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Abstract

The primary objective of this dissertation was to (i) develop novel resampling ap-
proaches for handling repeated measures data with missing values, (ii) compare their
empirical power against other existing approaches using a Monte Carlo simulation
study, and (iii) pinpoint the limitations of some common approaches, particularly for
small sample sizes. This dissertation investigates four different statistical problems.
The first is semiparametric inference for comparing means of matched pairs with
missing data in both arms. Therein, we propose two novel randomization techniques;
a weighted combination test and a multiplication combination test. They are based
upon combining separate results of the permutation versions of the paired t-test and
Welch test for the completely observed pairs and the incompletely observed compo-
nents, respectively. As second problem, we consider the same setting but missingness
in one arm only. There, we investigate a Wald-type statistic (WTS), an ANOVA-type
statistic (ATS), and a modified ANOVA-type statistic (MATS). However, ATS and
MATS are not distribution free under the null hypothesis, and WTS suffers from
the slow convergence to its limiting χ2 distribution. Thus, we develop asymptotic
model-based bootstrap versions of these tests. The third problem is on nonparametric
rank-based inference for matched pairs with incompleteness in both arms. In this
more general setup, the only requirement is that the marginal distributions are
not one point distributions. Therein, we propose novel multiplication combination
tests that can handle three different testing problems, including the nonparametric
Behrens-Fisher problem (Hp

0 : {p = 1/2}). Finally, the fourth problem is nonpara-
metric rank-based inference for incompletely observed factorial designs with repeated
measures. Therein, we develop a wild bootstrap approach combined with quadratic
form-type test statistics (WTS, ATS, and MATS). These rank-based methods can be
applied to both continuous and ordinal or ordered categorical data and (some) allow
for singular covariance matrices. In addition to theoretically proving the asymptotic
correctness of all the proposed procedures, extensive simulation studies demonstrate
their favorable small samples properties in comparison to classical parametric tests.
We also motivate and validate our approaches using real-life data examples from a
variety of fields.
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1 Motivation

Repeated measures designs are frequently employed in a wide variety of fields, in-
cluding medicine, psychology, biology, ecology, agriculture, and industry. This design
refers to a study where the same subject is observed repeatedly under different exper-
iment conditions or multiple time points. The subjects may be patients, cells, plants,
animals, products, etc. Examples of repeated measures studies include the response
of physiological and molecular traits of plants to environmental factors, progression
of disease between treatment groups over time, annual revenue of companies across
years, preoperative anxiety in women before and after surgery, and pollutant level
change over time. Repeated measures design can be built up in an abundance of
ways, from a simple set up of matched pairs design in which the same subject is
observed twice to a more complex framework of mixed models or growth curves.

A remarkable merit of repeated measures design is that conducting several measure-
ments on each subject eliminates within-subject variation, increases precision, and
reduces error, thereby potentially increasing the study’s power, for more details see
Davis (2002). In spite of its desirable properties, repeated measure designs have a
few critical challenges that must be addressed appropriately. First, since we have
been measuring the same subject over and over again, the observations are correlated,
and the assumption of the observation’s independence is no longer tenable. Hence,
data dependencies must be dealt with properly. Second, when it comes to long-term
follow-up, obtaining completely observed data could be a fantasy. The latter was
confirmed by Bell et al. (2014), who conducted a review of randomized clinical
trials published between July and December 2013 in four top medical journals and
discovered that 95% of them reported some missing outcome data. Consequently,
complicated statistical models emerge, making the development of suitable statistical
procedures challenging and limiting the number of available adequate techniques.

We will begin with the simplest repeated measures design, the matched pairs design.
When there are missing data, the outcome is a mixture of paired components
(complete cases) and unpaired observations (incomplete cases). Potential approaches
that can handle mean-based inference for such data design are proposed in Bhoj
(1978), Ekbohm (1976), Kim et al. (2005), Lin and Stivers (1974), Looney and Jones
(2003), and Samawi and Vogel (2014). However, they all have the drawback of being
developed under particular model assumptions such as bivariate normality, symmetry,
or homoscedasticity that are difficult to verify in practice. If the assumptions are
violated, inaccurate decisions due to potentially inflated or conservative type-I error
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4 1 Motivation

rates may occur (Amro and Pauly, 2017; Fong et al., 2018; Konietschke et al., 2012;
Samawi and Vogel, 2014; Xu and Harrar, 2012). Thus, we are interested in developing
statistical methods for the problem of matched pairs with missing values that are
robust against deviations from parametric assumptions and lead to valid inferences
in case of heteroscedasticity or skewed distributions. Besides, we solve the following
shortcomings of existing incomplete matched pairs approaches:

• Missing values do not necessarily occur on both arms but may occur on a single
arm, and most available approaches are inapplicable under this unique missing
pattern (Qi et al., 2019).

• Most of the available methods test for differences among the means. If ordinal or
ordered categorical data are present, mean-based approaches are not applicable
and show their limitation (Fong et al., 2018).

For this, we are addressing this incomplete paired data problem under both semi-
parametric and nonparametric setups. Under a semiparametric model, we propose
several statistical approaches that can handle metric data, where null hypotheses are
formulated in terms of means, with missingness in both arms ((I) and (II)) and with
missingness in a single arm (III). Furthermore, we propose several approaches under
the nonparametric model, where we base inference on rank-statistics of the relative
effects (II). Thus, our proposed procedures work for data with nonnormal or normal
distributions, heteroscedastic and homoscedastic variances, ordinal, categorical, and
continuous data, and unbalanced and balanced sample sizes.

Moreover, this dissertation also discusses a more complicated design that investi-
gates the main and interaction effects between several factors; repeated measure-
ments. Parametric mean-based procedures such as multivariate analysis of variance
(MANOVA) or linear mixed models may be applied for analyzing data from such
designs. However, owing to the restrictive distributional assumptions that these pro-
cedures require, such as continuity, multivariate normality, or special dependencies,
their practical application is not always plausible (Arnau et al., 2012; Konietschke
et al., 2015). In addition, classical MANOVA approaches are not applicable for
ordinal or ordered categorical data. In such cases, nonparametric rank-based ap-
proaches provide an attractive option due to their numerous advantages, which can
be summarized as follows:

(1) They are not based on stringent parametric assumptions about the underlying
distribution such as normality or homoscedasticity.

(2) They are applicable for continuous as well as non-continuous data, such as
discrete or ordered categorical data.

(3) They are robust to outliers.

(4) They are invariant under monotonic transformations of the data.
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(5) Nonparametric methods often provide more accurate test decisions than para-
metric methods in case of nonnormal distribution, arbitrary covariance struc-
tures, or unbalanced experimental designs.

For more details, please refer to Breitung and Gourieroux (1997), Brunner et al. (2018),
and Hettmansperger and McKean (2010). Several nonparametric techniques are
available in the literature for handling factorial designs with repeated measurements
data (Akritas, 2011; Akritas and Arnold, 1994; Akritas and Brunner, 1997; Brunner
et al., 2017; Brunner and Puri, 2001; Friedrich et al., 2017a; Munzel and Brunner,
2000). However, all the aforementioned approaches are only applicable for fully
observed data. Other nonparametric tests that can handle incomplete data are
proposed by Brunner et al. (1999) and Domhof et al. (2002). But, their suggested
Wald-type test needs large sample sizes to obtain accurate test decisions and their
ANOVA-type test is in general not asymptotically correct and does not control type-I
error accurately under small sample sizes. Thus, we developed novel nonparametric
approaches that have all of the aforementioned properties (1-5), as well as the
following:

(6) They can be used for repeated measures data with missing values.

In the sequel, we provide motivating examples that demonstrate the need for ade-
quate test procedures to deal with incompletely observed data. Each of the following
examples represents a particular case that can be handled by one (or two) of our
suggested methods.

1. Coyote DNA study
We consider a study conducted by Riordan (2012) and aimed at comparing two
techniques for extracting DNA from coyote blood samples. One technique was the
QIAGEN DNeasyr Blood and Tissue Kit, while the other was the chloroform isoamyl
alcohol method. The study includes 30 different coyotes. Due to time and cost
constraints, the researcher selected 6 coyotes at random and tested their DNA using
both techniques, 8 with the kit and 16 with chloroform. For more details about this
study, please refer to Einsporn and Habtzghi (2013). In order to determine if the
extraction methods produce a significantly different mean concentration of DNA,
a method for testing mean based hypothesis is required. This method should be
capable of handling small sample sizes and data with missingness in both arms. Thus,
the weighted combination method proposed in (I) or the multiplication combination
approach for testing mean hypotheses (II) is recommended.
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2. Breast Cancer Study

The breast cancer study has been conducted by the Cancer Genome Atlas (TCGA)
project to better diagnose, treat, and prevent breast cancer (Clark et al., 2013;
Koboldt et al., 2012). The study involves 1093 breast cancer patients, and we were
interested in the patients with pathological stage I. This subgroup consists of 90
patients. Sixteen provide both normal and tumor tissue, and 4 with only tumors.
We study the following eight genes: TP53, ABCC1, HRAS, GSTM1, ERBB2, CD8A,
C1D, and GBP3. We want to see whether early stage I breast cancer patients’ mean
genetic expressions of each gene significantly differ between normal and tumor tissues.
We have here the situation of matched pairs with missingness in a single arm. We
analyze this data example in detail in section 5 in (III).

3. Migraine study

We consider the clinical migraine study conducted by Kostecki-Dillon et al. (2018)
which investigates four sessions of a nondrug headache treatment program. An
ordinal scale ranging from 0 to 20 was used to assess the headache severity level
over the treatment sessions. A total of 135 migraine patients took part in this
study. However, the data contains a large number of missing observations. We only
consider the patients’ first and third session clinical records to fit in the matched
pairs design. From the 132 patients involved in Session 1 and Session 3, only nc = 82
patients were measured twice, n1 = 44 patients were only seen in Session 1 and
n2 = 6 patients were only assessed in Session 3. Since the observed data are ordinal
grading scores and means do not offer an appropriate measure for score data, we
need a rank-based matched pairs approach to investigate the effects of attending the
sessions. Additionally, the considered approach must be capable of handling paired
data with missingness in both arms. We analyze this data example in detail in (II).

4. Skin disorder trial

We consider the skin disorder trial published by Davis (2002) to investigate a skin
condition’s severe rate over time and compare two therapy treatments, drugs, and
placebo. In this study, 88 patients received the drug active treatment, and 84
patients were in the placebo group. An ordinal response scale was used to evaluate
the degree of improvement over three follow-up visits (1 = rapidly improving, 2 =
slowly improving, 3 = stable, 4 = slowly worsening, 5 = rapidly worsening). This is
a factorial design with two factors ”treatment” and ”time”. This dataset was not
complete, and approximately 30% of observations were missing. Due to the ordinal
score data, nonparametric rank-based methods are, in this case, applicable. Further,
the method should be able to handle data with a moderate number of missing values.
Thus, we analyze the data using the factorial designs method proposed in (IV).
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This dissertation is organized as follows: A brief overview of the consequences of
missing data and the missing data mechanisms is presented in Chapter 2. Chapter 3
and 4 outline our different considered statistical models and resampling procedures,
respectively. Chapter 5 provides summaries of the four articles this dissertation is
based upon. While, Chapter 6 describes the fifth scenario; a semiparametric setting
for multivariate data with missing values which is still under development. Lastly,
Chapter 7 contains discussions of the results, conclusions, and an outlook to some
future researches. The four articles and their supplementary materials are included
in Part II of the dissertation.



2 Missing Data

In order to conduct statistical inference for decision making, a sufficient amount of
data must exist that can be used to retrieve information. However, the collected
data might be incomplete in many situations. Many factors can lead to data with
missing values, including sample subjects’ refusal to provide data for certain variables,
experimental equipment failures, missed study visits, or data entry mistakes. Missing
data may have a substantial impact on the statistical inferences drawn from the data
(Allison, 2001; Little and Rubin, 2019). It is intensified in repeated measurements
designs since a single missed observation might impact several subsequent observations
on the same research subject. The optimal solution is to repeat the experiment
in order to receive the complete data set. However, this is not always achievable,
mainly when measurements must be taken at certain time intervals, there are not
enough additional experimental subjects, or rerunning the experiment would be too
expensive. Thus, this is an impractical solution, other approaches for resolving this
issue are needed.

The most simple approach for handling data that has missing values is the complete
case analysis. This approach restricts the data analysis on the fully observed subjects,
i.e., subjects without any missing values. For example, if one or more observations
for subject i are missing, then all observations for subject i are deleted from the data
set. Convenience and straightforwardness are the main advantages of this method;
yet, ignoring some available information might result in biased estimates, a loss of
statistical power, and perhaps inaccurate decisions, except in a few cases (Allison,
2001; Enders, 2010; Little and Rubin, 2019).

An alternative approach to deleting subjects with missing values is imputation, in
which no observable data is omitted, and missing values are replaced with suitable
substitutes estimated from the existing data. Then, data analysis can be performed
the same as if the dataset were complete. Even though the imputation approach
appears easy to implement, it requires a careful selection of the appropriate imputation
model based upon the challenges of each studied dataset (Ramosaj et al., 2020). It is
worth noting that performing a different analysis on the same dataset often provides
different results based on the chosen imputation model, implying that the analysis
decision is subjective. According to Guo and Yuan (2017), imputation approaches
are not suggested for small sample sizes since they can result in inaccurate test
decisions, such as inflated type-I error or low power behavior. Thus, it is vital to
develop statistical techniques capable of analyzing incomplete data without ignoring
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or substituting for any values. Therefore, we are developing in this dissertation
several statistical methods that analyze all observed data without excluding any
subject or imputing any missing values.

Rubin (1976) identified three missing mechanisms for the data based on the relation-
ship between the missing values and observed values. Let Y denote a data set which
can be decomposed into observed and unobserved portions Y = (Yobs,Ymis). Let R
be a binary matrix whose components indicate whether Y is observed or missing.
The three missing data mechanisms are:

1. Missing completely at random (MCAR):
The probability of an observation being missing does not depend on the
values of any observed or unobserved data, i.e., P (R|Yobs,Ymis) = P (R). This
implies that the conditional and marginal distributions can always be accurately
estimated from the observed data.

2. Missing at random (MAR):
The probability of the missingness can depend on the observed data but not
on the unobserved data, i.e. P (R|Yobs,Ymis) = P (R|Yobs). Thus, the missing
data is due to an external effect, not the variable itself. Note that MCAR is a
special case of MAR.

3. Missing not at random (MNAR):
The probability of the missingness can depend on the unobserved data, i.e.
P (R|Yobs,Ymis) 6= P (R|Yobs). MNAR is also known as the non-ignorable case
(Little and Rubin, 2019) since the missing observation is dependent on the
outcome result.

For additional information on the various missing mechanisms, we refer to Little and
Rubin (2019).

Throughout this dissertation, we assume MCAR when constructing the test statistics
and developing their related theories. However, in the simulation studies, we investi-
gate the effects of some MAR and MNAR scenarios on the test statistics performance
under small sample sizes.



3 Statistical Models

3.1 Semiparametric Models

We consider a general matched pairs design given by independent and identically
distributed (i.i.d.) random vectors Xj = [X1j, X2j]>, j = 1, ..., n. with mean vector
E[X1] = µ = [µ1, µ2]> ∈ R

2 and an arbitrary positive definite covariance matrix
Cov(X1) = Σ.

3.1.1 Matched Pairs with Missing Values in Both Arms

We extend the general matched pairs design in that we allow for missing values in both
components of the pair. To accommodate missing values, let Rj = [R1j, R2j ]> indicate
whether Xij is observed (Rij = 1) or missing (Rij = 0) for i = 1, 2, j = 1, . . . , n.
Define the composition ∗ by a ∗ 1 = a and a ∗ 0 = −−−, for all a ∈ R, then we only
observe X(o) := {Xj ∗Rj}nj=1, and a ” −−−” entry is interpreted as missing. Hence
our framework has the following form:[

X
(c)
11

X
(c)
21

]
, . . . ,

[
X

(c)
1nc

X
(c)
2nc

]
︸ ︷︷ ︸

X(c)

,

[
X

(i)
11

−−−

]
, . . . ,

[
X

(i)
1n1

−−−

]
.

[
−−−

X
(i)
21

]
, . . . ,

[
−−−

X
(i)
2n2

]
.︸ ︷︷ ︸

X(i)

(3.1)

We assume that the first components X(c)
1j , X

(i)
1k are i.i.d. with mean µ1 and variance

σ2
1 ∈ (0,∞) and the second components X(c)

2j , X
(i)
2` are i.i.d. with mean µ2 and variance

σ2
2 ∈ (0,∞) for j = 1, . . . , nc, k = 1, . . . , n1, l = 1, . . . , n2. And, the complete pairs

[X(c)
1j , X

(c)
2j ]> are i.i.d. with mean vector µ = [µ1, µ2]> and an arbitrary positive

definite covariance matrix Σ. So, the covariance matrix allows for unequal variances
(heteroscedasticity), and we do not assume any special covariance structure or any
particular underlying distribution of the data. In article (I) we even discuss how to
loosen these model assumptions to the case where the incomplete observations are
only assumed to be independent (i.e. MAR settings).

In this set-up, we use all the available data to test the null hypothesis H0 : {µ1 = µ2}
against the one-sided alternative {µ1 > µ2} or the two-sided alternative {µ1 6= µ2}.
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3.1 Semiparametric Models 11

We propose two novel tests under this semiparametric model: a weighted permutation
test (WPT) (I) and multiplication combination test (MCT) (II). Based on our theo-
retical results and simulation study, our novel WPT and MCT are asymptotic valid
and even finitely exact if specific invariance properties are met. They also exhibit
favorable small sample properties and robust error control against heteroscedasticity
or skewed distributions in most examined scenarios. This all makes our WPT and
MCT applicable to our general model 3.1. However, the WPT often showed the
better power behaviour and is recommended in general.

3.1.2 Matched Pairs with Missing Values in a Single Arm

This section addresses another setting in which just one of the matched pairs data
components is missing. This situation might occur in cancer research in which some
participants contribute both tumor and normal tissues while others provide just
tumor tissues owing to, for example, normal tissue scarcity.

Thus, we extend the model at the onset of Section 3.1 to allow for missingness in
one arm (say the second). To incorporate missing values, denote with ζ2j ∈ {0, 1},
j = 1, . . . , n the vector whose j-th component indicates whether X2j is observed
(ζ2j = 1) or missing (ζ2j = 0) for j = 1, . . . , n. Define the composition ∗ by a ∗ 1 = a
and a ∗ 0 = −−−, for all a ∈ R, then we observes X(o) := {Xj ∗ ζj}nj=1 where
ζj = [1, ζ2j]> ∈ R2, j = 1, . . . , n, and a ”−−−” entry is interpreted as missing. Hence
our framework has the following form:

[
X

(c)
11

X
(c)
21

]
, . . . ,

[
X

(c)
1nc

X
(c)
2nc

]
︸ ︷︷ ︸

X(c)

,

[
X

(i)
11
−−−

]
, . . . ,

[
X

(i)
1n1

−−−

]
.︸ ︷︷ ︸

X(i)

(3.2)

We assume that the first components X(c)
1j , X

(i)
1k are i.i.d. with mean µ1 and variance

σ2
1 ∈ (0,∞) for j = 1, . . . , nc, k = 1, . . . , n1. And, the complete pairs [X(c)

1j , X
(c)
2j ]>

are i.i.d. with mean vector µ = [µ1, µ2]> and some unstructured covariance matrix
Σ > 0 that allows for heteroscedastic variances. Let N = 2nc + n1 denote the total
number of observations and n = nc + n1 the total number of subjects.

In this setting, we would like to test the null hypothesis H0 : {µ1 = µ2} against the
alternative hypothesis H1 : {µ1 6= µ2}. Our statistical model has the advantage of
incorporating all the available data. It also drops the common parametric assumption
such as homoscedasticity and normality. To derive the asymptotic results, we only
assume that the following convergences

• nc

nc+n1
→ κ1 ∈ (0, 1),
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• n1
nc+n1

→ κ2 = (1− κ1) ∈ (0, 1),

hold as min{nc, n1} → ∞. We propose three asymptotic model based bootstrap
tests based upon the quadratic form test statistics: WTS, ATS, and MATS (III).
Our novel tests are asymptotically correct and robust under heteroscedasticity and
skewed distributions in most considered scenarios, which make them applicable to
our general model 3.2.

3.2 Nonparametric Models

3.2.1 Matched Pairs with Missing Values in Both Arms

In order to deal with situations involving ordinal or ordered categorical data where
means are inadequate measures, we consider a purely nonparametric model, more
general than in Section 3.1. Hence, we assume Model (3.1) with arbitrary unknown
marginal distribution functions Fi for component i = 1, 2. Only the trivial assumption
that Fi is not a one point distribution is required. As with the previous models,
this model does not discard any available information from the data; rather, it
incorporates all available data.

This model does not contain any parameter to describe differences between the
marginal distributions, thus we consider the WMW-effect

p =
∫
F1dF2 = P (X(c)

11 < X
(c)
22 ) + 1/2P (X(c)

11 = X
(c)
22 ), (3.3)

also known as the (nonparametric) treatment effect or relative marginal treatment
effect, (Brunner and Munzel, 2000; Brunner and Puri, 1996; Fligner and Policello,
1981; Munzel, 1999). The interpretation of the relative effect in a matched pairs
design is as follows: If p > 1/2, the observations with distribution F2 tend to be larger
than those with distribution F1, and vice versa if p < 1/2. Moreover, p = 1/2 applies
to the case of no treatment effect. Thus, we consider null hypothesis formulated
in terms of the relative effect measure p as Hp

0 : {p = 1/2}. This hypothesis is less
restrictive than the hypothesis HF

0 : {F1 = F2} since F1 = F2 implies p = 1/2 but
not vice versa (Brunner et al., 2017).

In addition to this nonparametric Behrens-Fisher problem, we also consider two
more testing problems under this nonparametric model

• Wilcoxon rank sum procedures: We assume a shift model with F1(x) = F2(x−δ)
for some δ ≥ 0. The null hypothesis is formulated as Hδ

0 : {δ = 0} which may
be tested against the one-sided alternative {δ > 0}.

• Test procedures for HF
0 : {F1 = F2}.
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Three distinct multiplication combination tests are proposed to address each of the
aforementioned testing problems in this nonparametric model (II). Theoretically and
numerically, we demonstrate that our proposed approaches are asymptotically valid
and even finitely exact when specific invariance properties are met.

3.2.2 Repeated Measures with Missing Values

This section discusses a more broad design than above that takes into consideration
both the main and interactions effects between several variables. We consider
a repeated measures model consisting of a independent and possibly imbalanced
treatment groups with d different time points given by independent random vectors

Xik = [Xi1k, ..., Xidk]>, i = 1, ..., a; k = 1, ..., ni, (3.4)

with marginal distributions Xijk ∼ Fij(x), i = 1, ..., a; j = 1, ..., d.

Ordinal observations in a multi-group repeated measures design are not uncommon.
Hence, to allow for continuous, discrete, and even dichotomous data, we employ the
normalized version of the distribution function

Fij(x) = 1
2[F+

ij (x) + F−ij (x)], (3.5)

where i = 1, ..., a, j = 1, ..., d, k = 1, ..., ni. Here, F+
ij (x) = P (Xijk ≤ x) and

F−ij (x) = P (Xijk < x) are the right- and left-continuous versions of the distribution
function Fij(x), respectively (Brunner et al., 2018). Note that Fij may be arbitrary
distributions, with the exception of the case of one point distribution.

We extend the classical nonparametric repeated measures design in which we allow
for missing values. To include missingness, let λijk, a missing indicator, as

λijk =
1, if Xijk is observed

0, if Xijk is non-observed
i = 1, ..., a; j = 1, ..., d; k = 1, ..., ni.(3.6)

Let n = ∑a
i=1 ni denote the total number of subjects and N = ∑a

i=1
∑d
j=1

∑ni
k=1 λijk

the total number of observations.

Our general model does not include any parameter that describes the differences
between the marginal distributions. Hence, we consider the relative treatment
effects

pij =
∫
H(x)dFij(x), (3.7)
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where H(x) = N−1 ∑a
i=1

∑d
j=1

∑ni
k=1 λijkFij(x) denotes the weighted mean of all

distribution functions (Brunner et al., 1999; Domhof et al., 2002).

In this nonparametric setup, the null hypotheses are formulated by H0 : {CF = 0},
where F = [F11, ..., Fad]> denotes the vector of the distribution functions Fij, i =
1, ..., a, j = 1, ..., d. andC denote a contrast matrix , i.e., C1 = 0 where 1 = [1, ..., 1]>
and 0 = [0, ..., 0]>. Let Pd = Id − 1

d
Jd be the d-dimensional centering matrix, where

Id is the d-dimensional identity matrix and Jd is the d×d matrix of 1’s i.e. Jd = 1d1>d ,
where 1d = [1, ..., 1]>d×1 denotes the d-dimensional column vector. This framework is
applicable to various factorial repeated measures designs. It also covers many null
hypotheses of interest such as

HG
0 : {(Pa ⊗ 1

d
1>d )F = 0} (no treatment group effect),

HT
0 : {( 1

a
1>a ⊗ Pd)F = 0} (no time effect),

HGT
0 : {(Pa⊗Pd)F = 0} (no interaction effect between treatment and time),

where we denote by A⊗B the Kronecker product of the matrices A and B.

In order to derive asymptotic results, we assume the following sample size and missing
values assumption:

λij.
n
→ κi ∈ (0, 1) i = 1, ..., a; j = 1, ..., d, (3.8)

as min{λij.} → ∞.

We propose in (IV) three asymptotically correct testing procedures using a wild
bootstrap approach based upon WTS and ATS (Brunner et al., 1999; Domhof et al.,
2002) as well as MATS (Friedrich and Pauly, 2018). Our simulations show their
applicability under this nonparametric model for repeated measures with incomplete
data.



4 Resampling Methods

Resampling methods are frequently employed as a more robust alternative to stan-
dard statistical inference techniques (Peterson et al., 2010). In comparison with
standard parametric statistical methods, resampling tests have the following two
advantages. First, they do not require strict parametric assumptions like variance
homogeneity or normally distributed error terms. Second, they are often more robust
and flexible than classical parametric methods. Additionally, resampling testing
methods are appropriate and could be unavoidable when, e.g., classical parametric
tests assumptions are violated, very complicated formulas are required for obtaining
critical values, or no adequate parametric methods are available to accomplish our
goals. For example, conducting an analysis using a parametric test when some of its
assumptions are violated may result in misleading decisions or less powerful tests
than the resampling tests counterparts.

The main idea of the resampling methods is to draw statistical decisions through the
artificial resampling of the data. Thus, it is based upon repeatedly and randomly
shuffling (or arranging) the data using a specific resampling approach and computing
the test statistic at each resample process and for the original data. Then, this
resampling probability mechanism is used to estimate the unknown theoretical
distribution of the statistic of interest. The resampling test is (at least) asymptotically
valid as long as the conditional resampling distribution asymptotically coincides with
the corresponding distribution of the test statistic under the null.

The algorithm for the computation of the p-value based on a resampling distribution
is as follows:

1. For the given data, calculate the observed test statistic, say T .

2. Resample the data according to the considered resampling procedure.

3. Calculate the value of the test statistic for the resampled sample T ?.

4. Repeat Steps 2 and 3 independently B = 999 times and collect the observed
test statistic values in T ?b , b = 1, ....., B.

5. Finally, estimate the resampling p-value as p-value =
∑B

b=1 1{T
?
b ≥T}

B
.

15
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Several resampling procedures are available in the literature, such as the bootstrap,
jackknife, and permutation test (Good, 2006; Shao and Tu, 2012). The following sec-
tions explain the three resampling techniques used in this dissertation: permutation,
parametric bootstrap, and wild bootstrap.

4.1 Permutation Test

The permutation test (sometimes called a randomization test or an exact test (Good,
2005)) was first introduced by Fisher (1935) and later extended by Pitman (1937).
The objective of permutation tests is to generate the sampling distribution of a test
statistic from the values obtained by computing the test statistic under the null
hypothesis for all possible permutations of the data.

In the last years, permutation tests have been widely applied to matched pairs
designs, factorial designs, and multivariate designs, among other designs (Friedrich
et al., 2017a; Janssen, 1999; Pauly et al., 2015; Pesarin and Salmaso, 2012; Salmaso,
2015). Here, we apply the permutation method both in the semiparametric matched
pairs setting (I) and (II) and in the nonparametric matched pairs setting (II).

For the semiparametric matched pairs setting, several researchers have even used
permutation tests (Maritz, 1995; Yu et al., 2012). However, to get a (at least
asymptotically) valid level test, these approaches require specific distributional
assumptions such as 0-symmetry, equal variances, or sample sizes. Thus, we propose
two novel permutation tests that are asymptotically valid and even finitely exact under
certain invariance properties while also being (asymptotically) robust to deviations
like heteroscedasticity or skewed distributions (WPT (I)and MCT (II)). They are
based upon combining independent results from paired and unpaired studentized
permutation tests. For the completely observed case, we consider a studentized
permutation test in the paired t-test, where each pair’s components are permuted
at random, as recommended by Janssen (1999) and Konietschke and Pauly (2014).
For the incompletely observed case, we consider a studentized permutation test in
the Welch-type statistic that is based on randomly permuting the pooled sample, as
recommended by Janssen (1997) and Janssen (2005) as well as Janssen and Pauls
(2003).

