
International Journal on Software Tools for Technology Transfer (2021) 23:521–543
https://doi.org/10.1007/s10009-021-00634-y

GENERAL

Regular

Compositional learning of mutually recursive procedural systems

Markus Frohme1 · Bernhard Steffen1

Published online: 5 October 2021
© The Author(s) 2021

Abstract
This paper presents a compositional approach to active automata learning of Systems of Procedural Automata (SPAs), an
extension of Deterministic Finite Automata (DFAs) to systems of DFAs that can mutually call each other. SPAs are of high
practical relevance, as they allow one to efficiently learn intuitive recursive models of recursive programs after an easy
instrumentation that makes calls and returns observable. Key to our approach is the simultaneous inference of individual
DFAs for each of the involved procedures via expansion and projection: membership queries for the individual DFAs are
expanded to membership queries of the entire SPA, and global counterexample traces are transformed into counterexamples
for the DFAs of concerned procedures. This reduces the inference of SPAs to a simultaneous inference of the DFAs for the
involved procedures for which we can utilize various existing regular learning algorithms. The inferred models are easy to
understand and allow for an intuitive display of the procedural system under learning that reveals its recursive structure. We
implemented the algorithm within the LearnLib framework in order to provide a ready-to-use tool for practical application
which is publicly available on GitHub for experimentation.

Keywords Active automata learning · Procedural systems · Context-free languages · Visibly pushdown languages

1 Introduction

Formal validation and verification methods such as model-
based testing [10] and model-checking [6,14] are an integral
part of today’s software development process. As software
grows in size and complexity, (automated) validation and
verification of system properties not only helps finding errors
during the development process but often is a requirement for
final acceptance tests.

Crucial for these techniques to be applied properly is a
formal model of the system (components) to verify. How-
ever, one often faces situations where formal representations
are not available, either because creating and maintaining a
correct model is tedious and error-prone or not possible at
all if dealing with legacy systems or third-party components.
Active Automata Learning (AAL) has shown to be a power-

B Bernhard Steffen
steffen@cs.tu-dortmund.de

Markus Frohme
markus.frohme@cs.tu-dortmund.de

1 Chair of Programming Systems, Faculty of Computer
Science, TU Dortmund, Dortmund, Germany

ful means to attack these problems in many applications by
allowing to infer behavioral models fully automatically on
the basis of testing [24,31,35,41].

The fact that AAL as a testing-based technology is nei-
ther correct nor complete can nicely be compensated for via
monitoring-based lifelong learning which became practical
with the development of the TTT algorithm [29]. Essential
for the success of AAL is the availability of powerful tools
like [9,13,30,46] and the continuous development of more
and more expressive frameworks capturing increasingly
many system properties like input/output behavior [25], data
[1,8,15,22,23,27,28,34], probability [16], additional com-
putational structures like hierarchy/recursion [26,33] and
parallelism.

This paper presents a compositional approach to active
automata learning of Systems of Procedural Automata
(SPAs), an extension of Deterministic Finite Automata
(DFAs) to systems of DFAs that can mutually call each other
according to the classical copy-rule semantics (cf. Fig. 2)
used already in early programming languages like Algol 60
[38]. SPAs are of high practical relevance as they allow one
to efficiently learn intuitive recursive models of recursive

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00634-y&domain=pdf

522 M. Frohme, B. Steffen

Fig. 1 An (NFA-based) SPA that captures the semantics of palin-
dromes. Sink states and corresponding transitions of the NFAs are
omitted for readability

programs after an easy instrumentation that makes calls and
returns observable.

Key to our approach is the simultaneous inference of indi-
vidual DFAs for each of the involved procedures in amodular
fashion using well-known learning algorithms for deter-
ministic finite automata [5,21,29,32,44]. Technically, our
approach is based on a translation layer that bridges between
the view of the entire system and the local view concern-
ing the individual procedures: Local queries of procedural
automata are expanded to global queries of the instrumented
system under learning, and global counterexample traces
for the global system are projected onto local counterex-
ample traces for the concerned procedural automata. This
translation layer introduces a negligible query overhead, as
queries can be directly mapped between the two scopes and
we show that counterexample projection can be implemented
in a binary search-fashion.

Figure 1 illustrates three essential characteristics of SPAs:

– the intuitive structure: the operational semantics of SPAs
follow the copy-rule semantics (cf. Fig. 2), i.e. upon
encountering a procedural call the control is transferred
to the respective procedural automaton fromwhich it can
only return at specific states. This is a universal concept
that is independent of the automaton type of the proce-
dures as it can be realized on a purely syntactical level,
e.g. via graph transformation/rewriting [43].
In this paper,we focus on a context-free language/acceptor-
based perspective where successful runs of a system
correspond to accepted words (wrt. the underlying lan-
guage). Extending the SPA principle to other automaton
types, such as transducers (e.g. Mealy machines), is on

F -> a | a F a | b | b F b | G | ε

G -> c | c G c | F

Listing 1 Production rules in BNF for the language of palindromes over
the three characters a, b and c.

our future research agenda.
The SPA in Fig. 1 is composed of non-deterministic finite
automata (NFAs) to emphasize the trivial translation
between SPAs and the production rules of context-free
grammars (CFGs)—see Listing 1 for the corresponding
representation in BNF.1 In this paper, however, we focus
on (equivalent) deterministic procedures (DFAs) which
are more common in the active automata learning com-
munity. See Fig. 6 for the deterministic version of the
SPA of Fig. 1. In order to describe context-free systems
via DFAs, we assume the procedural calls as observ-
able, which we justify by the fact that in practice the
required observability can be achieved via easy instru-
mentation. When ignoring this control overhead, the set
of accepting runs coincides with the context-free lan-
guage corresponding to the procedural system.

– the expressive power: SPAs cover the full spectrum of
context-free languages. The SPA shown in Fig. 1 “imple-
ments” the language of all palindromes over the alphabet
{a, b, c}.

– the role of procedural names (non-terminals): they can be
considered as “architectural knowledge” about the sys-
tem to be learned.2 In this example it imposes a (here
intended, but from the mere language perspective unnec-
essary) separate treatment of symbol c, something which
could not be observed simply on the basis of terminal
words. This allows one to represent the compositional
architecture of the system in terms of intuitive models.

Similar to the classical learning of DFAs, our learning algo-
rithm for SPAs terminates with a canonical SPA for the
considered language and simply requires a so-called mem-
bership oracle, i.e. a “teacher” that is able to answer the
required word problems—as long as one accepts that the so-
called equivalence queries are typically approximated using
membership queries in practice. Even better, also its (query)
complexity remains unchanged as the effort is dominated
by the learning of the individual procedural automata. As
shown inSect. 8, our approach yields significant performance
improvements compared to existing learning algorithms for
similar systems such as visibly pushdown automata (VPAs).

1 In case a procedural automaton contains loops, the context-free gram-
mar can be specified in extended BNF (EBNF) which allows regular
expressions on the right-hand side of production rules.
2 Exploiting given (perhaps architectural) knowledge about the system
to be learned is one of the most promising approaches to boost automata
learning for large-scale practical application.

123

Compositional learning of mutually recursive procedural systems 523

Fig. 2 The copy-rule semantics: for each procedural invocation the automaton of the called procedure is copied into the automaton of the calling
procedure. This concrete example shows the first expansion step for the recursive invocation of G in procedure G. When labeling the dotted
transitions with observable call and return symbols, the language of this (potentially infinite state) automaton coincides with the language of our
instrumented system (cf. Listing 2). When interpreting them as direct (i.e. ε) transitions, the language coincides with the original context-free
language

An implementation of the presented algorithm is pub-
licly available at https://github.com/LearnLib/learnlib-spa
and open to everyone for experimentation. Our implemen-
tation utilizes the LearnLib [30] library and therefore comes
with direct support for practical application to real systems.

Outline

We continue in Sect. 2 with introducing the results of related
fields of research and sketching preliminary terminology.
Section 3 formalizes our concept of systems of procedural
automata. In Sect. 4 we describe the essential concepts for
the inference process of SPAs by formalizing the translation
layer and the different phases of the learning process. Sec-
tion 5 presents our approach to efficiently analyze and project
global counterexamples for SPA hypotheses and Sect. 6
aggregates the previous concepts in a sketch of a learning
algorithm. Sections 7 and 8 present a theoretical and empir-
ical evaluation of the algorithm and Sect. 9 concludes the
paper and provides some directions for future work.

2 Related work and preliminaries

The idea of SPAs was originally introduced under the name
Context-Free Process Systems (CFPSs) in [11] for model
checking and has since then been adapted to several simi-
lar formalisms such as Recursive State Machines (RSMs) in
[2]. Calling them Systems of Procedural Automata here and
focusing on deterministic automata is meant to better address
the automata learning community. The formal foundation of
our learning approach, similar to many other active automata
learning algorithms, is the minimal adequate teacher (MAT)
framework proposed by Angluin [5]. Key to this framework
is the existence of a “teacher” that is able to answermember-
ship queries, i.e. questions whether a word is a member of

the target language, and equivalence queries, i.e. questions
whether a tentative hypothesis exactly recognizes the target
language.

The process of inferring a (regular) blackbox language
is then given by discovering the equivalence classes of the
Myhill-Nerode congruence [39] of the target language by
means of partition refinement. This is usually done in an
iterative loop consisting of the following two phases:

– exploration: the learning algorithm poses membership
queries for exploring language characteristics and con-
structing a tentative hypothesis.

– verification: upon hypothesis stabilization, an equiva-
lence query is posed that either indicates equivalence
(thus terminating the learning process) or yields a coun-
terexample (a word over the given input alphabet) which
exposes a difference between the language of the tenta-
tive hypothesis and the unknown target language. This
counterexample can then be used to refine the tentative
hypothesis (by splitting a too coarse partition class) and
start a new exploration phase.

We expect the reader to be familiar with the general process
and formalities of active automata learning. For a more thor-
ough introduction (to the regular case) see e.g. [45] or [32,
Chapter 8].

Regular languages are not powerful enough to capture
the key characteristics of procedural systems which inher-
ently support (potentially infinite) recursive calls between
their sub-procedures. These semantics are, however, express-
ible with context-free languages. Angluin herself already
reasoned about the inference of context-free languages [5],
but her extensions required for answering, e.g., membership
queries have—at least to the knowledge of the authors—
prevented any practical application.

123

https://github.com/LearnLib/learnlib-spa

524 M. Frohme, B. Steffen

F’ -> F a R | F a F’ a R | F b R |
F b F’ b R | F G’ R | F R

G’ -> G c R | G c G’ c R | G F’ R

Listing 2 The palindrome system after our proposed instrumentation.
Each procedure (F, G) is now treated as an observable call symbol
indicating the start of a procedure and a separate return symbol (R)
has been added to denote a procedure’s termination. To maintain the
hierarchiy of the original language, new non-terminals (X’s) have been
used.

For inferring context-free/procedural systems,we propose
an instrumentation similar to the idea of parenthesis gram-
mars [36]: Each invocation of a procedure can be observed
by means of a call symbol which denotes the start of a spe-
cific procedure, as well as a return symbol which denotes
its termination. An example of this instrumentation is given
in Listing 2 which shows the instrumented system of palin-
dromes of Listing 1.

This instrumentation can easily be integrated into software
programs with imperative structure but also concepts such as
aspect-oriented programmingor proxying (in object-oriented
programming) allow one to intercept method invocations and
terminations and therefore grant the fine-grained control we
require. For certain application domains—especially tag lan-
guages such as XML—these observable entry and exit points
require no instrumentation at all. We exploit this property in
[17] for inferring blackbox DTDs—a CFG-like language for
describing the structure of XML documents.

The idea of assigning specific semantics to certain input
symbols is conceptually related to visibly pushdown lan-
guages (VPLs) [3,4] proposed by Alur et al. Intrinsic to these
languages is that the stack operations of the corresponding
visibly pushdownautomaton (VPA) are bound to the observa-
tion of certain symbols. The characterizations given by Alur
et al. have been used by Kumar et al. [33] and Isberner [26,
Chapter 6] to formulate learning algorithms for visibly push-
down languages, requiring only classic membership queries
as well.

Alur et al. have shown that in general there exists no
unique (up to isomorphism) minimal VPA for a visibly push-
down language without further restricting the automaton to a
fixed set of modules. Therefore, they propose n-single entry
visibly pushdown automata (n-SEVPAs) where the set of
call symbols Σcall is partitioned into n classes which are
then “individually” represented in terms of n inter-connected
structures. Such partitions support canonical representations,
which in particularmeans that there exist canonical 1-SEVPA
and |Σcall |-SEVPA representations.

