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Abstract
The issue ofmissing values is an arising difficulty when dealing with paired data.
Several test procedures are developed in the literature to tackle this problem.
Some of them are even robust under deviations and control type-I error quite
accurately. However, most of thesemethods are not applicable whenmissing val-
ues are present only in a single arm. For this case, we provide asymptotic correct
resampling tests that are robust under heteroskedasticity and skewed distribu-
tions. The tests are based on a meaningful restructuring of all observed infor-
mation in quadratic form–type test statistics. An extensive simulation study is
conducted exemplifying the tests for finite sample sizes under different miss-
ingness mechanisms. In addition, illustrative data examples based on real life
studies are analyzed.
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1 INTRODUCTION

Conducting statistical tests on units measured repeatedly requires the consideration of the dependence structure of the
resulting random vector. The simplest design is the matched pairs model, where units are measured at two endpoints
of the same subject. This design has experienced a large field of application, including industrial and life sciences. In
Biomedicine for example, several studies have been focused on identifying genes for up- or downregulated effects in head
and neck squamous, prostate, lung, or breast cell carcinoma (Kuriakose et al., 2004; Lapointe et al., 2004; Feng et al., 2008).
In common statistical analysis, testing the equality of means in matched pairs design is conducted using the paired 𝑡-test.
Even for nonnormal data, the procedure is asymptotically exact, that is, for sufficiently large samples, the test procedure is
correctly reflecting type-I error. However, first limitation of the paired 𝑡-test arises when data are only partially observed.
Deleting observations with missing values is a suboptimal solution, since variance or mean estimation based only on
complete case analysis can be biased leading to incorrect statistical inference. This is especially the case when complete
samples are small.
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To tackle this issue, a simple approach is to impute missing values singly (or multiply) and to carry out statistical tests
as if there were no missing values so far (Schafer, 1999; Rubin, 2004; Sterne et al., 2009). However, although leading to
good imputation error (Stekhoven & Bühlmann, 2011; Waljee et al., 2013; Ramosaj & Pauly, 2019), such approaches may
lead to inflated type-I error rate or remarkably low power in small to moderate sample sizes (Van Buuren, 2018; Ramosaj
et al., 2020). Therefore, we do not follow this approach here.
Differing to imputation, several test procedures that (only) use all observed information in the matched pairs design

have been proposed in the literature (Mehta & Gurland, 1969; Lin, 1973; Morrison, 1973; Lin & Stivers, 1974; Little, 1976;
Ekbohm, 1976; Bhoj, 1978; Looney & Jones, 2003; Kim et al., 2004; Xu & Harrar, 2012; Fuchs et al., 2017; Uddin & Hasan,
2017). These tests, however, rely on specific model assumptions such as symmetry or even bivariate normality, which are
hard to verify in practice. Moreover, these procedures are usually nonrobust to deviations and may result in inaccurate
decisions caused by possibly conservative or inflated type-I error rates (Samawi & Vogel, 2014; Amro & Pauly, 2017; Amro
et al., 2019; Qi et al., 2019; Harrar et al., 2020).
To overcome these problems, the typical recommendation is to use the method based on combining separate results

of adequate test statistics for the underlying paired and unpaired portions of the data using either weighted test statistics
(Samawi & Vogel, 2014; Amro & Pauly, 2017; Martínez-Camblor et al., 2013), a multiplication combination test (Amro
et al., 2019), or combined 𝑝-values (Rempala & Looney, 2006; Samawi et al., 2011; Yu et al., 2012; Kuan & Huang, 2013).
However, all these methods are only applicable for matched pairs with missingness in both arms. This is due to their
tests construction. Since, they are based upon combining the results of two independent tests for the related paired and
unpaired two-sample problem. As independence of these two tests is required, a direct adjustment to handle data with
missingness in one arm only is not possible. Thus, these methods cannot be used to analyze data on pathological stage
I breast cancer patients from the Cancer Genome Atlas (TCGA) project. This data set consists of observations from 90
patients of which 74 had entries in one component of it, only 16 were complete, see Section 7.1 for details. The question is
now how to analyze such data?
In contrast to the above methods, barely any work can be found that is potentially applicable in this special missing

pattern, requires no parametric assumptions and also leads to valid inferences in case of heteroskedasticity or skewed dis-
tributions. One exception is given by the recent proposals of Qi et al. (2019) who recommended a so-called nonparametric
combination test (NCT) and nonparametric 𝑝-value pooling methods (NPM). The NCT is based on merging the results
from Sign test andWilcoxon Mann–Whitney test while the NPM are based on combining 𝑝-values of theWilcoxon signed-
rank test and Mann–Whitney test. In situations where these two nonparametric procedures show their efficiency, their
proposed combination is indeed tempting. However, neither the Sign test is known to be very powerful for metric data
nor is the Mann–Whitney test known for being robust against heteroskedasticity. In fact, our simulation studies demon-
strate that the NCT and Fisher’s pooling method (FPM) as an NPM inherit these unsatisfying properties to some extent:
under heteroskedasticity and/or skewed distributions, the NCT and FPM tend to not maintain the pre-assigned type-I
error level. The degree of variance heterogeneity, skewness, and sample sizes can all affect the type-I error rate control
level. An example of the type-I error control of NCT and FPMwhen heteroskedasticity coincides with a skewed error dis-
tribution is displayed in Figure 1. It reveals that, under heteroskedasticity and an exponential distribution, the NCT and
FPM type-I error rate functions become surprisingly analogous to the power function where the type-I error rate increases
dramatically with an increase in sample sizes.
The aim of this paper is therefore bilateral: First, we aim to provide a statistical test that is capable of treating single-arm

missing values in matched pairs which drop the common assumptions such as homoskedasticity and normality, while
not losing (partial) information. Second, it should be able to satisfactorily control type-I error while maintaining good
power properties. To this end, we propose three different test statistics, analyze their asymptotic behaviors under the null
hypothesis and equip them with an asymptotically correct parametric bootstrap procedure for calculating critical values.
In doing so, we structured the paper by first introducing the statistical model and the hypothesis of interest. In Section 3,
we provide different test statistics of quadratic form–type that either converge to a𝜒2 or a weighted𝜒2-distribution. Proofs
presenting theoretical guarantees of the proposed methods are delivered in the supplement. In Section 4, we introduce
a parametric bootstrap technique to calculate critical values and prove its theoretical correctness. Section 5 is devoted to
already existing methods for statistical inference in matched pairs with single-arm missingness while in Sections 6 and
7, novel and existing methods are compared based on an extensive simulation study and three real life data examples.
The supplement contains additional theoretical details. For notational purposes, we state vectors or matrices in bold and
scalars in usual form.
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F IGURE 1 Type-I error simulation results
(𝛼 = .05) of the nonparametric combination test 𝑇𝑁

( ) and the Fisher’s 𝑝-value pooling method
𝑇𝐹 ( ) for exponential distribution under
correlation factor (𝜌 = .7) and a heteroskedastic
setup with variances 1 and 2, respectively, for
increasing sample sizes 𝑘 ⋅ (𝑛𝑐, 𝑛𝑢) = (𝑘 ⋅ 10, 𝑘 ⋅ 30)

under the MCAR framework

2 STATISTICALMODEL ANDHYPOTHESES

We consider matched pairs given by a sample 𝑛 ∶= {𝐗1, … ,𝐗𝑛}, where 𝐗𝑗 = [𝑋1𝑗, 𝑋2𝑗]
⊤
∈ ℝ2 are i.i.d. random vec-

tors with mean vector 𝔼[𝐗1] = 𝝁 = [𝜇1, 𝜇2]
⊤
∈ ℝ2 and an arbitrary covariance matrix 0 < 𝚪 =

[ �̃�2
1

𝜌�̃�1�̃�2
𝜌�̃�1�̃�2 �̃�2

2

]
∈ ℝ2×2,

where �̃�2
1
= var(𝑋11), �̃�2

2
= var(𝑋21) and 𝜌 = corr(𝑋11, 𝑋21). To incorporate missingness in one arm (says, the second)

only denote with 𝑅2𝑗 ∈ {0, 1}, 𝑗 = 1,… , 𝑛 the vector whose 𝑗th component indicates whether 𝑋2𝑗 is observed (𝑅2𝑗 = 1) or
missing (𝑅2𝑗 = 0) for 𝑗 = 1,… , 𝑛. Define the composition ∗ by 𝑎 ∗ 1 = 𝑎 and 𝑎 ∗ 0 = − − −, for all 𝑎 ∈ ℝ, then in practice,
one observes 𝐗(𝑜) ∶= {𝐗𝑗 ∗ 𝐑𝑗}

𝑛

𝑗=1
where 𝐑𝑗 = [1, 𝑅2𝑗]

⊤
∈ ℝ2, 𝑗 = 1,… , 𝑛, and a “− − −” entry is interpreted as missing.

