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Meta-analyses of correlation coefficients are an important technique to integrate results

from many cross-sectional and longitudinal research designs. Uncertainty in pooled

estimates is typically assessed with the help of confidence intervals, which can double as

hypothesis tests for two-sided hypotheses about the underlying correlation. A standard

approach to construct confidence intervals for themain effect is theHedges-Olkin-Vevea

Fisher-z (HOVz) approach, which is based on the Fisher-z transformation. Results from

previous studies (Field, 2005, Psychol. Meth., 10, 444; Hafdahl andWilliams, 2009, Psychol.

Meth., 14, 24), however, indicate that in random-effects models the performance of the

HOVz confidence interval can be unsatisfactory. To this end, we propose improvements

of the HOVz approach, which are based on enhanced variance estimators for the main

effect estimate. In order to study the coverage of the new confidence intervals in both

fixed- and random-effects meta-analysis models, we perform an extensive simulation

study, comparing them to established approaches. Data were generated via a truncated

normal and beta distribution model. The results show that our newly proposed

confidence intervals based on a Knapp-Hartung-type variance estimator or robust

heteroscedasticity consistent sandwich estimators in combinationwith the integral z-to-r

transformation (Hafdahl, 2009, Br. J. Math. Stat. Psychol., 62, 233) provide more accurate

coverage than existing approaches in most scenarios, especially in the more appropriate

beta distribution simulation model.

1. Introduction

Quantifying the association of metric variables with the help of the Pearson correlation

coefficient is a routine statistical technique for understanding patterns of association. It is
a basic ingredient of the data analysis ofmany cross-sectional and longitudinal designs, and

is also indispensable for various psychometric and factor-analytic techniques. When

several reports are available for comparable underlying populations, meta-analytic

methods allow the available evidence to be pooled (Hedges & Olkin, 1985; Hunter &

Schmidt, 2004), resulting in more stable and precise estimates.
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Systematic reviews based onmeta-analyses of correlations are among themost cited in

industrial and organizational psychology, clinical psychology and educational psychology

(e.g. Aldao,Nolen-Hoeksema, & Schweizer, 2010; Barrick&Mount, 1991; Sirin, 2005 each

with several thousand citations), and the methodological monograph on pooling
correlations of Hunter and Schmidt (2004) is approaching 10,000 citations on Google

Scholar at the time of writing. In addition, pooled correlations are the basis for meta-

analytic structural equation modelling (e.g., Cheung, 2015; Jak, 2015, and registered

replication efforts pool correlations to reassess findings of others (e.g., Open Science

Collaboration, 2015).).

1.1. The importance of confidence intervals for pooled correlations
Schulze (2004) provides a comprehensive summary of fixed- and random-effects meta-

analysis of correlations. The best-known approaches are based on Fisher’s z transformation

(Field, 2001, 2005; Hafdahl &Williams, 2009; Hedges &Olkin, 1985) or on direct synthesis

of correlations via the Hunter--Schmidt (HS) method (Hunter & Schmidt, 1994; Schulze,

2004). Regardless of themethod and the purpose of themeta-analysis, the point estimate of

the correlation is accompanied by an estimate of its uncertainty, in the form of a standard

error (SE) or a confidence interval (CI). Since the absolute value of a correlation is bounded

by1, aCImight be asymmetric in this context, that is, not centred around thepoint estimate.
Also, CIs are often more useful than SEs, because a null hypothesis of the form H0 : ρ¼ ρ0
can be rejected at level α if a 100ð1�αÞ% CI does not include ρ0 (duality of hypothesis

testing and CIs). A CI’s coverage is ideally close to the nominal 1�α level; for example, a

multi-centre registered replication report does want to rely either on an anti-conservative

(too narrow) CI that is overly prone to erroneously rejecting previous research, or on a

conservative (too wide) CI lacking statistical power to refute overly optimistic point

estimates. Despitemethodological developments since the late 1970s, the choice of a CI for

a pooled correlation should be a careful one: simulation experiments reported in this paper
reinforce the finding that CIs are too liberal when heterogeneity is present. The main

objective of this paper is a systematic investigation of competingmethods, especially when

moderateor even substantial amounts of heterogeneity arepresent, promising refinedmeta-

analyticmethods for correlations, especially thosebasedon theFisherz transformation.The

remainder of this introduction reviews results for (z-transformation-based) pooling, and

briefly introduces relevant methods for variance estimation.

1.2. Pooling (transformed) correlation coefficients

A line of research summarized inHunter and Schmidt (1994) pools correlation coefficients

on the original scale from �1 to 1. One of the merits of the HS methodology is a clear

rationale for artefact corrections, that is, correlations are disattenuated for differences at

the primary report level in reliability or variable range. While this part of the HS

methodology is beyond the scope of the current paper, CIs originating from Osburn and

Callender (1992) are studied here as an HS-based referencemethod (see also Field, 2005).

Fisher’s z-transformation (= areatangens hyperbolicus) maps the open interval
ð�1,1Þ to the real number line. Working with z values of correlations avoids problems

arising at the bounds and makes normality assumptions of some meta-analytic models

more plausible (Hedges & Olkin, 1985). Field (2001) presents a systematic simulation

study, and describes scenarios with too liberal behaviour of the HSmethodology, but also

reports problems with z-transformed pooled values. A simulation strategy is also at the
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core of Field (2005), who places a special emphasis on heterogeneous settings. He finds

similar point estimates for z-transformation-based and HS pooling, with the CIs from the

HS method too narrow in the small-sample case. The simulation study of Hafdahl and

Williams (2009) includes a comprehensive account of random-effects modelling and
related sources of bias in point estimates. Focusing on point estimation, Hafdahl and

Williams (2009) defend z-transformed pooling, but Hafdahl (2009) recommends the

integral z-to-r transformation as a further improvement. In the spirit of Hafdahl and

Williams (2009), the current paper focuses on variance estimators and resulting CIs,

especially in the case of heterogeneity.

