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Abstract
We consider the problem of designing experiments for the comparison of two regres-
sion curves describing the relation between a predictor and a response in two groups,
where the data between and within the group may be dependent. In order to derive
efficient designs we use results from stochastic analysis to identify the best linear
unbiased estimator (BLUE) in a corresponding continuous model. It is demonstrated
that in general simultaneous estimation using the data from both groups yields more
precise results than estimation of the parameters separately in the two groups. Using
the BLUE from simultaneous estimation, we then construct an efficient linear estima-
tor for finite sample size by minimizing the mean squared error between the optimal
solution in the continuous model and its discrete approximation with respect to the
weights (of the linear estimator). Finally, the optimal design points are determined by
minimizing the maximal width of a simultaneous confidence band for the difference
of the two regression functions. The advantages of the new approach are illustrated by
means of a simulation study, where it is shown that the use of the optimal designs yields
substantially narrower confidence bands than the application of uniform designs.
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1 Introduction

The application of optimal or efficient designs can improve the accuracy of statisti-
cal analysis substantially, and meanwhile, there exists a well-established and powerful
theory for the construction of (approximate) optimal designs for independent observa-
tions, see for example themonographs of Pukelsheim [28] or Fedorov andLeonov [15].
In contrast, the determination of optimal designs for efficient statistical analysis from
dependent data is more challenging because the corresponding optimization problems
are in general not convex and therefore the powerful tools of convex analysis are not
applicable. Although design problems for correlated data have been discussed for a
long time (see, for example [2,26,30,31], who use asymptotic arguments to develop
continuous but in general non-convex optimization problems in this context), a large
part of the discussion is restricted to models with a small number of parameters and
we refer to Pázman and Müller [27], Müller and Pázman [25], Dette et al. [7], Kiselak
and Stehlík [19], Harman and Štulajter [17], Rodriguez-Diaz [29], Campos-Barreiro
and López-Fidalgo [4] and Attia and Constantinescu [1] among others.

Recently, Dette et al. [9] suggest a more systematic approach to the problem
and determine (asymptotic) optimal designs for least squares estimation, under the
additional assumption that the regression functions are eigenfunctions of an integral
operator associated with the covariance kernel of the error process. For more gen-
eral models Dette et al. [10] propose to construct the optimal design and estimator
simultaneously.More precisely, they construct a class of estimators and corresponding
optimal designs with a variance converging (as the sample size increases) to the opti-
mal variance in the continuous model. Dette et al. [6] propose an alternative strategy
for this purpose. They start with the construction of the best linear unbiased estimator
(BLUE) in the continuous model using stochastic calculus and determine in a sec-
ond step an implementable design, which is “close” to the solution in the continuous
model. By this approach these authors are able to provide an easily implementable
estimator with a corresponding design which is practically non-distinguishable from
the weighted least squares estimate (WLSE) with corresponding optimal design. Their
results are applicable for a broad class of linear regression models with various covari-
ance kernels and have recently been extended to the situation, where also derivatives
of the process can be observed (see [11]).

Dette and Schorning [12] and Dette et al. [13] propose designs for the comparison
of regression curves from two independent samples, where the latter reference also
allows for dependencies within the samples. Their work ismotivated by applications in
drug development, where a comparison between two regression models that describe
the relation between a common response and the same covariates for two groups is
used to establish the non-superiority of one model to the other or to check whether the
difference between two regression models can be neglected. For example, if the sim-
ilarity between two regression functions describing the dose–response relationships
in the groups individually has been established, subsequent inference in drug devel-
opment could be based on the combined samples such that a more efficient statistical
analysis is possible on the basis of the larger population. Because of its importance,
several procedures for the comparison of curves have been investigated in linear and
nonlinear models (see [3,8,16,20,21,23,24], among others). Designs minimizing the
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maximal width of a (simultaneous) confidence band for the difference between the
regression curves calculated from two independent groups are determined by Dette
and Schorning [12] and Dette et al. [13], who also demonstrate that the use of these
designs yields to substantially narrower confidence bands.

While these results refer to independent groups, it is the purpose of the present paper
to investigate designs for the comparison of regression curves corresponding to two
groups, where the data within the groups and between the groups may be dependent.
It will be demonstrated that in most cases simultaneous estimation of the parameters
in the regression models using the data from both groups yields to more efficient
inference than estimating the parameters in the models corresponding to the different
groups separately. Moreover, the simultaneous estimation procedure can never be
worse. While this property holds independently of the design under consideration, we
subsequently construct efficient designs for the comparison of curves corresponding
to not necessarily independent groups and demonstrate its superiority by means of a
simulation study.

The remaining part of this paper is organized as follows. In Sect. 2 we introduce
the basics and the design problem. Section 3 is devoted to a continuous model, which
could be interpreted as a limiting experiment of the discrete model if the sample size
converges to infinity. In this model we derive an explicit representation of the BLUE
if estimation is performed simultaneously in both groups. In Sect. 4 we develop a
discrete approximation of the continuous BLUE by determining the optimal weights
for the linear estimator. Finally, the optimal design points are determined such that
the maximum width of the confidence band for the difference of the two regression
functions is minimal. Section 5 is devoted to a small numerical comparison of the per-
formance of the optimal designs with uniform designs. In particular, it is demonstrated
that optimal designs yield substantially narrower confidence bands. In many cases the
maximal width of a confidence band from the uniform design is by a factor between
2 and 10 larger than the width of a confidence band from the optimal design.

2 Simultaneous Estimation of Two RegressionModels

Throughout this paper we consider the situation of two groups of observations
Y1,1, . . . ,Y1,n and Y2,1, . . . ,Y2,n at the points t1, . . . , tn (i = 1, 2) where there may
exist dependencies within and between the groups. We assume the relation between
the response and the covariate t in each group is described by a linear regressionmodel
given by

Yi j = Yi (t j ) = f �
i (t j )θ

(i) + ηi (t j ), j = 1, . . . , n, i = 1, 2 . (2.1)

Thus in each group n observations are taken at the same points t1, . . . , tn which can
be chosen in a compact interval, say [a, b], and observations at different points and
in different groups might be dependent. The vectors of the unknown parameters θ(1)

and θ(2) are assumed to be p1- and p2-dimensional, respectively, and the correspond-
ing vectors of regression functions fi (t) = ( fi,1(t), . . . , fi,pi (t))

�, i = 1, 2, have
continuously differentiable linearly independent components.
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To address the situation of correlation between the groups, we start with a very sim-
ple covariance structure for each group, but we emphasize that all results presented in
this paper are correct for more general covariance structures corresponding to Markov
processes, see Remark 3.3 for more details. To be precise, let {ε1(t)| t ∈ [a, b]} and
{ε2(t)| t ∈ [a, b]} denote two independent Brownian motions, such that

E[εi (t j )] = 0, Ki (t j , tk) = E[εi (t j )εi (tk)] = min(t j , tk) (2.2)

denotes the mean value and the covariance of the individual process εi at the points t j
and tk , respectively. Let σ1, σ2 > 0, � ∈ (−1, 1), denote by �1/2 the square root of
the covariance matrix

� =
(

σ 2
1 σ1σ2�

σ1σ2� σ 2
2

)
, (2.3)

and define for t ∈ [a, b] the two-dimensional process {η(t)| t ∈ [a, b]} by

η(t) =
(

η1(t)
η2(t)

)
= �1/2ε(t), (2.4)

where ε(t) = (ε1(t), ε2(t))�. Note that � ∈ (−1, 1) denotes the correlation between
the observations Y1(t j ) and Y2(t j ) ( j = 1, . . . , n), and that in general the correlation
between Y1(t j ) and Y2(tk) is given by

Corr(Y1(t j ),Y2(tk)) = �min

{√
t j
tk

,

√
tk
t j

}
(2.5)

if t j , tk ∈ [a, b], for a > 0. If the interval is given by [a = 0, b] instead, the
correlation between Y1(t j ) and Y2(tk) is given by (2.5) if t j , tk ∈ (0, b], whereas
Corr(Y1(0),Y2(t j )) = Corr(Y1(t j ),Y2(0)) = 0 for t j ∈ [0, b].