Hence, our framework has the following form:[
𝑋

(𝑐)
11

𝑋
(𝑐)
21

]
, … ,

[
𝑋

(𝑐)
1𝑛𝑐

𝑋
(𝑐)
2𝑛𝑐

]
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝐗(𝑐)

,

[
𝑋

(𝑖)
11

−−−

]
, … ,

[
𝑋

(𝑖)
1𝑛𝑢

−−−

]
.

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
𝐗(𝑖)

(1)

Rubin defines the missing mechanism through a parametric distributional model on 𝐑 = {𝐑𝑗}
𝑛

𝑗=1
and classifies their

presence through Missing Completely at Random (MCAR), Missing at Random (MAR), and Missing not at Random
(MNAR) schemes (Rubin, 2004). In our work, we first assume an MCAR mechanism, in that 𝑿(𝑐) is independent of 𝑿(𝑖).
However, wewill also studyMARmechanisms in simulations and relate to the supplement for the explicit definition of the
missingmechanisms. For notational purposes, let 𝐼𝑛𝑐 denote the index set of |𝐼𝑛𝑐 | = 𝑛𝑐 complete pairs, that is,𝐑𝑗 = [1, 1]

⊤

for all 𝑗 ∈ 𝐼𝑛𝑐 . Similarly, 𝐼𝑛𝑢 is the index set of observations with second component missing (𝐑𝑗 = [1, 0]
⊤
, 𝑗 ∈ 𝐼𝑛𝑢 ) and|𝐼𝑛𝑢 | = 𝑛𝑢. Thus, there are in total 𝑁 = 2𝑛𝑐 + 𝑛𝑢 observations from 𝑛 = 𝑛𝑐 + 𝑛𝑢 subjects.

In this framework, we would like to use all the available data to test the null hypothesis𝐻0 ∶ {𝜇1 = 𝜇2} of equal means
against the alternative𝐻1 ∶ {𝜇1 ≠ 𝜇2}.
To construct our test statistics, we first fix estimators of the populationmeans 𝜇1, and 𝜇2. For estimating 𝜇1, we consider

two estimators; the sample mean of the first components of the completed data set �̄�(𝑐)
1.

=
1

𝑛𝑐

∑𝑛𝑐
𝑖=1

𝑋
(𝑐)
1𝑖
, and the sample
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mean of the first components of the unpaired data �̄�(𝑖)
1.

=
1

𝑛𝑢

∑𝑛𝑢
𝑗=1

𝑋
(𝑖)
1𝑗
. For estimating the population mean 𝜇2, we use the

sample mean of the second components of the complete data �̄�(𝑐)
2.

=
1

𝑛𝑐

∑𝑛𝑐
𝑖=1

𝑋
(𝑐)
2𝑖
. Next, we define the normalized vector

𝒁𝑛 that aggregates the difference between the mean values 𝝁 = [𝜇1, 𝜇2]
⊤ and their empirical estimators [�̄�(𝑐)

1.
, �̄�

(𝑐)
2.
, �̄�

(𝑖)
1.
]
⊤

𝒁𝑛 =
√
𝑛[�̄�

(𝑐)
1.

− 𝜇1, �̄�
(𝑐)
2.

− 𝜇2, �̄�
(𝑖)
1.

− 𝜇1]
⊤

(2)

and take their correlations into account in the covariance matrix

𝚺𝑛 ∶= cov(𝒁𝑛) =
⎡⎢⎢⎣

(𝑛∕𝑛𝑐)𝜎
2
1

(𝑛∕𝑛𝑐)𝜌𝜎1𝜎2 0

(𝑛∕𝑛𝑐)𝜌𝜎1𝜎2 (𝑛∕𝑛𝑐)𝜎
2
2

0

0 0 (𝑛∕𝑛𝑢)𝜎
2
1

⎤⎥⎥⎦ ,
where 𝜎2

1
= var(𝑋(𝑐)

11
) = var(𝑋(𝑖)

11
), 𝜎2

2
= var(𝑋(𝑐)

21
), and 𝜌 = corr(𝑋(𝑐)

11
, 𝑋

(𝑐)
21
).

To test the null hypothesis𝐻0 ∶ {𝜇1 − 𝜇2 = 0}, we define the two estimators �̄�(𝑐)
1.

− �̄�
(𝑐)
2.
and �̄�(𝑖)

1.
− �̄�

(𝑐)
2.
for𝜇1 − 𝜇2. Their

joined asymptotic behavior under the null hypothesis𝐻0 is studied below.

Proposition 1. Set 𝑓𝑨(𝐱) = 𝑨𝐱, for the matrix𝑨 =

[
1 −1 0

0 −1 1

]
∈ ℝ2𝑋3. Then, under the null hypothesis𝐻0 and the condition

that 𝑛𝑐

𝑛𝑐+𝑛𝑢
→ 𝜅1 ∈ (0, 1) and 𝑛𝑢

𝑛𝑐+𝑛𝑢
→ 𝜅2 = (1 − 𝜅1) ∈ (0, 1) as 𝑛 → ∞, the composite statistic

𝑓𝑨◦𝒁𝑛 = 𝐀𝐙𝑛 =
√
𝑛[�̄�

(𝑐)
1.

− �̄�
(𝑐)
2.
, �̄�

(𝑖)
1.

− �̄�
(𝑐)
2.
]
⊤

(3)

is asymptotically𝑁2(𝟎,𝐀𝚺𝐀⊤) distributed as 𝑛 → ∞.

Here, 𝚺 = lim
𝑛→∞

𝚺𝑛 =
⎡⎢⎢⎣

𝜅−1
1

𝜎2
1

𝜅−1
1

𝜌𝜎1𝜎2 0

𝜅−1
1

𝜌𝜎1𝜎2 𝜅−1
1

𝜎2
2

0

0 0 𝜅−1
2

𝜎2
1

⎤⎥⎥⎦ . (4)

3 STATISTICS AND ASYMPTOTICS

In this section, we propose three different quadratic forms for testing𝐻0: a Wald-type statistic (WTS), an ANOVA-L2-type
statistic (ATS), and a modified ANOVA-type statistic (MATS). To introduce the WTS, denote by 𝐁+ the Moore–Penrose
inverse of a matrix 𝐁. Then, the WTS is given by

𝑇𝑊 = (𝑨𝒁𝑛)
⊤
(𝑨�̂�𝑛𝑨

⊤)
+
(𝑨𝒁𝑛), (5)

where �̂�𝑛 is the plug-in sample estimator for 𝚺 given in (4), see the supplement for its explicit form. Thanks to the intro-
duced studentization by (𝑨�̂�𝑛𝑨

⊤)
+
, the WTS is asymptotically 𝜒2

2
-distributed under the null hypothesis as long as 𝚺 > 0

as proved in the supplement.
Similar WTS versions are also studied in the context of heteroskedastic ANOVA or MANOVA (Krishnamoorthy & Lu,