1.3. Estimating between-study variance
All CIs studied here are of the form g θ̂� σ̂θ̂

� �
, for an appropriate back-transformation g

(which is not needed in the HS approach), a point estimator θ̂ and its SE estimator σ̂θ̂,
which depends on the between-study variance estimation. The quality of the CI will

depend on an appropriate choice. In other words, especially when primary reports are

heterogeneous and the underlying study-specific true correlations vary, good estimators

of the between study variance are needed to obtain neither too wide nor too narrow CIs.

The comprehensive study of Veroniki et al., (2016) supports restricted maximum

likelihood estimation (REML) as a default estimator of the between-study variance. Since
large values of the mean correlation cause REML convergence problems, the robust two-

step Sidik and Jonkman (2006) estimator is adoptedhere. Recently,Welz and Pauly (2020)

showed that in the context of meta-regression, the Knapp–Hartung (KH) adjustment

(Hartung, 1999; Hartung & Knapp, 2001) aided (co)variance estimation, motivating the

inclusion of KH-type CIs in the subsequent comparison.

Less well known in the meta-analysis literature are bootstrap methods for variance

estimation, which are not necessarily based on a parametric assumption for the random-

effects distribution. TheWu (1986)wild bootstrap intended for heteroscedastic situations
is evaluated here. Bootstrapping is complemented by sandwich estimators (heteroscedas-

ticity consistent, HC; White, 1980) which Viechtbauer, López-López, Sánchez-Meca, and

Marn-Martnez (2015) introduced in the field ofmeta-analysis. Recently, awide range ofHC

estimatorswere calculatedbyWelz and Pauly (2020),whose comparison also includes the

more recent HC4 andHC5 estimators (Cribari-Neto, Souza, & Vasconcellos, 2007; Cribari-

Neto & Zarkos, 2004). In sum, the following comparison includes a comprehensive

collection of established and current variance estimators and resulting CIs.

In Section 2 we introduce the relevant models and procedures for meta-analyses of
correlations withmore technical detail, as well as our proposed refinements. In Section 3

weperform an extensive simulation study andpresent the results. In Section 4wepresent

an illustrative data example on the association of conscientiousness (in the sense of the

NEO-PI-R; Costa Jr and McCrae, 1985, 2008) and medication adherence (Molloy,

O’Carroll, & Ferguson, 2013). Section 5 concludes the paper with a discussion of our

findings and give an outlook for future research.

2. Meta-analyses of Pearson correlation coefficients

For a bivariate metric random vector (X,Y) with existing secondmoments the correlation

coefficient ρ¼Cov X,Yð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð ÞVar Yð Þp

is usually estimated with the (Pearson)

correlation coefficient
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r¼ ∑n

i¼1ðxi�xÞðyi�yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1ðxi�xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n

i¼1ðyi�yÞ2
q , (1)

where ðxi,yiÞ, i¼ 1,⋯,n, are independent observations of (X,Y).

The Pearson correlation coefficient is asymptotically consistent, that is, for large

sample sizes, its value converges to the true ρ. It is also invariant under linear
transformations of the data. However, its distribution is difficult to describe analytically

and it is not an unbiased estimator of ρ, with an approximate bias of

ðr�ρÞ≈� 1
2
ρð1�ρ2Þ=ðn�1Þ (Hotelling, 1953).

As correlation-based meta-analyses with r as effect measure occur frequently in

psychology and the social sciences we briefly recall the two standard models (see

Schwarzer, Carpenter, & Rücker, 2015): the fixed- and random-effects models. The fixed-

effect meta-analysis model is defined as

yi ¼ μþ ɛi, i¼ 1, . . .,K , (2)

where μ denotes the common (true) effect, that is, the (transformed) correlation in our

case,K the number of available primary reports, and yi the observed effect in the i th study.

Themodel errors ϵi are typically assumed to be normally distributedwith ɛi ind∼N 0, σ2i
� �

.

In this model the only source of sampling error comes from within the studies. The
estimate of the main effect μ is then computed as a weighted mean via

μ̂¼ ∑
K

i¼1

wi

w
yi, (3)

wherew :¼∑K

i¼1wi and the study weightswi ¼ σ̂�2
i are the reciprocals of the (estimated)

sampling variances σ̂2i . This is known as the inverse variance method. The fixed-effect

model typically underestimates the observed total variability because it does not account

for between-study variability (Schwarzer et al., 2015). However, it has the advantage of

being able to pool observations, if individual patient data (IPD) are in fact available,

allowing for greater flexibility in methodology in this scenario.

The random-effectsmodel extends the fixed-effect model by incorporating a random

effect that accounts for between-study variability, such as differences in study population
or execution. It is given by

μi ¼ μþuiþ ɛi, i¼ 1,⋯,K , (4)

where the random effects ui are typically assumed to be independent and Nð0,τ2Þdis-
tributed with between-study variance τ2and ɛi ind∼N 0, σ2i

� �
. Furthermore, the random

effects (ui)i and the error terms (ϵi)i are jointly independent. Thus, for τ2 ¼ 0, the fixed-

effect model is a special case of the random-effects model. The main effect is again

estimated via the weighted mean μ̂ given in equation (3) with study weights now defined
as wi ¼ðσ̂2i þ τ̂2Þ�1

.

A plethora of approaches exist for estimating the heterogeneity variance τ2. Which

estimator should be used has been discussed for a long time, without reaching a definitive

conclusion. However, a consensus has been reached that the popular and easy-to-

calculate DerSimonian--Laird estimator is not the best option. Authors such as Veroniki

et al., (2016) and Langan et al., (2019) have recommendedusing iterative estimators for τ2.
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We therefore (initially) followed their suggestion and used the REML estimator. However,

in some settings, such as large ρvalues, the REML estimator had trouble converging, even

after the usual remedies of utilizing step halving and/or increasing the maximum number

of permitted iterations. We therefore opted to use the two-step estimator suggested by
Sidik and Jonkman (SJ), which is defined by starting with a rough initial estimate of

τ̂20 ¼ 1
K
∑K

i¼1ðyi�yÞ2 and is then updated via the expression

τ̂2SJ ¼
1

K�1
∑
K

i¼1

wiðyi� μ̂Þ2, (5)

where wi ¼ τ̂20= σ̂2i þ τ̂20
� �� ��1

and μ̂¼ ∑
K

i¼1

wiyi=∑
K

i¼1

wi (Sidik & Jonkman, 2005). A

comprehensive comparison of heterogeneity estimators for τ2in the context of random-

effects meta-analyses for correlations would be interesting but is beyond the scope of this

paper.