In the nonparametric setup, we propose a multiplication combination approach for
testing the general Behrens-Fisher problem for incompletely observed paired data.
Also, we exemplify the adaptability of our approach for two other testing problems:
Wilcoxon rank sum procedures and testing HF

0 : {F1 = F2}. The developed tests are
available in our paper (II).
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4.2 Bootstrap

Efron (1979) proposed the bootstrap technique as a computer-based resampling
approach to estimate the standard error of a parameter estimate. These-day, the
bootstrap is widely applied to a variety of statistical procedures. One of the main
benefits of the bootstrap approach is summarized by Efron and Tibshirani (1994)
as follows: ”The bootstrap can answer questions which are too complicated for
traditional statistical analysis.” In the following sections, we provide an overview
of the two bootstrap methods used in this thesis; parametric bootstrap and wild
bootstrap.

4.2.1 Parametric Bootstrap

We use an asymptotic model-based bootstrap method to estimate critical values. This
approach has, e.g., previously been used in the context of (M)ANOVA factorial designs
(Friedrich and Pauly, 2018; Konietschke et al., 2015). We generate a parametric
bootstrap sample as follows:

X∗j =
[
X∗1j
X∗2j

]
i.i.d∼ N(0, Γ̂), j = 1, ..., n. (4.1)

Here, Γ̂ =
[
σ̂2

1 ρ̂σ̂1σ̂2
ρ̂σ̂1σ̂2 σ̂2

2

]
is the empirical covariance matrix estimator, i.e. σ̂2

i

denotes the sample variance calculated on all observations in component i and ρ̂ is
the sample correlation obtained from X(c).

The main idea is to mimic the covariance structure of the data to get a more
accurate finite sample approximation. For the semiparametric setting for matched
pairs with incompleteness in a single arm, we propose three asymptotic model-
based bootstrap tests that are not based on any parametric assumptions and use all
observed information. The tests were based upon cleverly restructuring all available
information in quadratic form test statistics; WTS, ATS, and MATS. We show
that under both the null and alternative hypotheses, the conditional distribution
of all three bootstrapped test statistics, given the data, weakly converges to the
null distribution of the respective test statistic in probability ((III), Theorem 3.1 in
the supplement). Thus, the parametric bootstrap tests are asymptotically correct
resampling procedures, and they are robust under heteroscedasticity and skewed
distributions.
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4.2.2 Wild Bootstrap

The wild bootstrap has been extensively studied and applied in the literature,
specifically, for MANOVA and repeated measurements (Friedrich et al., 2017b;
Friedrich and Pauly, 2018; Konietschke et al., 2015; Xu et al., 2013). We generate
wild bootstrap samples as follows: First, let Wik denote independent and identically
distributed random weights with E(Wik) = 0 and V ar(Wik) = 1. There are several
choices for these random weights (Davidson and Flachaire, 2008; Mammen, 1992).
We employ Rademacher random variables, which are specified by P (Wik = −1) =
P (Wik = 1) = 1/2. Then, a wild bootstrap sample is generated by multiplying
the fixed data with Rademacher random weights. For the nonparametric factorial
design setting, we apply the wild bootstrap and generate the bootstrapped sample
as follows:

Z∗ik = WikZik, i = 1, ..., a; k = 1, ..., ni, (4.2)

i.e. Z∗ik is a symmetrization of the rank vector Zik (defined in (IV)). Based on these
bootstrap variables, we construct three asymptotically valid bootstrap tests based
upon the Wald, ANOVA, and modified ANOVA type test statistics. According to
theorem 4.2 in (IV), the wild bootstrap tests have asymptotic level α under the null
hypothesis and are consistent for any fixed alternative H1 : {CF 6= 0}, i.e., they
have asymptotic power 1. Furthermore, it shows that they have the same local power
under contiguous alternatives as their original tests (Jansen et al., 2003).



5 Summary of the Scientific
Articles

5.1 Article I: Permuting Incomplete Paired Data:
a novel exact and asymptotic correct
randomization test.

In this article, we consider the semiparametric model for matched pairs data with
missing values in both arms with possibly non-normal and/or heteroscedastic data
stated in Section 3.1.1. In such settings, most existing procedures demonstrate their
limitation due to their distributional assumptions such as normality, 0-symmetry,
or homoscedasticity of the data. If these particular assumptions are not fulfilled,
the corresponding tests’ type-I error control may be inflated. The main idea of this
article was to develop a novel randomization approach for partially paired data that
does not depend on any parametric assumptions, uses all observed data, and is robust
against deviations such as heteroscedasticity or skewed distributions, i.e., valid for
our general model. In this approach, separate results from studentized permutation
tests for the paired and unpaired cases are combined. This was accomplished by
merging independent results about studentized permutation tests for the paired and
unpaired cases. Hence, we develop a general weighted test statistic

T = T (X(c),X(i)) =
√
aT1(X(c)) +

√
1− aT2(X(i)), (5.1)

that combines both the paired t-test statistic T1 calculated for the complete observa-
tions X(c) and the Welch test statistic T2 computed for the incomplete observations
X(i). Here the weighting coefficient a ∈ [0, 1] is used to assess the impact of complete
observations on incomplete observations. However, in cases of small sample sizes or
skewed distributions, the estimate of test statistic T may be inaccurate, resulting in
either liberal or conservative test decisions. Therefore, we propose a permutation
version of the weighted test that is based upon a studentized permutation test in the
paired t-test T1, and a studentized permutation test in the Welch test T2 i.e.

Tp = T (X(c)
τ ,X(i)

π ) =
√
aT1(X(c)

τ ) +
√

1− aT2(X(i)
π ), (5.2)

where X(c)
τ is the permuted vector which is based on randomly permuting the

19
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components of the complete sample X(c), and X(i)
π is the permuted vector which

is based upon randomly permuting all elements of the pooled incomplete sample
X(i).

We proved that the conditional distribution of the permutation version of the test
statistic Tp always approximates the null distribution of T given the data, thus
leading to an asymptotic level α test, which is even finitely exact if certain invariance
properties are fulfilled (see Theorem 3.1 in (I)). In order to investigate the finite sample
sizes behavior of our weighted permutation test, we conducted an extensive simulation
study in which we also compared our method to three other approaches. We have
generated partially paired data under the MCAR framework using various symmetric
and skewed bivariate distributions under a homoscedastic and a heteroscedastic
covariance structure and different sample sizes. The simulation results revealed that
our randomization test has favorable small sample properties that outperforms the
alternative approaches and improves the small sample behavior of the asymptotic
test based on the same weighted test statistic T . The simulation also indicated
that our novel test provides an adequate level α test for homoscedasticity as well as
heteroscedasticity in almost all considered scenarios. Except for skewed exponential
distribution with large correlations, the type-I error control is not adequate. However,
all other considered approaches failed to control the type-I error rate in this scenario.
Moreover, our proposed studentized permutation test has the largest power under
all studied scenarios.

In addition, we consider a data example from a hospice clinical study. Therein, we
aimed to compare the Karnofsky Performance Status Scale (KPS) results of the
patients on the day before they died and on their last day in the life. There were
a total of nc = 9 complete pairs and two unpaired samples of sizes of n1 = 28 and
n2 = 23. Hence, a large proportion of missing values and a small proportion of
complete pairs in this scenario. The results indicated a significant difference between
the mean KPS scores with respect to the patients’ last two days in life.

Finally, we could confirm that our suggested permutation test is asymptotically
correct, finitely exact under invariance, and possess favorable small sample properties.
Also, our permutation test is robust to deviations from parametric assumptions while
still allowing for adequate inference in the presence of heteroscedasticity or skewed
distributions.
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5.2 Article II: Multiplication-Combination Tests
for Incomplete Paired Data.

In this work, we have focused on matched pairs with missing values in both arms
while aiming to develop statistical methods for testing hypotheses formulated in
terms of real-valued functionals. Most tests in the literature are based on parametric
or semiparametric mixed models that involve difficult-to-verify assumptions like
symmetry or bivariate normality. Besides, these methods are generally nonrobust
to deviations, which might lead to incorrect decisions. The key objective was to
provide a flexible approach that can be applied for parametric, semiparametric, and
nonparametric models and can be used to test a variety of distinct hypotheses of
interest. Therefore, we developed a novel multiplication-combination procedure to
overcome the limitations of existing approaches and enhance their accuracy. The idea
is to divide the observed data into completely observed pairs X(c) and incompletely
observed components X(i) as in model 3.1. Then, assuming a MCAR mechanism
and denoting with ϕ(c) = ϕ(c)(X(c)) and ϕ(i) = ϕ(i)(X(i)) adequate tests for the
null hypothesis of interest that are computed upon X(c) and X(i) separately. Thus,
by calculating each test at significance level α1/2 individually, we can state a level
α ∈ (0, 1) multiplication-combination test (MCT) by

ϕ = ϕ(c) · ϕ(i). (5.3)

The main advantage of this approach is that estimating (1− α1/2)-quantiles (of the
underlying test statistics) is generally more accurate than estimating the common
(1− α)-quantiles. Thus, an enhanced type-I error control is expected in the case of
small to moderate sample sizes. We proved the validity of the MCT, resulting in an
asymptotic level α-test that is even finitely exact if certain invariance properties are
met (see Theorem 1 in (II)). To demonstrate the adaptability of our multiplication
approach, we proposed the following testing procedures:

1. A semiparametric procedure for mean comparisons: under the semiparametric
model described in Section 3.1, we developed a procedure for testing Hµ

0 :
{µ1 = µ2} (Section 2 in (II)).

2. Nonparametric rank-based test procedures: under the nonparametric model
stated in Section 3.2, we proposed Wilcoxon rank sum procedures for testing
Hδ

0 : {δ = 0} for some δ ≥ 0 with an assumed shift model with F1(x) = F2(x−δ),
test procedures for HF

0 : {F1 = F2}, and test procedures for the nonparametric
Behrens-Fisher problem Hp

0 : {p = 1/2} (Section 3 in (II)).

In order to investigate the small sample behavior of our MCT, we have conducted an
extensive simulation study. The complete pairs have been generated using symmetric
as well as skewed distributions under homoscedastic and heteroscedastic settings.
Missing values have been artificially inserted under the MCAR, MAR, and MNAR
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mechanisms with various missing rates. Our simulations results indicated that our
novel MCT approaches are more accurate than the alternative approaches in most
considered scenarios, particularly for the nonparametric Behrens-Fisher problem.

In addition to the simulation study, we considered the clinical migraine study
provided in Chapter 1. Therein, we aimed to compare the headache severity level
of the patients in their first and third sessions. The clinical records of the patients
were incomplete and based on ordinal scores. Thus, we analyzed the data using
our proposed nonparametric rank-based test procedure. The results indicated a
significant difference between the two sessions’ headache severity levels.

Finally, we could conclude that the MCT can be used in various statistical models,
including semiparametric and completely nonparametric models. A MCT based
on permutation versions of the Munzel (1999) (complete case) and Brunner and
Munzel (2000) (incomplete case) tests significantly improved the type-I error control
of existing approaches for testing the Behrens-Fisher problem Hp : {p = 1/2}.
Surprisingly, less restrictive missing mechanisms such as MAR and MNAR have little
impact on the MCT type-I error control. However, the power behavior is strongly
affected, which makes it more applicable under the MCAR framework.
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5.3 Article III: Asymptotic Based Bootstrap
Approach for Matched Pairs with Missingness
in a Single-arm.

The problem of paired data with missing values is concerned not only about the
occurrence of missing values but also about their location. Many approaches are
available for testing hypotheses, but most are inapplicable when missing values
happen in a single arm. Hence, these approaches cannot analyze data from The
Cancer Genome Atlas (TCGA) project on pathological stage I breast cancer patients.
This data set contains observations from 90 patients, 74 of them had entries in one
component, although only 16 of them were complete; for more details, see Section
7.1 in (III). There is barely any work that applies to paired data with missingness in
a single arm, needs no parametric assumptions, and leads to accurate decisions in
the presence of heteroscedasticity or skewed distributions. An exception is the recent
methods by Qi et al. (2019) who suggested the so-called nonparametric combination
test (NCT) and nonparametric P-value pooling methods (NPM). However, our
simulation studies revealed that the NCT and NPM might result in strongly inflated
type-I error rate or significant power loss e.g., in the case of heteroscedasticity and/or
skewed distributions.

Thus, the aim was to develop statistical tests that can handle single arm missing
values in matched pairs while not losing (any) information, not based upon parametric
assumptions like homoscedasticity and normality, and robust under heteroscedasticity
and skewed distributions. Thus, we proposed three test statistics, WTS, ATS, and
MATS, for our design. However, the WTS slowly converges to its limiting distribution
under small sample sizes. In addition, the ATS and MATS are not distribution free
under H0, and critical values cannot be directly calculated. Therefore, we developed
the parametric bootstrap WTS T ∗W , ATS T ∗A, and MATS T ∗M based on the mean
differences vectors AZ∗n and empirical covariance matrices Σ̂∗n of the bootstrapped
observations as

T ∗W = [AZ∗n]>[AΣ̂∗nA>]+[AZ∗n], (5.4)

T ∗A = 1
tr(AΣ̂∗nA>)

[AZ∗n]>[AZ∗n], (5.5)

T ∗M = [AZ∗n]>D̂∗n[AZ∗n], (5.6)

where A =
[
1 −1 0
0 −1 1

]
, and D̂∗n = diag([AΣ̂∗nA>]+ii). We proved that all three

aforementioned bootstrapped test statistics T ∗W , T ∗A, and T ∗M approximate the null
distribution of the respective test statistic (Theorem 3.1 in the supplement of (III)).
In addition, we have conducted an extensive simulation study to investigate the finite
sample behavior of our suggested approaches for symmetric and skewed distributions
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with homoscedastic and heteroscedastic covariance settings. We have considered
several missing mechanisms and compared our approaches to three other alternative
approaches (Little, 1976; Pesarin and Salmaso, 2010; Qi et al., 2019). Moreover,
we developed a parametric bootstrap version of the test of Little (1976) to improve
its small sample properties, which we investigated in our simulation study. Our
findings revealed that the parametric bootstrap versions of WTS, ATS, MATS, and
Little enhanced their asymptotic tests’ small sample behavior. Our bootstrap tests
performed very well under almost all scenarios, even under a large number of missing
values, heteroscedastic covariance, or skewed data. Only the type-I error control
is not adequate for the case of the exponential distribution, in particular, when
heteroscedasticity, and MCAR, combined with a small number of complete pairs
and a large number of incomplete observations. However, all alternative approaches
failed to control the type-I error rate under this scenario. The bootstrap methods’
type-I error control was unaffected by less stringent missing data mechanisms such as
MAR. However, their power behavior was affected. This could be due to the related
dependency structure in comparison to the MCAR.

In addition, we investigated three real-life examples from different fields and sources.
We considered breast cancer study, anorexia study, and grapefruit study. First, the
breast cancer study aimed to identify the genes that are significantly associated with
breast cancer. We considered a data set containing nc = 16 complete pairs (normal
and tumor), and n1 = 74 incomplete pairs (only tumor tissues). The anorexia study,
on the other hand, aimed to compare the weights of 17 girls before and after anorexia
treatment. Moreover, the grapefruit study was designed to investigate significant
differences between shaded and exposed grapefruits. The anorexia and grapefruit
datasets were complete. Thus, we have introduced 30% missing values on each data
set. The analysis results indicated that the bootstrap tests could detect significant
differences more than the alternative approaches.

Finally, we developed novel asymptotic-based bootstrap tests for matched pairs with
missing values in a single arm. We could confirm that our suggested bootstrap
tests are asymptotically correct and robust under heteroscedasticity and/or skewed
distributions.
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5.4 Article IV: Incompletely Observed
Nonparametric Factorial Designs with
Repeated Measurements: A wild bootstrap
approach.

In our last work, we consider the nonparametric statistical model for repeated mea-
sures design described in Section 3.2.2. Multivariate analysis of variance (MANOVA)
or mixed models is commonly used to analyze multivariate data, requiring complete
data and particular assumptions about the underlying parametric distribution, such
as continuity or a specific covariance structure, such as compound symmetry. More-
over, if discrete or even ordered categorical data is present, however, mean-based
approaches are not applicable. Therefore, the optimal solution is nonparametric
rank-based approaches that do not rely on restrictive distributional assumptions and
are robust against monotone transformations of the data. Hypotheses are thus no
longer formulated in terms of means but rather in terms of distribution functions or
relative marginal effects.

However, most available multivariate rank-based approaches have only been devel-
oped for complete observations and cannot handle multivariate data with missing
values. Only a few approaches are applicable in case of missing values, do not require
parametric assumptions, and result in accurate decisions in case of arbitrary covari-
ance structures, skewed distributions, or unbalanced experimental designs. Possible
approaches are the two quadratic form tests; rank-based Wald and ANOVA-type test
statistics (Brunner et al., 1999; Domhof et al., 2002). However, the Wald-type test is
an asymptotically correct test that often requires large sample sizes to obtain accurate
test decisions. In contrast, the ANOVA-type test is based on an approximation of its
distribution with a scaled χ2-distribution. Since the approximation does not coincide
with the ANOVA-type test limiting distribution under H0. The ANOVA-type test
is not asymptotically valid and results in a more or less conservative behavior for
small sample sizes. The aim of the article was to provide asymptotically correct
procedures that can handle missing values, do not require parametric assumptions
such as continuity of the distribution functions or nonsingular covariance matrices,
and can be used with ordinal or ordered categorical data.

We proposed three different quadratic form-type test statistics and improved their
small sample behavior by a wild bootstrap procedure, i.e., the Wald-type statistic
T ∗W , the ANOVA-type statistic T ∗A, and the modified ANOVA-type statistic T ∗M which
are computed as

T ∗W = np̂∗TC>[CV̂ ∗nC>]+Cp̂∗, (5.7)

T ∗A = 1
tr(T V̂ ∗n )

np̂∗TT p̂∗, (5.8)
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T ∗M = np̂∗TC>[CD̂∗nC>]+Cp̂∗, (5.9)

where p̂∗ is the bootstrap version of the relative effect estimator vector p̂, V̂ ∗n is the
bootstrap covariance matrix estimator, T = C>[CC>]+C is a projection matrix,
and D̂∗n = diag(V̂ ∗n )ii. We proved that the conditional distribution of the Wald,
ANOVA, and MATS-type bootstrap statistics T ∗W , T ∗A, and T ∗M approximate the null
distribution of TW , TA, and TM , respectively. We showed that under H0, the wild
bootstrap tests are asymptotic level α tests and are consistent for any fixed alternative.
Furthermore, they have the same local power under contiguous alternatives as their
original tests (Theorem 4.2 and (IV)).

In addition to the theoretical findings, we have conducted an extensive simulation
study to investigate the small sample behavior of the suggested wild bootstrap tests
and their asymptotic quadratic form tests counterparts. We considered a two-way
layout design with a = 2 independent groups and two different time points d ∈ {4, 8}
underlying discrete and continuous distributions and various covariance structures.
We generated missingness within MCAR as well as MAR frameworks. Our simulation
findings revealed that the asymptotic Wald-type test exhibits an extremely liberal
behavior in all scenarios and under all considered MCAR and MAR mechanisms.
Moreover, the asymptotic ANOVA-type test provides a quite accurate type-I error
control for large sample sizes. However, under small sample sizes, is sensitive to
missing rates, and it shows a liberal behavior for larger missing rates in particular.
However, our suggested bootstrap approaches tend to result in rather accurate type-I
error rate control under both symmetric and skewed distributions, as well as under
the MCAR and MAR mechanisms. Less strict missing mechanisms do not affect
type-I error control, and bootstrap tests are robust even when there are many missing
data. However, the bootstrapped MATS’ type-I error control behavior is dependent
on the hypothesis of interest.

In addition, we considered two real-life data examples. We considered the fluvoxamine
trial, which consisted of 315 patients with psychiatric symptoms. The patients were
examined every two weeks over six weeks of treatment (d = 3). Scores for both
side effect and therapeutic effect scales were recorded. We also considered the skin
disorder trial, which aimed to determine the severity of the skin problem over time
and evaluate the efficacy of two continuous therapy treatments, drugs, and placebo.
Patients were measured prior to therapy to assess the severity of their skin disorder
(moderate or severe). The treatment outcome was assessed using a five-point ordinal
response scale at three follow-up sessions. However, in both data examples, several
patients missed attending some sessions, resulting in a large number of missing
values. Our analysis revealed that all tests show a significant difference between
the therapeutic effect scores of the three sessions of the fluvoxamine trial (the same
for the side effect scores). Furthermore, all approaches imply that patients’ clinical
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outcomes improve significantly with time and that this progression differs significantly
between the two treatment groups (drug and placebo).

To summarize, we have developed three asymptotically correct bootstrap procedures
that can handle missing values, allow for singular covariance matrices, and apply
for ordinal or ordered categorical data. Besides, we confirmed their applicability
to data with small sample sizes. Finally, we recommend our proposed bootstrap
ANOVA-type test that has the best overall type-I error control and good power
behavior among all considered tests.



6 Outlook: General MANOVA
with Missing Data

For repeated measures designs, we have looked at a semiparametric model of matched
pairs data with missing values in both arms ((I), (II)) and a single arm (III) and a
nonparametric model for matched pairs with missing values in both arms (II). In
(IV), we also looked at a nonparametric factorial design with repeated measures
data. A semiparametric model for multivariate data with missing values is another
scenario in this setting. We provide a brief summary of the related working paper by
Amro et al. in this chapter.

We consider a general model with a independent and potentially unbalanced treatment
groups and d-variate measurements given by independent random vectors

Xik = µ+ εik, i = 1, ..., a; k = 1, ..., ni,

where µ = [µ>1 , ...,µ>a ]>, µi = [µ(1)
i , ..., µ

(d)
i ]>. For fixed i, the error terms εi1, ..., εini

are assumed to be independent and identically distributed d-dimensional random
vectors with:

• E(εik) = 0, i = 1, ..., a; k = 1, ..., ni,

• Cov(εik) = Σi ≥ 0, i = 1, ..., a; k = 1, ..., ni,

• E(||εik||4) <∞, i = 1, ..., a; k = 1, ..., ni.

Thus, the only distributional assumption is the existence of finite second moments,
i.e., Σi ≥ 0. In order to include the case of missing values, we follow the notation of
Brunner et al. (1999) and let

λijk =
1, if Xijk is observed

0, if Xijk is non-observed
i = 1, ..., a; j = 1, ..., d; k = 1, ..., ni.(6.1)

Moreover, let n = ∑a
i=1 ni denote the total number of subjects and let

N = ∑a
i=1

∑d
j=1

∑ni
k=1 λijk denote the total number of observations.

To formulate the null hypothesis in this semiparametric setup, let C denote a
contrast matrix , i.e., C1 = 0 where 1 = [1, ..., 1]> and 0 = [0, ..., 0]>. Then, the
null hypotheses are formulated by H0 : {Cµ = 0}. This framework covers different
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factorial designs. We derive asymptotic theory under the following sample size
assumption and missing values:

λij.
n
→ κi ∈ (0, 1) i = 1, ..., a; j = 1, ..., d, as min{λij.} → ∞.

An estimator of the mean vector µ is given by

X̄. = [X̄>1. , ..., X̄>a. ],

where X̄i. = 1
λij.

∑ni
k=1 λijkXik.

The covariance matrix of
√
nX̄. is given by:

Vn = Cov(
√
nX̄.) = diag( n

ni
Vi, 1 ≤ i ≤ a),

where the covariance matrix Vn is estimated by

V̂n = diag( n
ni
V̂i), i = 1, ..., a,

where V̂i = [v̂i(j, j′)] with diagonal and off-diagonal elements v̂i(j, j) and v̂i(j, j′),
respectively, defined as

v̂i(j, j) = ni
λij.(λij. − 1)

ni∑
k=1

λijk[Xijk − X̄ij.]2,

v̂i(j, j′) = ni
(λij. − 1)(λij′. − 1) + Λi,jj′ − 1

ni∑
k=1

λijkλij′k[(Xijk − X̄ij.)(Xij′k − X̄ij′.)].

Most commonly used test statistics for multivariate data are the Wald-type statistic
(WTS), ANOVA-type statistic (ATS), and modified ANOVA-type statistic; in our
setting, we define them as follows:

Wald-type Statistic

TW = [CX̄n]>[CV̂nC>]+[CX̄n],

ANOVA-type Statistic

TA = [CX̄n]>[CX̄n]
tr(CV̂nC>)

,



30 6 Outlook: General MANOVA with Missing Data

Modified ANOVA-type statistic

TM = [CX̄n]>D̂[CX̄n],

where D̂ = diag([CV̂nC>]+ii) and [.]+ is the Moore-Penrose inverse.

We want to improve the small sample behavior of the above methods using a
parametric bootstrap procedure which can be described as follows:

1. For the given incomplete paired data, calculate the observed test statistic, say
T .

2. Estimate the covariance matrix of each group Vi,ni
by V̂i,ni

, i = 1, ..., a.

3. Generate a bootstrap sample X∗Ti1 , ...,X∗Tini
from N(0, V̂i,ni

).

4. Calculate the value of the test statistic for the bootstrapped sample T ∗.

5. Use its conditional distribution to calculate critical values.

We investigated the suggested bootstrap methods’ type-I error control in a simulation
study. We considered several settings, including various distributions with different
covariance structures and varying sample sizes. The bootstrap approaches showed an
accurate type-I error control under almost all settings. Our tests seemed to be robust
against heteroscedasticity or skewed distributions in most considered situations.

In summary, we proposed bootstrap procedures to multivariate data under a semi-
parametric setup. We have investigated the behavior of the suggested method under
the MCAR mechanism, and we are willing to study the bootstrap tests behavior
under some MAR and MNAR scenarios. We are currently doing the theoretical
investigations and will compile the results in paper form. Also, we will implement
the suggested methods in the R package MissPair.



7 Conclusions and Outlook

The present dissertation was concerned with employing resampling techniques to
develop statistical procedures for repeated measures data with missing values, par-
ticularly for data with small sample sizes. It included four articles ((I) - (IV)) that
presented the proposed resampling approaches, which were developed under four
different statistical models, including semiparametric models where inference is based
on means and very general nonparametric models where rank statistics are used
which make it applicable for ordinal or ordered categorical data as well as continuous
data. Therein, we considered different repeated measures designs and missingness
patterns; matched pairs design with missingness in both arms, matched pairs design
with missingness in a single arm, and incomplete factorial design with repeated
measurements. The latter design allows testing for main and interaction effects
between different factors.

For all our proposed approaches, we proved their asymptotic validity, demonstrated
their applicability to data with small sample sizes using Monte Carlo simulations
and real data examples from various life science research areas. In all considered
scenarios, our novel resampling methods improved the small sample behavior of
their corresponding asymptotic test statistics. In particular, for the semiparametric
model of matched pairs design with missingness in both arms, we proposed a novel
weighted permutation test in (I) which is asymptotically valid and even finitely
exact if certain invariance properties are met. In addition to this, its favorable small
sample properties make it recommendable in practice. Further, we developed a novel
multiplication combination approach in (II) that is flexible and can be used to test
different hypotheses in nonparametric as well as semiparametric and parametric
models for matched pairs design with missingness in both arms. When combined
with permutation tests, our MCT procedures resulted in asymptotically valid tests
which are even finitely exact under certain invariance properties. Particularly, our
proposed MCT enhanced the type-I error control of the existing approaches for the
nonparametric Behrens-Fisher problem Hp

0 : {p = 1/2}.

Furthermore, for the special missing pattern, matched pairs with missing values in one
arm only, we proposed under a semiparametric model adequate and asymptotically
correct testing procedures based on wild bootstrap versions of WTS, ATS, MATS, and
Little, which overcome the existing approaches (III). Moreover, for the incompletely
observed nonparametric factorial designs with repeated measurements, we proposed
wild bootstrap versions of the quadratic forms: rank based Wald, ANOVA, and
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MATS-type statistics (IV). Based upon the simulation results, the best test behavior
was exhibited by the wild bootstrap version of the ANOVA-type statistic and is
recommended.

All of our proposed methods in this dissertation are not based on homoscedasticity,
multivariate normality, or balanced experimental designs assumptions. They use
all the observed information. They also lead to valid inferences in case of arbitrary
covariance structures, heteroscedasticity, skewed distributions, or unbalanced designs.
Furthermore, our proposed tests showed a robust behavior under fairly large amounts
of missing observations. Thus, our proposed methods should be broadly applicable
in various practical fields.

Since all our proposed approaches are only applicable for repeated measures data, we
are currently developing bootstrap procedures for general MANOVA with missing
values under the semiparametric model defined in Chapter 6. We also plan to extend
the results of Dobler et al. (2020) for the general MANOVA settings where hypotheses
are formulated in terms of unweighted nonparametric effects to the situation with
missing values. Additionally, future work will include developing randomization
procedures that can handle matched pairs data with missingness in just one arm
under a purely nonparametric model. Moreover, all of the methods suggested in this
dissertation are based on the MCAR assumption. We want to extend our work in
the future by developing resampling procedures for handling incomplete data within
the MAR framework.