2010; Xu et al., 2013; Konietschke et al., 2015; Friedrich & Pauly, 2018). From these settings, it is known that the conver-
gence to its limiting 𝜒2-distribution is rather slow and large sample sizes are required to obtain adequate results (Vallejo
et al., 2010; Konietschke et al., 2015; Smaga, 2017), which leads to several refinements regarding bootstrapping for the cal-
culations of critical values (see Section 4) or other structures of test statistics. In particular Brunner (2001) proposed an
alternative quadratic form by deleting the estimated covariance matrix �̂�𝑛 involved in the computation of the WTS. Here,
we erase the Moore–Penrose inverse term from the WTS resulting in the following ATS:

𝑇𝐴 =
1

tr(𝐀�̂�𝑛𝐀⊤)
(𝐀𝒁𝑛)

⊤
(𝐀𝒁𝑛). (6)
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The ATS has the advantage of being applicable in case of singular covariance matrices (|�̂�𝑛| = 0). However, it has the
drawback of not being asymptotically distribution-free under the null hypothesis, see the supplement for details.
Another possible test statistic would be the MATS that was developed by Friedrich & Pauly (2018) for MANOVA mod-

els. The authors could provide preferable simulation results regarding its power behavior and type-I error control while
delivering theoretical guarantees for its validity. Hence, we consider a MATS (with a slight modification) in our design,
too. Here, it is given by

𝑇𝑀 = (𝑨𝒁𝑛)
⊤
�̂�𝑛(𝑨𝒁𝑛), (7)

where �̂�𝑛 = diag((𝐀�̂�𝑛𝐀
⊤)

+

ii ).
Similar to the ATS, the MATS is also not distribution-free under 𝐻0, see the supplement for the explicit form of its

limiting distribution. Thus, we cannot directly calculate critical values for 𝑇𝐴 and 𝑇𝑀 , respectively. In addition, the 𝜒2
2
-

approximation to 𝑇𝑊 is rather slow. To this end, we develop adequate and asymptotically correct testing procedures based
on bootstrap versions of 𝑇𝑊, 𝑇𝐴, and 𝑇𝑀 in the subsequent section.

4 PARAMETRIC BOOTSTRAPPING

To estimate critical values, we apply an asymptotic model-based bootstrap approach which has, for example, been applied
in the context of (M)ANOVA factorial designs (Konietschke et al., 2015; Friedrich & Pauly, 2018). To this end, we first
generate parametric bootstrap variables as

𝐗∗
𝑗
=

[
𝑋∗
1𝑗

𝑋∗
2𝑗

]
i.i.d
∼ 𝑁(0, �̂�), 𝑗 = 1,… , 𝑛. (8)

Here, �̂� =

[
𝜎2
1

𝜌𝜎1𝜎2
𝜌𝜎1𝜎2 𝜎2

2

]
is the empirical covariance matrix estimator, that is, 𝜎2

𝑖
denotes the sample variance calculated

on all observations in component 𝑖 and 𝜌 is the sample correlation obtained from 𝑿(𝑐). The idea is to reflect the original
covariance structure to obtain more accurate finite sample approximation. Next, we generate missing values under the
MCAR scheme by randomly inserting them to the second component of the bivariate vector 𝐗∗

𝑗
until a fixed amount of

missing values of size 𝑛𝑢 is achieved. This results into the following bootstrapped data set:[
𝑋

∗(𝑐)
11

𝑋
∗(𝑐)
21

]
, … ,

[
𝑋

∗(𝑐)
1𝑛𝑐

𝑋
∗(𝑐)
2𝑛𝑐

]
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝐗∗(𝑐)

,

[
𝑋

∗(𝑖)
11

−−−

]
, … ,

[
𝑋

∗(𝑖)
1𝑛𝑢

−−−

]
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝐗∗(𝑖)

(9)

and the combined vector (𝑓◦𝒁𝑛)
∗
= 𝑨𝒁∗

𝑛 =
√
𝑛(�̄�

∗(𝑐)
1.

− �̄�
∗(𝑐)
2.

, �̄�
∗(𝑖)
1.

− �̄�
∗(𝑐)
2.

). From this, the bootstrapped versions of the
quadratic forms, that is, the WTS 𝑇∗

𝑊 , the ATS 𝑇
∗
𝐴
, and the MATS 𝑇∗

𝑀 are computed:

𝑇∗
𝑊 = (𝑨𝒁∗

𝑛)
⊤
(𝐀�̂�∗

𝑛𝐀
𝑇)

+
(𝑨𝒁∗

𝑛), (10)

𝑇∗
𝐴
=

1

tr(𝐀�̂�∗
𝑛𝐀

⊤)
(𝑨𝒁∗

𝑛)
⊤
(𝑨𝒁∗

𝑛), (11)

𝑇∗
𝑀 = (𝑨𝒁∗

𝑛)
⊤
�̂�∗

𝑛(𝑨𝒁
∗
𝑛), (12)

where �̂�∗
𝑛 = �̂�𝑛(𝐗

∗(𝑐), 𝐗∗(𝑖)) and �̂�∗
𝑛 = diag((𝐀�̂�∗

𝑛𝐀
⊤)

+

ii ).
It is proven in the supplement that all three bootstrapped test statistics approximate the null distribution of the respec-

tive test statistic.
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To analyze their finite sample performance, we below conduct extensive simulations (Section 6). Before that, we will
first discuss other possible candidates from the literature that should or should not be included in our simulation study.

5 COMPARISONWITH EXISTINGMODELS

We briefly review the existing literature on methods that can deal with the case of matched pairs with missing values in
one arm only. As outlined in the introduction, there only exists a few which we can summarize as follows:

(a) Simple methods such as: using the paired 𝑡-test while excluding the unpaired data OR using the independent 𝑡-test
while ignoring the covariance structure of the data.

(b) Tests based on modified maximum likelihood estimators (Morrison, 1973; Ekbohm, 1976; Little, 1976).
(c) Tests based on simple mean difference estimators (Mehta & Gurland, 1969, 1973; Lin, 1973; Ekbohm, 1976).
(d) 𝑝-Values pooling methods (Qi et al., 2019).
(e) Weighted linear and nonlinear combination tests (Pesarin & Salmaso, 2010; Qi et al., 2019).

However, none of the methods is free from distributional assumptions and at the same time robust against deviations
such as heteroskedasticity and skewed distributions. In particular, the recent paper by Qi et al. (2019) already included
a simulation study to compare several of the tests mentioned in (a)–(e). As a conclusion, they recommended a so-called
NCT and 𝑝-value pooling methods.
They investigated in their paper two ways of combining the 𝑝-values; a weighted inverse normal method proposed by

Hartung (1999) and an FPM suggested by Brown (1975), Kost & McDermott (2002), and Hou (2005). Due to their quite
similar behavior, we only include the FPM and the NCT into our simulation study. As additional competitor for these two
and the bootstrap procedures proposed in Section 4, we choose the test of Little (1976). The latter assumes that the data
follow a bivariate normal distribution and the test statistic is given by

𝑇𝐿 =

�̄�1⋅ − �̄�
(𝑐)
2⋅

−
𝜌𝜎

(𝑐)
1

𝜎2

(𝜎
(𝑐)
1

)
2 (�̄�1⋅ − �̄�

(𝑐)
1⋅
)

𝜎𝐋
, (13)

where �̄�1 ∶= 1∕𝑛(𝑛𝑐�̄�
(𝑐)
1⋅

+ 𝑛𝑢�̄�
(𝑖)
1⋅
) and 𝜎

(𝑐)
1

is the empirical standard deviation of {𝑋(𝑐)
11
, … , 𝑋

(𝑐)
1𝑛𝑐

}. Moreover, setting

𝜎2
22⋅1

= 𝜎2
2
− (𝜌𝜎

(𝑐)
1
𝜎2∕(𝜎

(𝑐)
1
)
2
) and 𝜎𝐗 = 𝜎2

22⋅1
+

(𝜌𝜎
(𝑐)
1

𝜎2)
2

(𝜎
(𝑐)
1

)
4 𝜎4

1
, the denominator is given by Little (1976)