SPAs are conceptually close to |Σcall |-SEVPAs and
indeed, our proposed instrumentation transforms anycontext-
free language into a visibly pushdown language, which
allows us to compare the two approaches in Sect. 8. However,
SPAs exhibit the following key advantages:

– The main difference between SPAs and n-SEVPAs con-
cerns the treatment of the interrelation between substruc-
tures. Both in SPAs and n-SEVPAs, observing a call
symbol guarantees to transition the system into a (for
each call symbol) unique configuration. However, only
for SPAs the same holds for observing the return sym-
bol. While in general this allows n-SEVPAs to describe
more complex languages, our instrumented systems do
not require this complexity. Instead, a VPA learning algo-
rithm has to compensate for this lack of certainty by
posing more queries during the learning process. As
Sect. 8 shows, this directly impacts the performance of
the learning process, allowing our SPA learning algo-
rithm to outperform the VPA approach by more than one
order of magnitude in (symbol) query performance for
small examples already.

– The generality of the SPA representation allows one to
“implement” the semantics of an SPA via a variety of
formalisms: SPAs can be realized via pushdown seman-
tics (similar to VPAs), via in-place graph expansion (cf.
Fig. 2), and directly via context-free grammars (e.g. using
the CYK algorithm [20, Chapter 7]). They allow one to
choose the best implementation for a specific situation,
making theman implementation-agnosticmetamodel for
context-free systems.

– The SPA structure is intuitive for everybody with pro-
gramming knowledge and can directly be used also for
μ-calculus-based model checking of context-free [11]
and even pushdown processes [12], quite in contrast to
the VPA representation and its “hard-coded” stack inter-
pretation which is indeed quite cumbersome (cf. Sect. 8).

– Aswewill show, the compositional nature of SPAs allows
us to learn the individual procedures with any learning
algorithm for regular languages. Consequently, improve-
ments in the field of regular language inference (e.g. the
handling of redundancy in counterexamples in TTT [29])
seamlessly transfer to our procedural learning scenario.

The rest of this section summarizes formal definitions and
notations we use throughout the paper.

Definition 1 (SPA alphabet) An SPA alphabet
Σ = Σcall � Σint � {r} is the disjoint union of three finite
sets, where Σcall denotes the call alphabet, Σint denotes the
internal alphabet and r denotes the return symbol.

An SPA alphabet can be seen as a special case of a visi-
bly pushdown alphabet [3,4]. However, we choose a distinct
name here in order to address the specifics of using only a sin-
gle return symbol and to emphasize that calling a procedure
does not necessarily involve any kind of stack operations.
For our palindrome examples in Listings 1 and 2, the alpha-
bet definition is given by Σ = {F,G} � {a, b, c} � {R}. We

123

Compositional learning of mutually recursive procedural systems 525

writeΣ∗ to denote the set of all words over an alphabetΣ and
we use · to denote the concatenation of symbols and words.

Furthermore, we distinguish between global and proce-
dural interpretations of words and symbols, where we use
̂ to denote the procedural context. We write

̂Σ = ̂Σcall � ̂Σint � {̂r} and ŵ ∈ ̂Σ∗, accordingly. We add
(remove) ̂ to (from) individual words or symbols in order
to change the context of a word or symbol to a procedural
(global) one. We continue to use Σ as a shorthand notation
for Σcall � Σint � {r} and ̂Σ as a shorthand notation for
̂Σcall � ̂Σint � {̂r}.
In the following, we are especially interested in sub-

words: For 1 ≤ i ≤ j ≤ |w|, where |w| denotes the length
of a word w, we write w[i, j] to denote the sub-sequence of
w starting at the symbol at position i and ending at position
j (inclusive). We write w[i,] (w[, j]) to denote the suffix
starting at position i (prefix up to and including position j).
For any i > j , w[i, j] denotes the empty word ε.

Due to our proposed instrumentation, we focus espe-
cially on well-matched instrumented words. Intuitively, a
well-matched word is a word where every call symbol is
succeeded (at some point) by a matching return symbol and
no unmatched call or return symbols exist such that a well-
matched nesting structure is obtained. Formally, we define
the set of well-matched words by induction.

Definition 2 (Well-matched words) Let Σ be an SPA alpha-
bet. We define the set of well-matched wordsWM(Σ) ⊂ Σ∗
as the smallest set satisfying the following properties:

– Everyword of only internal symbols is well-matched, i.e.
Σ∗

int ⊆ WM(Σ).
– If w ∈ WM(Σ) then for all c ∈ Σcall we have

c · w · r ∈ WM(Σ)

– If w1, w2 ∈ WM(Σ) then w1 · w2 ∈ WM(Σ).

We call well-matched words rooted if they start with a call
symbol and end with a return symbol. In order to specify
the scope of a procedural subsequence and to talk about the
depth of nested procedural invocations, we further introduce
the concept of a call-return balance.

Definition 3 (Call-return balance) LetΣ be an SPAalphabet.
The call-return balance is a function β : Σ∗ → Z, defined as

β(ε) = 0

β(u · v) = β(v) +

⎧

⎪

⎨

⎪

⎩

1 if u ∈ Σcall

0 if u ∈ Σint

−1 if u = r

for all u ∈ Σ, v ∈ Σ∗.

For a well-matched word w ∈ WM(Σ) we have that every
prefix u satisfies β(u)≥0 and every suffix v satisfies β(v)≤0.

We further introduce a find-return function that allows us to
extract the earliest unmatched return symbol from a (sub-)
word, and an instances set that describes all call symbols and
their respective indices in a word.

Definition 4 (Find-return function) Let Σ be an SPA alpha-
bet and w ∈ Σ∗. We define the find-return function
ρw : N → N as

ρw(x) = min{i ∈ {x, . . . , |w|} | β(w[x, i]) < 0}

Definition 5 (Instances set) Let Σ be an SPA alphabet and
w ∈ Σ∗. We define the instances set Instw ⊆ Σcall × N as

Instw = {(c, i) | w[i] = c ∈ Σcall}

3 Systems of procedural automata

In this sectionwepresent the base formalismof our approach:
orchestrating regular systems to a system of procedural
automata.

3.1 Orchestrating regular DFAs to procedural
systems

We start with introducing procedural automata which form
the core components of our systems of automata. Intuitively,
they describe the possible actions of a single procedure and
therefore an essential part of the global system behavior.

Definition 6 (Procedural automaton) LetΣ be an SPAalpha-
bet and c ∈ Σcall denote a procedure. A procedural
automaton for procedure c over Σ is a deterministic finite
automaton Pc = (Qc, qc0, δ

c, Qc
F), where

– Qc denotes the finite, non-empty set of states,
– qc0 ∈ Qc denotes the initial state,
– δc : Qc × (̂Σcall ∪ ̂Σint) → Qc denotes the transition
function, and

– Qc
F ⊆ Qc denotes the set of accepting states.

We define L(Pc) as the language of Pc, i.e. the set of all
accepted words of Pc.

In essence, procedural automata resemble regular DFAs
over the joined alphabet of call symbols and internal symbols
and accept the language of right-hand sides of the production
rules of a non-terminal in a (non-instrumented) context-free
grammar. Internal symbols correspond to “terminal” actions,
i.e. direct system actions, whereas call symbols correspond
to (recursive) “calls” to other procedures. Please note that
accepting states are used here to express that a procedure
can terminate after a sequence of actions instead of using the
(artificial) return symbol.

123

526 M. Frohme, B. Steffen

Definition 7 (System of procedural automata) Let Σ be an
SPA alphabet with Σcall = {c1, . . . , cq}. A system of proce-
dural automata S over Σ is given by the tuple of procedural
automata (Pc1 , . . . , Pcq) such that for each call symbol there
exists a corresponding procedural automaton. The initial pro-
cedure of S is denoted as c0 ∈ Σcall .

An example of such a system of procedural automata is
given by the two DFAs in Fig. 6. We will continue to use S
as a shorthand notation for (Pc1 , . . . , Pcq).

Intuitively, the parallels between SPAs and context-
free grammars should be clear to everyone with a basic
understanding of context-free languages. To formally define
the language of an SPA, we use structural operational
semantics (SOS, [42]), incorporating stack semantics. Using
an SOS-based semantic definition allows us to abstract
from implementation details (e.g. graph-transformations,
grammar-based interpretation, etc.) and simplifies the proofs.
We write

guard

(s1, σ1)
o−→ (s2, σ2)

for some states s1, s2 and some control components σ1, σ2 to
denote that this transformation (if applicable) emits an output
symbol o. We generalize this notation to output sequences by
writing

(s1, σ1)
w−→∗(s2, σ2)

to denote that there exists a sequence of individual (appli-
cable) transformations starting in configuration (s1, σ1) and
ending in configuration (s2, σ2), whose concatenation of out-
put symbols yields w.

To define the semantics of SPAs by means of SOS rules,
we first define a stack to model the control components of
the SOS rules and then define the language of an SPA.

Definition 8 (Stack domain/configuration) Let Σ be an SPA
alphabet. We define Γ = ̂Σ∗ � {⊥} as the stack domain with
⊥ as the unique bottom-of-stack symbol. We use • to denote
the stacking of elements ofΓ where writing elements left-to-
right displays the stack top-to-bottom and we write ST (Γ)

to denote the set of all possible stack configurations.

This allows us to define the semantics of an SPA in terms
of its associated language.

Definition 9 (Language of anSPA)LetΣ be anSPAalphabet
and S be an SPA over Σ . Using tuples from ̂Σ∗ × ST (Γ) to
denote a system configuration, we define three kinds of SOS
transformation rules:

1. call-rules:

ŵ ∈ L(Pc)

(̂c · v̂, σ)
c−→ (ŵ · r̂ , v̂ • σ)

for all ĉ ∈ ̂Σcall , v̂ ∈ ̂Σ∗, ŵ ∈ (̂Σcall ∪ ̂Σint)
∗,

σ ∈ ST (Γ).
2. int-rules:

−
(̂i · v̂, σ)

i−→ (̂v, σ)

for all̂i ∈ ̂Σint , v̂ ∈ ̂Σ∗, σ ∈ ST (Γ).
3. ret-rules:

−
(̂r , v̂ • σ)

r−→ (̂v, σ)

for all v̂ ∈ ̂Σ∗, σ ∈ ST (Γ).

The language of an SPA is then defined as

L(S) = {w ∈ WM(Σ) | (̂c0,⊥)
w−→∗(ε,⊥)}.

Please note that by choosing (̂c0,⊥) as the initial config-
uration, we ensure that all words of a (non-empty) SPA
language are rooted because of the mandatory initial appli-
cation of a call-rule to consume ĉ0. However, if for example
L(Pc0) = ∅, we have L(S) = ∅ as well.

To give an intuition for the operational semantics let us
give an exemplary run for the SPA S = (PF , PG) of Fig. 6,
using F as the initial procedure: We start with the configura-
tion (̂F,⊥). Since â · ̂F · â ∈ L(PF), we can apply a call-rule
to perform the transition

(̂F,⊥)
F−→ (̂a · ̂F · â · ̂R, ε • ⊥).

Parsing the internal symbol â via the corresponding int-rule,
we perform

(̂a · ̂F · â · ̂R, ε • ⊥)
a−→ (̂F · â · ̂R, ε • ⊥).

Since ̂G ∈ L(PF), we can apply a call-rule to perform the
transition

(̂F · â · ̂R, ε • ⊥)
F−→ (̂G · ̂R, â · ̂R • ε • ⊥).

Since ĉ ∈ L(PG), we can apply a call-rule to perform the
transition

(̂G · ̂R, â · ̂R • ε • ⊥)
G−→ (̂c · ̂R, ̂R • â · ̂R • ε • ⊥).

123

Compositional learning of mutually recursive procedural systems 527

Parsing the internal symbol ĉ via the corresponding int-rule,
we perform

(̂c · ̂R, ̂R • â · ̂R • ε • ⊥)
c−→ (̂R, ̂R • â · ̂R • ε • ⊥).

Now we use two ret-rules to parse two consecutive return
symbols

(̂R, ̂R • â · ̂R • ε • ⊥)
R−→ (̂R, â · ̂R • ε • ⊥)

R−→ (̂a · ̂R, ε • ⊥).

Parsing the internal symbol â via the corresponding int-rule,
we perform

(̂a · ̂R, ε • ⊥)
a−→ (̂R, ε • ⊥).

