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Abstract
Westudy local regularity properties of linear, non-uniformlyparabolic finite-difference
operators in divergence form related to the random conductance model on Zd . In par-
ticular, we provide an oscillation decay assuming only certain summability properties
of the conductances and their inverse, thus improving recent results in that direction.
As an application, we provide a local limit theorem for the random walk in a random
degenerate and unbounded environment.

Mathematics Subject Classification 60K37 · 60F17 · 35B65 · 35K65

1 Introduction

In this contribution, we continue our research [12,13] on regularity and stochastic
homogenization of non-uniformly elliptic equations. In [12], we studied local regu-
larity properties of weak solutions of elliptic equations in divergence form

∇ · a∇u = 0

and proved local boundedness and the validity of Harnack inequality under essen-
tially minimal integrability conditions on the ellipticity of the coefficients a. This
generalizes the seminal theory of De Giorgi, Nash andMoser [23,32,34] and improves
in an optimal way classic results due to Trudinger [36] (see also [33]). In [13], we
adapted the regularity theory from [12] to discrete finite-difference equations in diver-
gence form and used this to obtain a quenched invariance principle for random walks
among random degenerate conductances (see the next section for details).

In the present contribution, we extend our previous results in two ways
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(A) (deterministic part) We establish local regularity properties in the sense of an
oscillation decay (and thus Hölder-continuity) for solution to the discrete version
of the parabolic equation

∂t u − ∇ · a∇u = 0 (1)

under relaxed ellipticity conditions compared to very recent contributions in the
field (see e.g. [3,5,7,21]).

(B) (random part) Based on the regularity result in (A), we establish a local limit
theorem for random walks among degenerate and unbounded random conduc-
tances.

1.1 Setting andmain deterministic regularity results

In this paper we study the nearest-neighbor random conductance model on the d-
dimensional Euclidean lattice (Zd ,Bd), for d ≥ 2. Here B

d is given by the set of
nonoriented nearest-neighbor bonds, that is Bd := {{x, y} | x, y ∈ Z

d , |x − y| = 1}.
We set

� := (0,∞)B
d

(2)

and call ω(e) the conductance of the bond e ∈ B
d for every ω = {ω(e) | e ∈ B

d} ∈ �.
To lighten the notation, for any x, y ∈ Z

d , we set

ω(x, y) = ω(y, x) := ω({x, y}) ∀{x, y} ∈ B
d , ω({x, y}) = 0 ∀{x, y} /∈ B

d .

We study local regularity properties of functions u : Q ⊂ R×Z
d → R satisfying the

parabolic finite-difference equation

∂t u − Lωu = 0,

where Lω is the elliptic operator defined by

(Lωu)(x) =
∑

y∈Zd

ω(x, y)(u(y) − u(x)). (3)

We emphasize here thatLω is in fact an elliptic finite-difference operator in divergence
form, see (13) below. Our main deterministic regularity result is the following (see
Sect. 1.3 for notation).

Theorem 1 (Parabolic oscillation decay). Fix d ≥ 2, ω ∈ � and p ∈ (1,∞], q ∈
( d2 ,∞] satisfying 1

p + 1
q < 2

d−1 . Then there exist N = N (d) ∈ N and θP : (0,∞) ×
(0,∞) → (0, 1) which is continuous and monotonically increasing in both variables
such that the following is true: Let u be such that

∂t u − Lωu = 0 in Q(n) := [t0 − n2, t0] × B(x0, n),
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for some t0 ∈ R, x0 ∈ Z
d and n ≥ N. Then

osc (u, Q( 18n)) ≤ θP osc (u, Q(n)),

where θP = θP(‖ω‖L p(B(x0,n)), ‖ω−1‖Lq (B(x0,n))) and osc (u, Q) := max(t,x)∈Q
u(t, x) − min(t,x)∈Q u(t, x) denotes the oscillation of u.

Remark 1 The restrictions on the exponents p and q in Theorem 1 are natural in the
sense that they are essentially necessary in order to establish local boundedness for
solutions of ∂t u − Lωu = 0, see Remarks 4 and 7 below.

In recent works [3,7], the conclusion of Theorem 1 is contained under the more
restrictive relation 1

p + 1
q < 2

d . Note that [3] also contains results for time-depending
conductances and [7] allows for more general speed measures. It would be interesting
to see to which extend the method of the present paper can also yield improvements
in these cases.

Obviously, Theorem 1 applies also to Lω-harmonic functions. However, it turns
out that in the elliptic case a slightly more precise result can be proven under weaker
assumptions:

Theorem 2 (Elliptic oscillation decay). Let d ≥ 2, and if d ≥ 3 let p, q ∈ (1,∞] be
such that 1

p + 1
q < 2

d−1 . Then there exists θE : [1,∞) → (0, 1), which is continuous
and monotonically increasing, such that the following holds: Let ω ∈ � and u solves
Lωu = 0 in B(x0, 4n) for some x0 ∈ Z

d . Then,

osc (u, B(x0, n)) ≤ θE osc (u, B(x0, 4n)),

where

θE =
{

θE(‖ω‖L1(B(x0,4n))‖ω−1‖L1(B(x0,4n))) if d = 2

θE(‖ω‖L p(B(x0,4n))‖ω−1‖Lq (B(x0,4n))) if d ≥ 3
.

Remark 2 In [12], the corresponding statement of Theorem 1 for d ≥ 3 is proven in
the continuum setting as a consequence of elliptic Harnack inequality. Note that, in
d = 2 we can consider the borderline case p = q = 1 for which we did not prove
Harnack inequality in [12]. Previously, elliptic Harnack inequality and thus oscillation
decay in the form of Theorem 2 was proven in [5] under the more restrictive relation
1
p + 1

q < 2
d (see also the classic paper [36]).

1.2 Local limit theorem

In what follows we consider random conductances ω that are distributed according
to a probability measure P on � equipped with the σ -algebra F := B((0,∞))⊗B

d

and we write E for the expectation with respect to P. We introduce the group of space
shifts {τx : � → � | x ∈ Z

d} defined by
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τxω(·) := ω(· + x) where for any e={e, e} ∈ B
d , e + x :={e + x, e + x} ∈ B

d .

(4)

For any fixed realization ω, we study the reversible continuous time Markov chain,
X = {Xt : t ≥ 0}, on Z

d with generator Lω given in (3). Following [4], we
denote by Pω

x the law of the process starting at the vertex x ∈ Z
d and by Eω

x the
corresponding expectation. X is called the variable speed random walk (VSRW)
in the literature since it waits at x ∈ Z

d an exponential time with mean 1/μω(x),
where μω(x) = ∑

y∈Zd ω(x, y) and chooses its next position y with probability
pω(x, y) := ω(x, y)/μω(x).

Assumption 1 Assume that P satisfies the following conditions:

(i) (stationary) P is stationary with respect to shifts, that is P ◦ τ−1
x = P for all

x ∈ Z
d .

(ii) (ergodicity)P is ergodic, that isP[A] ∈ {0, 1} for any A ∈ F such that τx (A) = A
for all x ∈ Z

d

Starting with the seminal contribution [38], a considerable effort has been invested
in the derivation of quenched invariance principles under various assumptions on
the conductances, see the surveys [16,27] and the discussion below. The following
quenched invariance principe is the starting point for the probabilistic aspects of our
contribution.

Theorem 3 (Quenched invariance principle, [13,16]). Suppose d ≥ 2 and that
Assumption 1 is satisfied. Moreover, suppose that there exists p, q ∈ [1,∞] satis-
fying 1

p + 1
q < 2

d−1 such that

E[ω(e)p] < ∞, E[ω(e)−q ] < ∞ for any e ∈ B
d .

For n ∈ N, set X (n)
t := 1

n Xn2t , t ≥ 0. Then, forP-a.e.ω underPω
0 , X

(n) converges in
law to a Brownian motion on Rd with a deterministic and non-degenerate covariance
matrix �2.

Proof For d ≥ 3 this is [13, Theorem 2] and for d = 2 this can be found in [16]. �
In this contribution, we provide a refined convergence statement under slightly

stronger moment conditions - namely a local limit theorem. Consider the heat-kernel
pω of X , characterized by

pω
t (x, y) = pω(t; x, y) = Pω

x [Xt = y] for t ≥ 0 and x, y ∈ Z
d . (5)

The local limit theorem is essentially a pointwise convergence result of the (suitably
scaled) heat kernel pω of X towards the Gaussian transition density of the limiting
Brownian motion of Theorem 3. Set

kt (x) := k�
t (x) := 1√

(2π t)d det(�2)
exp

(
− x · (�2)−1x

2t

)
, (6)
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where � as in Theorem 3.

Assumption 2 There exists p ∈ (1,∞] and q ∈ ( d2 ,∞] satisfying

1

p
+ 1

q
<

2

d − 1
(7)

such that

E[ω(e)p] < ∞, E[ω(e)−q ] < ∞ for any e ∈ B
d . (8)

Now we are in position to state our main probabilistic result:

Theorem 4 (Quenched local limit theorem). Suppose that Assumptions 1 and 2 are
satisfied. For given compact sets I ⊂ (0,∞) and K ⊂ R

d it holds

lim
n→∞max

x∈K sup
t∈I

|nd pω
n2t (0, �nx�) − kt (x)| = 0, P-a.s.. (9)

Remark 3 In the recent work [25], Deuschel and Fukushima studied in detail random
walks among random layered conductances. Among other things they show that there
exists a stationary and ergodic environment satisfying ω(e) ≥ 1 for P-a.e. ω (that is
q = ∞) andE[ω(e)p] < ∞with p < d−1

2 such that the quenched local limit theorem
fails provided d ≥ 4, see [25, Proposition 1.5].

Assuming the stronger condition 1
p + 1

q < 2
d instead of (7), the conclusion of

Theorem 4 was recently proved by Andres and Taylor [7] (for related results in the
continuum setting see [21]). Previously, Barlow and Hambly [11] gave general crite-
ria for a local limit theorem to hold. These criteria were applied to uniformly elliptic
conductances or supercritical i.i.d. percolation clusters; see [22] for further general-
izations. In [20], Boukhadra, Kumagai, and Mathieu identified sharp conditions on
the tails of i.i.d. conductances at zero under which the parabolic Harnack inequality
and the local limit theorem hold. An inspiring result for the present contribution is [5],
where the local limit theorem for the constant speed random walk (CSRW) is proven
under Assumption 1 and Assumption 2 with (7) replaced by 1

p + 1
q < 2

d , where the
latter turns out be optimal in that case.

We conclude this introduction by mentioning other related results: As mentioned
above the quenched invariance principle in the form of Theorem 3, for uniformly ellip-
tic conductances (that is p = q = ∞) or on supercritical i.i.d. percolation clusters, was
proven by Sidoravicius and Sznitman [38]. In the special case of i.i.d. conductances,
that is whenP is the productmeasure, which includes e.g. percolationmodels, building
on the previous works [10,15,18,28,29], Andres, Barlow, Deuschel, and Hambly [1]
showed that the quenched invariance principle holds provided that P[ω(e) > 0] > pc
with pc = pc(d) being the bond percolation threshold. In particular, due to inde-
pendence of conductances such situation is very different as they do not require any
moment conditions such as (8). In the general ergodic situation, it is known that at least
first moments of ω and ω−1 are necessary for a quenched invariance principle to hold
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(see [9]). Andres, Deuschel, and Slowik [4] obtained the conclusion of Theorem 3
under more restrictive relation 1

p + 1
q < 2

d , see also the very recent extension beyond
the nearest-neighbor conductance models [17]. For quenched invariance principles in
dynamic environments, see [2,19], for a recent paper on local limit theorem, see [3],
as well as [30] for related results. A quantitative quenched invariance principle (under
quantified ergodicity assumptions) with degenerate conductances can be found in [6].
Very recently, building on [8], an almost optimal quantitative local limit theorem in
the percolation setting was proven by Dario and Gu [24]. Further results in the station-
ary & ergodic setting under moment conditions include large-scale regularity [14],
homogenization in the sense of 
-convergence [35], or spectral homogenization [26].

1.3 Notation

• (Sets and L p spaces) For y ∈ Z
d , n ≥ 0, we set B(y, n) := y + ([−n, n] ∩ Z)d

with the shorthand B(n) = B(0, n). For any bond e ∈ B
d , we denote by e, e ∈ Z

d

the (unique) vertices satisfying e = {e, e} and e − e ∈ {e1, . . . , ed}. For any
S ⊂ Z

d we denote by SBd ⊂ B
d the set of bonds for which both end-points are

contained in S, i.e. SBd := {e = {e, e} ∈ B
d | e, e ∈ S}. For any S ⊂ Z

d , we set
∂S := {x ∈ S | ∃y ∈ Z

d\S s.t. {x, y} ∈ B
d}. Given p ∈ (0,∞), S ⊂ Z

d , we set
for any f : Zd → R

d and F : Bd → R

‖ f ‖L p(S) :=
(

∑

x∈S
| f (x)|p

) 1
p

, ‖F‖L p(S
Bd ) :=

⎛

⎝
∑

e∈S
Bd

|F(e)|p
⎞

⎠

1
p

,

and ‖ f ‖L∞(S) = supx∈S | f (x)|. Moreover, normalized versions of ‖ · ||L p are
defined for any finite subset S ⊂ Z

d and p ∈ (0,∞) by

‖ f ‖L p(S) :=
(

1

|S|
∑

x∈S
| f (x)|p

) 1
p

, ‖F‖L p(S
Bd ) :=

⎛

⎝ 1

|SBd |
∑

e∈S
Bd

|F(e)|p
⎞

⎠

1
p

,

where |S| and |SBd | denote the cardinality of S and SBd , respectively. Throughout
the paperwe drop the subscript in SBd if the context is clear and we set ‖·‖L∞(S) :=
‖ · ‖L∞(S). Moreover,

∀Q = I × S ⊂ R × Z
d we set m(Q) := |I ||S|, (10)

where |I | denotes the Lebesgue measure of I and |S| the cardinality of S.
• (discrete calculus) For f : Zd → R, we define its discrete derivative as

∇ f : Bd → R, ∇ f (e) := f (e) − f (e).
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For f , g : Zd → R the following discrete product rule is valid

∇( f g)(e) = f (e)∇g(e) + g(e)∇ f (e) = f (e)∇g(e) + g(e)∇ f (e), (11)

where we use for the last equality the convenient identification of a function h :
Z
d → R with the function h : Bd → R defined by the corresponding arithmetic

mean

h(e) := 1

2
(h(e) + h(e)).