𝜎2
𝐋
=

𝜎2
𝐗

𝑛
+

(
1

𝑛𝑐
−

1

𝑛

)
𝑛𝑐 − 2

𝑛𝑐 − 3
𝜎2
22⋅1

−
2

𝑛

𝜌𝜎
(𝑐)
1
𝜎2

(𝜎
(𝑐)
1
)
2
𝜎2
1
+

𝜎2
1

𝑛
. (14)

The exact distribution of 𝑇𝐿 is rather complicated and Little suggests to approximate it by a 𝑡-reference distribution with
𝑛𝑐 − 1 degrees of freedom, that is, the test is given by 𝜑𝐿 ∶= 𝟙{|𝑇𝐿| > 𝑡𝑛𝑐−1,1−𝛼∕2} for some level 𝛼 ∈ (0, 1). To enhance its
small sample properties (see the simulation results for 𝜑𝐿 given in the supplement for details), a parametric bootstrap ver-
sion of the Little test is studied aswell. Similar to𝜑𝐿, the resulting Little bootstrap test,𝜑∗

𝐿 ∶= 𝟙{|𝑇𝐿| > 𝑐∗𝐿} is asymptotically
correct. Here, 𝑐∗𝐿 denotes the conditional (1 − 𝛼)-quantile of the parametric bootstrap distribution of 𝑇𝐿.
In addition, the NCT proposed by Qi et al. (2019), is based upon a linear combination of the sign and the Wilcoxon

Mann–Whitney test statistics:

𝑇𝑁 = 𝑇𝑠 + 𝑇𝑚, (15)

where 𝑇𝑠 =
1

𝑛𝑐

∑𝑛𝑐
𝑖=1

𝜙(𝑋
(𝑐)
1𝑖
, 𝑋

(𝑐)
2𝑖
) and 𝑇𝑚 =

1

𝑛𝑐𝑛𝑢

∑𝑛𝑢
𝑗=1

∑𝑛𝑐
𝑘=1

𝜙(𝑋
(𝑖)
1𝑗
, 𝑋

(𝑐)

2𝑘
) with 𝜙(𝑋1, 𝑋2) =

⎧⎪⎨⎪⎩
1 if 𝑋 > 𝑌,

1∕2 if 𝑋 = 𝑌,

0 otherwise.
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It is proposed to approximate the null distribution of 𝑇𝑁 by a normal distribution with mean 1 and variance estimated
by v̂ar(𝑇𝑁) =

1

𝑛𝑐
+

𝑛𝑐+𝑛𝑢+1

12𝑛𝑐𝑛𝑢
+ ĉov(𝑇𝑠, 𝑇𝑚), where

ĉov(𝑇𝑠, 𝑇𝑚) =
1

𝑛2𝑐 𝑛𝑢

∑𝑛𝑐
𝑖=1

∑𝑛𝑢
𝑗=1

𝟙{𝑋
(𝑐)
1𝑖

> 𝑋
(𝑐)
2𝑖
, 𝑋

(𝑖)
1𝑗

> 𝑋
(𝑐)
2𝑗
} −

1

𝑛𝑐
𝑇𝑠𝑇𝑚.

Moreover, the NPM proposed by Qi et al. (2019) based upon Fisher’s pooling approach is based upon combining the
dependent 𝑝-values of the Wilcoxon signed-rank test 𝑃𝑝 and Mann–Whitney U test 𝑃up. The test statistic is given by

𝑇𝐹 = −2𝜆1log(𝑃𝑝) − 2𝜆2log(𝑃up), (16)

where 𝜆1 and 𝜆2 are weights. It was shown that 𝑇𝐹 follows asymptotically a scaled 𝑐𝜒2
𝑓
-distribution with 𝑐 =

var(𝑇𝐹)

2𝐸(𝑇𝐹)
and

𝑓 =
2[𝐸(𝑇𝐹)]

2

var(𝑇𝐹)
. Moreover, the mean and variance of 𝑇𝐹 are 𝐸(𝑇𝐹) = 2(𝜆1 + 𝜆2), var(𝑇𝐹) = 4(𝜆2

1
+ 𝜆2

2
) + 2𝜆1𝜆2𝜂, and 𝜂 =

Cov(−2log(𝑃𝑝), −2log(𝑃up)) Qi et al. (2019). suggested to estimate 𝜂 by nonparametric bootstrapping to obtain estimates
𝑐 and 𝑓 for 𝑐 and 𝑓, respectively. Therefore, the null distribution of 𝑇𝐹 can be asymptotically approximated by 𝑐𝜒2

𝑓
. In

previous simulation studies by Qi et al. (2019), the considered choices of the weights 𝜆1 and 𝜆2 had almost invariant
impact on the behavior of FPM. Similar to Qi et al. (2019), we therefore consider the following weights: 𝜆1 =

√
2𝑛𝑐 and

𝜆2 =
√
𝑛𝑐 + 𝑛𝑢.

Inspired by Pesarin& Salmaso (2010), we also consider a nonparametric combination (NPC) of two dependent permuta-
tion tests. Their methodology is based upon properly breaking down a testing problem into a set of simpler subproblems.
Then, each subproblem is provided with a proper permutation test, and jointly analyzed to maintain any underlying
dependencies. Fitting this approach to our model, we choose a permutation paired 𝑡-test (Janssen, 1999; Konietschke &
Pauly, 2014) that is computed upon the complete pairs𝐗(𝑐) only and a permutationWelch-test (Janssen, 1997; Chung et al.,
2013; Pauly et al., 2015) that is based upon𝑋

(𝑖)
1𝑗
, and𝑋(𝑐)

2𝑘
. The global 𝑝-value is then obtained through combining the partial

𝑝-values of the above tests using Fisher’s combining function. We denote this testing procedure by 𝑇𝑃. For more details
about the NPC procedure and related R codes, we refer to themonographs of Pesarin (2001) and Pesarin & Salmaso (2010).
Finally, we also consider the most simple solution: the paired 𝑡-test 𝑇𝑡, calculated on the complete cases 𝐗(𝑐) only. We

compare the finite sample performance of all these methods and the three new bootstrap approaches from Section 4 in
the sequel. To judge the performance of all methods, a parametric bootstrap version of the paired 𝑡-test handling full data
before introducing missingness has been included in all tables. The corresponding procedure is denoted by 𝐹.

6 SIMULATION STUDY

In this section, we investigate the finite sample behavior of the methods described in Sections 4 and 5 in extensive simu-
lations. All procedures were studied with respect to their

(i) type-I error rate control at level 𝛼 = 5% and their
(ii) power to detect deviations from the null hypothesis.

Small- to moderate-sized paired data samples were generated from the model

𝐗𝑗 = 𝚺
1

2 𝜺𝑗 + 𝝁, 𝑗 = 1,… , 𝑛,
where 𝜺𝑗 = [𝜀1𝑗, 𝜀2𝑗]

⊤ is an i.i.d. bivariate random vector with mutually independent components and 𝐸(𝜺𝟏) = 𝟎 and
cov(𝜺𝟏) = 𝐼2.
Different choices of symmetric as well as skewed residuals are considered such as standardized normal, exponential,

Laplace, and the 𝜒2-distribution with df = 30 degrees of freedom. For the covariance matrix 𝚺, we considered the choices

𝚺𝟏 =

[
1 𝜌

𝜌 1
] and 𝚺𝟐 = [

1
√
2𝜌√

2𝜌 2

]
with varying correlation factor 𝜌 ∈ (−1, 1), representing a homoskedastic and a heteroskedastic covariance setting,
respectively. The sample sizes were chosen as (𝑛𝑐, 𝑛𝑢) ∈ {(10, 10), (30, 10), (10, 30)} under an MCAR mechanism and
𝑛 ∈ {10, 20, 30} under an MAR mechanism.
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For each scenario, we generated missings as described below: For the MCAR mechanism, missing values are inserted
randomly to the second component of the bivariate vector 𝐗𝑗 until a fixed amount of missing values of size 𝑛𝑢 for the
second component is achieved.
For theMARmechanism, the probability of beingmissing on the second component of𝐗𝑗 is based on the corresponding

value on the first component in the following way: first, we divide 𝐗 into three groups based on their first component
values corresponding to a 2𝜎-rule: the first group is given by {𝑿𝑗 = (𝑋1𝑗, 𝑋2𝑗) ∶ 𝑋1𝑗 ∈ (−∞,−2𝜎1), 𝑗 = 1, .., 𝑛}, the second
by {𝑿𝑗 ∶ 𝑋1𝑗 ∈ (−2𝜎1, 2𝜎1), 𝑗 = 1, .., 𝑛}, and the last group by {𝑿𝑗 ∶ 𝑋1𝑗 ∈ (2𝜎1,∞), 𝑗 = 1, .., 𝑛}, where 𝜎1 is the variance of
the first component. Then, we randomly insert missing values on the second component based on the following missing
percentages: 15% for group one and three and 30% for the second group.
In order to assess the power of all methods, we set 𝝁 = [𝛿, 0]

