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Abstract

Regression models are suitable to analyse the association between health outcomes
and environmental exposures. However, in urban health studies where spatial
and temporal changes are of importance, spatial and spatio-temporal variations are
usually neglected. This thesis develops and applies regression methods incorporat-
ing latent random effects terms with Conditional Autoregressive (CAR) structures
in classical regression models to account for the spatial effects for cross-sectional
analysis and spatio-temporal effects for longitudinal analysis. The thesis is divided
into two main parts.

Firstly, methods to analyse data for which all variables are given on an areal
level are considered. The longitudinal Heinz Nixdorf Recall Study is used through-
out this thesis for application. The association between the risk of depression and
greenness at the district level is analysed. A spatial Poisson model with a latent
CAR structured-Random effect is applied for selected time points. Then, a so-
phisticated spatio-temporal extension of the Poisson model results to a negative
association between greenness and depression. The findings also suggest strong
temporal autocorrelation and weak spatial effects. Even if the weak spatial effects
are suggestive of neglecting them, as in the case of this thesis, spatial and spatio-
temporal random effects should be taken into account to provide reliable inference
in urban health studies.

Secondly, to avoid ecological and atomic fallacies due to data aggregation and
disaggregation, all data should be used at their finest spatial level given. Multilevel
Conditional Autoregressive (CAR) models help to simultaneously use all variables
at their initial spatial resolution and explain the spatial effect in epidemiological
studies. This is especially important where subjects are nested within geographical
units. This second part of the thesis has two goals. Essentially, it further develops
the multilevel models for longitudinal data by adding existing random effects with
CAR structures that change over time. These new models are named MLM tCARs.
By comparing the MLM tCARs to the classical multilevel growth model via simula-
tion studies, we observe a better performance of MLM tCARs in retrieving the true
regression coefficients and with better fits. The models are comparatively applied
on the analysis of the association between greenness and depressive symptoms at
the individual level in the longitudinal Heinz Nixdorf Recall Study. The results
show again negative association between greenness and depression and a decreas-
ing linear individual time trend for all models. We observe once more very weak
spatial variation and moderate temporal autocorrelation. Besides, the thesis pro-
vides comprehensive decision trees for analysing data in epidemiological studies
for which variables have a spatial background.
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Chapter 1

Introduction

1.1 Motivation

In several observational epidemiological studies, regression models are applied to
analyse the association between risk factors and health outcomes (Weber et al.,
2019, Waller and Gotway, 2004, Sondermann et al., 2020). One prominent example
in this thesis might be in particular the longitudinal Heinz Nixdorf Recall Study
(HNRS). The presence of some environmental risk factors with spatial background
induces spatial variation. Regression models should provide much more substan-
tial conclusions than could be obtained using just visualisation of the spatial distri-
bution of health outcomes. It allows us to adjust analyses for important covariate
information. They also allow us to more explicitly use spatial exposure measure-
ments to help describe the spatial distribution of public health events. For the data
of the HNRS, longitudinal as well as cross-sectional analyses are carried out (We-
ber et al., 2019, Tzivian et al., 2016). Cross-sectional studies offer a snapshot of a
single moment in time and can be done very quickly. Cross-sectional analyses are
sometimes preferred for simplicity, applicability, and accessibility in many software
packages. However, this type of study design may not provide definite information
about cause-and-effect relationships. A longitudinal design unlike a cross-sectional
design may allow the direct assessment of changes in the response variable over
time and help examine if the changes are related to the selected covariates. That’s
why researchers might start with a cross-sectional study to first establish whether
there are links or associations between certain variables. Then they would set up
a longitudinal analysis for a more meaningful and robust result. In either case, as
for the HNRS, risk factors are collected both at the individual level (e.g., age, Body
Mass Index) as well as group or areal level (e.g., noise, unemployment in district).
It is important to model all the characteristics and influencing variables.

For a quick overview, simplicity, or other analysis goals, data are sometimes
aggregated or disaggregated to the same spatial resolution in order to apply usual
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regression methods. Treating for instance group-level variables as a repeated mea-
surement, whereby all individuals within the same group are assigned identical
values of group variable, will lead to inefficient model estimation and incorrect
statistical inference (Julian, 2001). Also for simplicity, all area-level variables are
sometimes left aside to concentrate on the individual-level covariates to explain
the individual-level health outcomes. This approach has the drawback of ignoring
the potential importance of group-level attributes in influencing individual-level
health outcome. In the same way, relying only on group-level characteristics to
explain group-level (aggregated) health outcomes may lead to bias in the analysis.
Just as studies examining differences between groups may need to take into ac-
count possible differences in group compositions (i.e. characteristics of individuals
within them), studies of individuals may need to take into account differences in
the properties of the groups to which individuals belong (Roux, 1998).

For the usual regression methods with data on the same spatial resolution as
well as methods that consider different spatial resolutions, spatial and spatio-tem-
poral variation should be taken into account.

1.2 Spatial and spatio-temporal variation

A common belief is that the presence of residual spatial autocorrelation in classical
regression (Ordinary Least Squares) leads to inflated significance levels in regres-
sion coefficients (Smith and Lee, 2012). More precisely, the failure to account for the
spatial variation in the model causes the p-values, as well as the standard errors of
the parameter estimates to be artificially smaller, showing a stronger association
between exposures and health outcomes than it would really be (in the presence
of spatial dependency). Furthermore, environmental resources are often unequally
(spatially) distributed across different socioeconomic groups and this may cause
grouping effects that affect the behavior of regression analysis. There are mainly
two types of spatial effects when it comes to investigating the effects of the built
environment or any exposure on health outcomes: The first is spatial autocorrela-
tion, closely related to the first law of geography (Tobler, 1979, Waller and Gotway,
2004). Spatial autocorrelation can arise for a number of reasons, for instance, due to
unmeasured/unavailable confounding. Spatial autocorrelation occurs when a spa-
tially patterned risk factor for the response variable is not included in a regression
model, and hence its omission induces spatial structure into the residuals. Because
confounding might be a complex and unknown function of many covariates, there
is rarely enough information in nonexperimental data to allow one to construct an
acceptably accurate estimate of exposure’s effect from the data alone (Robins and
Greenland, 1986). Other causes of spatial autocorrelation that need to be accounted
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for include neighborhood effects, where the behaviors of individuals in a spatial
unit are influenced by individuals and characteristics in adjacent units. The second
type of spatial effect (variation) that needs to be accounted for is the grouping effect
or spatial heterogeneity, where groups of people with similar behaviors choose to
live close together; for example, you might find a higher prevalence of smoking or
overweights in one neighbourhood compared to another one, because of the inter-
relations and preferences of the people in one neighbourhood or in other words:
individuals with similar lifestyles and preferences might choose to live closer to-
gether. The individuals in one neighbourhood often experience the same environ-
mental conditions, like noise or air pollution. Sometimes, the difference between
the two types of spatial effects is not obvious.

1.3 Aims and outline

The aims of this thesis are twofold: the first is to encourage using sophisticated
regression models that account for spatial and spatio-temporal variation to anal-
yse the association between health outcomes and environmental exposures. We
particularly suggest including a spatial and spatio-temporal latent random effect
with Conditional Autoregressive (CAR) structure. The spatio-temporal CAR struc-
ture should account for the change of spatial structure in health outcomes. This
will firstly be performed in our application for analyses with all variables given
at an areal level. As data aggregation and disaggregation may lead to ecological
and atomic fallacies (Wakefield, 2009), respectively, we wish to use all data on their
finest level given. Thus, the second goal of this thesis consists of developing a
method that combines the advantages of multilevel models and the CAR models
for longitudinal studies. Since this work is the first for the HNRS and many longi-
tudinal studies that may account for the spatial effects (either spatial heterogeneity
or spatial autocorrelation), we always perform an exploratory spatial analysis (for
particular time points) prior to the spatio-temporal analysis to better understand
the structure of the spatial random effect before investigating the structure of the
spatio-temporal random effects.

The chapters of this thesis are divided into three parts. Part I, partly based on
the paper (Djeudeu et al., 2020), with two chapters concerns methods and analy-
ses at an areal level. Part II, mainly based on the paper (Djeudeu, Moebus, and
Ickstadt, 2022), with two chapters considers methods to deal with data on their
initial spatial resolution. Part III with one chapter concerns practical recommen-
dations based on the first two parts. In more details, Chapter 2 (first chapter of
Part I) is devoted to methods for cross-sectional data. Spatial models for disease
mapping in general are of interest, particularly, models with latent random effects
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with CAR structured prior to account for spatial effects. In this Chapter 2, we ap-
ply a spatial Poisson model to the analysis of the risk of depression in the districts
of the HNRS and the association with greenness. In Chapter 3 (second chapter of
Part I), a sophisticated spatio-temporal extension of the spatial Poisson model in
Chapter 2 is applied on the longitudinal HNRS to the analysis of the association
between greenness and depression. The model accounts for the spatio-temporal
effect and the dynamic over time, when analysing disease risks at an areal level.
Part II with two chapters is dedicated to multilevel models to use all variables at
their finest spatial resolution. In Chapter 4 (first chapter of Part II), multilevel CAR
models for cross sectional data (MLM CARs), already developed in the literature,
are considered, compared to the classical multilevel model in a simulation Study. In
Chapter 5 (second chapter of Part II), multilevel CAR models for longitudinal data
are developed by combining the multilevel models and some particular Markov
Random Fields (MRF) models for the area-level random effect that accounts for the
change of spatial effect over time. Part III consists of Chapter 6 that describes a
decision tree to help choose the appropriate methods of analysis when participants
are nested within geographical units. To end, an overall conclusion is provided in
Chapter 7 to summarize the thesis and provide outlook for future analyses. Addi-
tional materials including supplementary figures and tables, R-codes used in this
thesis and some full conditionals for regression coefficients for Gibbs sampler of
the developed model are provided at the end of the thesis.
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Part I

Spatial regression models for areal
data
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Chapter 2

Spatial analysis of the risk of
depression at district-level and
association with greenness

2.1 Introduction

With increasing urbanization the importance of in-depth knowledge of the spatial
distribution of diseases and risk factors on a local or regional level is gaining accep-
tance worldwide (Galea and Vlahov, 2005, WHO, 2016). Places where people live
can be of great importance in identifying patterns of disease and associations with
risk factors (Waller and Gotway, 2004), particularly when environmental risk fac-
tors are involved. An increasing number of studies investigating effects of the built
environment on health (Orban et al., 2016, Orban et al., 2017, Wu and Jackson, 2017)
try to identify etiological risk factors and disease-specific processes in epidemio-
logical studies. For instance, according to the WHO (World Health Organization),
depressive disorders are among the most important common non-communicable
diseases and a leading cause of disability worldwide (WHO, 2018). Urban green is
an essential part of the urban ecosystem, promoting health and well-being (WHO,
2018). Recent studies suggest evidence of the importance of green spaces for mental
health. Green spaces improve well-being or reduce physiological stress indicators
(Orban et al., 2016, White et al., 2013, Tomita et al., 2017). However, (substantial)
spatial analyses of disease to identify areas with elevated or low disease risk are
still not currently in practice in many studies. At the same time, spatial varia-
tions are usually neglected in regression models to analyse the association between
health outcomes and exposures with a spatial background such as greenness and
air pollution.

Statistical methods for spatially referenced data should consider the spatial au-
tocorrelation as well as the spatial heterogeneity. This will provide more accurate
and meaningful conclusions. Ignoring the spatial structure in the data runs the risk
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of violating the usual assumption of independent observations in ordinary regres-
sion analysis and may cause bias in the covariate effects (Cressie, 1993, Pfeiffer et
al., 2008).

In this chapter, we would like to address this issue by using as an example the
analysis of the effect of urban greenness on depressive symptoms from the data
of the German HNRS. The analysis is performed exploratory prior to the spatio-
temporal analysis in Chapter 3. The districts are the spatial level of interest. In
the HNRS, individual and district level based data are available for different time
points. As we aggregate individual-level depression data on the district level, we
are aware of the possibility of a loss of information, particularly if the individual-
level association is explored with aggregated data, this will lead to an "ecological
fallacy". However, analysis at the individual level is not always preferable (Wen et
al., 2001). For instance, aggregating data might avoid the so-called "atomic fallacy",
the result of improper interpretation and inference about aggregate level associa-
tion on the basis of associations at the individual level.

Previous analyses of the association between mental health outcome (e.g. de-
pression) and greenness were mainly performed on individual-level variables, with
spatial level covariates disaggregated to the individual level (Song et al., 2019,
Beyer et al., 2014). The few ecological analyse on aggregated level did not use the
spatial random effects to account for the unexplained spatial variation (Nutsford,
Pearson, and Kingham, 2013). For the HNRS, linking health with greenness was
analyzed in Orban et al., 2017. This analysis was done at the individual level and
the spatial correlation was also not accounted for.

The main objective of this chapter is to exploratory analyse the risk of depres-
sion for some selected time points of the HNRS. Then we apply a refined spatial
Poisson model on the analysis of the association between greenness and depres-
sion on the district level in the HNRS. Our approach would help to understand the
distribution of the risk of depression and its influencing factors. The method takes
simultaneously into account both spatial autocorrelation and spatial heterogeneity.
Accordingly, spatial random effects are introduced while smoothing disease risks
at a spatial level.

We organized our chapter as follows: We firstly describe of our underlying data
set, data aggregation, and imputation. The description for the data set is general,
since the same data set will be used in upcoming chapters for application. Sec-
ondly, we deal with statistical methods in which we proceed step by step: we
firstly present a method (Besag and Newell method Besag and Newell, 1991) to
identify local clusters of elevated risk of depression in the study area. Then, we
shortly present the Moran’s I statistic (Moran, 1950) to assess (global) clustering. A
spatial model for disease mapping is then described within a Bayesian hierarchical
model formulation (the Besag-York-Mollié model (Pfeiffer et al., 2008)) to estimate
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and smooth the risk of depression, accounting for covariate effects. Section 2.7 is
dedicated to the results. In section 2.8, we discuss the results compared with other
studies and future insights for analysis.

2.2 Data of the Heinz Nixdorf Recall Study

The HNRS is a population-based, prospective cohort study of the comparative
value of modern risk stratification techniques for "hard" cardiac events to define
appropriate methods for identifying high-risk subgroups in the general urban pop-
ulation. It is designed and powered to define the relative risk associated with
the specific extent of coronary atherosclerosis measured using electron-beam com-
puted tomography (EBCT)-derived coronary calcium quantities for myocardial in-
farction and cardiac death. Additionally, the predictive values of conventional car-
diovascular risk factors, new candidate and socioeconomic risk factors, certain ge-
netic polymorphisms, and direct signs of subclinical disease are examined with the
ankle-brachial index, resting, and stress electrocardiograms, and determination of
carotid artery intima-media thickness. Prospective clinical risk-benefit and health
economic analyses are an inherent part of the study. Study findings with estab-
lished clinical significance are reported to the participants, but the EBCT findings
are withheld until the conclusion of the study. The study population of the HNRS
was from the cities Essen, Mülheim and Bochum of the metropolitan Ruhr Area
in Western Germany. The study design has been described in detail in Schmer-
mund et al., 2002. The baseline was performed between 2000 and 2003, including
4814 randomly selected men and women aged 45 to 75 years. Individuals were
eligible if their address was valid, they were not institutionalized, had sufficient
knowledge of the German language, were not severely ill, and were able to be
interviewed. Participants were invited to the study center three times each after
5 years (t0, 2000 − 2003; t5, 2006 − 2008; t10, 2011 − 2015). Data assessment in-
cluded standardized computer-assisted personal interviews, clinical examination,
comprehensive laboratory tests, and self-administered questionnaires. In addition,
a yearly postal follow-up between the examinations was provided, which allows
for more than 18 years of observational data. The HNRS was approved by the local
ethics committees, and all participants gave informed consent before participation.

The HNRS included several health outcomes such as diabetes mellitus, asthma,
tumor, blood pressure, depressive symptoms, obesity. One research area is focusing
on detecting the link between the level of calcification and other diseases. There are
indications that the level of calcification is generally not only an indication of an
unhealthy lifestyle, but also of unfavourable environmental conditions and genetic
factors.
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Our main outcome in this thesis is depressive symptoms. For the current chap-
ter, we consider depression in districts. Depressive symptoms during the previ-
ous week were assessed using the 15-item short-form questionnaire of the Center
for Epidemiologic Studies Depression Scale (CES-D) (Hautzinger and Bailer, 2012,
Radloff, 1977). The CES-D is a screening tool for measuring depressive symptoms;
it has been validated in different populations and settings and is frequently used in
health research (Radloff, 1977). The questionnaire was filled out by participants at
the study center and by mailed follow-ups. For our analyses we used CES-D data
of eight measurements, assessed between 2000 and 2013. Scores for the 15-item
version range from 0 to 45, with a higher score indicating more and/or more fre-
quent depressive symptoms. We used a CES-D score of ≥ 17 as cut point to classify
participants as depressive (Radloff, 1977). For each district where HNRS partici-
pants were living, we counted the number of cases of depression. In this way we
obtained a count at the district level: depression in districts.

The HNRS includes several risk factors and covariates such as smoke status,
family status, age, citizenship, marital status, quality of life, socioecnomic status
(income, education, . . . ). The exposure in this thesis is greenness. For this chap-
ter, we particularly consider greenness measured at the district level. Exposure
to green space is commonly measured either as surrounding greenness or access
to green space (e.g. distance to nearest park), which are two different concepts.
Here, the concept of surrounding greenness was used, which is typically measured
within a certain area, often buffer around a residence or on district level (Orban et
al., 2017). Either the percent green space derived from land-cover data or the Nor-
malized Difference Vegetation Index (NDVI) derived from satellite imagery (Rhew
et al., 2011) is used. We base our analysis on three-time points of satellite imagery
data, 2006, 2009, 2013, and calculated respective the NDVI for all districts of the
study area. NDVI is a measure of vegetation level based on reflectance and ab-
sorbance of red and near-infrared solar radiation. Values of NDVI range from −1
to +1. Those around -1 generally correspond to water, while values near 0 repre-
sent bare surfaces, e.g. rock, rooftops and roads, or very scarce or dry vegetation.
Values approaching 1 represent dense vegetation, e.g. rainforest. Thus, a 1-unit
difference in NDVI corresponds to the difference between a barren area of rock or
stone and a rainforest.

All covariates in this chapter will be considered at the district level. Some are
directly measured at the district level like the unemployment rate in districts, ob-
tained from the local census authorities of the respective cities of Bochum, Essen,
and Mülheim. The unemployment rate was calculated by dividing the number
of unemployed in the area by the number of the economically active population
(unemployed + working population). Unemployment is a strong indicator for de-
privation (Reineveld, 1998) in a neighborhood and was used as an indicator of
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neighborhood-level socioeconomic status (SES). Other covariates are aggregated
from individual level to district level: Socioeconomic (e.g., income), demographic
(e.g., age), and medical history. Income was measured as the monthly household
equivalent income, which was calculated by dividing the total household net in-
come by a weighting factor for each household member, and was divided into four
groups using sex-specific quartiles. Information on whether participants ever had a
myocardial infarction, heart failure, stroke, diabetes mellitus, emphysema, asthma,
cancer, rheumatism, slipped disc, or migraine (yes/no) at baseline was used to
create a categorical variable indicating the number of comorbidities (0, 1, or ≥
2). The body mass index (BMI) was calculated as [weight in kilograms/(height
in meters)2]. The effect of greenness on any health outcome may depend on the
time participants spent in their district. The percentage of relocations (percentage
of participants who moved during the observation period) is a covariate that ac-
counts for that.

Our data are arranged in a particular way. They consists of K = 108 districts
and N = 8 time points: the time points are indexed years 0, 5, 7, 8, 9, 10, 11,
12, respectively. For the response, the K × N matrix Y is filled by the number of
cases of depression for the given district and the given year. We also have the
expected count in each district, which is the count calculated under the constant
risk hypothesis in the complete study area. NDVI measures of 2006 were assigned
to years 0, 5, 7, NDVI measures of 2009 were assigned to years 8, 9, 10 and NDVI
measures 2013 assigned to years 11, 12. This may make sense as the values of
NDVI are not supposed to be changing quickly during a small time span.). For
some covariates, like BMI and income, data from baseline visit (year 0), first (year
5), and second (year 10) follow up are available. For each of the mailed follow-
up surveys, the value of the previous follow-up (year 0, year 5, or year 10) were
used. For all other covariates, baseline data was used for analysis. We also choose
simplicity for imputation. The missing covariate values (for a given district) are
simply imputed by the mean of the available values for the given years. We note
that the missing values for any variable were at most 2%. Table 2.1 describes the
number of participants for each examination year with a depression score.
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Year
0

Year
5

Year
7

Year
8

Year
9

Year
10

Year
11

Year
12

Participants with
depression score

4645 4193 2118 3478 3223 2948 2508 2091

TABLE 2.1: Number of participants with value of depression score for
each examination year for the participants of the Heinz Nixdorf Recall

Study.

2.3 Formal notations

Y = (Y1, . . . , YK) resp. E = (E1, . . . , EK) denotes the vector of observations (count of
depression) resp. expected counts for the K non-overlapping districts of the study
region of the HNRS. Ȳ = 1

K ∑K
k=1 Yk is the arithmetic mean of the (Yk)k=1...K. Nk is

the population size in district k. N = ∑K
k=1 Nk is the population under risk in the

HNRS for the selected time point.
W = (wij)i,j=1,...,K is the adjacency matrix. There are several types of adjacency

matrices. In this thesis, we use the binary adjacency matrix which is more popular
for CAR models. It is defined by:

wij =

{
1, if district i and district j share a common border and i ̸= j ;
0, else. (2.1)

δi is the set of districts adjacent to district i. Xk = (xk1, . . . , xkp) is a vector of p
known covariates for district k.

2.4 Local cluster detection

Several methods to detect local clusters of elevated risks exploratory are available
(see Waller and Gotway, 2004, Pages 200 − 266). Here we shortly highlight the one
used in our application, the Besag and Newell method (Besag and Newell, 1991),
which we prefer because of its interpretability.

This approach assumes that the number of cases Yk and the population size Nk,
k = 1 . . . K, in each district k are known. The first step is to fix the expected cluster
size C, C ≥ 2. The second step is to consider for instance a particular district A1,
then designate the other districts with increasing distance to A1 with A2, . . . , AK

and define the test statistic M = min{j : Dj ≥ C}, with Dj = ∑
j
k=1 Yk. A small
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value of M suggests a cluster around district A1. The probability of whether the
specified C cases are observed in fewer districts is evaluated. The following null
hypothesis is tested for the area k ∈ {1 . . . K}:

H0: Yk is uniformly distributed in the overall population under risk N with

probability r =
Y+

N
, with Y+ = ∑K

k=1 Yk. The choice of the cluster size is not
unique and it is recommended to use several of them (see Gómez-Rubio, Ferrándiz-
Ferragud, and López-Quílez, 2005 for details).

2.5 Global cluster detection

For summarizing the extent of observed spatial similarity between nearby districts,
there exist several indices to describe the global strength of the spatial autocorre-
lation. See Waller and Gotway, 2004, Pages 200 − 266. Here we shortly highlight
the one used in our application, the Moran’s I statistic (Moran, 1950), once more
because of its interpretability and popularity:

I =
(

1
s2

) ∑K
i=1 ∑K

j=1 wij(Yi − Ȳ)(Yj − Ȳ)

∑K
i=1 ∑K

j=1 wij
(2.2)

with s2 = 1
K ∑K

j=1(Yj − Ȳ)2.
With this test statistic I, we test for spatial dependence versus the null hypoth-

esis of no spatial dependence of the Yk, k = 1, . . . , K. A positive value of I suggests
that the pattern is clustered (close districts tend to have identical values) and a neg-
ative one implies that the pattern is regular (neighbouring districts tend to have
different values). When there is no correlation between neighboring values, the
expected value of I is E(I) = − 1

K−1 . See (Lee and Wong, 2001, pp. 79 − 80) for
details.

2.6 Spatial models for areal data including spatial ran-
dom effects

The basic form of the data involves a set of counts observed (one count for each
district) and a matching set of counts expected reporting the number of cases we
expect in each district, under the null hypothesis. We keep the notations of Subsec-
tion 2.4.
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2.6.1 The general model

The general model can be described as:
Yk ∼ f (θk|Xk)
g(θk) = XT

k β + ψk + C
β ∼ N(µβ, Σβ),

(2.3)

where θk denotes the risk (of depression) in district k. β = (β1, . . . βp) is the co-
variate regression parameter vector, and a multivariate Gaussian prior is assumed
with mean µβ and diagonal variance matrix Σβ. ψ = (ψ1, . . . , ψK) consists of the
random components ψk for district k, that is to be precisely described later. C is a
constant term.

Possible link functions for g are the natural logarithm, the logit and the iden-
tity function, corresponding to the Poisson, Binomial and Gaussian models respec-
tively. To be more concrete, we will consider the Poisson and Binomial model for
more details.

2.6.2 CAR-structure prior for latent random effect

We use the Besag-York-Mollié model, also called convolution model, which is, e.g.
fully described in Pfeiffer et al., 2008, for ψk. Here ψk = Uk + Vk, with unstructured
district effect V = (V1 . . . VK), Vk ∼ N(0, τ2

v ), k = 1, . . . K. U = (U1 . . . UK) rep-
resents the structured spatial effect between districts and is modelled using CAR
priors (Besag, York, and Mollié, 1991). CAR models, a special specification of the
MRF models are network-based models, specifically designed to model spatially
autocorrelated data based on neighborhood relationships. CAR priors have the ad-
vantage of facilitating random-effects analysis under a Markov Chain Monte Carlo
(MCMC) sampling approach. Mathematically, it is given as follows:

[Ui|Uj = uj, j ∈ δi, τ2] ∼ N(mi, τ2
i ), (2.4)

where mi =
∑j∈δi

wijuj

∑j∈δi
wij

and τ2
i =

τ2

∑j∈δi
wij

. τ2 is the general location-independent

variance.
For the random effect ψk and in contrast with the Besag-York-Mollié model,

we could have used a single set of random effects to model both the structured
and unstructured random effect as given by the Leroux model (Leroux, Lei, and
Breslow, 2000). The spatio-temporal extension of the Leroux model will be applied
in Chapter 3 to show the flexibility of the CAR models used.
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2.6.3 The spatial Poisson model

For each of the 3 examination visits at the study center, we use a hierarchical Pois-
son model that accounts for covariate effects and where spatial autocorrelation is
modelled via sets of autocorrelated random effects. The model equation is given
by 

Yk ∼ Poisson(θkEk)
ln(θk) = XT

k β + ψk
β ∼ N(µβ, Σβ).

(2.5)

The term XT
k β represents the covariate effects, while θk is the risk of depression

in district k. ψk is defined as given in Subsection (2.6.2). Neglecting the spatial ef-
fects as well as the covariate effects in equation (2.5) results in the classical Poisson
model for count data. For the classical Poisson model, the maximum likelihood
estimate of the risk is the ratio of observed cases to the expected cases in each dis-
trict. It is called the Standardized Incidence Ratio (SIR). A SIR significantly greater
(resp. smaller) than 1 indicates an increased (resp. decreased) risk of disease. The
estimated Risk from model 2.5, including covariate effects and random effects can
then be viewed as a smoothed version of the SIR. Model equation (2.5) can be em-
ployed to examine risk factors that increase (resp. decrease) the risk of disease in
districts. The expected count Ei in district i is computed in our case under the
constant risk hypothesis: this means that the risk is the same in each district:

Ek = θNk, where θ =
∑K

k=1 Yk

∑K
k=1 Nk

Nk, k = 1 . . . K, Nk being the population size in

district k (in the HNRS).