The discrete divergence is defined for every F : Bd → R as

∇∗F(x) :=
∑

e∈Bd

e=x

F(e) −
∑

e∈Bd

e=x

F(e) =
d∑

i=1

(F({x − ei , x}) − F({x, x + ei })) .

Note that for every f : Zd → R that is non-zero only on finitely many vertices
and every F : Bd → R it holds

∑

e∈Bd

∇ f (e)F(e) =
∑

x∈Zd

f (x)∇∗F(x). (12)

Finally, we observe that the generator Lω defined in (3) can be written as a second
order finite-difference operator in divergence form, in particular

∀u : Zd → R Lωu(x) = −∇∗(ω∇u)(x) for all x ∈ Z
d . (13)

• (Functions) For a function u : I × V → R with I ⊂ R and V ⊂ Z
d , we denote

by ut the function ut : V → R given by ut = u(t, ·). We call u : I × V → R

caloric (subcaloric or supercaloric) in Q = I × V if

(∂t − Lω)u = 0 (≤ or ≥) in Q.

Moreover, we call u : Zd → R harmonic (subharmonic or superharmonic) in V
if

−Lωu = 0 (≤ or ≥) in V .
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2 Parabolic regularity

2.1 Auxiliary results

We recall suitable versions of Sobolev inequality, see Proposition 1, and provide an
optimization result, formulated in Lemma 1 below, that is central in our proof of
Theorem 1.

Proposition 1 (Sobolev inequalities) Fix d ≥ 2. For every s ∈ [1, d) set s∗
d := ds

d−s .

(i) For every s ∈ [1, d) there exists c = c(d, s) ∈ [1,∞) such that for every f :
Z
d → R it holds

‖ f − ( f )B(n)‖Ls∗d (B(n))
≤ c‖∇ f ‖Ls (B(n)), (14)

where ( f )B(n) := 1
|B(n)|

∑
x∈B(n) f (x).

(ii) For every s ∈ [1, d − 1) there exists c = c(d, s) ∈ [1,∞) such that for every
f : Zd → R it holds

‖ f ‖
L
s∗d−1 (∂B(n))

≤ c(‖∇ f ‖Ls (∂B(n)) + n−1‖ f ‖Ls (∂B(n))). (15)

Estimate (15) is the discrete analogue of the classical Sobolev inequality on the
sphere, since the first and the third term measure f on the boundary of the ball/cube
(i.e. sphere) whereas the middle term measures ∇ f within this set. The statements of
Proposition 1 are standard and the proof can be found e.g. in [13, Theorem 3].

Lemma 1 Fix d ≥ 1, ρ, σ ∈ N with ρ < σ and v : Zd → [0,∞). Consider

J (ρ, σ, v) := inf

{ ∑

e∈Bd

(∇η(e))2v(e) | η : Zd → [0, 1],

η = 1 in B(ρ) and η = 0 in Zd\B(σ − 1)

}
.

For every δ > 0 it holds

J (ρ, σ, v) ≤ (σ − ρ)−(1+ 1
δ
)

(σ−1∑

k=ρ

( ∑

e∈S(k)

v(e)

)δ) 1
δ

, (16)

where for every m ∈ N

S(m) := {e ∈ B
d | e ∈ ∂B(m), e ∈ ∂B(m + 1)}. (17)

Proof of Lemma 1 Inequality (16) was already proven in [13, Step 1 of the proof of
Lemma 1]. For convenience for the reader we recall the computations below.
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Restricting the class of admissible cut-off functions to those of the form ϕ(x) =
ϕ̂(maxi=1,...,d{|x · ei |}), we obtain

J (ρ, σ, v) ≤ inf

{σ−1∑

k=ρ

(ϕ̂′(k))2
∑

e∈S(k)

v(e) | ϕ̂ : N → [0,∞), ϕ̂(ρ) = 1, ϕ̂(σ ) = 0

}

=:J1d, (18)

where ϕ̂′(k) := ϕ̂(k + 1) − ϕ̂(k). The minimization problem (18) can be solved
explicitly. Indeed, set f (k) := ∑

e∈S(k) v(e) for every k ∈ Z and suppose f (k) > 0
for every k ∈ {ρ, . . . , σ − 1}. Then, ϕ̂ : N → [0,∞) defined by ϕ̂(i) := 1 for i < ρ,
ϕ̂(i) := 0 for i > σ , and

ϕ̂(i) := 1 −
⎛

⎝
σ−1∑

k=ρ

f (k)−1

⎞

⎠
−1

i−1∑

k=ρ

f (k)−1

for i ∈ ρ, . . . , σ , is a valid competitor in the minimization problem for J1d and we
obtain

J (ρ, σ, v) ≤
(σ−1∑

k=ρ

( ∑

e∈S(k)

v(e)

)−1)−1

. (19)

Inequality (19) combined with an application of Hölder inequality yield the claimed
inequality (16). Finally, in the case that f (k) = ∑

e∈S(k) v(e) = 0 for some k ∈
{ρ, . . . , σ − 1}, we easily obtain J1d = 0 and (16) is trivially satisfied. �

2.2 Local boundedness

In this subsection, we establish local boundedness for non-negative subcaloric func-
tions u. The results of this section, in particular Lemma 2 below, contain the main
technical improvements compared to previous related results, e.g. [3,7,21]. In prin-
ciple, we follow the classical strategy of Moser to obtain the local boundedness. We
recall that this strategy is based on (i) Caccioppoli inequalities for (powers of) u (see
(26) below), (ii) application of the Sobolev inequality, and (iii) an iteration argument.
As in our previous works [12,13] the improvement is mainly obtained by using cer-
tain optimized cut-off functions in the Caccioppoli inequality that allow (appealing to
Lemma 1) to use Sobolev inequality on “spheres” instead of “balls”. Unfortunately,
the implementation of this strategy is technically much more involved in the parabolic
case compared to the elliptic case treated in [12,13].

Throughout this section, we use the shorthand

‖v‖2
H1(I×B)

:=‖v‖2
H1(I×B;ω)

:=|B|− 2
d ‖ω−1‖−1

Lq (B)
‖v‖2

L2(I×B)
+ ‖√ω∇v||2

L2(I×B)
.

(20)
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Lemma 2 Fix d ≥ 2, ω ∈ �, p ∈ (1,∞) and q ∈ ( d2 ,∞) satisfying 1
p + 1

q < 2
d−1 .

Let ν ∈ (0, 1), γ > 2 and θ > 1 be given by

ν := 1 − δ2

(
1 − 1

θ

)
∈ (0, 1), γ := 2 + 1

p
+ 1

θq
with θ :=

{
p if d = 2,

1 + pδ1 if d ≥ 3
,

(21)

where

δ1 := 2

d − 1
− 1

p
− 1

q
> 0, δ2 := 2

d
− 1

q
> 0. (22)

Then there exist c = c(d, p, q) ∈ [1,∞) such that the following is true: Let n,m ∈ N

with n < m ≤ 2n and 0 < s1 < s2 be given and consider I1 := [−s1, 0] and
I2 := [−s2, 0]. Let u ≥ 0 be a subcaloric function in I2× B(m). Then for every α ≥ 1

sup
t∈I1

s−1
1 ‖uα

t ‖2
L2(B(n))

+ ‖uα‖2
H1(I1×B(n))

≤ cα2
(
sup
t∈I2

s−1
2 ‖uα

t ‖2
L2(B(m))

)1−ν

s1−ν
2 ‖ω−1‖Lq (B(m))

(‖ω‖L p(B(m))

(1 − n
m )γ

+ m2

s2 − s1

)

s2
s1

‖uαν‖2
H1(I2×B(m))

; (23)

sup
t∈I1

s−1
1 ‖uα

t ‖2
L2(B(n))

+ ‖√ω∇(uα)‖2
L2(I1×B(n))

≤ cα2

m2

(‖ω‖L p(B(m))

(1 − n
m )2

+ m2

s2 − s1

)
s2
s1

−
∫

I2
‖uα

t ‖2
L

2p
p−1 (B(m))

dt; (24)

sup
t∈I1

s−1
1 ‖uα

t ‖2
L2(B(n))

≤ cα2‖ω−1‖Lq (B(m))

( ‖ω‖L p(B(m))

(1 − n
m )

2+ 1
p + 1

q

+ m2

s2 − s1

)

s2
s1

‖uα‖2
H1(I2×B(m))

. (25)

Themain achievement of Lemma2 is estimate (23), where at the expense of increas-
ing the domain of integration we control uα in terms of uνα with ν < 1. The factor
on the right-hand side involving norm of uα (and not uνα) to a small power will be
dealt with later. The other two estimates (24) and (25) do not include improvement of
integrability, and their proofs are significantly simpler.

Proof of Lemma 2 Throughout the proof wewrite� if≤ holds up to a positive constant
that depends only on d, p, and q. We introduce,

A(n,m) := {η : Zd → [0, 1] | η = 1 in B(n) and η = 0 in Zd\B(m − 1)}.
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Step 1 We claim that there exists c = c(d) ∈ [1,∞) such that for all η ∈ A(n,m)

and α ≥ 1,

sup
t∈I1

‖uα
t ‖2

L2(B(n))
+

∫

I1
‖√ω∇(uα

t )‖2
L2(B(n))

dt

≤ cα2

|B(m)|
∫

I2

∑

e∈Bd

ω(e)(∇η(e))2(uα
t (e))2 dt + c

s2 − s1

∫

I2
‖uα

t ‖2
L2(B(m))

dt,

(26)

where we recall the notation f (e) = 1
2 ( f (ē)+ f (e)). This is a discrete parabolic ver-

sion of classical Caccioppoli inequality, and is obtained by simply testing the equation
with η2u2α−1 with η being a cutoff-function in space, combinedwith Cauchy-Schwarz
inequality and integration in time.

Since u ≥ 0 is subcaloric, we obtain by the chain rule and estimate (120)
1

2α

d

dt

∑

x∈Zd

η2(x)u2αt (x) =
∑

x∈Zd

η2(x)u2α−1
t (x)

d

dt
ut (x)

≤ −
∑

e∈Bd

∇(η2u2α−1
t )(e)ω(e)∇ut (e)

≤ −
∑

e∈Bd

2η(e)∇η(e)ω(e)u2α−1
t (e)∇ut (e)

− 2α − 1

α2

∑

e∈Bd

η2(e)ω(e)(∇uα
t (e))2

and thus
1

2

d

dt

∑

x∈Zd

η2(x)u2αt (x) + 2α − 1

α

∑

e∈Bd

η2(e)ω(e)(∇uα
t (e))2

≤ 2α
∑

e∈Bd

η(e)|∇η(e)|ω(e)u2α−1
t (e)|∇ut (e)|

(121)≤ 2α
∑

e∈Bd

η(e)|∇η(e)|ω(e)uα
t (e)|∇uα

t (e)|

≤ 2α − 1

2α

∑

e∈Bd

η2(e)ω(e)(∇uα
t (e))2 + 2α3

2α − 1

∑

e∈Bd

ω(e)(uα
t (e))2(∇η(e))2,

where we use in the last estimate Youngs inequality in the form ab ≤ 1
2 (εa

2 + 1
ε
b2)

with ε = 2α−1
2α2 . Combining the previous two displays, we obtain

d

dt

∑

x∈Zd

η2(x)u2αt (x) +
∑

e∈Bd

η2(e)ω(e)(∇uα
t (e))2 ≤ 4α2

∑

e∈Bd

ω(e)(uα
t (e))2(∇η(e))2.

(27)
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Multiplying (27) with the piecewise smooth function ζ given by

ζ(t) :=

⎧
⎪⎨

⎪⎩

0 if t ≤ −s2
t+s2
s2−s1

if t ∈ (−s2,−s1)

1 if t ≥ −s1

and integrating in time, we obtain (26) (using n ≤ m ≤ 2n and thus |B(n)| �
|B(m)| � |B(n)|).
Step 2 Proof of estimate (24). This follows directly from (26) with η ∈ A(n,m)

satisfying |∇η| ≤ 2(m − n)−1 and Hölder inequality. Indeed, for such a choice of η

one gets

sup
t∈I1

‖uα
t ‖2

L2(B(n))
+

∫

I1
‖√ω∇(uα

t )‖2
L2(B(n))

dt

(26)≤ 2cα2

|B(m)|(m − n)2

∫

I2

∑

e∈B(m)

ω(e)(uα
t (e))2 dt + c

s2 − s1

∫

I2
‖uα

t ‖2
L2(B(m))

dt

Hölder
�

cα2‖ω‖L p(B(m))

(m − n)2

∫

I2
‖uα

t ‖2
L

2p
p−1 (B(m))

dt + c

s2 − s1

∫

I2
‖uα

t ‖2
L2(B(m))

dt

Jensen≤
(
cα2‖ω‖L p(B(m))

(m − n)2
+ c

s2 − s1

) ∫

I2
‖uα

t ‖2
L

2p
p−1 (B(m))

dt .

