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Kurzfassung
In dieser Arbeit werden seltene semileptonische |𝛥𝑐| = |𝛥𝑢| = 1 Übergänge im Standardmodell und
jenseits davon studiert. Die Standardmodellphenomenologie von Dreikörper-Mesonzerfällen 𝐷 → 𝑃ℓℓ,
sowie von Drei- und Vierkörperzerfällen von Charmbaryonen, 𝐵0 → 𝐵1(→ 𝐵2𝜋)ℓℓ, wird analysiert und
die Dominanz von Resonanzbeiträgen zu den Verzweigungsverhältnissen wird herausgestellt. Effekte
von Physik jenseits des Standardmodells werden modellunabhängig und im Rahmen von Leptoquark–
und flavorvollen, Anomalie-freien 𝑍′–Modellen untersucht. Die Dominanz der Resonanzbeiträge wird
in Analysen sauberer Nulltestobservablen, wo jegliches Signal auf neue Physik hinweist, überwunden
oder sogar als Katalysator genutzt. Nulltests basieren auf Winkelobservablen, CP–Erhaltung, Lep-
tonflavoruniversalität und der Erhaltung von geladenem Leptonflavor. Bereits eine Teilmenge von
vier Winkelobservablen in seltenen Drei- und Vierkörperzerfällen von Charmbaryonen genügt, um
Beiträge jenseits des Standardmodells von Dipol- und (Axial-)Vektor-Wilsonkoeffizienten vollständig
voneinander zu unterscheiden, wohingegen seltene, (semi-)leptonische Mesonzerfälle 𝐷 → (𝑃)ℓℓ auf
(pseudo-)skalare und (pseudo-)tensorielle Effekte hindeuten. Eine globale Sichtweise auf Verbindungen
zwischen verschiedenen Flavorsektoren wird im Kontext von flavoraufsummierten Verzweigungsver-
hältnissen mit einem Neutrino-Antineutrino-Paar im Endzustand dargelegt. Indirekte Tests von
Leptonflavoruniversalität und der Erhaltung von geladenem Leptonflavor werden für den Charmsektor
präsentiert, wo Dineutrinomoden ohnehin Nulltests des Standardmodells darstellen. In |𝛥𝑏| = |𝛥𝑠| = 1
Übergängen ist der erste Nachweis für die Verletzung von Leptonflavoruniversalität im Verhältnis
von Myon über Elektron 𝐵–Mesonverzweigungsverhältnissen gefunden. Ergänzend zu den direkten
Herangehensweisen wird gezeigt, dass Dineutrinomoden die Struktur von geladenem Leptonflavor in
der Korrelation zwischen 𝐵 → 𝑃𝜈 ̄𝜈 und 𝐵 → 𝑉 𝜈 ̄𝜈 testen. Ähnliche indirekte Tests von Leptonflavor in
anderen Quarksektoren werden ebenfalls besprochen.
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Abstract
This thesis comprises a study of rare semileptonic |𝛥𝑐| = |𝛥𝑢| = 1 transitions in the Standard Model
and beyond. The Standard Model phenomenology of three-body meson decays 𝐷 → 𝑃ℓℓ, as well as
three- and four-body charmed baryon decays 𝐵0 → 𝐵1(→ 𝐵2𝜋)ℓℓ, is analyzed and branching ratios
are found to be dominated by resonances. Physics effects beyond the Standard Model are studied
model-independently as well as in the framework of leptoquark– and flavorful, anomaly-free 𝑍′–models.
Resonance dominance is shown to be overcome or even used as a catalyst in analyses of clean null-test
observables, where any signal indicates new physics. Null tests are based on angular observables,
CP–conservation, lepton flavor universality and charged lepton flavor conservation. Already a subset of
four angular observables in three- and four-body rare charm baryon decays are sufficient to disentangle
beyond Standard Model effects in dipole and (axial) vector Wilson coefficients, whereas (semi-)leptonic
rare meson decays 𝐷 → (𝑃)ℓℓ are shown to control (pseudo-)scalar and (pseudo-)tensor effects. A
global view on connections between different flavor sectors is put forward in the context of flavor
summed dineutrino branching ratios. Indirect tests of lepton flavor universality and charged lepton
flavor conservation are presented for the charm sector, where dineutrino modes already pose null tests of
the Standard Model. In |𝛥𝑏| = |𝛥𝑠| = 1 transitions, the first evidence for the violation of lepton flavor
universality is found in muon over electron ratios of 𝐵–meson branching fractions. Complementing the
direct probes, dineutrino modes are shown to test charged lepton flavor indirectly in the correlation of𝐵 → 𝑃𝜈 ̄𝜈 and 𝐵 → 𝑉 𝜈 ̄𝜈. Similarly, indirect flavor probes in other quark sectors are also commented
on.
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1 Introduction

The field of elementary particle physics aims at describing nature at the most fundamental level,
both in terms of the building blocks and interactions. During the last decades, our knowledge has
rapidly increased through concurrent developments in theory and experiment. In particular, the field
of quark flavor physics had its starting point in the 1960s with the prediction of the strange quark
and the development of the eightfold way to classify experimentally observed hadrons [13]. Further
experimental developments implied the need for a charm quark [14] to avoid flavor changing neutral
currents (FCNCs) via a generalized Glashow-Iliopolus-Maiani (GIM) mechanism [15]. The charm
quarks actual discovery took place in the November Revolution in 1974 [16, 17]. The discoveries of the
heavy electroweak gauge bosons followed in 1983, see [18] for a review, and were the starting point of
still ongoing electroweak precision measurements. Finally, after the prediction of the Higgs boson in
the 1960s [19–22], the Standard Model of particle physics (SM) was completed with the discovery of a
heavy boson in 2012 [23, 24], which later was confirmed to share the SM Higgs properties [25, 26]. The
overwhelming majority of subsequent analyses corroborate the predictions of the SM, thus forging the
most frequently tested and most successful fundamental theory to date.
Despite its success, the SM is known to be an insufficient description of nature for several reasons.

One being the prediction [27–29] and discovery [30, 31] of neutrino oscillations, implying non-vanishing
neutrino masses, which are, however, vanishing according to predictions of the SM. Another problem
stems from cosmological observations which imply the existence of dark matter [32], as well as the
lack of sufficient CP–violation as proposed by the Sakharov conditions [33] for the emergence of
a baryon–asymmetry in the universe. In addition, the SM describes only three of the four known
fundamental interactions and a quantum theory of gravity is yet to be found.

The modern route towards the discovery of physics beyond the Standard Model (BSM) utilizes two
complementary methods. The high-energy frontier pushes the largest tested center-of-mass energy in
single-particle collisions in order to directly produce heavy BSM particles, which is the only way to
unambiguously claim the discovery of heavy new physics (NP) particles beyond the SM. On the other
hand, the main idea at the precision frontier is to indirectly test much larger energy ranges through
BSM contributions to loop processes by pushing the theoretical and experimental precision of a given
process into a regime in which deviations from SM predictions become apparent. These deviations
then indicate a certain energy scale and, therefore, provide guidance for direct searches where the lack
of direct detection of any BSM particle calls for a prediction of a new energy scale, at which NP is
expected to show up.

Indeed, hints for deviations from the SM have emerged at the precision frontier. These include the
first evidence for the violation of lepton flavor universality (LFU) in decays of 𝐵–mesons [34], which
fit into similar deviations of less significance [35–37], along with systematically suppressed branching
ratio measurements [38–41], as well as deviations in angular asymmetries [42–47] in 𝑏 → 𝑠𝜇+𝜇−
induced modes, commonly referred to as the 𝐵–anomalies. A second example is the muon anomalous
magnetic moment, where Run 1 of the Fermilab 𝑔 − 2 experiment [48–51] confirms an earlier BNL
measurement [52] and both measurements globally point towards a 4.2𝜎 tension with respect to the
SM prediction [53], see also Ref. [54] for a recent White Paper.

In order to reconcile the observed discrepancies while being in line with constraints in other sectors,
which are in agreement with SM expectations, a global picture is needed. Several strategies are at
hand. The model-dependent route is to construct a specific ultraviolet (UV)–complete BSM model,
which is able to reconcile as many discrepancies and problems of the SM as possible and make verifiable
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1 Introduction

predictions in other observables. The alternative is the model-independent study of BSM physics in an
Effective Field Theory (EFT) framework. Here, we distinguish two cases. On the one hand, we apply
the Weak Effective Theory (WET), which for example can be used for 𝑏 → 𝑠𝜇+𝜇− processes, where
global fits with increasing significance are performed, e.g. Ref. [55]. On the other hand, the Standard
Model Effective Field Theory (SMEFT) framework is utilized and allows to systematically probe heavy
NP simultaneously in various different sectors, which comes at the prize of 2499 parameters at leading
order. Therefore, it is crucial to follow the “leave-no-stone-unturned-guideline” and study as many
different sectors of the SM as possible. SMEFT analyses involving top quarks are of recent interest,
e.g. Refs. [56–59]. This is because the top, being the third generation up-type cousin of the 𝑏–quark
and the heaviest SM particle, is likely to couple to NP. However, FCNCs of top quarks [60] have only
very recently been tested in searches for 𝑡 → 𝑐𝛾 and 𝑡 → 𝑢𝛾, and are only poorly constrained [61]. At
the same time the tree-level contributions to single-top-quark production in association with a photon,𝑡𝑞𝛾 with light down-type quarks 𝑞, were also only recently discovered [62]. More analyses with top
quarks are needed, but lack sufficient statistics to probe rare processes and are only probed directly, as
the top-quark decays before hadronization.
Therefore, the natural and unique place to look for up-type FCNCs is in rare charm decays. The

charm quark is the first (semi-)heavy candidate that allows for flavor physics probes with hadrons
and rare decays are suitable for a variety of flavor facilities such as the Large Hadron Collider beauty
(LHCb) experiment [63], Belle II [64], BESIII [65] and possible future machines, such as the super
charm-tau factory [66] and the Future Circular Collider (FCC) [67, 68]. As of today, only very few
rare charm decays have been observed, including the radiative mode 𝐷 → 𝜌𝛾 seen at Belle [69]
and the observation and first angular analysis of 𝐷0 → 𝜋+𝜋−𝜇+𝜇− and 𝐷0 → 𝐾+𝐾−𝜇+𝜇− [70, 71],
with a very recent update available in Ref. [72]. For other modes, upper limits exist on the purely
leptonic decays 𝐷0 → 𝜇+𝜇− [73] and 𝐷0 → 𝜇±𝑒∓ [74], various semileptonic 𝐷 → 𝑃ℓℓ(′) modes [75, 76],𝛬𝑐 → 𝑝𝜇+𝜇− [77] and 𝐷0 → 𝜋0𝜈 ̄𝜈 [78], all of which will be discussed in more detail in the remainder of
this thesis.
Experimentally, charm physics rapidly evolved ever since the first evidence for 𝐷0 − �̄�0 mixing in

2007 by the Belle [79], BaBar [80] and CDF [81] collaborations. Nowadays, more and more precise
information on mixing is available from LHCb [82–84] and tests for CP–violation in mixing seem to be
within reach. The first observation of direct CP–violation in the charm sector was performed in an
analysis by LHCb in 2019 [85].
Although |𝛥𝑐| = |𝛥𝑢| = 1 transitions are the up-type counterparts of down-type FCNCs, naïve

applications of known methods fail in charm. Nature seems to accidentally have laid the mass of the
charm quark in an unpleasant region, where it is too heavy to apply flavor symmetries and relate
it to the light quarks 𝑢, 𝑑, 𝑠, however too light to employ a fast converging heavy quark expansion.
Despite these theoretical challenges, research interest in 𝑐 → 𝑢ℓℓ, 𝑐 → 𝑢𝜈 ̄𝜈 and 𝑐 → 𝑢𝛾 induced modes
is ongoing and ever increasing and clean probes of the SM can be performed and complement the
flavor physics programs in the down-type sectors. For instance, (semi-)leptonic rare charm decays with
charged leptons are studied in Refs. [86–104], with missing energy in Refs. [105–107] and rare radiative
charm decays in Refs. [108–112].

While the main focus of this work is on rare semileptonic charm decays, the overall goal is a broader
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view on the quark flavor sector of the SM and to fully exploit correlations between sectors in order to
unravel the origin of flavor.

This thesis is based on Refs. [1–12] by the author and structured as follows. Five main chapters are
followed by a conclusion and outlook in Chapter 7. The main chapters contain the following topics:

• In Chapter 2 we review flavor physics within the SM and introduce the EFT framework, which is
extensively used throughout this thesis and based on an Operator Product Expansion (OPE) [113].
We distinguish the WET and SMEFT and discuss SM values for so-called Wilson coefficients
contributing to semileptonic rare charm decays in both EFT frameworks.

• Chapter 3 presents the SM phenomenology of the rare charm three-body decays 𝐷+ → 𝜋+ℓ+ℓ−,𝐷0 → 𝜋0ℓ+ℓ− and 𝐷+𝑠 → 𝐾+ℓ+ℓ− and baryon three- and four-body decays 𝛬𝑐 → 𝑝ℓ+ℓ−,𝛯0𝑐 → 𝛴0ℓ+ℓ−, 𝛯0𝑐 → 𝛬0(→ 𝑝𝜋0)ℓ+ℓ−, 𝛯+𝑐 → 𝛴+(𝑝𝜋0)ℓ+ℓ− and 𝛺0𝑐 → 𝛯0(→ 𝛬0𝜋0)ℓ+ℓ−, where
the latter three are discussed as three- and four-body final state decays. We also give a brief
introduction to CP–asymmetries in hadronic decays of 𝐷–mesons.

• In Chapter 4 we discuss BSM physics in rare charm decays. We work out the model-independent
available parameter space, i.e. we obtain upper limits on BSM Wilson coefficients by collecting
available experimental constraints. We further introduce effects induced in leptoquark (LQ)–and
flavorful anomaly-free 𝑍′–models and investigate bounds on the model parameters.

• Chapter 5 is dedicated to an extensive study of null-test possibilities in rare charm decays. We
discuss angular observables in three-body meson, three- and four-body baryon decays and beyond
and comment on the viability of a future global fit. We further discuss CP–asymmetries in
semileptonic modes, comment on CP–asymmetric angular observables and investigate correlations
between semileptonic and hadronic CP–violation in the context of anomaly-free 𝑍′–models.
Finally, direct probes of (accidental) charged lepton flavor symmetries are discussed. Violation of
LFU is probed in ratios of branching fractions of semileptonic modes into muons over electrons
and charged lepton flavor conservation (cLFC) is tested via branching ratios of lepton flavor
violating (LFV) decay modes.

• Indirect tests of charged lepton flavor are presented in Chapter 6. Due to the flavor inclusiveness
of dineutrino branching ratios and a SMEFT–based 𝑆𝑈(2)𝐿–link, upper limits on rare charm
dineutrino branching ratios are proportional to charged lepton couplings and depend on assump-
tions on charged lepton flavor. The same link can be exploited in both directions and other quark
flavor sectors. We investigate implications for 𝑏 → 𝑠 and 𝑏 → 𝑑 induced modes and comment on
further possibilities with rare kaon and top decays.

More details on SM Wilson coefficients, 𝑍′–models, the helicity formalism and 𝑆𝑈(2)𝐿–links in
SMEFT can be found in the appendix. For self-containment the appendix also comprises parameters,
experimental input and explicit expressions for angular distributions and helicity amplitudes, as well
as utilized form factors and decay constants. The presented research works are performed using the
computer software packages in Refs. [114–119].
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2 The Standard Model and effective field theories

This chapter is split into three parts. In Sec. 2.1 we give an overview of the SM following standard
literature, see Refs. [120–124]. First, we turn to the gauge symmetry, particle content, and symmetry
breaking mechanism of the SM with a special emphasis on the flavor sector and the charm quark,
which will be the main object of study in this thesis. We also discuss shortcomings of the SM that
motivate the search for BSM physics.
The second part deals with EFTs. Here, the main objects of interest are Wilson coefficients. EFTs

are only valid up to a certain scale, at which heavy degrees of freedom are integrated out and encoded in
Wilson coefficients, whereas the remaining light degrees of freedom are included in the form of effective
operators. We discuss two different implementations of EFTs. First, we focus on the so-called WET
at the charm mass scale and discuss SM contributions to Wilson coefficients of operators involving
leptons and neutrinos, respectively. Afterwards, we introduce the SMEFT, where all SM particles are
kept as light degrees of freedom, i.e. they are contained in SMEFT operators, such that only heavy
BSM physics enters the associated Wilson coefficients.

The last part summarizes the short-distance contributions to SM Wilson coefficients relevant for this
work within the different EFTs.

2.1 The Standard Model of particle physics

The SM is a renormalizable quantum field theory (QFT) with a local gauge symmetry 𝑆𝑈(3)𝐶 ⊗𝑆𝑈(2)𝐿 ⊗ 𝑈(1)𝑌. Here, 𝑆𝑈(3)𝐶 refers to the theory of quantum chromodynamics (QCD) [125–129],
whereas the electroweak interactions are encoded in the 𝑆𝑈(2)𝐿 ⊗ 𝑈(1)𝑌 → 𝑈(1)QED, see Refs. [130–
132]. The field content of the SM is divided into two classes, fermions with spin 12 and bosons with
spin 0 or 1. The SM Lagrangian is then compactly written asℒSM = − 14 (𝐵𝜇𝜈𝐵𝜇𝜈 + 𝑊 𝑎𝜇𝜈𝑊 𝜇𝜈𝑎 + 𝐺𝑎𝜇𝜈𝐺𝜇𝜈𝑎 )+ i𝑄𝑖 /𝐷𝑄𝑖 + i𝐷𝑖 /𝐷𝐷𝑖 + i𝑈𝑖 /𝐷𝑈𝑖 + i𝐿𝑖 /𝐷𝐿𝑖 + i𝐸𝑖 /𝐷𝐸𝑖− 𝑄𝑖𝐻𝑌 𝑖𝑗𝐷 𝐷𝑗 − 𝑄𝑖�̃�𝑌 𝑖𝑗𝑈 𝑈𝑗 − 𝐿𝑖𝐻𝑌 𝑖𝑗𝐸 𝐸𝑗 + h.c.+ |𝐷𝜇𝐻|2 + 𝜇2|𝐻|2 − 𝜆|𝐻|4 . (2.1)

The first line encodes the kinetic terms of the gauge fields with𝐹 𝑎𝜇𝜈 = ∂𝜇𝐹 𝑎𝜈 − ∂𝜈𝐹 𝑎𝜇 + i𝑔(𝒢) 𝑓𝑎𝑏𝑐(𝒢) 𝐹 𝑏𝜇𝐹 𝑐𝜈 , (2.2)

where 𝑔(𝒢) is the gauge coupling associated with the gauge group 𝒢 and 𝑓𝑎𝑏𝑐(𝒢) are structure constants.
For 𝐵𝜇𝜈 the structure constants vanish as the gauge interaction is abelian, 𝑓𝑎𝑏𝑐𝑈(1)𝑌 = 0. Bosons mediating
the gauge interactions have spin 1 and are referred to as gauge bosons, including gluons 𝐺𝑎𝜇 for QCD
and the electroweak gauge bosons 𝑊 ±𝜇 , 𝑍0𝜇, 𝛾 (𝐴𝜇), which are linear combinations of the 𝑊 𝑎𝜇 and 𝐵𝜇
4



2.1 The Standard Model of particle physics

and the 𝑊 3𝜇-𝐵𝜇 mixing is parametrized by the weak mixing angle 𝜃𝑊𝑊 ±𝜇 = 12 (𝑊 1𝜇 ∓ i𝑊 2𝜇) ,𝑍0𝜇 = cos 𝜃𝑊 𝑊 3𝜇 − sin 𝜃𝑊 𝐵𝜇 ,𝐴𝜇 = sin 𝜃𝑊 𝑊 3𝜇 + cos 𝜃𝑊 𝐵𝜇 . (2.3)

The second line in Eq. (2.1) contains the gauge interactions to SM fermions induced by the covariant
derivative, in compact notation /𝐷 = 𝐷𝜇𝛾𝜇 with the Dirac gamma matrices 𝛾𝜇 and𝐷𝜇 = ∂𝜇 + i𝑔𝑠𝐺𝑎𝜇𝑇 𝑎𝑆𝑈(3) + i𝑔𝑤𝑊 𝑎𝜇 𝑇 𝑎𝑆𝑈(2) + i𝑔′𝑌 𝐵𝜇 . (2.4)

Here, the gauge couplings 𝑔𝑠, 𝑔𝑤 and 𝑔′ refer to 𝑆𝑈(3)𝐶, 𝑆𝑈(2)𝐿 and 𝑈(1)𝑌, respectively, and the 𝑇 𝑎
are generators of the non-abelian gauge factors in the representation of the field the derivative is acting
on, whereas 𝑌 is the hypercharge.

The only fundamental spin 0 boson in the SM is the Higgs 𝐻, an 𝑆𝑈(2)𝐿–doublet and QCD singlet
responsible for spontaneously breaking the electroweak sector down to quantumelectro dynamics (QED)
due to acquiring a non-trivial vacuum expectation value (vev) 𝑣 = 2 𝑚𝑊𝑔𝑤 ≃ 246GeV with the 𝑊–boson
mass 𝑚𝑊. The remaining massive physical degree of freedom contained in the Higgs doublet is generally
referred to as the Higgs boson ℎ0. Interactions between the Higgs and all other particles are possible
via Yukawa interactions, which are given in the third line of Eq. (2.1) and with the help of the vev
are responsible for the generation of masses. The experimentally measured values of these masses
are collected in App. A. The fourth line in Eq. (2.1) contains the kinetic term and potential of the
Higgs doublet. For all SM fermions the respective group representations for both left-handed (LH) and
right-handed (RH) field components are given in Tab. 2.1.

Fermions in the SM are classified according to their gauge interactions. The 𝑆𝑈(2)𝐿 gauge symmetry
acts on the LH field component, hence one distinguishes LH 𝑆𝑈(2)𝐿–doublets and RH singlets. Fermions
charged under 𝑆𝑈(3)𝐶 are called quarks, 𝑆𝑈(3)𝐶–singlets are called leptons. In the quark sector,
up-type and down-type quarks are distinguished. We use 𝑄 for the 𝑆𝑈(2)𝐿–doublet containing LH up-
and down-type field components and 𝑈, 𝐷 for the RH up- and down-type components, respectively.
For the charged leptons we use 𝐸 for the RH field components and 𝐿 for the doublet, which also
includes LH neutrinos. In the SM, neutrinos remain massless and no RH field component exists,
whereas all other fermion fields acquire their masses due to Yukawa terms involving both LH and RH
field components and a Higgs.

Most importantly, both quarks and leptons come in three families, generations or flavors (used
synonymously) as indicated by flavor indices 𝑖, 𝑗 in Eq. (2.1). The first generation makes up everyday
matter, the other two generations are heavier, but otherwise identical copies of the first generation.
The study of transitions between these three families and the search for a deeper reason for the three
identical copies define the field of flavor physics.
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2 The Standard Model and effective field theories

Table 2.1: SM fermion fields and their group representations and charges under the SM
gauge groups. The convention 𝑞 = 𝑌 + 𝑇3, with 𝑞 the electrical charge in units of the proton
charge is used. 𝑇3 refers to the third component of the weak isospin and 𝑌 denotes the
hypercharge. The indices 𝐿 and 𝑅 indicate LH and RH particle fields. The bold numbers 1,
2, 3 denote a singlet, doublet and triplet representation, respectively.

Particle field 𝑆𝑈(3)𝐶 𝑆𝑈(2)𝐿 𝑌 𝑇3 𝑞(𝑢𝑑)𝐿 , (𝑐𝑠)𝐿 , (𝑡𝑏)𝐿 3 2 1/6 1/2−1/2 2/3−1/3𝑢𝑅, 𝑐𝑅, 𝑡𝑅 3 1 2/3 0 2/3𝑑𝑅, 𝑠𝑅, 𝑏𝑅 3 1 −1/3 0 −1/3(𝜈𝑒𝑒 )𝐿 , (𝜈𝜇𝜇 )𝐿 , (𝜈𝜏𝜏 )𝐿 1 2 −1/2 1/2−1/2 0−1𝑒𝑅, 𝜇𝑅, 𝜏𝑅 1 1 −1 0 −1
2.1.1 Flavor physics and the charm quark

In the SM, fermion masses are induced due to the Yukawa terms, i.e. the third line in Eq. (2.1),−ℒYukawa = 𝑄𝑖𝐻𝑌 𝑖𝑗𝐷 𝐷𝑗 + 𝑄𝑖�̃�𝑌 𝑖𝑗𝑈 𝑈𝑗 + 𝐿𝑖𝐻𝑌 𝑖𝑗𝐸 𝐸𝑗 + h.c. , (2.5)

where �̃� = i𝜏2𝐻∗ is the 𝑆𝑈(2)𝐿 conjugate of the Higgs doublet 𝐻 with the Pauli matrix 𝜏2. The
Yukawa matrices 𝑌𝐷, 𝑌𝑈, 𝑌𝐸 explicitly carry flavor indices 𝑖, 𝑗. After spontaneous symmetry breaking,
the Higgs acquires its vev and Dirac masses are induced𝑀 𝑖𝑗𝛹 = 𝑣√2 𝑌 𝑖𝑗𝛹 . (2.6)

These mass matrices are in general non-diagonal and chiral, unitary field rotations need to be applied
for the diagonalization and switch from the gauge basis to the mass basis𝛹 𝑖𝐿, 𝑅 → 𝑉 𝑖𝑗𝛹𝐿, 𝑅 𝛹 𝑗𝐿, 𝑅 . (2.7)

In the quark sector, four of these rotations exist, one for each up- and down-type and each LH and RH
field component. For the leptons there are three such rotations, since no RH neutrinos exist in the SM.
However, most of these rotations are unphysical. QCD, QED, as well as the neutral currents mediated
by the 𝑍–boson are not sensitive to these rotations. For QCD and QED only vector interactions exist
and 𝛹𝛾𝜇𝛹 = 𝛹𝐿𝛾𝜇𝛹𝐿 + 𝛹𝑅𝛾𝜇𝛹𝑅, such that the individual rotations drop out. In the case of the 𝑍
boson, the 𝑊 3𝜇 part of the interaction only couples to LH fermions, such that the rotation directly
cancels, whereas the 𝐵𝜇 part is again a vector interaction. For all of these interactions, the cancellation
only occurs because the gauge interaction is flavor blind, i.e. the gauge interaction obeys lepton and
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2.1 The Standard Model of particle physics

quark flavor universality as charges and representations are identical for all three generations.
Flavor changing interactions are, however, induced in the SM via charged currents interacting with

the 𝑊 ±–bosons ℒSM ⊃ 𝑒√2 sin 𝜃𝑊 (𝑊 +𝜇 𝑉𝑖𝑗𝑢𝑖𝐿𝛾𝜇𝑑𝑗𝐿 + 𝑊 −𝜇 𝑉 †𝑖𝑗𝑑𝑖𝐿𝛾𝜇𝑢𝑗𝐿) , (2.8)

where 𝑒 refers to the 𝑈(1)QED gauge coupling and the misalignment of the gauge and mass basis for
LH up- and down-type quarks becomes physical. The unitary matrix quantifying this misalignment is
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [133, 134]

𝑉 = 𝑉CKM = 𝑉 𝑢†𝐿 𝑉 𝑑𝐿 = ⎛⎜⎝𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏 ⎞⎟⎠ . (2.9)

The CKM matrix has four independent parameters, three mixing angles and one CP–violating phase.
Experimentally, one finds a strong hierarchy between the elements of the CKM matrix and it is
convenient to express in terms of the Wolfenstein parametrization

𝑉CKM = ⎛⎜⎜⎝ 1 − 𝜆22 𝜆 𝐴𝜆3 (𝜌 − i𝜂)−𝜆 1 − 𝜆22 𝐴𝜆2𝐴𝜆3 (1 − 𝜌 − i𝜂) −𝐴𝜆2 1 ⎞⎟⎟⎠ + 𝒪(𝜆4) , (2.10)

with expansion parameter 𝜆 ∼ 0.2. Numerical values for CKM parameters and sin 𝜃𝑊 are given in
App. A. From a theoretical point of view, neither the CKM hierarchy nor the hierarchy between the
measured quark masses with 𝑚𝑢 < 𝑚𝑑 ≪ 𝑚𝑠 ≪ 𝑚𝑐 < 𝑚𝑏 ≪ 𝑚𝑡 is understood, and therefore this
issue is referred to as the flavor puzzle of the SM, see e.g. Ref. [135].

While parameters of the CKM matrix can be extracted from measurements of flavor changing charged
currents (FCCCs), mediated by tree-level 𝑊 ± exchange, we learn that FCNCs are not induced at
tree level in the SM. Studies of FCNCs are therefore interesting for BSM physics searches, as they
test the quantum structure of the SM and are sensitive to scales much higher than the available
center-of-mass energies at current colliders. FCNC-induced decays are the main objective in this thesis.
In the down-type sector there are the 𝑏 → 𝑠, 𝑏 → 𝑑 and the 𝑠 → 𝑑 transitions, whereas in the up-sector𝑡 → 𝑐 and 𝑡 → 𝑢 transitions cannot easily be probed, as the top quark decays before hadronization.
Therefore, our main focus is on rare charm decays, induced by a 𝑐 → 𝑢 transition, see Chapters 3 to 5.
These are the unique up-type candidates to probe flavor in the SM and beyond. Ultimately, all of the
aforementioned FCNCs need to be analyzed to fully explore the quantum structure of quark flavor
physics. We will therefore globally investigate FCNCs with dineutrinos in Chapter 6.

In Fig. 2.1 we illustrate typical one-loop contributions to 𝑏 → 𝑠 (left) and 𝑐 → 𝑢 (right) FCNCs in the
SM. Differences between the up- and the down-sector loop only occur due to the internal quarks. This
has, however, a significant impact on the size of the contribution. Neglecting quark masses, the sum
over internal quarks leads to a sum of CKM factors that vanishes due to unitarity. This cancellation is

7



2 The Standard Model and effective field theories𝑏 𝑊𝑢, 𝑐, 𝑡 𝑠 𝑐 𝑊𝑑, 𝑠, 𝑏 𝑢
Figure 2.1: FCNCs in the SM for 𝑏 → 𝑠 (left) and 𝑐 → 𝑢 (right) transitions. Insertions of
CKM factors at every dot are understood.

referred to as the GIM mechanism [15]. The otherwise exact GIM cancellation of the amplitude is
broken by the differences in the quark masses. Therefore, down-type FCNCs are driven by the heavy
top-quark mass, whereas for up-type FCNCs the GIM mechanism is more efficient. For rare charm
transitions in particular, a generic 𝑐 → 𝑢 amplitude can be written as𝒜(𝑐 → 𝑢) ∼ 116𝜋2 𝑉 ∗𝑐𝑠𝑉𝑢𝑠 ⋅ ( 𝑚2𝑠𝑚2𝑊 − 𝑚2𝑑𝑚2𝑊 ) + 116𝜋2 𝑉 ∗𝑐𝑏𝑉𝑢𝑏 ⋅ ( 𝑚2𝑏𝑚2𝑊 − 𝑚2𝑑𝑚2𝑊 ) . (2.11)

In Eq. (2.11) the first term is GIM suppressed due to small differences between the strange and the
down quark mass. The second term suffers from a strong CKM suppression of order 𝑉 ∗𝑐𝑏𝑉𝑢𝑏 ∼ 𝒪(𝜆5)
and also includes the only involved CP–violating phase. Using masses from App. A, we obtain
Re[𝒜(𝑐 → 𝑢)] ∼ 5 ⋅ 10−9. In 𝑏 → 𝑠 a similar estimate yields Re[𝒜(𝑏 → 𝑠)] ∼ 10−3. We learn that
FCNCs are tiny in rare charm decays, however enhanced by QCD effects, discussed in the next sections.
In the down-type sector the GIM cancellation is lifted by the heavy top quark mass and therefore the
weak SM amplitude is significantly larger than in rare charm decays. BSM physics on the other hand is
not necessarily suffering from CKM and GIM suppression, and therefore searches in rare FCNC decays
are encouraged.

2.1.2 Motivation for physics beyond the Standard Model
Despite its success and the lack of direct discoveries of NP particles, the SM is not the fundamental
theory of nature. The first clear indication of BSM physics is the experimental observation of neutrino
oscillations [27] by the Sudbury Neutrino Observatory [31] and the Super-Kamiokande experiment [30].
Although not directly measured, the evidence for neutrino oscillations implies non-vanishing neutrino
masses, which is not possible within the SM, due to the lack of RH neutrinos. The mixing mechanism
of the different neutrino flavors can again be described by a mismatch of gauge and mass bases and is
encoded in the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [27–29] in analogy to the
CKM matrix in the quark sector.
There are several more shortcomings of the SM from cosmological observations. First of all, the

visible matter only amounts to 5 % of the energy budget of the universe. Larger amounts of this budget
are taken by dark matter and dark energy, both of which are unexplained within the SM. On top of that,
the Sakharov conditions [33] imply that the observed baryon asymmetry in the universe, i.e. the fact
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that we observe galaxies formed from matter and none from antimatter, is only achieved via processes in
the early universe that fulfill three conditions. The first is the violation of baryon number 𝐵, the second
is the violation of C- and CP–symmetry, and the last one are so-called out-of-thermal-equilibrium
processes. In order to achieve the observed baryon asymmetry of the universe, new sources of baryon-
or lepton-number violating processes as well as new sources of CP–violation are needed. Also cosmology
deals with effects of gravity at large scales, an interaction not included in the SM as a quantum theory.

A more phenomenological argument for BSM physics is connected to the flavor puzzle. Most of the
free parameters of the SM are part of the flavor sector. As such, a fundamental theory should be able
to explain the observed hierarchies between masses and CKM entries, rather than having them as free
and accidental parameters. Several BSM models are proposed, which incorporate these hierarchies
as flavor symmetries. Those BSM scenarios include minimal supersymmetric models [136], 𝑈(1)FN
Frogatt-Nielson extensions [137], discrete symmetries [138] and LQ–models [90, 139, 140].

The last motivation to further study BSM effects in flavor physics is the emergence of first hints for
NP in several 𝐵–decay observables and measurements of the muon anomalous magnetic moment.𝐵–decays have served as standard candles for the field of flavor physics ever since the planning and
operation of the 𝐵–factories Belle at KEKB in Tsukuba and BaBar at SLAC, see Ref. [141] for an
extensive overview. In recent years, the flavor physics program at the Large Hadron Collider (LHC)
in Geneva, mostly carried out by the LHCb experiment, as well as results from Babar and Belle
lead to the emergence of deviations in 𝑏 → 𝑠ℓ+ℓ− and 𝑏 → 𝑐ℓ− ̄𝜈ℓ induced observables and motivates
future flavor physics programs, see Ref. [63]. For the FCNC 𝑏 → 𝑠ℓ+ℓ−, suppressed branching ratio
measurements [38–41], as well as deviations in angular asymmetries [42–47] make up a first class of
observables which show deviations from the SM predictions. These measurements are, however, subject
to potentially sizable hadronic uncertainties, as discussed in Refs. [142–146]. Deviations in optimized
observables [147, 148] testing LFU are therefore even more intriguing [34–37]. Similarly, ratios of
FCCC 𝑏 → 𝑐ℓ− ̄𝜈ℓ branching ratios are put to test and also yield signs of LFU violation [149–155]. All
of these anomalies globally do not exceed a deviation at the level of ∼ 2 − 3𝜎, see for instance Ref. [55].

Looking at the SM prediction of the muon anomalous magnetic moment [53, 54] an even larger
deviation from the experimental average is observed, currently at the level of 4.2𝜎. The experimental
world average includes Run 1 of the Fermilab 𝑔 − 2 experiment [48–51], as well as the earlier BNL
measurement [52], which are in agreement with each other.

Until future clarification, either due to theory improvements or due to upcoming updated mea-
surements with a higher statistical significance, these hints will stay and provide guidance for model
building. Cross-checks with other flavor sectors will help to disentangle the nature of possible BSM
physics.

One necessity is to investigate FCNC decays in the up-type sector. Here, rare charm decays are the
ideal candidate to perform SM tests, which is demonstrated in later chapters of this work. We also
refer to Ref. [5] for a recent review.
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2 The Standard Model and effective field theories

2.2 Effective field theories

Due to the absence of direct evidence for BSM physics in high-energy measurements as of today
and the remarkable success of the SM, most models introducing NP particles are already tightly
constrained. This fact leads to a splitting of active research into two frontiers. One possibility is to
introduce weakly interacting massive particles (WIMPs) or even feebly interacting massive particles
(FIMPs) with light masses but tiny couplings, e.g. as dark matter candidates as in Refs. [156, 157]
and references therein. The second possibility is to introduce massive NP particles with masses well
separated from the electroweak scale (∼ 𝑚𝑊, 𝑚𝑍, 𝑚ℎ, 𝑚𝑡). In the second scenario, indirect searches
become crucial as the energy to directly produce these particles might not be available at the LHC.
Since ambiguities with several models explaining the same signatures in data cannot be avoided, a
global and model-independent framework is needed to interpret data and identify deviations from the
SM. This framework is represented by an EFT and allows to systematically decouple heavy degrees
of freedom from a description at lower energies given a sufficient separation of these scales, which is
known as the Appelquist-Carazzone decoupling theorem [158]. Within an EFT a large class of models
are tested simultaneously in a bottom-up approach. Instead of calculating contributions to several
observables within one model (top-down), deviations of large sets of experimental data from the SM
are tested model-independently and provide guidance for model-building. However, the bottom-up
approach requires to add all possible terms, while top-down requires only those that are induced at a
certain scale by the model.

As a historic example, Fermi’s theory for 𝛽–rays [159] can be understood as an EFT. In this theory,
the massive 𝑊– and 𝑍–bosons are integrated out and not present as dynamical degrees of freedom.
Instead, their effect is encoded in a coupling constant. The corresponding Hamiltonian for nuclear 𝛽
decay is 𝑑 → 𝑢𝑒 ̄𝜈𝑒 induced and given byℋFermi = −4𝐺𝐹√2 𝑉𝑢𝑑 𝐶 (�̄�𝛾𝜇𝑃𝐿𝑑)( ̄𝑒𝛾𝜇𝑃𝐿𝜈𝑒) + 𝒪 ( 𝑞2𝑚2𝑊 ) , (2.12)

with 𝑃𝐿 = 12(1 − 𝛾5) being the LH projector, 𝐶 the Wilson coefficient and 𝐺𝐹 = √2𝑔2𝑤8𝑚2𝑊 the Fermi
constant with the numerical value given in App. A. Since the full theory is known, 𝐶 is determined
by matching the full theory onto the EFT at the mass scale of the particle integrated out, here 𝑚𝑊.
Due to the normalization, 𝐶 = 1 at leading order (LO). The process of integrating out the 𝑊–boson is
shown diagramatically in Fig. 2.2.

The approach of writing down interactions as a sum of products of Wilson coefficients and effective
vertices as in Eq. (2.12) is formally referred to as the OPE and allows to systematically study all
possible interactions [124, 160]. Note that operators with higher mass dimension, i.e. involving more
particle fields, are suppressed by higher powers of the heavy mass scale, given by 𝑚𝑊 in Fermi’s theory.

Since EFTs are often used for decays of hadrons, the energy scale is set by the hadron mass, whereas
the Wilson coefficients are evaluated at the electroweak scale. Therefore, QCD corrections need to be
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2.2 Effective field theories

(a) (b)

𝑑 𝑢𝑞𝑊𝜈𝑒 𝑒
𝑑 𝑢𝜈𝑒 𝑒𝑞 ≪ 𝑚𝑊

Figure 2.2: Feynman diagrams for nuclear 𝛽 decay in (a) the full theory, i.e. the LO SM
and (b) Fermi’s theory.

accounted for. Consider the general effective Hamiltonian at dimension sixℋeff = 1𝛬2 ∑ 𝐶𝑖(𝜇)𝑂𝑖(𝜇) , (2.13)

where we introduced the renormalization scale 𝜇. We require our theory to be independent of this
scale, and therefore

d(𝐶𝑖(𝜇)𝑂𝑖(𝜇))
d log𝜇 = 0 = (d𝐶𝑖(𝜇)

d log𝜇 ) 𝑂𝑖(𝜇) + 𝐶𝑖(𝜇) d𝑂𝑖(𝜇)
d log𝜇 . (2.14)

Due to this requirement and the renormalization of operators

d𝑂𝑖(𝜇)
d log𝜇 = −𝛾𝑖𝑗𝑂𝑗 , (2.15)

which defines the anomalous dimension matrix (ADM) 𝛾𝑖𝑗, we find for the running of the Wilson
coefficients

d𝐶𝑖(𝜇)
d log𝜇 = 𝛾𝑗𝑖𝐶𝑗 = (𝛾𝑇)𝑖𝑗𝐶𝑗 . (2.16)

The ADM can be systematically calculated order by order in 𝛼𝑠 = 𝑔2𝑠/(4𝜋) as 𝛾𝑖𝑗(𝛼𝑠) = ∑𝑘 𝛾(𝑘)𝑖𝑗 (𝛼𝑠4𝜋 )𝑘,
yielding for the Wilson coefficients at LO⃗𝐶(𝜇) = ⃗𝐶(𝛬) exp( 𝛾(0)𝑇2𝛽(𝑛𝑓)0 ⋅ log 𝛼𝑠(𝛬)𝛼𝑠(𝜇) ) = ⃗𝐶(𝛬) (𝛼𝑠(𝛬)𝛼𝑠(𝜇) ) 𝛾(0)𝑇2𝛽(𝑛𝑓)0 , (2.17)
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with 𝛽(𝑛𝑓)0 = 11 − 23𝑛𝑓 the LO beta function for the running of 𝛼𝑠 and 𝑛𝑓 the number of active quarks,
i.e. 𝑛𝑓 = 5 for scales between the 𝑏–quark and the 𝑡-quark mass. The numerical value of 𝛼𝑠 at the
scale of the 𝑍–boson mass is given App. A. The solution in Eq. (2.17) is the leading logarithmic order
(LLO) and resums contributions of the form (𝛼𝑠 log 𝛬𝜇 )𝑛

to all orders (𝑛 ∈ ℕ0). At next-to-leading
logarithmic order (NLLO), contributions of the form 𝛼𝑠 ⋅ (𝛼𝑠 log 𝛬𝜇 )𝑛

are resummed and likewise for
higher orders.
For further details on the general concept of EFTs we refer to Refs. [124, 160–165].

2.2.1 Wilson coefficients at the charm mass scale
In this section, the calculation of SM Wilson coefficients for semileptonic 𝑐 → 𝑢ℓ+ℓ− transitions at the
charm mass scale 𝜇𝑐 ∼ 𝑚𝑐 is outlined. The presented results are based on Refs. [86, 87, 90] and the
PhD thesis [166], which is why we only give a brief outline and refer to the aforementioned references
for details on the calculation. The relevant effective Hamiltonian readsℋweak

eff ∣𝑚𝑊≥𝜇>𝑚𝑏 = −4 𝐺𝐹√2 ∑𝑞∈{𝑑, 𝑠, 𝑏} 𝑉 ∗𝑐𝑞𝑉𝑢𝑞 (𝐶1(𝜇)𝑃 (𝑞)1 + 𝐶2(𝜇)𝑃 (𝑞)2 ) , (2.18)

ℋweak
eff ∣𝑚𝑏>𝜇≥𝑚𝑐 = −4 𝐺𝐹√2 ∑𝑞∈{𝑑, 𝑠} 𝑉 ∗𝑐𝑞𝑉𝑢𝑞 (𝐶1(𝜇)𝑃 (𝑞)1 + 𝐶2(𝜇)𝑃 (𝑞)2 + 10∑𝑖=3 𝐶𝑖(𝜇)𝑃𝑖) , (2.19)

with a sum over light down-type fields. Above the 𝑏–quark mass scale, only the operators 𝑃 (𝑞)1, 2 contribute𝑃 (𝑞)1 = (�̄�𝐿𝛾𝜇𝑇 𝑎𝑞𝐿)(𝑞𝐿𝛾𝜇𝑇 𝑎𝑐𝐿) , 𝑃 (𝑞)2 = (�̄�𝐿𝛾𝜇𝑞𝐿)(𝑞𝐿𝛾𝜇𝑐𝐿) . (2.20)

At 𝑚𝑏 further operators 𝑃𝑖 with 𝑖 = 3, … 10 are also induced and are defined as𝑃3 = (�̄�𝐿𝛾𝛼𝑐𝐿) ∑{𝑞∶𝑚𝑞<𝜇}(𝑞𝛾𝛼𝑞) ,𝑃5 = (�̄�𝐿𝛾𝛼𝛾𝛽𝛾𝜌𝑐𝐿) ∑{𝑞∶𝑚𝑞<𝜇}(𝑞𝛾𝛼𝛾𝛽𝛾𝜌𝑞) ,𝑃7 = 𝑒𝑔2𝑠 𝑚𝑐 (�̄�𝐿𝜎𝜇𝜈𝑐𝑅) 𝐹𝜇𝜈 ,𝑃9 = 𝑒2𝑔2𝑠 (�̄�𝐿𝛾𝜇𝑐𝐿) (ℓ𝛾𝜇ℓ) ,

𝑃4 = (�̄�𝐿𝛾𝛼𝑇 𝑎𝑐𝐿) ∑{𝑞∶𝑚𝑞<𝜇}(𝑞𝛾𝛼𝑇 𝑎𝑞) ,𝑃6 = (�̄�𝐿𝛾𝛼𝛾𝛽𝛾𝜌𝑇 𝑎𝑐𝐿) ∑{𝑞∶𝑚𝑞<𝜇}(𝑞𝛾𝛼𝛾𝛽𝛾𝜌𝑇 𝑎𝑞) ,𝑃8 = 1𝑔𝑠 𝑚𝑐 (�̄�𝐿𝜎𝜇𝜈𝑇 𝑎𝑐𝑅) 𝐺𝑎𝜇𝜈 ,𝑃10 = 𝑒2𝑔2𝑠 (�̄�𝐿𝛾𝜇𝑐𝐿) (ℓ𝛾𝜇𝛾5ℓ) .
(2.21)

In Eqs. (2.20) and (2.21) the generators 𝑇 𝑎 correspond to 𝑆𝑈(3)𝐶, 𝑞𝐿/𝑅 = 12(1 ∓ 𝛾5)𝑞 are chiral quark
fields, 𝜎𝜇𝜈 = i2 [𝛾𝜇, 𝛾𝜈], and the electromagnetic and chromomagnetic field strength tensors 𝐹𝜇𝜈 and𝐺𝑎𝜇𝜈 are defined as in Eq. (2.2).

Contributions to the operators in Eq. (2.21) are not induced at the matching scale 𝜇 ∼ 𝑚𝑊 because
they are driven by penguin-type diagrams involving down-type quarks in the loop. For consistency,
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2.2 Effective field theories

light quark fields form the operators but do not contribute to Wilson coefficients, which is why effects
of down-type quark masses are set to zero and the GIM cancellation becomes exact. When masses
are kept finite, large logarithms of ratios involving light quark masses are induced [166, 167]. We also
neglect contributions from primed operators, obtained from Eqs. (2.20) and (2.21) by 𝐿 ↔ 𝑅, as the
chirality flip yields an 𝑚𝑢𝑚𝑐 suppression.

The calculation of SM Wilson coefficients is performed at (partly) next-to-next-to-leading logarithmic
order (NNLLO) in QCD,𝐶𝑖(𝜇) = 𝐶(0)𝑖 (𝜇) + 𝛼𝑠(𝜇)4𝜋 𝐶(1)𝑖 (𝜇) + (𝛼𝑠(𝜇)4𝜋 )2 𝐶(2)𝑖 (𝜇) + 𝒪(𝛼3𝑠(𝜇)) . (2.22)

The procedure is as follows. The Wilson coefficients 𝐶1 and 𝐶2 are calculated at the matching scale 𝜇𝑊
at next-to-next-to-leading order (NNLO). As a second step, the renormalization group (RG)–evolution
down to 𝑚𝑏 is performed at NNLLO in the RG-improved perturbation theory. A five-to-four flavor
matching is applied at next-to-leading order (NLO) at 𝜇𝑏, where the 𝑏–quark is integrated out. Parts
of the NNLO contributions are included as well. In this step, Wilson coefficients corresponding to
operators in Eq. (2.21) are induced. Finally, the RG–evolution of all Wilson coefficients is performed
again at NNLLO. In principle, the use of different orders in the individual steps is inconsistent, however,
missing NNLO calculations for the matching at 𝜇𝑏 are expected to be small [166].

Following these steps and implementing them in a Python script yields the Wilson coefficients
presented in Tab. 2.2, where 𝜇𝑐 ∈ [𝑚𝑐√2 , √2 𝑚𝑐] is taken as an scale uncertainty. In addition, we
explicitly checked that further scale uncertainties induced by the variations 𝜇𝑊 = [𝑚𝑊2 , 2 𝑚𝑊] and𝜇𝑏 = [𝑚𝑏2 , 2 𝑚𝑏] have negligible effect compared to the charm scale variation. In Tab. 2.2, the first
three columns show the NNLLO result for three different choices of the charm scale. The last column
shows the central value and symmetrized uncertainty of the respective Wilson coefficient. The obtained
values are in agreement with Refs. [86, 87, 90, 166]1. We provide the results of Tab. 2.2 split into LO,
NLO and NNLO contributions as in Eq. (2.22) in App. B.

For the phenomenological analysis of semileptonic 𝑐 → 𝑢ℓ+ℓ− processes, it is useful to define a
different and extended basis of operators. We useℋeff ⊃ −4𝐺𝐹√2 𝛼𝑒4𝜋 ∑𝑘 (𝐶𝑘𝑂𝑘 + 𝐶′𝑘𝑂′𝑘) , (2.23)

where 𝛼𝑒 = 𝑒2/(4𝜋) is the electromagnetic fine-structure constant and we refer to App. A for the

1There is a sign typo for 𝐶(1)6 in [166].
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Table 2.2: SM Wilson coefficients 𝐶𝑗(𝜇) for 𝑗 ∈ [1, 10] up to (partly) NNLO accuracy. In
the first three columns we display the values obtained for the three different choices of the
charm mass scale 𝜇 = √2 𝑚𝑐, 𝜇 = 𝑚𝑐 and 𝜇 = 𝑚𝑐/√2. The last column displays the central
value and symmetrized uncertainty.𝜇 = √2 𝑚𝑐 𝜇 = 𝑚𝑐 𝜇 = 𝑚𝑐/√2 𝐶𝑗 ± 𝛥𝐶𝑗𝐶1(𝜇) −0.5159 −0.6402 −0.7902 −0.64 ± 0.14𝐶2(𝜇) 1.0257 1.0349 1.0431 1.035 ± 0.009𝐶3(𝜇) −0.0037 −0.0084 −0.0184 −0.008 ± 0.007𝐶4(𝜇) −0.0583 −0.0953 −0.1649 0.095 ± 0.05𝐶5(𝜇) 0.0002 0.0005 0.0011 0.0005 ± 0.0005𝐶6(𝜇) 0.0002 0.0009 0.0031 0.0009 ± 0.0015𝐶7(𝜇) 0.0020 0.0038 0.0071 0.004 ± 0.003𝐶8(𝜇) 0.0013 −0.0024 −0.0046 −0.002 ± 0.002𝐶9(𝜇) −0.0083 −0.0133 −0.0214 −0.013 ± 0.006𝐶10(𝜇) 0.0000 0.0000 0.0000 0 ± 0

numerical value. The operators 𝑂𝑘 are given as follows𝑂7 = 𝑚𝑐𝑒 (𝑢𝐿𝜎𝜇𝜈𝑐𝑅)𝐹 𝜇𝜈 ,𝑂9 = (𝑢𝐿𝛾𝜇𝑐𝐿)(ℓ𝛾𝜇ℓ) ,𝑂10 = (𝑢𝐿𝛾𝜇𝑐𝐿)(ℓ𝛾𝜇𝛾5ℓ) ,𝑂𝑆 = (𝑢𝐿𝑐𝑅)(ℓℓ) ,𝑂𝑃 = (𝑢𝐿𝑐𝑅)(ℓ𝛾5ℓ) ,𝑂𝑇 = 12(𝑢𝜎𝜇𝜈𝑐)(ℓ𝜎𝜇𝜈ℓ) ,

𝑂′7 = 𝑚𝑐𝑒 (𝑢𝑅𝜎𝜇𝜈𝑐𝐿)𝐹 𝜇𝜈 ,𝑂′9 = (𝑢𝑅𝛾𝜇𝑐𝑅)(ℓ𝛾𝜇ℓ) ,𝑂′10 = (𝑢𝑅𝛾𝜇𝑐𝑅)(ℓ𝛾𝜇𝛾5ℓ) ,𝑂′𝑆 = (𝑢𝑅𝑐𝐿)(ℓℓ) ,𝑂′𝑃 = (𝑢𝑅𝑐𝐿)(ℓ𝛾5ℓ) ,𝑂𝑇 5 = 12(𝑢𝜎𝜇𝜈𝑐)(ℓ𝜎𝜇𝜈𝛾5ℓ) .
(2.24)

We have added (pseudo-)scalar operators 𝑂𝑆, 𝑃, tensor operators 𝑂𝑇 , 𝑇 5 and primed operators, as while
they do not receive contributions within the SM, they might be induced in BSM models. Again, the
primed operators are obtained by 𝐿 ↔ 𝑅. The connection of the results presented in Tab. 2.2 and the
basis in Eq. (2.24) reads𝐶eff7, 9 = 4𝜋𝛼𝑠 [𝑉 ∗𝑐𝑑𝑉𝑢𝑑 𝐶eff(𝑑)7, 9 (𝑞2) + 𝑉 ∗𝑐𝑠𝑉𝑢𝑠 𝐶eff(𝑠)7, 9 (𝑞2)] , (2.25)

where 𝐶eff(𝑞)7, 9 (𝑞2) for 𝑞 = 𝑑, 𝑠 are 𝑞2 dependent effective coefficients containing all contributions of the
operators in Eqs. (2.20) and (2.21) as well as two-loop virtual corrections from Ref. [86]. 𝑞2 denotes
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Figure 2.3: Real and imaginary parts of perturbative contributions to 𝐶eff7 (left), 𝐶eff9 (right)
in the SM as functions of 𝑞2 in blue and lilac, respectively. 𝐶eff9 (𝑞2) is not shown above𝑞2 ≳ 0.4GeV2 as it remains essentially constant. The uncertainty bands are mainly due to
the scale uncertainty 𝜇𝑐.

the dilepton invariant mass, i.e. the momentum transfer to the lepton pair in the 𝑐 → 𝑢ℓ+ℓ− process.
We give explicit expressions for 𝐶eff(𝑞)7, 9 (𝑞2) in App. B, however, we display the real and imaginary parts
of Eq. (2.25) here in Fig. 2.3.

No further perturbative contributions exist in the SM for rare charm decays at this level of precision.
NP contributions can be studied model-independently as additional contributions to Wilson coefficients
of the operators in Eq. (2.24). Fig. 2.3 demonstrates the effects of the severe GIM cancellation in
rare charm decays. Perturbative contributions to 𝐶7 do not exceed ∼ 10−3, and 𝐶9 is below 𝒪(0.01)
for most of the kinematic region and only reaches 𝒪(0.4) at a narrow peak in the very low 𝑞2 region.
Note that QED corrections at two-loop order affect the SM values of 𝐶9 and 𝐶10, however, naïve
estimates of these effects amount to 𝒪(3 %) changes for 𝐶9, while for 𝐶10 they imply the upper limit𝐶eff10 < 0.01 ⋅ 𝐶eff9 [166], which is at least one order below 𝐶eff7 .

2.2.2 Dineutrino Wilson coefficients

The situation further simplifies in the case of rare charm dineutrino transitions 𝑐 → 𝑢𝜈 ̄𝜈. In the
SM, no light RH neutrinos exist and therefore only two operators contribute for each neutrino flavor
combination 𝑖𝑗. Thus, the Hamiltonian is given byℋ𝜈𝑖 ̄𝜈𝑗

eff = −4 𝐺F√2 𝛼𝑒4𝜋 (𝒞𝑖𝑗𝐿 𝑄𝑖𝑗𝐿 + 𝒞𝑖𝑗𝑅𝑄𝑖𝑗𝑅) + h.c. , (2.26)
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with the four-fermion operators 𝑄𝑖𝑗𝐿 = (�̄�𝐿𝛾𝜇𝑐𝐿) ( ̄𝜈𝑗𝐿𝛾𝜇𝜈𝑖𝐿) ,𝑄𝑖𝑗𝑅 = (�̄�𝑅𝛾𝜇𝑐𝑅) ( ̄𝜈𝑗𝐿𝛾𝜇𝜈𝑖𝐿) , (2.27)

and where 𝑖, 𝑗 sum the neutrino flavors in the mass basis. No further dimension-six operators exist inℋ𝜈𝑖 ̄𝜈𝑗
eff . In Eq. (2.26) the normalization with 𝛼𝑒4𝜋 is used in order to easily compare toℋℓ𝑖 ̄ℓ𝑗

eff = −4 𝐺F√2 𝛼𝑒4𝜋 (𝒦𝑖𝑗𝐿 𝑂𝑖𝑗𝐿 + 𝒦𝑖𝑗𝑅𝑂𝑖𝑗𝑅) + h.c. , (2.28)

where the dilepton operators are then given by𝑂𝑖𝑗𝐿 = (�̄�𝐿𝛾𝜇𝑐𝐿) ( ̄ℓ𝑗𝐿𝛾𝜇ℓ𝑖𝐿) , (2.29)𝑂𝑖𝑗𝑅 = (�̄�𝑅𝛾𝜇𝑐𝑅) ( ̄ℓ𝑗𝐿𝛾𝜇ℓ𝑖𝐿) , (2.30)

and finally to connect with Eq. (2.23), we find the matching conditions𝒦𝑖𝑖𝐿 = 𝐶9 − 𝐶10 , (2.31)𝒦𝑖𝑖𝑅 = 𝐶′9 − 𝐶′10 , (2.32)

which holds for all 𝑖 = 𝑒, 𝜇, 𝜏. With these connections we see that 𝒦𝑖𝑖𝐿 is tiny in the SM and all other
contributions (𝑖 ≠ 𝑗) vanish. Especially, contributions to 𝒞𝑖𝑗𝐿, 𝑅 are absent, as they can only be induced
via 𝑍 penguins, which are GIM canceled for up-type FCNCs and no electromagnetic corrections exist,
due to the neutrinos in the final state. For the purpose of our analysis in Chapter 6, we will completely
neglect SM effects. The reason is that NP effects can be sizable and interference effects with the SM
contributions in 𝒦𝑖𝑖𝐿 are numerically small.