2.6.4 The spatial Binomial model

Since the counts are relatively small and the classification of each participant in the
depressive class can be considered a Bernoulli trial, the Binomial model may be an
alternative. Moreover, the maximum number of cases N in the HNRS is known
and fixed (from the data). With previous notations the model can be described as

Yk ∼ Binomial(nk, θk)

ln(
θk

1 − θk
) = XT

k β + ψk

β ∼ N(µβ, Σβ),

(2.6)

where nk denotes the number of trials and θk the probability of success in each trial
in area k.
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The Poisson model is more appropriate in our analysis because the effects of
differential age demographics can be accounted for in the expected counts Ei. In
the following we just present the results for the Poisson model.

2.6.5 Model building process

We use the data and prior information to critically evaluate our epidemiologic as-
sumptions implied by the model and the statistical assumptions required by the
model. Here we use stepwise regression with some forced-in covariates (includ-
ing the exposure of interest), which are known to influence the outcome of inter-
est (known confounding factors). All other covariates are subject to selection by a
forward-selection algorithm. The results will be presented for sets of selected co-
variates: The first set (Set I) is the set of forced-in covariates. The second set of
variables (Set I I) includes Set I and all additional variables primarily measured at
the individual level and aggregated to a district level. Set I I I corresponds to Set I I
and the variables primarily measured at the district level. These sets are depicted
in Table 2.2.

We do not aim here to present the whole process of selecting variables. Each
set of selected covariates will show the degree of association of the health outcome
and the exposure of interest. Variables recognized to be influenced either by the
exposure or the disease are firstly led aside. Controlling for such intermediates is
added later. To conventionally include the additional covariates, we use a tradeoff
between the charge-in-estimate method, statistical significance of the included co-
variates, and the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002)
of the model. In the charge-in-estimate method, covariates are selected based on
relative or absolute change in the estimated exposure effect. The DIC is a hierar-
chical modeling generalization of the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC).

Set I Set I I Set I I I
forced-in
variables,
including
NDVI

SetI + multi-
morbidity +
Body Mass
Index + Traffic
noise

Set I I +
Unem-
ployment
% in dis-
trict

TABLE 2.2: Sets of covariates selected to illustrate the analysis of asso-
ciation between greenness and depression at the district level.
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2.6.6 Implementation

For the implementation of the Besag-York-Mollié model (equation (2.5)), we em-
ployed the Integrated Nested Laplace Approximation (INLA) using the R-INLA
package since it is a computationally efficient alternative to MCMC in many cases,
particularly for CAR models. Rather than aiming at estimating the joint posterior
distribution of the model parameters, the focus is on individual posterior marginals
of the model parameters. Detailed information on fitting the model with R-INLA
is given in (Blangiardo and Cameletti, 2015, Lindgren and Rue, 2015). The R-codes
are given in Appendix A. The analysis with the CARBayes R-package (Lee, 2013)
showed similar results (results not shown in this thesis).

2.7 Results

In this section, results are firstly provided for the identification of local clusters with
elevated risk of depression. Secondly, the distribution of the raw SIRs are presented
for each of the follow-up visits. Then, the results of the spatial model for disease
mapping are presented, where the smoothed risk of depression are depicted for
each of the follow-up visits in order to explore the spatial and spatio-temporal ef-
fects in the data.
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Baseline

k=7
k=16
k=20
k=25
Mülheim
Essen
Bochum

Kruppwerke

Karnap

Vogelheim
Altenessen−Nord

 

First follow−up

k=7
k=16
k=20
k=25
Mülheim
Essen
Bochum

Hamme
Wattenscheid−Mitte

Günnigfeld
Hamme

Kruppwerke

Hordel

Second follow−up

k=7
k=16
k=20
k=25
Mülheim
Essen
Bochum

Kruppwerke

FIGURE 2.1: Districts around which significantly elevated clusters of
cases of depression are observed in the study area, by the Besag-
Newell method for selected cluster sizes k=7, 16, 20, 25, and for se-

lected follow-up examinations.

We start with the Local cluster detection. Figure 2.1 displays the districts of
the study area for each of the three examination time points at the study center
(Years 0, 5, 10) with elevated risk of depression for the selected cluster sizes k =
7, 16, 20, 25. These clusters are mainly situated in the northern part of the study
area, as indicated in Figure 2.1. Except for the district Kruppwerke in Bochum, we
identified different sets of districts with clustered cases of depression for the three
follow-up examinations considered.

For the Global indicator of spatial autocorrelation, we firstly consider Yk =
SIRk (compare with equation (2.2). I = 0.09 at baseline (Year 0). This value is
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compared with the value expected under the null hypothesis of spatial indepen-
dence E(I) = − 1

K−1 = − 1
107 = −0.0093. The p-value is 0.0053 (From R-Funktion

Moran.I), which at a selected significance level of 0.05 leads to the rejection of the
null hypothesis. Therefore, the spatial distribution of the risks of depressive dis-
orders does not reflect the result of random spatial processes. Even if the overall
spatial clustering effect is small, it should not be neglected. Values for I in year 5
and year 10 are different but lead to the same conclusion about the spatial depen-
dence.

Besides, we calculated the Moran’s I statistic for the residuals of the classical
Poisson model with covariate effects (model equation (2.5) with ψ set to 0) for each
of the time points considered to examine the appropriateness to use a spatial model.
The estimated Moran’s I is 0.17 and the p-value is less than 0.05 for Year 0, suggest-
ing evidence of unexplained spatial autocorrelation in the residuals from the first
follow-up after accounting for the covariate effects. The Morans’I for the residuals
of the classical Poisson model with covariate effects for the other two follow-up
examinations at the study center are 0.06 and −0.08 respectively, with the null hy-
pothesis of spatial independence not rejected. This shows a changing structure of
the spatial effect over time.

The spatial distribution of the raw SIRs is shown in the first row of Figure 2.2.
Neither clear patterns of elevated or low SIRs nor clear association with the dis-
tribution of greenness at the district level (second row of Figure 2.2) for the three
follow-up periods is observable.
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SIR baseline

0,00 - 0,95

0,96 - 1,10

1,11 - 1,50

1,51 - 3,44

SIR first follow-up

0,00 - 0,95

0,96 - 1,10

1,11 - 1,50

1,51 - 4,17

SIR second follow-up

0,00 - 0,95

0,96 - 1,10

1,11 - 1,50

1,51 - 12,07

0 10 205
Km

NDVI 2006

min < NDVI <= Q1

Q1 < NDVI <= Q2

Q2 < NDVI <= Q3

NDVI 2009

min < NDVI <= Q1

Q1 < NDVI <= Q2

Q2 < NDVI <= Q3

NDVI 2013

min < NDVI <= Q1

Q1 < NDVI <= Q2

Q2 < NDVI <= Q3

–

FIGURE 2.2: Standardized Incidence Ratios (SIRs) displayed in the
first row of the figure for each of the 3 examination visits selected,
compared to the spatial distribution of greenness given in the second

row for the corresponding years.
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The results of the smoothed risks are displayed in Figure 2.3. There is a pattern
of elevated risk in the northern part of the study area for all 3 follow-up visits.
This is in accordance with the identification of significant clusters of elevated risk
in Figure 2.1 where clusters were identified in the northern part. Compared to the
spatial distribution of greenness, elevated risks seem to occur in areas with a low
level of greenness. It is then of great importance to examine the spatial pattern
of the risk of depression as well as relationship between greenness and the risk of
depression over time.
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FIGURE 2.3: Risk estimate from the convolution model displayed in
the first row of the figure for each of the 3 examination visits selected,
compared to the spatial distribution of greenness given in the second

row for the corresponding years.
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2.8 Discussion

Our aim was to examine the risk of depression exploratory in the HNRS and anal-
yse the effect of greenness on depression, prior to the spatio-temporal analysis.
After applying the Besag- Newell method to identify local clusters of elevated risk
of depression in the study area, a global indicator of spatial clustering was ap-
plied. A spatial Poisson model for disease mapping was then described within a
Bayesian hierarchical model formulation (the Besag-York-Mollié model (Pfeiffer
et al., 2008)) to estimate and smooth the risk of depression, accounting for covari-
ate effects. The risk estimates from the spatial Poisson model were regarded as a
smoothed version of the SIRs. The risk estimates from the spatial Poisson model
were compared exploratory to that of SIRs and both were compared to the spa-
tial distribution of greenness measured at the district level. The results inferred a
spatial pattern of clusters of higher risk in the northern part of the study area. This
pattern is explained by the unequal geographical distribution of some environmen-
tal risk factors in the study area, including greenness.

To achieve our goals and analyse data on the same spatial resolution, we have
aggregated some covariates. Data aggregation has the consequence that some in-
formation is lost (Orcutt, Watts, and Edwards, 1968). With available covariates at
the individual level as well as group level (district), there are existing methods to
examine the effects of these covariates on individual-level outcomes as well as es-
timating risks at the district level, notably multilevel models (Pickett and Pearl,
2001). There is, for instance, a multilevel function in the CARBayes R-package
(Lee, 2013). However, the multilevel model has another analysis goal. Our goal
was to assess the risk at a group level and examine the associations at the group
level. Using a spatial model for disease mapping that accounts for spatial effect is
preferable to the mapping of standard estimates of disease risk like SIR. With the
smoothed risk, a spatial pattern for the distribution of the risk of depression has
been identified whereas the mapping of SIR showed no pattern.

Adding spatially structured extra-variability in the model fitted to the data
when such extra-variability does not exist conditionally on the covariates included
in the model (over-fitting) may bias the estimation of the ecological association be-
tween covariates and relative risks toward the null. However, in the case where
no underlying extra-variability from the Poisson process exists, the simulation re-
sults show that models accounting for structured and unstructured residuals do
not underestimate the ecological association, unless covariates have a very strong
autocorrelation structure as shown in Latouche et al., 2007. Because spatial and
non-spatial methods are equivalent in the absence of spatial autocorrelation in the
errors (Beale et al., 2010), the precautionary principle suggests that models which
incorporate spatial autocorrelation should be fitted by default as computational
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cost of unnecessary fitting a complex model that includes spatial effect is negligible
compared with the danger of ignoring potentially important autocorrelation in the
error.

In conclusion, we strongly recommend accounting for the spatial variation in
the data when linking health outcomes and environmental exposures. Not only
those environmental exposures are spatial in nature and can induce a spatial cor-
relation in classical non-spatial models, but also accounting for spatial correlation
when it is not present does not affect regression coefficients when there is no strong
correlation between covariates. The methodology can now also be employed for
other covariates and health outcomes of the HNRS. A spatio-temporal extension of
the analysis is however needed to analyse longitudinal data as a whole and anal-
yse the effects of covariates more precisely. Chapter 3 is dedicated to the spatio-
temporal extension of the analyses performed in this chapter.
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Chapter 3

Spatio-temporal analysis of the risk of
depression at district-level and
association with greenness

3.1 Introduction

When studying the effects of an urban exposition on a health outcome, the use of a
longitudinal approach is most suitable. Even more important, data sets gathered at
several time points over a longer time span can provide valuable information about
the temporal dynamics of exposure and outcome. In this case, temporal autocor-
relation comes into place as the same variables are measured several times. Spa-
tial effect as discussed in Chapter 2 also arises simultaneously. There are several
statistical models available in the literature for longitudinal studies linking health
outcomes and urban expositions. For certain reasons as given in Chapter 2, data
are aggregated to a common spatial resolution of interest like the districts of the
HNRS. For such aggregated data, Poisson regression models are appropriate to es-
timate the disease risks, whereby accounting for covariate effects. Spatio-temporal
variation are usually neglected in such urban health studies.

Ultimately, statistical methods for spatially and temporally referenced data
should consider the spatial and temporal autocorrelation as well as the spatial and
temporal heterogeneity to provide accurate, meaningful conclusions. Ignoring the
spatial and temporal variation in the data runs the risk of violating the usual as-
sumption of independent observations in ordinary regression analysis and may
cause bias in the covariate effects (Cressie, 1993, Pfeiffer et al., 2008).

In this chapter, we would like to address this issue of spatio-temporal effect by
using as an example the analysis of the effect of urban greenness on depressive
symptoms from the data of the German HNRS. In Chapter 2, exploratory analy-
ses showed some local clusters of elevated risks of depression as well as the pres-
ence of non-negligible spatial autocorrelation for particular time points. The spatial
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Poisson model including the CAR model to account for the spatial effect was ap-
plied for particular time points (cross-sectional). Furthermore, previous analyses
of the association between mental health outcomes (e.g. depression) and greenness
were mainly cross-sectional, performed on individual-level variables, with spatial
level covariates disaggregated to the individual level (Song et al., 2019, Beyer et al.,
2014). The few ecological analysis on aggregated level did not use the spatial and
spatio-temporal random effects to account for the unexplained spatial variation
(Nutsford, Pearson, and Kingham, 2013). For the HNRS, linking health with green-
ness was analyzed in Orban et al., 2017. This analysis was done at the individual
level and the spatio-temporal correlation was also not accounted for.

The main objective of this chapter is to apply a sophisticated spatio-temporal
Poisson model on the analysis of the association between greenness and depres-
sion on the district level in the HNRS. This analysis with the spatio-temporal Pois-
son model extends the analyses performed in Chapter 2. Our approach will help to
understand the distribution of the risk of depression over time and its influencing
factors. The method takes simultaneously into account both spatial autocorrelation
and spatial heterogeneity as well as change of spatial effect over time. Accord-
ingly, spatio-temporal random effects are included while smoothing disease risks
at a spatial level. This work is the first for the HNRS that accounts for the spatio-
temporal effects (either spatial heterogeneity or spatial autocorrelation) at an areal
level. The main part of this chapter is available in Djeudeu et al., 2020.

We organized our chapter as follows: In the method section (Section 3.2), af-
ter some formal notations, we firstly present the spatio-temporal model in Subsec-
tion 3.2.2 to describe the evolution of the estimated risk of depression. Then, the
spatio-temporal CAR model for the spatio-temporal random effect is addressed in
Subsection 3.2.3. A model building process similar to the one in Chapter 2 follows
in Subsection 3.2.4. The method section ends with the summary of the implemen-
tation methods used to fit our model in Subsection 3.2.5. Section 3.3 is dedicated
to the results from all the methods applied. In section 3.4, we discuss the results
compared with other studies and future insights for analysis.

3.2 Methods

3.2.1 Formal notations

We keep the notations of Subsection 2.3 from Chapter 2 and consider some ex-
tensions for the spatio-temporal model. Data are recorded for each district for t =
1, . . . , N consecutive time periods, thus available for a K× N rectangular array with
K rows(districts) and N columns (time periods). The response data are denoted by
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Y = (Y1, . . . , YN)K×N, where Yt = (Y1t, . . . , YKt) denotes the K × 1 column vector
of observations for all K spatial units for time period t. Next, E = (E1, . . . EN)K×N,
where similarly Et = (E1t, . . . , EKt) denotes the K × 1 column vector of expected
counts. Xkt = (xkt1, . . . , xktp) is a vector of p known covariates for district k (and
can include factors or continuous variables and a column of ones for the intercept
term). Nkt is the population size in district k at time period t. To model the risk of
depression at the district level, thereby accounting for covariate effects and unex-
plained spatio-temporal trends in the data, we use the hierarchical Poisson model.

3.2.2 The Poisson model, including spatio-temporal random ef-
fects

Here, we consider the spatio-temporal extension of the spatial Poisson model in
Subsection 2.6.3 from Chapter 2) (see equation (2.5)).

The spatio-temporal model has the following form:
Ykt ∼ Poisson(θktEkt)
ln(θkt) = XT

ktβ + ψkt
β ∼ N(µβ, Σβ).

(3.1)

θkt denotes the risk (of depression) at time t in district k. β = (β1, . . . βp) is
the covariate regression parameter vector, and a multivariate Gaussian prior is as-
sumed with mean µβ and diagonal variance matrix Σβ. Ψ = (Ψ1, . . . , ΨN) with
Ψt = (ψ1t, . . . , ψKt), comprises the random components ψkt for district k and time
period t that is to be precisely described later.

Note that the expected count Ekt in district k for time period t is computed under
the constant risk hypothesis for our application. This means: Ekt = Nktξt (compare
with the calculation of Ek in district k in Subsection 2.6.3 from Chapter 2). An
age-adjusted expected count would have been possible (Waller and Gotway, 2004,
page 203), but we use an overall mean risk estimate over the entire geography of

the HNRS for each time period, ξt =
∑K

k=1 Ykt

∑K
k=1 Nkt

.

3.2.3 CAR-prior for spatio-temporal random effect

With the random effect in equation (3.1), we wish to account for the evolution of
the spatial structure of the data over time without forcing it to be the same for
each time point. We use a single set of spatially and temporally autocorrelated
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random effects to allow the temporal and spatial correlation to be jointly mod-
elled. Ψt = (ψ1t, . . . , ψKt) is the vector of random effects for time period t, which
evolves over time via a multivariate first-order autoregressive process with tempo-
ral autoregressive parameter ρT. The model was proposed by Rushworth, Lee, and
Mitchell, 2014:

Ψt|Ψt−1 ∼ N(ρTΨt−1, τ2Q(W, ρS)
−1), t = 2, . . . , N

Ψ1 ∼ N(0, τ2Q(W, ρS)
−1)

τ2 ∼ Inverse − Gamma(1, 0.01)
ρS, ρT ∼ Uni f orm(0, 1)
Q(W, ρS) = ρS[diag(W.1)− W] + (1 − ρS)I.

(3.2)

1 is the K × 1 vector of ones, while I is the K × K identity matrix. The ran-
dom effects are zero-mean centered, while flat and conjugate priors are specified
for (ρS, ρT) and τ2, respectively. ρS and ρT are the spatial and temporal autore-
gressive parameters, respectively. W = (wij)i,j=1...K is the adjacency matrix (see
equation (2.1)). The temporal autocorrelation is thus induced via the mean ρTΨt−1.
The spatial autocorrelation is induced by the variance τ2Q(W, ρS)

−1. Q(W, ρS) is
the precision matrix, proposed by Leroux, Lei, and Breslow, 2000, which is a mix-
ture between unstructured (uncorrelated) and structured (correlated) effects: The
separation of spatially structured and unstructured variance is controlled by the
parameter ρS, which defines the degree of the spatial dependency. ρS = 1 gives
an Intrinsic CAR (ICAR), autocorrelation structure. ρS = 0 corresponds to un-
structured (uncorrelated) heterogeneity. Hence, the model allows the degree of
smoothing or clustering to be estimated. τ2 is the location independent parameter
controlling the overall magnitude of the prior variance. Further models for ψ are
also available (Napier et al., 2019, Knorr-Held, 2000, Lee and Lawson, 2016, Rush-
worth, Lee, and Sarran, 2017, Bernardinelli et al., 2015, Napier et al., 2016). Note
that the Leroux model is a direct spatio-temporal extension of the Leroux model
mentioned in Subsection 2.6.2, not the extension of the Besag-York-Mollié model
applied. The spatio-temporal extension of the Leroux model, although more com-
plex than the spatio-temporal extension of the Besag-York-Mollié model, has been
preferred because it explains the dynamics of the spatial effect better.

3.2.4 Model building process

All other covariates are subject to selection by a forward-selection algorithm. The
results will be presented for sets of selected covariates: The first set (Set I) is the set
of forced-in covariates. The second set of variables (Set I I) includes Set I and all ad-
ditional variables primarily measured at the individual level and aggregated to the
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district level. Set I I I corresponds to Set I I and the variables primarily measured at
the district level. These sets are depicted in Table 3.1. Compared to Table 2.2 from
subsection 2.6.5, some variables like greenness measured at the district level are
here time-varying and others are time-invariant like unemployment in districts for
the study period considered. Recall that for the spatial Poisson model, we used the
values of all variables at a single time point. Moreover, we do not have the same set
of variables for the spatial and spatio-temporal model. In addition to the variables
for the spatial model, the spatio-temporal model has the variable Percentage relo-
cations. So, (Set I I) here includes the variable Percentage relocations in addition,
compared to Table 2.2.

To conventionally include the additional covariates, we also use a tradeoff be-
tween the charge-in-estimate method, statistical significance of the included covari-
ates, and the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) of the
model.

Set I Set I I Set I I I
forced-in
variables,
including
NDVI

SetI + multi-
morbidity +
Body Mass
Index + Traffic
noise+ % of
relocation

Set I I +
Unem-
ployment
% in dis-
trict

TABLE 3.1: Sets of covariates selected to illustrate the analysis of asso-
ciation between greenness and depression at the district level.

3.2.5 Implementation

For the spatio-temporal model (equations (3.1) and (3.2)) we use the R-package
CARBayesST, the Spatio-Temporal Areal Unit Modelling package described in Lee,
Rushworth, and Napier, 2018. All models are fitted in a Bayesian setting using
Markov chain Monte Carlo (MCMC) simulation methods. For all parameters, whose
full conditional distributions have a closed-form distribution, the Gibbs sampler is
used. This includes the regression parameters β and the random effects as well as
the variance parameters. These full conditionals are available under request from
the authors of the R-package CARBayesST (Lee, Rushworth, and Napier, 2018). We
also used this R-package to fit our model. The remaining parameters are updated
using Metropolis or Metropolis-Hastings steps and the random effects in equation
(3.2) can be updated via the simple Gaussian random walk Metropolis algorithm
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or the Metropolis adjusted Langevin algorithm (Roberts and Rosenthal, 1998). The
convergence of the samples is checked using the convergence diagnostic check pro-
posed by Geweke, 1992.

3.3 Results

We present the results of the spatio-temporal model to describe the evolution of the
estimated risk of depression. For illustration, the estimated risks are displayed for
each time point, compared to the distribution of greenness.

The results of the fitted models from equation (3.1) are presented in Tables 3.2,
3.3, 3.4 and 3.5. To ease the interpretation, the displayed coefficient estimates for
the Poisson model are transformed: The relative risk for an ϵ unit increase in a
covariate with regression parameter βk is given by the transformation exp(ϵβk).

We observed a strong temporal autocorrelation in all models used (ρT > 0.89),
meaning that the (unexplained) spatial variation is not changing much over time.
The location-independent parameter τ2 is always small, indicating a minor overall
spatial effect in our data set. The small values of ρS indicate that the type of spatial
effect present in the data is mainly the (uncorrelated) heterogeneity. Neglecting the
spatial autocorrelation (forcing ρS to take value 0) does not change the coefficient
estimates substantially, but leads to a slightly worse fit (Compare DICs in Tables
3.2 and 3.3). Thus, accounting for spatial autocorrelation, even with no strong ef-
fects as in our data, is better than neglecting it and just accounting for the spatial
heterogeneity in the data.

The estimate of greenness in Tables 3.2, 3.3, 3.4, 3.5 shows a negative associa-
tion between greenness and the risk of depression on district level for all sets of
selected covariates. However, adding further potential confounders (from Set I to
Set I I and from Set I I to Set I I I) decreases the greenness estimates towards null
(towards 1 in the Tables with the transformation). The estimates for the other co-
variates show less changes. Overall, the model fits, measured here by the DIC im-
proves (decreased DIC values) by adding further covariates. Regarding the spatial
effect parameters, we neither notice a remarkable change of the spatial autocorre-
lation coefficient ρS (compare Tables 3.2, 3.4, 3.5) nor of the location-independent
parameter τ2 (see Tables 3.2, 3.3, 3.4, 3.5). We also notice no remarkable change in
the time dependent autocorrelation coefficient ρT (compare Tables 3.2, 3.3, 3.4, 3.5).

We performed a sensitivity analysis on the prior for τ2. Instead of the inverse-
gamma prior as given in equation (3.2), we considered an improper uniform den-
sity for τ. The results did not change.
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Posterior quantiles
Median 2.5% 97.5%

Intercept 2.57 0.34 12.40
Greenness 0.90 0.85 0.96

Age 0.99 0.96 1.02
Income 0.99 0.99 1.00

τ2 0.02 0.01 0.04
ρS 0.06 0.003 0.16
ρT 0.97 0.89 0.99

DIC 2846.26

TABLE 3.2: Param-
eter estimates for
model (3.1) for co-

variate Set I.

Posterior quantiles
Median 2.5% 97.5%

Intercept 1.92 0.22 14.01
Greenness 0.91 0.85 0.98

Age 0.99 0.96 1.03
Income 1.00 0.99 1.00

τ2 0.02 0.01 0.03
ρS 0.00 0.00 0.00
ρT 0.97 0.90 1.00

DIC 2850.18

TABLE 3.3: Parameter esti-
mates for model (3.1) for co-
variate Set I, with uncorre-

lated heterogeneity only.

Posterior quantiles
Median 2.5% 97.5%

Intercept 0.11 0.00 1.22
Greenness 0.94 0.88 1.01

Age 0.99 0.96 1.02
Income 0.99 0.98 1.00

Percentage relocations 1.00 0.99 1.01
multi-morbidity 1.00 1.00 1.01
Body Mass Index 1.09 1.04 1.15

Traffic noise 1.01 1.00 1.02
τ2 0.02 0.01 0.04
ρS 0.04 0.002 0.16
ρT 0.98 0.92 1.00

DIC 2837.45

TABLE 3.4: Parameter estimates for model (3.1) for covariate Set I I.
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Posterior quantiles
Median 2.5% 97.5%

Intercept 0.17 0.01 1.31
Greenness 0.96 0.91 1.02

Age 0.99 0.95 1.02
Income 0.99 0.99 1.00

Percentage relocations 1.00 1.00 1.01
multi-morbidity 1.00 1.00 1.01
Body Mass Index 1.06 1.02 1.11

Traffic noise 1.00 0.99 1.02
Unemployment status 1.03 1.02 1.05

τ2 0.02 0.001 0.04
ρS 0.04 0.001 0.21
ρT 0.98 0.92 1.00

DIC 2823.95

TABLE 3.5: Parameter estimates for model (3.1) for covariate Set I I I.
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FIGURE 3.1: Risk estimate from the spatio-temporal model displayed
in the first and second column of the figure for baseline, year 5, year 7
and year 8 compared to the spatial distribution of greenness given in

the third column for the corresponding period of time.
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FIGURE 3.2: Risk estimate from the spatio-temporal model displayed
in the first and second column of the figure for year 9, year 10, year 11
and year 12 compared to the spatial distribution of greenness given in

the third column for the corresponding period of time.
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Observing Figures 3.1 and 3.2, we notice that the spatial structure of the risk
estimate is not changing very much over time. This is in accordance with the esti-
mated autocorrelation parameter ρT in Tables 3.2, 3.3, 3.4 and 3.4.

In the displayed risk estimate over time, a pattern of an increased risk in the
northern part of the study area for all time points is observable. Compared to the
spatial distribution of greenness, increased risks for depression seem to be accom-
panied with low levels of greenness. Compare the risk estimates and the spatial
distribution of greenness in Figures 3.2 and 3.1.

