ni

Σi that

E

(
a∑

i=1

N

ni
(T W )iiAi,1

)
=

a∑

i=1

N

ni
(T W )iiE (Ai,1) = tr (TV N )

and

Var

⎛
⎜⎜⎝

a∑
i=1

N
ni

(T W )iiAi,1

E
(

a∑
i=1

N
ni

(T W )iiAi,1

)

⎞
⎟⎟⎠ =

a∑
i=1

N2

n2
i
(T W )ii

2
Var(Ai,1)

tr2 (TV N )

≤

a∑
i=1

O
(
n−1

i

)
· O
(
tr2
(

N
ni

(T W )iiT SΣi

))

tr2 (TV N )

Var

⎛
⎜⎜⎝

a∑
i=1

N
ni

(T W )iiAi,1

E
(

a∑
i=1

N
ni

(T W )iiAi,1

)

⎞
⎟⎟⎠ ≤

O
(

1
nmin

)
· O
(

a∑
i=1

tr2
(

N
ni

(T W )iiT SΣi

))

tr2 (TV N )

Var

⎛
⎜⎜⎝

a∑
i=1

N
ni

(T W )iiAi,1

E
(

a∑
i=1

N
ni

(T W )iiAi,1

)

⎞
⎟⎟⎠ ≤

O
(

1
nmin

)
· O
(

tr2
(

a∑
i=1

N
ni

(T W )iiT SΣi

))

tr2 (TV N )

= O
(

1

nmin

)
.

So the conditions for an unbiased and ratio-consistent estimator are fulfilled.
The same steps with a different number of remaining combinations leads to

E (Ai,3) =
1

4 · 6
(
ni

4

)
ni∑

�1,�2=1
�1>�2

ni−1∑

k2=1
k2 �=�1,�2

ni∑

k1=k2+1
k1 �=�1,�2

E
([

Y i,�1,�2
�Y i,k1,k2

]2)

A.5
=

1

4 · 6
(
ni

4

) · 6

(
ni

4

)
· tr
(
4 · (T SΣi)

2
)

= tr
(
(T SΣi)

2
)

,
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Var (Ai,3) =

ni∑

�1,�2=1
�1>�2

ni∑

k1,k2=1 k1>k2
�2,�1 �=k1,k2

ni∑

�′
1,�′

2=1

�′
1>�′

2

ni∑

k′
1,k′

2=1 k′
1>k′

2

�′
2,�′

1 �=k′
1,k′

2

×
Cov
(
[Y i,�1,�2

�Y i,k1,k2 ]
2 ; [Y i,�′

1,�′
2

�Y i,k′
1,k′

2
]2
)

42 · 62 ·
(
ni

4

)2

A.7
≤ 6

(
ni

4

)
− 6
(
ni−4

4

)

42 · 6 ·
(
ni

4

) Var

([
Y i,1,2

�Y i,3,4

]2)

A.5
=

(
ni

4

)
−
(
ni−4

4

)

16
(
ni

4

) O
(
tr2
(
(T SΣi)

2
))

= O
(
n−1

i

)
· O
(
tr2
(
(T SΣi)

2
))

,

E (Ai,r,2) =
1

4 ·
(
ni

2

)(
nr

2

)
ni∑

�1,�2=1
�1>�2

nr∑

k1,k2=1
k1>k2

E
([

Y i,�1,�2
�Y r,k1,k2

]2)

A.5
=

1

4 ·
(
ni

2

)(
nr

2

) ·
(

ni

2

)
·
(

nr

2

)
· tr (4 · ΣiT SΣr)

= tr (T SΣiT SΣr) ,

Var

(
2N2

ninr
Ai,r,2

)
=

4N4

n2
i n

2
r

n1∑

�1,�2=1
�1>�2

n2∑

k1,k2=1
k1>k2

ni∑

�′
1,�′

2=1

�′
1>�′

2

nr∑

k′
1,k′

2=1

k′
1>k′

2

×
Cov

([
Y i,�1,�2

�Y r,k1,k2

]2
;
[
Y i,�′

1,�′
2

�Y r,k′
1,k′

2

]2)

16 ·
(
ni

2

)2(nr

2

)2

A.7
≤ 4N4

n2
i n

2
r

(
ni

2

)(
nr

2

)
−
(
ni−2

2

)(
nr−2

2

)

16 ·
(
ni

2

)(
nr

2

) Var

([
Y i,1,2

�Y r,1,2

]2)

A.5
≤
(
ni

2

)(
nr

2

)
−
(
ni−2

2

)(
nr−2

2

)
(
ni

2

)(
nr

2

) · O
(

tr2
(

N

ni
T SΣi

N

nr
T SΣr

))

≤ O
(

1

nmin

)
· O
(

tr2
(

N

ni
T SΣi

N

nr
T SΣr

))
.

Finally, the conditions for A4 have to be checked. With the expectation values
from above we calculate

E (A4)

=
a∑

i=1

N2

n2
i

(T W )ii
2E(Ai,3) + 2

a−1∑

i=1

a∑

r=i+1

N2

ninr
(T W )ir

2E (Ai,r,2)

=

a∑

i=1

N2

n2
i

(T W )ii
2
tr
(
(T SΣi)

2
)

+

a−1∑

i=1

a∑

r=i+1

2N2

ninr
(T W )ir

2
tr (T SΣiT SΣr)
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= tr
(
(TV N )

2
)

.

To calculate the variances the following additional inequalities are needed:

Var

(
a∑

i=1

(
N
ni

)2

(T W )ii
2
Ai,3

)

tr2
(
(TV N )

2
)

=

a∑

i=1

Var

((
N
ni

)2

(T W )ii
2
Ai,3

)

tr2
(
(TV N )

2
)

≤
a∑

i=1

O
(
n−1

i

)
·
O
(

(T W )ii
4
tr2
((

T S
N
ni

Σi

)2
))

tr2
(
(TV N )

2
)

≤ O
(

1

nmin

) O
(

tr2
(

a∑
i=1

(T W )ii
2
(
T S

N
ni

Σi

)2
))

tr2
(
(TV N )

2
) tr2

(
(TV N )

2
)

= O
(

1

nmin

)

and

Var

(
2
∑

r<i∈Na

N2

ninr
(T W )ir

2
Ai,r,2

)

tr2
(
(TV N )

2
)

A.7
≤ 4

∑

i<r∈Na

∑

h<g∈Na

√
Var
(

N2

ninr
(T W )irAi,r,2

)√
Var
(

N2

nhng
(T W )ghAh,g,2

)

tr2
(
(TV N )

2
)

≤

⎛
⎜⎜⎝
∑

i �=r∈Na

√
O
(

1
nmin

)
(T W )ir

2
tr
(
T S

N
ni

ΣiT S
N
nr

Σr

)

tr
(
(TV N )

2
)

⎞
⎟⎟⎠

2

≤ O
(

1

nmin

)
⎛
⎜⎜⎜⎜⎝

O
(
∑

i �=r∈Na

(T W )ir
2
tr
(
T S

N
ni

ΣiT S
N
nr

Σr

))

∑
i,r∈Na

(T W )ir
2
tr
(
T S

N
ni

Σi
N
nr

T SΣr

)

⎞
⎟⎟⎟⎟⎠

2

≤ O
(

1

nmin

)
.

Together this leads to

Var

⎛
⎝ A4

tr
(
(TV N )

2
)

⎞
⎠
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A.7
≤

⎡
⎢⎢⎢⎢⎢⎣

√√√√√√√
Var

(
2
∑

r<i∈Na

N2

ninr
(T W )ir

2
Ai,r,2

)

tr2
(
(TV N )

2
) +

√√√√√√
Var

(
a∑

i=1

N
ni

(T W )ii
2
Ai,3

)

tr2
(
(TV N )

2
)

⎤
⎥⎥⎥⎥⎥⎦

2

=

[√
O
(

1

nmin

)
+

√
O
(

1

nmin

)]2
= O

(
1

nmin

)

and therefore A4 is an unbiased and ratio-consistent estimator of tr
(
(TV N )

2
)
.

Moreover, we want to stress that the zero sequences used as upper border for

ÊH0(QN ) and A4 do not depend on the number of groups or dimensions, so this
estimators can be also used for increasing number of groups.

With the expectation values and variances from the beginning it follows
directly that Ai,1, Ai,r,2, Ai,3, A4 are unbiased, ratio-consistent estimators of

tr(T SΣi),tr (T SΣiT SΣr), tr
(
(T SΣi)

2
)

and tr
(
(TV N )2

)
.

It is worth to note that all of this estimators also consistent estimators which
are even dimension-stable in the sense of Brunner et al. [8].

For Ai,r,2 there exists an alternative form which can be implemented substan-
tially more efficient and was considered in Brunner et al. [9]. It uses matrices

of the form M̂ i,r = P ni (T SXi,1, . . . , T SXi,ni)
� ·(T SXr,1, . . . , T SXr,nr ) P �

nr
.

Recalling that 1n is the vector of ones and # denotes the Hadamard-Schur-
Product, it can be seen that

Ai,r,2 =
1ni

�
(
M̂ i,r#M̂ i,r

)
1nr

(ni − 1)(nr − 1)
.

For Ai,3 there also exists an alternative formula, which expands much longer,
but is more efficient:

Ai,3 =

ni∑

�1,�2=1
�1 �=�2

[
Xi,�1

�T SXi,�2

]2

ni(ni − 1)
−

ni∑

�1,�2,�3=1
�3 �=�1,�2

[
X�

i,�1
T SXi,�3X�

i,�2
T S(Xi,�3 + Xi,�1 )

]

ni(ni − 1)(ni − 2)(ni − 3)

+

ni∑

�1,�2,�3=1
�1 �=�2 �=�3

[
X�

i,�1
T SXi,�3X�

i,�2
T SXi,�2

]
+(2ni +5) ·

[
X�

i,�1
T SXi,�2X�

i,�1
T SXi,�3

]

ni(ni − 1)(ni − 2)(ni − 3)

−
ni∑

�1,�2,�3=1
�1 �=�2

[
X�

i,�1
T SXi,�2X�

i,�2
T SXi,�3

]

ni(ni − 1)(ni − 2)(ni − 3)

−
n2

i

[
X

�
i T SXi

] (
n2

i X
�
i T SXi −∑ni

�1=1

[
X�

i,�1
T sXi,�1

])

ni(ni − 1)(ni − 2)(ni − 3)
.

To finally prove Theorem 3.5 (p.2750) we need another lemma.
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Lemma B.1. For the previously defined estimators it holds for nmin → ∞ that

a∑
i=1

N
ni

(T W )iiAi,1 −
a∑

i=1

N
ni

(T W )ii tr (T SΣi)

√
2 tr
(
(TV N )

2
)

P−→ 0 independent of d or a.

Proof. We know that

E

⎛
⎜⎜⎝

a∑

i=1

N
ni

(T W )ii((Ai,1) − tr (T SΣi))√
2 tr
(
(TV N )

2
)

⎞
⎟⎟⎠

=

a∑

i=1

N
ni

(T W )ii (E (Ai,1) − tr (T SΣi))√
2 tr
(
(TV N )

2
) = 0.

Thus,

Var

⎛
⎜⎜⎝

a∑

i=1

N
ni

(T W )ii (Ai,1 − tr (T SΣi))√
2 tr
(
(TV N )

2
)

⎞
⎟⎟⎠

=

a∑
i=1

N2

n2
i
(T W )ii

2
Var (Ai,1)

2 tr
(
(TV N )

2
)

Proof of 3.3
≤ O

(
1

nmin

)
a∑

i=1

N2

n2
i
(T W )ii

2
tr
(
(2T SΣi)

2
)

2 tr
(
(TV N )

2
) = O

(
1

nmin

)
.

In the last step we used the fact that all terms are non-negative and applied
the binomial theorem in the last inequality. It is a zero sequence which only
depends on nmin, so again with Lemma A.6 (p.2770) the result is proved.

Proof of Theorem 3.5 (p.2750). From Lemma A.6 it follows independent of a or

d for nmin → ∞ that A4/tr
(
(TV N )

2
) P→ 1 and therefore tr

(
(TV N )

2
)

/A4
P→ 1.

Moreover, it also follows that

√
tr
(
(TV N )

2
)

/A4
P→ 1 and with Lemma B.1

we deduce
∑a

i=1
N
ni

(T W )iiAi,1−tr(T V N )
√

2 tr((T V N )2)

P−→ 0.

Thus, we can finally calculate the standardized quadratic form as

WN =
QN −∑a

i=1
N
ni

(T W )iiAi,1√
2A4
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=

⎛
⎜⎜⎝

QN − tr (TV N )√
2 tr
(
(TV N )

2
) −

∑a
i=1

N
ni

(T W )iiAi,1 − tr (TV N )
√

2 tr
(
(TV N )

2
)

⎞
⎟⎟⎠ ·

√√√√ tr
(
(TV N )

2
)

A4

=

⎛
⎜⎜⎝

QN − tr (TV N )√
2 tr
(
(TV N )

2
) −OP(1)

⎞
⎟⎟⎠ · (1 +OP(1))

= W̃N + W̃N ·OP(1) −OP(1) −OP(1) ·OP(1).

The last two parts converge in probability to zero, so also in distribution and
with Slutzky W̃N ·OP(1) converges in distribution to zero if one of the conditions
of Theorem 3.1 is fulfilled. Thereby WN has asymptotical the same distribution
as W̃N .

Replacing the traces by their estimators in the above calculation, it follows
with the same arguments that the asymptotic distribution in both cases of local
alternatives does not change, since the estimators are also consistent under the
alternative.

For large numbers of groups many estimators Ai,1, Ai,r,2 and Ai,3 and have
to be calculated which leads to long computation time. In this cases it is better
to again use subsamling-type estimators which leads to A�

i,1, A
�
i,r,2, A

�
i,3 and

therefore to A�
4.