Applying a ret-rule again, we get

(̂R, ε • ⊥)
R−→ (ε,⊥).

Here, nomore transformations are applicable and the process
stops. Collapsing these individual steps, we have

(̂F,⊥)
F ·a·F ·G·c·R·R·a·R−−−−−−−−−−−→∗(ε,⊥)

hence F · a · F · G · c · R · R · a · R ∈ L(S).
In the following, we will call a word w ∈ Σ∗ admis-

sible in an SPA S, if there exist configurations (s1, σ1),
(s2, σ2) ∈ Σ∗ × ST (Γ) such that

(s1, σ1)
w−→∗(s2, σ2).

Please note, while the language of an SPA consists only
of instrumented words, the non-instrumented language of
the original context-free language (cf. Listing 2) can be
easily obtained by post-processing each word of the SPA
language and removing each of the instrumentation symbols
(Σcall ∪{r}), i.e. transforming F · a · F · G · c · R · R · a · R
to a · c · a.

4 Essentials of SPA inference

As Theorem 1 will show, an SPA is fully characterized by
its procedural automata. Therefore, the key idea of our learn-
ing algorithm for inferring an SPA is to infer each of the
procedures/procedural automata simultaneously by using an
active learning algorithm for the individual (regular) proce-
dural languages. Within the MAT framework, this requires
that the local learning algorithms can explore the local pro-
cedures of a global system and that (global) counterexample
information can be returned to the local learners.

Key to our approach is a translation layer that bridges
between the global system view and the local view con-
cerning the individual procedural automata: Local queries
of procedural automata are expanded to global queries of
the instrumented SUL, and global counterexample traces for
the global system are projected onto local counterexample
traces for the concerned procedural automata.

To be able to perform these translations, we maintain so-
called access, terminating and return sequences. Intuitively,
these sequences store information about how a procedural
automaton can be accessed, how a successfully terminating
run of a procedure looks like, and how global termination
can be achieved after executing a procedure (accessed by the
matching access sequence).

For a procedure c ∈ Σcall , we formalize the pairs of access
and return sequences by means of a context Contc and the
set of successfully terminating runs by means of a set TSc.

Definition 10 (Access, terminating, and return sequences)
Let Σ be an SPA alphabet and S be an SPA over Σ . The
context of a procedure c ∈ Σcall , Contc ⊆ Σ∗ × Σ∗, and
the set of terminating sequences TSc ⊆ Σ∗ are defined as

(as, rs) ∈ Contc ∧ ts ∈ TSc ⇔
∃w ∈ L(S) : ∃(c, i) ∈ Instw :
w = as · ts · rs ∧
ts = w[i + 1, ρw(i + 1) − 1]

From the exemplary word F · a · F · G · c · R · R · a · R
of Sect. 3 one can extract the following access, terminating
and returning sequences for procedure G:

– access sequence: F · a · F · G
– terminating sequence: c
– return sequence: R · R · a · R

Since an SPA can accept multiple words and a procedure
can be called multiple times, there can also exist multi-
ple terminating sequences and (matching) access and return
sequence pairs. In the following, we do not depend on a spe-
cific instance of the three sequences as long as they hold
the above properties. To refer to an arbitrary instance of an
access, terminating and (matching) return sequence for a pro-
cedure p, we write as[p], ts[p], rs[p] respectively. We detail
in Sect. 6 how we obtain these sequences throughout the
learning process—in the following, assume them as avail-
able.

We continue to explain in the next two subsections how
our two translations are realized, where we begin with the
simpler query expansion:

123

528 M. Frohme, B. Steffen

Fig. 3 The expansion of a local query of a procedural automaton p to
a global query of the instrumented SUL

Membership query expansion Membership query expan-
sion proceeds by symbol-wise processing of the proposed
(local) query. Internal symbols are left unchanged and each
(procedrual) call symbol ĉ ∈ ̂Σcall is replaced with the
concatenation of its global equivalent c ∈ Σcall , the corre-
sponding terminating sequence of c, and the return symbol.
This expansion step is formalized in Definition 11.

Definition 11 (Gamma expansion) Let Σ be an SPA alpha-
bet. The gamma expansion γ : (̂Σcall ∪ ̂Σint)

∗ → WM(Σ)

is defined as

γ (ε) = ε

γ (̂u · v̂) =
{

u · γ (̂v) if û ∈ ̂Σint

u · ts[u] · r · γ (̂v) if û ∈ ̂Σcall

for all û ∈ (̂Σcall ∪ ̂Σint), v̂ ∈ (̂Σcall ∪ ̂Σint)
∗.

In order to embed an expanded query into the correct
global context, we further prepend the corresponding access
sequence and append the corresponding return sequence to
the translated query of the procedure in question. The com-
plete expansion step is illustrated in Fig. 3.

Counterexample projection During counterexample analy-
sis (cf. Sect. 4.3), one extracts from a global, instrumented
trace of the SUL a sub-sequence that exposeswrong behavior
in one of the procedural hypotheses. This sub-sequence, how-
ever, contains symbols of our instrumentation,whichweneed
to transform to a local, procedural counterexample in order to
be processable by the local learner. The corresponding pro-
jection step which essentially reverses query expansion is a
bit more involved.

Again, we process the global trace symbol-wise and leave
internal symbols unchanged. However, when we encounter
an instrumented call symbol c ∈ Σcall , we replace it with
the corresponding procedural call symbol ĉ ∈ ̂Σcall and skip
forward until we have reached the matching return symbol.
This procedure is formalized in Definition 12.

Definition 12 (Alpha projection) Let Σ be an SPA alpha-
bet. The alpha projection α : WM(Σ) → (̂Σcall ∪ ̂Σint)

∗ is

Fig. 4 The alpha projection of a global trace to a local trace. For our
exemplaryword F · a · F · G · c · R · R · a · R of Sect. 3, projecting the
outer-most run of F would yield α(a · F · G · c · R · R · a) = â · ̂F · â

defined as

α(ε) = ε

α(u · v) =
{

û · α(v) if u ∈ Σint

û · α(v[ρv(1) + 1,]) if u ∈ Σcall

for all u ∈ (Σcall ∪ Σint), v ∈ Σ∗.

Note that since α only accepts well-matched words, the
call to ρ will always be able to find a valid return index
in v when u is a call symbol. Furthermore, u will never be a
return symbol, becausewe always skip over any nested return
symbols in case of u ∈ Σcall . See Fig. 4 for an illustration
of this projection step.

4.1 Localization theorem

With the concept of projection (cf.Definition 12)we establish
in Theorem 1 a characteristic connection between the global
language of an SPA and the local languages of its individual
procedures, which will play an integral role in our inference
process.

Theorem 1 (Localization theorem) Let Σ be an SPA alpha-
bet, S be an SPA over Σ and w ∈ WM(Σ) be rooted in
c0.

w ∈ L(S) ⇔
∀(c, i) ∈ Instw : α(w[i + 1, ρw(i + 1) − 1]) ∈ L(Pc)

Proof This equivalence is based on the fact that for every
emitted call symbol c of the SPA, there needs to exist a cor-
responding word v̂ ∈ L(Pc). One can verify this property
for each call symbol by checking the membership of the
projected, procedural trace in the language of the respective
procedural automaton. For the full proof, see “Appendix” ��

Theorem 1 guarantees that a word w ∈ WM(Σ) which
is rooted in the initial procedure belongs to the language
of an SPA if and only if each (projected) procedural sub-
sequence within w belongs to the language of its respective
procedural automaton. It is important to note that this equiva-
lence establishes a notion of modularity between an SPA and

123

Compositional learning of mutually recursive procedural systems 529

its procedural automata: Procedural automata contribute to
the semantics of an SPA only by their respective procedural
membership properties—no further requirements (e.g. about
their internal structure) are needed. In particular, this prop-
erty enables us to use arbitrary (MAT-based) regular learners
for inferring the procedural automata and, consequently, for
inferring an SPA.

Furthermore, we can show that our SPA approach can
integrate to the MAT framework as well, by demonstrating
how to realize the exploration and verification phase of the
MAT framework.

4.2 Exploration phase

In Corollary 1 we formalize that each local membership
query ŵ ∈ (̂Σcall ∪ ̂Σint)

∗ can be answered by querying
the global SPA with its expanded version.

Corollary 1 (Membership query expansion) LetΣ be an SPA
alphabet and S be an SPA over Σ .

ŵ ∈ L(Pc) ⇔ as · γ (ŵ) · rs ∈ L(S)

for all c ∈ Σcall , (as, rs) ∈ Contc.

Proof This equivalence is based on the fact that pairs of
access sequences and matching return sequences for a
procedure c provide an admissible context for arbitrary
ŵ ∈ L(Pc). One can then show by induction that for all

ŵ ∈ L(Pc), (ŵ · r̂ , σ)
γ (ŵ)−−−→∗(̂r , σ) holds (for some

σ ∈ ST (Γ)). For the full proof, see “Appendix” ��
By providing the local learners with individual member-

ship oracles that perform these translations automatically,
the exploration phase of the global SPA hypothesis is directly
driven by the exploration phases of the individual local learn-
ers. In order to construct and explore an SPA hypothesis
SH, we use the procedural learners to construct and explore
hypotheses of the individual procedures. What remains to be
shown is how the information of global counterexamples can
be used to refine local procedures.

4.3 Verification phase

Counterexamples are input sequences that expose differences
between the conjectured SPA hypothesis and the SUL as they
reveal diverging behavior with regards to the membership
question. For acceptor-based systems there exist two kinds
of counterexamples: positive and negative counterexamples.
Positive counterexamples are words which are accepted by
the SUL but (incorrectly) rejected by the current hypothesis,
whereas negative counterexamples are rejected by the SUL
but (incorrectly) accepted by the hypothesis.

In the following, we will abstract from the concrete
kind of counterexample and only consider an accept-
ing system SA = (Pc1

A , · · · , P
cq
A) and a rejecting system

SR = (Pc1
R , · · · , P

cq
R). For positive counterexamples we

map the SUL to SA and the current hypothesis to SR and for
negative counterexamples we do the converse. This shows
that, conceptually, the counterexample analysis process for
SPAs is symmetrical for both kinds of counterexamples and
that the kind only determines the mapping of SR and SA. We
will, however, see that this symmetry does not hold when
considering the query complexity.

Given a counterexample ce (and therefore SA and SR),
Theorem 1 states that

∀(c, i) ∈ Instce : α(ce[i + 1, ρce(i + 1) − 1]) ∈ L(Pc
A)

and

∃(c, i) ∈ Instce : α(ce[i + 1, ρce(i + 1) − 1]) /∈ L(Pc
R).

This allows us to split the counterexample analysis process
into two phases:

1. In the global phase, we first analyze the global coun-
terexample to pinpoint an individual procedure of SR that
behaves differently from its respective counterpart in SA.

2. In the local phase, we use the corresponding projected
sub-sequence of the global counterexample to refine the
previously identified procedure.

Due to our concept of projection and expansion, the refine-
ment during the local phase is essentially identical to
the refinement phase of regular automata learning. Conse-
quently, we can delegate this process completely to the local
learning algorithms and focus in the following only on the
first phase. The goal of our global counterexample analysis
is then given by identifying a (not necessarily unique) pro-
cedural automaton which does not accept its corresponding
projected trace and causes a mismatching behavior.

Once we have identified the misbehaving procedural
automaton, we can use the projected trace to construct a local
counterexample: In the positive case (i.e. the hypothesis is
mapped to SR and hence should accept the local trace) we
construct a positive local counterexample and in the negative
case (i.e. the SUL is mapped to SR and hence the hypothe-
sis should also reject the local trace) we construct a negative
local counterexample.

As mentioned, the projected counterexample is com-
pletely agnostic to the internal structures of the procedural
hypotheses and only relies on their respective membership
properties. Thus, following Theorem 1, we can use arbitrary
(MAT-based) regular learning algorithms for refining the pro-
cedural hypotheses.

123

530 M. Frohme, B. Steffen

Please note, however, that Theorem 1 only guarantees the
existence of a procedure that needs refinement. Efficiently
identifying such a procedure is a different matter that we
address in the next section.

5 Efficient counterexample analysis

In order to efficiently analyze global counterexamples and
identify a procedure of SR that rejects its projected trace, we
propose a binary search-based approach similar to the one
of Rivest & Schapire [44] for the regular case. This process
consists of transforming prefixes of the counterexample to
sequences that are guaranteed to be admissible in SR and
analyzing when this transformation changes the acceptance
of the transformed counterexample trace.