3.4 Discussion

We aimed to examine the effect of greenness on depression in a longitudinal study
by specifically taking into account spatial and temporal (unexplained) variation
through random effects in the ongoing longitudinal HNRS. In this way, we wished
to investigate in more detail the strength of associations between greenness and
depression, to better understand the spatial distribution of the risk of depression,
and to provide more accurate estimates. Accordingly, we applied a sophisticated
spatio-temporal model using aggregated individual and spatial data on the dis-
trict level. In epidemiological studies, it is not common so far to analyse longi-
tudinal and spatially referenced data sets while considering simultaneously spa-
tial autocorrelation, heterogeneity as well as spatial variations over time. Nev-
ertheless, spatio-temporal models for disease mapping generally account for the
spatio-temporal effect (Lee and Lawson, 2016). In the following, we discuss our
results shortly in the light of existing literature, applied statistical models as well
as strengths and limitations. Overall, our results suggest that increased levels of
greenness sustainably decrease the risk of depression at the district level. This ob-
servation is in line with previous studies, where greenness has shown negative
associations with mental health both at individual (Song et al., 2019, Beyer et al.,
2014) and spatial level (Nutsford, Pearson, and Kingham, 2013). However, unlike
ours, these studies are based on cross-sectional data sets. We observed a strong
temporal autocorrelation in the (unexplained) spatial variation. In addition to our
exposure ’greenness’, this points to environmental factors related to depression,
that, if time-dependent, only slightly change over time. Apart from the strong tem-
poral autocorrelation, our results indicate minor spatial effects in our HNRS which
are mainly based on grouping effects, thus uncorrelated heterogeneity. These re-
sults are in agreement with the results from Chapter 2, where the global indicator
of spatial autocorrelation (Moran’s I) was small for the selected time points. We
ascertained however that the model fit worsened without consideration of spatial
autocorrelation.
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The strength of our space-time methodology is that we can understand the spa-
tial effect and the dynamic thereof. Moreover, we are more confident in the esti-
mation of the association between depression and greenness as the inclusion of the
spatio-temporal random effects produces more reliable estimates. Therefore, this
approach will have a better predictive ability.

Some limitations of our results have to be considered. (1) Our analyses are likely
to be biased by dropouts during follow-up, unmeasured/unmeasurable covariates,
and/or imputation of missing values. At least a full case analysis with participants
who attended all three examinations at the study center revealed similar results
such that bias by dropouts may not be expected to have a crucial role in our anal-
yses. (2) As we aggregate individual data on the district level, we are well aware
of the possibility of a loss of information (Orcutt, Watts, and Edwards, 1968). In
addition, if the individual-level association is explored with aggregated data, this
might lead to the "ecological fallacy". On the other hand, analyses with individ-
ual data also have some drawbacks when it comes to spatial issues. For instance,
analyses based on individual data are often extrapolated to the spatial unit the in-
dividuals are assigned to. The inference of associations identified at the individual
level by simply transferring them to an aggregated level can also lead to misin-
terpretations, which is called "atomic fallacy" (Wen et al., 2001). The focus of our
study, however, was to consider longitudinal and spatially referenced data sets si-
multaneously while addressing spatial autocorrelation, spatial heterogeneity, and
both spatial effects over time. Notably multilevel models are able to examine ef-
fects of covariates on individual as well as on district-level outcomes (Pickett and
Pearl, 2001, Roux, 1998, Wakefield, 2009, Roux, 2000). There is, for instance, a mul-
tilevel function in the CARBayes R-package (Lee, 2013). However, this function so
far is intended for spatial models and not for spatio-temporal random effect anal-
yses. Our next research step, therefore, is to combine the advantages of multilevel
models using data at their finest level given and the advantages of MRF models via
their conditional specification to capture the spatial effects and the change of spa-
tial effects over time and to extend the existing approaches accordingly. (3) Adding
spatially structured extra-variability to the model when such extra-variability does
not exist (over-fitting) may bias the estimation of the association between covari-
ates and relative risks toward the null. However, in the case where no underlying
extra-variability from the Poisson process exists, simulation results (Latouche et al.,
2007) indicate that models accounting for structured and unstructured residuals do
not underestimate associations unless covariates have a very strong autocorrelation
structure.

In conclusion, neglecting or not taking into account the spatio-temporal auto-
correlation in the analysis would lead to inaccurate estimates. As in Section 2.8
from Chapter 2, we strongly recommend accounting for the spatial variation in the
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data when linking health outcome and environmental exposures. Here, in addition,
we suggest accounting for the change of spatial variation. Not only environmental
exposures are spatial in nature and can induce a spatial correlation in regression
models, but also accounting for spatial and spatio-temporal effects when it is not
present does not affect regression coefficients when there is no strong correlation
between covariates. The precautionary principle suggests that models, which in-
corporate spatial autocorrelation, should be fitted by default as the computational
cost of unnecessarily fitting a complex model that includes spatial effect is negli-
gible compared with the danger of ignoring potentially important autocorrelation
in the error. The same argument holds for spatio-temporal model when the data
shows a dynamic behavior. The methodology can now also be employed for other
covariates and health outcomes of the HNRS. Further methodological development
towards including individual and aggregated longitudinal data all at their given
spatial resolutions in a combined multilevel MRF approach is necessary. Part II of
this thesis will focus on the development of such methods.
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Part II

Multilevel conditional autoregressive
models
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Chapter 4

Multilevel conditional autoregressive
models for spatially referenced and
cross-sectional epidemiological data

—————————————————————————————

4.1 Introduction

Environmental exposure data are spatial in nature, partly determined by where
people live and interact. Several issues arise when analysing the association be-
tween health outcomes and environmental exposures, with participants nested within
spatial areas of interest. In this chapter, we discuss two of the issues.

The first is that risk factors and covariates related to individual level health
outcome may be given on different spatial resolutions. It is better to employ data
at their finest and initial spatial level, rather than aggregating or/and disaggre-
gating them to a common spatial resolution, to avoid the ecological and atomic
fallacy (see, e.g. Wakefield, 2009, Orcutt, Watts, and Edwards, 1968, Wen et al.,
2001). The second issue concerns the spatial effect. Two main types of spatial effect
should be considered: spatial autocorrelation and spatial heterogeneity. Spatial au-
tocorrelation is closely related to the first law of geography (Tobler, 1979, Waller
and Gotway, 2004) and can arise for several reasons, for instance, due to unmea-
sured/unavailable confounders. The second type is the grouping effect, also called
spatial heterogeneity (Duncan, Jones, and Moon, 1998). Sometimes, the difference
between the two types of spatial effects is not obvious.

Multilevel modeling (mostly 2-level) offers a framework to take advantage of
the hierarchical structure of the data (Roux, 2000, Roux, 1998) and is widely used
in many applications in the medical, educational and social science (Bryk and Rau-
denbush, 1989, Draper, 1995, Goldstein, Browne, and Rasbash, 2002, Nezlek, 2001).
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The classical multilevel model (MLM CL2) has multiple advantages, but also some
limitations. The inclusion of random effects at the highest hierarchical level helps
to adjust for fixed effect estimates, for missing or unavailable covariates with spa-
tial structure. A central assumption of interest in the MLM CL2 is that these ran-
dom effects are mutually independent across spatial units, modelling spatial het-
erogeneity only. In the Bayesian framework, this consists of assuming exchange-
able unstructured priors on area level random effects. This is equivalent to a global
smoothing towards the mean effect. However, for positive covariation between
adjacent units, positions of the spatial units are important; local smoothing using
adjacency may be more appropriate. Figure A.1 in the supplementary material
shows the importance of accounting for spatial autocorrelation instead of spatial
heterogeneity only.

Several works in the literature of health geography and spatial epidemiology,
mostly for cross-sectional analysis have recognised both the spatial heterogeneity
and the spatial autocorrelation and modified the MLM CL2 accordingly: (Browne,
Goldstein, and Rasbash, 2001, Hongwei, 2014, Dormann, 2007). However, most
of these methods are neither useful when substantial autocorrelation is expected
nor do they exploit spatial adjacency. Therefore, structured priors on the area level
random effect recognizing adjacency are of interest. MRF models, particularly the
CAR models (Besag, York, and Mollié, 1991, Hoef et al., 2018), are suitable for
this task. CAR priors have the advantage of facilitating random effects analysis
under a Markov Chain Monte Carlo (MCMC) sampling approach. Recent works
that combined the advantages of multilevel models and MRF for cross-sectional
data include Dong and Harris, 2015, Dong et al., 2015a, Dong et al., 2015b and the
S.CARmultilevel() function of the CARBayes package (Lee, 2013). However, spatial
confounding (Hodges and Reich, 2010, Reich, Hodges, and Zadnik, 2006) was not
explicitly examined in the previous papers. We consider the multilevel model with
restricted CAR model (MLM RCAR) to account for this spatial confounding.

The objective of this chapter is to compare the MLM CARs for cross-sectional
data to the MLM CL2 in a simulation study. For cross-sectional analysis, these
model classes are available in the literature although not common in simulation
studies to analyse the consequences of additional random effect terms on the be-
havior of regression coefficients explicitly, which is the main goal of this chap-
ter. In contrast to existing studies (Dong et al., 2015b), we additionally analyse
whether adding the spatially correlated error term (CAR-prior term) to a linear
model shrinks or enlarges/inflates the true regression coefficients. The Restricted
Multilevel CAR Model (MLM RCAR) (Paddock, Leininger, and Hunter, 2016) ac-
counts for spatial confounding. Thus, we compare the MLM RCAR, the MLM CAR
and the MLM CL2 for cross-sectional data.

We organized our chapter as follows: we shortly present the MLM CL2 for
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cross-sectional data and some advantages and limitations. Then we introduce the
MLM CARs for cross-sectional studies. Some selected comparison criteria for epi-
demiological and public health applications are carried out before defining the sim-
ulation strategy for comparing models. A computation section to explain the tech-
niques used for simulation and model fitting ends the method part of the chapter.
The results for simulation studies are then presented. For the application of the
methods compared in the simulation studies, we consider the analysis of the asso-
ciation between depressive symptoms and greenness at the baseline in Subsection
4.4. The chapter ends with a discussion of the results in Subsection 4.5. we also
consider perspectives for future insights.

4.2 The classical multilevel model: advantages and lim-
itations

Multilevel models in their uniqueness help to overcome the problems of spatial
heterogeneity and data given on different spatial resolutions. Moreover, multilevel
models can help to separate the effects of neighborhood characteristics from the ef-
fects of individual-level attributes that persons living in a certain type of area may
share. The central statistical model in the multilevel analysis is one of successive
sampling from each level of a hierarchical population. However, there is some nat-
ural geographical hierarchy in environmental data and the sample data are viewed
as a multistage sample from this hierarchical population. The hierarchical model
we consider here is presented exemplarily for a better understanding.

Assume we have data from K districts, with a different number of participants
nj (j = 1, . . . , K) in each district. On the individual (participant)-level, we have the
outcome variable Y (square root of the depression scores). We only consider one
explanatory variable on the individual level, say greenness (X) measured at the
individual level, and one district-level variable, unemployment in district (Z).

We firstly set up separate regression equations in each district to predict the
outcome variable Y as follows:

Yij = β0j + β1jXij + eij, i = 1, . . . , nj, j = 1, . . . , K. (4.1)

β0j is the usual intercept, β1j the usual regression slope for the explanatory vari-
able greenness, and eij is the usual residual error term, with mean 0 and variance
σ2. The subscript j is for the districts (j = 1, . . . , K) and the subscript i is for par-
ticipants (i = 1, . . . , nj). The difference with the usual regression model is that
we assume that each district has a different intercept coefficient β0j, and a differ-
ent slope coefficient β1j. Across all districts, the regression coefficients β0j and β1j
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have a distribution with some mean and variance. The next step in the hierarchi-
cal model is to explain the variation of the regression coefficients β0j and β1j by
introducing explanatory variables at the district level, as follows:

β0j = γ00 + γ01Zj + u0j (4.2)

β1j = γ10 + γ11Zj + u1j (4.3)

Equation (4.2) predicts the average depression (square root of depression score) in
a district (the intercept β0j ) by district-level variable Z. Thus, if γ01 is positive,
the average depression is higher in districts with larger values of Z. Conversely, if
γ01 is negative, the average depression is lower in districts with larger Z. Equation
(4.3) states that the relationship, as expressed by the slope coefficient β1j, between
the depression Y and the greenness (X) of participants, depends on the value of
unemployment in districts (Z). If γ11 is positive, the effect of greenness on depres-
sion is larger the larger the values of Z are. Conversely, if γ11 is negative, the effect
of greenness is smaller when the values of Z are large. Thus, the unemployment
in districts Z acts as a moderator variable for the relationship between depression
and greenness. The term u0j and u1j in equations (4.2) and (4.3) are random resid-
ual error terms at the district level (macro errors), assumed to have a mean of zero,
and to be independent from the residual error eij at the individual level. The vari-
ance of the residual errors u0j is σ2

u0
and the variance of the residual errors u1j is σ2

u1
,

and the covariance between u0j and u1j is σu01 . By including an error term in the
district-level equations (equations (4.2) and (4.3)), these models allow for sampling
variability in the district-specific coefficients (β0j and β1j) and also for the fact that
the district-level equations are not deterministic (i.e. the possibility that all district-
level variables have been included in the model). The model can be written as a
single complex regression equation by substituting equations (4.2) and (4.3) into
(4.1):

Yij = [γ00 + γ10Xij + γ01Zj + γ11XijZj] + [u1jXij + u0j + eij], (4.4)

where [γ00 + γ10Xij + γ01Zj + γ11XijZj] is the fixed part and [u1jXij + u0j + eij] is
the random part of the model. The term XijZj is an interaction term that appears
in the model as a consequence of modeling the varying regression slope β1j of the
individual level covariate Xij with the class level variable Zj. Thus, the moderator
effect of Z on the relationship between the dependent variable Y and the predictor
X, is expressed in the single equation version of the model as a cross-level interac-
tion. An important issue is that the traditional multiple regression model assumes
"homoscedasticity". In multilevel models, the random error term u1j and the ex-
planatory variable Xij are multiplied, the resulting total error will be different for



42 Chapter 4.

different values of Xij. This is in contrast with homoscedasticity. We can incor-
porate additional individual-level and group-level covariates and have the same
interpretations. One should keep in mind that group-level variables moderate the
effect of individual-level variables.

There are some typical research questions in the analyses of the association be-
tween a health outcome and environmental exposures using multilevel models.

How much of the variance in the health outcome (Y) is attributable to individu-
als and how much to the areal unit (group)? Do we really need a multilevel model?
How is the individual-level exposure (X) related to the health outcome (Y) in par-
ticipants nested in groups, controlling for other confounders? In other words, what
is the independent effect of X on Y? What is the independent effect of area-level
covariate Z on health outcome Y? What is the cross-level interaction? In other
words, how does the group-level variable (unemployment in districts for instance)
moderate the effect of the individual-level variable (individual-level greenness for
instance) on the outcome Y. Does the effect of individual-level exposure on health
outcomes differ across groups? Do groups (districts in our case) differ in average
health outcomes after controlling for the characteristics of individuals within the
groups? To answer some of these questions, we consider in Chapter 6, Section 6.3.2,
the advantages of the classical multilevel model via an application. The application
is another example of the analysis of association between a health outcome and an
environmental exposure of the HNRS. We show with the classical multilevel model
that increased depression is negatively associated with increased neighborhood
greenness, even when the hierarchical structure of the data is accounted for and
socio-economic risk factors both at individual level and district level are controlled
for. Just after controlling for district characteristics (unemployment in districts) the
effect of individual-level exposure does not vary across districts: The variability
in the effect of greenness across districts can be explained by some district-level
covariates and neglecting these district-level covariates can be misleading.

Multilevel models help to address the problems listed above, but multilevel
models do not account for spatial autocorrelation. MRF models can, in addition to
the advantages of multilevel models, account for the spatial autocorrelation
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4.3 Multilevel conditional autoregressive models for
cross-sectional data

4.3.1 Model description

For multilevel models for cross-sectional data, the study region is partitioned into
K non-overlapping areal units. Data are available on n = ∑K

j=1 nj individuals, with
nj individuals within area j, j = 1, . . . , K. The following model equation accounts
for both spatial heterogeneity and spatial autocorrelation:

yij = XT
ij β + ψj + eij,

ψj|ψ−j, W ∼ N

 ρ ∑
k ̸=j

wjkψk

ρ ∑
k ̸=j

wjk + 1 − ρ

τ2

ρ ∑
k ̸=j

wjk + 1 − ρ

 ,

eij ∼ N(0, σ2
e ) ∀ i, j, i = 1, . . . n, j = 1, . . . , K,

(4.5)

where ψ−j = (ψ1, ψ2, . . . , ψj−1, ψj+1, . . . , ψK), σ2
e , τ2 follow an inverse Gamma

(IG(a, b)) distribution, ρ follows a uniform distribution R(0, 1). Here, XT
ij is a 1 ×

p vector of intercept and p − 1 covariates for individual i in area j. XT
ij includes

individual level as well as area-level covariates. W = (wkj)k,j=1...K is the binary
adjacent matrix. The area-level random effect vector (ψ1, . . . , ψK)

T has the Leroux
structure given in equation (4.5) (Leroux, Lei, and Breslow, 2000, Congdon, 2010,
p. 181 − 183). This is the spatial version of the spatio-temporal Leroux model
of equation (3.2) from Chapter 3. The Besag-York-Mollié model from Subsection
2.6.2 from Chapter 2 is also a good alternative for ψ. However, the Leroux model
offers more flexibility. ρ = 0 corresponds to a lack of spatial interdependence, i.
e. the classical multilevel model (2 levels, MLM CL2). By contrast, ρ = 1 leads
to the intrinsic CAR (Congdon, 2010, p. 183 − 184) model. In common with the
sophisticated regression models applied in Chapter 2, the models also consist of
adding existing area-level random effect terms with CAR prior specification, this
time in the classical multilevel models for cross-sectional studies. But, in contrast
to the models in Chapter 2, the random effect is given at an areal level while the
outcome variable is at an individual level and covariates at different spatial levels.

Spatial confounding can be interpreted in linear-model terms as a collinearity
problem. When spatial confounding is detected, spatial smoothing is restricted
to the orthogonal complement of the fixed effect of area-level variables, called the
Restricted CAR model (RCAR). This is recommended and described in Hodges
and Reich, 2010, Reich, Hodges, and Zadnik, 2006. Choosing the restricted CAR
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models for the area-level random effect instead of the CAR models leads to the
MLM RCAR.

4.3.2 Model comparison criterion for epidemiological studies

Model comparisons for regression analysis generally involve two related but differ-
ent questions. The first is whether the increment in prediction or explained variabil-
ity obtained by adding a random effect (structured and unstructured) is important.
The second question, equally important, is whether the coefficients that describe
the relationships (association) between the independent variable and the predictor
variable in the model without random effect differs from the coefficient when the
random effect is accounted for. This question cannot be answered in validly with
conventional methods used for the assessment of incremental improvement in pre-
diction. Methods suited for the former question need not be valid for considering
the latter question (Clogg, Petkova, and Haritou, 1995).

In epidemiology and public health science, the goal is mainly inference rather
than prediction. In other words, we are mostly interested in association-based (re-
gression) models applied to observational data. This means that we use statistical
regression models for testing causal explanations and this will lead to statistical
conclusions in terms of effect sizes and statistical significance (Shmueli, 2010). Best
practice in reporting regression analyses in Epidemiology and public health appli-
cation include the report of the regression coefficients (beta weights) of each ex-
planatory variable and the associated confidence intervals and P values, preferably
in a table. The former captures the mean effect (strength) of the association (effect
size) and the latter the uncertainty of the coefficient estimate (Litteratur). Due to
the spatial arrangement of the data, there might be bias in reported coefficient es-
timates of model estimation if the appropriate method has not been used. This is
why in our comparison, we prefer models for which uncertainty in coefficient esti-
mates are reduced. Arguably, such models are not the best models to reduce model
uncertainty (with better predictive ability). We are more interested in answering
the following questions: Is the regression relationship between the response and a
covariate of interest stable across two specifications? Or, does ’controlling’ for addi-
tional random effect (random autocorrelation) suppress or enhance the relationship
between the response and the covariate?

Since we are more interested in association-based (regression) models applied to
observational data, we concentrate on comparison methods for which uncertainty
in coefficient estimates are examined.

Let β̂M
1 , . . . , β̂M

p and ŝd
M
1 , . . . , ŝd

M
p be the estimated regression coefficients and

standard deviations respectively, using regression model M to fit the generated
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data. The bias for the coefficient i, using model M is defined by |β̂M
i − βi|, where

β1, . . . , βp are the true regression coefficients. The Root Mean Square Error

RMSE(β̂M
i ) =

√
(Bias(βM

i ))2 + Var(β̂M
i )

assesses the quality of the estimators of the true regression coefficients using the
underlying model M.

We use the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002)
as an in-sample prediction criterion, which is a reasonable choice for our nested
models. When comparing candidate models, smaller values of DIC indicate better
models. The DIC should be used together with the posterior log-likelihood before
recommendation. The model maximizing the posterior log-likelihood is preferable.

4.3.3 Simulation strategy

We base our simulation on equation (4.5). We simulate two predictor variables: one
variable defined at the individual level and the other defined at district level, both
described by normal distributions. The individual-level error term is also simu-
lated from a normal distribution. More details on the model equations used for
simulating the spatial random effect are given in Appendix A, equation (A.2). ρ
is an autocorrelation parameter and lies between 0 and 1. If ρ is closer to 0, then
the simulated spatial effect is more similar to spatial heterogeneity. If ρ is closer to
1, then this is more similar to a CAR structure. A value of ρ between 0.4 and 0.6
corresponds to both medium spatial heterogeneity and autocorrelation. The differ-
ent 9 scenarios are described in Table A.2 in Appendix A. Here we just include 3
scenarios for common data situations. For sensitivity analysis, for each scenario,
different values of ρ and τ2 are given. For each generated data, 3 candidate re-
gression models are fitted and compared using the comparison methods listed in
subsection 4.3.2: MLM CL2, MLM CAR and MLM RCAR.

4.3.4 Computation

All models are fitted in the Bayesian setting with Markov Chain Monte Carlo
(MCMC) simulation methods. All parameters whose full conditional distributions
have a closed-form distribution, i. e. the regression parameters and all area level,
individual and observational level variance parameters, are updated using a Gibbs
sampler (Gelfand, 2000). These full conditionals are available under request from
the authors of the R-package CARBayesST (Lee, 2013).
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For better comparability, we relied on the expert system of BUGS (Best et al.,
2012), particularly run from within the R software using the R-package R2WinBUGS
(Sturtz, Ligges, and Gelman, 2005). We used devices such as centering of the co-
variates as well as hierarchical centering of the random effects (Gelfand, Sahu, and
Carlin, 1995) to reduce correlation in the joint posterior and increase Markov Chain
Monte Carlo (MCMC) effective sample sizes. To access convergence and consis-
tency of the chains, single as well as two parallel chains initialized at different
points were used, and the Geweke diagnostic (Geweke, 1992), Brook & Gelman
diagnostic (Brook and Gelman, 1998) and Heidelberger & Welch’s diagnostic (Hei-
delberger and Welch, 2010) were applied. We ran the chains and chose the number
of iteration until at least R̂, the measure of mixing chains, is less than 1.02 for all pa-
rameters and quantities of interest. For the final estimation, we used a single long
run after discarding a part of the sampled data: The length of the burn-in period
was determined for each model separately. We also thinned the chains by storing
only every 10th draw for the MLM CL2, MLM CAR, and MLM RCAR in order
to decrease autocorrelation and speed up ’mixing’. For the Markov chains for the
MLM CAR and the MLM RCAR, we could not detect departure from convergence
after the 15000th iterations. The MLM CL2 stabilized earlier.

The models were run in parallel using the R-package ’batchtools’ (Lang, Bischl,
and Surmann, 2017), which provides a parallel implementation. The complete R-
code for the simulation study is available. The important parts of the code are
displayed in Appendix B of the additional materials.

4.3.5 Results for the simulation studies

The summary result is that the RMSE for the area level regression coefficients is
larger for the MLM CL2 and the MLM CAR, compared to the MLM RCAR. This
depends on the strength of the overall variance and spatial autocorrelation (CAR-
structure) in the simulated data. The difference in the RMSE is mainly due to the
standard error since there is little bias in the regression coefficients. The individual-
level regression coefficients are not influenced very much. For a very small value
of the overall spatial variance parameter τ2, the bias is in general negligible. In
more detail, the individual-level regression coefficients are very well retrieved by
the three candidate models in any of the scenarios, though the classical model per-
forms worse; compare the RMSE for the individual-level variable in Figure 4.1. The
coverage of the 95% CI is 100% for all scenarios and for all candidate models (data
not shown). For the area-level variable coefficient in Figure 4.1, there is negligi-
ble bias and RMSE for the three models in case of a very small value of τ2. For
moderate and higher values of τ2, the RMSE is larger for the three models. Again,
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the RMSE is larger for the MLM CL2, smaller for the MLM RCAR, and larger the
larger τ2 is. The individual-level error variance is better retrieved by the MLM
CARs (data not shown). The spatial autocorrelation parameter (data not shown)
is also well retrieved by the MLM CAR and MLM RCAR; the MLM CL2 tends to
overestimate the corresponding random effects variances.

Observing Figure A.5 (Appendix A), the DIC is smaller for the MLM RCAR
compared to the MLM CAR and MLM CL2. The log-likelihoods are about the same
for the three models.

With additional explanatory variables (data not shown), we obtain similar re-
sults. For a stronger correlation between the area-level variable and the CAR ran-
dom effect term, the MLM RCAR clearly has better performances.

After centering of the random effects, the computation time for the MLM RCAR
is slightly larger than that of the MLM CAR model. This, however, is not con-
siderable compared to the risk of making weak inferences with biased regression
coefficients.
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FIGURE 4.1: Comparison of the Root Mean Square Error (RMSE) for
the area level and individual level variable coefficients, for a set of
selected scenarios of the simulated spatial effect. The true value for
the individual level coefficient is −1.50, while the true value for the
area level coefficient is 0.14. τ2 and ρ are the overall spatial variance
and autocorrelation parameters from equation (A.2) in Appendix A,

respectively.
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4.4 Application to the analysis of the association be-
tween depression and greenness at baseline

4.4.1 Data

We use the data of the HNRS as described in Chapter 2. Here, all variables are con-
sidered at their initial spatial resolution, in contrast to the application in Chapter 2,
where some variables are aggregated to the district level. For our analysis we used
the CES-D data of the baseline.

Exposure to green space is commonly measured either as surrounding green-
ness or access to green space. Greenness is considered at the individual level. We
base our analysis on baseline measurement of satellite imagery data.

Further covariates are included. Some are directly measured at the district level
like the unemployment rate in districts, obtained from the local census authori-
ties of the respective cities of Bochum, Essen, and Mülheim. Unemployment is a
strong indicator for material deprivation in a neighborhood and was used as an in-
dicator of neighborhood-level socio-economic status (SES). Other covariates such
as socioeconomic (e.g., income), demographic (e.g., age), gender, medical history,
and Body Mass Index (BMI) are measured at the individual level.

4.4.2 Analysis and results

We apply the MLM CL2, the MLM CAR, and the MLM RCAR comparatively. The
square root of the depression scores leads to models that also better fit the assump-
tions and requirements of linear models. Square rooted depression is continuous
with values between 0 and 6.70, has a mean 2.47, and a standard deviation of 1.21.
In order to decrease autocorrelation and speed up the ’mixing’ of the MCMC, we
thinned the chains by storing only every 10th draw. The length of the burn-in pe-
riod was determined for each model separately. For the Markov chains, for the
MLM CL2, we could not detect any departure from convergence after the 5000th
iteration. For the MLM CAR, the chain stabilized also very quickly, at about 9.000
iterations. For the MLM RCAR, more iterations are needed, e.g., about 20000 to
observe no departure from convergence for the spatial autocorrelation parameter.