Lemma B.2. With the definitions from above let be

A�
i,1(B) =

1

2 · B

B∑

b=1

Y i,σi1(b),σi2(b)
�Y i,σi1(b),σi2(b),

A�
i,r,2(B) =

1

4 · B

B∑

b=1

[
Y i,σi1(b),σi2(b)

�Y r,σr1(b),σr2(b)

]2
,

A�
i,3(B) =

1

4 · B

B∑

b=1

[
Y i,σi1(b),σi2(b)

�Y i,σi3(b),σi4(b)

]2
,

A�
4(B) =

a∑

i=1

N2

n2
i

(T W )ii
2
A�

i,3(B) + 2

a∑

i=1

a∑

r=1,r<i

N2

ninr
(T W )ir

2
A�

i,r,2(B).

If B(N) → ∞, this estimators and
∑a

i=1 A�
i,1 have the same properties as

Ai,1, Ai,r,2, Ai,3, A4 and
∑a

i=1 Ai,1 which were defined in Lemma 3.3 (p.2750).

Proof. For A�
i,1(B), this lemma will be proved in detail. For all other terms only

the major steps are shown.

The unbiasedness is clear because the random variables σi1(b), σi2(b) have no
influence on the number of terms of the sum and also the terms are identically
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distributed. Hence,

E
(
A�

i,1(B)
)

=
1

2 · B

B∑

b=1

E
(
Y i,σi1(b),σi2(b)

�Y i,σi1(b),σi2(b)

)

=
1

2 · B

B∑

b=1

E
(
Y i,1,2

�Y i,1,2

)
A.5
= tr(T SΣi).

The second part is more complicated. Let F(σi(B, m)) be the smallest σ-
field which contains σi(b, m) ∀b ∈ B, so obvious M(B, σi(b)) is F(σi(B)) -
measurable. Identical for F(σi(B, m), σr(B, m)) and F(σ(B, m)). Similar to
the previous part, the distribution of the bilinear form does not depend on the
index combination. Together with the independence of the normally distributed
vectors and σi1(b), σi2(b) this leads to

Var
(
E
(
A�

i,1(B)
∣∣F(σi(B, 2))

))
= Var (tr (T SΣi)) = 0.

With Lemma A.9 (p.2771) we thus obtain

Var
(
A�

i,1(B)
)

= 0 + E
(
Var
(
A�

i,1(B)|F(σi(B, 2))
))

.

For the calculation of the conditional variance of the sum, it would be useful
finding an upper bound that is based on the variance instead of calculate the
covariances. To achieve this, we calculate the number of index combinations
which leads to a covariance which is zero. This amount is non-deterministic
and we recognize it contains the amount M(B, σi(b, 2)) which was considered
before.

Again not the amount is important but the number of elements which are
contained in M(B, σi(b, 2)) since the bilinear forms are identically distributed.
Therefore the condition of the variance of the bilinear form disappears since
the random indices have no influence on the variance. With the F(σi(B, 2))-
measurability of M(B, σi(b, 2)) it thus follows that

Var
(
A�

i,1(B)
)

= 0 + E
(
Var
(
A�

i,1(B)|F(σi(B, 2))
))

A.7
≤ E

⎛
⎝ ∑

(j,�)∈N2
B\M(B,(σi(b,2)))

Var
(
Y i,σi1(j),σi2(j)

�Y i,σi1(j),σi2(j)

∣∣F(σi(B, 2))
)

4B2

⎞
⎠

=
1

4B2
E

⎛
⎝ ∑

(j,�)∈N2
B\M(B,(σi(b,2)))

Var
(
Y i,1,2

�Y i,1,2

)
⎞
⎠

A.5
=

E
(
|N2

B \ M(B, (σi(b, 2)))|
)

B2
· O
(
tr2 (T SΣi)

)

4

A.10
=

(
1 −
(

1 − 1

B

)
·
(
ni−2

2

)
(
ni

2

)
)

· O
(
tr2 (T SΣi)

)
.
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The other values are calculated in a similar way.

E
(
A�

i,r,2(B)
)

=
1

4 · B

B∑

b=1

E
([

Y i,σi1(b),σi2(b)
�Y r,σr1(b),σr2(b)

]2)

=
1

4 · B

B∑

b=1

E
([

Y i,1,2
�Y r,1,2

]2) A.5
= tr(T SΣiT SΣr).

Var
(
E
(
A�

i,r,2(B)|F(σi(B, 2), σr(B, 2))
))

= Var (tr (T SΣiT SΣr)) = 0.

Var
(
A�

i,r,2(B)
)

= 0 + E
(
Var
(
A�

i,r,2(B)|F(σi(B), σr(B, 2))
))

≤ E
(
|N2

B \ M(B, σi(b, 2), σr(b, 2))|
)

B2
· Var

([
Y i,1,2

�Y r,1,2

]2)

A.5
≤ E

(
|N2

B \ M(B, σi(b, 2), σr(b, 2))|
)

B2
· O
(

tr2
(

N

ni
T SΣi

N

nr
T SΣr

))

A.10
=

(
1 −
(

1 − 1

B

)
·
(
ni−2

2

)
·
(
nr−2

2

)
(
ni

2

)
·
(
nr

2

)
)

· O
(

tr2
(

N

ni
T SΣi

N

nr
T SΣr

))

≤
(

1 −
(

1 − 1

B

)
·
(
nmin−2

2

)2
(
nmin

2

)2

)
· O
(

tr2
(

N

ni
T SΣi

N

nr
T SΣr

))
.

E
(
A�

i,3(B)
)

=
1

4 · B

B∑

b=1

E
([

Y i,σi1(b),σi2(b)
�Y i,σi3(b),σi4(b)

]2)

=
1

4 · B

B∑

b=1

E
([

Y i,1,2
�Y i,1,2

]2) A.5
= tr

(
(T SΣi)

2
)

.

Var
(
E
(
A�

i,3(B)|F(σi(B, 4))
))

= Var
(
tr
(
(T SΣi)

2
))

= 0.

Var
(
A�

i,3(B)
)

= 0 + E
(
Var
(
A�

i,3(B)|F(σi(B, 4))
))

A.7
≤ E

⎛
⎜⎜⎝

∑

(j,�)∈N2
B\M(B,σi(b,4))

Var

([
Y i,σi1(j),σi2(j)

�Y i,σi3(j),σi4(j)

]2∣∣∣F(σi(B, 4))

)

16B2

⎞
⎟⎟⎠

A.5
≤ E

(
|N2

B \ M(B, σi(b, 4))|
)

B2
·
O
(
tr2
(
(T SΣi)

2
))

16

A.10
=

(
1 −
(

1 − 1

B

)
·
(
ni−4

4

)
(
ni

4

)
)

· O
(
tr2
(
(T SΣi)

2
))

.

E

(
a∑

i=1

N

ni
(T W )iiA

�
i,1

)
=

a∑

i=1

N

ni
(T W )iiE

(
A�

i,1

)
=

a∑

i=1

N

ni
(T W )ii tr (T SΣi) .
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Var

⎛
⎜⎜⎝

a∑
i=1

N
ni

(T W )iiA
�
i,1

tr (TV N )

⎞
⎟⎟⎠

=

a∑
i=1

N2

n2
i
(T W )ii

2
Var
(
A�

i,1

)

tr2 (TV N )

=

a∑
i=1

(T W )ii
2

(
1 −
(
1 − 1

B

)
· (ni−2

2 )
(ni

2 )

)
· O
(
tr2
(
T S

N
ni

Σi

))

tr2 (TV N )

≤

a∑
i=1

(T W )ii
2

(
1 −
(
1 − 1

B

)
· (nmin−2

2 )
(nmin

2 )

)
· O
(
tr2
(
T S

N
ni

Σi

))

tr2 (TV N )

≤
(

1 −
(
1 − 1

B

)
·
(
nmin−2

2

)
(
nmin

2

)
)

·
O
(

tr2
(

a∑
i=1

N
ni

(T W )iiT SΣi

))

tr2 (TV N )

=

(
1 −
(

1 − 1

B

)
·
(
nmin−2

2

)
(
nmin

2

)
)

· O (1) .

For B(N) → ∞ the first factor is a zero sequence and therefore
a∑

i=1

N
ni

(T W )iiA
�
i,1

a ratio-consistent, unbiased estimator of tr (TV N ).

E

⎛
⎝

a∑

i=1

N2

n2
i

(T W )ii
2
A�

i,3 +
∑

i �=r∈Na

N2

ninr
(T W )ir

2
A�

i,r,2

⎞
⎠

=

a∑

i=1

N2

n2
i

(T W )ii
2E
(
A�

i,3

)
+
∑

i �=r∈Na

N2

ninr
(T W )ir

2E
(
A�

i,r,2

)
= tr

(
(TV N )

2
)

.

Var

⎛
⎜⎜⎝

a∑
i=1

N2

n2
i
(T W )ii

2
A�

i,3

tr
(
(TV N )

2
)

⎞
⎟⎟⎠

=

a∑
i=1

Var
(

N2

n2
i
(T W )ii

2
A�

i,3

)

tr2
(
(TV N )

2
)

≤

a∑
i=1

(T W )ii
4

(
1 −
(
1 − 1

B

)
· (ni−4

4 )
(ni

4 )

)
· O
(

tr2
((

T S
N
ni

Σi

)2
))

tr2
(
(TV N )

2
)
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≤
(

1 −
(

1 − 1

B

)
·
(
nmin−4

4

)
(
nmin

4

)
)

·

a∑
i=1

(T W )ii
4O
(

tr2
((

T S
N
ni

Σi

)2
))

tr2
(
(TV N )

2
)

≤
(

1 −
(

1 − 1

B

)
·
(
nmin−4

4

)
(
nmin

4

)
)

·
O
(

tr2

((
a∑

i=1

N
ni

(T W )iiT SΣi

)2
))

tr2
(
(TV N )

2
)

≤
(

1 −
(

1 − 1

B

)
·
(
nmin−4

4

)
(
nmin

4

)
)

· O (1) .

Var

⎛
⎜⎝

∑
i �=r∈Na

N2

ninr
(T W )ir

2
A�

i,r,2

tr (TV N )

⎞
⎟⎠

≤

⎛
⎜⎜⎝
∑

i �=r∈Na

√
Var
(

N2

ninj
(T W )ir

2
A�

i,r,2

)

tr
(
(TV N )

2
)

⎞
⎟⎟⎠

2

≤
(

1 −
(

1 − 1

B

)
·
(
nmin−2

2

)2
(
nmin

2

)2

)
·

⎛
⎜⎜⎜⎝

∑
i �=r∈Na

(T W )ir
2

√
O
(
tr2
(

N
ni

T SΣi
N
nr

T SΣr

))

tr
(
(TV N )

2
)

⎞
⎟⎟⎟⎠

2

≤
(

1 −
(

1 − 1

B

)
·
(
nmin−2

2

)2
(
nmin

2

)2

)
·

⎛
⎜⎜⎝

∑
i �=r∈Na

O
(
(T W )ir

2
tr
(
T S

N
ni

ΣiT S
N
nr

Σr

))

∑
i,r∈Na

(T W )ir
2
tr
(
T S

N
ni

Σi
N
nr

T SΣr

)

⎞
⎟⎟⎠

2

≤
(

1 −
(

1 − 1

B

)
·
(
nmin−2

2

)2
(
nmin

2

)2

)
· O(1).

Var

⎛
⎜⎜⎝

a∑
i=1

N2

n2
i
(T W )ii

2
A�

i,3 +
∑

i �=r∈Na

N2

ninr
(T W )ir

2
A�

i,r,2

tr2
(
(TV N )

2
)

⎞
⎟⎟⎠

A.7
≤

⎡
⎢⎢⎢⎢⎢⎣

√√√√√√√
Var

(
2
∑

r<i∈Na

N2

ninr
(T W )ir

2
A�

i,r,2

)

tr2
(
(TV N )

2
) +

√√√√√√
Var

(
a∑

i=1

N
ni

(T W )ii
2
A�

i,3

)

tr2
(
(TV N )

2
)

⎤
⎥⎥⎥⎥⎥⎦

2

≤
(

1 −
(

1 − 1

B

)
·
(
nmin−2

2

)2
(
nmin

2

)2

)
· O(1).
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So again this is a zero sequence, and A�
4 is an unbiased and dimensional stable

(i.e. also ratio consistent) estimator of tr
(
(TV N )

2
)
.

Appendix C: Proofs of Section 4

Lemma C.1. For

Λ1(�1,1, . . . , �6,a) = Z(�1,1,�2,1,...,�1,a,�2,a)
�TZ(�3,1,�4,1,...,�3,a,�4,a),

Λ2(�1,1, . . . , �6,a) = Z(�3,1,�4,1,...,�3,a,�4,a)
�TZ(�5,1,�6,1,...,�5,a,�6,a),

Λ3(�1,1, . . . , �6,a) = Z(�5,1,�6,1,...,�5,a,�6,a)
�TZ(�1,1,�2,1,...,�1,a,�2,a),

we define

C5 =

n1∑

�1,1,...,�6,1=1
�1,1 �=···�=�6,1

· · ·
na∑

�1,a,...,�6,a=1
�1,a �=···�=�6,a

∏3
m=1 Λm(�1,1, . . . , �6,a)

8 ·∏a
i=1

ni!
(ni−6)!

.

With this notation it follows that

E (C5) = tr
(
(TV N )

3
)

, Var (C5) ≤

(
a∏

i=1

(
ni

6

)
−

a∏
i=1

(
ni−6

6

))

a∏
i=1

(
ni

6

) ·27 tr3
(
(TV N )

2
)

.

Proof. Set

Z̃(�3,1,�4,1,...,�3,a,�4,a) :=
(√

2V
1/2
N

)−1

Z(�3,1,�4,1,...,�3,a,�4,a) ∼ Nad (0ad, Iad) .