Before discussing different CIs for the common correlation μwithinmodel (4),we take

a short excursion on asymptotics for r in the one-group case.

2.1. Background: Asymptotic confidence intervals
Assuming bivariate normality of (X,Y), r is approximately distributed asNðρ,ð1�ρ2Þ2=nÞ
for large sample sizes n (Lehmann, 2004). Here, bivariate normality is a necessary

assumption to obtain ð1�ρ2Þ2 in the asymptotic variance (Omelka & Pauly, 2012).

Plugging in r, we obtain an approximate 100ð1�αÞ% CI of the form

r�u1�α=2ð1� r2Þ= ffiffiffi
n

p
, where u1�α=2 denotes the ð1�α=2Þ quantile of the standard

normal distribution.

In fixed-effect meta-analyses, when IPD are available, this result can be used to

construct a CI based on pooled data: calculating ρ̂pool, the pooled sample correlation

coefficient, we obtain an approximate CI for ρ as

ρ̂pool�u1�α=2

1� ρ̂2pool

� �
ffiffiffiffi
N

p , (6)

where N :¼∑K

i¼1ni is the pooled sample size. As this pooling of observations only makes
sense if we assume that each study has the same underlying effect, this approach is not

feasible for a random-effectsmodel, even if IPDwere available. In any case, evenunder IPD

and a fixed-effects model, this CI is sensitive to the normality assumption and the

underlying sample size, as we demonstrate in Table 1 for the case K ¼ 1. We simulated

bivariate data from standard normal and standardized lognormal distributions1 with

correlation ρ∈f:3, :7gand study size n∈f20, 50, 100g. In each setting we performed

N = 10,000 simulation runs. For the lognormal data coverage is extremely poor in all

cases, ranging from 53–80%. For the normally distributed case coverage was somewhat
low at 90% for n = 20 but improved for larger sample sizes. This case study clearly

illustrates that alternatives are needed when the data cannot be assumed to stem from a

normal distribution or sample sizes are small.

1 Further details regarding the data generation can be found in the online supplementary materials.
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After this short excursion we return to model (4) and CIs for ρ.

2.2. The Hunter--Schmidt approach

The aggregation of correlations in the Hunter–Schmidt approach is done by sample size

weighting:

rHS ¼∑K

i¼1niri

∑K

i¼1ni

: (7)

Several formulae have been recommended for estimating the sampling variance of this
mean effect size estimate. We opted for a suggestion by Osburn and Callender (1992),

σ̂2HS ¼
1

K

∑K

i¼1niðri� rHSÞ2
∑K

i¼1ni

 !
, (8)

which is supposed to perform reasonably well in both heterogeneous and homogeneous
settings (Schulze, 2004). In the simulation study wewill investigate whether this is in fact

the case for the resulting CI, rHS�u1�α=2σ̂HS.

2.3. Confidence intervals based on the Fisher z transformation

A disadvantage of the asymptotic confidence interval (6) is that the variance of the limit

distribution depends on the unknown correlation ρ. This motivates a variance-stabilizing

transformation. A popular choice for correlation coefficients is the Fisherz transforma-

tion (Fisher, 1915),

ρ↦z¼ 1

2
ln

1þρ
1�ρ

� �
¼ atanhðρÞ: (9)

The corresponding inverse Fisher transformation is z↦tanhðzÞ¼ ðexpð2zÞ�1Þ=
ðexpð2zÞþ1Þ.

The variance-stabilizing property of the Fisher transformation follows from the

δ-method (Lehmann, 2004); that is, if
ffiffiffi
n

p ðr�ρÞ!dNð0,ð1�ρ2Þ2Þ thenffiffiffi
n

p ðẑ�zÞ¼ ffiffiffi
n

p ðatanhðrÞ� atanhðρÞÞ!dNð0,1Þ: Following, it is reasonable to substituteffiffiffi
n

p
by,

ffiffiffiffiffiffiffiffiffiffiffi
n�3

p
that is, to approximate the distribution of ẑby,N atanh rð Þ,1= n�3ð Þð Þ still

assuming bivariate normality. Thus, a single-group approximate 100ð1�αÞ% CI can be
constructed via tanhðẑ�u1�α=2=

ffiffiffiffiffiffiffiffiffiffiffiffi
N�3

p Þ:

Table 1. Empirical coverage of the asymptotic confidence interval for K ¼ 1, study size

n∈ 20, 50, 100f g and correlation ρ∈ 0:3,0:7f g

Distribution

N

ρ 20 50 100

Normal .3 .90 .93 .94

.7 .90 .92 .94

Lognormal .3 .79 .80 .79

.7 .63 .57 .53
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In the random-effects model (4), the z transformation may also be used to construct a

CI for the common correlation ρ. Here, the idea is again to use inverse variance weights to

define

z¼
∑K

i¼1
1

ni�3
þ τ̂2

� ��1

zi

∑K

i¼1
1

ni�3
þ τ̂2

� ��1 , (10)

where zi ¼ atanhðriÞ. A rough estimate of the variance of z is given by ð∑K

i¼1wiÞ�1
. In the

fixed-effect case with τ2 ¼ 0 this yields the variance estimate

∑K

i¼1ðni�3Þ� ��1 ¼ðN�3KÞ�1. Then z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�3K

p
approximately follows a standard

normal distribution and an approximate 100ð1�αÞ% CI is given by

tanhðz�u1�α=2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�3K

p Þ. Proceeding similarly in the random-effects model (4), one

obtains the Hedges–Olkin–Vevea Fisher-z(HOV z) CI

tanhðz�u1�α=2=ð∑
K

i¼1

wiÞ
1=2

Þ, (11)

with wi ¼ð1=ðni�3Þþ τ̂2Þ�1
(Hafdahl & Williams, 2009; Hedges & Olkin, 1985; Hedges

& Vevea, 1998).