Considering the two groups individually results in proper (for example weighted
least squares) estimators of the parameters θ(1) and θ(2). However, this procedure
ignores the correlation between the two groups and estimating the parameters θ(1) and
θ(2) simultaneously from the data of both groupsmight result inmore precise estimates.
In order to define estimators for the parameters θ(1) and θ(2) using the information
from both groups we now consider a more general two-dimensional regression model,
which on the one hand contains the situation described in the previous paragraph as a
special case, but on the other hand also allows us to consider the case, where some of
the components in θ1 and θ2 coincide, see Example 2.2 and Sect. 3.3 for details. To
be precise we define the regression model

Y(t j ) =
(
Y1(t j )
Y2(t j )

)
= F�(t j )θ + η(t j ) = F�(t j )θ + �1/2ε(t j ), j = 1, . . . , n,(2.6)
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where two-dimensional observations

Y(t1) = (Y1(t1),Y2(t1))
�, . . . ,Y(tn) = (Y1(tn),Y2(tn))

�

are available at points t1, . . . , tn ∈ [a, b]. In model (2.6) the vector θ = (ϑ1, . . . , ϑp)
�

is a p-dimensional parameter and

F�(t) =
(
F�
1 (t)

F�
2 (t)

)
=
(
F1,1(t) . . . F1,p(t)
F2,1(t) . . . F2,p(t)

)
(2.7)

denotes a (2× p) matrix containing continuously differentiable regression functions,
where the two-dimensional functions (F1,1(t), F2,1(t))�, . . . , (F1,p(t), F2,p(t))� are
assumed to be linearly independent.

Example 2.1 The individual models defined in (2.1) are contained in this two-
dimensional model. More precisely, defining the p = (p1 + p2)-dimensional vector
of parameters θ by θ = ((θ(1))�, (θ(2))�)� and the regression function F�(t) in (2.7)
by the rows

F�
1 (t) = ( f �

1 (t), 0�
p2), F�

2 (t) = (0�
p1 , f �

2 (t)),

it follows that model (2.6) coincides with model (2.1). Moreover, this composite
model takes the correlation between the groups into account. In this case the models
describing the relation between the variable t and the responses Y1(t) and Y2(t) do
not share any parameters.

Example 2.2 In this example we consider the situation where some of the parameters
of the individual models in (2.1) coincide. This situation occurs, for example, if Y1(t)
and Y2(t) represent clinical parameters (depending on time) before and after treat-
ment, where it can be assumed that the effect at time a coincides before and after the
treatment. In this case a reasonable model for average effect in the two groups is given
by

E[Yi (t)] = θ(0) + (θ̃ (i))� f̃i (t) , i = 1, 2 .

More generally, we consider the situation where the vectors of the parameters are
given by

θ(1) = (θ(0)� , θ̃ (1)�)� , θ(2) = (θ(0)�, θ̃ (2)�)�,

where θ(0) ∈ R
p0 denotes the vector of common parameters in both models and

vectors θ̃ (1) ∈ R
p1−p0 and θ̃ (2) ∈ R

p2−p0 contain the different parameters in the two
individual models. The corresponding regression functions are given by

f �
1 (t) = ( f �

0 (t), f̃ �
1 (t)) , f �

2 (t) = ( f �
0 (t), f̃ �

2 (t)), (2.8)
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where the vector f �
0 (t) contains the regression functions corresponding to the common

parameters in the two models, and f̃ �
1 (t) and f̃ �

2 (t) denote the vectors of regression
functions corresponding to the different parameters θ̃ (1) and θ̃ (2), respectively.
Defining the p = (p1 + p2 − p0)-dimensional vector of parameters θ by θ =
(θ(0), θ̃ (1), θ̃ (2)) and the regression function F�(t) in (2.7) by the rows

F�
1 (t) = ( f �

0 (t), f̃ �
1 (t), 0�

p2−p0), F�
2 (t) = ( f �

0 (t), 0�
p1−p0 , f̃ �

2 (t)),

it follows thatmodel (2.6) contains the individual models in (2.1), where the regression
functions are given by (2.8) and the parameters θ(1) and θ(2) share the parameter θ(0).
Moreover, this composite model takes the potential correlation between the groups
into account.

3 ContinuousModels

It was demonstrated by Dette et al. [6] that efficient designs for dependent data in
regression problems can be derived by first considering the estimation problem in a
continuous model. In this model there is no optimal design problem as the data can
be observed over the full interval [a, b]. However, efficient designs can be determined
in two steps. First, one derives the best linear unbiased estimator (BLUE) in the
continuous model and, secondly, one determines design points (and an estimator)
such that the resulting estimator from the discrete data provides a good approximation
of the optimal solution in the continuous model. In this paper we will use this strategy
to develop optimal designs for the comparison of regression curves from two (possible)
dependent groups. In the present sectionwe discuss a continuousmodel corresponding
to discrete model (2.6), while the second step, the determination of an “optimal”
approximation will be postponed to following Sect. 4 .

3.1 Best Linear Unbiased Estimation

To be precise, we consider the continuous version of the linear regression model in
(2.6), that is,

Y(t) =
(
Y1(t)
Y2(t)

)
= F�(t)θ + �1/2ε(t), t ∈ [a, b], (3.1)

where we assume 0 < a < b and the full trajectory of the process {Y(t) | t ∈ [a, b]}
is observed, {ε(t) = (ε1(t), ε2(t))� | t ∈ [a, b]} is a vector of independent Brownian
motions as defined in (2.2), and the matrix �1/2 is the square root of the covariance
matrix � defined in (2.3). Note that we restrict ourselves to an interval on the positive
line, because in this case the notation is slightly simpler. But we emphasize that the
theory developed in this section can also be applied for a = 0, see Remark 3.1 for
more details. We further assume that the (p × p)-matrix
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M =
∫ b

a
Ḟ(t)�−1Ḟ�(t) dt + 1

a
F(a)�−1F�(a) (3.2)

is non-singular.