It then follows that

E
(
TZ(�3,1,�4,1,...,�3,a,�4,a) · Z(�3,1,�4,1,...,�3,a,�4,a)

�T �
)

= E
((√

2TV
1/2
N Z̃(�3,1,�4,1,...,�3,a,�4,a)

)(√
2TV

1/2
N Z̃(�3,1,�4,1,...,�3,a,�4,a)

)�)

= 2TV
1/2
N E

(
Z̃(�3,1,�4,1,...,�3,a,�4,a)Z̃

�
(�3,1,�4,1,...,�3,a,�4,a)

)
V

1/2
N

�
T

= 2TV
1/2
N IadV

1/2
N

�
T = 2TV NT .

With the rules for conditional expectation and the involved independence it
follows that

E (C5) =

n1∑

�1,1,...,�6,1=1
�1,1 �=···�=�6,1

· · ·
na∑

�1,a,...,�6,a=1
�1,a �=···�=�6,a
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× E (Λ1(�1,1, . . . , �6,a) · Λ2(�1,1, . . . , �6,a) · Λ3(�1,1, . . . , �6,a))

8 ·
a∏

i=1

ni!
(ni−6)!

=

n1∑

�1,1,...,�6,1=1
�1,1 �=···�=�6,1

· · ·
na∑

�1,a,...,�6,a=1
�1,a �=···�=�6,a

×
E
(
Z(1,2)

�TZ(3,4) · Z(3,4)
�TZ(5,6) · Z(5,6)

�TZ(1,2)

)

8 ·
a∏

i=1

ni!
(ni−6)!

=
1

8
E
(
Z(1,2)

�TZ(3,4) · Z(3,4)
�TZ(5,6) · Z(5,6)

�TZ(1,2)

)

E (C5) =
1

8
E
(
E
(
Z(1,2)

�TZ(3,4) · Z(3,4)
�TZ(5,6) · Z(5,6)

�TZ(1,2)

∣∣ Z(1,2)

))

=
1

8
E
(
Z(1,2)

�E
(
TZ(3,4) · Z(3,4)

�TZ(5,6) · Z(5,6)
�T
)

Z(1,2)

)

=
4

8
E
(
Z(1,2)

�TV NTTV NTZ(1,2)

)

=
1

2
tr((TV NTTV NT )2V N ) = tr

(
(TV N )

3
)

.

Due to the fact that all Xi,j are identically distributed we can neglect the
concrete indices, as long as we maintain the structure of dependence of the
bilinear forms. The last term fulfills the requirements from Korollar A.5 (p.2769)
with Z(1,2) ∼ N (0ad, 2V N ) and the matrix TV NTTV NT .

For the calculation of the variance it is useful to diagonalize the matrix

V
1/2
N

�
TV

1/2
N : There exists an orthogonal matrix P with PV

1/2
N

�
TV

1/2
N P � =

D = diag (λ1, . . . , λad), where λi are the eigenvalues of V
1/2
N

�
TV

1/2
N . We de-

fine J i := PZ̃(i,j) so with the properties of the standard normal distribution
J i ∼ Nad(0ad, Iad), where the J i are independent for different indices. Thus,
we can rewrite

Z(1,2)
�TZ(3,4) = Z̃

�
(1,2)2V

1/2
N

�
TV

1/2
N Z̃(3,4)

= 2Z̃
�
(1,2)P

�DPZ̃(3,4) = 2J�
1 DJ3.

With this argument for all three random variables it follows for the second
moment that

E
([

J�
1 DJ3J

�
3 DJ5J

�
5 DJ1

]2)

= E

⎛
⎜⎝
[

ad∑

i=1

λiJ1iJ3i

]2 ⎡
⎣

ad∑

j=1

λjJ3jJ5j

⎤
⎦

2 [
ad∑

�=1

λ�J5�J1�

]2⎞
⎟⎠
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=

ad∑

i1,j1,�1=1
i2,j2,�2=1

λi1λi2λj1λj2λ�1λ�2

× E (J1i1J3i1J1i2J3i2J3j1J5j1J3j2J5j2J5�1J1�1J5�2J1�2) .

Now we consider the expectation value for the different combinations. If all
indices are equal, it is given by

E
(
J4

11J
4
31J

4
51

)
= 33 = 27.

Moreover, for i1 = i2 
= �1 = �2 and �2 
= j1 = j2 
= i1 it holds that

E
(
J2

11J
2
31J

2
32J

2
52J

2
13J

2
53

)
= 16 = 1.

Next, the case i1 = i2 = j1 = j2 
= �1 = �2 is considered (noting this result can
also be used for both analogue combinations):

E
(
J2

11J
4
31J

2
51J

2
12J

2
52

)
= 31 · 14 = 3.

Finally, we consider the combination i1 = j1 = �1 
= i2 = j2 = �2 and obtain

E
(
[J11J31J12J32J51J52]

2
)

=

2∏

i=1

E
(
J2

1i

)
E
(
J2

3i

)
E
(
J2

5i

)
= 132

.

This is also true for i1 = j2 = �1 
= i2 = j1 = �2 and the analogue com-
binations, so, all in all, we have 4 combinations of this kind. All other index
combinations lead to expectation zero because in this combinations at least one
index appears just one time in the product. Thus, due to independence and the
fact that all random variables Ji are centered, it follows that

E
([

J�
1 DJ3J

�
3 DJ5J

�
5 DJ1

]2)

=

ad∑

i=1

λ6
i · 27 +

ad∑

i,j=1
i �=j

λ3
i λ

3
j · 1 · 4 +

d∑

i,j=1
i �=j

λ2
i λ

4
j · 9 +

ad∑

i,j,�=1
i �=j �=�

λ2
i λ

2
jλ

2
�

= 23

ad∑

i=1

λ6
i + 4

⎛
⎜⎝

ad∑

i,j=1
i �=j

λ3
i λ

3
j +

ad∑

i=j=1

λ3
i λ

3
j

⎞
⎟⎠+ 9

ad∑

i,j=1
i �=j

λ2
i λ

4
j +

ad∑

i,j,�=1
i �=j �=�

λ2
i λ

2
jλ

2
�

= 17

ad∑

i=1

λ6
i + 4

ad∑

i,j=1

λ3
i λ

3
j + 3

ad∑

i,j=1
i �=j

λ2
i λ

4
j

+ 6

⎛
⎜⎝

ad∑

i,j=1
i �=j

λ2
i λ

4
j +

ad∑

i=1

λ6
i

⎞
⎟⎠+

ad∑

i,j,�=1
i �=j �=�

λ2
i λ

2
jλ

2
�
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= 17

ad∑

i=1

λ6
i + 4 tr2

(
(TV N )

3
)

+ 3

ad∑

i,j=1
i �=j

λ2
i λ

4
j + 6

ad∑

i,j=1

λ2
i λ

4
j +

ad∑

i,j,�=1
i �=j �=�

λ2
i λ

2
jλ

2
�

A.2
≤ 21 tr2

(
(TV N )

3
)

+ 3
ad∑

i,j=1
i �=j

λ2
i λ

4
j + 6 tr

(
(TV N )

4
)

tr
(
(TV N )

2
)

+

ad∑

i,j,�=1
i �=j �=�

λ2
i λ

2
jλ

2
�

A.2
≤ 21 tr2

(
(TV N )

3
)

+ 3

ad∑

i,j=1
i �=j

λ2
i λ

4
j + 6 tr3

(
(TV N )

2
)

+

ad∑

i,j,�=1
i �=j �=�

λ2
i λ

2
jλ

2
�

A.2
≤ 20 tr2

(
(TV N )

3
)

+ 6 tr3
(
(TV N )

2
)

+

⎛
⎜⎝

ad∑

i,j,�=1
i �=j �=�

λ2
i λ

2
jλ

2
� + 3

ad∑

i,j=1
i �=j

λ2
i λ

4
j +

ad∑

i=1

λ6
i

⎞
⎟⎠

= 20 tr2
(
(TV N )

3
)

+ 7 tr3
(
(TV N )

2
)

A.2
≤ 20 tr

(
(TV N )

4
)

tr
(
(TV N )

2
)

+ 7 tr3
(
(TV N )

2
)

A.2
≤ 27 tr3

(
(TV N )

2
)

.

So we can control the variance by

Var(C5)

A.7
≤ Var (Λ1(1, 2, 3, 4, 5, 6, . . . , 5, 6) · Λ2(1, 2, 3, 4, 5, 6, . . . , 5, 6) · Λ3(1, 2, 3, 4, 5, 6, . . . , 5, 6))

64 ·
a∏

i=1

(ni
6

)
·
(

a∏
i=1

(ni
6

)
−

a∏
i=1

(ni−6
6

))−1

≤
E
(
[Λ1(1, 2, 3, 4, 5, 6, . . . , 5, 6) · Λ2(1, 2, 3, 4, 5, 6, . . . , 5, 6) · Λ3(1, 2, 3, 4, 5, 6, . . . , 5, 6)]2

)

64 ·
a∏

i=1

(ni
6

)
·
(

a∏
i=1

(ni
6

)
−

a∏
i=1

(ni−6
6

))−1

Var(C5) =

E
([

23 · J�
1 DJ3J

�
3 DJ5J

�
5 DJ1

]2)

64 ·
a∏

i=1

(
ni

6

)
·
(

a∏
i=1

(
ni

6

)
−

a∏
i=1

(
ni−6

6

))−1

≤

(
a∏

i=1

(
ni

6

)
−

a∏
i=1

(
ni−6

6

))

a∏
i=1

(
ni

6

) · 27 tr3
(
(TV N )

2
)

.
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With this result, we can construct an estimator for τP step by step:

Lemma C.2. For C5 as previously defined, it holds for fixed a that

C5

tr3/2
(
(TV N )

2
) −

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
) P−→ 0 min(d, nmin) → ∞.

It even holds in the asymptotic frameworks (4)–(5) if q > 1 exists with nmin =
O(aq).

Proof. From the previous lemma, we know that

E

⎛
⎝ C5

tr3/2
(
(TV N )

2
) −

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)

⎞
⎠

= E

⎛
⎝ C5

tr3/2
(
(TV N )

2
)

⎞
⎠−

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
) = 0,

Var

⎛
⎝ C5

tr3/2
(
(TV N )

2
) −

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)

⎞
⎠

=
Var(C5)

tr3
(
(TV N )

2
) C.1

≤ 27 ·

(
a∏

i=1

(
ni

6

)
−

a∏
i=1

(
ni−6

6

))

a∏
i=1

(
ni

6

) .

For fixed a this is a zero sequence. If we consider a → ∞ we need the existence of
q > 1 and nmin = O(aq) to guarantee that the upper border is a zero sequence.
So in both cases Lemma A.6 (p.2770) can be used.

Lemma C.3. Moreover C5 holds for fixed a

C2
5

tr3
(
(TV N )

2
) − τP

P−→ 0 d, nmin → ∞.

If q > 1 exists with nmin = O(aq), the convergence even holds in the asymptotic
frameworks (4)–(5).

Proof. With the last lemma it follows for both cases that

C2
5

tr3
(
(TV N )

2
) − τP =

⎛
⎝ C5

tr3/2
(
(TV N )

2
)

⎞
⎠

2

−

⎛
⎝

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)

⎞
⎠

2

=

⎡
⎣ C5

tr3/2
(
(TV N )

2
) −

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)

⎤
⎦



2792 P. Sattler and M. Pauly

×

⎡
⎣ C5

tr3/2
(
(TV N )

2
) +

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)

⎤
⎦

C2
5

tr3
(
(TV N )

2
) − τP = OP(1) ·

⎡
⎣ C5

tr3/2
(
(TV N )

2
) −

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
) + 2

√
τP

⎤
⎦

= OP(1) ·
[
OP(1) + 2

√
τP

]
=OP(1).

For the last step we used that τP ∈ [0, 1] which is known from Lemma A.8

(p.2770) and hence tr
(
(TV N )

3
)/

tr3/2
(
(TV N )

2
)

=
√

τP ∈ [−1, 1]. As a

product of a bound term and a term which converges to zero in probability,
it also converges to zero in probability and with Slutzky’s Lemma the result
follows.

Proof of Lemma 4.2. From Lemma 3.3 (p.2750) together with Lemma A.6 (p.2770)
it follows

A4

tr
(
(TV N )

2
) P−→ 1 and therefore

tr3
(
(TV N )

2
)

A3
4

P−→ 1 for nmin → ∞,

independent of d or a. With Lemma C.3 (p.2791) it follows

C2
5

tr3
(
(TV N )

2
) − τP

P−→ 0 for d, nmin → ∞

or under the additional condition also in the asymptotic frameworks (4)–(5).
With these limits in both cases we can calculate

C2
5

A3
4

− τP =
C2

5

tr3
(
(TV N )

2
) ·

tr3
(
(TV N )

2
)

A3
4

− τP

=
C2

5

tr3
(
(TV N )

2
) · (1 +OP(1)) − τP

=
C2

5

tr3
(
(TV N )

2
) − τP +

⎛
⎝ C2

5

tr3
(
(TV N )

2
) − τP + τP

⎞
⎠ ·OP(1)

= OP(1) +OP(1) ·OP(1) + τP ·OP(1) =OP(1).

As in the previous lemma we used τP ∈ [0, 1] and Slutzky.

For C�
5 the properties are shown in a similar way as in Lemma B.2 (p.2782).

Lemma C.4. For

Λ1(�1,1, . . . , �6,a) = Z(�1,1,�2,1,...,�1,a,�2,a)
�TZ(�3,1,�4,1,...,�3,a,�4,a),

Λ2(�1,1, . . . , �6,a) = Z(�3,1,�4,1,...,�3,a,�4,a)
�TZ(�5,1,�6,1,...,�5,a,�6,a),
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Λ3(�1,1, . . . , �6,a) = Z(�5,1,�6,1,...,�5,a,�6,a)
�TZ(�1,1,�2,1,...,�1,a,�2,a),

define

C�
5 (B) =

1

8 · B

B∑

b=1

Λ1(σ(b, 6)) · Λ2(σ(b, 6)) · Λ3(σ(b, 6)).