Using α ≥ 1 and taking time averages yields (24).

Step 3We claim that there exists c = c(d, p, q) ∈ [1,∞) such that

min
η∈A(n,m)

|B(m)|−1
∫

I2

∑

e∈Bd

ω(e)(∇η(e))2(uα
t (e))2 dt

≤ c

(
sup
t∈I2

‖uα‖2
L2(B(m))

)1−ν

‖ω‖L p(B(m))‖ω−1‖Lq (B(m))

s2
(1 − n

m )γ
‖uαν‖2

H1(I2×B(m))
.

(28)

As in the elliptic case, see [13, proof of Theorem 4], the idea is to optimize the cutoff
η in (26) via Lemma 1 to get spherical averages of u on the right-hand side. Since we
do not have good control of time derivatives, the cutoff should be time-independent,
hence providing improved integrability for the averages over spheres and in time. To
“move” the time-integral outside we first sacrifice bit of space and time integrability
(see Substep 3.1), but which is then dealt with using L2 control of u, uniform in time
(see Substep 3.2) - which then gives rise to the first term on the right-hand side of (28).
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Substep 3.1. We claim that there exists c1 = c1(d, p, q) ∈ [1,∞) such that

min
η∈A(n,m)

∫

I2

∑

e∈Bd

ω(e)(∇η(e))2(uα
t (e))2 dt

≤ c1
‖ω‖L p(B(m))(‖ω−1‖Lq (B(m))|B(m)|s2‖uαν‖2

H1(I2×B(m))
)
1
θ

(
1 − n

m

)2+ 1
p + 1

θq m2(1− 1
θ
)

(∫

I2
‖uα

t ‖2(1+ε)

L2(1+ε)(B(m))
dt

)1− 1
θ

,

(29)

where θ , ν are given in (21) and

ε := δ2

θ
= ν − 1 + δ2 > 0. (30)

Along the proof we also obtain a simpler version (with θ = 1) of this inequality:

min
η∈A(n,m)

∫

I2

∑

e∈Bd

ω(e)(∇η(e))2(uα
t (e))2 dt

≤ c(d, p, q)
‖ω‖L p(B(m))‖ω−1‖Lq (B(m))|B(m)|s2

(
1 − n

m

)2+ 1
p + 1

q

‖uα‖2
H1(I2×B(m))

.

(31)

Using Lemma 1 with v(e) = ω(e)
∫
I2
(uα

t (e))2 dt we have for every δ ∈ (0, 1]

min
η∈A(m,n)

∫

I2

∑

e∈Bd

ω(e)|∇η(e)|2(uα
t (e))2 dt

≤ (m − n)−(1+ 1
δ
)

(m−1∑

k=n

(∫

I2

∑

e∈S(k)

ω(e)(uα
t (e))2 dt

)δ) 1
δ

, (32)

where S(k) for every k ∈ N is defined in (17). Hölder inequality yields for every t ∈ I2
and k ∈ {n, . . . ,m − 1}

∑

e∈S(k)

ω(e)(uα
t (e))2 ≤

( ∑

e∈S(k)

ω(e)p
) 1

p
( ∑

e∈S(k)

(uα
t (e))

2p
p−1

) p−1
p

�
( ∑

e∈S(k)

ω(e)p
) 1

p
(

‖uα
t ‖2

L
2p
p−1 (∂B(k))

+ ‖uα
t ‖2

L
2p
p−1 (∂B(k+1))

)
.

Note that the choices for θ and ν (see (21)) yield

0 <
θ − ν

θ − 1
<

p

p − 1
<

pν

p − θ
≤ ∞ (33)
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(with the understanding 1
0 = ∞ in the case d = 2). The inequalities (33) follow by

elementary computations which we provide for the readers convenience in Substep 3.4
below.

Appealing to (33) we have the following interpolation inequality

‖uα
t ‖2

L
2p
p−1 (∂B(k))

≤ ‖uα
t ‖

2ν
θ

L
2pν
p−θ (∂B(k))

‖uα
t ‖2

θ−ν
θ

L
2(θ−ν)
θ−1 (∂B(k))

(note that p−θ
pν

ν
θ

+ θ−1
θ−ν

θ−ν
θ

= 1 − 1
p ) and thus by Hölder inequality in time (with

exponents θ, θ
θ−1 ), we obtain

∫

I2

∑

e∈S(k)

ω(e)(uα
t (e))2 dt

�
( ∑

e∈S(k)

ω(e)p
) 1

p
(k+1∑

i=k

∫

I2
‖uαν

t ‖2
L

2p
p−θ (∂B(i))

dt

) 1
θ

(k+1∑

i=k

∫

I2
‖uα

t ‖2(1+ε)

L2(1+ε)(∂B(i))
dt

)1− 1
θ

,

(34)

where we use

θ − ν

θ − 1
= 1 + 1 − ν

θ − 1
(21)= 1 + δ2

θ

(30)= 1 + ε.

We estimate the second factor on the right-hand side in (34) by Sobolev inequality:
Let p∗ ∈ [1, 2) be defined by

1

p∗
= 1

d − 1
+ p − θ

2p
.

Then a combination of Sobolev and Hölder inequality yield

‖uαν
t ‖2

L
2p
p−θ (∂B(k))

(15)

� (‖∇(uαν
t )‖2L p∗ (∂B(k)) + k−2‖uαν

t ‖2L p∗ (∂B(k)))

� k2−(d−1) θ
p ‖ω−1‖

L
p∗

2−p∗ (∂B(k))
‖√ω∇(uαν

t )‖2
L2(∂B(k))

+ k−(d−1) θ
p ‖uαν

t ‖2
L2(∂B(k))

,

(35)

where we use kd−1 � |∂B(k)| � kd−1. Combining (32), (34) and (35) with the
observation p∗

2−p∗ ≤ q (with equality if d ≥ 3), the choice δ = ( 1p + 1
θq + 1)−1 and

Hölder inequality with exponents (
p
δ
,

θq
δ(q+1) ,

θ
δ(θ−1) ), we obtain
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(m − n)
2+ 1

p + 1
θq min

η∈A(m,n)

∫

I2

∑

e∈Bd

ω(e)(∇η(e))2(uα
t (e))2 dt

(32),(34),(35)

�
(m−1∑

k=n

‖ω‖δ
L p(S(k))

(∫

I2

k+1∑

i=k

i2‖ω−1‖Lq (∂B(i))‖
√

ω∇(uαν
t )‖2L2(∂B(i))

+ ‖uαν
t ‖2L2(∂B(i)) dt

) δ
θ

×
(∫

I2

k+1∑

i=k

‖uα
t ‖2(1+ε)

L2(1+ε)(∂B(i))
dt

)δ(1− 1
θ
)) 1

δ

Hölder
�

(m−1∑

k=n

‖ω‖p
L p(S(k))

) 1
p
(m−1∑

k=n

∫

I2

k+1∑

i=k

‖uα
t ‖2(1+ε)

L2(1+ε)(∂B(i))
dt

)1− 1
θ

×
(m−1∑

k=n

(∫

I2

k+1∑

i=k

i2‖ω−1‖Lq (∂B(i))‖
√

ω∇(uαν
t )‖2L2(∂B(i))

+ ‖uαν
t ‖2L2(∂B(i)) dt

) q
q+1

) q+1
qθ

, (36)

where in the first inequality the factor k−(d−1) θ
p from (35) is gone due to averaging in

‖ω‖L p(S(k)). To estimate the last factor on the right-hand side in (36), we first split the

sum and then use once more Hölder inequality with exponents (
q+1
q , q + 1) to obtain

(m−1∑

k=n

( ∫

I2

k+1∑

i=k

i2‖ω−1‖Lq (∂B(i))‖
√

ω∇(uαν
t )‖2L2(∂B(i))

+‖uαν
t ‖2L2(∂B(i)) dt

) q
q+1

) q+1
q

�
( m∑

k=n

‖ω−1‖qLq (∂B(k))

) 1
q
m2

∫

I2
‖√ω∇uαν

t ‖2L2(B(m))
dt

+(m − n)
1
q

∫

I2
‖uαν

t ‖2L2(B(m))
dt . (37)

Combining (36), (37), assumption m ≤ 2n (and thus
∑m

k=n ‖ · ‖sLs (∂B(k) � n−(d−1)‖ ·
‖sLs (B(m)) � m‖ · ‖sLs (B(m))

for all s ≥ 1) and definition (20), we obtain

(m − n)
2+ 1

p + 1
θq min

η∈A(m,n)

∫

I2

∑

e∈Bd

ω(e)(∇η(e))2(uα
t (e))2 dt

� m
1
p + 1

θq ‖ω‖L p(B(m))

(∫

I2
‖uα

t ‖2(1+ε)

L2(1+ε)(B(m))
dt

)1− 1
θ

×
(
m2‖ω−1‖Lq (B(m))

∫

I2
‖√ω∇uαν

t ‖2L2(B(m))
dt +

∫

I2
‖uαν

t ‖2L2(B(m))
dt

) 1
θ
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� m
1
p + 1

θq |B(m)|‖ω‖L p(B(m))

(∫

I2
‖uα

t ‖2(1+ε)

L2(1+ε)(B(m))
dt

)1− 1
θ

(
m2‖ω−1‖Lq (B(m))s2‖uαν

t ‖2
H1(I2×B(m))

) 1
θ
,

and thus (29) follows.
The argument for (31) (i.e. the special case θ = ν = 1 of (29)) is naturally simpler,

since one avoids the L2(1+ε)-term. By Lemma 1, we have for every δ ∈ (0, 1]

min
η∈A(n,m)

∫

I2

∑

e∈Bd

ω(e)|∇η(e)|2(uα
t (e))2 dt

≤ (m − n)−(1+ 1
δ
)

(m−1∑

k=n

(∫

I2

∑

e∈S(k)

ω(e)(uα
t (e))2 dt

)δ) 1
δ

,

where S(m) is defined in (17). By Hölder inequality, we have

∑

e∈S(k)

ω(e)(uα
t (e))2 �

( ∑

e∈S(k)

ω(e)p
) 1

p
(

‖uα
t ‖2

L
2p
p−1 (∂B(k))

+ ‖uα
t ‖2

L
2p
p−1 (∂B(k+1))

)
.

For d ≥ 3 let p∗ ≥ 1 be such that 1
p∗ = 1

d−1 + 1
2 − 1

2p . Then a combination of Sobolev
and Hölder inequality yield

‖uα
t ‖2

L
2p
p−1 (∂B(k))

� ‖∇(uα
t )‖2L p∗ (∂B(k)) + k−2‖uα

t ‖2L p∗ (∂B(k))

� k2−(d−1) 1
p ‖ω−1‖Lq (∂B(k))‖

√
ω∇uα

t ‖2L2(∂B(k)) + k−(d−1) 1
p ‖uα

t ‖2L2(∂B(k)) (38)

where the last inequality is valid since 1
q + 1

p ≤ 2
d−1 and kd−1 � |∂B(k)| � kd−1.

Choosing δ = ( 1p + 1
q + 1)−1, we obtain as in (36)

(m − n)
2+ 1

p + 1
q min

η∈A(m,n)

∫

I2

∑

e∈Bd

ω(e)(∇η(e))2(uα
t (e))2 dt

�
(m−1∑

k=n

‖ω‖δ
L p(S(k))

(∫

I2

k+1∑

i=k

i2‖ω−1‖Lq (∂B(i))‖
√

ω∇(uα)‖2L2(∂B(i))

+ ‖uα‖2L2(∂B(i)) dt

)δ) 1
δ

≤
(m−1∑

k=n

‖ω‖p
L p(S(k))

) 1
p
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×
(m−1∑

k=n

(∫

I2

k+1∑

i=k

i2‖ω−1‖Lq (∂B(i))‖
√

ω∇(uα)‖2L2(∂B(i))

+ ‖uα‖2L2(∂B(i)) dt

) q
q+1

) q+1
q

. (39)

Combining (39) with Hölder inequality in the form (37) (with ν replaced by 1), we
obtain (31).

For d = 2, we argue as above but replace (38) by

‖uα
t ‖2

L
2p
p−1 (∂B(k))

�k1−
1
p ‖uα

t ‖2L∞(∂B(k))

�k1−
1
p (‖∇(uα

t )‖2L1(∂B(k)) + k−2‖uα
t ‖2L1(∂B(k)))

�k2−
1
p ‖ω−1‖Lq (∂B(k))‖

√
ω∇(uα

t )‖2L2(∂B(k)) + k− 1
p ‖uα

t ‖2L2(∂B(k)).

Substep 3.2. We claim that there exists c2 = c2(d, p, q) ∈ [1,∞) such that

∫

I2
‖uα

t ‖2(1+ε)

L2(1+ε)(B(m))
dt

≤ c2m
2s2|B(m)|

(
sup
t∈I2

‖uα
t ‖2

L2(B(m))

)δ2

‖ω−1‖Lq (B(m))‖uαν‖2
H1(I2×B(m))

.