Of course the basis in Eq. (2.26) is enlarged if light RH neutrinos are taken into account. They form
the following additional operators𝑄𝑖𝑗𝐿𝑅 = (�̄�𝐿𝛾𝜇𝑐𝐿) ( ̄𝜈𝑗𝑅𝛾𝜇𝜈𝑖𝑅) ,𝑄𝑖𝑗𝑆 = (�̄�𝐿𝑐𝑅) ( ̄𝜈𝑗𝜈𝑖) ,𝑄𝑖𝑗𝑃 = (�̄�𝐿𝑐𝑅) ( ̄𝜈𝑗𝛾5𝜈𝑖) ,𝑄𝑖𝑗𝑇 = (�̄�𝜎𝜇𝜈𝑐) ( ̄𝜈𝑗𝜎𝜇𝜈𝜈𝑖) ,

𝑄𝑖𝑗𝑅𝑅 = (�̄�𝑅𝛾𝜇𝑐𝑅) ( ̄𝜈𝑗𝑅𝛾𝜇𝜈𝑖𝑅) ,𝑄′𝑖𝑗𝑆 = (�̄�𝑅𝑐𝐿) ( ̄𝜈𝑗𝜈𝑖) ,𝑄′𝑖𝑗𝑃 = (�̄�𝑅𝑐𝐿) ( ̄𝜈𝑗𝛾5𝜈𝑖) ,𝑄𝑖𝑗𝑇 5 = (�̄�𝜎𝜇𝜈𝑐) ( ̄𝜈𝑗𝜎𝜇𝜈𝛾5𝜈𝑖) . (2.33)

Clearly, the situation simplifies drastically in the SM, where only LH neutrinos build the operators.
We will investigate in Chapter 6 which implications can be drawn from the two-operator-scenario, and
how one can probe for the existence of the further operators in Eq. (2.33).
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2.2 Effective field theories

2.2.3 Standard model effective field theory and connections to other sectors
In this section, we briefly introduce the SMEFT. Here, all SM particles are kept as light particles and
appear in the operators. Assuming BSM physics to be sufficiently separated from the electroweak scale,
one is led to an EFT which is the formal model-independent generalization of the SM2. Consequently,
only NP contributions enter the Wilson coefficients in SMEFT and higher dimensional operators are
added to the SM Lagrangian ℒSMEFT = ℒSM + ∞∑𝑑=5

𝑛𝑑∑𝑖 𝐶(𝑑)𝑖𝛬𝑑−4 𝑄(𝑑)𝑖 , (2.34)

where 𝑑 denotes the dimension of the effective operator and 𝑛𝑑 is the number of independent operators
at dimension 𝑑. For each dimension 𝑑 the higher dimensional operators are suppressed by 𝑑 − 4 powers
of the NP scale 𝛬, such that it is sufficient to only consider the first appearing terms in the infinite sum.
A very clear distinction from the WET is that operators are required to be invariant under the full SM
gauge group. At dimension five, only a single operator exists [169], which can generate Majorana masses
for neutrinos and is lepton-number violating. Even-dimensional operators on the other hand conserve
both lepton and baryon number [170, 171]. The foundations of SMEFT dimension-six operators were
given in Ref. [172], however, an overcomplete set is given. The first basis without redundancies, now
referred to as the Warsaw basis, was given in Ref. [173]. Operators at higher dimensions are also known
and can be obtained by an algorithm known in the literature, see the recent review Ref. [174] and
references therein. The main argument to utilize the SMEFT framework is that it is model-independent
(assuming NP to be sufficiently heavy) and therefore able to test the SM in all sectors simultaneously
by performing a global fit of SMEFT Wilson coefficients. However, the prize to pay is the huge number
of free parameters. Although only 59 independent operators exist at dimension six, there are flavor
indices to be taken into account. In the most general case, operators with different flavor indices are
not connected, such that the number of free parameters at dimension six increases to 2499. In order
to make progress with limited data at hand, it is therefore necessary to investigate parts of the full
SMEFT parameter set. That is why we refrain from listing the full set of 59 operators at dimension
six. Instead, we quote operators relevant for this work, which are the four-fermion operators

ℒSMEFT ⊃ 𝐶(1)ℓ𝑞𝑣2 �̄�𝛾𝜇𝑄 �̄�𝛾𝜇𝐿 + 𝐶(3)ℓ𝑞𝑣2 �̄�𝛾𝜇𝜏𝑎𝑄 �̄�𝛾𝜇𝜏𝑎𝐿 + 𝐶ℓ𝑢𝑣2 ̄𝑈𝛾𝜇𝑈 �̄�𝛾𝜇𝐿 + 𝐶ℓ𝑑𝑣2 �̄�𝛾𝜇𝐷 �̄�𝛾𝜇𝐿 . (2.35)

Here, 𝜏𝑎 are the Pauli-matrices. We have dropped four flavor indices in each operator and Wilson
coefficient for readability, but note that these are crucial when effects of these operators are studied.
Although the ultimate goal would be a global fit to SMEFT Wilson coefficients including all 2499

free parameters (at dimension six), the SMEFT framework allows for fundamental and consistent
2A second implicit assumption in SMEFT is that the discovered Higgs boson is indeed a fundamental 𝑆𝑈(2)𝐿 particle.

An even more general ansatz relaxing this assumption is given by the so-called Higgs Effective Field Theory (HEFT),
see for example Ref. [168].
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2 The Standard Model and effective field theories

analyses already with a limited amount of available data. Furthermore, the SMEFT helps to correlate
different sectors and provides guidance for NP searches in flavor physics. As discussed in detail in
Chapter 6, the operators in Eq. (2.35) allow to connect different quark and lepton flavor sectors via
dineutrino observables.

2.3 Summary of standard model Wilson coefficients
To summarize the chapter, we collect SM contributions to Wilson coefficients for 𝑐 → 𝑢 FCNCs within
the different implementations. In the WET only 𝐶7 and 𝐶9 receive finite contributions. However, these
are negligibly small, see Fig. 2.3. We quote again𝐶eff7 (𝑞2) ≲ 5 × 10−3 ,𝐶eff9 (𝑞2 > 0.2GeV2) ≲ 5 × 10−2 . (2.36)

For dineutrino modes we work with𝒦𝑖𝑗𝐿 |SM = 𝒦𝑖𝑗𝑅|SM = 0 ∀𝑖, 𝑗 ∈ [1, 2, 3] , (2.37)

as SM effects are not within reach of current and (foreseeable) future flavor experiments. Lastly, we
note again that by construction SMEFT Wilson coefficients vanish in the absence of BSM physics, see
Eq. (2.34). As we have seen, this also holds in the WET for 𝑐 → 𝑢ℓ+ℓ− and 𝑐 → 𝑢𝜈 ̄𝜈 induced modes
to good approximation, but is different for down-type flavor transitions, see Secs. 6.3 and 6.4.
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3 Phenomenology of rare charm decays in the Standard
Model

We discuss the SM phenomenology of (differential) branching ratios and CP–asymmetries in rare charm
decay channels as well as CP–asymmetries in two-body hadronic 𝐷–meson decays. First, we give a
general overview of different concepts for the parametrization of hadronic matrix elements available
in the literature in Sec. 3.1. In Sec. 3.2 we turn to rare charm decays and discuss ℬ(𝐷0 → ℓ+ℓ−)
with ℓ = 𝑒, 𝜇. Sec. 3.3 contains the SM phenomenology for semileptonic 𝐷–meson decays such
as 𝐷+ → 𝜋+ℓ+ℓ−. Here, we discuss utilized form factors and SM contributions from intermediate
resonances, which turn out to dominate the differential branching ratio in the full phase space region
in semileptonic rare charm decays. We estimate and discuss (differential) branching ratios in the SM.
A similar strategy is utilized to obtain the SM phenomenology in semileptonic three- and four-body
decays of charmed baryons in Sec. 3.4. Finally, we discuss generalities as well as the SM phenomenology
of CP–asymmetries for the rare charm decay modes as well as for hadronic decays in Sec. 3.5.

3.1 Parametrization of non-perturbative hadronic matrix elements

As introduced in Sec. 2.2 the OPE leads to a factorization in Wilson coefficients and effective operators,
where the latter are split into lepton and quark currents. Effects from the lepton currents are calculated
perturbatively, whereas the quark currents are sandwiched between matrix elements of either a vacuum
state or a physical hadronic state and suffer from non-perturbative QCD dynamics. It is however useful
to exploit the Lorentz structure of hadronic matrix elements as well as symmetries of QCD such as parity
conservation and split contributions accordingly. This leads to a separation of effects into contributions
proportional to so-called decay constants and form factors. More details and numerical values for form
factors and decay constants of multiple (semi-)leptonic decay modes discussed throughout this thesis
are compiled in App. C. Here, we provide an overview of available approaches for the parametrization
and calculation of these hadronic matrix elements.
The easiest case is a matrix element involving a single hadronic state, as for instance appearing

in purely leptonic decays. This matrix element is proportional to a single non-perturbative factor,
which is referred to as the decay constant of the hadronic state. Exemplary, the decay constant of the𝐷0–meson is defined as ⟨0|𝑢𝛾𝜇𝛾5𝑐|𝐷0(𝑝)⟩ = −i𝑓𝐷𝑝𝜇 , (3.1)

where 𝑝𝜇 is the 𝐷0–meson’s four-momentum and only available kinematic variable. A tensor operator
cannot contribute, since no anti-symmetric tensor can be built from a single four-vector. For the
scalar contribution Eq. (3.1) can simply be multiplied with 𝑝𝜇 and the equations of motion (EOM)
of the involved quarks can be applied. Contributions of operators without 𝛾5 vanish, as the 𝐷0 is
parity-odd. Therefore, Eq. (3.1) applies to any pseudoscalar meson and no further non-perturbative
factor is needed. Following similar arguments, hadronic matrix elements involving more than one
hadronic state are written as linear combinations of available kinematic variables and form factors. For
example, for a transition 𝐷 → 𝑃 involving two pseudoscalars, as in 𝐷+ → 𝜋+ℓ+ℓ−, three independent
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3 Phenomenology of rare charm decays in the Standard Model

form factors, 𝑓+ ,0 ,𝑇(𝑞2), are needed to describe all hadronic matrix elements,⟨𝑃 (𝑘)|�̄�𝛾𝜇𝑐|𝐷(𝑝)⟩ = [(𝑝 + 𝑘)𝜇 − 𝑚2𝐷 − 𝑚2𝑃𝑞2 𝑞𝜇] 𝑓+(𝑞2) + 𝑞𝜇 𝑚2𝐷 − 𝑚2𝑃𝑞2 𝑓0(𝑞2) , (3.2)⟨𝑃 (𝑘)|�̄�𝜎𝜇𝜈(1 ± 𝛾5)𝑐|𝐷(𝑝)⟩ = −i (𝑝𝜇𝑘𝜈 − 𝑘𝜇𝑝𝜈 ± i 𝜖𝜇𝜈𝜌𝜎𝑝𝜌𝑘𝜎) 2𝑓𝑇(𝑞2)𝑚𝐷 + 𝑚𝑃 , (3.3)

where 𝑝, 𝑘 are the four-momenta of the 𝐷–meson and final state meson 𝑃, respectively, and 𝑞 = 𝑝 − 𝑘
is the four-momentum of the dilepton system. The dilepton invariant mass squared 𝑞2 will appear
frequently as an important kinematic variable and refers to the fraction of energy carried by the lepton
pair.
For a 𝑃1 → 𝑉 transition, with a vector meson 𝑉, seven independent form factors are sufficient to

describe all hadronic matrix elements, whereas the number further increases for baryon transitions𝐵1 → 𝐵2, where ten independent form factors are needed. We refer to App. C for explicit expressions.
For the estimation of decay constants and form factors three different approaches exist:

1) Fits to experimental data: Here, one has to assume that a certain semileptonic transition is
SM dominated. Then a direct fit of a form factor parametrization to data can be done. However,
we will mostly refuse to make use of this possibility, as we are interested in possible NP effects
and do not want to make strong assumptions.

2) Lattice QCD (LQCD): A straightforward approach towards the calculation of form factors
and decay constants is given by LQCD. Here, QCD is simulated on a discrete lattice and within
a finite volume instead of the continuous and infinite space-time. This approach is limited by
computing power due to discretization uncertainties. As a general feature, the simulation works
better if the participating quarks are slow and do not leave the finite volume of the simulation.
LQCD is therefore expected to work best at high 𝑞2, or synonymously at low hadronic recoil.

3) Light-cone sum rules (LCSR): LCSR are obtained by considering the correlator of the time-
ordered product of two quark currents evaluated between the final state on-shell meson and the
vacuum [142]. This method is complementary to the LQCD approach as the convergence of the
Light-cone expansion is limited and works below a certain 𝑞2 value, and therefore is expected to
be applicable especially at low 𝑞2 values, i.e. large hadronic recoil.

Due to the complementarity of the different approaches it is customary to combine input from LQCD and
LCSR and perform fits for the form factors, see for instance Ref. [144] for modes induced by 𝑏 → 𝑠 and𝑏 → 𝑑 quark transitions. Further combinations and averages are provided by the HFLAV collaboration,
see Refs. [175, 176] for the last two publications and updates at https://hflav.web.cern.ch/.

Despite the increasing effort, form factors often pose the dominant source of theoretical uncertainty
in both SM and BSM predictions of semileptonic baryon and meson decays with a typical uncertainty
of 𝒪(10 %) originating from the non-perturbative hadronic matrix elements.

In the following sections we explicitly provide information for form factors and decay constants used
in our analyses either directly in the main text or in App. C. We also focus on rare charm decays from
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3.2 Leptonic decay 𝐷0 → ℓ+ℓ−
now on. However, rare decays in other flavor sectors, including form factors and decay constants for𝑏 → 𝑠, 𝑏 → 𝑑, 𝑠 → 𝑑 transitions, will become relevant in Chapter 6 and are therefore also contained in
App. C.

3.2 Leptonic decay 𝐷0 → ℓ+ℓ−
The simplest rare charm decay is the purely leptonic decay of a 𝐷0–meson 𝐷0 → ℓ+ℓ−. In agreement
with Ref. [177] and for vanishing up-quark mass we obtain for the branching ratio in terms of Wilson
coefficients ℬ(𝐷0 → ℓ+ℓ−) = 𝜏𝐷 𝐺2𝐹𝛼2𝑒𝑚5𝐷𝑓2𝐷64𝜋3𝑚2𝑐 √1 − 4𝑚2ℓ𝑚2𝐷 [(1 − 4𝑚2ℓ𝑚2𝐷 ) |𝐶𝑆 − 𝐶′𝑆|2+ ∣𝐶𝑃 − 𝐶′𝑃 + 2𝑚ℓ𝑚𝑐𝑚2𝐷 (𝐶10 − 𝐶′10)∣2] , (3.4)

where 𝜏𝐷 is the lifetime of the 𝐷0–meson and 𝑓𝐷 its decay constant defined in Eq. (3.1).
Here, the lepton currents of the respective operators factorize. Due to the helicity suppression, the

axial vector contributions from 𝐶(′)10 are 𝑚2ℓ suppressed with respect to contributions from (pseudo-)scalar
coefficients. Sec. 2.3 implies 𝐶(′)𝑃 ∼ 𝐶(′)𝑆 ∼ 𝐶(′)10 ∼ 0, so that SM contributions to the leptonic decay are
strongly suppressed. In fact, the dominant SM effect for the muon final state is estimated to stem
from an intermediate two-photon contribution and scales as [98]ℬ(𝐷0 → 𝜇+𝜇−) ∼ 2.7 ⋅ 10−5 ⋅ ℬ(𝐷0 → 𝛾𝛾) . (3.5)

Using the current upper limit ℬ(𝐷0 → 𝛾𝛾) < 8.5 ⋅ 10−7 at 90 % confidence level (C.L.) from the Belle
collaboration [178], SM effects are not expected above 𝒪(10−11). On the other hand the direct search
by LHCb [73] resulted in an upper limit of ℬ(𝐷0 → 𝜇+𝜇−) < 6.2 ⋅ 10−9 at 90 % C.L., which already
constrains the involved Wilson coefficients in Eq. (3.4). An in-depth discussion of all available bounds
on BSM Wilson coefficients is given in Sec. 4.1.

3.3 Semileptonic meson decays 𝐷 → 𝑃 ℓ+ℓ−
The first rare charm decays without helicity suppression of (axial) vector operators are the semileptonic
decays 𝐷 → 𝜋ℓ+ℓ− and 𝐷+𝑠 → 𝐾+ℓ+ℓ+ where for the 𝐷 → 𝜋 transition both charged and neutral modes
are possible. In this section, we study SM contributions to these three decay modes. First we discuss
external input for the form factors in Sec. 3.3.1, then we model long-range QCD resonance contributions
from intermediate vector and pseudoscalar states, which turn out to dominate the short-distance effects
discussed in Sec. 2.2. In Sec. 3.3.3 the resulting phenomenology of both short- and long-distance SM
contributions are discussed.
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Figure 3.1: The 𝐷 → 𝜋 form factors 𝑓+, 𝑓0, 𝑓𝑇 from LQCD [179, 180] in blue, red and
green, respectively, and 𝑓+ from HFLAV 2017 [175] in gray, solid lines are wrapped by their1𝜎 uncertainty bands.

3.3.1 Form factors

For the form factors we follow Refs. [179, 180], where LQCD results are reported for 𝐷 → 𝜋 transition,
the three relevant form factors, 𝑓+ ,0 ,𝑇(𝑞2), are defined in Eq. (3.2) and Eq. (3.3). The authors in
Refs. [179, 180] make use of the so-called 𝑧–expansion, for 𝑖 = +, 0, 𝑇,𝑓𝑖(𝑞2) = 11 − 𝑃𝑖 𝑞2 [𝑓𝑖(0) + 𝑐𝑖 (𝑧(𝑞2) − 𝑧(0)) (1 + 𝑧(𝑞2) + 𝑧(0)2 )] , (3.6)

where𝑧(𝑞2) = √𝑡+ − 𝑞2 − √𝑡+ − 𝑡0√𝑡+ − 𝑞2 + √𝑡+ − 𝑡0 , 𝑡± = (𝑚𝐷 ± 𝑚𝑃)2 , 𝑡0 = (𝑚𝐷 + 𝑚𝑃)(√𝑚𝐷 − √𝑚𝑃)2 . (3.7)

The numerical values of the parameters 𝑓𝑖(0), 𝑐𝑖 and 𝑃𝑖 along with their uncertainties and covariance
matrices are given in [179, 180] and collected for completeness in App. C. Taking into account these
correlations, Fig. 3.1 shows the 𝐷 → 𝜋 form factors within their 1𝜎 uncertainties. Also shown in gray
is 𝑓+ obtained from the HFLAV collaboration as of 2017 [175], where fit parameters are extracted
from data on semileptonic 𝐷 → 𝜋ℓ𝜈 decays from several experiments. Fig. 3.1 clearly shows the
improvements in form factor extractions in the past few years. In the most recent HFLAV update
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3.3 Semileptonic meson decays 𝐷 → 𝑃ℓ+ℓ−
several lattice calculations are presented and an average can even improve the uncertainty, see Table
280 in Ref. [176] and proves good agreement between the lattice collaborations and between lattice
values and results extracted from experimental data. However, since as of today the updated results
are only available at 𝑞2 = 0, we stick to the results from Refs. [179, 180]. Furthermore, we assume
the 𝐷𝑠 → 𝐾 and 𝐷 → 𝜋 form factors to be the same, which is motivated by 𝑈- and 𝑉-spin symmetry
and supported by the lattice study [181]. The 𝐷0 → 𝜋0 form factors receive an additional isospin
factor 𝑓𝑖 → 𝑓𝑖/√2. Here and in the remainder of this thesis we use flavor symmetries of light quarks
such as isospin (𝑢 ↔ 𝑑), 𝑈–spin (𝑠 ↔ 𝑢) and 𝑉–spin (𝑠 ↔ 𝑑) to relate form factors. They are 𝑆𝑈(2)
subgroups of the larger 𝑆𝑈(3)𝐹 symmetry, which holds in the limit of degenerate masses for the light
quarks 𝑢, 𝑑, 𝑠. At LO this symmetry holds, as effects of the spectator quarks are neglected in naïve
factorization. We remark that isospin and 𝑈–, 𝑉–spin breaking effects are induced by mass differences
and 𝑈(1)EM effects and can amount to few% and 𝒪(20 %), respectively.
3.3.2 Modeling QCD resonances

The results of the previous sections include perturbative short-distance SM contributions in naïve
factorization. Here, contributions are expressed as products of Wilson coefficients and form factors.
BSM effects can also be probed within this framework via additional contributions to Wilson coefficients.
However, further SM contributions need to be taken into account, which are then labeled as non-
factorizable contributions. These include in general annihilation, spectator scattering and form-factor
correcting contributions. It is not possible to calculate these contributions from first principles as the
rather light charm quark mass close to the scale of QCD confinement 𝑚𝑐𝛬QCD

∼ 1 prohibits a systematic
expansion within the QCD Factorization (QCDF) approach [102]. There are two different possibilities
to deal with this obstacle, both of which are discussed in the remainder of this subsection.

The first approach is taking into account vector meson dominance (VMD), where only contributions
of intermediate (vector) resonances are modeled as they are expected to dominate the non-perturbative
effects. This approach follows the lines of Refs. [91–94, 96] and is also applied in Ref. [90]. Schematically,
these contributions proceed via 𝐷 → 𝑃𝑀(→ 𝛾∗ → ℓ+ℓ−) with 𝑀 being one of the light vector resonances𝑀 = 𝜌, 𝜔, 𝜙 or pseudoscalar resonances 𝑀 = 𝜂, 𝜂′. Such a cascade factorizes in the narrow width
approximation 𝛤𝑀 ≪ 𝑚𝑀 as [91, 182]ℬ(𝐷 → 𝑃𝑀 → 𝑃ℓ+ℓ−) = ℬ(𝐷 → 𝑃𝑀) ⋅ ℬ(𝑀 → ℓ+ℓ−) . (3.8)

Eq. (3.8) is reproduced by a simple phenomenological ansatz in terms of a Breit-Wigner contribution
to the decay amplitude for vector resonances

−i𝒜|𝑀 = 𝐺𝐹 𝛼𝑒2√2𝜋 𝑎𝑀 exp(i𝛿𝑀)𝑞2 − 𝑚2𝑀 + i𝑚𝑀𝛤𝑀 ℓ(𝑝+)/𝑝𝐷ℓ(𝑝−) , (3.9)
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and for pseudoscalar resonances−i𝒜|𝑀 = 𝐺𝐹 𝛼𝑒2√2𝜋 𝑎𝑀 exp(i𝛿𝑀)𝑞2 − 𝑚2𝑀 + i𝑚𝑀𝛤𝑀 ℓ(𝑝+)𝛾5ℓ(𝑝−) , (3.10)

where 𝑎𝑀 is a positive real fit parameter fixed by experimental input and Eq. (3.8). 𝑝+ and 𝑝− are
the four-momenta of the two leptons implying 𝑝+ + 𝑝− = 𝑞 and 𝛿𝑀 is an unknown strong phase. Now,
since these amplitudes enter on top of the perturbative contributions it is convenient to include all
effects according to the lepton currents compactly as𝐶𝑅9 (𝑞2) = 𝑎𝜌𝑒i 𝛿𝜌( 1𝑞2 − 𝑚2𝜌 + i𝑚𝜌𝛤𝜌 − 13 1𝑞2 − 𝑚2𝜔 + i𝑚𝜔𝛤𝜔 ) + 𝑎𝜙𝑒i 𝛿𝜙𝑞2 − 𝑚2𝜙 + i𝑚𝜙𝛤𝜙 ,𝐶𝑅𝑃 (𝑞2) = 𝑎𝜂𝑒i 𝛿𝜂𝑞2 − 𝑚2𝜂 + i𝑚𝜂𝛤𝜂 + 𝑎𝜂′𝑞2 − 𝑚2𝜂′ + i𝑚𝜂′𝛤𝜂′ . (3.11)

By doing so, effects from Eqs. (3.9) and (3.10) are explicitly scaled with the form factors entering𝐶9 and 𝐶𝑃 contributions and therefore further increase the associated uncertainties1. This procedure
is conservative as the 𝑎𝑀 factors are fixed only at a single 𝑞2 point (𝑞2 = 𝑚2𝜙 for 𝑎𝜙) and the 𝑞2
dependence is unknown, whereas the 𝑞2 behavior induced by the form factors is modest, as apparent
from Fig. 3.1. In Eq. (3.11) the 𝜌 and the 𝜔 contributions are related via isospin 3 𝑎𝜔 = 𝑎𝜌 to reduce
the number of parameters in accordance with Refs. [90, 93, 96]. 𝑆𝑈(3)𝐹 further relates the strong
phases, which implies the minus sign between the 𝜌 and the 𝜔 contributions and predicts |𝛿𝜌 − 𝛿𝜙| = 𝜋,
see Ref. [96]. Although very naïve and data-driven, this approach reproduces the anticipated VMD
and properties of the involved resonances. Most importantly, long-distance effects are induced by
QCD×QED and included as effective contributions to the Wilson coefficients 𝐶9 and 𝐶𝑃. Using
experimental input for the involved masses, widths, and branching ratios in Eqs. (3.8), (3.11), which
are collected in App. A, and the differential decay distribution from App. E.1 we can extract the 𝑎𝑀
parameters for all resonances and all 𝐷 → 𝑃ℓ+ℓ− modes for the muon final state ℓ = 𝜇. This is done
by separately including one resonance at a time. The results are compiled in Tab. 3.1. For 𝑎𝜂′ we only
quote an estimate, since ℬ(𝜂′ → 𝜇+𝜇−) is not measured, see App. A.
Since the last update of Ref. [1] experimental results for ℬ(𝐷+ → 𝜋+𝜙), ℬ(𝐷+𝑠 → 𝐾+𝜂), ℬ(𝐷+𝑠 →𝐾+𝜂′) and ℬ(𝐷+𝑠 → 𝐾𝜔) were updated in Ref. [184]. Except for negligibly small changes, the values

in Tab. 3.1 are unchanged with respect to results presented in Ref. [1]. With these updates direct
calculations of 𝑎𝜔 yield ratios 𝑎𝜌/𝑎𝜔 = 0.05, 0.17 and 0.17 for 𝐷0 → 𝜋0, 𝐷+ → 𝜋+ and 𝐷+𝑠 → 𝐾+,
respectively, which is below the expected isospin limit 𝑎𝜌/𝑎𝜔 = 13 . Uncertainties on 𝑎𝑀 parameters can
further be reduced in the future with improved measurements of hadronic branching ratios ℬ(𝐷 → 𝜋𝑀)
and ℬ(𝐷𝑠 → 𝐾𝑀), but their numerical impact is small as long as the strong phases 𝛿𝑀 remain unknown

1One has to be careful when comparing the obtained 𝑎𝑀 factors with the literature. For instance in Ref. [183] the
resonances are also scaled with the form factors, however 𝑎𝑀 parameters are used from Refs. [91, 92], where the
parameters are fitted without the additional form factor scaling.
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3.3 Semileptonic meson decays 𝐷 → 𝑃ℓ+ℓ−
Table 3.1: Resulting phenomenological resonance parameters 𝑎𝑀 (in GeV2) for 𝐷+ →𝜋+𝜇+𝜇−, 𝐷0 → 𝜋0𝜇+𝜇− and 𝐷+𝑠 → 𝐾+𝜇+𝜇−. They are extracted from experimental
measurements of ℬ(𝐷 → 𝜋𝑀), ℬ(𝐷𝑠 → 𝐾𝑀) and ℬ(𝑀 → 𝜇+𝜇−) where 𝑀 denotes one of
the resonances 𝜌, 𝜙, 𝜂, 𝜂′.𝑎𝜌 𝑎𝜙 𝑎𝜂 𝑎𝜂′𝐷+ → 𝜋+ 0.18 ± 0.02 0.23 ± 0.01 (5.7 ± 0.4) × 10−4 ∼ 8 × 10−4𝐷0 → 𝜋0 0.86 ± 0.04 0.25 ± 0.01 (5.3 ± 0.4) × 10−4 ∼ 8 × 10−4𝐷+𝑠 → 𝐾+ 0.49 ± 0.04 0.07 ± 0.01 (5.6 ± 0.4) × 10−4 ∼ 9 × 10−4

and need to be varied within −𝜋 < 𝛿𝑀 ≤ 𝜋.
A second approach for modeling the long-range dynamics in rare charm decays is taken in Ref. [104]

for 𝐷 → 𝜋ℓ+ℓ−, which further improves the results of Ref. [102] for 𝐷 → 𝜌ℓ+ℓ−. Here, the authors
obtain the resonance contributions via a dispersion relation, based on Ref. [185]. The parameters of
their model are extracted from 𝑒+𝑒− → (hadrons) data and similar branching ratios as in Eq. (3.8).
Although this approach might be more advanced than the first one from a theoretical perspective, it
also relies on experimental input, even introduces more model parameters and does not include effects
of the pseudoscalar resonances 𝜂, 𝜂′ [104]. In the end both approaches result in similar branching ratio
predictions, which is discussed in the next section. In agreement with Ref. [104], we conclude that
none of the aforementioned resonance models needed for the description of 𝐷 → 𝜋ℓ+ℓ− and other rare
charm decays is completely sound from a theoretical perspective. Later sections of this thesis, however,
demonstrate that this resonance pollution does not hamper the possibility to test NP in rare charm
decays.

3.3.3 Phenomenology

With relevant form factors as well as short- and long-distance contributions at hand, we are able to
discuss the (differential) branching ratio of 𝐷 → 𝑃ℓ+ℓ− decays in the SM. The decay is described by a
double differential distribution [177]

d2𝛤
d𝑞2d cos 𝜃ℓ = 𝑎(𝑞2) + 𝑏(𝑞2) cos 𝜃ℓ + 𝑐(𝑞2) cos2 𝜃ℓ , (3.12)

where 𝜃ℓ is the angle between the momenta of the ℓ− and the final state meson 𝑃 in the dilepton rest
frame. Angular observables are built from the 𝑞2 depending factors 𝑎(𝑞2), 𝑏(𝑞2), 𝑐(𝑞2) and will be
discussed in the SM and beyond in Sec. 5.1.1. Here, we discuss the 𝑞2 differential decay distribution,
obtained via cos 𝜃ℓ integration within the allowed range −1 ≤ cos 𝜃ℓ ≤ 1∫1−1 d2𝛤

d𝑞2d cos 𝜃ℓd cos 𝜃ℓ = d𝛤
d𝑞2 = 2 ⋅ (𝑎(𝑞2) + 𝑐(𝑞2)3 ) . (3.13)
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3 Phenomenology of rare charm decays in the Standard Model

Including only SM contributions, we obtain in agreement with Refs. [90, 166, 177]

d𝛤
d𝑞2 = 𝐺2𝐹𝛼2𝑒𝛽ℓ1024𝜋5𝑚3𝐷 √𝜆𝐷𝑃 ⋅{23𝜆𝐷𝑃 (1 + 2𝑚2ℓ𝑞2 ) 𝑓2+ ∣𝐶eff9 + 𝐶𝑅9 + 𝐶eff7 2𝑚𝑐𝑚𝐷 + 𝑚𝑃 𝑓𝑇𝑓+ ∣2+ 𝑞2𝑚2𝑐 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20 |𝐶𝑅𝑃 |2} , (3.14)

with 𝜆𝐷𝑃 = 𝜆(𝑚2𝐷, 𝑚2𝑃, 𝑞2) = 𝑚4𝐷 +𝑚4𝑃 +𝑞4 −2𝑚2𝐷 𝑚2𝑃 −2𝑚2𝐷 𝑞2 −2𝑚2𝑃 𝑞2, 𝜆(𝑎, 𝑏, 𝑐) the usual Källén
function and 𝛽ℓ = √1 − 4𝑚2ℓ𝑞2 . The full distribution in terms of all Wilson coefficients can be found in
App. E.1. The only difference between the three different modes 𝐷+ → 𝜋+ℓ+ℓ−, 𝐷0 → 𝜋0ℓ+ℓ− and𝐷+𝑠 → 𝐾+ℓ+ℓ− is the values for 𝑚𝐷, 𝑚𝑃 and the form factors. To obtain the differential branching
ratio, also the different lifetimes 𝜏𝐷 need to be taken into account.
In Fig. 3.2 we show the differential branching ratios dℬ

d𝑞2 = 𝜏𝐷 ⋅ d𝛤
d𝑞2 for 𝐷+ → 𝜋+𝜇+𝜇− (left plot)

and 𝐷+𝑠 → 𝐾+𝜇+𝜇− (right plot). We use Eq. (3.14) with the resonance contributions from Eq. (3.11)
and 𝑎𝑀 parameters collected in Tab. 3.1, shown in orange, as well as the perturbative contributions𝐶eff7, 9 as discussed in Sec. 2.3, shown in blue. Main sources of uncertainties are shown as bands and
stem from form factors as well as strong phases −𝜋 < 𝛿𝑀 ≤ 𝜋 for the resonant contributions and 𝜇𝑐
scale variation for the non-resonant contributions. For the resonant contribution, the solid line shows
the evaluation at central values and for fixed strong phases 𝛿𝜌 = 0 and 𝛿𝜙 = 𝜋 consistent with the𝑆𝑈(3)𝐹 limit |𝛿𝜌 − 𝛿𝜙| = 𝜋. The dashed solid line shows the scenario with 𝛿𝜌 = 𝛿𝜙 = 0 for comparison.
Clearly, the resonances yield contributions several orders above the perturbative SM calculation in the
whole allowed kinematic region. Perturbative contributions are therefore negligible for the estimation
of the SM branching ratios and hence branching ratio measurements do not probe perturbative effects.
This situation is in stark contrast to similar rare decays in the beauty sector. Here, perturbative
contributions dominate for most of the available phase space and resonance effects are avoided by
appropriate selection criteria, however are also blocking the road to ultimate precision [63]. The
fundamental difference between the up- and down-sectors in this respect is the GIM mechanism, which
is lifted by the heavy top quark mass in down-type processes, however highly effective for up-type
FCNCs such as rare charm decays.
We also learn from Fig. 3.2 that uncertainties in the modeling of resonances, mainly driven by

the unknown strong phases 𝛿𝑀, are huge and very sensitive to interference effects, as apparent from
different behavior in low and high 𝑞2 regions for 𝐷 → 𝜋 and 𝐷𝑠 → 𝐾 transitions. The different
hierarchy between 𝑎𝜌 and 𝑎𝜙 from Tab. 3.1 leads to larger uncertainties for the low 𝑞2 region up to the𝜌/𝜔 peak for 𝐷 → 𝜋 and a rather stable behavior for 𝑞2 > 𝑚2𝜙, whereas the situation is the opposite
for 𝐷𝑠 → 𝐾. This sensitivity to interference effects can only be reduced with better knowledge of the
resonance model parameters, which can only be achieved via improved data in the future. Effects from
the pseudoscalar resonances 𝜂, 𝜂′ on the other hand are negligible for the calculation of the branching
ratio due to their small widths and only have an influence exactly at 𝑞2 = 𝑚2𝜂 and 𝑞2 = 𝑚2𝜂′ .
Due to the sizable uncertainties, the branching ratio cannot be reliably predicted. In order to

compare the predictions in Ref. [104] with the resonance model in Eq. (3.11) and with limits from
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3.3 Semileptonic meson decays 𝐷 → 𝑃ℓ+ℓ−
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Figure 3.2: Resonant (orange) and non-resonant (blue) contributions to the differential
branching ratios of the rare charm decays 𝐷+ → 𝜋+𝜇+𝜇− (left plot) and 𝐷+𝑠 → 𝐾+𝜇+𝜇−
(right plot) in the SM. The band widths show theoretical uncertainties of resonance parameters,𝜇𝑐 variation and hadronic form factors and solid (dashed) lines show the evaluation for
central values of input and fixed strong phases, see main text.

experimental searches, we integrate the orange band from Fig. 3.2 to give a rough estimate. However,
since the model is data-driven we do not claim a central value with uncertainties and only provide the
order of magnitude. We exemplary compare numbers for all three decay modes for the experimentally
defined regions

• high 𝑞2 region: (1.25GeV)2 ≤ 𝑞2 ≤ (𝑚𝐷 − 𝑚𝑃)2 ,
• low 𝑞2 region: (0.25GeV)2 ≤ 𝑞2 ≤ (0.525GeV)2 ,

and collect our estimate, the prediction from Ref. [104] and the 90 % C.L. upper limits in Tab. 3.2.
From Tab. 3.2 we learn the following

• Although only available for 𝐷+ → 𝜋+𝜇+𝜇− we conclude that the simple resonance model is in
agreement with the approach followed in Ref. [104] within uncertainties and only experimental
input will help to disentangle and improve the resonance behavior.

• For 𝐷+ → 𝜋+𝜇+𝜇− the experimental upper limits are one order of magnitude away from the
predictions in this work and Ref. [104], and therefore close to observation. In Ref. [76] an improved
upper limit ℬ(𝐷+ → 𝜋+𝜇+𝜇−) < 6.7×10−8 at 90 % C.L. for the full 𝑞2 region is already reported,
however not used here, see next point.

• Experimental upper limits are reported for the full 𝑞2 region, although the resonance region,
roughly from the 𝜂 mass up to the 𝜙, is cut out in the analyses. The signal events in the low 𝑞2
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3 Phenomenology of rare charm decays in the Standard Model

Table 3.2: Comparison of integrated branching ratio predictions for the resonant SM in
this work and Ref. [104] with the 90 % C.L. upper limits for the high and low 𝑞2 regions𝑞2 > (1.25GeV)2 and (0.25GeV)2 ≤ 𝑞2 ≤ (0.525GeV)2. † marked upper limits are only
available for the full 𝑞2 region, see main text.

mode and 𝑞2 bin This work Ref. [104] 90 % C.L. upper limitℬ(𝐷+ → 𝜋+𝜇+𝜇−) × 109
high 𝑞2 0.3 … 3 2.7+4.0−2.6 26 [75]
low 𝑞2 0.1 … 3 8.1+5.9−6.1 20 [75]ℬ(𝐷0 → 𝜋0𝜇+𝜇−) × 109
high 𝑞2 0.1 … 2 - 1.8 ⋅ 105 † [186]
low 𝑞2 3 … 6 - 1.8 ⋅ 105 † [186]ℬ(𝐷+𝑠 → 𝐾+𝜇+𝜇−) × 109
high 𝑞2 0.03 … 0.3 - 140 † [76]
low 𝑞2 3 … 4 - 140 † [76]

and high 𝑞2 regions are extracted and then extrapolated to full 𝑞2. Since the individual upper
limits are not available, it is not possible to compare the branching ratio estimates.2

Note that instead of same flavor charged leptons in the final state also LFV modes and dineutrino
modes can be studied. The former are forbidden in the SM and discussed as SM null tests in Sec. 5.4,
the latter are discussed separately in Chapter 6.

3.4 Rare charm baryon decays

In this section, we study semileptonic decays of charmed baryons as an extension of analyses of charmed
meson decays in the previous section and Refs. [88, 90]. The motivation to study baryons instead of
mesons is complementarity. Due to the enriched spin structure more combinations of Wilson coefficients
appear as well as an increased number of angular observables.
The lightest charmed baryon is the 𝛬𝑐 with a mass of 𝑚𝛬𝑐 ∼ 2.3GeV and therefore the easiest

semileptonic rare charm baryon decay is 𝛬𝑐 → 𝑝ℓ+ℓ−. However, more possibilities to test the 𝑐 → 𝑢ℓ+ℓ−
quark transition in baryon decays exist. In total, we identify five three-body modes 3𝛬+𝑐 → 𝑝ℓ+ℓ− , 𝛯+𝑐 → 𝛴+ℓ+ℓ− , 𝛯0𝑐 → 𝛴0ℓ+ℓ− 𝛯0𝑐 → 𝛬0ℓ+ℓ− , 𝛺0𝑐 → 𝛯0ℓ+ℓ− , (3.15)

2For future analyses we suggest to quote either the extrapolation factor or limits on individual bins as in Ref. [75].
3Two further decays are presumably possible 𝛯′+𝑐 → 𝛴+ℓ+ℓ+ and 𝛯′0𝑐 → 𝛬0ℓ+ℓ− [112], however neither the quantum

numbers nor the lifetimes of 𝛯′+𝑐 and 𝛯′0𝑐 are measured yet.

28



3.4 Rare charm baryon decays

Table 3.3: Phenomenological resonance parameters 𝑎𝑀 (in GeV2) for rare charm baryon
transitions (first column) extracted from measurements of ℬ(𝛬𝑐 → 𝑝𝑀) and ℬ(𝑀 → 𝜇+𝜇−)
with 𝑀 = 𝜔, 𝜙, 𝜂, 𝜂′, see text for details.𝑎𝜔 𝑎𝜙 𝑎𝜂 𝑎𝜂′𝛬𝑐 → 𝑝 0.062 ± 0.009 0.108 ± 0.008 (5.8 ± 0.8) × 10−4 ∼ 5 × 10−4𝛯+𝑐 → 𝛴+ ∼ 0.06 ∼ 0.1 ∼ 5 × 10−4 ∼ 4 × 10−4𝛯0𝑐 → 𝛴0 ∼ 0.06 ∼ 0.1 ∼ 5 × 10−4 ∼ 4 × 10−4𝛯0𝑐 → 𝛬0 ∼ 0.06 0.080 ± 0.013 ∼ 5 × 10−4 ∼ 4 × 10−4𝛺0𝑐 → 𝛯0 ∼ 0.05 ∼ 0.09 ∼ 5 × 10−4 ∼ 4 × 10−4

and three (quasi-)four-body modes𝛯+𝑐 → 𝛴+(→ 𝑝𝜋0)ℓ+ℓ− , 𝛯0𝑐 → 𝛬0(→ 𝑝𝜋−)ℓ+ℓ− , 𝛺0𝑐 → 𝛯0(→ 𝛬0𝜋0)ℓ+ℓ− , (3.16)

with details given in the next sections. Again, the study of LFV modes and dineutrino modes can
be found in Sec. 5.4 and Chapter 6, respectively. Unless otherwise stated we refer to these modes
with 𝐵0 → 𝐵1ℓ+ℓ− and 𝐵0 → 𝐵1(→ 𝐵2𝜋)ℓ+ℓ−, i.e. 𝐵0 is the initial charmed baryon, 𝐵1 is the final
(intermediate) state baryon in the three-body (four-body) case, and 𝐵2 is the final state baryon in the
four-body modes.

Besides the short-distance contributions we again model intermediate QCD resonances 𝐵0 → 𝐵1𝑀(→ℓ+ℓ−) by the phenomenological ansatz, i.e. we apply Eq. (3.11).
In Sec. 3.3.2 we have learned that 𝑎𝜌/𝑎𝜔 = 13 from isospin does not necessarily hold for the meson

case, however we are forced to apply it also for the baryons as no data on ℬ(𝐵0 → 𝐵1𝜌) is available.
Results for the baryon 𝑎𝑀 parameters are compiled in Tab. 3.3. Again, experimental input from App. A
and the distribution from App. E are used. Note, mostly branching ratios of the 𝛬𝑐 are available, such
that these also serve as an input for all other baryon modes. We refer to App. C for details on this
procedure.

In Ref. [6, 8] we used 𝑎𝜂′ = 𝑎𝜂 as the recent result from the Belle collaboration for ℬ(𝛬𝑐 → 𝑝𝜂′) [187]
was not available. However, as apparent from Tab. 3.3 the approximation still holds, especially
considering the lack of data on ℬ(𝜂′ → 𝜇+𝜇−).
3.4.1 Semileptonic three-body decays

For the baryonic three-body modes, the angular distribution reads

d2𝛤
d𝑞2d cos 𝜃ℓ = 32 ⋅ (𝐾1𝑠𝑠 sin2 𝜃ℓ + 𝐾1𝑐𝑐 cos2 𝜃ℓ + 𝐾1𝑐 cos 𝜃ℓ) . (3.17)
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3 Phenomenology of rare charm decays in the Standard Model

Here, 𝜃ℓ is the angle of the ℓ+ with respect to the negative direction of flight of the 𝛬𝑐 in the dilepton
rest frame.

Form factors are available from LQCD [103], quark models [188] and for 𝛯𝑐 → 𝛴 from LCSR [189].
In the baryon case ten independent (axial) vector and tensor form factors exist𝑓0 , 𝑓+ , 𝑓⟂ , 𝑔0 , 𝑔+ , 𝑔⟂ , ℎ+ , ℎ⟂ , ℎ̃+ , ℎ̃⟂ . (3.18)

Their definitions and further details are compiled in App. C. We use the results from Ref. [103] and
apply 𝑆𝑈(3)𝐹 relations for the other baryon modes. The same 𝑆𝑈(3)𝐹 relations have been employed
to relate the 𝛬𝑐 → 𝑝𝑀 branching ratios to any other 𝐵0 → 𝐵1𝑀 branching ratio in the determination
of the 𝑎𝑀 factors in Tab. 3.3, along with two-body phase space factors. Again we refer to App. C for
further details.

The 𝑞2-dependent coefficients 𝐾1𝑠𝑠, 𝐾1𝑐𝑐 and 𝐾1𝑠 are given in App. E.2 and are obtained using the
helicity formalism, see Refs. [190–193], which we introduce and discuss separately in App. F. In the
SM the 𝑞2 differential decay distribution is given by

d𝛤
d𝑞2 = ∫1−1 d2𝛤

d𝑞2dcos 𝜃ℓ dcos 𝜃ℓ = 2 𝐾1𝑠𝑠 + 𝐾1𝑐𝑐
= 𝐺2𝐹 𝛼2𝑒𝛽ℓ√𝜆𝐵0𝐵11536 ⋅ 𝜋5𝑚3𝐵0 ⋅ [ (2𝑞2 + 4𝑚2ℓ ) ∣𝐶eff7 2𝑚𝑐𝑞2 (𝑚𝐵0 + 𝑚𝐵1)ℎ⟂ + (𝐶eff9 + 𝐶R9 )𝑓⟂∣2 ⋅ 𝑠−

+ (2𝑞2 + 4𝑚2ℓ ) ∣𝐶eff7 2𝑚𝑐𝑞2 (𝑚𝐵0 − 𝑚𝐵1)ℎ̃⟂ + (𝐶eff9 + 𝐶R9 )𝑔⟂∣2 ⋅ 𝑠+
+ (1 + 2𝑚2ℓ𝑞2 ) ∣𝐶eff7 2𝑚𝑐ℎ+ + (𝐶eff9 + 𝐶R9 ) ⋅ (𝑚𝐵0 + 𝑚𝐵1)𝑓+∣2 ⋅ 𝑠−
+ (1 + 2𝑚2ℓ𝑞2 ) ∣𝐶eff7 2𝑚𝑐ℎ̃+ + (𝐶eff9 + 𝐶R9 ) ⋅ (𝑚𝐵0 − 𝑚𝐵1)𝑔+∣2 ⋅ 𝑠+
+ 3𝑞22𝑚2𝑐 ((𝑚𝐵0 − 𝑚𝐵1)2𝑓20 𝑠+(𝑚𝐵0 + 𝑚𝐵1)2𝑔20 𝑠−) ∣𝐶R𝑃 ∣2] ,

(3.19)

where, again, 𝜆𝐵0𝐵1 = 𝜆(𝑚2𝐵0 , 𝑚2𝐵1 , 𝑞2) is the Källén function and we introduce 𝑠± = (𝑚𝐵0 ±𝑚𝐵1)2−𝑞2.
For the contributions proportional to |𝐶R𝑃 |2 we neglect the lepton masses, since we are only interested
in the size of the contributions of the pseudoscalar resonances. In this limit no interference terms
between the scalar and vector contributions exist, which is in agreement with Ref. [194].
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3.4 Rare charm baryon decays

Table 3.4: Collection of the branching ratios and weak decay parameters 𝛼 of the secondary
baryonic 𝐵1 → 𝐵2𝜋 decays [184] for self-analyzing rare charm four-body decays 𝐵0 → 𝐵1(→𝐵2𝜋)ℓ+ℓ−. 𝛯+𝑐 → 𝛴+ (→ 𝑝𝜋0)ℓ+ℓ− 𝛯0𝑐 → 𝛬0 (→ 𝑝𝜋−)ℓ+ℓ− 𝛺0𝑐 → 𝛯0 (→ 𝛬0𝜋0)ℓ+ℓ−ℬ(𝐵1 → 𝐵2𝜋) (51.6 ± 0.3)% (63.9 ± 0.5)% (99.5 ± 0.0)%𝛼 (−98.0 ± 1.0)% (73.0 ± 1.0)% (−36.0 ± 1.0)%

3.4.2 Semileptonic (quasi-)four-body decays

We also study (quasi-)four-body decays, where the secondary baryon decays weakly 𝐵1 → 𝐵2𝜋
with sizable branching ratio and polarization parameter 𝛼. The total decay chain for the resonance
contributions is then given by 𝐵0 → 𝐵1𝑀(→ ℓ+ℓ−) → 𝐵1ℓ+ℓ− → 𝐵1(→ 𝐵2𝜋)ℓ+ℓ− → 𝐵2𝜋ℓ+ℓ−, as
the lifetime of the resonances 𝑀 = 𝜌, 𝜔, 𝜙, 𝜂, 𝜂′ is much shorter than the weak decay of the daughter
baryon 𝐵1 = 𝛴+, 𝛬0, 𝛯0. Hence, we can use the same 𝑎𝑀 parameters from Tab. 3.3 and also the same
form factors apply. The advantage of the four-body final state is that it offers an increased number of
angular observables. The angular distribution now reads

d4𝛤
d𝑞2d cos 𝜃ℓd cos 𝜃𝜋d𝜙 = 38𝜋 ⋅ [ 𝐾1𝑠𝑠 sin2 𝜃ℓ + 𝐾1𝑐𝑐 cos2 𝜃ℓ + 𝐾1𝑐 cos 𝜃ℓ+ (𝐾2𝑠𝑠 sin2 𝜃ℓ + 𝐾2𝑐𝑐 cos2 𝜃ℓ + 𝐾2𝑐 cos 𝜃ℓ) cos 𝜃𝜋+ (𝐾3𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾3𝑠 sin 𝜃ℓ) sin 𝜃𝜋 sin𝜙+ (𝐾4𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾4𝑠 sin 𝜃ℓ) sin 𝜃𝜋 cos𝜙] . (3.20)

𝜃ℓ is the same angle as in the three-body case, Eq. (3.17). Similarly, 𝜃𝜋 is the angle between the
momentum of the final state baryon (𝐵2) and the negative direction of flight of the 𝐵1 baryon in the𝐵2-pion center-of-mass frame. The azimuthal angle 𝜙 describes the angle between the dilepton and the𝐵2𝜋 decay planes. The allowed regions for the angles 𝜃ℓ, 𝜃𝜋, 𝜙 are −1 ≤ cos 𝜃ℓ ≤ +1, −1 < cos 𝜃𝜋 < 1
and 0 < 𝜙 < 2𝜋. Again the angular coefficients entering in Eq. (3.20) are given in terms of Wilson
coefficients and form factors in App. E.3. For the SM contributions to the 𝑞2 differential branching
ratio, it is sufficient to multiply Eq. (3.19) with the lifetime of the 𝐵0 and the branching ratio for the
secondary weak decay

dℬ(𝐵0 → 𝐵1(→ 𝐵2𝜋)ℓ+ℓ−)
d𝑞2 = 𝜏𝐵0 d𝛤(𝐵0 → 𝐵1ℓ+ℓ−)

d𝑞2 ⋅ ℬ(𝐵1 → 𝐵2𝜋) , (3.21)

which is discussed in detail in App. F.3 and the relevant branching ratios and decay parameters are
collected in Tab. 3.4.
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Figure 3.3: Resonant and non-resonant SM contributions to the differential branching ratio
of 𝛬𝑐 → 𝑝𝜇+𝜇− in orange and blue, respectively. Uncertainties of the resonant SM are
predominantly due to unknown strong phases in Eq. (3.11). The perturbative SM, where
uncertainties arise from 𝜇𝑐 scale variation, is negligible in the full kinematic region. Form
factor uncertainties are included.

3.4.3 Phenomenology

The 𝑞2 spectrum for the three-body decay 𝛬𝑐 → 𝑝𝜇+𝜇− is shown in Fig. 3.3.
For this mode dedicated lattice results for the form factors are available, whereas for all other modes

the branching ratio can only be naïvely estimated. The LHCb collaboration has obtained an upper
limit at the 90 % C.L. [77] ℬ(𝛬𝑐 → 𝑝𝜇+𝜇−) < 7.7 × 10−8 , (3.22)

where 40MeV cuts around the resonance masses of the 𝜔, 𝜙 are applied and the signal is extrapolated
to the full 𝑞2 region 4𝑚2ℓ ≤ 𝑞2 ≤ (𝑚𝛬𝑐 − 𝑚𝑝)2 via a phase space model. Due to the lack of further
information, the obtained upper limit cannot be compared accurately to the resonance model in
Fig. 3.3.

Nevertheless, we estimate the expected branching ratios for all three- and four-body modes applying
exactly the 40MeV cuts used in [77]. Note that the four-body estimates follow from the respective
three-body modes by multiplication with branching ratios of the secondary weak decay from Tab. 3.4
and we use 𝑞2

min = 4𝑚2ℓ and 𝑞2
max = (𝑚𝐵0 − 𝑚𝐵1)2.
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ℬ(𝛬+𝑐 → 𝑝𝜇+𝜇−) = (1.9+1.8−1.5) × 10−8 ,ℬ(𝛯+𝑐 → 𝛴+𝜇+𝜇−) ∼ 3.4 × 10−8 ,ℬ(𝛯0𝑐 → 𝛴0𝜇+𝜇−) ∼ 7.6 × 10−9 ,ℬ(𝛯0𝑐 → 𝛬0𝜇+𝜇−) ∼ 3.8 × 10−9 ,ℬ(𝛺0𝑐 → 𝛯0𝜇+𝜇−) ∼ 2.5 × 10−8 ,
ℬ(𝛯+𝑐 → 𝛴+(→ 𝑝𝜋0)𝜇+𝜇−) ∼ 1.8 × 10−8 ,ℬ(𝛯0𝑐 → 𝛬0(→ 𝑝𝜋−)𝜇+𝜇−) ∼ 2.4 × 10−9 ,ℬ(𝛺0𝑐 → 𝛯0(→ 𝛬0𝜋0)𝜇+𝜇−) ∼ 2.5 × 10−8 . (3.23)

3.5 CP–asymmetries in semileptonic and hadronic charm decays

In this section, we briefly present SM expectations for CP–violation in charm decays. We first discuss
generalities and SM predictions for CP–violation in semileptonic decays in Sec. 3.5.1, and further
discuss CP–asymmetries in hadronic decays in Sec. 3.5.2.

3.5.1 CP–asymmetry generalities

CP–violation is a key requirement for the successful generation of the observed baryon asymmetry in
the early universe. However, the amount of CP–violation in the SM is not sufficient to explain the
observed matter-antimatter asymmetry, which is why new sources of CP–violation are expected to
show up in particle physics experiments.

Following Ref. [195] we classify CP–violating phenomena in flavor transitions as follows

• CP–violation in decay (direct CP–violation): Given the decay of a particle 𝑀 into a final
state 𝑓 proceeds via two different amplitudes with both CP–even (strong, 𝛿𝑖) and CP–odd (weak,𝜙𝑖) phases, the direct CP–asymmetry is induced via the interference of the two amplitudes and
observable only in the case of non-vanishing strong and weak phase differences.

• CP–violation in mixing (indirect CP–violation): For neutral mesons 𝑀0, 𝑀0, a difference
between flavor and mass eigenstates exists. This is described by the following Hamiltonianℋ = 𝑀 − i𝛤2 , (3.24)

with two by two matrices 𝑀 and 𝛤, which due to CPT invariance can be written as𝑀 = (𝑀11 𝑀12𝑀12 𝑀11) , 𝛤 = (𝛤11 𝛤12𝛤12 𝛤11) . (3.25)

The diagonalization of ℋ results in the mass eigenstates of 𝑀0. The resulting 𝑀0 − 𝑀0 mixing
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is described by the three physical quantities𝑥12 = 2|𝑀12|𝛤 , 𝛤12 = 2|𝛤12|𝛤 , 𝜙12 = arg(𝑀12𝛤12 ) , (3.26)

where 𝜙12 describes the interference between mixing via 𝑀 and 𝛤 and quantifies CP–violation in
mixing.

• CP–violation in interference between decays with and without mixing: Here, CP–
violation is observed due to the interference of 𝑀 → 𝑓 and 𝑀 → 𝑀 → 𝑓.

We are interested in CP–violation phenomena of the first class, i.e. direct CP–violation. In the
SM many of the observed CP–violating processes involve the interference of a tree-level amplitude
with a penguin-type loop diagram. However, in charm decays we have already observed that the GIM
cancellation suppresses penguin contributions, and contributions proportional to the CP–violating phase
in the CKM matrix are suppressed by five powers of Wolfenstein 𝜆, see Eq. (2.11). Hence, CP–violation
in rare semileptonic charm decays is completely negligible in the SM as the dominant contributions
are due to CP–conserving 𝑆𝑈(3)𝐶 × 𝑈(1)QED induced resonances. In Sec. 5.2 we investigate the
NP potential of CP–asymmetries in charm decays. As it turns out, there is strong benefit in the
resonance contributions, as they induce a strong phase and are able to interfere with CP–violating NP
contributions. Hence, BSM CP–violation is expected to be enhanced around the resonance masses,
where the strong phase is large. These resonance catalyzed CP–asymmetries were first proposed in
Ref. [92] and are the ideal place to search for new sources of CP–violation in up-type FCNCs.

3.5.2 Hadronic decays and 𝛥𝐴CP

The first observation of CP–violation in charm decays was presented by the LHCb collaboration in
2019 in the measurement of 𝛥𝐴CP [85]𝛥𝐴CP = 𝐴CP(𝐷0 → 𝐾+𝐾−) − 𝐴CP(𝐷0 → 𝜋+𝜋−) = (−16.4 ± 2.8) × 10−4 , (3.27)

where we quote the world average [176] and𝐴CP(𝐷0 → 𝑓) = 𝛤(𝐷0 → 𝑓) − 𝛤(𝐷0 → 𝑓)𝛤(𝐷0 → 𝑓) + 𝛤(𝐷0 → 𝑓) , with 𝑓 = 𝐾+𝐾−, 𝜋+𝜋− . (3.28)

For a recent review on CP–violation in hadronic charm decays and 𝐷0−𝐷0 mixing see Ref. [196]. Naïvely,
the CKM hierarchy predicts Im(𝑉 ∗𝑐𝑏𝑉𝑢𝑏/(𝑉 ∗𝑐𝑠𝑉𝑢𝑠)) ∼ 7 ⋅ 10−4, however another order of suppression
is expected to arise from the penguin over tree ratio of the dominant and sub-dominant amplitudes.
Since no reliable SM prediction for this ratio is available, the NP nature of this measurement one order
above the naïve expectation is discussed in recent literature, see Refs. [197–208].