2.3.1. Knapp--Hartung-type CI

The above approximation of the variance of z via ∑K

i¼1wi

� ��1
can be rather inaccurate,

especially in random-effects models. Although this is the exact variance of z when the

weights are chosen perfectly as wi ¼ðσ2i þτ2Þ�1
, this variance estimate does not protect

against (potentially substantial) errors in estimating σ̂2i and τ̂2 (Sidik & Jonkman, 2006).

Therefore, we propose an improved CI based on the KH method (Hartung & Knapp,

2001). Knapp andHartung proposed the following variance estimator for the estimate μ̂of
the main effect μin a random-effects meta-analysis (REMA):

σ̂2KH ¼ V̂arKH μ̂ð Þ¼ 1

K�1
∑
K

i¼1

wi

w
μ̂i� μ̂ð Þ2, (12)

where again w¼∑K

i¼1wi. showed that if μ̂ is normally distributed, then μ̂�μð Þ=σ̂KH
follows a t distribution with K�1 degrees of freedom. Therefore an approximate

100ð1�αÞ% CI for μ is given by

tanh z� tK�1,1�α=2 � σ̂KH
� �

, (13)

where tK�1,1�α=2 is the 1�α=2 quantile of the t distribution with K�1 degrees of

freedom. Because of the approximately normal distribution of z-transformed correlations,

the CI ((13)) seems justified. Various authors have highlighted the favourable perfor-

mance of the KH approach compared to alternative meta-analytic methods (IntHout,
Ioannidis, & Borm, 2014; Viechtbauer et al., 2015; Welz & Pauly, 2020). Analogously to

(13), we can construct further CIs by using other variance estimation procedures for

Var μ̂ð Þ.
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2.3.2. Wild bootstrap approach

Another possibility for estimating the variance of z is through bootstrapping. Bootstrap-

ping belongs to the class of resampling methods. It allows the estimation of the sampling

distribution of most statistics using random sampling methods. The wild bootstrap is a
subtype of bootstrapping that is applicable in models which exhibit heteroscedasticity.

Roughly speaking, the idea of the wild bootstrap approach is to resample the response

variables based on the residuals. The idea was originally proposed by Wu (1986) for

regression analysis.

We now propose a confidence interval for ρ based on a (data-dependent) wild

bootstrap (WBS) approach combined with the ztransformation. The idea works as

follows. We assume an REMA model with Pearson’s correlation coefficient as the effect

estimate (and K>3 studies). Given the estimated study-level correlation coefficients
ri, i¼ 1,⋯,K , we transform these using ztransformation to ẑi, i¼ 1,⋯,K , and estimate

z¼ atanhðρÞvia ẑ¼∑i wi=wð Þẑi, where again wi ¼ðσ̂iþ τ̂2Þ�1
with σ̂2i ¼ 1

ni�3
and

w¼∑iwi. Here, τ̂
2 may be any consistent estimator of the between-study heterogeneity

τ2, where we have chosen the SJ estimator. We then calculate the estimated residuals

ɛ̂i ¼ ẑ� ẑi and use these to generate B new sets of study-level effects

ẑ
∗
1b, . . ., ẑ

∗
Kb,b¼ 1, . . .,B. Typical choices for Bare 1,000 or 5,000. The new study-level

effects are generated via

ẑ
∗
ib :¼ ẑiþ ɛ̂i �vi, (14)

where vi ∼N 0,γð Þ. The usual choice of variance in a WBS is γ¼ 1. However, we

propose a data-dependent choice of either γK ¼ðK�1Þ=ðK�3Þ or γK ¼ðK�2Þ=ðK�3Þ.
These choices are based on simulation results, which will be discussed in detail in

Section 3.Wewill later refer to these approaches asWBS1,WBS2 andWBS3, respectively.

The corresponding values for γ are 1, ðK�1Þ=ðK�3Þ and ðK�2Þ=ðK�3Þ. This allows us

to generate B new estimates of the main effect z by calculating

ẑ
∗
b ¼

∑K

i¼1w
∗
ibẑ

∗
ib

∑K

i¼1w
∗
ib

, (15)

with w∗
ib≡wi. We then estimate the variance of ẑ via the empirical variance of ẑ∗1,⋯, ẑ∗B,

σ∗2z :¼ 1

B�1
∑
B

i¼1

ðẑ∗i �z∗Þ2, with z∗ ¼ 1

B
∑
B

i¼1

ẑ
∗
i

It is now possible to construct a CI for z as in equation (13) but with this new variance

estimate of�z. The CI is back-transformed via the inverse Fisher transformation to obtain

a CI for the common correlation ρ, given by

tanh ẑ� σ̂∗z � tK�1,1�α=2
� �

: (16)

8 Thilo Welz et al.



Figure 1 provides a visual illustration of the WBS procedure discussed above.

2.3.3. HC-type variance estimators

Last but not least,we employheteroscedasticity consistent variance estimators [sandwich

estimators; White, 1980). Different forms (HC0,...,HC5) are in use for linear models

(Rosopa, Schaffer, & Schroeder, 2013). The motivation for the robust HC variance

estimators is that in a linear regression setting the usual variance estimate is unbiased
when unit-level errors are independent and identically distributed. However, when the

unit-level variances are unequal, this approach can be biased. If we apply this to the meta-

analysis context, the study-level variances are almost always unequal due to varying

sample sizes. Therefore, it makes sense to consider variance estimators that are unbiased

even when the variances of the unit (study) level variances are different.