Theorem 3.1 Consider continuous linear regressionmodel (3.1) on the interval [a, b],
a > 0, with a continuously differentiable matrix of regression functions F, a vector
{ε(t) = (ε1(t), ε2(t))� | t ∈ [a, b]} of independent Brownian motions and a covari-
ance matrix � defined by (2.3). The best linear unbiased estimator of the parameter
θ is given by

θ̂BLUE = M−1
( ∫ b

a
Ḟ(t)�−1 dY(t) + 1

a
F(a)�−1Y(a)

)
. (3.3)

Moreover, the minimum variance is given by

Cov(θ̂BLUE) = M−1 =
(∫ b

a
Ḟ(t)�−1Ḟ�(t) dt + 1

a
F(a)�−1F�(a)

)−1

. (3.4)

Proof Multiplying Y by the matrix �−1/2 yields a transformed regression model

Ỹ(t) =
(
Ỹ1(t)
Ỹ2(t)

)
= �−1/2

(
Y1(t)
Y2(t)

)
= �−1/2F�(t)θ + ε(t), (3.5)

where�−1/2 is the inverse of�1/2, the square root of the covariance matrix� defined
in (2.3). Note that the components of the vector Ỹ are independent, and consequently,
the joint likelihood function can be obtained as the product of the individual com-
ponents. Next we rewrite the components of continuous model (3.5) in terms of two
stochastic differential equations, that is

dỸi (t) = 1[a,b](t)�−1/2
i Ḟ�(t)θdt + dεi (t), t ∈ [0, b] , (3.6)

Ỹi (a) = �
−1/2
i F�(a)θ + εi (a) , (3.7)

where 1A is the indicator function of the set A and �
−1/2
i denotes the i-th row of

the matrix �−1/2 (i = 1, 2). Since {εi (t)| t ∈ [a, b]} is a Brownian motion, its
increments are independent. Consequently, the processes {Ỹi (t)| t ∈ [0, b]} and the
random variable Ỹi (a) are independent. To obtain the joint density of the processes
defined by (3.6) and (3.7) it is therefore sufficient to derive the individual densities.
Let P(i)

θ and P
(i)
0 denote the measures on C([0, b]) associated with the process Ỹi =

{Yi (t)| t ∈ [0, b]} and {εi (t)| t ∈ [0, b]}, respectively. It follows from Theorem 1 in
Appendix II of Ibragimov and Has’minskii [18] that P(i)

θ is absolute continuous with

respect to P(i)
0 with Radon–Nikodym density

dP(i)
θ

dP(i)
0

(Ỹi ) = exp

{∫ b

a
�

−1/2
i Ḟ�(t)θdỸi (t) − 1

2

∫ b

a
(�

−1/2
i Ḟ�(t)θ)2dt

}
.
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Similarly, ifQθ denotes the distribution of the random variable Ỹi (a) ∼ N (�
−1/2
i F�

(a)θ, a) in (3.7), then the Radon–Nikodym density ofQ(i)
θ with respect toQ(i)

0 is given
by

dQ(i)
θ

dQ(i)
0

(Ỹi (a)) = exp

{
Ỹi (a)�

−1/2
i F�(a)θ

a
− 1

2

(�
−1/2
i F�(a)θ)2

a

}
.

Consequently, because of independence, the joint density of (P
(i)
θ ,Q

(i)
θ ) with respect

to (P
(i)
0 ,Q

(i)
0 ) is obtained as

dP(i)
θ

dP(i)
0

(Ỹi ) × dQ(i)
θ

dQ(i)
0

(Ỹi (a)) = exp

{(∫ b

a
�

−1/2
i Ḟ�(t)θdỸi (t) + Ỹi (a)�

−1/2
i F�(a)θ

a

)

− 1

2

(∫ b

a
(�

−1/2
i Ḟ�(t)θ)2dt + (�

−1/2
i F(a)θ)2

a

)}
.

As the processes Ỹ1 and Ỹ2 are independent by construction, the maximum likelihood
estimator in model (3.1) can be determined by solving the equation

∂

∂θ
log
{ 2∏
i=1

dP(i)
θ

dP(i)
0

(Ỹi ) × dQ(i)
θ

dQ(i)
0

(Ỹi (a))
}

=
2∑

i=1

{ ∫ b

a
Ḟ(t)�−1/2

i dỸi (t) + F(a)�
−1/2
i Ỹi (a)

a

−
( ∫ b

a
Ḟ(t)�−1/2

i �
−1/2
i Ḟ�(t) dt + Ḟ(a)�

−1/2
i �

−1/2
i Ḟ�(a)

)
θ
}

= 0

with respect to θ . The solution coincides with the linear estimate defined in (3.3), and a
straightforward calculation, using Ito’s formula and the fact that the random variables∫ b
a Ḟ(t)dεt and εa are independent, gives

Cov(θ̂BLUE) = M−1
Eθ

[( ∫ b

a
Ḟ(t)�−1 dY(t) + 1

a
F(a)�−1Y(a)

)

×
( ∫ b

a
Ḟ(t)�−1 Y(t) + 1

a
F(a)�−1Y(a)

)�]
M−1

= M−1
( ∫ b

a
Ḟ(t)�−1Ḟ�(t) dt + 1

a
F(a)�−1F�(a)

)
M−1 = M−1,

where the matrixM is defined in (3.2). Since the covariance matrixM−1 is the inverse
of the information matrix in the continuous regression model in (3.1) (see [18], p. 81),
linear estimator (3.3) is the BLUE, which completes the proof of Theorem 3.1. ��
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Remark 3.1 The proof of Theorem 3.1 can easily be modified to obtain the BLUE for
the continuous model on the interval [a = 0, b]. More precisely, for a = 0 Eq. (3.7)
becomes a deterministic equation equivalent to

Y(0) = F�(0)θ , (3.8)

and we have to distinguish three cases.

(1) If the regression function F satisfies F(0) = 0p×2 (that is rank(F(0)) = 0)), deter-
ministic Eq. (3.8) does not contain any further information about the parameter θ

and the maximum likelihood estimator in model (3.1) is given by

θ̂BLUE = M−1
0

( ∫ b

0
Ḟ(t)�−1 dY(t)

)
,

where the minimum variance is given by

Cov(θ̂BLUE) = M−1
0 =

(∫ b

0
Ḟ(t)�−1Ḟ�(t) dt

)−1

.

(2) If the rank of the matrix F(0) satisfies rank(F(0)) = 1, deterministic Eq. (3.8)
contains one informative equation about θ . In that case, we assume without loss
of generality that F1,1(0) �= 0 and it follows by (3.8) that θ1 can be reformulated
by θ2, . . . , θp through

θ1 = Y1(0) −∑p
i= j θ j F1, j (0)

F1,1(0)
. (3.9)

Using (3.9) in combination with model (3.1), we obtain a reduced model by

Z(t) = Y(t) − Y1(0)

F1,1(0)

(
F1,1(0)
F2,1(0)

)
= F̃(t)θ̃ + �1/2ε(t), (3.10)

where the matrix-valued function F̃(t) is defined by

F̃T (t) = (Fi, j (t) − Fi,1(0)

F1,1(0)
F1, j (0)

)
i=1,2, j=2,...p (3.11)

and the reduced (p− 1)-dimensional parameter θ̃ is given by θ̃ = (θ2, . . . , θp). It
follows by rank(F(0)) = 1 that the matrix-valued function F̃(t) defined in (3.11)
satisfies ˜FT (0) = 02×p. Consequently, themodifiedmodel given by (3.10) satisfies
the condition of the case given in (1) and the best linear unbiased estimator for the
reduced parameter θ̃ is obtained by

ˆ̃
θBLUE = M−1

0

( ∫ b

0

˙̃F(t)�−1 dZ(t)
)
, (3.12)
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where the process {Z(t); t ∈ [0, b]} is defined by (3.10), the matrix F̃(t) is given
by (3.11), and the minimum variance is given by

Cov( ˆ̃θBLUE) = M−1
0 =

(∫ b

0

˙̃F(t)�−1 ˙̃F�(t) dt

)−1

.

The best linear unbiased estimator for the remaining parameter θ1 is then obtained
by

θ̂1 = Y1(0) −∑p
i= j

ˆ̃
θBLUE, j F1, j (0)

F1,1(0)
.