For our phenomenological purposes, we write the 𝐷0(𝐷0) decay amplitudes 𝒜𝑓 (𝒜𝑓) to CP–eigenstates
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3.5 CP–asymmetries in semileptonic and hadronic charm decays𝑓 as 𝒜𝑓 = 𝒜𝑇𝑓 e+i 𝜙𝑇𝑓 [1 + 𝑟𝑓 ei (𝛿𝑓+𝜙𝑓)] , 𝒜𝑓 = 𝜂CP 𝒜𝑇𝑓 e−i 𝜙𝑇𝑓 [1 + 𝑟𝑓 ei (𝛿𝑓−𝜙𝑓)] , (3.29)

where 𝜂CP = ±1 is the CP–eigenvalue of 𝑓. In the SM the dominant amplitude is denoted by 𝒜𝑇𝑓 e± i 𝜙𝑇𝑓 ,
and 𝑟𝑓 parametrizes the relative magnitude of all sub-leading amplitudes to the dominant amplitude,
i.e. the penguin over tree ratio. In the limit of 𝑟𝑓 ≪ 1, we find for the CP–asymmetry in Eq. (3.28)𝐴CP(𝑓) = − 2 𝑟𝑓 sin 𝛿𝑓 sin𝜙𝑓 + 𝒪(𝑟2𝑓) , (3.30)

To study NP contributions we expand SM amplitudes and BSM effects as𝒜𝑓 = ∑𝑞=𝑑,𝑠,𝑏 𝜆𝑞 (𝒜𝑞𝑓)SM + 𝒜NP𝑓 , (3.31)

where the first term contains the SM with CKM–factors 𝜆𝑞 = 𝑉 ∗𝑐𝑞𝑉𝑢𝑞 made explicit, and the second
term accounts for NP. Using CKM unitarity 𝜆𝑑 + 𝜆𝑠 + 𝜆𝑏 = 0 one finds𝒜𝐾(𝜋) = 𝜆𝑠(𝑑) (𝒜𝑠(𝑑)𝐾(𝜋) − 𝒜𝑑(𝑠)𝐾(𝜋))SM

+ 𝜆𝑏 (𝒜𝑏𝐾(𝜋) − 𝒜𝑑(𝑠)𝐾(𝜋))SM
+ 𝒜NP𝐾(𝜋) , (3.32)

where the final states 𝐾+𝐾− and 𝜋+𝜋− are denoted by the subscripts 𝑓 = 𝐾 and 𝑓 = 𝜋, respectively.
The first term is the dominant tree-level contribution and the second one corresponds to “penguin”
contributions with small Wilson coefficients which are strongly CKM–suppressed by 𝜆𝑏/𝜆𝑠,𝑑. The last
term 𝒜NP𝐾(𝜋) encodes NP contributions. Using Eqs. (3.29), (3.30) and (3.32), we obtain𝛥𝐴CP = 𝛥𝐴SM

CP − 2|𝜆𝑠,𝑑| 𝛥𝑟NP . (3.33)

Predictions for 𝛥𝐴SM
CP are given in Refs. [205–209] and span a considerable range. Therefore, the

implications of large contributions to 𝛥𝐴CP from NP effects can be tested, which is studied in the
framework of anomaly-free, flavorful 𝑍′–models in Sec. 5.2.3.
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4 Models extending the Standard Model

In this section, we give a brief overview of possible BSM scenarios. We follow a bottom-up approach
and study effects mediated by new heavy particles at tree level unless stated otherwise. In Sec. 4.1
we first discuss the available model-independent parameter space, i.e. we discuss bounds on BSM
contributions to Wilson coefficients and further constraints. In Sec. 4.2 we summarize features of
LQ–models and in Sec. 4.3 we introduce simple 𝑍′–extensions of the SM. Since we are only interested
in general features of the respective models that show up in low-energy observables we refrain from
conducting a detailed study of UV–complete models.

4.1 Model-independent analysis

To start completely model-independently, we study possible BSM contributions to the Wilson coefficients
in Eq. (2.24). We have seen in previous sections that perturbative SM contributions do not exceed∼ 0.01 and only enter in 𝐶7 and 𝐶9, while the SM phenomenology is dominated by long-range effects
from intermediate resonances. Here, the dominant contributions from the vector resonances 𝜌, 𝜔, 𝜙 are
compactly implemented as a resonance shaped contribution to 𝐶9, see Eq. (3.11). BSM contributions
are constrained by several different approaches, the most straightforward being the experimental limits
on semileptonic rare decays themselves. In the SM, contributions to these decays are LFU, such that
contributions to dimuon and dielectron final states are equal. Since this is not necessarily the case
in BSM scenarios, we have to distinguish available bounds on muon and electron Wilson coefficients,
which is why we make the lepton index explicit in all Wilson coefficients except for 𝐶7, because the
photon to lepton coupling is LFU.

An equation bounding (pseudo-)scalar and axial vector muon Wilson coefficients is derived from the
upper limit ℬ(𝐷0 → 𝜇+𝜇−) < 6.2 × 10−9 at 90 % C.L. [73] and Eq. (3.4) and reads|𝐶(𝜇)𝑆 − 𝐶(𝜇)′𝑆 |2 + |𝐶(𝜇)𝑃 − 𝐶(𝜇)′𝑃 + 0.1(𝐶(𝜇)10 − 𝐶(𝜇)′10 )|2 ≲ 0.007 . (4.1)

Further, we obtain from integrating the differential decay distribution given in Eq. (E.4) in App. E.1,
while neglecting SM contributions, and using ℬ(𝐷+ → 𝜋+𝜇+𝜇−) < 6.7 × 10−8 at 90 % C.L. for the full𝑞2 region [76]

1.3 |𝐶7|2 + 1.3 ∣𝐶(𝜇)9 ∣2 + 1.3 ∣𝐶(𝜇)10 ∣2 + 2.6 ∣𝐶(𝜇)𝑆 ∣2 + 2.7 ∣𝐶(𝜇)𝑃 ∣2 + 0.4 ∣𝐶(𝜇)𝑇 ∣2 + 0.4 ∣𝐶(𝜇)𝑇 5 ∣2+0.3Re [𝐶(𝜇)9 𝐶(𝜇)𝑇 ∗] + 1.1Re [𝐶(𝜇)10 𝐶(𝜇)𝑃 ∗] + 2.6Re [𝐶7 𝐶(𝜇)9 ∗] + 0.6Re [𝐶7 𝐶(𝜇)𝑇 ∗] ≲ 1 . (4.2)

As Eq. (4.2) is obtained from 𝐷+ → 𝜋+𝜇+𝜇− all Wilson coefficients except the tensor ones are
understood as 𝐶(𝜇)𝑖 + 𝐶(𝜇)′𝑖 . The possibility of cancellations remains, as for instance 𝐶9 + 𝐶′9 is
constrained, but 𝐶9 is unconstrained as long as 𝐶9 = −𝐶′9. A special case arises for the axial vector
contributions. Here, both the sum and the difference of LH and RH quark currents are constrained
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from Eqs. (4.1) and (4.2), so that we find without the possibility for large cancellations|𝐶(𝜇)10 | ≲ 0.85 ,|𝐶(𝜇)′10 | ≲ 0.85 . (4.3)

Furthermore, ℬ(𝛬𝑐 → 𝑝𝜇+𝜇−) < 7.7 × 10−8 at 90 % C.L. [77] implies |𝐶(𝜇)9 | ≲ 0.93 and is therefore
close to the limit |𝐶(𝜇)9 | ≲ 0.88 obtained from Eq. (4.2). Since the branching ratios in baryon decays
depends on both combinations |𝐶(𝜇)9 ± 𝐶(𝜇)′9 |2, individual and independent constraints on 𝐶(𝜇)9 and𝐶(𝜇)′9 similar to Eq. (4.3) cannot be given yet.

A global fit of muon Wilson coefficients including the recent measurements of the angular distribution
of 𝐷0 → 𝜋+𝜋−𝜇+𝜇− and 𝐷0 → 𝐾+𝐾−𝜇+𝜇− [72] and possibly fitting Wilson coefficients and resonance
parameters simultaneously is beyond the scope of this work. However, with this first measurement and
upcoming updates for LHCb searches for 𝐷0 → 𝜇+𝜇−, 𝐷 → 𝑃𝜇+𝜇− and 𝛬𝑐 → 𝑝𝜇+𝜇− experimental
searches start to be constraining and interesting physics in rare charm decays can be probed in the
near future.

For dielectron modes the situation is different and bounds on Wilson coefficients are weaker. We
find with ℬ(𝐷+ → 𝜋+𝑒+𝑒−) < 1.1 × 10−6 at 90 % C.L. for the full 𝑞2 region [210]0.8 |𝐶7|2 + 0.8 ∣𝐶(𝑒)9 ∣2 + 0.8 ∣𝐶(𝑒)10 ∣2 + 1.7 ∣𝐶(𝑒)𝑆 ∣2 + 1.7 ∣𝐶(𝑒)𝑃 ∣2+0.2 ∣𝐶(𝑒)𝑇 ∣2 + 0.2 ∣𝐶(𝑒)𝑇 5∣2 + 1.6Re [𝐶7 𝐶(𝑒)9 ∗] ≲ 10 , (4.4)

where again 𝐶(𝑒)𝑖 → 𝐶(𝑒)𝑖 + 𝐶(𝑒)𝑖 ′
except for the tensor contributions and we skip negligible interference

terms. From ℬ(𝐷0 → 𝑒+𝑒−) < 7.9 × 10−8 [211] we find∣𝐶(𝑒)𝑆 − 𝐶(𝑒)′𝑆 ∣2 + ∣𝐶(𝑒)𝑃 − 𝐶(𝑒)′𝑃 + 0.0004 (𝐶(𝑒)10 − 𝐶(𝑒)′10 )∣2 ≲ 0.08 . (4.5)

Especially the stronger helicity suppression objects a useful bound on axial vector couplings.

Dipole operators are constrained from ℬ(𝐷0 → 𝜌𝛾) = (1.77±0.3±0.07)×10−5 [212]. Neglecting SM
contributions one obtains |𝐶(′)7 | ≲ 0.5 [89]. However, SM corrections from hard spectator interactions
and weak annihilation contributions are sizable and lead to the following bound on BSM dipole
couplings [89] |𝐶7| ≲ 0.3 ,|𝐶′7| ≲ 0.3 , (4.6)

which is slightly stronger than the bound extracted from Eq. (4.2).

Beyond the SM also LFV couplings exist. 𝑐 → 𝑢ℓ−ℓ′+ (ℓ ≠ ℓ′) decays are induced by the following
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effective Hamiltonian, ℋLFV
eff = −4𝐺𝐹√2 𝛼𝑒4𝜋 ∑𝑖 (𝐾(ℓℓ′)𝑖 𝑂(ℓℓ′)𝑖 + 𝐾′ (ℓℓ′)𝑖 𝑂′ (ℓℓ′)𝑖 ) , (4.7)

where the 𝐾(′)𝑖 denote LFV Wilson coefficients and the operators 𝑂(′)𝑖 read as𝑂(ℓℓ′)9 = (𝑢𝐿𝛾𝜇𝑐𝐿)(ℓ𝛾𝜇ℓ′) ,𝑂(ℓℓ′)10 = (𝑢𝐿𝛾𝜇𝑐𝐿)(ℓ𝛾𝜇𝛾5ℓ′) ,𝑂(ℓℓ′)𝑆 = (𝑢𝐿𝑐𝑅)(ℓℓ′) ,𝑂(ℓℓ′)𝑃 = (𝑢𝐿𝑐𝑅)(ℓ𝛾5ℓ′) ,𝑂(ℓℓ′)𝑇 = 12(𝑢𝜎𝜇𝜈𝑐)(ℓ𝜎𝜇𝜈ℓ′) ,
𝑂′ (ℓℓ′)9 = (𝑢𝑅𝛾𝜇𝑐𝑅)(ℓ𝛾𝜇ℓ′) ,𝑂′ (ℓℓ′)10 = (𝑢𝑅𝛾𝜇𝑐𝑅)(ℓ𝛾𝜇𝛾5ℓ′) ,𝑂′ (ℓℓ′)𝑆 = (𝑢𝑅𝑐𝐿)(ℓℓ′) ,𝑂′ (ℓℓ′)𝑃 = (𝑢𝑅𝑐𝐿)(ℓ𝛾5ℓ′) ,𝑂′ (ℓℓ′)𝑇 5 = 12(𝑢𝜎𝜇𝜈𝑐)(ℓ𝜎𝜇𝜈𝛾5ℓ′) .

(4.8)

Note that there is no 𝑂(′)7 contribution since the photon does not couple to different lepton flavors.
The differential distribution for LFV decays 𝐷 → 𝑃ℓℓ′ is given in App. E.1 and for the purely leptonic
decays we findℬ(𝐷0 → 𝑒±𝜇∓) = 𝜏𝐷0 𝐺2𝐹𝛼2𝑒𝑚5𝐷𝑓2𝐷64𝜋3𝑚2𝑐 (1 − 𝑚2𝜇𝑚2𝐷 )2 ⋅ { ∣𝐾𝑆 − 𝐾′𝑆 ± 𝑚𝜇𝑚𝑐𝑚2𝐷 (𝐾9 − 𝐾′9)∣2

+ ∣𝐾𝑃 − 𝐾′𝑃 + 𝑚𝜇𝑚𝑐𝑚2𝐷 (𝐾10 − 𝐾′10)∣2 } , (4.9)

with 𝐾(′)𝑖 = 𝐾(′)(𝜇𝑒)𝑖 for 𝐷0 → 𝑒+𝜇− and 𝐾(′)𝑖 = 𝐾(′)(𝑒𝜇)𝑖 for 𝐷0 → 𝑒−𝜇+. Using ℬ(𝐷0 → 𝑒±𝜇∓) <1.3 × 10−8 at 90 % C.L. [74], we obtain∣𝐾𝑆 − 𝐾′𝑆 ± 0.04 (𝐾9 − 𝐾′9)∣2 + ∣𝐾𝑃 − 𝐾′𝑃 + 0.04 (𝐾10 − 𝐾′10)∣2 ≲ 0.01 . (4.10)

And from ℬ(𝐷+ → 𝜋+𝑒+𝜇−) < 2.1 × 10−7 and ℬ(𝐷+ → 𝜋+𝜇+𝑒−) < 2.2 × 10−7 at 90 % C.L. [76] we
obtain 0.4 |𝐾9|2 + 0.4 |𝐾10|2 + 0.9 |𝐾𝑆|2 + 0.9 |𝐾𝑃|2 + 0.1 |𝐾𝑇|2 + 0.1 ∣𝐾𝑇 5∣2+0.2Re[𝐾10𝐾∗𝑃 ± 𝐾9𝐾∗𝑆] + 0.1Re[𝐾9𝐾∗𝑇 ± 𝐾10𝐾∗𝑇 5] ≲ 1 , (4.11)

where for all coefficients except for the tensor ones 𝐾𝑖 = 𝐾𝑒𝜇𝑖 + 𝐾′𝑒𝜇𝑖 for 𝐷+ → 𝜋+𝑒+𝜇− and𝐾𝑖 = 𝐾𝜇𝑒𝑖 + 𝐾′𝜇𝑒𝑖 for 𝐷+ → 𝜋+𝜇+𝑒−.
Another possibility to constrain 𝑐 → 𝑢ℓ+ℓ−′ couplings comes from high–𝑝𝑇 dilepton tails in Drell-

Yan searches [213, 214]. In these analyses dilepton spectra in 𝑝𝑝 → ℓ+ℓ−′ are utilized and, hence,
upper limits on four-fermion couplings can be obtained for any quark flavor combination, i.e. FCNCs
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Table 4.1: Upper limits on BSM Wilson coefficients for rare charm decays from low energy
observables (collected from main text) and high–𝑝𝑇 dilepton searches [213, 214]. The lepton
flavor violation (LFV) bound is quoted as flavor-summed, √|𝐶ℓℓ′𝑖 |2 + |𝐶ℓ′ℓ𝑖 |2. Entries marked
as n.a.† are not available, because no limit on 𝐷0 → 𝑒±𝜏∓ exists, although kinematically
accessible. Low energy limits are obtained for a single coefficient at a time and barring
cancellations. 𝑒𝑒 𝜇𝜇 𝜏𝜏 𝑒𝜇 𝑒𝜏 𝜇𝜏𝐶(′)9, 10 high–𝑝𝑇 2.9 1.6 5.6 1.6 4.7 5.1

low energy 3.5 0.9 - 2.2 n.a.† -𝐶(′)𝑆, 𝑃 high–𝑝𝑇 7.2 3.8 14 1.2 3.5 3.8
low energy 0.3 0.1 - 0.1 n.a.† -𝐶𝑇 , 𝑇 5 high–𝑝𝑇 1.2 0.63 2.5 6.4 19 20.4
low energy 7 1.6 - 3.2 n.a.† -

𝑏 → 𝑠ℓ+ℓ−′ , 𝑐 → 𝑢ℓ+ℓ−′ , … , as well as diagonal quark couplings 𝑞𝑞ℓ+ℓ−′ for any quark except the top.
The extracted limits scale with the quark parton distribution functions (PDFs) of the proton. The
main advantage of the high–𝑝𝑇 limits is that they are extracted at high energies, where lepton mass
effects are negligible and the partonic cross section factorizes into a sum of absolute values squared of
Wilson coefficients with different Lorentz structures and chirality combinations in quark and lepton
current. This implies that no cancellations can occur.

We collect upper limits on rare charm Wilson coefficients for each lepton flavor combination from
low energy measurements and Drell-Yan searches in Tab. 4.1. Here, we assume no large cancellations
are possible for the low energy limits. For high–𝑝𝑇 limits on scalar and tensor Wilson coefficients,
running effects down to 2GeV are taken into account in order to be comparable to the low energy
limits. Interestingly, bounds from high–𝑝𝑇 searches are compatible with low energy bounds for rare
charm decays for (axial) vector operators and lepton flavors 𝑒𝑒, 𝜇𝜇 and 𝑒𝜇 and can even provide limits
involving 𝜏’s. For (pseudo-)scalar operators low energy bounds are better due to their contributions in
purely leptonic 𝐷0 meson decays. For (pseudo-)tensor operators low energy limits are better only for𝑒𝜇 and worse in the other cases.

Recently, another possibility to study NP charm couplings in low-energy (polarized) scattering
processes 𝑒−𝑝 → 𝑒−(𝜇−)𝛬𝑐 was proposed in Refs. [215, 216]. However, no appropriate experimental
setup to study these processes exists today, so that we refuse to further discuss possible future bounds
in this work.
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4.2 Leptoquarks

LQs are hypothetical particles that directly couple leptons to quarks. LQ–models can therefore be
classified according to their SM group representations and their spin. Especially, one distinguishes𝑆𝑈(2)𝐿–singlets, –doublets and –triplets [217], whereas all LQs are color-triplets or color-anti-triplets,
see [218] for an extensive modern classification. Vector LQs have spin 1 and need to be part of an
extended gauge sector, which then necessarily calls for a UV–completion. These vector LQs naturally
appear in 𝑆𝑈(4) models, where leptons can be seen as the fourth color, originally proposed in the
1970s by Pati and Salam [219–221]. Often these scenarios require the LQ to be very heavy. Scalar LQs
with spin 0, on the other hand, can be rather light and are therefore appealing from a model building
perspective. Since LQ–models have become very popular as a solution to the current 𝐵–anomalies [139,
140, 222–229], it is interesting to study possible effects in rare charm decays as well. A detailed
classification of LQ–effects is given in Ref. [140] and their phenomenology in rare charm decays is
investigated in Ref. [90].
In agreement with [90, 140], the straightforward strategy to include LQs and bypass constraints

from the kaon sector at the same time is to consider only the scalar LQs 𝑆1(2) with right(left)-handed
couplings to leptons and the vector ones ̃𝑉1,2.

The interaction Lagrangian contributing to 𝑐 → 𝑢ℓ−ℓ′+ processes is given by [217]ℒLQ ⊃ 𝜆𝑖𝑗𝑆1 𝑢𝑐𝑖𝑅𝑙𝑗𝑅 𝑆1 + 𝜆𝑖𝑗𝑆2 𝑢𝑖𝑅𝐿𝑗𝐿 𝑆2 + 𝜆𝑖�̃�𝑉1 𝑢𝑖𝑅𝛾𝜇𝑙𝑗𝑅 ̃𝑉1𝜇 + 𝜆𝑖�̃�𝑉2 𝑢𝑐𝑖𝑅𝛾𝜇𝐿𝑗𝐿 ̃𝑉2𝜇 + c.c. , (4.12)

where 𝐿𝐿 denotes the lepton doublet, 𝑙𝑅, 𝑢𝑅 are lepton and up-type quark singlets and the superscript𝑐 indicates a charge conjugation; 𝑖, 𝑗 are the generation indices. Hypercharge assignments of the LQs
can be read off from Eq. (4.12).
Signatures of 𝑆2 have been studied for charm decays in [93, 230] and of ̃𝑉1 in [93]. The LQs 𝑆5/32 ,̃𝑉 1/32 , and 𝑆1/31 , ̃𝑉 5/31 (superscripts indicate the electric charge) are the only ones inducing interactions

of up-type quarks and charged leptons. Using Fierz identities the Wilson coefficients of the 𝑂′ (ℓℓ′)9 and𝑂′ (ℓℓ′)10 operators can be written as, e.g. [90],

𝐾′ (ℓℓ′)9 = √2𝜋𝐺𝐹𝛼𝑒 ⋅ ⎡⎢⎣𝜆𝑐ℓ′𝑆1 𝜆𝑢ℓ∗𝑆14𝑀2𝑆1 − 𝜆𝑢ℓ′𝑆2 𝜆𝑐ℓ∗𝑆24𝑀2𝑆2 − 𝜆𝑢ℓ′𝑉1 𝜆𝑐ℓ∗𝑉12𝑀 2̃𝑉1 + 𝜆𝑐ℓ′𝑉2 𝜆𝑢ℓ∗𝑉22𝑀 2̃𝑉2
⎤⎥⎦ ,

𝐾′ (ℓℓ′)10 = √2𝜋𝐺𝐹𝛼𝑒 ⋅ ⎡⎢⎣𝜆𝑐ℓ′𝑆1 𝜆𝑢ℓ∗𝑆14𝑀2𝑆1 + 𝜆𝑢ℓ′𝑆2 𝜆𝑐ℓ∗𝑆24𝑀2𝑆2 − 𝜆𝑢ℓ′𝑉1 𝜆𝑐ℓ∗𝑉12𝑀 2̃𝑉1 − 𝜆𝑐ℓ′𝑉2 𝜆𝑢ℓ∗𝑉22𝑀 2̃𝑉2
⎤⎥⎦ , (4.13)

with 𝑀𝑋, 𝑋 = 𝑆1,2, ̃𝑉1,2 the LQ–mass. One finds 𝐾′9 = 𝐾′10 in the singlet scenarios (𝑆1, ̃𝑉1), while for
the doublets (𝑆2, ̃𝑉2) 𝐾′9 = −𝐾′10. Note that only RH quark currents are induced in these scenarios,
therefore no effects are present in the down-type sector. The corresponding lepton flavor conserving
contributions to 𝐶′(ℓ)9,10 read exactly like Eq. (4.13) with ℓ′ = ℓ.
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4.3 Flavorful 𝑍′–models

Using Eqs. (4.2), (4.4), (4.11) and neglecting the SM contribution, the following constraints from
the upper limits on ℬ(𝐷+ → 𝜋+𝜇+𝜇−) [76], ℬ(𝐷+ → 𝜋+𝑒+𝑒−) [210] and ℬ(𝐷+ → 𝜋+𝑒±𝜇∓) [76] are
obtained, ∣𝜆𝑐𝜇𝑆1,2𝜆𝑢𝜇∗𝑆1,2 ∣ ≲ 0.05 ( 𝑀𝑆1,21 TeV)2 , ∣𝜆𝑐�̃�𝑉1,2𝜆𝑢𝜇∗𝑉1,2 ∣ ≲ 0.02 ( 𝑀𝑉1,21 TeV)2 ,

∣𝜆𝑐𝑒𝑆1,2𝜆𝑢𝑒∗𝑆1,2 ∣ ≲ 0.19 ( 𝑀𝑆1,21 TeV)2 , ∣𝜆𝑐�̃�𝑉1,2𝜆𝑢𝑒∗𝑉1,2 ∣ ≲ 0.10 ( 𝑀𝑉1,21 TeV)2 ,
∣𝜆𝑐𝑒(𝑐𝜇)𝑆1,2 𝜆𝑢𝜇(𝑢𝑒)∗𝑆1,2 ∣ ≲ 0.09 ( 𝑀𝑆1,21 TeV)2 , ∣𝜆𝑐𝑒(𝑐𝜇)𝑉1,2 𝜆𝑢𝜇(𝑢𝑒)∗𝑉1,2 ∣ ≲ 0.04 ( 𝑀𝑉1,21 TeV)2 ,

(4.14)

slightly improved with respect to results in Ref. [1] due to the recent updates in ℬ(𝐷+ → 𝜋+𝑒±𝜇∓)
and ℬ(𝐷+ → 𝜋+𝜇+𝜇−) in Ref. [76], which now give the most stringent bounds.

4.3 Flavorful 𝑍 ′–models

In 𝑍′–models the SM gauge symmetry is augmented with an 𝑈(1)′ gauge factor. We refer to the
associated charges as 𝐹𝜓 for each field 𝜓 and allow for generation dependent charge assignments. These
flavor non-universal charges induce FCNCs at the tree level, however dependent on specific assumptions
on the flavor to mass basis rotation for LH and RH up- and down-type quarks. Similarly, LFV
couplings are induced depending on the misalignment of flavor and mass basis between charged leptons
and neutrinos. 𝑍′–scenarios are also studied extensively as a solution to the 𝐵–anomalies [231–243].
Extending the gauge sector entails several challenges for model building. Although a 𝑈(1)′ extension is
very likely, as it is contained at least as a subgroup in most UV–complete models, one has to take into
account anomaly cancellation conditions, Ref. [244] and App. D.1, and depending on the UV–setting
of the model, a large gauge coupling and possibly additional heavy BSM particles lead to a Landau
pole at energies below the Planck scale, hence exposing the model as inconsistent. Since the 𝑍′ is
a massive gauge particle, the 𝑈(1)′ gauge group is spontaneously broken at a high NP scale and
necessarily yields an extended scalar sector at high energies, which leads to further constraints on the
vacuum stability of the Higgs. Again, we follow a bottom-up approach and detailed investigations of
the UV–completion are beyond the scope of this work. We include anomaly cancellation conditions
and low energy constraints, such as 𝐷0 − 𝐷0 mixing generated at tree level.
Following this procedure we obtain several candidate models, which are listed in App. D. For this

class of models the effective 𝑍′–interaction Hamiltonian part for 𝑐 → 𝑢ℓ−ℓ′+ processes can be written
as ℋ𝑍′ ⊃ (𝑔𝑢𝑐𝐿 𝑢𝐿𝛾𝜇𝑐𝐿 + 𝑔𝑢𝑐𝑅 𝑢𝑅𝛾𝜇𝑐𝑅 + 𝑔ℓℓ′𝐿 ℓ𝐿𝛾𝜇ℓ′𝐿 + 𝑔ℓℓ′𝑅 ℓ𝑅𝛾𝜇ℓ′𝑅) 𝑍′ 𝜇 + h.c. . (4.15)
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The following Wilson coefficients are induced at tree level𝐶(ℓ)9/10 = − 𝜋√2𝐺𝐹 𝛼𝑒 ⋅ 𝑔𝑢𝑐𝐿 (𝑔ℓℓ𝑅 ± 𝑔ℓℓ𝐿 )𝑀2𝑍′ ,𝐾(ℓℓ′)9/10 = − 𝜋√2𝐺𝐹 𝛼𝑒 ⋅ 𝑔𝑢𝑐𝐿 (𝑔ℓℓ′𝑅 ± 𝑔ℓℓ′𝐿 )𝑀2𝑍′ , 𝐶′ (ℓ)9/10 = − 𝜋√2𝐺𝐹 𝛼𝑒 ⋅ 𝑔𝑢𝑐𝑅 (𝑔ℓℓ𝑅 ± 𝑔ℓℓ𝐿 )𝑀2𝑍′ ,𝐾′ (ℓℓ′)9/10 = − 𝜋√2𝐺𝐹 𝛼𝑒 ⋅ 𝑔𝑢𝑐𝑅 (𝑔ℓℓ′𝑅 ± 𝑔ℓℓ′𝐿 )𝑀2𝑍′ . (4.16)

Again, Eqs. (4.1), (4.2), (4.4), (4.5), (4.10) and (4.11), yield the following constraints when SM
contributions are neglected and where 𝑀𝑍′ denotes the mass of the 𝑍′∣(𝑔𝑢𝑐𝐿 − 𝑔𝑢𝑐𝑅 )(𝑔𝜇𝜇𝐿 − 𝑔𝜇𝜇𝑅 )∣ ≲ 0.03 ( 𝑀𝑍′1 TeV)2 ,∣(𝑔𝑢𝑐𝐿 − 𝑔𝑢𝑐𝑅 )(𝑔𝑒𝑒𝐿 − 𝑔𝑒𝑒𝑅 )∣ ≲ 27 ( 𝑀𝑍′1 TeV)2 ,∣𝑔𝑢𝑐𝐿 − 𝑔𝑢𝑐𝑅 ∣√∣𝑔𝜇𝑒𝐿 ∣2 + ∣𝑔𝜇𝑒𝑅 ∣2 ≲ 0.07 ( 𝑀𝑍′1 TeV)2 ,

∣𝑔𝑢𝑐𝐿 + 𝑔𝑢𝑐𝑅 ∣ √∣𝑔𝜇𝜇𝐿 ∣2 + ∣𝑔𝜇𝜇𝑅 ∣2 ≲ 0.02 ( 𝑀𝑍′1 TeV)2 ,∣𝑔𝑢𝑐𝐿 + 𝑔𝑢𝑐𝑅 ∣√∣𝑔𝑒𝑒𝐿 ∣2 + ∣𝑔𝑒𝑒𝑅 ∣2 ≲ 0.10 ( 𝑀𝑍′1 TeV)2 ,∣𝑔𝑢𝑐𝐿 + 𝑔𝑢𝑐𝑅 ∣√∣𝑔𝜇𝑒𝐿 ∣2 + ∣𝑔𝜇𝑒𝑅 ∣2 ≲ 0.04 ( 𝑀𝑍′1 TeV)2 .
(4.17)

As discussed in App. D stronger bounds arise from tree-level 𝑍′–contributions to 𝐷0 − 𝐷0 mixing.
Here, both LH and RH quark couplings contribute and we obtain the following bound, dropping the
superscript ’𝑢𝑐’ for brevity,|𝑔2𝐿 + 𝑔2𝑅 − 𝑋 𝑔𝐿 𝑔𝑅| ≃ (4.14 ± 0.31) × 10−7 ( 𝑀𝑍′1 TeV)2 , (4.18)

with 𝑋 ∼ 20 for 1TeV ≲ 𝑀𝑍′ ≲ 10TeV. The main sources of uncertainty are the experimental limit
on the 𝐷0 − 𝐷0 mixing parameter, the QCD running effects depending on the 𝑍′–mass and hadronic
matrix elements, however uncertainties are reduced with respect to a similar bound in Ref. [1]. In
the case of only one non-vanishing coupling, i.e. 𝑔𝐿 ≠ 0 and 𝑔𝑅 = 0 or 𝑔𝑅 ≠ 0 and 𝑔𝐿 = 0, we
obtain |𝑔𝐿/𝑅| ≲ 7 × 10−4 (𝑀𝑍′/TeV). This constraint is severe, as it renders Eq. (4.17) irrelevant
and the lepton couplings are instead bounded by perturbativity. Using order one lepton couplings
yields 𝐶9/10 ≲ 𝒪(10−2) and 𝐾9/10 ≲ 𝒪(10−2) for 𝑀𝑍′ ≳ 1TeV, consistent with [93]. As presented in
App. D.2, larger couplings are allowed in scenarios with both couplings present 𝑔𝐿 ≠ 0 and 𝑔𝑅 ≠ 0,
then bounded only by Eq. (4.17). To cancel the constraint from 𝐷0 − 𝐷0 mixing, we need𝑔𝐿 ≈ 𝑋𝑔𝑅 or 𝑔𝐿 ≈ 1𝑋𝑔𝑅 . (4.19)

In the following we present flavorful 𝑍′–models, which satisfy the condition (4.19) without introducing
unnatural hierarchies. As discussed in detail in App. D.1, 𝑐 → 𝑢 transitions are induced in these models
from non-universal charges 𝐹𝜓 and flavor mixing. In order to have 𝑔𝐿 ≠ 0 and 𝑔𝑅 ≠ 0 we require non
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zero differences between charm and up-quark charges for the doublets and the singlets, respectively,
i.e. 𝛥𝐹𝐿(𝑅) ≠ 0 and 𝛥𝐹𝐿 = 𝐹𝑄2 − 𝐹𝑄1 , 𝛥𝐹𝑅 = 𝐹𝑢2 − 𝐹𝑢1 . (4.20)

For the flavor mixing, four rotations between flavor and mass basis exist, which we refer to as 𝑈𝑢,𝑈𝑑, 𝑉𝑢 and 𝑉𝑑 for RH up quarks, RH down quarks and up- and down-type components of the LH
quark doublet, respectively. All of these constitute unitary matrices, where the only constraint is𝑉 †𝑢 𝑉𝑑 = 𝑉CKM. Since effects in the down sector are strongly constrained by rare kaon decays, e.g. [245],
we consider CKM effects and unknown misalignment for the quark singlets to predominantly stem
from up-type rotations, i.e. 𝑈𝑑 = 1, 𝑉𝑑 = 1, hence 𝑉𝑢 = 𝑉 †

CKM and 𝑈𝑢 unconstrained.
We further assume the third generation to be sufficiently decoupled, such that we can work with two

by two orthogonal matrices. These are parametrized by a single angle each, 𝜃𝑢 and 𝛷𝑢, for 𝑈𝑢 and 𝑉𝑢,
respectively.

Then, 𝑔𝐿 = 𝑔4 𝛥𝐹𝐿 cos𝛷𝑢 sin𝛷𝑢 , 𝑔𝑅 = 𝑔4 𝛥𝐹𝑅 cos 𝜃𝑢 sin 𝜃𝑢 , (4.21)

with the 𝑈(1)′ gauge coupling strength 𝑔4 and, due to 𝑉𝑢 = 𝑉 †
CKM, we obtain𝑔𝑅𝑔𝐿 ≃ 𝛥𝐹𝑅 cos 𝜃𝑢 sin 𝜃𝑢𝛥𝐹𝐿𝜆 , (4.22)

with Wolfenstein 𝜆. The condition (4.19) can be satisfied for 𝑔𝑅/𝑔𝐿 = 𝑋𝛥𝐹𝑅𝛥𝐹𝐿 sin 2𝜃𝑢 ≃ 8 , (4.23)

and for 𝑔𝑅/𝑔𝐿 = 1/𝑋 𝛥𝐹𝑅𝛥𝐹𝐿 sin 𝜃𝑢 ≃ 1/100 , (4.24)

and we refer to Eq. (4.23) as RH dominated and to Eq. (4.24) as LH dominated. The RH dominated
case requires a hierarchy between 𝛥𝐹𝐿 and 𝛥𝐹𝑅, whereas the LH dominated scenario can be satisfied
with mixing alone 𝜃𝑢 = 𝒪(10−2). In both cases the hierarchy is inherited by the Wilson coefficients𝐶(ℓ)9/10𝐶′(ℓ)9/10 , 𝐾(ℓℓ′)9/10𝐾(′) (ℓℓ′)9/10 ∼ 𝑋 (LH) or ∼ 1/𝑋 (RH) . (4.25)

Tab. 4.2 contains benchmark models, which are LH dominated or RH dominated (indicated with a
prime) along with the associated mixing angle 𝜃𝑢. The values of 𝛥𝐹𝑅 and 𝛥𝐹𝐿 are possible choices
for anomaly-free 𝑍′–models presented in Tab. D.1 of App. D.1.𝛥𝐹𝑅/𝛥𝐹𝐿 ranges within ∼ [0.9, 35] for the presented models and for 𝛥𝐹𝑅/𝛥𝐹𝐿 ≥ 8 both RH– and
LH–dominated scenarios are possible, depending on the value of 𝜃𝑢.
These concrete 𝑍′–models are now constrained from the 𝐷+ → 𝜋+𝜇+𝜇− branching ratio limit, see
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4 Models extending the Standard Model

Table 4.2: Benchmark scenarios of anomaly-free 𝑍′–models and the corresponding mixing
angle 𝜃𝑢 for different possible charge assignments according to Tab. D.1. Solutions with a
prime are RH dominated, all others are LH–dominated.

sol. # 𝛥𝐹𝑅 𝛥𝐹𝐿 𝑔𝑅/𝑔𝐿 case 𝜃𝑢
1 3 2 1/𝑋 0.008
2 12 9 1/𝑋 0.0093′ 35 1 𝑋 0.122
3 35 1 1/𝑋 0.0003
4 3 3 1/𝑋 0.011
5 3 3 1/𝑋 0.011
6 15 16 1/𝑋 0.012
7 0 0 - -8′ 18 1 𝑋 0.244
8 18 1 1/𝑋 0.0006

Eq. (4.17), using 𝑔ℓℓ𝐿 = 𝑔4𝐹𝐿ℓ , 𝑔ℓℓ𝑅 = 𝑔4𝐹𝑒ℓ𝑔44 (𝜆 𝛥𝐹𝐿)2 {1 + (𝛥𝐹𝑅 sin 2𝜃𝑢𝛥𝐹𝐿2𝜆 )}2 (𝐹 2𝐿2 + 𝐹 2𝑒2) ≲ 6 × 10−4 ( 𝑀𝑍′1 TeV)4 , (4.26)

where depending on the scenario 𝛥𝐹𝑅 sin 2𝜃𝑢𝛥𝐹𝐿2𝜆 = 𝑋, 1𝑋 , such that the maximal 𝑔4/𝑀𝑍′ is fixed in each
model as 𝑔24 ≲ 0.12𝛥𝐹𝐿 √𝐹 2𝐿2 + 𝐹 2𝑒2 ( 𝑀𝑍′1TeV)2 × {(1 + 𝑋)−1 (RH)(1 + 1/𝑋)−1 (LH) . (4.27)

We illustrate these bounds in Fig. 4.1, in the plane of the BSM coupling 𝑔4 and the 𝑍′–mass. Each
line corresponds to an upper limit of a scenario from Tab. 4.2 with one specific choice for the charges𝐹𝐿1 (𝐹𝐿2) and 𝐹𝑒1 (𝐹𝑒2) for electrons (muons).
Note that due to larger values for the charges, constraints on the gauge coupling for RH cases are

stronger than for corresponding LH ones in Eq. (4.27). We indicate a black exclusion region, which is
due to resonance searches in dilepton spectra of 𝑀𝑍′ ≳ 5TeV [184]. The lower mass bound is model
dependent because of the different quark and lepton charge assignments and also differs for dielectron
and dimuon searches. For that reason the lower mass region in Fig. 4.1 is covered by a fading black
band, as the region 𝑔4 < 0.5 and 𝑀𝑍′ < 5TeV might still be viable, however might be constrained
from other searches [246].
LFV couplings can be induced in 𝑍′–models in close analogy to the quark FCNC couplings. LH

couplings to charged leptons with LFV are absent if the PMNS matrix is due to rotations in the
neutrino sector only. Stringent constraints on a misalignment between flavor and mass bases in the
lepton sector arise from (𝑖) 𝜏 → (𝜇, 𝑒)ℓℓ with ℓ = 𝑒, 𝜇 , as well as (𝑖𝑖) 𝜇 → 𝑒𝑒𝑒 and 𝜇 → 𝑒𝛾, as they are
induced at tree level. In contrast these decays are only induced at the loop level in LQ–scenarios via
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4.3 Flavorful 𝑍′–models
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Figure 4.1: Upper limits and allowed parameter region for the 𝑈(1)′ gauge coupling 𝑔4 as
a function of the 𝑍′–mass, see Eq. (4.27), for the models in Tab. 4.2. The black region is
excluded by direct searches in dimuon and dielectron spectra [184]. For small gauge coupling
values 𝑔4, bounds become model-dependent, which is indicated by the fading black band, see
main text.

LQ-quark-loops [184].
Due to the assumption 𝑉𝑢 = 𝑉 †

CKM FCNCs with LH down-type quarks are avoided. Those exactly
address the present discrepancies in semileptonic rare 𝐵–decays. Down-type FCNCs can still be
generated for RH singlets. Further simultaneous contributions to |𝛥𝑐| = |𝛥𝑢| = 1 and |𝛥𝑏| = |𝛥𝑠| = 1
can be generated if the CKM rotation stems from both up- and down-type quark sectors, for instance𝑉𝑢𝑠 from up-sector rotations and 𝑉𝑐𝑏 from down-sector rotations. A phenomenological analysis of these
scenarios would be desirable, but is beyond the scope of this work.

In contradiction to Ref. [205], CP–violating effects are vanishing in these types of 𝑍′–models, as

• 𝑔𝐿 is induced by the CKM rotation with a negligibly small CP–violating phase in the sub-matrix
of the first two generations.

• 𝐷0 − 𝐷0 mixing constraints can be evaded with 𝑔𝐿 ≠ 0 and 𝑔𝑅 ≠ 0, however then the CP–phases
need to be aligned to be able to cancel in Eq. (4.18). Then the first point restricts CP–violating
effects to be small for both LH and RH quark coupling.

Maximal CP–violation can be achieved in scenarios of 𝑔𝐿 = 0 and 𝑔𝑅 maximal with CP–violating
phase around 𝜙𝑅 = 𝜋2 (or 𝜙𝑅 = 3𝜋2 ), because it enters twice in the mixing amplitude and drops out,
whereas it only enters once in amplitudes of direct CP–violation. In this scenario kaon constraints are
naturally avoided. We study implications in detail in Sec. 5.2.3.
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5 Null-test strategies and New Physics sensitivity in rare
charm decays

In this section, we discuss in detail how the SM can be probed and NP can be identified with rare
charm decays. Significant uncertainties due to resonance contributions block the access to BSM physics
in simple observables. We demonstrate how the resonance dominance can be made irrelevant or even
used as a catalyst in so-called null-test observables. Here, observables are designed to have a vanishing
SM expectation, such that any observation implies NP to be present. Further, we quantitatively
demonstrate opportunities to disentangle contributions to different BSM Wilson coefficients and
comment on future global fits. The structure of this section is as follows. We start with opportunities
in angular observables in Sec. 5.1, where angular observables with SM background and null tests are
discussed for 𝐷 → 𝑃ℓ+ℓ− as well as rare charm baryon decays. CP–asymmetries are discussed in
Sec. 5.2. Here, resonance enhancement can be used in semileptonic modes, CP–violation in angular
observables can provide further insight into the nature of BSM couplings and we investigate correlations
between CP–violating effects in semileptonic and hadronic decays within flavorful 𝑍′–models. Sec. 5.3
discusses possibilities to test LFU in ratios of branching ratios in close analogy to similar ratios known
from the 𝐵–anomalies. Finally, we discuss opportunities and distributions for LFV decay modes in
Sec. 5.4. Sec. 5.5 summarizes the NP reach of null-test observables in rare charm decays.

5.1 Angular observables

The first opportunity to test the SM, despite the significant resonance induced uncertainties on the
branching ratio, is to fully exploit the angular distribution of the respective decay modes. In this
section we perform a sensitivity study of angular observables for 𝐷 → 𝑃ℓ+ℓ− and rare charm baryon
decays.

5.1.1 𝐷 → 𝑃ℓ+ℓ−
From the double differential decay distribution for 𝐷 → 𝑃ℓ+ℓ−, given in Eq. (3.12), we identify
three 𝑞2 dependent functions 𝑎(𝑞2), 𝑏(𝑞2) and 𝑐(𝑞2). The first combination is the 𝑞2 differential decay
distribution 2 ⋅ (𝑎(𝑞2) + 𝑐(𝑞2)/3) and is given in App. E.1. The two remaining combinations are the
lepton forward-backward asymmetry ̃𝐴ℓ

FB ∼ 𝑏(𝑞2) and the flat term 𝐹𝐻 ∼ 𝑎(𝑞2) + 𝑐(𝑞2). Their full
dependence on BSM Wilson coefficients reads̃𝐴ℓ

FB(𝑞2) = 1𝛤 [∫10 − ∫0−1] d2𝛤
d𝑞2d cos 𝜃d cos 𝜃 = 𝑏(𝑞2)𝛤= 1𝛤 𝐺2𝐹𝛼2𝑒 𝑣2512𝜋5𝑚3𝐷 𝜆𝐷𝑃 (𝑚2𝐷 − 𝑚2𝑃) 𝑓0 {Re [(𝐶9 + 𝐶7 2𝑚𝑐𝑚𝐷 + 𝑚𝑃 𝑓𝑇𝑓+ ) 𝐶∗𝑆] 𝑚ℓ𝑚𝑐 𝑓++ 2Re [𝐶10𝐶∗𝑇 5] 𝑚ℓ𝑚𝐷 + 𝑚𝑃 𝑓𝑇 + Re [𝐶𝑆𝐶∗𝑇 + 𝐶𝑃𝐶∗𝑇 5] 𝑞2𝑚𝑐(𝑚𝐷 + 𝑚𝑃)𝑓𝑇} , (5.1)
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5.1 Angular observables

𝐹𝐻(𝑞2) = 2𝛤 [𝑎(𝑞2) + 𝑐(𝑞2)]= 1𝛤 𝐺2𝐹𝛼2𝑒 𝑣1024𝜋5𝑚3𝐷 √𝜆𝐷𝑃 {∣𝐶9 + 𝐶7 2𝑚𝑐𝑚𝐷 + 𝑚𝑃 𝑓𝑇𝑓+ ∣2 4𝑚2ℓ𝑞2 𝜆𝐷𝑃𝑓2++ |𝐶10|2 4𝑚2ℓ𝑞2 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20 + [|𝐶𝑆|2 (1 − 4𝑚2ℓ𝑞2 ) + |𝐶𝑃|2] 𝑞2𝑚2𝑐 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20+ 4 [|𝐶𝑇|2 + |𝐶𝑇 5|2] (1 − 4𝑚2ℓ𝑞2 ) 𝑞2(𝑚𝐷 + 𝑚𝑃)2 𝜆𝐷𝑃𝑓2𝑇+ 8Re [(𝐶9 + 𝐶7 2𝑚𝑐𝑚𝐷 + 𝑚𝑃 𝑓𝑇𝑓+ ) 𝐶∗𝑇] 𝑚ℓ𝑚𝐷 + 𝑚𝑃 𝜆𝐷𝑃𝑓+𝑓𝑇+ 4Re [𝐶10𝐶∗𝑃] 𝑚ℓ𝑚𝑐 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20 + 16 |𝐶𝑇|2 𝑚2ℓ(𝑚𝐷 + 𝑚𝑃)2 𝜆𝐷𝑃𝑓2𝑇} ,
(5.2)

where all Wilson coefficients 𝐶𝑖, with the exception of the tensor ones, are understood as 𝐶𝑖 → 𝐶𝑖 +𝐶′𝑖 ,
which is a general feature of the 𝐷 → 𝑃 transition. We have also introduced the integrated rate as the
normalization, which we define to be dependent on the 𝑞2 bin𝛤 = 𝛤(𝑞2

min, 𝑞2
max) = ∫𝑞2

max𝑞2
min

d𝛤
d𝑞2 d𝑞2 = 2 ∫𝑞2

max𝑞2
min

(𝑎(𝑞2) + 𝑐(𝑞2)3 ) d𝑞2 . (5.3)

Fig. 5.1 shows the flat term in the full 𝑞2 region for 𝐷+ → 𝜋+𝜇+𝜇− (left) and 𝐷+𝑠 → 𝐾+𝜇+𝜇− (right)
for the resonant SM1.
Clearly, 𝐹𝐻 is similarly shaped as the differential branching ratio in Fig. 3.2, due to the resonance

dominance. Both distributions are stable in the high 𝑞2 region, where NP effects can be sizable.
This is illustrated in the lower row plots of Fig. 5.2, where NP benchmark scenarios are shown. We

use the notation 𝐶𝑖 (𝑗) for 𝐶𝑖 or 𝐶𝑗, whenever the contributions are indistinguishable. Again, the left
plot shows 𝐹𝐻 for 𝐷+ → 𝜋+𝜇+𝜇− and the right plot is for 𝐷+𝑠 → 𝐾+𝜇+𝜇−. Note that here also the
normalization is restricted to the high 𝑞2 region, i.e. 𝑞2

min = (1.25GeV)2. The upper row of Fig. 5.2
shows several NP benchmark scenarios for the forward-backward asymmetry ̃𝐴ℓ

FB, where again the left
(right) plot is for 𝐷+(𝑠) → 𝜋+(𝐾+)𝜇+𝜇−.

We learn

• Due to larger uncertainties in the high 𝑞2 region for the resonance contributions in 𝐷+𝑠 → 𝐾+𝜇+𝜇−
with respect to 𝐷+ → 𝜋+𝜇+𝜇−, see Fig. 3.2 and also Fig. 5.1, the same NP benchmarks can yield
larger contributions in the angular observables, illustrated by using the same y-scale in left and
right plots in Fig. 5.2. Note, however the larger overall signal is expected for 𝐷+ → 𝜋+𝜇+𝜇−, as

1In Ref. [1] also the non-resonant contribution is shown. However, these contributions cannot be observed in experiments,
due to the resonance dominance in numerator and denominator, which is why we do not show them here.
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Figure 5.1: The SM contributions to 𝐹𝐻(𝑞2), see Eq. (5.2), using 𝐶𝑅9 and 𝐶𝑅𝑃 as in
Eq. (3.11) for 𝐷+ → 𝜋+𝜇+𝜇− (plot to the left) and 𝐷+𝑠 → 𝐾+𝜇+𝜇− (plot to the right)
decays. Uncertainties predominantly stem from unknown strong phases varied in the plot.
In accordance to Fig. 3.2 the solid (dashed) line shows the evaluation at central values of
input and fixed strong phases 𝛿𝜌 = 0, 𝛿𝜙 = 𝜋 (𝛿𝜌 = 𝛿𝜙 = 0).

discussed in Tab. 3.2.

• 𝐹𝐻(𝐷 → 𝑃𝑒+𝑒−) in the SM is tiny as effects from 𝐶𝑅9 are 𝑚2ℓ suppressed.

• 𝐹𝐻 is most sensitive to (pseudo-)tensor contributions, ̃𝐴ℓ
FB requires NP contributions to at least

two Wilson coefficients to have a significant signal, the largest effects are obtained for scenarios
with 𝐶𝑆 and 𝐶𝑇.

• ̃𝐴ℓ
FB is a SM null test, as no 𝐶𝑅9 𝐶𝑅𝑃 interference terms exist. The axial vector coupling 𝐶10 can

be probed if pseudotensor contributions 𝐶𝑇 5 exist as well.

• Large effects in both ̃𝐴ℓ
FB and 𝐹𝐻 indicate non-negligible tensor and scalar NP.

5.1.2 𝐵0 → 𝐵1ℓ+ℓ−
Similar to the discussion of the 𝐷 → 𝑃ℓ+ℓ− angular distribution, the three-body decay of a charmed
baryon, here commonly denoted as 𝐵0 → 𝐵1ℓ+ℓ− allows to define two angular observables next to the
branching ratio. The reason to go beyond the simpler meson decay is two-fold. The first argument
is simply to add more opportunities to test the SM and thus provide a road to a larger significance.
The second point is complementarity. Due to the spin structure in the decay, several combinations of
Wilson coefficients enter the angular coefficients. Instead of only 𝐶𝑖 + 𝐶′𝑖 , also 𝐶𝑖 − 𝐶′𝑖 terms exist in
the angular coefficients, such that it becomes possible to disentangle various NP contributions. For the
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Figure 5.2: The upper (lower) plots show the forward-backward asymmetry ̃𝐴ℓ
FB (the flat

term 𝐹𝐻) in the high 𝑞2 region in different BSM scenarios for 𝐷+ → 𝜋+𝜇+𝜇− (plots to the
left) and 𝐷+𝑠 → 𝐾+𝜇+𝜇− (plots to the right).

baryon decays we only consider NP contributions to vector and axial vector operators 𝐶(′)9 , 𝐶(′)10 as well
as dipole operators 𝐶(′)7 . Large effects in (pseudo-)scalar and (pseudo-)tensor operators are probed in
the purely leptonic decay 𝐷0 → ℓ+ℓ−(′) and angular observables in 𝐷 → 𝑃ℓ+ℓ−(′), which is a result of
previous sections.

Again, we write the angular distribution as in Eq. (3.17), introducing the coefficients 𝐾1𝑠𝑠, 𝐾1𝑐𝑐
and 𝐾1𝑐. The complete dependence on Wilson coefficients, form factors and kinematic variables for
these coefficients is given in App. E.2. To obtain these contributions the helicity formalism is used,
see Refs. [190–193], which we introduce and discuss separately in App. F. We define the fraction of
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5 Null-test strategies and New Physics sensitivity in rare charm decays

longitudinal polarized dimuons as 𝐹𝐿 = 2 𝐾1𝑠𝑠 − 𝐾1𝑐𝑐2 𝐾1𝑠𝑠 + 𝐾1𝑐𝑐 , (5.4)

where the normalization is given by the 𝑞2 differential decay rate d𝛤/d𝑞2 = 2 𝐾1𝑠𝑠 + 𝐾1𝑐𝑐 . 𝐹𝐿 is not
a null test, as it contains similar contributions as the differential decay rate. Due to the differential
normalization in Eq. (5.4) uncertainties from resonance contributions cancel in the SM in 𝐹𝐿. This
is because the Wilson coefficients in numerator and denominator cancel in scenarios where only one
Wilson coefficient dominates, which is exactly the case in the SM with 𝐶𝑅9 . The distribution is then
only affected by form factor uncertainties and mostly dictated by helicity, see Refs. [247, 248]. Most
importantly at both kinematic endpoints 𝐹𝐿 = 13 , which holds in the SM and beyond. The implications
for the SM are the following. As depicted in Fig. 5.3 where 𝐹𝐿 is shown for 𝛬𝑐 → 𝑝𝜇+𝜇−, 𝐹𝐿 first
increases from the low 𝑞2 endpoint to a maximum 𝐹𝐿 ∼ 0.7 and then decreases to the high 𝑞2 endpoint,
where again 𝐹𝐿 = 13 . The solid line in Fig. 5.3 is obtained when only 𝐶𝑅9 is included. The band
illustrates interference effects of 𝐶eff7 , whereas including 𝐶eff9 has no effect. Note that these perturbative
contributions are negligible for all other purposes and only enter here, because 𝐶𝑅9 cancels in 𝐹𝐿.
The pale band illustrates a 10 % effect of splitting between 𝑎𝑀 parameters for the longitudinal versus
transverse polarization. The band is fading out towards the high 𝑞2 region because this splitting is
forbidden by symmetry at the endpoint.

The second angular observable is again the forward-backward asymmetry of the leptons, defined as𝐴ℓ
FB = 1

d𝛤/d𝑞2 [∫10 − ∫0−1] d2𝛤
d𝑞2d cos 𝜃ℓ d cos 𝜃ℓ = 32 𝐾1𝑐2 𝐾1𝑠𝑠 + 𝐾1𝑐𝑐 . (5.5)

Similar to the meson case, the numerator of 𝐴ℓ
FB only contains interference terms of two different

Wilson coefficients. The main important difference is that 𝐴ℓ
FB includes the following interference

terms, see App. E.2 𝐴ℓ
FB ∝ 𝐶7𝐶10, 𝐶7𝐶′10, 𝐶′7𝐶10, 𝐶′7𝐶′10, 𝐶9𝐶10, 𝐶′9𝐶′10 , (5.6)

so that

• 𝐴ℓ
FB constitutes a null test of the SM in rare charm decays.

• 𝐶10 can be probed even in the absence of further BSM contributions as an interference term
with 𝐶9 and thus the resonance contributions exist. On the other hand, if there is only NP in𝐶′10 it cannot be seen in 𝐴ℓ

FB, as this would require further BSM couplings to be present, i.e.𝐶7, 𝐶′7, 𝐶′9.
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Figure 5.3: SM contribution for the fraction of longitudinally polarized dimuons 𝐹𝐿, see
Eq. (5.4), in 𝛬𝑐 → 𝑝𝜇+𝜇−. The solid orange line is for 𝐶𝑅9 contributions only. The orange
band illustrates effects of additionally including 𝐶eff7,9(𝑞2). The pale band is obtained by adding
a 10% splitting between the 𝑎𝑀 parameters entering the longitudinal and the transverse
polarization, which is forbidden at 𝑞2

max = (𝑚𝛬𝑐 − 𝑚𝑝)2, see text. At both endpoints𝐹𝐿 = 1/3 holds model-independently.

We also definẽ𝐴ℓ
FB = 1𝛤 [∫10 − ∫0−1] d2𝛤

d𝑞2d cos 𝜃ℓ d cos 𝜃ℓ = 32 𝐾1𝑐∫𝑞2
max𝑞2

min
(2 𝐾1𝑠𝑠 + 𝐾1𝑐𝑐)d𝑞2 , (5.7)

with the integrated decay rate as normalization in order to discuss the differences and advantages of
each of these normalization schemes. Fig. 5.4 shows 𝐴ℓ

FB and ̃𝐴ℓ
FB for 𝛬𝑐 → 𝑝𝜇+𝜇− in the upper and

lower row plots, respectively. The left panel is for the full 𝑞2 region and decreasing NP contribution
in 𝐶10 thus illustrating the sensitivity, whereas the right plots are in the high 𝑞2 region for several
different NP benchmark scenarios. Here, the red uncertainty band of the scenario with 𝐶10 = 0.3 is
bounded by black lines, as the red band is partly covered by other scenarios.

In 𝐴ℓ
FB contributions are suppressed around the resonances, which is due to the peaking denominator,

whereas ̃𝐴ℓ
FB with constant denominator shows that contributions to the numerator are actually

enhanced at the resonances. This is understood as 𝐶𝑅9 obtains maxima exactly at the resonance masses.
Due to the significant uncertainties in the strong phases, the sign of 𝐴ℓ

FB and therefore 𝐶10 cannot be
predicted. The sensitivity to 𝐶10 is down to ∼ 0.01 (few× 0.01) level, depending on the normalization.
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5 Null-test strategies and New Physics sensitivity in rare charm decays

Figure 5.4: The top row shows the forward-backward asymmetry 𝐴ℓ
FB normalized as in

Eq. (5.5) and the bottom row displays ̃𝐴ℓ
FB as in Eq. (5.7) with normalization to the decay

rate for 𝛬𝑐 → 𝑝𝜇+𝜇− decays. The left panel shows different values of 𝐶10 in the full 𝑞2
region. In the right panel various NP benchmark scenarios are shown in the high 𝑞2 region.