Our approach to make binary search applicable in our
scenario depends on SR to accept the current representatives
of terminating sequences ts[p] that are used by the gamma
expansion (cf. Definition 11). This is naturally given for the
SUL, as we will extract terminating sequences only from
accepted runs of the SUL (cf. Sect. 6), but has to be explic-
itly enforced for the hypothesis. We therefore introduce the
following notion:

Definition 13 (ts-conformance) Let Σ be an SPA alpha-
bet and S be an SPA over Σ . We call S ts-conform with
respect to the current terminating sequences if and only if
∀c ∈ Σcall : ∃ŵ ∈ L(Pc) :

(ŵ · r̂ , σ)
ts[c]−−→∗(̂r , σ)

for some σ ∈ ST (Γ).

For testing and validating the ts-conformance of an SPA,
we re-use the result of Theorem 1.

Lemma 1 LetΣ be an SPAalphabet, S be an SPAoverΣ and
tsc = c · ts[c] · r denote the embedded terminating sequence
for each c ∈ Σcall .

S is ts-conform ⇔
∀p ∈ Σcall : ∀(c, i) ∈ Insttsp :

α(tsp[i + 1, ρtsp (i + 1) − 1]) ∈ L(Pc)

Proof This is a direct consequence of Theorem 1 if we con-
sider for each p ∈ Σcall an SPA Sp (based on S) which has
p as its initial procedure. ��

Enforcing ts-conformance of an SPA hypothesis SH can
be done straightforwardly as follows:

– Check for each embedded terminating sequence tsp
whether its nested, projected invocations are accepted by

the respective procedures of SH. This does not require
any membership queries since it can be checked on the
procedural hypothesis automata.

– If there exists a (nested) invocation that is not accepted,
use the corresponding sequence as a local counterexam-
ple for refining the corresponding procedural hypothesis.
This can be regarded as a “refinement for free”, as it does
not require the detection and treatment of a global coun-
terexample.

Please note that this conformance check has to be re-initiated
after each refinement, as refining the procedural hypotheses
may introduce changes that affect the acceptance of a termi-
nating sequence.

Given a ts-conform system SR the following transforma-
tion allows one to perform the intended binary search:

Definition 14 (Alpha-gamma transformation) Let Σ be an
SPA alphabet and w ∈ WM(Σ) be a well-matched word.
Then we define �·� : WM(Σ) → WM(Σ) by

�w� = γ (α(w))

�·� can be generalized to prefixes of rooted words

wc = ci1 · w1 · . . . · cim · wm ∈ (Σcall · WM(Σ))∗

to obtain a transformation

�·�∗ : (Σcall · WM(Σ))∗ → (Σcall · WM(Σ))∗

defined via piecewise application of �·� as follows:

�wc�
∗ = �ci1 · w1 · . . . · cim · wm�∗

= ci1 · �w1� · . . . · cim · �wm�

The following monotonicity property of �·�∗ is key to our
binary search-based counterexample analysis. For technical
reasons, we will, without loss of generality, only consider
counterexamples with more than one procedural invocation.
Please note that if a counterexample only contains the single
invocation of the main procedure (i.e. the error occurs in the
main procedure) there is no need for a global analysis process
since the violating procedure is clear.

Theorem 2 (Acceptance monotonicity of �·�∗) Let Σ be an
SPA alphabet, S be a ts-conform SPA over Σ , w ∈ WM(Σ)

be rooted and rh, rk be indices of return symbols of w with
rh < rk . Then we have

�w[, rh]�∗ · w[rh + 1,] ∈ L(S) ⇒
�w[, rk]�∗ · w[rk + 1,] ∈ L(S)

123

Compositional learning of mutually recursive procedural systems 531

Proof This implication is based on the fact that for all admis-
sible words v ∈ WM(Σ) or v ∈ (Σcall · WM(Σ))∗, �v�∗ is
also admissible in a ts-conformSPA. Furthermore, the admis-
sibility of a word is decided on call-rules, since they are the
only rules which are guarded by the procedural membership
questions. Hence, when the call symbols inw[rh+1,] do not
cause a word to be rejected, then the call symbols of its suffix
w[rk + 1,] won’t neither. For the full proof, see “Appendix”

��
The acceptance monotonicity of �·�∗ allows us to adopt

the Rivest & Schapire-style counterexample analysis of the
regular case [44] to the procedural level: There exist two
extreme points

�ε�∗ · ce /∈ L(SR)

(the unprocessed counterexample) and

�ce�∗ · ε ∈ L(SR)

(the terminating sequence of the main procedure) so the
acceptance has to flip for some decomposition in between.

For a return index ri of ce, we check whether or not

�ce[, ri]�∗ · ce[ri + 1,] ∈ L(SR).

If the answer is “yes”, it suffices to search for lower return
indices than ri , because by Theorem 2, we already know the
answers for all higher return indices. Dually, if the answer is
“no”, we continue our search for higher return indices than
ri , because by contraposition of Theorem 2, we already know
the answers for all lower return indices.

This observation allows us to formulate a binary search-
style analysis (cf. Algorithm 1) which determines the lowest
return index r∗ such that

�ce[, r∗]�∗ · ce[r∗ + 1,] ∈ L(SR).

Its matching call symbol c∗ (whose index i∗ can be deter-
mined by ρce(i∗ + 1) = r∗) now identifies a procedure
that does not accept its corresponding projected input
sequence α(ce[i∗ +1, r∗ −1]) and must therefore be refined.
Please note that investigating a specific return index ri
only requires to query SR once because the construction of
�ce[, ri]�∗ · ce[ri + 1,] can be done by in-memory transfor-
mations on ce.

To give a better intuition of this decomposition process,
the first steps of the two cases (left-continuation and right-
continuation of the binary search) are visualized in Fig. 5.

While the process of analyzing a global counterexample
is symmetrical for the negative and positive case, it is worth
noting that the two cases differ regarding their impact on the

query complexity: For positive counterexamples we map the
current SPAhypothesis to SR . Here, determining c∗ byquery-
ing SR does not induce any membership queries at all, since
the queries can be answered via the current SPA hypothe-
sis. This means positive counterexamples can be analyzed
at zero (query) cost. Only the analysis process of negative
counterexamples requires to posemembership queries on the
SUL, which introduces a corresponding logarithmic factor
(cf. Theorem 3).

Summarizing, an inequivalent procedure and its corre-
sponding local counterexample can be determined in the
following steps:

1. Depending on whether we receive a positive or a nega-
tive (global) counterexample, we select either the current
hypothesis SPA or the SUL as the rejecting system SR .

2. Using SR and our alpha-gamma transformation (cf. Def-
inition 14), we determine a single procedural hypothesis
that behaves differently to its counterpart of SA.

3. Using the alpha projection (cf. Definition 12), we con-
struct from the global counterexample a procedural
counterexample that exposes the previously detected dis-
crepancy on a procedural level.

We sketch these steps in a function called Analyze-

Counterexample shown inAlgorithm1.The function takes
a global counterexample ce ∈ WM(Σ) and returns the
rejecting procedure c∗ including the respective local coun-
terexample α(ce[i∗ +1, ρce(i∗ +1)−1]). The main property
of this function for our learning algorithm is stated in Theo-
rem 3.

Algorithm 1 Analysis of a global counterexample
Input: A counterexample ce ∈ WM(Σ) rejected by SR
Output: A tuple containing a procedure c∗ of SR and its rejected, pro-

cedural trace
1: function AnalyzeCounterexample(ce)
2: ensureTSconformance

3: low ← 1, high ← |Instce|, res ← |Instce|
4: while high − low ≥ 0 do
5: mid ← low + �(high − low)/2�
6: if �ce[, rmid]�∗ · ce[rmid + 1,] ∈ L(SR) then
7: high ← mid − 1, res ← mid
8: else
9: low ← mid + 1
10: end if
11: end while
12: i∗ ← min{i ∈ N | ρce(i + 1) = rres}
13: return 〈ce[i∗], α(ce[i∗ + 1, rres − 1])〉
14: end function

Theorem 3 (Query complexity of counterexample analysis)
Let ce ∈ WM(Σ) be a counterexample of length m. Then the
query complexity of Algorithm 1 is O(log2 m).

123

532 M. Frohme, B. Steffen

Fig. 5 The two possible scenarios during the analysis of counterexamples: the top two images each show a run of a counterexample trace in SR ,
where dashed lines indicate that an illegal procedural invocation has occurred that irrecoverably causes SR to reject the trace. On the left-hand
side the error occurs in u. Here our (extended) alpha-gamma transformation replaces the violating procedural invocation with an admissible prefix,
which causes the transformed trace to be accepted. This indicates that further analysis (i.e. binary search) should continue with splitting u. On the
right-hand side the error occurs in v. Here the error prevails even after our (extended) alpha-gamma transformation, which indicates that further
analysis (i.e. binary search) should continue with splitting v. Note that replacing nested calls via the alpha-gamma transformation may result in
a more complex nesting structure than before, depending on the terminating sequence. In the above figure—for simplicity reasons—terminating
sequences only consist of internal symbols

Proof This is a direct consequence of the binary search strat-
egy and the fact that for a given return index rmid the query
�ce[, rmid]�∗ · ce[rmid + 1,] can be constructed without any
further membership queries. ��

6 A sketch of the algorithm

In this section we aggregate the concepts from the previous
sections and sketch an active learning algorithm for SPAs. As
stated previously, we exploit that SPAs are characterized by
their procedural automata which we can infer in a modular
fashion by

– answering local membership queries via global member-
ship queries to the SPA (cf. Sect. 4) and

– constructing local counterexamples for the procedures
from global SPA counterexamples (cf. Sect. 5).

Query expansion hinges on the availability of correspond-
ing access sequences, terminating sequences, and return
sequences. Thus, one of the main tasks of the learning algo-
rithm of an SPA is obtaining and managing these sequences
throughout the learning process.

Positive counterexamples (i.e. words that are rejected by
the current hypothesis but are accepted by the SUL) play a

special role throughout the learning process because they are
witnesses for successful runs of the SUL. In particular, since
we are observing well-matched words, for every procedural
invocation (i.e. call symbol) in a positive counterexample,
we can directly extract:

– a corresponding access sequence (everything up until and
including the call symbol),

– a terminating sequence for the procedure (everything in
between the call symbol and thematching return symbol),
and

– a return sequence for the procedure (the matching return
symbol and everything after).

The following subsections display how we initialize our
procedural learning algorithms and how we use positive
counterexamples during hypothesis refinements to man-
age access sequences, terminating sequences and return
sequences.

6.1 Initialization

We initialize our SPA learner by setting up regular learning
algorithms (e.g. TTT [29]) for the procedures and configuring
them accordingly (individual membership oracles for auto-
mated query translation, etc.). However, during the initial-

123

Compositional learning of mutually recursive procedural systems 533

ization, the local learners cannot explore any procedures due
to the lack of the required sequences mentioned above. As a
consequence, it is also not possible to construct an initial SPA
hypothesis (e.g. by means of applying a call-rule to the ini-
tial configuration of Definition 9). Instead, an initial (empty)
hypothesis is constructed, that simply rejects all input words.
This guarantees that the first counterexample our SPA learn-
ing algorithm receives will always be positive, which pro-
vides us with access sequences, terminating sequences and
return sequences of at least the main procedure and ensures
progress. If no such counterexample exists, i.e. the SUL
describes the empty language (L(SUL) = ∅ ⊆ WM(Σ)),
the initial hypothesis already coincides with the SUL and the
learning process is finished at this point.

6.2 Refinement

The core of the learning algorithm is the refinement step
which for a given counterexample triggers a refinement of
the hypothesis, or specifically in our case, a refinement of (at
least) one procedure. Given the above initialization, it may
however not be possible to address certain procedures due to
the lack of initialization.

Aswe pointed out earlier, positive counterexamples hold a
special role as they grant access to the required sequences for
activating local learners and therefore constructing hypothe-
ses of procedures. Generally, we cannot expect a single
counterexample to contain all procedural call symbols at once
and thereby giving us access to the information required for
activating all local learners and reasoning about procedu-
ral invocations. Even after the first (global) counterexample
there may be procedures for which no access, terminating or
return sequences have been observed yet.

We tackle this issue by introducing the concept of incre-
mental alphabet extension. In our context this means that we
successively add call symbols to our learning alphabet only
after we have witnessed them in a positive counterexample.
This does not cause any problembecause the learning process
is monotonic wrt. alphabet extension.