(3) If the rank of the matrix F(0) satisfies rank(F(0)) = 2, Eq. (3.8) contains two
informative equations about θ .
Let

A(t) =
(
F1,1(t) F1,2(t)
F2,1(t) F2,2(t)

)
(3.13)

be the submatrix of F which contains the first two columns of FT (t). Without loss
of generality, we assume that A(0) is non-singular (as rank(F(0)) = 2).
Then it follows by (3.8) that

(
θ1
θ2

)
= A−1(0)

(
Y(0) − (

p∑
j=3

Fi, j (0)θ j
)
i=1,2

)
. (3.14)

Using (3.14) in combination with (3.1) we obtain a reduced model given by

Z(t) = Y(t) − A(t)A−1(0)Y(0) = F̃(t)θ̃ + �1/2ε(t) (3.15)

where the matrix-valued function A(t) is given by (3.13), the matrix-valued func-
tion F̃T (t) is of the form

F̃T (t) = A(t)A−1(0)
(
Fi, j (0)

)
i=1,2; j=3,...p + (Fi, j (t))i=1,2; j=3,...p (3.16)

and the reduced (p − 2)-dimensional parameter θ̃ is given by θ̃ = (θ3, . . . , θp) .

The matrix-valued function F̃(t) defined in (3.16) satisfies F̃T (0) = 02×p. Con-
sequently, the modified model given by (3.15) satisfies the condition of the case

given in (1) and the best linear unbiased estimator ˆ̃
θBLUE for the reduced (p − 2)-

dimensional parameter θ̃ is obtained by (3.12) using the process {Z(t); t ∈ [0, b]}
defined by (3.15) and the matrix-valued function F̃(t) given by (3.16). The best
linear unbiased estimator for the remaining parameter (θ1, θ2)

T is then obtained
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by

(
θ̂1

θ̂2

)
= A−1(0)

(
Y(0) − (

p∑
j=3

Fi, j (0)
ˆ̃
θBLUE,j

)
i=1,2

)
.

3.2 Model with No Common Parameters

Recall the definition of model (2.1) in Sect. 1. It was demonstrated in Example 2.1
that this case is a special case of model (2.6), where the matrix F� is given by

F�(t) =
(
f �
1 (t) 0�

p2
0�
p1 f �

2 (t)

)
(3.17)

and θ = (θ(1)�, θ(2)�)�. Considering both components in the vector Y separately,
we obtain continuous versions of the two models introduced in (2.1),that is,

Yi (t) = f �
i (t)θ(i) + ηi (t), i = 1, 2, (3.18)

where the error processes {η(t) | t ∈ [a, b]} are defined by (2.4). An application of
Theorem 3.1 yields the following BLUE.

Corollary 3.1 Consider continuous linear regressionmodel (2.6) on the interval [a, b],
with continuously differentiable matrix (3.17), a vector {ε(t) = (ε1(t), ε2(t))� | t ∈
[a, b]} of independent Brownian motions and a matrix � defined by (2.3). The best
linear unbiased estimator for the parameter θ is given by

θ̂BLUE =
(

θ̂
(1)
BLUE

θ̂
(2)
BLUE

)

= 1

σ 2
1 σ 2

2 (1 − �2)
M−1

{∫ b

a

(
σ 2
2 ḟ1(t) −σ1σ2� ḟ1(t)

−σ1σ2� ḟ2(t) σ 2
1 ḟ2(t)

)
d

(
Y1(t)
Y2(t)

)

+1

a

(
σ 2
2 f1(a) −σ1σ2� f1(a)

−σ1σ2� f2(a) σ 2
1 f2(a)

)(
Y1(a)

Y2(a)

)}
. (3.19)

The minimum variance is given by M−1, where

M = 1

σ 2
1 σ 2

2 (1 − �2)

(
σ 2
2M11 −σ1σ2�M12

−σ1σ2�M21 σ 2
1M22

)

and

Mi j =
∫ b

a
ḟi (t) ḟ

�
j (t)dt + 1

a
fi (a) f Tj (a) i, j = 1, 2. (3.20)
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It is of interest to compare estimator (3.19) with the estimator θ̂sep = ((θ̂
(1)
sep)

�,

(θ̂
(2)
sep)

�)�, which is obtained by estimating the parameter in both models (3.18) sep-
arately. It follows from Theorem 2.1 in Dette et al. [6] that the best linear unbiased
estimators in these models are given by

θ̂ (i)
sep = M−1

i i

(∫ b

a
ḟi (t)dYi (t) + 1

a
fi (a)Yi (a)

)
, i = 1, 2, (3.21)

where the matrices are defined by

Mi i =
∫ b

a
ḟi (t) ḟ

�
i (t)dt + 1

a
fi (a) f �

i (a), i = 1, 2.

Moreover, the covariance matrices of the estimators θ̂
(1)
sep and θ̂

(2)
sep are the inverses of

the Fisher information matrices in the individual models, that is

Cov(θ̂ (i)
sep) = σ 2

i M
−1
i i i = 1, 2. (3.22)

The following result compares the variance of two estimators (3.19) and (3.21).

Theorem 3.2 If the assumptions of Corollary 3.1 are satisfied, we have (with respect
to the Loewner ordering)

Cov(θ̂ (i)
BLUE) ≤ Cov(θ̂ (i)

sep) , i = 1, 2,

for all � ∈ (−1, 1), where the θ̂
(i)
BLUE and θ̂

(i)
sep are the best linear unbiased estimators

of the parameter θ(i) obtained by simultaneous estimation (see (3.19)) and separate
estimation in the two groups (see (3.21)) , respectively.

Proof Without loss of generality we consider the case i = 1, the proof for the index
i = 2 is obtained by the same arguments. LetK1

� = (Ip1 , 0p1×p2) be a p1×(p1+ p2)-
matrix, where Ip1 and 0p1×p2 denote the p1-identity matrix and a (p1 × p2)-matrix
filled with zeros. Then,

Cov(θ̂ (i)
BLUE) = (CK1(M))−1,

where

CK1(M) = (K�
1 M

−1K1)
−1 = 1

σ 2
1 (1 − �2)

(
M11 − �2M12M

−1
22 M

�
12

)
(3.23)
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is the Schur complement of the block M22 of the information matrix M (see p. 74 in
[28]). Observing (3.22) we now compare CK1(M) and 1

σ 2M11 and obtain

CK1(M) − 1

σ 2
1

M11 = 1

σ 2
1 (1 − �2)

(
M11 − �2M12M

−1
22 M

�
12

)
− 1

σ 2
1

M11

= �2

σ 2
1 (1 − �2)

(
M11 − M12M

−1
22 M

�
12

)

:= �2

σ 2
1 (1 − �2)

CK1(M̃),

(3.24)

where CK1(M̃) is the Schur complement of the block M22 of the matrix

M̃ =
(
M11 M12
M21 M22

)
.