⊤ with shift parameter 𝛿 ∈ {0, 1∕2, 1}. All simulations were
operated by means of the statistical computing environment 𝖱 based on 𝑛sim = 10, 000 Monte-Carlo runs and 𝐵 = 999

bootstrap runs (in case of the three bootstrapped methods based upon 𝑇∗
𝑊, 𝑇∗

𝐴
, and 𝑇∗

𝑀 and the bootstrapped version of
Little’s method 𝑇∗

𝐿). The algorithm for the computation of the 𝑝-value of the parametric bootstrap tests is as follows:

1. For the given incomplete paired data, calculate the observed test statistic, say 𝑇.
2. Estimate the covariance matrix 𝚪 by �̂�.
3. Generate a bootstrap sample 𝐗∗

𝑗
= (𝑋∗

1𝑗
, 𝑋∗

2𝑗
) from 𝑁(𝟎, �̂�), 𝑗 = 1,… , 𝑛.

4. Insert missing values in an MCAR or MAR manner to the second component of the vector 𝐗∗
𝑗
resulting in 𝐗

∗(𝑐)
𝑗

and

𝐗
∗(𝑖)

𝑘
where 𝑗 = 1,… , 𝑛𝑐, 𝑘 = 1,… , 𝑛𝑢.

5. Calculate the value of the test statistic for the bootstrapped sample 𝑇∗.
6. Repeat the Steps 3 and 4 independently 𝐵 = 999 times and collect the observed test statistic values in 𝑇∗

𝑏
, 𝑏 = 1,… .., 𝐵.

7. Finally, estimate the bootstrap 𝑝-value as 𝑃-value =
∑𝐵

𝑏=1𝐼(𝑇
∗
𝑏
>=𝑇)

𝐵
.

Now, the nonparametric bootstrap method that is used for estimating the covariance 𝜂 of the Fisher’s pooling method
as suggested by Qi et al. (2019) is as follows:

1. Draw 𝑛𝑐 times with replacement from the pairs 𝐗(𝑐)
𝑗

= (𝑋
(𝑐)
1𝑗
, 𝑋

(𝑐)
2𝑗
), 𝑗 = 1,… , 𝑛𝑐, and calculate the 𝑝-value 𝑃∗

𝑝.

2. Draw 𝑛𝑢 times with replacement from 𝐗
(𝑖)

𝑘
, 𝑘 = 1,… , 𝑛𝑢, and calculate the 𝑝-value 𝑃∗

up.
3. Replicate Step 1, 𝐵 = 999 times and collect the observed 𝑝-values of the Wilcoxon signed-rank test (paired data) and

Mann–Whitney U test (unpaired data) in 𝑃∗
pb and 𝑃∗

ub, respectively, 𝑏 = 1,… ., 𝐵.
4. Finally, estimate the parameter 𝜂 needed for estimating the degrees of freedom as

𝜂 = ĉov(−2log(𝐏∗
𝑝), −2log(𝐏∗

up)), where 𝐏∗
𝑝 = {𝑃∗

pb, 𝑏 = 1,… , 𝐵} and
𝐏∗
up = {𝑃∗

ub, 𝑏 = 1,… , 𝐵}.

Type-I Error Results. Simulation results of type-I error level of the studied procedures under the MCAR framework
for different sample sizes and for homoskedastic as well as heteroskedastic settings are summarized in Tables 1, S.1, and
S.2.
It can be readily seen that the suggested bootstrap approaches based upon𝑇∗

𝑊, 𝑇∗
𝐴
and𝑇∗

𝑀 tend to result in quite accurate
type-I error rate control under homoskedasticity as well as heteroskedasticity and over the whole range of correlation
factors for most settings. Only in two cases; First, in case of the negative unbalanced sample size (10,30), particularly
under heteroskedasticity, the bootstrapped MATS (𝑇∗

𝑀) is not recommended due to its liberal behavior. However, in this
case, the other two suggested bootstrapped tests 𝑇∗

𝑊 , and 𝑇∗
𝐴
are controlling type-I error rate accurately. Secondly, in case

of the skewed exponential distribution, the control is not adequate and a liberal behavior is observed. However, in this
case, all the other chosen procedures also failed to control type-I error rate for the underlying sample sizes, which are
indicated in bold red through all tables. Specifically, in the case of homoskedasticity, and a balanced sample size (10,10),
our three suggested tests still result in accurate test decisions. For a positive balanced sample size (30,10), the bootstrapped
ATS (𝑇∗

𝐴
) still controls type-I error rate accurately under homoskedastic as well heteroskedastic settings. It has even the

best control of type-I error rate under heteroskedasticity among all considered methods that are identified by bold entries
in the table.
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TABLE 1 Type-I error simulation results (𝛼 = .05) of the tests for different distributions under varying correlation values (𝜌) with sample
sizes (𝑛𝑐, 𝑛𝑢) = (10, 10) and different covariance matrices Σ1 and Σ2 under the MCAR framework

𝚺𝟏 𝚺𝟐

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
Dist 𝝆 𝑭 𝑻∗

𝑾
𝑻∗
𝑨

𝑻∗
𝑴

𝑻∗
𝑳

𝑻𝒕 𝑻𝑵 𝑻𝑭 𝑻𝑷 𝑭 𝑻∗
𝑾

𝑻∗
𝑨

𝑻∗
𝑴

𝑻∗
𝑳

𝑻𝒕 𝑻𝑵 𝑻𝑭 𝑻𝑷

Normal −.9 5.3 5.3 5.2 5.4 5.0 4.8 6.7 4.3 7.5 5.1 5.0 5.3 5.6 4.9 4.7 7.1 4.8 8.3
−.5 5.3 5.3 5.7 5.6 5.3 5.1 6.8 4.6 7.4 5.3 5.3 5.5 6 5.2 5.0 6.8 5.1 8
−.1 5.3 4.6 4.9 4.8 4.8 5.0 6.5 4 6.3 5.4 4.6 5.5 5.2 5.0 5.1 7.2 4.6 7.7
.1 4.9 4.8 5.4 5.1 5.0 4.8 6.4 4.3 6.6 4.9 5.1 5.5 5.4 5.1 4.9 7 4.9 7.7
.5 5.3 5.4 5.1 5.1 4.3 5.3 6.2 4.3 5.9 5.2 5.4 5.6 5.5 4.9 5.2 7.1 4.7 7.3
.9 5.3 5.2 5.0 4.3 4.5 5.4 5.7 4.2 5.0 5.2 5.1 5.0 5.9 3.2 5.4 6.9 4.5 7.1

Laplace −.9 4.9 4.4 4.9 5.5 4.6 4.8 6.5 4.5 7.5 4.9 4.4 5.1 5.7 4.4 4.7 7.1 4.8 8
−.5 5.1 4.4 5.2 5.1 5.0 4.5 6.6 4.3 7.3 5.1 4.4 5.1 5.4 5.0 4.6 7 4.7 7.9
−.1 4.9 4.2 4.9 4.8 4.6 4.6 6.4 4.2 6.5 5.0 4.4 5.0 5.0 4.6 4.5 6.8 4.5 7.4
.1 4.8 4.3 4.3 4.2 4.3 4.4 6.2 4 6.1 4.9 4.3 4.6 4.6 4.3 4.5 6.6 4.3 7
.5 5.1 4.4 4.5 4.4 3.6 4.5 6.2 4 5.8 4.9 4.4 4.6 4.5 3.7 4.5 6.7 4.2 6.8
.9 4.8 3.9 4.8 3.6 4.7 4.4 5.6 4 4.9 4.8 4.1 4.7 5.4 3.9 4.4 6.6 4.1 6.4