Finally, we developed an R package with a web-based Shiny app that contains all
our proposed resampling methods for matched pairs data with missing values in
single or both arms that will soon be available on the CRAN repository. In addition,
our proposed wild bootstrap procedures for the incomplete factorial designs with
repeated measurements will be implemented in the R package nparLD (Noguchi
et al., 2012). This will allow researchers from several fields to access our developed
statistical methods freely and easily to apply on their own data sets. More possible
extensions and topics for future research are given in the last section of each of our
four articles.
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Abstract
The issue ofmissing values is an arising difficulty when dealing with paired data.
Several test procedures are developed in the literature to tackle this problem.
Some of them are even robust under deviations and control type-I error quite
accurately. However, most of thesemethods are not applicable whenmissing val-
ues are present only in a single arm. For this case, we provide asymptotic correct
resampling tests that are robust under heteroskedasticity and skewed distribu-
tions. The tests are based on a meaningful restructuring of all observed infor-
mation in quadratic form–type test statistics. An extensive simulation study is
conducted exemplifying the tests for finite sample sizes under different miss-
ingness mechanisms. In addition, illustrative data examples based on real life
studies are analyzed.

KEYWORDS
matched pairs, missing values, parametric bootstrap, quadratic forms

1 INTRODUCTION

Conducting statistical tests on units measured repeatedly requires the consideration of the dependence structure of the
resulting random vector. The simplest design is the matched pairs model, where units are measured at two endpoints
of the same subject. This design has experienced a large field of application, including industrial and life sciences. In
Biomedicine for example, several studies have been focused on identifying genes for up- or downregulated effects in head
and neck squamous, prostate, lung, or breast cell carcinoma (Kuriakose et al., 2004; Lapointe et al., 2004; Feng et al., 2008).
In common statistical analysis, testing the equality of means in matched pairs design is conducted using the paired 𝑡-test.
Even for nonnormal data, the procedure is asymptotically exact, that is, for sufficiently large samples, the test procedure is
correctly reflecting type-I error. However, first limitation of the paired 𝑡-test arises when data are only partially observed.
Deleting observations with missing values is a suboptimal solution, since variance or mean estimation based only on
complete case analysis can be biased leading to incorrect statistical inference. This is especially the case when complete
samples are small.
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original work is properly cited.
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To tackle this issue, a simple approach is to impute missing values singly (or multiply) and to carry out statistical tests
as if there were no missing values so far (Schafer, 1999; Rubin, 2004; Sterne et al., 2009). However, although leading to
good imputation error (Stekhoven & Bühlmann, 2011; Waljee et al., 2013; Ramosaj & Pauly, 2019), such approaches may
lead to inflated type-I error rate or remarkably low power in small to moderate sample sizes (Van Buuren, 2018; Ramosaj
et al., 2020). Therefore, we do not follow this approach here.
Differing to imputation, several test procedures that (only) use all observed information in the matched pairs design

have been proposed in the literature (Mehta & Gurland, 1969; Lin, 1973; Morrison, 1973; Lin & Stivers, 1974; Little, 1976;
Ekbohm, 1976; Bhoj, 1978; Looney & Jones, 2003; Kim et al., 2004; Xu & Harrar, 2012; Fuchs et al., 2017; Uddin & Hasan,
2017). These tests, however, rely on specific model assumptions such as symmetry or even bivariate normality, which are
hard to verify in practice. Moreover, these procedures are usually nonrobust to deviations and may result in inaccurate
decisions caused by possibly conservative or inflated type-I error rates (Samawi & Vogel, 2014; Amro & Pauly, 2017; Amro
et al., 2019; Qi et al., 2019; Harrar et al., 2020).
To overcome these problems, the typical recommendation is to use the method based on combining separate results

of adequate test statistics for the underlying paired and unpaired portions of the data using either weighted test statistics
(Samawi & Vogel, 2014; Amro & Pauly, 2017; Martínez-Camblor et al., 2013), a multiplication combination test (Amro
et al., 2019), or combined 𝑝-values (Rempala & Looney, 2006; Samawi et al., 2011; Yu et al., 2012; Kuan & Huang, 2013).
However, all these methods are only applicable for matched pairs with missingness in both arms. This is due to their
tests construction. Since, they are based upon combining the results of two independent tests for the related paired and
unpaired two-sample problem. As independence of these two tests is required, a direct adjustment to handle data with
missingness in one arm only is not possible. Thus, these methods cannot be used to analyze data on pathological stage
I breast cancer patients from the Cancer Genome Atlas (TCGA) project. This data set consists of observations from 90
patients of which 74 had entries in one component of it, only 16 were complete, see Section 7.1 for details. The question is
now how to analyze such data?
In contrast to the above methods, barely any work can be found that is potentially applicable in this special missing

pattern, requires no parametric assumptions and also leads to valid inferences in case of heteroskedasticity or skewed dis-
tributions. One exception is given by the recent proposals of Qi et al. (2019) who recommended a so-called nonparametric
combination test (NCT) and nonparametric 𝑝-value pooling methods (NPM). The NCT is based on merging the results
from Sign test andWilcoxon Mann–Whitney test while the NPM are based on combining 𝑝-values of theWilcoxon signed-
rank test and Mann–Whitney test. In situations where these two nonparametric procedures show their efficiency, their
proposed combination is indeed tempting. However, neither the Sign test is known to be very powerful for metric data
nor is the Mann–Whitney test known for being robust against heteroskedasticity. In fact, our simulation studies demon-
strate that the NCT and Fisher’s pooling method (FPM) as an NPM inherit these unsatisfying properties to some extent:
under heteroskedasticity and/or skewed distributions, the NCT and FPM tend to not maintain the pre-assigned type-I
error level. The degree of variance heterogeneity, skewness, and sample sizes can all affect the type-I error rate control
level. An example of the type-I error control of NCT and FPMwhen heteroskedasticity coincides with a skewed error dis-
tribution is displayed in Figure 1. It reveals that, under heteroskedasticity and an exponential distribution, the NCT and
FPM type-I error rate functions become surprisingly analogous to the power function where the type-I error rate increases
dramatically with an increase in sample sizes.
The aim of this paper is therefore bilateral: First, we aim to provide a statistical test that is capable of treating single-arm

missing values in matched pairs which drop the common assumptions such as homoskedasticity and normality, while
not losing (partial) information. Second, it should be able to satisfactorily control type-I error while maintaining good
power properties. To this end, we propose three different test statistics, analyze their asymptotic behaviors under the null
hypothesis and equip them with an asymptotically correct parametric bootstrap procedure for calculating critical values.
In doing so, we structured the paper by first introducing the statistical model and the hypothesis of interest. In Section 3,
we provide different test statistics of quadratic form–type that either converge to a𝜒2 or a weighted𝜒2-distribution. Proofs
presenting theoretical guarantees of the proposed methods are delivered in the supplement. In Section 4, we introduce
a parametric bootstrap technique to calculate critical values and prove its theoretical correctness. Section 5 is devoted to
already existing methods for statistical inference in matched pairs with single-arm missingness while in Sections 6 and
7, novel and existing methods are compared based on an extensive simulation study and three real life data examples.
The supplement contains additional theoretical details. For notational purposes, we state vectors or matrices in bold and
scalars in usual form.
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F IGURE 1 Type-I error simulation results
(𝛼 = .05) of the nonparametric combination test 𝑇𝑁

( ) and the Fisher’s 𝑝-value pooling method
𝑇𝐹 ( ) for exponential distribution under
correlation factor (𝜌 = .7) and a heteroskedastic
setup with variances 1 and 2, respectively, for
increasing sample sizes 𝑘 ⋅ (𝑛𝑐, 𝑛𝑢) = (𝑘 ⋅ 10, 𝑘 ⋅ 30)

under the MCAR framework

2 STATISTICALMODEL ANDHYPOTHESES

We consider matched pairs given by a sample 𝑛 ∶= {𝐗1, … ,𝐗𝑛}, where 𝐗𝑗 = [𝑋1𝑗, 𝑋2𝑗]
⊤
∈ ℝ2 are i.i.d. random vec-

tors with mean vector 𝔼[𝐗1] = 𝝁 = [𝜇1, 𝜇2]
⊤
∈ ℝ2 and an arbitrary covariance matrix 0 < 𝚪 =

[ �̃�2
1

𝜌�̃�1�̃�2
𝜌�̃�1�̃�2 �̃�2

2

]
∈ ℝ2×2,

where �̃�2
1
= var(𝑋11), �̃�2

2
= var(𝑋21) and 𝜌 = corr(𝑋11, 𝑋21). To incorporate missingness in one arm (says, the second)

only denote with 𝑅2𝑗 ∈ {0, 1}, 𝑗 = 1,… , 𝑛 the vector whose 𝑗th component indicates whether 𝑋2𝑗 is observed (𝑅2𝑗 = 1) or
missing (𝑅2𝑗 = 0) for 𝑗 = 1,… , 𝑛. Define the composition ∗ by 𝑎 ∗ 1 = 𝑎 and 𝑎 ∗ 0 = − − −, for all 𝑎 ∈ ℝ, then in practice,
one observes 𝐗(𝑜) ∶= {𝐗𝑗 ∗ 𝐑𝑗}

𝑛

𝑗=1
where 𝐑𝑗 = [1, 𝑅2𝑗]

⊤
∈ ℝ2, 𝑗 = 1,… , 𝑛, and a “− − −” entry is interpreted as missing.

Hence, our framework has the following form:

[
𝑋

(𝑐)
11

𝑋
(𝑐)
21

]
, … ,

[
𝑋

(𝑐)
1𝑛𝑐

𝑋
(𝑐)
2𝑛𝑐

]

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
𝐗(𝑐)

,

[
𝑋

(𝑖)
11

−−−

]
, … ,

[
𝑋

(𝑖)
1𝑛𝑢

−−−

]
.

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
𝐗(𝑖)

(1)

Rubin defines the missing mechanism through a parametric distributional model on 𝐑 = {𝐑𝑗}
𝑛

𝑗=1
and classifies their

presence through Missing Completely at Random (MCAR), Missing at Random (MAR), and Missing not at Random
(MNAR) schemes (Rubin, 2004). In our work, we first assume an MCAR mechanism, in that 𝑿(𝑐) is independent of 𝑿(𝑖).
However, wewill also studyMARmechanisms in simulations and relate to the supplement for the explicit definition of the
missingmechanisms. For notational purposes, let 𝐼𝑛𝑐 denote the index set of |𝐼𝑛𝑐 | = 𝑛𝑐 complete pairs, that is,𝐑𝑗 = [1, 1]

⊤

for all 𝑗 ∈ 𝐼𝑛𝑐 . Similarly, 𝐼𝑛𝑢 is the index set of observations with second component missing (𝐑𝑗 = [1, 0]
⊤
, 𝑗 ∈ 𝐼𝑛𝑢 ) and|𝐼𝑛𝑢 | = 𝑛𝑢. Thus, there are in total 𝑁 = 2𝑛𝑐 + 𝑛𝑢 observations from 𝑛 = 𝑛𝑐 + 𝑛𝑢 subjects.

In this framework, we would like to use all the available data to test the null hypothesis𝐻0 ∶ {𝜇1 = 𝜇2} of equal means
against the alternative𝐻1 ∶ {𝜇1 ≠ 𝜇2}.
To construct our test statistics, we first fix estimators of the populationmeans 𝜇1, and 𝜇2. For estimating 𝜇1, we consider

two estimators; the sample mean of the first components of the completed data set �̄�(𝑐)
1.

=
1

𝑛𝑐

∑𝑛𝑐
𝑖=1

𝑋
(𝑐)
1𝑖
, and the sample
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mean of the first components of the unpaired data �̄�(𝑖)
1.

=
1

𝑛𝑢

∑𝑛𝑢
𝑗=1

𝑋
(𝑖)
1𝑗
. For estimating the population mean 𝜇2, we use the

sample mean of the second components of the complete data �̄�(𝑐)
2.

=
1

𝑛𝑐

∑𝑛𝑐
𝑖=1

𝑋
(𝑐)
2𝑖
. Next, we define the normalized vector

𝒁𝑛 that aggregates the difference between the mean values 𝝁 = [𝜇1, 𝜇2]
⊤ and their empirical estimators [�̄�(𝑐)

1.
, �̄�

(𝑐)
2.
, �̄�

(𝑖)
1.
]
⊤

𝒁𝑛 =
√
𝑛[�̄�

(𝑐)
1.

− 𝜇1, �̄�
(𝑐)
2.

− 𝜇2, �̄�
(𝑖)
1.

− 𝜇1]
⊤

(2)

and take their correlations into account in the covariance matrix

𝚺𝑛 ∶= cov(𝒁𝑛) =
⎡
⎢⎢⎣

(𝑛∕𝑛𝑐)𝜎
2
1

(𝑛∕𝑛𝑐)𝜌𝜎1𝜎2 0

(𝑛∕𝑛𝑐)𝜌𝜎1𝜎2 (𝑛∕𝑛𝑐)𝜎
2
2

0

0 0 (𝑛∕𝑛𝑢)𝜎
2
1

⎤
⎥⎥⎦
,

where 𝜎2
1
= var(𝑋(𝑐)

11
) = var(𝑋(𝑖)

11
), 𝜎2

2
= var(𝑋(𝑐)

21
), and 𝜌 = corr(𝑋(𝑐)

11
, 𝑋

(𝑐)
21
).

To test the null hypothesis𝐻0 ∶ {𝜇1 − 𝜇2 = 0}, we define the two estimators �̄�(𝑐)
1.

− �̄�
(𝑐)
2.
and �̄�(𝑖)

1.
− �̄�

(𝑐)
2.
for𝜇1 − 𝜇2. Their

joined asymptotic behavior under the null hypothesis𝐻0 is studied below.

Proposition 1. Set 𝑓𝑨(𝐱) = 𝑨𝐱, for the matrix𝑨 =

[
1 −1 0

0 −1 1

]
∈ ℝ2𝑋3. Then, under the null hypothesis𝐻0 and the condition

that 𝑛𝑐

𝑛𝑐+𝑛𝑢
→ 𝜅1 ∈ (0, 1) and 𝑛𝑢

𝑛𝑐+𝑛𝑢
→ 𝜅2 = (1 − 𝜅1) ∈ (0, 1) as 𝑛 → ∞, the composite statistic

𝑓𝑨◦𝒁𝑛 = 𝐀𝐙𝑛 =
√
𝑛[�̄�

(𝑐)
1.

− �̄�
(𝑐)
2.
, �̄�

(𝑖)
1.

− �̄�
(𝑐)
2.
]
⊤

(3)

is asymptotically𝑁2(𝟎,𝐀𝚺𝐀⊤) distributed as 𝑛 → ∞.

Here, 𝚺 = lim
𝑛→∞

𝚺𝑛 =
⎡
⎢⎢⎣

𝜅−1
1

𝜎2
1

𝜅−1
1

𝜌𝜎1𝜎2 0

𝜅−1
1

𝜌𝜎1𝜎2 𝜅−1
1

𝜎2
2

0

0 0 𝜅−1
2

𝜎2
1

⎤
⎥⎥⎦
. (4)

3 STATISTICS AND ASYMPTOTICS

In this section, we propose three different quadratic forms for testing𝐻0: a Wald-type statistic (WTS), an ANOVA-L2-type
statistic (ATS), and a modified ANOVA-type statistic (MATS). To introduce the WTS, denote by 𝐁+ the Moore–Penrose
inverse of a matrix 𝐁. Then, the WTS is given by

𝑇𝑊 = (𝑨𝒁𝑛)
⊤
(𝑨�̂�𝑛𝑨

⊤)
+
(𝑨𝒁𝑛), (5)

where �̂�𝑛 is the plug-in sample estimator for 𝚺 given in (4), see the supplement for its explicit form. Thanks to the intro-
duced studentization by (𝑨�̂�𝑛𝑨

⊤)
+
, the WTS is asymptotically 𝜒2

2
-distributed under the null hypothesis as long as 𝚺 > 0

as proved in the supplement.
Similar WTS versions are also studied in the context of heteroskedastic ANOVA or MANOVA (Krishnamoorthy & Lu,

2010; Xu et al., 2013; Konietschke et al., 2015; Friedrich & Pauly, 2018). From these settings, it is known that the conver-
gence to its limiting 𝜒2-distribution is rather slow and large sample sizes are required to obtain adequate results (Vallejo
et al., 2010; Konietschke et al., 2015; Smaga, 2017), which leads to several refinements regarding bootstrapping for the cal-
culations of critical values (see Section 4) or other structures of test statistics. In particular Brunner (2001) proposed an
alternative quadratic form by deleting the estimated covariance matrix �̂�𝑛 involved in the computation of the WTS. Here,
we erase the Moore–Penrose inverse term from the WTS resulting in the following ATS:

𝑇𝐴 =
1

tr(𝐀�̂�𝑛𝐀⊤)
(𝐀𝒁𝑛)

⊤
(𝐀𝒁𝑛). (6)
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The ATS has the advantage of being applicable in case of singular covariance matrices (|�̂�𝑛| = 0). However, it has the
drawback of not being asymptotically distribution-free under the null hypothesis, see the supplement for details.
Another possible test statistic would be the MATS that was developed by Friedrich & Pauly (2018) for MANOVA mod-

els. The authors could provide preferable simulation results regarding its power behavior and type-I error control while
delivering theoretical guarantees for its validity. Hence, we consider a MATS (with a slight modification) in our design,
too. Here, it is given by

𝑇𝑀 = (𝑨𝒁𝑛)
⊤
�̂�𝑛(𝑨𝒁𝑛), (7)

where �̂�𝑛 = diag((𝐀�̂�𝑛𝐀
⊤)

+

ii ).
Similar to the ATS, the MATS is also not distribution-free under 𝐻0, see the supplement for the explicit form of its

limiting distribution. Thus, we cannot directly calculate critical values for 𝑇𝐴 and 𝑇𝑀 , respectively. In addition, the 𝜒2
2
-

approximation to 𝑇𝑊 is rather slow. To this end, we develop adequate and asymptotically correct testing procedures based
on bootstrap versions of 𝑇𝑊, 𝑇𝐴, and 𝑇𝑀 in the subsequent section.

4 PARAMETRIC BOOTSTRAPPING

To estimate critical values, we apply an asymptotic model-based bootstrap approach which has, for example, been applied
in the context of (M)ANOVA factorial designs (Konietschke et al., 2015; Friedrich & Pauly, 2018). To this end, we first
generate parametric bootstrap variables as

𝐗∗
𝑗
=

[
𝑋∗
1𝑗

𝑋∗
2𝑗

]
i.i.d
∼ 𝑁(0, �̂�), 𝑗 = 1,… , 𝑛. (8)

Here, �̂� =

[
𝜎2
1

𝜌𝜎1𝜎2
𝜌𝜎1𝜎2 𝜎2

2

]
is the empirical covariance matrix estimator, that is, 𝜎2

𝑖
denotes the sample variance calculated

on all observations in component 𝑖 and 𝜌 is the sample correlation obtained from 𝑿(𝑐). The idea is to reflect the original
covariance structure to obtain more accurate finite sample approximation. Next, we generate missing values under the
MCAR scheme by randomly inserting them to the second component of the bivariate vector 𝐗∗

𝑗
until a fixed amount of

missing values of size 𝑛𝑢 is achieved. This results into the following bootstrapped data set:

[
𝑋

∗(𝑐)
11

𝑋
∗(𝑐)
21

]
, … ,

[
𝑋

∗(𝑐)
1𝑛𝑐

𝑋
∗(𝑐)
2𝑛𝑐

]

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
𝐗∗(𝑐)

,

[
𝑋

∗(𝑖)
11

−−−

]
, … ,

[
𝑋

∗(𝑖)
1𝑛𝑢

−−−

]

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
𝐗∗(𝑖)

(9)

and the combined vector (𝑓◦𝒁𝑛)
∗
= 𝑨𝒁∗

𝑛 =
√
𝑛(�̄�

∗(𝑐)
1.

− �̄�
∗(𝑐)
2.

, �̄�
∗(𝑖)
1.

− �̄�
∗(𝑐)
2.

). From this, the bootstrapped versions of the
quadratic forms, that is, the WTS 𝑇∗

𝑊 , the ATS 𝑇
∗
𝐴
, and the MATS 𝑇∗

𝑀 are computed:

𝑇∗
𝑊 = (𝑨𝒁∗

𝑛)
⊤
(𝐀�̂�∗

𝑛𝐀
𝑇)

+
(𝑨𝒁∗

𝑛), (10)

𝑇∗
𝐴
=

1

tr(𝐀�̂�∗
𝑛𝐀

⊤)
(𝑨𝒁∗

𝑛)
⊤
(𝑨𝒁∗

𝑛), (11)

𝑇∗
𝑀 = (𝑨𝒁∗

𝑛)
⊤
�̂�∗

𝑛(𝑨𝒁
∗
𝑛), (12)

where �̂�∗
𝑛 = �̂�𝑛(𝐗

∗(𝑐), 𝐗∗(𝑖)) and �̂�∗
𝑛 = diag((𝐀�̂�∗

𝑛𝐀
⊤)

+

ii ).
It is proven in the supplement that all three bootstrapped test statistics approximate the null distribution of the respec-

tive test statistic.
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To analyze their finite sample performance, we below conduct extensive simulations (Section 6). Before that, we will
first discuss other possible candidates from the literature that should or should not be included in our simulation study.

5 COMPARISONWITH EXISTINGMODELS

We briefly review the existing literature on methods that can deal with the case of matched pairs with missing values in
one arm only. As outlined in the introduction, there only exists a few which we can summarize as follows:

(a) Simple methods such as: using the paired 𝑡-test while excluding the unpaired data OR using the independent 𝑡-test
while ignoring the covariance structure of the data.

(b) Tests based on modified maximum likelihood estimators (Morrison, 1973; Ekbohm, 1976; Little, 1976).
(c) Tests based on simple mean difference estimators (Mehta & Gurland, 1969, 1973; Lin, 1973; Ekbohm, 1976).
(d) 𝑝-Values pooling methods (Qi et al., 2019).
(e) Weighted linear and nonlinear combination tests (Pesarin & Salmaso, 2010; Qi et al., 2019).

However, none of the methods is free from distributional assumptions and at the same time robust against deviations
such as heteroskedasticity and skewed distributions. In particular, the recent paper by Qi et al. (2019) already included
a simulation study to compare several of the tests mentioned in (a)–(e). As a conclusion, they recommended a so-called
NCT and 𝑝-value pooling methods.
They investigated in their paper two ways of combining the 𝑝-values; a weighted inverse normal method proposed by

Hartung (1999) and an FPM suggested by Brown (1975), Kost & McDermott (2002), and Hou (2005). Due to their quite
similar behavior, we only include the FPM and the NCT into our simulation study. As additional competitor for these two
and the bootstrap procedures proposed in Section 4, we choose the test of Little (1976). The latter assumes that the data
follow a bivariate normal distribution and the test statistic is given by

𝑇𝐿 =

�̄�1⋅ − �̄�
(𝑐)
2⋅

−
𝜌𝜎

(𝑐)
1

𝜎2

(𝜎
(𝑐)
1

)
2 (�̄�1⋅ − �̄�

(𝑐)
1⋅
)

𝜎𝐋
, (13)

where �̄�1 ∶= 1∕𝑛(𝑛𝑐�̄�
(𝑐)
1⋅

+ 𝑛𝑢�̄�
(𝑖)
1⋅
) and 𝜎

(𝑐)
1

is the empirical standard deviation of {𝑋(𝑐)
11
, … , 𝑋

(𝑐)
1𝑛𝑐

}. Moreover, setting

𝜎2
22⋅1

= 𝜎2
2
− (𝜌𝜎

(𝑐)
1
𝜎2∕(𝜎

(𝑐)
1
)
2
) and 𝜎𝐗 = 𝜎2

22⋅1
+

(𝜌𝜎
(𝑐)
1

𝜎2)
2

(𝜎
(𝑐)
1

)
4 𝜎4

1
, the denominator is given by Little (1976)

𝜎2
𝐋
=

𝜎2
𝐗

𝑛
+

(
1

𝑛𝑐
−

1

𝑛

)
𝑛𝑐 − 2

𝑛𝑐 − 3
𝜎2
22⋅1

−
2

𝑛

𝜌𝜎
(𝑐)
1
𝜎2

(𝜎
(𝑐)
1
)
2
𝜎2
1
+

𝜎2
1

𝑛
. (14)

The exact distribution of 𝑇𝐿 is rather complicated and Little suggests to approximate it by a 𝑡-reference distribution with
𝑛𝑐 − 1 degrees of freedom, that is, the test is given by 𝜑𝐿 ∶= 𝟙{|𝑇𝐿| > 𝑡𝑛𝑐−1,1−𝛼∕2} for some level 𝛼 ∈ (0, 1). To enhance its
small sample properties (see the simulation results for 𝜑𝐿 given in the supplement for details), a parametric bootstrap ver-
sion of the Little test is studied aswell. Similar to𝜑𝐿, the resulting Little bootstrap test,𝜑∗

𝐿 ∶= 𝟙{|𝑇𝐿| > 𝑐∗𝐿} is asymptotically
correct. Here, 𝑐∗𝐿 denotes the conditional (1 − 𝛼)-quantile of the parametric bootstrap distribution of 𝑇𝐿.
In addition, the NCT proposed by Qi et al. (2019), is based upon a linear combination of the sign and the Wilcoxon

Mann–Whitney test statistics:

𝑇𝑁 = 𝑇𝑠 + 𝑇𝑚, (15)

where 𝑇𝑠 =
1

𝑛𝑐

∑𝑛𝑐
𝑖=1

𝜙(𝑋
(𝑐)
1𝑖
, 𝑋

(𝑐)
2𝑖
) and 𝑇𝑚 =

1

𝑛𝑐𝑛𝑢

∑𝑛𝑢
𝑗=1

∑𝑛𝑐
𝑘=1

𝜙(𝑋
(𝑖)
1𝑗
, 𝑋

(𝑐)

2𝑘
) with 𝜙(𝑋1, 𝑋2) =

⎧⎪⎨⎪⎩

1 if 𝑋 > 𝑌,

1∕2 if 𝑋 = 𝑌,

0 otherwise.
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It is proposed to approximate the null distribution of 𝑇𝑁 by a normal distribution with mean 1 and variance estimated
by v̂ar(𝑇𝑁) =

1

𝑛𝑐
+

𝑛𝑐+𝑛𝑢+1

12𝑛𝑐𝑛𝑢
+ ĉov(𝑇𝑠, 𝑇𝑚), where

ĉov(𝑇𝑠, 𝑇𝑚) =
1

𝑛2𝑐 𝑛𝑢

∑𝑛𝑐
𝑖=1

∑𝑛𝑢
𝑗=1

𝟙{𝑋
(𝑐)
1𝑖

> 𝑋
(𝑐)
2𝑖
, 𝑋

(𝑖)
1𝑗

> 𝑋
(𝑐)
2𝑗
} −

1

𝑛𝑐
𝑇𝑠𝑇𝑚.

Moreover, the NPM proposed by Qi et al. (2019) based upon Fisher’s pooling approach is based upon combining the
dependent 𝑝-values of the Wilcoxon signed-rank test 𝑃𝑝 and Mann–Whitney U test 𝑃up. The test statistic is given by

𝑇𝐹 = −2𝜆1log(𝑃𝑝) − 2𝜆2log(𝑃up), (16)

where 𝜆1 and 𝜆2 are weights. It was shown that 𝑇𝐹 follows asymptotically a scaled 𝑐𝜒2
𝑓
-distribution with 𝑐 =

var(𝑇𝐹)

2𝐸(𝑇𝐹)
and

𝑓 =
2[𝐸(𝑇𝐹)]

2

var(𝑇𝐹)
. Moreover, the mean and variance of 𝑇𝐹 are 𝐸(𝑇𝐹) = 2(𝜆1 + 𝜆2), var(𝑇𝐹) = 4(𝜆2

1
+ 𝜆2

2
) + 2𝜆1𝜆2𝜂, and 𝜂 =

Cov(−2log(𝑃𝑝), −2log(𝑃up)) Qi et al. (2019). suggested to estimate 𝜂 by nonparametric bootstrapping to obtain estimates
𝑐 and 𝑓 for 𝑐 and 𝑓, respectively. Therefore, the null distribution of 𝑇𝐹 can be asymptotically approximated by 𝑐𝜒2

𝑓
. In

previous simulation studies by Qi et al. (2019), the considered choices of the weights 𝜆1 and 𝜆2 had almost invariant
impact on the behavior of FPM. Similar to Qi et al. (2019), we therefore consider the following weights: 𝜆1 =

√
2𝑛𝑐 and

𝜆2 =
√
𝑛𝑐 + 𝑛𝑢.