Note that the matrix M̃ is non-negative definite. An application of Lemma 3.12 of
Pukelsheim [28] shows that the Schur complement CK1(M̃) is also non-negative def-
inite, that is CK1(M̃) ≥ 0 with respect to the Loewner ordering. Observing (3.24) we
have

(
Cov(θ̂ (1)

BLUE)
)−1 = CK1(M) ≥ 1

σ 2
1

M11 = (Cov(θ̂ (1)
sep)
)−1

and the statement of the theorem follows. ��

Remark 3.2 If � = 0 we have CK1(M) = M11, and it follows from (3.23) that sep-
arate estimation in the individual groups does not yield less precise estimates, that
is Cov(θ̂ (l)

sep) = Cov(θ̂ (1)
BLUE) (i = 1, 2). However, in general we have Cov(θ̂ (l)

sep) ≥
Cov(θ̂ (1)

BLUE). Moreover, the inequality is strict in most cases, which means that simul-
taneous estimation of the parameters θ(1) and θ(2) yields more precise estimators. A
necessary condition for strict inequality (i.e., the matrix Cov(θ̂ (l)

sep) − Cov(θ̂ (1)
BLUE) is

positive definite) is the condition � �= 0. The following result shows that this condition
is not sufficient. It considers the important case where the regression functions f1 and
f2 in (3.17) are the same and shows that in this case the two estimators θ̂BLUE and θ̂sep
coincide.

Corollary 3.2 If the assumptions of Corollary 3.1 hold and additionally the regression
functions in model (2.6) satisfy f1 = f2, the best linear unbiased estimator for the
parameter θ is given by

θ̂BLUE =
(

θ̂
(1)
BLUE

θ̂
(2)
BLUE

)
=
∫ b

a

(
I2 ⊗ M−1

11 ḟ1(t)
)
dY(t) + 1

a

(
I2 ⊗ M−1

11 f1(a)
)
Y(a),
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where I2 denotes the 2 × 2-identity matrix and the matrix M11 is defined by (3.27).
Moreover, the minimum variance is given by Cov(θ̂BLUE) = � ⊗ M−1

11 and

Cov(θ̂ (i)
sep) = Cov(θ̂ (1)

BLUE) (i = 1, 2) .

3.3 Models with Common Parameters

Recall the definition of model (2.1) in Sect. 1. It was demonstrated in Example 2.2
that this case is a special case of model (2.6), where the matrix of regression functions
is given by

F�(t) =
(
f �
0 (t), f̃ �

1 (t), 0�
p2−p0

f �
0 (t), 0�

p1−p0 , f̃ �
2 (t)

)
(3.25)

and the vector of parameters is defined by

θ = (θ(0)� , θ̃ (1)� , θ̃ (2)�)� .

An application of Theorem 3.1 yields the BLUE in model (2.6) with the matrix F�
defined by (3.25).

Corollary 3.3 Consider continuous linear regressionmodel (2.6) on the interval [a, b],
where the matrix of regression functions F� is continuously differentiable. The best
linear unbiased estimator for the parameter θ is given by

θ̂BLUE =
⎛
⎜⎝

θ̂
(0)
BLUEˆ̃

θ
(1)
BLUEˆ̃

θ
(2)
BLUE

⎞
⎟⎠ = 1

σ 2
1 σ 2

2 (1 − �2)
M−1

⎧⎪⎨
⎪⎩
∫ b

a

⎛
⎜⎝

(σ 2
2 − σ1σ2�) ḟ0(t) (σ 2

1 − σ1σ2�) ḟ0(t)

σ 2
2

˙̃f1(t) −σ1σ2�
˙̃f1(t)

−σ1σ2�
˙̃f2(t) σ 2

1
˙̃f2(t)

⎞
⎟⎠ d

(
Y1(t)
Y2(t)

)

+ 1

a

⎛
⎝(σ 2

2 − σ1σ2�) f0(a) (σ 2
1 − σ1σ2�) f0(a)

σ 2
2 f̃1(a) −σ1σ2� f̃1(a)

−σ1σ2� f̃2(a) σ 2
1 f̃2(a)

⎞
⎠
(
Y1(a)

Y2(a)

)⎫⎬
⎭ .

(3.26)

The minimum variance is

Cov(θ̂BLUE) = M−1 ,

where

M = 1

σ 2
1 σ 2

2 (1 − �2)

⎛
⎝(σ 2

1 + σ 2
2 − σ1σ2�)M00 (σ 2

2 − σ1σ2�)M01 (σ 2
1 − σ1σ2�)M02

(σ 2
2 − σ1σ2�)M10 σ 2

2M11 −σ1σ2�M12
(σ 2

1 − σ1σ2�)M20 −σ1σ2�M21 σ 2
1M22

⎞
⎠
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and individual blocks in this matrix are given by

Mi j =
∫ b

a
ġi (t)ġ

�
j (t)dt + 1

a
gi (a)g�

j (a), (3.27)

for i, j = 0, 1, 2, where g0(t) = f0(t) and gi (t) = f̃i (t) for i = 1, 2 .

It is again of interest to compare estimate (3.26) with the estimate θ̂sep =
((θ̂

(1)
sep)

�, (θ̂
(2)
sep)

�)�, which is obtained by estimating the parameter θ(i) = ((θ(0))�,

(θ̃ (i))�)� in bothmodels i = 1, 2 (3.18) separately by using (3.21). The corresponding
covariances of the estimators θ̂

(1)
sep and θ̂

(2)
sep are given by (3.22). The following result

compares the variance of two estimators (3.26) and (3.21). Its proof is similar to the
proof of Theorem 3.2 and therefore omitted.

Theorem 3.3 If the assumptions of Corollary 3.3 are satisfied, we have (with respect
to the Loewner ordering)

Cov(θ̂ (i)
BLUE) ≤ Cov(θ̂ (i)

sep) , i = 1, 2,

for all � ∈ (−1, 1), where the θ̂
(i)
BLUE and θ̂

(i)
sep are the best linear unbiased estimators

of the parameter θ(i) obtained by simultaneous and separate estimation, respectively.

Remark 3.3 The results presented so far have been derived for the case where the
error process {ε(t) = (ε1(t), ε2(t))�| t ∈ [a, b]} in (2.6) consists of two independent
Brownian motions. This assumption has been made to simplify the notation. Similar
results can be obtained for Markov processes, and in this remark, we indicate the
essential arguments.
To be precise, assume that the error processes {ε(t) = (ε1(t), ε2(t))�| t ∈ [a, b]} in
model (2.6) consist of two independent centered Gaussian processes with continuous
covariance kernel given by

K (s, t) = E[εi (s)εi (t)] = u(s)v(t)min{q(s), q(t)} s, t ∈ [a, b], (3.28)

where u(·) and v(·) are functions defined on the interval [a, b] such that the function
q(·) = u(·)/v(·) is positive and strictly increasing. Kernels of form (3.28) are called
triangular kernels, and a famous result in Doob [14] essentially shows that a Gaussian
process is a Markov process if and only if its covariance kernel is triangular (see
also [22]). In this case model (2.6) can be transformed into a model with an error
process consisting of two independent Brownian motions using the arguments given
in Appendix B of Dette et al. [10]. More precisely, define

q(t) = u(t)

v(t)

and consider the stochastic process

ε(t) = v(t)ε̃(q(t)),
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where {ε̃(t̃) = (ε̃1(t̃)�, ε̃2(t̃))| t̃ ∈ [ã, b̃]} consists of two independent Brownian
motions on the interval [ã, b̃] = [q(a), q(b)]. It now follows from Doob [14] that
the process {ε(t) = (ε1(t), ε2(t))�| t ∈ [a, b]} consists of two independent centered
Gaussian processes on the interval [a, b]with covariance kernel (3.28). Consequently,
if we consider the model

Ỹ(t̃) =
(
Ỹ1(t̃)
Ỹ2(t̃)