The right plots for the high 𝑞2 region show that uncertainties are more well behaved when only parts
of the phase space are looked at. Also the dipole operators 𝐶7 and 𝐶′7 can only be tested along with𝐶10 or 𝐶′10.
A better sensitivity independent of axial vector currents is achieved if NP contributions are tested

in 𝐹𝐿, as illustrated in the upper plot of Fig. 5.5 for 𝛬𝑐 → 𝑝𝜇+𝜇−. Here, scenarios with only 𝐶9, 𝐶10
or 𝐶′10 are indistinguishable from the SM curve in orange, which is also shown in Fig. 5.3. Small
perturbations around the SM prediction are induced by contributions to 𝐶′9, which are then modulated
by resonance uncertainties. More significantly, contributions to dipole operators 𝐶(′)7 lead to a strongly
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Figure 5.5: Various BSM scenarios contributing to the fraction of longitudinally polarized
dimuons 𝐹𝐿 of 𝛬𝑐 → 𝑝𝜇+𝜇− decays. Theoretical uncertainties from form factors and
resonance parameters are included. The orange band corresponds to the resonant SM
contribution. The upper plot shows effects of 𝐶′9 and dipole operators 𝐶(′)7 and the bottom
plots test the sensitivity of the dipole operators 𝐶′7 (left) and 𝐶7 (right).

altered shape of 𝐹𝐿, thus also lifting the cancellation of resonance uncertainties present in the SM.
These uncertainties remain sizable in 𝐶′7 scenarios and are huge in 𝐶7 scenarios, however a measurement
of 𝐹𝐿 can clearly test the presence of sizable dipole operators down to 𝒪(0.01), which is apparent from
the lower plots in Fig. 5.5, where the right plot shows the SM curve in orange and different decreasing
values for 𝐶′7 = 0.3, 0.05, 0.03 and 0.02 in green, blue, red and yellow, respectively. The bottom right
plot is similar, but for BSM physics in 𝐶7. The extraordinary sensitivity to dipole operators in 𝐹𝐿 can
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5 Null-test strategies and New Physics sensitivity in rare charm decays

be understood qualitatively by examining the different helicity contributions in the limit of vanishing
lepton masses 𝑞2 ≫ 𝑚2ℓ . In this limit, we find𝐹𝐿 = 𝐿11+22𝑈11+22 + 𝐿11+22 , (5.8)

where 𝑈11+22 and 𝐿11+22 contain quadratic terms of helicity amplitudes and denote unpolarized
transverse (𝑈) and unpolarized longitudinal (𝐿) terms. The full expressions are given in App. E.2.
Here, we only take a closer look at prefactors in 𝑈 and 𝐿 and note that Wilson coefficients drop out in𝐹𝐿 in the limit of only considering one Wilson coefficient at a time. For 𝐶9, 𝐶10, 𝐶′9, 𝐶′10 contributions
in 𝐿 scale with 𝑚2𝛬𝑐/𝑞2, whereas contributions to 𝑈 are multiplied by a factor two. In this case, the
leading 𝑞2 dependence in 𝐹𝐿 is given as

𝐹𝐿 ∼ 𝑚2𝛬𝑐𝑞22 + 𝑚2𝛬𝑐𝑞2 = 12𝑞2𝑚2𝛬𝑐 + 1 , (5.9)

which decreases from 𝒪(1) for small 𝑞2 values to the high 𝑞2 endpoint where 𝐹𝐿 = 13 . On the other
hand dipole operators 𝐶(′)7 receive an additional factor of 2𝑚𝑐/𝑞2 from the photon to lepton pair
coupling, resulting in a 1/𝑞2 scaling in 𝐿 and a 2𝑚𝛬2𝑐 /𝑞4 scaling in 𝑈, which leads to𝐹𝐿 ∼ 1𝑞22𝑚2𝛬𝑐𝑞4 + 1𝑞2 = 12𝑚2𝛬𝑐𝑞2 + 1 , (5.10)

which increases from 𝐹𝐿 ≪ 1 to endpoint 𝐹𝐿 = 1/3. For the endpoint at 𝑞2 = 4𝑚2ℓ the 𝑚2ℓ terms are
mandatory to find 𝐹𝐿 = 1/3 as well, which along with interference effects and the 𝑞2 dependence of
the resonance contributions lead to the shape displayed in Fig. 5.5.

5.1.3 𝐵0 → 𝐵1(→ 𝐵2𝜋)ℓ+ℓ−
In the case of the (quasi-)four-body rare charm baryon decays, the number of independent angular
coefficients increases from three to ten, see Eq. (3.20). Among those it is easy to identify further
null tests of the SM, due to proportionality to the axial vector couplings 𝐶10 and 𝐶′10 while no terms
proportional to |𝐶9|2 enter. Next to 𝐾1𝑐 ∝ ̃𝐴ℓ𝐹𝐵, we find𝐾SM1𝑐 = 𝐾SM2𝑐 = 𝐾SM3𝑠 = 𝐾SM4𝑠 = 0 . (5.11)

Note again that all of these clean null tests except 𝐾1𝑐 vanish in the limit 𝛼 = 0, i.e. when no secondary
decay polarization is available. The NP sensitivity in 𝐾2𝑐, 𝐾3𝑠 and 𝐾4𝑠 is discussed in this section.

First, we discuss the possibility to measure the forward-backward asymmetry in the hadron system,
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5.1 Angular observables

defined as 𝐴H
FB = 1

d𝛤/d𝑞2 [∫10 − ∫0−1] ∫1−1 ∫2𝜋0 d4𝛤
d𝑞2d cos 𝜃ℓd cos 𝜃𝜋d𝜙d𝜙d cos 𝜃ℓd cos 𝜃𝜋= 12 2 𝐾2𝑠𝑠 + 𝐾2𝑐𝑐2 𝐾1𝑠𝑠 + 𝐾1𝑐𝑐 . (5.12)

𝐴H
FB is not a null test, however, similar to 𝐹𝐿, a strong sensitivity to some NP Wilson coefficients is

present. The top row plot of Fig. 5.6 shows 𝐴H
FB in the SM in orange and in NP benchmark scenarios𝐶7 = 0.3, 𝐶′9, (10) = 0.5 and 𝐶′7 = 0.3 in blue, red and green, respectively, for the four-body mode𝛯+𝑐 → 𝛴+(→ 𝑝𝜋0)𝜇+𝜇−. Similar to discussions of the meson decays, 𝐶𝑖, (𝑗) refers to 𝐶𝑖 or 𝐶𝑗, and we

explicitly checked that the two cases are indistinguishable within uncertainties. Scenarios with BSM
in 𝐶9 only or 𝐶10 only are SM-like. The lower row plots in Fig. 5.6 exemplary illustrate sensitivities
of 𝐶′7 (left plot) and 𝐶′10 (right plot). Again, within uncertainties a plot with sensitivities of 𝐶′9 is
indistinguishable from the bottom right plot (𝐶′10). We see that right-handed dipole operators can be
tested at the level of ∼ 0.01, whereas significant deviations for 𝐶′9 and 𝐶′10 require BSM effects close to𝒪(0.1).
Similar to 𝐹𝐿, SM uncertainties are comparatively small as for a single Wilson coefficient scenario,

the Wilson coefficient drops out in the ratio. Phase uncertainties entering in 𝐶𝑅9 are then irrelevant.
For 𝐹𝐿 endpoint relations enforce 𝐹𝐿 = 13 , but 𝐴H

FB is only vanishing at the high 𝑞2 endpoint, and
non-vanishing, however model-dependent at the low 𝑞2 endpoint. Also, it is not dipole couplings that
strongly alter the shape of 𝐴H

FB. Instead, one is sensitive to the difference of LH and RH quark currents,
i.e. primed and unprimed operators. The behavior of 𝐶7, 𝐶9 and 𝐶10 with little or no effect on the SM
curve, versus strong altered distribution in scenarios of 𝐶′7, 𝐶′9, 𝐶′10 can be attributed to the properties
of the involved angular coefficients under parity. 𝐾1𝑠𝑠 and 𝐾1𝑐𝑐 are P–even, and 𝐾2𝑠𝑠 and 𝐾2𝑐𝑐 are
P–odd. This leads to a cancellation of effects in numerator and denominator only for LH contributions.
This is illustrated exemplarily in the limit 𝑚ℓ = 0 where 𝐴H

FB with effects from 𝐶9, 𝐶10 and 𝐶′10 can
be written as

𝐴H
FB = −𝛼 ⋅ (|𝐶9|2 + |𝐶10|2 − |𝐶′10|2) 𝐴(𝑞2)√𝑠+𝑠−((|𝐶9|2 + |𝐶10 − 𝐶′10|2 ) 𝐵(𝑞2)𝑠+ + (|𝐶9|2 + |𝐶10 + 𝐶′10|2) 𝐶(𝑞2)𝑠−) , (5.13)

where 𝐴(𝑞2) = 2 𝑓⟂𝑔⟂ + 𝑓+𝑔+ 𝑚2𝐵0 − 𝑚2𝐵1𝑞2 ,𝐵(𝑞2) = 2 𝑔2⟂ + 𝑔2+ (𝑚𝐵0 − 𝑚𝐵1)2𝑞2 , 𝐶(𝑞2) = 2 𝑓2⟂ + 𝑓2+ (𝑚𝐵0 + 𝑚𝐵1)2𝑞2 . (5.14)
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Figure 5.6: The top row plot shows the forward-backward asymmetry in the hadronic
scattering angle 𝜃𝜋 for the decay mode 𝛯+𝑐 → 𝛴+(→ 𝑝𝜋0)𝜇+𝜇− in the SM in orange and
in NP scenarios with 𝐶7 = 0.3, 𝐶′9 or 𝐶′10 = 0.5 and 𝐶′7 = 0.3 in blue, red and green,
respectively. A NP scenario with 𝐶9 only or 𝐶10 only is not shown, as it is indistinguishable
from the SM curve. The bottom row plots show decreasing values of 𝐶′7 (left) and 𝐶′10
(right), see the respective legend and the main text.

In the SM 𝐶9 = 𝐶𝑅9 and 𝐶(′)10 = 0 and the Wilson coefficient cancels. Similarly |𝐶𝑅9 |2 + |𝐶10|2 drops
out as long as 𝐶′10 = 0, which is why no scenario with NP only in 𝐶10 is shown in Fig. 5.6. On the
other hand, for 𝐶′10 ≠ 0 the Wilson coefficients do not cancel, and the 𝑞2 shape is driven by resonances
in 𝐶𝑅9 . The additional minus sign in front of 𝐶′10 is because of the parity behavior of the numerator
and hence a similar discussion also holds for 𝐶′7 and 𝐶′9. Interference terms of 𝐶7 and 𝐶9 softly break
the exact cancellation, see the blue band in Fig. 5.6.
Next, we turn to another null test. The combined forward-backward asymmetry in both hadronic
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Figure 5.7: Combined forward-backward asymmetry in both hadronic and leptonic scattering
angles 𝜃𝜋, 𝜃ℓ for the decay mode 𝛯+𝑐 → 𝛴+(→ 𝑝𝜋0)𝜇+𝜇− in NP scenarios with 𝐶10 or𝐶′10 = 0.3, 𝐶10 = −𝐶′10 = 0.3 and 𝐶10 = 𝐶′10 = 0.3 in red, green and blue, respectively. The
right plot shows 𝐴ℓ

FB only in the 𝐶10 = 0.3 scenario, but for the same decay channel for
comparison. The SM prediction for both 𝐴ℓH

FB and 𝐴ℓ
FB is exactly zero.

and leptonic scattering angles can be defined as𝐴ℓH
FB = 1

d𝛤/d𝑞2 [∫10 − ∫0−1] [∫10 − ∫0−1] ∫2𝜋0 d4𝛤
d𝑞2d cos 𝜃ℓd cos 𝜃𝜋d𝜙d cos 𝜃ℓd cos 𝜃𝜋= 34 𝐾2𝑐2 𝐾1𝑠𝑠 + 𝐾1𝑐𝑐 . (5.15)

Here, again 𝐶10 or 𝐶′10 are a necessity for a non-vanishing signal. In Fig. 5.7 the left plot shows𝐴ℓH
FB for 𝛯+𝑐 → 𝛴+(→ 𝑝𝜋0)𝜇+𝜇− in BSM benchmark scenarios 𝐶(′)10 = 0.3 and 𝐶10 = ±𝐶′10 = 0.3 in

red, green and blue, respectively. For better comparison the right plot shows 𝐴ℓ
FB also evaluated for𝛯+𝑐 → 𝛴+(→ 𝑝𝜋0)𝜇+𝜇− and for 𝐶10 = 0.3. This plot is similar to the same benchmark in the upper

left plot of Fig. 5.4 showing the three-body mode 𝛬𝑐 → 𝑝𝜇+𝜇− up to differences in masses and the
additional ℬ(𝛴+ → 𝑝𝜋0) suppression. The green and blue benchmarks are not shown in the right plot
as they yield the same result since no sensitivity to 𝐶′10 is available in 𝐴ℓ

FB as long as 𝐶7 = 𝐶′7 = 𝐶′9 = 0
(interference with 𝐶eff7 is neglected).

Now, 𝐴ℓH
FB is also induced by a term proportional to 𝐶9𝐶′10 and hence is able to test both axial

vector couplings, even in absence of further BSM effects. From Fig. 5.7 we further learn that

• The scenario 𝐶10 or 𝐶′10 = 0.3 is indistinguishable from 𝐶10 = −𝐶′10 = 0.3 within the large
uncertainties induced by the strong phases in 𝐶𝑅9 .

• 𝐶10 = 𝐶′10 leads to a partial cancellation of contributions and a decreased signal with respect to
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Figure 5.8: The angular null-test observables 𝐾4𝑠 and 𝐾3𝑠 for 𝛯+𝑐 → 𝛴+(→ 𝑝𝜋0)𝜇+𝜇−
and normalized to the differential decay rate in various NP scenarios for 𝐶10 and 𝐶′10.

the other scenarios.

• The lepton forward-backward asymmetry vanishes at both kinematic endpoints, whereas 𝐴ℓH
FB = 0

at 𝑞2 = 4𝑚2ℓ , but does not necessarily vanish at the high 𝑞2 endpoint.

5.1.4 Further angular null tests

Two more angular null tests exist for the (quasi-)four-body decay chain, 𝐾3𝑠 and 𝐾4𝑠. Both contain
terms proportional to both 𝐶9𝐶10 and 𝐶9𝐶′10, just like 𝐾2𝑐 ∝ 𝐴ℓH

FB, and different from 𝐾1𝑐 ∝𝐴ℓ
FB. Structurally, this makes 𝐾3𝑠 and 𝐾4𝑠 similar to 𝐴ℓH

FB, discussed previously. Fig. 5.8 shows𝐾4𝑠(d𝛤/d𝑞2)−1 (left) and 𝐾3𝑠(d𝛤/d𝑞2)−1 (right) in the same scenarios as 𝐴ℓH
FB in Fig. 5.7 for 𝛯+𝑐 →𝛴+(→ 𝑝𝜋0)𝜇+𝜇−.

The endpoint behavior is understood. At zero hadronic recoil, 𝐾3𝑠 = 𝐾1𝑐 = 0, and 𝐾4𝑠(d𝛤/d𝑞2)−1 =−𝐾2𝑐(d𝛤/d𝑞2)−1 and finite, however dependent on the model [248]. Further differences to 𝐴ℓH
FB are only

given by different Wilson coefficient times form factor combinations, which only results in little benefit
from the view of complementarity. However, two more null tests also imply further opportunities
increasing statistics and enhancing the sensitivity in a global analysis.

To go even beyond these opportunities in unpolarized rare charm baryon decays, the study of decays
of initially polarized charm baryons introduces further null-test observables. This might be useful
as some of those null tests already appear in polarized three-body decays, and hence can be probed
with 𝛬𝑐 → 𝑝𝜇+𝜇−. From an experimental perspective the sensitivity to these more exotic baryon
null tests in (quasi-)four-body decays depends on the (yet) unknown fragmentation fraction of exotic
charmed baryons such as 𝛯+𝑐 , 𝛯0𝑐 , 𝛺0𝑐 and the efficiency loss due to the reconstruction of the final state
particles such as neutral pions. Although the ℬ(𝐵1 → 𝐵2𝜋) suppression is negligible, see Tab. 3.4,
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the signal loss due to a reduced efficiency and fragmentation fraction can be severe. On the other
hand opportunities in three-body decays of polarized 𝛬𝑐 can suffer from a similar suppression, if
the initial state polarization 𝑃𝛬𝑐 is measured to be small. A detailed study is beyond the scope of
this work, however eight additional null tests probing axial vector couplings 𝐶(′)10 proportional to the𝐵0–polarization 𝑃𝐵0 are easily identified in the four-body angular distribution𝐾5𝑐, 𝐾6𝑐, 𝐾7𝑠, 𝐾8𝑠, 𝐾9𝑠, 𝐾10𝑠, 𝐾11𝑠, 𝐾12𝑠|SM ≃ 0 , (5.16)

with angular coefficients from the differential distribution defined similar to [249], however following
previously used notation

d6𝛤
d𝑞2 d ⃗𝛺 = 332𝜋2 ⋅ ( (𝐾1𝑠𝑠 sin2 𝜃ℓ + 𝐾1𝑐𝑐 cos2 𝜃ℓ + 𝐾1𝑐 cos 𝜃ℓ) +(𝐾2𝑠𝑠 sin2 𝜃ℓ + 𝐾2𝑐𝑐 cos2 𝜃ℓ + 𝐾2𝑐 cos 𝜃ℓ) cos 𝜃𝜋+(𝐾3𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾3𝑠 sin 𝜃ℓ) sin 𝜃𝜋 sin (𝜙𝑐 + 𝜙ℓ) +(𝐾4𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾4𝑠 sin 𝜃ℓ) sin 𝜃𝜋 cos (𝜙𝑐 + 𝜙ℓ) +(𝐾5𝑠𝑠 sin2 𝜃ℓ + 𝐾5𝑐𝑐 cos2 𝜃ℓ + 𝐾5𝑐 cos 𝜃ℓ) cos 𝜃𝑐+(𝐾6𝑠𝑠 sin2 𝜃ℓ + 𝐾6𝑐𝑐 cos2 𝜃ℓ + 𝐾6𝑐 cos 𝜃ℓ) cos 𝜃𝜋 cos 𝜃𝑐+(𝐾7𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾7𝑠 sin 𝜃ℓ) sin 𝜃𝜋 cos (𝜙𝑐 + 𝜙ℓ) cos 𝜃𝑐+(𝐾8𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾8𝑠 sin 𝜃ℓ) sin 𝜃𝜋 sin (𝜙𝑐 + 𝜙ℓ) cos 𝜃𝑐+(𝐾9𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾9𝑠 sin 𝜃ℓ) sin𝜙ℓ sin 𝜃𝑐+(𝐾10𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾10𝑠 sin 𝜃ℓ) cos𝜙ℓ sin 𝜃𝑐+(𝐾11𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾11𝑠 sin 𝜃ℓ) sin𝜙ℓ cos 𝜃𝜋 sin 𝜃𝑐+(𝐾12𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾12𝑠 sin 𝜃ℓ) cos𝜙ℓ cos 𝜃𝜋 sin 𝜃𝑐+(𝐾13𝑐𝑐 cos2 𝜃ℓ + 𝐾13𝑠𝑠 sin2 𝜃ℓ) sin 𝜃𝜋 sin𝜙𝑐 sin 𝜃𝑐+(𝐾14𝑐𝑐 cos2 𝜃ℓ + 𝐾14𝑠𝑠 sin2 𝜃ℓ) sin 𝜃𝜋 cos𝜙𝑐 sin 𝜃𝑐+(𝐾15𝑠𝑠 sin2 𝜃ℓ) sin 𝜃𝜋 cos (2𝜙ℓ + 𝜙𝑐) sin 𝜃𝑐+(𝐾16𝑠𝑠 sin2 𝜃ℓ) sin 𝜃𝜋 sin (2𝜙ℓ + 𝜙𝑐) sin 𝜃𝑐) .

(5.17)

Eq. (3.20) is recovered by the first four lines in (5.17) with 𝜙𝑐 + 𝜙ℓ = 𝜙. 𝜙𝑐 and 𝜃𝑐 are new angles
associated with the initial state polarization. We refer to Ref. [249] for details.

Among the eight additional null tests in Eq. (5.16), 𝐾5𝑐, 𝐾9𝑠 and 𝐾10𝑠 do not vanish for 𝛼 = 0 and
can be tested in 𝛬𝑐 → 𝑝𝜇+𝜇−, given a sufficient polarization of the 𝛬𝑐. Note that 𝐾5𝑐 = −𝑃𝐵0 𝐾2𝑐,
which implies that a test of 𝐾5𝑐 in polarized three-body decays of 𝛬𝑐 is equivalent to testing 𝐴ℓH

FB, only
available for self-analyzing four-body modes.

Angular null tests have already been tested recently in four-body meson decays 𝐷0 → ℎ+ℎ−𝜇+𝜇− [72],
and a first global fit might be in reach. The difficulty of these four-body charmed meson decays is that
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Figure 5.9: dℬ(𝛬𝑐 → 𝑝𝜇+𝜇−)/d𝑞2 [GeV−2] and 𝐹𝐿 in the same mode are shown in the left
and right plot, respectively, for the resonant SM in orange and for 𝐶′9 = ±0.5 and 𝐶′7 = 0.3
in red, green and blue, respectively. Solid lines show fixed strong phases 𝛿𝜔 = 𝛿𝜙 = 0 and
dashed curves are for 𝛿𝜔 = 0, 𝛿𝜙 = 𝜋. In the right plot uncertainties due to strong phases
cancel in the SM, which is why no dashed orange curve is shown.

resonances in the hadron and the lepton part of the final state need to be modeled [88]. A detailed
investigation of the results in [72] is beyond the scope of this work and shall be given elsewhere.

5.1.5 Towards a global fit
We summarize the complementarity in different angular observables presented in this section and
discuss the possibility to disentangle contributions from NP Wilson coefficients and QCD resonance
parameters. As evident from Figs. 5.2, 5.4, 5.5, 5.6, 5.7 and 5.8 uncertainties from resonance parameters
hamper the straightforward extraction of Wilson coefficients in rare charm decays. In that sense only
a simultaneous extraction of Wilson coefficients and resonance parameters in a global fit to several
angular observables will help to disentangle NP contributions. Fig. 5.9 illustrates the sensitivity of the
differential branching ratio (left) and the fraction of longitudinally polarized dimuons (right) for the
three-body baryon decay 𝛬𝑐 → 𝑝𝜇+𝜇− by showing the SM in orange and NP scenarios with 𝐶′9 = ±0.5
and 𝐶′7 = 0.3 and strong phases fixed to 𝛿𝜔 = 𝛿𝜙 = 0 (solid curves) and 𝛿𝜔 = 0, 𝛿𝜙 = 𝜋 (dashed curves).
In 𝐹𝐿, phase uncertainties cancel in the SM and only a solid curve is shown, whereas in the differential
branching ratio, the phase matters. Note that without information on strong phases the sign of Wilson
coefficients remains unknown, as a sign flip is equivalent to flipping all strong phases simultaneously.
Clearly, 𝑞2 differential measurements in both observables would be able to distinguish between the

different scenarios. This is already clear as for example the benchmark 𝐶′7 = 0.3, 𝛿𝜔 = 0, 𝛿𝜙 = 𝜋
(blue dashes curve) is already excluded by the experimental upper limit in Eq. (3.22), however at the
moment neither the exact phase combination nor the value for 𝐶′7 can be excluded. It is only the
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5.2 CP–asymmetries

combination of all parameters that is tested.
On the other hand the complementarity of the presented observables is already sufficient to disentangle

most of the different NP Wilson coefficients as follows

• Tensor and scalar contributions are tested in angular observables of charmed meson decays,
see Fig. 5.2. The scalars are tightly constrained from upper limits on purely leptonic decays𝐷0 → ℓ+ℓ− and updates are expected to be available in the near future.

• Dipole operators 𝐶7 and 𝐶′7 are probed in 𝐹𝐿 and can be distinguished by 𝐴H
FB.

• NP in 𝐶′9 can be identified if 𝐹𝐿 is SM–like and the null tests remain zero, but 𝐴H
FB shows signal

of RH quark currents.

• Axial vector couplings 𝐶10 and 𝐶′10 show up in various null-test observables and LH and RH can
be disentangled again in 𝐴H

FB, and further in 𝐴ℓ
FB, where only 𝐶10 enters, as long as no further

BSM couplings are present.

• Only in the scenario of NP only entering in 𝐶9 no final conclusion can be achieved without better
knowledge of resonance parameters.

Note, that these statements are independent of the actual resonance model used for the parametrization
of long-range effects. In any case a global fit can only be performed taking into account resonance
parameters and Wilson coefficients at the same time. However, interesting physics is tested in angular
observables of rare charm decays despite the significant uncertainties induced by the dominant resonance
contributions.

Beyond angular observables, even more null tests of the SM are available for rare charm decays and
are discussed in the remainder of this section.

5.2 CP–asymmetries

We discuss CP–violating NP contributions in semileptonic rare charm decays and correlations to
CP–violation in 𝛥𝐴CP. As pointed out in Sec. 3.5, we focus on direct CP–violation.

5.2.1 Resonance-enhanced CP–asymmetries in 𝐷 → 𝑃ℓ+ℓ−
The CP–asymmetry in rare semileptonic charm decays constitutes another promising null-test observ-
able [90, 92]. Similar to the discussion of the lepton forward-backward asymmetry in Sec. 5.1.2, we
distinguish two definitions, differing in their normalizatioñ𝐴CP(𝑞2) = d𝛤/d𝑞2 − d𝛤/d𝑞2𝛤 + 𝛤 , 𝐴CP(𝑞2) = d𝛤/d𝑞2 − d𝛤/d𝑞2

d𝛤/d𝑞2 + d𝛤/d𝑞2 , (5.18)
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5 Null-test strategies and New Physics sensitivity in rare charm decays

where 𝛤 corresponds to the CP–conjugated decay mode and the integrated decay rate 𝛤 and similarly𝛤 are defined as in Eq. (5.3). The explicit form of the difference of the differential rates reads

d𝛤
d𝑞2 − d𝛤

d𝑞2 = 𝐺2𝐹𝛼2𝑒256𝜋5𝑚3𝐷 √𝜆𝐷𝑃 𝛽ℓ {23 Im [𝐶9 + 2𝐶7 𝑚𝑐𝑚𝐷 + 𝑚𝑃 𝑓𝑇𝑓+ ] Im [𝐶𝑅9 ] (1 + 2𝑚2ℓ𝑞2 ) 𝜆𝐷𝑃𝑓2++ Im [𝐶𝑃] Im [𝐶𝑅𝑃 ] 𝑞2𝑚2𝑐 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20+ 4 Im [𝐶𝑇] Im [𝐶𝑅9 ] 𝑚ℓ𝑚𝐷 + 𝑚𝑃 𝜆𝐷𝑃𝑓+𝑓𝑇+ 2 Im [𝐶10] Im [𝐶𝑅𝑃 ] 𝑚ℓ𝑚𝑐 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20 } .
(5.19)

In the SM, effects are proportional to Im(𝐶eff9 ) and Im(𝐶eff7 ), defined in Eq. (2.25), and negligible due
to the involved small phases of the CKM factors. Effects from the resonant decay 𝐴CP(𝐷+ → 𝜙𝜋+)
are consistent with CP–symmetry [250] and since 𝜙 → 𝜇𝜇 is an CP–conserving electromagnetic decay,
no SM background is expected, which makes these type of CP–asymmetries null tests of the SM.

On the other hand, the resonance contributions catalyze CP–violating NP effects around the
resonance masses, where strong phases are large and the largest statistics is available [92]. This makes
CP–asymmetries promising candidates in the search for new sources of CP–violation beyond the SM,
as illustrated in Fig. 5.10. Here, we show the CP–asymmetries of 𝐷+ → 𝜋+𝜇+𝜇− (left panel) and𝐷+𝑠 → 𝐾+𝜇+𝜇− (right panel) around the squared mass of the 𝜙 resonance and in the high 𝑞2 region
for a NP benchmark 𝐶9 = 0.1 exp(i𝜙NP) with CP–violating phase 𝜙NP = 𝜋/4 and for several fixed
strong phases 𝛿𝜙 = 𝜋, 0, 𝜋/2, −𝜋/2. in blue, yellow, red and green, respectively. In Fig. 5.10 we use
the integrated decay rates as normalization.

CP–violation from other Wilson coefficients would be generated from dipole couplings 𝐶(′)7 , but is
suppressed for 𝐶𝑃, 𝐶𝑇, 𝐶10 by the light lepton mass, or negligibly small Im[𝐶𝑅𝑃 (𝑞2 ∼ 𝑚2𝜋)]. Im[𝐶𝑅𝑃 ]
is larger around the 𝜂 and 𝜂′ mass, however their small widths make probes for CP–violation in𝐶𝑃, 𝐶𝑇, 𝐶10 inaccessible.

As evident from Fig. 5.10 large effects can be observed in both kinematic regimes and irrespective of
the value of the strong phase 𝛿𝜙, however binning might be necessary especially around the resonance
mass region, as effects might be washed out by integration. The chosen benchmark is not the maximally
allowed value for the absolute value of the Wilson coefficient 𝐶9, however, depending on the model,
constraints and correlations from CP–violation in 𝐷0 − 𝐷0 mixing and hadronic decays (𝛥𝐴CP) might
be more stringent. This scenario is investigated in detail in the framework of flavorful 𝑈(1)′ extensions
in Sec. 5.2.3.
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5.2 CP–asymmetries

Figure 5.10: The CP–asymmetry for 𝐶9 = 0.1 exp(i𝜋/4) in 𝐷+ → 𝜋+𝜇+𝜇− (𝐷+𝑠 →𝐾+𝜇+𝜇−) decays is shown in the left (right) plot in the region around the 𝜙 resonance[(𝑚𝜙 − 5𝛤𝜙)2, (𝑚𝜙 + 5𝛤𝜙)2] (upper plots) and in the high 𝑞2 region (lower plots). Strong
phases are fixed to 𝛿𝜙 = 0, ±𝜋/2, 𝜋, see legend. The uncertainties are due to the remaining
strong phases (𝛿𝜌, 𝛿𝜂) and the form factors.

5.2.2 CP–asymmetries in 𝛬𝑐 → 𝑝ℓ+ℓ−
CP–asymmetries around the resonances can also be studied in rare charm baryon decays, which we
discuss for the example of 𝛬𝑐 → 𝑝𝜇+𝜇−. Here, we investigate in more detail the importance of the
normalization used in Eq. (5.18). We use a similar benchmark scenario 𝐶9 = 0.5𝑒i𝜋/4 and the same
fixed strong phases 𝛿𝜙 = 0, ±𝜋/2, 𝜋 in yellow, green, red and blue, respectively, and plot 𝐴CP in the
full 𝑞2 region and zoomed into the region around the 𝜙 resonance in the top row of Fig. 5.11. The plot
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Figure 5.11: Direct CP–asymmetry of 𝛬𝑐 → 𝑝𝜇+𝜇− decays for the CP–violating benchmark𝐶9 = 0.5𝑒i𝜋/4 with 𝑞2-differential normalization in the full 𝑞2 range (left) and the region
around the 𝜙 resonance (right). 𝛿𝜙 fixed to 0, 𝜋, ± 𝜋2 is displayed in yellow, blue, green and
red, respectively, where uncertainties are due to form factors and strong phase variation
in 𝛿𝜔. ̃𝐴CP with integrated decay rate as normalization is shown in the lower plot for𝑞2 ∈ [(𝑚𝜙 − 5 𝛤𝜙)2, (𝑚𝜙 + 5 𝛤𝜙)2 ].

on the bottom shows the analogous ̃𝐴CP for the baryon mode around the 𝜙 resonance for comparison.
For 𝐴CP, i.e. for differential decay rates in numerator and denominator, the signal decreases towards

the resonance masses, which is contrary to the findings for constant normalization ( ̃𝐴CP), see also
Fig. 5.10 and Ref. [92], where the signal is enhanced around the resonances. The reason is simply
that the denominator in 𝐴CP peaks at the resonance mass and therefore eradicates the signal in the
numerator. In the upper left plot one can also see how the full phase variation of 𝛿𝜔 leads to a blurred
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5.2 CP–asymmetries

signal around the 𝜌, 𝜔 masses, whereas the fixed phases 𝛿𝜙 lead to a rather disentangled picture around
the 𝜙 resonance, also visible in the zoom-in plot (upper right).

Also, large, localized cancellations are circumvented by the integrated denominator of ̃𝐴CP, leading
to reduced uncertainty bands in the lower plot of Fig. 5.11 with respect to the upper row plots.

As a combination of presented null-test opportunities, we define the CP–asymmetry of the lepton
forward-backward asymmetry as 𝐴CP

FB = 𝐴ℓ
FB + 𝐴ℓ

FB𝐴ℓ
FB − 𝐴ℓ

FB

= 𝐾1𝑐 − 𝐾1𝑐𝐾1𝑐 + 𝐾1𝑐 , (5.20)

with 𝐾1𝑐 the angular coefficient after CP–conjugation. This type of CP–asymmetry was already
studied for inclusive charm decays [251] and for rare 𝐵 decays [252]. Again small CP–phases and
the GIM cancellation protect 𝐴CP

FB in the SM, thus providing yet another null test, this time with
sensitivity to the imaginary part of 𝐶10. Note that 𝐴ℓ

FB is a CP–odd observable, thus 𝐴ℓ
FB = −𝐴ℓ

FB in
the CP–conserving limit.𝐴CP

FB can be used for two purposes. Firstly, it tests imaginary parts in axial vector coupling 𝐶10. We
find 𝐾1𝑐 ∝ Re(𝐶𝑅9 𝐶∗10), which leads to𝐴CP

FB = Im𝐶𝑅9
Re𝐶𝑅9 Im𝐶10

Re𝐶10 , (5.21)

and therefore constitutes a very clean null test of the SM, where hadronic uncertainties mostly cancel
and are only induced via strongly suppressed contributions from 𝐶eff9 and 𝐶eff7 , which break the exact
cancellation of form factors in numerator and denominator.

Secondly, 𝐴CP
FB is very sensitive to the values of strong phases. This can be seen as follows. Consider

a single resonance contribution, e.g. the 𝜙 resonance, in the definition of 𝐶𝑅9 , then𝐴CP
FB = Im𝐶𝑅9

Re𝐶𝑅9 Im𝐶10
Re𝐶10 = (𝑞2 − 𝑚2𝜙) tan 𝛿𝜙 − 𝑚𝜙𝛤𝜙𝑞2 − 𝑚2𝜙 + 𝑚𝜙𝛤𝜙 tan 𝛿𝜙 ⋅ Im𝐶10

Re𝐶10 , (5.22)

with unknown strong phase 𝛿𝜙, which however determines the value of 𝑞2 at which a zero in the
denominator leads to a diverging 𝐴CP

FB . The interference of several Breit-Wigner shapes then leads to
further divergences, which however coincide with the zeros in 𝐴ℓ

FB and provide information on the sizes
of the strong phases, which again motivates a joint global fit of Wilson coefficients and strong phases.

For illustration we define the CP–violating difference and the CP–average, as𝛥𝐴CP
FB = 12 (𝐴FB + ̄𝐴FB) , 𝛴𝐴CP

FB = 12 (𝐴FB − ̄𝐴FB) , (5.23)
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Figure 5.12: CP–asymmetry of the forward-backward asymmetry 𝐴CP
FB for 𝛬𝑐 → 𝑝𝜇+𝜇−

decays and the 𝐶10 = 0.5 𝑒i𝜋/4 scenario. We use several different, fixed combinations of
strong phases, see legend. The upper row displays the CP–average and the CP–difference as
in Eq. (5.23) in the left and right plot, respectively, and the bottom plot shows their ratio
Eqs. (5.20), (5.24).

where again 𝐴FB is CP–odd, so that Eq. (5.20) is recovered as𝐴CP
FB = 𝛥𝐴CP

FB𝛴𝐴CP
FB

. (5.24)

Fig. 5.12 displays 𝛴𝐴CP
FB , 𝛥𝐴CP

FB and their ratio in the upper left, upper right and bottom plot,
respectively for various fixed combinations of strong phases, see the legend, and for 𝐶10 = 0.5 exp(i𝜋/4).
Since 𝐴CP

FB is highly sensitive to the strong phases via 𝑞2 positions of divergences, it is impossible
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5.2 CP–asymmetries

to provide integrated values of the CP–violating forward-backward asymmetry. Also note again that𝐴CP
FB is insensitive to imaginary parts of 𝐶′10 as no interference terms with 𝐶𝑅9 exist. As demonstrated

in Sec. 5.1.3, other null-test observables, such as the combined forward-backward asymmetry in both
lepton and hadron system 𝐴ℓH

FB exist in (quasi-)four-body baryon decays and test 𝐶′10 via interference
terms with 𝐶𝑅9 . Therefore, the CP–asymmetry of 𝐴ℓH

FB has sensitivity to Im(𝐶′10). In general, CP–
asymmetries of all angular observables can be defined and studied. We leave a detailed analysis to
future studies, which may be needed as soon as data become available.

5.2.3 Correlations to 𝛥𝐴CP

CP–violation is observed in the charm sector in the measurement of 𝛥𝐴CP = 𝐴CP(𝐷0 → 𝐾+𝐾−) −𝐴CP(𝐷0 → 𝜋+𝜋−) [85], see discussion in Sec. 3.5.2. Since the NP nature of the recent LHCb
measurement is subject of ongoing discussion, we study how correlations between CP–violation
measurements in semileptonic and hadronic charm decays may help to interpret this experimental result.
We choose to study these correlations within the framework of flavorful, anomaly-free 𝑍′–extensions,
introduced in Sec. 4.3 and further details compiled in App. D. The advantage of these type of models
is that they induce these CP–asymmetries for both hadronic and semileptonic decay modes at tree
level. The most stringent constraint is then the 𝐷0 − 𝐷0 mixing amplitude, which is also generated at
tree level.
We expect the branching ratio of hadronic decays 𝐷0 → 𝑃 +1 𝑃 −2 to be dominated by the SM single-

Cabibbo-suppressed decay amplitude, which is why we split contributions for 𝐾+𝐾− and 𝜋+𝜋− final
states as in Eq. (3.32). Here, the first term exactly defines the single-Cabibbo-suppressed contribution,
the second term is responsible for CP–violating effects in the SM and the third term corresponds
to BSM contributions from 𝑍′–interactions. Again, 𝒜NP𝐾(𝜋) is assumed to have a negligible effect on
the branching ratio. Within these assumptions SM and BSM effects to 𝛥𝐴CP can be separated as in
Eq. (3.33), where 2 𝛥𝑟NP = 𝑟𝐾 sin 𝛿𝐾 sin𝜙𝐾 + 𝑟𝜋 sin 𝛿𝜋 sin𝜙𝜋 , (5.25)

where 𝛿𝐾, 𝛿𝜋 are unknown strong phases, which we take to be maximal, as we are interested in maximal
NP effects and 𝑟𝐾 = 𝒜NP𝐾(𝒜𝑠𝐾 − 𝒜𝑑𝐾)SM

, 𝑟𝜋 = 𝒜NP𝜋(𝒜𝑑𝜋 − 𝒜𝑠𝜋)SM
. (5.26)

The absolute values of the denominators in Eq. (5.26) are fixed by branching ratio measurements, see
App. D.3.

As discussed at the end of Sec. 4.3, large CP–violating effects while simultaneously evading severe
kaon constraints are possible if the LH quark current is zero, while the RH one exhausts the 𝐷0 − �̄�0
mixing bound. This can be achieved with 𝛥𝐹𝐿 = 𝐹𝑄2 − 𝐹𝑄1 = 0, possible in models 2, 4, 5, 9 and 10

2𝜆𝑑 = −𝜆𝑠 + 𝑂(𝜆𝑏) leads to an additional minus sign between the pion and kaon amplitudes.
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Table 5.1: Parameters 𝑐𝐾,𝜋, 𝑑𝐾,𝜋 and 𝑑𝜋′,𝜋0 in (TeV)2, see App. D.3 for definitions and
details, and for increasing 𝑍′–masses in TeV.𝑀𝑍′ [TeV] 2 4 6 8 10𝑐𝐾 1.133 1.217 1.266 1.302 1.330𝑑𝐾 −0.046 −0.054 −0.058 −0.061 −0.063𝑐𝜋 −1.446 −1.553 −1.616 −1.661 −1.698𝑑𝜋 0.058 0.068 0.074 0.077 0.080𝑑𝜋′ 0.071 0.083 0.090 0.094 0.098𝑑𝜋0 0.077 0.090 0.097 0.102 0.106

in Tab. D.1 in App. D. Simultaneously, we need 𝛥𝐹𝑅 = 𝐹𝑢2 − 𝐹𝑢1 ≠ 0, since𝑔𝑢𝑐𝑅 = 𝑔4 sin 𝜃𝑢 cos 𝜃𝑢𝑒i𝜙𝑅 𝛥𝐹𝑅 , (5.27)

where 𝜃𝑢 and the CP–phase 𝜙𝑅 parametrize the misalignment of flavor and mass basis for RH up-type
quarks.
With details on the calculation given in App. D.3, we find that 𝛥𝐴CP can be written as𝛥𝐴NP

CP = 𝐴NP
CP (𝐷0 → 𝐾+𝐾−) − 𝐴NP

CP (𝐷0 → 𝜋+𝜋−) , (5.28)

with 𝐴NP
CP (𝐷0 → 𝐾+𝐾−) ∼ 𝑔24𝑀2𝑍′ 𝜃𝑢 𝛥𝐹𝑅 [𝑐𝐾 𝐹𝑄2 + 𝑑𝐾 𝐹𝑑2] ,𝐴NP

CP (𝐷0 → 𝜋+𝜋−) ∼ 𝑔24𝑀2𝑍′ 𝜃𝑢 𝛥𝐹𝑅 [𝑐𝜋 𝐹𝑄1 + 𝑑𝜋 𝐹𝑑1] . (5.29)

Numerical values for the parameters 𝑐𝐾, 𝑑𝐾, 𝑐𝜋, 𝑑𝜋 are collected in Tab. 5.1 and details on their
calculation are compiled in App. D.3.

We explicitly demonstrate how large values for 𝛥𝐴CP are achieved, while evading the 𝐷0 − 𝐷0
mixing bound for model 2 of Tab. D.1 with 𝛥𝐹𝑅 = 12 and 𝜃𝑢 = 1 ⋅ 10−4 in Fig. 5.13, where we show
increasing contributions to 𝛥𝐴CP see green bands and legend, as well as constraints from mixing on𝑥12 sin𝜙12, shown as a red exclusion region and on the absolute value 𝑥12 as red hatched region3 in
the plane of the remaining model parameters 𝑔4/𝑀𝑍′ and CP–violating phase 𝜙𝑅. The golden star

3The red exclusion regions in Fig. 5.13 are more stringent than in Ref. [2], due to improved fit values for 𝑥12 and 𝜙12 in
the update of Ref. [176] when including Ref. [253].
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Figure 5.13: 𝜙𝑅–𝑔4/𝑀𝑍′ (TeV−1) plane for 𝜃𝑢 = 1 ⋅ 10−4 with increasing contributions to|𝛥𝐴NP
CP| (green bands) versus exclusion regions from 𝐷0–𝐷0 mixing, see (D.6). The imaginary

part 𝑥12 sin𝜙12 is shown as the red area and the absolute value 𝑥12 as a red-hatched region.𝐹𝜓–charges are taken from model 2, see TABLE D.1. The golden star indicates a benchmark
point (5.30) as discussed in the main text.

indicates a benchmark value resulting in 𝛥𝐴NP
CP ∼ 10−3𝜙𝑅 ∼ 𝜋2 , 𝑔4𝑀𝑍′ ∼ 0.38TeV−1, 𝜃𝑢 ∼ 10−4 . (5.30)

Fig. 5.13 shows that the weak phase 𝜙𝑅 needs to be slightly fine-tuned, as a value around 𝜙𝑅 ∼ 𝜋/2
drops out in the mixing amplitude but gives maximal CP–violating effects in hadronic and semileptonic
decays.
Another benchmark point used in Ref. [2] based on charges from model 10 of Tab. D.1 is now

excluded, due to updates in mixing parameters and improved bounds on ℬ(𝐷+ → 𝜋+𝜇+𝜇−). We
demonstrate this via Fig. 5.14, where we show the plane spanned by 𝛥 ̃𝐹𝑅 = 𝛥𝐹𝑅 ⋅ 𝜃𝑢 and 𝑔4/𝑀𝑍′ for
charge assignments as in model 2 (left) and model 10 (right). In light green, dark green, blue and cyan
we plot decreasing contributions to 𝛥𝐴CP, in red and black we show exclusion regions from 𝐷0 − 𝐷0
mixing and perturbativity plus searches in dimuon and dielectron spectra [184] (𝑔4 < 4𝜋, 𝑀𝑍′ < 5TeV),
respectively. We also show the upper limit from ℬ(𝐷+ → 𝜋+𝜇+𝜇−) as dash–dotted lines. In the right
plot, we distinguish two different possibilities for model 10 charge assignments. The first scenario has
large muon charges 𝐹𝐿2 = 15, 𝐹𝑒2 = 18 and severe constraints from ℬ(𝐷+ → 𝜋+𝜇+𝜇−) are shown as a
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Figure 5.14: 𝛥𝐴NP
CP for 𝑍′–models 2 (left) and 10 (right) in the plane of 𝑔4/𝑀𝑍′ (TeV−1)

and 𝛥 ̃𝐹𝑅 = 𝛥𝐹𝑅 ⋅𝜃𝑢 and exclusion regions from 𝐷0–𝐷0 mixing in red and perturbativity plus
direct searches in dimuon and dielectron spectra [184] (𝑔4 ≤ 4𝜋 and 𝑀𝑍′ ≥ 5 TeV) in black.
Light green, dark green, blue and cyan bands correspond to |𝛥𝐴NP

CP| = (4.0 ± 0.2) ⋅ 10−3,|𝛥𝐴NP
CP| = (1.5±0.2) ⋅10−3, |𝛥𝐴NP

CP| = (8±2) ⋅10−4 and |𝛥𝐴NP
CP| = (3±1) ⋅10−4, respectively.

The magenta dash–dotted and dotted lines show the upper limit from ℬ(𝐷+ → 𝜋+𝜇+𝜇−).
In the right plot the dotted line corresponds to model 10 with large muon charges and the
dash–dotted to model 10 with the smallest possible muon charges. In both cases the cyan
band is still viable, and the green band is excluded. The golden star and pink diamond are
benchmark points.

dotted line. The second scenario has the smallest possible muon charges, 𝐹𝐿2 = 0, 𝐹𝑒2 = −4, and the
limit from ℬ(𝐷+ → 𝜋+𝜇+𝜇−) (dash-dotted line) is irrelevant. Two similar plots for models 2 and 9,
also presented in Ref. [2], are shown in App. D.4.

It is still possible to obtain large contributions to 𝛥𝐴CP, while evading constraints from mixing,
direct searches and semileptonic data. However, the viable parameter region is shrinking, and some
models (9 and 10) are not able to fully account for the measured value of 𝛥𝐴CP. In model 10, it is still
possible to avoid ℬ(𝐷+ → 𝜋+𝜇+𝜇−) with small muon charges, however, the joint bounds from 𝐷0 − 𝐷0
mixing and the perturbativity limit object benchmark points within the green band in Fig. 5.14.

In order to further pin down models, it is crucial to investigate correlations between various CP–
violating measurements. We briefly discuss possibilities with 𝑈–spin and isospin patterns in hadronic
decays, i.e. individual measurements of 𝐴CP(𝐷0 → 𝐾+𝐾−), 𝐴CP(𝐷0 → 𝜋+𝜋−), 𝐴CP(𝐷0 → 𝜋0𝜋0) and𝐴CP(𝐷+ → 𝜋+𝜋0) , as well as correlations to semileptonic rare charm decays.

In the 𝑈–spin limit 𝐴CP(𝐷0 → 𝐾+𝐾−) = −𝐴CP(𝐷0 → 𝜋+𝜋−). Hence, an estimator for the breaking
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5.2 CP–asymmetries

of 𝑈–spin symmetry reads

𝑈 tot
break = ⎧{⎨{⎩∣1 + 𝐴CP(𝐷0→𝐾+𝐾−)𝐴CP(𝐷0→𝜋+𝜋−) ∣ , for 𝐴CP(𝐷0 → 𝐾+𝐾−) ≥ 𝐴CP(𝐷+ → 𝜋+𝜋0) ,∣1 + 𝐴CP(𝐷0→𝜋+𝜋−)𝐴CP(𝐷0→𝐾+𝐾−) ∣ , for 𝐴CP(𝐷0 → 𝐾+𝐾−) < 𝐴CP(𝐷+ → 𝜋+𝜋0) , (5.31)

and can be quantified within our framework for 𝑍′–models via Eq. (5.29). Isospin breaking can
be analyzed in 𝐴CP(𝐷+ → 𝜋+𝜋0), which is a clean SM null test [254]. 𝑍′–models induce this
CP–asymmetry with 𝐴NP

CP(𝐷+ → 𝜋+𝜋0) ∼ 𝑔24𝑀2𝑍′ 𝜃𝑢 𝛥𝐹𝑅 𝑑𝜋′ (𝐹𝑑1 − 𝐹𝑢1) . (5.32)

Numerical values of 𝑑𝜋′ for different values of 𝑀𝑍′ are given in Tab. 5.1. Inserting Eq. (5.28) into
Eq. (5.32), we find𝐴NP

CP(𝐷+ → 𝜋+𝜋0) ∼ 𝛽𝜋′ ⋅ 𝛥𝐴NP
CP , 𝛽𝜋′ = 𝑑𝜋′ (𝐹𝑑1 − 𝐹𝑢1)𝑐𝐾 𝐹𝑄2 + 𝑑𝐾 𝐹𝑑2 − 𝑐𝜋 𝐹𝑄1 − 𝑑𝜋 𝐹𝑑1 , (5.33)

and similarly𝐴NP
CP(𝐷0 → 𝜋0𝜋0) ∼ 𝑔24𝑀2𝑍′ 𝜃𝑢 𝛥𝐹𝑅 𝑑𝜋0 (𝐹𝑑1 − 𝐹𝑢1) ,𝐴NP
CP(𝐷0 → 𝜋0𝜋0) ∼ 𝛽𝜋0 ⋅ 𝛥𝐴NP

CP , 𝛽𝜋0 = 𝑑𝜋0 (𝐹𝑑1 − 𝐹𝑢1)𝑐𝐾 𝐹𝑄2 + 𝑑𝐾 𝐹𝑑2 − 𝑐𝜋 𝐹𝑄1 − 𝑑𝜋 𝐹𝑑1 . (5.34)

Finally, using Eq. (4.16), we find the following connection between hadronic and semileptonic CP–
asymmetries

Im(𝐶(ℓ)9/10) ∼ 𝜋√2 𝐺𝐹 𝛼𝑒 𝛽ℓ9/10 ⋅ 𝛥𝐴NP
CP , 𝛽ℓ9/10 = 𝐹𝑒𝑖 ± 𝐹𝐿𝑖𝑐𝐾 𝐹𝑄2 + 𝑑𝐾 𝐹𝑑2 − 𝑐𝜋 𝐹𝑄1 − 𝑑𝜋 𝐹𝑑1 . (5.35)

Assuming the models suffice 𝛥𝐴NP
CP ∼ 10−3 we find

Im(𝐶(ℓ)9/10) ∼ 0.03 ⋅ 𝛽ℓℓ9/10 (TeV)2 . (5.36)

Values for 𝛽ℓ9, 𝛽ℓ10 for both ℓ = 𝑒, 𝜇, as well as 𝛽𝜋0 , 𝛽𝜋′ and 𝑈 tot
break for models 2, 4, 5, 9, 10 and𝑀𝑍′ = 6TeV are displayed in Tab. 5.2. We distinguish model 10 with large muon charges and model10𝜇 with the smallest possible muon charges. Fig. 5.15 shows the plane of 𝐴CP(𝐷0 → 𝐾+𝐾−) versus𝐴CP(𝐷0 → 𝜋+𝜋−). Predictions in models 2, 5, 9, 10(𝜇) are shown in blue, magenta, yellow and cyan

respectively. The red dashed line shows the 𝑈–spin limit and the light red cone illustrates SM-like 30 %
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5 Null-test strategies and New Physics sensitivity in rare charm decays

Table 5.2: Numerical values for dimensionless 𝛽𝜋′ , 𝛽𝜋0 and 𝛽ℓ9/10 (ℓ = 𝜇, 𝑒) in (TeV)−2, see
Eqs. (5.34), (5.33)) and (5.35), as well as Utot

break from Eq. (5.31), for fixed 𝑀𝑍′ = 6 TeV.

model 𝛽𝜇9 𝛽𝜇10 𝛽𝑒9 𝛽𝑒10 𝛽𝜋0 𝛽𝜋′ Utot
break2 0.57 −0.57 −0.68 0.68 −0.02 −0.02 0.424 −1.04 −0.35 1.04 0.35 −0.03 −0.03 0.225 −0.67 0 0.67 0 −0.10 −0.09 0.329 −20.56 −14.07 15.15 −2.17 −1.89 −1.75 0.2210 37.25 3.39 −32.73 1.13 1.31 1.22 0.9110𝜇 −4.52 −4.52 −32.73 1.13 1.31 1.22 0.91
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Figure 5.15: 𝐴CP(𝐷0 → 𝐾+𝐾−) versus 𝐴CP(𝐷0 → 𝜋+𝜋−) plane with predictions in the𝑍′–models 2, 5, 9 and 10(𝜇) in blue, magenta, yellow and cyan, respectively. The green
band shows the experimental world average of 𝛥𝐴CP at 1 𝜎, see Eq. (3.27). The gray bands
indicate the present experimental 1𝜎 regions [176]. We illustrate the 𝑈–spin limit as a red
dashed line and ≲ 30 % SM-like 𝑈–spin breaking as a light red area.

𝑈–spin breaking effects. The green band shows the current 1𝜎 world average of 𝛥𝐴CP as in Eq. (3.27) and
the gray bands show 1𝜎 regions for individual CP–asymmetries 𝐴CP(𝐷0 → 𝜋+𝜋−) = (1.2 ± 1.4) × 10−3
and 𝐴CP(𝐷0 → 𝐾+𝐾−) = (−0.9 ± 1.1) × 10−3 [176]. Future sensitivities of the individual asymmetries
reach few×10−4 at LHCb until Run 3 and Belle II with 50 ab−1 [64, 255].
We find that large values for 𝛽𝜋0 and 𝛽𝜋′ and hence contributions in 𝐴NP

CP(𝐷0 → 𝜋0𝜋0) and
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5.3 Lepton universality ratios𝐴NP
CP(𝐷+ → 𝜋+𝜋0) at the level of 𝛥𝐴CP are generated in models 9 and 10. 𝑈–spin breaking effects are

large in model 2 and close to maximal in model 10. Typical models (2, 4, 5) generate contributions in
rare semileptonic decays at the level of Im(𝐶(ℓ)9/10) ∼ few × 0.01 for both electron and muon Wilson
coefficients. Larger values are possible in models 9 and 10, where 𝐹𝑄1 = 𝐹𝑄2 = 0. On the other hand,
these models are strongly constrained by updated measurements of 𝐷0 − 𝐷0 mixing parameters and
upper limits from semileptonic decays, which object large contributions to 𝛥𝐴CP and therefore also
suppress maximal contributions to CP–violation in semileptonic decays as well as 𝐴NP

CP(𝐷0 → 𝜋0𝜋0)
and 𝐴NP

CP(𝐷+ → 𝜋+𝜋0). In any case, CP–violation in semileptonic decays and 𝐴NP
CP(𝐷+ → 𝜋+𝜋0) are

null tests of the SM and any signal supports the NP interpretation of 𝛥𝐴CP. Cross checks in hadronic
patterns, such as large 𝑈–spin and isospin breaking effects further help to pin down the NP nature
of CP–violation in the charm sector. Flavorful anomaly-free 𝑍′–models further naturally induce a
violation of LFU, which can be probed in ratios of muon over electron branching ratios, see Sec. 5.3.

5.3 Lepton universality ratios
LFU is deeply rooted in the gauge sector of the SM and only softly broken by mass corrections, which
become irrelevant at high energies. It is therefore straightforward to put LFU to test in semileptonic
charmed meson and baryon decays with the ratios [88, 93], in analogy to 𝑅𝐾, 𝑅𝐾∗ and similar ratios
in rare 𝐵–meson and 𝛬𝑏–baryon decays [147, 148]𝑅𝐷𝑃 = ∫𝑞2

max𝑞2
min

dℬ(𝐷 → 𝑃𝜇+𝜇−)
d𝑞2 d𝑞2/∫𝑞2

max𝑞2
min

dℬ(𝐷 → 𝑃𝑒+𝑒−)
d𝑞2 d𝑞2 ,

𝑅𝐵0𝐵1 = ∫𝑞2
max𝑞2

min

dℬ(𝐵0 → 𝐵1𝜇+𝜇−)
d𝑞2 d𝑞2/∫𝑞2

max𝑞2
min

dℬ(𝐵0 → 𝐵1𝑒+𝑒−)
d𝑞2 d𝑞2 . (5.37)

Here, 𝑞2
min and 𝑞2

max denote the lower and upper dilepton mass cut and necessarily need to be identical
for electron and muon modes to ensure an efficient cancellation of hadronic uncertainties and hence a
controlled SM prediction close to unity [148].
We therefore study the NP sensitivity of these ratios as SM null tests. We give SM predictions for𝑅𝐷𝜋 , 𝑅𝐷𝑠𝐾 and 𝑅𝛬𝑐𝑝 in the full, low and high 𝑞2 region in Tab. 5.3. For these predictions we assume the

same resonance contributions in the muon and electron mode entering via 𝐶𝑅9 , 𝐶𝑅𝑃 , as these contain
QCD×QED effects, which are LFU. The kinematic regions are defined for 𝐷 → 𝑃ℓ+ℓ− (𝛬𝑐 → 𝑝ℓ+ℓ−)
as

full 𝑞2 :
low 𝑞2 :
high 𝑞2 :

0.250GeV ≤√𝑞2 ≤ 𝑚𝐷 − 𝑚𝑃 ,0.250GeV ≤√𝑞2 ≤ 0.525GeV ,1.25GeV ≤√𝑞2 ≤ 𝑚𝐷 − 𝑚𝑃 ,
(2𝑚𝜇 ≤√𝑞2 ≤ 𝑚𝛬𝑐 − 𝑚𝑝) ,(2𝑚𝜇 ≤√𝑞2 ≤ 0.525GeV) ,(1.25GeV ≤√𝑞2 ≤ 𝑚𝛬𝑐 − 𝑚𝑝) . (5.38)

Deviations from unity from lepton mass effects are 𝒪(𝑚2ℓ /𝑚2ℎ𝑐) with ℎ𝑐 = 𝐷, 𝐷𝑠, 𝛬𝑐 and only matter
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5 Null-test strategies and New Physics sensitivity in rare charm decays

Table 5.3: SM predictions for LFU ratios 𝑅𝐷𝜋 ,𝑅𝐷𝑠𝐾 and 𝑅𝛬𝑐𝑝 in the full, low and high 𝑞2
region, respectively, see text. 𝑅𝐷𝜋 |SM 𝑅𝐷𝑠𝐾 |SM 𝑅𝛬𝑐𝑝 |SM

full 𝑞2 1.00 ± 𝒪(%) 1.00 ± 𝒪(%) 1.00 ± 𝒪(%)
low 𝑞2 0.95 ± 𝒪(%) 0.94 ± 𝒪(%) 0.94 ± 𝒪(%)
high 𝑞2 1.00 ± 𝒪(%) 1.00 ± 𝒪(%) 1.00 ± 𝒪(%)

Table 5.4: 𝑅𝐷𝜋 and 𝑅𝐷𝑠𝐾 (5.37) in various NP scenarios with couplings to muons only for
different 𝑞2 bins. We give ranges corresponding to uncertainties from form factors and
resonance parameters. In some cases only the order of magnitude of the largest values is
given, see text.|𝐶(𝜇)9 | = 0.5 |𝐶(𝜇)10 | = 0.5 |𝐶(𝜇)𝑆 (𝑃)| = 0.1 |𝐶(𝜇)𝑇 | = 0.5 |𝐶(𝜇)𝑇 5 | = 0.5 |𝐶(𝜇)9 | = ±|𝐶(𝜇)10 | = 0.5𝑅𝐷𝜋

full 𝑞2 SM-like SM-like SM-like SM-like SM-like SM-like
low 𝑞2 𝒪(100) 𝒪(100) 0.9 … 1.4 𝒪(10) 1.0 … 5.9 𝒪(100)
high 𝑞2 0.2 … 11 3 … 7 1 … 2 1 … 5 2 … 4 2 … 17𝑅𝐷𝑠𝐾
full 𝑞2 SM-like SM-like SM-like SM-like SM-like SM-like
low 𝑞2 0.1 … 3.0 1.3 … 1.5 SM-like 0.7 … 1.2 SM-like 0.5 … 3.6
high 𝑞2 0.2 … 16 3 … 11 1.5 … 3.7 1 … 6 1.6 … 4.1 2 … 26

for the low 𝑞2 region. Higher-order QED effects are beyond the precision aimed for in this work, but
may become important as soon as the first data are available.