Inspired by Pesarin& Salmaso (2010), we also consider a nonparametric combination (NPC) of two dependent permuta-
tion tests. Their methodology is based upon properly breaking down a testing problem into a set of simpler subproblems.
Then, each subproblem is provided with a proper permutation test, and jointly analyzed to maintain any underlying
dependencies. Fitting this approach to our model, we choose a permutation paired 𝑡-test (Janssen, 1999; Konietschke &
Pauly, 2014) that is computed upon the complete pairs𝐗(𝑐) only and a permutationWelch-test (Janssen, 1997; Chung et al.,
2013; Pauly et al., 2015) that is based upon𝑋

(𝑖)
1𝑗
, and𝑋(𝑐)

2𝑘
. The global 𝑝-value is then obtained through combining the partial

𝑝-values of the above tests using Fisher’s combining function. We denote this testing procedure by 𝑇𝑃. For more details
about the NPC procedure and related R codes, we refer to themonographs of Pesarin (2001) and Pesarin & Salmaso (2010).
Finally, we also consider the most simple solution: the paired 𝑡-test 𝑇𝑡, calculated on the complete cases 𝐗(𝑐) only. We

compare the finite sample performance of all these methods and the three new bootstrap approaches from Section 4 in
the sequel. To judge the performance of all methods, a parametric bootstrap version of the paired 𝑡-test handling full data
before introducing missingness has been included in all tables. The corresponding procedure is denoted by 𝐹.

6 SIMULATION STUDY

In this section, we investigate the finite sample behavior of the methods described in Sections 4 and 5 in extensive simu-
lations. All procedures were studied with respect to their

(i) type-I error rate control at level 𝛼 = 5% and their
(ii) power to detect deviations from the null hypothesis.

Small- to moderate-sized paired data samples were generated from the model

𝐗𝑗 = 𝚺
1

2 𝜺𝑗 + 𝝁, 𝑗 = 1,… , 𝑛,
where 𝜺𝑗 = [𝜀1𝑗, 𝜀2𝑗]

⊤ is an i.i.d. bivariate random vector with mutually independent components and 𝐸(𝜺𝟏) = 𝟎 and
cov(𝜺𝟏) = 𝐼2.
Different choices of symmetric as well as skewed residuals are considered such as standardized normal, exponential,

Laplace, and the 𝜒2-distribution with df = 30 degrees of freedom. For the covariance matrix 𝚺, we considered the choices

𝚺𝟏 =

[
1 𝜌

𝜌 1
] and 𝚺𝟐 = [

1
√
2𝜌√

2𝜌 2

]

with varying correlation factor 𝜌 ∈ (−1, 1), representing a homoskedastic and a heteroskedastic covariance setting,
respectively. The sample sizes were chosen as (𝑛𝑐, 𝑛𝑢) ∈ {(10, 10), (30, 10), (10, 30)} under an MCAR mechanism and
𝑛 ∈ {10, 20, 30} under an MAR mechanism.



1396 AMRO et al.

For each scenario, we generated missings as described below: For the MCAR mechanism, missing values are inserted
randomly to the second component of the bivariate vector 𝐗𝑗 until a fixed amount of missing values of size 𝑛𝑢 for the
second component is achieved.
For theMARmechanism, the probability of beingmissing on the second component of𝐗𝑗 is based on the corresponding

value on the first component in the following way: first, we divide 𝐗 into three groups based on their first component
values corresponding to a 2𝜎-rule: the first group is given by {𝑿𝑗 = (𝑋1𝑗, 𝑋2𝑗) ∶ 𝑋1𝑗 ∈ (−∞,−2𝜎1), 𝑗 = 1, .., 𝑛}, the second
by {𝑿𝑗 ∶ 𝑋1𝑗 ∈ (−2𝜎1, 2𝜎1), 𝑗 = 1, .., 𝑛}, and the last group by {𝑿𝑗 ∶ 𝑋1𝑗 ∈ (2𝜎1,∞), 𝑗 = 1, .., 𝑛}, where 𝜎1 is the variance of
the first component. Then, we randomly insert missing values on the second component based on the following missing
percentages: 15% for group one and three and 30% for the second group.
In order to assess the power of all methods, we set 𝝁 = [𝛿, 0]

⊤ with shift parameter 𝛿 ∈ {0, 1∕2, 1}. All simulations were
operated by means of the statistical computing environment 𝖱 based on 𝑛sim = 10, 000 Monte-Carlo runs and 𝐵 = 999

bootstrap runs (in case of the three bootstrapped methods based upon 𝑇∗
𝑊, 𝑇∗

𝐴
, and 𝑇∗

𝑀 and the bootstrapped version of
Little’s method 𝑇∗

𝐿). The algorithm for the computation of the 𝑝-value of the parametric bootstrap tests is as follows:

1. For the given incomplete paired data, calculate the observed test statistic, say 𝑇.
2. Estimate the covariance matrix 𝚪 by �̂�.
3. Generate a bootstrap sample 𝐗∗

𝑗
= (𝑋∗

1𝑗
, 𝑋∗

2𝑗
) from 𝑁(𝟎, �̂�), 𝑗 = 1,… , 𝑛.

4. Insert missing values in an MCAR or MAR manner to the second component of the vector 𝐗∗
𝑗
resulting in 𝐗

∗(𝑐)
𝑗

and

𝐗
∗(𝑖)

𝑘
where 𝑗 = 1,… , 𝑛𝑐, 𝑘 = 1,… , 𝑛𝑢.

5. Calculate the value of the test statistic for the bootstrapped sample 𝑇∗.
6. Repeat the Steps 3 and 4 independently 𝐵 = 999 times and collect the observed test statistic values in 𝑇∗

𝑏
, 𝑏 = 1,… .., 𝐵.

7. Finally, estimate the bootstrap 𝑝-value as 𝑃-value =
∑𝐵

𝑏=1𝐼(𝑇
∗
𝑏
>=𝑇)

𝐵
.

Now, the nonparametric bootstrap method that is used for estimating the covariance 𝜂 of the Fisher’s pooling method
as suggested by Qi et al. (2019) is as follows:

1. Draw 𝑛𝑐 times with replacement from the pairs 𝐗(𝑐)
𝑗

= (𝑋
(𝑐)
1𝑗
, 𝑋

(𝑐)
2𝑗
), 𝑗 = 1,… , 𝑛𝑐, and calculate the 𝑝-value 𝑃∗

𝑝.

2. Draw 𝑛𝑢 times with replacement from 𝐗
(𝑖)

𝑘
, 𝑘 = 1,… , 𝑛𝑢, and calculate the 𝑝-value 𝑃∗

up.
3. Replicate Step 1, 𝐵 = 999 times and collect the observed 𝑝-values of the Wilcoxon signed-rank test (paired data) and

Mann–Whitney U test (unpaired data) in 𝑃∗
pb and 𝑃∗

ub, respectively, 𝑏 = 1,… ., 𝐵.
4. Finally, estimate the parameter 𝜂 needed for estimating the degrees of freedom as

𝜂 = ĉov(−2log(𝐏∗
𝑝), −2log(𝐏∗

up)), where 𝐏∗
𝑝 = {𝑃∗

pb, 𝑏 = 1,… , 𝐵} and
𝐏∗
up = {𝑃∗

ub, 𝑏 = 1,… , 𝐵}.

Type-I Error Results. Simulation results of type-I error level of the studied procedures under the MCAR framework
for different sample sizes and for homoskedastic as well as heteroskedastic settings are summarized in Tables 1, S.1, and
S.2.
It can be readily seen that the suggested bootstrap approaches based upon𝑇∗

𝑊, 𝑇∗
𝐴
and𝑇∗

𝑀 tend to result in quite accurate
type-I error rate control under homoskedasticity as well as heteroskedasticity and over the whole range of correlation
factors for most settings. Only in two cases; First, in case of the negative unbalanced sample size (10,30), particularly
under heteroskedasticity, the bootstrapped MATS (𝑇∗

𝑀) is not recommended due to its liberal behavior. However, in this
case, the other two suggested bootstrapped tests 𝑇∗

𝑊 , and 𝑇∗
𝐴
are controlling type-I error rate accurately. Secondly, in case

of the skewed exponential distribution, the control is not adequate and a liberal behavior is observed. However, in this
case, all the other chosen procedures also failed to control type-I error rate for the underlying sample sizes, which are
indicated in bold red through all tables. Specifically, in the case of homoskedasticity, and a balanced sample size (10,10),
our three suggested tests still result in accurate test decisions. For a positive balanced sample size (30,10), the bootstrapped
ATS (𝑇∗

𝐴
) still controls type-I error rate accurately under homoskedastic as well heteroskedastic settings. It has even the

best control of type-I error rate under heteroskedasticity among all considered methods that are identified by bold entries
in the table.
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TABLE 1 Type-I error simulation results (𝛼 = .05) of the tests for different distributions under varying correlation values (𝜌) with sample
sizes (𝑛𝑐, 𝑛𝑢) = (10, 10) and different covariance matrices Σ1 and Σ2 under the MCAR framework

𝚺𝟏 𝚺𝟐

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
Dist 𝝆 𝑭 𝑻∗

𝑾
𝑻∗
𝑨

𝑻∗
𝑴

𝑻∗
𝑳

𝑻𝒕 𝑻𝑵 𝑻𝑭 𝑻𝑷 𝑭 𝑻∗
𝑾

𝑻∗
𝑨

𝑻∗
𝑴

𝑻∗
𝑳

𝑻𝒕 𝑻𝑵 𝑻𝑭 𝑻𝑷

Normal −.9 5.3 5.3 5.2 5.4 5.0 4.8 6.7 4.3 7.5 5.1 5.0 5.3 5.6 4.9 4.7 7.1 4.8 8.3
−.5 5.3 5.3 5.7 5.6 5.3 5.1 6.8 4.6 7.4 5.3 5.3 5.5 6 5.2 5.0 6.8 5.1 8
−.1 5.3 4.6 4.9 4.8 4.8 5.0 6.5 4 6.3 5.4 4.6 5.5 5.2 5.0 5.1 7.2 4.6 7.7
.1 4.9 4.8 5.4 5.1 5.0 4.8 6.4 4.3 6.6 4.9 5.1 5.5 5.4 5.1 4.9 7 4.9 7.7
.5 5.3 5.4 5.1 5.1 4.3 5.3 6.2 4.3 5.9 5.2 5.4 5.6 5.5 4.9 5.2 7.1 4.7 7.3
.9 5.3 5.2 5.0 4.3 4.5 5.4 5.7 4.2 5.0 5.2 5.1 5.0 5.9 3.2 5.4 6.9 4.5 7.1

Laplace −.9 4.9 4.4 4.9 5.5 4.6 4.8 6.5 4.5 7.5 4.9 4.4 5.1 5.7 4.4 4.7 7.1 4.8 8
−.5 5.1 4.4 5.2 5.1 5.0 4.5 6.6 4.3 7.3 5.1 4.4 5.1 5.4 5.0 4.6 7 4.7 7.9
−.1 4.9 4.2 4.9 4.8 4.6 4.6 6.4 4.2 6.5 5.0 4.4 5.0 5.0 4.6 4.5 6.8 4.5 7.4
.1 4.8 4.3 4.3 4.2 4.3 4.4 6.2 4 6.1 4.9 4.3 4.6 4.6 4.3 4.5 6.6 4.3 7
.5 5.1 4.4 4.5 4.4 3.6 4.5 6.2 4 5.8 4.9 4.4 4.6 4.5 3.7 4.5 6.7 4.2 6.8
.9 4.8 3.9 4.8 3.6 4.7 4.4 5.6 4 4.9 4.8 4.1 4.7 5.4 3.9 4.4 6.6 4.1 6.4

Exponential −.9 4.8 4.7 4.4 5.6 4.5 4.2 6.5 4.3 6.8 5.0 4.6 5.2 6.8 5.3 4.7 8.7 4.1 8.2
−.5 5.2 5.1 4.9 4.8 5.3 4.2 6.4 4.4 7.1 5.4 5.4 6.4 6.3 6.7 5.0 9.7 4.8 8.9
−.1 5.3 5.3 5.0 4.6 5.8 4.4 6.6 4.3 6.9 5.6 6.1 6.6 6.1 7.1 5.1 10.1 4.8 8.7
.1 5.0 5.0 4.4 4.1 5.9 4 6.6 4.1 6.2 5.6 6.1 6.8 5.9 7.6 5.2 10.5 5.0 8.7
.5 5.1 5.8 4.5 4.2 6.5 4.2 6.2 4.7 6.1 5.9 7 6.9 6.5 7.7 5.7 10.7 5.1 8.8
.9 4.7 5.8 4.4 3.6 7.3 4.1 5.5 4.4 4.4 7.5 8 5.4 8.5 7.8 8.8 12.1 5.6 9.7

Chi-square −.9 5.2 5.4 5.6 5.8 5.2 5.2 6.9 4.8 7.8 5.4 5.5 5.8 6.1 5.0 5.3 7.6 5.2 8.7
−.5 5.4 5.0 5.2 5.1 5.0 4.9 6.5 4.1 6.9 5.4 5.0 5.3 5.6 5.0 4.8 7.3 4.5 7.6
−.1 5.1 5.0 5.1 5.3 5.3 4.9 6.4 4.4 6.6 5.0 5.1 5.6 5.7 5.4 4.9 7 4.5 7.9
.1 5.3 5.0 5.1 5.1 5.0 5.1 6.6 4.4 6.4 5.4 5.0 5.6 5.7 5.2 5.1 6.9 4.4 7.6
.5 5.3 5.4 5.0 5.0 4.4 5.1 6.7 4.3 5.9 5.3 5.4 5.3 5.3 4.6 5.0 6.6 4.5 7
.9 5.2 5.0 5.3 4.1 4.6 4.8 5.9 4.3 5.1 5.2 5.3 5.6 6.5 3.3 5.4 7.6 4.3 7.6

Note. For each setting, the values closest to the prescribed level are printed in bold and values exceeding the upper limit (6.8%) of the 99% binomial interval are in
red color.

Moreover, the bootstrapped test that is based on the maximum likelihood estimator 𝑇∗
𝐿 tends to behave similar to our

three suggested bootstrap procedures in controlling type-I error rate. Only in the case of large positive correlation factors
𝜌 = .9, it results in very conservative decisions.
In contrast, the other tests (𝑇𝑁 , 𝑇𝐹 , 𝑇𝑃) do not control type-I error level constantly under heteroskedasticity or even

under homoskedasticity in all of the considered sample sizes. It can also be seen from Tables 1, S.1, and S.2 that the NCT
𝑇𝑁 , controls type-I error quite accurately in the case of larger numbers of complete pairs (𝑛𝑐 = 30), but it shows liberal
behavior for smaller numbers of complete pairs (𝑛𝑐 = 10). This test turns very liberal in the case of heteroskedasticity.
Furthermore, the FPM test 𝑇𝐹 tends to result in a quite accurate type-I error control in the case of smaller numbers of
complete pairs. For larger numbers of complete pairs, it leads to a conservative decision. For these scenarios, this behavior
does not depend on the homoskedasticity assumption. Moreover, the NPC 𝑇𝑃 shows a quite liberal behavior in most of
the considered settings. Regarding the paired 𝑡-test based on the complete observations 𝑇𝑡, an inflation of the type-I error
rate could be realized for certain distributions, when the missing rate was large and the number of complete pairs was
small, see for example, the scenario (𝑛𝑐, 𝑛𝑢) = (10, 10). The effect vanishes for a larger number of complete pairs. This
is in line with the theoretical results of the paired 𝑡-test with i.i.d. observations. The results also indicate that the paired
bootstrapped 𝑡-test on the full data 𝐹 controls type-I error through almost all settings.
It was also interesting to discover the type-I error rate control of the tests under similar attributes to the breast cancer gene

study datawhich reflects data sets with a few pairs and large amount of unpaired portions. Simulation results for the type-I
error rate of the studied procedures for (𝑛𝑐 = 16, 𝑛𝑢 = 74) sample sizes are presented in Tables S.22 and S.23. The correla-
tion 𝜌 in Table S.23 is estimated based on the data. It can be easily seen fromTables S.22 and S.23 that the bootstrap tests are
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F IGURE 2 Type-I error simulation results (𝛼 = .05) of the tests 𝑇∗
𝑊 ( ), 𝑇∗

𝐴
( ), 𝑇∗

𝑀 ( ), 𝑇∗
𝐿 ( ), 𝑇𝑁 ( ), 𝑇𝐹 ( ), 𝑇𝑡

( ), and 𝑇𝑃 ( ) for different distributions under correlation factor (𝜌 = .9) and heteroskedastic covariance matrix Σ2 for varying 𝑘
values multiplied by (𝑛𝑐, 𝑛𝑢) = (10, 30) under the MCAR framework

robust under large amounts of missing observations and control type-I error rate accurately, especially the bootstrapped
tests 𝑇∗

𝑊 , and 𝑇
∗
𝐴
. Except in the case of exponential distribution. The alternative approach 𝑇𝑁 has acceptable control under

homoskedasticity. But, under the exponential distribution, it turned very liberal especially under heteroskedasticity, while
the Fisher’s pooling method tends to result in quite acceptable control in most cases.
Simulation results of the type-I error level of the studied procedures under the MAR framework for different sam-

ple sizes and covariance structures are summarized in Tables S.3– S.5. There, it can be seen that for moderate to large
sample sizes (𝑛 ∈ {20, 30}), the bootstrapped ATS 𝑇∗

𝐴
, the bootstrapped WTS 𝑇∗

𝑊 , the bootstrapped MATS 𝑇∗
𝑀 , the boot-

strapped Little 𝑇∗
𝐿, and the NCT 𝑇𝑁 exhibit a fairly good type-I error rate control for almost all considered scenarios under

homoskedasticity as well as heteroskedasticity. Only in the case of the skewed exponential distribution, the control of 𝑇∗
𝑊 ,

𝑇∗
𝑀 , and 𝑇𝑁 is not adequate and liberal behavior is observed, which is marked with red through all tables. In contrast, the

bootstrapped MATS 𝑇∗
𝑀 tends to be sensitive to the dependency structure in the data. In particular, 𝑇∗

𝑀 exhibits a liberal
behavior for negative correlations. For small sample sizes (𝑛 = 10), the 𝑇𝑁 test tends to be liberal in all considered situ-
ations. In contrast, the bootstrapped tests 𝑇∗

𝑊 , 𝑇
∗
𝑀 , and 𝑇∗

𝐿 exhibit good type-I error rate control for most settings except
for the Laplace distribution. The bootstrapped ATS 𝑇∗

𝐴
tends to be very conservative especially under heteroskedasticity.

However, the FPM 𝑇𝐹 exhibits a conservative behavior under most considered situations.
Further Investigations on Type-I Error. In addition to the small and moderate sample size settings, we were also

interested in studying type-I error rate control when sample sizes increase, while missing rates remain nearly unchanged.
For moderate to large sample sizes, we considered the choices (𝑛𝑐, 𝑛𝑢) = 𝑘 ⋅ (10, 30) and (𝑛𝑐, 𝑛𝑢) = 𝑘 ⋅ (1, 1) + (10, 10),
where 𝑘 ranges from 1 to 50 (balanced case) and 0 to 500 (unbalanced case), respectively. Figures 2 and S.1 summarize the
type-I error rate (𝛼 = .05) for these settings. The results indicate that the NCT by Qi et al. (2019) 𝑇𝑁 controls type-I error
rate quite accurate under symmetric distributions, however, it fails to control type-I error rate unde skewed distributions.
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F IGURE 3 Type-I error simulation results (𝛼 = .05) of the tests 𝑇∗
𝑊 ( ), 𝑇∗

𝐴
( ), 𝑇∗

𝑀 ( ), 𝑇∗
𝐿 ( ), 𝑇𝑁 ( ), 𝑇𝐹 ( ), 𝑇𝑡

( ), and 𝑇𝑃 ( ) for different distributions under correlation factor (𝜌 = .5) with sample size (𝑛 = 30) and homoskedastic covariance
matrix Σ1 for varying missing rates 𝑟 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} under the MCAR framework

In fact, it gets even more liberal with increasing sample sizes. In contrast, the FPM 𝑇𝐹 by Qi et al. (2019) tends to be
conservative when missing rates among subjects of 50% are present, even under large numbers of complete observations
such as 𝑛𝑐 = 510 (Figure S.1). For larger missing rates (75%), it shows surprisingly quite accurate type-I error control
(see Figure 2). Only in case of the exponential distribution, a very liberal behavior is observed that is acting analogous
to a power function with increment of sample sizes (Figure 1). Here, the suggested bootstrap approaches 𝑇∗

𝐴
, 𝑇∗

𝑊 𝑇∗
𝑀 ,

and 𝑇∗
𝐿 are the only methods that control type-I error rate accurately among all considered settings. The 𝑡-test 𝑇𝑡 based

on the complete cases controls type-I error as well, but had challenges with small complete cases 𝑛𝑐 ≤ 10. The NPC-test
𝑇𝑃, however, revealed a constant inflation of the type-I error rate for all missing rate scenarios. The degree of inflation
remained the same even for increasing missing rates. Therefore, 𝑇𝑃 seems not to be an adequate choice, even for smaller
missing rates.
In order to cover the effect of increasing missing rates, we studied type-I error control for sample sizes of the form

(𝑛𝑐, 𝑛𝑢) = ((1 − 𝑟) ⋅ 30, 𝑟 ⋅ 30)with 𝑟 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} coveringmissing rates (among subjects) from 10%

to 80% under moderate positive correlation factor (𝜌 = .5). Figures 3 and S.2 summarize type-I error rate control for these
settings under a homoskedastic and a heteroskedastic covariance structure, respectively. The results indicate that under
homoskedasticity, the alternative approach 𝑇𝑁 tends to be slightly liberal. It moves closer to the 0.05 threshold for missing
rates below 60%. In contrast, under heteroskedasticity, 𝑇𝑁 tends to be more sensitive to the missing rates. In particular, it
exhibits a conservative or liberal behavior for lower and larger missing rates, respectively. However, under this moderate
sample size (𝑛 = 30) and correlation factor (𝜌 = .5), the FPM 𝑇𝐹 tends to be conservative under all considered settings and
its behavior is independent of the missing rate or even homoskedacticity assumption. In contrast, the suggested bootstrap
approaches tend to control type-I error rate more accurate over the range of missing rates 𝑟 for most settings. Only in case
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F IGURE 4 Power simulation results (𝛼 = .05) of the tests 𝑇∗
𝑊 ( ), 𝑇∗

𝐴
( ), 𝑇∗

𝑀 ( ), 𝑇∗
𝐿 ( ), 𝑇𝑁 ( ), 𝑇𝐹 ( ), 𝑇𝑡 ( ),

and 𝑇𝑃 ( ) for different distributions under correlation factor (𝜌 = .1) with sample size (𝑛𝑐, 𝑛𝑢) = (10, 30) and homoskedastic covariance
matrix Σ1 under the MCAR framework

of the skewed exponential distribution and missing rates greater than 50%, the control is not adequate. However, in this
case all the other chosen procedures also failed to control the type-I error rate.
Power. In addition to the type-I error rate control, we studied the power of the nine tests for all considered settings.

Figure 4 summarizes the power simulation results for a negative balanced sample size (10,30) under theMCAR framework.
The power simulation results for the other scenarios are included in the supplement. The power analysis results of the
considered methods under MCAR and MAR frameworks involving homoskedastic as well as heteroskedastic settings are
summarized in Tables S6–S11 in supplement for the MCAR mechanism and Tables S12–S17 in supplement for the MAR
mechanism. The entries that belong to very liberal tests have been colored in red in the power tables. It can be readily
seen that the four bootstrapped tests 𝑇∗

𝑊, 𝑇∗
𝐴
, 𝑇∗

𝑀 , and 𝑇
∗
𝐿 and the NCT 𝑇𝑁 have almost similar large power behavior under

homoskedastic as well as heteroskedastic settings. Only in the heteroskedastic cases with skewed exponential distribution,
the NCT 𝑇𝑁 shows larger power than the others, which is due to its rather liberal behavior. One should also notice that the
power behavior of each test varies based on the dependency structure of the data except for the bootstrapped ATS 𝑇∗

𝐴
. As

expected, the paired 𝑡-test based on complete observations 𝑇𝑡 revealed for small complete observations low power results
compared to the other approaches. The NPC-test 𝑇𝑃 also shows larger power results, but the effect can be leaded back to
its liberal type-I error behavior.

7 ILLUSTRATIVE DATA ANALYSES

In this section, we consider three real life problems coming from different sectors and sources. We start with a genome
study on breast cancer.

7.1 Breast cancer study: gene expression data

The TCGA project is a pilot project which was launched in 2005 with a financial support from the National Institutes
of Health. It aims to understand the genetic basis of several types of human cancers through the application of high-
throughput genome analysis techniques. TCGA collects molecular information such as miRNA/mRNA expressions, pro-
tein expressions, and weight of the sample as well as clinical data about the patients.
A breast cancer study has been performed by TCGA to improve the ability of diagnosing, treating, and preventing

breast cancer through investigating the genetic basis of carcinoma. Their study consists of 1093 breast cancer patients
with Clinical and RNA sequencing records. Among them, there were 112 subjects that provided both, normal, and tumor
tissues. Here, we were interested in a subset of this datum that contains patients with pathologic stage I. This subset
contains a total of 𝑛𝑐 = 16 complete pairs and an unpaired sample for the patients who developed only tumor tissues of
size 𝑛𝑢 = 74. The data can be downloaded from Firehouse (www.gdac.broadinstitute.org).
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F IGURE 5 Profile of the gene expression levels of
the tumor and normal breast tissues

TABLE 2 Unadjusted two-sided 𝑝-values of the breast cancer study

Parametric bootstrap Alternatives
Gene 𝑻∗

𝐖
𝑻∗
𝐀

𝑻∗
𝐌

𝑻∗
𝐋

𝑻𝒕 𝑻𝐍 𝑻𝐅 𝑻𝐏

TP53 0.928 0.852 0.903 0.877 0.689 0.954 0.949 0.901
ABCC1 0.002 0.003 0.002 0.002 0.365 0.003 0.004 0
HRAS 0.007 0.002 0.003 0.002 0.022 0.001 0.004 0
GSTM1 0.821 0.85 0.849 0.515 0.605 0.629 0.967 0.827
ERBB2 0.043 0.024 0.011 0.014 0.136 0.071 0.069 0.007
CD8A 0.463 0.51 0.484 0.434 0.885 0.555 0.468 0.53
C1D 0.772 0.553 0.622 0.555 0.553 0.587 0.792 0.608
GBP3 0.196 0.301 0.214 0.084 0.083 0.103 0.357 0.262

Based on previous studies, six genes have been found to be significantly associated with breast cancer: TP53, ABCC1,
HRAS, GSTM1, ERBB2, and CD8A (Harari & Yarden, 2000; De Jong et al., 2002; Munoz et al., 2007; Finak et al., 2008).
Another two genes: C1D and GBP3 were under investigation although they did not show any significant relation toward
breast cancer patients (Qi et al., 2019). In this paper, we aim to test the hypothesis whether mean genetic expressions of
the eight genes are significantly different between normal and tumor tissues for patients with early stage I breast cancer.
Boxplots representing the characteristics of the eight genes are shown in Figure 5.
We applied all bootstrap testing methods 𝑇∗

𝑊, 𝑇∗
𝐴
, 𝑇∗

𝑀 , and 𝑇∗
𝐿 as well as the alternative approaches 𝑇𝑡, 𝑇𝑁 , 𝑇𝐹 , and

𝑇𝑃 to detect the null hypothesis of equal means between normal and tumor tissues (𝐻0 ∶ 𝜇1 = 𝜇2) against the two-sided
alternative (𝐻1 ∶ 𝜇1 ≠ 𝜇2). The results are summarized in Table 2.
It can be seen from Table 2 that the bootstrapped approaches 𝑇∗

𝑊, 𝑇∗
𝐴
, 𝑇∗

𝑀 , and 𝑇∗
𝐿 and the NPC 𝑇𝑃 identified three of

eight genes having significantly different genetic expressions in normal and tumor tissues; genes ABCC1, HRAS, and
ERBB2. However, the NCT 𝑇𝑁 , and the FPM 𝑇𝐹 led to different results for the ERBB2 gene. Regarding the paired 𝑡-test
based on the complete observations 𝑇𝑡, different results obtained for the ABCC1 and ERBB2 genes.
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TABLE 3 Two-sided 𝑝-values of the considered studies

Parametric bootstrap Alternatives
Study 𝑭 𝑻∗

𝐖
𝑻∗
𝐀

𝑻∗
𝐌

𝑻∗
𝐋

𝑻𝒕 𝑻𝐍 𝑻𝐅 𝑻𝐏

Anorexia 0.002 0.026 0.043 0.029 0.03 0.004 0.136 0.008 0.022
GrapeFruit 0.002 0.039 0.014 0.029 0.068 0.141 0.031 0.068 0.022

7.2 Two more examples

To illustrate potential differences between allmethodswe consider two additional examples called “Anorexia” and “Grape-
Fruit.” Each of them consists of complete data sets andmissing values were introduced on them by theMCARmechanism
with a missing rate of 𝑟 = 30%. They can be briefly described as follows:
Anorexia. This data set consists of weights in pounds for 17 young girls who were receiving a treatment for anorexia

over a fixed period of time. The main problem is to compare the girls’ weights before and after the treatment. This datum
was originally published by Hand et al. (1993), and were analyzed in Pruzek & Helmreich (2009). It is also included in the
R package PairedData (Champely & Champely, 2018).
GrapeFruit. It consists of a paired samples data that are taken from Preece (1982). The study aimed to detect differences

between “shaded” and “exposed” grapefruits. Tomake the differences as precise as possible, they dealt with both halves of
a single fruit under similar conditions. This data set consists of the percentages of solids in the shaded and exposed halves
of 25 grapefruits. This datum is also contained in the R package PairedData (Champely & Champely, 2018).
We applied the 𝐹-test that considers the full data before missingness, all bootstrapped approaches 𝑇∗

𝑊, 𝑇∗
𝐴
, 𝑇∗

𝑀 , and
𝑇∗
𝐿 as well as the alternative approaches 𝑇𝑡, 𝑇𝑁 , 𝑇𝐹 , and 𝑇𝑃 to detect the null hypothesis of equal means 𝐻0 ∶ {𝜇1 = 𝜇2}

against the two-sided alternative 𝐻1 ∶ {𝜇1 ≠ 𝜇2}. The results are summarized in Table 3. It can be seen from Table 3 that
the full data test 𝐹, bootstrapped approaches 𝑇∗

𝑊 , 𝑇
∗
𝐴
, and 𝑇∗

𝑀 , and the Pesarin test 𝑇𝑃 identified significant differences
in both data sets. However, the alternative naive approach based on the complete observations 𝑇𝑡 and the FPM 𝑇𝐹 failed
in detecting significant difference in the GrapeFruit data set. In addition, the NCT 𝑇𝑁 could not identify any significant
difference for the Anorexia data set.