The extension of HC estimators to the meta-analysis context can be found in

Viechtbauer et al., (2015) for HC0 andHC1 and inWelz and Pauly (2020) for the remaining

HC2,⋯,HC5. Statistical tests based on these robust estimators have been shown to
perform well, especially those of types HC3 and HC4. In the special case of an REMA they

are defined as

σ̂2HC3
¼ 1

ð∑K

i¼1wiÞ2
∑
K

j¼1

w2
j ɛ̂

2
j ð1�xjjÞ�2

σ̂2HC4
¼ 1

ð∑K

i¼1wiÞ2
∑
K

j¼1

w2
j ɛ̂

2
j ð1�xjjÞ�δ j , δ j ¼min 4,

xjj

x

n o
,

Transform 
correlations r to z, fit 
REMA model, 
calculate residuals
= −

Draw 
~ (0, )

randomly

Generate pseudo-
data:

Repeat B 
times

Fit new REMA 
& save effect
estimate

Figure 1. Visual illustration of the wild bootstrap procedure for generating B bootstrap samples of

the main effect estimate on the z scale. REMA, random-effects meta-analysis.
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with ɛ̂ j ¼ ẑ j� ẑ,xij ¼wj=∑
K

i¼1

wi and x¼K�1 ∑
K

i¼1

xij [see theAppendix S1 ofWelz and Pauly,

2020 for details). Plugging them into equation (13) leads to the confidence intervals

tanh ẑ� σ̂HC j
� tK�1,1�α=2

� �
, j¼ 3,4: (17)

2.3.4. Integral z-to-r transformation

There is a fundamental problem with back-transforming CIs on the z scale using the

inverse Fisher transformation tanh. Consider a random variable ξ :NðartanhðρÞ,σ2Þwith

some variance σ2>0 and ρ≠0. Then ρ¼ tanhððξÞÞ≠ðtanhðξÞÞ by Jensen’s inequality.

This means the back-transformation introduces an additional bias. A remedy was

proposed by Hafdahl (2009), who suggested back-transforming from the z scale using an

integral z-to-r transformation. This transformation is the expected value of tanhðzÞwhere

z :Nðμz,τ2zÞ that is,

ψðμzjτ2zÞ¼
Z ∞

�∞
tanhðtÞf ðtjμz,τ2zÞdt, (18)

where f is the density of z. In practicewe apply this transformation to the lower and upper

confidence limits on the z scale, plugging in the estimates ẑ and τ̂2z . For example, for the

KH-based CI (13) with z scale confidence bounds ‘¼ z� tK�1,1�α=2 � σ̂KH and

u¼ zþ tK�1,1�α=2 � σ̂KH, with an estimated heterogeneity τ̂2z (on the z scale), the CI is

given by

ψð‘jτ̂2zÞ,ψðujτ̂2zÞ
� �

:

If the true distribution of ẑ is well approximated by a normal distribution and τ̂2z is a
good estimate of the heterogeneity variance (on the z scale), ψ should improve the CIs as

compared to simply back-transformation with tanh (Hafdahl, 2009). Following this

argument, we also suggest using ψ instead of tanh. We calculate the integral with

Simpson’s rule (Süli &Mayers, 2003), which is amethod for the numerical approximation

of definite integrals. Following Hafdahl (2009), 150 subintervals over ẑ�5 � τ̂SJ were used.
Note that the HOVz CI is implemented in its original formulation, using tanh.

3. Simulation study

We have suggested several new CIs for the mean correlation ρ, all based on the z

transformation, applicable in both, fixed- and random-effects models. In order to
investigate their properties (especially coverage of ρ), we perform extensive Monte Carlo

simulations. We focus on comparing the coverage of our newly suggested CIs with

existing methods.

3.1. Simulation study design

The Pearson correlation coefficient is constrained to lie in the interval ½�1,1�. The typical
random-effects model μi ¼ μþuiþ ɛi, assuming a normal distribution for the random

10 Thilo Welz et al.



effect ui ∼N 0,τ2ð Þ and error term ɛi ∼N 0,σ2i
� �

, needs to be adjusted, since values

outside of ½�1,1� could result when sampling without any modification.

3.1.1. Model 1

As a first option for generating the (true) study-level correlations, we consider a truncated

normal distribution ρi ∼N ρ,τ2ð Þ: Sampling of ρi is repeated until a sample lies within the

interval ½�0:999, 0:999�. This type of truncated normal distribution model was also used

in Hafdahl andWilliams (2009) and Field (2005). A problemwith this modelling approach

is that the expected value of the resulting truncated normal distribution is in general not

equal to ρ. For a random variable X stemming from a truncated normal distribution with

mean μ, variance σ2, lower bound a and upper bound b,

ðXÞ¼ μþσ
ϕðΔ1Þ�ϕðΔ2Þ

δ
,

where Δ1 ¼ða�μÞ=σ, Δ2 ¼ðb�μÞ=σ and δ¼ΦðΔ2Þ�ΦðΔ1Þ (Johnson, Kotz, & Balakr-

ishnan, 1994). Here ϕð�Þ is the probability density function of the standard normal

distribution andΦð�Þ its cumulative distribution function. Figure S15 shows the bias in our

setting with a¼�0:999 and b¼ 0:999. The bias is equal to σðϕðΔ1Þ�ϕðΔ2ÞÞ=δ. In
addition to generating a biased effect, the truncation also leads to a reduction of the overall

variance, which is smaller than τ2.

3.1.2. Model 2

We therefore studied a second model, in which we generate the (true) study-level effects

ρi from transformed beta distributions: Y i ¼ 2ðXi�0:5Þ with Xi ∼Beta α,βð Þ for studies
i¼ 1,⋯,K . The idea is to choose the respective shape parameters α,β such that

E Y ið Þ¼ 2 � α

αþβ
�0:5

� �
¼ ρ,

Var Y ið Þ¼ 4αβ

ðαþβÞ2 αþβþ1ð Þ¼ τ2:

The solution to the system of equations above is

α¼ð1�ρÞð1þρÞ�τ2

τ2
� 1þρ

2

� �
,

β¼ 1�ρ
1þρ

� �
α:

In this second simulation scenario we also truncate the sampling distribution of the

correlation coefficients to ½�0:999, 0:999�, but values outside of this interval are

considerably rarer. The second model has the advantages that the expected value and

variance are approximately correct, unlike in the first (truncated)model. A disadvantage is

Confidence Intervals of Correlations 11



that for extreme τ2 values, the above solution for α (and thus β) may become negative,

which is undefined for parameters of a beta distribution. However, this was not a concern

for the parameters considered in our simulation study and only occurs in more extreme

scenarios.