(40)

Let Q > 2 be the Sobolev exponent for 2q
q+1 in Rd given by

1

Q
= 1

2
− 1

2
(
2

d
− 1

q
)

(22)= 1 − δ2

2
(41)

(recall δ2 = 2
d − 1

q ∈ (0, 1)). Recalling ε = δ2
θ
and ν = 1 − δ2(1 − 1

θ
) = 1 − δ2 + ε

(see (30)), we obtain

νQ − 2(1 + ε) = 2ε

(
1

1 − δ2
− 1

)
> 0 (42)

and the interpolation inequality

‖v‖L2(1+ε) ≤ ‖v‖�
L2‖v‖1−�

LνQ

with

1

2(1 + ε)
= �

2
+ 1 − �

νQ

(
and thus � =

1
2(1+ε)

− 1
νQ

1
2 − 1

νQ

)
(43)
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implies

‖uα
t ‖2(1+ε)

L2(1+ε)(B(m))
≤ ‖uα

t ‖2(1+ε)�

L2(B(m))
‖uα

t ‖2(1+ε)(1−�)

LνQ(B(m))
= ‖uα

t ‖2δ2
L2(B(m))

‖uαν
t ‖2LQ(B(m))

(44)

where in the last relation we used

1 + ε

ν
(1 − �) = 1 + ε

ν

1 − 1
1+ε

1 − 2
νQ

= ε

ν − 2
Q

= 1, (45)

and thus

(1 + ε)�
(45)= 1 + ε − ν

(30)= δ2.

Since 1
Q = 1

2 − 1
2 (

2
d − 1

q ), a combination of Sobolev and Hölder inequality yields

‖uαν
t ‖2

LQ(B(m))
�

(
m‖∇(uαν

t )‖
L

2q
q+1 (B(m))

+ ‖uαν
t ‖

L
2q
q+1 (B(m))

)2

≤ 2
(
m2‖ω−1‖Lq (B(m))‖

√
ω∇(uαν

t )‖2
L2(B(m))

+ ‖uαν
t ‖2

L2(B(m))

)
.

(46)

Combining (44) and (46), we obtain

‖uα
t ‖2(1+ε)

L2(1+ε)(B(m))
� |B(m)|‖uα

t ‖2δ2
L2(B(m))

(
m2‖ω−1‖Lq (B(m))‖

√
ω∇(uαν

t )‖2
L2(B(m))

+‖uαν
t ‖2

L2(B(m))

)
,

and the claimed estimate (40) follows by integration in time.
Substep 3.3. Proof of (28). A direct consequence of (29) and (40) is

min
η∈A(n,m)

∫

I2

∑

e∈Bd

ω(e)(∇η(e))2(uα
t (e))2 dt

≤ c1c
1− 1

θ

2

(
sup
t∈I2

‖uα
t ‖2

L2(B(m))

)δ2(1− 1
θ
)

‖ω‖L p(B(m))‖ω−1‖Lq (B(m))|B(m)||I2|‖uαν‖2
H1(I2×B(m))

(
1 − n

m

)2+ 1
p + 1

θq

,

which implies the claimed estimate (28) (using m ≤ 2n, 1 − ν
(21)= δ2(1 − 1

θ
), and

γ = 2 + 2
p + 1

θq ).
Substep 3.4. Proof of (33).
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For d = 2 (and thus θ = p) (33) reads

0 <
p − 1 + (1 − 1

q )(1 − 1
p )

p − 1
<

p

p − 1
< ∞

which is obviously true since p, q > 1.
Let us now verify (33) for d ≥ 3. The last inequality in (33) is trivial, while the

first follows directly from 0 < ν < 1 < θ < p since d ≥ 3. Next, we observe that

p

p − 1
− θ − ν

θ − 1
(21)= 1

p − 1
− δ2

θ
= θ − δ2(p − 1)

(p − 1)θ
,

pν

p − θ
− p

p − 1
= p

p − θ

(
ν − 1 + θ − 1

p − 1

)
(21)= p

p − θ

(
θ − 1

p − 1
− δ2

θ − 1

θ

)

= p(θ − 1)

(p − θ)(p − 1)θ
(θ − δ2(p − 1)),

and thus the second and third inequality in (33) are equivalent to θ − δ2(p − 1) > 0.
In the case d ≥ 3, we have

θ − δ2(p − 1)
(22)= 2p

d − 1
− p

q
− (

2

d
− 1

q
)(p − 1) = 2

d
− 1

q
+ 2p(

1

d − 1
− 1

d
)

≥ 2

d
− 1

q
> 0,

where the last inequality follows from the assumption q > 2
d . Hence, the inequalities

(33) are proven.
Step 4 Proof of estimates (23) and (25). Estimate (25) follows directly from (26) and
(31). To show (23), we combine (26) and (28) to obtain

sup
t∈I1

‖uα
t ‖2

L2(B(n))
+

∫

I1
‖√ω∇(uα

t )‖2
L2(B(n))

≤ cα2
(
sup
t∈I2

‖uα‖2
L2(B(m))

)1−ν

‖ω‖L p(B(m))‖ω−1‖Lq (B(m))

s2
(1 − n

m )γ
‖uαν‖2

H1(I2×B(m))

+ c(s2 − s1)
−1

∫

I2
‖uα

t ‖2
L2(B(m))

dt, (47)

where c = c(d, p, q) ∈ [1,∞). The first term on the right-hand side has already the
desired form, hence we only need to estimate the second term: Let Q > 2 be the
Sobolev exponent for 2q

q+1 given by (41), which by (42) satisfies νQ > 2(1+ ε) > 2.
Combination of Jensen and Sobolev inequality yield
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∫

I2
‖uα

t ‖2
L2(B(m))

dt ≤
(
sup
t∈I2

‖uα
t ‖2

L2(B(m))

)1−ν ∫

I2
‖uα

t ‖2ν
L2(B(m))

dt

≤
(
sup
t∈I2

‖uα
t ‖2

L2(B(m))

)1−ν ∫

I2
‖uα

t ‖2ν
LνQ(B(m))

dt

=
(
sup
t∈I2

‖uα
t ‖2

L2(B(m))

)1−ν ∫

I2
‖uαν

t ‖2
LQ(B(m))

dt

�
(
sup
t∈I2

‖uα
t ‖2

L2(B(m))

)1−ν ∫

I2
m2‖∇(uαν

t )‖2
L

2q
q+1 (B(m))

+ ‖uαν
t ‖2

L
2q
q+1 (B(m))

dt

≤
(
sup
t∈I2

‖uα
t ‖2

L2(B(m))

)1−ν ∫

I2
m2‖ω−1‖Lq (B(m))‖

√
ω∇(uαν

t )‖2
L2(B(m))

+ ‖uαν
t ‖2

L2(B(m))
dt

=
(
sup
t∈I2

‖uα
t ‖2

L2(B(m))

)1−ν

s2m
2‖ω−1‖Lq (B(m))‖uαν‖2

H1(I2×B(m))
. (48)

Recall that the H1-norm consist of the L2 norm of the function and its gradient
(see (20)), so to get the full H1-norm on the left-hand side of (47) we need to add
and estimate uα

t itself: for that we observe that the assumption 1 ≤ m
n ≤ 2 and (48),

applied on B(n) instead of B(m), yield

|B(n)|− 2
d ‖ω−1‖−1

Lq (B(n))

∫

I1
‖uα

t ‖2
L2(B(n))

dt

�
(
sup
t∈I1

‖uα
t ‖2

L2(B(n))

)1−ν

s1‖uαν‖2
H1(I1×B(n))

�
(
sup
t∈I2

‖uα
t ‖2

L2(B(m))

)1−ν

s2‖uαν‖2
H1(I2×B(m))

.

(49)

Estimate (23) follows from (47)–(49) and 1 ≤ ‖ω‖L p(B(m))‖ω−1‖Lq (B(m)). �
Next, we combine Lemma 2 with a variation of Moser iteration method to prove

local boundedness of non-negative subcaloric functions. For this, we apply the esti-
mates of Lemma 2 on a sequence of parabolic cylinder. Fix τ > 0 and let x0 ∈ Z

d ,
t0 ∈ R, n ≥ 0 and σ ∈ (0, 1]. Set

Qσ (t0, x0, τ, n) := [t0 − στn2, t0] × B(x0, σn).

Theorem 5 (Local boundedness). Fix d ≥ 2, ω ∈ �, p ∈ (1,∞) and q ∈ ( d2 ,∞)

satisfying 1
p + 1

q < 2
d−1 . There exists c = c(d, p, q) ∈ [1,∞) such that the following
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is true: Let u > 0 be a subcaloric function in Q1(t0, x0, τ, n) with t0 ∈ R, x0 ∈ Z
d ,

n ≥ 220, and τ > 0. Then

‖u‖L∞(Q 1
2
(t0,x0,τ,n)) ≤ cC(ω, B(x0, n), τ )

p
p−1 ‖u‖L2(Q1(t0,x0,τ,n)), (50)

where

C(ω, B, τ ) := max{1, τ 1
2

(
‖ω−1‖Lq (B)(‖ω‖L p(B) + τ−1)2−ν

) 1
2(1−ν) } ∈ [1,∞)

(51)

and ν = ν(d, p, q) ∈ (0, 1) is given in (21).

Remark 4 In recent works [3,7] the statement of Theorem 5 is proven under the more
restrictive relation 1

p + 1
q < 2

d . The restrictions on p and q in Theorem 5 are essentially
optimal: Counterexamples to elliptic regularity in the form [17, Theorem2.6] show that
local boundedness in the form (50)with (51) fails already forLω-harmonic functions if
1
p + 1

q > 2
d−1 , see [13, Remark 2 and 4] for a more detailed discussion. The additional

restriction on q, namely q > d
2 , is not present in the corresponding elliptic version of

Theorem 5 (see [13, Theorem 2] and Theorem 7 below) and can be related to trapping
phenomena for randomwalks in random environments. In Remark 7 belowwe discuss
this in more detail and show that local boundedness in the form of Corollary 1 below
(which is a direct consequence of Theorem 5) is not valid for q < d

2 .

Remark 5 The proof of Theorem 5 can be adapted without any difficulties to the
continuum setting to derive local boundedness for solutions to (1) where a and a−1

satisfy corresponding integrability conditions. In fact, an analogous result toTheorem5
is proven in the recent preprint [39], which also contains some interesting applications
to drift-diffusion equations and SPDEs.

Proof of Theorem 5 Without loss of generality we consider t0 = 0 and x0 = 0, and
we use the shorthand Qσ (τ, n) = Qσ (0, 0, τ, n). Throughout the proof we write �
if ≤ holds up to a positive constant that depends only on d, p and q. The proof is
divided in three steps: (i) using Lemma 2 and an iteration argument, we obtain a one-
step improvement; (ii) the one-step improvement and aMoser iteration-type argument
yield local boundedness in the form (50) where the L2-norm on the right-hand side
is replaced by a slightly stronger norm of u; (iii) finally a well-known interpolation
argument yield the claimed estimate.

Step 1. One-step improvement.
Let u > 0 be subcaloric and α ≥ 1.We claim that there exists c = c(d, p, q) ∈ [1,∞)

such that for all 1
2 ≤ ρ < σ < 1 and n(σ − ρ) ≥ 25 it holds

sup
t∈[−ρτn2,0]

(ρτn2)−1‖uα
t ‖2

L2(B(ρn))
+ ‖uα‖2

H1(Qρ(τ,n))
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≤
(
c|B(n)|(1−ν)�log2((σ−ρ)n)�−3

α2(τn2)1−ν
‖ω−1‖Lq (B(σn))

(σ − ρ)γ̂

(‖ω‖L p(B(σn))

+ τ−1)‖uαν‖2
H1(Qσ (τ,n))

) 1
ν

, (52)

where ν ∈ (0, 1) is defined in (21) and

γ̂ = 2 + 1

p
+ 1

q
∈ [2,∞). (53)

For k ∈ N ∪ {0}, set

σk := 1

2
(σ + ρ) − 2−(k+1)(σ − ρ), Bk := B(σkn), Ik := [−σkτn

2, 0].
(54)

In view of Lemma 2, there exists c = c(d, p, q) ∈ [1,∞) such that for any k ∈ N

satisfying 2k+3 ≤ (σ − ρ)n (which ensures �σk+1n� − �σkn� ≥ 1)

sup
t∈Ik

|Ik |−1‖uα
t ‖2

L2(Bk )
+ ‖uα‖2

H1(Ik×Bk)

≤ cα22(k+1)γ̂
(

sup
t∈Ik+1

|Ik+1|−1‖uα
t ‖2

L2(Bk+1)

)1−ν

(τn2)1−ν

× ‖ω−1‖Lq (B(σn))

‖ω‖L p(B(σn)) + τ−1

(σ − ρ)γ̂
‖uαν‖2

H1(Qσ (τ,n))
. (55)

Indeed, (55) follows from estimate (23) (with n = �σkn�, m = �σk+1n�, s1 = τσkn2,
and s2 = τσk+1n2) and γ̂ ≥ γ ≥ 2 (where γ is given as in Lemma 2), together with
the elementary estimates

(
1 − �σkn�

�σk+1n�
)−γ

≤
(

n

2−(k+2)(σ − ρ)n − 1

)γ

≤
(

2k+3

σ − ρ

)γ

1

σk+1τn2 − σkτn2
= 2k+2

n2τ(σ − ρ)
.

Set k̂ := k̂(n, σ − ρ) := �log2((σ − ρ)n)� − 3, so that k̂ = max{k ∈ N | 2k+3 ≤
(σ − ρ)n} and hence m − n ≥ 1.

Using (55) (k̂ − 1)-times, we obtain

sup
t∈I0

|I0|−1‖uα
t ‖2

L2(B0)
+ ‖uα‖2

H1(I0×B0)
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≤
(

sup
t∈Ik̂−1

|Ik̂−1|−1‖uα
t ‖2

L2(Bk̂−1)

)(1−ν)k̂−1 (
2γ̂

∑k̂−2
k=0(k+1)(1−ν)k

)

×
(
cα2(τn2)1−ν‖ω−1‖Lq (B(σn))

‖ω‖L p(B(σn)) + τ−1

(σ − ρ)γ
‖uαν‖2

H1(Qσ (τ,n))

)∑k̂−2
k=0(1−ν)k

.