8 DISCUSSION AND OUTLOOK

The problemofmatched pairswithmissing values occurs frequently in practice.Most available procedures in the literature
are not applicablewhenmissing values occur in a single arm. Exceptions are given by the recentNCT and FPMapproaches
of Qi et al. (2019). For the NCT approach, Qi et al. (2019) utilize a combination of the sign and Wilcoxon Mann–Whitney
rank sum test. And, the FPM approach, is based on a weighted combination of the 𝑝-values of the Wilcoxon signed rank
test and the Wilcoxon Mann–Whitney rank sum test. For homoskedastic settings with symmetric distributions, the NCT
and FPM approaches can be recommended. If, however, the underlying assumptions are not true (e.g., in skewed het-
eroskedastic setups), the NCT and FPMmay result in highly inflated type-I errors or considerable power loss. In addition
to the NCT and FPM approaches, we also studied a single-arm missingness modification of a nonparametric testing pro-
cedure given in Pesarin & Salmaso (2010). It is based on the usage of the permutation paired 𝑡-test and the permutation
Welch test on partial combination of the whole data 𝑛 with missingness. However, the proposed combination strategy
did not reveal favorable results leading to a constant inflation of the type-I error. We also calculated the paired 𝑡-test based
on complete observations only.
To overcome all these issues, we have provided resampling procedures that are not based on any parametric assumptions

and use all observed information within the matched pairs design. They were shown to be asymptotically correct and
robust under heteroskedasticity and skewed distributions. The tests were based on restructuring all observed information
in a test statistic of quadratic form that can be either a WTS, an ATS, or a MATS. Since WTS is well known (from other
situations like in Vallejo et al., 2010; Konietschke et al., 2015; or Smaga, 2017) for being liberal, while ATS and MATS tend
to be rather conservative or liberal for small to moderate sample sizes, we improved their small sample behavior by an
asymptotic model-based bootstrap approach. The procedure’s asymptotic validity was also proven and can be found in
the supplement. In addition, we improved the behavior of the Little’s test (cf. Little, 1976) that is based upon a modified
maximum likelihood estimator by introducing an asymptotic model-based bootstrap version of the test.
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In an extensive simulation study, the type-I error rate control of the tests have been examined for symmetric and skewed
distributions with homoskedastic and heteroskedastic covariance settings under different missing mechanisms. There, it
was seen that the parametric bootstrap versions of WTS, ATS, MATS, and Little improve their small sample behavior. In
particular, our bootstrap tests have been shown to perform very well in most of the cases, even with larger amount of
missingness, heteroskedastic covariance or skewed data. Only the type-I error control for the exponential distribution,
particularly under heteroskedasticity, MCAR and small paired sample sizes with rather large unpaired portions (𝑛𝑐 =
10, 𝑛𝑢 = 30), is not maintained. In this setting, however, all other considered methods such as the ones given in Qi et al.
(2019) and inspired by Pesarin (2001) and Pesarin & Salmaso (2010) also failed to control the type-I error rate.
Furthermore, our simulation study reveals that the bootstrap procedures’ type-I error control is notmuch affected by less

stringent missing data mechanism such as the MAR. However, their power behavior is affected. A possible justification
of the latter effect might originate from the additional dependence structure within the occurrence of missing values
compared to the MCAR case. It seems that the testing procedure is more challenged to detect deviations from the null.
In order to simplify the application of our approaches, the three proposed bootstrap statistical methods have

been implemented within the PBT function in the freely available R-package MissPair. It is available on GitHub
(https://github.com/lubnaamro/MissPair) and will be available on the CRAN repository.
Future research will be concerned with extending our procedures to multivariate settings (MANOVA). An investigation

of the behavior of our methods together with logit or probit transformations may also be part of future work.
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In this supplementary material, we present the asymptotic distribution of the suggested bootstrapped
tests, their related propositions and theorems along with their proofs. Further, we recall the definition of
the different missing mechanisms and present additional type-I error and power simulation results of our
suggested methods and the alternative approaches from Section 5 of the paper.

1 Model Assumptions and Asymptotic Analyses

First, we need to set up the following assumption regarding sample sizes, which we assume throughout

Assumption 1 For min{nc, nu} → ∞ we require that

• nc

nc+nu
→ κ1 ∈ (0, 1),

• nu

nc+nu
→ κ2 = (1− κ1) ∈ (0, 1).

We now derive the asymptotic behavior of the statistic Zn under the null hypothesis.

Proposition 1.1 Let σ2
1 = V ar(X

(c)
11 ) = V ar(X

(i)
11 ), σ2

2 = V ar(X
(c)
21 ) and ρ = corr(X

(c)
11 , X

(c)
21 ).

The statistic Zn as given in the main article has, asymptotically, as n→∞, a multivariate normal distri-
bution with expectation 0 and covariance matrix given by

Σ = lim
n→∞

Σn =




κ−11 σ2
1 κ−11 ρσ1σ2 0

κ−11 ρσ1σ2 κ−11 σ2
2 0

0 0 κ−12 σ2
1


 . (1)

Σn can be consistently estimated by

Σ̂n =




κ̂−11 (σ̂
(c)
1 )2 κ̂−11 ρ̂(σ̂

(c)
1 )2σ̂2 0

κ̂−11 ρ̂(σ̂
(c)
1 )2σ̂2 κ̂−11 σ̂2

2 0

0 0 κ̂−12 (σ̂
(i)
1 )2


 , (2)

where κ̂1 = nc/n, κ̂2 = nu/n and σ̂(c)
1 is the empirical standard deviation of {X(c)

11 , . . . , X
(c)
1nc
}, σ̂(i)

1 is

the empirical standard deviation of {X(i)
11 , . . . , X

(i)
1nu
}, σ̂2

2 = 1
nc−1

nc∑
i=1

(X
(c)
2i − X̄

(c)
2· )2 and the correlation

factor ρ is estimated through the empirical correlation ρ̂ calculated from the paired data X(c).
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2 Asymptotic Distribution of The Quadratic Forms Statistics

Theorem 2.1 The statistic TW has under the null hypothesis H0 : {µ1 = µ2} and Σ > 0, asymptoti-
cally, as n→∞, a central χ2

2 distribution.

Theorem 2.2 Under the null hypothesis H0 : {µ1 = µ2}, the test statistic TA has asymptotically, as
n→∞, the same distribution as the random variable

Y =
2∑

i=1

λiYi/tr(AΣA>),

where Yi
i.i.d∼ χ2

1 and the weights λi are the eigenvalues ofAΣA> where Σ is given in (1).

Theorem 2.3 Under the null hypothesis H0 : {µ1 = µ2} and σ2
i > 0 holds for i=1,2, the test statistic

TM has asymptotically, as n→∞, the same distribution as the random variable

Ỹ =

2∑

i=1

λ̃iỸi,

where Ỹi
i.i.d∼ χ2

1 and the weights λ̃i are the eigenvalues of DAΣA> and D = diag((AΣA>)+ii).

3 Asymptotic Distribution of The Parametric Bootstrapped Test

Theorem 3.1 For any choice [−] ∈ {A,M,W}, the conditional distribution of T ∗[−] converges weakly
to the null distribution of T[−] in probability for any choice of µ ∈ R2 and µ0 ∈ H0. In particular we have

sup
x∈R
|Pµ(T ∗[−] ≤ x|X)− Pµ0

(T[−] ≤ x)| p−→ 0.

From Theorem 3.1, we thus obtain the asymptotically correct bootstrap testsϕ∗W = 1{TW > c∗W }, ϕ∗A =
1{TA > c∗A}, and ϕ∗M = 1{TM > c∗M} where c∗W , c

∗
A, and c∗M denote the conditional (1− α)- bootstrap

quantiles of T ∗W , T
∗
A, and T ∗M respectively.

4 Proofs

Proof of Proposition 1.1:
The results follow from the multivariate central limit theorem (CLT) and the law of large numbers, respec-
tively.

Proof of Proposition 2.1 in the paper:
The stated convergence follows from Proposition 2.1 , and an application of the continuous mapping theo-
rem (CMT).

Proof of Theorem 2.1:
It follows from Proposition 2.2 that we have convergence in distribution AZn

d−→ N2(0,AΣAT ) as
n → ∞ under H0. Hence, using the CMT, the quadratic form T̃W = (AZn)>(AΣA>)+(AZn) has
asymptotically a central χ2

f distribution with f = rank(A) degrees of freedom. Moreover, as Σ̂n is a con-
sistent estimator for Σ > 0, the result follows from Slutzky theorem, see, e.g., Konietschke et al. (2015)
for similar arguments .
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Proof of Theorem 2.2:
Applying again the CMT, it follows that tr(AΣA>) · TA = (AZn)T (AZn) has asymptotically the same
distribution as

∑2
i=1 λiYi (Graybill, 1976; Brunner and Puri, 2001). Then, the result follows from the

invariance of the multivariate standard normal distribution under orthogonal transformations and the con-
sistency of Σ̂n by using Slutzky theorem.

Proof of Theorem 2.3:
Following similar arguments as prescribed in Friedrich and Pauly (2018), we can obtain that D̂n =

diag((AΣ̂nA>)+ii)
p−→ diag((AΣA>)+ii) = D as Σ̂n

p→ Σ > 0. Thus, the result follows from the
representation theorem of quadratic forms (Rao et al., 1972).

Proof of Theorem 3.1:
First, we apply the Multivariate Lindeberg-Feller Theorem (MLFT) to show that (given the data)

√
nX̄

∗(c)
. =√

n[X̄
∗(c)
1. , X̄

∗(c)
2. ] converges in distribution to a normal distributed random variable. We start by checking

the MLFT conditions:

A)

nc∑

k=1

E
(√n
nc
X
∗(c)
k |X

)
=

nc∑

k=1

√
n

nc
E
(
X
∗(c)
k |X

)
= 0

B)

nc∑

k=1

Cov
(√n
nc
X
∗(c)
k |X

)
=

nc∑

k=1

n

n2c
Cov

(
X
∗(c)
k |X

)
=

nc∑

k=1

n

n2c
Γ̂

p−→ 1

κ1
Γ

C) lim
n→∞

nc∑

k=1

E
(∥∥∥
√
n

nc
X
∗(c)
k

∥∥∥
2

· 1
{∥∥∥
√
n

nc
X
∗(c)
k

∥∥∥ > ε
}
|X
)

= lim
n→∞

n

n2c

nc∑

k=1

E
(∥∥∥X∗(c)k

∥∥∥
2

· 1
{∥∥∥
√
n

nc
X
∗(c)
k

∥∥∥ > ε
}
|X
)

=
1

κ1
· lim
n→∞

E
(∥∥∥X∗(c)k

∥∥∥
2

· 1
{∥∥∥
√
n

nc
X
∗(c)
k

∥∥∥ > ε
}
|X
)

≤ 1

κ1
· lim
n→∞

√
E
(∥∥∥X∗(c)k

∥∥∥
2

|X
)2
·
√
E
(
1
{∥∥∥
√
n

nc
X
∗(c)
k

∥∥∥ > ε
}
|X
)2

The last step follows from the Cauchy–Schwarz inequality. Now, the first term E
(∥∥∥X∗(c)k

∥∥∥
2

|X
)2

is
asymptotically bounded, while the second term converges to zero in probability since
1
{∥∥∥
√
n
nc
X
∗(c)
k

∥∥∥ > ε
}

= 1 holds iff ‖X∗(c)k

∥∥ > nc√
n
ε = nc

n

√
nε. As nc

n

√
nε → ∞ while X∗(c)k

d−→
N(0,Γ), it follows that the Lindeberg condition is satisfied (in probability). Thus, proves that the condi-
tional distribution of

√
nX̄

∗(c)
. given the data weakly converges to 1

κ1
N(0,Γ) in probability.

In a similar way , we proof that
√
nX̄

∗(i)
1 given the data weakly converges to 1

κ2
N(0, σ2

1) in probability.

Now, due to the MCAR setting,Xc is independent ofX(i) and by using Slutzky,Z∗n =
√
n[X̄

∗(c)
1. , X̄

∗(c)
2. , X̄

∗(i)
1. ]>

converges in distribution to N3(0,Σ) where, Σ is defined in Section 2 in the paper. Following the same
steps as in the proof of Theorem 3.1-3.3 , this concludes the proof.

5 MCAR, MAR and MNAR

To explain the different missing schemes we define a missing indicator variable Rj = [R1j , R2j ]
> ∈ R2,

that identify what is known and what is missing, i.e. Rij = 0 if Xij is missing and Rij = 1 otherwise,
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j = 1, . . . , n. Then, Rubin defines the missing mechanism through a parametric distributional model on
R = {Rj}nj=1 and classifies their presence through Missing Completely at Random (MCAR), Missing
at Random (MAR) and Missing not at Random (MNAR) schemes (Rubin, 2004). To describe this in
our model let us denote the observed data as Xobs = (X(c),X(i)) and denote with Xmis the missing
observations.

The data are said to be MCAR if the probability of an observation being missing does not depend on
observed or unobserved data, i.e. if P (R |Xobs,Xmis) = P (R).

Data are said to be MAR if the probability of missingness may depend on observed data but does not
depend on unobserved data, P (R |Xobs,Xmis) = P (R |Xobs).
Finally, data are said to be MNAR, if missingness does depend on the unobserved data. It can easily be
seen that MAR includes MCAR as a special case. For more details about the different missing mechanisms,
we refer to the monograph of Little and Rubin (2014).
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6 Type-I Error and Power Results

In the sequel, we present some additional type-I error and power results of the Monte Carlo simulation
study, that is described in detail in Section 6 of the paper, for testingH0 for matched pairs with missingness
in one arm under the MCAR, and MAR schemes.
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Figure 1 Type-I error simulation results (α = 0.05) of the tests T ∗W (–––), T ∗A (· · · ), T ∗M (– · –),
T ∗L (– - –), TN ( –– ––), TF (– – –), Tt (––– –––), and TP ( – – -·) for different distributions under
correlation value (ρ = 0.9) and heteroscedastic covariance matrix Σ2 for varying k values added to
(nc, nu) = (10, 10) under the MCAR framework.
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Figure 2 Type-I error simulation results (α = 0.05) of the tests T ∗W (–––), T ∗A (· · · ), T ∗M (– · –),
T ∗L (– - –), TN ( –– ––), TF (– – –), Tt (––– –––), and TP ( – – -·) for different distributions under
correlation value (ρ = 0.5) with sample size (n = 30) and heteroscedastic covariance matrix Σ2 for
varying missing rates r ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} under the MCAR framework.
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Table 1 Type-I error simulation results (α = 0.05) of the tests for different distributions under varying
correlation values (ρ) with sample sizes (nc, nu) = (10, 30) and different covariance matrices Σ1 and Σ2

under the MCAR framework. For each setting, the values closest to the prescribed level are printed in bold
and values exceeding the upper limit (6.8%) of the 99% binomial interval are in red colour.

D
is

t ρ Σ1 Σ2

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 5.1 5.1 5.5 6.9 5.1 5.2 7.2 5.4 8.6 5.2 5.1 5.4 7.2 5.1 5.3 8.1 6.7 9.4
-0.5 5.4 5.4 5.4 6 5.5 4.7 6.2 4.5 7.5 5.4 5.4 5.3 6.3 5.6 4.7 6.9 5.8 8.3
-0.1 5.4 5.1 5.8 6.1 5.6 5.1 7 4.8 7.5 5.3 5.1 5.8 6.6 5.6 5.2 7.8 6.2 8.6
0.1 5.5 5.4 5.7 6.1 5.6 5.3 6.8 4.7 7.4 5.4 5.4 6 6.5 5.6 5.2 7.5 6.2 8.4
0.5 5.6 5.4 5.4 5.5 5.9 5.3 6.2 4.4 6.2 5.5 5.5 5.9 6.2 6.1 5.4 7.5 6.3 8.1
0.9 5.2 5.8 5.6 4.5 3.6 5.3 5.8 4.4 5.6 5.3 5.2 5.8 7.1 3.1 4.8 7.4 6 7.8

L
ap

la
ce

-0.9 5.0 4.8 5.4 7 4.8 5.3 7.2 5.4 8.6 5.0 4.8 5.3 7.1 4.9 5.1 8 6.4 9.5
-0.5 4.8 4 4.6 5.2 4.4 4.3 6.2 4.4 7.3 4.9 3.9 4.5 5.7 4.4 4.2 7 5.5 8.1
-0.1 5.4 4.5 5.1 5.5 4.8 4.4 6.6 4.2 6.9 5.4 4.4 5.0 5.8 4.9 4.4 7.3 5.4 7.8
0.1 4.7 4.3 5.0 5.4 4.8 4.6 6.5 4 6.8 4.7 4.5 4.7 5.8 4.9 4.5 7 5.2 7.7
0.5 5.5 4.4 4.7 5.1 4.8 4.5 6.4 4.2 5.9 5.2 4.4 4.8 5.7 4.6 4.4 6.8 5.2 7.2
0.9 5.3 4.6 5.2 4.2 3.4 4.9 6.1 4.4 5.0 5.0 4.6 5.2 6.6 3 4.3 6.8 5.5 7

E
xp

on
en

tia
l

-0.9 4.9 4.9 4.7 6.7 5.4 4.3 7.1 5.0 8.3 5.2 5.4 5.9 8.1 6.5 5.1 10.1 5.8 10
-0.5 4.9 5.7 5.1 6.8 6.7 4.5 6.7 4.6 7.4 5.3 6.4 6.4 8.1 8 4.8 10.1 5.9 9.7
-0.1 5.1 7.3 5.9 7.5 7.8 4.5 6.7 4.8 7.3 5.4 8.1 7.7 9 9 5.1 11.3 6.6 9.8
0.1 5.2 7.8 6.3 7.4 8.6 4.1 6.7 4.5 7.2 5.7 8.7 8.2 9.2 9.7 5.3 11.3 7 10
0.5 4.8 7.9 5.6 6.3 9 4.1 6.2 4.4 5.9 5.2 8.5 8.1 8.6 9.8 5.3 10.8 6 8.9
0.9 5.1 9.5 6.7 4.8 9.7 4.2 6.3 4.8 4.9 6.9 9.6 8.4 11.5 7.9 8.9 13.1 6.8 11.2

C
hi

sq
ua

re

-0.9 5.1 5.1 5.5 6.8 4.6 5.1 6.9 4.9 8.6 5.0 5.1 5.4 7.3 4.9 5.1 8.1 6 9.6
-0.5 5.0 5.1 5.7 6.7 5.2 5.0 7.2 5.0 8.2 5.1 5.2 5.7 7.2 5.3 4.9 7.8 6.1 9
-0.1 5.1 5.2 5.5 6 5.7 4.8 6.2 4.4 7.1 4.9 5.3 5.5 6.2 5.8 4.8 7.5 5.6 8.1
0.1 4.9 5.5 5.2 5.8 5.3 4.9 6.2 4.3 6.6 4.9 5.6 5.4 6.3 5.6 4.9 7.2 5.5 8.1
0.5 5.4 5.5 5.1 5.2 5.3 4.8 6 4.2 5.9 5.5 5.6 5.7 6 5.6 5.1 7.2 5.6 7.7
0.9 4.8 5.7 5.6 4.1 3.9 4.6 5.9 4.4 5.1 5.0 5.6 6.1 7.4 3.3 5.1 7.6 5.6 8
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Table 2 Type-I error simulation results (α = 0.05) of the tests for different distributions under varying
correlation values (ρ) with sample sizes (nc, nu) = (30, 10) and different covariance matrices Σ1 and Σ2

under the MCAR framework. For each setting, the values closest to the prescribed level are printed in bold
and values exceeding the upper limit (6.8%) of the 99% binomial interval are in red colour.

D
is

t ρ Σ1 Σ2

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 4.9 5.0 4.8 4.9 4.9 4.6 5.2 3.5 6 4.9 5.2 4.9 4.7 4.9 4.7 4.6 3 6.6
-0.5 4.8 4.8 4.4 4.7 4.8 4.9 4.9 3.5 5.9 4.8 4.8 4.6 4.6 4.8 4.8 4.1 3 6.2
-0.1 4.9 5.0 4.7 4.7 4.9 4.7 5.3 3.6 5.5 4.9 4.9 4.9 4.8 4.8 4.7 4.4 3.1 5.9
0.1 5.3 4.9 5.0 4.9 5.3 5.2 5.5 3.5 5.7 5.1 4.8 5.1 5.0 5.2 5.0 4.4 3 6.3
0.5 5.5 5.0 4.6 4.7 4.7 4.7 5.2 3.7 5.2 5.4 4.9 4.7 4.6 4.7 4.6 4.4 2.8 5.7
0.9 5.6 5.3 5.2 5.1 2.3 5.0 5.3 4.4 5.2 5.7 5.4 5.1 5.3 2 5.3 4.8 3.3 6.3

L
ap

la
ce

-0.9 5.0 4.7 5.0 5.3 4.9 4.8 5.4 3.6 6.4 5.0 4.7 5.0 5.4 4.9 4.9 4.8 3.5 6.9
-0.5 5.2 4.6 5.1 5.0 5.3 4.7 5.4 3.8 6.3 5.2 4.7 5.1 5.2 5.2 4.8 4.8 3.5 6.7
-0.1 5.2 4.5 5.0 4.8 4.9 4.8 5.4 3.9 6 5.2 4.6 4.9 5.1 5.1 4.9 5.0 3.5 6.5
0.1 5.5 4.9 4.8 5.2 5.6 5.4 5.5 4.3 6.4 5.7 5.0 5.0 5.4 5.8 5.5 5.3 3.7 6.7
0.5 5.0 4.5 4.2 4.5 4.8 4.8 5.1 3.6 5.3 4.8 4.7 4.4 4.6 4.8 4.7 4.6 3.1 5.6
0.9 4.9 4.5 4.6 4.3 3.3 5.0 5.1 4.4 5.0 5.2 4.7 4.7 5.1 2.6 5.3 4.6 3.6 6.3

E
xp

on
en

tia
l

-0.9 5.1 5.1 5.0 5.9 5.1 4.7 5.3 3.7 6.6 5.3 4.9 5.2 6 5.2 5.1 9.1 2.8 6.8
-0.5 4.7 6.4 4.4 6.3 4.7 4.4 5.3 3.5 5.8 4.9 5.8 4.5 5.7 5.1 4.6 9.2 2.5 5.9
-0.1 5.0 6.8 4.7 6.2 4.6 4.5 5.1 3.7 5.6 5.2 6.4 4.6 5.7 5.0 4.8 10.7 2.7 5.6
0.1 5.1 6.5 4.9 6.2 5.4 5.1 5.4 3.9 5.9 5.3 6.2 4.7 5.9 5.8 5.4 11 3.4 6.1
0.5 4.9 6 5.1 5.8 5.2 4.9 5.2 4.1 5.8 5.4 6.1 4.5 6 6.2 5.5 12.1 3.9 5.9
0.9 5.5 5.5 5.2 5.1 4.2 5.0 5.2 4.7 4.9 6.8 7 4.6 7.1 4.3 6.5 17 6 6.8

C
hi

sq
ua

re

-0.9 5.4 5.1 5.0 5.0 5.3 4.6 5.8 3.7 6.1 5.4 5.0 5.2 5.0 5.3 4.7 5.1 3 6.9
-0.5 5.3 5.3 5.1 5.1 5.3 5.1 5.4 3.6 6.1 5.3 5.1 5.1 5.0 5.2 5.2 5.0 3 6.6
-0.1 5.2 5.3 4.9 5.1 5.2 4.9 4.8 3.5 5.8 5.1 5.2 4.9 5.1 5.2 5.0 4.7 2.5 6.2
0.1 5.1 5.4 5.0 5.1 5.0 4.9 5.1 3.9 5.5 5.3 5.2 5.0 5.0 5.0 4.9 4.8 2.8 5.9
0.5 5.0 5.3 5.2 4.9 4.7 4.8 5.0 3.7 5.5 5.1 5.2 5.0 5.2 4.9 5.0 4.8 2.5 5.9
0.9 5.0 4.9 4.6 4.6 2.5 4.9 5.0 4.3 5.1 5.2 4.7 4.6 5.0 1.6 4.7 4.8 2.8 5.8
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Table 3 Type-I error simulation results (α = 0.05) of the tests for different distributions under varying
correlation values (ρ), with sample sizes n = 10 (numbers of subjects) and different covariance matrices
Σ1 and Σ2 under the MAR framework. For each setting, the values closest to the prescribed level are
printed in bold and values exceeding the upper limit (6.8%) of the 99% binomial interval are in red colour.

D
is

t ρ Σ1 Σ2

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 4.6 5.7 4.8 5.3 4.5 4.7 7.8 3.5 6.2 5.3 5.6 5.7 5.7 5.0 5.4 8 4.1 7.1
-0.5 4.9 4.7 4.5 4.9 4.2 4.4 7.2 3.6 6 5.2 5.1 5.1 5.1 4.4 4.8 7.2 3.7 6.5
-0.1 5.1 4.7 4.2 4.5 4.2 5.0 7.2 3.4 5.9 5.2 5.1 4.5 4.4 4.3 5.1 7 3.6 6
0.1 5.1 4.8 4.2 4.3 3.8 5.1 7 3 5.8 4.9 5.0 4.3 4.5 3.6 4.8 6.8 3.1 5.9
0.5 4.8 4.6 4.2 4.3 3.1 4.7 6.3 2.9 5.1 5.0 4.9 4.5 4.6 3.4 5.2 6.4 3.5 5.7
0.9 4.8 4.6 4.9 3.8 7.8 5.2 5.9 2.9 5.2 4.5 4.8 4.7 5.0 6.9 5.1 6.8 3.3 5.8

L
ap

la
ce

-0.9 4.6 4.3 4.4 5.3 4.3 4 7.8 3.6 6.5 4.7 4.2 4.6 6 4.4 4.2 7.8 3.8 6.7
-0.5 5.0 3.6 4.5 4.4 4.2 4.4 7.6 3.8 6.8 4.6 3.7 4.3 4.6 3.7 4.2 7 3.5 6.7
-0.1 4.4 3.3 3.6 3.2 3.2 4.2 6.9 3.3 6 5.0 3.2 3.8 3.8 3.2 4.2 6.9 3.4 6.4
0.1 5.1 3.7 3.3 3.4 3.4 4.5 7 3.5 6 5.1 3.7 3.6 3.9 3.3 4.7 6.9 3.6 6.1
0.5 4.5 3.6 3.1 3.1 3.1 4.4 6.1 3.1 5.7 4.7 3.5 3.5 3.3 2.7 4.4 6.7 3.1 5.7
0.9 5.0 3.5 4 3.2 7.7 4.6 5.2 2.7 4.7 4.8 3.7 4 4.4 6.4 4.1 6.9 3.2 5.6

E
xp

on
en

tia
l

-0.9 4.4 4 3.9 5.5 4.1 3.7 7.7 3.8 6.3 5.1 3.6 5.1 6.2 4.8 4.7 9.2 4.2 7.2
-0.5 4.5 5.1 3.9 4.9 4 3.8 7.7 3.9 6.8 4.6 4 4 4.3 4.6 4.2 7.8 3.8 6.3
-0.1 4.3 5.1 3.4 4.5 3.8 3.8 7.1 3.7 6.3 4.6 4.4 3.7 3.9 4.7 4.5 7.9 4 6.1
0.1 4 4.6 2.7 4 3.7 4 7 3.4 5.8 4.9 4.5 3.4 4 5.0 4.7 8.2 4.2 6
0.5 4.5 3.7 3.2 3.5 4.6 3.7 6.5 3.2 5.2 5.9 5.0 3.1 4.4 5.6 5.9 8.2 4.4 6.4
0.9 4.5 4 4 3.8 8.1 3.6 5.9 2.8 4.7 9.3 7.6 3.6 7.5 10.5 9.4 8.6 5.0 8.8

C
hi

sq
ua

re

-0.9 5.3 5.8 5.3 5.9 5.1 4.9 7.9 3.8 6.8 5.7 5.5 5.9 6.1 5.3 5.4 8.3 4.2 7.4
-0.5 5.0 5.3 4.5 4.7 3.9 4.8 6.9 3.6 6.1 4.7 5.0 4.9 5.1 4.3 4.9 7.5 3.7 6.3
-0.1 5.3 4.9 4.7 4.7 4 5.1 7.3 3.6 6.2 5.3 5.0 4.9 4.7 4.2 5.2 7.4 3.6 6.2
0.1 5.4 5.3 4.5 4.6 3.9 5.1 7.4 3.6 6.1 5.1 5.0 4.9 4.9 4.2 5.2 7.2 3.8 6.3
0.5 5.4 4.6 4.1 4.2 3.3 4.8 6.5 3.1 5.3 5.5 4.7 4.1 4.2 3.4 5.2 6.5 3.2 5.8
0.9 5.4 4.6 4.3 3.8 8.1 4.9 5.5 2.5 5.0 5.5 4.5 4.7 5.2 7.4 5.5 7 3.5 6.2

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



10 Lubna Amro et al. and dd: Supplementary Materials for: Bootstrapping incomplete paired data

Table 4 Type-I error simulation results (α = 0.05) of the tests for different distributions under varying
correlation values (ρ), with sample sizes n = 20 (numbers of subjects) and different covariance matrices
Σ1 and Σ2 under the MAR framework. For each setting, the values closest to the prescribed level are
printed in bold and values exceeding the upper limit (6.8%) of the 99% binomial interval are in red colour.