Then it holds

E (C�
5 (B)) = tr

(
(TV N )

3
)

,

Var (C�
5 (B)) ≤

(
1 −
(

1 − 1

B

)
·

a∏

i=1

(
ni−6

6

)
(
ni

6

)
)

· 27 tr3
(
(TV N )

2
)

.

Proof. With the same steps as in the previous lemma and by using the fact that
expectation and variance do not depend on the concrete indices but rather on
the structure of independences we get

E (C�
5 (B)) =

1

8B

B∑

b=1

E (Λ1(σ(b, 6)) · Λ2(σ(b, 6)) · Λ3(σ(b, 6)))

=
1

8B

B∑

b=1

E (Λ1(�1,1, . . . , �6,a) · Λ2(�1,1, . . . , �6,a) · Λ3(�1,1, . . . , �6,a)) .

C.1
=

1

8B

B∑

b=1

tr
(
(2TV N )

3
)

= tr
(
(TV N )

3
)

.

Var(E(C�
5 (B)|F(σ(B, 6)))) = Var

(
tr
(
(TV N )

3
))

= 0.

Var (C�
5 (B)) = 0 + E (Var (C�

5 (B)|F(σ(B, 6))))

A.7
≤ E

( ∑

(j,�)∈N2
B\M(B,σ(b,6))

× Var (Λ1(σ(j, 6))Λ2(σ(j, 6))Λ3(σ(j, 6))|F(σ(B, 6)))

64B2

)

=
E
(
|N2

B \ M(B, σ(b, 6))|
)

B2

·
Var
(
Z(1,2)

�TZ(3,4) · Z(3,4)
�TZ(5,6) · Z(5,6)

�TZ(1,2)

)

64

C.1
≤
(

1 −
(

1 − 1

B

)
·

a∏

i=1

(
ni−6

6

)
(
ni

6

)
)

· 27 tr3
(
(TV N )

2
)

.

Proof of Theorem 4.3 (p.2753). With Lemma C.4 we recognize τP → 1 ⇔ τ̂P
P−→ 1

and τP → 0 ⇔ τ̂P
P−→ 0. Therefore fP → 1 ⇔ f̂P

P−→ 1 and fP → ∞ ⇔ f̂P
P−→

∞. This is the only condition needed for the proof of Pauly et al. [34][Theorem
3.1], so the result follows.
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Although nmin = O(aq) with q > 1 is not too critical in most settings we
additionally developed an estimator which can be used without any restrictions.

For this estimator another random vector has to be introduced: The random
vector πj,i represents a random permutation of the numbers 1, . . . , ni, where πj,i

are independent for different i or j and πj,i(l) denotes its l-th element. Then we
define

C7 (w) =
1

w

w∑

j=1

nmin∑

�1 �=···�=�6=1

Λ4 (j; �1, . . . , �6) · Λ5 (j; �1, . . . , �6) · Λ6 (j; �1, . . . , �6)

8 · nmin!
(nmin−6)!

with

Λ4 (j; �1, . . . , �6) = Z
πj

(�1,�2)

�
TZ

πj

(�3,�4)
,

Λ5 (j; �1, . . . , �6) = Z
πj

(�3,�4)

�
TZ

πj

(�5,�6)
,

Λ6 (j; �1, . . . , �6) = Z
πj

(�5,�6)

�
TZ

πj

(�1,�2)
.

and

Z
πj

(�1,�2)
:= Z(πj,1(�1),πj,1(�2),πj,2(�1),...,πj,a(�1),πj,a(�2))

This estimator again uses Z, but different to C5 the indices are the same for
all groups. However the highest index is nmin and some index combinations are
unachievable. For this reason, the above random permutations were used. So
first the observations in each group were rearranged randomly and with this
rearranged samples we calculated the sum of the used terms. Thereafter, we
again rearrange the observations and the same terms as before are calculated.
If these values were summed up and divided by the number of rearrangements
we get an alternative for C5 which is shown in the following lemma.

Lemma C.5. For C7 as defined before it holds

E (C7(w)) = tr
(
(TV N )

3
)

Var (C7(w)) ≤

⎛
⎝

nmin!
(nmin−6)! − (nmin−6)!

(nmin−12)!

nmin!
(nmin−6)!

⎞
⎠ · O

(
tr3
(
(TV N )

2
))

.

Proof. Again we calculate

E (C7 (w)) =
1

w

w∑

j=1

nmin∑

�1 �=···�=�6=1

E
(∏6

m=4 Λm (j; �1, . . . , �6)
)

8 · nmin!
(nmin−6)!

=
1

w

w∑

j=1

nmin∑

�1 �=···�=�6=1

E
(∏6

m=4 Λm (j; 1, . . . , 6)
)

8 · nmin!
(nmin−6)!

= tr
(
(TV N )

3
)

.
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Because of the fact that all groups use the same indices, the number of remaining
index combinations simplifies and we receive

Var

⎛
⎝

nmin∑

�1 �=···�=�6=1

∏
m=4 Λm (j; �1, . . . , �6)

8 · nmin!
(nmin−6)!

⎞
⎠

≤
nmin!

(nmin−6)! − (nmin−6)!
(nmin−12)!

nmin!
(nmin−6)!

· Var

(
6∏

m=4

Λm (j; �1, . . . , �6)

)

≤
nmin!

(nmin−6)! − (nmin−6)!
(nmin−12)!

nmin!
(nmin−6)!

· O
(
tr3
(
(TV N )

2
))

.

For the sum this leads to

Var (C7 (w))

= Var

⎛
⎝ 1

w

w∑

j=1

nmin∑

�1 �=···�=�6=1

∏6
m=4 Λm (j; �1, . . . , �6)

8 · nmin!
(nmin−6)!

⎞
⎠

A.7
≤ 1

w2

w∑

j1,j2=1

Var

⎛
⎝

nmin∑

�1 �=···�=�6=1

∏6
m=4 Λm (j; �1, . . . , �6)

8 · nmin!
(nmin−6)!

⎞
⎠

≤ 1

w2

w∑

j1,j2=1

⎛
⎝

nmin!
(nmin−6)! − (nmin−6)!

(nmin−12)!

nmin!
(nmin−6)!

⎞
⎠ · O

(
tr3
(
(TV N )

2
))

=

⎛
⎝

nmin!
(nmin−6)! − (nmin−6)!

(nmin−12)!

nmin!
(nmin−6)!

⎞
⎠ · O

(
tr3
(
(TV N )

2
))

.

Simulations (not shown here) show that higher values for w lead to better
estimations.

Lemma C.6. For C7 as previously defined, it holds

C2
7

tr3
(
(TV N )

2
) − τP

P−→ 0 for nmin → ∞,

independent of a or d. Therefore this holds for the asymptotic frameworks (3)–
(5).

Proof. With the previous lemma we know

E

⎛
⎝

C7(w) − tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)

⎞
⎠
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= E

⎛
⎝ C7(w)

tr3/2
(
(TV N )

2
)

⎞
⎠−

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
) = 0,

Var

⎛
⎝

C7(w) − tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)

⎞
⎠

=
Var (C7(w))

tr3
(
(TV N )

2
) ≤

⎛
⎝

nmin!
(nmin−6)! − (nmin−6)!

(nmin−12)!

nmin!
(nmin−6)!

⎞
⎠ · O (1) .

So exactly the same steps as in the proof of Lemma 4.2, which in this case uses
that the zero sequence not depends on a or d, leads to the result.

But for the calculation of this estimator we need w ·nmin!/(nmin − 6)! summa-
tions. Thus, a subsampling-type version of C7 is necessary which is now defined.

Lemma C.7. For each b = 1, . . . , B we independently draw random subsamples
σ0(b, 6) of length 6 from {1, . . . , nmin} and define

C�
7 (w, B) =

w∑

j=1

B∑

b=1

Λ4 (j; σ0(b, 6)) Λ5 (j; σ0(b, 6)) Λ6 (j; σ0(b, 6))

8wB

which holds

E (C�
7 (w, B)) = tr ((TV N )) ,

Var (C�
7 (w, B)) =

(
1 −
(

1 − 1

B

) (nmin−6
6

)
(
nmin

6

)
)

27 tr3
(
(TV N )

2
)

.

Proof. The proof for this subsampling-type estimator takes the same steps as
before, with another amount M(B, σ0(b, 6)). At the beginning we calculate ex-
pectation value and an upper bound for the variance of the inner sum. We get

E

(
B∑

b=1

∏6
m=4 Λm (j; σ0(b, 6))

8B

)
=

B∑

b=1

E
(∏6

m=4 Λm (j; 1, . . . , 6)
)

8B

= tr
(
(TV N )

3
)

.

Var

(
E

(
B∑

b=1

∏6
m=4 Λm (j; σ0(b, 6))

8B

∣∣∣F (σ0(B))

))
=Var

(
tr
(
(TV N )

3
))

= 0.

Var

(
B∑

b=1

∏6
m=4 Λm (j; σ0(b, 6))

8B

)
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= 0 + E

(
Var

(
B∑

b=1

∏6
m=4 Λm (j; σ0(b, 6))

8B

∣∣∣F (σ0(B))

))

A.7
≤ E

⎛
⎝ ∑

(b1,b2)∈N2
B\M(B,σ0(b,6))

Var

(
6∏

m=4

Λm (j; σ0(b1, 6))
∣∣∣F (σ0(B))

)
· 1

64B2

⎞
⎠

=
E
(
|N2

B \ M (B, σ0(b, 6)) |
)

B2

· Var (Λ4 (j; 1, . . . , 6) · Λ5 (j; 1, . . . , 6) · Λ6 (j; 1, . . . , 6))

64

C.1
≤
(

1 −
(

1 − 1

B

)
·
(
nmin−6

6

)
(
nmin

6

)
)

· 27 tr3
(
(TV N )

2
)

.

With these values we can consider the whole estimator

E (C�
7 (w, B)) =

1

w

w∑

j=1

E

(
B∑

b=1

∏6
m=4 Λm (j; σ0(b, 6))

8B

∣∣∣F (σ0(B))

)

= tr
(
(TV N )

3
)

,

Var (C�
7 (w, B)) ≤ 1

w2

⎛
⎝

w∑

j=1

√√√√Var

(
B∑

b=1

∏6
m=4 Λm (j; σ0(b, 6))

8B

)⎞
⎠

2

≤ 1

w2

⎛
⎝

w∑

j=1

√√√√
(

1 −
(

1 − 1

B

)
·
(
nmin−6

6

)
(
nmin

6

)
)

· 27 tr3
(
(TV N )

2
)
⎞
⎠

2

=

(
1 −
(

1 − 1

B

)
·
(
nmin−6

6

)
(
nmin

6

)
)

· 27 tr3
(
(TV N )

2
)

.

The next lemma shows that the version of the estimators with random indices
has all the properties the classical ones possess.

Lemma C.8. The statements of Lemma B.1, Lemma C.2, Lemma C.3, Lemma
4.2 and Lemma C.6 are also true, if all or only a part of the estimators are
replaced by the subsampling-type estimators.

Moreover, Theorem 3.1, Theorem 3.5 and Theorem 4.3 hold, if all or only a
part of the estimators are replaced by the subsampling-type estimators.

Proof. For the proofs of the classical estimators from the first paragraph, only
the expectation values are used together with upper bounds for the variances
which are zero sequences. With random indices, the expectation is the same and
for the variance, all traces are the same but the zero sequence changes. So the
proofs of the subsampling-type estimators work identically.

For the second paragraph, only some convergences are necessary, which the
subsampling-type estimators also fulfills.
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Appendix D: On the asymptotic distribution in our simulation
designs

To determine the asymptotic distribution of our test statistic (corresponding
to validity of the different tests) in our simulation settings, the asymptotic be-
haviour of β1 has to be investigated. Due to equivalence we calculate the value

of τP = tr2
(
(TV N )

3
)/

tr3
(
(TV N )

2
)
. This is sufficient since V N is known,

i.e. no estimation is needed. The ratio n1/N and n2/N are the same for all our
sample sizes, so the different numbers n1, n2 have no influence on the values
of τP . Results for different choices of T and Σi, i = 1, 2, corresponding to the
simulation settings from Section 5 are displayed in Tables 3–5. It can be seen
that for Ha

0 (Table 3) we have τP → 1 and thus β1 → 1 by Lemma A.8. For Hb
0

(Table 4) we have τP → 0 and thus β1 → 0; and in case of the autoregressive
covariance matrices with correlation factor depending on the the dimension, we
seem to have β1 → b1 ≈ 0.7589.

Table 3
τP for T =

(
P 2 ⊗ 1

d
Jd

)
with (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|

d 5 10 20 40 70 100 150 200 300 450 600 800
τP 1 1 1 1 1 1 1 1 1 1 1 1

Table 4
τP for T =

(
1
2
J2 ⊗ P d

)
and T = (P 2 ⊗ P d) with (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|

d 5 10 20 40 70 100 150 200 300 450 600 800
τP .49 .35 .21 .11 .061 .043 .029 .021 .014 .0095 .0071 .0053

Table 5
τP and β1 for T =

(
1
2
J2 ⊗ P d

)
with (Σ1)i,j = 0.6|i−j|/d and (Σ2)i,j = 0.65|i−j|/d

d 5 10 20 40 70 100 150 200 300 450 800
τP .9311 .9408 .9444 .9454 .9457 .9457 .9458 .9458 .9458 .9458 .9458
β1 .7082 .7392 .7534 .7575 .7584 .7587 .7588 .7588 .7589 .7589 .7589

Appendix E: On the Chen-Qin-Condition

We can also develop an estimator for τCQ = tr
(
(TV N )

4
)

/ tr2
(
(TV N )

2
)

=

1/fCQ on an analogical way as before. This leads to:

Lemma E.1. Let be

C6 =

n1∑

�1,1,...,�8,1=1
�1,1 �=···�=�8,1

· · ·
na∑

�1,a,...,�8,a=1
�1,a �=···�=�8,a

⎡
⎢⎢⎣

1

6

Λ7(�1,1, . . . , �8,a)

16 ·
a∏

i=1

ni!
(ni−8)!