Exponential −.9 4.8 4.7 4.4 5.6 4.5 4.2 6.5 4.3 6.8 5.0 4.6 5.2 6.8 5.3 4.7 8.7 4.1 8.2
−.5 5.2 5.1 4.9 4.8 5.3 4.2 6.4 4.4 7.1 5.4 5.4 6.4 6.3 6.7 5.0 9.7 4.8 8.9
−.1 5.3 5.3 5.0 4.6 5.8 4.4 6.6 4.3 6.9 5.6 6.1 6.6 6.1 7.1 5.1 10.1 4.8 8.7
.1 5.0 5.0 4.4 4.1 5.9 4 6.6 4.1 6.2 5.6 6.1 6.8 5.9 7.6 5.2 10.5 5.0 8.7
.5 5.1 5.8 4.5 4.2 6.5 4.2 6.2 4.7 6.1 5.9 7 6.9 6.5 7.7 5.7 10.7 5.1 8.8
.9 4.7 5.8 4.4 3.6 7.3 4.1 5.5 4.4 4.4 7.5 8 5.4 8.5 7.8 8.8 12.1 5.6 9.7

Chi-square −.9 5.2 5.4 5.6 5.8 5.2 5.2 6.9 4.8 7.8 5.4 5.5 5.8 6.1 5.0 5.3 7.6 5.2 8.7
−.5 5.4 5.0 5.2 5.1 5.0 4.9 6.5 4.1 6.9 5.4 5.0 5.3 5.6 5.0 4.8 7.3 4.5 7.6
−.1 5.1 5.0 5.1 5.3 5.3 4.9 6.4 4.4 6.6 5.0 5.1 5.6 5.7 5.4 4.9 7 4.5 7.9
.1 5.3 5.0 5.1 5.1 5.0 5.1 6.6 4.4 6.4 5.4 5.0 5.6 5.7 5.2 5.1 6.9 4.4 7.6
.5 5.3 5.4 5.0 5.0 4.4 5.1 6.7 4.3 5.9 5.3 5.4 5.3 5.3 4.6 5.0 6.6 4.5 7
.9 5.2 5.0 5.3 4.1 4.6 4.8 5.9 4.3 5.1 5.2 5.3 5.6 6.5 3.3 5.4 7.6 4.3 7.6

Note. For each setting, the values closest to the prescribed level are printed in bold and values exceeding the upper limit (6.8%) of the 99% binomial interval are in
red color.

Moreover, the bootstrapped test that is based on the maximum likelihood estimator 𝑇∗
𝐿 tends to behave similar to our

three suggested bootstrap procedures in controlling type-I error rate. Only in the case of large positive correlation factors
𝜌 = .9, it results in very conservative decisions.
In contrast, the other tests (𝑇𝑁 , 𝑇𝐹 , 𝑇𝑃) do not control type-I error level constantly under heteroskedasticity or even

under homoskedasticity in all of the considered sample sizes. It can also be seen from Tables 1, S.1, and S.2 that the NCT
𝑇𝑁 , controls type-I error quite accurately in the case of larger numbers of complete pairs (𝑛𝑐 = 30), but it shows liberal
behavior for smaller numbers of complete pairs (𝑛𝑐 = 10). This test turns very liberal in the case of heteroskedasticity.
Furthermore, the FPM test 𝑇𝐹 tends to result in a quite accurate type-I error control in the case of smaller numbers of
complete pairs. For larger numbers of complete pairs, it leads to a conservative decision. For these scenarios, this behavior
does not depend on the homoskedasticity assumption. Moreover, the NPC 𝑇𝑃 shows a quite liberal behavior in most of
the considered settings. Regarding the paired 𝑡-test based on the complete observations 𝑇𝑡, an inflation of the type-I error
rate could be realized for certain distributions, when the missing rate was large and the number of complete pairs was
small, see for example, the scenario (𝑛𝑐, 𝑛𝑢) = (10, 10). The effect vanishes for a larger number of complete pairs. This
is in line with the theoretical results of the paired 𝑡-test with i.i.d. observations. The results also indicate that the paired
bootstrapped 𝑡-test on the full data 𝐹 controls type-I error through almost all settings.
It was also interesting to discover the type-I error rate control of the tests under similar attributes to the breast cancer gene

study datawhich reflects data sets with a few pairs and large amount of unpaired portions. Simulation results for the type-I
error rate of the studied procedures for (𝑛𝑐 = 16, 𝑛𝑢 = 74) sample sizes are presented in Tables S.22 and S.23. The correla-
tion 𝜌 in Table S.23 is estimated based on the data. It can be easily seen fromTables S.22 and S.23 that the bootstrap tests are
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F IGURE 2 Type-I error simulation results (𝛼 = .05) of the tests 𝑇∗
𝑊 ( ), 𝑇∗

𝐴
( ), 𝑇∗

𝑀 ( ), 𝑇∗
𝐿 ( ), 𝑇𝑁 ( ), 𝑇𝐹 ( ), 𝑇𝑡

( ), and 𝑇𝑃 ( ) for different distributions under correlation factor (𝜌 = .9) and heteroskedastic covariance matrix Σ2 for varying 𝑘
values multiplied by (𝑛𝑐, 𝑛𝑢) = (10, 30) under the MCAR framework

robust under large amounts of missing observations and control type-I error rate accurately, especially the bootstrapped
tests 𝑇∗

𝑊 , and 𝑇
∗
𝐴
. Except in the case of exponential distribution. The alternative approach 𝑇𝑁 has acceptable control under

homoskedasticity. But, under the exponential distribution, it turned very liberal especially under heteroskedasticity, while
the Fisher’s pooling method tends to result in quite acceptable control in most cases.
Simulation results of the type-I error level of the studied procedures under the MAR framework for different sam-

ple sizes and covariance structures are summarized in Tables S.3– S.5. There, it can be seen that for moderate to large
sample sizes (𝑛 ∈ {20, 30}), the bootstrapped ATS 𝑇∗

𝐴
, the bootstrapped WTS 𝑇∗

𝑊 , the bootstrapped MATS 𝑇∗
𝑀 , the boot-

strapped Little 𝑇∗
𝐿, and the NCT 𝑇𝑁 exhibit a fairly good type-I error rate control for almost all considered scenarios under

homoskedasticity as well as heteroskedasticity. Only in the case of the skewed exponential distribution, the control of 𝑇∗
𝑊 ,

𝑇∗
𝑀 , and 𝑇𝑁 is not adequate and liberal behavior is observed, which is marked with red through all tables. In contrast, the

bootstrapped MATS 𝑇∗
𝑀 tends to be sensitive to the dependency structure in the data. In particular, 𝑇∗

𝑀 exhibits a liberal
behavior for negative correlations. For small sample sizes (𝑛 = 10), the 𝑇𝑁 test tends to be liberal in all considered situ-
ations. In contrast, the bootstrapped tests 𝑇∗

𝑊 , 𝑇
∗
𝑀 , and 𝑇∗

𝐿 exhibit good type-I error rate control for most settings except
for the Laplace distribution. The bootstrapped ATS 𝑇∗

𝐴
tends to be very conservative especially under heteroskedasticity.