For a brief BSM induced sensitivity study we assume various NP benchmark scenarios with additional
contributions to muon Wilson coefficients only. We collect results in Tabs. 5.4 and 5.5 for 𝐷+ → 𝜋+ℓ+ℓ−,𝐷+𝑠 → 𝐾+ℓ+ℓ− and 𝛬+𝑐 → 𝑝ℓ+ℓ−. Note that dipole operators 𝐶7, 𝐶′7 produce the final state lepton
pair via a single 𝛾 → ℓ+ℓ− electromagnetic coupling. Hence, BSM in 𝐶(′)7 leads to LFU contributions
and is SM–like, 𝑅𝐷𝜋 |𝐶(′)7 = 𝑅𝐷𝑠𝐾 |𝐶(′)7 = 𝑅𝛬𝑐𝑝 |𝐶(′)7 = 1.
For the meson decays we do not distinguish primed and unprimed Wilson coefficients, as only|𝐶𝑖 + 𝐶′𝑖 |2 contributions enter in the differential distribution, see Sec. 5.1.1. We put “SM-like entries”,

whenever our results equal unity within 𝒪(20 %), which is much smaller than the resonance induced
uncertainties. For deviating entries we either put a range, or the order of magnitude of the largest
values found. We learn that results strongly depend on the chosen mode, as 𝑅𝐷𝜋 can reach 𝒪(100) in
the low 𝑞2 region, whereas 𝑅𝐷𝑠𝐾 (𝑅𝛬𝑐𝑝 ) is more pronounced (equally large) at high 𝑞2. This is mainly
due to huge uncertainties from strong phases, which coincide with uncertainties in the differential
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5.4 Lepton flavor violating decay modes

Table 5.5: 𝑅𝛬𝑐𝑝 as in Eq. (5.37) in NP-scenarios with couplings to muons only for different𝑞2 bins. See Tab. 5.4 and text.|𝐶(𝜇)| = 0.5 |𝐶(𝜇)10 | = 0.5 |𝐶(𝜇)9 | = |𝐶(𝜇)10 | = 0.5 |𝐶′(𝜇)9 | = 0.5 |𝐶′(𝜇)10 | = 0.5 |𝐶′(𝜇)9 | = |𝐶′(𝜇)10 | = 0.5𝑅𝛬𝑐𝑝
full 𝑞2 SM-like SM-like SM-like SM-like SM-like SM-like
low 𝑞2 7.5 … 20 4.4 … 13 11 … 32 4.6 … 14 4.4 … 13 8.2 … 26
high 𝑞2 𝒪(100) 𝒪(100) 𝒪(100) 𝒪(100) 𝒪(100) 𝒪(100)

branching ratios, see Figs. 3.2 and 3.3. Also NP effects are washed out in the full 𝑞2 region due to the
LFU resonance dominance. It is therefore crucial to measure LFU ratios in several low and high 𝑞2
bins, where BSM effects can be huge.
Although predictions strongly depend on the resonance model, and therefore experimental input,

LFU ratios are clean SM null tests and might even be useful to pin down strong phases in a future
global fit.
We note that the low 𝑞2 bin may suffer from a pollution due to 𝜂 → ℓ+ℓ−𝛾 with soft photon 𝛾 not

seen in experimental analysis [256]. A dedicated study of this pollution is beyond the scope of this
work, however needed as soon as data at low 𝑞2 become available.

5.4 Lepton flavor violating decay modes
As a final null test opportunity discussed in this thesis, LFV can be probed. We have already presented
available upper limits on LFV Wilson coefficients in Sec. 4.1.
Distributions for several benchmark scenarios are shown in Fig. 5.16 for 𝐷+ → 𝜋+𝑒±𝜇∓ and𝐷+𝑠 → 𝐾+𝑒±𝜇∓ in the left and right plot, respectively. We show the sum of both lepton charge

combinations, i.e. ℬ(𝐷+ → 𝜋+𝑒±𝜇∓) = ℬ(𝐷+ → 𝜋+𝑒+𝜇−) + ℬ(𝐷+ → 𝜋+𝑒−𝜇+). Explicit expressions
for the LFV decay distributions are given in App. E.1 and App. E.2 for three-body meson and baryon
decays, respectively.
Here, again 𝐾𝑖 (𝑗) implies 𝐾𝑖 or 𝐾𝑗. We learn that different contributions can be disentangled

via their size. Comparing the low 𝑞2 behavior of tensor and scalar contributions with the (axial)
vector contributions, we also find differences in the shape of the respective distributions. Furthermore,
resonance contributions are absent, which explains the reduced uncertainty bands, now dominated by
form factor uncertainties.
Similar distributions can be obtained exemplary for 𝐷+ → 𝜋+𝑒±𝜇∓ and 𝛬𝑐 → 𝑝𝜇±𝑒∓ in concrete

BSM models, see Fig. 5.17.
The chosen LQ–scenarios 𝑆1, 𝑆2 avoid constraints from other flavor sectors by construction and

hence can have close to maximal possible effects in RH quark currents, 𝐾′9 = ±𝐾′10 = 0.5. The other
BSM examples are constrained from rare kaon decays in the SUSY scenarios and from LFV decays of
charged leptons in the 𝑍′–scenarios. We refer to Ref. [1] for further details.
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Figure 5.16: The plots show the differential branching ratios of 𝐷+ → 𝜋+𝑒±𝜇∓ (left)
and 𝐷+𝑠 → 𝐾+𝑒±𝜇∓ (right) decays for different benchmark values of LFV-BSM Wilson
coefficients.
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Figure 5.17: The differential branching fractions, including form factor uncertainties, for𝐷+ → 𝜋+𝑒±𝜇∓ and 𝛬𝑐 → 𝑝𝜇±𝑒∓ with LFV NP contributions in a (close to maximal) LQ
scenario with 𝑆1 or 𝑆2 (𝐾′9 = ±𝐾′10 = 0.5), two R-parity violating SUSY (𝐾9 = −𝐾10 =0.009 and 𝐾9 = −𝐾10 = 0.001) and two different 𝑍′–scenarios (𝐾′9 = 𝐾′9 = −𝐾′10 =−𝐾′10 = 1.4 ⋅ 10−4 and 𝐾9 = 𝐾′9 = −𝐾10 = −𝐾′10 = 2.3 ⋅ 10−4). The BSM benchmarks are
adapted from Ref. [1], see text for details.

We see, that LQ–scenarios easily reach branching ratios of 𝒪(10−8), while the other scenarios are at
the level of 𝒪(10−12) or even below. Model-independently, LFV decays of mesons were used to obtain
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limits on Wilson coefficients, see Eq. (4.11), and imply|𝐾(𝜇𝑒)(′)9 10 | ≲ 1.6. (5.39)

Using a single maximal coupling scenario, we obtain indirect upper limits on LFV three- and four-body
baryon modes, which readℬ(𝛬+𝑐 → 𝑝𝜇±𝑒∓) ≲ 8.2 × 10−7 ,ℬ(𝛯+𝑐 → 𝛴+𝜇±𝑒∓) ≲ 1.6 × 10−6 ,ℬ(𝛯0𝑐 → 𝛴0𝜇±𝑒∓) ≲ 2.6 × 10−7 ,ℬ(𝛯0𝑐 → 𝛬0𝜇±𝑒∓) ≲ 1.2 × 10−7ℬ(𝛺0𝑐 → 𝛯0𝜇±𝑒∓) ≲ 1.4 × 10−6 ,

ℬ(𝛯+𝑐 → 𝛴+(→ 𝑝𝜋0)𝜇±𝑒∓) ≲ 8.3 × 10−7 ,ℬ(𝛯0𝑐 → 𝛬0(→ 𝑝𝜋−)𝜇±𝑒∓) ≲ 7.7 × 10−8 ,ℬ(𝛺0𝑐 → 𝛯0(→ 𝛬0𝜋0)𝜇±𝑒∓) ≲ 1.4 × 10−6 , (5.40)

and are well above the scenarios presented in Fig. 5.17, however better than the only available upper
limits from BaBar at 90 % C.L. [210],ℬ(𝛬+𝑐 → 𝑝𝜇−𝑒+) < 9.9 × 10−6 , ℬ(𝛬+𝑐 → 𝑝𝜇+𝑒−) < 19 × 10−6 . (5.41)

5.5 Summary of the null-test paradigm in rare charm decays
Long-range QCD resonances enforce the need to study observables beyond simple branching ratios in
semileptonic rare charm decays. Null tests constitute the single possible road towards experimental
evidence for NP in the charm sector. Any observation coincides with the existence of BSM physics.
Angular observables in three-body meson decays 𝐷 → 𝑃ℓ+ℓ− and upper limits on branching ratios
of purely leptonic decays 𝐷0 → ℓ+ℓ− probe (pseudo-)scalar and (pseudo-)tensor Wilson coefficients
and can be assisted by plenty of possibilities with semileptonic rare charm baryon decays with three
and four particles in the final state. Here, the angular distribution offers several clean null tests, along
with several observables with finite, however, clean SM predictions and high sensitivity to BSM effects.
Barring large (pseudo-)scalar and (pseudo-)tensor contributions, already four angular observables in
rare charm baryon decays, 𝐹𝐿, 𝐴ℓ

FB, 𝐴H
FB and 𝐴ℓH

FB suffice to qualitatively disentangle NP contributions
to 𝐶(′)7 , 𝐶′9 and 𝐶(′)10 . In angular observables and in measurements of direct CP–violation around the
resonance masses, contributions from intermediate QCD resonances catalyze NP effects. Correlations
of CP–asymmetries in semileptonic decays and hadronic decays may help to pin down the NP nature
of the measurement of 𝛥𝐴CP. LFU and LFV can be probed directly and large effects are still viable.
Interestingly, these two SM symmetries can also be probed indirectly in dineutrino modes, which are
studied globally in several flavor sectors in the next section. In charm they pose yet another null-test
opportunity due to the severe GIM cancellation and the lack of resonance contributions.
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In this chapter we present opportunities to connect different sectors in both quark and lepton flavor space.
The main focus lies on branching ratios of FCNCs with dineutrinos in the final state. Experimentally,
dineutrinos cannot be detected in a flavor physics experiment so that the signature is missing energy.
This complication prohibits dineutrino studies at a hadron collider and demands a clean 𝑒+𝑒−–machine.
On the other hand also the neutrino flavor is not tagged in a missing energy signature, which leads to a
flavor inclusiveness of the observables, schematically 𝑂(𝜈 ̄𝜈) = ∑𝑖, 𝑗 𝑂(𝜈𝑖 ̄𝜈𝑗) with 𝑖, 𝑗 summing neutrino
flavors. Since neutrinos in the SM only exist as parts of a weak doublet, an 𝑆𝑈(2)𝐿–link exists between
charged lepton and dineutrino couplings. For the same reason, the quark doublets lead to further
connections between different flavor sectors, which needs to be taken into account when exploiting
the 𝑆𝑈(2)𝐿–link. This chapter is based on Refs. [3, 4, 7] and organized as follows. In Sec. 6.1 we
present the general idea by discussing flavor summed dineutrino branching ratios and relate Wilson
coefficients of different sectors via the SMEFT. Sec. 6.2 discusses applications of this new 𝑆𝑈(2)𝐿–link
to the charm sector. Here, dineutrino modes represent further null-test opportunities, as resonance
contributions are absent, while the efficient GIM cancellation still holds. Additionally, upper limits on
dineutrino branching ratios within different flavor assumptions are worked out so that LFU and cLFC
can be tested indirectly. Next, we investigate opportunities of the 𝑆𝑈(2)𝐿–link in rare 𝐵–decays in
Sec. 6.3. Here, the correlation of two rare dineutrino modes can be used to indirectly test LFU in the
charged lepton sector. Furthermore, couplings involving 𝜏 leptons can be constrained via dineutrino
upper limits. Sec. 6.4 summarizes the chapter and briefly presents the interplay between the various
different sectors, also investigating possible tests that can be done in the future in observables involving𝑡-quarks. Consequently, this chapter aims at a more general view of FCNCs in the SM, which is why
the notation to keep track of two quark and two flavor indices can be exhausting. For that reason,
flavor indices are skipped whenever possible and we stick to the following notation.

• The superscript 𝑈 refers to up-type FCNCs: 𝑡 → 𝑐, 𝑡 → 𝑢, 𝑐 → 𝑢.
• The superscript 𝐷 refers to down-type FCNCs: 𝑏 → 𝑠, 𝑏 → 𝑑, 𝑠 → 𝑑.
• 𝑞𝑞′ can be any of the above-mentioned FCNCs.

• 𝛼, 𝛽 refer to both up- and down-type quark flavor indices, while 𝑖, 𝑗 are flavor indices for either
charged leptons or neutrinos.

6.1 𝑆𝑈(2)𝐿–links in SMEFT
In our analysis, we consider SMEFT operators contributing to FCNC quark transitions with both
dileptons and dineutrinos at lowest order, i.e. four-fermion operators at dimension six with Wilson
coefficients 𝐶(1)ℓ𝑞 , 𝐶(3)ℓ𝑞 , 𝐶ℓ𝑢, 𝐶ℓ𝑑,𝒪(1)ℓ𝑞 = 𝑄𝛾𝜇𝑄 𝐿𝛾𝜇𝐿 , 𝒪(3)ℓ𝑞 = 𝑄𝛾𝜇𝜏𝑎𝑄 𝐿𝛾𝜇𝜏𝑎𝐿 , 𝒪ℓ𝑢 = 𝑈𝛾𝜇𝑈 𝐿𝛾𝜇𝐿 , 𝒪ℓ𝑑 = 𝐷𝛾𝜇𝐷 𝐿𝛾𝜇𝐿 . (6.1)

No further operators contribute at LO. Note that four-fermion operators in SMEFT carry four flavor
indices, two for the quark transition and two for the leptons, all of which are dropped for the moment.
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Figure 6.1: Feynman diagrams for contributions of four-fermion operators from Eq. (6.1)
(left) and sub-leading ones involving 𝑍–exchange (middle and right) to FCNC processes
involving quarks 𝑞 and neutrinos, with flavor indices 𝛼, 𝛽, 𝑖, 𝑗. Red blobs indicate operator
insertions.

The validity of this framework that only considers the four operators in Eq. (6.1) is justified by the
following reasoning

• The four-quark operators are invariant under QCD-evolution [257] and electroweak effects [258]
amount to a correction of less than 5 % for a NP scale of 𝛬NP ∼ 10TeV, explicitly calculated
in [7]. With typical form factor uncertainties at the level of 𝒪(10 %) we neglect running effects.

• Operators with either quarks or leptons and two Higgs fields 𝛷 and a covariant derivative 𝐷𝜇,�̄�𝛾𝜇𝑄 𝛷†𝐷𝜇𝛷 ,�̄�𝛾𝜇𝐷 𝛷†𝐷𝜇𝛷 , �̄�𝛾𝜇𝜏𝑎𝑄 𝛷†𝐷𝜇𝜏𝑎𝛷 ,�̄�𝛾𝜇𝐿 𝛷†𝐷𝜇𝛷 , ̄𝑈𝛾𝜇𝑈 𝛷†𝐷𝜇𝛷 ,�̄�𝛾𝜇𝜏𝑎𝐿 𝛷†𝐷𝜇𝜏𝑎𝛷,
are neglected. This is because these operators contribute via modified 𝑍–couplings, see Fig. 6.1,
where Feynman diagrams are sketched for the four-quark operators and the tree-level 𝑍–exchanges
with red blobs indicating an operator insertion. For the 𝑍–exchanges, the modified quark coupling
still obeys LFU for the leptons and the modified lepton coupling conserves the quark flavor, i.e.
no FCNC is induced. Operators inducing LFU violating FCNC transitions, the ones we are
interested in, are of higher order in SMEFT. In addition, operators with modified 𝑍–couplings
are constrained by electroweak and top observables, as well as mixing, see Refs. [259, 260].

The four-quark operators in Eq. (6.1) therefore provide a model-independent basis for dineutrino
modes. Comparing Hamiltonians in Eqs. (2.23), (2.26) and (2.34) and expanding the operators in
Eq. (6.1) into their 𝑆𝑈(2)𝐿–components, one finds the following matching conditions from SMEFT to
WET coefficients 𝐶𝑈𝐿 = 𝐾𝐷𝐿 = 2𝜋𝛼𝑒 (𝐶(1)ℓ𝑞 + 𝐶(3)ℓ𝑞 ) , 𝐶𝑈𝑅 = 𝐾𝑈𝑅 = 2𝜋𝛼𝑒 𝐶ℓ𝑢 ,𝐶𝐷𝐿 = 𝐾𝑈𝐿 = 2𝜋𝛼𝑒 (𝐶(1)ℓ𝑞 − 𝐶(3)ℓ𝑞 ) , 𝐶𝐷𝑅 = 𝐾𝐷𝑅 = 2𝜋𝛼𝑒 𝐶ℓ𝑑 , (6.2)
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Figure 6.2: Wilson coefficients and effective four-fermion Feynman diagram for up and
down quark transitions with dineutrinos 𝐶𝑈𝐿,𝑅 and dileptons 𝐾𝐷𝐿 and 𝐾𝑈𝑅, corresponding to
the operators in Eq. (6.1) with flavor indices 𝛼, 𝛽, 𝑖, 𝑗. The 𝑆𝑈(2)𝐿–based relation between
neutrino and charged lepton operators holds in the fermions’ flavor eigenstate basis and
enters in (6.7) in the mass basis.

where 𝑈 and 𝐷 refer to a up-type and down-type quark transition, respectively. The coefficients𝐶𝐿, 𝑅 refer to operators in WET with dineutrinos, whereas the coefficients 𝐾𝐿, 𝑅 are associated with
charged leptons. Clearly, a direct link between RH dineutrino and dilepton coefficients exists for
both up- and down-type sectors. However, for the LH operators, due to different signs of 𝐶(1)ℓ𝑞 and𝐶(3)ℓ𝑞 , up-type dineutrino couplings are linked to down-type coefficients involving charged leptons and
similarly down-type dineutrino coefficients are identical to the up-type charged lepton couplings. This
link is illustrated in Fig. 6.2 including the four flavor indices.

A few comments are in order. The 𝑆𝑈(2)𝐿–link in Eq. (6.2) holds for BSM couplings only, because in
the language of SMEFT all Wilson coefficients are understood as BSM couplings as higher-dimensional
operators are added to the SM Lagrangian in Eq. (2.34). In WET this separation is treated differently
in the literature, some include the SM into the Wilson coefficients, e.g. Ref. [261] for 𝑏 → 𝑠ℓ+ℓ− or for
instance Refs. [90, 93, 98] for 𝑐 → 𝑢ℓ+ℓ−, some explicitly separate SM and NP contributions, Refs. [262,
263]. Here, we stick to the clear separation of SM and NP Wilson coefficients, i.e. we explicitly add
the SM contributions. Further, Eq. (6.2) in principle also holds for couplings involving two quarks
with identical flavor 𝑈 = 𝑡𝑡, 𝑐𝑐, 𝑢𝑢 and 𝐷 = 𝑏𝑏, 𝑠𝑠, 𝑑𝑑, however our main interest is in semileptonic
FCNC decays.
Since Eq. (6.2) utilizes SMEFT, it is required to switch from gauge to mass eigenstates for the

quarks and leptons 𝑄𝛼 = ( 𝑢𝐿𝛼𝑉𝛼𝛽𝑑𝐿𝛽) , 𝐿𝑖 = ( 𝜈𝐿𝑖𝑊 ∗𝑗𝑖ℓ𝐿𝑗) , (6.3)

with the CKM matrix 𝑉 and the PMNS matrix 𝑊. By doing so we switch from standard to calligraphic
notation for the Wilson coefficients. After applying the rotation, the 𝑆𝑈(2)𝐿–link in the mass basis
reads 𝒞𝑀𝐿 = 𝑊 †𝒦𝑁𝐿 𝑊 + 𝒪(𝜆) , 𝒞𝑀𝑅 = 𝑊 †𝒦𝑀𝑅 𝑊 , (6.4)
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where either 𝑀 = 𝑈, 𝑁 = 𝐷 or vice versa and first corrections appear at first order in Wolfenstein𝜆. This link can be exploited in dineutrino observables. As stated already in Sec. 2.2.2, only two
dineutrino Wilson coefficients exist in WET, therefore for each FCNC quark transition 𝑞 → 𝑞′ all
dineutrino differential branching ratios can be written in terms of two combinations of these couplings
plus the (LH) SM contribution 𝑥±𝑞𝑞′ = ∑𝑖𝑗 |𝒞𝑞𝑞′𝑖𝑗

SM + 𝒞𝑞𝑞′𝑖𝑗𝐿 ± 𝒞𝑞𝑞′𝑖𝑗𝑅 |2 . (6.5)

A third combination 𝑥𝑞𝑞′ is a linear combination of these two and implies the following relation𝑥𝑞𝑞′ = 𝑥+𝑞𝑞′ + 𝑥−𝑞𝑞′2 = ∑𝑖𝑗 (|𝒞𝑞𝑞′𝑖𝑗
SM + 𝒞𝑞𝑞′𝑖𝑗𝐿 |2 + |𝒞𝑞𝑞′𝑖𝑗𝑅 |2) , 𝑥±𝑞𝑞′ ≤ 2 𝑥𝑞𝑞′ . (6.6)

For these combinations the 𝑆𝑈(2)𝐿–link can be employed resulting in∑𝜈=𝑖,𝑗 (|𝒞𝑀𝑖𝑗
SM + 𝒞𝑀𝑖𝑗𝐿 ∣2 + |𝒞𝑀𝑖𝑗𝑅 ∣2) = Tr [(𝒞𝑀

SM + 𝒞𝑀𝐿 ) (𝒞𝑀†
SM + 𝒞𝑀†𝐿 ) + 𝒞𝑀𝑅 𝒞𝑀†𝑅 ]= Tr [(𝒞𝑀

SM + 𝑊 †𝒦𝑁𝐿 𝑊)(𝒞𝑀†
SM + 𝑊 †𝒦𝑁†𝐿 𝑊)+ 𝑊 †𝒦𝑀𝑅 𝑊𝑊 †𝒦𝑀†𝑅 𝑊] + 𝒪(𝜆)= Tr [(𝒞𝑀

SM + 𝒦𝑁𝐿 )(𝒞𝑀†
SM + 𝒦𝑁†𝐿 ) + 𝒦𝑀𝑅 𝒦𝑀†𝑅 ] + 𝒪(𝜆)= ∑ℓ=𝑖,𝑗 (|𝒞𝑀𝑖𝑗

SM + 𝒦𝑁𝑖𝑗𝐿 ∣2 + |𝒦𝑀𝑖𝑗𝑅 ∣2) + 𝒪(𝜆) ,
(6.7)

where again 𝑀 = 𝑈 and 𝑁 = 𝐷 or vice versa, implying as a first possibility an up-type dineutrino
FCNC being connected to a LH down-type and the RH up-type FCNC with charged leptons. The
second case is a connection of down-type dineutrino FCNCs to LH up- and RH down-type charged
lepton FCNCs. This relation is independent of the PMNS rotation and holds up to 𝒪(𝜆) corrections
induced by the CKM rotation, i.e. Eq. (6.7) is exact, in the limit 𝑉CKM = 1. The reason why the
PMNS matrix drops out in Eq. (6.7) is threefold:

• 𝑊 is unitary, 𝑊𝑊 † = 1.
• The trace is cyclic, Tr(𝑊 †𝒦𝒦†𝑊) = Tr(𝑊𝑊 †𝒦𝒦†).
• The SM obeys LFU, 𝒞𝑖𝑗

SM = 𝑐𝑆𝑀 ⋅ 𝛿𝑖𝑗 and therefore commutes with any other matrix.

More details on the 𝒪(𝜆) corrections are compiled in App. G. The main feature of Eq. (6.7) is that it
is bidirectional. On the one hand information on charged dilepton couplings gives indirect bounds on
dineutrino branching ratios, on the other hand upper limits and measurements of dineutrino branching
ratios constrain charged lepton couplings. Hence, the direction in which the 𝑆𝑈(2)𝐿–link can be
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6 Flavor tests with dineutrino modes in charm and beyond

exploited is a matter of the current experimental situation in the dineutrino and charged lepton sectors,
respectively.
Now, any differential branching ratio of a decay of the form ℎ𝑞 → 𝐹𝑞′𝜈 ̄𝜈 can be written as

dℬ(ℎ𝑞 → 𝐹𝑞′𝜈 ̄𝜈)
d𝑞2 = 𝑎ℎ𝑞𝐹𝑞′+ (𝑞2) 𝑥+𝑞𝑞′ + 𝑎ℎ𝑞𝐹𝑞′− (𝑞2) 𝑥−𝑞𝑞′ , (6.8)

where ℎ𝑞 → 𝐹𝑞 is the transition of a hadron ℎ𝑞 into a hadronic final state with flavor 𝑞′ induced by the
FCNC 𝑞 → 𝑞′, e.g. 𝐷0 → 𝜋+𝜋−𝜈 ̄𝜈 with ℎ𝑐 = 𝐷0 and 𝐹𝑢 = 𝜋+𝜋− induced by a 𝑐 → 𝑢 quark transition.
The factors 𝑎ℎ𝑞𝐹𝑞′± only depend on form factors, masses, lifetimes and the dineutrino invariant mass
squared 𝑞2. We collect explicit expressions for numerous of these factors in App. E.4. The respective
branching ratios can be obtained after 𝑞2 integrationℬ(ℎ𝑞 → 𝐹𝑞′𝜈 ̄𝜈) = 𝐴ℎ𝑞𝐹𝑞′+ 𝑥+𝑞𝑞′ + 𝐴ℎ𝑞𝐹𝑞′− 𝑥−𝑞𝑞′ , (6.9)

with 𝐴ℎ𝑞𝐹𝑞′± = ∫𝑞2
max𝑞2

min

d𝑞2𝑎ℎ𝑞𝐹𝑞′± (𝑞2) . (6.10)

We collect the factors 𝐴ℎ𝑞𝐹𝑞′± along with the applied 𝑞2 limits for integration in Tab. 6.1 and Tab. 6.2
for multiple 𝑐 → 𝑢, 𝑏 → 𝑠 and 𝑏 → 𝑑 induced modes as well as for the 𝑠 → 𝑑 induced mode 𝐾+ → 𝜋+𝜈 ̄𝜈.
We also indicate whether or not a 𝜏–background needs to be considered, which will be discussed
separately in the following sections. App. C contains details on form factors utilized for the integration
in Eq. (6.9).
As mentioned earlier, the direction in which the 𝑆𝑈(2)𝐿–link Eq. (6.7) and results from Tab. 6.1

can be exploited depends on the available experimental input, which is why the following subsections
discuss applications for different flavor sectors separately.
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Table 6.1: Coefficients 𝐴ℎ𝑞 𝐹𝑞′± as in Eq. (6.9) with integration limits for various 𝑐 → 𝑢
induced modes. The necessity to take a 𝜏–background into account is indicated with a check
mark. We do not include any cuts in inclusive modes. We only provide central values.ℎ𝑞 → 𝐹𝑞′ 𝐴ℎ𝑞 𝐹𝑞′+ 𝐴ℎ𝑞 𝐹𝑞′− 𝜏–background 𝑞2

min 𝑞2
max[10−8] [10−8] [GeV2] [GeV2]𝑐 → 𝑢𝐷0 → 𝜋0 0.9 0 0 (𝑚𝐷0 − 𝑚𝜋0)2𝐷+ → 𝜋+ 3.6 0 ✓ 0.34 (𝑚𝐷+ − 𝑚𝜋+)2𝐷+𝑠 → 𝐾+ 0.7 0 ✓ 0.66 (𝑚𝐷+𝑠 − 𝑚𝐾+)2𝐷0 → 𝜋0𝜋0 0.7 ⋅ 10−3 0.21 0 (𝑚𝐷0 − 2 𝑚𝜋0)2𝐷0 → 𝜋+𝜋− 1.4 ⋅ 10−3 0.41 0 (𝑚𝐷0 − 2 𝑚𝜋+)2𝐷0 → 𝐾+𝐾− 4.7 ⋅ 10−6 0.004 0 (𝑚𝐷0 − 2𝑚𝐾+)2𝛬+𝑐 → 𝑝+ 1.0 1.7 0 (𝑚𝛬+𝑐 − 𝑚𝑝)2𝛯+𝑐 → 𝛴+ 1.8 3.5 0 (𝑚𝛯+𝑐 − 𝑚𝛴+)2𝛯0𝑐 → 𝛴0 0.3 0.6 0 (𝑚𝛯0𝑐 − 𝑚𝛴0)2𝛯0𝑐 → 𝛬0 0.1 0.3 0 (𝑚𝛯0𝑐 − 𝑚𝛬0)2𝛺0𝑐 → 𝛯0 1.7 3.3 0 (𝑚𝛺0𝑐 − 𝑚𝛯0)2𝐷0 → 𝑋 2.2 2.2 0 𝑚2𝑐𝐷+ → 𝑋 5.6 5.6 0 𝑚2𝑐𝐷+𝑠 → 𝑋 2.7 2.7 0 (𝑚𝐷+ − 𝑚𝐾+)2
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6 Flavor tests with dineutrino modes in charm and beyond

Table 6.2: Coefficients 𝐴ℎ𝑞 𝐹𝑞′± as in Eq. (6.9) with integration limits for various 𝑏 → 𝑠, 𝑏 →𝑑, 𝑠 → 𝑑 induced modes. Similar to Tab. 6.1, however taking into account uncertainties and
correlations induced by form factors.ℎ𝑞 → 𝐹𝑞′ 𝐴ℎ𝑞 𝐹𝑞′+ 𝐴ℎ𝑞 𝐹𝑞′− 𝜏–background 𝑞2

min 𝑞2
max[10−8] [10−8] [GeV2] [GeV2]𝑏 → 𝑠𝐵0 → 𝐾0 516 ± 68 0 0 (𝑚𝐵0 − 𝑚𝐾0)2𝐵+ → 𝐾+ 558 ± 74 0 ✓ 0 (𝑚𝐵+ − 𝑚𝐾+)2𝐵0 → 𝐾∗ 0 200 ± 29 888 ± 108 0 (𝑚𝐵0 − 𝑚𝐾∗ 0)2𝐵+ → 𝐾∗ + 217 ± 32 961 ± 116 0 (𝑚𝐵+ − 𝑚𝐾∗ +)2𝐵0𝑠 → 𝜙 184 ± 9 1110 ± 85 0 (𝑚𝐵0𝑠 − 𝑚𝜙)2𝐵0 → 𝑋𝑠 1834 ± 193 1834 ± 193 0 (𝑚𝑏 − 𝑚𝑠)2𝐵+ → 𝑋𝑠 1978 ± 208 1978 ± 208 0 (𝑚𝑏 − 𝑚𝑠)2𝑏 → 𝑑𝐵0 → 𝜋0 154 ± 16 0 0 (𝑚𝐵0 − 𝑚𝜋0)2𝐵+ → 𝜋+ 332 ± 34 0 ✓ 0 (𝑚𝐵+ − 𝑚𝜋+)2𝐵0 → 𝜌0 59 ± 12 573 ± 233 0 (𝑚𝐵0 − 𝑚𝜌0)2𝐵+ → 𝜌+ 126 ± 26 1236 ± 502 0 (𝑚𝐵+ − 𝑚𝜌+)2𝐵0𝑠 → 𝐾0 383 ± 74 0 0 (𝑚𝐵0𝑠 − 𝑚𝐾0)2𝐵0𝑠 → 𝐾∗0 153 ± 9 891 ± 86 0 (𝑚𝐵0 − 𝑚𝐾∗0)2𝐵0 → 𝑋𝑑 1840 ± 194 1840 ± 194 0 (𝑚𝑏 − 𝑚𝑑)2𝐵+ → 𝑋𝑑 1985 ± 209 1985 ± 209 0 (𝑚𝑏 − 𝑚𝑑)2𝑠 → 𝑑𝐾+ → 𝜋+ 68.0±1.9 0 0 (𝑚𝐾+ − 𝑚𝜋+)2
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6.2 Dineutrino possibilities in rare charm decays

In |𝛥𝑐| = |𝛥𝑢| = 1 transitions the effective GIM cancellation also affects SM contributions to dineutrino
modes. More significantly, long-distance contributions via intermediate vector mesons as in Sec. 3.3.2 are
strongly suppressed, as they can only proceed via 𝑍–boson exchange. Both long-distance contributions
of this type as well as short-distance effects are estimated to give branching ratios ℬ(𝑐 → 𝑢𝜈 ̄𝜈) ≲ 10−15
[98], well beyond current experimental reach. Therefore, it is perfectly valid to drop SM contributions𝒞𝑐𝑢𝑖𝑗

SM = 0 ∀ 𝑖𝑗 , (6.11)

in Eqs. (6.5), (6.6) and (6.7). For the charged modes 𝐷+ → 𝜋+𝜈 ̄𝜈 and 𝐷+𝑠 → 𝐾+𝜈 ̄𝜈 however
contributions from intermediate 𝜏 leptons need to be taken into account, since decays 𝐷+ → 𝜏+𝜈 with𝜏+ → 𝑃 + ̄𝜈 lead to the same final state as the dineutrino modes. These effects can be controlled with
appropriate cuts [264] 𝑞2 > (𝑚2𝜏 − 𝑚2𝑃)(𝑚2𝐷 − 𝑚2𝜏)/𝑚2𝜏 , (6.12)

with either 𝑚𝐷 = 𝑚𝐷+ , 𝑚𝑃 = 𝑚𝜋+ or 𝑚𝐷 = 𝑚𝐷+𝑠 , 𝑚𝑃 = 𝑚𝐾+ , see 𝑞2
min for these modes in Tab. 6.1.

After applying these cuts and in the light of Chapter 5, rare charm dineutrino branching ratios
constitute further null tests, as any signal within current experimental reach clearly indicates BSM
physics. In this section, we provide even more motivation to study dineutrino modes, by investigating
opportunities to indirectly probe charged lepton flavor.

Searches for rare charm dineutrino modes are in an early stage and only a few experimental limits
exist. Recently, the BESIII collaboration reported an upper limit for ℬ(𝐷0 → 𝜋0𝜈 ̄𝜈) < 2.1 × 10−4 at90 % C.L. [78]. This is the only available direct experimental input constraining 𝑐 → 𝑢𝜈 ̄𝜈 couplings
and implies with 𝐴𝐷0𝜋0+ from Tab. 6.1 𝑥+𝑐𝑢 ≲ 2.3 × 104 , (6.13)

which is at least two orders of magnitude weaker than indirect limits placed later in this section. Due
to helicity suppression by two powers of neutrino mass, the upper limit ℬ(𝐷0 → inv.) < 9.4 × 10−5 at90 % C.L. [265] interpreted as 𝐷0 → 𝜈 ̄𝜈 is of even less significance.

Since the direct bounds on 𝑐 → 𝑢𝜈 ̄𝜈 are so poor we make use of the 𝑆𝑈(2)𝐿–link Eq. (6.7) by placing
upper limits on 𝑥𝑐𝑢 utilizing constraints on charged lepton couplings. We distinguish three flavor
benchmark scenarios. In the most general case LFV couplings are allowed and the sum in Eq. (6.7)
runs over all charged lepton flavor combinations. The second benchmark is cLFC where only the
diagonal couplings 𝑖𝑗 = 𝑒𝑒, 𝜇𝜇, 𝜏𝜏 exist and enter in the sum. The third benchmark is LFU, where
the diagonal couplings have to be identical and are constrained by the tightest, i.e. the muon bound.
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6 Flavor tests with dineutrino modes in charm and beyond

Explicitly, the three coupling matrices in lepton flavor space can be written as

𝒦𝑈,𝐷𝐿,𝑅 |general =⎛⎜⎝ 𝑘𝑒 𝑘𝑒𝜇 𝑘𝑒𝜏𝑘𝑒𝜇 𝑘𝜇 𝑘𝜇𝜏𝑘𝑒𝜏 𝑘𝜇𝜏 𝑘𝜏 ⎞⎟⎠ , 𝒦𝑈,𝐷𝐿,𝑅 |cLFC =⎛⎜⎝𝑘𝑒 0 00 𝑘𝜇 00 0 𝑘𝜏⎞⎟⎠ , 𝒦𝑈,𝐷𝐿,𝑅 |LFU =⎛⎜⎝𝑘 0 00 𝑘 00 0 𝑘⎞⎟⎠ . (6.14)

Upper limits on these charged lepton couplings exist from measurements in semileptonic charm and
kaon data and from high–𝑝𝑇 Drell-Yan searches, see Sec. 4.1 and App. G.
Within the different flavor assumptions in Eq. (6.14) we are able to give upper limits on 𝑥𝑐𝑢 and

along with 𝑥±𝑐𝑢 ≤ 2 𝑥𝑐𝑢 from Eq. (6.6) we calculate flavor specific upper limits for all rare charm
dineutrino branching ratios listed in Tab. 6.1. These limits are obtained in two different scenarios.
First, we use a unified framework and only include limits on four-fermion couplings from high–𝑝𝑇
Drell-Yan searches. In the second scenario we assume no large cancellations between LH and RH
couplings and include bounds from low-energy measurements, see App. G for details. Limits within
the first (the second) approach read𝑥𝑐𝑢 = 3 𝑥𝜇𝜇𝑐𝑢𝑥𝑐𝑢 = 𝑥𝑒𝑒𝑐𝑢+ 𝑥𝜇𝜇𝑐𝑢 + 𝑥𝜏𝜏𝑐𝑢𝑥𝑐𝑢 = 𝑥𝑒𝑒+ 𝑥𝜇𝜇𝑐𝑢 + 𝑥𝜏𝜏𝑐𝑢+ 2(𝑥𝑒𝜇𝑐𝑢 + 𝑥𝑒𝜏𝑐𝑢 + 𝑥𝜇𝜏𝑐𝑢) ≲ 34≲ 196≲ 716 (≲ 2.6) ,(≲ 156) ,(≲ 655) . [LFU][cLFC][general] (6.15)

The resulting branching ratio limits for both scenarios are compiled in Tab. 6.3.
The main features of these results are the following

• A measurement above the respective bound implies the breakdown of the corresponding flavor
symmetry, e.g. a measurement 1.5×10−7 < ℬ(𝐷0 → 𝜋+𝜋−𝜈 ̄𝜈) < 1.6×10−6 implies LFU violation,
whereas a measurement 3.5 × 10−6 < ℬ(𝐷0 → 𝜋0𝜈 ̄𝜈) < 13 × 10−6 indicates a violation of cLFC.
The absolute maxima listed in Tab. 6.3 correspond to limits within our framework, i.e. a violation
of these limits are only possible through BSM physics beyond our EFT, for instance in models
including light NP particles.

• The limits are data-driven and will evolve in the future. Clearly, already the two different
scenarios presented involving only Drell-Yan data or also including low-energy data (barring
cancellations) have a significant impact on the resulting limits.

• The only available limit to date from BESIII Ref. [78] is still two orders above limits presented
in Tab. 6.3.

• These upper limits in Tab. 6.3 hold, as long as no light RH neutrinos, nor lepton number violating
(LNV) contributions spoil our framework due to (pseudo-)scalar contributions, which is briefly
discussed in the following.

In the case of RH neutrinos, the operators in Eq. (2.33) also contribute to rare charm dineutrino
modes. While the contributions from further vector and axial vector contributions can remain
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6.2 Dineutrino possibilities in rare charm decays

Table 6.3: Upper limits on branching ratios in the LFU scenario ℬmax
LFU, the cLFC scenarioℬmax

cLFC and the general case ℬmax corresponding to Eq. (6.15), using Eq. (6.9) and Tab. 6.1
for various different rare charm dineutrino modes. The first three entries correspond to the
conservative ansatz only utilizing constraints from high–𝑝𝑇 Drell-Yan searches. The last
three entries include low energy data assuming no large cancellations between LH and RH
Wilson coefficients, see main text and App. G for details.ℎ𝑐 → 𝐹𝑢 ℬmax

LFU ℬmax
cLFC ℬmax ℬmax

LFU ℬmax
cLFC ℬmax[10−7] [10−6] [10−6] [10−7] [10−6] [10−6]𝐷0 → 𝜋0 6.1 3.5 13 0.5 2.8 12𝐷+ → 𝜋+ 25 14 52 1.9 11 47𝐷+𝑠 → 𝐾+ 4.6 2.6 9.6 0.3 2.1 8.8𝐷0 → 𝜋0𝜋0 1.5 0.8 3.1 0.1 0.7 2.8𝐷0 → 𝜋+𝜋− 2.8 1.6 5.9 0.2 1.3 5.4𝐷0 → 𝐾+𝐾− 0.03 0.02 0.06 0.002 0.01 0.06𝛬+𝑐 → 𝑝+ 18 11 39 1.4 8.4 35𝛯+𝑐 → 𝛴+ 36 21 76 2.7 17 70𝛯0𝑐 → 𝛴0 6.2 3.6 1.3 0.5 2.9 12𝛯0𝑐 → 𝛬0 2.7 1.5 5.6 0.2 1.2 5.1𝛺0𝑐 → 𝛯0 34 19 71 2.6 15 65𝛯+𝑐 → 𝛴+(→ 𝑝𝜋0) 19 11 39 1.4 8.8 36𝛯0𝑐 → 𝛬0(→ 𝑝𝜋−) 1.7 1.0 3.6 0.1 0.8 3.3𝛺0𝑐 → 𝛯0(→ 𝛬0𝜋0) 34 19 71 2.6 15 65𝐷0 → 𝑋 15 8.7 32 1.1 6.9 29𝐷+ → 𝑋 38 22 80 2.9 17 74𝐷+𝑠 → 𝑋 18 10 38 1.4 8.3 35

sizable, it is possible to estimate effects from (pseudo-)scalar operators. The combination 𝑦𝑐𝑢 =∑𝑖, 𝑗 (|𝐶𝑖𝑗𝑆 − 𝐶𝑖𝑗′𝑆 |2 + |𝐶𝑖𝑗𝑃 − 𝐶𝑖𝑗′𝑃 |2) is constrained by the Belle upper limit ℬ(𝐷0 → inv.) < 9.4 × 10−5
at 90 % C.L. [265] interpreted as a purely leptonic dineutrino final state,𝑦𝑐𝑢 ≲ 64 𝜋3 𝑚2𝑐 ℬ(𝐷0 → inv.)𝐺2

F 𝛼2𝑒 𝑚5𝐷 𝑓2𝐷 𝜏𝐷 ∼ 67 . (6.16)

Barring cancellation, this bound implies scalar and pseudoscalar contributions to semileptonic branching
ratios at the level of few× 10−6 [4], which would spoil our indirect flavor probes presented in Tab. 6.3.
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6 Flavor tests with dineutrino modes in charm and beyond

Table 6.4: Charm fragmentation fractions 𝑓(𝑐 → ℎ𝑐) from Ref. [266] for different charmed
hadrons ℎ𝑐 and their expected number, 𝑁(ℎ𝑐), at benchmarks with 𝑁(𝑐 ̄𝑐) = 550 ⋅ 109
(FCC-ee) and 𝑁(𝑐 ̄𝑐) = 65 ⋅ 109 (Belle II with 50 ab−1) [68].ℎ𝑐 𝑓(𝑐 → ℎ𝑐) 𝑁(ℎ𝑐) (FCC-ee) 𝑁(ℎ𝑐) (Belle II)𝐷0 0.59 6 ⋅ 1011 8 ⋅ 1010𝐷+ 0.24 3 ⋅ 1011 3 ⋅ 1010𝐷+𝑠 0.10 1 ⋅ 1011 1 ⋅ 1010𝛬+𝑐 0.06 7 ⋅ 1010 8 ⋅ 109

On the other hand, these contributions become irrelevant within uncertainties, i.e. roughly 10 % on
LFU upper limits using the high–𝑝𝑇 limits (second column in Tab. 6.3), as soon as the bound onℬ(𝐷0 → inv.) can be improved by roughly two orders of magnitude [4]. Similarly, the improved limit
would exclude large effects from LNV NP, which otherwise is possible as missing energy signatures do
not distinguish 𝜈 ̄𝜈, 𝜈𝜈 and ̄𝜈 ̄𝜈 final states, see discussion in [4].
In App. G we provide differential distributions for rare charm dineutrino decay modes using the

flavor dependent limits in Eq. (6.15). Here, we know from our analyses with charged dileptons that
distributions can help to disentangle NP contributions, e.g. the difference between large scalar versus
vector contributions. In summary, the situation in rare charm dineutrino modes is very special. Any
observation of dineutrino modes implies NP to be present, and due to missing resonance contributions,
dineutrino branching ratios are clean null tests. Beyond that, charged lepton flavor can be tested
indirectly and binned measurements as well as the search for 𝐷0 → inv. test for the existence of light
RH neutrinos.
To estimate the future potential of these (very) rare charm dineutrino modes, we investigate the

sensitivity for Belle II with 50 ab−1 [64] and for the possible future collider FCC-ee running at the 𝑍 [68].
Tab. 6.4 contains fragmentation fractions 𝑓(𝑐 → ℎ𝑐) from Ref. [266] along with the estimated number
of various charm hadrons 𝑁(ℎ𝑐) = 2𝑓(𝑐 → ℎ𝑐)𝑁(𝑐 ̄𝑐) produced at FCC-ee and Belle II, respectively.
We illustrate (future) experimental reach in Fig. 6.3. Here, we use that the relative statistical

uncertainty of a branching ratio measurement is given by𝛿ℬ(ℎ𝑐 → 𝐹𝑢𝜈 ̄𝜈) = 𝛥ℬ(ℎ𝑐 → 𝐹𝑢𝜈 ̄𝜈)ℬ(ℎ𝑐 → 𝐹𝑢𝜈 ̄𝜈) = 1√𝑁 exp𝐹𝑢 , (6.17)

where 𝑁 exp𝐹𝑢 is the number of signal events and reads𝑁 exp𝐹𝑢 = 𝜂eff 𝑁(ℎ𝑐) ℬ(ℎ𝑐 → 𝐹𝑢𝜈 ̄𝜈) , (6.18)

given the overall reconstruction efficiency 𝜂eff. In Fig. 6.3 we plot 𝛿ℬ = 1/√𝜂eff 𝑁(ℎ𝑐) ℬ for 𝑁(ℎ𝑐) from
Tab. 6.4 and assuming two benchmarks for the efficiency 𝜂eff = 1, 10−3. By doing so, the experimental

88



6.2 Dineutrino possibilities in rare charm decays

sensitivity only depends on the number of available charmed hadrons ℎ𝑐 and not on the final state.
Fig. 6.3 also presents results from the first three columns of Tab. 6.3, i.e. the conservative bounds
using data from Drell-Yan searches only. The limits are given in different colors and the solid, dotted
and dashed lines correspond to the LFU, cLFC and general limit, respectively. The black dotted and
dashed lines illustrate the 3𝜎 (5𝜎) limits, which correspond to 𝛿ℬ = 1/3 (1/5).

Fig. 6.3 demonstrates the possibilities to test charged lepton flavor in rare charm dineutrino modes.
A dedicated analysis of the expected efficiency 𝜂eff for Belle II or the FCC-ee is desirable to estimate
the experimental reach, however the naïve estimate of 𝜂eff ∼ 10−3 yields 5𝜎 discovery potential for
branching ratios as small as at least few×10−6 at Belle II for 𝐷0 and 𝐷+ decays. For 𝛬𝑐 baryon
decays discovery potential is still possible at Belle II if branching ratios are not far below 10−5. These
sensitivities probe most of the upper limits extracted via the 𝑆𝑈(2)𝐿–link and presented in Tab. 6.3.
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Figure 6.3: The figure shows the plane of the relative statistical uncertainty of the branching
ratio 𝛿ℬ versus the branching ratio itself ℬ for dineutrino decays of the 𝐷0, the 𝐷+ and the𝛬+𝑐 in the upper left, upper right and lower left, respectively. The lilac and green shaded areas
illustrate the maximal reach (𝜂eff = 1) for FCC-ee and Belle II, respectively, whereas the
solid tilted lines depict 𝜂eff = 10−3. The dotted and dashed black horizontal lines correspond
to 3 𝜎 (𝛿ℬ = 1/3) and 5 𝜎 (𝛿ℬ = 1/5), respectively. The vertical lines show upper limits
assuming LFU (solid), cLFC (dotted) and generic lepton flavor (dashed) for different modes,
given in Tab 6.3, where for each of the three lines corresponding to the same decay channel,
the lines are grouped together by a shaded band to improve the visibility in the plot.
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6.3 Opportunities with rare 𝐵–decays into dineutrinos

In this section, we exploit the implications of the general 𝑆𝑈(2)𝐿–link for rare 𝑏–decays, including𝑏 → 𝑠 and 𝑏 → 𝑑 induced modes. The main difference to the charm sector is the existence of a
significant SM contribution, induced by the heavy top quark running in one-loop diagrams. We find
for 𝑞 = 𝑠, 𝑑 𝒞𝑏𝑞𝑖𝑗𝐿, SM = 𝑉𝑡𝑏𝑉 ∗𝑡𝑞 𝑋SM 𝛿𝑖𝑗 , (6.19)

with 𝑋SM = −2 𝑋(𝑥𝑡)
sin2 𝜃𝑊 = −12.64 ± 0.15 [267, 268], where 𝑋(𝑥𝑡) is a loop function depending on𝑥𝑡 = 𝑚2𝑡𝑀2𝑊 [269, 270]. Along with 𝐴ℎ𝑞𝐹𝑞′± factors from Tab. 6.2 and the most stringent available upper

limits from 𝐵+ → 𝐾+ 𝜈 ̄𝜈 and 𝐵0 → 𝐾∗0 𝜈 ̄𝜈 for 𝑏 → 𝑠 and 𝐵+ → 𝜋+ 𝜈 ̄𝜈 and 𝐵+ → 𝜌+ 𝜈 ̄𝜈 for 𝑏 → 𝑑, we
are able to derive upper limits on the combinations 𝑥±𝑏𝑞 defined in Eq. (6.5),𝑥+𝑏𝑠 ≲ 2.9 , 𝑥−𝑏𝑠 + 0.2 𝑥+𝑏𝑠 ≲ 2.0 ,𝑥+𝑏𝑑 ≲ 4.2 , 𝑥−𝑏𝑑 + 0.1 𝑥+𝑏𝑑 ≲ 2.4 , (6.20)

which include the SM contribution. We collect the SM prediction, based on the numerical evaluation in
Ref. [7] (and this work) and based on other available literature along with available experimental upper
limits, the upper limits derived within our EFT via Eq. (6.20), and the future expected sensitivity
with Belle II data for several 𝑏 → 𝑠 and 𝑏 → 𝑑 induced rare beauty dineutrino decays in Tab. 6.5.
Differences between SM predictions as in Ref. [7] and values from other available literature can be
explained by updated CKM values and form factor improvements.

Similar to the discussion in the previous section, one needs to take into account resonant backgrounds
in charged meson decays through 𝜏–leptons, see check marks in Tab. 6.2. The long-distance decay chain
is given by 𝐵+ → 𝜏+(→ 𝑃 +𝜈𝜏)𝜈𝜏 with 𝑃 + = 𝜋+, 𝐾+. Different from similar effects in the charm sector,
it is not helpful to apply cuts, as applying Eq. (6.12) would exclude 83 % and 88 % of the available
phase space in 𝐵+ → 𝐾+𝜈𝜈 and 𝐵+ → 𝜋+𝜈𝜈, respectively. Instead, we treat these backgrounds as
irreducible uncertainties and estimate their size via [278]ℬ(𝐵+ → 𝑃 + ̄𝜈𝜏𝜈𝜏)LD = 𝐺4𝐹|𝑉𝑢𝑏𝑉 ∗𝑢𝑞|2𝑓2𝐵+𝑓2𝑃 +128 𝜋2 𝑚3𝐵+𝛤𝜏𝛤𝐵+ ⋅ 𝑚𝜏(𝑚2𝐵+ − 𝑚2𝜏)2(𝑚2𝑃 + − 𝑚2𝜏)2 , (6.21)

where 𝛤𝜏, 𝐵+ are the decay widths of the 𝜏 and the 𝐵+–meson, while 𝑓𝐵+ and 𝑓𝑃 + refer to the decay
constants of the 𝐵+ and 𝑃 + mesons, respectively. In agreement with Ref. [278] we findℬ(𝐵+ → 𝐾+ ̄𝜈𝜏𝜈𝜏)LD ∼ 5 × 10−7 , ℬ(𝐵+ → 𝜋+ ̄𝜈𝜏𝜈𝜏)LD ∼ 8 × 10−6 . (6.22)

Since interferences between long- and short-distance contributions are negligible [264], resonant𝜏–backgrounds correspond to an additional uncertainty of 10 % on the SM value in 𝐵+ → 𝐾+𝜈𝜈, but
yield branching ratios two orders of magnitude above the respective SM expectation in 𝐵+ → 𝜋+𝜈𝜈. We
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Table 6.5: SM predictions for branching ratios of rare beauty dineutrino modes evaluated
as in Ref. [7], as well as predictions available in the literature, current experimental limits at90 % C.L., derived EFT limits using Eqs. (6.20), and Belle II sensitivities for 5 ab−1 (50 ab−1)
from Ref. [64] are displayed in the second to last column, respectively. 𝑎 Marked limits serve
as input. See text for details.

SM, SM, Exp. limit Derived Belle II𝐵 → 𝐹𝑞 Ref. [7] literature (90 % CL) EFT limits 5 ab−1 (50 ab−1)[10−8] [10−8] [10−6] [10−6] %𝐵0 → 𝐾0 391 ± 52 460 ± 50 [64] 26 [271] 15 –𝐵+ → 𝐾+ 423 ± 56 460 ± 50 [64] 16 [272] 16𝑎 30 (11) [64]𝐵0 → 𝐾∗ 0 824 ± 99 960 ± 90 [64] 18 [271] 18𝑎 26 (9.6) [64]𝐵+ → 𝐾∗ + 893 ± 107 960 ± 90 [64] 40 [273] 19 25 (9.3) [64]𝐵0𝑠 → 𝜙 981 ± 69 1400 ± 500 [274] 5400 [275] 23 –𝐵0 → 𝑋𝑠 (28 ± 3) × 102 (29 ± 3) × 102 [276] 640 [277] 78 –𝐵+ → 𝑋𝑠 (30 ± 3) × 102 (29 ± 3) × 102 [276] 640 [277] 84 –𝐵0 → 𝜋0 5.4 ± 0.6 7.3 ± 0.7 [278] 9 [271] 6 –𝐵+ → 𝜋+ 12 ± 1 14 ± 1 [278] 14 [271] 14𝑎 –𝐵0 → 𝜌0 22 ± 8 20 ± 10 [274] 40 [271] 14 –𝐵+ → 𝜌+ 48 ± 18 42 ± 20 [274] 30 [271] 30𝑎 –𝐵0𝑠 → 𝐾0 13 ± 3 27 ± 16 [274] – 26 –𝐵0𝑠 → 𝐾∗0 36 ± 3 – – 24 –𝐵0 → 𝑋𝑑 (1.3 ± 0.1) × 102 (1.7 ± 0.5) × 102 [274] – 114 –𝐵+ → 𝑋𝑑 (1.4 ± 0.1) × 102 (1.7 ± 0.5) × 102 [274] – 123 –

use the full available phase space for integration in both modes, but note that resonant 𝜏–backgrounds
need to be taken into account as soon as future measurements in these modes become available.