− 1

2

Λ8(�1,1, . . . , �8,a)

16 ·
a∏

i=1

ni!
(ni−8)!

⎤
⎥⎥⎦



Inference for high-dimensional split-plot-designs 2799

with

Λ7(�1,1, . . . , �8,a) =
[
Z�

(�1,1,�2,1,...,�2,a)TZ(�3,1,�4,1,...�4,a)

]4
,

Λ8(�1,1, . . . , �8,a) =

[√
Λ7(�1,1, . . . , �8,a) · Z�

(�5,1,�6,1,...,�6,a)TZ(�7,1,�8,1,...,�8,a)

]2
.

Then we know

E(C6) = tr
(
(TV N )

4
)

Var(C6) ≤

a∏
i=1

(
ni

8

)
−

a∏
i=1

(
ni−8

8

)

162 ·
a∏

i=1

(
ni

8

) O
(
tr4
(
(TV N )

2
))

.

Proof.

E(C6) =

E
([

Z�
(1,2)TZ(3,4)

]4)

6 · 16
−

E
([

Z�
(1,2)TZ(3,4)

]2 [
Z�

(5,6)TZ(7,8)

]2)

2 · 16
A.4
=

1

6 · 16

(
6 tr
(
(2TV N )

4
)

+ 3 tr2
(
(2TV N )

2
))

− 1

2 · 16
tr2
(
(2TV N )

2
)

= tr
(
(TV N )

4
)

For the second inequality, the variance of parts is calculated. Like before with
Lemma A.2 (p.2767) and Theorem A.4 (p.2768) we calculate

Var

(
1

6

[
Z(1,2)

�TZ(3,4)

]4)
= O

(
tr4
(
(TV N )

2
))

and

Var

(
1

2

[
Z(1,2)

�TZ(3,4)

]2 [
Z(5,6)

�TZ(7,8)

]2)

≤ 1

4
· E
([

Z(1,2)
�TZ(3,4)

]4 [
Z(5,6)

�TZ(7,8)

]4)

=
1

4

(
6 tr
(
(2TV N )

4
)

+ 3 tr2
(
(2TV N )

2
))2

= O
(
tr4
(
(TV N )

2
))

.

With Lemma A.7 (p.2770) it is known

Var(B) ≤ Var(A) + Var(B) + 2|Cov(A, B)| ≤
(√

Var(A) +
√

Var(B)
)2

and therefore

Var(C6) ≤

a∏
i=1

(
ni

8

)
−

a∏
i=1

(
ni−8

8

)

162 ·
a∏

i=1

(
ni

8

) Var

(
1

6
Λ7(1, . . . , 8) − 1

2
Λ8(1, . . . , 8)

)
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Var(C6) ≤

a∏
i=1

(
ni

8

)
−

a∏
i=1

(
ni−8

8

)

162 ·
a∏

i=1

(
ni

8

)

×
(√

O
(
tr4
(
(TV N )

2
))

+

√
O
(
tr4
(
(TV N )

2
)))2

Var(C6) =

a∏
i=1

(
ni

8

)
−

a∏
i=1

(
ni−8

8

)

162 ·
a∏

i=1

(
ni

8

) O
(
tr4
(
(TV N )

2
))

.

Lemma E.2. With the estimators introduced in the previous lemmata it holds
for fixed a

C6

A2
4

−
tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) P−→ 0 for d, nmin → ∞.

If q > 1 exists with nmin = O(aq), the convergence even holds in the asymptotic
frameworks (4)–(5).

Proof. Again we first consider the parts:

E

⎛
⎝ C6

tr2
(
(TV N )

2
) −

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
)

⎞
⎠ =

E (C6)

tr2
(
(TV N )

2
) −

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) = 0.

Var

⎛
⎝ C6

tr2
(
(TV N )

2
) −

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
)

⎞
⎠

≤
∏a

i=1

(
ni

8

)
−∏a

i=1

(
ni−8

8

)

162 ·∏a
i=1

(
ni

8

)
O
(
tr4
(
(TV N )

2
))

tr4
(
(TV N )

2
)

≤
∏a

i=1

(
ni

8

)
−∏a

i=1

(
ni−8

8

)
∏a

i=1

(
ni

8

) · O(1).

So with Lemma A.6 (p.2770) for fixed a and d, nmin → ∞ and moreover if the
additional condition is fulfilled even for the asymptotic frameworks (4)–(5), it
follows

C6

tr2
(
(TV N )

2
) −

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) P−→ 0.

Analogue to the proof of Lemma 4.2 it follows tr2
(
(TV N )

2
)/

A2
4

P−→ 1.
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Together this leads to

C6

A2
4

−
tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) =

C6

tr2
(
(TV N )

2
) ·

tr2
(
(TV N )

2
)

A2
4

−
tr
(
(TV N )

4
)

tr2
(
(TV N )

2
)

=
C6

tr2
(
(TV N )

2
) · (1 +OP(1)) −

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) =OP(1) +OP(1) =OP(1).

Again in most cases, the subsampling-type version of this estimator should
be used.

Lemma E.3. Let be

C�
6 (B) =

1

16B

B∑

b=1

(
Λ7(σ(b, 8))

6
− Λ8(σ(b, 8))

2

)
.

Then it holds

E (C�
6 (B)) = tr

(
(TV N )

4
)

,

Var (C�
6 (B)) ≤

(
1 −
(

1 − 1

B

)
·

a∏

i=1

(
ni−8

8

)
(
ni

6

)
)

· O
(
tr4
(
(TV N )

2
))

.

Proof. By using the same steps as before it holds

E (C�
6 (B))

=
1

16B

B∑

b=1

E
(

Λ7(�1,1, . . . , �8,a)

6
− Λ8(�1,1, . . . , �8,a)

2

)

=
1

16B

B∑

b=1

E

×

⎛
⎜⎝
[
Z(1,2)

�TZ(3,4)

]2
·

⎛
⎜⎝

[
Z(1,2)

�TZ(3,4)

]2

6
−

[
Z(5,6)

�TZ(7,8)

]2

2

⎞
⎟⎠

⎞
⎟⎠

E.1
=

1

16B

B∑

b=1

tr
(
(2TV N )

4
)

= tr
(
(TV N )

4
)

.

Var (E (C�
6 (B)|F(σ(B, 8)))) = Var

(
tr
(
(TV N )

4
))

= 0.

Var (C�
6 (B))

= 0 + E (Var (C�
6 (B)|F(σ(B, 8))))

A.7
≤ 1

162B2
E
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×

⎛
⎝ ∑

(j,�)∈N2
B\M(B,σ(b,8))

Var

(
Λ7(σ(j, 8))

6
− Λ8(σ(j, 8))

2

∣∣∣F(σ(B, 8))

)⎞
⎠

=
Var
(

Λ7(�1,1,...,�8,a)
6 − Λ8(�1,1,...,�8,a)

2

)

162B · (E (|N2
B \ M(B, σ(b, 8))|))−1

E.1
≤
(

1 −
(

1 − 1

B

)
·

a∏

i=1

(
ni−8

8

)
(
ni

8

)
)

· O
(
tr4
(
(TV N )

2
))

.

With Lemma C.7 we get an estimator for τCQ with τ̂CQ(C�
6 , A4) = C�

6/A2
4

and once more for a large number of groups A�
4 should be used.

Lemma E.4. Theorem 4.1 is also valid if fP is replaced by fCQ or by
(τ̂CQ(C6, A4))

−1. Using C�
6 or A�

4 also doesn’t change the result. Identical the
result of Lemma E.2 remains true if one or all estimators are replaced by their
subsampling version.

Proof. With Lemma A.8 we know fP → 1 ⇔ fCQ → 1 and fP → 0 ⇔ fCQ → 0
so in both cases KfP

is asymptotically identic with KfCQ
.

From Lemma E.2 we know that τ̂CQ −τCQ converges in probability to zero so
this result follows identically to Theorem 4.1. At last the subsampling versions
have the same properties as the standard estimators.

Therefore this is a second way to test the hypotheses and moreover, it provides
an indicator for the choice of the limit distribution, because of Lemma A.8. For
situation c) from Theorem 3.1 there is no proof that this approach can be used
but in the case of just one group, it leads to good results.
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Brunner, E., Rüther, E., Hajak, G. (2004). Prostaglandin-D-synthase
(beta-trace) in healthy human sleep. Sleep 27 867–874.

[26] Katayama, S., Kano, Y. and Srivastava, M. S. (2013). Asymptotic
distributions of some test criteria for the mean vector with fewer observa-
tions than the dimension. Journal of Multivariate Analysis 116 410–421.
MR3049913

[27] Kenward, M. G. and Roger, J. H. (2009). An improved approxima-
tion to the precision of fixed effects from restricted maximum likelihood.
Computational Statistics & Data Analysis 53 2583–2595. MR2665909

[28] Keselman, H. J., Algina, J. and Kowalchuk, R. K. (2001). The anal-
ysis of repeated measures designs. British Journal of Mathematical and
Statistical Psychology 54 1–20.

[29] Konietschke, F., Bathke, A. C., Harrar, S. W. and Pauly,
M. (2015). Parametric and Nonparametric Bootstrap Methods for
General MANOVA. Journal of Multivariate Analysis 140 291–301.
MR3372569

[30] Lecoutre, B. (1991). A Correction for the ε̃: Approximative Test in Re-
peated Measures Designs With Two or More Independent Groups. Journal
of Educational Statistics 16, 371–372.

[31] Liu, Z., Liu, B., Zheng, S. and Shi, N.-Z. (2017). Simultaneous testing
of mean vector and covariance matrix for high-dimensional data. Journal
of Statistical Planning and Inference 188 82–93. MR3648319

[32] Mathai, A. M. and Provost, S. B. (1992). Quadratic forms in random
variables. Marcel Dekker Inc., New York. MR1192786

[33] Nishiyama, T., Hyodo, M., Seo, T. and Pavlenko, T. (2013). Test-
ing linear hypotheses of mean vectors for high-dimension data with un-
equal covariance matrices. Journal of Statistical Planning and Inference
143 1898–1911. MR3095080

[34] Pauly, M., Ellenberger, D. and Brunner, E. (2015). Analysis of high-
dimensional one group repeated measures designs. Statistics 49(6) 1243–
1261. MR3415218

[35] Pesarin, F. and Salmaso, L. (2012). A review and some new results on
permutation testing for multivariate problems. Statistics and Computing
22 639–646. MR2865041

[36] Rao, C. R. and Mitra, S. K. (1971). Generalized Inverse of Matrices
and Its Applications. Wiley, New York. MR0338013

[37] Secchi, P., Stamm, A. and Vantini, S. (2013). Inference for the mean
of large p small n data: A finite-sample high-dimensional generaliza-
tion of Hotelling’s theorem. Electronic Journal of Statistics 7 2005–2031.
MR3085016



Inference for high-dimensional split-plot-designs 2805

[38] Skene, S. S. and Kenward, M. G. (2010). The analysis of very small
samples of repeated measurements II: A modified Box correction. Statistics
in Medicine 29 2838–2856. MR2758474

[39] Tyler, D. E., Critchley, F., Dümbgen L. and Oja, H. (2009). Invari-
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1. Motivation and introduction

In many studies, it is possible to conduct and handle a large number of mea-
surements, which makes high-dimensionality an increasingly important topic. In
fact, high-dimensional repeated measure designs or split-plot designs for multi-
ple groups are the objectives of many analyses in science. This is the case in life
science, where test persons were examined multiple times during a study, or in
the industry where some parameters are measured on a nearly continuous basis.
Therein we consider d measurements from N subjects, which are divided into
a independent and generally unbalanced groups where the i-th group contains
ni observations. Moreover, factor levels on the groups or repeated measures are
possible. For independent d-dimensional observation vectors Xik ∼ Nd(μi, Σi)
null hypotheses regarding μ = (μ1, ..., μa)� are investigated, where popular hy-
potheses are the existence of a group effect, a time effect as well as an interaction
effect between time and group. For a classical repeated measures ANOVA design
with d ≤ ni, this was treated for example in [6]. But in many cases, it is eas-
ier, cheaper, or ethically more justifiable to increase the number of repetitions
rather than increasing the sample size. Therefore techniques are needed, which
can handle the case of d > ni.

In the particular case with just two groups but a general distributional setting
and without restriction on the dimension d, this was treated in [7]. For more
groups and a more general setting regarding hypotheses, [9] uses a classical
ANOVA F test statistic, which has just an exact F-distribution for very special
covariance matrices. So under some conditions on ni/d or the relation between
the dimension and some power of traces containing the covariance matrix, they
developed a decent approximation for the test statistic.

In [10] they handle several cases with an increasing number of groups under
some requirements on the covariance matrices and the relation between sample
sizes and the number of factor levels. In contrast, [17] investigated the case with
just one normally distributed group, but fewer assumptions on the covariance
matrix and no specific relation between sample size and dimension.

[18] expand these results especially for a larger number of groups, which is also
allowed to approach infinity, together with the sample sizes and the dimension.
As a result of this, no restrictions on their respective convergence rate were
made. However, this does not treat the small n large a case which was, e.g.,
treated by [2] or [3] for fixed dimensions d and balanced designs ni ≡ n.

The importance of such large a small n cases increased in the last years, for
example, through more interest for personalized medicine, as mentioned in [1].
Here the idea is to develop treatments adapted to the properties of the patients,
see for example [11]. A similar idea is in stratified medicine, where depending on
common biological or other characteristics, appropriate therapies are developed
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for groups of patients. Therefore it is necessary to divide existing groups into
subgroups with smaller numbers of subjects. Also, in other areas like insurance,
there is a trend for more personalized products. Together with the frequent use
of high-dimensional data, there is a demand for more comprehensive asymptotic
frameworks.