However, the FPM 𝑇𝐹 exhibits a conservative behavior under most considered situations.
Further Investigations on Type-I Error. In addition to the small and moderate sample size settings, we were also

interested in studying type-I error rate control when sample sizes increase, while missing rates remain nearly unchanged.
For moderate to large sample sizes, we considered the choices (𝑛𝑐, 𝑛𝑢) = 𝑘 ⋅ (10, 30) and (𝑛𝑐, 𝑛𝑢) = 𝑘 ⋅ (1, 1) + (10, 10),
where 𝑘 ranges from 1 to 50 (balanced case) and 0 to 500 (unbalanced case), respectively. Figures 2 and S.1 summarize the
type-I error rate (𝛼 = .05) for these settings. The results indicate that the NCT by Qi et al. (2019) 𝑇𝑁 controls type-I error
rate quite accurate under symmetric distributions, however, it fails to control type-I error rate unde skewed distributions.
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F IGURE 3 Type-I error simulation results (𝛼 = .05) of the tests 𝑇∗
𝑊 ( ), 𝑇∗

𝐴
( ), 𝑇∗

𝑀 ( ), 𝑇∗
𝐿 ( ), 𝑇𝑁 ( ), 𝑇𝐹 ( ), 𝑇𝑡

( ), and 𝑇𝑃 ( ) for different distributions under correlation factor (𝜌 = .5) with sample size (𝑛 = 30) and homoskedastic covariance
matrix Σ1 for varying missing rates 𝑟 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} under the MCAR framework

In fact, it gets even more liberal with increasing sample sizes. In contrast, the FPM 𝑇𝐹 by Qi et al. (2019) tends to be
conservative when missing rates among subjects of 50% are present, even under large numbers of complete observations
such as 𝑛𝑐 = 510 (Figure S.1). For larger missing rates (75%), it shows surprisingly quite accurate type-I error control
(see Figure 2). Only in case of the exponential distribution, a very liberal behavior is observed that is acting analogous
to a power function with increment of sample sizes (Figure 1). Here, the suggested bootstrap approaches 𝑇∗

𝐴
, 𝑇∗

𝑊 𝑇∗
𝑀 ,

and 𝑇∗
𝐿 are the only methods that control type-I error rate accurately among all considered settings. The 𝑡-test 𝑇𝑡 based

on the complete cases controls type-I error as well, but had challenges with small complete cases 𝑛𝑐 ≤ 10. The NPC-test
𝑇𝑃, however, revealed a constant inflation of the type-I error rate for all missing rate scenarios. The degree of inflation
remained the same even for increasing missing rates. Therefore, 𝑇𝑃 seems not to be an adequate choice, even for smaller
missing rates.
In order to cover the effect of increasing missing rates, we studied type-I error control for sample sizes of the form

(𝑛𝑐, 𝑛𝑢) = ((1 − 𝑟) ⋅ 30, 𝑟 ⋅ 30)with 𝑟 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} coveringmissing rates (among subjects) from 10%

to 80% under moderate positive correlation factor (𝜌 = .5). Figures 3 and S.2 summarize type-I error rate control for these
settings under a homoskedastic and a heteroskedastic covariance structure, respectively. The results indicate that under
homoskedasticity, the alternative approach 𝑇𝑁 tends to be slightly liberal. It moves closer to the 0.05 threshold for missing
rates below 60%. In contrast, under heteroskedasticity, 𝑇𝑁 tends to be more sensitive to the missing rates. In particular, it
exhibits a conservative or liberal behavior for lower and larger missing rates, respectively. However, under this moderate
sample size (𝑛 = 30) and correlation factor (𝜌 = .5), the FPM 𝑇𝐹 tends to be conservative under all considered settings and
its behavior is independent of the missing rate or even homoskedacticity assumption. In contrast, the suggested bootstrap
approaches tend to control type-I error rate more accurate over the range of missing rates 𝑟 for most settings. Only in case
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F IGURE 4 Power simulation results (𝛼 = .05) of the tests 𝑇∗
𝑊 ( ), 𝑇∗

𝐴
( ), 𝑇∗

𝑀 ( ), 𝑇∗
𝐿 ( ), 𝑇𝑁 ( ), 𝑇𝐹 ( ), 𝑇𝑡 ( ),

and 𝑇𝑃 ( ) for different distributions under correlation factor (𝜌 = .1) with sample size (𝑛𝑐, 𝑛𝑢) = (10, 30) and homoskedastic covariance
matrix Σ1 under the MCAR framework

of the skewed exponential distribution and missing rates greater than 50%, the control is not adequate. However, in this
case all the other chosen procedures also failed to control the type-I error rate.
Power. In addition to the type-I error rate control, we studied the power of the nine tests for all considered settings.

Figure 4 summarizes the power simulation results for a negative balanced sample size (10,30) under theMCAR framework.
The power simulation results for the other scenarios are included in the supplement. The power analysis results of the
considered methods under MCAR and MAR frameworks involving homoskedastic as well as heteroskedastic settings are
summarized in Tables S6–S11 in supplement for the MCAR mechanism and Tables S12–S17 in supplement for the MAR
mechanism. The entries that belong to very liberal tests have been colored in red in the power tables. It can be readily
seen that the four bootstrapped tests 𝑇∗

𝑊, 𝑇∗
𝐴
, 𝑇∗

𝑀 , and 𝑇
∗
𝐿 and the NCT 𝑇𝑁 have almost similar large power behavior under

homoskedastic as well as heteroskedastic settings. Only in the heteroskedastic cases with skewed exponential distribution,
the NCT 𝑇𝑁 shows larger power than the others, which is due to its rather liberal behavior. One should also notice that the
power behavior of each test varies based on the dependency structure of the data except for the bootstrapped ATS 𝑇∗

𝐴
. As

expected, the paired 𝑡-test based on complete observations 𝑇𝑡 revealed for small complete observations low power results
compared to the other approaches. The NPC-test 𝑇𝑃 also shows larger power results, but the effect can be leaded back to
its liberal type-I error behavior.

7 ILLUSTRATIVE DATA ANALYSES

In this section, we consider three real life problems coming from different sectors and sources. We start with a genome
study on breast cancer.

7.1 Breast cancer study: gene expression data

The TCGA project is a pilot project which was launched in 2005 with a financial support from the National Institutes
of Health. It aims to understand the genetic basis of several types of human cancers through the application of high-
throughput genome analysis techniques. TCGA collects molecular information such as miRNA/mRNA expressions, pro-
tein expressions, and weight of the sample as well as clinical data about the patients.
A breast cancer study has been performed by TCGA to improve the ability of diagnosing, treating, and preventing

breast cancer through investigating the genetic basis of carcinoma. Their study consists of 1093 breast cancer patients
with Clinical and RNA sequencing records. Among them, there were 112 subjects that provided both, normal, and tumor
tissues. Here, we were interested in a subset of this datum that contains patients with pathologic stage I. This subset
contains a total of 𝑛𝑐 = 16 complete pairs and an unpaired sample for the patients who developed only tumor tissues of
size 𝑛𝑢 = 74. The data can be downloaded from Firehouse (www.gdac.broadinstitute.org).

http://www.gdac.broadinstitute.org
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F IGURE 5 Profile of the gene expression levels of
the tumor and normal breast tissues

TABLE 2 Unadjusted two-sided 𝑝-values of the breast cancer study

Parametric bootstrap Alternatives
Gene 𝑻∗

𝐖
𝑻∗
𝐀

𝑻∗
𝐌

𝑻∗
𝐋

𝑻𝒕 𝑻𝐍 𝑻𝐅 𝑻𝐏

TP53 0.928 0.852 0.903 0.877 0.689 0.954 0.949 0.901
ABCC1 0.002 0.003 0.002 0.002 0.365 0.003 0.004 0
HRAS 0.007 0.002 0.003 0.002 0.022 0.001 0.004 0
GSTM1 0.821 0.85 0.849 0.515 0.605 0.629 0.967 0.827
ERBB2 0.043 0.024 0.011 0.014 0.136 0.071 0.069 0.007
CD8A 0.463 0.51 0.484 0.434 0.885 0.555 0.468 0.53
C1D 0.772 0.553 0.622 0.555 0.553 0.587 0.792 0.608
GBP3 0.196 0.301 0.214 0.084 0.083 0.103 0.357 0.262