The results suggest a negative association between greenness and depressive
symptoms for all three methods (not significant because 0 is included in the 95%
Credible Interval (CI)) as indicated in Table 4.1. For MLM CL2, MLM CAR and
MLM RCAR respectively, a unit increase in the value of NDVI leads to a decrease
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MLM CL2 MLM CAR MLM RCAR
Med. 2.5% 97.5% Med. 2.5% 97.5% Med. 2.5% 97.5%

intercept 2.45 2.40 2.50 2.45 2.39 2.52 2.45 2.40 2.51
greenness −0.13 −0.51 0.23 −0.13 −0.47 0.22 −0.13 −0.47 0.21

female vs male 0.30 0.23 0.36 0.30 0.23 0.32 0.29 0.23 0.32
baseline Age 0.004 0.0003 0.008 0.004 0.0004 0.009 0.004 0.003 0.008

BMI 0.01 0.005 0.02 0.01 0.004 0.02 0.01 0.005 0.02
unempl. in district 0.02 0.01 0.03 0.02 0.01 0.03 0.02 0.01 0.03

τ − − − 2.92 2.46 10.98 2.81 2.12 11.43
ρS − − − 0.55 0.06 0.97 0.55 0.09 0.96
σu0 0.08 0.05 0.11 − − − − − −
σe 1.10 1.07 1.12 1.10 1.07 1.12 1.10 1.08 1.12

log-likelihood −7017.66 −7020.42 −7018.29
DIC 14060 14060 14060

TABLE 4.1: Posterior quantiles from equation (4.5) for the MLM CL2,
MLM CAR, and MLM RCAR for the analysis of the association be-
tween greenness and depressive symptoms of the Heinz Nixdorf Re-

call Study at baseline.

of the root of depression score, on average by −0.13 (with respective 95% CI given
by [−0.51; 0.23], [−0.47; 0.22], [−0.47; 0.21]). We also notice that the coefficient esti-
mates for the area level variables are the same for the three models. This is also in
line with the results of the simulation study, where in the case of medium spatial
autocorrelation, the three compared methods give approximately the same results
for coefficient estimates and credible intervals.

A medium value of the spatial autocorrelation parameter ρS = 0.55 is indica-
tive of a medium spatial dependence. Both the posterior log-likelihood and DIC
are similar for the 3 models. This is expected because the spatial autocorrelation
parameter ρS suggests medium spatial heterogeneity and medium spatial auto-
correlation, see the results of the simulation studies displayed in Figure A.5 from
Appendix A. The total 20000 iterations took 1.5 minutes for the MLM CL2, 254.75
minutes for the MLM CAR, and 3652.6 minutes for the MLM RCAR (just for com-
parison) on an ordinary personal computer.

4.5 Discussion

In the analysis of the association between health outcomes and environmental ex-
posures, multilevel models should be widely used because of their simplicity and
availability in several software packages. The ease of interpretation as well as the
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fact that the hierarchical structure of the data is used as an advantage make it very
popular. Ignoring the spatial nested structure of the data can lead to biased results.
In our application, increased greenness is associated with decreased depression
scores in the HNRS, although it is not significant in the frequentist sense. Increased
depression is negatively associated with increased neighborhood greenness, even
when the hierarchical structure of the data is accounted for and socio-economic
risk factors both at the individual level and the district level are controlled for. Just
after controlling for district characteristics (unemployment in districts) the effect of
individual-level exposure does not vary across districts: The variability in the effect
of greenness across districts can be explained by some district-level covariates and
neglecting these district-level covariates can be misleading.

Despite all the advantages of the MLM CL2, the method is not spatial in na-
ture and is unable to capture spatial autocorrelation. MLM CARs models (MLM
CAR and the MLM RCAR) were considered in a cross-sectional simulation study
in comparison to the MLM CL2. The MLM CARs models are obtained by com-
bining multilevel models and the properties of MRF in order to borrow strength
in adjacent areas. The simulation studies were performed for several scenarios of
the spatial effect. In summary, the results indicated that neglecting the spatial effect
may lead to slightly larger RMSEs in coefficient estimates and slightly worse model
fit in general. Multilevel CAR models for cross-sectional studies although available
in some software packages are not spread and used in epidemiological studies rou-
tinely. This chapter may help consider the advantages of multilevel CAR models.

For the application, the three models showed the negative association between
greenness and depressive symptoms, though not significant. This analysis of the
association at the individual level is also perfectly in line with the analysis by
Djeudeu et al., 2020, and the analyses in Chapter 2 and Chapter 3, which were per-
formed on the HNRS at an aggregated level. Moreover, the current analysis has the
added value that all spatial level variables are used at their finest level. This avoids
the risk of the ecological and the atomic fallacy by aggregating or disaggregating
them. The overall spatial effect was medium and the spatial autocorrelation was
also medium. This explains why the models showed almost the same behaviours
for coefficient estimates as expected from the scenarios of the simulation study.

As longitudinal analysis may add some values to the cross-sectional analysis,
we are looking forward to extend the multilevel CAR models for longitudinal data.
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Chapter 5

Multilevel conditional autoregressive
model for spatially referenced and
longitudinal epidemiological data

5.1 Introduction

Longitudinal studies are certainly expensive and time-consuming compared to cross-
sectional studies but also offer additional strength. Several issues arise when analysing
epidemiological data as introduced in Chapter 4. One issue that we could not dis-
cuss for cross-sectional studies concerns the dynamic effect for longitudinal data.
Not only do individuals change over time, but (characteristics of) geographical
units as well. These changes are the consequences of unavailable/unmeasured
area-level covariates that may be changing over time and should, therefore, be con-
sidered (Steele, 2008, Bauer et al., 2013). Modelling and inference should exploit
the dynamic and the spatial effect.

To examine the change over time of the health outcome in longitudinal studies,
classical 3-level growth models (also MLM CL3) are widely used when participants
are nested within geographical units. This consists of including area-level random
effects that are independent across spatial units in the model equation, to account
for the spatial effect. In addition to the aforementioned limitations of MLM CL2
for cross-sectional analyses, the geographical units are conceived here as entities
that exert an effect that changes systematically with time. It is more realistic to
assume that areas undergo structural and functional changes over time that are
more stochastic in nature. These changes are not well captured by the classical
model MLM CL3 (Bauer et al., 2013).

The main objective of this chapter is to further develop Multilevel CAR models
for longitudinal data (MLM tCARs) by combining some already existing models:
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The classical 3-level growth model and some CAR models to account for spatio-
temporal random effects. We compare the developed MLM tCARs in the longitu-
dinal setting to the classical (3-level) multilevel growth model (MLM CL3) in terms
of accuracy and stability in the coefficient estimates under the presence and absence
of spatial effects in data via a simulation study.

We organized our chapter as follows: In section 5.2 we introduce the devel-
oped MLM tCARs for longitudinal data. The simulation strategy follows. The
method section ends with a computation subsection, which summarizes the tech-
niques used for simulation and model fitting. In section 5.3 we outline the results
of the simulation studies. In section 5.4 we apply the MLM CL3 and MLM tCARs
for longitudinal studies comparatively, to the analysis of the association between
depression and greenness in the longitudinal HNRS. Section 5.5 is dedicated to the
discussion of the results of the simulation studies and the application.

5.2 Methods

5.2.1 Multilevel conditional autoregressive models for longitudi-
nal data

Our model combines the advantages of multilevel models and the properties of the
MRF. The goal is to accurately model the random effects in a multilevel growth
model. Considered as a longitudinal version of model equation (4.5) from Chapter
4, it is defined as follows:


ytij = XT

tijβ + ψtj + r0ij + r1ijg(t) + etij,
ψtj ∼ (refer to equations (5.2) and (5.3) for candidate models),

(r0ij, r1ij)
T ∼ N

((
0
0

)
,
(

σr0 σr01

σr01 σr1

))
etij ∼ N(0, σ2

e ) ∀ t, i, j, t = 1, . . . , N, i = 1, . . . n, j = 1, . . . , K.

(5.1)

ytij is a continuous outcome for individual i in the spatial unit j at the measure-
ment occasion t. XT

tij is a 1 × p vector of intercept and p − 1 covariates for individ-
ual i in area j at the measurement occasion t. XT

tij includes individual-level and
time-varying variables, individual-level and time-invariant variables, area-level
and time-varying variables, and area-level and time-invariant variables. It also
includes a deterministic function of time g, defining the individual growth. Note
that g could be defined differently for each individual. β = (β0, . . . , βp−1)

T with
prior β ∼ N(0, Σβ) is the vector of regression coefficients. There are three levels
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represented by sources of random variation at the area level, the individual level,
and the observation level in the random effect part. We assume the outcome for in-
dividuals i in spatial areas j and time t are conditionally independent and normally
distributed. r0ij and r1ij, independent of etij, are random effects for the individuals
to account for person-to-person differences in the repeated measures and how they
change over time. (ψt1, . . . , ψtK) is the vector of random effects for time period t,
which evolves over time and makes use of temporal and spatio-temporal dynam-
ics. Independent of etij, r0ij and r1ij, it decomposes the spatial effects into spatial
heterogeneity and spatial autocorrelation. The models for (ψt1, . . . , ψtK) have the
same structure like the spatio-temporal model applied in Chapter 3 (model equa-
tion (3.2)), where all data were applied at the district level. There are existing mod-
els for ψtj in the literature with this structure, mostly used in disease mapping mod-
els so far, including (Knorr-Held, 2000, Lee and Lawson, 2016, Bernardinelli et al.,
2015). Such models also help to understand the dynamics of the spatial effect. We
select three models for ψtj for our model in equation (5.1) and for our simulation
study: the CAR ANOVA model, the convolution model, and the classical model.
This lead to the MLM CAR ANOVA, MLM CONV und MLM CL3, respectively.
Together, the MLM CAR ANOVA and MLM CONV are called MLM tCARs.

The CAR ANOVA model for ψ is given by

ψtj = ϕj + δt + ωtj,

ϕj|ϕ−j, W ∼ N

 ρS ∑
k ̸=j

wjkϕk

ρS ∑
k ̸=j

wjk + 1 − ρS
,

τ2
S

ρS ∑
k ̸=j

wjk + 1 − ρS

 ,

δt|δ−t, D ∼ N

 ρT ∑
l ̸=t

dtlδl

ρT ∑
l ̸=t

dtl + 1 − ρT
,

τ2
T

ρT ∑
l ̸=t

dtl + 1 − ρT

 ,

ωtj ∼ N(0, σ2
ω), t = 1, . . . , N, j = 1, . . . , K,

(5.2)

where ϕ−j = (ϕ1, ϕ2, . . . , ϕj−1, ϕj+1, . . . , ϕK), δ−t = (δ1, δ2, . . . , δt−1, δt+1, . . . , δT).
ρS, ρT ∼ R(0, 1), as well as τ2

S , τ2
T, σ2

ω ∼ IG(a, b), see Knorr-Held, 2000. The model
decomposes the spatio-temporal variation in the data into 3 components: an overall
spatial effect common to all time points, an overall temporal trend common to all
spatial units, and a set of independent space-time interactions. This is an ANOVA-
type decomposition. This model is appropriate if the goal is to estimate overall time
trends and spatial patterns. Here, the spatio-temporal autocorrelation is modelled
by a common set of spatial random effects ϕ = (ϕ1, . . . , ϕK) and a common set of
temporal random effects δ = (δ1, . . . , δT). Both are modelled by the CAR prior pro-
posed by Leroux, Lei, and Breslow, 2000. W is the same as in subsection 4.3 while
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D = (dtj) is the binary N × N temporal adjacency matrix defined by dtl = 1 if
|l − t| = 1 and dtl = 0 otherwise, t, l = 1, . . . , N. Additionally, the model can incor-
porate an optional set of independent space-time interactions ω = (ω11, . . . , ωNK).
For the inverse Gamma prior for the variance components IG(a, b), values for a
and b could be a = 1, b = 0.01.

The convolution model for ψ is defined by

ψtj = ϕtj + ωtj,

ϕtj|ϕ−tj, W ∼ N
(

ϕ̄tj, σ2
ϕtj

)
, ϕ̄tj =

∑
k ̸=j

wjkϕtk

∑
k ̸=j

wjk
, σ2

ϕtj
=

τ2
t

∑
k ̸=j

wjk
,

ωtj ∼ N
(
0, σ2

ωt
)

, t = 1, . . . , N, j = 1, . . . , K,

(5.3)

where τ2
t , σ2

ωt ∼ IG(a, b). ϕ−tj = (ϕt1, . . . , ϕt(j−1), ϕt(j+1), . . . , ϕtK). It could be con-
sidered as a direct spatio-temporal extension of the Besag-York-Mollié model in
Subsection 2.6.2 from Chapter 2. The spatial autocorrelation parameter τ2

t as well
as the spatial heterogeneity parameter σ2

ωt are allowed to vary over time. i.e., the
model produces a separate effect for each area and each time point.

The classical linear growth model is the (3-level) model for which ψtj = u0j +
g(t)u1j, reducing to ψtj = u0j, depending on the goal of the analysis. Here, u0j ∼
N(0, σ2

u0
) and u1j ∼ N(0, σ2

u1
) capture the area level random effect or unexplained

spatial variation for the intercept and slope respectively.

5.2.2 Simulation strategy

The simulation study is motivated by data situations typically observed in spatial
epidemiology or health geography, where data are collected on different spatial
levels. The main goal of the simulation study is to examine, how well the true
regression coefficients for the candidate models are retrieved for simulated spatial
effects. We use the geography of the HNRS.

We start with the simulation study for longitudinal data, based on equation
(5.1). We simulate the spatio-temporal random effect ψ. Then, we simulate two
covariates at the individual level, one of which is time-varying, from normal dis-
tributions. One time-varying variable is simulated at the area level, from a normal
distribution. We consider a linear individual time trend g(t) = t. We hold pre-
dictor variables fixed as well as the individual level error term. After simulating
the area level spatio-temporal random effect ψtj for each scenario, we generate the
dependent variable. More details on the model equations used for simulating the
spatio-temporal random effect are given in Appendix A, equation (A.1). ρS and ρT
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are spatial and temporal autocorrelation parameters respectively, with values in the
unit interval [0, 1]. τ2

S and τ2
T are overall spatial and temporal variation parameters,

respectively. The values for these parameters define the strength of the simulated
spatio-temporal effect. For ρS and ρT we consider low, medium and high values,
corresponding to 0.09, 0.5 and 0.9, respectively. For τ2

S and τ2
T, we also consider

low, medium and high values, corresponding to 0.009, 0.8 and 3 (large enough for
this problem), respectively. Overall, there are 34 = 243 possible scenarios. For pre-
sentation, we consider just a few selected ones for τS, τT and ρS, ρT as described in
Table A.1 in Appendix A. For sensitivity analyses about the structure of the spatio-
temporal random effect, we vary the values of τS, τT, ρS and ρT for each scenario.
We also simulated different types of spatial models, all of which include spatial
heterogeneity and spatial autocorrelation, whose strength changes over time. Ad-
ditionally, we have also simulated several independent variables instead of just 3
for sensitivity analysis (data not shown). For each generated data, 3 candidate re-
gression models are fitted and compared using the comparison methods listed in
subsection 4.3.2: MLM CL3, MLM CAR ANOVA, and MLM CONV.

5.2.3 Computation

All models are fitted in the Bayesian setting with Markov Chain Monte Carlo
(MCMC) simulation methods. All parameters whose full conditional distributions
have a closed-form distribution, i. e. the regression parameters and all area level,
individual and observational level variance parameters, are updated using a Gibbs
sampler (Gelfand, 2000). The spatial and temporal parameter ρS and ρT for the
MLM CAR ANOVA are updated using the slice sampler (Neal, 1997). Full condi-
tional distributions for parameters of interest are calculated in Appendix A by ap-
plying Lindley and Smith, 1972. For better comparability, we relied on the expert
system of BUGS (Best et al., 2012), particularly run from within the R software using
the R-package R2WinBUGS (Sturtz, Ligges, and Gelman, 2005). We used devices
such as centering of the covariates as well as hierarchical centering of the random
effects (Gelfand, Sahu, and Carlin, 1995) to reduce correlation in the joint posterior
and increase Markov Chain Monte Carlo (MCMC) effective sample sizes. To access
convergence and consistency of the chains, single as well as two parallel chains ini-
tialized at different points were used, and the Geweke diagnostic (Geweke, 1992),
Brook & Gelman diagnostic (Brook and Gelman, 1998) and Heidelberger & Welch’s
diagnostic (Heidelberger and Welch, 2010) were applied. We ran the chains and
chose the number of iteration until at least R̂, the measure of mixing chains, is less
than 1.02 for all parameters and quantities of interest. For the final estimation, we
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used a single long run after discarding on of the samples: The length of the burn-in
period was determined for each model separately.

For the longitudinal analyses, the MLM CL3 (3 levels) and the MLM CONV sta-
bilized earlier at about 8000 iterations. For the MLM CAR ANOVA, we needed up
to 250000 simulations for the chains for some parameters to stabilize. We thinned
the chain by storing only every 10th draw.

The models were run in parallel using the R-package ’batchtools’ (Lang, Bischl,
and Surmann, 2017), which provides a parallel implementation. The complete R-
code for the simulation study is available upon request.

5.3 Results for the simulation studies

In summary, the MLM CONV model and the MLM CAR ANOVA model perform
much better than the MLM CL3 model. This is particularly important in the case
of a strong spatial variation and a changing spatial structure over time. Otherwise,
the MLM tCARs should be used cautiously to avoid overfitting, for instance.
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FIGURE 5.1: Comparison of the Root Mean Square Error (RMSE) for
the area level variable coefficient, for the set of selected scenarios of
the simulated spatio-temporal effect. The true value for the area level
coefficient is 0.39. τ2

S and ρS, τ2
T and ρT are overall variance and auto-

correlation parameters from equation (A.1) in Appendix A, for space
and time respectively.

In more detail, the individual level regression coefficients are very well retrieved
by the 3 candidate models in any of the scenarios as indicated in Figure A.3. How-
ever, the RMSE is more pronounced for the MLM CL3 compared to the MLM
tCARs in general. The coverage of the 95% CI is 100% for all scenarios and for
all candidate models (data not shown). For the area-level variable coefficient in
Figure 5.1, the RMSE is not negligible for the three models. The bias and, therefore,
the RMSE is larger in case of larger values of τ2

S . The RMSE is still larger for the
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MLM CL3. The time coefficient is almost equally retrieved for the three methods,
and the RMSE is larger when the value of ρT larger is (see Figure A.2 in Appendix
A).

Observing Figures 5.2 and A.4 (see Appendix A), the DIC and log-likelihood,
respectively, for the MLM CAR ANOVA and MLM CONV are larger than that of
the MLM CL3 in general. The DIC is smaller for the MLM CONV compared to
the MLM CAR ANOVA, and smaller for the MLM CAR ANOVA compared to the
MLM CL3. This indicates a better fit for the MLM tCARs in general. Note from the
results of the sensitivity analysis for the model parameters and model goodness of
fit that very small simulated observational level variances result in negative DIC
values (results not shown) even though fitting a correct model.
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FIGURE 5.2: Comparison of the DIC, for a set of selected scenarios of
the simulated spatio-temporal effect, longitudinal. τ2

S and ρS, τ2
T and

ρT are overall variance and autocorrelation parameters from equation
A.1, for space and time respectively.
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In any case, the DIC values for the MLM tCARs are smaller in general. More-
over, small observational level (simulated) variances lead to very small bias in the
individual level regression coefficients. The coverage of the 95% CI is very good
for the three models in case of small values for τ2

S and τ2
T.

For a very small value of spatial and temporal parameters, the MLM CL3 has
a smaller RMSE values for the regression coefficients in general compared to the
MLM CAR ANOVA. This is understandable as the MLM CAR ANOVA may be too
complicated to fit such a simple structure. The MLM CAR ANOVA in comparison
to the MLM CONV models seems to be more complex. The MLM CONV model
shows better results for the RMSE for coefficient estimates and model fit in almost
all scenarios.

For sensitivity analyses, different values for the fixed effect parameters for sim-
ulation were investigated. The results were similar regarding the behaviors of re-
gression coefficients.

5.4 Application to the analysis of the association be-
tween depression and greenness

5.4.1 Data

We use the data of the HNRS as described in Chapter 2. But here, in contrast to
the application in Chapter 2 and Chapter 3, data are used for eight measurement
time points. In common with Chapter 4, all variables are considered at their initial
spatial resolution. For our analysis, we used CES-D data of eight measurements
assessed between 2000 and 2013.

Greenness is considered at the individual level. We base our analysis on eight
time points of satellite imagery data.

Further covariates are included. Some are directly measured at the district level
like the unemployment rate in districts, obtained from the local census authorities
of the respective cities of Bochum, Essen, and Mülheim. Other covariates in the
model such as socioeconomic (e.g., income), demographic (e.g., age), gender, med-
ical history, and Body Mass Index (BMI) are measured at the individual level. In
contrast to the NDVI, further covariates are time-invariant.

5.4.2 Analysis and results

We apply the MLM CL3, the MLM CAR ANOVA, and the MLM CONV compara-
tively. The square root of the depression scores leads to models that better fit the
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assumptions and requirements of linear models like in Section 4.4 from Chapter
4. Square rooted depression is continuous with values between 0 and 6.70, has a
mean 2.47, and a standard deviation of 1.20.

Individual profiles of depression data with average trend line (Figure A.7, Ap-
pendix A) are used exploratorily to detect a slightly linear decreasing trend. We
also analysed the spatial confounding at baseline. In order to decrease autocorre-
lation and speed up the ’mixing’ of the MCMC, we thinned the chains by storing
only every 10th draw. The length of the burn-in period was determined for each
model separately. For the Markov chains, for the MLM CL3, we could not detect
any departure from the convergence after the 8000th iteration. For the MLM CONV,
the chain stabilized also very quickly, at about 9.000 iterations. For the MLM CAR
ANOVA, more iterations are needed, e.g., about 1000000 to observe no departure
from convergence for the spatial autocorrelation parameter.

Figure A.6 in the supporting materials shows the mixing of the chains for some
fixed effect parameters of the MLM CONV. The trace plots look similar for other
methods. Trace plots, density plots and further diagnostics for all parameter esti-
mates as well as variance components are available upon request.

The results suggest a negative association between greenness and depressive
symptoms for all three methods (0 is not included in the 95% CI) as indicated in
Table 5.1. For MLM CL3, MLM CONV and MLM CAR ANOVA respectively, a unit
increase in the value of NDVI leads to a decrease of the root of depression score,
on average by −0.32 (with 95% CI [−0.47;−0.16], [−0.48;−0.16], [−0.47;−0.15], re-
spectively). The time slope is on average −0.02 ([−0.03;−0.02]) for all three meth-
ods (0 not included in the CI). This indicates a slightly linear decreasing trend,
which is in perfect accordance with the exploratory individual profile plot of the
data in Figure A.7 of Appendix A. We also notice that the coefficient estimates for
the area-level variables are the same for the three models. The intercept is slightly
different for the MLM CAR ANOVA. This is also in line with the results of the simu-
lation study, where, in case of a very small overall spatial effect, not changing much
over time, and a medium spatial autocorrelation, the three compared methods give
approximately the same results for coefficient estimates and credible intervals. In
fact, the spatial heterogeneity parameter for the MLM CONV σωt is very small (me-
dian value 0.09), and the spatial autocorrelation parameter for the MLM CONV σφt

as well (median value 0.09). Both are not changing much over time. This is also in
accordance with the MLM CAR ANOVA, where the overall spatial and temporal
parameters τS and τT are 0.07 and 0.06. A medium value of the spatial autocorre-
lation parameter ρS = 0.68 is indicative of a medium spatial dependence. A large
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MLM CL3 MLM CAR ANOVA MLM CONV
Med. 2.5% 97.5% Med. 2.5% 97.5% Med. 2.5% 97.5%

intercept 2.45 2.40 2.49 2.75 0.85 6.75 2.45 2.40 2.51
greenness −0.32 −0.47 −0.16 −0.32 −0.48 −0.16 −0.32 −0.47 −0.15

female vs male 0.29 0.23 0.34 0.28 0.23 0.34 0.28 0.23 0.34
baseline Age 0.009 0.005 0.01 0.009 0.005 0.01 0.009 0.006 0.01

BMI 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02
time −0.02 −0.02 −0.01 −0.02 −0.02 −0.01 −0.02 −0.02 −0.01

unempl. in district 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.03
τS − − − 0.07 0.04 0.13
τT − − - 0.07 0.04 0.15
ρS − − − 0.68 0.13 0.99
ρT − − − 0.82 0.03 0.99
σr0 0.85 0.83 0.88 0.85 0.83 0.88 0.85 0.83 0.87
σr1 0.09 0.09 0.10 0.09 0.09 0.10 0.09 0.09 0.10
σω − − − 0.06 0.04 0.09 − − −
σu0 0.06 0.04 0.09 − − − − − −
σe 0.71 0.70 0.72 0.71 0.70 0.72 0.71 0.70 0.72

median σωt − − − − − − 0.09 0.05 0.16
median τt − − − − − − 0.09 0.05 0.22

log-likelihood −27194.85 −27190.52 −27186.08
DIC 59570 59570 59560

TABLE 5.1: Posterior quantiles from equation (5.1) for the MLM CL3,
MLM CAR ANOVA and MLM CONV for the analysis of the associa-
tion between greenness and depressive symptoms of the Heinz Nix-

dorf Recall Study.
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value of the temporal autocorrelation parameter ρT = 0.82 is indicative of a spatial
effect that is not changing much over time. The spatio-temporal interaction param-
eter τγ = 0.06 is also very weak. Both the posterior log-likelihood and DIC are
better for the MLM CAR ANOVA and MLM CONV, particularly the MLM CONV,
compared to the MLM CL3. The total 30000 iterations took 57.26 minutes for the
MLM CL3, 57.22 minutes for the MLM CONV, and 57.98 minutes for the MLM
CAR ANOVA (just for comparison) on an ordinary personal computer.

Similar results for fixed effect estimates are also expected from the decision tree
in Chapter 6 after having a look at the spatial structure of the data. For a weak
spatial effect, not changing much over time, the MLM tCARs were suggested, with
the MLM CL3 as an alternative.

5.5 Discussion

We aimed to explore the effect of considering, or neglecting spatio-temporal ran-
dom effects, on regression coefficients in epidemiological data, with participant
nested within geographical units. We noticed from Chapter 4 that MLM CL2 fail to
capture the proximity effect in epidemiological studies, where subjects are nested
within geographical units. MLM CARs are alternatives to help explain the spatial
effect better. They have been developed for cross-sectional studies but not for lon-
gitudinal studies so far. This chapter has further developed the multilevel (growth)
models for longitudinal data by adding existing area-level random effect terms
with CAR prior specification, whose structure is changing over time. We named
these models MLM tCARs for longitudinal data.

The MLM tCARs models are obtained by combining multilevel models and the
properties of MRF to borrow strength in adjacent areas. We considered regression
models for longitudinal studies in simulation studies in several scenarios of the
spatio-temporal effects. We introduced new models named MLM tCARs (MLM
CAR ANOVA and MLM CONV). Such models are not common in the literature,
at least not for epidemiological analyses. These models help to explicitly bor-
row strength and simultaneously account for individual dynamics as well as area
dynamics. After introducing the MLM tCARs, we compared them to the MLM
CL3. In summary, the results indicated that neglecting either the spatial or spatio-
temporal effects leads to larger RMSEs in coefficient estimates and worse model fit
in general. In the end, we applied the methods to the analysis of the association
between depression and greenness in the HNRS. In the following, we discuss our
results, pointing out the strengths and limitations.

To achieve our goals, we had to simulate the spatial and spatio-temporal ran-
dom effects. The simulation of random effects from CAR models is not common
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and should be taken cautiously (Hodges, 2014). However, CAR-type random ef-
fects are successfully used in many works and applications to simulate the spatial
structure in order to show the correctness and advantages of some CAR-like spatial
models (Lee, Rushworth, and Napier, 2018). We used the geography of the HNRS,
but the results can be generalized to other geographical structures.