3.1.3. Parameter choices

In order to get a broad overview of the performance of all methods, we simulated various

configurations of population correlation coefficient, heterogeneity, sample size and

number of studies. Here we chose the correlations ρ∈f0, :1, :3, :5, :6, :7, :8, :9gand
heterogeneity τ∈ 0,0:16,0:4f g. We used the same values for τ as Hafdahl and Williams

(2009), to enable comparability of our simulation studies. Moreover, we considered small
to large numbers K∈ 5, 10, 20, 40f g of studies with different study sizes. For K = 5, we

considered n
!¼ 15, 16, 19, 23, 27ð Þ as vector of ‘small’ study sizes and 4 �n! for larger study

sizes, corresponding to an average study size nð Þof 20 and 80 subjects, respectively. For all
other choices of K we proceeded similarly, stacking copies n

~
behind each other, for

example, the sample size vectors n
!
, n
!� �

and 4 � n
!
, n
!� �

forK ¼ 10. Byway of comparison,

Hafdahl and Williams (2009) considered 5 ≤K ≤ 30. As we wanted to capture the

methods’ behaviour when many studies are present, we also included the setting K ¼ 40
in our simulation study. Additionally, we accounted for variability in study sizes, which

will be present in virtually any meta-analysis in practice. Additionally, we considered two

special scenarios: the case of few and heterogeneous studies, with study size vector

23,19,250,330,29ð Þ and the case of many large studies, with study size vector n
!∗

,n
!∗� �

with n
!∗ ¼ 210,240,350,220,290,280,340,400,380,290ð Þ. The latter case corresponds to

K ¼ 20 studies with an average of 300 study subjects.

Thus, in total we simulated 8 ρð Þ�3 τ2ð Þ�10 K , studysizevectorð Þ� modelsð Þ¼ 480

different scenarios for each type of confidence interval discussed in this paper. For each

scenario we performed N ¼ 10,000 simulation runs, where for the WBS CI each run was

based upon B¼ 1,000 bootstrap replications. The primary focus was on comparing

empirical coverage, with nominal coverage being 1�α¼ :95. For 10,000 iterations, the

Monte Carlo standard error of the simulated coverage will be approximatelyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:95� :05=10000

p
≈0:218% , using the formula provided in the recentwork on simulation

studies by Morris, White, and Crowther (2019).

All simulations were performed using the open-source software R. The R scripts

written by the first author especially make use of the metafor package for meta-analysis

(Viechtbauer, 2010).

3.2. Results

For ease of presentation, we aggregated the multiple simulation settings with regard to
number and size of studies. The graphics therefore display the mean observed coverage

for each confidence interval type and true main effect ρ. Results are separated by

heterogeneity τ2 and simulation design. The latter refers to the truncated normal

distribution approach and the transformed beta distribution approach, respectively.More

detailed simulation results for all settings considered are given in the Appendix S1.

12 Thilo Welz et al.



3.2.1. Coverage

We first discuss the results based on the truncated normal distribution (model 1). In the

case of no heterogeneity (fixed-effect model), Figure 2 shows that the new methods

control the nominal coverage of 95% well. Only the first wild bootstrap (WBS1) CI

exhibits liberal behaviour, yielding empirical coverage of approximately 93:5% . The HS

approach only provides 90% coverage, and HOVzwas slightly conservative with (mean)

coverage of around 97–98% . Moreover, in the fixed-effect model the value of ρ did not

affect any of the methods.
In the truncated normal set-up with moderate heterogeneity of τ¼ 0:16 in Figure 3,

several things change. First, there is a strong drop-off in coverage for higher correlations

ρ≥ :8. For HS this drop-off occurs earlier for ρ ≥ :7. Second, for ρ ≤ :7, HS is even more

liberal than for τ¼ 0, with coverage around 87.5%. Additionally, HOVz is no longer

conservative but becomes more liberal than WBS1 with estimated coverage probabilities

around 90–94% for ρ≤ :7. For all new methods a slight decrease in coverage can be

observed for increasing values of ρ from 0 to .7. Moreover, there is a slight uptick at ρ¼ :8
for HOVz, followed by a substantial drop-off. Overall the WBS3, HC3, HC4 and KH CIs
show the best control of nominal coverage in this setting.

We now consider model 2 with a transformed beta distribution model. In the fixed-

effects case (τ2 ¼ 0) the two models are equivalent so we obtain the same coverage as in

Figure 2. For moderate heterogeneity (τ¼ 0:16; see Figure 4), our newly proposed

methods clearly outperformHOVz andHS,with a good control of nominal coverage.Only

for ρ¼ :9 is their coverage slightly liberal. WBS1 performs just slightly worse than the

other newCIs. The observed coverage for HS is around 86–88% for ρ ≤ :7 and drops to just
below 80% for ρ¼ :9. For ρ>:6 the HOVz CI is even worse, with values dropping
(substantially) below 75%.