Therefore, in addition to the large a small n case, we include the large d
small n case, further combining both and developing a technique that can be
used in each of these settings. To this end, we follow the same approach as
[12] and assume homogenous covariance matrices with Σi = Σ > 0, again
with no further assumptions on the structure of the covariance matrix Σ. The
homoscedastic setting allows some generalizations as well as a smaller number
of other requirements on the underlying statistical model.

This paper is organized as follows. Section 2 introduces the statistical model,
the investigated hypotheses, and the notations used in the paper’s remainder.
In Section 3, the test statistic is presented, as well as their asymptotic behavior
and an alternative small sample approximation. Section 4 contains simulations
regarding the type-I-error rate and the tests’ power, introduced in the previous
chapters. The paper closes with a short conclusion. For brevity and readability,
all proofs are shifted to the appendix.

2. Statistical model and hypotheses

We consider a homogenous split-plot design given by a independent and unbal-
anced groups of d-dimensional random vectors

Xi,j = (Xi,j,1, . . . , Xi,j,d)
� ind∼ Nd (μi,Σ) j = 1, . . . , ni, i = 1, . . . , a, (1)

whereby each vector represents the measurement of one independent subject. It
is assumed that mean vectors E(Xi,1) = μi = (μi,t)

d
t=1 ∈ Rd and one positive

definite covariance matrix Cov(Xi,1) = Σ > 0 exist. As usual j = 1, . . . , ni

denotes the individual subjects or units in group i = 1, . . . , a, a, ni ∈ N, so we
have a total number of N =

∑a
i=1 ni random vectors. This framework allows

a factorial structure regarding time, group or both, by splitting up the indices,
accordingly, see [13] for example.

Within this model linear hypotheses of repeated measures ANOVA, formu-
lated as

H0(H) : Hμ = 0 μ = (μ�
1 , . . . , μ�

a )�, (2)

are investigated. Here, H = HW ⊗ HS denots a proper hypothesis matrix,
where HW and HS refer to whole-plot (group) and/or subplot (time) effects,
while ⊗ denotes the Kronecker product.

For theoretical considerations it is often more convenient to reformulate
H0(H) through a corresponding projection matrix T = H�[HH�]−H , see
e.g. [17]. Here (·)− denotes some generalized inverse of the matrix and H0(H)
can equivalently be written as H0(T ) : Tμ = 0. As discussed in [18], T has the
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form T = T W ⊗ T S for projection matrices T W and T S . Now hypotheses of
interest are for example given by

(a) No group effect:
Ha

0 :
(
P a ⊗ 1

dJd

)
μ = 0,

(b) No time effect:
Hb

0 :
(

1
aJa ⊗ P d

)
μ = 0,

(c) No interaction effect between time and group:
Hab

0 : (P a ⊗ P d) μ = 0.

Here, Jd is the d-dimensional matrix only containing 1s and P d := Id −1/d ·
Jd is the centering matrix.

It is often useful to split the expectation vector into its components to simplify
the interpretation. With the common conditions

∑
i αi =

∑
t βt =

∑
i,t(αβ)it =

0, this can be done by expanding

μi,t = μ + αi + βt + (αβ)it, i = 1, . . . , a; t = 1, . . . , d.

Here, αi ∈ R describes the i-th group effect, βt ∈ R the time effect at time point
t and (αβ)it ∈ R the (i, t)-interaction effect between group and time. Thereby
the above hypotheses can alternatively be formulated through

(a) Ha
0 : αi ≡ 0 for all i,

(b) Hb
0 : βt ≡ 0 for all t,

(c) Hab
0 : (αβ)it ≡ 0 for all i, t.

3. Test statistics and their asymptotics

In this work, we consider the following five different asymptotic frameworks,
which are:

a → ∞, (I)

a, d → ∞, (II)

a, nmax → ∞, (III)

d, nmax → ∞, (IV)

a, d, nmax → ∞. (V)

This great diversity is exceptional and distinguishes the present proposal
from nearly all other approaches. Most of the existing procedures just consider
special cases of one of these cases (for example [7] (IV) with a = 1 or [17] (IV)
with a = 2). Others allow for only one as [9] for (IV) or [2] for (I).

In contrast, our framework allows the combination of any of these assump-
tions. However, d → ∞ alone is not included as this would not allow the con-
struction of consistent trace estimators of covariances which are later needed
for inference. Moreover, the case nmax = max(n1, ..., na) → ∞ with fixed a and
d has already been studied in detail in the literature and is thus excluded here,
see, e.g., [8] or [4] and the references cited therein.
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It is apparent that in contrast to [18] and other papers, the common
conditions of ni

N → κi ∈ (0, 1) are missing. This is relevant because it allows
an appreciably larger amount of settings, especially for a → ∞. But it also
clearly generalizes the model for the case of fixed a, e.g. in unbalanced settings,
where we only let some group sample sizes converge to ∞.

To examine the validity of the null hypothesis H0(T ) : Tμ = 0 unattached

from the asymptotic framework, we use QN = N · X�
TX. Here X = (X

�
1 , . . .

X
�
a )� with Xi = n−1

i

∑ni

j=1 Xi,j , i = 1, . . . , a, denotes the vector of pooled
group means. Unfortunately for many covariance matrices Σ, the random vari-
able QN tends to converge to infinity, for d → ∞ or a → ∞. To avoid this
behaviour the standardized quadratic form given by

W̃N =
QN − EH0(QN )√

VarH0(QN )
,

is used, which also enables us to evaluate all limit distributions in detail.

For normal distributed observations the expectation and variance of the
quadratic form is known and it follows that

E(QN ) = tr(T SΣ) ·
a∑

i=1

N
ni

(T W )ii

Var(QN ) = 2 · tr((T SΣ)2) ·
a∑

i=1

a∑
r=1

N2

ninr
(T W )2ir.

Observe, that for both values only the first factor tr(T SΣ) resp. tr((T SΣ)2)
depends on the unknown covariance matrix, while all other quantities are known
from the test setting.

Applying the representation theorem for quadratic forms in normaly dis-
tributed random vectors from [16] we can rewrite the standardized statistic W̃N

as

W̃N =
QN − EH0(QN )

VarH0 (QN )
1/2

D
=

ad∑

s=1

λs√∑ad
�=1 λ2

�

(
Cs − 1√

2

)
. (3)

Here λs are the eigenvalues of TV NT in decreasing order, V N =
⊕a

i=1
N
ni

Σ and

(Cs)s is a sequence of independent χ2
1-distributed random variables. As a conse-

quence, the asymptotic behaviour of the eigenvalues, determine the asymptotic
limit distribution of W̃N . In fact, we obtain in generalization of [17] and [18]:

Theorem 1. Let βs = λs

/√∑ad
�=1 λ2

� for s = 1, . . . , ad. Then W̃N has, under

H0(T ), and one of the frameworks (I)-(V) asymptotically

a) a distribution of the form
∑r

s=1 bs (Cs − 1) /
√

2+
√

1 −∑r
s=1 b2

s ·Z, if and
only if

for all s ∈ N βs → bs as N → ∞,

for a decreasing sequence (bs)s in [0, 1] with r := #{bi �= 0}, while Ci
i.i.d.∼

χ2
1, Z ∼ N (0, 1).
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b) a distribution of the form
∑∞

s=1 bs (Cs − 1) /
√

2, if

for all s ∈ N βs → bs as N → ∞,

for a decreasing sequence (bs)s in (0, 1) with
∑∞

s=1 b2
s = 1 and Ci

i.i.d.∼ χ2
1.

Putting the results into context. [7] only considered case a) with r =
0. [18] at least found asymptotic results in case b) but for case a) they need
r ∈ {0, 1}. So this theorem is not only distinct from other results through the
variety of asymptotic settings. It also considerably enhances the continuum of
limit distributions through a mixture of normal distribution and finite sums
of weighted standardized χ2

1-distributed random variables. Furthermore, the if
and only if relation shows the importance of the demands for the standardized
eigenvalues and that it isn’t possible to relax them.

To use this test statistic, it is necessary to construct proper estimators with
the necessary properties. One of these is ratio-consistency, where we call an esti-

mator θ̂n,d for θ ratio-consistent, if it holds θ̂n,d/θ
P→ 1. To get such estimators,

we define

A1 = 1∑a
i=1(ni−1)ni

a∑
i=1

ni∑
�1<�2=1

(Xi,�1 − Xi,�2)
�T S(Xi,�1 − Xi,�2

and

A2 =
a∑

i=1

ni∑
�1,�2=1
�1>�2

ni∑
k2=1

k2 �=�1 �=�2

ni∑
k1=1

�2 �=�1 �=k1>k2

[
(Xi,�1

−Xi,�2)
�

T S(Xi,k1
−Xi,k2)

]2

4·6∑a
i=1 (ni

4 )
.

Below we prove that they are unbiased and ratio consistent estimators for

tr(T SΣ) and tr
(
(T SΣ)

2
)
, respectivly, under both, the nullhypothesis and the

alternative. This allows us to define the estimated version of our test statistic
by

WN =
QN − A1 ·∑a

i=1
N
ni

(T W )ii√
2 · A2 ·∑a

i=1

∑a
r=1

N2

ninr
(T W )2ir

.

The following Lemma justifies the usage of the estimated version instead of
the exact one.

Theorem 2. Under H0(T ) : Tμ = 0ad and one of the frameworks (I)-(V) the

statistic WN has the same asymptotic limit distributions as W̃N , if the respective
conditions (a)-(b) from Theorem 1 are fulfilled.

Unfortunately, the calculation of the standardized eigenvalues βs is generally
not simplified through homogeneity. Therefore it is nearly impossible to find
an appropriate estimator which can be used in all our frameworks. Moreover,
simulations showed that large sample sizes, dimensions or number of groups are
necessary for a good approximation, which make quantiles based on Theorem 1
a) difficult to apply. For similar reasons, in [17] and [18] they used the quantiles
of a random variable of the kind

Kf = (χ2
f − f)/

√
2f, (4)
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in case of β1 → {0, 1}. The choice of fP = tr3
(
(TV N )2

)
/ tr2

(
(TV N )3

)
for the

degrees of freedom lead to a third moment approximation. In our homoscedastic
model the usage of this random variable KfP

is based on the following theorem.

Theorem 3. Under the conditions of Theorem 1 and one of the frameworks
(I)-(V) the random variable KfP

has, under H0 : Tμ = 0ad, asymptotically

a) a standard normal distribution if β1 → 0 as N → ∞,
b) a standardized

(
χ2

1 − 1
)
/
√

2 distribution if β1 → 1 as N → ∞.

With the well known rules for the kronecker product and traces we can de-
compose the parameter fP by

fP =
tr3

(
(T SΣ)

2
)

tr2
(
(T SΣ)

3
) ·

tr3
(
[diag(N/n1, ..., N/na) · T W ]

2
)

tr2
(
[diag(N/n1, ..., N/na) · T W ]

3
) =:

tr3
(
(T SΣ)

2
)

tr2
(
(T SΣ)

3
) ·ηN,a.

The connection between fP and β1 in the two extreme cases, i.e. β1 → 0 if
and only fP → ∞ and β1 → 1 if and only if fP → 1, have been investigated in
[17] for the case of a = 1 but also translate to the present framework.

Here we have to estimate the first part, while the second one ηN,a just depends
on the asymptotic setting and therefore is known. This allows us to use the same
estimated traces for different hypothesis which differ only in T W .

Moreover, for ηN,a → ∞, we also have fP → ∞, without estimation, because

tr3
(
(T SΣ)

2
)
/tr2

(
(T SΣ)

3
)

≥ 1. Otherwise, however, the behaviour of fP is

unclear and we have to find consistent estimators for tr
(
(T SΣ)

3
)

in all our

different frameworks. This achieved by considering the class of estimators

Ci,1 :=
1

8

ni∑

�1 �=...�=�6=1

Y �
i,�1,�2Y i,�3,�4Y

�
i,�3,�4Y i,�5,�6Y

�
i,�5,�6Y i,�1,�2 ,

with Y i,�1,�2 := T S(Xi,�1 − Xi,�2). These are based on suitable symmetrized
U-statistics, while 	1 �= 	2 �= ... �= 	6 means that all indices are different.

Afterwards these estimators for each individual group are combined, to get
an estimator which uses the observations of each group, given by

C1 :=
1

6! ·∑a
j=1

(
nj

6

)
a∑

i=1

Ci,1.

Together with the estimators from above, we can construct a consistent esti-
mator for fP by f̂P := A3

2/C2
1 · ηN,a.

Theorem 4. In all our frameworks (I)-(V), it holds that

i) C1 is an unbiased estimator for tr
(
(T SΣ)

3
)
,

ii)
(
f̂P

)−1

− (fP )
−1 P→ 0,
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where P denotes convergence in propabilty.

Through the usage of U-statistics with a kernel of order 6, for each estimator
C1,i, 6! ·

(
ni

6

)
summations have to be done. In contrast, estimators based on

observations from all groups would require much higher numbers. For example
in [18]

∏a
i=1 6! ·

(
ni

6

)
summations are necessary. Due to homogeneity, we don’t

need this kind of estimator, but C1 also requires 6!·∑a
j=1

(
nj

6

)
summations, which

is already really high, even for comparatively small samples sizes or numbers
of groups. Thus, as in [18], the usage of subsampling versions of our estimators
is reasonable to make them applicable in practice. Instead of summing up all
possible index combinations of one group, the underlying idea is only to do this
for a randomly chosen subset of combinations.

To define the subsampling version, it is first necessary to introduce some
definitions and notations. A parameter υ ∈ (0, ∞) is chosen and used to define
wi =

⌈
υ ·
(
ni

6

)⌉
, i = 1, ..., a as the number of subsampling repetitions done for the

i-th group. It is clear that the choice of υ has a great influence on the calculation
time and accuracy, so it should be chosen suitable for the situation.

Then, random subsamples σi(b) = {σ1i(b), . . . , σ6i(b)} of length 6 from
{1, . . . , ni} are drawn independently for each i = 1, . . . , a and b = 1, . . . , wi,
to define the subsampling version of Ci,1 by

C�
i,1 = C�

i,1(wi) =

wi∑

b=1

Λ1(σi(b)) · Λ2(σi(b)) · Λ3(σi(b)).