At the start of the learning process, we initialize the cur-
rently active learning alphabet ̂Σact with ̂Σint so that it
contains no call symbols. No local learning algorithms—
not even for the start procedure—have been activated and
thus the corresponding initial hypothesis specifies the empty
language. As mentioned above, this guarantees that the first
counterexample is positive (corresponds to a successful run)
and therefore provides us with the three kinds of sequences
for at least the start procedure. In general, gaining access to
the three sequences of a procedure allows us

– in case of access and return sequences: to activate the cor-
responding local learning algorithm because its queries

can now be embedded in a global context using access
sequences and return sequences, and

– in case of terminating sequences: to invoke the cor-
responding procedure in other contexts because local
queries can be properly expanded to admissible input
sequence in the global system.

Essentially, we delay exploration of a procedure until we
obtained the knowledge about its access sequence and return
sequence, and restrict exploring a procedure wrt. the cur-
rently active alphabetwhich consists only of internal alphabet
symbols and procedural invocations (i.e. call symbols) for
which a terminating sequence has already been found. This
guarantees that invocations of a procedure are reflected in
the tentative SPA hypothesis only after they can be correctly
embedded in the global context.

By rejecting words that contain uninitialized procedures,
counterexamples that introduce previously unobserved call
symbols will always be positive, allowing us to extract the
three kinds of sequences and progress the SPA inference pro-
cess. Thus the active alphabet successively grows towards the
complete input alphabet ̂Σcall ∪ ̂Σint . Algorithm 2 describes
the corresponding refinement process in more detail:

Lines 2 to 15 cover the aforementioned special handling of
positive counterexamples. If we receive our first counterex-
ample (cf. line 3), we extract c0 from the counterexample.
Recall that due to the nature of our instrumentation, all
accepted words of the SUL are rooted in c0 and thus the
initial procedure can be directly determined from the first
symbol of any accepted word of the SUL. We continue to
scan the counterexample for previously unobserved call sym-
bols (cf. line 6), extract the access sequences, terminating
sequences and return sequences from the counterexample
trace (cf. lines 7–9), and update the set of currently active
alphabet symbols (cf. line 10). The variables as, ts, rs and
̂Σact are stored in a global scope and thus are shared across
multiple invocations of the refinement procedure.

Discovering a (new) terminating sequence for a procedure
p allows us to invoke p in the context of other procedures
because local queries containing p̂ can now be correctly
expanded to global queries using our gamma expansion (cf.
Definition 11). Therefore, in line 13 we extend the alphabets
of the procedural learners to match the set of currently active
symbols ̂Σact . For already activated procedural learners this
includes posing new (local) queries in order to determine the
successors of transitions for the just-added symbols.

From lines 16 to 19 we analyze the given counterexam-
ple with regards to the current hypothesis SPA SH. From
every global counterexample trace ce we can extract a pro-
cedure c and a (projected) sub-sequence localCe such that
localCe exposes an error in Pc (see Sect. 5). We then use the
projected, local counterexample to delegate the actual refine-
ment step of the identified local hypothesis to the respective

123

534 M. Frohme, B. Steffen

Algorithm 2 Main refinement loop of the SPA learner
Input: A counterexample ce ∈ WM(Σ) and a boolean value answer indicating whether ce is a positive or negative counterexample
1: function RefineHypothesis(ce, answer)
2: if answer = true then
3: if ̂Σact = ̂Σint then
4: c0 ← ce[1] � used for determining the initial procedure
5: end if
6: for all p ∈ DetectNewProcedures(ce,Σact) do � scan counterexample for new procedures
7: as[p] ← ExtractAccessSequence(ce, p)
8: ts[p] ← ExtractTerminatingSequence(ce, p)
9: rs[p] ← ExtractReturnSequence(ce, p)
10: ̂Σact ← ̂Σact ∪ { p̂}
11: end for
12: for all p ∈ Σcall do
13: ExtendProceduralAlphabets(p̂, ̂Σact) � extend alphabets of procedural learners

with new terminating procedures and
complete the respective hypotheses

14: end for
15: end if
16: while ce is a counterexample for SH do
17: 〈c, localCe〉 ← AnalyzeCounterexample(ce)
18: RefineProcedure(Pc, localCe, answer) � delegate to local learner of Pc

19: end while
20: end function

regular learning algorithm of the procedure (cf. line 18). Note
that if the procedural learner of the determined procedure is
not yet initialized, we initialize it first (to construct an initial
hypothesis) and then pass the projected counterexample to
the learner.

7 Correctness and complexity

A canonical SPA is given by the tuple S = (Pc1, . . . , Pcq)

such that each Pci is a canonical automaton for the corre-
sponding procedure ci ∈ Σcall . The size of an SPA is the
sum of the individual sizes of the procedures, i.e. the number
of their states. We have

|S| =
q

∑

i=1

|Pci | =
q

∑

i=1

ni = n.

Similar to the original work by Angluin [5], the follow-
ing discussion assumes that so-called equivalence queries
are available to indicate discrepancies between inferred
hypothesis models and the considered SUL. In practice,
equivalence queries are typically approximated using mem-
bership queries which themselves are realized via testing.
Thediscussionof this issue,which is typically basedon appli-
cation specific heuristics (e.g. context-free model checking
[11]), is beyond the scope of this paper.

Our following correctness and complexity considerations
are based on the assumption that the individual procedural
automata are learned using one of thewell-known algorithms
for regular inference which incrementally construct canon-

ical (i.e. minimal unique, up to isomorphism) hypotheses
requiring at most ni (for procedure ci ∈ Σcall) equivalence
queries. Under these assumptions one can show:

Theorem 4 (Correctness and termination) Having access to
a MAT teacher for an instrumented context-free language L,
our learning algorithm determines a canonical SPA S for L
requiring at most n + 1 equivalence queries.

Proof The proof follows a three-step pattern:

– Invariance: The number of states of the hypothesis of
procedure Pci never exceeds ni , a central invariant of all
learners for regular languages. Hence, the size of the SPA
will never exceed n.

– Progress: Each global counterexample either activates a
local learner, which then adds the first “true” state to
its procedural hypothesis, or identifies an error in one
of the existing tentative hypotheses. Using the presented
counterexample analysis, one extracts from the global
counterexample a concerned procedure ci and the pro-
jected local counterexample that allows the local learner
to refine the corresponding local hypothesis automaton
for Pci . This adds at least one state to the procedural
hypothesis of Pci and thereby properly increases the
number of states of the hypothesis SPA. This refine-
ment works by expanding the required local membership
queries to SPA queries (cf. Fig. 3), and by interpreting
the SPA responses to the expanded query as answers to
the local query.

– Termination: After at most ni local counterexamples the
tentative hypothesis of ci is equivalent to the target pro-
cedure. Hence, at most ni global counterexamples can

123

Compositional learning of mutually recursive procedural systems 535

identify an error in the hypothesis of ci , which overall
only allows for at most n global counterexamples. This
is a direct consequence of the above notion of invariance
and progress. The final (additional) equivalence query is
required to confirm the equivalence of the SPA hypothe-
sis and the SUL, and terminates the inference process.

��
We can further show that the query complexity of our

algorithm, i.e. the number of posed membership queries,
is mainly determined by the choice of the regular learning
algorithms. Our concepts of orchestration (to systems of pro-
cedural automata) and query translation do not impact the
asymptotic query complexity. For inferring an isolated pro-
cedure Pci , state-of-the-art learning algorithms (such as TTT
[29]), require O(kn2i + ni log2 m) queries, where k denotes
the size of the input alphabet (in our case |Σcall |+|Σint |) and
m denotes the length of the longest (local) counterexample.
The query complexity is usually split into two parts: hypoth-
esis construction Cci = kn2i and counterexample analysis
ni log2 m. This results in the following query complexity.

Theorem 5 (Query complexity) Let Cci denote the com-
plexity for hypothesis construction of the local learner for
procedure ci ∈ Σcall and m denote the length of the longest
(global) counterexample. Learning a canonical SPA S has a
query complexity of O ((∑q

i=1 Cci

) + n log2 m
)

.

Proof This follows from the compositional nature of our
algorithm and the following notion of progress throughout
the learning process:

– Each global counterexample imposes at least one coun-
terexample for the hypothesis of at least one procedural
automaton and can be analyzed in binary search fashion
(cf. Theorem 3).

– Each localized counterexample triggers the refinement
of a procedural automaton and requires the amount of
queries specific to the chosen local learning algorithm.
The number of queries for the local counterexample anal-
yses do not asymptotically impact the overall analysis
complexity as

q
∑

i=1

(

ni log2 m
) =

(q
∑

i=1

ni

)

log2 m

= n log2 m

∈ O(n log2 m)

– After all states of all procedures have been identified,
the algorithm terminates with the correct hypothesis (cf.
Theorem 4).

��

A direct comparison to existing learning algorithms for,
e.g. visibly pushdown languages is hard, due to the different
structure of the inferred models. However, first experiments
(cf. Sect. 8) show that already for small systems our approach
performs significantly better.

8 A comparison to visibly pushdown
automata

To our knowledge, related work only considers VPAs. In
order to elaborate on the qualitative and quantitative differ-
ences between our SPAapproach and existing learning setups
for visibly pushdown languages, we showcase the system
of palindromes (cf. Fig. 1) as a visibly pushdown automa-
ton. As stated before, the instrumented SUL yields a visibly
pushdown language where every observable invocation can
be interpreted as a call symbol and every observable ter-
mination can be interpreted as a return symbol. Thus, the
instrumented system can also be inferred in form of a vis-
ibly pushdown automaton. For this showcase, we inferred
the system of (instrumented) palindromes using learning
algorithms currently present in LearnLib [30] which infer
1-SEVPAs.

The inferred models are shown in Figs. 6 and 7. Table 1
shows performance measurements of our SPA approach
using different regular learning algorithms and the two VPA
learners present in LearnLib. We approximated equivalence
queries by generating 10000 random, well-matched, rooted
test-words to allow for some variance and ultimately sam-
pled from a manually constructed set of characteristic words
to ensure that each algorithm terminated with the correct
hypothesis model. As mentioned before, the realization of
equivalence queries is an issue on its own, which is beyond
of the scope of this paper.

Although both models capture in essence the same infor-
mation, there is a big difference in their comprehensibility:
Whereas the SPA model (Fig. 6) very intuitively reflects the
underlying grammar and thus the structure of the system, the
VPA model (Fig. 7) is quite hard to understand. For success-
fully following an accepting run of the automaton, one has
to manually keep track of the current stack contents which
have been pushed (popped) by previous call (return) symbols.
In particular, it is hardly possible to reveal typical structural
properties.

Regarding performance there is another interesting obser-
vation. While the 1-SEVPA representation is more compact
in the sense that it can represent the system with fewer
states/locations, it requires significantly more queries and
even an order of magnitude more symbols to infer the
model. We reckon this is due to the global execution
semantics of SEVPAs: Essentially, every state can be the
successor of a return transition and for every return tran-

123

536 M. Frohme, B. Steffen

Fig. 6 Inferred (DFA-based) SPA model for the palindrome language.
Sink states and corresponding transitions of the DFAs are omitted for
readability

Fig. 7 Inferred 1-SEVPAmodel for the palindrome language. Call tran-
sitions have been omitted, because in a 1-SEVPA all call transitions lead
into the singlemodule entry location. Return transitions are labeledwith
their required stack contents. Furthermore, the sink state (including all
return transitions leading into the sink state) have been omitted

sition every possible stack symbol needs to be regarded.
This results in a lot of overhead for determining tran-
sition successors. While in general this allows one to
capture more complex behavior (e.g. returns to differ-
ent procedures/modules), it shows no benefit in our con-
text of procedural systems revolving around the copy-rule
semantics.

We have observed similar results for other applications,
such as inferring the structure of XML documents [17] or
exponential systems which try to approximate recursive sys-
tems with pure regular automata. See https://github.com/
LearnLib/learnlib-spa for further benchmark data. We plan
to further analyze and exploit these characteristics for com-
plex, large-scale systems in the future.

9 Conclusion and future work

In this paper we have presented a compositional approach for
active automata learning of Systems of Procedural Automata
(SPAs), an extension of Deterministic Finite Automata
(DFAs) to systems of DFAs that can mutually call each
other. SPAs are of high practical relevance, as they allow
one to efficiently learn intuitive, recursive models of recur-
sive programs after an easy instrumentation that makes calls
and returns observable. Instrumentations like this are a very
fruitful example of how to exploit additional (architectural)
knowledge during the learning process in order to boost per-
formance. In this case, they even expand the reach of regular
active automata learning to cover all context-free languages
and this without increasing the required query complexity.
This is possible because the learning process for SPAs can
be organized as a simultaneous inference of individual DFAs
for each of the involved procedures via projection and expan-
sion that bridge the gap between the global view concerning
the SPA and the local views for the individual procedural
automata.