)
= F̃�(t̃)θ + �1/2ε̃(t̃) , t̃ ∈ [q(a), q(b)], (3.29)

and

F̃(t̃) = F(q−1(t̃))

v(q−1(t̃))
, ε̃(t̃) = ε(q−1(t̃))

v(q−1(t̃))
, Ỹ(t̃) = Y(q−1(t̃))

v(q−1(t̃))
,

the results obtained so far are applicable. Thus, a ”good” estimator obtained for the
parameter θ in model (3.29) is also a ”good estimator” for the parameter θ in model
(3.1) with error process consisting of two Gaussian processes with covariance kernel
(3.28). Consequently, we can derive the optimal estimator for the parameter θ in
continuous model (3.1) with covariance kernel (3.28) from the best linear unbiased
estimator in the model given in (3.29) with Brownian motions by an application of
Theorem 3.1. The resulting best linear unbiased estimator for θ in model (3.1) with
triangular kernel (3.28) is of the form

θ̂BLUE = M−1
{ ∫ b

a

Ḟ(t)v(t) − F(t)v(t)

u̇(t)v(t) − u(t)v̇(t)
�−1 d

(
Y(t)

v(t)

)
+ F(a)�−1Y(a)

u(a)v(a)

}
,

where the minimum variance is given by

M−1 =
(∫ b

a

(
Ḟ(t)v(t)−F(t)v̇(t)

)
�−1(Ḟ(t)v(t)−F(t)v̇(t)

)�
v2(t)[u̇(t)v(t)−u(t)v̇(t)] dt

+F(a)�−1F�(a)
u(a)v(a)

)−1
.

4 Optimal Designs for Comparing Curves

In this section we will derive optimal designs for comparing curves. The first part is
devoted to a discretization of the BLUE in the continuous model. In the second part
we develop an optimality criterion to obtain efficient designs for the comparison of
curves based on the discretized estimators.

4.1 From the Continuous to the Discrete Model

To obtain a discrete design for n observations at the points a = t1, . . . , tn from the
continuous design derived in Sect. 3, we use a similar approach as inDette et al. [6] and
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construct a discrete approximation of the stochastic integral in (3.3). For this purpose
we consider the linear estimator

θ̂n = M−1
{ n∑

i=2

�i Ḟ(ti−1)�
−1(Y (ti ) − Y (ti−1)) + F(a)

a
�−1Ya

}

= M−1
{ n∑

i=2

�i�
−1(Y (ti ) − Y (ti−1)) + F(a)

a
�−1Ya

}
, (4.1)

where a = t1 < t2 < . . . < tn−1 < tn = b,�2, . . . ,�n are p× pweight matrices and
�2 = �2Ḟ(t1), . . . ,�n = �nḞ(tn−1) are p × 2 matrices, which have to be chosen in
a reasonable way. The matrixM−1 is given in (3.4). To determine these weights in an
“optimal” way we first derive a representation of the mean squared error between best
linear estimate (3.3) in the continuous model and its discrete approximation (4.1). The
following result is a direct consequence of Ito’s formula.

Lemma 4.1 Consider continuous model (3.1). If the assumptions of Theorem 3.1 are
satisfied, we have

Eθ [(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)
�] = M−1

{ n∑
i=2

∫ ti

ti−1

[
Ḟ(s) − �i

]
�−1[Ḟ(s) − �i

]� ds

+
n∑

i, j=2

∫ ti

ti−1

[
Ḟ(s) − �i

]
�−1Ḟ�(s) ds θ θ�

∫ t j

t j−1

Ḟ(s)�−1[Ḟ(s) − �i
]� ds

}
M−1.

(4.2)

In the following we choose optimal p × 2 matrices 
i = �i Ḟ(ti−1) and design
points t2, . . . , tn−1 (t1 = a, tn = b), such that linear estimate (4.1) is unbiased and
the mean squared error matrix in (4.2) “becomes small.” An alternative criterion is to
replace the mean squared error Eθ [(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)

�] by the mean squared
error

Eθ [(θ̂n − θ)(θ̂n − θ)�]

between the estimate θ̂n defined in (4.1) and the “true” vector of parameters. The
following result shows that in the class of unbiased estimators both optimization prob-
lems yield the same solution. The proof is similar to the proof of Theorem 3.1 in Dette
et al. [6].

Theorem 4.1 The estimator θ̂n defined in (4.1) is unbiased if and only if the identity

M0 =
∫ b

a
Ḟ(s)�−1Ḟ�(s) ds =

n∑
i=2


i�
−1
∫ ti

ti−1

Ḟ�(s) ds

=
n∑

i=2

�i�
−1(F(ti ) − F(ti−1))

�, (4.3)
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is satisfied. Moreover, for any linear unbiased estimator of the form θ̃n = ∫ ba G(s)dYs
we have

Eθ [(θ̃n − θ)(θ̃n − θ)�] = Eθ [(θ̃n − θ̂BLUE)(θ̃n − θ̂BLUE)�] + M−1.

In order to describe a solution in terms of optimal “weights” �∗
i and design points

t∗i we recall that the condition of unbiasedness of the estimate θ̂n in (4.1) is given by
(4.3) and introduce the notation

Bi = [F(ti ) − F(ti−1)]�−1/2/
√
ti − ti−1, (4.4)

Ai = �i�
−1/2

√
ti − ti−1.

It follows from Lemma 4.1 and Theorem 4.1 that for an unbiased estimator θ̂n of form
(4.1) the mean squared error has the representation

Eθ

[
(θ̂BLUE − θ̂n)

�(θ̂BLUE − θ̂n)
] = −M−1M0M−1 +

n∑
i=2

M−1AiAi
�M−1,(4.5)

which has to be “minimized” subject to the constraint

M0 =
∫ b

a
Ḟ(s)�−1Ḟ�(s)ds =

n∑
i=2

AiB�
i . (4.6)

The following result shows that a minimization with respect to the weights �i (or
equivalently Ai ) can actually be carried out with respect to the Loewner ordering.

Theorem 4.2 Assume that the assumptions of Theorem 3.1 are satisfied and that the
matrix

B =
n∑

i=2

BiB�
i =

n∑
i=2

[F(ti ) − F(ti−1)]�−1[F(ti ) − F(ti−1)]�
ti − ti−1

, (4.7)

is non-singular. Let �∗
2, . . . ,�

∗
n denote (p × 2)-matrices satisfying the equations

�∗
i = M0B−1F(ti ) − F(ti−1)

ti − ti−1
i = 2, . . . , n, (4.8)

then �∗
2, . . . ,�

∗
n are optimal weight matrices minimizing Eθ [(θ̂BLUE − θ̂n)(θ̂BLUE −

θ̂n)
�] with respect to the Loewner ordering among all unbiased estimators of form

(4.1). Moreover, the variance of the resulting estimator θ̂∗
n is given by

Cov(θ̂∗
n ) = M−1

{
M0B−1M0 + 1

a
F(a)�−1F�(a)

}
M−1
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Proof Let v denote a p-dimensional vector and consider the problem of minimizing
the criterion

v�
Eθ [(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)

�]v (4.9)

subject to constraint (4.6). Observing (4.5) this yields the Lagrange function

Gv(A1 . . . ,An) = −v�M−1M0M−1v +
n∑

i=2

(v�M−1AiA�
i M

−1v)

−tr
{
�(M0 −

n∑
i=2

AiB�
i )
}
, (4.10)

where A2, . . . ,An are (p × 2)-matrices and � = (λk,i )
p
k,i=1 is a (p × p)-matrix of

Lagrange multipliers. The function Gv is convex with respect to A2, . . . ,An . There-
fore, taking derivatives with respect to A j yields as necessary and sufficient for the
extremum (here we use matrix differential calculus)

2(M−1v)�Ai ⊗ (M−1v)� + vec {�Bi } = 0�
2p, i = 2, . . . , n .