Now, in order to connect rare beauty dineutrino modes to charged lepton couplings, we apply the𝑆𝑈(2)𝐿–link, discussed in Sec. 6.1 and rewrite the combinations of dineutrino couplings as𝑥±𝑏𝑠 = ∑𝑖,𝑗 ∣𝒞𝑏𝑠𝑖𝑗𝐿, SM + 𝒦𝑡𝑐𝑖𝑗𝐿 ± 𝒦𝑏𝑠𝑖𝑗𝑅 ∣2 , 𝑥±𝑏𝑑 = ∑𝑖,𝑗 ∣𝒞𝑏𝑑𝑖𝑗𝐿, SM + 𝒦𝑡𝑢𝑖𝑗𝐿 ± 𝒦𝑏𝑑𝑖𝑗𝑅 ∣2 , (6.23)

where the sum runs over charged lepton flavors 𝑖, 𝑗 = 𝑒, 𝜇, 𝜏. We further factorize CKM matrix
elements as follows𝜅𝑏𝑞𝑖𝑗𝑅 = 𝒦𝑏𝑞𝑖𝑗𝑅 ⋅ (𝑉𝑡𝑏𝑉 ∗𝑡𝑞)−1 , 𝜅𝑡𝑐𝑖𝑗𝐿 = 𝒦𝑡𝑐𝑖𝑗𝐿 ⋅ (𝑉𝑡𝑏𝑉 ∗𝑡𝑠)−1 , 𝜅𝑡𝑢𝑖𝑗𝐿 = 𝒦𝑡𝑢𝑖𝑗𝐿 ⋅ (𝑉𝑡𝑏𝑉 ∗𝑡𝑑)−1 . (6.24)
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We use Eq. (6.20), conservatively neglect 𝑥+𝑏𝑞 in the second inequalities, since 𝑥±𝑏𝑞 ≥ 0 and find∑𝑖,𝑗 ∣𝑋SM 𝛿𝑖𝑗 + 𝜅𝑡𝑐𝑖𝑗𝐿 + 𝜅𝑏𝑠𝑖𝑗𝑅 ∣2 ≲ 1.8 × 103 ,∑𝑖,𝑗 ∣𝑋SM 𝛿𝑖𝑗 + 𝜅𝑡𝑐𝑖𝑗𝐿 − 𝜅𝑏𝑠𝑖𝑗𝑅 ∣2 ≲ 1.3 × 103 , ∑𝑖,𝑗 ∣𝑋SM 𝛿𝑖𝑗 + 𝜅𝑡𝑢𝑖𝑗𝐿 + 𝜅𝑏𝑑𝑖𝑗𝑅 ∣2 ≲ 5.8 × 104 ,∑𝑖,𝑗 ∣𝑋SM 𝛿𝑖𝑗 + 𝜅𝑡𝑢𝑖𝑗𝐿 − 𝜅𝑏𝑑𝑖𝑗𝑅 ∣2 ≲ 3.3 × 104 , (6.25)

for 𝑏 → 𝑠 𝜈 ̄𝜈 and 𝑏 → 𝑑 𝜈 ̄𝜈 transitions, respectively. Eq. (6.25) constrains charged lepton couplings
and results in the best available limits on RH couplings with flavor indices 𝑏𝑑𝜏𝜏, 𝑏𝑑𝑒𝜏, as well as𝑏𝑠𝜏𝜏, 𝑏𝑠𝑒𝜏, 𝑏𝑠𝜇𝜏. Limits for all flavor combinations entering in Eq. (6.25) from dineutrinos, semileptonic
rare 𝐵–decays to charged leptons and Drell-Yan high–𝑝𝑇 searches are collected in App. G along with
further details. The interplay of bounds from dineutrino modes on 𝜅𝑏𝑞𝜏𝜏𝑅 and Drell-Yan data, bounding
also 𝜅𝑏𝑞𝜏𝜏𝐿 , allows to improve current experimental upper limits on branching ratios of 𝑏 → 𝑞 𝜏+𝜏−
induced modes, or even obtain novel ones. The current available upper limits at 90 % C.L. read [184]ℬ(𝐵0 → 𝜏+𝜏−)exp < 1.6 × 10−3 ,ℬ(𝐵0𝑠 → 𝜏+𝜏−)exp < 5.2 × 10−3 ,ℬ(𝐵+ → 𝐾+𝜏+𝜏−)exp < 2.25 × 10−3 , (6.26)

whereas we obtain using flavio [279], neglecting effects from scalar and tensor operators, and considering
two couplings at a time with 𝜅𝐿 ∼ 2 𝒞9 ∼ 2 𝒞10 and 𝜅𝑅 ∼ 2 𝒞′9 ∼ 2 𝒞′10 and varying signs of Wilson
coefficients to avoid large cancellations ℬ(𝐵𝑠 → 𝜏+𝜏−) ≲ 5.0 × 10−3 ,ℬ(𝐵0 → 𝐾0 𝜏+𝜏−)[15, 22] ≲ 7.8 × 10−4 ,ℬ(𝐵+ → 𝐾+ 𝜏+𝜏−)[15, 22] ≲ 8.4 × 10−4 ,ℬ(𝐵0 → 𝐾∗0 𝜏+𝜏−)[15, 19] ≲ 7.4 × 10−4 ,ℬ(𝐵+ → 𝐾∗+ 𝜏+𝜏−)[15, 19] ≲ 8.1 × 10−4 ,ℬ(𝐵𝑠 → 𝜙 𝜏+𝜏−)[15, 18.8] ≲ 6.8 × 10−4 ,

(6.27)

well above their SM predictions ℬ(𝐵𝑠 → 𝜏+𝜏−)SM = (7.78 ± 0.31) × 10−7 ,ℬ(𝐵0 → 𝐾0𝜏+𝜏−)[15, 22]
SM = (1.17 ± 0.12) × 10−7 ,ℬ(𝐵+ → 𝐾+𝜏+𝜏−)[15, 22]
SM = (1.26 ± 0.14) × 10−7 ,ℬ(𝐵0 → 𝐾∗0𝜏+𝜏−)[15, 19]
SM = (0.97 ± 0.10) × 10−7 ,ℬ(𝐵+ → 𝐾∗+𝜏+𝜏−)[15, 19]
SM = (1.05 ± 0.11) × 10−7 ,ℬ(𝐵𝑠 → 𝜙 𝜏+𝜏−)[15, 18.8]

SM = (0.90 ± 0.07) × 10−7 .
(6.28)
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The superscripts in Eqs. (6.27) and (6.28) correspond to the 𝑞2–range in GeV2 for the dilepton
invariant mass squared. These bins are chosen to remove the 𝜓(2𝑆) resonance, while simultaneously
supporting the use of the OPE in 1/𝑄, 𝑄 = (𝑚𝑏, √𝑞2) [280].

Similarly, we obtain the following upper limits for 𝑏 → 𝑑 𝜏+𝜏− transitionsℬ(𝐵0 → 𝜏+𝜏−) ≲ 6.0 × 10−4 ,ℬ(𝐵0 → 𝜋0𝜏+𝜏−)[15,22] ≲ 2.5 × 10−5 ,ℬ(𝐵+ → 𝜋+𝜏+𝜏−)[15,22] ≲ 5.3 × 10−5 , (6.29)

again, several orders above their respective SM predictionsℬ(𝐵0 → 𝜏+𝜏−)SM = (2.39 ± 0.24) × 10−8 ,ℬ(𝐵0 → 𝜋0𝜏+𝜏−)[15,22]
SM = (0.20 ± 0.02) × 10−8 ,ℬ(𝐵+ → 𝜋+𝜏+𝜏−)[15,22]
SM = (0.44 ± 0.05) × 10−8 . (6.30)

Belle II is expected to place (projected) upper limits with 5 ab−1 (50 ab−1) on the branching ratios [64],
which read ℬ(𝐵0𝑠 → 𝜏+𝜏−)proj < 8.1 (−) × 10−5 ,ℬ(𝐵+ → 𝐾+ 𝜏+𝜏−)proj < 6.5 (2.0) × 10−5 ,ℬ(𝐵0 → 𝜏+𝜏−)proj < 30 (9.6) × 10−5 , (6.31)

and cover the regions (6.27), (6.29).

Another possibility to make use of the bidirectional 𝑆𝑈(2)𝐿–link is to use stringent constraints on𝑏 → 𝑠𝜇𝜇 and 𝑏 → 𝑑𝜇𝜇 couplings to constrain dineutrino branching ratios assuming LFU. This is
achieved in the following manner.

In the LFU limit, the branching ratios for 𝐵 → 𝑉 𝜈 ̄𝜈 and 𝐵 → 𝑃 𝜈 ̄𝜈 decays can be written asℬ(𝐵 → 𝑉 𝜈 ̄𝜈)LFU = 𝐴𝐵𝑉+ 𝑥+𝑏𝑞,LFU + 𝐴𝐵𝑉− 𝑥−𝑏𝑞,LFU ,ℬ(𝐵 → 𝑃 𝜈 ̄𝜈)LFU = 𝐴𝐵𝑃+ 𝑥+𝑏𝑞,LFU , (6.32)

where 𝑥±𝑏𝑞,LFU = 3 ∣𝑉𝑡𝑏𝑉 ∗𝑡𝑞∣2 ⋅ (𝑋SM + 𝜅𝑡𝑞′𝜇𝜇𝐿 ± 𝜅𝑏𝑞𝜇𝜇𝑅 )2 , (6.33)

with 𝑞′ = 𝑢, (𝑐) for 𝑞 = 𝑑, (𝑠), respectively. In Eq. (6.33), the sum over lepton flavors 𝑖, 𝑗 gave way to
the factor 3 and we particularize to the 𝜇𝜇 couplings, as these are constrained best.
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Now, we can solve ℬ(𝐵 → 𝑃 𝜈 ̄𝜈)LFU for 𝜅𝑡𝑞′𝜇𝜇𝐿 and obtain two solutions𝜅𝑡𝑞′𝜇𝜇𝐿 = −𝑋SM − 𝜅𝑏𝑞𝜇𝜇𝑅 ± √ℬ(𝐵 → 𝑃 𝜈 ̄𝜈)LFU3 ∣𝑉𝑡𝑏𝑉 ∗𝑡𝑞∣2 𝐴𝐵𝑃+ . (6.34)

These can be used to eliminate 𝜅𝑡𝑞′𝜇𝜇𝐿 from ℬ(𝐵 → 𝑉 𝜈 ̄𝜈)LFU, leading to

ℬ(𝐵 → 𝑉 𝜈 ̄𝜈)LFU = 𝐴𝐵𝑉+𝐴𝐵𝑃+ ℬ(𝐵 → 𝑃 𝜈 ̄𝜈)LFU + 3 𝐴𝐵𝑉− ∣𝑉𝑡𝑏𝑉 ∗𝑡𝑞∣2 (√ℬ(𝐵 → 𝑃 𝜈 ̄𝜈)LFU3 ∣𝑉𝑡𝑏𝑉 ∗𝑡𝑞∣2 𝐴𝐵𝑃+ ∓ 2 𝜅𝑏𝑞𝜇𝜇𝑅 )2 .
(6.35)

Eq. (6.35) allows to probe charged LFU with measurements of dineutrino modes, since 𝜅𝑏𝑞𝜇𝜇𝑅 is
constrained from global fits and small, see App. G, the correlation between 𝐵 → 𝑃 and 𝐵 → 𝑉 is
dominated by form factor uncertainties entering in 𝐴𝐵𝑃(𝐵𝑉 )± . We illustrate this indirect LFU test in
Fig. 6.4, split into 𝑏 → 𝑠𝜈𝜈 induced modes in the left panel and 𝑏 → 𝑑𝜈𝜈 in the right panel. In the
upper left, we display the correlation between ℬ(𝐵0 → 𝐾∗0𝜈 ̄𝜈) and ℬ(𝐵+ → 𝐾+𝜈 ̄𝜈), whereas the
lower plot shows ℬ(𝐵0 → 𝐾∗0𝜈 ̄𝜈) versus ℬ(𝐵0 → 𝐾0𝜈 ̄𝜈). We use 𝜅𝑏𝑠𝜇𝜇𝑅 ∼ 0.5 ± 0.25 and display the
1𝜎 (2𝜎) LFU region as a red cone (dashed red lines). A measurement of the displayed modes, which
lies outside of this cone implies the violation of LFU, while a measurement insight the red region
does not necessarily imply LFU conservation. We display the SM prediction as a blue diamond with
uncertainties as bars, where we add 10 % uncertainty for 𝐵+ → 𝐾+𝜈 ̄𝜈 from resonant 𝜏–backgrounds.
The irreducible background from 𝐵+ → 𝜏+𝜈𝜏 decays is indicated as a blue vertical line in the upper left
plot. The green region illustrates the validity of our EFT framework, i.e. a measurement outside the
green region implies missing degrees of freedom in our framework, for instance light RH neutrinos. The
gray hatched region are direct upper limits, while the light gray region displays the upper limit derived
within our framework and collected in Tab. 6.5. Again a measurement inside this light gray region
indicates NP outside of our EFT framework. The yellow boxes illustrate the projected experimental
sensitivity (10 % at the chosen point) of Belle II with 50 ab−1.
In the right panel, we project the ℬ(𝐵0 → 𝜌0𝜈 ̄𝜈) –ℬ(𝐵+ → 𝜋+𝜈 ̄𝜈) plane (upper right plot) and

the ℬ(𝐵0 → 𝜌0𝜈 ̄𝜈) –ℬ(𝐵0 → 𝜋0𝜈 ̄𝜈) plane (lower right plot) using 𝜅𝑏𝑑𝜇𝜇𝑅, NP ∼ 0 ± 4. We use inserts to
visualize the SM prediction. Note that for 𝐵+ → 𝜋+𝜈 ̄𝜈 the resonant 𝜏–background dominates effects
from the weak effective theory. Both lower plots, which show correlations between neutral 𝐵-decays,
are not affected by long-distance 𝜏 contributions.

Similar to the analysis presented in the previous section, possible effects of (pseudo-)scalar operators,
which may arise in the presence of light RH neutrinos, can be estimated by available limits onℬ(𝐵𝑞 → 𝜈 ̄𝜈) for 𝑞 = 𝑑, 𝑠. For 𝐵0 → 𝜈 ̄𝜈 an upper limit is available in [184] and readsℬ (𝐵0 → 𝜈 ̄𝜈)

exp
< 2.4 × 10−5 , (6.36)

at 90 % C.L., while 𝐵0𝑠 → 𝜈 ̄𝜈 currently remains unconstrained. However, projections for Belle with
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Figure 6.4: The left panel of the figure is for 𝑏 → 𝑠 and the right panel for 𝑏 → 𝑑 transitions.
Upper left: ℬ(𝐵0 → 𝐾∗0 𝜈 ̄𝜈) versus ℬ(𝐵+ → 𝐾+ 𝜈 ̄𝜈). We show SM predictions with
their uncertainties from Tab. 6.5 as a blue diamond with blue bars, respectively, where
the resonant 𝜏–background is included as an additional 10 % uncertainty. The region on
the left of the solid blue line is dominated by pure resonant contributions. The dark red
region (dashed red lines) display the LFU region given by Eq. (6.35) where 𝜅𝑏𝑠𝜇𝜇𝑅 and 𝐴±
have been scanned within their 1 𝜎 (2 𝜎) uncertainties. The validity of our EFT framework,
Eq. (6.20) is depicted as the light green region. Hatched gray bands correspond to the
current experimental 90% C.L. upper limits in Tab. 6.5. The widths of the yellow boxes
illustrate the projected experimental sensitivity of Belle II with 50 ab−1 in Tab. 6.5. Lower
left: Similar to the upper left plot, but for ℬ(𝐵0 → 𝐾∗0 𝜈 ̄𝜈) versus ℬ(𝐵0 → 𝐾0 𝜈 ̄𝜈). There
is no resonant 𝜏–background, but in light gray we show the upper limit derived within our
EFT, see Tab. 6.5. Upper right: ℬ(𝐵0 → 𝜌0𝜈 ̄𝜈) versus ℬ(𝐵+ → 𝜋+𝜈 ̄𝜈) with equivalent
labeling as in the upper left plot. The plot includes a zoom into the region around the
SM expectation. The 𝜏–background (solid blue line) is not included as an uncertainty inℬ+ → 𝜋+ 𝜈 ̄𝜈 as it dominates the SM prediction by two orders of magnitude. Lower right:
Similar to upper right plot but for ℬ(𝐵0 → 𝜌0 𝜈 ̄𝜈) versus ℬ(𝐵0 → 𝜋0 𝜈 ̄𝜈).
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6.4 Dineutrino probes in other sectors and summary0.12 ab−1 (Belle II with 0.5 ab−1) exist [64],ℬ (𝐵0𝑠 → 𝜈 ̄𝜈)
proj

< 9.7 (1.1) × 10−5 . (6.37)

We use the limit in Eq. (6.36) and the projections in Eq. (6.37) to constrain𝑦𝑏𝑞 = ∑𝑖,𝑗 (|𝒞𝑏𝑞𝑖𝑗𝑆 − 𝒞′𝑏𝑞𝑖𝑗𝑆 |2 + |𝒞𝑏𝑞𝑖𝑗𝑃 − 𝒞′𝑏𝑞𝑖𝑗𝑃 |2) , (6.38)

via ℬ(𝐵0 → 𝜈 ̄𝜈) = 𝐺2
F 𝛼2𝑒 𝑚5𝐵 𝑓2𝐵 𝜏𝐵64 𝜋3 𝑚2𝑏 ⋅ 𝑦𝑏𝑞 . (6.39)

Contributions from (axial) vector operators are helicity suppressed and negligible, (pseudo-)tensor
operators do not contribute. We find𝑦𝑏𝑑 ≲ 0.3 , 𝑦𝑏𝑠 ≲ 0.79 (0.09) . (6.40)

Barring cancellations, these contributions implyℬ (𝐵0,+ → 𝜋0,+ 𝜈 ̄𝜈)𝑆,𝑃 ≲ 1.2 × 10−7 ,ℬ (𝐵0 → 𝐾0 𝜈 ̄𝜈)proj𝑆,𝑃 ≲ 11.4 (1.3) × 10−7 ,ℬ (𝐵+ → 𝐾+ 𝜈 ̄𝜈)proj𝑆,𝑃 ≲ 12.3 (1.4) × 10−7 . (6.41)

The (projected) upper limits in Eq. (6.41) imply an 𝒪(100%) correction to the SM prediction for𝑏 → 𝑑𝜈 ̄𝜈 induced modes in Tab. 6.5 from (pseudo-)scalar contributions. Improving the existing upper
limit on ℬ(𝐵0 → 𝜈 ̄𝜈) to the level of ∼ 5⋅10−7 or smaller would imply negligible percent-level corrections
to the SM predictions and reinforce the framework and results of this section. Similarly, the projected
reach in the decay 𝐵𝑠 → 𝜈 ̄𝜈 from Eq. (6.37) constrains 𝑆, 𝑃-contributions to 𝑏 → 𝑠 transitions to
be less than a 𝒪(30%) (Belle with 0.12 ab−1), and a 𝒪(3%) (Belle II with 0.5 ab−1) correction to the
SM branching ratios. Again, no signal in ℬ(𝐵𝑠 → 𝜈 ̄𝜈) at the level of the latter case would imply
(pseudo-)scalar contributions to small to be observable in 𝑏 → 𝑠 dineutrino modes such as 𝐵 → 𝐾 𝜈 ̄𝜈
within uncertainties.

6.4 Dineutrino probes in other sectors and summary
Due to the flavor inclusiveness of missing energy observables, the 𝑆𝑈(2)𝐿–link in Eq. (6.2) is shown
to have useful implications for flavor probes of 𝑐𝑢ℓℓ, 𝑏𝑠ℓℓ and 𝑏𝑑ℓℓ couplings. In rare charm decays,
dineutrino modes per se are interesting, due to the strong GIM suppression, which turn any observation
in the foreseeable future into a NP discovery. On top, the observed branching ratios can indicate
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6 Flavor tests with dineutrino modes in charm and beyond

the breakdown of charged lepton flavor assumptions, i.e. LFU and cLFC. In the down-type sector,
correlations between rare 𝑏–decays into dineutrinos can be exploited by obtaining indirect bounds on
branching ratios for all possible modes, coming from experimental input, available for a few of those
modes. Furthermore, indirect bounds on rare 𝑏–decay modes involving ditaus in the final state are
also obtained, which are better than currently available experimental limits. The direct correlation
between a 𝐵 → 𝑃𝜈 ̄𝜈 and a 𝐵 → 𝑉 𝜈 ̄𝜈 mode can even test LFU, see Fig. 6.4. All of these studies rely on
experimental input and therefore improve in time. Here, the direction for the 𝑆𝑈(2)𝐿–link, i.e. whether
experimental information on dineutrino modes constrains charged lepton couplings or vice versa, is
dictated by experimental constraints. Either upper limits of dineutrino branching ratios constrain
charged lepton couplings, or charged lepton couplings serve as input to upper limits on dineutrino
branching ratios.
Beyond the presented analyses, there are only a few FCNCs in the quark sector of the SM not

covered in this work in previous sections so far. In the down sector 𝑠 → 𝑑 transitions are already tightly
constrained. In fact, translating the current measurement ℬ(𝐾+ → 𝜋+𝜈 ̄𝜈)exp = (8+6−4) × 10−11 [184]
into the 90% C.L. upper limit ℬ(𝐾+ → 𝜋+𝜈 ̄𝜈)exp ≲ 1.7 × 10−10 yields𝑥+𝑠𝑑 = ∑𝑖, 𝑗 ∣𝒞𝑠𝑑

SM𝛿𝑖𝑗 + 𝒦𝑐𝑢𝑖𝑗𝐿 + 𝒦𝑠𝑑𝑖𝑗𝑅 ∣2 ≲ 2.5 × 10−4 . (6.42)

With 𝒞𝑠𝑑
SM = 0.0059 − 0.0017 i [268] and assuming no large cancellations to be present, rare kaon

to dineutrino measurements imply in the LFU limit, i.e. assuming 𝒦𝑐𝑢𝑒𝑒𝐿 = 𝒦𝑐𝑢𝜇𝜇𝐿 = 𝒦𝑐𝑢𝜏𝜏𝐿 and𝒦𝑠𝑑𝑒𝑒𝑅 = 𝒦𝑠𝑑𝜇𝜇𝑅 = 𝒦𝑠𝑑𝜏𝜏𝑅 −0.015 ≲ 𝒦𝑐𝑢ℓℓ𝐿 , 𝒦𝑠𝑑ℓℓ𝑅 ≲ 0.003 , ℓ = 𝑒, 𝜇, 𝜏 . (6.43)

Relaxing the LFU assumption, a single flavor diagonal coupling is constrained to be within−0.019 ≲ 𝒦𝑐𝑢𝜏𝜏𝐿 , 𝒦𝑠𝑑𝜏𝜏𝑅 ≲ 0.007 , (6.44)

where we assumed ℓℓ = 𝜏𝜏 for concreteness. Finally, a single LFV coupling is constrained to be bounded
as, e.g. 𝒦𝜏𝑒𝐿,𝑅 = 𝒦𝑒𝜏𝐿,𝑅, |𝒦𝑐𝑢ℓℓ′𝐿 |, |𝒦𝑠𝑑ℓℓ′𝑅 | ≲ 0.008 , for ℓ ≠ ℓ′ . (6.45)

These limits are used in the second scenario in Eq. (6.15) and also provide indirect guidance for future
global fits in semileptonic rare charm decays. The limits on 𝒦𝑐𝑢ℓℓ′𝐿 are stronger than limits presented
in Sec. 4.1 and exclude scenarios with large NP contributions in 𝐶9 ∼ −𝐶10, a scenario currently
preferred in global fits as a solution to the 𝐵–decay anomalies for 𝑏 → 𝑠𝜇𝜇 couplings, see Table 9 and
10 in Ref. [7].

For the top sector the situation is somewhat different from the other sectors, as the top quark decays
before hadronization. However, qualitatively the same relations between charged lepton and dineutrino
couplings exist. CMS [281] already obtains upper limits on 𝑒𝜇 final states, corresponding to rare FCNC
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6.4 Dineutrino probes in other sectors and summary
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Figure 6.5: Feynman diagrams with semileptonic four-fermion operators at every red blob
involving 𝑞𝑡ℓℓ′ or 𝑞𝑡𝜈 ̄𝜈, and 𝑞 = 𝑢, 𝑐. The diagrams contribute to a)+b): single top plus
dileptons, or single top plus missing energy, c)-f): single top plus jet plus opposite sign
dileptons, or single top plus jet plus missing energy. For a lepton collider c)+d) are possible
with the gluon replaced by 𝛾, 𝑍. Contribution g) only matters for lepton colliders, with ℓ+ℓ−
directly annihilating into 𝑡 ̄𝑞.

top branching ratiosℬ(𝑡 → 𝑢 𝑒+𝜇− + 𝑢 𝑒−𝜇+)exp < 0.135 × 10−6 , ℬ(𝑡 → 𝑐 𝑒+𝜇− + 𝑐 𝑒−𝜇+)exp < 1.31 × 10−6 . (6.46)

ATLAS [282] also provides bounds on LFV modes involving taus at 95 % C.L.ℬ(𝑡 → 𝑞 𝜏 (𝑒, 𝜇))exp < 1.86 × 10−5 , 𝑞 = 𝑢, 𝑐 . (6.47)

Four-fermion operators for 𝑞𝑡ℓℓ or 𝑞𝑡𝜈 ̄𝜈 with 𝑞 = 𝑐, 𝑢 also contribute to single top plus dileptons,
single top plus missing energy or single top plus jet plus opposite sign dileptons (missing energy)
signatures. At a possible future electron [68] or muon [67, 283, 284] collider, the 𝑞𝑡ℓℓ coupling can
be probed directly. Feynman diagrams for these contributions are illustrated in Fig. 6.5. Single top
production of these types are searched for at the LHC at least for the charged lepton couplings [281,
282, 285].

A detailed analysis of implications for the top sector is beyond the scope of this work. However, a
global SMEFT analysis will become crucial in the future to globally test flavor in the SM and beyond
and an overview of available limits on charged lepton couplings for all quark sectors is presented in
App. G.2, see Tab. G.3 for 𝑠𝑑, 𝑐𝑢, 𝑏𝑠 and 𝑏𝑑 and Tab. G.4 for 𝑡𝑐 and 𝑡𝑢. The applications of the simple𝑆𝑈(2)𝐿–link already helped to exploit connections between different flavor sectors and since these type
of analyses are data-driven, they will evolve in the future.
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7 Conclusion and outlook

In this thesis we have studied rare charm FCNC transitions. In Chapters 2 and 3 we discussed SMWilson
coefficients relevant for semileptonic rare charm decays in the framework of the WET and the SMEFT,
summarized in Sec. 2.3, as well as the SM phenomenology of exclusive rare charmed meson decays,𝐷0 → ℓ+ℓ−, 𝐷 → 𝑃ℓ+ℓ−, and rare charmed baryon decays, 𝐵0 → 𝐵1ℓ+ℓ− and 𝐵0 → 𝐵1(→ 𝐵2𝜋)ℓ+ℓ−.
The main observations are the following.

Perturbative NNLLO SM contributions to rare charm Wilson coefficients are completely negligible for
phenomenological applications. Instead, 𝑐 → 𝑢ℓ+ℓ− induced modes are dominated by non-perturbative
effects, for which at present no reliable first-principle calculation is at hand. Therefore, we have
modeled effects from intermediate resonances in a simple phenomenological ansatz fit to data, which
induces sizable hadronic uncertainties, see Eq. (3.11), resulting differential branching ratios in orange
in Figs. 3.2 and 3.3, as well as branching ratio estimates in Tab. 3.2 and Eq. (3.23).

Furthermore, we have shown in Chapter 4 that a sizable model-independent BSM parameter space
is still unconstrained and we have discussed contributions induced in LQ– and flavorful, anomaly-free𝑍′–models. Despite the resonance dominance in branching ratios, we have demonstrated in Chapter 5
how the available BSM parameter space is tested in clean null-test observables. These are based on
angular distributions and (approximate) symmetries of the SM, such as CP–conservation, LFU and
cLFC. The main findings are summarized as follows, see also Sec. 5.5:

• Angular analysis exploits complementarity between contributions induced by different combina-
tions of Wilson coefficients and between meson and baryon decays. Upper limits on 𝐷0 → ℓ+ℓ−
and angular observables in 𝐷 → 𝑃ℓ+ℓ− test (pseudo-)scalar and (pseudo-)tensor Wilson coeffi-
cients and four angular observables from three- and four-body rare charm baryon decays, 𝐹𝐿,𝐴ℓ

FB, 𝐴H
FB and 𝐴ℓH

FB, suffice to qualitatively disentangle NP contributions to the Wilson coefficients𝐶(′)7 , 𝐶′9 and 𝐶(′)10 . This summarizes results presented in Figs. 5.2, 5.4, 5.5, 5.6, 5.7 and 5.8 and is
discussed in Sec. 5.1.5.

• CP–asymmetries are resonance-enhanced and thus probe new sources of CP–violation in the
resonance regions. Measurements of these CP–asymmetries in semileptonic rare charm decays
might also help to interpret the NP nature of 𝛥𝐴CP, which quantifies the difference of direct
CP–asymmetries of the decays 𝐷0 → 𝐾+𝐾− and 𝐷0 → 𝜋+𝜋−, see Sec. 5.2.

• Direct probes of accidental SM lepton flavor symmetries, such as LFU and cLFC, are possible
via ratios of branching fractions of rare charm decays into muons over electrons, Eq. (5.37), and
searches for LFV decay modes, respectively. These clean null tests yield probes of the flavor
structure realized in nature and complement similar searches in rare 𝑏 → 𝑠ℓℓ(′) transitions.

Chapter 6 globally investigates the interplay of dineutrino modes with charged lepton FCNC couplings
via an 𝑆𝑈(2)𝐿–link implied by LO contributions from SMEFT operators. Rare charm dineutrino
modes are null tests of the SM due to the efficient GIM mechanism. In addition, Sec. 6.2 discloses the
predictive power of the 𝑆𝑈(2)𝐿–link. Upper limits on dineutrino branching ratios presented in Tab. 6.3
have been shown to indirectly probe LFU and cLFC and are suitable for current and future colliders,
as illustrated in Fig. 6.3. These types of probes have even been proved to be useful beyond charm in
other quark flavor sectors in Secs. 6.3 and 6.4. For rare 𝐵–decays, Fig. 6.4 shows the correlation of𝐵 → 𝑃𝜈 ̄𝜈 and 𝐵 → 𝑉 𝜈 ̄𝜈, which constitutes an indirect test of LFU, complementary to direct probes
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in ratios of branching fractions, which currently point towards the breakdown of LFU. Furthermore,
indirect upper limits on semileptonic branching ratios involving 𝜏’s have been obtained from upper
limits on rare semileptonic dineutrino branching ratios of 𝐵–mesons. As for the other sectors, we
have shown that rare kaon decays to dineutrinos strongly constrain LH charm couplings and future
flavor probes of FCNC four-fermion operators involving top quarks are possible at current and future
colliders, see Fig. 6.5 and discussion in Sec. 6.4.

By and large, rare charm decays offer the unique possibility to perform flavor tests of the SM with
up-type FCNCs with present data. Alas, they are subject to a severe resonance dominance, which
hinders reliable access to weak SM contributions and BSM physics in simple observables such as
branching ratios. As we have demonstrated, null-test observables are able to overcome precisely this
resonance dominance, with plenty of possibilities in angular distributions alone, and enriched with
observables based on (approximate) symmetries of the SM, such as CP–conservation, LFU and cLFC.
Systematically performing these types of tests in all quark and lepton flavor sectors of the SM allows
to reveal the origin of flavor.
With upcoming experimental updates of 𝐷0 → ℓ+ℓ−, 𝐷+ → 𝜋+ℓ+ℓ−, 𝛬𝑐 → 𝑝ℓ+ℓ− ahead, where at

least the latter two call for imminent detection, and with the recently published angular analyses of𝐷0 → 𝜋+𝜋−𝜇+𝜇− and 𝐷0 → 𝐾+𝐾−𝜇+𝜇− at hand, the future experimental physics program for rare
charm decays is excitingly gaining speed. The inclusion of polarization studies of 𝛬𝑐 and triggers for
more exotic rare charm baryon modes, including decays of 𝛯+𝑐 , 𝛯0𝑐 and 𝛺0𝑐 , into future experimental
programs is desirable. On the other hand, the results presented in this thesis and new data on𝐷0 → 𝜋+𝜋−𝜇+𝜇− and 𝐷0 → 𝐾+𝐾−𝜇+𝜇− call for further theoretical studies and a first global fit of𝑐 → 𝑢ℓ+ℓ− Wilson coefficients.

To conclude this thesis, we note that the status of rare charm decays strongly benefits from the joint
effort of experiment and theory now and in future, and rare charm decays have the potential to yield
deeper and unique insights both into non-perturbative QCD dynamics and the NP nature of flavor in
the up-quark sector.
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A Parameters and experimental input

This appendix collects numerical values used as input throughout the thesis. Input for form factors
and decay constants is discussed separately in App. C. Unless stated otherwise we provide upper limits
at 90 % C.L. and add uncertainties 𝜎𝑖 in quadrature, 𝜎 = √∑ 𝜎2𝑖 . Parameters are given within their68 % C.L. region or only their central value whenever the numerical effect of the respective uncertainty
is negligible. We further assume uncertainties to be uniformly distributed. We take experimental
information on particle masses and total widths from [184], with 𝛤 = ℏ𝜏 and 𝜏 the associated average
lifetime, and the reduced Planck constant ℏ = 6.582119569 ⋅ 10−25 GeV ⋅ s.𝑚𝜋0 = 0.1349768GeV ,𝑚𝜋+ = 0.13957039GeV ,𝑚𝜂 = 0.54782GeV ,𝑚𝜌+ = 0.77526GeV ,𝑚𝜌0 = 0.77526GeV ,𝑚𝜔 = 0.78266GeV ,𝑚𝜂′ = 0.95778GeV ,𝑚𝜙 = 1.019461GeV ,𝑚𝐾0 = 0.497611GeV ,

𝑚𝐾± = 0.493677GeV ,𝑚𝐾0⋆ = 0.89555GeV ,𝑚𝐾±⋆ = 0.89167GeV ,𝑚𝐷0 = 1.86484GeV ,𝑚𝐷± = 1.86966GeV ,𝑚𝐷±𝑠 = 1.96835GeV ,𝑚𝐵0 = 5.27965GeV ,𝑚𝐵± = 5.27934GeV ,𝑚𝐵0𝑠 = 5.36688GeV ,𝑚𝑒 = 0.000511GeV ,𝑚𝜇 = 0.106GeV ,𝑚𝜏 = 1.777GeV .

𝜏𝜋+ = (8.43 ± 0.13) × 10−17 s ,𝜏𝜋0 = (2.6033 ± 0.0005) × 10−8 s ,𝛤𝜂 = (1.31 ± 0.05) keV ,𝛤𝜌+ = (149.1 ± 0.8)MeV ,𝛤𝜌0 = (147.4 ± 0.8)MeV ,𝛤𝜔 = (8.68 ± 0.13)MeV ,𝛤𝜂′ = (0.188 ± 0.006)MeV ,𝛤𝜙 = (4.249 ± 0.013)MeV ,𝜏𝐾𝑆 = (8.954 ± 0.004) × 10−11 s ,𝜏𝐾𝐿 = (5.116 ± 0.021) × 10−8 s ,𝜏𝐾± = (1.238 ± 0.002) × 10−8 s ,𝛤𝐾0⋆ = (47.3 ± 0.5)MeV ,𝛤𝐾±⋆ = (51.4 ± 0.8)MeV ,𝜏𝐷0 = (4.101 ± 0.015) × 10−13 s ,𝜏𝐷± = (1.040 ± 0.007) × 10−12 s ,𝜏𝐷±𝑠 = (5.04 ± 0.04) × 10−13 s ,𝜏𝐵0 = (1.519 ± 0.004) × 10−12 s ,𝜏𝐵± = (1.638 ± 0.004) × 10−12 s ,𝜏𝐵0𝑠 = (1.52 ± 0.06) × 10−12 s ,

(A.1)
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For baryon masses and lifetimes, we use𝑚𝛬+𝑐 = (2.28646 ± 0.00014)GeV ,𝑚𝛯+𝑐 = (2.46771 ± 0.00023)GeV ,𝑚𝛯0𝑐 = (2.47044 ± 0.00028)GeV ,𝑚𝛺0𝑐 = (2.6952 ± 0.0017)GeV ,𝑚𝑝 = 0.938272GeV ,𝑚𝛴+ = (1.18937 ± 0.00007)GeV ,𝑚𝛴0 = (1.192642 ± 0.000024)GeV ,𝑚𝛬0 = (1.115683 ± 0.000006)GeV ,𝑚𝛯0 = (1.3149 ± 0.0002)GeV .

𝜏𝛬+𝑐 = (2.024 ± 0.031) × 10−13 s ,𝜏𝛯+𝑐 = (4.56 ± 0.05) × 10−13 s ,𝜏𝛯0𝑐 = (1.53 ± 0.06) × 10−13 s ,𝜏𝛺0𝑐 = (2.68 ± 0.26) × 10−13 s ,
(A.2)

For the calculation of the Wilson coefficients in Sec. 2.2.1 and App. B the following input has been used𝑚𝑡(𝑚𝑡) = (162.5+2.1−1.5) GeV ,𝑚𝑍 = 91.19GeV ,𝑚𝑊 = 80.4GeV ,𝛼𝑠(𝑚𝑍) = 0.1182 ± 0.0012 ,𝛼𝑒 = 7.29735257 × 10−3 ,
𝑚𝑏(𝑚𝑏) = (4.18+0.03−0.02) GeV ,𝑚𝑐(𝑚𝑐) = (1.27 ± 0.02) GeV ,𝑚𝑠(2GeV) = (0.093+0.011−0.005) GeV ,𝐺𝐹 = 1.1663787 × 10−5 GeV−2 ,

sin2 𝜃𝑊(𝑚𝑍) = 0.23121 .
(A.3)

Note that input in App. B taken from Ref. [86] uses the following pole masses for the quarks𝑚𝑏 = 4.85GeV , 𝑚𝑐 = 1.47GeV , 𝑚𝑠 = 0.13GeV , 𝑚𝑢, 𝑑 ≈ 0 . (A.4)

The running of 𝛼𝑠 is handled with RunDec [286] and 𝑚(𝜇) denotes an MS mass.

The elements of the CKM matrix are obtained via the Wolfenstein parametrization as in Eq. (2.10).
We follow Ref. [184] and use the most recent fit result of the CKMfitter group, see Ref. [287] and
updates at http://ckmfitter.in2p3.fr𝜆 = 0.224837+0.000251−0.0000060 ,𝜌 = 0.1569+0.0102−0.0061 , 𝐴 = 0.8235+0.0056−0.0145 ,𝜂 = 0.3499+0.0079−0.0065 . (A.5)

Another fit result is available from the UTfit collaboration, see Ref. [288] and updates at http:
//www.utfit.org.

For the calculation of 𝑎𝑀 parameters in Secs. 3.3.2 and 3.4, we use the following branching ratios
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A Parameters and experimental input

from Ref. [184]ℬ(𝐷+ → 𝜋+𝜂) = (3.77 ± 0.09) × 10−3 ,ℬ(𝐷+ → 𝜋+𝜂′) = (4.97 ± 0.19) × 10−3 ,ℬ(𝐷+ → 𝜋+𝜌) = (8.3 ± 1.5) × 10−4 ,ℬ(𝐷+ → 𝜋+𝜔) = (2.8 ± 0.6) × 10−4 ,ℬ(𝐷+ → 𝜋+𝜙) = (5.6 ± 0.2) × 10−3 ,ℬ(𝐷+𝑠 → 𝐾+𝜂) = (1.60 ± 0.11) × 10−3 ,ℬ(𝐷+𝑠 → 𝐾+𝜂′) = (2.65 ± 0.25) × 10−3 ,ℬ(𝐷+𝑠 → 𝐾+𝜌) = (2.5 ± 0.4) × 10−3 ,ℬ(𝐷+𝑠 → 𝐾+𝜔) = (8.7 ± 2.5) × 10−4 ,

ℬ(𝐷0 → 𝜋0𝜂) = (6.3 ± 0.6) × 10−4 ,ℬ(𝐷0 → 𝜋0𝜂′) = (9.2 ± 1.0) × 10−4 ,ℬ(𝐷0 → 𝜋0𝜌) = (3.86 ± 0.23) × 10−3 ,ℬ(𝐷0 → 𝜋0𝜔) = (1.17 ± 0.35) × 10−4 ,
ℬ(𝜂 → 𝜇+𝜇−) = (5.8 ± 0.8) × 10−6 ,ℬ(𝜌 → 𝜇+𝜇−) = (4.55 ± 0.28) × 10−5 ,ℬ(𝜔 → 𝜇+𝜇−) = (7.4 ± 1.8) × 10−5 ,ℬ(𝜙 → 𝜇+𝜇−) = (2.86 ± 0.19) × 10−4 .

(A.6)

For ℬ(𝜂′ → 𝜇+𝜇−) the branching ratio is not measured yet. In Ref. [289] the authors even propose to
measure it via investigations of rare charm decays. We follow Ref. [290] and estimate from unitarityℬ(𝜂′ → 𝜇𝜇) ∼ ℬ(𝜂′ → 𝛾𝛾)𝛼𝑒2 𝛽√1 − 4𝛽 × ln2 [1 + √1 − 4𝛽1 − √1 − 4𝛽] ∼ 10−7 , (A.7)

with 𝛽 = 𝑚2𝜇/𝑚2𝜂′ and ℬ(𝜂′ → 𝛾𝛾) = (2.307 ± 0.033) % [184]. Eq. (A.7) evaluated for 𝜂 yieldsℬ(𝜂 → 𝜇+𝜇−) ∼ 4.4 × 10−6 in good agreement with the direct measurement, see Eq. (A.6). The
estimate in Eq. (A.7) also agrees with Refs. [289, 291].

In addition, we can use [184]ℬ(𝐷0 → 𝜋0𝜙(→ 𝐾+𝐾−)) = (6.6 ± 0.4) × 10−4 ,ℬ(𝐷+𝑠 → 𝐾+𝜙(→ 𝐾+𝐾−)) = (8.8 ± 2.0) × 10−5 , (A.8)

and ℬ(𝐷 → 𝑃𝜙) = ℬ(𝐷 → 𝑃𝜙(→ 𝐾+𝐾−))ℬ(𝜙 → 𝐾+𝐾−) , ℬ(𝜙 → 𝐾+𝐾−) = (0.492 ± 0.005) . (A.9)

And similarly for the baryons [184]ℬ(𝛬+𝑐 → 𝑝𝜂) = (1.24 ± 0.3) × 10−3 ,ℬ(𝛬+𝑐 → 𝑝𝜂′) = (4.73 ± 0.98) × 10−4 [187] ,ℬ(𝛯0𝑐 → 𝛬0𝜙) = (4.9 ± 1.5) × 10−4 , ℬ(𝛬+𝑐 → 𝑝𝜔) = (8 ± 1) × 10−4 [292] ,ℬ(𝛬+𝑐 → 𝑝𝜙) = (1.06 ± 0.14) × 10−3 , (A.10)

where the 𝜂′ and 𝜔 have recently been updated by the Belle collaboration [187, 292] and are not yet
included in Ref. [184].
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B Details on Standard Model Wilson coefficients at the
charm scale

In this appendix, we provide further input explicit expressions for the calculation of 𝐶eff7 and 𝐶eff9 in
Eq. (2.25). First, we display in Tabs. B.1, B.2 and B.3 the individual numerical values for Wilson
coefficients ̃𝐶(𝑖)𝑗 (𝜇) including the charm scale variation with (𝑖) = (0), (1), (2) and 𝑗 ∈ [1, 10], where
the separation and notation into LO, NLO and NNLO contribution follows Eq. (2.22).

Table B.1: LO SM Wilson coefficients ̃𝐶(0)𝑗 (𝜇) for 𝑗 ∈ [1, 10]. In the first three columns we
display the values obtained for the three different choices of the charm mass scale 𝜇 = √2 𝑚𝑐,𝜇 = 𝑚𝑐 and 𝜇 = 𝑚𝑐/√2. The last column gives the central value and symmetrized
uncertainty and is used as an input to further calculations, see main text.𝜇 = √2 𝑚𝑐 𝜇 = 𝑚𝑐 𝜇 = 𝑚𝑐/√2 ̃𝐶(0)𝑗 ± 𝛥 ̃𝐶(0)𝑗̃𝐶1(𝜇) −0.84817 −1.04210 −1.31824 −1.04 ± 0.24̃𝐶2(𝜇) 1.06571 1.09488 1.14274 1.09 ± 0.04̃𝐶3(𝜇) −0.00150 −0.00384 −0.00893 −0.0038 ± 0.0037̃𝐶4(𝜇) −0.03607 −0.06246 −0.10564 0.06 ± 0.04̃𝐶5(𝜇) 0.00004 0.00037 0.00085 0.00037 ± 0.00041̃𝐶6(𝜇) 0.00029 0.00077 0.00185 0.00077 ± 0.00078̃𝐶7(𝜇) 0.00000 0.00000 0.00000 0 ± 0̃𝐶8(𝜇) 0.00000 0.00000 0.00000 0 ± 0̃𝐶9(𝜇) −0.00233 −0.00303 −0.00296 −0.0030 ± 0.0003̃𝐶10(𝜇) 0.00000 0.00000 0.00000 0 ± 0

Table B.2: Same as Tab. B.1, but for NLO: 𝛼𝑠(𝜇)4𝜋 ̃𝐶(1)𝑗 (𝜇) for 𝑗 ∈ [1, 10].𝜇 = √2 𝑚𝑐 𝜇 = 𝑚𝑐 𝜇 = 𝑚𝑐/√2 ( ̃𝐶𝑗 ± 𝛥 ̃𝐶𝑗) ⋅ 𝛼𝑠(𝜇)4𝜋̃𝐶1(𝜇) 0.27648 0.32393 0.40323 0.324 ± 0.063̃𝐶2(𝜇) −0.03895 −0.05609 −0.08814 −0.056 ± 0.025̃𝐶3(𝜇) −0.00111 −0.00258 −0.00600 −0.0026 ± 0.0024̃𝐶4(𝜇) −0.02228 −0.03201 −0.05426 0.032 ± 0.016̃𝐶5(𝜇) 0.00000 0.00004 0.00016 0.00004 ± 0.00008̃𝐶6(𝜇) −0.00023 −0.00020 0.00026 −0.0002 ± 0.0003̃𝐶7(𝜇) 0.00194 0.00364 0.00677 0.0036 ± 0.0024̃𝐶8(𝜇) −0.00112 −0.00206 −0.00383 −0.002 ± 0.0014̃𝐶9(𝜇) −0.00416 −0.00651 −0.01059 −0.0065 ± 0.0032̃𝐶10(𝜇) 0.00000 0.00000 0.00000 0 ± 0
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B Details on Standard Model Wilson coefficients at the charm scale

Table B.3: Same as Tab. B.1, but for NNLO: 𝛼2𝑠(𝜇)(4𝜋)2 ̃𝐶(2)𝑗 (𝜇) for 𝑗 ∈ [1, 10].𝜇 = √2 𝑚𝑐 𝜇 = 𝑚𝑐 𝜇 = 𝑚𝑐/√2 ( ̃𝐶(2)𝑗 ± 𝛥 ̃𝐶(2)𝑗 ) ⋅ 𝛼2𝑠(𝜇)(4𝜋)2̃𝐶1(𝜇) 0.05582 0.07794 0.12482 0.078 ± 0.035̃𝐶2(𝜇) −0.00108 −0.00390 −0.01150 −0.0039 ± 0.0052̃𝐶3(𝜇) −0.00112 −0.00199 −0.00351 −0.0020 ± 0.0012̃𝐶4(𝜇) 0.00003 −0.00087 −0.00504 −0.00087 ± 0.0025̃𝐶5(𝜇) 0.00007 0.00010 0.00011 0.00010 ± 0.00002̃𝐶6(𝜇) 0.00013 0.00034 0.00100 0.00034 ± 0.00043̃𝐶7(𝜇) 0.00010 0.00018 0.00034 0.00018 ± 0.00012̃𝐶8(𝜇) −0.00015 −0.00033 −0.00080 −0.00033 ± 0.0003̃𝐶9(𝜇) −0.00185 −0.00376 −0.00787 −0.0038 ± 0.0030̃𝐶10(𝜇) 0.00000 0.00000 0.00000 0 ± 0

In Sec. 2.2.1 we discussed the SM contributions to the phenomenological basis, which can compactly
be encoded in 𝐶eff7, 9 = 4𝜋𝛼𝑠 [𝑉 ∗𝑐𝑑𝑉𝑢𝑑 𝐶eff(𝑑)7, 9 (𝑞2) + 𝑉 ∗𝑐𝑠𝑉𝑢𝑠 𝐶eff(𝑠)7, 9 (𝑞2)] . (B.1)

We now follow Ref. [166] and give explicit expressions for the effective coefficients 𝐶eff(𝑞)7, 9 , where the
results of Tabs. B.1, B.2 and B.3 can be used as an input. We use the notation ̃𝐶(0)+(1)𝑖 = ̃𝐶(0)𝑖 + 𝛼𝑠(𝜇)4𝜋 ̃𝐶(1)𝑖
and analogous for other orders in agreement with Eq. (2.22). Note that entries in Tabs. B.1, B.2
and B.3 already include the factors 𝛼𝑠(𝜇)4𝜋 , such that ̃𝐶(0)+(1)𝑖 is obtained as the sum of the entries for̃𝐶𝑖 in Tab. B.1 and B.2. Utilizing this notation one obtains

𝐶eff(𝑞)7 (𝑞2) = ̃𝐶(0+1+2)7 + 𝛼𝑠4𝜋[23 ̃𝐶3 + 89 ̃𝐶4 + 403 ̃𝐶5 + 1609 ̃𝐶6](0+1)
+ (𝛼𝑠4𝜋)2 [ (−16 ̃𝐶(0)1 + ̃𝐶(0)2 ) 𝐹 (7)2,𝑞 (𝑚2𝑐 , 𝑞2) + 𝐹 (7)8 (𝑚2𝑐 , 𝑞2) 𝐶eff8 ] , (B.2)

𝐶eff8 = ̃𝐶(0)+(1)8 + ̃𝐶(0)3 − 16 ̃𝐶(0)4 + 20 ̃𝐶(0)5 − 103 ̃𝐶(0)6 , (B.3)
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𝐶eff(𝑞)9 (𝑞2) = ̃𝐶(0+1+2)9 + 𝛼𝑠4𝜋[ 827 ̃𝐶1 + 29 ̃𝐶2 − 89 ̃𝐶3 − 3227 ̃𝐶4 − 1289 ̃𝐶5 − 51227 ̃𝐶6+ 𝐿(𝑚2𝑐 , 𝑞2) (289 ̃𝐶3 + 1627 ̃𝐶4 + 3049 ̃𝐶5 + 25627 ̃𝐶6)+ 𝐿(𝑚2𝑠, 𝑞2) (−43 ̃𝐶3 − 403 ̃𝐶5)+ 𝐿(0, 𝑞2) (169 ̃𝐶3 + 1627 ̃𝐶4 + 1849 ̃𝐶5 + 25627 ̃𝐶6)+ (𝛿𝑞𝑠𝐿(𝑚2𝑠, 𝑞2) + 𝛿𝑞𝑑𝐿(0, 𝑞2)) (− 827 ̃𝐶1 − 29 ̃𝐶2) ](0+1)
+ (𝛼𝑠4𝜋)2 [𝐹 (9)1,𝑞 (𝑚2𝑐 , 𝑞2) ̃𝐶(0)1 + 𝐹 (9)2,𝑞 (𝑚2𝑐 , 𝑞2) ̃𝐶(0)2 + 𝐹 (9)8 (𝑚2𝑐 , 𝑞2) 𝐶eff8 ] .

(B.4)

The various 𝑞2 depending functions appearing in Eqs. (B.2), (B.3) and (B.4) are defined as [166]𝐿(𝑚2, 𝑞2) = 53 + ln 𝜇2𝑐𝑚2 + 𝑥 − 12(2 + 𝑥)|1 − 𝑥|1/2 {ln 1+√1−𝑥1−√1−𝑥 − i𝜋 𝑥 ≡ (2𝑚)2𝑞2 < 12 tan−1 [ 1√𝑥−1] 𝑥 ≡ (2𝑚)2𝑞2 > 1 ,𝐿(0, 𝑞2) = 53 + ln 𝜇2𝑐𝑞2 + i𝜋 , (B.5)

and 𝐹 (7)8 (𝑚2𝑐 , 𝑞2) = 𝐹 (7)8 (𝜌 = 𝑞2/𝑚2𝑐), 𝐹 (9)8 (𝑚2𝑐 , 𝑞2) = 𝐹 (9)8 (𝜌 = 𝑞2/𝑚2𝑐) from [166, 293] with𝐹 (7)8 (𝜌) = 8𝜋227 (2 + 𝜌)(1 − 𝜌)4 − 89 (11 − 16𝜌 + 8𝜌2)(1 − 𝜌)2 − 169 √𝜌√4 − 𝜌(1 − 𝜌)3 (9 − 5𝜌 + 2𝜌2) arcsin √𝜌2− 323 (2 + 𝜌)(1 − 𝜌)4 arcsin2 √𝜌2 − 169 𝜌(1 − 𝜌) ln 𝜌 − 329 ln 𝜇2𝑐𝑚2𝑐 − 169 i𝜋 ,𝐹 (9)8 (𝜌) = −16𝜋227 (4 − 𝜌)(1 − 𝜌)4 + 169 (5 − 2𝜌)(1 − 𝜌)2 + 329 √4 − 𝜌√𝜌(1 − 𝜌)3 (4 + 3𝜌 − 𝜌2) arcsin √𝜌2+ 643 (4 − 𝜌)(1 − 𝜌)4 arcsin2 √𝜌2 + 329 1(1 − 𝜌) ln 𝜌 .
(B.6)

For the functions 𝐹 (9)1,𝑞 , 𝐹 (9)2,𝑞 and 𝐹 (7)2,𝑞 we use supplementary files of Ref. [86], where fits are provided,
which we implement in a python script.
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C Form factors and decay constants

In this appendix, we collect numerical values and additional information on form factors and decay
constants utilized throughout this thesis.

Decay constants are calculated in LQCD with averaged values presented in recent dedicated re-
views [294, 295]. These results are in agreement with averages provided in [184] and read𝑓𝜋 = (130.2 ± 1.2)MeV ,𝑓𝐾+ = (155.7 ± 0.3)MeV , 𝑓𝐷 = (212.0 ± 0.7)MeV ,𝑓𝐷+𝑠 = (249.9 ± 0.5)MeV , 𝑓𝐵 = (190.0 ± 1.3)MeV ,𝑓𝐵0𝑠 = (230.0 ± 1.3)MeV . (C.1)

In Eq. (C.1) 𝑓𝜋, 𝑓𝐷 and 𝑓𝐵 are valid in the isospin symmetric limit and are thus used for the charged
and the neutral pion, 𝐷–meson and 𝐵–meson, respectively, see discussion in Ref. [184] and references
therein. We discussed form factor input for 𝐷+ (0) → 𝜋+ (0) and 𝐷+𝑠 → 𝐾 transitions in Sec. 3.3.1
based on results in Refs. [179, 180]. We also use input from the same references for 𝑓0 in the 𝐷 → 𝐾
transition for fitting the SM decay amplitude 𝐷0 → 𝐾+𝐾−, see App. D.3. It is parametrized as𝑓𝐷→𝐾0 (𝑞2) = 𝑓𝐷→𝐾0 (0) + 𝑐𝐷→𝐾0 (𝑧 − 𝑧0) (1 + 𝑧 + 𝑧02 ) . (C.2)

For completeness we collect numerical values for the form factor parameters taken from Refs. [179,
180],𝑓𝐷→𝜋+ (0) = 0.6117 ± 0.0354 ,𝑓𝐷→𝜋0 (0) = 0.6117 ± 0.0354 ,𝑓𝐷→𝜋𝑇 (0) = 0.5063 ± 0.0786 ,𝑓𝐷→𝐾0 (0) = 0.7647 ± 0.0308 ,

𝑐𝐷→𝜋+ = −1.985 ± 0.347 ,𝑐𝐷→𝜋0 = −1.188 ± 0.256 ,𝑐𝐷→𝜋𝑇 = −1.10 ± 1.03 ,𝑐𝐷→𝐾0 = −2.084 ± 0.283 ,
𝑃 𝐷→𝜋+ = (0.1314 ± 0.127)GeV−2 ,𝑃 𝐷→𝜋0 = (0.0342 ± 0.122)GeV−2 ,𝑃 𝐷→𝜋𝑇 = (0.1461 ± 0.681)GeV−2 .

(C.3)

Note that covariance matrices are given in Refs. [179, 180] and included in our analyses.

Similarly, the baryon form factors for the 𝛬𝑐 → 𝑝 transition can be inferred from Ref. [103]. Here,
the helicity-based definition is used and reads⟨𝑝(𝑘, 𝑠𝑝)|𝑢𝛾𝜇𝑐|𝛬𝑐(𝑝, 𝑠𝛬𝑐)⟩ =𝑢𝑝(𝑘, 𝑠𝑝) [𝑓0(𝑞2) (𝑚𝛬𝑐 − 𝑚𝑝) 𝑞𝜇𝑞2 +𝑓+(𝑞2) 𝑚𝛬𝑐 + 𝑚𝑝𝑠+ (𝑝𝜇 + 𝑘𝜇 − (𝑚𝛬𝑐 − 𝑚𝑝)𝑞𝜇𝑞2 )+𝑓⟂(𝑞2) (𝛾𝜇 − 2𝑚𝑝𝑠+ 𝑝𝜇 − 2𝑚𝛬𝑐𝑠+ 𝑘𝜇)] 𝑢𝛬𝑐(𝑝, 𝑠𝛬𝑐) , (C.4)
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⟨𝑝(𝑘, 𝑠𝑝)|𝑢𝛾𝜇𝛾5𝑐|𝛬𝑐(𝑝, 𝑠𝛬𝑐)⟩ =−𝑢𝑝(𝑘, 𝑠𝑝)𝛾5 [𝑔0(𝑞2) (𝑚𝛬𝑐 + 𝑚𝑝) 𝑞𝜇𝑞2 +𝑔+(𝑞2) 𝑚𝛬𝑐 − 𝑚𝑝𝑠− (𝑝𝜇 + 𝑘𝜇 − (𝑚𝛬𝑐 − 𝑚𝑝)𝑞𝜇𝑞2 )+𝑔⟂(𝑞2) (𝛾𝜇 + 2𝑚𝑝𝑠− 𝑝𝜇 − 2𝑚𝛬𝑐𝑠− 𝑘𝜇)] 𝑢𝛬𝑐(𝑝, 𝑠𝛬𝑐) ,
(C.5)

⟨𝑝(𝑘, 𝑠𝑝)|𝑢i𝜎𝜇𝜈𝑞𝜈𝑐|𝛬𝑐(𝑝, 𝑠𝛬𝑐)⟩ =−𝑢𝑝(𝑘, 𝑠𝑝) [ℎ+(𝑞2) 𝑞2𝑠+ (𝑝𝜇 + 𝑘𝜇 − (𝑚2𝛬𝑐 − 𝑚2𝑝)𝑞𝜇𝑞2 )+ℎ⟂(𝑞2)(𝑚𝛬𝑐 + 𝑚𝑝) (𝛾𝜇 − 2𝑚𝑝𝑠+ 𝑝𝜇 − 2𝑚𝛬𝑐𝑠+ 𝑘𝜇)] 𝑢𝛬𝑐(𝑝, 𝑠𝛬𝑐) ,
(C.6)

⟨𝑝(𝑘, 𝑠𝑝)|𝑢i𝜎𝜇𝜈𝑞𝜈𝛾5𝑐|𝛬𝑐(𝑝, 𝑠𝛬𝑐)⟩ =−𝑢𝑝(𝑘, 𝑠𝑝)𝛾5 [ℎ̃+(𝑞2) 𝑞2𝑠− (𝑝𝜇 + 𝑘𝜇 − (𝑚2𝛬𝑐 − 𝑚2𝑝)𝑞𝜇𝑞2 )+ℎ̃⟂(𝑞2)(𝑚𝛬𝑐 − 𝑚𝑝) (𝛾𝜇 + 2𝑚𝑝𝑠− 𝑝𝜇 − 2𝑚𝛬𝑐𝑠− 𝑘𝜇)] 𝑢𝛬𝑐(𝑝, 𝑠𝛬𝑐) .
(C.7)

The following endpoint relations hold for these form factors𝑓0(0) = 𝑓+(0) ,𝑔0(0) = 𝑔+(0) ,ℎ⟂(0) = ℎ̃⟂(0) , 𝑔⟂(𝑞2
max) = 𝑔+(𝑞2

max) ,ℎ̃⟂(𝑞2
max) = ℎ̃+(𝑞2

max) . (C.8)

The third relation at 𝑞2 = 0 between the dipole form factors ℎ⟂, ℎ̃⟂ follows from 𝜎𝜇𝜈𝛾5 = −𝑖/2𝜖𝜇𝜈𝛼𝛽𝜎𝛼𝛽,
and is in agreement with [248, 296], where, however, different form factor parametrizations are
employed. Although this relation is missing in the fit in [103], the relation is numerically satisfied
within uncertainties ℎ⟂(0) = 0.511 ± 0.027, ℎ̃⟂(0) = 0.51 ± 0.05.