Here
Λ1(	1, 	2, 	3, 	4, 	5, 	6) = Y �

i,�1,�2Y i,�3,�4 ,

Λ2(	1, 	2, 	3, 	4, 	5, 	6) = Y �
i,�3,�4Y i,�5,�6 ,

Λ3(	1, 	2, 	3, 	4, 	5, 	6) = Y �
i,�5,�6Y i,�1,�2 .

Combining them, allows to define the subsamling version of C1 by

C�
1 :=

1

8 ·∑a
j=1 wi

·
a∑

i=1

C�
i,1(wi).

Theorem 5. For
∑a

i=1 wi → ∞, if N → ∞ (which includes frameworks (I)-
(V)) it holds:

a) C�
1 is an unbiased estimator for tr

(
(T SΣ)

3
)
.

b) f̂�
P :=

A3
2

(C�
1 )2 · ηN,a fullfilles

(
f̂�

P

)−1

− (fP )
−1 P→ 0.

This way of defining the number of subsampling repetitions wi, guarantees
that the relation between the subsampled parts C�

1,i resembles the relation be-
tween the original C1,i. Although this can lead to great differences between the
subsampling sizes for the different groups, it ensures that single groups’ influence
is not too big.

These results allow formulating a more useable version of KfP
through the

following theorem.
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Theorem 6. The results of Theorem 3 remains valid if fP is replaced by f̂P or
f̂�

P .

For the estimation of the unknown traces, it would also be possible to con-
struct estimators that use observations from different groups. This is feasible
and seems reasonable, but in practice, we would again need subsampling ver-
sions of these estimators, which take care of the dataset’s structure. This is really
complicated and therefore not usable in practice. So we avoid these difficulties
by using estimators for the separate groups and combine them afterward.

Relaxing the assumption of homogeneous covariance matrices to Xij ∼
Nd(μi,Σi) with T SΣ1 = T SΣ2 = ... = T SΣa, which is essentially easier to ful-
fill, wouldn’t change the validity of the previous results. From a theoretical point
of view it would be even sufficient to assume tr((T SΣ1)

j) = tr((T SΣ2)
j) = ... =

tr((T SΣa)j) for j ∈ {1, 2, 3}, but this is nearly impossible to justify in practice.

Remark 1. a) The equality of the covariance matrices is a central condition
of our approach. Otherwise the structure of E(QN ) and Var(QN ) changes
considerably, and properties of all estimators holds no longer. The con-
squences of a violation strongly depends on the setting and are difficult
to assess. So if there exists an i ∈ Na with Σi �= Σ then tr((T SΣi)

j)/

tr(T SΣ)j) can be close to one for j = 1, 2 but stronlgy influence Q̂N , de-
pending on the interplay, the sample size and the asymptotic framework.

b) Therefore, in the frameworks (III)-(V), it is preferable to use the approach
from [18], if the condition seems less plausible.

c) All our introduced estimators are composed from estimators for the single
groups. This allows to recognize groups, whose traces vary widley from
the others, and therefore deteced groups with other covariance matrix
and assess their influence.

4. Simulation

For an evaluation of the finite sample behavior of the introduced method, we
have conducted extensive simulations regarding

(i) their ability in keeping the nominal significance level and
(ii) their power to detect certain alternatives in various scenarios.

Here we focus on the frameworks (I) and (II), which are the most interesting
ones because they don’t require the usual condition of increasing sample sizes.
Therefore they are a strict expansion of the settings considered in [18].

4.1. Type-I error

To check the type-I error rate for α = 5% we consider small(d = 5, d = 50),
moderate(d = 200) and large dimension(d = 600) and increasing the number of
groups from 2 to 12. The sample sizes are fixed in a quite unbalanced setting
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given by n = (n1, ..., n12) = (15, 15, 20, 35, 25, 20, 30, 30, 35, 20, 15, 25). We used
10,000 simulation runs and chose υ = 0.05 for our subsampling type estimators.
Thereby, the number of subsamling draws are between 251 and 81,158, one
basis of the quite unbalanced setting. Higher values for υ would increase the
accurancy but noticeable extend the computation time.

Two different null hypotheses are investigated to have a situation with β1 → 0
as well as with β1 → 1. These hypotheses are

• Ha
0 : (P a ⊗ P d) μ = 0,

• Hb
0 :
(

1
aJa ⊗ 1

dJd

)
μ = 0.

For both hypotheses the same distributional setting is choosen, with Σ as a
autoregressive covariance matrix with parameter 0.6 e.g. (Σ)i,j = 0.6|i−j| and
μi = 0d for i = 1, ..., a, to achieve better comparabilty. For Hb

0 it holds τP ≡ 1
while the values for Ha

0 can be seen in Table 1

Table 1
τP for T = 1

a
Ja ⊗ 1

d
Jd and (Σ)ij = 0.6|j−i| with different dimension and numbers of

groups.

τP a=2 a=3 a=4 a=5 a=6 a=7 a=8 a=9 a=10 a=11 a=12

d=5 .524 .268 .189 .146 .122 .105 .097 .092 .080 .074 .070

d=50 .100 .051 .036 .028 .023 .020 .019 .018 .015 .014 .013

d=200 .025 .013 .009 .007 .006 .005 .005 .004 .004 .004 .003

d=600 .008 .004 .003 .002 .002 .002 .002 .001 .001 .001 .001

All tests ψz = 11(WN > z1−α), ψχ = 11(WN > χ2
1;1−α) and ϕ�

N = 11{WN >
Kf̂P ;1−α} are used while χ2

1;1−α denotes the 1 − α quantile of a χ2
1 distribution

and Kf̂P ;1−α the 1 − α quantile of Kf̂P
. It must be noted that in the follow-

ing figures, we use different axes for each setting to make them as detailed as
possible.

In Figure 1 it can be seen that for β1 → 0, the usage of ψχ results in too
conservative test decisions, especially for larger dimension. So, in this case, a
rate that is in most cases lower than 0.04 would lead to a raised number of
rejections when the null hypothesis is true. However, ψz has too high type-I
error rates, especially in the case of small d=5. But, this improves for a higher
dimension as well as a larger number of groups. For all dimensions, ϕ�

N shows
by far the best type-I error control rates and performs well with comparatively
low dimensions or just a few groups. It can be seen that the error rates have
less fluctuation for higher numbers of groups. The reason for this is that for
fixed comparatively small sample sizes, an increasing number of groups not
only improves the approximation but also is necessary to get reliable estima-
tors.

In contrast, there is nearly no difference between ψχ and ϕ�
N in Figure 2.

This similarity is not surprising because from Figure 1 we know that fP always
has the value one. Furthermore, the small difference between both curves shows
once more the good performance of the used estimators. Apart from that, again,
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Fig 1: Simulated Type-I error rates (α = 5%) for ψz(—), ψχ (· · ·) and ϕ�
N (- -)

under the null hypothesis Ha
0 : (P a ⊗ P d) μ = 0 for increasing dimension.

the performance of ϕ�
N is quite good, particularly for a higher number of groups.

Using the test ϕz that is based on the wrong limit distribution under Hb
0 results

in considerably larger type-I error rates between 0.065 and 0.085.

To sum up, ϕ�
N shows really good type-I error rates, overall settings, di-

mensions, and group numbers, even for substantially unbalanced sample sizes,
containing groups with just a few observations.

4.1.1. Power

The property to detect deviations from the nullhypothesis is investigated by
considering the same distributional setting as for the type-I error rate, with
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Fig 2: Simulated Type-I error rates (α = 5%) for ψz(—), ψχ (· · ·) and ϕ�
N (- -)

under the null hypothesis Hb
0 :
(

1
aJa ⊗ 1

dJd

)
μ = 0 for increasing dimension.

the same hypotheses. For this analysis we choose d = 50 and small(a = 2),
moderate(a = 4) and large(a = 8, a = 10) number of factor levels.

We are interested in three kinds of alternatives:

• a trend-alternative with μ1 = μ3 = ...., μ9 = 0d and (μ2)k = (μ4)k, ...,
(μ10)k = δ · k/d, k = 1, ..., d, δ ∈ [0, 2],

• a one-point-alternative with μ1 = μ3 = ...., μ9 = 0d and μ2 = μ4, ...,
μ10 = δ · e1, δ ∈ [0, 3.5] and

• a shift-alternative with μ1 = μ3 = ...., μ9 = 0 and (μ2) = (μ4), ..., (μ10) =
δ · 1d for Hb

0, δ ∈ [0, 2]

Here e� denotes the vector containing 1 in the 	 − th component, and 0
elsewhere and 1d contains just 1’s in each component.
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Fig 3: Simulated power curves of ϕ�
N for a trend alternative with d = 50, 10000

simulation runs and an autoregressive structure((Σ)i,j = 0.6|i−j|). The sample
size is n = (15, 15, 20, 35, 25, 20, 30, 30, 35, 20) and different numbers of groups
were considered, namely a = 2(—), a = 4(- -), a = 8(· · ·) and a = 10(· − ·−).

From the simulation result given in [18], it directly follows that it is challeng-
ing to detect the one-point alternative for d = 50 depending on the hypothesis.
For this reason, we here consider a much larger value for δ.

For the trend alternative(Figure 3), ϕ�
N has a high power for both null hy-

potheses where the power is essential higher for Hb
0. Increasing the number of
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Fig 4: Simulated power curves of ϕ�
N for a one-point alternative with d = 50,

10000 simulation runs and an autoregressive structure((Σ)i,j = 0.6|i−j|). The
sample size is n = (15, 15, 20, 35, 25, 20, 30, 30, 35, 20)and different numbers of
groups were considered, namely a = 2(—), a = 4(- -), a = 8(· · ·) and a =
10(· − ·−).

groups also increases the power in both hypotheses. It is noticeable that for Ha
0

increasing the number from 8 to 10 groups has substantially more effect than
from 2 to 4 groups while for Hb

0 it’s vice versa.

As expected, detecting the one-point alternative(Figure 4) is challenging for
both hypotheses, so the power is low in both cases, even for larger δ- values in
particular for Ha

0 . This observation coincides with the power calculations from
[18]. But it can be seen that an increasing number of groups increase the power
essentially.

Finally, we considered a shift alternative(Figure 5), but just for Hb
0. As in

other cases([17],[18]), this alternative is comparatively easy to detect. This holds
in particular for an increasing number groups.

All in all, except for the one-point alternative, ϕ�
N has very high power even

for these small sample sizes, especially n1 = n2 = 15. Moreover, Hb
0 is much

easier to detect in all settings.
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Fig 5: Simulated power curves of ϕ�
N for a shift alternative with d = 50, 10000

simulation runs and an autoregressive structure((Σ)i,j = 0.6|i−j|). The sample
size is n = (15, 15, 20, 35, 25, 20, 30, 30, 35, 20)and different numbers of groups
were considered, namely a = 2(—), a = 4(- -), a = 8(· · ·) and a = 10(· − ·−).

5. Conclusion

The present paper investigated a procedure for homoscedastic split-plot designs
under various settings containing different kinds of potential high-dimensionality.
Under equal covariance matrices or similar conditions (as mentioned in Sec-
tion 2), results for settings with, for example, a large number of small indepen-
dent groups are found. These kinds of data sets nowadays get more important
because there is a trend to divide data sets more, e.g., in the context of personal-
ized medicine or personalized insurance. Different from existing approaches, we
take this development into account by considering a variety of different frame-
works.

We were able to expand the central theorem of [18] also to cover this case for
the price of the additional assumption of equal covariance matrices. Moreover,
we generalized it to some more cases, in some sense completing the scope of the
theorem. For all settings, we approximate the critical value of the test statistic
by a standardized χ2

f distribution with appropriate f . To use these results, we
developed estimators that can be used unattached of the asymptotic framework.

We conducted simulations to investigate the level of the resulting test as well
as its power. The outcomes were convincing, especially for a larger number of
groups.

Unfortunately, it is not that easy to verify the assumption of equal covariance
matrices or just equal powers of traces. The most popular test under normality,
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Box’s M-test [5], has quite good results but doesn’t take care of our asymptotic
frameworks. High-dimensional tests of equal covariance matrices are a field of
great interest, which was, for example, investigated in [14] and [15]. We plan to
combine their techniques with the results obtained in [19] in the near future.

Finally, various adjustments of estimators are planned to improve their per-
formance when the homogeneity is violated.

6. Appendix

Proof of Theorem 1. For this proof, it is helpful to present the theorem in a
more detailed way.

Let βs = λs

/√∑ad
�=1 λ2

� for s = 1, . . . , ad. Then W̃N has, under H0(T ), and

one of the frameworks I-V asymptotically

a) a standard normal distribution if and only if

β1 = max
s≤ad

βs → 0 as N → ∞,

b) a standardized
(
χ2

1 − 1
)
/
√

2 distribution if and only if

β1 → 1 as N → ∞,

c) a distribution of the shape
∑r

s=1 bs (Cs − 1) /
√

2 +
√

1 −∑r
s=1 b2

s · Z, if
and only if

for all s ∈ N βs → bs as N → ∞,

for a decreasing sequence (bs)s in [0, 1) with r ∈ N \ {1} with br > 0 and

br+1 = 0 with Ci
i.i.d.∼ χ2

1, Z ∼ N (0, 1).
d) a distribution of the shape

∑∞
s=1 bs (Cs − 1) /

√
2, if

for all s ∈ N βs → bs as N → ∞,

for a decreasing sequence (bs)s in (0, 1) with
∑∞

s=1 b2
s = 1 and Ci

i.i.d.∼ χ2
1.

The first two parts as well as the last one were proved in [18].

For part c) from Cramers theorem it is well known that it needs an infinite
number of summands to get a normal distribution as limit distribution. So it
exists a infinite amount M ⊂ N with

∑

�∈M

β�

(
C� − 1√

2

)
D→

√√√√1 −
r∑

s=1

b2
s · Z.