Rewriting this system of linear equations in a (p × 2)-matrix form gives

2M−1vv�M−1Ai = −�Bi i = 2, . . . , n .

Substituting the expression in (4.6) and using the non-singularity of the matrices M
and B yields for the matrix of Lagrangian multipliers

� = −2M−1vv�M−1M0B−1 ,

which gives

2M−1vv�M−1Ai = 2M−1vv�M−1M0B−1Bi i = 2, . . . , n . (4.11)

Note that one solution of (4.11) is given by

A∗
i = M0B−1Bi , i = 2, . . . , n

which does not depend on the vectors v. Therefore, the tuple of matrices (A∗
2, . . . ,A

∗
n)

minimizes the convex function Gv in (4.10) for all v ∈ R
p.

Observing the notations in (4.4) shows that the optimal matrix weights are given
by (4.8). Moreover, these weights in (4.8) do not depend on the vector v either and
provide a simultaneous minimizer of the criterion defined in (4.9) for all v ∈ R

p.
Consequently, the weights defined in (4.8) minimize Eθ [(θ̂BLUE − θ̂n)(θ̂BLUE − θ̂n)

�]
under unbiasedness constraint (4.6) with respect to the Loewner ordering. ��
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Remark 4.1 If the matrix B in Theorem 4.2 is singular, the optimal weights are not
uniquely determined and we propose to replace the inverse B by its Moore–Penrose
inverse.

Note that for fixed design points t1, . . . , tn Theorem 4.2 yields universally optimal
weights�∗

2, . . . ,�
∗
n (with respect to theLoewner ordering) for estimators of form (4.1)

satisfying (4.3). On the other hand, a further optimization with respect to the Loewner
ordering with respect to the choice of the points t2, . . . , tn−1 (t1 = a, tn = b) is not
possible, and we have to apply a real-valued optimality criterion for this purpose. In
the following section, we will derive such a criterion which explicitly addresses the
comparison of the regression curves from the two groups introduced in Sect. 2.

4.2 Confidence Bands

We return to the practical scenario of the two groups introduced in (2.1), where we
now focus on the comparison of these groups on the interval [a, b].
More precisely, consider the model introduced in (2.6) and let θ̂∗

n be estimator (4.1)
with optimal weights defined by (4.8) from n observations taken at the points a =
t1 < t2 < . . . < tn−1 < tn = b. Then this estimator is normally distributed with mean
E[θ̂∗

n ] = θ and covariance matrix

Cov(θ̂∗
n ) = M−1

{
M0B−1M0 + 1

a
F(a)�−1F�(a)

}
M−1

where the matrices M,M0 and B are given by (3.2), (4.6) and (4.7), respectively.
Note that the covariance matrix depends on the points t1, . . . , tn through the matrix
B−1. Moreover, using the estimator θ̂∗

n the prediction of the difference of a fixed point
t ∈ [a, b] satisfies

(1,−1)F�(t)θ̂∗
n − (1,−1)F�(t)θ ∼ Np(0, h(t; t1, . . . , tn)) ,

where

h(t; t1, . . . , tn) = (1,−1)F�M−1
{
M0B−1M0 + 1

a
F(a)�−1F�(a)

}

M−1F(t)(1,−1)T .

We now use this result and the results of Gsteiger et al. [16] to obtain a simultaneous
confidence band for the difference of the two curves. More precisely, if the inter-
val [a, b] is the range where the two curves should be compared, the simultaneous
confidence band is defined as follows. Consider the statistic

T̂ = sup
t∈[a,b]

|(1,−1)F�(t)θ̂∗
n − (1,−1)F�(t)θ |

{h(t; t1, . . . , tn)}1/2 ,
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and define D as the (1 − α)-quantile of the corresponding distribution, that is

P(T̂ ≤ D) = 1 − α.

Note that Gsteiger et al. [16] propose the parametric bootstrap for choosing the critical
value D. Define

u(t; t1, . . . , tn) = (1,−1)F�(t)θ̂∗
n + D · {h(t; t1, . . . , tn)}1/2,

l(t; t1, . . . , tn) = (1,−1)F�(t)θ̂∗
n − D · {h(t; t1, . . . , tn)}1/2,

then the confidence band for the difference of the two regression functions is defined
by

C1−α = {g : [a, b] → R | l(t; t1, . . . , tn) ≤ g(t) ≤ u(t; t1, . . . , tn) for all t ∈ [a, b]}.
(4.12)

Consequently, good points t1 = a < t2 < . . . < tn−1, tn = b should minimize the
width

u(t; t1, . . . , tn) − l(t; t1, . . . , tn) = 2 · D · {h(t; t1, . . . , tn)}1/2

of this band at each t ∈ [a, b]. As this is only possible in rare circumstances, we
propose to minimize an L p-norm of the function h(·; t1 . . . , tn) as a design criterion,
that is


p(t1, . . . , tn) = ‖h(·; t1 . . . , tn)‖p :=
( ∫ b

a
[h(t; t1 . . . , tn)]p

)1/p
dt, 1 ≤ p ≤ ∞,

(4.13)

where the case p = ∞ corresponds to the maximal deviation

‖h(·; t1 . . . , tn)‖∞ = sup
t∈[a,b]

|h(t; t1 . . . , tn)|.

Finally, the optimal points a = t∗1 < t∗2 < . . . < t∗n = b (minimizing (4.13)) and the
corresponding weights derived in Theorem 4.2 provide the optimal linear unbiased
estimator of form (4.1) (with the corresponding optimal design).

Example 4.1 We now conclude this section by considering the cases of no common
and common parameters, respectively.

(a) If we are in the situation of Example 2.1 (no common parameters), the regression
function F�(t) is of form in (3.17) and the variance of the prediction of the
difference at a fixed point t ∈ [a, b] reduces to
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h(t; t1, . . . , tn) = ( f �
1 (t),− f �

2 (t))M−1
{
M0B−1M0

+1

a
F(a)�−1F�(a)

}
M−1( f �

1 (t),− f �
2 (t))�.

The corresponding design criterion is given by


p
(
t1, . . . , tn

) = ‖( f �
1 ,− f �

2 )M−1
{
M0B−1M0

+1

a
F(a)�−1F�(a)

}
M−1( f �

1 ,− f �
2 )�‖p . (4.14)

(b) If we are in the situation of Example 2.2 (common parameters), the regression
functionF�(t) is givenby (3.25) and the variance of the predictionof the difference
at a fixed point t ∈ [a, b] reduces to

h(t; t1, . . . , tn) = (0, f̃ �
1 (t),− f̃ �

2 (t))M−1
{
M0B−1M0

+1

a
F(a)�−1F�(a)

}
M−1(0, f̃ �

1 (t),− f̃ �
2 (t))� .

The corresponding design criterion is given by


p
(
t1, . . . , tn

) = ‖(0�
p0 , f̃ �

1 ,− f̃ �
2 )M−1

{
M0B−1M0

+1

a
F(a)�−1F�(a)

}
M−1(0�

p0 , f̃ �
1 ,− f̃ �

2 )�‖p .