Figure 2. Mean Coverage for truncated normal distributionmodel with τ¼ 0, aggregated across all

number of studies and study size settings. HC, heteroscedasticity-consistent; HOVz, Hedges–-
Olkin–Vevea Fisher z; HS, Hunter–Schmidt; KH, Knapp–Hartung; WBS, wild bootstrap
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For ease of presentation, the results for the case of extreme heterogeneity with τ¼ 0:4
are given in the Appendix S1. Here, we only summarize important points from Figures

S13–S14. In the truncated normal distribution model we observe that HS again has

Figure 4. Mean coverage for transformed beta distribution model with τ¼ 0:16, aggregated across

all number of studies and study size settings. HC, heteroscedasticity-consistent; HOVz, Hedges–-
Olkin–Vevea Fisher z; HS, Hunter–Schmidt; KH, Knapp–Hartung; WBS, wild bootstrap

Figure 3. Mean coverage for truncated normal distributionmodel with τ¼ 0:16, aggregated across

all number of studies and study size settings. HC, heteroscedasticity-consistent; HOVz, Hedges–-
Olkin–Vevea Fisher z; HS, Hunter–Schmidt; KH, Knapp–Hartung; WBS, wild bootstrap
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unsatisfactory coverage, compared with the other approaches. For our new CIs based on

the Fisher transformation, for small K , coverage is approximately correct for ρ≤ :6 and

then drops off considerably. HOVz is slightly liberal with coverage around 90% for ρ≤ :6
and then drops off strongly. This holds for both smaller and larger studies with
n∈ 20,80f g, respectively. For an increasing number of studies K , HOVz remains largely

unchanged, whereas coverage of the new methods gets progressively worse (i.e., the

drop-off in coverage occurs earlier for an increasing number of studies). For K ¼ 40 the

new CIs only have correct coverage for ρ ≤ :3. In the case of the beta distribution model

with τ¼ 0:4 the new CIs provide correct coverage for ρ≤ :7 in all scenarios, dropping off

after this threshold. HOVz is highly inadequate, with coverage growing progressively

worse for increasing K . HOVz only has correct coverage for simultaneously ρ≤ :1 and

large K . For K ¼ 5, HS has coverage up to 82%, decreasing for increasing values of ρ.
However, for increasing number of studies (whether large or small), HS appears to

converge towards nominal coverage. In particular, for K ¼ 40 and ρ>:7, HS provides the
most accurate coverage under the beta distribution model.

3.2.2. Interval lengths

We simulated the expected confidence interval lengths for all methods discussed in this

paper. The detailed results are provided in Figures S7–S12. The results again depend on
both the assumed model and the amount of heterogeneity τ.

Generally we observe that the confidence intervals become increasingly narrow for

increasing values of ρ and increasinglywide for larger values of τ. For the truncated normal

distribution model and τ¼ 0, HS (on average) yields the shortest confidence intervals and

HOVz the widest, with the other CIs lying in between with quite similar lengths. Only for

K ¼ 5 are the CIs based on the wild bootstrap quite wide, indicating that potentially more

studies are required to reliably use WBS-based approaches. For τ¼ 0:16, HS again yields

the shortest CIs in all scenarios. For smallK , theWBS approaches yield thewidest CIs, and
formore studies,HOVz is thewidest,when ρ is small, but becomingnearly as narrow asHS

when ρ is close to 1. The lengths of the other CIs are nearly identical for K ¼ 40, whereas

for fewer studies there are considerable differences. This relative evaluation also holds for

τ¼ 0:4.
When the underlying model is the beta distribution model and τ¼ 0, the results are

equivalent to the truncated normal distribution model. For τ¼ 0:16 and K ¼ 5 the widths

of the newCIs decreasewith increasing ρuntil ρ¼ :7. Interestingly, thewidths of theseCIs

then increase again for ρ>:7,whichwasnot observed in the truncated normalmodel. This
effect becomes much less pronounced for increasing number of studies K. HS is always

narrower than the newCIs, and, forK ≥ 20,HOVz is thewidest at ρ¼ 0but evennarrower

than HS for ρ ≥ :8. For τ¼ 0:4 the results are similar, except that thewidths of the CIs now

decrease monotonously for increasing ρ and HOVz is narrowest for ρ>:5.

3.2.3. Recommendations

We summarize our findings by providing recommendations to practitioners wishing to
choose between the methods considered. The recommendations will depend on the

assumed model and how much heterogeneity is present in the data. We believe the beta

distributionmodel is better suited for random-effects meta-analyses of correlations. Recall

that HOVz employs the inverse Fisher transformation, whereas our newly proposed

confidence intervals employ the integral z-to-r transformation suggested by
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� τ¼ 0 (fixed-effect model). HS and HOVz are not recommended. We recommend using

KH, HC3 or HC4.

� τ¼ 0:16. For the truncatednormalmodel, HS andHOVz are not recommended andwe

recommend using KH, HC3 or HC4. For ρj j>:7, all methods are unsatisfactory and only
in the case ofK ¼ 40may HOVz be preferable. For the beta distributionmodel, HS and

HOVz are not recommended. All new confidence intervals exhibit satisfactory

coverage. For small K, WBS approaches yield wider confidence intervals, therefore

preferably use KH, HC3 or HC4.

� τ¼ 0:4. For the truncated normal model, HS is not recommended. For K ¼ 5 and

ρj j≤ :7 we again recommend KH, HC3 or HC4. For K ≥ 10 and ρj j≤ :7 we recommend

HOVz. For ρj j>0:7 none of the methods is satisfactory. For the beta distribution

model, HOVz is not recommended. For ρj j≤ :7 we recommend KH, HC3 or HC4. For
K ≥ 40 and ρj j>:7 we recommend using HS. For K ≤ 20 and ρj j>:7 none of the

methods is satisfactory.

4. Illustrative data analyses

Between 25% and 50% of patients fail to take their medication as prescribed by their
caregiver (Molloy et al., 2013). Some studies have shown thatmedication adherence tends

to be better in patientswho score higher on conscientiousness (from the five-factormodel

of personality). Table 2 contains data on 16 studies, which investigated the correlation

between conscientiousness and medication adherence. These studies were first analysed

in the form of a meta-analysis in Molloy et al. (2013). The columns of Table 2 contain

information on the authors of the respective study, the year of publication, the sample size

of study i (ni), the observed correlation in study i, the number of variables controlled for

(controls), study design, the type of adherence measure (a_measure), the type of
conscientiousness measure (c_measure), the mean age of study participants (mean_age)

and themethodological quality (as scoredby the authors on a scale from1 to 4,with higher

scores indicating higher quality).