(56)

We will repeatedly use discrete �r − �s inequality for sequences with r ≥ s, which
after taking averages has the following form

|B(n)| 1r − 1
s ‖ f ‖Lr (B(n)) ≤ ‖ f ‖Ls (B(n)). (57)

We estimate the first factor of the right-hand side in (56) using (57) and (25)

(
sup

t∈Ik̂−1

|Ik̂−1|−1‖uα
t ‖2

L2(Bk̂−1)

)(1−ν)k̂−1

≤
(
|Bk̂−1||Ik̂−1|

) (1−ν)k̂

ν

(
sup

t∈Ik̂−1

|Ik̂−1|−1‖uαν
t ‖2

L2(Bk̂−1)

) (1−ν)k̂−1
ν

(25)≤
(
cα2|B(n)|1−ν(τn2)1−ν‖ω−1‖Lq (B(σn))

‖ω‖L p(B(σn)) + τ−1

(σ − ρ)γ̂
‖uαν‖2

H1(Qσ (τ,n))

) (1−ν)k̂−1
ν

.

The previous formula, (56), and the identity
∑k̂−2

k=0(1− ν)k = 1−(1−ν)k̂−1

ν
imply (52),

where we also used that
∑k̂−2

k=0(k + 1)(1 − ν)k ≤ 1
ν2

≤ c(p, q, d).
Step 2. Iteration.
We claim that there exists c = c(d, p, q) ∈ [1,∞) such that for all n(σ − ρ) ≥ 29

holds

‖u‖L∞(Qρ(τ,n)) ≤ c|B(n)|β((σ−ρ)n) C(ω, B(σn), τ )

(σ − ρ)
γ̂

2(1−ν)
+1

‖u‖2,2p′,Qσ (τ,n), (58)

where C is defined in (51), p′ = p
p−1 , and

β(z) := 1

2ν

(
ν

1
2 log2(z)−1 + (1 − ν)

1
2 log2(z)−4). (59)

and for I ⊂ R and m ∈ N, we set

‖v‖2,2p′,I×B(m) :=
(

−
∫

I
‖vt‖2L2p′ (B(m))

dt

) 1
2

.
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For k ∈ N ∪ {0} and 1
2 ≤ ρ < σ < 1, set

αk := ν−k+1, σk := ρ + 2−k(σ − ρ), Bk := B(σkn), Ik := [−σkτn
2, 0].

Using (52) from Step 1 with σk and σk−1 playing role of ρ and σ , respectively, we get

sup
t∈Ik

|Ik |−1‖uα
t ‖2

L2(Bk )
+ ‖uα‖2

H1(Ik×Bk)

≤
(
c|B(n)|(1−ν)�log2((2−k (σ−ρ)n)�−3

α2(τn2)1−ν
‖ω−1‖Lq (B(σn))

(2−k(σ − ρ))γ̂

(‖ω‖L p(B(σn))

+ τ−1)‖uαν‖2
H1(Ik−1×Bk−1

) 1
ν

,

where c = c(d, p, q) ∈ [1,∞) and we required n(σ − ρ)2−k = n(σk−1 − σk) ≥ 25.
Observe that σ/2 ≤ σk ≤ σ allowed us to replace the norms of ω on Bk = B(σkn)

with the ones on the larger ball B(σn) (while increasing c by a fixed factor).
Using the last relation with αk playing the role of α and afterwards taking both

sides to the power 1
2αk

, yields

sup
t∈Ik

|Ik |−
1

2αk ‖ut‖L2αk (Bk )
+ ‖uαk‖

1
αk

H1(Ik×Bk)

≤
(
c|B(n)|(1−ν)�log2((σ−ρ)n)�−3−k

ν−2(k−1)(τn2)1−ν

‖ω−1‖Lq (B(σn))

(σ − ρ)γ̂
2γ̂ k(‖ω‖L p(B(σn)) + τ−1)

) 1
2αk−1

× ‖uαk−1‖
1

αk−1

H1(Ik−1×Bk−1)
, (60)

where we used αkν = αk−1. Fix k̂ ≤ k̂1(n, σ − ρ) := �log2((σ − ρ)n)� − 5 =
max{k ∈ N | 2k+5 ≤ (σ − ρ)n}. Using (60) (k̂ − 1)-times, we obtain

sup
t∈Ik̂

‖ut‖L2α
k̂ (Bk̂ )

≤
k̂∏

k=2

(
c|B(n)|(1−ν)�log2((σ−ρ)n)�−3−k

ν−2(k−1)(τn2)1−ν

‖ω−1‖Lq (B(σn))

(σ − ρ)γ̂
2γ̂ k(‖ω‖L p(B(σn)) + τ−1)

) 1
2αk−1

× |Ik̂ |
1

2α
k̂ ‖u‖H1(I1×B1)

≤ τ
1
2 n

(
c
‖ω−1‖Lq (B(σn))

(σ − ρ)γ̂
(‖ω‖L p(B(σn)) + τ−1)

) 1
2

∑k̂−2
k=0 νk
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|B(n)| 12 (1−ν)�log2((σ−ρ)n)�−5 ∑k̂−2
k=0(

ν
1−ν

)k

×
(
2γ̂ ν−2

) 1
2

∑∞
k=0(k+2)νk ‖u‖H1(I1×B1)

, (61)

whereweused (1−ν)
∑k̂−2

k=0 νk = (1−ν) 1−ν k̂−1

1−ν
= 1−ν k̂−1 and |Ik̂ |

1
2α

k̂ ≤ (τn2)ν
k̂−1/2

to deal with the (τn2)-term. To estimate the right-hand side of (61), we use (24),
Jensen’s inequality, and ‖ω−1‖Lq (B1)‖ω‖L p(B1) ≥ 1 to get

‖√ω∇u‖2
L2(I1×B1)

(24)

�
‖ω‖L p(B(σn)) + τ−1

n2(σ − ρ)2
‖u‖22,2p′,Qσ (τ,n)

|B1|− 2
d ‖ω−1‖−1

Lq (B1)
‖u‖2

L2(I1×B1)
� n−2‖ω‖L p(B(σn))‖u‖22,2p′,Qσ (τ,n),

and thus there exists c = c(d, p, q) ∈ [1,∞) such that

‖u‖H1(I1×B1)
≤

(
c
‖ω‖L p(B(σn)) + τ−1

n2(σ − ρ)2

) 1
2 ‖u‖2,2p′,Qσ (τ,n). (62)

Since ‖ω‖L p(S)‖ω−1‖Lq (S) ≥ 1 for any S ⊂ B
d ,

∑∞
k=0(1 + k)ν−k � 1 and

|B(n)| 12 (1−ν)�log2((σ−ρ)n)�−5 ∑k̂−2
k=0(

ν
1−ν

)k ≤ |B(n)| 12 (1−ν)�log2((σ−ρ)n)�−5 1
ν
(1−ν)2−k̂

,

which follows from
∑k̂−2

k=0

(
ν

1−ν

)k ≤ ∑k̂−2
k=0

( 1
1−ν

)k = (1−ν)1−k̂−1
(1−ν)−1−1

≤ ν−1(1 − ν)2−k̂ ,

we obtain with the choice k̂ = � 1
2 log2((σ − ρ)n)�, which thanks to (σ − ρ)n ≥ 29

satisfies the necessary condition k̂ ≤ k̂1, that

‖u‖L∞(Qρ(n))

= sup
t∈[−ρτn2,0]

‖ut‖L∞(B(ρn))

(57)≤ |Bk̂ |
1

2α
k̂ sup
t∈Ik̂

‖ut‖L2α
k̂ (Bk̂ )

(61)

� |B(n)| 12 ν k̂−1+ 1
2ν (1−ν)�log2((σ−ρ)n)�−3−k̂

τ
1
2 n

(‖ω−1‖Lq (B(σn))

(σ − ρ)γ̂
(‖ω‖L p(B(σn))

+ τ−1)

) 1
2(1−ν) ‖u‖H1(I1×B1)

(62)

� |B(n)|β((σ−ρ)n)τ
1
2

( ‖ω−1‖Lq (B(σn))

(σ − ρ)γ̂+2(1−ν)
(‖ω‖L p(B(σn))

+ τ−1)2−ν

) 1
2(1−ν) ‖u‖2,2p′,Qσ (τ,n)
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which proves the claim. Since ν ∈ (0, 1), the last inequality follows from ν k̂ ≤
ν

1
2 log2((σ−ρ)n)−1 and (1 − ν)�log2((σ−ρ)n)�−3−k̂ ≤ (1 − ν)

1
2 log2((σ−ρ)n)−4.

Step 3. Conclusion
For k ∈ N ∪ {0}, we set

σk := 3

4
− 1

41+k
Bk := B(σkn), Ik := [−σkτn

2, 0]. (63)

Combining the interpolation inequality

‖u‖L2p′ (Ik×Bk )
≤ ‖u‖

1
p′
L2(Ik×Bk )

‖u‖
1
p

L∞(Ik×Bk )
(64)

(where p′ = p
p−1 ) estimate (58) (with σ = σk and ρ = σk−1) and Jensen inequality

in the form ‖v‖2,2p′,I×B ≤ ‖v‖L2p′ (I×B)
, we obtain for k ≤ 1

2 (log2(3n)−11) (which

ensures (σk − σk−1)n ≥ 29) and γ ′ := γ̂
2(1−ν)

+ 1 that

‖u‖L∞(Ik−1×Bk−1) � 4(k+1)γ ′ |B(n)|β( 3n
4k+1 )C(ω, Bk, τ )‖u‖L2p′ (Ik×Bk)

≤ 4(k+1)γ ′ |B(n)|β( 3n
4k+1 )

M‖u‖
1
p′
L2([− 3

4 τn2,0]×B( 34 n))
‖u‖

1
p

L∞(Ik×Bk)
,

(65)

where

M := cC(ω, B(n), τ ) ∈ [1,∞) (66)

with a suitable constant c = c(d, p, q) ∈ [1,∞). Iterating estimate (65), we obtain
for every k̂ ≤ 1

2 (log2(3n) − 11) that

‖u‖L∞(I0×B0)

≤ 4γ ′ ∑k̂−1
k=0(k+2)p−k |B(n)|

∑k̂−1
k=0 β( 3n

4k+2 )p−k

(M‖u‖1−
1
p

L2(Q 3
4
(τ,n))

)
∑k̂−1

k=0 p−k‖u‖p−k̂

L∞(Ik̂×Bk̂ )
.

To estimate further the last factor on the right-hand side, we use (58) and the discrete

estimate (57) in the form ‖v‖L2p′ (B(n))
≤ |B(n)| 1

2p ‖v‖L2(B(n)):

‖u‖L∞(Q 3
4
(τ,n))

(58)

� |B(n)|β( n4 )M‖u‖2,2p′,Q1(τ,n) ≤ |B(n)|β( n4 )+ 1
2p M‖u‖L2(Q1(τ,n))

(67)
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and thus we obtain

‖u‖L∞(Q 1
2
(τ,n)) � |B(n)|

∑k̂−1
k=0 β( 3n

4k+2 )p−k+β( n4 )p−k̂+ 1
2 p

−k̂−1
M

∑k̂
k=0 p−k‖u‖L2(Q1(τ,n)),

(68)

where in this last inequalityweused that
∑k̂−1

k=0(k+2)p−k ≤ ∑∞
k=0(k+2)p−k ≤ c(p),

which together with γ ′ > 0 gives 4γ ′ ∑k̂−1
k=0(k+2)p−k ≤ c(d, p, q). Since

∑∞
k=0

1
pk

=
1

p−1 , the claimed estimate (50) follows from (68) provided we find k̂ (depending on
n) such that the prefactor on the right-hand side in (68) is uniformly bounded in n.
Hence, it is left to find a sequence (k̂n)n∈N ⊂ N satisfying k̂n ≤ 1

2 (log2(3n) − 11) for
all n sufficiently large such that

lim sup
n→∞

|B(n)|
∑k̂n−1

k=0 β( 3n
4k+1 )p−k+β( n4 )p−k̂n+ 1

2 p
−k̂n−1 ≤ c(d, p, q) < ∞. (69)

First observe that β(z)
(59)= 1

2ν

(
ν

1
2 log2(z)−1 + (1−ν)

1
2 log2(z)−4) ≤ cz−α for some c =

c(d, p, q) and α = α(d, p, q) > 0. Indeed, we have ν
1
2 log2(z) = 2

1
2 log2(ν) log2(z) =

z
1
2 log2(ν) and thus 1

2ν ν
1
2 log2(z)−1 ≤ cz−α follows from log2(ν) < 0 (recall ν =

ν(d, p, q) ∈ (0, 1)). The same argument works also for the (1 − ν)-part of β, hence
giving the estimate β(z) ≤ cz−α . This estimate then implies

k̂−1∑

k=0

β(
3n

4k+1 )p−k ≤
k̂−1∑

k=0

β(
3n

4k+1 ) ≤ c

nα

k̂−1∑

k=0

4kα ≤ c

(
4k̂

n

)α

.

The desired estimate (69) follows with the choice k̂n := � 1
4 log2(3n)�, which in

particular yields 4k̂
n ≤ cn− 1

2 , and the elementary observation that for all c1, c2, c3 > 0
and μ ∈ (0, 1) we have

lim sup
n→∞

nc1μ
c2 log(c3n) = lim sup

n→∞
nc1(c3n)c2 logμ

= lim sup
n→∞

exp(c1(c3n)c2 logμ log(n)) ≤ c(c1, c2, c3, μ) < ∞.