5 Numerical Examples

In this section the methodology is illustrated in examples by means of a simulation
study. To be precise, we consider regression model (2.6), where the matrix F(t) is
given by (3.17) corresponding to the case that the regression function does not share
common parameters, see Sect. 3.2 for more details. In this case the corresponding
bounds for the confidence band are given by (4.12), where

u(t; t1, . . . , tn) = (θ̂∗(1)
n )� f (1)(t) − (θ̂∗(2)

n )� f (2)(t) + D · {h(t; t1, . . . , tn)}1/2,
l(t; t1, . . . , tn) = (θ̂∗(1)

n )� f (1)(t) − (θ̂∗(2)
n )� f (2)(t) − D · {h(t; t1, . . . , tn)}1/2,

and θ̂∗
n = ((θ̂

∗(1)
n )�, (θ̂

∗(2)
n )�)� is estimator (4.1) with optimal weights defined in

(4.8). The design space is given by the interval [a, b] = [1, 10], and we consider three
choices for the functions f1 and f2 in matrix (3.17), that is
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Table 1 Optimal designs points on the interval [1, 10] for the estimator θ̂∗
n in (4.1) minimizing the criterion


∞ in (4.14)

Models Correlation

� = 0.20 � = 0.50 � = 0.70

f1 = f A & f2 = fB [1, 1.59, 3.93, 10] [1, 1.62, 3.91, 10] [1, 1.74, 7.99, 10]

f1 = f A & f2 = fC [1, 3.46, 9.60, 10] [1, 2.86, 8.83, 10] [1, 2.61, 3.52, 10]

f1 = fB & f2 = fC [1, 2.20 , 6.25, 10] [1, 1.62, 3.98 , 10] [1, 2.85, 6.29 , 10]

Different correlations � = 0.2, 0.5, 0.7 and different regression functions defined in (5.1) are considered

f A(t) = (t, sin(t), cos(t))�,

fB(t) = (t2, cos(t), cos(2t))�, (5.1)

fC (t) = (
t, log(t),

1

t

)�
.

To model the dependence between the two groups we use the covariance matrix

� =
(
0.1 0.1�
0.1� 0.1

)
,

in (2.6), where the correlations are chosen as � = 0.2, 0.5, 0.7. Following the dis-
cussion in Sect. 4.1 we focus on the comparison of the regression curves for the two
groups and derive optimal designs, minimizing the criterion 
∞ defined in (4.14). As
a result, we obtain simultaneous confidence bands with a smaller maximal width for
the difference of the curves describing the relation in the two groups. We can obtain
similar results for different values p ∈ (0,∞) in (4.14), but for the sake of brevity
we concentrate on the criterion 
∞ which is probably also the easiest to interpret for
practitioners.

We denote by θ̂∗
n the linear unbiased estimator derived in Sect. 4. For each of the

combinations of regression functions containing two different functions defined in
(5.1), the optimal weights have been found by Theorem 4.2 and the optimal design
points t∗i are determinedminimizing the criterion
∞ defined in (4.14). For the numer-
ical optimization the particle swarm optimization (PSO) algorithm is used (see, for
example, [5]) assuming a sample size of four observations in each group, that is, n = 4.
Furthermore, the uniform design used in the following calculations is the design which
has four equally spaced design points in the interval [1, 10]. The 
∞-optimal design
points minimizing the criterion criterion in (4.14) are given in Table 1 for all combi-
nations of models and correlations under consideration. Note that for each model the
corresponding optimal design points change for different values of correlation �.

In order to investigate the impact of the optimal design on the structure of the
confidence bands we have performed a small simulation study simulating confidence
bands for the difference of the regression functions. The vector of parameter values

used for each model is θ = (θ(1)�, θ(2)�)� = (1, 1, 1, 1, 1, 1)�. In Fig. 1 we display
the averages of uniform confidence bands defined in (4.12) under the uniform and
optimal design calculated by 100 simulation runs.
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Fig. 1 Confidence bands for the difference of the regression functions (solid gray line) on the basis of an
optimal (solid lines) and uniform design (dashed lines). Left panel: � = 0.2. Middle panel: � = 0.5. Right
panel: � = 0.7. First row: model with f1 = f A and f2 = fB . Second row: model with f1 = f A and
f2 = fC . Third row: model with f1 = fB and f2 = fC

Table 2 Values of the criterion 
∞ for the optimal and uniform design with four observations in each
group in the interval [1, 10]
Models Design Correlation

� = 0.2 � = 0.5 � = 0.7

f1 = f A & f2 = fB Optimal 14.79 9.44 6.09

Uniform 141.87 142.59 148.74

f1 = f A & f2 = fC Optimal 16.00 10.00 6.60

Uniform 33.32 29.10 25.66

f1 = fB & f2 = fC Optimal 14.71 9.53 5.99

Uniform 147.27 127.19 115.07

The error process is given by two independent Brownianmotions with correlation � = 0.2, 0.5, 0.7 between
the groups, respectively

The left, middle and right columns show the results for the correlations � = 0.2,
� = 0.5 and� = 0.7, respectively,while the rows correspond to different combinations
for the functions f1 and f2 (first row: f1 = f A, f2 = fB , middle row: f1 = f A,
f2 = fC and last row f1 = fB , f2 = fC ). In each graph, the confidence bands from
the
∞-optimal or the uniform design are plotted separately using the solid and dashed
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lines, respectively, along with the plot for the true difference f �
1 (t)θ(1) − f �

2 (t)θ(2)

(solid gray lines).
We observe that in all cases under considerations the use of 
∞-optimal designs

yields a clearly visible improvement compared to the uniform design. The maximal
width of the confidence band is reduced substantially. Moreover, the bands from the

∞-optimal designs are nearly uniformly narrower than the bands based on the uni-
form design (except for the confidence bands displayed in Fig. 1 in the second row
of the first panel). Even more importantly, the confidence bands based on the 
∞-
optimal design show a similar structure as the true differences, while the confidence
bands from the uniform design oscillate.

A comparison of the left, middle and right columns in Fig. 1 shows that the max-
imum width for the confidence bands based on the optimal design decreases with
increasing (absolute) correlation �. This effect is not visible for the confidence bands
based on the uniform design. For example, for the middle row of Fig. 1, which cor-
responds to the case f1 = f A and f2 = fC , the maximum width of the confidence
bands based on the equally spaced design points even seems to increase.
Table 2 presents the values of the criterion
∞ in (4.14) for the different scenarios and
confirms the conclusions drawn from the visual inspection of the confidence bands
plots.We observe that the use of the optimal design points reduces themaximumwidth
of the confidence bands substantially. Moreover, for the optimal design the maximum
width becomes smaller with increasing (absolute) correlation. On the other hand this
monotonicity cannot be observed in all cases for the uniform designs.

In an additional numerical study we investigated the amount of model robustness of
the optimal designs depicted in Table 1. For the sake of brevity, we only state the main
results here:Weobserved that the optimal designs basedonmodel combinations,which
involve the strongly oscillating function fB , still produce narrow confidence bands for
the other model combinations. These bands are still thinner than the corresponding
confidence bands based on the uniform design. On the other hand, if the optimal design
based on the model combination f A and fC is used to construct confidence bands for
the other model combinations, the resulting bands become wider, but still have shapes
similar to the ones based on the uniform design. In general, the usage of the optimal
designs even formiss-specifiedmodel combination does not result in wider confidence
bands for all models under consideration.

Summarizing, the use of the proposed 
∞-optimal design improves statistically
inference substantially reducing the maximum variance of the difference of the two
estimated regression curves even if the regression curves are misspecified. Moreover,
simultaneous estimation in combination with a 
∞-optimal design yields a further
reduction of the maximum width of the confidence bands, thus providing a more
precise inference for the difference of the curves describing the relation between t and
the responses in the two groups.
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