Regarding the measurement of conscientiousness, where NEO (Neuroticism-

Extraversion-Openness) is indicated as c_measure, the personality trait of conscientious-

ness was measured by one of the various types of NEO personality inventories (PIs; Costa

Jr and McCrae, 1985, 2008).

We performed both a fixed- and random-effects meta-analysis, using all methods
considered. For the random-effects model we used the SJ estimator to estimate the

between-study heterogeneity variance τ2. Combining all available studies yielded

rFE ¼ :130, rRE ¼ :154 and τ̂2SJ ¼ 0:012. In addition to a complete-case study, we also

examined the cross-sectional and prospective studies separately. In total there were five

cross-sectional and 11 prospective studies in the data set. For the cross-sectional studies

rFE ¼ :168 and rRE ¼ :170 resulted and slightly lower values for the prospective studies

(rFE ¼ :108, rRE ¼ :147). Heterogeneity estimates were τ̂2SJ ¼ 0:007 (cross-sectional) and

τ̂2SJ ¼ 0:016 (prospective), respectively. In Table 3weprovide values of all CIs discussed in
this paper.

In the case of all studies (K ¼ 16), all methods yield quite similar CIs except for HS.

Additional simulations for this situation (K ¼ 16, τ2 ¼ 0:012, ni as in Table 3) are given in

the Appendix S1 and show a coverage of around 80% for HS, while all other methods

exhibit a fairly accurate coverage of around 95% and HOVz with around 94%. Thus, the
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price paid for the narrowHSCIs is poor coverage. Additional analyses of other data sets are

given in the Appendix S1.

5. Discussion

We introduced several newmethods to construct confidence intervals for themain effect
in random-effects meta-analyses of correlations, based on the Fisher z transformation. We

compared these to the standard HOVz and Hunter--Schmidt confidence intervals and,

following the suggestion by Hafdahl (2009), utilized an integral z-to-r transformation

instead of the inverse Fisher transformation. We performed an extensive Monte Carlo

simulation study in order to assess the coverage and mean interval length of all CIs. In

addition to the truncated normal distribution model considered by Hafdahl and Williams

(2009) and Field (2005), we investigated a transformed beta distribution model which

exhibits less bias in the generation of the study-level effects.
The results of our simulations show that for low and moderate heterogeneity and

correlations of ρj j ≤ :7, our newly proposed confidence intervals improved coverage

considerably over the classical HOVz and Hunter-Schmidt approaches. However, for

extreme heterogeneity and ρj j>:7 all confidence intervals performed poorly. Therefore,

further methodological research is necessary in order to fill this gap. Also, the choice of

data-generatingmodel (truncated normal or transformedbeta distribution) has substantial

influence on results. For various reasons, which we discussed when introducing the two

models, the beta distribution model is arguably more appropriate. Based on our findings,
we provide recommendations to practitioners looking for guidance in choosing amethod

for data analysis. These are listed in Section 3.2.3.

5.1. Limitations and further research

In the present paper we focused on the Pearson correlation coefficient, as it is the most

commonly used dependence measure. However, a limitation of the Pearson correlation

coefficient is that it only considers the linear relationship between variables. If variables
are related via some nonlinear function or significant outliers are present, other

Table 3. Random-effects model confidence intervals for all studies and subgroups separated by

study design, original data from Molloy et al. (2013)

Approach

Study design

All designs Cross-sectional Prospective

HOVz [.081, .221] [.067, .266] [.050, .240]

HS [.073, .174] [.100, .220] [.035, .166]

KH [.080, .218] [.037, .291] [.043, .239]

WBS1 [.086, .213] [.063, .267] [.051, .232]

WBS2 [.079, .219] [.053, .276] [.043, .239]

WBS3 [.084, .215] [.058, .272] [.048, .234]

HC3 [.081, .218] [.041, .288] [.041, .241]

HC4 [.083, .216] [.054, .276] [.045, .237]

HC, heteroscedasticity-consistent; HOVz, Hedges--Olkin--Vevea Fisher z; HS, Hunter–Schmidt; KH,

Knapp–Hartung; WBS, wild bootstrap.
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correlation coefficients such as Spearman’s rank correlation may be more appropriate.

The Spearman correlation coefficient is the Pearson correlation coefficient of the rank

values of the variables considered. Moreover, it shares similar properties with Pearson’s

correlation such as taking values in [−1,1] and even being asymptotically normal under
relatively weak assumptions (Schmid & Schmidt, 2007). The confidence intervals we

discussed in this paper can be calculated analogously for Spearman correlation

coefficients, for example when dealing with ordinal data. Evaluating their performance,

as we did in our simulation study, in conjunctionwith Spearman correlations is a topic for

future research. A detailed analysis of Spearman’s and more general correlations as in

Schober, Boer, and Schwarte (2018),, however, is outside the scope of this paper.

When dealing with different underlying data than we considered in our paper, it

should be kept inmind that although the underlying normal-normalmodel (4) is often very
useful, it has some limitations. For example, when dealing with binomial variables with

extreme observations, normal approximations may perform poorly (Agresti & Coull,

1998).. A context where this might occur are ceiling or floor effects on questionnaires or

ability tests; that is, when many participants obtain a near maximal (or minimal) score on

some questionnaire, a normal approximation may be invalid. Count data may also be

problematic, due to their ordinal nature and especially when zeros frequently occur.

Therefore researchers should carefully consider the data being analysedwhen choosing a

fitting model in practical applications.
In real-life data sets model (4) may be improved by including meaningful moderator

variables, leading to meta-regression as considered in Viechtbauer et al., (2015) andWelz

and Pauly (2020).. This can considerably reduce the heterogeneity present in the model.

We attempted to further improve the proposed confidence intervals with the help of a

bias correction for the Pearson correlation coefficient r, given by

r∗ ¼ r 1� r2ð Þ= 2 n�1ð Þð Þ, as the (negative) bias of r is usually approximated by

Br ¼�ρ 1�ρ2ð Þ= 2 n�1ð Þð Þ (Hotelling, 1953; Schulze, 2004). However, this bias correc-

tion actually made coverage worse in the settings studied.
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