Again, numerical values and correlation matrices for form factor parameters are given in [103] and
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C Form factors and decay constants

Table C.1: 𝑚𝑓
pole masses and quantum numbers of the 𝐷–mesons producing poles for

different form factors. Table taken from [103].𝑓 𝐽𝑃 𝑚𝑓
pole [GeV]𝑓+, 𝑓⟂, ℎ+, ℎ⟂ 1− 2.010𝑓0 0+ 2.351𝑔+, 𝑔⟂, ℎ̃+, ℎ̃⟂ 1+ 2.423𝑔0 0− 1.870

0.0 0.5 1.0 1.5
q2 [GeV2]

0.5

1.0

1.5

2.0

2.5

f
(Λ

c
→
p
)

i

h+

h⊥

f+

f⊥

f0

0.0 0.5 1.0 1.5
q2 [GeV2]

0.50

0.75

1.00

1.25

1.50

f
(Λ

c
→

p
)

i

h̃+

h̃⊥

g+

g⊥

g0

Figure C.1: The 𝛬𝑐 → 𝑝 form factors from LQCD [103] with 1𝜎 uncertainties split intoℎ+, ℎ⟂, 𝑓+, 𝑓⟂, 𝑓0 in the left plot and ℎ̃+, ℎ̃⟂, 𝑔+, 𝑔⟂, 𝑔0 in the right plot, see text for details.

supplemented files, using the following 𝑧-expansion𝑓𝑖(𝑞2) = 11 − 𝑞2/(𝑚𝑓
pole)2 2∑𝑛=0 𝑎𝑓𝑛 [𝑧(𝑞2)]𝑛 , 𝑧(𝑞2) = √𝑡+ − 𝑞2 − √𝑡+ − 𝑡0√𝑡+ − 𝑞2 + √𝑡+ − 𝑡0 , (C.9)

with 𝑡+ = (𝑚𝐷 + 𝑚𝜋)2 and 𝑡0 = (𝑚𝛬𝑐 − 𝑚𝑝)2. The value of 𝑚𝑓
pole needs to be picked differently for

each form factor according to Tab. C.1.
Resulting form factors are shown in Fig. C.1. In addition, we use the same input for rare charm

baryon decays other than the 𝛬𝑐 with the following modifications

• Replacements of masses in the definitions of the form factors Eqs. (C.4)-(C.7) and 𝑡0 in the𝑧-expansion in Eq. (C.9) are understood.

• We use flavor symmetries to employ the 𝛬𝑐 → 𝑝 form factors to all other modes. Here, we use that
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any �̄�𝑐-type current conserves 𝑈–spin and violates isospin by |𝛥𝐼| = 12 . Then 𝛯+𝑐 → 𝛴+ is related
by 𝑈–spin to 𝛬𝑐 → 𝑝, 𝛯0𝑐 → 𝛴0 receives an additional 1√2 factor with respect to 𝛯+𝑐 → 𝛴+, due
to isospin and again from 𝑈–spin 𝛯0𝑐 → 𝛴0 and 𝛯0𝑐 → 𝛬0 are related with a relative factor of1√3 [297, 298]. Only the 𝛺0𝑐 → 𝛯0 is not connected to the other modes, as it sits in another
multiplet. As pointed out already in Sec. 3.4, the decays 𝛯′+𝑐 → 𝛴+ℓ+ℓ+ and 𝛯′0𝑐 → 𝛬0ℓ+ℓ− are
also possible rare charm baryon decays and are connected to the 𝛺0𝑐 decay via flavor symmetries.
They are, however, not studied here, as their lifetimes remain unknown. Due to the lack of
further input we assume the same form factors for 𝛺0𝑐 → 𝛯0 as for 𝛬𝑐 → 𝑝. In summary, we use
for any of the ten form factors 𝑓𝑖(𝑞2), 𝑔𝑖(𝑞2), 𝑖 = +, ⟂, 0 and ℎ𝑗(𝑞2), ℎ̃𝑗(𝑞2), 𝑗 = +, ⟂, commonly
denoted as 𝑓𝐵0→𝐵1 𝑓𝛬𝑐→𝑝 = 𝑓𝛯+𝑐 →𝛴+ = √2𝑓𝛯0𝑐→𝛴0 = √6𝑓𝛯0𝑐→𝛬0 ≃ 𝑓𝛺0𝑐→𝛯0 . (C.10)

For further details on these flavor relations we refer to Ref. [112].

• We explicitly checked that available predictions for 𝑓𝛯0𝑐→𝛴0 from Table 9 of [189] are consistent
with our framework within 30 % flavor breaking.

• We use the same flavor factors as in Eq. (C.10) in the calculation of the resonance parameters 𝑎𝑀
in Tab. 3.3, i.e. we estimate branching ratios of the form ℬ(𝐵0 → 𝐵1𝑀) with 𝑀 = 𝜌, 𝜔, 𝜙, 𝜂, 𝜂′
assuming two-body phase space and a single dominant decay amplitude, which we take to be the
same as for ℬ(𝛬𝑐 → 𝑝𝑀) except for the correction factor from flavor symmetries.

In Sec. 6.2 the aforementioned form factors and decay constants are also used. In addition, for𝐷0 → 𝑃1𝑃2 transitions, transversity form factors are needed. These can be expressed in terms of three
heavy hadron chiral perturbation theory (HH𝜒PT) form factors 𝜔± and ℎ, as [88, 299]ℱ0 = 𝒩nr2 [√𝜆 𝜔+ + 𝜔−𝑝2 [(𝑚2𝑃1 − 𝑚2𝑃2)√𝜆 − (𝑚2𝐷 − 𝑞2 − 𝑝2)√𝜆𝑝 cos 𝜃𝑃1] ] ,

ℱ∥ = 𝒩nr √𝜆𝑝 𝑞2𝑝2 𝜔− , ℱ⟂ = 𝒩nr2 √𝜆𝜆𝑝 𝑞2𝑝2 ℎ , 𝒩nr = 𝐺F 𝛼𝑒27 𝜋4 𝑚𝐷 √𝜋 √𝜆 𝜆𝑝𝑚𝐷 𝑝2 , (C.11)

where 𝜆 = 𝜆(𝑚2𝐷, 𝑞2, 𝑝2), 𝜆𝑝 = 𝜆(𝑝2, 𝑚2𝑃1 , 𝑚2𝑃2) and𝜔± = ± ̂𝑔2 𝑓𝐷𝑓2𝑃1
𝑚𝐷𝑣 ⋅ 𝑝𝑃1 + 𝛥 , ℎ = ̂𝑔22 𝑓𝐷𝑓2𝑃1

1(𝑣 ⋅ 𝑝𝑃1 + 𝛥) (𝑣 ⋅ 𝑝 + 𝛥) . (C.12)
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C Form factors and decay constants

We further use 𝛥 = (𝑚𝐷∗0 − 𝑚𝐷0), ̂𝑔 = 0.570 ± 0.006 [300] and the dot products

𝑣 ⋅ 𝑝𝑃1 = 14 𝑚𝐷 ((𝑚2𝐷 − 𝑞2 + 𝑝2) − √√√⎷𝜆(𝑚2𝐷, 𝑞2, 𝑝2) (1 − 4 𝑚2𝑃1𝑝2 ) cos 𝜃𝑃1) ,𝑣 ⋅ 𝑝 = 𝑚2𝐷 − 𝑞2 + 𝑝22 𝑚𝐷 . (C.13)

Again an isospin factors of 1/√2 is understood to be multiplied to the form factors for each 𝜋0 in the
final state, i.e. with the statistical factor for identical particles, the 𝐷0 → 𝜋0𝜋0𝜈 ̄𝜈 mode receives an
overall suppression by 1/2 with respect to 𝐷0 → 𝜋+𝜋−𝜈 ̄𝜈 in the isospin limit.
In Sec. 6.3 several form factors are needed for 𝑏 → 𝑞 transitions with 𝑞 = 𝑑, 𝑠. Here, we write any

form factor, denoted by ℱ as [142]ℱ(𝑞2) = 11 − 𝑞2𝑚2𝑅ℱ
2∑𝑘=0 𝛼(ℱ)𝑘 [𝑧(𝑞2) − 𝑧(0)]2 , 𝑧(𝑞2) = √𝑡+ − 𝑞2 − √𝑡+ − 𝑡0√𝑡+ − 𝑞2 + √𝑡+ − 𝑡0 , (C.14)

with 𝑡± = (𝑚𝐵 ± 𝑚𝑃,𝑉)2 and 𝑡0 = 𝑡+(1 − √1 − 𝑡−/𝑡+). Again, 𝑚𝑅ℱ represents the mass of the first
sub-threshold resonance compatible with the quantum numbers of the form factor ℱ and we use the
values of 𝑚𝑅ℱ given in Refs. [142, 144]. Refs. [142, 144] both perform simultaneous fits of LCSR and
LQCD data and central values for 𝛼(ℱ)𝑘 as well as uncertainties and correlation matrices for each form
factor ℱ are given in supplemented files.
For the 𝐵 → 𝜋 tensor form factor no lattice results were included in Ref. [144]. A update for all

three 𝐵 → 𝜋 form factors including LQCD and LCSR is given in Ref. [301], however not used here
as the tensor form factor does not contribute to dineutrino observables. For 𝐵 → 𝜌 a simultaneous
fit of LQCD and LCSR is also missing in Refs. [142, 144]. We perform a fit using LCSR input from
Ref. [144] and available LQCD data from the SPQcdR [302] and UKQCD [303] collaborations. We
refer to Ref. [7] and ancillary files for further details and fit results.
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D Details on anomaly-free flavorful 𝑍 ′–models

This appendix extends the framework discussed in Sec. 4.3. We discuss anomaly cancellation conditions
in App. D.1. The calculation of constraints from 𝐷0 − 𝐷0 mixing is outlined in App. D.2. We
further provide supplementing details on the calculation of 𝑍′–contributions to 𝛥𝐴CP and other
CP–asymmetries in hadronic decays in App. D.3. Finally, App. D.4 also presents a figure similar to
Fig. 5.14, but for different charge assignments, i.e. different solutions to anomaly cancellation conditions
from Tab. D.1.

D.1 Anomaly cancellation conditions

Anomaly-free 𝑍′–extensions of the SM with generation-dependent 𝑈(1)′–charges 𝐹𝜓𝑖 for quarks and
leptons 𝜓 = 𝑄, 𝑢, 𝑑, 𝐿, 𝑒, 𝜈 are built in the following way. SM fields have representations under𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 × 𝑈(1)′𝑄𝑖 ∼ (3, 2, 1/6, 𝐹𝑄𝑖) , 𝑢𝑖 ∼ (3, 1, 2/3, 𝐹𝑢𝑖) , 𝑑𝑖 ∼ (3, 1, −1/3, 𝐹𝑑𝑖) ,𝐿𝑖 ∼ (1, 2, −1/2, 𝐹𝐿𝑖) , 𝑒𝑖 ∼ (1, 1, −1, 𝐹𝑒𝑖) , 𝜈𝑖 ∼ (1, 1, 0, 𝐹𝜈𝑖) , (D.1)

where we allow three RH neutrinos 𝜈 as SM singlets, however charged under 𝑈(1)′. The charges 𝐹𝜓𝑖
are subject to constraints from gauge anomaly cancellation conditions, see Ref. [244] for an introduction
and Refs. [238, 243, 304–306] for recent phenomenological applications. Following [304], the anomaly
cancellation conditions read:𝑆𝑈(3)2𝐶 × 𝑈(1)′𝐹 ∶ 3∑𝑖=1 (2𝐹𝑄𝑖 − 𝐹𝑢𝑖 − 𝐹𝑑𝑖) = 0 ,𝑆𝑈(2)2𝐿 × 𝑈(1)′𝐹 ∶ 3∑𝑖=1 (3𝐹𝑄𝑖 + 𝐹𝐿𝑖) = 0 ,𝑈(1)2𝑌 × 𝑈(1)′𝐹 ∶ 3∑𝑖=1 (𝐹𝑄𝑖 + 3𝐹𝐿𝑖 − 8𝐹𝑢𝑖 − 2𝐹𝑑𝑖 − 6𝐹𝑒𝑖) = 0 ,

gauge-gravity:
3∑𝑖=1 (6𝐹𝑄𝑖 + 2𝐹𝐿𝑖 − 3𝐹𝑢𝑖 − 3𝐹𝑑𝑖 − 𝐹𝑒𝑖 − 𝐹𝜈𝑖) = 0 ,𝑈(1)𝑌 × 𝑈(1)′2𝐹 ∶ 3∑𝑖=1 (𝐹 2𝑄𝑖 − 𝐹 2𝐿𝑖 − 2𝐹 2𝑢𝑖 + 𝐹 2𝑑𝑖 + 𝐹 2𝑒𝑖) = 0 ,𝑈(1)′3𝐹 ∶ 3∑𝑖=1 (6𝐹 3𝑄𝑖 + 2𝐹 3𝐿𝑖 − 3𝐹 3𝑢𝑖 − 3𝐹 3𝑑𝑖 − 𝐹 3𝑒𝑖 − 𝐹 3𝜈𝑖) = 0 .

(D.2)

Note that RH neutrinos only enter in the gauge gravity and the 𝑈(1)′3𝐹 conditions as they are SM
singlets. This results in six conditions for either 15 BSM charges with the SM particle content or
18 BSM charges when RH neutrinos are added. We note the following features of the conditions in
Eq. (D.2), see [304] and references therein for details.

• We assume that all 𝑈(1)′–charges are rational numbers 𝐹𝜓 ∈ ℚ .

113



D Details on anomaly-free flavorful 𝑍′–models

Table D.1: Sample solutions of the anomaly cancellation conditions from Eq. (D.2) in 𝑈(1)′
extensions of the SM+3𝜈𝑅. Solutions 4 and 7 have non-zero RH neutrinos, such that for all
other models the SM particle content is sufficient. The ordering of generation dependent
charges for each fermion species is arbitrary. Models 2, 4, 5 allow for 𝐹𝑄1 = 𝐹𝑄2 , models 9
and 10 even have 𝐹𝑄1 = 𝐹𝑄2 = 0.

sol. # 𝐹𝑄𝑖 𝐹𝑢𝑖 𝐹𝑑𝑖 𝐹𝐿𝑖 𝐹𝑒𝑖 𝐹𝜈𝑖
1 -4 -2 6 -2 1 1 0 0 0 -8 3 5 -3 -3 6 0 0 0
2 -6 3 3 -8 4 4 -10 0 10 -6 1 5 0 0 0 0 0 0
3 -20 7 8 -29 3 6 -19 4 25 0 6 9 3 13 14 0 0 0
4 -1 -1 2 -1 -1 2 0 0 0 -1 0 1 -2 0 2 -2 -1 3
5 -1 -1 2 -1 -1 2 -1 -1 2 -1 0 1 -1 0 1 0 0 0
6 -10 2 6 -13 2 3 -11 2 13 -6 3 9 2 4 6 0 0 0
7 1 1 1 1 1 1 1 1 1 -3 -3 -3 -3 -3 -3 -3 -3 -3
8 -15 6 7 -14 2 4 -25 9 20 -24 11 19 1 3 8 0 0 0
9 0 0 0 -11 -2 13 7 7 -14 -8 3 5 -6 16 -10 0 0 0
10 0 0 0 -13 6 7 -1 -14 15 -15 15 0 -14 18 -4 0 0 0

• Any solution of Eq. (D.2) can be rescaled by any rational number 𝑘 ∈ ℚ , 𝐹𝜓 → 𝑘𝐹𝜓, ∀𝜓 ∈{𝑄𝑖, 𝑢𝑖, 𝑑𝑖, 𝐿𝑖, 𝑒𝑖, 𝜈𝑖}, while simultaneously rescaling the 𝑈(1)′ gauge coupling. Solutions connected
via this rescaling invariance are in the same equivalence class.

• Due to the first two arguments, we assume integer solutions 𝐹𝜓 ∈ ℤ without loss of generality.

• Within each species 𝜓 any solution has a permutation invariance of the generation indices.

Concrete solutions of the non-linear conditions in Eq. (D.2) are obtained using computational
algebraic geometry and performing a Gröbner basis computation [305] with Mathematica and analytical
expressions for the charges 𝐹𝜓1. The aim of the search for solutions is to obtain large 𝑐 → 𝑢 FCNCs,
i.e. solutions with 𝐹𝑄1 ≠ 𝐹𝑄2 and/or 𝐹𝑢1 ≠ 𝐹𝑢2 and consistent with 𝐷0 − 𝐷0 mixing constraints, see
the next section.
In Tab. D.1 we present solutions to the anomaly cancellation conditions. Due to the permutation

invariance, the ordering of generations within each fermion species is arbitrary. Solutions 4 and 7 are
also discussed in Ref. [304] and are the only solutions with non-vanishing charges for RH neutrinos
considered in this work. Solutions 1 and 4 share the feature 𝐹𝑑𝑖 = 0 for all three generations, therefore
avoiding RH down-type FCNCs. Solutions 2, 4, 5, 9 and 10 are investigated in Sec. 5.2.3, because at
least two of the three 𝐹𝑄𝑖 ’s are equal, such that 𝛥𝐹𝐿 = 𝐹𝑄2 − 𝐹𝑄1 = 0 can be fulfilled. Among these
only solution 4 then avoids down-type FCNCs without further assumptions, as 𝐹𝑑𝑖 = 0. In solution 7
only generation-independent couplings exist, which implies the absence of 𝑍′–induced FCNCs at tree
level. Sizable RG coefficients are induced in models with large 𝑈(1)′–charges. However, the study of
the UV–properties of these models is beyond the scope of this work.

1This procedure is part of the research work of Rigo Bause, published in Refs. [1, 2] and will be discussed in detail in his
PhD thesis.
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D.2 Constraints from 𝐷0 − 𝐷0 mixing

In general 𝑍′–models induce FCNCs via gauge to mass basis rotations. Four of these rotations are
possible, for both LH and RH up-type and down-type quarks. The LH rotations necessarily need to
reproduce the CKM matrix, which yields to either CKM-like contributions in the up- or the down-sector
for LH quark currents, depending on assuming the CKM matrix to predominantly stem from up- or
down-type rotations. In principle effects could also be split and scenarios where the mixing between
second and third generation is due to down-type rotations and the mixing between first and second
generation due to up-type rotations. A detailed investigation of these possibilities, however, is beyond
the scope of this work.

D.2 Constraints from 𝐷0 − 𝐷0 mixing

Constraints from charm meson mixing are severe for 𝑍′–models, as they are generated on tree level.
We discuss these constraints in detail. The 𝐷0–𝐷0 transition amplitude can be written as⟨𝐷0|ℋ𝛥𝑐=2

eff |𝐷0⟩ = 𝑀12 − i2 𝛤12 , (D.3)

which is then parametrized in terms of the three physical quantities, see also Eq. (3.26)𝑥12 = 2 |𝑀12|𝛤 , 𝑦12 = |𝛤12|𝛤 , 𝜙12 = arg(𝑀12𝛤12 ) . (D.4)𝑥12 and 𝑦12 are CP–conserving, while 𝜙12 quantifies CP–violation in mixing. The most general global
fit from the HFLAV collaboration [176] results in the 95 % C.L. ranges𝑥12 ∈ [0.314 , 0.503] % , 𝑦12 ∈ [0.495 , 0.715] % , 𝜙12 ∈ [−1.2∘, 2.4∘] . (D.5)

Since the SM predictions for the mixing parameters are not sufficiently controlled, we require the NP
contributions to saturate the current world averages (D.5),𝑥NP12 ≤ 𝑥12 , 𝑥NP12 sin𝜙NP12 ≤ 𝑥12 sin𝜙12 . (D.6)

We compute constraints from the current world average of the 𝐷0 − 𝐷0 mixing parameter 𝑥𝐷 [176],
which is obtained assuming no sub-leading amplitudes in indirect CP–violation, see [176] for details𝑥exp𝐷 = (4.09 ± 0.048) × 10−3 . (D.7)𝑥𝐷 is obtained as 𝑥𝐷 = 𝛥𝑚𝐷0𝛤𝐷0 = 2 |𝑀12|𝛤𝐷0 = 2𝛤𝐷0 12𝑚𝐷0 ⟨𝐷0|ℋ𝛥𝑐=2

eff |𝐷0⟩ . (D.8)
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D Details on anomaly-free flavorful 𝑍′–models

Here, ℋ𝛥𝑐=2
eff = ∑𝑖 𝑐𝑖𝑄𝑖 and [100]𝑄1 = (𝑢𝐿𝛾𝜇𝑐𝐿)(𝑢𝐿𝛾𝜇𝑐𝐿) , 𝑄5 = (𝑢𝑅𝜎𝜇𝜈𝑐𝐿)(𝑢𝑅𝜎𝜇𝜈𝑐𝐿) ,𝑄2 = (𝑢𝐿𝛾𝜇𝑐𝐿)(𝑢𝑅𝛾𝜇𝑐𝑅) , 𝑄6 = (𝑢𝑅𝛾𝜇𝑐𝑅)(𝑢𝑅𝛾𝜇𝑐𝑅) ,𝑄3 = (𝑢𝐿𝑐𝑅)(𝑢𝑅𝑐𝐿) , 𝑄7 = (𝑢𝐿𝑐𝑅)(𝑢𝐿𝑐𝑅) ,𝑄4 = (𝑢𝑅𝑐𝐿)(𝑢𝑅𝑐𝐿) , 𝑄8 = (𝑢𝐿𝜎𝜇𝜈𝑐𝑅)(𝑢𝐿𝜎𝜇𝜈𝑐𝑅) . (D.9)

Tree-level matching of the 𝑍′–model at the scale 𝜇 = 𝑀𝑍′ induces the following 𝛥𝐶 = 2 Wilson
coefficients (𝑔𝐿 = 𝑔𝑢𝑐𝐿 and 𝑔𝑅 = 𝑔𝑢𝑐𝑅 )𝑐1(𝑀𝑍′) = 𝑔2𝐿2𝑀2𝑍′ , 𝑐2(𝑀𝑍′) = 𝑔𝐿 𝑔𝑅𝑀2𝑍′ , 𝑐6(𝑀𝑍′) = 𝑔2𝑅2𝑀2𝑍′ . (D.10)

The operator 𝑄3 is induced radiatively and therefore taken into account. At the scale 𝜇 = 3 GeV the𝑍′–contribution is given as [100, 101]𝑥𝑍′𝐷 = 1𝛤𝐷0𝑚𝐷0 [ 𝑟1 𝑐1(𝑀𝑍′) ⟨𝑄1⟩ + √𝑟1 𝑐2(𝑀𝑍′) ⟨𝑄2⟩+ 23 𝑐2(𝑀𝑍′) (√𝑟1 − 𝑟−41 ) ⟨𝑄3⟩ + 𝑟1 𝑐6(𝑀𝑍′) ⟨𝑄6⟩ ] , (D.11)

with the renormalization factor𝑟1 = (𝛼𝑠(𝑀𝑍′)𝛼𝑠(𝑚𝑡) )2/7 (𝛼𝑠(𝑚𝑡)𝛼𝑠(𝑚𝑏))6/23 (𝛼𝑠(𝑚𝑏)𝛼𝑠(𝜇) )6/25 , (D.12)

and the hadronic matrix elements computed at 𝜇 = 3GeV [307]⟨𝑄1⟩ = 0.0805(55) = ⟨𝑄6⟩ , ⟨𝑄2⟩ = −0.2070(142) , ⟨𝑄3⟩ = 0.2747(129) . (D.13)

Writing Eq. (D.11) with 𝑍′–model parameters one arrives at𝑥𝑍′𝐷 = 𝑟1⟨𝑄1⟩2 𝛤𝐷0 𝑚𝐷0 𝑔2𝐿 + 𝑔2𝑅 − 𝑋𝑔𝐿𝑔𝑅𝑀2𝑍′ , (D.14)

where we define 𝑋 = −2 (√𝑟1 ⟨𝑄2⟩ + 23 (√𝑟1 − 𝑟−41 ) ⟨𝑄3⟩) (𝑟1⟨𝑄1⟩)−1 . (D.15)
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D.2 Constraints from 𝐷0 − 𝐷0 mixing

This exactly coincides with Eq. (4.18) and we find 𝑋 = 19.2, 24.0, 26.2 for 𝑀𝑍′ = 1, 5, 10 TeV,
respectively. In order to investigation the possibility of cancellations in Eq. (4.18), we further simplify|𝑔𝐿| = |𝑔𝑅| 𝑋2 (1 ± √1 − 4𝑋2 ) . (D.16)

In this scenario the mixed contribution 𝑋𝑔𝐿𝑔𝑅 exactly cancels the term 𝑔2𝐿 + 𝑔2𝑅 and the bound from𝐷0 − 𝐷0 mixing becomes irrelevant. We investigate this possibility by employing 4/𝑋2 ≪ 1, which
along with the symmetry in 𝐿 ↔ 𝑅 yields the following two scenarios𝑔𝐿 ≈ 𝑋𝑔𝑅 or 𝑔𝐿 ≈ 1𝑋𝑔𝑅 , (D.17)

which we refer to as LH dominated and RH dominated, respectively. Note that we put “≈” to highlight
the following. In Eq. (D.17) no perfect cancellation is achieved, rather one obtains𝑔2𝐿 + 𝑔2𝑅 − 𝑋𝑔𝐿𝑔𝑅 < ̃𝑥 ,𝑔𝐿 = 𝑋 𝑔𝑅 ⇒ 𝑔2𝑅 < ̃𝑥 , 𝑔2𝑅 < 𝑋2 ̃𝑥 (LH dominated) ,𝑔𝑅 = 𝑋 𝑔𝐿 ⇒ 𝑔2𝐿 < ̃𝑥 , 𝑔2𝑅 < 𝑋2 ̃𝑥 (RH dominated) , (D.18)

where, ̃𝑥 = 2 𝑥exp𝐷 𝛤𝐷0 𝑚𝐷0 𝑀2𝑍′𝑟1⟨𝑄1⟩ . This implies that the larger coupling can be enhanced by one factor of 𝑋
with respect to a scenario of a single coupling, which is bounded by |𝑔𝐿/𝑅| < √ ̃𝑥. However, Eq. (D.16)
yields an exact cancellation, such that the allowed size of the coupling depends on the level of fine tuning.
This can be seen using the Taylor expansion of Eq. (D.16) |𝑔𝐿| ≈ |𝑔𝑅| (𝑋 − 1𝑋 − 1𝑋3 + 𝒪(𝑋−5)). Using
more terms of this expansion instead of Eq. (D.17) yields the following bounds for 𝑔𝐿|𝑔𝐿| ≲ 𝑋2√ ̃𝑥 for 𝑔𝐿 = (𝑋 − 1𝑋) 𝑔𝑅 ,|𝑔𝐿| ≲ 𝑋3√ ̃𝑥 for 𝑔𝐿 = (𝑋 − 1𝑋 − 1𝑋3 ) 𝑔𝑅 . (D.19)

As corrections of higher powers in 𝑋 are negligible with respect to running effects in the numerical
evaluation of 𝑋 itself, due to the unknown 𝑍′–mass, we will use the approximation in Eq. (D.17) and
assume perfect cancellation of the 𝐷0 − 𝐷0 mixing bound.

Experimental constraints on CP–violation in 𝐷0 − 𝐷0 mixing, 𝑥12 sin𝜙12 ≲ 2 × 10−4, are stronger
than (D.7) by about ∼ 0.04 [176, 308]. Further, a cancellation of the mixing bound is only possible
when the phases in 𝑔𝐿 and 𝑔𝑅 are aligned Arg(𝑔𝐿) = Arg(𝑔𝑅), see Sec. 5.2.3 and App. D.3 for an
analysis of CP–violating effects in 𝑍′–models.
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D Details on anomaly-free flavorful 𝑍′–models

Table D.2: Branching ratio measurements [184] and 𝑎𝑃–parameters from Eq. (D.20) for
different two-body hadronic 𝐷–meson decay modes.

mode BR (mode) 𝑎𝑃𝐷0 → 𝐾+𝐾− (4.08 ± 0.06) × 10−3 1.19 ± 0.04𝐷0 → 𝜋+𝜋− (1.453 ± 0.024) × 10−3 0.94 ± 0.07𝐷0 → 𝜋0𝜋0 (8.26 ± 0.25) × 10−4 0.71 ± 0.05𝐷+ → 𝜋0𝜋+ (1.247 ± 0.033) × 10−3 0.77 ± 0.05
D.3 Details on 𝑍 ′–contributions to CP–asymmetries in hadronic charm

decays

We derive Eqs. (5.29), (5.32) and (5.34). First, we fit the modulus of the SM decay amplitudes to data
on branching ratios [184] given in Tab. D.2. We use [309]

BR(𝐷 → 𝑃1𝑃2) = |𝒜𝑃|216 𝜋 𝑚𝐷 √1 − 4 𝑚2𝑃𝑚2𝐷 𝜏𝐷 , 𝒜𝑃 = 𝜂𝑃 𝜆𝑃 𝑎𝑃 𝐺𝐹√2 (𝑚2𝐷 − 𝑚2𝑃) 𝑓𝐷→𝑃0 (𝑚2𝑃) 𝑓𝑃 ,
(D.20)

with 𝑃 = 𝜋, 𝜋0, 𝜋′, 𝐾, 𝜆𝜋 = 𝜆𝑑 and 𝜆𝐾 = 𝜆𝑠 and 𝜂𝜋 = 𝜂𝜋0 = 𝜂𝐾 = 1, whereas 𝜂𝜋′ = 1/√2 and 𝜋′
corresponds to the 𝐷+ → 𝜋+𝜋0 channel, and 𝜋0 to 𝐷0 → 𝜋0𝜋0.
Tab D.2 collects resulting values of 𝑎𝑃 > 0, which include 𝑈–spin breaking effects within the SM.

The second step is the extension of the effective Hamiltonian with further operators. Due to
the generation-dependent quark-couplings proportional to 𝐹𝜓 charges, additional operators in the
effective weak Hamiltonian beyond the ones considered usually, i.e. Ref. [310], are needed. At the scale𝑚𝑏 < 𝜇 < 𝜇𝑡 , ℋ|𝛥c|=1

eff ⊃ 𝐺𝐹√2 ∑𝑖 𝐶(′)𝑖 𝑄(′)𝑖 + h.c. , (D.21)
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D.3 Details on 𝑍′–contributions to CP–asymmetries in hadronic charm decays

with the new operators𝑄7 = (�̄�𝑐)𝑉 −𝐴 ∑𝑞 𝐹𝑢𝑖,𝑑𝑖 ( ̄𝑞𝑞)𝑉 +𝐴 ,𝑄8 = (�̄�𝛼𝑐𝛽)𝑉 −𝐴 ∑𝑞 𝐹𝑢𝑖,𝑑𝑖 ( ̄𝑞𝛽𝑞𝛼)𝑉 +𝐴 ,𝑄9 = (�̄�𝑐)𝑉 −𝐴 ∑𝑞 𝐹𝑄𝑖 ( ̄𝑞𝑞)𝑉 −𝐴 ,𝑄10 = (�̄�𝛼𝑐𝛽)𝑉 −𝐴 ∑𝑞 𝐹𝑄𝑖 ( ̄𝑞𝛽𝑞𝛼)𝑉 −𝐴 ,
𝑄′7 = (�̄�𝑐)𝑉 +𝐴 ∑𝑞 𝐹𝑄𝑖 ( ̄𝑞𝑞)𝑉 −𝐴 ,𝑄′8 = (�̄�𝛼𝑐𝛽)𝑉 +𝐴 ∑𝑞 𝐹𝑄𝑖 ( ̄𝑞𝛽𝑞𝛼)𝑉 −𝐴 ,𝑄′9 = (�̄�𝑐)𝑉 +𝐴 ∑𝑞 𝐹𝑢𝑖,𝑑𝑖 ( ̄𝑞𝑞)𝑉 +𝐴 ,𝑄′10 = (�̄�𝛼𝑐𝛽)𝑉 +𝐴 ∑𝑞 𝐹𝑢𝑖,𝑑𝑖 ( ̄𝑞𝛽𝑞𝛼)𝑉 +𝐴 .

(D.22)

where (𝑉 ± 𝐴) refers to the Dirac structures 𝛾𝜇(1 ± 𝛾5), 𝑞 = 𝑢, 𝑐, 𝑑, 𝑠, 𝑏 and 𝛼, 𝛽 are the color indices.

Within the 𝑍′–model, the matching conditions at the NP scale read𝐶7 (𝑀𝑍′) = 𝐶9 (𝑀𝑍′) = √2𝐺𝐹 𝑔𝑢𝑐𝐿 𝑔44 𝑀2𝑍′ ,𝐶′7 (𝑀𝑍′) = 𝐶′9 (𝑀𝑍′) = √2𝐺𝐹 𝑔𝑢𝑐𝑅 𝑔44 𝑀2𝑍′ ,𝐶(′)8 (𝑀𝑍′) = 𝐶(′)10 (𝑀𝑍′) = 0 . (D.23)

These contributions are evolved from 𝑀𝑍′ to 𝑚𝑐 and finite values of 𝐶(′)8 and 𝐶(′)10 arise from the RG
mixing at the charm mass scale.

The anomalous dimension matrix at LO in 𝛼𝑠 for the operators 𝑄7,8,9,10 can be inferred from
Ref. [161] and reads

𝛾0𝐹 = ⎛⎜⎜⎜⎜⎝
2 −6 0 00 −16 0 00 0 −2 60 0 6 −2⎞⎟⎟⎟⎟⎠ . (D.24)

Since QCD conserves parity, 𝛾0𝐹 is identical for 𝑄𝑖 and 𝑄′𝑖. Using Eq. (D.24), the Wilson coefficients
are evolved to the charm scale, integrating out degrees of freedom at the (𝑍′, 𝑡, 𝑏)–scales,⃗𝐶(𝜇) = 𝑈4(𝜇, 𝑚𝑏) 𝑈5(𝑚𝑏, 𝑚𝑡) 𝑈6(𝑚𝑡, 𝑀𝑍′) ⃗𝐶(𝑀𝑍′) ,
where 𝑈𝑓(𝑚1, 𝑚2) ≡ 𝑀𝑓(𝑚1) 𝑈𝑓(𝑚1, 𝑚2) and 𝑈𝑓(𝑚1, 𝑚2) is the evolution matrix from scale 𝑚2 to
scale 𝑚1 in an EFT with 𝑓 active flavors; 𝑀𝑓 is the threshold matrix that matches the two effective
theories with 𝑓 − 1 and 𝑓 active flavors. At LO in 𝛼𝑠, the 𝑀𝑓 matrices are equal to the identity matrix.
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For 𝜇 = 𝑚𝑐 and 𝑀𝑍′ = 6TeV, one finds𝐶(′)7 (𝑚𝑐) = 0.829 𝐶(′)7 (𝑀𝑍′) ,𝐶(′)8 (𝑚𝑐) = 1.224 𝐶(′)7 (𝑀𝑍′) + 4.502 𝐶(′)8 (𝑀𝑍′) ,𝐶(′)9 (𝑚𝑐) = 1.404 𝐶(′)9 (𝑀𝑍′) − 0.718 𝐶(′)10 (𝑀𝑍′) ,𝐶(′)10 (𝑚𝑐) = −0.718 𝐶(′)9 (𝑀𝑍′) + 1.404 𝐶(′)10 (𝑀𝑍′) . (D.25)

The last missing ingredient is the evaluation of hadronic matrix elements. Here, we employ factoriza-
tion of currents, 𝑃 = 𝜋, 𝐾,⟨𝑃 + 𝑃 −| 𝑄𝑖 |𝐷0⟩ = ⟨𝑃 +| ( ̄𝑞1 𝛤1 𝑞2) |0⟩ ⟨𝑃 −| ( ̄𝑞3 𝛤2 𝑞4) |𝐷0⟩ , (D.26)

where 𝑄𝑖 = ( ̄𝑞1 𝛤1 𝑞2) ( ̄𝑞3 𝛤2 𝑞4) is any 4–quark operator from Eq. (D.22) and 𝛤1,2 represent possible
Dirac and color structures while 𝑞𝑗 denote quarks. After employing Fierz identities in the flavor and
color space, we find for 𝐷0 → 𝐾+𝐾− and 𝜋+𝜋− decays⟨𝑄7⟩𝐾,𝜋 = 1𝑁𝐶 ⟨𝑄8⟩𝐾,𝜋 ,⟨𝑄8⟩𝐾,𝜋 = 𝐹𝑑2, 𝑑1 𝜒𝐾,𝜋(𝜇) ⟨𝑄𝑠, 𝑑1 ⟩𝐾,𝜋 , ⟨𝑄9⟩𝐾,𝜋 = 1𝑁𝐶 ⟨𝑄10⟩𝐾,𝜋 ,⟨𝑄10⟩𝐾,𝜋 = 𝐹𝑄2, 𝑄1 ⟨𝑄𝑠, 𝑑1 ⟩𝐾,𝜋 , (D.27)

where ⟨...⟩𝑃 = ⟨𝑃 +𝑃 −|...|𝐷0⟩, 𝑄𝑝1 = (�̄�𝑝)𝑉 −𝐴( ̄𝑝𝑐)𝑉 −𝐴 and 𝜒𝐾,𝜋(𝜇) are chiral enhancement factors
generated by (𝑉 − 𝐴) × (𝑉 + 𝐴) operators,𝜒𝐾(𝜇) = 2 𝑀2𝐾𝑚𝑐(𝜇) 𝑚𝑠(𝜇) , 𝜒𝜋(𝜇) = 2 𝑀2𝜋𝑚𝑐(𝜇) (𝑚𝑑 + 𝑚𝑢)(𝜇) . (D.28)

We find 𝜒𝐾(𝑚𝑐) ≈ 3.626 and 𝜒𝜋(𝑚𝑐) ≈ 3.655 at the charm mass scale. For the 𝑄′𝑖 operators the same
relations hold but with the proper exchange of charges 𝐹𝑄𝑖 ↔ 𝐹𝑑𝑖 .
For 𝐷+ → 𝜋0𝜋+ decays we find⟨𝑄7⟩𝜋′ = 1𝑁𝐶 ⟨𝑄8⟩𝜋′ ,⟨𝑄8⟩𝜋′ = 𝜒𝜋(𝜇)√2 (𝐹𝑢1 − 𝐹𝑑1) ⟨𝑄𝑢1 ⟩𝑢 ,⟨𝑄9⟩𝜋′ = 1𝑁𝐶 ⟨𝑄10⟩𝜋′ = 0 ,

⟨𝑄′7⟩𝜋′ = 1𝑁𝐶 ⟨𝑄′8⟩𝜋′ = 0 ,⟨𝑄′9⟩𝜋′ = 1𝑁𝐶 ⟨𝑄′10⟩𝜋′ ,⟨𝑄′10⟩𝜋′ = 1√2 (𝐹𝑢1 − 𝐹𝑑1) ⟨𝑄𝑢1 ⟩𝑢 . (D.29)
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Finally, for 𝐷0 → 𝜋0𝜋0 decays we obtain⟨𝑄7⟩𝜋0 = 1𝑁𝐶 ⟨𝑄8⟩𝜋0 ,⟨𝑄8⟩𝜋0 = 𝜒𝜋(𝜇)2 (𝐹𝑢1 − 𝐹𝑑1) ⟨𝑄𝑢1 ⟩𝑢 ,⟨𝑄9⟩𝜋0 = 1𝑁𝐶 ⟨𝑄10⟩𝜋0 = 0 ,
⟨𝑄′7⟩𝜋0 = 1𝑁𝐶 ⟨𝑄′8⟩𝜋0 = 0 ,⟨𝑄′9⟩𝜋0 = 1𝑁𝐶 ⟨𝑄′10⟩𝜋0 ,⟨𝑄′10⟩𝜋0 = 12 (𝐹𝑢1 − 𝐹𝑑1) ⟨𝑄𝑢1 ⟩𝑢 . (D.30)

Again, our notation is ⟨...⟩𝜋′ = ⟨𝜋+𝜋0|...|𝐷+⟩, ⟨...⟩𝜋0 = ⟨𝜋0𝜋0|...|𝐷0⟩ and ⟨...⟩𝑞 = ⟨ ̄𝑞𝑞|...|𝐷+⟩. We have
employed the isospin limit, 𝑚𝑢 = 𝑚𝑑 and 𝑒 = 0, since these induce isospin breaking in the SM, however
negligible with respect to NP isospin breaking, induced by 𝐹𝑢𝑖,𝑑𝑖,𝑄𝑖 ≠ 0 .

All hadronic matrix elements are now related to the dominant SM contributions ⟨𝑄𝑠, 𝑑1 ⟩𝐾,𝜋, which
we have fixed to experiment, see Eq. (D.20). This yields for the NP contribution to 𝛥𝐴CP

|𝛥𝐴NP
CP| ≃ 2𝜆𝑠 ⋅ (𝒜𝐾

NP𝑎𝐾 sin𝜙𝐾
NP sin 𝛿𝐾

NP⏟⏟⏟⏟⏟⏟⏟=1 +𝒜𝜋
NP𝑎𝜋 sin𝜙𝜋

NP sin 𝛿𝜋
NP⏟⏟⏟⏟⏟⏟⏟=1 ) , (D.31)

where the relative sign of 𝜆𝑠 and 𝜆𝑑 is used, we assume maximally strong phase differences and the NP
weak phase is also fixed to 𝜙NP = 𝜋2 to avoid 𝐷0 − �̄�0 mixing bounds, see discussion in Sec. 5.2.3. The𝑎𝑃 with 𝑃 = 𝐾, 𝜋 are given in Tab. D.2 and𝒜𝐾

NP = ̃𝐶7 𝜒𝐾 𝐹𝑑2𝑁𝐶 + ̃𝐶′7 𝜒𝐾 𝐹𝑄2𝑁𝐶 + ̃𝐶8 𝜒𝐾 𝐹𝑑2 + ̃𝐶′8 𝜒𝐾 𝐹𝑄2 + ̃𝐶9 𝐹𝑄2𝑁𝐶 + ̃𝐶′9 𝐹𝑑2𝑁𝐶 + ̃𝐶10 𝐹𝑄2 + ̃𝐶′10 𝐹𝑑2 ,𝒜𝜋
NP = ̃𝐶7 𝜒𝜋 𝐹𝑑1𝑁𝐶 + ̃𝐶′7 𝜒𝜋 𝐹𝑄1𝑁𝐶 + ̃𝐶8 𝜒𝜋 𝐹𝑑1 + ̃𝐶′8 𝜒𝜋 𝐹𝑄1 + ̃𝐶9 𝐹𝑄1𝑁𝐶 + ̃𝐶′9 𝐹𝑑1𝑁𝐶 + ̃𝐶10 𝐹𝑄1 + ̃𝐶′10 𝐹𝑑1 .

(D.32)

Since the Wilson coefficients in Eq. (D.32) need to be evaluated at the charm mass scale, contributions
from Eq. (D.23) are evolved down to this scale as previously discussed. Finally, we find contributions of
the 𝑍′–models to hadronic CP–asymmetries via the compactly written Eqs. (5.29), (5.32) and (5.34),
with the following parameters𝑐𝐾 = 𝜒𝐾𝑎𝐾 𝑟1(𝑚𝑐, 𝑀𝑍′) ,𝑐𝜋 = −𝜒𝜋𝑎𝜋 𝑟1(𝑚𝑐, 𝑀𝑍′) ,𝑑𝜋′ = − 1𝑎𝜋′ 𝑟2(𝑚𝑐, 𝑀𝑍′) ,

𝑑𝐾 = 1𝑎𝐾 𝑟2(𝑚𝑐, 𝑀𝑍′) ,𝑑𝜋 = − 1𝑎𝜋 𝑟2(𝑚𝑐, 𝑀𝑍′) ,𝑑𝜋0 = − 1𝑎𝜋0 𝑟2(𝑚𝑐, 𝑀𝑍′) , (D.33)
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Figure D.1: Similar to Fig. 5.14 in Sec. 5.2.3, but for 𝑍′–models 5 (left) and 9 (right).

where, again, the 𝑎𝑃 factors are taken from Tab. D.2 and the following RG factors enter𝑟1(𝑚𝑐, 𝑀𝑍′) = 𝑅−23 √2 𝐺𝐹 𝜆𝑠 , 𝑟2(𝑚𝑐, 𝑀𝑍′) = 2 𝑅1/2 − 𝑅−13 √2 𝐺𝐹 𝜆𝑠 , (D.34)

with 𝑅 = (𝛼(4)𝑠 (𝑚𝑏)𝛼(4)𝑠 (𝑚𝑐)) 1225 (𝛼(5)𝑠 (𝑚𝑡)𝛼(5)𝑠 (𝑚𝑏)) 1223 (𝛼(6)𝑠 (𝑀𝑍′)𝛼(6)𝑠 (𝑚𝑡) ) 47 . (D.35)

D.4 Parameter space for further 𝑍 ′–model solutions
In Sec. 5.2.3 Fig. 5.14 displays the available parameter space for models 2 and 10 along with bands
illustrating increasing contributions to 𝛥𝐴CP. We show similar plots for models 5 (left) and model
9 (right) in Fig. D.1. Here, model 5 still is a viable candidate to evade constraints from mixing (red
region), the perturbativity and direct search limit (black band) and constraints from semileptonic rare𝐷–decays (pink, dash-dotted line, too weak to be displayed in the left plot). Model 9 is constructed
to have no charges to any LH quark doublet, similar to model 10. In these models isospin, U–spin
breaking effects can be pronounced and larger contributions to rare semileptonic decays are induced.
Similar to model 10, model 9 is not a viable candidate to simultaneously have 𝛥𝐴NP

CP ∼ 10−3, while
evading the displayed bounds. Both models were presented as viable candidates in Ref. [2], however
both mixing bound and limits from rare semileptonic charm decays have improved and exclude these
models.
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E Distributions and Observables

In this appendix, we collect the full dependence on Wilson coefficients, form factors and kinematic
factors of several differential distributions and further observables used throughout the thesis. First,
we give results for 𝐷 → 𝑃ℓ+ℓ− in App. E.1, followed by results for the three- and four-body baryon
modes in Apps. E.2 and E.3. Here, we just display the results compactly, whereas we discuss the
helicity formalism utilized to obtain these results separately in App. F. Finally, App. E.4 provides
explicit expressions for 𝑎ℎ𝑞𝐹𝑞′± factors utilized in Chapter 6.

E.1 𝐷 → 𝑃 ℓ+ℓ−
In Agreement with Refs. [90, 166, 177], the double differential decay distribution of 𝐷 → 𝑃ℓ+ℓ−
neglecting the up-quark mass can be written as( 𝐺2𝐹𝛼2𝑒2048𝜋5𝑚3𝐷 )−1 d2𝛤

d𝑞2d𝑢 =∣𝐶9 + 𝐶7 2𝑚𝑐𝑚𝐷 + 𝑚𝑃 𝑓𝑇𝑓+ ∣2 𝑓2+ (𝜆𝐷𝑃 − 𝑢2)+|𝐶10|2 [(𝑣2 𝜆𝐷𝑃 − 𝑢2) 𝑓2+ + 4𝑚2ℓ𝑞2 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20 ]+ [|𝐶𝑆|2𝑣2 + |𝐶𝑃|2] 𝑞2𝑚2𝑐 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20+4 [|𝐶𝑇|2 + |𝐶𝑇 5|2] 𝑞2(𝑚𝐷 + 𝑚𝑃)2 𝑓2𝑇 𝑢2+4Re [(𝐶9 + 𝐶7 2𝑚𝑐𝑚𝐷 + 𝑚𝑃 𝑓𝑇𝑓+ ) 𝐶∗𝑆] 𝑚ℓ𝑚𝑐 (𝑚2𝐷 − 𝑚2𝑃) 𝑓0 𝑓+ 𝑢+8Re [𝐶10𝐶∗𝑇 5] 𝑚ℓ (𝑚𝐷 − 𝑚𝑃) 𝑓0 𝑓𝑇 𝑢+4Re [𝐶𝑆𝐶∗𝑇 + 𝐶𝑃𝐶∗𝑇 5] 𝑞2 (𝑚𝐷 − 𝑚𝑃)𝑚𝑐 𝑓0 𝑓𝑇 𝑢+8Re [(𝐶9 + 𝐶7 2𝑚𝑐𝑚𝐷 + 𝑚𝑃 𝑓𝑇𝑓+ ) 𝐶∗𝑇] 𝑚ℓ𝑚𝐷 + 𝑚𝑃 𝜆𝐷𝑃𝑓+𝑓𝑇+4Re [𝐶10𝐶∗𝑃] 𝑚ℓ𝑚𝑐 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20 + 16 |𝐶𝑇|2 𝑚2ℓ(𝑚𝐷 + 𝑚𝑃)2 𝜆𝐷𝑃𝑓2𝑇 ,

(E.1)

where 𝑢 = − cos 𝜃ℓ√𝜆𝐷𝑃 𝛽ℓ , (E.2)

and, again, 𝜆𝐷𝑃 = 𝑚4𝐷 + 𝑚4𝑃 + 𝑞4 − 2𝑚2𝐷 𝑚2𝑃 − 2𝑚2𝐷 𝑞2 − 2𝑚2𝑃𝑞2 and 𝛽ℓ = √1 − 4𝑚2ℓ𝑞2 . For 𝐷 → 𝑃ℓ+ℓ−
all Wilson coefficients 𝐶𝑖, with the exception of the tensor ones, are understood as𝐶𝑖 → 𝐶𝑖 + 𝐶′𝑖 . (E.3)
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E Distributions and Observables

The 𝑞2 differential distribution is obtained by integrating 𝑢, where 𝜃ℓ is constrained by −1 < cos 𝜃ℓ < 1.
We find, again in agreement with Refs. [90, 166, 177]

d𝛤
d𝑞2 = 𝐺2𝐹𝛼2𝑒1024𝜋5𝑚3𝐷 √𝜆𝐷𝑃 𝛽ℓ {23∣𝐶9 + 𝐶7 2𝑚𝑐𝑚𝐷 + 𝑚𝑃 𝑓𝑇𝑓+ ∣2 (1 + 2𝑚2ℓ𝑞2 ) 𝜆𝐷𝑃𝑓2++ |𝐶10|2 [23𝛽2ℓ 𝜆𝐷𝑃𝑓2+ + 4𝑚2ℓ𝑞2 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20 ]+ [|𝐶𝑆|2𝛽2ℓ + |𝐶𝑃|2] 𝑞2𝑚2𝑐 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20+ 43 [|𝐶𝑇|2 + |𝐶𝑇 5|2] 𝛽2ℓ 𝑞2(𝑚𝐷 + 𝑚𝑃)2 𝜆𝐷𝑃𝑓2𝑇+ 8Re [(𝐶9 + 𝐶7 2𝑚𝑐𝑚𝐷 + 𝑚𝑃 𝑓𝑇𝑓+ ) 𝐶∗𝑇] 𝑚ℓ𝑚𝐷 + 𝑚𝑃 𝜆𝐷𝑃𝑓+𝑓𝑇+ 4Re [𝐶10𝐶∗𝑃] 𝑚ℓ𝑚𝑐 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20 + 16 |𝐶𝑇|2 𝑚2ℓ(𝑚𝐷 + 𝑚𝑃)2 𝜆𝐷𝑃𝑓2𝑇} .

(E.4)

In the LFV case we neglect the electron mass and find for 𝐷 → 𝑃𝑒±𝜇∓
d𝛤(𝐷 → 𝑃𝑒±𝜇∓)

d𝑞2 = 𝐺2𝐹𝛼2𝑒1024𝜋5𝑚3𝐷 √𝜆𝐷𝑃{23 (|𝐾9|2 + |𝐾10|2) 𝜆(𝑚2𝐷, 𝑚2𝑃, 𝑞2)𝑓2++ (|𝐾𝑆|2 + |𝐾𝑃|2) 𝑞2𝑚2𝑐 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20+ 43 (|𝐾𝑇|2 + |𝐾𝑇 5|2) 𝑞2(𝑚𝐷 + 𝑚𝑃)2 𝜆𝐷𝑃𝑓2𝑇+ 2Re [±𝐾9𝐾∗𝑆 + 𝐾10𝐾∗𝑃] 𝑚𝜇𝑚𝑐 (𝑚2𝐷 − 𝑚2𝑃)2𝑓20+ 4Re [𝐾9𝐾∗𝑇 ± 𝐾10𝐾∗𝑇 5] 𝑚𝜇𝑚𝐷 + 𝑚𝑃 𝜆𝐷𝑃𝑓+𝑓𝑇} + 𝒪 (𝑚2𝜇) ,
(E.5)

where 𝐾𝑖 = 𝐾(𝜇𝑒)𝑖 + 𝐾′ (𝜇𝑒)𝑖 for 𝐷 → 𝑃𝑒+𝜇− and 𝐾𝑖 = 𝐾(𝑒𝜇)𝑖 + 𝐾′ (𝑒𝜇)𝑖 for 𝐷 → 𝑃𝑒−𝜇+ .

E.2 𝐵0 → 𝐵1ℓ+ℓ−
For the three-body baryon decays we find the following double differential decay width

d2𝛤
d𝑞2d cos 𝜃ℓ = 32 ⋅ (𝐾1𝑠𝑠 sin2 𝜃ℓ + 𝐾1𝑐𝑐 cos2 𝜃ℓ + 𝐾1𝑐 cos 𝜃ℓ) , (E.6)
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E.2 𝐵0 → 𝐵1ℓ+ℓ−
with the following 𝑞2-dependent angular coefficients𝐾1𝑠𝑠 = 𝑞2𝛽2ℓ (12𝑈11+22 + 𝐿11+22) + 4𝑚2ℓ (𝑈11 + 𝐿11 + 𝑆22) ,𝐾1𝑐𝑐 = 𝑞2𝛽2ℓ 𝑈11+22 + 4𝑚2ℓ (𝑈11 + 𝐿11 + 𝑆22) ,𝐾1𝑐 = −2𝑞2𝛽ℓ𝑃 12 , (E.7)

where we follow the notation of Ref. [296] and discuss the coefficients 𝑈, 𝐿, 𝑆 in detail in App. F. They
are quadratic expressions of helicity amplitudes. Here, we only give the result, which is in agreement
with [296, 311] and [249]. We keep finite lepton masses and consider the operators 𝑂7, 𝑂9, 𝑂10 as
well as their primed counterparts from Eq. (2.24)

𝑈11 = 4𝑁2 ⋅ [ ∣(𝐶7 + 𝐶′7) 2𝑚𝑐𝑞2 (𝑚𝐵0 + 𝑚𝐵1) ℎ⟂ + (𝐶9 + 𝐶′9) 𝑓⟂∣2 ⋅ 𝑠−+∣(𝐶7 − 𝐶′7) 2𝑚𝑐𝑞2 (𝑚𝐵0 − 𝑚𝐵1) ℎ̃⟂ + (𝐶9 − 𝐶′9) 𝑔⟂∣2 ⋅ 𝑠+ ] ,𝐿11 = 2𝑁2𝑞2 ⋅ [ ∣(𝐶7 + 𝐶′7) 2𝑚𝑐 ℎ+ + (𝐶9 + 𝐶′9) (𝑚𝐵0 + 𝑚𝐵1) 𝑓+∣2 ⋅ 𝑠−+∣(𝐶7 − 𝐶′7) 2𝑚𝑐 ℎ̃+ + (𝐶9 − 𝐶′9) (𝑚𝐵0 − 𝑚𝐵1) 𝑔+∣2 ⋅ 𝑠+ ] ,𝑈22 = 4𝑁2 ⋅ [ ∣(𝐶10 + 𝐶′10) 𝑓⟂∣2 ⋅ 𝑠− + ∣(𝐶10 − 𝐶′10) 𝑔⟂∣2 ⋅ 𝑠+ ] ,𝐿22 = 2𝑁2𝑞2 ⋅ [ ∣(𝐶10 + 𝐶′10) (𝑚𝐵0 + 𝑚𝐵1) 𝑓+∣2 ⋅ 𝑠− + ∣(𝐶10 − 𝐶′10) (𝑚𝐵0 − 𝑚𝐵1) 𝑔+∣2 ⋅ 𝑠+ ] ,𝑆22 = 2𝑁2𝑞2 ⋅ [ ∣(𝐶10 + 𝐶′10) (𝑚𝐵0 − 𝑚𝐵1) 𝑓0∣2 ⋅ 𝑠+ + ∣(𝐶10 − 𝐶′10) (𝑚𝐵0 + 𝑚𝐵1) 𝑔0∣2 ⋅ 𝑠− ] ,𝑃 12 = −8𝑁2 ⋅ [Re((𝐶7 − 𝐶′7) (𝐶∗10 + 𝐶′∗10)) 𝑚𝑐𝑞2 (𝑚𝐵0 − 𝑚𝐵1) 𝑓⟂ ℎ̃⟂+Re((𝐶7 + 𝐶′7) (𝐶∗10 − 𝐶′∗10)) 𝑚𝑐𝑞2 (𝑚𝐵0 + 𝑚𝐵1) 𝑔⟂ ℎ⟂+Re(𝐶9𝐶∗10 − 𝐶′9𝐶′∗10) 𝑔⟂ 𝑓⟂] ⋅ √𝑠+𝑠− .

(E.8)

Note that in Eq. (E.7) the notation 𝑈11+22 = 𝑈11 + 𝑈22 and likewise for 𝐿11+22 is used. The factor
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E Distributions and Observables𝑁2 is a global normalization and reads

𝑁2 = 𝐺2𝐹𝛼2𝑒𝛽ℓ√𝜆(𝑚2𝛬𝑐 , 𝑚2𝑝, 𝑞2)3 ⋅ 211𝜋5𝑚3𝛬𝑐 . (E.9)

As apparent from Eq. (E.8), the index 1 refers to dipole and vector operators, whereas the index 2
indicates the axial vector contributions.
For LFV decays the angular observables are given by𝐾1𝑠𝑠 = 2(𝑚ℓ − 𝑚ℓ′)2𝑣2+𝑆11 + 2(𝑚ℓ + 𝑚ℓ′)2𝑣2−𝑆22+ 2𝑞2𝑣2−𝐿11 + 2𝑞2𝑣2+𝐿22+ (𝑞2𝑣2− + (𝑚ℓ + 𝑚ℓ′)2𝑣2−) 𝑈11 + (𝑞2𝑣2+ + (𝑚ℓ − 𝑚ℓ′)2𝑣2+) 𝑈22 ,𝐾1𝑐𝑐 = 2(𝑚ℓ − 𝑚ℓ′)2𝑣2+𝑆11 + 2(𝑚ℓ + 𝑚ℓ′)2𝑣2−𝑆22+ 2(𝑚ℓ + 𝑚ℓ′)2𝑣2−𝐿11 + 2(𝑚ℓ − 𝑚ℓ)2𝑣2+𝐿22+ 2𝑞2𝑣2−𝑈11 + 2𝑞2𝑣2+𝑈22 ,𝐾1𝑐 = − 4𝑞2𝑣+𝑣−𝑃 12 ,

(E.10)

where the same hadronic helicity amplitudes as for the lepton flavor conserving decays can be used
with the appropriate replacement of Wilson coefficients 𝐶(′)9, 10 with LFV Wilson coefficients 𝐾(′)9, 10.
Contributions with 𝐶(′)7 need to be skipped, since the photon only couples to opposite sign same flavor
lepton pairs. Also, we use 𝑣± = √1 − (𝑚ℓ±𝑚ℓ′)2𝑞2 .