Finally observe that the chosen k̂n satisfies k̂n ≤ 1
2 (log2(3n)−11) since log2(3n) ≥

21 (here we use assumption n ≥ 220). �
For later applications to the heat kernel (see Proposition 2 below) it is useful to

replace the L2-norm on the right-hand side in (50) by the L1-norm. This can be
achieved by a similar argument as in Step 3 of the proof of Theorem 5 by replacing
in the interpolation inequality (64) the exponents 1

p′ and 1− 1
p′ with 1

2p′ and 1− 1
2p′ ,

respectively. Since we do not know how to replace the L2-norm on the right-hand side
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in (67) by the L1 norm we keep the L∞ norm of u (to a very small power) on the
right-hand side and obtain the following

Corollary 1 Under the assumptions of Theorem 5, there exists c = c(d, p, q) ∈ [1,∞)

such that the following is true: Let u > 0 be a subcaloric function in Q1(t0, x0, τ, n)

with t0 ∈ R, x0 ∈ Z
d , n ≥ 220 and τ > 0. Then,

‖u‖L∞(Q 1
2
(t0,x0,τ,n)) ≤ cC(ω, B(x0, n), τ )

2p
p−1 ‖u‖1−( 12 (1+ 1

p ))k̂

L1(Q1(t0,x0,τ,n))
‖u‖( 12 (1+ 1

p ))k̂

L∞(Q1(t0,x0,τ,n))

where k̂ := � 1
4 log2(3n)�.

2.3 Proof of Theorem 1

With the local boundedness statement Theorem 5, the oscillation decay can be proven
by already established methods. The following argument is essentially the parabolic
version (in the form of [37, Section 5.2]) of Moser’s proof, see [31], of the De Giorgi
theorem in the elliptic case. In recent works [3,7] this strategy is already adapted to
the discrete and degenerate situation that we consider here but under more restrictive
summability assumption on ω and ω−1. However, in order to keep the presentation
self-contained we provide a detailed proof below.

First, we introduce a suitable regularization of the map z �→ (− log(z))+, defined
by

g(z) =

⎧
⎪⎨

⎪⎩

− log(z) if z ∈ (0, c̄],
(z−1)2

2c̄(1−c̄) if z ∈ (c̄, 1]
0 if z ≥ 1

, (70)

where c̄ ∈ [ 14 , 1
3 ] is the smallest solution of 2c log( 1c ) = 1 − c. Notice that g ∈

C1((0,∞)) is non-negative, convex and non-increasing.

Lemma 3 Fix d ≥ 2 and ω ∈ �. Suppose that u > 0 satisfies ∂t u − Lωu ≥ 0 in
Q(n) := [−n2, 0] × B(n). Fix λ ∈ (0, 1) and suppose

m({(x, t) ∈ Q(n), ut (x) ≥ 1}) ≥ λm(Q(n)) (71)

(see (10) for the definition of m(·)). Then, for any

σ1 ∈ (0, λ) and σ2 ∈ (λ, 1) satisfying
1 − λ

1 − σ1

|B(n)|
|B(σ2n)| ≤ 17

24
, and n ≥ 1

1 − σ2
,

(72)

there exists h = h(d, λ, ‖ω‖L1(B(n)), σ2) ∈ (0, 1) such that

|{x ∈ B(σ2n), ut (x) ≥ h}| ≥ 1

4
|B(σ2n)| for all − σ1n

2 ≤ t ≤ 0. (73)
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Moreover, there exists c = c(d) < ∞ such that (73) holds with

h = exp

(
−c

(
1 + ‖ω‖L1(B(n))

(1 − σ2)2λd

))
. (74)

Proof of Lemma 3 The proof follows the argument of [37, Lemma 5.2.3] (and discrete
variants [3,7]).
Step 1. We claim that there exists c ∈ [1,∞) such that for every η : Zd → [0, 1]
with η ≡ 0 in Zd\B(n − 1)

d

dt
‖η2g(ut )‖L1(B(n)) + 1

|B(n)|
∑

e∈Bd

ϕη(e)ω(e)(∇g(ut )(e))
2

≤ c‖ω‖L1(B(n))‖∇η‖2L∞(B(n))osr(η)2, (75)

where osr(η) := max{max{ η(y)
η(x) , 1} | {x, y} ∈ B

d , η(x) �= 0} and ϕη(e) :=
min{η2(e), η2(e)} for every e = (e, e) ∈ B

d .
Since ∂t u − Lωu ≥ 0, we have

∂t
∑

x∈Zd

η(x)2g(ut (x)) =
∑

x∈Zd

η(x)2g′(ut (x))∂t ut (x)

≤
∑

x∈Zd

η(x)2g′(ut (x))Lωut (x)

= −
∑

e∈Bd

∇(η2g′(ut ))(e)ω(e)∇ut (e).

Since c̄ ∈ [ 14 , 1
3 ], we have c̄(1− c̄) ≥ 3

16 , which gives
1
3g

′(r)2 ≤ g′′(r) and−rg′(r) ≤
4
3 for almost all r > 0. This combined with Lemma 6 then implies

−
∑

e∈Bd

∇(η2g′(ut ))(e)ω(e)∇ut (e) ≤ −1

6

∑

e∈Bd

ϕη(e)ω(e)(∇g(ut )(e))
2

+6osr (η)2
∑

e∈Bd

ω(e)(∇η(e))2

and thus the claim follows.

Step 2. Conclusion.
Let σ1, σ2 > 0 be such that (72) is satisfied. For given h ∈ (0, 1) (specified below),

we set wt (x) := g(ut (x) + h) and

λ(t) := |{x ∈ B(n), ut (x) ≥ 1}|, Nt (h) := {x ∈ B(σ2n), ut (x) ≥ h}.
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Assumption (71) yields

∫ 0

−n2
λ(t) dt ≥ λm(Q(n)) = λn2|B(n)|,

and in combination with the obvious inequality

∫ 0

−σ1n2
λ(t) dt ≤ σ1n

2|B(n)|,

we obtain

∫ −σ1n2

−n2
λ(t) dt ≥ (λ − σ1)n

2|B(n)|.

By the mean value theorem, we find τ ∈ [−n2,−σ1n2] such that

λ(τ) ≥ λ − σ1

1 − σ1
|B(n)|. (76)

For any t2 ∈ [−σ1n2, 0], we deduce from (75) (applied to the positive supercaloric
function u + h) and σ2 ∈ (λ, 1) together with an ’affine cut-off’ η satisfying

η ≡ 1 in B(σ2n), η ≡ 0 in Zd\B(n − 1), |∇η| � 1

n(1 − σ2)
, osr(η2) ≤ 2

(77)

(n ≥ 1
1−σ2

, see (72), ensures existence of such η) that

‖wt2‖L1(B(σ2n)) ≤ c
|B(n)|

(1 − σ2)2
‖ω‖L1(B(n)) + ‖wτ‖L1(B(n)). (78)

Since g ≥ 0 is non-increasing, we can estimate the left-hand side in (78) from below
as

‖wt2‖L1(B(σ2n)) ≥
∑

x∈B(σ2n)\Nt2

wt2(x) ≥ |B(σ2n)\Nt2(h)|g(2h). (79)

Combining wt = 0 on {x ∈ B(n), ut (x) ≥ 1} (recall g(z) = 0 for z ≥ 1), the
monotonicity of g and (76), we obtain

‖wτ‖L1(B(n)) ≤ (|B(n)| − λ(τ))g(h) ≤
(
1 − λ − σ1

1 − σ1

)
|B(n)|g(h)

= 1 − λ

1 − σ1

|B(n)|
|B(σ2n)| |B(σ2n)|g(h). (80)
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Estimates (78)-(80) and assumption 1−λ
1−σ1

|B(n)|
|B(σ2n)| ≤ 17

24 yield

|B(σ2n)\Nt2(h)| ≤
( c|B(n)|‖ω‖L1(B(n))

|B(σ2n)|(1 − σ2)2g(2h)
+ 17

24

g(h)

g(2h)

)
|B(σ2n)|. (81)

Using g(s) = − log(s) for s ∈ (0, 1
4 ) and 17

24 < 3
4 , we can choose h > 0 sufficiently

small such that

|B(σ2n)\Nt2(h)| ≤ 3

4
|B(σ2n)|,

which by the arbitrariness of t2 ∈ [−σ1n2, 0] yield (73). The lower estimate for h can
be easily deduced from (81) and the elementary estimate B(n)

B(σ2n)
≤ B(n)

B(λn)
≤ ( 3

λ
)d . �

Lemma 3 and Theorem 5 yield the following weak Harnack inequality

Theorem 6 (Weak Harnack inequality). Fix d ≥ 2, ω ∈ � and p ∈ (1,∞], q ∈
( d2 ,∞] satisfying 1

p + 1
q < 2

d−1 . Let u > 0 be such that ∂t u − Lωu ≥ 0 in Q(n) =
[−n2, 0] × B(n). Suppose there exist ε > 0 and λ ∈ (0, 1) such that

m({(x, t) ∈ Q(n), ut (x) ≥ ε}) ≥ λm(Q(n)). (82)

Suppose thatσ1 andσ2 satisfy (72) and setσ := min{√σ 1, σ2}. There exists a constant

γ = γ (d, ε, λ, p, q, ‖ω‖L p(B(n)), ‖ω−1‖Lq (B(n)), σ1, σ2) > 0

such that if σn ≥ 220, then

ut (x) ≥ γ for all (t, x) ∈ Q 1
2
(�σn�). (83)

Moreover there exists c = c(d, λ, p, q, σ1, σ2) ∈ [1,∞) such that (83) holds with

γ = ε exp

(
−c

(
1 + ‖ω‖L1(B(n)) + C(ω, B(n))

2p
p−1 ‖ω−1‖

L
d
2 (B(n))

))
, (84)

where C(ω, B(n)) := C(ω, B(n), 1) and C(ω, B(n), 1) is defined in (51).

Remark 6 While the weak Harnack inequality of Theorem 6 suffices to establish the
needed oscillation decay (Theorem 1) and thus the local limit theorem, it would be
desirable to establish a strong parabolic Harnack inequality. However, we were not
able to prove a strong parabolic Harnack inequality in the discrete setting of the present
manuscript. The reason for this is quite technical and comes from the failure of the chain
rule for finite differences (in particular for nonconvex functions uα with α ∈ (0, 1)
which appear in proofs of the full Harnack inequality withMosers method (that we are
aware of)). In a work in preparation, we obtain the strong parabolic Harnack inequality
in a continuum setting under analogous integrability conditions as in Theorem 6.
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Proof of Theorem 6 Without loss of generality, we assume ε = 1.
Consider the function (t, x) �→ Wt (x) := G(ut (x)), where G(s) := g( s+γ

h ) with
s ∈ R and suitable constants 0 < γ < h which are specified later.

Step 1. W is a subcaloric function, i.e. d
dt Wt (x)−LωWt (x) ≤ 0 for all (t, x) ∈ Q(n).

Indeed, this is a consequence of the convexity of G in the form

LωWt (x) =
∑

y∼x

ω(x, y)(G(ut (y)) − G(ut (x)))

≥ G ′(ut (x))
∑

y∼x

ω(x, y)((ut (y)) − ut (x)) = G ′(ut (x))Lωut (x),

combined with the fact that u is supercaloric and G ′ ≤ 0, and thus

∂tWt (x) − LωWt (x) ≤ G ′(ut (x))(∂t ut (x) − Lωut (x)) ≤ 0.

Step 2. Letσ1 ∈ (0, λ) andσ2 ∈ (λ, 1) be such that 1−λ
1−σ1

|B(n)|
|B(σ2n)| ≤ 17

24 withσ2 ≤ 1− 1
n

and let h = h(d, λ, ‖ω‖L1(B(n)), σ2) ∈ (0, 1) be as in Lemma 3. We claim that there
exists c = c(d) ∈ [1,∞) such that

−
∫ 0

−σ1n2
‖Wt‖2L2(B(σ2n))

dt ≤ c
σ 2
2

σ1
‖ω−1‖

L
d
2 (B(σ2n))

λ−d
(‖ω‖L1(B(n))

(1 − σ2)2
+ g( γ

h )

)
. (85)

Computation analogous to the one leading to (75) in Step 1 of the proof of Lemma 3,
leads to the following: for any η : Zd → [0, 1] with η = 0 in Zd\B(n − 1)

d

dt
‖η2Wt‖L1(B(n)) + |B(n)|−1

∑

e∈Bd

ϕη(e)ω(e)(∇Wt (e))
2

≤ c‖ω‖L1(B(n))‖∇η‖2L∞(osr η)2. (86)

Choosing a suitable cut-off function satisfying η = 1 in B(σ2n) (hence ϕη(e) = 1 in
B(σ2n)), ‖∇η‖L∞ � (n(1 − σ2))

−1 and (osr(η)) ≤ 2, we deduce from (86) and the
monotonicity of g that

∫ t0

t0−σ1n2
‖√ω∇Wt‖2L2(B(σ2n))

≤ |B(n)|
|B(σ2n)|

(
c
σ1n2‖ω‖L1(B(n))

n2(1 − σ2)2
+ ‖Wt0−σ1n2‖L1(B(n))

)

≤ |B(n)|
|B(σ2n)|

(
c
‖ω‖L1(B(n))

(1 − σ2)2
+ g( γ

h )

)
. (87)

Assumption (82) (recall that we suppose ε = 1) together with Lemma 3 implies

|{x ∈ B(σ2n), ut (x) ≥ h}| ≥ 1

4
|B(σ2n)| for all t0 − σ1n

2 ≤ t ≤ t0, (88)
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with h satisfying (74). Estimate (85) follows from (87) and (88) together with the
following Poincaré-type inequality: There exists c = c(d) ∈ [1,∞) such that for all
∅ �= N ⊂ B := B(m) and v : B → R it holds

‖v − (v)N ‖L2(B) ≤c

(
1 + |B|

|N |
)

|B| 1d ‖ω−1‖
1
2

L
d
2 (B)

‖√ω∇v‖L2(B), (89)

where we recall ( f )N := 1
|N |

∑
x∈N f (x). Before recalling the argument for (89)

we discuss how it is used to deduce (85). By definition, we have Wt (x) = 0 for all
x ∈ Nt := {x ∈ B(σ2n), ut (x) ≥ h} and thus for all t ∈ [t0 − σ1n2, t0]

‖Wt‖L2(B(σ2n)) = ‖Wt − (Wt )Nt ‖L2(B(σ2n))

≤ 5c|B(σ2n)| 1d ‖ω−1‖
1
2

L
d
2 (B(σ2n))

‖√ω∇Wt‖L2(B(σ2n))).