There are numerous directions for future work: The treat-
ment of equivalence queries—the drivers of the learning

Table 1 Performance measures
of individual learning setups.
The averages (ø) and standard
deviation (sd) of 15 runs are
presented. “CE” is short for
counterexample, “MQ” is short
for membership query and
symbols refer to the aggregated
number of symbols of all
membership queries

No. of CEs No. of MQs No. of symbols Hyp. size
ø sd ø sd ø sd ø

SPA L* (classic) [5] 7.4 0.7 435.5 41.5 3794.7 427.9 12.0

L* (Rivest & Schapire) [44] 8.7 0.5 315.2 10.5 2356.1 83.0 12.0

L* (Kearns & Vazirani) [32] 9.2 0.4 214.1 10.7 1457.8 110.3 12.0

DiscriminationTree [21] 9.1 0.5 218.1 10.3 1452.5 109.8 12.0

TTT [29] 9.3 0.6 186.6 7.4 1265.6 88.2 12.0

VPA DiscriminationTree 7.9 0.4 1616.5 2.5 15176.7 281.7 11.0

TTT 8.1 0.7 1651.9 93.3 15343.1 703.4 11.0

123

https://github.com/LearnLib/learnlib-spa
https://github.com/LearnLib/learnlib-spa

Compositional learning of mutually recursive procedural systems 537

process—is a research topic of its own. They are typically
approximated using membership queries and often depend
on application-specific heuristics to be effective. A common
heuristic involves model checking to generate membership
queries for detecting potential counterexamples. This works
particularly well if some assumed behavioral properties are
known at learning time. That this approach can also be
applied for procedural systems has been shown in [11]. Espe-
cially in the context of procedural systems, where errors
occur locally within procedures, counterexamples generated
using fuzzing [18,19,37] look promising to have a positive
impact on the performance of the learning process.

An alternative method to realize equivalence queries is a
change of perspective in the direction of never-stop or life-
long learning [7]. The underlying main idea is to instrument
the (potentially in-production) system with a monitoring
mechanism that observes and controls its runs on the basis of
previously learned hypothesis models. Whenever the moni-
tor recognizes a discrepancy between the current hypothesis
model and the system, the corresponding trace is fed to
the learner in order to refine the hypothesis model and the
corresponding monitor. Subsequently, the life-long learn-
ing process continues with the next monitoring phase. This
approach, which is characterized by its never-stopping, user-
driven counterexample search, has shown promising results
in a number of software projects in the past [7,31,40,47]. Life-
long learning comes with a challenge: counterexamples may
be excessively long, as they typically arise as unexpected con-
tinuations of days-long normal operating. “Classical” AAL
algorithms are not able to deal with this characteristic as their
complexity depends (a least) linearly on the length of coun-
terexamples. In our current researchwe are observing that the
procedural structure of SPAs with their potential to dynam-
ically optimize access, terminating and return sequences as
well as using redundancy-free learners (e.g. TTT [29]) as pro-
cedural learners have a lot of potential to tackle these issues
and allow for practical context-free life-long learning.

Finally, SPAs provide a very powerful basis for further
conceptual extension. A particularly interesting challenge is
how far further system properties like inputs/outputs (e.g.
Mealy machines) or other data-flow properties (e.g. reg-
ister automata [22]) can be married with our procedural
approach. Currently, the context-free nature of SPAs does
not allow individual procedures to account for different exe-
cution contexts (compared to e.g. VPAs which, however, pay
for this expressiveness with increased complexity). This may
be tackled by the concept of call abstraction where different
procedures (representing context-dependent behavior) may
share the same call symbol. Here, concepts such as alphabet
abstraction refinement [23,27] may prove helpful to create a
dynamically adjusting learning approach that is as simple as
possible but as specific as necessary, combining performance

with expressive power. The concept of instrumentation may
turn out to be a powerful enabler in this context.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix: Proofs

Lemma 2 Let Σ be an SPA alphabet, ŵ ∈ (̂Σcall ∪ ̂Σint)
∗

and σ ∈ ST (Γ).

(ŵ · r̂ , σ)
z−→∗(̂r , σ) ⇒ α(z) = ŵ

Proof This follows by induction over the length of ŵ.

– For ŵ = ε, we have (ŵ · r̂ , σ) = (̂r , σ) and therefore
z = ε, hence α(z) = ε = ŵ.

– Now let ŵ = û · v̂, with û ∈ (̂Σcall ∪ ̂Σint),
v̂ ∈ (̂Σcall ∪ ̂Σint)

∗ and y ∈ Σ∗ such that

(̂v · r̂ , σ)
y−→∗(r , σ) ⇒ α(y) = v̂

holds. We distinguish whether û is a call symbol or
an internal symbol. If û ∈ ̂Σcall , the SPA will emit
x ∈ WM(Σ) consisting of u, possibly a well-matched
sub-word, and a matching (to u) return symbol r before
reaching the (̂v · r̂ , σ) configuration. We have

(̂u · v̂ · r̂ , σ)
x−→∗(̂v · r̂ , σ)

y−→∗(̂r , σ).

Since x is well-matched, α will map x to û and continue
to process y. Hence

α(z) = α(x · y) = û · α(y) = û · v̂ = ŵ.

If û ∈ ̂Σint , the SPAwill emit u (int-rule) and α will map
this symbol to û. We have

(̂u · v̂ · r̂ , σ)
u−→ (̂v · r̂ , σ)

y−→∗(̂r , σ).

Hence, α(z) = α(u · y) = û · α(y) = û · v̂ = ŵ. ��

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

538 M. Frohme, B. Steffen

Lemma 3 Let Σ be an SPA alphabet, S be an SPA over Σ

and w ∈ WM(Σ).

∀c ∈ Σcall : ∀ts ∈ TSc : α(ts) ∈ L(Pc)

Proof Let c ∈ Σcall and ts ∈ TSc be arbitrary. Since ts is
part of an accepted word, we know that there exists a path in
the SOS transition system such that

(̂c · v̂, σ)
c−→∗(ŵ · r̂ , v̂ • σ)

ts−→∗(̂r , v̂ • σ)

for some v̂ ∈ ̂Σ∗, ŵ ∈ (̂Σcall∪ ̂Σint)
∗, σ ∈ ST (Γ). Accord-

ing to the definition of call-rules we have ŵ ∈ L(Pc) and by
Lemma 2 α(ts) = ŵ. Hence, α(ts) ∈ L(Pc). ��
Theorem 1 (Localization theorem) Let Σ be an SPA alpha-
bet, S be an SPA over Σ and w ∈ WM(Σ) be rooted in
c0.

w ∈ L(S) ⇔
∀(c, i) ∈ Instw : α(w[i + 1, ρw(i + 1) − 1]) ∈ L(Pc)

Proof Let w ∈ WM(Σ) be rooted in c0.
⇒: Let w ∈ L(S) and (c, i) ∈ Instw be arbitrary. By
Definition 10 we know that there exists a ts ∈ TSc with
ts = w[i + 1, ρw(i + 1) − 1]. Lemma 3 then directly con-
cludes the statement.
⇐: We show via contraposition that

w /∈ L(S) ⇒
∃(c, i) ∈ Instw : α(w[i + 1, ρw(i + 1) − 1]) /∈ L(Pc)

Letw = u1 ·a ·u2 for some u1, u2 ∈ Σ∗, a ∈ Σ . Then there
exist v̂1 ∈ ̂Σ∗, σ1 ∈ ST (Γ) such that

(̂c0,⊥)
u1−→∗(̂v1, σ1)

but � v̂2 ∈ Σ∗, σ2 ∈ ST (Γ) such that

(̂c0,⊥)
u1·a−−→∗(̂v2, σ2).

Such a decomposition has to exist because otherwise (i.e.
u1 · a = w, v̂2 = ε, σ2 = ⊥) w would be in the language
of the SPA, contradicting our assumption. Combined, this
means � v̂2 ∈ ̂Σ∗, σ2 ∈ ST (Γ) such that

(̂v1, σ1)
a−→ (̂v2, σ2).

Let (c∗, i∗) ∈ Instw such that i∗ ≤ |u1| is the largest index
for which u1 is a prefix of w[, ρw(i∗ + 1) − 1], i.e. it is
procedure c∗ that cannot emit the violating action a. We then
have α(w[i∗ + 1, ρw(i∗ + 1) − 1]) /∈ L(Pc∗) as required. ��

Corollary 1 (Membership query expansion) LetΣ be an SPA
alphabet and S be an SPA over Σ .

ŵ ∈ L(Pc) ⇔ as · γ (ŵ) · rs ∈ L(S)

for all c ∈ Σcall , (as, rs) ∈ Contc.

Proof By Definition 10 it is guaranteed that

(̂c0,⊥)
as−→∗(ŵ · r̂ , σ)

and

(̂r , σ)
rs−→∗(ε,⊥)

for all ŵ ∈ L(Pc) and a fixed (depending on as) σ ∈ ST (Γ).
What remains to be shown is

(ŵ · r̂ , σ)
γ (ŵ)−−−→∗(̂r , σ).

This follows by induction over the length of ŵ.

– If ŵ = ε we have γ (ŵ) = ε and the statement follows.
– Now let ŵ = û · v̂ with û ∈ (̂Σcall ∪ ̂Σint),

v̂ ∈ (̂Σcall ∪ ̂Σint)
∗ such that

(̂v · r̂ , σ)
γ (̂v)−−→∗(̂r , σ).

We distinguish whether û is a call symbol or an internal
symbol. If û ∈ ̂Σcall we have γ (̂u) = u · ts[u] · r . Since
ts[u] is a terminating sequence (i.e. part of an accepted
word), we know that there exists an x̂ ∈ L(Pu) such that

(̂u · v̂ · r̂ , σ)
u−→ (̂x · r̂ , v̂ · r̂ • σ)

ts[u]−−→∗(̂r , v̂ · r̂ • σ)

r−→ (̂v · r̂ , σ).

and therefore

(̂u · v̂ · r̂ , σ)
γ (̂u)−−→∗(̂v · r̂ , σ)

γ (̂v)−−→∗(̂r , σ)

which is equivalent to

(̂u · v̂ · r̂ , σ)
γ (̂u ·̂v)−−−→∗(̂r , σ)

since γ (̂u) · γ (̂v) = γ (̂u · v̂). If û ∈ ̂Σint we have
γ (̂u) = u and by application of an int-rule, we have

(̂u · v̂ · r̂ , σ)
γ (̂u)−−→ (̂v · r̂ , σ)

γ (̂v)−−→∗(̂r , σ)

and the statement directly follows since
γ (̂u) · γ (̂v) = u · γ (̂v) = γ (̂u · v̂). ��

123

Compositional learning of mutually recursive procedural systems 539

Lemma 4 Let Σ be an SPA alphabet and w ∈ WM(Σ) be a
rooted word. Then any decomposition of w = u · v can be
written as

u = ci1 · w1 · . . . · ci j · w j

v = w j+1 · r · w j+2 · . . . · r

with wi ∈ WM(Σ).

Proof This directly follows from the definition of rooted (i.e.
well-matched)words, where for every prefix u,β(u) ≥ 0 and
for every suffix v, β(v) ≤ 0 holds. β(u) gives the “nesting
depth” ofw after parsing u and corresponds to the number of
unmatched call symbols ci1 , ci2 , . . . at that position. Analo-
gously, one can isolate from the suffix v the unmatched return
symbols. ��
Lemma 5 Let Σ be an SPA alphabet and w,w1,

w2 ∈ WM(Σ) be well-matched words.

�w1� · �w2� = �w1 · w2� (1)

��w�� = �w� (2)

Proof (1): Let w1, w2 ∈ WM(Σ) be arbitrary. We have

�w1� · �w2� = γ (α(w1)) · γ (α(w2)) (3)

= γ (α(w1) · α(w2)) (4)

= γ (α(w1 · w2)) (5)

= �w1 · w2� (6)

Equation 5 holds because w1 is a well-matched word and
thus ∀(c, i) ∈ Instw1 : ρw1[i+1;](1) ≤ |w1|. This guarantees
that the α projection does not process symbols of w2 until
all symbols of w1 have been processed and therefore α con-
catenates the individual projections.
(2): This follows by structural induction over w (cf. Defini-
tion 2).