For the application, the three models showed the negative association between
greenness and depressive symptoms. In contrast to the analysis of the association
at baseline in Section 4.4 from Chapter 4, the association is significant. This is un-
derstandable since cross-sectional studies offer just a snapshot of a single moment
in time, whereas longitudinal studies allow the direct assessment of changes in the
response variable over time. We also noticed a linear decreasing individual trend.
This analysis of the association at the individual level is also perfectly in line with
the analysis by Djeudeu et al., 2020, which was performed on the HNRS at an ag-
gregated level. Moreover, the current analysis has the added value that all spatial
level variables are used at their finest level. This avoids the risk of the ecological
and the atomic fallacy by aggregating or disaggregating them. Though the analy-
sis of the association and growth showed the same result for all three models for
the coefficient estimates of interest, the MLM CAR ANOVA, as well as the MLM
CONV, showed an overall better fit compared to the MLM CL3. Moreover, using
the MLM CAR ANOVA or the MLM CONV, we were able to separate the individ-
ual time trend and the spatial time trend. The spatial effect was not changing very
much over time. The overall spatial effect was medium and the temporal autocor-
relation was rather strong. This explains why the models showed almost the same
behaviours for coefficient estimates as expected from the scenarios of the simula-
tion study and as indicated in the decision tree in Figure 6.2.

The MLM tCARs have the limitation that using them unnecessarily for non-
complex data structures may lead to overfitting and slightly time-consuming fits.
However, the damage of neglecting the spatial structure is more important than the
unnecessary computational burden to fit the model. The bias for individual-level
coefficients is generally negligible for all methods. However, not accounting for
the spatio-temporal dependence and dynamic could lead to large standard devi-
ations for regression coefficients and therefore larger RMSEs for classical models.
The estimates of the standard errors determine the ’significance’ of the fixed effect
parameters (frequentist). Not choosing the right model to account for the spatio-
temporal effect will lead to (falsely) small p-values (frequentist) and, therefore, false
’significant’ associations between health outcome and exposure in some epidemio-
logical studies. Therefore, it is recommended to consider a model that accounts for
the spatial effect as well as the dynamic of the residual variation rather than using
the MLM CL3.

The spatio-temporal CAR-prior should, however, be used cautiously. In the
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situation of spatial confounding, we recommend to use the restricted CAR mod-
els. This will avoid the fixed and random area-level effects to compete to explain
common variation, which could distort estimates of the fixed effects area level re-
gression coefficients and unduly inflate their posterior variances. This was consid-
ered for our cross-sectional analyses. The MLM CAR and MLM RCAR were just
a bit more time-consuming compared to the MLM CL2. Although this seems to
be a huge disadvantage, in absolute practical terms in a multitasking computing
environment, it makes little impact. Relative to the time taken to collect the data
(sometimes more than 10 years) it is irrelevant. Restricted MLM tCARs models still
need to be fully developed and were not part of our simulation study.

Using MLM tCARs and MLM CARs from Chapter 4, spurious inferences re-
garding fixed effects parameters can be avoided. This is particularly important
when the primary inferential focus is on fixed effect estimates as in several epi-
demiological analyses. If the goal of the analysis was a model comparison in terms
of prediction, we would have to use some sort of hold-out of data. See White,
Gelfand, and Utlaut, 2017 for analysing spatial data with the goal of spatial predic-
tion. Methods suited for inference may not always be appropriate for comparing
models in terms of prediction Clogg, Petkova, and Haritou, 1995.

We noticed that the MLM CONV has a less complex spatio-temporal structure
and performs a bit better than the MLM CAR ANOVA in most of the scenarios,
also in the application. MLM tCARs with different spatio-temporal CAR prior
structures for the area level random effects can also be compared in future works
to further improve the decision tree. The MLM CAR ANOVA did not retrieve the
intercept properly for certain scenarios. This could be a result from spatial and tem-
poral confounding that should jointly be addressed in future studies. The overall
results in this chapter are developed for Gaussian likelihood models and could eas-
ily be extended to other likelihood models (generalized linear models). A prelimi-
nary simulation study with the logit-link function for cross-sectional data showed
similar results for coefficient estimates that we described here.

For the growth modelling, we considered a linear time trend in this thesis. A
model with nonlinearity in time could have been considered Grimm, Ram, and
Hamagami, 2011.
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Part III

Decision trees
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Chapter 6

Decision trees

6.1 Introduction

Regression methods are needed in several fields of studies involving health for dif-
ferent goals depending on the fields of research or application. In social science,
for instance, it is important to identify social determinants of health and promote
interventions on these factors to improve population health. In spatial epidemiol-
ogy, there is a need to examine and describe the spatial distribution of disease, risk
factors for disease, and the intersection of the two both visually and statistically
using geographically-referenced data. A wide range of risk factors including de-
mographic, environmental, behavioral, socioeconomic, genetic, and infectious risk
factors are generally available. Most of these variables have a spatial background
and sophisticated regression models are needed. Most of the time, non-statisticians
or non-experienced users of spatial data analyse data in order to reach the goals
listed above. Although there exist many advanced methods available for analysing
health data within a geographical context, simpler methods are often called upon
to obtain a ’quick’ solution. Thus the choice of simplicity may lead sometimes to
erroneous conclusions.

We aim in this chapter to provide decision trees to help experienced as well
as non-experienced users of spatial data decide on the appropriate methods when
spatial and spatio-temporal effects are suspected in linking health outcomes and
exposures with a spatial background.

We primarily display the first decision tree in section 6.2.1 in Figure 6.2, after a
short description of the methods used to construct the decision tree in Section 6.2.
This first decision tree is restricted to the case where a natural hierarchy arises from
the data like participants nested within geographical units. Then, we consider the
case where all variables in the data are measured at an areal level or some variables
aggregated in order to analyse data on a unique spatial resolution in Section 6.2.2.
For the sake of completeness, we consider giving general tips for the implementa-
tion of the methods described in the decision tree in software packages in section
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6.3. A more detailed example is provided to fit the MLM CL2 in Section 6.3.2. The
main Codes to fit multilevel CAR models are provided in the Additional materials
in Appendix B of the additional materials.

6.2 Methods

For data given on disparate spatial resolutions, the suggestion of the methods is
based on the results of our simulation studies. We use a tradeoff between accu-
racy to retrieve regression coefficients, model’s goodness of fit, and time needed
to complete the fit, in order to suggest models. We consider methods for cross-
sectional data as well as methods for longitudinal data. spatial methods, as well as
non-spatial methods, are also of concern. The methods are summarized in Figure
6.2. We recommend the MLM tCARs for longitudinal data instead of the MLM CL3
when a strong spatial effect is expected in the data. Some of the MLM tCARs, like
The MLM CONV, can be used routinely, no matter how strong the spatial effect
is. For cross-sectional data, we recommend using the MLM RCAR and MLM CAR
instead of the MLM CL2 except when a very weak spatial effect is expected in the
data.

For data given on the same spatial level, the applications in Chapter 2 and Chap-
ter 3, as well as the literature therein, helped to propose the decision tree. It is
recommended to use generalized linear models that simultaneously account for
spatial heterogeneity and spatial autocorrelation in order to produce more accurate
results. CAR models are appropriate to account for such spatial effects. For longi-
tudinal data, it is better to use models that account for the dynamics of the spatial
effect over time.
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6.2.1 Decision tree for data given on disparate spatial level

 

 

 

No Yes 

Is there any evidence of  spatial 
effect/ dependence in the data? 

Yes No 

Is there any connection 

between spatial units? 

No Yes 

Are the data 

repeatedly measured? 

Are the data repeatedly 

measured? 

 

Are the data 

repeatedly measured? 

 

No Yes No Yes No Yes 
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areas changing over time? 

Yes Yes No Yes 
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yet), with 
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structure 

MLM CONV or 

other MLM 
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MLM CL3 as 

alternative for 

weak spatial 

autocorrela-

tion  
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MLM CL3 
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Classical 

linear 

regressio

n analysis 
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No No Yes Yes 
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over time? 

Are characteristics of 
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developed 

yet) 

MLM CAR 

ANOVA or 

other  
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With area 

level 

random 

effect, not 

necessarily 

the same 

for each 

time period 

For 

instance:  

Are individuals nested in geographical areas that might be of public health interest? 

MLM CAR  MLM-

RCAR  

FIGURE 6.1: Decision tree for users, to analyse data for which par-
ticipants are nested within geographical areas that might be of public
health interest. The method suggestion is based on a tradeoff between
accuracy to retrieve regression coefficients, model’s goodness of fit,

and time needed to complete the fit.
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6.2.2 Decision tree for data given on the same spatial level

 

 

 

No Yes 

Is there any evidence of spatial 
effect in the data? 

Yes No 

Is there any connection between spatial 

units or evidence of spatial 

autocorrelation? 

No Yes 

Are the data 

repeatedly measured? 

Are the data repeatedly 

measured? 

 

Refer to Figure 6.1. 

No Yes No Yes 

Spatio-temporal 

generalized linear 

models similar to 

equation (3.1) with CAR 

prior for the area-level 

random effect 

(structured and 

unstructured area 

effect) analogous to 

equation (3.2) or other 

alternatives as stated in 

Subsection 3.3.3. 

Spatial generalized 

linear models similar 

to equation (2.2) 

with CAR priors for 

the area-level 

random effect, 

including structured 

and unstructured 

random effects as in 

in Subsection 2.6.2. 

Spatio-temporal 

generalized linear 

models similar to 

equation (3.1) with 

unstructured area 

effect only, for the 

area-level random 

effect, as explained 

in Subsection 3.3.3. 

 

Spatial generalized 

linear models similar 

to equation (2.2) with 

unstructured area 

effect only, for the 

area-level random 

effect as explained in 

Subsection 2.6.2. 

 

Are all variables given at the same spatial resolution like district? 

Apply classical regression 

models including generalized 

linear models, depending on 

the goals of the analysis. 

FIGURE 6.2: Decision tree for users, to analyse data for which all vari-
ables are initially measured at an areal level or aggregated to a com-
mon spatial resolution that might be of public health interest. The
method suggestion is based on a tradeoff between accuracy to retrieve
regression coefficients, model’s goodness of fit, and time needed to

complete the fit.
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6.3 Software overview

6.3.1 Introduction

For software implementations, the classical linear model, the MLM CL2, the MLM
CL3 and some MLM CARs are available in software packages. However, the im-
plementation for MLM tCARs is not always given in software packages. See Ap-
pendix B for the implementation of MLM tCARs developed in this thesis. The de-
tailed information on the implementation of the methods from the decision trees in
software packages are summarized in Table 6.1. It concentrates more on methods
for data on their initial spatial resolutions, but most of the methods could be used
for aggregated data as well. The implementation of the MLM CL2 is common in
the R software R, 2021. We wish here to consider the implementation of the MLM
CL2 using the Statistical Analysis System (SAS) SAS, 1985) to properly account for
spatial heterogeneity is given in Section 6.3.2.

6.3.2 Implementation of the classical multilevel model in SAS: An
example

For the following example we use the study population described in Chapter 2.
Here, the outcome, exposure and covariates are identical to the one from section
5.4 of Chapter 5. In contrast to Chapter 5, we only consider the data from the
baseline for this application.

All analyses are performed with the SAS 9.4 software (SAS, 1985). We use PROC
MIXED for the linear mixed model (see Appendix B.6) and PROC GLMMIX for dis-
crete responses, particularly the multilevel or random logistic model. SAS PROC
MIXED is a flexible program suitable for fitting hierarchical or multilevel linear
models. We do not aim to give detailed information on the mixed procedure of
the SAS software. For a more comprehensive documentation, we refer to Gamst,
Meyers, and Guarino, 2009 to get started with the SAS software, Singer, 1998 for
PROC MIXED and Boykin et al., 2010 for PROC GLMMIX. Without the already
and carefully developed procedures in SAS, few users would fit the models we
would like in environmental epidemiology (McArdle, 2015, Sullivan and Green-
land, 2014). However, as the model specification is more important, we give some
key recommendations to non-experienced users of the multilevel or mixed models
in order to easily perform accurate, reliable, and interpretable results from mul-
tilevel models, according to the research question of interest. Multilevel models
can be formulated in two ways: the first is by presenting separate equations for
each level like equations 4.1 for the first level then 4.2 and 4.3 for the higher level.
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Statistical Model Usual R packages, implementation
in R

Usual implementation in SAS

Cross-sectional
design, classical
non spatial
methods

Classical multivariate linear,
Poisson, Binomial, negative Bi-
nomial, log normal regression.
There are non-parametric and
semi-parametric methods as
well.

Frequentist approach includes R-
packages stats (lm function for
linear and glm for generalized linear
model), MASS (glm.nb), gamm4
(gamm, gamm4), nlme (lme) lme4
(lmer, lmer2, glmer), glmmADMB
(glmmadmb) for mixed effect, gee
(gee) for marginal models.
Bayesian approach includes R pack-
age MCMCglmm, R2WinBUGS,
RINLA, rstan.
The list is not exhaustive.

Frequentist approach includes proc
reg, proc glm for linear regression,
and
proc logistic, proc genmod, proc
glimmix, proc nlmixed for gener-
alised linear models.
Bayesian approach include proc
mcmc and built-in capabilities in
the genmod procedure.

Cross-sectional
design, classical
spatial methods

Classical MLM (MLM CL2)
Fixed Effect Methods (FEM)
Genaralized Estimating Equa-
tions (GEEs)

Frequentist approach includes
gamm4 (gamm, gamm4) lme4 (func-
tion lme),
mgcv (gam, semi-parametric).
Bayesian approach includes R pack-
ages MCMCglmm, R2WinBUGS,
RINLA, rstan.

Frequentist approach includes proc
mixed for linear regression, proc
logistic, proc genmod and proc
GEE for fixed or marginal effect,
proc glimmix and proc nlmixed for
generalized ME,
Proc GAM for semi-parametric
models
Bayesian approach includes proc
MCMC.

Cross-sectional
design, spatial
heterogeneity
and spatial
autocorrelation

Multilevel CAR (MLM CAR),
Multilevel resricted CAR (MLM
RCAR),
Semi-parametric regression
(generalized additive models).

Bayesian approach include R package
MCMCglmm, R2WinBUGS, RINLA,
rstan, CARBayes, HSAR.

Bayesian approach includes proc
mcmc

Longitudinal
design, classical
methods

Univariate and multivariate
ANOVA,
Growth curve models,
multilevel regression models
(MLM CL3),
SEM (Structural Equation Mod-
eling) for longitudinal data,
Fixed Effect Models (FEM),
Generalized Estimating Equa-
tions (GEEs),
Semi-parametric models.

Frequentist approach includes R
packages gamm4 (gamm, gamm4)
lme4 (lme)
geepack and gee for Generalized
Estimating Equation, multgee for
multinomial response, CRTgeeDR.
Semi-parametric methods includes
mgcv (gam).
Bayesian approach includes R pack-
age MCMCglmm, R2WinBUGS,
RINLA, rstan.

Frequentist approach includes proc
mixed for linear regression, proc lo-
gistic, proc genmod and proc gee for
fixed or marginal effect, proc glim-
mix and proc nlmixed for general-
ized MLM.
Bayesian approach includes proc
mcmc

Longitudinal
design, chang-
ing spatial
effect, spatial
autocorrelation
and spatial
heterogeneity

MLM tCARs for longitudnal
data

Implementation using WinBUGS run
from within R via the R-package
R2WinBUGS

TABLE 6.1: Summary of methods (and software packages) for the
analysis of spatial data in cross-sectional and longitudinal design in

epidemiology.
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The second formulation is to combine all equations by substitution into a single
model-equation, like equation 4.4. It is extremely important to notice that SAS
PROC MIXED and PROC GLMMIX use the single equation representation, thus
the substituted model. The first recommendation is then to write out (or have it
written out) the substituted model mathematically before writing SAS code to fit
the model. The research questions are generally easier to present in the hierarchi-
cal form (equations 4.1 for the first level then 4.2 and 4.3 for the higher level) but
the SAS code should be written in the substituted form. As models get more com-
plex, it is not always obvious how to parameterize the model so that the output
can be used directly to answer your research question. Experience suggests that
proceeding directly to PROC MIXED and PROC GLMMIX syntax is likely to pro-
duce output that is not what the user intended. Another important point is the
centering of variables. Binary and Categorical variables do not need to be centered.
For continuous variables, if we have a complicated random part, including random
components for regression slope (varying exposure effect across units), we should
think carefully about the scale (centered or standardized) of our explanatory vari-
ables. We may estimate the unstandardized results, including the random part of
the model, and reanalyse the data using standardized (or centered) variables and
compare. Unlike some specialized software programs like HLM 8 Software (Rau-
denbush et al., 2019) which ask whether you want to center variables, the data
analyst must be proactive when using PROC MIXED and PROC GLMMIX.

About variable selection or the selection of the set of confounders, the user
should decide which effect should vary across higher spatial units. For our anal-
ysis, we choose the intercept and the exposure of interest. The analysis is per-
formed with selected risk factors entered sequentially. We always start with an
unconditional model (i.e., a model that has no predictor) as this is used to compute
the Intraclass Correlation Coefficient(ICC), the proportion of district-level variance
compared to the total variance, which estimates how much variation in the out-
come exists between level-2 units (districts) and gradually estimating more com-
plex models (adjusting for some covariate) while checking for model improvement
in model fit after each model is estimated. We use the data as well as prior infor-
mation to critically evaluate our epidemiologic assumptions implied by the model
and the statistical assumptions required by the model. Unfortunately, all model
selections methods are subject to errors, and no optimal method for selecting the
best model form is known (Greenland, 1989). Once more we choose simplicity and
use stepwise regression with some forced-in covariates (some variables of interest,
not subject to variable selection, including the exposure of interest), which are rec-
ognized (from previous studies or expert point of view) to influence the outcome
of interest (known confounding factors) and the remaining available covariates are
subject to selection by a forward-selection algorithm. To conventionally include
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the additional covariates, we use a tradeoff between charge-in-estimate method, in
which covariates are selected based on the relative or absolute change in the es-
timated exposure effect, the statistical significance of the included covariates, the
Akaike information criterion (AIC) and the Bayesian information criterion (BIC).
statistical selection procedures based on significance tests alone, such as stepwise
regression, can be particularly misleading (Greenland and Neutra, 1980).

Table 6.2 describes our model building process. Model 1 with no predictor will

model 1 model 2 model 3
Construction no predictor, just ran-

dom effect for the in-
tercept

model 1 + level-1
fixed effects+random
coefficient for the ex-
posure of interest

model 2 + level-2
fixed effects and
cross-level interac-
tion with exposure

Output, Inter-
pretation

output used to com-
pute the Intra-Class
Correlation (ICC)
and grand-mean
value of the outcome

Indicate the rela-
tionship between
level-1 covariates
and health outcome
and if the exposure
varies across spatial
units

reveal if level-2 pre-
dictors are responsi-
ble for the variability
of the exposure effect
across spatial units
and the independent
effect of level-2 co-
variates on the out-
come

TABLE 6.2: Summary of the model building for the analysis of the as-
sociation between depression and greenness, using the classical mul-

tilevel model (MLM CL2).

be used to quantify the variance explained at the district level and compute the
mean outcome in the case of MLM CL2. Models 2 with additional individual level
covariates and Model 3 with additional area level covariates are generally simulta-
neously applied.

We find out how much of the variance in depression score is attributable to
individuals and districts. Table 6.3 summarizes the variance explained at district
level by district-level covariates.
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Bochum Essen Muelheim Complete
Area

Male 0% 0% 0.3% 0%
Female 0.5% 5% 0.9% 2%
Complete
sample

0.00% 2% 2% 1%

TABLE 6.3: Percentage of variances explained at the highest level of
the hierarchy for the analysis of the association between depressive

symptoms and greenness.

The (spatial) Intra-Class correlation is particularly "small" in the male group.
In the female population in Essen, the (spatial) intra class correlation is 5%. This
tells us that there is a fair bit of clustering of depression scores within districts in
the female population, suggesting the importance of contextual variables (see Table
6.3).

After including risk factors sequentially as indicated in table 6.2 of the model
building process, the general result is that Greenness is negatively associated to
depressive symptoms, after accounting for the spatial heterogeneity of the data.
The association is stronger in the female population. Not considering the spatial
structure of the data can lead to bias in the covariate effects, particularly in the
female, where the intra-class correlation is non-zero, even if not substantial. Taking
advantage of the spatial correlation can improve the model fit when the spatial
correlation is present in the data, given by the AIC and BIC.

6.4 Discussion

The goal of this chapter was to provide decision trees useful in epidemiology, par-
ticularly when spatial effect is suspected. This was based on simulation studies
when participants are nested within geographical units and data used on their ini-
tial spatial resolution. We also provided some tips to help choose the appropri-
ate software packages when analysing data using regression analysis, particularly
when a spatial effect is possibly present. In this thesis, we have applied different
software packages to show the flexibility in implementing the regression models
applied. The tips for software implementations were mostly suggested after sev-
eral applications in different software packages. The most important part in the re-
gression modelling involving spatial and spatio-temporal effects is the model spec-
ification rather than model fitting itself. An example of the implementation of the
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classical multilevel model is given in a popular software package, SAS. Choosing
an appropriate software depends on the ability and background of each user. How-
ever, if the method has been correctly specified, software implementation becomes
a secondary task. Software implementations are being developed very quickly, but
the methods described here are still helpful when spatial and spatio-temporal ef-
fects are involved.
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Chapter 7

Overall conclusion and outlook

This Ph.D. thesis addressed the problem of spatial effects when linking health out-
comes to exposures with a spatial background like environmental exposures. Re-
gression methods are appropriate to linking health outcome and exposure, ac-
counting for other covariates. These regression methods were considered both for
cross-sectional as well as for longitudinal studies. The thesis was divided into two
parts. Part I focused on methods for data given on an areal level or aggregated to
an areal level. Depending on the goals of the analysis, data may be aggregated
to the same spatial resolution. In Chapter 2 (First Chapter of Part I ), we con-
sidered exploratory analysis for aggregated data, cross-sectional analysis. As an
example, we investigated spatial variation in analyses of the effects of urban green-
ness on depression using the data of the longitudinal HNRS, for some selected
time points. The goal was to identify spatial clusters of elevated risks in the dis-
tricts of the HNRS and analyse the dependence of the risk on covariates. Data were
aggregated and methods to identify local clusters of elevated risk of depression
in the study area as well as a method of the global indicator of spatial clustering
were firstly applied exploratively. Then, a sophisticated spatial model for disease
mapping within a Bayesian hierarchical model formulation was then described to
estimate and smooth the risk of depression, accounting for covariate effects. The
results suggested negative associations between greenness and depression as well
as weak spatial effects. In Chapter 3 we considered a spatio-temporal extension
of the spatial model in Chapter 2 to analyse longitudinal data. We investigated
spatio-temporal variation in analyses of effects of urban greenness on depression
by including spatio-temporal random effect terms in a Poisson model on the district
level. The spatio-temporal model is available in the literature of spatial statistics but
rarely applied to longitudinal studies. With this class of spatio-temporal models,
we were able to accurately smooth the risk at an areal level, explain the association
between health outcome (depression) and environmental exposure (greenness) and
explain the spatial effect and its dynamic over time. The results in accordance with
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the results of Chapter 2 showed negative associations between greenness and de-
pression. The findings suggest strong temporal autocorrelation and weak spatial
effects. Even if the weak spatial effects are suggestive of neglecting them, as in
our case, spatio-temporal random effects should be taken into account to provide
reliable inference in urban health studies. We are aware that aggregating the data
in Chapters 2 and 3 to the same spatial resolution could lead to ecological fallacy
and some loss of information. This is why we considered methods to use data on
their finest and initial level in Part II. In Chapter 4, the advantages of the MLM
CL2 models were presented before pointing out some limitations, particularly in
the presence of residual spatial autocorrelation. MLM CARs models were then
introduced and compared to the MLM CL2 models in simulation studies, where
different scenarios of the spatial effect were simulated. The results suggested in
general that the MLM CAR and MLM RCAR performed better compared to the
MLM CL2 in retrieving the estimated regression coefficients. We applied the three
models comparatively on the analysis of the association between depressive symp-
toms and greenness. In contrast to Chapter 2, all data were used at their initial
spatial resolution. The results showed a negative association between greenness
and depressive symptoms, although not significant. In Chapter 5, we wished to
extend the MLM CARs models for longitudinal data. Combining the advantages
of MLM CL3 models and the properties of the MRF models with a structure chang-
ing over time, capable of capturing the dynamic of the spatio-temporal effects was
the focus of Chapter 5. The CAR-prior models used in Chapter 5 are the same in
the sophisticated models in Chapter 3. The difference is that the models in Chapter
3 are exclusively applied on areal level data while the spatio-temporal CAR mod-
els in Chapter 5 are combined with data at different spatial resolutions. From our
knowledge, these models were not developed in the literature, at least in Epidemi-
ological studies to account for the spatial effect and produce more accurate coef-
ficient estimates of the association between individual-level health outcome and
exposures, with covariates given at disparate spatial resolutions. We compared the
developed MLM tCARs to the MLM CL3 via simulation studies in common spatial
data situations. The results indicated the better performance of the MLM tCARs,
to retrieve the true regression coefficients and with better fit in general. The MLM
tCARs and MLM CL3 were also applied comparatively to the analysis of the as-
sociation between greenness and depressive symptoms. Unlike the application in
Chapter 4, all data were used at their initial spatial resolution for eight time points.
The results showed a negative association between greenness and depression and
a decreasing linear individual time trend. We also observed very weak spatial vari-
ations and moderate temporal autocorrelation. In Part III, Chapter 6 was dedicated
to produce decision trees based on the results of our simulation studies in Chapters
4 and 5 as well as the applications of sophisticated methods from Chapter 2 and
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Chapter 3. The decision trees were intended to help the users analyse epidemio-
logical data for which participants are nested within geographical areas/units more
comfortably. We also considered the case where data are exclusively given on an
areal level or some data are aggregated to a common spatial resolution. In Chapter
6 from Part III, we also provided software tips for the methods described in the de-
cision trees. In this thesis, we have applied different software packages to show the
flexibility in implementing the regression models used. The most important part
in regression modelling involving spatial and spatio-temporal effects is the model
specification rather than model fitting itself.

To sum up, in the analysis of the association between health outcomes and en-
vironmental exposures for epidemiological studies with participants nested within
geographical units and data given on disparate spatial resolutions, multilevel mod-
els are appropriate. Classical multilevel models are widely used because of their
simplicity and ease of interpretation as well as the fact that the hierarchical struc-
ture of the data is used as an advantage, whereas ignoring it can lead to biased
results compared to classical regression analysis (classical linear models for in-
stance). However, classical multilevel models, either for cross-sectional or longi-
tudinal studies do not account for possible residual spatial and/or spatio-temporal
autocorrelation. MLM CARs and MLM tCARs models offer a good alternative
and help to explain the spatial effect better. Implementing and interpreting MLM
CARs and MLM tCARs models require a much greater amount of computational
resources. Nevertheless, the choice of simplicity to automatically apply classical
methods could lead to erroneous conclusions on the analysis of the association be-
tween health outcomes and environmental exposure. Relative to the effort taken
to collect the data (sometimes more than 10 years), the effort of implementing and
interpreting a more complicated model is irrelevant. The developed MLM tCARs
models also have the advantages of explaining the dynamic of spatial effects over
time, in addition to the advantages of multilevel CAR models for cross-sectional
data. The advantage of multilevel models is particularly pronounced for epidemi-
ological analysis where confidentiality is important, compared to spatial models
that make use of the individual coordinates of participants. The individual spa-
tial coordinates of the participants like the house number may not be made avail-
able for confidentiality, rather, only their membership to a spatial area like district,
town, or postal code is available. MLM CARs and MLM tCARs models would still
be used in these situations. We know that aggregating the data may lead to eco-
logical fallacy and some loss of information. Nevertheless, depending on the goals
of the analysis, data must be collected or aggregated to the same spatial resolu-
tion. An example is the analysis of the risk of depression in the HNRS. The first
analytical goal was to identify clusters (districts) of elevated risks. A sophisticated
hierarchical Poisson model incorporating spatial random effect using a CAR-prior



Chapter 7. 81

specification was needed for a better inference. We recommend using automati-
cally such models accounting for spatio-temporal random effects, even if the weak
spatial effect is suggestive of neglecting as in the case of the HNRS.