D
is

t ρ Σ1 Σ2

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 5.7 5.8 5.9 6.4 5.3 5.5 6 4.1 7.3 4.9 5.3 5.4 5.9 4.6 5.1 5.3 3.8 7.1
-0.5 5.4 5.4 5.1 5.7 4.8 4.9 5.8 3.8 6.4 5.2 5.1 5.1 5.6 5.0 5.1 5.1 3.5 6.7
-0.1 4.9 5.4 4.7 5.2 4.7 4.9 5.8 3.8 6 5.4 4.8 4.9 5.2 4.9 4.9 5.1 3.5 6.3
0.1 5.0 5.0 4.7 5.1 4.8 5.0 5.7 3.8 5.9 5.3 5.4 5.1 5.4 5.4 5.3 5.3 3.7 6.3
0.5 5.5 4.9 4.5 4.8 4.5 5.2 5.4 4.1 5.8 5.1 4.8 4.6 4.9 4.4 4.9 5.1 3.3 5.8
0.9 5.4 4.7 5.2 4.5 4.2 5.1 5.2 4 5.4 5.0 5.0 5.2 5.5 3.1 5.2 5.4 3.4 6.3

L
ap

la
ce

-0.9 4.7 4.8 4.8 6.3 4.4 4.8 5.4 3.8 6.4 5.2 4.2 5.4 6.7 4.9 4.7 5.8 3.9 7.5
-0.5 5.3 4.3 4.7 5.6 5.0 5.0 5.6 3.7 6.6 5.2 3.9 5.0 6.1 4.8 4.6 5.4 3.5 7
-0.1 4.8 4 4.1 4.6 4.6 4.8 5.6 3.9 5.9 4.9 4 4.3 5.3 4.5 4.5 5.0 3.4 6.4
0.1 4.9 3.7 3.6 4.2 4.2 4.4 5.4 3.6 5.6 5.1 4.2 4.6 5.3 5.1 5.0 5.4 3.7 6.9
0.5 5.0 4.3 4.1 4.2 3.9 4.6 5.1 3.9 5.5 4.6 4.2 3.8 4.5 4.5 5.2 5.2 3.4 5.9
0.9 5.4 4.4 4.3 4.2 4.4 4.8 5.1 4.2 5.1 4.9 4.1 4.7 4.9 3.4 4.5 5.3 3.6 5.9

E
xp

on
en

tia
l

-0.9 5.0 5.6 4.9 7.3 4.8 4.8 5.6 4 7.1 5.3 4.7 5.6 8.5 5.0 5.2 7.2 3.4 7.5
-0.5 4.8 7.7 4.5 7 5.0 4.4 5.9 4 6.6 4.7 6.7 4.7 6.4 5.0 4.5 7 3.2 6
-0.1 4.7 7.5 4 6.3 4.7 4.4 6 4 6.2 4.8 7.3 4.6 6 5.6 5.3 7.7 3.5 6.1
0.1 4.8 7.1 4 6.4 4.2 4.3 5.5 3.9 6.3 5.0 6.4 4.4 5.8 5.9 5.4 7.3 3.3 6.1
0.5 5.1 5.6 4.8 5.4 4 4.7 5.8 4.2 6 6 6.6 4.1 6 5.9 5.9 7.9 3.9 6.4
0.9 5.2 5.4 6.3 5.6 5.3 4.8 5.5 4.8 5.8 7.5 7.7 4.4 8 6.3 7.7 8.8 4.5 7.5

C
hi

sq
ua

re

-0.9 5.1 5.5 5.2 5.8 4.9 5.3 5.5 3.5 6.8 4.9 5.2 5.0 5.9 4.6 4.7 5.1 3.1 6.5
-0.5 5.3 5.8 5.0 5.5 5.2 5.0 5.8 4 6.2 4.8 5.2 5.0 5.6 4.9 4.7 5.1 3.2 6.7
-0.1 4.7 5.3 4.7 5.1 4.8 4.9 5.6 3.8 5.9 5.1 5.5 5.2 5.7 5.3 5.1 5.3 3.8 6.6
0.1 5.1 5.1 4.7 4.9 4.5 4.5 5.5 3.6 5.7 5.4 5.5 5.0 5.3 5.1 5.0 5.3 3.3 6.4
0.5 5.3 5.3 4.9 5.1 4.1 4.9 5.1 3.7 5.6 5.3 5.1 4.7 5.1 4.4 4.9 5.2 3.1 5.9
0.9 5.2 5.1 5.1 4.6 4.2 5.1 5.3 4.2 5.4 5.6 5.2 4.9 5.7 3.8 5.2 5.5 3.3 6.4
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Table 5 Type-I error simulation results (α = 0.05) of the tests for different distributions under varying
correlation values (ρ), with sample sizes n = 30 (numbers of subjects) and different covariance matrices
Σ1 and Σ2 under the MAR framework. For each setting, the values closest to the prescribed level are
printed in bold and values exceeding the upper limit (6.8%) of the 99% binomial interval are in red colour.

D
is

t ρ Σ1 Σ2

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 5.4 5.0 5.3 5.7 4.8 5.2 5.4 3.5 6.8 5.3 5.2 5.4 6.4 5.3 4.8 5.0 3.6 7.5
-0.5 5.1 4.8 4.9 5.3 5.0 5.1 5.4 3.4 6.2 5.2 5.3 5.2 5.5 5.1 5.2 4.6 3.4 6.7
-0.1 5.2 5.0 4.6 5.1 4.9 4.9 5.5 3.8 5.8 4.9 4.9 4.6 5.2 4.7 4.8 4.8 3.3 5.8
0.1 5.2 5.2 4.6 5.0 5.2 4.9 5.4 3.6 5.7 5.0 5.2 5.2 5.4 5.2 4.9 5.2 3.4 6.4
0.5 5.4 5.3 4.8 5.1 4.8 5.3 5.2 4.1 6.1 4.8 4.9 4.7 4.9 4.8 4.8 4.6 3 5.9
0.9 5.3 5.3 5.3 4.9 2.9 5.0 5.1 4.3 5.3 5.1 4.8 4.8 5.1 1.8 4.6 4.9 3.2 6.2

L
ap

la
ce

-0.9 5.2 4.8 5.3 6.4 5.0 4.7 5.6 4 6.6 5.3 5.0 5.8 7.4 5.1 5.2 5.0 3.8 7.8
-0.5 5.1 4.6 4.8 6.1 4.8 4.7 5.4 3.8 6.5 4.9 4.4 5.1 6.3 4.8 4.9 4.8 3.3 7.2
-0.1 4.9 4.1 4.4 4.9 4.9 4.7 5.0 3.5 6 4.9 4.1 4.7 5.5 4.6 4.5 4.7 3.1 6.6
0.1 5.3 4.9 4.6 5.1 4.9 4.8 5.6 3.8 6.2 4.7 4.3 4.3 5.2 4.7 4.9 5.0 3.2 6.2
0.5 5.3 4.8 4.5 5.0 4.8 5.2 5.6 4.3 5.9 5.0 4.5 4.4 4.6 4.2 4.5 4.8 3 5.8
0.9 5.0 4.3 4.1 3.9 3.6 4.9 4.7 3.8 4.8 5.1 4.4 4.6 5.1 2.7 4.8 4.7 3.3 6.2

E
xp

on
en

tia
l

-0.9 4.8 5.6 5.0 7.4 4.9 4.6 5.2 3.5 6.9 5.2 4.9 5.5 8 5.1 4.9 8.3 2.9 7.4
-0.5 5.2 8.5 5.1 7.9 5.2 4.6 5.4 3.8 7 5.5 8.3 5.7 8 5.7 5.4 7.8 3.2 7.1
-0.1 4.9 8.2 4.8 7.2 5.1 4.3 5.3 3.9 6.9 5.0 7.8 5.1 6.8 5.6 5.3 9 3.1 6.7
0.1 5.0 7.5 4.9 7.2 4.8 4.6 5.5 3.6 6.7 5.7 6.8 4.6 6.3 5.9 5.4 8.4 3.2 6.2
0.5 5.2 6.9 5.9 6.4 5.0 4.9 5.6 4.2 6.5 5.8 6.5 4.4 6.2 5.8 5.7 8.9 3.7 6.4
0.9 4.7 5.7 6.9 5.7 4.4 4.3 5.3 4.7 5.8 7.1 7.2 5.1 7.4 4.7 6.8 10.3 4.5 7.3

C
hi

sq
ua

re

-0.9 4.5 5.2 5.0 5.7 4.8 4.7 4.8 3.5 6.3 5.3 5.5 5.3 6.6 4.9 4.9 5.1 3.5 7.4
-0.5 5.1 5.7 4.9 5.5 5.1 5.1 5.3 3.8 6.2 5.1 5.4 5.3 6 5.2 5.3 4.7 3 6.8
-0.1 5.3 5.5 5.0 5.4 5.2 5.1 5.2 3.8 6.1 5.7 5.5 5.4 5.6 5.3 5.1 5.0 3.1 6.6
0.1 5.1 5.3 4.8 5.2 4.8 4.9 5.2 3.5 5.7 5.5 5.3 5.1 5.6 5.3 5.1 5.1 3.1 6.7
0.5 4.7 4.7 4.5 4.7 4.5 4.7 5.1 3.6 5.3 5.6 5.4 4.9 5.4 4.9 5.1 5.0 3 6.4
0.9 5.5 5.3 5.2 4.9 3.2 5.1 5.2 4.4 5.4 5.4 4.9 4.6 5.0 2 5.2 4.7 2.7 6
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Table 6 Power simulation results (α = 0.05) of the tests for different distributions under varying corre-
lation values (ρ) with sample sizes (nc, nu) = (10, 10) and homoscedastic covariance matrix Σ1 under the
MCAR framework. Values of too liberal tests corresponding to red values in the Σ1−column from Table
1 in paper are printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 19.6 13.4 15 16.5 18 10.9 17.6 9.4 21.6 59.2 41 45.5 50 55.6 30.3 48.5 34.7 58.6
-0.5 24.2 14.2 18.8 19.2 19.5 13.5 20.7 11.8 24 69.2 44.5 54 55.4 56.8 37.8 54.8 41.5 62.9
-0.1 30.7 15.8 21.2 20.4 20.2 16.3 22 13.9 25.1 81.1 50.8 62.9 61.7 61.7 48.4 61.6 49.5 68.5
0.1 35.2 17.2 23.1 22.1 21.8 18.7 24.1 15.1 26.6 88.2 55.9 68.7 66.5 65.7 55.6 66.6 55 73
0.5 56.7 25.2 27.6 29.8 30.5 29 32.8 22.9 33.9 98.9 76.2 80.6 82.7 82.7 80.2 81.6 74 86.3
0.9 99.7 81.2 31.5 81 70 88.6 71.5 72.5 81 100 100 94 100 99.9 100 99.4 99.9 100

L
ap

la
ce

-0.9 20.8 13.9 16.2 18.4 19.2 12 21.7 11.5 23.5 60.9 46.2 49.2 54.6 57.5 34.4 58.1 41.9 62.1
-0.5 25.1 15 19.4 20.3 20.7 14.1 24.8 14.4 25.6 69.9 48.6 56.5 59.2 59.2 40.4 64.2 48.4 66
-0.1 32.4 17.5 23.1 23 22.4 17.6 30.3 18.6 28.5 82.1 55.7 65.6 65.6 64.1 51.3 72.2 57.8 72.4
0.1 37.1 19.2 25 24.7 24.2 20.3 32.3 20.9 30.4 87.8 60.2 69.7 69.8 67.9 58.6 76 62.6 76
0.5 58.3 30.3 30.4 34.5 34 32.9 42.5 30.7 39.2 98.4 79.6 81 83.8 83.6 80.7 87.3 78.8 86.9
0.9 99.3 83.2 33.3 81.4 73.6 87.7 76.8 75.1 82.1 100 99.9 91.6 99.8 99.7 100 99.3 99.4 99.9

E
xp

on
en

tia
l

-0.9 22.1 13.6 18.4 20.7 21.9 12.8 26.8 13.7 25.1 61.3 45.8 51.2 55.3 59.6 36.5 62.8 43.2 62.4
-0.5 27 15.8 24 23.2 25.7 15.6 31 16.4 28.6 71.1 48.3 59 59.6 62 44.4 68 49.8 66.1
-0.1 33.8 20 28.7 25.7 29.4 19.9 36.2 20.6 31.5 82.5 53.8 66.4 64.9 64.8 54.5 73.5 55.7 71
0.1 39.6 23.1 30.8 27.8 31.7 23.2 39.2 22.7 33.7 87.4 57.9 69.6 67.7 66.6 60.5 76.7 59.5 73.1
0.5 59.7 32.8 35.8 36.4 38.3 35.5 46.3 29.8 40.8 97.9 74.4 78.8 79.9 77.7 81.4 85 71.9 83.9
0.9 99 80.7 37.2 78.3 72.2 86.9 73.4 67 78.7 100 99.9 89.6 99.4 99.1 99.9 97.9 97.8 99.3

C
hi

sq
ua

re

-0.9 20.8 13.4 16.5 18 19.8 12.1 18.8 10.4 23.2 60.2 42.2 46.7 51.6 57 31.4 49.7 36.2 59.6
-0.5 24 13.8 19.7 19 20.4 13.4 20.5 11.6 23.9 69.7 43.7 54.2 54.9 57.4 38 54.8 40.9 62.6
-0.1 30.4 16 22.7 20.7 22 16.1 22.4 13.7 25.4 82.1 50.3 63.6 61.8 62.2 48.2 61.5 48.2 69
0.1 35.9 17.8 24.6 22.5 24.1 18.6 24.5 15.7 27.5 88.6 53.9 67.5 65 65.2 54.7 65.2 52.3 71.6
0.5 56.6 26.5 29.1 30.4 31.6 28.9 32.4 23.2 34.6 98.8 75.3 79.6 81.5 81.1 80.5 80.7 71 85.3
0.9 99.6 80.1 32.4 79.8 70.3 87.6 69.7 68.3 80 100 100 92.9 99.9 99.7 100 99 99.6 99.9
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Table 7 Power simulation results (α = 0.05) of the tests for different distributions under varying corre-
lation values (ρ) with sample sizes (nc, nu) = (10, 30) and homoscedastic covariance matrix Σ1 under the
MCAR framework. Values of too liberal tests corresponding to red values in the Σ1−column from Table
1 are printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 34.9 21.2 15.6 21.9 29.5 11.3 19.3 12.5 26.3 88.4 69.6 45 62.2 82.3 30.5 51.5 46.2 67.3
-0.5 43.8 18.7 18.9 23.8 25.9 13.2 21.3 14.6 28.5 94.5 61.1 56.2 66.2 72.3 37.6 59 53.2 72.8
-0.1 54.7 18.6 22.7 24.6 24 15.9 23.9 16.7 29.8 98.4 59.5 66.4 70.1 69.7 47.5 65.5 59.5 76.9
0.1 63.2 20.3 26.7 27.2 26.3 19.1 26.9 19.2 32.2 99.5 63.6 73.9 74.7 72.4 55.8 71.8 65.2 81
0.5 87.1 27.8 34.6 34.9 33.9 29.7 36.6 26 40 100 79 87.6 86.2 85.5 79.9 85.9 79.7 91
0.9 100 80.7 47.3 79.4 79.8 88.3 77.6 67.2 83.3 100 100 98.6 99.9 100 100 99.9 99.8 100

L
ap

la
ce

-0.9 36.5 23.1 16.4 23.7 32.3 11.6 23.6 15.2 28.9 89 72 49 65 83.3 33.4 61 54.3 69.9
-0.5 42.7 19.7 19.8 25 26.5 13.5 27.2 18.5 30.3 93.9 62.9 57.2 67.2 72 39.8 67.4 61.2 73.6
-0.1 55.7 21.3 25.4 28.3 27.8 17.3 31.8 23.5 34 98.1 64.1 68.7 73.2 71.6 51.1 75.4 69.1 79.3
0.1 64.4 22.6 28.6 30.5 28.6 20.1 35.6 26 36.2 99.4 67 75.1 77.2 74.3 58.8 80.8 73.9 82.7
0.5 86.4 32.4 38.5 39.3 38.5 32.1 46.2 34.9 44.4 100 81.5 87.5 86.8 85.9 80.9 90.7 84.1 90.9
0.9 100 83.7 49.2 79.3 80.7 87.6 82.8 71.3 83.6 100 99.9 96.8 99.4 99.9 100 99.7 99.2 99.9

E
xp

on
en

tia
l

-0.9 37.9 25.6 19.9 28.2 37.5 13.3 29.1 18.5 32.6 88.5 73.6 52.3 65.8 84.8 36.6 66 57.3 70.5
-0.5 45.6 26.9 25.9 32.1 37.2 15.8 33.3 23 35.1 94.1 65 61.3 68.6 75.6 44.5 70.9 62.5 72.8
-0.1 56.5 28.5 32.2 34.3 35.8 19.3 38.3 26.9 37 97.8 62.5 68.3 70.4 69.9 54.3 76 66.9 74.7
0.1 65.2 30.6 36.3 36.9 37.5 22.6 41.4 29.3 39.2 99.2 65.1 73.5 74.4 71.8 62.1 79.6 71 78.4
0.5 86.3 36 44.1 43.5 41.4 34.3 49.9 34 46 100 74.5 82 81.9 78.4 80.5 87.4 78.1 85.3
0.9 100 80.3 53 78.2 76.3 87.2 78 63.8 80 100 99.9 92.5 97.9 99.9 99.8 98.7 97.3 99.4

C
hi

sq
ua

re

-0.9 36.1 23 16.4 23.3 32.5 11.9 19.8 13.4 27.8 89 70.5 47.2 63.4 83.5 31.8 52.4 48 68.5
-0.5 43.2 19.7 20.2 24.5 28 13.1 21.5 14.5 29.2 94.6 60.3 55.9 65.5 71.7 37.8 58.3 52.3 71.3
-0.1 54.3 20.3 24.3 25.8 26.4 16.2 24.6 16.8 30.8 98.4 60 66.9 69.6 69.5 48.1 65.5 58.7 76
0.1 64.5 21.8 28.5 28.6 28.3 18.4 26.2 19.1 33.2 99.7 62.7 72.7 73.3 71.4 55.7 70.7 62.5 79.1
0.5 87.4 29 36.2 35 35.3 29.9 35.6 25.8 40.2 100 77.2 86.1 84.9 83.2 80.4 84.2 76.9 89.4
0.9 100 79.9 47.8 78.6 78.3 88.2 75.2 63 81.9 100 100 97.2 99.8 100 100 99.6 99.2 100
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Table 8 Power simulation results (α = 0.05) of the tests for different distributions under varying corre-
lation values (ρ) with sample sizes (nc, nu) = (30, 10) and homoscedastic covariance matrix Σ1 under the
MCAR framework. Values of too liberal tests corresponding to red values in the Σ1−column from Table
2 are printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 35.9 24.5 34.2 31.8 35.3 27.9 31.5 17.8 38.1 88.9 76.8 86.8 85 88 78.3 82.9 71.6 89.4
-0.5 42.7 27.7 36.5 35.5 39.8 32.8 35.2 22 41.4 94.5 84.5 90.7 90.2 93 86.7 88 80.5 93.3
-0.1 54.6 35.4 40.1 42.6 48.9 42.6 40.4 29.7 48.1 98.6 92.6 94.3 95.5 97.1 94.6 93 90.5 96.7
0.1 63.6 42.6 43.1 49.4 55.9 50.9 45.8 37.1 54.2 99.6 96.2 95.8 97.6 98.7 97.4 95.4 95.2 98.3
0.5 87 65.7 45.7 69.9 78.3 75.3 60.7 61.9 73.1 100 99.8 98.2 99.9 100 99.9 99.2 99.8 99.9
0.9 100 100 47 100 99.9 100 96.1 99.9 100 100 100 99.4 100 100 100 100 100 100

L
ap

la
ce

-0.9 36.2 24.6 33.5 33 34.8 27 39.2 21.4 38.9 88.3 77.8 86.5 85.5 87.3 77.5 90.6 77.3 89.6
-0.5 43.6 29.8 37.9 38.1 41 33.6 45.5 28.2 43.7 94.1 84.9 89.9 90.2 91.7 85.5 93.7 85.9 92.8
-0.1 55.2 38.1 42.1 45.7 50 44.1 54.8 38.8 50.7 98.2 92.7 93 95.3 96.5 94.2 97.3 94.3 96.6
0.1 64.8 45.8 45.4 52.3 57.8 52.4 60.3 47.6 56.9 99.3 96 94.6 97.6 98.3 96.9 98.3 96.9 98.2
0.5 86.6 67.6 48.3 71.7 78.7 75.6 73.8 70.7 74.8 100 99.8 97.1 99.8 99.9 99.9 99.7 99.9 99.9
0.9 100 100 48.8 100 99.8 100 97.7 99.9 100 100 100 98.6 100 100 100 100 100 100

E
xp

on
en

tia
l

-0.9 37.9 24.2 35.5 34.4 37.6 29.7 50.5 25.9 39.3 88.3 76.7 86.6 85.4 87.5 77.8 94.1 80.5 89.5
-0.5 44.8 27.1 38.3 36.4 42.7 35.7 57 31.6 40.6 93.7 81.7 90.6 89.6 91.2 86 96.8 87.1 92
-0.1 57 35.5 43 43.8 52.1 45.7 66.2 40.7 47.9 97.9 89.5 94.2 94 95.4 93.5 98.3 92.9 95.5
0.1 65.2 42.6 45 49 57.9 52.8 70.4 47.9 53.5 99.2 93 95.6 95.8 97 96.2 98.9 95.7 97.2
0.5 86.4 65.8 49.2 69.2 76.6 76.2 80.5 69.2 72.3 100 99.2 98 99.5 99.7 99.7 99.8 99.5 99.6
0.9 100 99.8 50.3 99.7 99.2 99.9 98.1 99.6 99.7 100 100 99.6 100 100 100 100 100 100

C
hi

sq
ua

re

-0.9 36.5 23.4 33.7 31.1 35.5 28.1 32.4 17.8 37.5 88.1 75.6 86.4 84.2 87.5 77.3 83.5 71 88.8
-0.5 43.3 27.5 37.4 35.6 41 34.1 36 22.4 41.3 94.4 83.4 91.1 90.1 92.7 86.6 88.4 79.8 93.2
-0.1 55.7 36 41.3 43.1 50.3 43.9 42.7 30.5 48.5 98.7 92.1 94.9 95.3 97 94.7 93.2 89.7 96.7
0.1 64.2 41.8 43.1 48.7 56.5 51 46.8 37.2 53.5 99.6 95.8 96.2 97.5 98.6 97.6 95.5 94.3 98.2
0.5 87 65.1 45.1 69.3 77.4 75.5 60 60.4 72.4 100 99.9 98.7 100 100 100 99.2 99.7 100
0.9 100 100 46.5 100 99.8 100 96.1 99.9 99.9 100 100 99.7 100 100 100 100 100 100
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Table 9 Power simulation results (α = 0.05) of the tests for different distributions under varying correla-
tion values (ρ) with sample sizes (nc, nu) = (10, 10) and heteroscedastic covariance matrix Σ2 under the
MCAR framework. Values of too liberal tests corresponding to red values in the Σ2−column from Table
1 in paper are printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 15 10.5 11.2 12.6 13.4 9 14.2 7 17.5 44.1 29.1 31.2 34.9 39.8 22 34.4 21.6 44.2
-0.5 18.2 10.9 13.9 14.6 13.8 10.8 15.4 8.3 19.3 53 29.8 38.1 39.7 39.8 27.8 39 26.2 47.9
-0.1 22.3 11.4 15.2 15.3 14.1 12.4 16.9 9.2 19.9 64.5 32.6 44 43.6 41.8 34.8 43.9 30.4 51.8
0.1 25 12.1 16.1 15.6 14.9 13.8 17.2 9.7 20.4 73 36.2 47.5 46.8 44.5 40.1 47.4 33.6 55.5
0.5 39.7 16.2 19.2 20.2 19.4 20.4 22.3 13.4 25.3 92 51.3 57.1 60.1 58.8 61 59.5 47.5 67.2
0.9 88.7 48.9 21.8 44.8 34.7 56 39 30.9 47.9 100 97.4 69.2 95.4 93 98.7 87.2 86.6 95.5

L
ap

la
ce

-0.9 15.8 10.8 12 13.8 14 9.7 16.7 8.1 19 46.5 33.3 35.1 39.4 43.2 25.3 44 27.8 48.4
-0.5 19 11 14.4 15.5 14.7 10.9 19 10.2 20.5 54.6 33.5 40.8 43 42.4 29.7 49.3 32.9 51.4
-0.1 23.4 12.7 16.8 16.8 15.6 13.7 22.6 12.7 22.6 66.6 38.2 48.1 48.6 46 37.9 55.6 40 56.7
0.1 26.7 13.2 17.6 17.8 16.6 14.8 23.1 13.4 23.8 73.5 41.4 51.4 51.5 49.1 43.5 59.6 44.1 59.2
0.5 42.1 19.3 21.3 23.6 22 23.5 30 19.2 29.3 91.7 58 61.7 64.7 62.8 64.4 70.7 56.6 70.9
0.9 87.5 54.1 22.7 50.3 42.4 60.1 49.7 39.2 53.1 99.9 96.8 70.5 93.3 92.1 97 89.7 85.3 93.9

E
xp

on
en

tia
l

-0.9 19.6 13.9 17.1 19.1 19.3 13.2 27.2 13.1 23.2 48 37 39.4 43.3 47 30.5 53.6 33.1 50.4
-0.5 23.1 15 21.4 21.4 21.9 15.2 30.6 15 25.9 57.1 37.1 46.8 47.9 49.2 36.2 57.9 37.8 54
-0.1 27.8 17.9 25.3 23.5 24.4 18.8 34.1 18.1 28.2 67.1 41.2 52.2 51.4 50.3 43.8 62.1 42.4 57.4
0.1 31.5 19.9 26.7 25.1 25.9 21.5 36.1 19.6 29.7 72.7 44 54.8 53.3 51.8 48.3 64.7 44.3 59.4
0.5 45.3 26.4 30.5 30.8 29.6 30.4 41.2 23.7 34.9 87.5 57 61.7 63.1 60.1 64.5 72.3 53.8 68.3
0.9 81.2 57.6 29.5 52.4 45.9 60.4 54.4 39.1 54.2 99.6 94.4 69.1 87.1 87 92.5 86.1 77.2 88.1