• Let w ∈ Σ∗
int . For any internal symbol i ∈ Σint , we

have �i� = γ (α(i)) = γ (̂i) = i , i.e. �·� coincides with
the identity function. Thus, w = �w� = ��w�� and the
statement directly follows.

• Let w ∈ WM(Σ) such that w = c · v · r for some
c ∈ Σcall , v ∈ WM(Σ). We have

�c · v · r� = γ (α(c · v · r)) (7)

= γ (̂c) (8)

= γ (α(c · ts[c] · r)) (9)

= γ (α(γ (̂c))) (10)

= γ (α(γ (α(c · v · r)))) (11)

= ��c · v · r�� (12)

• Let w ∈ WM(Σ) such that w = w1 · w2 for some
w1, w2 ∈ WM(Σ) and let the induction hypothesis hold
for w1, w2. We have

�w1 · w2� = �w1� · �w2� (13)

= ��w1�� · ��w2�� (14)

= ��w1� · �w2�� (15)

= ��w1 · w2�� (16)

Equation 13 and the subsequent ones hold because
w1, w2 are well-matched and hence Eq. 1 is applicable.
Equation 14 holds by induction hypothesis.

��
Lemma 6 Let Σ be an SPA alphabet, S be a ts-conform
SPA over Σ . Then we have for all w ∈ WM(Σ) and
wc ∈ (Σcall · WM(Σ))∗

(̂s1, σ)
w−→∗(̂s2, σ) ⇒ (̂s1, σ)

�w�−−→∗(̂s2, σ) (17)

(̂s1, σ1)
wc−→∗(̂s2, σ2) ⇒ (̂s1, σ1)

�wc�∗
−−−→∗(̂s2, σ2) (18)

for some ŝ1, ŝ2 ∈ ̂Σ∗, σ, σ1, σ2 ∈ ST (Γ).

Proof (17): This follows by structural induction over w (cf.
Definition 2).

– Let w ∈ Σ∗
int . As argued in the proof of Lemma 5, �·�

coincides with the identity function for internal symbols.
Thus, w = �w� and the statement directly follows.

– Let w ∈ WM(Σ) such that w = c · v · r for some
c ∈ Σcall , v ∈ WM(Σ). By premise, we have

(̂s1, σ)
w−→∗(̂s2, σ)

and by Definition 9

(̂s1, σ)
c−→ (̂t1, ψ)

v−→∗(̂t2, ψ)
r−→ (̂s2, σ)

for some t̂1, t̂2 ∈ ̂Σ∗, ψ ∈ ST (Γ). For any rooted word
c · v · r ∈ WM(Σ) we have

�c · v · r� = γ (α(c · v · r)) = γ (̂c) = c · ts[c] · r .

Since S is ts-conform, we know that there exists a
v̂ ∈ L(Pc) such that

(̂s1, σ)
c−→ (̂v · r , ψ)

ts[c]−−→∗(̂r , ψ)
r−→ (̂s2, σ)

for some ψ ∈ ST (Γ) and hence

(̂s1, σ)
�w�−−→∗(̂s2, σ).

123

540 M. Frohme, B. Steffen

– Let w ∈ WM(Σ) such that w = w1 · w2 for some
w1, w2 ∈ WM(Σ) and let the induction hypothesis hold
for w1, w2. By premise, we have

(̂s1, σ)
w−→∗(̂s2, σ)

and by Definition 9

(̂s1, σ)
w1−→∗(̂t1, σ)

w2−→∗(̂s2, σ)

for some t̂1 ∈ ̂Σ∗. By induction hypothesis, we have

(̂s1, σ)
�w1�−−→∗(̂t1, σ)

�w2�−−→∗(̂s2, σ)

and by application of Lemma 5 (1)

(̂s1, σ)
�w1·w2�−−−−→∗(̂s2, σ).

(18): This follows by induction over the number n of
unmatched call symbols in wc.

– For n = 0 we have ε = wc ∈ (Σcall · WM(Σ))0 and
�wc�

∗ = ε. Here, the statement directly follows.
– For the induction step letwc ∈ (Σcall ·WM(Σ))n+1 such

that wc = w1c · cin+1 ·w2 withw1c ∈ (Σcall · WM(Σ))n ,
w2 ∈ WM(Σ) and let the statement hold for w1c. By
premise of the statement for n + 1 we have

(̂s1, σ1)
wc−→∗(̂s2, σ2)

and by Definition 9

(̂s1, σ1)
w1c−−→∗(̂t1, ψ1)

cin+1−−−→ (̂t2, ψ2)
w2−→∗(̂s2, σ2)

for some t̂1, t̂2 ∈ ̂Σ∗, ψ1, ψ2 ∈ ST (Γ). By applying the
induction hypothesis for w1c we have

(̂s1, σ1)
�w1c�∗
−−−−→∗(̂t1, ψ1)

cin+1−−−→ (̂t2, ψ2)
w2−→∗(̂s2, σ2)

and by applying (1) we have

(̂s1, σ1)
�w1c�∗
−−−−→∗(̂t1, ψ1)

cin+1−−−→ (̂t2, ψ2)
�w2�−−→∗(̂s2, σ2).

Using Definition 14 to decompose �w1c�
∗ and then (re-)

compose the individual sub-words and call symbols
including cin+1 and w2, we can conclude

(̂s1, σ1)
�w1c·cin+1 ·w2�∗
−−−−−−−−−→∗(̂s2, σ2)

which concludes the statement for n + 1.

This induction shows that the statement holds for all pos-
sible values of n and therefore especially for arbitrary
wc ∈ (Σcall · WM(Σ))∗ = ⋃∞

i=0(Σcall · WM(Σ))i . ��
Lemma 7 Let Σ be an SPA alphabet, S be a ts-conform SPA
over Σ and w ∈ WM(Σ) rooted with |Instw| ≥ 2. Let rh
denote the h-th return symbol index ofw such that rh < rh+1

for all h ∈ {1, . . . , |Instw| − 1}.

�w[, rh]�∗ · w[rh + 1,] ∈ L(S) ⇒
�w[, rh+1]�∗ · w[rh+1 + 1,] ∈ L(S)

Proof Let �w[, rh]�∗ · w[rh + 1,] ∈ L(S). This means there
exists a path in the SOS transition system such that

(̂c0,⊥)
�w[,rh]�∗
−−−−−→∗ (̂s1, σ1)

w[rh+1,rh+1]−−−−−−−−→∗ (̂s2, σ2)
w[rh+1+1,]−−−−−−→∗ (ε,⊥)

for some ŝ1, ŝ2 ∈ ̂Σ∗, σ1, σ2 ∈ ST (Γ). w[, rh] is a pre-
fix of the rooted word w and therefore can be decomposed
according to Lemma 4 as

w[, rh] = c j1 · w1 · . . . · c jm · wm

for some w j ∈ WM(Σ). Hence

�w[, rh]�∗ = �c j1 · w1 · . . . · c jm · wm�∗

= c j1 · �w1� · . . . · c jm · �wm�.

Thewordw[rh+1, rh+1] consists of an arbitrary (potentially
empty) sequence of internal and call symbols and ends with
a single return symbol w[rh+1]. In the following, we distin-
guish the two cases, where w[rh + 1, rh+1] contains no call
symbols and at least one call symbol.

– If w[rh + 1, rh+1] contains no call symbols, we have

w[rh + 1, rh+1] = wm2 · r

for some wm2 ∈ Σ∗
int and

w[, rh] · w[rh + 1, rh+1]
= w[, rh+1]
= c j1 · w1 · . . . · c jm−1 · v

with v ∈ WM(Σ) such that

v = w jm−1 · c jm · wm · wm2 · r .

If rh+1 is the last return symbol index of w, we have
w = v. Since �·�∗ preserves unmatched call symbols, we

123

Compositional learning of mutually recursive procedural systems 541

have

�w[, rh]�∗ · w[rh + 1, rh+1] = c j1 · �w1� · . . . · u

for some u ∈ WM(Σ) with

u = �w jm−1� · c jm · �wm� · wm2 · r .

This directly gives

�w[, rh]�∗ · w[rh + 1, rh+1] ∈ (Σcall · WM(Σ))∗

or

�w[, rh]�∗ · w[rh + 1, rh+1] ∈ WM(Σ)

if rh+1 is the last return symbol index. By Lemma 6 (18)
we have

(̂c0,⊥)
��w[,rh]�∗·w[rh+1,rh+1]�∗
−−−−−−−−−−−−−−−→∗(̂s2, σ2).

We show with Lemma 5

�v�

= �w jm−1 · c jm · wm · wm2 · r�
= �w jm−1� · �c jm · wm · wm2 · r�
= ��w jm−1�� · γ (α(c jm · wm · wm2 · r))
= ��w jm−1�� · γ (̂c jm)

= ��w jm−1�� · γ (α(c jm · �wm� · wm2 · r))
= ��w jm−1�� · �c jm · �wm� · wm2 · r�
= ��w jm−1� · c jm · �wm� · wm2 · r�
= �u�

Furthermore, we have

��w[, rh]�∗ · w[rh + 1, rh+1]�∗

= ��c j1 · w1 · . . . · c jm · wm�∗ · wm2 · r�∗

= �c j1 · �w1� · . . . · c jm · �wm� · wm2 · r�∗

= �c j1 · �w1� · . . . · u�∗

= c j1 · ��w1�� · . . . · �u�

= c j1 · �w1� · . . . · �v�

= �c j1 · w1 · . . . · v�∗

= �w[, rh+1]�∗

This shows the existence of the path

(̂c0,⊥)
�w[,rh+1]�∗
−−−−−−→∗(̂s2, σ2)

w[rh+1+1,]−−−−−−→∗(ε,⊥)

and therefore �w[, rh+1]�∗ · w[rh+1 + 1,] ∈ L(S).

– If w[rh + 1, rh+1] contains at least one (or n − m) call
symbol(s), we have

w[rh + 1, rh+1] = wm2 · c jm+1 · wm+1 · . . . · c jn · wn

for some w j ∈ WM(Σ) and

w[, rh] · w[rh + 1, rh+1]
= w[, rh+1]
= c j1 · w1 · . . . · c jm · wm · wm2 · . . . · c jn · wn

Since �·�∗ preserves unmatched call symbols, we have

�w[, rh]�∗ · w[rh + 1, rh+1]
= c j1 · �w1� · . . . · c jm · �wm� · wm2 · . . . · c jn · wn

This directly gives

�w[, rh]�∗ · w[rh + 1, rh+1] ∈ (Σcall · WM(Σ))∗

and by Lemma 6 (18)

(̂c0,⊥)
��w[,rh]�∗·w[rh+1,rh+1]�∗
−−−−−−−−−−−−−−−→∗(̂s2, σ2).

We show with Lemma 5

��w[, rh]�∗ · w[rh + 1, rh+1]�∗

= ��c j1 · w1 · . . . · wm�∗ · wm2 · . . . · c jn · wn�
∗

= �c j1 · �w1� · . . . · �wm� · wm2 · . . . · c jn · wn�
∗

= c j1 · ��w1�� · . . . · ��wm�� · �wm2� · . . . · c jn · �wn�

= c j1 · �w1� · . . . · �wm� · �wm2� · . . . · c jn · �wn�

= c j1 · �w1� · . . . · �wm · wm2� · . . . · c jn · �wn�

= �c j1 · w1 · . . . wm · wm2 · . . . · c jn · wn�
∗

= �w[, rh+1]�∗

This shows the existence of the path

(̂c0,⊥)
�w[,rh+1]�∗
−−−−−−→∗(̂s2, σ2)

w[rh+1+1,]−−−−−−→∗(ε,⊥)

and therefore �w[, rh+1]�∗ · w[rh+1 + 1,] ∈ L(S).