Squaring the above expression and integrating in time from −σ1n2 to 0, we obtain
(85) using (87).

Finally, we recall the computations that yield (89): For every s ∈ [1, d), we have
(with the notation of Proposition 1)

‖v − (v)N ‖
Ls∗d (B)

≤ ‖v − (v)B‖
Ls∗d (B)

+ |(v)B − (v)N |

≤
(
1 + |B|

|N |
)

‖v − (v)B‖
Ls∗d (B)

(14)≤ c(d, s)

(
1 + |B|

|N |
)

|B| 1d ‖∇v‖Ls (B). (90)

Estimate (89) follows from (90) with s = 2d
d+2 (and thus s

∗
d = 2) andHölder inequality

in the form

‖∇v‖
L

2d
d+2 (B)

≤ ‖ω−1‖
1
2

L
d
2 (B)

‖√ω∇v‖L2(B).

Step 3. Conclusion.
Using that W is a subcaloric function in [−σn2, 0] × B(σn) with σ =

min{√σ1, σ2}, we obtain from Theorem 5 and (85) (combined with the assumption
σn ≥ 220)

sup
(t,x)∈Q 1

2
(�σn�)

Wt (x)
2

(50)

� C(ω, B(σn))
2p
p−1 ‖W‖2

L2(Q1(�σn�))

(85)≤ cC(ω, B(n))
2p
p−1 λ−d‖ω−1‖

L
d
2 (B(n))

(‖ω‖L1(B(n))

(1 − σ2)2
+ g( γ

h )

)
,
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where c = c(d, p, q, σ1, σ2) ∈ [1,∞) and C(ω, B(n)) := C(ω, B(n), 1) (see (51)).
Choose γ ∈ (0, h

2 ) sufficiently small such that

(
g

(
2γ

h

))2

> cC(ω, B(n))
2p
p−1 λ−d‖ω−1‖

L
d
2 (B(n))

(‖ω‖L1(B(n))

(1 − σ2)2
+ g( γ

h )

)
.

(91)

Then it holds u ≥ γ on Q 1
2
(�σn�). Indeed, if there were (t̃, x̃) ∈ Q 1

2
(�σn�) with

ut̃ (x̃) < γ , by monotonicity of g

(
g

(
2γ

h

))2

≤
(
g

(
ut̃ (x̃) + γ

h

))2

≤ cC(ω, B(n))
2p
p−1 λ−d‖ω−1‖

L
d
2 (B(n))

(‖ω‖L1(B(n))

(1 − σ2)2
+ g( γ

h )

)

which contradicts (91). Finally, we notice that (91) is satisfied for any γ with

γ < h exp

(
− 1

2A − log(2) −
√

( 12A + log(2))2 + A
‖ω‖L1(B(n))

(1 − σ2)2
− log(2)2

)
.

(92)

where

A := cC(ω, B(n))
2p
p−1 λ−d‖ω−1‖

L
d
2 (B(n))

,

and c = c(d, p, q, σ1, σ2) ∈ [1,∞). Combining (92) with (74), we obtain (84). �
Theorem 1 follows from the weak Harnack inequality Theorem 6 using classical

arguments adapted to the discrete setting:

Proof of Theorem 1 Without loss of generality, we consider t0 = 0 and x0 = 0 and
suppose p, q < ∞ (the case p = q = ∞ is classical; if, for instance, p < ∞ and
q = ∞, we use the statement with p and q̃ ∈ ( d2 ,∞) satisfying 1

p + 1
q̃ < 2

d−1

combined with the trivial inequality ‖ω−1‖Lq̃ (B)
≤ ‖ω−1‖Lq (B)). Modifying u by a

constant if necessary, without loss of generality we can assume that

M := max
Q1(n)

u = − min
Q1(n)

u = 1

2
oscQ1(n)u.

Moreover, w.l.o.g., we assume m({(x, t) ∈ Q1(n), u ≥ 0}) ≥ 1
2m(Q1(n)), since

otherwisewe consider−u instead. Thus, the function v = 1+ u
M satisfies ∂tv−Lωv =

0 and

m({(x, t) ∈ Q1(n), v ≥ 1}) ≥ 1

2
m(Q1(n)).
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We choose σ1 = 1
4 and σ d

2 = 49
51 , and observe that this choice satisfies

(i) :
1
2

1 − σ1

|B(n)|
|B(σ2n)| ≤ 17

24
and (ii): n ≥ 1

1 − σ2
for all n ≥ 50d. (93)

Before we give the elementary argument for (93) we show that (93) and Theorem 6
imply the desired claimwith N := max{221, 50d}: For n ≥ N , Theorem 6with λ = 1

2
and σ1, σ2 as above (and thus σn ≥ 1

2N = 220) yields

vt (x) ≥ γ for all (t, x) ∈ Q 1
8
(n), (94)

for some γ = γ (d, p, q, ‖ω‖L p(B(n)), ‖ω−1‖Lq (B(n))) > 0. Hence,

−M(1 − γ ) ≤ ut (x) ≤ M for all (t, x) ∈ Q 1
8
(n)

which implies oscQ 1
8
u ≤ 2M(1 − γ

2 ) = θoscQ1u with θ := 1 − γ
2 ∈ (0, 1), which

concludes the argument.
Finally we give the argument for (93): Inequality (ii) in (93) follows from concavity

of t �→ t
1
d in the form 1 − σ2 = 1 − ( 49

51

) 1
d ≥ (1 − 49

51 )
1
d 1

1
d −1 = 2

51d and 51
2 ≤ 50.

Inequality (i) in (93) can be written as 48|B(n)| ≤ 51|B(σ2n)|. Since |B(σ2n)| =
(2�σ2n� + 1)d ≥ (2σ2n − 1)d it suffices to show that

( 51
48

) 1
d (2σ2n − 1) ≥ 2n + 1,

which in turn is equivalent to n ≥ 1
2
1+( 5148 )

1
d

( 4948 )
1
d −1

. Using 1+ ( 5148 )
1
d ≤ 1+ 51

48 and concavity

of t �→ t
1
d in the form ( 4948 )

1
d − 1 ≥ 1

d ( 4948 − 1) = 1
48d , we obtain that (i) in (93) is

satisfied for n ≥ 1
248d(1 + 51

48 ) = d 99
2 . �

3 Local limit theorem

3.1 Some properties of the heat kernel

In this section, we use the local boundedness result Theorem 5 to derive a deterministic
on-diagonal upper bounds on the heat kernel (see Proposition 2). This upper bound
combinedwith Theorem1 implies large-scaleHölder-continuity of the heat kernel (see
Proposition 3) which will be a crucial ingredient in the proof of the local limit theorem.
As a side result, we obtain an on-diagonal heat kernel estimate, see Corollary 2.

Next we apply the local boundedness for subcaloric functions (in the form of Corol-
lary 1) to the heat kernel pω of X . For this, we recall that for fixed x ∈ Z

d the map
[0,∞) × Z

d � (t, y) �→ pt (x, y) solves the Cauchy problem

∂t p
ω(x, ·) − Lω p(x, ·) = 0 on (0,∞) × Z

d and p0(x, y) = δx (y), (95)

where δx (x) = 1 and δx (z) = 0 for z �= x .
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Proposition 2 Fix d ≥ 2, ω ∈ �, and p ∈ (1,∞), q ∈ ( d2 ,∞) satisfying 1
p + 1

q <
2

d−1 . There exists c = c(d, p, q) ∈ [1,∞) such that for every x, y ∈ Z
d

pω
t (x, y) ≤ cC

(
ω, B(y,

√
t)

) 2p
p−1

t−
d
2 for all t ≥ 1, (96)

where C(ω, B) := C(ω, B, 1) and C(ω, B, 1) is defined in (51).

Remark 7 Well-known examples of trapping of randomwalks, see e.g. [20], show that
the statement of Proposition 2 fails for q < d

2 : Fix q < d
2 . For n ∈ N choose ω ∈ �

as

ω(x, y) =
{
n− d

q if x = 0 and |y| = 1

1 otherwise
.

Obviously, we have ω ≤ 1 and ‖ω−1‖Lq (B(n)) ≤ c(d) < ∞. Moreover, an elementary
computation yields

pω
t (0, 0) ≥ 1 − tc(d)n− d

q for all t > 0. (97)

Clearly, (97) with q < d
2 (and thus 2 − d

q < 0) contradicts the validity of an estimate

of the form (96) for x = y = 0 and t = n2, i.e. pω
n2

(0, 0) ≤ c(d, p, q)n−d , for n
sufficiently large. Since Proposition 2 follows directly from local boundedness in the
form of Corollary 1 the above argument shows that assumption q > d

2 is essential in
Corollary 1.

Proof of Proposition 2 By translation it suffices to prove the claim for y = 0, and we
use the shorthand pω

t = pω
t (x, ·).

For n ∈ N specified below, we set

Q1 := [0, 2n2] × B(n), Q 1
2

:= [n2, 2n2] × B( n2 ). (98)

Without loss of generality, we suppose from now on that

√
t ≥ 220 and choose n := �√t� (99)

(for t ∈ [1, 240] estimate (96) is valid with c = 220d since pω ≤ 1). We claim that
there exists c = c(d, p, q) ∈ [1,∞) such that

sup
(s,z)∈Q 1

2

pω
s (z) ≤ cC(ω, B(n))

2p
p−1 n−d . (100)

Indeed, a direct consequence of Corollary 1 (with τ = 2) combined with the fact

‖pω
t ‖L∞(Zd ) ≤ ‖pω

t ‖L1(Zd ) = 1 for all t ≥ 0,
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is the existence of c = c(d, p, q) ∈ [1,∞) such that

sup
(s,z)∈Q 1

2

pω
s (z) ≤ cC(ω, B(n), 2)

2p
p−1 n−d(1− 1

2 (1+ 1
p )k̂ )

,

where k̂ := � 1
4 log2(3n)� and the n-factor comes from averaging of L1 over Q1. The

claimed estimate (100) follows from C(ω, B, 2) ≤ √
2C(ω, B, 1) and p > 1, thanks

to which 1
2 (1 + 1

p ) < 1 and hence

lim sup
n→∞

nd( 12 (1+ 1
p ))

1
4 log2(3n) ≤ c(d, p) < ∞.

From n = �√t� ≤ √
t it follows n2 ≤ t while the lower bound on t gives t ≤ 2n2,

hence (t, 0) ∈ Q 1
2
, and (100) yields

pω
t (0) ≤ cC(ω, B(n))

2p
p−1 n−d ≤ c2

d
2 C(2ω, B(n))

2p
p−1 t−

d
2 ,

which concludes the proof. �
Next, we combine Proposition 2 with Theorem 1 to obtain large-scale (Hölder-)

continuity of the heat kernel provided, we control ‖ω‖L p(B) and ‖ω−1‖Lq (B) in the
limit |B| → ∞.

Proposition 3 Fix d ≥ 2, δ ∈ (0, 1], M ∈ [1,∞), ω ∈ � and p ∈ (1,∞], q ∈
( d2 ,∞] satisfying 1

p + 1
q < 2

d−1 . There exist c = c(d, M, p, q) ∈ [1,∞) and ρ =
ρ(d, M, p, q) ∈ (0, 1) such that the following is true: Suppose that for every x ∈ R

d

lim sup
n→∞

(
‖ω‖L p(B(�nx�,n)) + ‖ω−1‖Lq (B(�nx�,n))

)
≤ M . (101)

Then for t ≥ 4δ2

lim sup
n→∞

max
y1,y2∈B(�nx�,δn)

s1,s2∈[t−δ2,t]
nd |pω

n2s1
(0, y1) − pω

n2s2
(0, y2)| ≤ c

(
δ√
t

)ρ

t−
d
2 . (102)

Proof of Proposition 3 Without loss of generality we assume p, q < ∞. Let x ∈ R
d

be fixed. For k ∈ N0 ∪ {−1}, we set δk := 1
28

−k√t and consider the sequence of
parabolic cylinders

Qk := n2[t − δ2k , t] × B(�nx�, δkn).