Restricted MLM tCAR models for longitudinal data still need to be fully de-
veloped and were not part of our simulation study. In future analysis, we plan to
consider the restricted MLM tCAR models in simulation studies. The simulation
studies performed in Chapter 4 and Chapter 5 were performed for linear models.
The methods could easily be extended to generalized linear models. A preliminary
work (co-directed bachelor thesis in the faculty of statistics) showed similar results
for the logit-link function.



82

Bibliography

Bauer, D. J., N. C. Gottfredson, D. Dean, and R. A. Zucker (2013). “Analyzing Re-
peated Measures Data on Individuals Nested within Groups: Accounting for
Dynamic Group Effects”. In: Psychological Methods 18.1, pp. 1–14.

Beale, C. M., J. J. Lennon, J. M. Yearsley, M. J. Brewer, and D. A. Elston (2010).
“Regression analysis of spatial data”. In: Ecology Letters 13.2, pp. 246–264.

Bernardinelli, L. et al. (2015). “Bayesian Analysis of Space-Time Variation in Disease
Risk”. In: Statistics in Medicine 14, pp. 2433–2443.

Besag, J. and J. Newell (1991). “The Detection of Clusters in Rare Diseases”. In:
Journal of the Royal Statistical Society, Series A 154.1, pp. 143–155.

Besag, J., J. York, and A. Mollié (1991). “Bayesian image restoration, with two ap-
plications in spatial statistics”. In: Annals of the Institute of Statistical Mathematics
43.1, pp. 1–20.

Best, N., C. Jackson, D. Lunn, D. Spiegelhalter, and A. Thomas (2012). The BUGS
Book : A Practical Introduction to Bayesian Analysis. CRC Press.

Beyer, K. M. et al. (2014). “Exposure to Neighborhood Green Space and Mental
Health: Evidence from the Survey of the Health of Wisconsin”. In: International
Journal of Environmental Research and Public Health 11.3.

Blangiardo, M. and M. Cameletti (2015). Spatial and Spatio-temporal Bayesian Models
with R-INLA. John Wiley and Sons.

Boykin, D. et al. (2010). “Generalized linear mixed model estimation using proc
glmmix: Results from simulations when the data match, and when the model is
misspecified”. In: Annual Conference on Applied Statistics in Agriculture 4, pp. 323–
355.

Brook, S. P. and A. Gelman (1998). “General Methods for Monitoring Convergence
of Iterative Simulations”. In: Journal of Computational and Graphical Statistics 7,
pp. 434–455.

Browne, W.J., H. Goldstein, and J. Rasbash (2001). “Multiple membership multiple
classification (MMMC) models”. In: Statistical Modelling 1, pp. 103–124.

Bryk, A. S. and S. W. Raudenbush (1989). Multilevel analysis of educational data. Aca-
demic Press.



Bibliography 83

Clogg, C. C., E. Petkova, and A. Haritou (1995). “Statistical Methods for Comparing
Regression Coefficients Between Models”. In: American Journal of Sociology 100.5,
pp. 1261–1293.

Congdon, P. D. (2010). Applied Bayesian Hierarchical Methods. CRC Press, New York.
Cressie, N. (1993). Statistics for Spatial Data, revised edition. John Wiley and Sons, inc.,

pp. 14–15.
Djeudeu, D., M. Engel, K.-H. Jöckel, S. Moebus, and K. Ickstadt (2020). “Spatio-

temporal analysis of the risk of depression at district-level and association with
greenness based on the Heinz Nixdorf Recall Study”. In: Spatial and Spatio-
temporal Epidemiology 33, p. 100340.

Djeudeu, D., S. Moebus, and K. Ickstadt (2022). “Multilevel Conditional Autore-
gressive models for longitudinal and spatially referenced epidemiological data”.
In: Spatial and Spatio-temporal Epidemiology 41, p. 100477.

Dong, G. and R. Harris (2015). “Spatial Autoregressive Models for Geographically
Hierarchical Data Structures”. In: Geographical Analysis 47, pp. 173–191.

Dong, G., R. Harris, K. Jones, and J. Yu (2015a). “Multilevel Modelling with Spatial
Interaction Effects with Application to an Emerging Land Market in Beijing,
China”. In: PLoS ONE 10.6, e0130761.

Dong, G., J. Ma, R. Harris, and G. Pryce (2015b). “Spatial Random Slope Multi-
level Modeling Using Multivariate Conditional Autoregressive Models: A Case
Study of Subjective Travel Satisfaction in Beijing”. In: Annals of the American As-
sociation of Geographers 106.1, pp. 19–35.

Dormann, C. F. (2007). “Assessing the validity of autologistic regression”. In: Eco-
logical Modelling 207.2-4, pp. 234–242.

Draper, D. (1995). “Inference and Hierarchical Modeling in the Social Sciences”. In:
Journal of Educational and Behavioral Statistics 20.2, pp. 115–147.

Duncan, C., K. Jones, and G. Moon (1998). “Context, composition and heterogene-
ity: using multilevel models in health research”. In: Social Science & Medicine 46,
pp. 97–117.

Galea, S. and D. Vlahov (2005). “Urban health: evidence, challenges, and direc-
tions”. In: Annual Review of Public Health 26.

Gamst, G., L. S. Meyers, and A. J. Guarino (2009). SAS 9 study guide : preparing for
the base programming certification exam for SAS 9. Cambridge Univ. Press.

Gelfand, A. E. (2000). “Gibbs Sampling”. In: Journal of the American Statistical Asso-
ciation 95, pp. 1300–1304.

Gelfand, A. E., S. K. Sahu, and B. P. Carlin (1995). “Efficient parametrizations for
normal linear mixed models”. In: Biometrika 82, pp. 479–488.

Geweke, J. (1992). “Evaluating the Accuracy of Sampling-Based Approaches to the
Calculation of Posterior Moments”. In: In: Bernardo JM, Berger JO, Dawid AP and



84 Bibliography

Smith AFM, Editors., Bayesian Statistics, Vol. 4, Clarendon Press, Oxford, pp. 169–
193.

Goldstein, H., W. Browne, and J. Rasbash (2002). “Multilevel modelling of medical
data”. In: Statistics in Medicine 21.21, pp. 3291–3315.

Gómez-Rubio, V., J. Ferrándiz-Ferragud, and A. López-Quílez (2005). “Detecting
clusters of disease with R”. In: Journal of Geographical Systems 7.2, pp. 189–206.

Greenland, S. (1989). “Modeling and variable selection in Epidemiologic analysis”.
In: American Journal of Public Health 79.

Greenland, S. and R. Neutra (1980). “Control of Confounding in the Assessment of
Medical Technology”. In: International Journal of Epidemiology 9.

Grimm, K. J., N. Ram, and F. Hamagami (2011). “Nonlinear Growth Curves in De-
velopmental Research”. In: child development journal 82, : 1357––1371.

Hautzinger, M. and M. Bailer (2012). Allgemeine Depressions Skala (ADS) [General
Depression Scale; in German]. Hogrefe Verlag GmbH & Co. KG.

Heidelberger, P. and P. D. Welch (2010). “A spectral method for confidence inter-
val generation and run length control in simulations”. In: Communications of the
ACM 24, pp. 233–245.

Hodges, J. S. (2014). Random Effects Old and New in Richly Parameterized Linear Mod-
els Additive, Time Series,and Spatial Models Using Random Effects. CHAPMAN &
HALL-CRC.

Hodges, S. J. and B. J. Reich (2010). “Adding Spatially-Correlated Errors Can Mess
Up the Fixed Effect You Love”. In: The American Statistician 64.4, pp. 325–334.

Hoef, J. M. Ver, E. E. Peterson, M. B. Hooten, E. M. Hanks, and M. J. Fortin (2018).
“Spatial autoregressive models for statistical inference from ecological data”. In:
Ecological Monographs 88, pp. 31–59.

Hongwei, X. (2014). “Comparing Spatial and Multilevel Regression Models for Bi-
nary Outcomes in Neighborhood Studies”. In: Sociological Methodology 44, pp. 229–
272.

Julian, M. W. (2001). “The consequences of ignoring multilevel data structures in
nonhierarchical covariance modeling”. In: Structural Equation Modeling 8, pp. 325–
352.

Knorr-Held, L. (2000). “Bayesian Modelling of Inseparable Space-Time Variation in
Disease Risk”. In: Statistics in Medicine 19, pp. 2555–2567.

Lang, M., B. Bischl, and D. Surmann (2017). “batchtools: Tools for R to work on
batch systems”. In: The Journal of Open Source Software 2, 10.21105/joss.00135.

Latouche, A., C. Guihenneuc-Jouyaux, C. Girard, and D. Hémon (2007). “Robust-
ness of the BYM model in absence of spatial variation in the residuals”. In: In-
ternational Journal of Health Geographics 6, p. 39.

Lee, D. (2013). “CARBayes: An R Package for Bayesian Spatial Modeling with Con-
ditional Autoregressive Priors”. In: Journal of Statistical Software 55.13, pp. 1–24.



Bibliography 85

Lee, D. and A. Lawson (2016). “Quantifying the Spatial Inequality and Temporal
Trends in Maternal Smoking Rates in Glasgow”. In: Annals of Applied Statistics
10, pp. 1427–1446.

Lee, D., A. Rushworth, and G. Napier (2018). “Spatio-Temporal Areal Unit Model-
ing in R with Conditional Autoregressive Priors Using the CARBayesST Pack-
age”. In: Journal of Statistical Software 84.9.

Lee, J. and D. W. S. Wong (2001). Statistical analysis with ArcView GIS. New York:
John Wiley and Son. New York: John Wiley and Son.

Leroux, B. G., X. Lei, and N. Breslow (2000). “Estimation of Disease Rates in Small
Areas: A new Mixed Model for Spatial Dependence”. In: In: Halloran M.E., Berry
D. (eds) Statistical Models in Epidemiology, the Environment, and Clinical Trials 116,
pp. 179–191.

Lindgren, F. and H. Rue (2015). “Bayesian Spatial Modelling with R-INLA”. In:
Journal of Statistical Software 63.19, pp. 1–25.

Lindley, D. V. and A. F. M. Smith (1972). “Bayes estimates for the linear model (with
discussion)”. In: Journal of the Royal Statistical Society, Serie B 34, pp. 1–41.

McArdle, P. F. (2015). “An Aid to Generating Figures for the American Journal of
Epidemiology Using SAS/GRAPH”. In: American Journal of Epidemiology 182.9,
747–749.

Moran, P. A. P. (1950). “Note on continuous stochastic phenomena”. In: Biometrika
37, pp. 17–23.

Napier, G., D. Lee, C. Robertson, and A. Lawson (2019). “A Bayesian space-time
model for clustering areal units based on their disease trends”. In: Biostatistics
20, pp. 681–697.

Napier, G., D. Lee, C. Robertson, A. Lawson, and K. Pollock (2016). “A Model to
Estimate the Impact of Changes in MMR Vaccination Uptake on Inequalities in
Measles Susceptibility in Scotland”. In: Statistical Methods in Medical Research 25,
pp. 1185–1200.

Neal, R. M. (1997). “Slice sampling”. In: Annals of Statistics 31, pp. 705–767.
Nezlek, J. B. (2001). “Multilevel Random Coefficient Analyses of Event- and Interval-

Contingent Data in Social and Personality Psychology Research”. In: Personality
and Social Psychology Bulletin 27.7, pp. 771–785.

Nutsford, D., A. L. Pearson, and S. Kingham (2013). “An ecological study investi-
gating the association between access to urban green space and mental health”.
In: Public Health 127.11.

Orban, E., R. Sutcliffe, N. Dragano, K. H. Jöckel, and S. Moebus (2017). “Residential
Surrounding Greenness, Self-Rated Health and Interrelations with Aspects of
Neighborhood Environment and Social Relations”. In: Journal of Urban Health
94.2, pp. 158–169.



86 Bibliography

Orban, E. et al. (2016). “Residential Road Traffic Noise and High Depressive Symp-
toms after Five Years of Follow-up: Results from the Heinz Nixdorf Recall Study”.
In: Environ Health Perspect 124.5, pp. 578–585.

Orcutt, G. H., H. W. Watts, and J. B. Edwards (1968). “Data Aggregation and Infor-
mation Loss”. In: The American Economic Review 58.4, pp. 773–787.

Paddock, S. M., T. J. Leininger, and S. B. Hunter (2016). “Bayesian Restricted Spa-
tial Regression for Examining Session Features and Patient Outcomes in Open-
Enrollment Group Therapy Studies”. In: Statistics in Medicine 35, pp. 97–114.

Pfeiffer, D. U. et al. (2008). Spatial Analysis in Epidemiology. Oxford University Press.
ISBN: 978-0198509899.

Pickett, K. E. and M. Pearl (2001). “Multilevel analysies of neighbourhood socioeco-
nomic context and health outcome: a critical review”. In: Journal of Epidemiology
and Community Health 55.2, pp. 111–122.

R, C. T. (2021). “R: A Language and Environment for Statistical Computing”. In:
URL: https://www.R-project.org/.

Radloff, L. S. (1977). “The CES-D Scale: a self-report depression scale for research in
the general population”. In: Applied Psychological Measurement 1.3, pp. 385–401.

Raudenbush, S. W., A. S. Bryk, Y. F. Cheong, R. T. Congdon, and M. D. Toit (2019).
HLM 8, Hierarchical Linear and Nonlinear Modeling. Scientific Software Interna-
tional , Inc.

Reich, J. B., J. S. Hodges, and V. Zadnik (2006). “Effects of Residual Smoothing on
the Posterior of the Fixed Effects in Disease-Mapping Models”. In: Biometrics
62.4, pp. 1197–1206.

Reineveld, S. A. (1998). “The impact of individual and area characteristics on urban
socioeconomic differences in health and smoking”. In: International Journal of
Epidemiology 27.1, pp. 33–40.

Rhew, I. C., A. V. Stoep, A. Kearney, N. L. Smith, and M. D. Dunbar (2011). “Valida-
tion of the Normalized Difference Vegetation Index as a measure of neighbor-
hood greenness”. In: Annals of Epidemiology 21.12, pp. 946–952.

Roberts, G. and J. Rosenthal (1998). “Optimal scaling of discrete approximations to
the Langevin diffusions”. In: Journal of the Royal Statistical Society, Series B 60.1,
pp. 255–268.

Robins, J. M. and S. Greenland (1986). “The role of model selection in causal in-
ference from nonexperimental data”. In: American Journal of Epidemiology 123.3,
pp. 392–402.

Roux, A. V. Diez (1998). “Bringing context back into epidemiology: variables and
fallacies in multilevel analysis”. In: American Journal of Public Health 88.2, pp. 216–
222.

— (2000). “Multilevel analysis in public health research”. In: Annual Review of Pub-
lic Health 21, pp. 171–192.

https://www.R-project.org/


Bibliography 87

Rushworth, A., D. Lee, and R. Mitchell (2014). “A Spatio-Temporal Model for Esti-
mating the Long-Term Effects of Air Pollution on Respiratory Hospital Admis-
sions in Greater London”. In: Spatial and Spatio-temporal Epidemiology 10, pp. 29–
38.

Rushworth, A., D. Lee, and C. Sarran (2017). “An Adaptive Spatio-Temporal Smooth-
ing Model for Estimating Trends and Step Changes in Disease Risk”. In: Journal
of the Royal Statistical Society C 66, pp. 141–157.

SAS, I. (1985). SAS user’s guide: Statistics. Vol. 2. Sas Inst.
Schmermund, A. et al. (2002). “Assessment of clinically silent atherosclerotic dis-

ease and established and novel risk factors for predicting myocardial infarction
and cardiac death in healthy middle-aged subjects: rationale and design of the
Heinz Nixdorf RECALL Study”. In: American Heart Journal 144.2, pp. 212–218.

Shmueli, G. (2010). “To Explain or to Predict?” In: Statistical Science 25.
Singer, J. D. (1998). “Using SAS PROC MIXED to Fit Multilevel Models, Hierar-

chical Models, and Individual Growth Models”. In: Journal of Educational and
Behavioral Statistics 4, pp. 323–355.

Smith, T. E. and K. L. Lee (2012). “The effects of spatial autoregressive dependen-
cies on inference in ordinary least squares: a geometric approach”. In: Journal of
Geographical Systems 14, 91––124.

Sondermann, W. et al. (2020). “Psoriasis, Cardiovascular risk factors and metabolic
disorders: sex-specific findings of a population-based study”. In: Journal of the
European Academy of Dermatology and Venereology 34, pp. 779–786.

Song, H. et al. (2019). “Association between Urban Greenness and Depressive Symp-
toms: Evaluation of Greenness Using Various Indicators”. In: International Jour-
nal of Environmental Research and Public Health 16.2.

Spiegelhalter, D., N. Best, B. Carlin, and A. Van der Linde (2002). “Bayesian Mea-
sures of Model Complexity and Fit”. In: Journal of the Royal Statistical Society,
Series B 64, pp. 583–639.

Steele, F. (2008). “Multilevel models for longitudinal data”. In: Journal of the Royal
Statistical Society, Series A 171.1, pp. 5–19.

Sturtz, S., U. Ligges, and A. Gelman (2005). “R2WinBUGS: A Package for Running
WinBUGS from R”. In: Journal of Statistical Software 12, pp. 1–16.

Sullivan, S. G. and S. Greenland (2014). “Bayesian regression in SAS software”. In:
Int J Epidemiol 43, pp. 1667–8.

Tobler, W. (1979). Cellular geography, pages 379-386. Reidel, Dordrecht, Holland.
Tomita, A. et al. (2017). “Green environment and incident depression in South

Africa: a geospatial analysis and mental health implications in a resource-limited
setting”. In: Lancet Planet Health 1.4, pp. 152–162.

Tzivian, L. et al. (2016). “Long-Term Air Pollution and Traffic Noise Exposures and
Mild Cognitive Impairment in Older Adults: A Cross-Sectional Analysis of the



88 Bibliography

Heinz Nixdorf Recall Study”. In: Environmental Health Perspectives 124, pp. 1361–
1368.

Wakefield, J. (2009). “Multi-level modelling, the ecologic fallacy, and hybrid study
designs”. In: International Journal of Epidemiology 38.2, pp. 330–336.

Waller, L. A. and C. A. Gotway (2004). Applied Spatial Statistics for Public Health Data.
Wiley Series in Probability and Statistics. Wiley. ISBN: 9780471662679.

Weber, T. et al. (2019). “Cross-sectional analysis of pulsatile hemodynamics across
the adult life span: reference values, healthy and early vascular aging: the Heinz
Nixdorf Recall and the MultiGeneration Study”. In: Journal of hypertension 37,
pp. 2404–2413.

Wen, S. W., K. Demissie, D. August, and G. G. Rhoads (2001). “Level of aggregation
for optimal epidemiological analysis: the case of time to surgerey and unnec-
essary removal of normal appendix”. In: Journal of Epidemiology and Community
Health 55, pp. 198–203.

White, M. P., I. Alcock, B. W. Wheeler, and M. H. Depledge (2013). “Would you be
happier living in a greener urban area? A fixed-effects analysis of panel data”.
In: Psychological Science 24.6, pp. 920–928.

White, P., A. Gelfand, and T. Utlaut (2017). “Prediction and model comparison for
areal unit data”. In: Spatial Statistics 22, pp. 89–106.

WHO (2016). “Urban green spaces and health, a review of evidence”. In: World
Health Organization Regional Office for Europe, Copenhagen. http: // www. euro.
who. int/ __ data/ assets/ pdf_ file/ 0005/ 321971/ Urban-green-spaces-

and-health-review-evidence. pdf? ua= 1 (accessed 29 November 2019).
— (2018). “Depression”. In: World Health Organization, https: // www. who. int/

en/ news-room/ fact-sheets/ detail/ depression (accessed 29 November 2019).
Wu, J. and L. Jackson (2017). “Inverse relationship between urban green space and

childhood autism in California elementary school districts”. In: Environment In-
ternational 107, pp. 140–146.

http://www.euro.who.int/__data/assets/pdf_file/0005/321971/Urban-green-spaces-and-health-review-evidence.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0005/321971/Urban-green-spaces-and-health-review-evidence.pdf?ua=1
http://www.euro.who.int/__data/assets/pdf_file/0005/321971/Urban-green-spaces-and-health-review-evidence.pdf?ua=1
https://www.who.int/en/news-room/fact-sheets/detail/depression
https://www.who.int/en/news-room/fact-sheets/detail/depression


89

Appendix A

Additional materials

A.1 Tables and figures

Scenario
No

τ2
S ρS τ2

T ρT Meaning/Interpretation

1 0.09 0.5 0.8 0.5 weak spatial effect, medium spatial hetero-
geneity and autocorrelation, medium temporal
effect

2 0.009 0.9 3 0.9 weak spatial effect, mainly spatial autocorrella-
tion, strong temporal effect

3 0.8 0.5 3 0.09 medium spatial effect, medium spatial hetero-
geneity and medium spatial autocorrelation,
strong temporal effect

4 0.8 0.5 0.8 0.5 medium spatial effect, medium spatial hetero-
geneity, medium temporal effect

5 0.8 0.9 0.8 0.9 moderate spatial effect, mainly spatial autocor-
relation, medium temporal effect

6 3 0.5 3 0.09 strong spatial effect, medium spatial autocor-
rellation, strong temporal effect

7 3 0.09 3 0.9 strong spatial effect, mainly spatial autocorrel-
lation, strong temporal effect

8 3 0.5 0.8 0.5 strong spatial effect, medium spatial autocor-
rellation, medium temporal effect

9 3 0.9 3 0.9 strong spatial effect, mainly spatial medium
spatial autocorrellation, strong temporal effect

TABLE A.1: The selected scenarios of the simulated spatio-temporal
effect.
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Scenario
number

Value of
τ2

Value
of ρ

Meaning/Interpretation

1 1 0.95 moderate spatial effect, mainly spatial au-
tocorrellation

2 1 0.09 moderate spatial effect, mainly spatial het-
erogeneity

3 1 0.6 moderate spatial effect, medium spatial
heterogeneity and medium spatial autocor-
relation

4 10 0.09 strong spatial effect, mainly spatial spatial
heterogeneity

5 10 0.95 strong spatial effect, mainly spatial auto-
correllation

6 10 0.6 strong spatial effect, medium spatial het-
erogeneity and medium spatial autocorre-
lation

7 0.01 0.95 weak spatial effect, mainly spatial autocor-
rellation

8 0.01 0.09 weak spatial effect, mainly spatial hetero-
geneity

9 0.01 0.6 weak spatial effect, medium spatial hetero-
geneity and medium spatial autocorrela-
tion

TABLE A.2: The different scenarios of the simulated spatial effect. The
scenarios with gray color are the ones presented in the thesis.
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FIGURE A.1: Description of spatial effects for the example of the Heinz
Nixdorf Recall Study: The red/green points represent participants’
positions with high/no high value of depression score, the yellow ar-
rows indicate the spatial proximity for participants in the same ge-
ographical unit, while the blue ones are for participants in adjacent
units. Two participants in adjacent units may be closer and have more
similar outcome than participants in the same spatial unit (yellow ar-
rows). This imply that both spatial heterogeneity and spatial autocor-

relation should be accounted for.
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FIGURE A.2: Comparison of the Root Mean Square Error (RMSE) for
the time variable coefficient (growth), for the set of selected scenarios
of the simulated spatial effect. The true value for the time coefficient
is −0.1. τ2

S and ρS, τ2
T and ρT are overall variance and autocorrelation

parameters from equation (A.1), for space and time respectively.
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FIGURE A.3: Comparison of the Root Mean Square Error (RMSE) for
the individual level variable coefficient, for the set of selected scenar-
ios of the simulated spatial effect. The true value for the individual
level coefficient is −1.72. τ2

S and ρS, τ2
T and ρT are overall variance and

autocorrelation parameters from equation (A.1), for space and time re-
spectively.
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FIGURE A.4: Comparison of the posterior log-likelihoods, for a set
of selected scenarios of the simulated spatio-temporal effect, longitu-
dinal. τ2

S and ρS, τ2
T and ρT are overall variance and autocorrelation

parameters from equation (A.1), for space and time respectively.
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FIGURE A.5: Comparison of the goodness of fit, for a set of selected
scenarios of the simulated spatial effect, cross-sectional. τ2 and ρ are
the overall spatial variance and autocorrelation parameters from equa-

tion (A.2), respectively.
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FIGURE A.6: Post diagnostic plots (trace and density plots) of the fixed
effect parameters of interest.
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FIGURE A.7: Exploratory plot of the individual trajectories and mean
trajectory for randomly selected 50 participants, to identify average in-
dividual trends within subjects. The dense linear blue line represents

the means trajectory. It is indicative of a linear decreasing trend.

A.2 Simulation of the spatio-temporal effect

We use equation (A.1), step by step, to generate the random effect ψ and then the
dependent variable y.



Φvec = (Φ1, Φ2, . . . , ΦN)
T with Φt ∼ NK(0K, τ2

S Q−1), t = 1, . . . , N,
∆vec = ∆ ⊗ (1, . . . , K)T with ∆ ∼ NN(0N, τ2

TQ−1
D )

Ψvec = Φvec + ∆vec,
ψtj = (Ψvec)(t−1)·K+j,
ytij = XT

tijβ + ψtj + r0ij + r1ijt + etij, t = 1, . . . , N, i = 1, . . . n, j = 1, . . . , K,
(A.1)

where
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Q = ρSR + (1 − ρS)I, Rjk = −wjk, j ̸= k, Rjj = ∑
k ̸=j

wjk, j, k ∈ {1, . . . , K},

QD = ρTRD + (1 − ρT)ID, RD
tl = −dtl for t ̸= l, RD

tt = ∑
l ̸=t

dtl, t, l ∈ {1, . . . , N},

XT
tijβ = β0 + β1t + β2xtij + β3hij + β4ztj. I and ID are K and N dimensional unit

matrices, respectively. ⊗ denotes the Kronecker Product.

A.3 Simulation of the spatial effect

We use equation (A.2) step by step, to generate the random effect ψ and then the
dependent variable y.{

(ψ1, ψ2, . . . , ψK)
T ∼ NK(0, τ2Q−1),

yij = XT
ij β + ψj + eij, i = 1, . . . , N, j = 1, . . . , K, (A.2)

with XT
ij β = β0 + β1x1ij + β2z1j. I denotes a K × K unit matrix. τ2 is a variance

parameter that controls the strength of the overall spatial structure.

A.4 Full conditionals for the parameters of interest, MLM
tCARs

Interest might centre on the global regression coefficients β, the random effects be-
ing introduced merely to permit the assumption of conditional independence. We
provide the general path to find full conditionals for all parameters for the Gibbs
sampler without expressing a definitive value for a single parameter.

Once more, we consider equation 5.1 of Chapter 5, with the example of the con-
volution model for the spatio-temporal random effect. As prior forβ, β ∼ N(0, Σβ).
Let us write equation 5.1 in a more general and matrix form:

E(Y) = η = XΛ = X0Λ0 + X1Λ1 + X2Λ2 + X3Λ3 + X4Λ4, where
X = (X0, X1, X2, X3, X4) is the design matrix. We suppose that there are ni partici-
pants in area i, i = 1, . . . , K. ∑K

i=1 ni = n is the number of participants.