Thus, in both cases the statement holds. ��
Theorem 2 (Acceptance monotonicity of �·�∗) Let Σ be an
SPA alphabet, S be a ts-conform SPA over Σ , w ∈ WM(Σ)

be rooted and rh, rk be indices of return symbols of w with
rh < rk . Then we have

�w[, rh]�∗ · w[rh + 1,] ∈ L(S) ⇒
�w[, rk]�∗ · w[rk + 1,] ∈ L(S)

123

542 M. Frohme, B. Steffen

Proof This directly follows by repeated application of
Lemma 7 and the transitivity of the logical implication. ��

References

1. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learn-
ing register automata with fresh value generation. In: Leucker, M.,
Rueda, C., Valencia, F.D. (eds.) Theoretical Aspects of Computing-
ICTAC 2015, pp. 165–183. Springer, Cham (2015)

2. Alur, R., Etessami, K., Yannakakis, M.: Analysis of recursive
state machines. In: Berry, G., Comon, H., Finkel, A. (eds.)
Computer Aided Verification: 13th International Conference, pp.
207–220. Springer, Berlin (2001). https://doi.org/10.1007/3-540-
44585-4_18

3. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congru-
ences for visibly pushdown languages. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) Automata,
Languages and Programming: 32nd International Colloquium,
ICALP 2005, Lisbon, Portugal, July 11–15, 2005. Proceedings,
pp. 1102–1114. Springer, Berlin (2005). https://doi.org/10.1007/
11523468_89

4. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Pro-
ceedings of the 36th Annual ACM Symposium on Theory of
Computing, STOC’04, p. 202–211. Association for Computing
Machinery, New York, NY, USA (2004). https://doi.org/10.1145/
1007352.1007390

5. Angluin, D.: Learning regular sets from queries and counterexam-
ples. Information and Computation 75(2), 87–106 (1987)

6. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT
Press, Cambridge (2008)

7. Bertolino, A., Calabrò, A., Merten, M., Steffen, B.: Never-stop
learning: continuous validation of learnedmodels for evolving sys-
tems through monitoring. ERCIM News 2012(88), 28–29 (2012)

8. Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A fresh
approach to learning register automata. In: Béal, M.P., Carton, O.
(eds.) Developments in Language Theory: 17th International Con-
ference, DLT 2013, Marne-la-Vallée, France, June 18–21, 2013
Proceedings, pp. 118–130. Springer, Berlin (2013). https://doi.org/
10.1007/978-3-642-38771-5_12

9. Bollig, B., Katoen, J.P., Kern, C., Leucker,M., Neider, D., Piegdon,
D.R.: libalf: the automata learning framework. In: CAV’10, pp.
360–364 (2010)

10. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A.:
Model-Based Testing of Reactive Systems: Lecture Notes in Com-
puter Science, vol. 3472. Springer, New York (2005)

11. Burkart,O., Steffen,B.:Model checking for context-free processes.
In: Cleaveland, W. (ed.) CONCUR 92. Lecture Notes in Computer
Science, vol. 630, pp. 123–137. Springer, Berlin (1992). https://
doi.org/10.1007/BFb0084787

12. Burkart, O., Steffen, B.: Composition, decomposition and model
checking of pushdown processes. Nordic J. Comput. 2(2), 89–125
(1995)

13. Cassel, S., Howar, F., Jonsson, B.: RALib: a LearnLib extension
for inferring EFSMs. DIFTS 5 (2015)

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The
MIT Press, Cambridge (1999)

15. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay,
A., Margaria, T. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems: 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22–29, 2017, Proceedings, Part I, pp. 173–189. Springer, Berlin
(2017). https://doi.org/10.1007/978-3-662-54577-5_10

16. Feng, L., Kwiatkowska, M., Parker, D.: In: Compositional Verifi-
cation of Probabilistic Systems Using Learning, vol. QEST’10, pp.
133–142. IEEE Computer Society, Washington (2010). https://doi.
org/10.1109/QEST.2010.24

17. Frohme, M., Steffen, B.: Active mining of document type defini-
tions. In: Howar, F., Barnat, J. (eds.) 23rd International Conference,
FMICS 2018, Maynooth, Ireland, September 3–4, 2018, Proceed-
ings. Springer, Berlin (2018)

18. Godefroid, P., Kiezun, A., Levin, M.Y.: In: Grammar-based white-
box fuzzing, vol. PLDI’08, pp. 206–215. ACM, New York (2008).
https://doi.org/10.1145/1375581.1375607

19. Godefroid, P., Levin, M.Y., Molnar, D.A.: In: Automated white-
box fuzz testing. www.isoc.org/isoc/conferences/ndss/08/papers/
10_automated_whitebox_fuzz.pdf. San Diego, California, USA
(2008). (10th February–13th February 2008)

20. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to
Automata Theory, Languages, and Computation. Addison-Wesley
Series in Computer Science, 2nd edn. Addison-Wesley-Longman,
Boston (2001)

21. Howar, F.: Active learning of interface programs. Ph.D. thesis,
TUDortmundUniversity (2012). https://eldorado.tu-dortmund.de/
bitstream/2003/29486/1/Dissertation.pdf

22. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical
register automata. In: Koncak, V., Rybalchenko, A. (eds.) Verifica-
tion, Model Checking, and Abstract Interpretation. Lecture Notes
in Computer Science, vol. 7148, pp. 251–266. Springer, Berlin
(2012). https://doi.org/10.1007/978-3-642-27940-9_17

23. Howar, F., Steffen, B., Merten, M.: Automata learning with auto-
mated alphabet abstraction refinement. In: Jhala, R., Schmidt,
D. (eds.) Verification, Model Checking, and Abstract Interpre-
tation. Lecture Notes in Computer Science, vol. 6538, pp. 263–
277. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-
18275-4_19

24. Hungar, H., Margaria, T., Steffen, B.: Test-based model generation
for legacy systems. In: Test Conference, 2003. Proceedings. ITC
2003. International, vol. 1, pp. 971–980 (2003). https://doi.org/10.
1109/TEST.2003.1271205

25. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimiza-
tion in automata learning. In: Hunt, W.A., Jr., Somenzi, F. (eds.)
Proceedings 15th International Conference on Computer Aided
Verification. Lecture Notes in Computer Science, vol. 2725, pp.
315–327. Springer, Berlin (2003). https://doi.org/10.1007/978-3-
540-45069-6_31

26. Isberner, M.: Foundations of active automata learning: an algo-
rithmic perspective. Ph.D. thesis, Technical University Dortmund,
Germany (2015). http://hdl.handle.net/2003/34282

27. Isberner, M., Howar, F., Steffen, B.: Inferring automata with state-
local alphabet abstractions. In: Brat, G., Rungta, N., Venet A. (eds.)
NASA Formal Methods, LNCS, vol. 7871, pp. 124–138 (2013).
https://doi.org/10.1007/978-3-642-38088-4_9

28. Isberner, M., Howar, F., Steffen, B.: Learning register automata:
from languages to program structures.Mach. Learn. (2013). https://
doi.org/10.1007/s10994-013-5419-7

29. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm:
a redundancy-free approach to active automata learning. In:
Bonakdarpour, B., Smolka, S. (eds.) Runtime Verification. Lec-
ture Notes in Computer Science, vol. 8734, pp. 307–322. Springer,
Berlin (2014). https://doi.org/10.1007/978-3-319-11164-3_26

30. Isberner, M., Howar, F., Steffen, B.: The open-source learnLib: a
framework for active automata learning. CAV (2015). https://doi.
org/10.1007/978-3-319-21690-4_32

31. Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P.,
Kwiatkowska, M.Z., Calinescu, R., Inverardi, P., Tivoli, M.,
Bertolino, A., Sabetta, A.: In: ICECCS (ed.) CONNECT Chal-
lenges: Towards Emergent Connectors for Eternal Networked
Systems, pp. 154–161. IEEE Computer Society (2009)

123

https://doi.org/10.1007/3-540-44585-4_18
https://doi.org/10.1007/3-540-44585-4_18
https://doi.org/10.1007/11523468_89
https://doi.org/10.1007/11523468_89
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/978-3-642-38771-5_12
https://doi.org/10.1007/978-3-642-38771-5_12
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1109/QEST.2010.24
https://doi.org/10.1109/QEST.2010.24
https://doi.org/10.1145/1375581.1375607
www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/29486/1/Dissertation.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/29486/1/Dissertation.pdf
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1109/TEST.2003.1271205
https://doi.org/10.1109/TEST.2003.1271205
https://doi.org/10.1007/978-3-540-45069-6_31
https://doi.org/10.1007/978-3-540-45069-6_31
http://hdl.handle.net/2003/34282
https://doi.org/10.1007/978-3-642-38088-4_9
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32

Compositional learning of mutually recursive procedural systems 543

32. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational
Learning Theory. MIT Press, Cambridge (1994)

33. Kumar,V.,Madhusudan, P.,Viswanathan,M.:Minimization, learn-
ing, and conformance testing of Boolean programs. In: Baier,
C., Hermanns, H. (eds.) CONCUR 2006—Concurrency Theory:
17th International Conference, CONCUR 2006, Bonn, Germany,
August 27–30, 2006 Proceedings, pp. 203–217. Springer, Berlin
(2006). https://doi.org/10.1007/11817949_14

34. Maler, O., Mens, I.E.: Learning regular languages over large alpha-
bets. In: Ábrahám, E., Havelund, K. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems: 20th Interna-
tional Conference, TACAS 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5–13, 2014. Proceedings, pp. 485–
499. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-
54862-8_41

35. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based
model generation for legacy reactive systems. In: HLDVT’04: Pro-
ceedings of the High-Level Design Validation and Test Workshop,
2004. 9th IEEE International, pp. 95–100. IEEE Computer Soci-
ety, Washington (2004). https://doi.org/10.1109/HLDVT.2004.
1431246

36. McNaughton, R.: Parenthesis grammars. J. ACM 14(3), 490–500
(1967). https://doi.org/10.1145/321406.321411

37. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reli-
ability of unix utilities. Commun. ACM 33(12), 32–44 (1990).
https://doi.org/10.1145/96267.96279

38. Mitchell, J.C.: Concepts in Programming Languages. Cam-
bridge University Press, Cambridge (2002). https://doi.org/10.
1017/CBO9780511804175

39. Nerode, A.: Linear automaton transformations. Proc. Am. Math.
Soc. 9(4), 541–544 (1958)

40. Neubauer, J., Windmüller, S., Steffen, B.: Risk-based testing via
active continuous quality control. Int. J. Softw. Tools Technol.
Transf. 16(5), 569–591 (2014). https://doi.org/10.1007/s10009-
014-0321-6

41. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. J.
Autom. Lang. Comb. 7(2), 225–246 (2001)

42. Plotkin, G.D.: A structural approach to operational semantics.
Tech. rep., University of Aarhus (1981). DAIMI FN-19

43. Rensink, A.: The GROOVE simulator: a tool for state space gen-
eration. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) Applications
of Graph Transformations with Industrial Relevance, pp. 479–485.
Springer, Berlin (2004)

44. Rivest, R.L., Schapire, R.E.: Inference of finite automata using
homing sequences. Inf. Comput. 103(2), 299–347 (1993). https://
doi.org/10.1006/inco.1993.1021

45. Steffen, B., Howar, F., Merten, M.: Introduction to active automata
learning from a practical perspective. In: Bernardo, M., Issarny,
V. (eds.) Formal Methods for Eternal Networked Software Sys-
tems. Lecture Notes in Computer Science, vol. 6659, pp. 256–
296. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-
21455-4_8

46. Vardhan, A., Viswanathan, M.: LEVER: a tool for learning based
verification. Presented at the (2006)

47. Windmüller, S., Neubauer, J., Steffen, B., Howar, F., Bauer, O.:
Active continuous quality control. In: 16th InternationalACMSIG-
SOFT Symposium on Component-Based Software Engineering,
CBSE’13, pp. 111–120.ACMSIGSOFT,NewYork (2013). https://
doi.org/10.1145/2465449.2465469

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/11817949_14
https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.1109/HLDVT.2004.1431246
https://doi.org/10.1109/HLDVT.2004.1431246
https://doi.org/10.1145/321406.321411
https://doi.org/10.1145/96267.96279
https://doi.org/10.1017/CBO9780511804175
https://doi.org/10.1017/CBO9780511804175
https://doi.org/10.1007/s10009-014-0321-6
https://doi.org/10.1007/s10009-014-0321-6
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1145/2465449.2465469
https://doi.org/10.1145/2465449.2465469

	Compositional learning of mutually recursive procedural systems
	Abstract
	1 Introduction
	Outline

	2 Related work and preliminaries
	3 Systems of procedural automata
	3.1 Orchestrating regular DFAs to procedural systems

	4 Essentials of SPA inference
	4.1 Localization theorem
	4.2 Exploration phase
	4.3 Verification phase

	5 Efficient counterexample analysis
	6 A sketch of the algorithm
	6.1 Initialization
	6.2 Refinement

	7 Correctness and complexity
	8 A comparison to visibly pushdown automata
	9 Conclusion and future work
	Appendix: Proofs
	References