Set k0 := max{k ∈ N, δk ≥ δ}. Since k0 is finite and B(�nx�, δkn) =
B(�δkn x

δk
�, δkn), using assumption (101) for finitely many points x

δk
, k = −1, . . . , k0,
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we see that

‖ω‖L p(B(�nx�,δkn)) + ‖ω−1‖Lq (B(�nx�,δkn)) ≤ 2M, k = −1, . . . , k0, (103)

provided n is sufficiently large. Combining this with Theorem 1 we find θ =
θ(d, M, p, q) ∈ (0, 1) such that for n sufficiently large it holds

oscQk p
ω ≤ θ oscQk−1 p

ω for all 1 ≤ k ≤ k0,

where we use the shorthand pω = pω· (0, ·), and thus (by iteration)

oscQk0
pω ≤ θ

k0oscQ0 p
ω. (104)

The claimed estimate (102) is a consequence of (104) combined with the following
three facts

n2[t − δ2, t] × B(�nx�, δn) ⊂ Qk0 ,

θ
k0 ≤ θ

−1
(
2δ√
t

) 1
3 | ln(θ)|

,

oscQ0 p
ω ≤ 2‖pω‖

L∞(n2t[ 34 ,1]×B(�nx�,
√
t
2 n)

(96)≤ cn−d t−
d
2 ,

where c = c(d, M, p, q) ∈ [1,∞). In order to apply (96), we used that
C(ω, B(y,

√
t)) appearing in (96) is up to a multiplicative constant controlled by

C(ω, B(�nx�, 4n√
t)) = C(ω, B(�nx�, δ−1n))

(103)≤ c(d, M, p, q). �
From Proposition 2, we directly deduce the corresponding heat kernel estimate

for the random conductance model. This extends [30, Proposition 3.6] to the case of
unbounded conductances.

Corollary 2 Suppose that Assumption 1 is satisfied and that there exists p ∈ (1,∞),
q ∈ ( d2 ,∞) satisfying 1

p + 1
q < 2

d−1 such that (8) is valid. Let ν = ν(d, p, q) ∈ (0, 1)
be as in (21). Then there exists a random variable X ≥ 0 such that

E[X r ] < ∞ ∀0 < r <
p−1
p (1 − ν)( 1q + 2−ν

p )−1 (105)

and

sup
|x |≤√

t

pω
t (0, x) ≤ t−

d
2X (ω) for all t ≥ 1. (106)

Proof of Corollary 2 By Proposition 2 and the definition of C (see (51)) there exists
c = c(d, p, q) ∈ [1,∞) such that for every t ≥ 1

sup
|y|≤√

t

pω
t (0, y) ≤ cC(

ω, B(x, 2
√
t)

) 2p
p−1 t−

d
2 ≤ cCmax(ω)t−

d
2 ,
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with Cmax given by

Cmax(ω) := max{1, (Mq(ω
−1)(1 + Mp(ω))2−ν

) 1
1−ν

p
p−1 } ∈ [1,∞),

where M denotes the maximal operator given by

(Mr ( f ))
r := sup

n∈N
‖ f ‖rLr (B(n)) for all r ≥ 1 and f : Zd → R.

Hence, we have (106) withX = c(Cmax(ω)) and the claimedmoment conditions (105)
easily follow from Hölder inequality and the Lr (1 < r ≤ ∞) inequalities for the
maximal operator (see e.g. [30, Corollary A.2]). �

3.2 Proof of Theorem 4

By now it is well-established that quenched invariance principles (see Theorem 3)
combined with additional regularity properties of the heat kernel yield local limit
theorems, see [5,11]. Hence we only provide sketch of the proof.

Proof of Theorem 4 We only show that for every x ∈ R
d and t > 0

lim
n→∞ |nd pω

n2t (0, �nx�) − kt (x)| = 0 P-a.s., (107)

where the Gaussian heat kernel kt is defined in (6). From the pointwise result (107)
the desired claim (9) follows by a covering argument exactly as in [3, proof of Propo-
sition 3.1].

For given x ∈ R
d and δ > 0, we introduce

�(x, δ) := x + [−δ, δ]d , �̂n(x, δ) := (�(nx, nδ)) ∩ Z
d ,

and recall the elementary fact

lim
n→∞

nd(2δ)d

|�̂n(x, δ)|
= 1. (108)

We write

Jn(t, x) := nd pω
n2t (0, �nx�) − kt (x) =

4∑

i=1

Ji,n(t, x, δ),

where

J1,n(t, x, δ) := nd

|�̂n(x, δ)|
∑

z∈�̂n(x,δ)

pω
n2t (0, �nx�) − pω

n2t (0, z),

123



392 P. Bella, M. Schäffner

J2,n(t, x, δ) := nd

|�̂n(x, δ)|
( ∑

z∈�̂n(x,δ)

pω
n2t (0, z) −

∫

�(x,δ)
kt (y) dy

)

J3,n(t, x, δ) := nd

|�̂n(x, δ)|
(∫

�(x,δ)
(kt (y) − kt (x)) dy

)

J4,n(t, x, δ) := kt (x)

(
nd(2δ)d

|�̂n(x, δ)|
− 1

)
.

It suffices to show

lim sup
δ→0

lim sup
n→∞

|Ji,n(t, x, δ)| = 0 for all i = {1, 2, 3, 4} P-a.s.. (109)

A combination of (108) and the local Lipschitz-continuity of the heat kernel k yield
(109) for i = 3 and i = 4. For i = 2, the convergence in (109) follows directly form
the quenched invariance principle Theorem 3 and finally for i = 1, we note that by
Proposition 3 and Lemma 4 below

lim sup
n→∞

|J1,n(t, x, δ)| ≤ c

(
δ√
t

)ρ

t−
d
2 , P-a.s..

where the right-hand side tends to zero as δ → 0. �
In the proof of Theorem 4 we used the following consequence of the spatial ergodic

theorem:

Lemma 4 Suppose that Assumption 1 and 2 are satisfied. Then, there exists c = c(d) ∈
[1,∞) such that

sup
x∈Rd

lim sup
n→∞

(‖ω‖p
L p(B(�nx�,n))

+ ‖ω−1‖qLq (B(�nx�,n))
)

≤ c
∑

x∈Zd

(E[ω(0, x)p] + E[ω(0, x)−q ]) < ∞ P-a.s..

4 Elliptic regularity: Proof of Theorem 2

We adapt the classical strategy ofMoser [31] to the non-uniformly elliptic and discrete
setting. As in the parabolic case, a key ingredient is local boundedness for non-negative
subharmonic functions.

Theorem 7 Fix d ≥ 2, ω ∈ � and let p, q ∈ (1,∞] be such that 1
p + 1

q < 2
d−1 .

(a) Fix d ≥ 3. For every γ ∈ (0, 1], there exists c = c(d, p, q, γ ) ∈ [1,∞) such that
for every u > 0 satisfying −Lωu ≤ 0 in B(2n), n ∈ N

max
x∈B(n)

u(x) ≤ c�ω
p,q(B(2n))

δ+1
2δγ ‖u‖L2p′γ (B(2n))

, (110)
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where δ := 1
d−1 − 1

2p − 1
2q > 0, p′ := p

p−1 and for every bounded set S ⊂ Z
d

�ω
p,q(S) := ‖ω‖L p(S)‖ω−1‖Lq (S). (111)

(b) Fix d = 2. There exists c ∈ [1,∞) such that for every u > 0 satisfying−Lωu ≤ 0
in B(2n), n ∈ N

max
x∈B(n)

u(x) ≤ c

(
n‖ω−1‖

1
2

L1(B(2n))
‖√ω∇u‖L2(B(2n)) + ‖u‖L1(B(2n))

)
.

(112)

Proof In [13, Corollary 1, Proposition 4] the corresponding estimates with max u
replaced by max |u| are proven for harmonic functions (i.e. u satisfying Lωu = 0)
without any sign condition on u. The proofs apply almost verbatim to non-negative
subharmonic functions and thus are omitted here. �
Theorem 8 (Weak elliptic Harnack inequality). Fix d ≥ 2, ω ∈ �, and p, q ∈ (1,∞]
satisfying 1

p + 1
q < 2

d−1 . Let u ≥ 0 be such that −Lωu ≥ 0 in B(4n). Suppose that
there exist ε > 0 and λ ∈ (0, 1) such that

|{x ∈ Q(2n), u(x) ≥ ε}) ≥ λ|B(2n)|. (113)

There exists a constant c = c(d, p, q) ∈ [1,∞) such that

u(x) ≥ γ for all x ∈ B(n), (114)

where

γ = ε

{
exp

(−cλ−1�ω
1,1(B(4(n)))

1
2
)

if d = 2,

exp
(−cλ−1�ω

p,q(B(4(n)))
1
2+ δ+1

δ
p′( 12+ 1

q − 1
d )) if d ≥ 3.

Proof of Theorem 8 Without loss of generality, we assume ε = 1. Throughout the proof
we write � if ≤ holds up to a positive constant depending on d, p, and q. Consider
the function x �→ W (x) := g(u(x)), with g being defined in (70).

Step 1. W is subharmonic, i.e. −LωW ≤ 0 in B(4n).
This follows from Step 1 of the proof of Theorem 6.

Step 2. Fix d ≥ 3. We claim that there exists c = c(d, q) ∈ [1,∞) such that

‖W‖2
LQ(B(2n))

≤ cλ−2‖ω−1‖Lq (B(4n))‖ω‖L1(B(4n)), (115)

where 1
Q = 1

2 + 1
2q − 1

d . Indeed, as in Proof of Lemma 3, Step 1, we obtain for any

η : Zd → [0, 1] with η = 0 in Zd\B(4n − 1)

|B(2n)|−1
∑

e∈Bd

ω(e)ϕη(e)(∇W (e))2 ≤ c‖ω‖L1(B(4n))‖∇η‖2L∞(osr η)2. (116)
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Choosing a suitable cut-off function satisfying η = 1 in B(2n), ‖∇η‖L∞ � n−1 and
(osr(η)) ≤ 2, we deduce from (86) that

‖√ω∇W‖2
L2(B(2n))

≤cn−2‖ω‖L1(B(4n)). (117)

Moreover, appealing to Sobolev inequality as in (89), we find c = c(d, q) ∈ [1,∞)

satisfying

‖W‖2
LQ (B(2n))

≤ cn2λ−2‖∇W‖2
L

2q
q+1 (B(2n))

≤ cn2λ−2‖ω−1‖Lq (B(2n))‖
√

ω∇W‖2
L2(B(2n))

,

and claim (115) follows by (117)

Step 3. Conclusion for d ≥ 3.
Combining (115) with estimate (110) (with γ = Q

2p′ ) and the fact that W is subhar-
monic, we obtain

max
x∈B(n)

W (x) � λ−1�ω
p,q(B(2n))

p′ δ+1
2δ (1+ 1

q − 2
d )‖W‖LQ(B(2n))

� λ−1�ω
p,q(B(4n))

p′ δ+1
2δ (1+ 1

q − 2
d )+ 1

2 . (118)

Estimate (114) (for d ≥ 3) follows from (118) and the definition of W and g.

Step 4. The case d = 2.
Assumption (113) and a suitable version of Sobolev inequality (see (89)) yield

‖W‖L1(B(2n)) � nλ−1‖∇W‖L1(B(2n)) ≤ nλ−1‖ω−1‖
1
2

L1(B(2n))
‖√ω∇W‖L2(B(2n))

and in combination with (117) and (112) (using that W is subharmonic by Step 1)

‖W‖L∞(B(2n)) � λ−1‖ω−1‖
1
2

L1(B(2n))
‖ω‖

1
2

L1(B(2n))
.

The claimed estimate follows by the definition of W . �
Proof of Theorem 2 Appealing to the weak Harnack inequality Theorem 8 the proof
follows by the same argument as in the parabolic case, see Theorem 1. �
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Appendix A: Technical estimates

We recall some estimates, mainly proven in [4, Lemma A.1], that we used in the proof
of Theorem 5.

Lemma 5 For a ∈ R and α ∈ R\{0}, set ãα = |a|αsign a.
(i) For all a, b ∈ R and any α, β �= 0

|ãα − b̃α| ≤
(
1 ∨

∣∣∣∣
α

β

∣∣∣∣

)
|ãβ − b̃β |(|a|α−β + |b|α−β) (119)

(ii) For all a, b ≥ 0 and α > 1
2

(aα − bα)2 ≤
∣∣∣∣

α2

2α − 1

∣∣∣∣(a − b)(a2α−1 − b2α−1) (120)

(iii) For all a, b ≥ 0 and α ≥ 1

(a2α−1 + b2α−1)|a − b| ≤ |aα − bα|(aα + bα). (121)

Proof Parts (i) and (ii) are contained in [4, Lemma A.1]. We provide the argument
for (121): We start with few reductions. First, by symmetry we can assume a ≥ b and
the case b = 0 being trivial allows us to farther assume b > 0. By homogeneity of
both sides of the inequality, we can farther assume b = 1, in which case the inequality
reads

a2α − a2α−1 + a − 1 = (a2α−1 + 1)(a − 1) ≤ (aα − 1)(aα + 1) = a2α − 1,

which reduces to a(1 − a2(α−1)) = −a2α−1 + a ≤ 0, which using 2(α − 1) ≥ 0 is
equivalent to a ≥ 1, thus completing the argument. �

Finally we recall a technical estimate given in [3] that we used in the proof of
Lemma 3.

Lemma 6 ([3, Lemma A.1]). Let g ∈ C1(0,∞) be a convex, non-increasing function.
Assume the g′ is piecewise differentiable and that there exists γ ∈ (0, 1] such that
γ g′(r)2 ≤ g′′(r) for a.e. r ∈ (0,∞). Then, for all x, y > 0 and a, b ≥ 0

− (b2g′(y) − a2g′(x))(y − x)
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≤
{

− γ
2 (min{a2, b2}(g(y) − g(x))2 + 2

γ
max{ a2

b2
, b2

a2
}(b − a)2 if min{a, b} > 0,

max{−xg′(x),−yg′(y)}(b − a)2 if min{a, b} = 0
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