C
hi

sq
ua

re

-0.9 16.5 11.3 13.7 14.9 15.3 10.7 16.2 8.4 19.8 46.2 31.7 34.2 37.8 42.4 24.6 37.7 24.7 45.7
-0.5 18.6 11 15.7 15.8 15.6 11.4 17.2 9.2 20.5 53.4 30.6 39 40.4 41.2 29.1 41.9 27.3 48.4
-0.1 22.6 12.3 17.5 16.6 16.3 13.5 18.4 10.1 21 65.4 33.9 45.6 44.4 43.4 36.1 46.2 31.3 52.5
0.1 26.6 13.6 18.6 17.4 17.2 15 20.6 11.6 22.1 72.3 37 48.5 47.1 45.9 40.8 48.6 34.8 54.8
0.5 40.6 18.3 21.3 22.5 21.4 21.9 24.9 15.2 26.9 90.9 51.9 58.2 60.3 58.9 61.1 60.7 46.9 66.5
0.9 86.1 49.9 23.4 45.7 35.9 55.8 41.7 32.2 48.2 100 96.2 68.3 92.3 90.4 97 84.5 81.6 92.7
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Table 10 Power simulation results (α = 0.05) of the tests for different distributions under varying cor-
relation values (ρ) with sample sizes (nc, nu) = (10, 30) and heteroscedastic covariance matrix Σ2 under
the MCAR framework. Values of too liberal tests corresponding to red values in the Σ2−column from
Table 1 are printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 25.2 14.9 11.7 15.9 20.5 9.4 15.7 9.8 20.5 74.5 50.2 31.2 41.2 64.5 22.4 36.8 30.2 48.5
-0.5 32.2 13.1 13.7 17 16.8 10.5 16.4 10.3 21.7 84.3 39.3 38.3 45.3 49.7 27.8 42.4 34.5 53.4
-0.1 40.4 12.4 16 17.3 15.8 12.4 18.2 11.8 22.2 92.3 36.2 44.9 47.7 44.8 34.6 46.4 37.8 56.2
0.1 46.9 13.7 17.8 18.9 16.6 14.1 19.7 13 23.7 96.1 39.9 50.6 51.5 47.7 40.8 51.7 42.5 61
0.5 69.1 17 20.9 21.9 20.6 20.5 24.2 15.8 27.4 99.8 51.9 62.1 62.6 59.8 61.5 63.8 53 71.6
0.9 99.4 50.1 26.2 44.3 49.6 56 43 30 49.6 100 97.6 76.7 92.3 98.2 98.7 89.9 83.4 95.5

L
ap

la
ce

-0.9 27.3 16.6 12.4 17.3 23 9.5 18.8 11.2 22.1 75.3 52.9 34.9 46.1 65.7 24.9 46 37.1 53.1
-0.5 31.3 13.3 14.1 17.7 18 10.5 20.8 13.1 23.1 83.2 42.6 40.6 48.1 51.8 29.5 51.1 42.5 56.1
-0.1 41.5 14 17.7 20 17.9 13.6 24.3 16.5 25.2 92.5 41.6 49.1 53.3 49.7 37.8 58.7 49.3 61.2
0.1 48.5 14.7 19.3 21 18.3 14.8 26.1 17.5 26.2 96 44.2 55.2 56.5 52.9 44.3 63.7 53.1 64.7
0.5 69.9 20 24.4 26.2 24.2 22.7 33 22.3 31.7 99.7 57.9 66.5 67.3 64.9 65 75.4 62.5 74.5
0.9 99.4 56.6 28.6 49.6 53.4 60 53.4 36.9 54.5 100 97.2 77.1 89.4 97.8 96.8 91.6 84 93.7

E
xp

on
en

tia
l

-0.9 29.2 22.1 18.1 23.6 30.4 13.8 29.1 18.1 28.2 75 58.2 41.1 50 70.1 30.8 55.8 44.2 55.8
-0.5 35.1 22.5 22.7 26.6 29.5 15.7 33.2 21.7 30.3 82.2 49.5 47.3 53.4 60.3 36.1 60.1 49.4 59
-0.1 43.1 23.2 26.8 28.3 28.3 18.6 36.2 24.6 31.4 89.5 46.8 53.5 55.7 54.2 43.1 64.6 52.8 60.6
0.1 49.8 24.5 29.9 30.5 28.9 21.3 38.4 26.1 33.6 93.6 48.9 57.8 58.9 55.3 49.4 68.1 55.8 63.9
0.5 68 27.2 33.5 34.5 30.3 29.1 43.9 28.3 37.3 99 56.1 64 65.1 60.1 63.9 74.9 61.2 70.1
0.9 97 56.6 37.8 54 51.7 60.4 58.2 40.6 56.1 100 96.5 73.5 84.6 95.7 92.5 88.8 79 88.5

C
hi

sq
ua

re

-0.9 27.3 17.5 13.6 18 23.8 10.7 17.8 11.3 22.5 74.5 51.7 33.8 44.4 66 24.4 40.1 33.1 50.7
-0.5 32.2 14.3 15.4 18.4 19.3 11.1 18.3 11.9 22.7 83 40.8 39.7 46.1 51.4 28.6 44.2 36.1 53.6
-0.1 39.8 14.2 17.8 19 18.1 13.5 20.5 13.1 23.8 92 38.9 46.9 49.5 47.1 35.7 49.7 39.9 57.5
0.1 47.4 15.4 19.9 20.5 19 14.8 21.8 14.5 25.7 96.2 40.5 51.3 52.2 48.6 41.6 53.7 42.8 59.8
0.5 69.3 18.9 23.5 24.4 22.5 22.5 26.8 17.5 29.3 99.7 51.9 61.3 61.5 59 60.9 64.6 52 69.9
0.9 99.3 50.8 28.6 46.1 49.9 56.6 45.6 31.4 50.6 100 97.1 74.4 89.6 97.3 97.1 87.5 79.6 93.1
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Table 11 Power simulation results (α = 0.05) of the tests for different distributions under varying cor-
relation values (ρ) with sample sizes (nc, nu) = (30, 10) and heteroscedastic covariance matrix Σ2 under
the MCAR framework. Values of too liberal tests corresponding to red values in the Σ2−column from
Table 2 are printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 26.2 17.2 25.4 23.6 25.2 20.5 21 9.5 29.9 75.2 58.7 73.1 69.9 73.6 61.8 65.1 46.7 77.7
-0.5 31.3 19.2 27.2 26 28.2 24 23.1 11.9 31.6 83.9 66 78.4 76.6 79.4 71.3 70.6 55.5 82.5
-0.1 40.1 24 31 30.7 34 30.6 27.2 15.7 36.4 92.7 76.1 84.1 83.8 86.8 82.8 77.3 67.8 88.3
0.1 47.2 28.1 33.3 35 39.2 36.8 30.4 19.6 40.9 96.3 83.9 87.2 89 91.6 89.7 82.1 76.4 92
0.5 69 43.5 35.7 48.6 56.5 55.8 39.1 32.8 53.8 99.9 96.8 92.2 97.6 98.7 98.7 92.2 93.9 98.2
0.9 99.5 94.4 37.9 92.2 89.8 97.4 69.4 84.9 93.2 100 100 96.5 100 100 100 99.8 100 100

L
ap

la
ce

-0.9 26.5 18 25.2 24.8 25.6 20 27.6 12.5 30.2 74.6 59.9 72.7 70.8 73 62 77 55.3 77.9
-0.5 32.2 20.8 28.9 28.4 29.2 24.7 32.2 16.4 34.2 83.1 67.4 77.8 76.8 78.4 70.9 82.6 65.9 82.5
-0.1 40.7 25.4 31.9 33.3 35.1 31.8 39.6 22.9 38.9 92.1 77.2 83.6 84.6 86.6 83.1 89.3 78.3 88.6
0.1 49 30.6 35.4 38.4 41.2 38.4 43.8 27.9 44.1 95.6 83.9 86.6 88.8 90.6 88.6 92.2 85.1 91.8
0.5 70.1 46 37.6 51.5 58.2 57.3 54.6 44.3 56.5 99.7 95.9 91 97 98.5 98.3 97.3 96.2 97.9
0.9 99.1 93.9 39.2 91.8 89.8 96.5 84.2 90.9 92.6 100 100 95.4 100 100 100 99.9 100 100

E
xp

on
en

tia
l

-0.9 30.1 20.5 29 28.9 29.8 24.7 50 22.6 33.2 74.3 60.5 71.9 71.6 72.9 62.8 87.6 64.9 76.7
-0.5 34.2 21.6 30.9 29.9 32.7 28.4 55.3 26.2 33.5 82 63.9 77.3 75.9 77.9 71 91.3 70.6 80.3
-0.1 43.5 27.3 34.9 34.4 39 35 62.6 32.5 38.7 90 73 82.3 81.5 83.9 81.1 94 79.4 85.4
0.1 50.2 31.8 36.9 38.3 43.3 40.4 66.3 37.4 42.4 93.4 78.6 84.7 85 87 86.2 95.2 83.9 88
0.5 68.5 48.3 39.5 51.8 58.2 58.6 74.6 52.1 55.4 99 92.7 89.5 93.7 95.7 96.1 97.6 94 95
0.9 97.3 90.8 40.2 86.7 85.2 92.8 89.2 86.8 87.5 100 100 95.5 99.9 100 100 99.8 99.9 99.9

C
hi

sq
ua

re

-0.9 27 17.4 25.7 24 26.2 21 25.1 11.2 30.4 74.1 57.9 72.2 68.9 72.5 61.7 68.8 48.5 76.9
-0.5 32.4 20.1 29 26.9 30.3 25.7 28.5 14.2 33.1 83.3 64.8 78.6 76.1 79.4 71.9 74.6 57.6 81.9
-0.1 40.9 25.1 32.2 31.9 35.8 32.4 33.2 18.8 37.4 92.2 75.4 84.2 83.8 86.5 83 81.2 70 87.6
0.1 47.5 29.3 34.1 36.1 40.4 37.6 35.9 22.5 40.9 95.6 81.7 86.6 87.7 90.4 88.5 85 76.4 91.1
0.5 68.7 44.1 35.7 48.8 56.2 55.7 45.1 34.8 53.3 99.8 95.8 91.8 96.8 98.1 98.2 93.2 92.9 97.7
0.9 99.1 93.6 37.5 90.6 89.1 96.4 74.8 85.2 91.7 100 100 96.7 100 100 100 99.7 100 100
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Table 12 Power simulation results (α = 0.05) of the tests for different distributions under varying cor-
relation values (ρ) with sample sizes n = 10 and homoscedastic covariance matrix Σ1 under the MAR
framework. Values of too liberal tests corresponding to red values in the Σ1−column from Table 3 are
printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 10 6.8 9.3 8.6 9.1 8.3 12.8 6.4 11.6 26 12.3 22.5 17.3 23.9 19.4 29.4 17.2 27.9
-0.5 11.8 7.5 10.2 9.4 9.6 9.3 13.8 7.2 13.1 30.8 14.8 24.2 21.1 24.6 22.1 31 18.9 29.5
-0.1 14.7 8.4 10.5 10 10.8 11.8 15 8.4 14 42.1 19.2 28.4 25.7 29.5 30.5 36 24 35.6
0.1 16.4 9.2 10.8 10.5 11.1 13 15.7 9 14.8 51 23.6 31.6 29.8 33.9 36.4 41 28.7 40.9
0.5 28.6 12.3 10.8 13.2 13.7 19.9 19.2 11.8 18.4 77.2 39.2 37.6 44.8 47.9 58.3 54 42.8 57.5
0.9 88.2 48.4 12.6 46.9 53.4 69.7 41.9 38.6 56.8 100 97.4 45.6 97.3 96.2 99.8 85 81.6 98.3

L
ap

la
ce

-0.9 11.5 6.7 10.4 9.9 10.8 9.3 16.3 8.7 14.2 29.8 15.5 27.4 22.2 28.1 22.6 36.4 22.8 33.5
-0.5 13.6 6.7 11.1 10.4 11.6 10.3 17.8 9.6 16.1 37.3 19.3 30.9 28.2 31 27.4 41.7 26.6 39.3
-0.1 16.7 7.9 11.6 10.9 10.8 12 20.1 10.8 18 48.3 24.9 36.2 33.7 36 35.6 48.3 33.8 46.4
0.1 19.5 9.2 12.6 12 12.3 14.3 21 12.5 19.5 55.9 29.4 38.9 37.5 39.2 41.4 51.8 37.5 50.8
0.5 33.2 14.5 14 16.1 16.6 23.5 26.9 17.4 25.7 80.8 48.3 46.6 52.8 54.3 64 63.4 51.3 65.8
0.9 89 55.3 14.2 52.8 60.1 71.5 48.2 42.8 62.3 100 97.1 52.6 96.8 95.8 99.3 86.9 83.5 98

E
xp

on
en

tia
l

-0.9 11.7 4.7 10.7 9.3 11.8 9.4 18.2 9.4 14.2 32.9 14.4 30.4 24.3 32.4 25.2 41.3 25.2 35.6
-0.5 12.9 5.5 11 7.8 13.3 10.3 19.2 10.1 14.5 39.2 17.2 34.4 27.9 36.1 29.9 45.5 28 38.9
-0.1 17.2 8.1 11.3 8.4 15.4 13.1 21.7 12.3 16.5 50.1 24 39.9 33.2 40.2 38.5 50.3 33.8 45.1
0.1 20.5 9.5 12.5 10.1 17.5 15.6 24.2 13.9 18.7 58.8 31.2 44.2 38.6 45.5 45.2 55.3 39.1 51.2
0.5 34.6 16.4 12.7 16.1 23.5 25.3 28.4 19.6 25.5 79.9 49.3 51 52.8 56.5 65.4 64 50.6 64.2
0.9 88.9 58.1 11.4 54 63.7 73 47.5 42 61.6 99.9 97.4 58.5 95.7 96.5 98.9 88.4 84.4 96.4

C
hi

sq
ua

re

-0.9 9.7 6.4 8.9 7.9 9.5 7.9 12.8 6.5 11.5 25.6 11.8 22.9 16.8 24.6 19.7 29.8 17.5 27.4
-0.5 11.6 7.2 9.6 8.9 10.5 9.7 14 7.5 12.5 32.5 15.7 26.1 21.7 27.5 24.2 32.6 20.2 31.3
-0.1 14.2 7.6 10.4 9.2 11.1 11.5 15.1 8.2 13.5 42.8 19.3 29.5 25.6 31.2 30.8 37.2 25.3 35.6
0.1 16.8 8.7 10.8 9.9 12 13.1 15.8 9.2 14.5 50.9 24.1 32.6 30.3 35.6 37.2 41.2 29.2 40.6
0.5 27.8 12.2 10.3 12.6 14.9 19.6 19.4 12.2 18.4 78 40.5 38.4 45.3 49.2 59.1 53.1 41.5 56.7
0.9 88.4 49.2 11.7 47.5 55.9 70.6 41.3 37.8 56.2 100 97.2 46.7 97 96 99.8 84.6 81.2 97.9
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Table 13 Power simulation results (α = 0.05) of the tests for different distributions under varying cor-
relation values (ρ) with sample sizes n = 20 and homoscedastic covariance matrix Σ1 under the MAR
framework. Values of too liberal tests corresponding to red values in the Σ1−column from Table 4 are
printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 19.5 12 18.5 17.8 18.7 16.8 17.7 9.9 22.3 58.7 35.9 55.4 49.4 56.4 49.6 51.8 38.4 61
-0.5 23.2 14.1 20 19.4 21.5 20 19.3 12.2 23.7 69.9 44 60.2 56.6 64.6 58.3 57.7 46.7 66.2
-0.1 29.8 17.2 21.2 22.3 25.9 24.2 22.1 15.3 26.5 82 55.6 65 66.1 74.3 70.9 64 57 73.4
0.1 35.9 20 21.6 24.4 29.1 28.3 24.2 18 29.1 88.2 64.2 67.1 72.2 80.4 77.6 68.9 64.5 78.2
0.5 56.4 31 21.4 34.3 41.9 43.7 30.4 29 38.9 99.1 87.8 72.9 90.6 95.1 95.5 83.1 87.4 93
0.9 99.7 92.7 19.4 92.7 84.4 97.6 69.2 91.4 93.3 100 100 75.4 100 100 100 99 100 100

L
ap

la
ce

-0.9 21.2 13.2 20.8 21.6 20.2 17.6 22.6 12.3 25.1 59.4 41 57.1 55.9 57.6 50.2 61.2 44.4 64.5
-0.5 24.8 14.6 21.7 22.8 23 19.5 25.9 14.7 27 69.8 49.4 62.9 62.9 64.9 58.8 68.9 53.8 69.8
-0.1 31.4 18.4 23.4 25.3 27 24.3 30.4 19.4 30.9 82 61.3 69.2 71.7 75.1 70.5 76.8 66 77.8
0.1 36.2 20.8 23.6 26.7 29.6 28.1 33.4 22.6 32 88.1 67.7 71.3 76.3 80 76.7 79.6 71.6 81.3
0.5 58.3 35 26 38.4 44.1 46 42.6 36.8 44.4 98.4 88 75.9 90.6 94 93.5 89.3 88.9 93
0.9 99.3 91.7 23.9 90.7 85.4 95.9 75.7 90.1 91.8 100 100 78.8 100 100 100 98.9 100 100

E
xp

on
en

tia
l

-0.9 22.2 11.7 22.1 23.3 21.8 19.7 28.7 14.6 25.7 62.2 41.9 60.5 59.9 60.9 53.8 68.9 48.6 66.2
-0.5 26.5 14.2 23.7 21.9 26 23 31.9 16.9 25.9 70.8 46.7 66.1 65.1 67.6 62.8 73.2 54.5 69.8
-0.1 33.3 19 25 23.5 31.1 29.1 35.9 21 28.6 81.8 57.8 72.1 71.9 74.7 73.6 79.6 63.5 75.6
0.1 39.8 22.3 26.1 26 35.7 33.8 39.6 24.9 32 88.1 65.3 73.5 75 78.9 78.7 82.5 68.5 78.4
0.5 59.3 35.3 25 36 45.6 48.8 45.4 35.4 41.6 97.7 84.5 78.3 87.4 90 92.7 88.8 83.4 89.3
0.9 98.9 90.8 19.8 87.6 84.5 95.1 73.4 83.8 88.6 100 100 82.8 100 99.9 100 99.3 99.9 100

C
hi

sq
ua

re

-0.9 19.7 11.5 19.2 17.8 19.1 17.3 18.4 9.9 22.1 59.1 35.8 55.9 51.2 57.1 50 53.2 38.8 61.2
-0.5 23.4 13.3 20 18.9 22 20.6 20.2 12.3 23 69.6 43.3 61.6 57.5 65.6 59.4 58.5 45.8 66.8
-0.1 30.5 16.7 20.5 21 26.7 25.5 22.2 15.7 25.5 81.7 54.2 64.9 64.9 73.2 70.4 63.7 55.1 72.1
0.1 36.2 19.4 20.2 23.1 30 29.7 24 18.1 27.6 89 63.5 68.5 72.1 79.5 78.1 69.3 63.5 77.5
0.5 56.1 31.8 20.5 33.7 42.8 45.1 30.1 29.4 38.5 98.9 86.4 73.6 89.6 93.8 94.9 82.1 84.7 91.8
0.9 99.7 92.3 18.8 91.4 84.7 97.4 67.7 88.2 91.9 100 100 77 100 100 100 99.2 100 100
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Table 14 Power simulation results (α = 0.05) of the tests for different distributions under varying cor-
relation values (ρ) with sample sizes n = 30 and homoscedastic covariance matrix Σ1 under the MAR
framework. Values of too liberal tests corresponding to red values in the Σ1−column from Table 5 are
printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 28.5 18.9 27.8 27.5 27.3 24.2 25 13.8 31.9 77.7 60.6 75.5 72.8 76.2 67.8 69.8 55.8 79.8
-0.5 33.7 21.2 29.7 29.5 31.2 27.4 27.4 16.6 33.8 86.3 68.6 80 79.2 82.5 77.6 74.8 64.8 84
-0.1 43.5 27.1 32.2 34.3 38.1 35.8 31.1 22.4 38.2 94.8 80.4 85.3 87 90.1 87.4 82.5 77.6 90
0.1 50.4 31.6 32.9 37.4 43 40.5 33.4 26.4 41.4 97.8 86.9 88.1 91.5 94.4 92.9 86.4 84.4 93.2
0.5 75.1 49.9 34.8 53.6 62.2 61.1 44.9 45.1 56.7 100 98.4 92.7 98.9 99.5 99.5 95.5 97.6 99.1
0.9 100 99.4 31.7 99.4 97.7 99.8 87.1 99.1 99.4 100 100 96.2 100 100 100 100 100 100

L
ap

la
ce

-0.9 29.7 19.7 28.6 30.2 28.6 23.6 30.2 16.2 33.7 78.4 63.5 76.5 76.1 76.8 67.7 80.2 63.5 81.5
-0.5 35 23.2 31.6 33.8 32.3 27.6 36.6 21 37 86.6 72 81.9 82.2 82.9 76.2 85.9 73.6 86
-0.1 44.3 28.2 35 37.2 38.7 35.2 42.6 28.2 41.3 94 81.8 86.1 88.2 89.9 86.4 91.2 83.6 90.8
0.1 51.8 32.2 36.2 40.4 44.4 40.2 47.4 33.3 44.9 96.9 87.6 88.3 91.4 93.2 91.1 93.3 89 93.3
0.5 75 50.8 38.4 55.1 62 60.5 58 52.9 59.2 99.9 97.7 93.1 98.5 99.1 98.9 98.1 98 98.8
0.9 100 99 37.6 98.8 97.1 99.6 91.8 98.8 98.9 100 100 95.8 100 100 100 100 100 100

E
xp

on
en

tia
l

-0.9 31.5 19 30.3 31.9 30.6 26.3 39.6 20.1 34.8 77.2 62 75.5 76.8 76 67.9 85.3 65.4 80.2
-0.5 36.1 21.8 32.3 31.8 34.6 31.3 44.3 23.8 34.8 85.7 67.7 81.1 81.7 81.8 77.3 89.4 72.1 83.9
-0.1 46 28 35.3 35.6 41.9 39.1 51.3 29.8 39.3 93.7 77.6 86.5 87.4 88.3 87.3 93.2 82 89
0.1 53.1 32.6 36.8 39.1 46.9 45.6 54.8 34.5 43 96.6 84 88.9 90.4 91.7 91.8 94.9 86.5 91.8
0.5 75.4 51.3 37.8 53.2 62.7 64.5 63.2 50.6 56.3 99.7 96 92.4 96.8 98.2 98.6 97.9 95.5 97.2
0.9 100 98.5 33.1 97.4 95.7 99.3 90.5 96.3 97.4 100 100 96.8 100 100 100 100 100 100

C
hi

sq
ua

re

-0.9 27.8 17.7 26.9 26.3 26.8 23.3 25 13.7 30.8 77.3 59.5 75.4 73.2 76.1 67.5 70.4 56 79.2
-0.5 34.2 20.6 29 28.4 31.4 28.5 26.8 16.6 32.9 86.4 67.2 80.3 78.9 82.2 77 75.5 63.7 83.8
-0.1 43.5 25.4 30.7 32.1 37.4 36 30.9 21.3 36.2 95.1 79.6 86.7 87.2 90.5 88.8 83.5 76.4 90.3
0.1 51.2 31.1 32.2 36.4 43 42.2 33.3 26.3 40.3 97.5 85.9 88.6 90.8 93.7 92.9 86.8 82.7 92.9
0.5 75.9 49.5 32.5 52.9 63.2 63.5 43.7 43.5 56 99.9 97.9 93.3 98.6 99.3 99.3 95.2 96.5 98.8
0.9 100 99.4 29.2 99.4 97.6 99.9 85.7 98.6 99.2 100 100 96.9 100 100 100 100 100 100
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Table 15 Power simulation results (α = 0.05) of the tests for different distributions under varying cor-
relation values (ρ) with sample sizes n = 10 and heteroscedastic covariance matrix Σ2 under the MAR
framework. Values of too liberal tests corresponding to red values in the Σ2−column from Table 3 are
printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 8.2 6.7 8.1 8.1 7.6 7.1 10.7 5.2 9.9 18.4 10 17 13.3 16.8 14.8 20.9 11.7 20.4
-0.5 9.4 6.8 8.4 8.3 7.3 7.8 11 5.5 10.3 22.8 11.8 19.2 16.7 18.4 17.3 22.6 13.5 23.2
-0.1 11.1 7 8.4 8.3 7.8 9 11.6 5.9 11.4 31.1 14.1 21.8 19.7 20.4 22.2 26.2 16 27.2
0.1 12.7 7.5 9.2 8.8 8.4 10.2 12.5 6.8 12 36.6 15.5 23 21.6 22 25.5 27.6 17.9 29.2
0.5 19.5 9.1 8.9 10.2 8.9 13.6 14.1 7.8 14 57.9 25 26.9 29.8 28.8 40.4 35.3 25.4 39.5
0.9 57.8 24.9 10.3 22.8 29.3 37.9 22.9 17.4 29.6 99 77.4 34.7 73 71.2 91.3 63.3 57 80.3

L
ap

la
ce

-0.9 9 5.9 8.6 8.9 8.2 7.5 13.2 6.6 11.9 21.6 11.6 19.7 16.9 19.8 16.7 27.2 15.7 25.1
-0.5 10.8 5.9 9.6 9 8.5 8.4 14.6 7.3 13.7 27 13.4 23.3 21.7 22.1 20.1 31.8 19.4 29.9
-0.1 12.2 6 9.3 8.8 7.8 9.3 14.8 7.8 14 35.8 17 27.6 26.3 24.3 26.1 35.6 23.2 35.5
0.1 14.5 7.1 10 9.6 8.7 10.8 16 8.9 15.6 41.4 20.4 28.9 27.7 26.5 30.3 38.1 25.9 38.4
0.5 23.3 9.8 11.2 11.7 10.6 16.1 19.1 11.9 19.1 63.3 31.3 33.9 37.6 35.6 47 46 34.6 49.3
0.9 63.4 31.1 11.9 30.2 38.8 45.9 31.5 25.7 38.7 98 81 40.3 77.5 77.7 90.6 69.8 62.6 83.9

E
xp

on
en

tia
l

-0.9 12.8 5.8 12.4 10.9 12.8 10.7 19.3 9.6 15.3 27.7 14.4 26.5 22.7 27.2 22.8 35.2 20.7 30.5
-0.5 13.5 7.2 13.1 10.7 13.8 12.1 20.9 10.5 15.5 31.3 15.9 29.6 25.8 28.7 26 38.9 21.9 32.6
-0.1 15.7 8.9 13.7 10.8 14.9 13.7 22.1 11.8 16.9 39.8 21.3 34.4 29.6 32.5 31.9 42.5 26.3 37.7
0.1 19.3 11.2 14.9 12.7 16.8 16.4 22.9 13.1 19 46.2 26.4 37.7 33.7 35.6 37.6 45.6 29.5 41.6
0.5 28.8 16.7 15.2 17.1 20.2 24 25.9 16.4 23.4 64.7 39.1 42.2 43.2 42.6 52.2 51.5 36.4 51
0.9 65.5 43.6 12.8 37.6 46.4 51.3 34.8 27 42.4 95.8 81.7 47.3 74 81.1 85.7 66.2 57.3 77.4

C
hi

sq
ua

re

-0.9 8.5 6.5 8.4 7.8 8.2 7.3 11.2 5.5 10.4 20.2 10.2 18.6 14.8 18.6 15.8 23.2 12.7 22
-0.5 9.7 6.8 9.2 8.5 8.8 9.2 12.6 6.3 11.2 24.1 12.1 20.5 17.5 19.7 18.5 24.5 14.4 24.2
-0.1 11.7 7.7 9.6 9.1 9.3 10.2 12.8 6.8 12.1 31.3 14.2 23.2 20.5 21.7 23.1 27.4 16.6 27.5
0.1 14.9 8.1 9.5 9.2 9.8 11.4 14 7.7 12.9 37.3 16.7 24.9 22.8 23.8 27.1 29.9 18.9 30.9
0.5 21.6 10.8 10.5 11.7 11.4 16.5 15.8 9.9 15.8 59.6 27.8 30 32.4 32.7 44 38.4 27.9 42.2
0.9 60.2 29.7 10.3 26.6 34.2 42.9 25.5 19.9 33.1 98.1 77.4 36.7 72.5 73.7 88.8 62 55.3 78.2
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Table 16 Power simulation results (α = 0.05) of the tests for different distributions under varying cor-
relation values (ρ) with sample sizes n = 20 and heteroscedastic covariance matrix Σ2 under the MAR
framework. Values of too liberal tests corresponding to red values in the Σ2−column from Table 4 are
printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 14.8 9.7 14.7 14.3 14 13.1 13.2 6.5 18 44.5 24.9 42.5 37.5 41.7 37.3 36.9 23.6 48.3
-0.5 17.8 11.3 15.9 16.1 16.4 15.2 14.3 8 19.3 52.7 30.3 45.6 43 47 43.9 40 28.1 51.6
-0.1 22 12.9 16.7 17 18.2 18.2 15.2 9.4 20.3 64.8 37.7 49.5 49.4 54.5 53.9 45.2 35.3 57.1
0.1 25.8 14.2 16.9 18.5 20.6 21 16.6 10.8 21.9 73.5 44 51.5 54.5 60.7 61.4 49.2 40.8 61.4
0.5 39.3 20.1 16.6 22.9 27.5 29.6 19.4 14.9 27.1 92.3 65.3 55.4 70.4 79 80.9 59.5 59.4 75.2
0.9 88.6 61.4 14.6 53.8 42.1 71.8 33.2 41.6 56.9 100 99.6 59.1 99.1 97.9 100 88.1 97.8 99.4

L
ap

la
ce

-0.9 15.4 10.2 15.6 17 14.3 13.8 16.3 8 19.8 46.5 28.8 45.4 43.9 44.1 39.7 46.8 29.7 52.4
-0.5 18.3 11.1 16.7 18.8 16.7 15.7 18.7 9.8 21.4 55 35.1 50 50.1 49.8 46 53.2 36.9 57.4
-0.1 23.5 12.8 18.5 19.9 19.6 19.1 22.4 12.7 23.5 66.3 42.5 54.4 55.9 57.2 54.9 60.2 44.9 62.4
0.1 27.2 14.7 18.9 20.9 21.7 21.5 23.9 14.7 25 73.9 48.8 56.6 60.3 62.8 61.9 63.6 50.5 66.5
0.5 42.4 22.2 19.8 26.7 29.8 32.3 29.1 20.8 31.9 91.5 68.3 60.3 73.4 79 80.6 73.4 67.1 78.1
0.9 87.4 62.9 17.4 57.8 49.2 72.1 48.6 50.7 61.1 100 99 63.2 98 96.8 99.5 91.7 95.9 98.4

E
xp

on
en

tia
l

-0.9 19.9 11.8 20.1 21.9 19.4 17.7 28.6 13.2 24 48.5 33.3 47.5 49 46.9 42.5 58.2 35.2 53.6
-0.5 22.7 13.5 21.9 21.4 23 21.4 31.4 14.9 24.1 56 34.8 52 52.5 52.2 49.2 61.4 39.5 56.1
-0.1 27.6 17.1 23.1 22.9 26.2 25.4 34.6 17.7 25.8 66.8 44.1 56.8 57.5 59.4 58.8 67.2 47.2 61.2
0.1 31.7 19.7 22.9 23.9 28.2 27.9 35.9 19.8 27 72.9 49.3 58.6 60.6 63.2 63.6 69.5 50.7 64
0.5 45.2 29.4 22.4 30.3 35.5 38.7 40.2 25.9 33.6 88 67.5 61.7 70.8 75 78.3 75.8 63.2 73.4
0.9 82.1 66 16.8 54.6 52.9 66.7 51.5 44.9 55.7 99.6 97.1 62.4 93.8 92.7 97.4 89.8 88.3 93.9

C
hi

sq
ua

re

-0.9 16.1 10.3 16.4 15.9 15.2 15 15.4 7.6 19.6 45.5 26.1 43.7 39.7 42.8 38.6 40.7 25.1 49.4
-0.5 18.6 10.9 16.6 16.8 17.1 16.4 16.5 8.4 19.6 52.8 29.6 47.1 43.6 47.9 44.9 43.5 29.3 52
-0.1 23.2 13.1 17.2 17.3 20 19.7 17.4 10.4 21.1 64.1 37.4 50.2 49.5 54.7 53.9 47.8 35.5 56.4
0.1 27 15.8 18 19.5 23.1 23.3 19.1 12.1 23.1 72.3 44 51.9 54.2 60.8 61.4 51.4 40.9 60.7
0.5 40.3 22 16.8 24.2 30.1 32.3 22.1 16.6 27.5 90.4 65.5 57 70.3 77.7 79.8 62.1 58.4 74.2
0.9 85.7 61.5 13.9 52.5 43.6 69 36.3 40.5 54.9 99.9 99.1 58.9 97.9 96.9 99.6 86.5 95.2 98.2
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Table 17 Power simulation results (α = 0.05) of the tests for different distributions under varying cor-
relation values (ρ) with sample sizes n = 30 and heteroscedastic covariance matrix Σ2 under the MAR
framework. Values of too liberal tests corresponding to red values in the Σ2−column from Table 5 are
printed in red colour.