Y = (yt111, yt211, . . . , yT11, yt121, yt221, . . . , yT21, . . . , yt1n11, yt2n11, . . . , yTn11,
yt1(n1+1)2, yt2(n1+1)2, . . . , yT(n1+1)2, . . . , yt1(n)K, yt2(n1+1)2, . . . , yT(n)K)

′

X0 is a N × p matrix
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X0 =



1 g(t1) xt111 . . . h11 . . . zt11
1 g(t2) xt211 . . . h11 . . . zt21
...

...
...

...
...

...
...

1 g(T) xT11 . . . h11 . . . zT1
1 g(t1) xt121 . . . h21 . . . zt11
...

...
...

...
...

...
...

1 g(T) xT21 . . . h21 . . . zT1
...

...
...

...
...

...
...

1 g(t1) xt1n11 . . . hn11 . . . zt11
...

...
...

...
...

...
...

1 g(T) xTn11 . . . hn11 . . . zT1
1 g(t1) xt1(n1+1)2 . . . h(n1+1)2 . . . zt12
...

...
...

...
...

...
...

1 g(T) xT(n1+1)2 . . . h(n1+1)2
... zT2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 g(t1) xt1nK . . . hnK . . . zt1K
...

...
...

...
...

...
...

1 g(T) xTnK . . . hnK . . . zTK


Λ0 = (β0, β1, . . . , βp−1),

X1 is a N × nK̇ matrix. Λ1 = (r011, r021, . . . , r0n11, r0(n1+1)2, r0(n1+2)2, . . . , r0nK)
′,

X1 =



1T 0T . . . . . . . . . . . . 0T
0T 1T 0T . . . . . . . . . 0T
... 0T 1T 0T . . . . . . 0T
...

... 0T
...

...
...

...
...

...
...

...
...

...
...

0T . . . . . . . . . . . . 1T 0T
0T . . . . . . . . . . . . 0T 1T


1T is the column vector (T × 1) of 1 while 0T is the column vector (T × 1) of 0.
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Λ2 = (r111, r121, . . . , r1n11, r1(n1+1)2, r1(n1+2)2, . . . , r1nK)
′,

X2 =



GT 0T . . . . . . . . . . . . 0T
0T GT 0T . . . . . . . . . 0T
... 0T GT 0T . . . . . . 0T
...

... 0T
...

...
...

...
...

...
...

...
...

...
...

0T . . . . . . . . . . . . GT 0T
0T . . . . . . . . . . . . 0T GT


,

where GT is the (T × 1) vector GT =


g(t1)
g(t2)

...
g(T)


Λ3 = (ϕ11, ϕ21, . . . , ϕT1, ϕ12, ϕ22, . . . , ϕT2, . . . , ϕ1K, ϕ2K, . . . , ϕTK)

′.
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X3 =



IT 0T . . . . . . . . . . . . 0T
IT 0T . . . . . . . . . . . . 0T
... 0T . . . . . . . . . . . . 0T

IT 0T . . . . . . . . . . . . 0T
0T IT 0T . . . . . . . . . 0T
0T IT 0T . . . . . . . . . 0T
...

...
...

...
...

...
...

0T IT 0T . . . . . . . . . 0T
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0T . . . . . . . . . . . . IT 0T
0T . . . . . . . . . . . . IT 0T
...

...
...

...
...

...
...

0T . . . . . . . . . . . . IT 0T
0T . . . . . . . . . . . . 0T IT
0T . . . . . . . . . . . . 0T IT
...

...
...

...
...

...
...

0T . . . . . . . . . . . . 0T IT



,

Λ4 = (ω11, ω21, . . . , ωT1, ω12, ω22, . . . , ωT2, . . . , ω1K, ω2K, . . . , ωTK)
′.

X4 = X3.

Λ0, Λ1, Λ2, Λ3, Λ4 are assumed to be normally distributed and overall, the prior
specification could be defined as:

f (Λ|σ) ∝ exp(−1
2

4

∑
i=0

Λ′
iVσ2

i
Λi) = exp(−1

2
Λ′Vσ2Λ), (A.3)

where Vσ2 is block diagonal with Vσ2
i

for block i.

Vσ2
i

is the covariance matrix for the parameter vector Λi.
Following Lindley and Smith (1972), the posterior full conditionals is given by:
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Λ|Y ∼ N((X′X + Vσ2)−1X′Y, (X′X + Vσ2)−1), (A.4)

provided the inverse (X′X + Vσ2)−1 exists.

A.5 Full conditionals for the parameters of interest, MLM
CARs

The full conditionals for the cross-sectional analysis from equation (4.5) is a spe-
cial case of Appendix A.4. We disregard the temporal components and, and the
corresponding covariate matrices X1 and X2. We consider the Besag-York-Mollié
model, i.e. ψ = ϕ + ω.

Now, we can write equation 4.5 in a more general and matrix form:
E(Y) = η = XΛ = X0Λ0 + X3Λ3 + X4Λ4, where X = (X0, X3, X4) is the design

matrix. We suppose that there are ni participants in area i, i = 1, . . . , K. ∑K
i=1 ni = n

is the number of participants.

Y = (y11, y21, . . . , yn11, y(n1+1)2, . . . , y(n)K)
′

X0 is a n × p matrix

X0 =



1 x11 . . . h11 . . . z1
1 x21 . . . h21 . . . z1
...

...
...

...
...

...
1 xn11 . . . hn11 . . . z1
1 x(n1+1)2 . . . h(n1+1)2 . . . z2
...

...
...

...
...

...
...

...
...

...
...

...
1 xnK . . . hnK . . . zK


Λ0 = (β0, β1, . . . , βp−1),

Λ3 = (ϕ1, ϕ2, . . . , ϕK)
′.
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X3 =



1 0 . . . . . . . . . . . . 0
1 0 . . . . . . . . . . . . 0
... 0 . . . . . . . . . . . . 0
1 0 . . . . . . . . . . . . 0
0 1 0 . . . . . . . . . 0
0 1 0 . . . . . . . . . 0
...

...
...

...
...

...
...

0 1 0 . . . . . . . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 . . . . . . . . . . . . 1 0
0 . . . . . . . . . . . . 1 0
...

...
...

...
...

...
...

0 . . . . . . . . . . . . 1 0
0 . . . . . . . . . . . . 0 1
0 . . . . . . . . . . . . 0 1
...

...
...

...
...

...
...

0 . . . . . . . . . . . . 0 1



,

with Λ4 = (ω1, ω2, . . . , ωK)
′.

and X4 = X3.

Λ0, Λ3, Λ4 are assumed to be normally distributed and overall, the prior speci-
fication could be defined as:

f (Λ|σ) ∝ exp(−1
2

4

∑
i=0

Λ′
iVσ2

i
Λi) = exp(−1

2
Λ′Vσ2Λ), (A.5)

where Vσ2 is block diagonal with Vσ2
i

for block i.

Vσ2
i

is the covariance matrix for the parameter vector Λi.
Following Lindley and Smith (1972), the posterior full conditionals is given by:
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Λ|Y ∼ N((X′X + Vσ2)−1X′Y, (X′X + Vσ2)−1), (A.6)

provided the inverse (X′X + Vσ2)−1 exists.
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Software implementations

Here, we display only essential parts of the R codes and SAS codes developed and
used in this thesis.

B.1 Besag Newell
library(openxlsx) # To read xlsx-Data

library(rgdal) # To readn Shapefile-Data (readOGR)

library(spdep) # To produce a binary adjacent matrix

library(ape) # Moran's I

library(boot) # Besag and Newell with Opgam

library(DCluster) # Besag und Newell

library(dplyr) # Graphics

library(ggmap)

library(tmap)

library(INLA) # to fit the convolution model for the spatial model

# Besag und Newell: year 0

sids <- data.frame(Observed = dataM1$Depr_sum)

sids <- cbind(sids, Expected = dataM1$Erwart_bas)

sids <- cbind(sids, x = dataM1$X_Coord.x, y = dataM1$Y_Coord.x)

bnresults7 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,

k = 7, model = "poisson",

R = 100, mle = calculate.mle(sids))

bnresults16 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,
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k = 16, model = "poisson",

R = 100, mle = calculate.mle(sids))

bnresults20 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,

k = 20, model = "poisson",

R = 100, mle = calculate.mle(sids))

bnresults25 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,

k = 25, model = "poisson",

R = 100, mle = calculate.mle(sids))

# Significant districts:

sig <- function(bn){

si <- c()

for(i in 1: length(bn$x)){

si[i] <- which(dataM1$X_Coord.x == bn$x[i] & dataM1$Y_Coord.x == bn$y[i])

}

return(si)

}

l7 <- dataM1[sig(bnresults7), "Stteil"]

l16 <- dataM1[sig(bnresults16), "Stteil"]

l20 <- dataM1[sig(bnresults20), "Stteil"]

l25 <- dataM1[sig(bnresults25), "Stteil"]

ST <- dataM1$Stadt.y

ST[which(ST == "Essen")] <- 1

ST[which(ST == "Bochum")] <- 2

ST[which(ST == "Muelheim")] <- 0

par(mfrow = c(3, 1), mar = .1 + c(0.1, 0.3, 0.1, 0.3), mai= c(0.1, 0, 0.2, 0.1))

plot(dataM1$X_Coord.x, dataM1$Y_Coord.x, pch = as.numeric(ST),

xaxt="n", yaxt = "n", bty = "n", xlab = "", ylab = "",

col = "darkgrey", cex.main = 1,

ylim = c(min(dataM1$Y_Coord.x), max(dataM1$Y_Coord.x) + 1000) , main= "Baseline")

points(x= bnresults7$x, y = bnresults7$y, col = "darkgreen",

pch = 1, cex = 4, lwd = 2)

points(x= bnresults16$x, y = bnresults16$y, col = "blue",

pch = 1, cex = 5, lwd = 2)

points(x= bnresults20$x, y = bnresults20$y, col = "green",

pch = 1, cex = 6, lwd = 2)
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points(x= bnresults25$x, y = bnresults25$y, col = "red",

pch = 1, cex = 7, lwd = 2)

legend("bottomright",

legend = c("k=7","k=16", "k=20", "k=25", "Mülheim", "Essen", "Bochum"),

pch = c(19, 19, 19, 19, 0, 1, 2),

col = c("darkgreen","blue", "green", "red", "darkgrey", "darkgrey",

"darkgrey"), cex = 1.4)

text(bnresults7$x, bnresults7$y, labels = l7, pos = c(2, 2, 4), cex = 1.3)

text(bnresults16$x, bnresults16$y, labels = l16, pos = 4, cex = 1.3)

text(bnresults20$x, bnresults20$y, labels = l20,

pos = 4, cex = 1.3)

text(bnresults25$x[2], bnresults25$y[2], labels = " ",

pos = 3, cex = 1.3)

box()

# Besag and Newell: year5

sids <- data.frame(Observed = dataM5$Depr_sum)

sids <- cbind(sids, Expected = dataM5$Erwart_bas)

sids <- cbind(sids, x = dataM5$X_Coord.x, y = dataM5$Y_Coord.x)

bnresults7 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,

k = 7, model = "poisson",

R = 100, mle = calculate.mle(sids))

bnresults16 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,

k = 16, model = "poisson",

R = 100, mle = calculate.mle(sids))

bnresults20 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,

k = 20, model = "poisson",

R = 100, mle = calculate.mle(sids))

bnresults25 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,

k = 25, model = "poisson",

R = 100, mle = calculate.mle(sids))

# Significant districts:
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sig <- function(bn){

si <- c()

for(i in 1: length(bn$x)){

si[i] <- which(dataM5$X_Coord.x == bn$x[i] & dataM5$Y_Coord.x == bn$y[i])

}

return(si)

}

l7 <- dataM5[sig(bnresults7), "Stteil"]

l16 <- dataM5[sig(bnresults16), "Stteil"]

l20 <- dataM5[sig(bnresults20), "Stteil"]

l25 <- dataM5[sig(bnresults25), "Stteil"]

ST <- dataM1$Stadt.y

ST[which(ST == "Essen")] <- 1

ST[which(ST == "Bochum")] <- 2

ST[which(ST == "Muelheim")] <- 0

#par(mfrow = c(1, 1), mar = .1 + c(0, 0.1, 0, 0.3))

plot(dataM5$X_Coord.x, dataM5$Y_Coord.x, pch = as.numeric(ST),

xaxt="n", yaxt = "n", bty = "n", xlab = "", ylab = "",

col = "darkgrey", cex.main = 1,

ylim = c(min(dataM5$Y_Coord.x), max(dataM5$Y_Coord.x) + 1000),

main= "First follow-up")

points(x= bnresults7$x, y = bnresults7$y, col = "darkgreen",

pch = 1, cex = 4, lwd = 2)

points(x= bnresults16$x, y = bnresults16$y, col = "blue",

pch = 1, cex = 5, lwd = 2)

points(x= bnresults20$x, y = bnresults20$y, col = "green",

pch = 1, cex = 6, lwd = 2)

points(x= bnresults25$x, y = bnresults25$y, col = "red",

pch = 1, cex = 7, lwd = 2)

legend("bottomright",

legend = c("k=7","k=16", "k=20", "k=25", "Mülheim",

"Essen", "Bochum"),

pch = c(19, 19, 19, 19, 0, 1, 2),

col = c("darkgreen","blue", "green", "red", "darkgrey", "darkgrey",

"darkgrey"), cex = 1.4)

text(bnresults7$x, bnresults7$y, labels = l7, pos = c(2, 2, 4), cex = 1.3)

text(bnresults16$x, bnresults16$y, labels = l16, pos = 4, cex = 1.3)

text(bnresults20$x, bnresults20$y, labels = l20,

pos = 4, cex = 1.3)
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text(bnresults25$x[2], bnresults25$y[2], labels = "Hordel",

pos = 3, cex = 1.3)

box()

# Besag and Newell: year 10

sids <- data.frame(Observed = dataM10$Depr_sum)

sids <- cbind(sids, Expected = dataM10$Erwart_bas)

sids <- cbind(sids, x = dataM10$X_Coord.x, y = dataM10$Y_Coord.x)

bnresults7 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,

k = 7, model = "poisson",

R = 100, mle = calculate.mle(sids))

bnresults16 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,

k = 16, model = "poisson",

R = 100, mle = calculate.mle(sids))

bnresults20 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,

k = 20, model = "poisson",

R = 100, mle = calculate.mle(sids))

bnresults25 <- opgam(sids, thegrid = sids[,c("x","y")], alpha = .05,

iscluster = bn.iscluster, set.idxorder = TRUE,

k = 25, model = "poisson",

R = 100, mle = calculate.mle(sids))

# Significant districts:

sig <- function(bn){

si <- c()

for(i in 1: length(bn$x)){

si[i] <- which(dataM10$X_Coord.x == bn$x[i] & dataM10$Y_Coord.x == bn$y[i])

}

return(si)

}

l7 <- dataM10[sig(bnresults7), "Stteil"]

l16 <- dataM10[sig(bnresults16), "Stteil"]

l20 <- dataM10[sig(bnresults20), "Stteil"]

l25 <- dataM10[sig(bnresults25), "Stteil"]
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ST <- dataM1$Stadt.y

ST[which(ST == "Essen")] <- 1

ST[which(ST == "Bochum")] <- 2

ST[which(ST == "Muelheim")] <- 0

#par(mfrow = c(1, 1), mar = .1 + c(0, 0.1, 0, 0.3))

plot(dataM10$X_Coord.x, dataM10$Y_Coord.x, pch = as.numeric(ST),

xaxt="n", yaxt = "n", bty = "n", xlab = "", ylab = "",

col = "darkgrey", cex.main = 1,

ylim = c(min(dataM10$Y_Coord.x), max(dataM10$Y_Coord.x) + 1000),

main= "Second follow-up")

points(x= bnresults7$x, y = bnresults7$y, col = "darkgreen",

pch = 1, cex = 4, lwd = 2)

points(x= bnresults16$x, y = bnresults16$y, col = "blue",

pch = 1, cex = 5, lwd = 2)

points(x= bnresults20$x, y = bnresults20$y, col = "green",

pch = 1, cex = 6, lwd = 2)

points(x= bnresults25$x, y = bnresults25$y, col = "red",

pch = 1, cex = 7, lwd = 2)

legend("bottomright",

legend = c("k=7","k=16", "k=20", "k=25", "Mülheim",

"Essen", "Bochum"),

pch = c(19, 19, 19, 19, 0, 1, 2),

col = c("darkgreen","blue", "green", "red", "darkgrey",

"darkgrey",

"darkgrey"), cex = 1.4)

text(bnresults7$x, bnresults7$y, labels = l7,

pos = c(2, 2, 4), cex = 1.3)

text(bnresults16$x, bnresults16$y, labels = l16,

pos = 4, cex = 1.3)

text(bnresults20$x, bnresults20$y, labels = l20,

pos = 4, cex = 1.3)

text(bnresults25$x[2], bnresults25$y[2], labels = " ",

pos = 3, cex = 1.3)

box()

B.2 Spatial model for disease mapping
# Convolution model:
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# does an extra-Poisson-Variation exist?

mean(dataM1$Depr_sum)

var(dataM1$Depr_sum)

mean(dataM5$Depr_sum)

var(dataM5$Depr_sum)

mean(dataM10$Depr_sum)

var(dataM10$Depr_sum)

# Read the adjacent matrix:

source("daten_adjac.R")

set.seed(1066)

formula21 <- Depr_sum ~ (f(ID, model = "bym", graph = ruhr,

param = c(0.5, 0.0005)) +

dataM1$green_s +

dataM1$mean_max_lden+dataM1$mean_unemplBL)

mod2.ruhr1 <- inla(formula21, family = "poisson", E = dataM1$Erwart_bas,

data = dataM1, control.compute = list(config = TRUE))

n <- 100000 # sample size

Temp21 <- inla.posterior.sample(n = n, result = mod2.ruhr1,

use.improved.mean = TRUE)

Temp21 <- lapply(Temp21, function(x){x$latent[1 : nrow(dataM1)]})

Temp21 <- matrix(unlist(Temp21), byrow = TRUE, nrow = n, ncol = nrow(dataM1))

Temp21 <- exp(Temp21)

RRa21 <- Temp21

RR21 <- apply(Temp21, MARGIN = 2, FUN = mean) # Mittelwerte als Schätzer

#save(file="INLA_results_RUHR21.Rdata", list = ls(all = TRUE))

# BYM with covariables year 5:

set.seed(1066)
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formula25 <- Depr_sum ~ (f(ID, model = "bym", graph = ruhr,

param = c(0.5, 0.0005)) +

dataM5$green_s + dataM5$mean_max_lden+dataM5$mean_unemplBL)

mod2.ruhr5 <- inla(formula25, family = "poisson", E = dataM5$Erwart_bas,

data = dataM5, control.compute = list(config = TRUE))

n <- 100000 # Sample size

Temp25 <- inla.posterior.sample(n = n, result = mod2.ruhr5,

use.improved.mean = TRUE)

Temp25 <- lapply(Temp25, function(x){x$latent[1 : nrow(dataM5)]})

Temp25 <- matrix(unlist(Temp25), byrow = TRUE, nrow = n, ncol = nrow(dataM5))

Temp25 <- exp(Temp25)

RRa25 <- Temp25

RR25 <- apply(Temp25, MARGIN = 2, FUN = mean) # Mittelwerte als Schätzer

#save(file="INLA_results_RUHR25.Rdata", list = ls(all = TRUE))

# BYM with covariables year 10:

set.seed(1066)

formula210 <- Depr_sum ~ (f(ID, model = "bym", graph = ruhr,

param = c(0.5, 0.0005)) +

dataM10$green_s + dataM10$mean_max_lden+dataM10$mean_unemplBL)

mod2.ruhr10 <- inla(formula210, family = "poisson", E = dataM10$Erwart_bas,

data = dataM10, control.compute = list(config = TRUE))

n <- 100000 # Sample size

Temp210 <- inla.posterior.sample(n = n, result = mod2.ruhr10,

use.improved.mean = TRUE)

Temp210 <- lapply(Temp210, function(x){x$latent[1 : nrow(dataM10)]})

Temp210 <- matrix(unlist(Temp210), byrow = TRUE, nrow = n, ncol = nrow(dataM10))

Temp210 <- exp(Temp210)

RRa210 <- Temp210

RR210 <- apply(Temp210, MARGIN = 2, FUN = mean) # mean value as estimate

#save(file="INLA_results_RUHR210.Rdata", list = ls(all = TRUE))
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# display of the estimates from the convolution model with covariates:

data1$RRfalt21 <- RR21

lnd_mydata1@data <- left_join(lnd_mydata1@data, data1, by = "Stteil")

tm41 <- qtm(lnd_mydata1, fill = "RRfalt21", borders = "black",

fill.style = "equal", title = "Risik estimate (BYM)

with covariates",

title.cex = 1.3, bg.color = "white", fill.palette = "-RdYlGn",

fill.labels = c("0.79 - 0.90", "0.90 - 1.01", "1.01 - 1.12",

"1.12 - 1.23", "1.23 - 1.34")) +

tm_layout(outer.margins=c(0, 0, 0, 0),

inner.margins=c(0.15, 0.01, 0.01, 0.01), asp = NA,

bg.color = "white", frame = TRUE,

legend.position = c("right", "bottom"),

title.position = c("right", "bottom"), legend.text.size = 1.1)

tm41

# Standard deviation:

sd(RR21)

# display of the estimates from convolution model with covariates year 5:

data5$RRfalt25 <- RR25

lnd_mydata5@data <- left_join(lnd_mydata5@data, data5, by = "Stteil")

tm45 <- qtm(lnd_mydata5, fill = "RRfalt25", borders = "black",

fill.style = "equal", title = "Risk estimate (BYM)

with covariates",

title.cex = 1.3, bg.color = "white", fill.palette = "-RdYlGn",

fill.labels = c("0.79 - 0.90", "0.90 - 1.01", "1.01 - 1.12",

"1.12 - 1.23", "1.23 - 1.34")) +

tm_layout(outer.margins=c(0, 0, 0, 0),

inner.margins=c(0.15, 0.01, 0.01, 0.01), asp = NA,

bg.color = "white", frame = TRUE,

legend.position = c("right", "bottom"),

title.position = c("right", "bottom"), legend.text.size = 1.1)

tm45

# Standard deviation:
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sd(RR25)

# display of the estimates from convolution model with covariates year 10:

data10$RRfalt210 <- RR210

lnd_mydata10@data <- left_join(lnd_mydata10@data, data10, by = "Stteil")

tm410 <- qtm(lnd_mydata10, fill = "RRfalt210", borders = "black",

fill.style = "equal", title = "Risk estimate (BYM)

with covariables",

title.cex = 1.3, bg.color = "white", fill.palette = "-RdYlGn",

fill.labels = c("0.79 - 0.90", "0.90 - 1.01", "1.01 - 1.12",

"1.12 - 1.23", "1.23 - 1.34")) +

tm_layout(outer.margins=c(0, 0, 0, 0),

inner.margins=c(0.15, 0.01, 0.01, 0.01), asp = NA,

bg.color = "white", frame = TRUE,

legend.position = c("right", "bottom"),

title.position = c("right", "bottom"), legend.text.size = 1.1)

tm410

# Standard deviation:

sd(RR210)

## Merge data for mapping

merge(emp,dept,by="DEPTNO")[,c("ENAME","DNAME")]

datarr1$SMR1 <- datarr1$SMR

datarr5$SMR5 <- datarr5$SMR

datarr10$SMR10 <- datarr10$SMR

datarr1 <- datarr1[, c("Stteil", "SMR1", "SMRgew1")]

datarr5 <- datarr5[, c("Stteil", "SMR5","SMRgew5")]

datarr10 <- datarr10[, c("Stteil", "SMR10", "SMRgew10")]

data1 = data1[, c("Stteil", "RRfalt1", "RRfalt21")]

data5 = data5[, c("Stteil", "RRfalt5" , "RRfalt25")]

data10 = data10[, c("Stteil", "RRfalt10", "RRfalt210")]

library(plyr)

Risiko_Mapping = join_all(list(datarr1,datarr5,datarr10, data1, data5, data10),

by='Stteil', type='left')
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# convert to excell

library(xlsx)

Risiko_Mapping = write.xlsx(Risiko_Mapping, "Risiko_Mapping.xlsx")

#Extreme estimates year 0:

dataf21 <- lnd_mydata1@data

attach(dataf21)

1 <- cbind(dataf21[, c("Stteilnu.x", "RRfalt21", "Ris_pop",

"mean_age", "NDVIMean06")])

dataf21 <- dataf21[order(-dataf21$RRfalt21), ]

dataf21

# Extreme estimates year 5:

dataf25 <- lnd_mydata5@data

1 <- cbind(dataf25[, c("Stadt.x", "Stteil", "RRfalt25", "Ris_pop",

"mean_age", "NDVIMean06")])

dataf25 <- dataf25[order(-dataf25$RRfalt25), ]

dataf25

# Extreme estimates year 10:

dataf210 <- lnd_mydata10@data

1 <- cbind(dataf210[, c("Stadt.x", "Stteil", "RRfalt210", "Ris_pop",

"mean_age", "NDVIMean09")])

dataf210 <- dataf210[order(-dataf210$RRfalt210), ]

dataf210

B.3 Spatio-temporal Poisson model
rm(list=ls())

library("CARBayesdata")

library("sp")

library(rgdal)

lnd_mydata = readOGR(dsn = "StudiengebietStadtteileGauss",

layer = "StudiengebietStadtteileGauss", use_iconv = TRUE, encoding = "UTF-8")

lnd_mydata@data <- lnd_mydata@data[order(lnd_mydata@data$Stteil),]

# The data set

#lnd_mydata <- spTransform(lnd_mydata, CRS("+proj=longlat +datum=WGS84 +no_defs"))

library(xlsx)

library(ggmap)

library(tmap)
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dep_score = read.xlsx("combine_SMR_NDVI_jahr_neu_dep.xlsx",

sheetName="combine_SMR_NDVI_jahr_neu_dep", use_iconv = TRUE, encoding = "UTF-8")

#data <- read.xlsx("combine_SMR_NDVI.xlsx", sheetName="combine_SMR_NDVI",

use_iconv = TRUE, encoding =" UTF-8")

#dataM <- data

library("spdep")

W.nb <- poly2nb(lnd_mydata, row.names = SMR.av$Stteil)

W.list <- nb2listw(W.nb, style = "B")

W <- nb2mat(W.nb, style = "B")

postscript(file=" A.eps", onefile=FALSE, horizontal=FALSE) ## produce eps file

#Assessing the presence of spatial autocorrelation

# first computing the residuals from a simple

# overdispersed Poisson log-linear model that incorporates the covariate effects

formula1 <- Depr_sum_i ~ offset(log(Erwart_bas)) + green_s

formula1b <- Depr_sum_i ~ green_s

formula2 <- Depr_sum_i ~ offset(log(Erwart_bas)) + green_s +mean_age

formula2b <- Depr_sum_i ~ green_s +mean_age

formula3 <- Depr_sum_i ~ offset(log(Erwart_bas)) + green_s +mean_age +

mean_oecdnet_s

formula3b <- Depr_sum_i ~ green_s +mean_age + mean_oecdnet_s

formula4 <- Depr_sum_i ~ offset(log(Erwart_bas)) + green_s +mean_age +

mean_oecdnet_s + umgezogen_perc

formula4b <- Depr_sum_i ~ green_s +mean_age + mean_oecdnet_s + umgezogen_perc
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formula5 <- Depr_sum_i ~ offset(log(Erwart_bas)) + green_s +mean_age +

mean_oecdnet_s +

umgezogen_perc + sum_comorbi

formula5b <- Depr_sum_i ~ green_s +mean_age + mean_oecdnet_s + umgezogen_perc +

sum_comorbi

formula6 <- Depr_sum_i ~ offset(log(Erwart_bas)) + green_s +mean_age + mean_oecdnet_s

+ umgezogen_perc + sum_comorbi+ mean_bmi

formula6b <- Depr_sum_i ~ green_s +mean_age + mean_oecdnet_s + umgezogen_perc +

sum_comorbi + mean_bmi

formula7 <- Depr_sum_i ~ offset(log(Erwart_bas)) + green_s +mean_age + mean_oecdnet_s

+ umgezogen_perc + sum_comorbi+ mean_bmi + median_max_lden

formula7b <- Depr_sum_i ~ green_s +mean_age + mean_oecdnet_s + umgezogen_perc +

sum_comorbi +mean_bmi + median_max_lden

formula8 <- Depr_sum_i ~ offset(log(Erwart_bas)) + green_s +mean_age + mean_oecdnet_s

+ umgezogen_perc + sum_comorbi+ mean_bmi + median_max_lden + mean_unemplBL

formula8b <- Depr_sum_i ~ green_s +mean_age + mean_oecdnet_s + umgezogen_perc +

sum_comorbi +mean_bmi + median_max_lden + mean_unemplBL

formula9 <- Depr_sum_i ~ offset(log(Erwart_bas)) + green_s + umgezogen_perc +

sum_comorbi + median_max_lden

formula9b <- Depr_sum_i ~ green_s + umgezogen_perc + sum_comorbi + median_max_lden

formula10 <- Depr_sum_i ~ offset(log(Erwart_bas)) + green_s +mean_age + mean_oecdnet_s

+ mean_unemplBL

formula10b <- Depr_sum_i ~ green_s +mean_age + mean_oecdnet_s + mean_unemplBL

model1 <- glm(formula = formula9, family = "quasipoisson",
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data = M_12)

resid.glm <- residuals(model1)

summary(model1)#$coefficients

#Overdispersion?

summary(model1)$dispersion

#To quantify the presence of spatial autocorrelation in

#the residuals from this model we can compute Moran's I statistic

#(Moran 1950) and conduct

#a permutation test for each year of data separately.