The proof of part a) shows, that β� → 0 for all 	 ∈ M , and because of the
decreasing order there exists an r′ ∈ N with br′ > 0 and br′+1 = 0. Assume
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now that β� → b′
� for 	 = 1, ..., r′ otherwise consider the subsequence where this

holds. It remains to show that from

r′∑

�=1

β�

(
C� − 1√

2

)
→

r′∑

�=1

b′
�

(
C� − 1√

2

)
D
=

r∑

�=1

b�

(
C� − 1√

2

)
,

it follows r = r′ as well as b� = b′
�. To this aim, we consider the Moment-

generating functions, so we know, for all t ∈ R

r′∏
�=1

(
1 − 2b′

�t√
2

)−1/2

exp
(
−t

b′
�√
2

)
=

r∏
�=1

(
1 − 2b�t√

2

)−1/2

exp
(
−t b�√

2

)
.

Thus, applying the continous mapping theorem we have for all t ∈ R
(

r′∏
�=1

(
1 − 2b′

�t√
2

)−1/2

exp
(
− b′

�t√
2

))−2

=

(
r∏

�=1

(
1 − 2b�t√

2

)−1/2

exp
(
− b�t√

2

))−2

⇔
r′∏

�=1

(
1 −

√
2b′

�t
)
exp(−

√
2b′

�t) =
r∏

�=1

(
1 −

√
2b�t

)
· exp(−

√
2b�t).

Now we consider the zero points of both sides, which are a consequence of
the polynomial parts and can be written by 1√

2b�
resp. 1√

2b′
�

. It can be directly

inferred from this that both polynomials has the same degree and therefore r′ =
r. Moreover, both of them have the same zero points with the same multiplicity.
So the coefficients are the same on both sides, and because of the decreasing
order, it follows b� = b′

� for 	 = 1, ..., r. Therefore the result follows.

Given the fact that framework III is not really high-dimensional, and I just
partwise, it would be possible to use other more classical estimators for the
unknown traces. Nevertheless, our focus was to develop preferably general esti-
mators that can be used in various settings.

Lemma 1. With

Ai,1 =
1

2

ni∑

�1 �=�2=1

(Xi,�1 − Xi,�2)
�T S(Xi,�1 − Xi,�2)

we can define

A1 =
1∑a

i=1(ni − 1)ni

a∑

i=1

Ai,1,

which is an unbiased and ratio consistent estimator for tr(T SΣ), in all of our
frameworks.

Proof. It is obvious that this is a unbiased estimator of tr(T SΣ). With well
known rules and analogous to [18] we calculate

Var(A1) ≤ 1

[
∑a

i=1 (ni
2 )]

2

a∑
i=1

(
ni

2

) ((
ni

2

)
−
(
ni−2

2

))
· O(tr2(T SΣ)).



3628 P. Sattler

Now we need a case analysis which is done for some of the following proofs.
So the first one is in detail and the other proofs are shorter. At first we consider
the case where nmax → ∞. Then

Var(A1) ≤ 1

[
∑a

i=1 (ni
2 )]·(nmax

2 )

a∑
i=1

(
ni

2

) ((
ni

2

)
−
(
ni−2

2

))
· O(tr2(T SΣ))

≤ 1

[
∑a

i=1 (ni
2 )]·(nmax

2 )

a∑
i=1

(
ni

2

) ((
nmax

2

)
−
(
nmax−2

2

))
· O(tr2(T SΣ))

=
((nmax

2 )−(nmax−2
2 ))

(nmax
2 )

· O(tr2(T SΣ))

= O
(
n−1

max

)
· O(tr2(T SΣ)).

For the other case nmax is bound and a → ∞. In this situation it holds

Var(A1) ≤ 1

[
∑a

i=1 (ni
2 )]·a·(nmin

2 )

a∑
i=1

(
ni

2

) ((
nmax

2

)
−
(
nmax−2

2

))
· O(tr2(T SΣ))

=
((nmax

2 )−(nmax −2
2 ))

a·(nmin
2 )

· O(tr2(T SΣ))

= O
(
a−1

)
· O(tr2(T SΣ))

So dividing by tr2(T SΣ) and then using the Tschebyscheff inequality leads
to the results in both cases.

For the estimated version of the standardized quadratic form, one more esti-
mator is needed.

Lemma 2. The estimator, given by

A2 =

a∑

i=1

ni∑

�1,�2=1
�1>�2

ni∑

k2=1
k2 �=�1 �=�2

ni∑

k1=1
�2 �=�1 �=k1>k2

[
(Xi,�1 − Xi,�2)

�
T S (Xi,k1 − Xi,k2)

]2

4 · 6
∑a

i=1

(
ni

4

) ,

is an unbiased and ratio-consistent estimator of tr
(
(T SΣ)

2
)

in all our asymp-

totic frameworks.

Proof. Again the unbiasedness is clear, and we consider the variance.
We calculate, with Y i,�1,�2 := T S (Xi,k1 − Xi,k2),

Var(A2)

=

[
24

a∑
i=1

(
ni

4

)]−2 a∑
i=1

Var

⎛
⎝ ni∑

�1,�2=1
�1>�2

ni∑
k2=1

k2 �=�1 �=�2

ni∑
k1=1

�2 �=�1 �=k1>k2

[
Y �

i,�1,�2Y i,k1,k2

]2
⎞
⎠

≤
∑a

i=1 (ni
4 )((ni

4 )−(ni−4
4 ))

[4·∑a
i=1 (ni

4 )]
2 O

(
tr2

(
(T SΣi)

2
))

.

Similar as before for nmax → ∞ we get

Var(A2) ≤ O
(
nmax

−1
)

· O
(
tr2

(
(T SΣi)

2
))
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and for nmax bound and a → ∞

Var(A2) ≤ O
(
a−1

)
· O

(
tr2

(
(T SΣi)

2
))

.

Again the result follows by using Tschebyscheff’s inequality.

With these theorems, the usage of the estimated standardized quadratic form
can be justified.

Proof of Theorem 2. The result follows directly by theorem 3.2 from [18].

For the proof of Theorem 4, we need to show different properties that com-
bined lead to the result.

Proof of Theorem 4. We conduct this proof in several steps:

a) E(C1) = tr
(
(T SΣ)

3
)

,

b) Var(C1) =
∑a

j=1 (nj
6 )((nj

6 )−(nj−6

6 ))
(
∑a

i=1 (ni
6 ))

2 · O
(
tr3 ((T SΣ))

)
,

c) C1

tr3/2((T SΣ)2)
− tr((T SΣ)3)

tr3/2((T SΣ)2)
P→ 0 in our frameworks I-V,

d)
C2

1

A4
2

− (fP )−1 P→ 0 in our frameworks I-V.

The results from [18] directly yield to

E(C1) = tr
(
(T SΣ)

3
)

and

Var(C1) =

a∑

i=1

Var(Ci,1)

6! ·
a∑

j=1

(
nj

6

) ≤
∑a

j=1

(
nj

6

) ((
nj

6

)
−
(
nj−6

6

))
(∑a

i=1

(
ni

6

))2 · O
(
tr3 ((T SΣ))

)

which proves a) and b). Together with Tschebychefs inequality this leads to an

unbiased ratio consistent estimator for tr
(
(T SΣ)

3
)
.

For part c) we calculate

E

⎛
⎝ C1

tr3/2
(
(T SΣ)

2
) −

tr
(
(T SΣ)

3
)

tr3/2
(
(T SΣ)

2
)

⎞
⎠ = 0

and

Var

⎛
⎝ C1

tr3/2
(
(T SΣ)

2
) −

tr
(
(T SΣ)

3
)

tr3/2
(
(T SΣ)

2
)

⎞
⎠

=
Var (C1)

tr3
(
(T SΣ)

2
) ≤ 27 ·

∑a
j=1

(
nj

6

) ((
nj

6

)
−
(
nj−6

6

))
(∑a

i=1

(
ni

6

))2 · O(1)
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Again this number is in O(n−1
max) for nmax → ∞ and in O(a−1) for a → ∞. So

in both cases the result follows with the Tschebyscheff-inequality.
At last, the proof of part d) is done using the above results. A similar proof

is part of [18], but we repeat it for better understanding.
With the last lemma it follows for both cases that

C2
1

tr3
(
(T SΣ)

2
) − 1

fP

=

⎛
⎝ C1

tr3/2
(
(T SΣ)

2
)

⎞
⎠

2

−

⎛
⎝

tr
(
(T SΣ)

3
)

tr3/2
(
(T SΣ)

2
)

⎞
⎠

2

=

⎡
⎣ C1

tr3/2
(
(T SΣ)

2
) −

tr
(
(T SΣ)

3
)

tr3/2
(
(T SΣ)

2
)

⎤
⎦
⎡
⎣ C1

tr3/2
(
(T SΣ)

2
) +

tr
(
(T SΣ)

3
)

tr3/2
(
(T SΣ)

2
)

⎤
⎦

= OP (1) ·
[

C1

tr3/2((T SΣ)2)
− tr((T SΣ)3)

tr3/2((T SΣ)2)
+ 2

tr((T SΣ)3)
tr3/2((T SΣ)2)

]
=OP (1),

were for the last step the trace inquality was used together with Slutzky’s theo-

rem. With the ratio-consistency of A2 it follows A2/ tr ((T SΣ))
P→ 1 and because

of continous mapping tr3 ((T SΣ)) /A3
2

P→ 1. This leads to

C2
1

A3
2

− (fP )−1 =
tr3

(
(T SΣ)

2
)

A3
2

C2
1

tr3
(
(T SΣ)

2
) − (fP )−1

= (1 +OP (1)) · 1

f̂P
− 1

fP

=
1

f̂P

− 1

fP
+OP (1) · 1

f̂P
=OP (1).

It is obvious that this estimator needs a sufficiently large amount of groups
with at least six observations. Similar for the other estimators, which were intro-
duced earlier. From a theoretical point of view, a scenario with nmax ≤ 5 is part
of our model. In practice, however, this setting is rarely examined. In this case,
it would be possible to define some estimators which combine observations from
different groups, which would be much more complicated than our estimators.

Proof of Theorem 5. For this proof, some results of [18] are used and adapted.
First the expactation value of the estimator, using the notation w :=

∑a
i=1 wi:

E (C�
1 ) = E

(
1

8 ·∑a
i=1 wi

a∑

i=1

C�
i,1

)

=
1

8 · w

a∑

i=1

E
(
C�

i,1

)
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=
1

8 · w

a∑

i=1

E

(
wi∑

b=1

Λ1(σi(b)) · Λ2(σi(b)) · Λ3(σi(b))

)

=
1

8 · w

a∑

i=1

wi∑

b=1

E (Λ1(σi(b)) · Λ2(σi(b)) · Λ3(σi(b)))

=
1

8 · w

a∑

i=1

wi · E (Λ1(1, 2, 3, 4, 5, 6) · Λ2(1, 2, 3, 4, 5, 6) · Λ3(1, 2, 3, 4, 5, 6))

=
1

8 · w

a∑

i=1

wi · 8 tr
(
(T SΣ)

3
)

= tr
(
(T SΣ)

3
)

.

With Theorem A.9 Theorem A.10 and Theorem A.16 from [18] for the variance
we get

Var (C�
1 ) = 1

(8·w)2

a∑
i=1

Var
(
C�

i,1

)

≤ 1
(8·w)2

a∑
i=1

w2
i ·
[
0 + 1 −

(
1 − 1

wi

)
· (ni−6

6 )
(ni

6 )

]
.

Again there the same two cases. If nmax is bound and therefore max
i=1,...,a

(wi) is

bound, it follows a → ∞ and hereby

1
(8·w)2

a∑
i=1

w2
i ·
[
0 + 1 −

(
1 − 1

wi

)
· (ni−6

6 )
(ni

6 )

]

≤ 1
(8·w)·a· min

i=1,...,a
(wi)

· max
i=1,...,a

(wi)
a∑

i=1

wi · 1

= O
(
a−1

)
·

max
i=1,...,a

(wi)

min
i=1,...,a

(wi)

= O
(
a−1

)

while for nmax → ∞ which implies max
i=1,...,a

(wi) → ∞ we calculate first

w2
i ·
[
0 + 1 −

(
1 − 1

wi

)
·
(
ni−6

6

)
(
ni

6

)
]

= wi ·
[
wi ·

(
1 −

(
ni−6

6

)
(
ni

6

)
)

+

(
ni−6

6

)
(
ni

6

)
]

≤ wi ·
[(

υ ·
(

ni

6

)
+ 1

)(
1 −

(
ni−6

6

)
(
ni

6

)
)

+

(
ni−6

6

)
(
ni

6

)
]

= wi ·
[
υ

((
ni

6

)
−
(

ni − 6

6

))
+ 1

]
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≤ wi ·
[
υ

((
nmin

6

)
−
(

nmin − 6

6

))
+ 1

]

and therefore

≤ 1

(8 · w)
2

a∑

i=1

w2
i ·
[
0 + 1 −

(
1 − 1

wi

)
·
(
ni−6

6

)
(
ni

6

)
]

≤ 1

(8 · w)
2

a∑

i=1

wi ·
[
υ

((
nmin

6

)
−
(

nmin − 6

6

))
+ 1

]

≤ 1

(64 · w) · max
i=1,...,a

(wi)

a∑

i=1

wi ·
[
υ

((
nmin

6

)
−
(

nmin − 6

6

))
+ 1

]

≤ 1

(64 · w) ·
(
υ ·
(
nmax

6

)
− 1

)
a∑

i=1

wi ·
[
υ

((
nmin

6

)
−
(

nmin − 6

6

))
+ 1

]

=

[
υ
((

nmin

6

)
−
(
nmin−6

6

))
+ 1

]

64 ·
(
υ ·
(
nmax

6

)
− 1

) = O
(
n−1

max

)
.

Combining these results, the remainder of the proof follows analogously to the
proof of Theorem 4.
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