D
is

t ρ δ = 0.5 δ = 1

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 20.1 13.6 20.4 20.3 19.6 17.9 17.3 7.7 24.7 63.1 43.3 60.9 59.1 60.4 53.6 52.4 35.2 67
-0.5 24.6 15.6 22.3 22.8 22.1 21 18.8 9.6 26.4 71.8 49.8 64.9 63.4 65.5 61.4 56.3 42 70.6
-0.1 31.9 18.5 23.5 24.8 26.1 25.7 20.9 11.6 28.5 82.8 59.2 69.4 70.1 73.1 71.4 62.2 50.8 75.3
0.1 37.3 21.1 24.7 27.2 29.7 29.6 22.3 14.3 31.1 89.5 66.9 72.6 75.4 79.9 79.7 66.3 58.5 80.5
0.5 55.9 31.9 24.5 34.9 42.1 43.1 27 21.8 38.2 98.6 87.3 77.8 89.6 93.7 94.2 77.9 79.5 91.3
0.9 97.6 83.6 23.2 77 70.8 89.8 49.8 64.1 78.7 100 100 84.9 100 100 100 98 100 100

L
ap

la
ce

-0.9 21.4 14.8 21.4 24.3 20.6 18.4 22.4 10.3 26.6 62.4 46 60.8 61.2 60.1 52.7 64.1 42.3 68
-0.5 26.4 16.6 24 25.6 23.6 21 26.3 12.7 29.1 72.4 53.7 66.8 67.9 66.8 61.1 71.6 52 73.2
-0.1 32.6 19.2 24.9 27.4 26.8 25.5 29.8 16.3 31.3 82.9 62.5 72 73.7 74.2 71.7 78.1 62.7 78
0.1 37.8 22.1 26.8 29.9 30.9 29.3 33 19.4 33.7 88.6 69.3 75.1 78.6 79.8 78.8 81.3 69.4 82.1
0.5 57.9 33.6 28 38.5 43.8 44.5 40.7 30.6 43 98.4 86.6 80.3 89.7 93.2 92.9 89.6 85.1 91.6
0.9 96.9 83.1 26 76.7 72.2 87.7 66 72 78.2 100 100 85.7 99.9 100 100 98.7 99.8 99.9

E
xp

on
en

tia
l

-0.9 24.6 16.5 24.8 27.3 24 21.6 39.1 17.1 29.2 63.6 48.6 61.3 63.9 61.5 54.8 75.7 50.7 67.7
-0.5 28.9 18 26.2 27.9 26.9 25.3 42.9 19.4 29.1 71.5 51.1 66.4 68 66.4 63 79.9 57.2 70.6
-0.1 35.8 23.2 29.2 30.7 32.8 32.2 48.9 24.6 32.5 81 59.3 70.2 71.6 72.1 72 84.1 64 74.4
0.1 41 26.5 30 32.1 35.6 35.9 50.6 27.5 34.2 86.8 66.1 73.5 75.6 77.4 78.2 87.3 69.5 78.3
0.5 58.2 38.2 29.8 39.7 46.5 48.3 56.5 36 42 96 82.2 77 84 88.3 89.4 90.8 80.7 85.9
0.9 92 80 23.6 69.3 68.7 79.8 71.2 64.5 69.2 100 99.8 82.1 98.9 99.3 99.7 98.2 98.2 98.9

C
hi

sq
ua

re

-0.9 21.2 14 20.8 21.6 20 18.4 19.6 8.8 25.5 60.8 43.5 59.6 58.3 59.2 53.6 55.8 37.2 65.9
-0.5 25.8 15.8 23.4 23.2 23.4 22.8 21.5 10.6 27.2 71.7 49.2 65.1 64.2 65.8 61.7 61.1 44.4 70
-0.1 32.2 19.3 23.8 24.7 26.8 26.9 23.7 13.5 28.3 82.7 58.2 69.2 69.7 73 71.6 66.1 51.9 75.2
0.1 38.1 22.2 24.9 27.2 31.5 32 25.9 15.7 31.1 88.8 66.1 72.4 74.4 78.6 78.9 69.7 59.6 79
0.5 56.3 33.1 24.3 35.8 43 44.8 31.2 23.8 38.9 98.4 85.9 78.3 88.1 93 93.8 81.2 79 90.4
0.9 96.4 82 21.3 73.7 69.3 86.5 53.3 62.4 75 100 100 83.9 99.9 99.9 100 97.4 99.7 99.9
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Table 18 Type-I error and power simulation results (α = 0.05) of Little’s test TL for different distribu-
tions under varying correlation values (ρ) with different sample sizes and homoscedastic covariance matrix
Σ1 under the MCAR framework.

D
is

t ρ (nc, nu) = (10, 10) (nc, nu) = (10, 30) (nc, nu) = (30, 10)

δ = 0 δ = 0.5 δ = 1 δ = 0 δ = 0.5 δ = 1 δ = 0 δ = 0.5 δ = 1

N
or

m
al

-0.9 4.7 16.6 53.2 3.8 24.4 77.8 5.1 35.9 88.1
-0.5 5.2 19.2 55.9 5.1 24.5 71.4 4.8 39.8 93.2
-0.1 5.2 21.4 63 5.8 25 71.4 4.9 49.4 97.2
0.1 5.9 23.9 68.5 6.3 28.5 75.1 5.6 56.6 98.7
0.5 6.5 35.7 86.1 7.1 38.4 88.3 5.2 78.7 100
0.9 12 85.7 99.9 8.5 89 100 11.6 99.9 100

L
ap

la
ce

-0.9 4.2 17.8 55 3.3 27 78.3 5.4 35.6 87.2
-0.5 4.8 20.3 58.6 3.9 24.8 70.8 5.3 41.1 91.7
-0.1 5.1 23.7 65.5 5 28.1 73 5 50.2 96.6
0.1 5.3 26.8 70.2 5.4 30.6 76.7 5.8 58.2 98.4
0.5 6.1 40 86.5 6.1 42.8 88.4 5.4 79.2 99.9
0.9 12.4 83.4 99.2 9.4 88.4 100 14.3 99.3 100

E
xp

on
en

tia
l

-0.9 4.2 20.2 57.3 3.8 32.1 81.2 5.4 37.8 87.6
-0.5 5.2 24.6 61.7 5.6 35.3 74.9 4.8 42.8 91.7
-0.1 6.3 29.8 66.4 7.7 36 71.6 4.8 52.3 95.6
0.1 7 33.2 69.5 8.7 38.3 74 5.6 58.6 97.2
0.5 9.8 43.7 83.2 10.6 44.8 81.8 6.2 78.2 99.9
0.9 15.3 82.9 98.2 15.9 85.8 99.7 15.7 98.7 100

C
hi

sq
ua

re

-0.9 4.6 18.1 54.5 3.3 27.4 79.1 5.4 36 87.7
-0.5 4.8 19.9 56.6 4.8 26.4 70.8 5.3 41.3 93
-0.1 5.6 23 63.8 5.9 27.4 71.1 5.1 50.7 97.2
0.1 5.8 25.5 67.6 6 29.7 73.7 5.1 57.1 98.7
0.5 6.8 36.3 85.6 6.5 39.1 86.5 5.1 78.5 100
0.9 12.3 84.9 99.8 8.8 88.1 100 12.6 99.8 100
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Table 19 Type-I error and power simulation results (α = 0.05) of Little’s test TL for different distri-
butions under varying correlation values (ρ) with different sample sizes and heteroscedastic covariance
matrix Σ2 under the MCAR framework.

D
is

t ρ (nc, nu) = (10, 10) (nc, nu) = (10, 30) (nc, nu) = (30, 10)

δ = 0 δ = 0.5 δ = 1 δ = 0 δ = 0.5 δ = 1 δ = 0 δ = 0.5 δ = 1

N
or

m
al

-0.9 4.8 12.9 38.4 3.9 17.6 59.1 5.2 26.1 73.8
-0.5 5.5 14.1 40.2 5.5 16.8 49.7 4.9 28.5 79.7
-0.1 5.7 15.9 44 6.3 17.4 48 5 34.4 87.3
0.1 6 16.9 48 6.6 19 52.1 5.3 40.1 92
0.5 6.8 23.9 64.8 7.5 24.4 65.6 5.3 57.5 98.8
0.9 12.4 62.3 97.4 8.1 63.3 99.2 11.1 95.8 100

L
ap

la
ce

-0.9 4.4 13.5 41.8 3.6 19.5 60.5 5.3 26.4 73.1
-0.5 5.2 15 42.8 4.1 17.5 51.6 5.4 29.6 78.5
-0.1 5.3 17.3 48.4 5.5 19.6 52.8 5.2 35.6 86.9
0.1 5.5 19 52.6 5.8 20.5 56.5 6 41.8 91.1
0.5 6.3 27.8 69.1 6.3 28.3 69.8 5.2 59.4 98.5
0.9 13.6 64.2 94.8 8.6 66.9 98.1 14.5 93.2 100

E
xp

on
en

tia
l

-0.9 5 18.6 46 4.9 26.5 65.6 5.7 30.4 73.1
-0.5 6.4 21.6 49.4 7.4 28.8 60.3 5.2 32.9 78.5
-0.1 7.6 25.4 52.5 9.4 29.2 56.3 5.1 39.4 84.4
0.1 8.9 27.8 54.6 10.8 30.8 58.1 6 44.3 87.5
0.5 11.5 34.6 66.1 11.9 33.6 64.7 7.2 59.5 96.1
0.9 18.1 65.2 91.1 15.2 65.1 95.4 17.2 88.3 99.6

C
hi

sq
ua

re

-0.9 4.8 14.7 40.8 3.6 20.3 61.3 5.5 27.1 73.1
-0.5 5.1 15.8 41.5 5.3 18.9 51.6 5.3 30.5 79.7
-0.1 6.1 17.4 45.6 6.4 19.8 49.9 5.4 36.2 87
0.1 6.2 19 49 6.6 21 52.1 5.2 41.2 91
0.5 6.9 25.6 64.6 7 26.2 64.3 5.3 57.4 98.3
0.9 12.8 61.7 95.8 8.4 62.9 98.5 11.4 94.2 100
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Table 20 Type-I error and power simulation results (α = 0.05) of Little’s test TL for different distribu-
tions under varying correlation values (ρ) with different sample sizes and homoscedastic covariance matrix
Σ1 under the MAR framework.

D
is

t ρ n = 10 n = 20 n = 30

δ = 0 δ = 0.5 δ = 1 δ = 0 δ = 0.5 δ = 1 δ = 0 δ = 0.5 δ = 1

N
or

m
al

-0.9 4.9 10.1 25.3 5.9 19.4 57.3 5.1 28 76.6
-0.5 5.5 11.8 27.8 5.2 22.1 65.3 5 31.3 82.9
-0.1 6.3 14.6 36.3 5.2 27.2 75.3 5.2 39 90.4
0.1 6.7 16.4 43 5.5 30.9 81.6 5.5 43.5 94.6
0.5 8.1 25.3 65.6 6.4 46.1 96 5.8 63.8 99.6
0.9 12.8 72.8 98.1 14 93.6 100 12.8 98.9 100

L
ap

la
ce

-0.9 5 12.2 30.1 4.9 21.3 58.8 5.1 29.3 76.8
-0.5 5.4 13.5 34.4 5.2 23.6 66 5 32.6 83.2
-0.1 5.7 15.7 43.5 5 28.4 76.2 5 39.5 90.2
0.1 6.8 19.2 49.5 5.2 31.8 81.6 5.3 45.3 93.4
0.5 8.7 31.3 71.3 6.2 50.6 94.9 6 64.6 99.2
0.9 12.4 75.4 96.3 14.3 89.5 99.7 14.1 96.8 100

E
xp

on
en

tia
l

-0.9 5.1 12.6 34.4 5.4 22.6 61.7 5.1 31 76.4
-0.5 5.3 14.7 38.7 5.2 26.3 68.5 5.6 34.9 82.3
-0.1 6.5 19 46.9 5.2 32.4 76.4 5.1 42.5 88.7
0.1 7.1 22.9 54.2 5.4 37.7 80.7 5.4 47.9 92.4
0.5 10.6 35.2 72.5 7.6 50.9 93.3 6.8 65.3 98.7
0.9 11.2 74.4 96 13.7 89.6 99.1 14.6 95.9 99.9

C
hi

sq
ua

re

-0.9 5.5 10.3 25.9 5.4 19.7 58.1 4.9 27.2 76.4
-0.5 5.3 12.2 30.6 5.4 22.2 66.1 5.2 31.5 82.6
-0.1 6.3 14.8 37.9 5.2 27.8 74.4 5.4 38 90.9
0.1 6.9 17 44.8 5.3 31.7 80.9 5.1 44.1 94
0.5 8 26 66.3 6.2 47.1 95.3 5.4 65 99.4
0.9 13.4 74.3 97.9 14.3 93.7 100 13.3 98.9 100
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Table 21 Type-I error and power simulation results (α = 0.05) of Little’s test TL for different distri-
butions under varying correlation values (ρ) with different sample sizes and heteroscedastic covariance
matrix Σ2 under the MAR framework.

D
is

t ρ n = 10 n = 20 n = 30

δ = 0 δ = 0.5 δ = 1 δ = 0 δ = 0.5 δ = 1 δ = 0 δ = 0.5 δ = 1

N
or

m
al

-0.9 5.9 8.6 18.8 5.3 15 43.2 5.6 20.2 61.2
-0.5 5.8 9.4 21.2 5.3 17.1 47.8 5.2 22.5 65.9
-0.1 6.6 11.5 26.7 5.6 19.4 56.5 4.9 26.9 74.1
0.1 6.6 13.3 30.5 6.1 22.6 63.1 5.7 31.2 80.9
0.5 8.6 18.1 46.4 5.7 31.4 82.1 5.4 43.8 94.3
0.9 16.3 55.3 91.2 14.3 74.8 99.1 11.7 88.8 100

L
ap

la
ce

-0.9 5.6 10.3 22.7 5.6 15.7 45.9 5.6 21.4 61.1
-0.5 5.5 11.1 25.9 5.2 17.6 51.3 5.1 24.3 67.4
-0.1 6 12.5 31.6 5.2 21.2 59 5 28 74.9
0.1 6.8 14.7 36.9 6 23.4 65 5.1 32 80.6
0.5 8.9 23.4 54.7 6.6 35.1 82.2 5.3 46.2 93.6
0.9 14.9 60.9 90.8 16.3 73.8 97.3 14.9 85.4 99.7

E
xp

on
en

tia
l

-0.9 5.9 14.2 30 5.8 20.7 48.6 5.8 25 62.5
-0.5 6 15.6 32.2 5.5 23.5 53.3 6 27 67
-0.1 7.3 18.6 39 6.5 27.4 61.2 6 33.3 73
0.1 8.4 22 43.8 6.7 30 65.1 6.3 36.6 78.5
0.5 13.2 31 59.2 8.6 40.1 79.4 7 48.7 90
0.9 17.1 64 90.4 18.5 71.8 93.8 17 80.5 98.2

C
hi

sq
ua

re

-0.9 6.5 9.4 20.7 5.2 16.5 44.6 5.4 21 60
-0.5 5.8 10.8 22.7 5.4 17.8 49.2 5.3 23.7 66.2
-0.1 6.8 12.7 28.5 5.9 21.2 56.8 5.6 27.7 74
0.1 7.2 14.7 32.6 5.9 24.6 63.3 5.6 32.3 79.9
0.5 8.8 21.6 50.1 6.2 33.6 80.8 5.7 45.2 93.7
0.9 16.8 58.8 91.1 15.4 73.3 98.3 12.6 86.5 99.9
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Table 22 Type-I error simulation results (α = 0.05) of the tests for different distributions under varying
correlation values (ρ) with sample sizes (nc, nu) = (16, 74) and homoscedastic and heteroscedastic co-
variance matrices Σ1 and Σ2 respectively under the MCAR framework.

D
is

t ρ Σ1 Σ2

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.9 5.1 5.5 5.6 6.7 5.5 5.3 6.6 5 9.1 5.3 5.6 5.6 7 5.7 5.5 7.2 6.5 9.6
-0.5 5.1 5.1 5.1 6 5.1 4.9 5.9 4.2 8.2 5.1 4.9 5.1 6.2 5.1 4.9 6.3 5.9 8.8
-0.1 5 5.2 5.6 6.2 5.4 4.8 6 4.4 7.5 5.1 5.2 5.8 6.4 5.6 5 7 6.4 8.5
0.1 5 5.2 5.3 5.6 5.2 4.9 5.8 4.1 7 4.9 5.1 5.3 5.7 5.2 5.1 6.8 5.8 8.1
0.5 5.2 5.5 5.4 5.7 5.5 5.4 6.1 4.3 6.3 5.2 5.5 5.5 6.2 5.5 5.3 7 6.2 7.8
0.9 5 5.3 5.3 4.7 4.8 5.2 5.8 4.3 5.3 5.1 5.3 5.7 7.1 4.9 4.9 6.8 5.7 7.9

L
ap

la
ce

-0.9 5.3 5 5.2 6.2 4.9 5 6.4 4.9 8.6 5.3 5 5.1 6.2 5.1 5 6.6 6.2 9.2
-0.5 5.5 5 5.3 6.3 5.3 5 6.2 4.6 8.6 5.4 4.8 5.2 6.3 5.1 5 6.6 5.9 9.3
-0.1 5.2 4.2 4.8 5.5 4.8 4.7 5.9 4.2 7 5.3 4.2 4.8 5.9 4.7 4.4 6.6 5.4 8.3
0.1 5.6 4.8 5.3 6 5.5 5.2 6 4.3 7.3 5.3 4.8 5.3 6.4 5.3 5.1 6.6 5.6 8.3
0.5 5.1 5 5 5.8 5.2 5.1 5.9 4.4 6.6 5.1 4.8 5.2 6.5 5.2 4.9 6.6 5.5 8
0.9 5.2 4.5 5.3 4.4 4.3 4.7 5.4 4.4 5.3 5.1 4.5 5.3 7.4 4.4 4.7 6.1 5.5 7.6

E
xp

on
en

tia
l

-0.9 5 5.5 4.8 6.2 5.9 4.7 6.1 4.6 8.6 5.1 6.2 5.3 7.1 6.6 5 10.3 4.9 9.8
-0.5 5.3 6.5 5.2 7.2 7 4.5 5.7 4.1 7.8 5.5 7.2 6 7.8 8 4.9 10.7 5.4 9.2
-0.1 5.2 7.7 5.8 8.2 7.9 4.8 6.1 4.3 7.6 5.3 8.3 7 9.1 8.7 5.4 12.4 6.4 9.5
0.1 5 8.2 5.9 8.4 8 4.7 5.9 4.1 7.1 5.2 8.8 7.5 9.4 8.7 5.2 12.3 6.3 9.1
0.5 5.4 8.8 6.5 7.9 9.4 4.5 5.4 3.8 6.1 5.7 9.2 8.2 9.5 9.6 5.5 12.8 5.8 8.8
0.9 5.1 9.2 6.5 5 9.1 4.4 5.5 4.4 5 6 9.2 7.8 11.5 8.7 7.7 16.1 6.2 10.1

C
hi

sq
ua

re

-0.9 5.5 5.4 5.2 6.3 5.4 5.1 5.9 4.6 8.6 5.3 5.5 5.1 6.5 5.4 4.9 6.8 5.4 9
-0.5 5.4 5.7 5.5 6.4 5.7 5.1 6.1 4.4 8.4 5.3 5.6 5.6 6.4 5.8 5.1 7 5.7 9
-0.1 5.2 5.3 5.6 5.9 5.5 4.9 6.4 4.5 7.4 5.1 5.2 5.5 6 5.5 5 7.3 5.5 8.6
0.1 5.6 5.4 5.2 5.8 5.5 4.7 5.6 4 6.8 5.5 5.4 5.2 6 5.4 4.8 6.8 5.2 8
0.5 5.2 5 5.4 5.6 5.7 4.9 6 3.9 6.3 5.4 5.2 5.7 6.2 5.6 5.1 7.3 5 7.8
0.9 5.2 5.7 5.5 4.4 4.9 4.7 5.4 4.5 5.1 5.3 5.6 5.6 7.5 5.1 5.1 7.7 5.3 8
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Table 23 Type-I error simulation results (α = 0.05) of the tests for different distributions under varying
correlation values (ρ) inspired from the dependency structure of the genes data example with sample sizes
(nc, nu) = (16, 74) and homoscedastic and heteroscedastic covariance matrices Σ1 and Σ2 respectively
under the MCAR framework.

D
is

t ρ Σ1 Σ2

Parametric bootstrap Alternatives Parametric bootstrap Alternatives
F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP F T ∗W T ∗A T ∗M T ∗L Tt TN TF TP

N
or

m
al

-0.3 5.1 5.8 5.9 6.4 5.7 5.3 6.6 4.8 8.2 5.3 5.7 5.8 6.6 5.7 5.4 7.2 6.5 8.9
-0.1 5.1 5.1 5.3 5.7 5 4.9 5.7 4 7.3 5 5 5.2 5.9 5 4.8 6.3 5.7 8.5
0.3 5 5.2 5.6 5.8 5.3 4.8 6.1 4.2 6.7 5 5.1 5.8 6.1 5.6 5.1 6.8 6 8
0.4 5 5.2 5.2 5.4 5.2 4.9 5.7 4.1 6.4 4.9 5.2 5.1 5.8 5.3 5.1 6.6 5.8 7.7
0.7 5.2 5.5 5.6 5.6 5.6 5.4 6 4.5 6 5.2 5.5 5.8 6.5 5.4 5.3 7 6.1 7.8
0.8 5 5.2 5.4 5.1 5.3 5.2 5.8 4 5.6 5 5.2 5.6 6.2 5.2 5.1 6.7 5.7 7.5

L
ap

la
ce

-0.3 5.3 4.8 5.3 5.9 5.2 5 6.1 4.4 7.6 5.2 4.7 5 6 5.1 5 6.6 5.7 8.7
-0.1 5.5 4.9 5.4 6.2 5.1 5 6.3 4.4 8 5.3 4.9 5.4 6.5 5.1 4.9 6.5 5.8 8.9
0.3 5.2 4.2 4.7 5.5 4.7 4.7 5.9 4.1 6.3 5.3 4.2 4.7 6.1 4.6 4.4 6.6 5.4 7.7
0.4 5.6 4.8 5.1 5.7 5.2 5.2 6 4.3 6.8 5.3 4.6 5.2 6.4 5.1 5 6.6 5.8 8.1
0.7 5.1 5 4.9 5.5 5.3 5.1 5.9 4.4 6.2 5.2 4.9 5 6.5 5 4.9 6.7 5.6 7.8
0.8 5.2 4.6 4.9 5 4.9 4.7 5.5 4.4 5.6 5.1 4.4 5.2 6.7 4.8 4.7 6.1 5.6 7.6

E
xp

on
en

tia
l

-0.3 5 7.5 5.3 7.7 7.6 4.7 6 4.4 7.7 5 8.1 6.5 8.7 8.5 5 11.3 5.9 9.6
-0.1 5.3 7.7 5.6 7.7 7.3 4.5 5.6 3.9 7.1 5.6 8.2 6.7 8.5 8 5 12.1 6 9
0.3 5.2 8.5 6.4 8.4 9 4.8 6 4.2 7 5.4 9 8 9.6 9.5 5.7 13.1 6.6 9.2
0.4 5 8.7 6.3 8.3 8.9 4.7 5.9 4 6.4 5.3 9.1 8.1 9.2 9.6 5.7 12.4 6.2 8.9
0.7 5.4 9.1 6.6 7.2 9.9 4.5 5.3 4.1 5.6 5.8 9.3 8.2 9.8 10 6.3 13.6 5.9 9
0.8 5.2 8.9 6.3 6.5 9.7 4.4 5.4 4.2 5.2 5.8 9.3 8.2 10.3 9.8 6.7 14.3 6.2 9

C
hi

sq
ua

re

-0.3 5.4 5.2 5.4 5.9 5.5 5.1 5.9 4.3 7.5 5.3 5.4 5.3 6.1 5.7 5 6.8 5.2 8.4
-0.1 5.4 5.7 5.7 6.1 5.7 5.1 6.2 4.1 7.7 5.3 5.8 5.8 6.2 5.7 5.1 7.1 5.4 8.4
0.3 5.2 5.2 5.3 5.7 5.6 4.9 6.2 4.1 6.5 5.1 5.1 5.5 6 5.5 5 7.6 5.2 7.9
0.4 5.6 5.4 5.1 5.5 5.3 4.7 5.5 4 6.2 5.5 5.4 5.3 5.9 5.3 4.8 6.9 5.2 7.6
0.7 5.3 5.1 5.3 5.4 5.7 4.9 5.9 4 5.7 5.3 5.2 5.6 6.4 5.6 5.2 7.4 5.1 7.8
0.8 5.2 5.5 5.2 5.1 5.5 4.7 5.4 4.1 5.4 5.3 5.6 5.6 6.7 5.5 5 7.3 5.3 7.7
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Table 24 Adjusted two-sided P-values of the breast cancer study based on Holm’s method.

Parametric bootstrap Alternatives
Gene T ∗W T ∗A T ∗M T ∗L T t TN TF TP

TP53 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ABCC1 0.016 0.021 0.016 0.016 1.000 0.021 0.032 0.000
HRAS 0.049 0.016 0.021 0.016 0.176 0.008 0.032 0.000
GSTM1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ERBB2 0.258 0.144 0.066 0.084 0.816 0.426 0.414 0.042
CD8A 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
C1D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GBP3 0.98 1.000 1.000 0.42 0.581 0.515 1.000 1.000
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