# The permutation test has the null hypothesis

#of no spatial autocorrelation and an alternative hypothesis of spatial

# autocorrelation

#(either positive or negative), and is conducted using the moran.mc()

# function from the spdep

#package.

moran.mc(x = resid.glm, listw = W.list, nsim = 10000)

## Spatio-temporal modelling with CARBayesST

# all data vectors (response, offset and covariates) have to be ordered

#so that the first K

# data points relate to all spatial units at time 1, the next K data points

#to all spatial units at

# time 2 and so on

library("CARBayesST")

model2 <- ST.CARar(formula = formula3, family = "poisson",

data = dep_scoreM, W = W,

burnin = 20000, n.sample = 22000,

thin = 10)

dep_scoreM$depprop <- dep_scoreM$Depr_sum / dep_scoreM$Ris_pop

boxplot(dep_scoreM$depprop ~ dep_scoreM$jahr, range = 0, xlab = "Year",

ylab = "dep rate",

col = "darkseagreen", border = "navy")
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library("dplyr")

depprop.av <- summarise(group_by(dep_scoreM, Stteil),

depprop.mean = mean(depprop))

lnd_mydata@data$dep <- depprop.av$depprop.mean

rate.est <- matrix(model2$fitted.values / dep_scoreM$Erwart_bas,

nrow = nrow(W), byrow = FALSE)

rate.est <- as.data.frame(rate.est)

colnames(rate.est) <- c("Risk_year0", "Risk_year5", "Risk_year7", "Risk_year8",

"Risk_year9", "Risk_year10", "Risk_year11", "Risk_year12")

rate.obs <- matrix(model2$fitted.values ,

nrow = nrow(W), byrow = FALSE)

rate.obs <- as.data.frame(rate.obs)

colnames(rate.obs) <- c("obs_year0", "obs_year5", "obs_year7", "obs_year8",

"obs_year9", "obs_year10", "obs_year11", "obs_year12")

lnd_mydata@data <- data.frame(lnd_mydata@data, rate.est, rate.obs)

breakpoints <- c(0, quantile(depprop.av$depprop.mean, seq(0.1, 0.9, 0.1)),

0.1)

library(xlsx)

write.xlsx(lnd_mydata@data, "lnd_mydata_risk.xlsx")

spplot(lnd_mydata, c("Risk_year0", "Risk_year5", "Risk_year7", "Risk_year8",

"Risk_year9", "Risk_year10", "Risk_year11", "Risk_year12"),

names.attr = c("Risk_year0", "Risk_year5", "Risk_year7", "Risk_year8",
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"Risk_year9", "Risk_year10", "Risk_year11", "Risk_year12"),

sp.layout = list(l1, l2, l3, l4),

xlab = "Easting", ylab = "Northing", scales = list(draw = T),

at = breakpoints, col.regions = terrain.colors(n = length(breakpoints - 1)),

par.settings=list(fontsize=list(text=20)))

# Kartierung der SMR:

tm11 <- qtm(lnd_mydata1, fill = "SMR", borders = "black", fill.style =

"fixed", fill.breaks = c(0, 0.1, 0.9, 1.2 ,3.61),

title = "SMR", title.cex = 1.5, fill.palette = "-RdYlGn",

fill.labels = c("0", "0.1 - 0.9", "0.9 - 1.2", "1.2 - 3.6")) +

tm_layout(inner.margins = c(0.1, 0.01, 0.01, 0.01),

outer.margins = 0, asp = NA,

bg.color = "white", frame = TRUE,

legend.position = c("right", "bottom"),

title.position = c("right", "bottom"),

legend.text.size = 1.4)

tm11

model2b <- ST.CARar(formula = formula3b, family = "binomial",

data = dep_scoreM, W = W, trial = dep_scoreM$Ris_pop,

prior.tau2=NULL,

burnin = 20000, n.sample = 22000,

thin = 10)

model2_0 <- ST.CARar(formula = formula3, family = "poisson",

data = dep_scoreM, W = W, fix.rho.S=TRUE, rho.S=0,

burnin = 20000, n.sample = 22000,

thin = 10)
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model2b_0 <- ST.CARar(formula = formula3b, family = "binomial",

data = dep_scoreM, W = W, fix.rho.S=TRUE,

trial = dep_scoreM$Ris_pop, rho.S=0, prior.tau2=NULL,

burnin = 20000, n.sample = 22000,

thin = 10)

model2_1 <- ST.CARar(formula = formula3, family = "poisson",

data = dep_scoreM, W = W, fix.rho.S=TRUE, rho.S=1,

burnin = 20000, n.sample = 22000,

thin = 10)

model2_1 <- ST.CARar(formula = formula3, family = "poisson",

data = dep_scoreM, W = W, fix.rho.S=TRUE, rho.S=1, prior.tau2=NULL,

burnin = 2000, n.sample = 5000,

thin = 10)

model2_1_0tau <- ST.CARar(formula = formula3, family = "poisson",

data = dep_scoreM, W = W, rho.S=1, prior.tau2=c(1,1),

burnin = 2000, n.sample = 5000,

thin = 10)

# return output to the terminal

sink("model3_13.txt") #writ all output to file tp.txt

print(model2)

print(model2b)

print(model2_0)

print(model2b_0)

print(model2_1)

print(model2b_1)
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## Temporal analysis

model2_1_0tau <- ST.CARar(formula = formula3, family = "poisson",

data = dep_scoreM, W = W,

burnin = 40000, n.sample = 70000,

thin = 10)

#print(model10)

library("CARBayes")

parameter.summary <- summarise.samples(exp(model2$samples$beta),

quantiles = c(0.5, 0.025, 0.975))

round(parameter.summary$quantiles, 4)

parameter.summary <- summarise.samples(exp(model2b$samples$beta),

quantiles = c(0.5, 0.025, 0.975))

round(parameter.summary$quantiles, 4)

parameter.summary <- summarise.samples(exp(model2_0$samples$beta),

quantiles = c(0.5, 0.025, 0.975))

round(parameter.summary$quantiles, 4)

parameter.summary <- summarise.samples(exp(model2b_0$samples$beta),

quantiles = c(0.5, 0.025, 0.975))

round(parameter.summary$quantiles, 4)

parameter.summary <- summarise.samples(exp(model2b_1$samples$beta),

quantiles = c(0.5, 0.025, 0.975))

round(parameter.summary$quantiles, 4)

parameter.summary <- summarise.samples(exp(model2b_1$samples$beta),

quantiles = c(0.5, 0.025, 0.975))

round(parameter.summary$quantiles, 4)

sink()
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B.4 Multilevel conditional autoregressive models, MLM
tCARs

We focus essentially on the developed MLM tCARs.

## Prepare the data sets as well as initial values for the Bayesian setting

rm(list=ls())

library(R2WinBUGS) # For Bayesian analysis

library(MASS) # normal function in vectorized form

library(rgdal)

library(spdep)

library(batchtools)

library(coda)

library(tidyr)

library(simstudy)

trad_multl_spatialg_model <- function(){

for (i in 1:N){

#Data Model

yij[i]~dnorm(mu[i],tau.sf12)

#Process Model

mu[i]<-alpha[id_num[i]]+Z[i]+X[i]+D[i]

#Individual Effect

X[i]<-beta_1*green_c[i]+beta_2*age_period_c[i]

#Temporal Effect

D[i]<-delta*period[i]+period[i]*u1[id_num[i]]

#Spatial Effect

Z[i]<-gamma*unempl_c[i] #+omega[Stt_num[i],period[i]]

}

# Individual Unobserved Effect Prior

for (j in 1:NI){

alpha[j]~dnorm(omega[Stt_num[j],period[j]],tau.alpha) #dnorm(theta, tau.alpha)#
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u1[j]~dnorm(0, zalpha.lin)

}

#Spatial Unobserved Effect Prior

for (t in 1:TT){

for (r in 1:K){

omega[r,t]~dnorm(theta,tau.omega)

}

}

# tau.omega<-1/(sigma.omega*sigma.omega)

# sigma.omega~dunif(0,100)

tau.omega~dgamma(2,100)

beta_1~dnorm(0,0.00001)

beta_2~dnorm(0,0.00001)

gamma~dnorm(0,0.00001)

delta~dnorm(0,0.00001)

theta~dflat()

# tau.sf12<-1/(sigma.sf12*sigma.sf12)

# sigma.sf12~dunif(0,100)

tau.sf12~dgamma(1,0.01)

#tau.alpha<-1/(sigma.alpha*sigma.alpha)

#sigma.alpha~dunif(0,100)

tau.alpha~dgamma(1,0.01)

zalpha.lin~dgamma(1,0.01)

}
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# Modell als R-Funktion (aber WinBUGS Syntax)

Car_anova.modelg <- function(){

for (i in 1:N){

#Data Model

yij[i]~dnorm(mu[i],tau.sf12)

#Process Model

mu[i]<-alpha[id_num[i]]+Z[i]+X[i]+D[i]

#Individual Effect

X[i]<-beta_1*green_c[i]+beta_2*age_period_c[i]

#Temporal Effect

D[i]<-delta*period[i]+period[i]*u1[id_num[i]]

#Spatial Effect

#Spatial Effect

Z[i]<-gamma*unempl_c[i] #+phi[period[i],Stt_num[i]]

}

# Individual Unobserved Effect Prior

for (j in 1:NI){

alpha[j]~dnorm(phi[period[j],Stt_num[j]], tau.alpha)

#dnorm(omega[Stt_num[j],jahr_num[j]],tau.alpha)

#dnorm(theta, tau.alpha)

u1[j]~dnorm(0, zalpha.lin)

}

## define delta_lin

for(t in 1:TT){

delta.lin[t]~dnorm(Sd.lin[t],taud.lin[t])

Sd.lin[t] <- (rhod.lin/(1-rhod.lin+rhod.lin*num_t[t]))*sum(Ds.delta[C_t[t]+1:C_t[t+1]])

taud.lin[t] <- inv.deltad*(1-rhod.lin+rhod.lin*num_t[t])

}

# sum weighted errors over neighbors

for (i in 1:sumNumNeigh_t) { Ds.delta[i] <- delta.lin[adj_t[i]] }
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## define lin_phi

for(k in 1:K){

lin.phi[k]~dnorm(S.lin[k],tau.lin[k])

S.lin[k] <- (rho.lin/(1-rho.lin+rho.lin*num[k]))*sum(Ws.phi[C[k]+1:C[k+1]])

tau.lin[k] <- inv.delta*(1-rho.lin+rho.lin*num[k])

}

# sum weighted errors over neighbors

for (i in 1:sumNumNeigh) { Ws.phi[i] <- lin.phi[adj[i]] }

for(t in 1:TT){ for (k in 1:K){

phi[t,k] <- delta.lin[t] + lin.phi[k]+ gamma.lin[k,t]

}}

for (t in 1:TT){

for (r in 1:K){

gamma.lin[r,t]~dnorm(theta,tau.gamma)

}

}

#Priors

#Priors

rho.lin~dunif(0,1)

rhod.lin~dunif(0,1)

beta_1~dnorm(0,0.00001)

beta_2~dnorm(0,0.00001)

gamma~dnorm(0,0.00001)

delta~dnorm(0,0.00001)

inv.deltad~dgamma(2,100)

inv.delta~dgamma(2,100)
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tau.gamma~dgamma(1,0.01)

tau.sf12~dgamma(1,0.01)

theta~dflat()

tau.alpha~dgamma(1,0.01)

zalpha.lin~dgamma(1,0.01)

}

# Modell als R-Funktion (aber WinBUGS Syntax)

convolution.modelg <- function(){

for (i in 1:N){

#Data Model

yij[i]~dnorm(mu[i],tau.sf12)

#Process Model

mu[i]<- alpha[id_num[i]]+Z[i]+X[i]+D[i]

#Individual Effect

X[i]<- beta_1*green_c[i]+beta_2*age_period_c[i]

#Temporal Effect

D[i]<-delta*period[i]+period[i]*u1[id_num[i]]

#Spatial Effect

Z[i]<-gamma*unempl_c[i]

# +phi[period[i],Stt_num[i]]+omega[Stt_num[i],period[i]]

}

# Individual Unobserved Effect Prior

for (j in 1:NI){

psi[j]<-phi[period[j],Stt_num[j]]+omega[Stt_num[j],period[j]]

alpha[j]~dnorm (psi[j], tau.alpha)#(theta,tau.alpha)

u1[j]~dnorm(0, zalpha.lin)

}

for(i in 1:sumNumNeigh) {

weights[i] <- 1

}

#Spatial Unobserved Effect Prior
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for (t in 1:TT){

phi[t,1:K]~car.normal(adj[], weights[], num[], tau.phi[t])

tau.phi[t]~dgamma(2,100)

for (r in 1:K){

omega[r,t]~dnorm(theta,tau.omega[t])

}

tau.omega[t]~dgamma(2,100)

}

#Priors

beta_1~dnorm(0,0.00001)

beta_2~dnorm(0,0.00001)

gamma~dnorm(0,0.00001)

delta~dnorm(0,0.00001)

theta~dflat()

tau.sf12~dgamma(1,0.01)

tau.alpha~dgamma(1,0.01)

zalpha.lin~dgamma(1,0.01)

}

Mylist = list(MyData, TT, W, K, N, adj, NumCells, sumNumNeigh, num, R, I, C, num_t,

NI, sumNumNeigh_t, adj_t,

C_t, Lt, L, n.all, dat_unempl, LA1, theta0_y, beta_y, delta_v, delta_y,

parameters.trad_multl_spatialg, parameters.Car_anova.modelg, inits2g,

inits2g_anov, inits2g2, inits2g_anov2, inits2g_conv, inits2g_conv2,

parameters.convolutiong)

#run simulation

d = NULL #start with an empty dataset

funct_data <- function(data, job, tau_2_S, tau_2_T, rho_S, rho_T){

#tau_2 <- tau_2_rho[index, "tau_2"]

#rho <- tau_2_rho[index, "rho"]

MyData=data[[1]]

TT=data[[2]]

W=data[[3]]

K=data[[4]]
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N=data[[5]]

adj = data[[6]]

NumCells=data[[7]]

sumNumNeigh=data[[8]]

num=data[[9]]

R=data[[10]]

I=data[[11]]

C=data[[12]]

num_t = data[[13]]

NI=data[[14]]

sumNumNeigh_t = data[[15]]

adj_t=data[[16]]

C_t=data[[17]]

Lt=data[[18]]

L=data[[19]]

n.all = data[[20]]

dat_unempl = data[[21]]

LA1 = data[[22]]

theta0_y = data[[23]]

beta_y = data[[24]]

delta_v = data[[25]]

delta_y = data[[26]]

parameters.trad_multl_spatialg = data[[27]]

parameters.Car_anova.modelg = data[[28]]

inits2g = data[[29]]

inits2g_anov=data[[30]]

inits2g2 = data[[31]]

inits2g_anov2=data[[32]]

inits2g_conv=data[[33]]

inits2g_conv2=data[[34]]

parameters.convolutiong=data[[35]]

### Generate data with CARanova

distance <- as.matrix(dist(1:TT))

D <-array(0, c(TT,TT))

D[distance==1] <-1

#From W the precision matrix can be computed for the multivariate Gaussian representation

#of the spatial random effects ?? from (6) as follows:

Q.W <- rho_S * (diag(apply(W, 2, sum)) - W) + (1-rho_S) * diag(rep(1,K))

Q.W.inv <- solve(Q.W)
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library("MASS")

phi <- mvrnorm(n = 1, mu = rep(0, K), Sigma = (tau_2_S * Q.W.inv))

phi <- phi - mean(phi)

phi.long <- rep(phi, TT)

Q.D <- rho_T*(diag(apply(D, 2, sum)) - D) + (1-rho_T) * diag(rep(1, TT))

Q.D.inv <- solve(Q.D)

Delta <- mvrnorm(n = 1, mu = rep(0, TT), Sigma = (tau_2_T * Q.D.inv))

Delta <- Delta - mean(Delta)

delta.long <- kronecker(Delta, rep(1, K))

x <- rnorm(n = n.all, mean = 0, sd = 1)

gamma <- rnorm(n = n.all, mean = 0, sd = sqrt(0.01))

carerror = phi.long + delta.long + gamma

#carerror_cl= phi.long_cl

## Add Stteil to the generated data set at the district level for future merge

dat_unempl = data.frame(dat_unempl, LA1@data[,-c(9,10)])

dat_unempl_1 = dat_unempl

dat_unempl_1$period = rep(1,108)

dat_unempl_2 = dat_unempl

dat_unempl_2$period = rep(2,108)

dat_unempl_3 = dat_unempl

dat_unempl_3$period = rep(3,108)

dat_unempl_4 = dat_unempl

dat_unempl_4$period = rep(4,108)

dat_unempl_5 = dat_unempl

dat_unempl_5$period = rep(5,108)

dat_unempl_long = rbind(dat_unempl_1, dat_unempl_2, dat_unempl_3,

dat_unempl_4, dat_unempl_5)

dat_unempl_carerror = data.frame(dat_unempl_long, carerror)

### merge with data at geographycal level

data_long = merge(MyData, dat_unempl_carerror[,c("period","Stteil_num","Stteil",

"Stadt", "carerror", "unempl")], by= c("Stteil", "period"), all.x=T)

#data_long = merge (data_time, dat_unempl_carerror, by = "Stteil")

MyData1 = data_long

MyData1$unempl_bar <- mean(MyData1$unempl)

MyData1$unempl_c <- MyData1$unempl - MyData1$unempl_bar

MyData1$carerror = as.vector(MyData1$carerror)

MyData1$carerror_cl = as.vector( MyData1$carerror_cl)
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MyData1$period_c=MyData1$period -1

MyData1$yij <- theta0_y + beta_y[1]*MyData1$green_c + beta_y[2]*MyData1$age_period_c +

beta_y[3]*MyData1$unempl_c+

delta_y*MyData1$period +MyData1$e +MyData1$r0ij +MyData1$r1ij*MyData1$period +

MyData1$carerror

mydata_W = list(yij=MyData1$yij, Stt_num = MyData1$Stt_num, id_num= MyData1$id_num,

period = MyData1$period, period_c = MyData1$period_c,

green_c = MyData1$green_c, unempl_c = MyData1$unempl_c,

age_c = MyData1$age_c, age_period_c=MyData1$age_period_c, adj = adj,

NumCells=NumCells,

sumNumNeigh=sumNumNeigh, num=num, R=R, I=I, C=C, num_t = num_t, N=N,

TT=TT, K=K, NI=NI, sumNumNeigh_t = sumNumNeigh_t, adj_t=adj_t, C_t=C_t,

Lt=Lt, L=L)

## Transform data in a form usable by WinBUGS

library(R2WinBUGS)

data_WB <- mydata_W

return(data_WB)

}

### Creating Jobs

# parameters for the problem

tau_2_S = c(0.009, 0.009, 0.009, 0.009, 0.8, 0.8, 0.8, 0.8, 3, 3, 3, 3)

tau_2_T = c(3, 0.8, 0.009, 3, 3, 0.8, 0.09, 0.8, 3, 3, 0.8, 3)

rho_S= c(0.9, 0.5, 0.09, 0.9, 0.5, 0.5, 0.5, 0.9, 0.5, 0.09, 0.5, 0.9)

rho_T= c(0.09, 0.5, 0.9, 0.9, 0.09, 0.5, 0.9, 0.9, 0.09, 0.9, 0.5, 0.9)

data_param=data.frame(tau_2_S, tau_2_T, rho_S, rho_T)

exp_par = list(car_long_prob = as.data.table(data_param))

# algorithm design: try combinations of kernel and epsilon exhaustively,

# Parameters for the function

funct_par = list(

Car_conv.model_model= data.table(n.iter = 150000),

Car_anova.model_model = data.table(n.iter = 150000),

trad_multl_spatial_model = data.table(n.iter = 150000)

)

ids = addExperiments(exp_par, funct_par, repls = 4)
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## Before submitting the jobs

summarizeExperiments(by = c("problem", "algorithm", "tau_2_S", "tau_2_T", "rho_S",

"rho_T"))

### select some jobs only

id1 = head(findExperiments(algo.name = "trad_multl_spatial_model"), 1)

print(id1)

## Submit jobs

ids[ , chunk := 1] ### envois moi tous les jobs la en un bloc

batchtools::submitJobs(

ids = ids, ### mapping entre le registre et la funcztiom

resources = list(ntasks = 1,

account="lsickstadt",

ncpus = 1,

# atonce = 18,

walltime = 600, ###

partition = "all", ###

memory = 30000L,

chunks.as.arrayjobs = TRUE),

reg=reg

)

B.5 Multilevel conditional autoregressive models, MLM
CARs

Here, we consider essential parts of the MLM CAR as well as the MLM RCAR.
Model specification for MLM CAR in BUGS:

bugscar_model <- function(){

for(i in 1:N){

Y[i] ~ dnorm(mu[i],tau.sf12) #

mu[i] <- beta_0 + beta_1*green0_c[i] + beta_2*age_c[i] +

beta_3*unempl_c[i] + beta_4*sex[i] + u0[Stteil_num[i]]

}
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# Define the zero vector

for(i in 1:K) {

zero0[i] <- 0

}

#Spatial Unobserved Effect Prior

# Define Q

# Q[1:K,1:K] <- rho.S*R[,] + (1-rho.S)*I[,]

for(l in 1:K){ for (j in 1:K){

Q[l,j] <- rho.S*R[l,j] + (1-rho.S)*I[l,j]

}}

# prior.T[1:K, 1:K] <- tau.invs*Q[,]

for(l in 1:K){ for (j in 1:K){

prior.T[l,j] <- (Q[l,j])/tau.invs

}}

phi[1:K]~dmnorm(zero0[], prior.T[,])

# mean.phi[1,1:K] <- rho.T*phi[1,]

for(i in 1:K){

u0[i] <- phi[i]

}

beta_0 ~ dflat()

beta_1 ~ dnorm(0.0,0.001)

beta_2 ~ dnorm(0.0,0.001)

beta_3 ~ dnorm(0.0,0.001)

beta_4 ~ dnorm(0.0,0.001)

rho.S~dunif(0,1)

tau.sf12~dgamma(0.001,0.01)
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sigma.sf12<-1/(tau.sf12*tau.sf12)

tau.invs ~ dunif(0,1)

}

Model specification for MLM RCAR in BUGS:

# C restricted CAR

## Define the L matrix

H <- as.matrix(dat_unempl$unempl)

Pcb = I -H%*%solve(t(H)%*%H)%*%t(H)

L <-t(eigen(Pcb)$vectors[,eigen(Pcb)$values > min(eigen(Pcb)$values)])

Lt <- t(L)

bugscar_modelR <- function(){

for(i in 1:N){

Y[i] ~ dnorm(mu[i],tau.sf12)

mu[i] <- beta_0 + beta_1*green0_c[i] + beta_2*age_c[i] +

beta_3*unempl_c[i] + beta_4*sex[i] + u0[Stteil_num[i]]

}

# Define the zero vector

for(i in 1:K) {

zero0[i] <- 0

}

# Define the zero vector

for(i in 1:K-1) {

zero00[i] <- 0

}

#Spatial Unobserved Effect Prior

# Define Q

for(l in 1:K){ for (j in 1:K){

Q[l,j] <- rho.S*R[l,j] + (1-rho.S)*I[l,j]
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}}

for (i in 1:K-1){

for (j in 1:K){

# inprod_LQ[] <- L[i,] * Q[,j] sum(inprod_LQ[])#

LQ[i,j] <- inprod(L[i,],Q[,j])

}

}

for (i in 1:K-1){

for (j in 1:K-1){

# inpro_Q22[] <-LQ[i,] * Lt[,j] sum(inpro_Q22[]) #

Qt22[i,j] <- inprod(LQ[i,],Lt[,j])

}

}

gammaastast[1:K-1] ~ dmnorm(zero00[], Qt22[,])

for(k in 1:K){

Lgammaastast[k]<- inprod(Lt[k,],gammaastast[])/sqrt(tau.invs)

}

for(i in 1:K){

u0[i] <- Lgammaastast[i]

}

beta_0 ~ dnorm(0.0,0.001)

beta_1 ~ dnorm(0.0,0.001)

beta_2 ~ dnorm(0.0,0.001)

beta_3 ~ dnorm(0.0,0.001)

beta_4 ~ dnorm(0.0,0.001)

rho.S~dunif(0,1)

tau.sf12~dgamma(0.001,0.01)

sigma.sf12<-1/(tau.sf12*tau.sf12)

tau.invs ~ dunif(0,1)

}
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B.6 Implementation of the classical multilevel model
in SAS

Here, we provide the main ideas of the implementation in SAS.
The unconditional model: model 1

PROC MIXED data=MyData covtest noclprint method = ML;

class Stt_num;

model yij=/solution ddfm = SATTERTHWAITE;

random intercept / sub=Stt_num type=vc;

run;

model 2

PROC MIXED data=MyData covtest noclprint method = ML;

class Stt_num;

model yij = ndvi100 sex1 age/solution ddfm = SATTERTHWAITE;

random intercept ndvi100 /sub=Stt_num type=vc;

run;

model 3

PROC MIXED data=MyData covtest noclprint method = ML;

class Stt_num;

model yij = ndvi100 sex1 age unemplBL/solution ddfm = SATTERTHWAITE;

random intercept ndvi100 /sub=Stt_num type=vc;

run;
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