Based on previous studies, six genes have been found to be significantly associated with breast cancer: TP53, ABCC1,
HRAS, GSTM1, ERBB2, and CD8A (Harari & Yarden, 2000; De Jong et al., 2002; Munoz et al., 2007; Finak et al., 2008).
Another two genes: C1D and GBP3 were under investigation although they did not show any significant relation toward
breast cancer patients (Qi et al., 2019). In this paper, we aim to test the hypothesis whether mean genetic expressions of
the eight genes are significantly different between normal and tumor tissues for patients with early stage I breast cancer.
Boxplots representing the characteristics of the eight genes are shown in Figure 5.
We applied all bootstrap testing methods 𝑇∗

𝑊, 𝑇∗
𝐴
, 𝑇∗

𝑀 , and 𝑇∗
𝐿 as well as the alternative approaches 𝑇𝑡, 𝑇𝑁 , 𝑇𝐹 , and

𝑇𝑃 to detect the null hypothesis of equal means between normal and tumor tissues (𝐻0 ∶ 𝜇1 = 𝜇2) against the two-sided
alternative (𝐻1 ∶ 𝜇1 ≠ 𝜇2). The results are summarized in Table 2.
It can be seen from Table 2 that the bootstrapped approaches 𝑇∗

𝑊, 𝑇∗
𝐴
, 𝑇∗

𝑀 , and 𝑇∗
𝐿 and the NPC 𝑇𝑃 identified three of

eight genes having significantly different genetic expressions in normal and tumor tissues; genes ABCC1, HRAS, and
ERBB2. However, the NCT 𝑇𝑁 , and the FPM 𝑇𝐹 led to different results for the ERBB2 gene. Regarding the paired 𝑡-test
based on the complete observations 𝑇𝑡, different results obtained for the ABCC1 and ERBB2 genes.
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TABLE 3 Two-sided 𝑝-values of the considered studies

Parametric bootstrap Alternatives
Study 𝑭 𝑻∗

𝐖
𝑻∗
𝐀

𝑻∗
𝐌

𝑻∗
𝐋

𝑻𝒕 𝑻𝐍 𝑻𝐅 𝑻𝐏

Anorexia 0.002 0.026 0.043 0.029 0.03 0.004 0.136 0.008 0.022
GrapeFruit 0.002 0.039 0.014 0.029 0.068 0.141 0.031 0.068 0.022

7.2 Two more examples

To illustrate potential differences between allmethodswe consider two additional examples called “Anorexia” and “Grape-
Fruit.” Each of them consists of complete data sets andmissing values were introduced on them by theMCARmechanism
with a missing rate of 𝑟 = 30%. They can be briefly described as follows:
Anorexia. This data set consists of weights in pounds for 17 young girls who were receiving a treatment for anorexia

over a fixed period of time. The main problem is to compare the girls’ weights before and after the treatment. This datum
was originally published by Hand et al. (1993), and were analyzed in Pruzek & Helmreich (2009). It is also included in the
R package PairedData (Champely & Champely, 2018).
GrapeFruit. It consists of a paired samples data that are taken from Preece (1982). The study aimed to detect differences

between “shaded” and “exposed” grapefruits. Tomake the differences as precise as possible, they dealt with both halves of
a single fruit under similar conditions. This data set consists of the percentages of solids in the shaded and exposed halves
of 25 grapefruits. This datum is also contained in the R package PairedData (Champely & Champely, 2018).
We applied the 𝐹-test that considers the full data before missingness, all bootstrapped approaches 𝑇∗

𝑊, 𝑇∗
𝐴
, 𝑇∗

𝑀 , and
𝑇∗
𝐿 as well as the alternative approaches 𝑇𝑡, 𝑇𝑁 , 𝑇𝐹 , and 𝑇𝑃 to detect the null hypothesis of equal means 𝐻0 ∶ {𝜇1 = 𝜇2}

against the two-sided alternative 𝐻1 ∶ {𝜇1 ≠ 𝜇2}. The results are summarized in Table 3. It can be seen from Table 3 that
the full data test 𝐹, bootstrapped approaches 𝑇∗

𝑊 , 𝑇
∗
𝐴
, and 𝑇∗

𝑀 , and the Pesarin test 𝑇𝑃 identified significant differences
in both data sets. However, the alternative naive approach based on the complete observations 𝑇𝑡 and the FPM 𝑇𝐹 failed
in detecting significant difference in the GrapeFruit data set. In addition, the NCT 𝑇𝑁 could not identify any significant
difference for the Anorexia data set.

8 DISCUSSION AND OUTLOOK

The problemofmatched pairswithmissing values occurs frequently in practice.Most available procedures in the literature
are not applicablewhenmissing values occur in a single arm. Exceptions are given by the recentNCT and FPMapproaches
of Qi et al. (2019). For the NCT approach, Qi et al. (2019) utilize a combination of the sign and Wilcoxon Mann–Whitney
rank sum test. And, the FPM approach, is based on a weighted combination of the 𝑝-values of the Wilcoxon signed rank
test and the Wilcoxon Mann–Whitney rank sum test. For homoskedastic settings with symmetric distributions, the NCT
and FPM approaches can be recommended. If, however, the underlying assumptions are not true (e.g., in skewed het-
eroskedastic setups), the NCT and FPMmay result in highly inflated type-I errors or considerable power loss. In addition
to the NCT and FPM approaches, we also studied a single-arm missingness modification of a nonparametric testing pro-
cedure given in Pesarin & Salmaso (2010). It is based on the usage of the permutation paired 𝑡-test and the permutation
Welch test on partial combination of the whole data 𝑛 with missingness. However, the proposed combination strategy
did not reveal favorable results leading to a constant inflation of the type-I error. We also calculated the paired 𝑡-test based
on complete observations only.
To overcome all these issues, we have provided resampling procedures that are not based on any parametric assumptions

and use all observed information within the matched pairs design. They were shown to be asymptotically correct and
robust under heteroskedasticity and skewed distributions. The tests were based on restructuring all observed information
in a test statistic of quadratic form that can be either a WTS, an ATS, or a MATS. Since WTS is well known (from other
situations like in Vallejo et al., 2010; Konietschke et al., 2015; or Smaga, 2017) for being liberal, while ATS and MATS tend
to be rather conservative or liberal for small to moderate sample sizes, we improved their small sample behavior by an
asymptotic model-based bootstrap approach. The procedure’s asymptotic validity was also proven and can be found in
the supplement. In addition, we improved the behavior of the Little’s test (cf. Little, 1976) that is based upon a modified
maximum likelihood estimator by introducing an asymptotic model-based bootstrap version of the test.
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In an extensive simulation study, the type-I error rate control of the tests have been examined for symmetric and skewed
distributions with homoskedastic and heteroskedastic covariance settings under different missing mechanisms. There, it
was seen that the parametric bootstrap versions of WTS, ATS, MATS, and Little improve their small sample behavior. In
particular, our bootstrap tests have been shown to perform very well in most of the cases, even with larger amount of
missingness, heteroskedastic covariance or skewed data. Only the type-I error control for the exponential distribution,
particularly under heteroskedasticity, MCAR and small paired sample sizes with rather large unpaired portions (𝑛𝑐 =
10, 𝑛𝑢 = 30), is not maintained. In this setting, however, all other considered methods such as the ones given in Qi et al.
(2019) and inspired by Pesarin (2001) and Pesarin & Salmaso (2010) also failed to control the type-I error rate.
Furthermore, our simulation study reveals that the bootstrap procedures’ type-I error control is notmuch affected by less

stringent missing data mechanism such as the MAR. However, their power behavior is affected. A possible justification
of the latter effect might originate from the additional dependence structure within the occurrence of missing values
compared to the MCAR case. It seems that the testing procedure is more challenged to detect deviations from the null.
In order to simplify the application of our approaches, the three proposed bootstrap statistical methods have

been implemented within the PBT function in the freely available R-package MissPair. It is available on GitHub
(https://github.com/lubnaamro/MissPair) and will be available on the CRAN repository.
Future research will be concerned with extending our procedures to multivariate settings (MANOVA). An investigation

of the behavior of our methods together with logit or probit transformations may also be part of future work.
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