E.3 𝐵0 → 𝐵1(→ 𝐵2𝜋)ℓ+ℓ−
For the (quasi-)four-body baryon decays we have to extend the angular distribution and find

d4𝛤
d𝑞2d cos 𝜃ℓd cos 𝜃𝜋d𝜙 = 38𝜋 ⋅ [ (𝐾1𝑠𝑠 sin2 𝜃ℓ + 𝐾1𝑐𝑐 cos2 𝜃ℓ + 𝐾1𝑐 cos 𝜃ℓ)+ (𝐾2𝑠𝑠 sin2 𝜃ℓ + 𝐾2𝑐𝑐 cos2 𝜃ℓ + 𝐾2𝑐 cos 𝜃ℓ) cos 𝜃𝜋+ (𝐾3𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾3𝑠 sin 𝜃ℓ) sin 𝜃𝜋 sin𝜙+ (𝐾4𝑠𝑐 sin 𝜃ℓ cos 𝜃ℓ + 𝐾4𝑠 sin 𝜃ℓ) sin 𝜃𝜋 cos𝜙] , (E.11)

with the 𝑞2-dependent coefficients 𝐾𝑖 again in the notation of [296]. Note, although we adapt
the notation of helicity expressions 𝐼𝑚𝑚′𝑖𝑃 , 𝑖 = 1, 2, 3, 4 from [296], we use them to formulate angular
observables in a notation similar to [311]. Note that we dropped the subscript 𝑃 from 𝐼𝑚𝑚′2 , 𝐼𝑚𝑚′3 since
these two interference terms are parity-even. The first three terms 𝐾1𝑠𝑠, 𝐾1𝑐𝑐 and 𝐾1𝑐 are equivalent
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E.3 𝐵0 → 𝐵1(→ 𝐵2𝜋)ℓ+ℓ−
to the three-body case, see Eq. (E.7), except for the additional factor ℬ(𝐵1 → 𝐵2𝜋),𝐾1𝑠𝑠ℬ(𝐵1 → 𝐵2𝜋) = 𝑞2𝛽2ℓ (12𝑈11+22 + 𝐿11+22) + 4𝑚2ℓ (𝑈11 + 𝐿11 + 𝑆22) ,𝐾1𝑐𝑐ℬ(𝐵1 → 𝐵2𝜋) = 𝑞2𝛽2ℓ 𝑈11+22 + 4𝑚2ℓ (𝑈11 + 𝐿11 + 𝑆22) ,𝐾1𝑐ℬ(𝐵1 → 𝐵2𝜋) = −2𝑞2𝛽ℓ𝑃 12 . (E.12)

The remaining additional angular coefficients read𝐾2𝑠𝑠ℬ(𝐵1 → 𝐵2𝜋) ⋅ 𝛼 = 𝑞2𝛽2ℓ (12𝑃 11+22 + 𝐿11+22𝑃 ) + 4𝑚2ℓ (𝑃 11 + 𝐿11𝑃 + 𝑆22𝑃 ) ,𝐾2𝑐𝑐ℬ(𝐵1 → 𝐵2𝜋) ⋅ 𝛼 = 𝑞2𝛽2ℓ 𝑃 11+22 + 4𝑚2ℓ (𝑃 11 + 𝐿11𝑃 + 𝑆22𝑃 ) ,𝐾2𝑐ℬ(ℬ(𝐵1 → 𝐵2𝜋) ⋅ 𝛼 = −2𝑞2𝛽ℓ𝑈12 ,𝐾3𝑠𝑐ℬ(ℬ(𝐵1 → 𝐵2𝜋) ⋅ 𝛼 = −2√2𝑞2𝛽2ℓ 𝐼11+222 ,𝐾3𝑠ℬ(𝐵1 → 𝐵2𝜋) ⋅ 𝛼 = 4√2𝑞2𝛽ℓ𝐼124𝑃 ,𝐾4𝑠𝑐ℬ(𝐵1 → 𝐵2𝜋) ⋅ 𝛼 = 2√2𝑞2𝛽2ℓ 𝐼11+221𝑃 ,𝐾4𝑠ℬ(𝐵1 → 𝐵2𝜋) ⋅ 𝛼 = −4√2𝑞2𝛽ℓ𝐼123 .
(E.13)

The 𝑞2-dependent terms 𝑈, 𝐿, 𝑆, 𝑃 , 𝐿𝑃, 𝑆𝑃 denote quadratic expressions of helicity amplitudes and
correspond to unpolarized transverse, longitudinal, scalar, transverse parity-odd, longitudinal parity-
odd and scalar parity-odd contributions, respectively. The coefficients 𝐼1𝑃, 𝐼4𝑃 and 𝐼2, 𝐼3 correspond
to longitudinal-transverse interference terms, where the subscript 𝑃 refers to the parity-odd ones. We
refer to App. F for further details. As already mentioned, there is an additional branching ratio factor
in the coefficients 𝐾1𝑠𝑠, 𝐾1𝑐𝑐 and 𝐾1𝑐 compared to Eq. (E.7). For all other coefficients there is the
polarization parameter 𝛼 on top, such that in the limit ℬ(𝐵1 → 𝐵2𝜋) = 1 and 𝛼 = 0 one returns to the
distribution of the three-body case. Also, the coefficients in Eq. (E.8) are still valid in the four-body
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case and the additional coefficients are given as𝐿11𝑃 = −4𝑁2𝑞2 ⋅Re[((𝐶7 + 𝐶′7) 2𝑚𝑐ℎ+ + (𝐶9 + 𝐶′9) (𝑚𝐵0 + 𝑚𝐵1)𝑓+)⋅ ((𝐶∗7 − 𝐶∗′7 ) 2𝑚𝑐ℎ̃+ + (𝐶∗9 − 𝐶∗′9 ) (𝑚𝐵0 − 𝑚𝐵1)𝑔+)] ⋅ √𝑠+𝑠− ,𝑃 11 = −8𝑁2⋅Re[((𝐶7 + 𝐶′7) 2𝑚𝑐𝑞2 ℎ⟂(𝑚𝐵0 + 𝑚𝐵1) + (𝐶9 + 𝐶′9) 𝑓⟂)⋅ ((𝐶∗7 − 𝐶∗′7 ) 2𝑚𝑐𝑞2 ℎ̃⟂(𝑚𝐵0 − 𝑚𝐵1) + (𝐶∗9 − 𝐶∗′9 ) 𝑔⟂)] ⋅ √𝑠+𝑠− ,𝐿22𝑃 = −4𝑁2𝑞2 ⋅[(|𝐶10|2 − |𝐶′10|2) 𝑓+𝑔+(𝑚2𝐵0 − 𝑚2𝐵1)] ⋅ √𝑠+𝑠−,𝑃 22 = −8𝑁2⋅[(|𝐶10|2 − |𝐶′10|2) 𝑓⟂𝑔⟂] ⋅ √𝑠+𝑠− ,𝑈12 = 4𝑁2⋅[(Re((𝐶7 + 𝐶′7)(𝐶∗10 + 𝐶∗′10)) 𝑓⟂ℎ⟂ 2𝑚𝑐𝑞2 (𝑚𝐵0 + 𝑚𝐵1)+ Re((𝐶9 + 𝐶′9)(𝐶∗10 + 𝐶∗′10)) 𝑓2⟂) ⋅ 𝑠−+ (Re((𝐶7 − 𝐶′7)(𝐶∗10 − 𝐶∗′10)) 𝑔⟂ℎ̃⟂ 2𝑚𝑐𝑞2 (𝑚𝐵0 − 𝑚𝐵1)+ Re((𝐶9 − 𝐶′9)(𝐶∗10 − 𝐶∗′10)) 𝑔2⟂) ⋅ 𝑠+] ,𝑆22𝑃 = −4𝑁2𝑞2 ⋅[ (|𝐶10|2 − |𝐶′10|2) 𝑓0𝑔0(𝑚2𝐵0 − 𝑚2𝐵1)] ⋅ √𝑠+𝑠− .

(E.14)
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E.3 𝐵0 → 𝐵1(→ 𝐵2𝜋)ℓ+ℓ−
Finally, the interference terms are given by𝐼111𝑃 = 𝑁2√ 2𝑞2 ⋅[Re((𝐶7 − 𝐶′7)(𝐶∗7 + 𝐶∗′7 )) 4𝑚2𝑐𝑞2 ⋅ (ℎ̃+ℎ⟂(𝑚𝐵0 + 𝑚𝐵1) − ℎ+ℎ̃⟂(𝑚𝐵0 − 𝑚𝐵1))+ Re((𝐶9 − 𝐶′9)(𝐶∗9 + 𝐶∗′9 )) ⋅ (𝑔+𝑓⟂(𝑚𝐵0 − 𝑚𝐵1) − 𝑓+𝑔⟂(𝑚𝐵0 + 𝑚𝐵1))+ Re((𝐶9 − 𝐶′9)(𝐶∗7 + 𝐶∗′7 )) 2𝑚𝑐 ⋅ (𝑔+ℎ⟂ 𝑚2𝐵0 − 𝑚2𝐵1𝑞2 − ℎ+𝑔⟂)

+ Re((𝐶7 − 𝐶′7)(𝐶∗9 + 𝐶∗′9 )) 2𝑚𝑐 ⋅ (ℎ̃+𝑓⟂ − 𝑓+ℎ̃⟂ 𝑚2𝐵0 − 𝑚2𝐵1𝑞2 ) ] ⋅ √𝑠+𝑠− ,
𝐼221𝑃 = 𝑁2 √ 2𝑞2 ⋅[(|𝐶10|2 − |𝐶′10|2) ⋅ (𝑓⟂𝑔+(𝑚𝐵0 − 𝑚𝐵1) − 𝑓+𝑔⟂(𝑚𝐵0 + 𝑚𝐵1)) ] ⋅ √𝑠+𝑠−,

𝐼112 = 2𝑚𝑐 𝑁2 √ 2𝑞2 ⋅[Im((𝐶9 + 𝐶′9)(𝐶∗7 + 𝐶∗′7 )) ⋅ (𝑓⟂ℎ+ − 𝑓+ℎ⟂ (𝑚𝐵0 + 𝑚𝐵1)2𝑞2 ) ⋅ 𝑠−− Im((𝐶9 − 𝐶′9)(𝐶∗7 − 𝐶∗′7 )) ⋅ (𝑔⟂ℎ̃+ − 𝑔+ℎ̃⟂ (𝑚𝐵0 − 𝑚𝐵1)2𝑞2 ) ⋅ 𝑠+] ,𝐼222 = 0 ,𝐼123 = 𝑁2√ 2𝑞2 ⋅[Re((𝐶7 + 𝐶′7)(𝐶∗10 + 𝐶∗′10)) 𝑚𝑐 ⋅ (ℎ+𝑓⟂ + 𝑓+ℎ⟂ (𝑚𝐵0 + 𝑚𝐵1)2𝑞2 ) ⋅ 𝑠−− Re((𝐶7 − 𝐶′7)(𝐶∗10 − 𝐶∗′10)) 𝑚𝑐 ⋅ (ℎ̃+𝑔⟂ + 𝑔+ℎ̃⟂ (𝑚𝐵0 − 𝑚𝐵1)2𝑞2 ) ⋅ 𝑠++ Re((𝐶9 + 𝐶′9)(𝐶∗10 + 𝐶∗′10)) ⋅ (𝑓+𝑓⟂(𝑚𝐵0 + 𝑚𝐵1)) ⋅ 𝑠−− Re((𝐶9 − 𝐶′9)(𝐶∗10 − 𝐶∗′10)) ⋅ (𝑔+𝑔⟂(𝑚𝐵0 − 𝑚𝐵1)) ⋅ 𝑠+] ,
𝐼124𝑃 = 𝑁2√ 2𝑞2 ⋅[Im((𝐶7 + 𝐶′7)(𝐶∗10 − 𝐶∗′10)) 𝑚𝑐 ⋅ (ℎ⟂𝑔+ 𝑚2𝐵0 − 𝑚2𝐵1𝑞2 + ℎ+𝑔⟂)

+ Im((𝐶7 − 𝐶′7)(𝐶∗10 + 𝐶∗′10)) 𝑚𝑐 ⋅ (ℎ̃⟂𝑓+ 𝑚2𝐵0 − 𝑚2𝐵1𝑞2 + ℎ̃+𝑓⟂)+ Im((𝐶9 + 𝐶′9)(𝐶∗10 − 𝐶∗′10))12 ⋅ (𝑓⟂𝑔+(𝑚𝐵0 − 𝑚𝐵1) + 𝑓+𝑔⟂(𝑚𝐵0 + 𝑚𝐵1))+ Im((𝐶9 − 𝐶′9)(𝐶∗10 + 𝐶∗′10))12 ⋅ (𝑔⟂𝑓+(𝑚𝐵0 + 𝑚𝐵1) + 𝑔+𝑓⟂(𝑚𝐵0 − 𝑚𝐵1)) ]⋅ √𝑠+𝑠− .
(E.15)
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E Distributions and Observables

All additional contributions in Eqs. (E.14)-(E.15) except 𝑈12, 𝐼112 and 𝐼123 are P-odd, that is, change
sign for 𝐶𝑖 ↔ 𝐶′𝑖 , and vanish for 𝐶𝑖 = 𝐶′𝑖 .
E.4 𝑎± factors for dineutrino distributions

In this appendix, we collect explicit expressions for 𝑎ℎ𝑞𝐹𝑞′± as defined in Sec. 6.1 in Eq. (6.8). We start
with 𝑐 → 𝑢𝜈 ̄𝜈 induced modes, followed by 𝑏 → 𝑠𝜈 ̄𝜈 and 𝑏 → 𝑞𝜈 ̄𝜈 transitions. For numerical values for
lifetimes, masses and form factors we refer to Apps. A and C.𝑎± factors in 𝑐 → 𝑢𝜈 ̄𝜈 induced modes

• For the 𝐷 → 𝑃 𝜈 ̄𝜈 mode, where 𝐷 = 𝐷0, 𝐷+, 𝐷+𝑠 and 𝑃 = 𝜋0, 𝜋+, 𝐾+, respectively, the𝑎𝐷𝑃± –functions of the differential decay width can be written as𝑎𝐷𝑃+ (𝑞2) = 𝐺2
F 𝛼2𝑒 𝜏𝐷𝜆(𝑚2𝐷, 𝑚2𝑃, 𝑞2) 32 (𝑓𝐷𝑃+ (𝑞2))23072 𝜋5 𝑚3𝐷 , and 𝑎𝐷𝑃− (𝑞2) = 0 . (E.16)

• The angular distributions of 𝐷 → 𝑃1 𝑃2 𝜈 ̄𝜈 decays is obtained from Ref. [88]. We obtain for the𝑎𝐷𝑃1𝑃2± –functions, 𝑎𝐷𝑃1𝑃2± (𝑞2) = ∫(𝑚𝐷−√𝑞2)2
(𝑚𝑃1+𝑚𝑃2)2 d𝑝2∫1−1d cos 𝜃𝑃1𝑏±(𝑞2, 𝑝2, 𝜃𝑃1) , (E.17)

with𝑏−(𝑞2, 𝑝2, 𝜃𝑃1) = 𝜏𝐷6 [|ℱ0|2 + sin2 𝜃𝑃1 |ℱ∥|2] , 𝑏+(𝑞2, 𝑝2, 𝜃𝑃1) = 𝜏𝐷6 sin2 𝜃𝑃1 |ℱ⟂|2 , (E.18)

where 𝑝2 denotes the invariant mass-squared of the (𝑃1𝑃2)-subsystem. 𝜃𝑃1 is the angle between
the 𝑃1-momentum and the negative direction of flight of the 𝐷–meson in the (𝑃1𝑃2)-cms.

• For 𝛬+𝑐 → 𝑝 𝜈 ̄𝜈, 𝛯+𝑐 → 𝛴+ 𝜈 ̄𝜈 and further baryon modes we find with 𝑁 from Eq. (E.9)𝑎ℎ+𝑐 𝐹+ (𝑞2) = 𝜏ℎ𝑐 𝑁 ⋅ (2𝑓2⟂𝑠− + 𝑓2+(𝑚ℎ+𝑐 + 𝑚𝐹)2 𝑠−𝑞2 ) ,𝑎ℎ+𝑐 𝐹− (𝑞2) = 𝜏ℎ𝑐 𝑁 ⋅ (2𝑔2⟂𝑠+ + 𝑔2+(𝑚ℎ+𝑐 − 𝑚𝐹)2 𝑠+𝑞2 ) . (E.19)

• For 𝐷 → 𝑋 𝜈 ̄𝜈 decays, the inclusive hadronic final state either has flavor quantum number
of an up-quark, 𝑋 = 𝜋, 𝜋𝜋, … , for 𝐷0,+ decays or of an anti-strange quark for 𝐷+𝑠 decays,𝑋 = 𝐾, 𝐾𝜋, … . Then the corresponding dineutrino mass distribution can be written in terms of
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E.4 𝑎± factors for dineutrino distributions𝑎𝐷𝑋± as [312] 𝑎𝐷𝑋± (𝑞2) = 𝐺2
F 𝛼2𝑒 𝜏𝐷 𝑚3𝑐210 3 𝜋5 𝜅(0) 𝑓incl.(𝑞2) , (E.20)

where𝑓incl.(𝑞2) = (1 − 𝑞2𝑚2𝑐 )2 [1 + 2 𝑞2𝑚2𝑐 ] , and 𝜅(0) = 1 + 𝛼𝑠(𝑚𝑐)𝜋 [256 − 23 𝜋2] ≈ 0.71 . (E.21)

The latter is the QCD correction to the 𝑐 → 𝑢 𝜈 ̄𝜈 matrix element inferred from Ref. [313].𝑎± factors in 𝑏 → 𝑞𝜈 ̄𝜈 induced modes

• In the case of the 𝐵 → 𝑃 𝜈𝑖 ̄𝜈𝑗 mode, where 𝐵 = 𝐵0, 𝐵+ and 𝑃 = 𝜋0, 𝜋+, 𝐾0, 𝐾+, respectively,
the 𝑎𝐵𝑃+ –function of the differential branching ratio is identical to Eq. (E.16) when replacing
masses, lifetimes and form factors, in agreement with Refs. [274, 314, 315].

• We obtain for 𝐵 → 𝑉 𝜈𝑖 ̄𝜈𝑗 [312, 314, 315]𝑎𝐵𝑉+ (𝑞2) = 𝐺2𝐹 𝛼2𝑒 𝜏𝐵 (𝜆𝐵𝑉(𝑞2))3/23072 𝜋5 𝑚5𝐵 𝑐2𝑉 2 𝑞2 (𝑉 (𝑞2))2(1 + 𝑚𝑉𝑚𝐵 )2 ,
𝑎𝐵𝑉− (𝑞2) = 𝐺2𝐹 𝛼2𝑒 𝜏𝐵 (𝜆𝐵𝑉(𝑞2))1/21536 𝜋5 𝑚𝐵 𝑐2𝑉 ⋅ [32 𝑚2𝑉 (𝐴12(𝑞2))2 + (1 + 𝑚𝑉𝑚𝐵 )2 𝑞2(𝐴1(𝑞2))2] , (E.22)

where 𝜆𝐵𝑉(𝑞2) = 𝜆(𝑚2𝐵, 𝑚2𝑉, 𝑞2) and the parameter 𝑐𝑃 accounts for the flavor content of the
vector particles, in particular 𝑐𝜌0 = √2 and 𝑐𝜌+,𝐾∗ 0,𝐾∗ +,𝜙 = 1.

• The functions 𝑎𝐵𝑋𝑞± associated with 𝐵 → 𝑋𝑞 𝜈𝑖 ̄𝜈𝑗 with 𝑞 = 𝑑, 𝑠 transitions are given by [312]𝑎𝐵𝑋𝑞± (𝑞2) = 𝐺2𝐹 𝛼2𝑒 𝜏𝐵 𝜅(0)3072 𝜋5 𝑚3𝑏 √𝜆(𝑚2𝑏 , 𝑚2𝑞 , 𝑞2) ⋅ [𝜆(𝑚2𝑏 , 𝑚2𝑞 , 𝑞2) + 3 𝑞2 (𝑚2𝑏 + 𝑚2𝑞 − 𝑞2)] , (E.23)

where 𝜅(0) = 1 + 𝛼𝑠(𝑚𝑏)𝜋 [256 − 23 𝜋2] ≈ 0.83 includes QCD corrections to the 𝑏 → 𝑞 𝜈 ̄𝜈 matrix
element due to virtual and bremsstrahlung contributions [313].
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F Helicity formalism and helicity amplitudes for baryon
decays

In this appendix, we give an introduction to the helicity formalism, and calculate helicity amplitudes
for three- and four-body baryon decays as well as amplitudes for the hadronic baryon decay 𝐵1 → 𝐵2𝜋,
leading to contributions to angular coefficients as displayed in the App. E.2 and E.3.

F.1 Introduction to the helicity formalism

This brief introduction to the helicity formalism is based on Refs. [190–193]. We consider the two-body
decay of a particle 𝛼 in its rest frame with spin 𝐽 and spin projection 𝑀 along an arbitrarily chosen
z-axis. In the rest frame of particle 𝛼 the momenta of the decay products are of equal size and opposite
in direction, ⃗𝑝1 = ⃗𝑝𝑓 and ⃗𝑝1 = − ⃗𝑝𝑓. The helicities of the final state particles are labeled as 𝜆1, 𝜆2, such
that the final state is characterized by the helicities and the direction of the decay axis with respect to
the 𝑧-axis. Given the time-evolution operator propagating the initial state through the interaction 𝑈,
the transition amplitude is given by 𝐴 = ⟨𝜃, 𝜙, 𝜆1, 𝜆2|𝑈|𝐽 𝑀⟩ , (F.1)

and |𝐴|2 defines the angular distribution for the helicity configuration 𝜆1, 𝜆2. If these helicities are not
measured, one has to sum over all possible configurations. The main idea of the helicity formalism
is to utilize rotation invariance of the helicities and define a complete set of two-particle basis states|𝑗, 𝑚, 𝜆1, 𝜆2⟩ with total angular momentum 𝑗 and angular momentum projection 𝑚. We can insert a
complete set in Eq. (F.1) and find𝐴 = ∑𝑗, 𝑚⟨𝜃, 𝜙, 𝜆1, 𝜆2|𝑗, 𝑚, 𝜆1, 𝜆2⟩⟨𝑗, 𝑚, 𝜆1, 𝜆2|𝑈|𝐽 𝑀⟩= ∑𝑗, 𝑚⟨𝜃, 𝜙, 𝜆1, 𝜆2|𝑗, 𝑚, 𝜆1, 𝜆2⟩𝛿𝑚𝑀𝛿𝑗𝐽𝐴𝐽𝑀, 𝜆1, 𝜆2= ⟨𝜃, 𝜙, 𝜆1, 𝜆2|𝐽 , 𝑀, 𝜆1, 𝜆2⟩𝐴𝐽𝑀, 𝜆1, 𝜆2 . (F.2)

It can be shown that this transition amplitude factorizes into [190, 191]𝐴 = √2𝐽 + 14𝜋 𝐷∗𝐽𝑀, 𝜆1−𝜆2(𝜙, 𝜃, −𝜙) ⋅ 𝐴𝐽𝑀, 𝜆1, 𝜆2 , (F.3)

where 𝐴𝐽𝑀, 𝜆1, 𝜆2 is a helicity amplitude and 𝐷𝐽𝑀, 𝜆1−𝜆2(𝜙, 𝜃, −𝜙) is a Wigner 𝐷–function, which is a(2𝐽 + 1)-dimensional 𝑆𝑂(3) representation in the helicity basis and𝐷𝑗𝑚′, 𝑚(𝛼, 𝛽, 𝛾) = exp(−i𝛼𝑚′) 𝑑𝑗𝑚, 𝑚′(𝛽) exp(−i𝛾𝑚) , (F.4)
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F.1 Introduction to the helicity formalism

with the Wigner 𝑑–functions [316]𝑑𝑗𝑚, 𝑚′(𝛽) = 𝑘max∑𝑘=𝑘min

(−1)𝑘−𝑚+𝑚′ √(𝑗 + 𝑚)!(𝑗 − 𝑚)!(𝑗 + 𝑚′)!(𝑗 − 𝑚′)!(𝑗 + 𝑚 − 𝑘)!(𝑗 − 𝑘 − 𝑚′)!(𝑘 − 𝑚 + 𝑚′)!𝑘!× (cos 𝛽2 )2𝑗−2𝑘+𝑚−𝑚′ (sin 𝛽2 )2𝑘−𝑚+𝑚′ , (F.5)

with 𝑘 an integer such that 𝑘min = min {0, 𝑚 − 𝑚′} ≥ −2𝑗 and 𝑘max = max {0, 𝑗 + 𝑚, 𝑗 − 𝑚′} ≤ 2𝑗,
which enforces positive factorials in the denominator. The Wigner 𝑑–functions obey𝑑𝑗𝑚′, 𝑚 = (−1)𝑚−𝑚′𝑑𝑗𝑚, 𝑚′ = 𝑑𝑗−𝑚, −𝑚′ . (F.6)

The main advantage of this procedure is that it is straightforward to apply it to sequential decays,
e.g. the amplitude for 𝛼 → 𝑎𝐵(→ 𝑏𝑐) can be written as𝐴(𝛼 → 𝑎𝐵(→ 𝑏𝑐)) ∝ ∑𝜆𝐵 𝐷∗𝑠𝐵𝜆𝐵, 𝜆𝑏−𝜆𝑐(𝜙𝑏, 𝜃𝑏, −𝜙𝑏) 𝐷∗𝐽𝜆𝐵=𝑀, 𝜆𝐵−𝜆𝑎(𝜙𝐵, 𝜃𝐵, −𝜙𝐵) 𝐴𝐽𝜆𝑎, 𝜆𝐵 𝐵𝑠𝐵𝜆𝑏, 𝜆𝑐 , (F.7)

where one can further simplify be choosing ⃗𝑒𝑧 ∥ ⃗𝑝𝐵, because then 𝜃𝐵 = 0 and 𝑑𝐽𝑚, 𝑚′(0) = 𝛿𝑚, 𝑚′
yielding 𝐴(𝛼 → 𝑎𝐵(→ 𝑏𝑐)) ∝ ∑𝜆𝐵 𝐷∗𝑠𝐵𝜆𝐵, 𝜆𝑏−𝜆𝑐(𝜙𝑏, 𝜃𝑏, −𝜙𝑏) 𝛿𝑀, 𝜆𝐵−𝜆𝑎 𝐴𝐽𝜆𝑎, 𝜆𝐵 𝐵𝑠𝐵𝜆𝑏, 𝜆𝑐 . (F.8)

The intermediate helicity 𝜆𝐵 needs to be summed over and two helicity amplitudes describing 𝛼 → 𝑎𝐵
and 𝐵 → 𝑏𝑐, respectively, appear.
In the framework of semileptonic rare charm baryon decays, governed by an EFT description with

factorizing lepton and hadron part this intermediate particle can be seen as a virtual photon, where
one has to sum over all four helicity configurations. To see this consider the three-body 𝛬𝑐 → 𝑝ℓ+ℓ−
decay- we write ⟨𝑝ℓ+ℓ−|ℋeff|𝛬𝑐⟩ = ∑𝑎 ⟨𝐻𝑎⟩⟨𝐿𝑎⟩ + ∑𝑏 ⟨𝐻𝜇𝑏 ⟩⟨𝐿𝑏𝜇⟩ , (F.9)

where 𝑎, 𝑏 sum over contributions from different operators, for instance ⟨𝐻𝑃⟩ = ⟨𝑝|𝐶𝑃�̄�𝐿𝑐𝑅|𝛬𝐶⟩ and⟨𝐿𝑃⟩ = ⟨ℓ+ℓ−| ̄ℓ𝛾5ℓ|0⟩. For the operators involving one Lorentz index 𝜇 we rewrite the contraction
between hadron and lepton part as𝑔𝜇𝜈 = ∑𝜆, 𝜆′=𝑡, 0, ± 𝜖𝜇(𝜆)𝜖∗𝜈(𝜆′)𝐺𝜆𝜆′ , 𝐺𝜆𝜆′ = diag(1, −1, −1, −1) . (F.10)

By doing so we distinguish the two contributions with 𝜆 = 0 as follows: For 𝐽 = 0 we use 𝜆 = 𝑡
instead of 0 and for 𝐽 = 1 we use 𝜆 = 0. Also 𝜆 = ± refers to 𝜆 = ±1 in the 𝐽 = 1 case. We use the
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F Helicity formalism and helicity amplitudes for baryon decays

polarization vectors𝜖𝜇(𝑡) = (1, 0, 0, 0)T , 𝜖𝜇(0) = (0, 0, 0, 1)T , 𝜖𝜇(±) = 1√2 (0, ±1, −i, 0)T . (F.11)

Due to this procedure the lepton amplitude and the hadron amplitude individually are Lorentz invariant
and thus can be calculated in different frames. In the following section we explicitly construct the
hadron and lepton helicity amplitudes for the three- and four-body baryon decays. The angular
dependence is then given via𝐴(𝛬𝑐 → 𝑝ℓ+ℓ−) ∝ ∑𝜆𝛾, 𝐽𝛾 𝐷∗𝐽𝛾𝜆𝛾, 𝜆+−𝜆−(𝜙𝑙, 𝜃𝑙, −𝜙ℓ)𝛿𝜆𝛬𝑐,𝜆𝛾−𝜆𝑝𝐴𝐽𝛾𝜆𝛾 𝜆+,𝜆− ,𝐴(𝛯+𝑐 → 𝛴+(→ 𝑝𝜋0)ℓ+ℓ−) ∝ ∑𝜆𝛾, 𝐽𝛾,𝜆𝛴 𝐷∗𝐽𝛾𝜆𝛾, 𝜆+−𝜆−(𝜙𝑙, 𝜃𝑙, −𝜙ℓ)𝛿𝜆𝛯𝑐,𝜆𝛾−𝜆𝛴𝐴𝐽𝛾𝜆𝛾 𝜆+,𝜆−× 𝐷∗ 12𝜆𝛴, 𝜆𝑝(𝜙𝑝, 𝜃𝜋, −𝜙𝑝)ℎ 12𝜆𝛴,𝜆𝑝 , (F.12)

for the three- and four-body decays, respectively. Note that the angular distribution is obtained by
squaring Eq. (F.12) and one has to introduce two sets of intermediate angular momenta and helicities𝐽𝛾, 𝜆𝛾 plus 𝐽 ′𝛾, 𝜆′𝛾 in the three-body case and 𝐽𝛾, 𝜆𝛾, 𝜆𝛴 plus 𝐽 ′𝛾, 𝜆′𝛾, 𝜆′𝛴 in the four-body case. All
possible combinations need to be summed. In addition, one needs to average over initial state helicities
and sum over final state helicities. As a last step in the three-body case, one can integrate over the
angle 𝜙𝑙 and is left with the dilepton invariant mass squared 𝑞2 and one angle, 𝜃ℓ, whereas in the
four-body case one can get rid of only one of the two 𝜙 angles, thus resulting in the dependence on𝑞2, 𝜃ℓ, 𝜃𝜋, 𝜙.
F.2 Helicity amplitudes for three- and four-body baryon decays

The helicity amplitudes needed in Eq. (F.12) are 𝐴𝐽𝛾𝜆𝛾 𝜆+,𝜆− and ℎ 12𝜆𝛴,𝜆𝑝 . While the calculation of the

latter is performed in App. F.3, we outline the calculation of 𝐴𝐽𝛾𝜆𝛾 𝜆+,𝜆− here. It is decomposed as

𝐴𝐽𝛾𝜆𝛾 𝜆+,𝜆− = {∑𝑎⟨𝐻𝑎⟩⟨𝐿𝑎⟩ + ∑𝑏 ℋ𝑏𝜆𝑝, 𝑡ℒ𝑏𝑡, 𝜆+, 𝜆− for 𝐽𝛾 = 0 ,∑𝑏 ℋ𝑏𝜆𝑝, 𝜆𝛾ℒ𝑏𝜆𝛾, 𝜆+, 𝜆− for 𝐽𝛾 = 1 , (F.13)

where ℋ𝑏𝜆𝑝, 𝜆𝛾 = ⟨𝐻𝜇𝑏 ⟩𝜖∗𝜇(𝜆𝛾) , ℒ𝑏𝜆𝛾, 𝜆+ 𝜆− = ⟨𝐿𝜇𝑏 ⟩𝜖𝜇(𝜆𝛾) . (F.14)

For the remainder of this calculation we particularize to the 𝛬𝑐 → 𝑝ℓ+ℓ− case, with momenta 𝑝 for
the 𝛬𝑐, 𝑘 for the proton and 𝑞+, 𝑞− for the leptons and obvious notation for the respective helicities.
Note that due to the Kronecker delta the 𝛬𝑐 helicity is fixed by 𝜆𝑐 = 𝜆𝛾 − 𝜆𝑝. For the pseudoscalar
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F.2 Helicity amplitudes for three- and four-body baryon decays

contributions two hadronic matrix elements contribute, whereas only one lepton amplitude is taken
into account⟨𝐻𝑃1 ⟩ = 𝐶𝑃⟨𝑝(𝑘)|�̄�𝑐|𝛬𝑐(𝑝)⟩ , ⟨𝐻𝑃2 ⟩ = 𝐶𝑃⟨𝑝(𝑘)|�̄�𝛾5𝑐|𝛬𝑐(𝑝)⟩ , ⟨𝐿𝑃⟩ = �̄�ℓ(𝑞−)𝛾5𝑣ℓ(𝑞+) . (F.15)

For the contributions with open Lorentz index, more combinations are possible and we sort by hadronic
matrix elements four different hadron amplitudes, and further indicate with an upper index 1, 2 whether
the hadron amplitude is multiplied with a vector lepton current (upper index 1) or an axial vector
lepton current (upper index 2),⟨𝐻1𝜇1 ⟩ = − 2𝑚𝑐𝑞2 (𝐶7 + 𝐶′7) ⟨𝑝(𝑘)|�̄�i𝜎𝜇𝜈𝑞𝜈|𝛬𝑐(𝑝)⟩ ,⟨𝐻1𝜇2 ⟩ = − 2𝑚𝑐𝑞2 (𝐶7 − 𝐶′7) ⟨𝑝(𝑘)|�̄�i𝜎𝜇𝜈𝑞𝜈𝛾5|𝛬𝑐(𝑝)⟩ ,⟨𝐻1𝜇3 ⟩ =(𝐶9 + 𝐶′9) ⟨𝑝(𝑘)|�̄�𝛾𝜇|𝛬𝑐(𝑝)⟩ ,⟨𝐻1𝜇4 ⟩ =(𝐶9 − 𝐶′9) ⟨𝑝(𝑘)|�̄�𝛾𝜇𝛾5|𝛬𝑐(𝑝)⟩ ,⟨𝐻2𝜇3 ⟩ =(𝐶10 + 𝐶′10) ⟨𝑝(𝑘)|�̄�𝛾𝜇|𝛬𝑐(𝑝)⟩ ,⟨𝐻2𝜇4 ⟩ =(𝐶10 − 𝐶′10) ⟨𝑝(𝑘)|�̄�𝛾𝜇𝛾5|𝛬𝑐(𝑝)⟩ ,

(F.16)

and the two lepton amplitudes read⟨𝐿1𝜇⟩ = �̄�ℓ(𝑞−)𝛾𝜇𝑣ℓ(𝑞+) , ⟨𝐿2𝜇⟩ = �̄�ℓ(𝑞−)𝛾𝜇𝛾5𝑣ℓ(𝑞+) . (F.17)

Now, one hadron helicity amplitude ℋ𝑚𝜆𝑝, 𝜆𝛾 for 𝑚 = 1, 2 is given by the sum of the four (two)
contributions with upper index m=1 (m=2) in Eq. (F.16). As anticipated the calculation of the
individual hadron and lepton helicity amplitudes can be done in different frames. For the hadrons we
choose the rest frame of the 𝛬𝑐, where

𝑝𝜇 = ⎛⎜⎜⎜⎜⎝
𝑚𝛬𝑐000 ⎞⎟⎟⎟⎟⎠ , 𝑘𝜇 = ⎛⎜⎜⎜⎜⎝

𝐸𝑝00−|�⃗�|⎞⎟⎟⎟⎟⎠ , 𝑞𝜇 = ⎛⎜⎜⎜⎜⎝
𝑞000|�⃗�|⎞⎟⎟⎟⎟⎠ , (F.18)

with 𝑞𝜇 = 𝑞𝜇+ + 𝑞𝜇− and 𝐸𝑝 = 𝑚𝛬𝑐 − 𝑞0 , 𝑞0 = 𝑚2𝛬𝑐 − 𝑚2𝑝 + 𝑞22𝑚𝛬𝑐 . (F.19)
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In this reference frame, the hadron spinors read with 𝜒+ = (1, 0)𝑇 and 𝜒− = (0, 1)𝑇 [192]𝑢𝛬𝑐 (𝑝, 𝜆𝛬𝑐 = ±12) = √2𝑚𝛬𝑐 (𝜒±0 ) , �̄�𝑝 (𝑘, 𝜆𝑝 = ±12) = √𝐸𝑝 + 𝑚𝑝 (𝜒†∓, ∓|�⃗�|𝐸𝑝 + 𝑚𝑝 𝜒†∓) .
(F.20)

These amplitudes then enter the angular observables. Following Ref. [296] we introduce (𝑚(′) = 1, 2)𝑆𝑚𝑚′ = 𝑁2 ⋅ Re[ℋ𝑚12 ,𝑡ℋ†𝑚′12 ,𝑡 + ℋ𝑚− 12 ,𝑡ℋ†𝑚′− 12 ,𝑡] ,𝑆𝑚𝑚′𝑃 = 𝑁2 ⋅ Re[ℋ𝑚12 ,𝑡ℋ†𝑚′12 ,𝑡 − ℋ𝑚− 12 ,𝑡ℋ†𝑚′− 12 ,𝑡] ,𝑈𝑚𝑚′ = 𝑁2 ⋅ Re[ℋ𝑚12 ,1ℋ†𝑚′12 ,1 + ℋ𝑚− 12 ,−1ℋ†𝑚′− 12 ,−1] ,𝑃 𝑚𝑚′ = 𝑁2 ⋅ Re[ℋ𝑚12 ,1ℋ†𝑚′12 ,1 − ℋ𝑚− 12 ,−1ℋ†𝑚′− 12 ,−1] ,𝐿𝑚𝑚′ = 𝑁2 ⋅ Re[ℋ𝑚12 ,0ℋ†𝑚′12 ,0 + ℋ𝑚− 12 ,0ℋ†𝑚′− 12 ,0] ,𝐿𝑚𝑚′𝑃 = 𝑁2 ⋅ Re[ℋ𝑚12 ,0ℋ†𝑚′12 ,0 − ℋ𝑚− 12 ,0ℋ†𝑚′− 12 ,0] ,𝐼𝑚𝑚′1𝑃 = 𝑁24 ⋅ Re[ℋ𝑚12 ,1ℋ†𝑚′− 12 ,0 + ℋ𝑚− 12 ,0ℋ†𝑚′12 ,1 − ℋ𝑚12 ,0ℋ†𝑚′− 12 ,−1 − ℋ𝑚− 12 ,−1ℋ†𝑚′12 ,0 ] ,𝐼𝑚𝑚′2 = 𝑁24 ⋅ Im[ℋ𝑚12 ,1ℋ†𝑚′− 12 ,0 − ℋ𝑚− 12 ,0ℋ†𝑚′12 ,1 − ℋ𝑚12 ,0ℋ†𝑚′− 12 ,−1 + ℋ𝑚− 12 ,−1ℋ†𝑚′12 ,0 ] ,𝐼𝑚𝑚′3 = 𝑁24 ⋅ Re[ℋ𝑚12 ,1ℋ†𝑚′− 12 ,0 + ℋ𝑚− 12 ,0ℋ†𝑚′12 ,1 + ℋ𝑚12 ,0ℋ†𝑚′− 12 ,−1 + ℋ𝑚− 12 ,−1ℋ†𝑚′12 ,0 ] ,𝐼𝑚𝑚′4𝑃 = 𝑁24 ⋅ Im[ℋ𝑚12 ,1ℋ†𝑚′− 12 ,0 − ℋ𝑚− 12 ,0ℋ†𝑚′12 ,1 + ℋ𝑚12 ,0ℋ†𝑚′− 12 ,−1 − ℋ𝑚− 12 ,−1ℋ†𝑚′12 ,0 ] ,

(F.21)

where the flipping of helicities results in a minus sign for the amplitudes 𝑎 = 2 and 𝑎 = 4, due to
parity ℋ1𝜆𝑝,𝜆𝛾 = ℋ1,1𝜆𝑝,𝜆𝛾 + ℋ2,1𝜆𝑝,𝜆𝛾 + ℋ3,1𝜆𝑝,𝜆𝛾 + ℋ4,1𝜆𝑝,𝜆𝛾 ,ℋ1−𝜆𝑝,−𝜆𝛾 = ℋ1,1𝜆𝑝,𝜆𝛾 − ℋ2,1𝜆𝑝,𝜆𝛾 + ℋ3,1𝜆𝑝,𝜆𝛾 − ℋ4,1𝜆𝑝,𝜆𝛾 ,ℋ2𝜆𝑝,𝜆𝛾 = ℋ3,2𝜆𝑝,𝜆𝛾 + ℋ4,2𝜆𝑝,𝜆𝛾 ,ℋ2−𝜆𝑝,−𝜆𝛾 = ℋ3,2𝜆𝑝,𝜆𝛾 − ℋ4,2𝜆𝑝,𝜆𝛾 . (F.22)
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For convenience we give the list of single contributions below with 𝑠± = (𝑚𝛬𝑐 ± 𝑚𝑝)2 − 𝑞2
𝜆𝛬𝑐 = 12 , 𝜆𝛾 = 𝑡: ℋ1,1− 12 ,𝑡 = 0 ,ℋ2,1− 12 ,𝑡 = 0 ,ℋ3,1(2)− 12 ,𝑡 = (𝐶9(10) + 𝐶′9(10))√𝑠+√𝑞2 𝑓0(𝑞2)(𝑚𝛯𝑐 − 𝑚𝛴) ,ℋ4,1(2)− 12 ,𝑡 = (𝐶9(10) − 𝐶′9(10))√𝑠−√𝑞2 𝑔0(𝑞2)(𝑚𝛯𝑐 + 𝑚𝛴) ,

(F.23)

𝜆𝛬𝑐 = −12 , 𝜆𝛾 = 0: ℋ1,112 ,0 = (𝐶7 + 𝐶′7) 2𝑚𝑐√𝑞2 √𝑠−ℎ+(𝑞2) ,ℋ2,112 ,0 = −(𝐶7 − 𝐶′7) 2𝑚𝑐√𝑞2 √𝑠+ℎ̃+(𝑞2) ,ℋ3,1(2)12 ,0 = (𝐶9(10) + 𝐶′9(10)) 1√𝑞2 √𝑠−𝑓+(𝑞2)(𝑚𝛯𝑐 + 𝑚𝛴) ,ℋ4,1(2)12 ,0 = −(𝐶9(10) − 𝐶′9(10)) 1√𝑞2 √𝑠+𝑔+(𝑞2)(𝑚𝛯𝑐 − 𝑚𝛴) ,
(F.24)

𝜆𝛬𝑐 = 12 , 𝜆𝛾 = 1: ℋ1,112 ,1 = √2(𝐶7 + 𝐶′7)2𝑚𝑐𝑞2 √𝑠−ℎ⊥(𝑞2)(𝑚𝛯𝑐 + 𝑚𝛴) ,ℋ2,112 ,1 = −√2(𝐶7 − 𝐶′7)2𝑚𝑐𝑞2 √𝑠+ℎ̃⊥(𝑞2)(𝑚𝛯𝑐 − 𝑚𝛴) ,ℋ3,1(2)12 ,1 = √2(𝐶9(10) + 𝐶′9(10))√𝑠−𝑓⊥(𝑞2) ,ℋ4,1(2)12 ,1 = −√2(𝐶9(10) − 𝐶′9(10))√𝑠+𝑔⊥(𝑞2) .
(F.25)

Similarly, for the easier case of the pseudoscalar contribution, we find from parityℋ𝑃𝜆𝑝 = ℋ𝑃, 1𝜆𝑝 + ℋ𝑃, 2𝜆𝑝 ,ℋ𝑃−𝜆𝑝 = ℋ𝑃, 1𝜆𝑝 − ℋ𝑃, 2𝜆𝑝 , (F.26)
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with 𝜆𝛬𝑐 = 12 , 𝜆𝛾 = 𝑡:ℋ𝑃, 1− 12 = 𝐶𝑃 𝑚𝛬𝑐 − 𝑚𝑝𝑚𝑐 √𝑠+𝑓0(𝑞2) , ℋ𝑃, 2− 12 = 𝐶𝑃 𝑚𝛬𝑐 + 𝑚𝑝𝑚𝑐 √𝑠−𝑔0(𝑞2) . (F.27)

For the lepton helicity amplitudes we use the dilepton center of mass frame, where

𝑞𝜇+ = ⎛⎜⎜⎜⎜⎝
√𝑞2200| ⃗𝑞| ⎞⎟⎟⎟⎟⎠ , 𝑞𝜇− = ⎛⎜⎜⎜⎜⎝

√𝑞2200−| ⃗𝑞|⎞⎟⎟⎟⎟⎠ , 𝑞𝜇 = ⎛⎜⎜⎜⎜⎝
√𝑞2000 ⎞⎟⎟⎟⎟⎠ , (F.28)

and we choose the 𝑧-axis in the direction of the ℓ+ momentum, such that [192]

𝑢(𝜆) = ⎛⎜⎝ √√𝑞22 + 𝑚ℓ 𝜒𝜆(− ⃗𝑒𝑧)2𝜆√√𝑞22 − 𝑚ℓ 𝜒𝜆(− ⃗𝑒𝑧)⎞⎟⎠ , 𝑣(𝜆) = ⎛⎜⎝ √√𝑞22 − 𝑚ℓ 𝜒−𝜆( ⃗𝑒𝑧)−2𝜆√√𝑞22 + 𝑚ℓ 𝜒−𝜆( ⃗𝑒𝑧)⎞⎟⎠ , (F.29)

where 𝜒+( ⃗𝑒𝑧) = (1, 0)𝑇 and 𝜒−( ⃗𝑒𝑧) = (0, 1)𝑇. We obtain the following lepton helicity amplitudes for𝑚 = 1 ℒ1𝑡, 12 , 12 = 0 , ℒ10, 12 , 12 = −2 𝑚ℓ , ℒ1+1, 12 , − 12 = −√2𝑞2 , (F.30)

and for 𝑚 = 2 ℒ2𝑡, 12 , 12 = −2 𝑚ℓ , ℒ20, 12 , 12 = 0 , ℒ2+1, 12 , − 12 = √2𝑞2√1 − 4𝑚2ℓ𝑞2 . (F.31)

Again we relate to other helicity configurations via parity behavior, which impliesℒ1−𝜆𝛾, −𝜆+, −𝜆− = ℒ1𝜆𝛾, 𝜆+, 𝜆− ,ℒ2−𝜆𝛾, −𝜆+, −𝜆− = −ℒ2𝜆𝛾, 𝜆+, 𝜆− . (F.32)

The last ingredient is the lepton amplitude for the pseudoscalar contribution, which we find to beℒ𝑃12 , 12 = −ℒ𝑃− 12 , − 12 = −√𝑞2 . (F.33)

Our results are in agreement with Refs. [194, 296] and Ref. [311] in the limit of vanishing lepton
masses. We stress that results for the helicity amplitudes are given for 𝛬𝑐 → 𝑝ℓ+ℓ−, but also apply to
all other modes with appropriate replacements of masses and form factors.

138
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F.3 Helicity amplitude description of 𝐵1 → 𝐵2𝜋
We now turn to the calculation of the hadronic helicity amplitude ℎ 12𝜆𝛴,𝜆𝑝 for the secondary baryonic
decay 𝐵1 → 𝐵2𝜋, here discussed for 𝛴+ → 𝑝𝜋0. The two-body decay is parameterized by the sum, 𝛼+,
and the difference, 𝛼−, of the helicity amplitudes squared𝛼± = ∣ℎ 1212 , 12 ∣2 ± ∣ℎ 12− 12 ,− 12 ∣2 . (F.34)

Following [317] the helicity amplitudes of a non-leptonic baryon decay involving a pion can be
parametrized as ℎ 12𝜆𝛴,𝜆𝑝 = 𝐺𝐹𝑚2𝜋�̄�𝑝(𝜆𝑝)(𝐴 − 𝐵𝛾5)𝑢𝛴(𝜆𝛴) , (F.35)

where 𝐴 and 𝐵 are complex constants and 𝑚𝜋 is the pion mass. We compute the amplitude in the rest
frame of the 𝛴+ with the 𝑧-axis pointing in the direction of the proton momentum. The spinors are
then again given by 𝑢𝛴 (𝑝, 𝜆𝛴 = ±12) = √2𝑚𝛴 (𝜒±0 ) ,�̄�𝑝 (𝑘, 𝜆𝑝 = ±12) = √𝐸𝑝 + 𝑚𝑝 (𝜒†±, ∓|�⃗�|𝐸𝑝 + 𝑚𝑝 𝜒†±) , (F.36)

with 𝑝 and 𝑘 the four-momenta of the 𝛴+ and the proton, respectively. Further, 𝑝0 = 𝑚𝛴, | ⃗𝑝| = 0
and 𝐸𝑝 = √|�⃗�|2 + 𝑚2𝑝 is the energy of the proton, hence 𝑘 = (𝐸𝑝, 0, 0, |�⃗�|)T , and 𝜒+ = (1, 0)T ,𝜒− = (0, 1)T . using these spinors in Eq. (F.35) and simplifying, we arrive atℎ 1212 , 12 = √2𝑚𝛴𝐺𝐹𝑚2𝜋(√𝑟+𝐴 + √𝑟−𝐵) ,ℎ 12− 12 ,− 12 = √2𝑚𝛴𝐺𝐹𝑚2𝜋(√𝑟+𝐴 − √𝑟−𝐵) , (F.37)

with 𝑟± = √𝐸𝑝 ± 𝑚𝑝. Via these helicity amplitudes 𝛼± are expressed as𝛼+ = 4𝐺2𝐹𝑚4𝜋𝑚𝛴(𝑟+|𝐴|2 + 𝑟−|𝐵|2) ,𝛼− = 8𝐺2𝐹𝑚4𝜋𝑚𝛴√𝑟+𝑟− Re(𝐴𝐵∗) , (F.38)

and their ratio reads 𝛼−𝛼+ = 2√𝑟−𝑟+Re(𝐴𝐵∗)|𝐴|2 + 𝑟−𝑟+ |𝐵|2 = 𝛼 , (F.39)

which corresponds to the decay parameter 𝛼 in [184]. We can therefore factorize 𝛼+ from the angular
distribution and use 𝛼+ = ℬ(𝛴+ → 𝑝𝜋) and 𝛼−𝛼+ = 𝛼 to arrive at the expressions given in App. E.3.
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G Details on flavor probes with dineutrino modes

This appendix provides further details on the 𝑆𝑈(2)𝐿–link in SMEFT in App. G.1, calculating the𝒪(𝜆) correction, where 𝜆 is the Wolfenstein parameter. Also, App. G.2 collects all available bounds
on charged lepton couplings in different flavor sectors, including global fits to low-energy data for
semileptonic 𝑏 → 𝑠 and 𝑏 → 𝑑 transitions. App. G.3 presents differential distributions for rare charm
and rare beauty dineutrino modes for several benchmark scenarios.

G.1 Details on the 𝑆𝑈(2)𝐿–links in SMEFT

We investigate the 𝒪(𝜆) correction in the 𝑆𝑈(2)𝐿–link in Eq. (6.4). We explicitly do this for the
up-type sector, since the 𝒪(𝜆) correction is taken into account in Sec. 6.2 for 𝑐 → 𝑢𝜈 ̄𝜈 induced modes.
We choose the CKM (𝑉) and PMNS (𝑊) matrix to stem from down-type rotations and charged
lepton rotations, respectively, 𝑄𝛼 = (𝑢𝐿𝛼, 𝑉𝛼𝛽 𝑑𝐿𝛽) and 𝐿𝑖 = (𝜈𝐿𝑖, 𝑊 ∗𝑘𝑖 ℓ𝐿𝑘). The 𝑆𝑈(2)𝐿–link between
dineutrino Wilson coefficients 𝒞 and charged lepton Wilson coefficients 𝒦 reads in the mass basis of
quarks and leptons 𝒞𝑈𝐿 = 𝑊 †[𝑉 𝒦𝐷𝐿 𝑉 †] 𝑊 ,𝒞𝑈𝑅 = 𝑊 †[𝒦𝑈𝑅] 𝑊 . (G.1)

As we have seen in Sec. 6.1, the dependence the PMNS matrix drops out in flavor-summed branching
ratios, Eq.(6.7), due to unitarity. For the CKM matrix we expand the 𝑐𝑢 entry in 𝒞𝑈𝐿 in terms of the
Wolfenstein parameter 𝜆 𝒞𝑐𝑢𝐿 = 𝑊 †𝒦𝑠𝑑𝐿 𝑊+ 𝜆 𝑊 †(𝒦𝑠𝑠𝐿 − 𝒦𝑑𝑑𝐿 )𝑊 + 𝒪(𝜆2) . (G.2)

Including the 𝒪(𝜆) correction yields for 𝑥𝑐𝑢𝑥𝑐𝑢 = ∑𝜈=𝑖,𝑗 (∣𝒞𝑐𝑢𝑖𝑗𝐿 ∣2 + ∣𝒞𝑐𝑢𝑖𝑗𝑅 ∣2) = Tr[𝒞𝑐𝑢𝐿 𝒞𝑐𝑢†𝐿 + 𝒞𝑐𝑢𝑅 𝒞𝑐𝑢†𝑅 ]= Tr[𝒦𝑠𝑑𝐿 𝒦𝑠𝑑𝐿 † + 𝒦𝑠𝑑𝑅 𝒦𝑠𝑑𝑅 †] + 𝛿𝑥𝑐𝑢 + 𝒪(𝜆2)=∑ℓ=𝑖,𝑗 (∣𝒦𝑠𝑑𝑖𝑗𝐿 ∣2 + ∣𝒦𝑠𝑑𝑖𝑗𝑅 ∣2) + 𝛿𝑥𝑐𝑢 + 𝒪(𝜆2) , (G.3)

with 𝛿𝑥𝑐𝑢 = 2 𝜆Tr[Re(𝒦𝑠𝑑𝐿 (𝒦𝑠𝑠𝐿 † − 𝒦𝑑𝑑𝐿 †))]= 2 𝜆 ∑ℓ=𝑖,𝑗 Re((𝒦𝑠𝑑𝑖𝑗𝐿 𝒦𝑠𝑠𝑖𝑗𝐿 ∗ − 𝒦𝑠𝑑𝑖𝑗𝐿 𝒦𝑑𝑑𝑖𝑗𝐿 ∗)) . (G.4)
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Table G.1: Upper limits on leptonic couplings 𝒦𝐿,𝑅 for quark flavors 𝑑𝑑, 𝑠𝑠, 𝑠𝑑 and 𝑐𝑢
from high–𝑝𝑇 [213, 214]. LFV-bounds are quoted as flavor summed, √|𝒦ℓ+ℓ′− |2 + |𝒦ℓ−ℓ′+ |2.∣𝒦𝑞𝑞′ℓℓ′𝐴 ∣ 𝑒𝑒 𝜇𝜇 𝜏𝜏 𝑒𝜇 𝑒𝜏 𝜇𝜏∣𝒦𝑑𝑑ℓℓ′𝐿,𝑅 ∣ 2.8 1.5 5.5 1.1 3.3 3.6∣𝒦𝑠𝑠ℓℓ′𝐿,𝑅 ∣ 9.0 4.9 17 5.2 17 18∣𝒦𝑠𝑑ℓℓ′𝐿,𝑅 ∣ 3.5 1.9 6.7 2.0 6.1 6.6∣𝒦𝑐𝑢ℓℓ′𝐿,𝑅 ∣ 2.9 1.6 5.6 1.6 4.7 5.1
Table G.2: Upper limits on 𝑅ℓℓ′ and 𝛿𝑅ℓℓ′ as defined in Eqs. (G.5), as well as on their sum,𝑟ℓℓ′ = 𝑅ℓℓ′ + 𝛿𝑅ℓℓ′ . 𝑒𝑒 𝜇𝜇 𝜏𝜏 𝑒𝜇 𝑒𝜏 𝜇𝜏𝑅ℓℓ′ 21 6.0 77 6.6 59 70𝛿𝑅ℓℓ′ 19 5.4 69 5.7 55 63𝑟ℓℓ′ 39 11 145 12 115 133

Bounds on the charged lepton couplings within the different flavor assumptions can be plugged into
dineutrino branching ratios as follows. We define𝑅ℓℓ′ = ∣𝒦𝑠𝑑ℓℓ′𝐿 ∣2 + ∣𝒦𝑐𝑢ℓℓ′𝑅 ∣2 ,𝑅ℓℓ′± = ∣𝒦𝑠𝑑ℓℓ′𝐿 ± 𝒦𝑐𝑢ℓℓ′𝑅 ∣2 ,𝛿𝑅ℓℓ′ = 2 𝜆Re (𝒦𝑠𝑑ℓℓ′𝐿 𝒦𝑠𝑠ℓℓ′𝐿 ∗ − 𝒦𝑠𝑑ℓℓ′𝐿 𝒦𝑑𝑑ℓℓ′𝐿 ∗) . (G.5)

Again, we use 𝑅ℓℓ′+ + 𝑅ℓℓ′− = 2 𝑅ℓℓ′ , 𝑅ℓℓ′± ≤ 2 𝑅ℓℓ′ and 𝛿𝑅ℓℓ′ < 2 𝜆 ∣𝒦𝑠𝑑ℓℓ′𝐿 ∣ (∣𝒦𝑠𝑠ℓℓ′𝐿 ∣ + ∣𝒦𝑑𝑑ℓℓ′𝐿 ∣).
In the most conservative scenario, we employ high–𝑝𝑇 data [213, 214] for up- and down-type charged

lepton FCNCs and the flavor diagonal down-type couplings. We give bounds on lepton specific Wilson
coefficients for ℓ, ℓ′ = 𝑒, 𝜇, 𝜏 in Tab G.1 1. Corresponding bounds on 𝑅ℓℓ′ and 𝛿𝑅ℓℓ′ are summarized in
Tab. G.2.

The 𝜆 corrections in for rare charm dineutrino modes are sizable, because bounds on the diagonal
quark flavor couplings, especially the 𝑠𝑠, are worse than the FCNC constraints. This effect is less
pronounced for the 𝒪(𝜆2) corrections, where the diagonal quark couplings enter squared with a single𝜆2 prefactor.

1The 𝑑 → 𝑑, 𝑠 → 𝑠, 𝑠 → 𝑑 entries are obtained from the 𝑐 → 𝑢 bounds via luminosity ratios, see Eqs. (6.9) and (6.10)
in [214] and Fig. 1 in [213].
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G.2 Collecting bounds on Wilson coefficients in different sectors
We collect available limits on charged lepton BSM flavor couplings for all possible SM quark FCNCs.
Limits are obtained from Drell-Yan searches in high–𝑝𝑇 dilepton tails from Refs. [213, 214] and hold
for both chiralities |𝒦𝑞𝑞′ℓℓ′𝐿,𝑅 |DY and quark flavors 𝑠𝑑, 𝑐𝑢, 𝑏𝑠, 𝑏𝑑. They are given in Tab. G.3 in lines
one, four, seven and eleven, respectively. Drell-Yan bounds are not competitive for 𝑡𝑐 and 𝑡𝑢 couplings,
since the top quark PDF is strongly suppressed, i.e. it is unlikely to find a top quark inside of a
proton. Tab. G.3 also contains limits on couplings from low energy data. Lines 2, 5, 8, 9, 12 and 13
are obtained from semileptonic decays of flavored mesons, i.e. kaon decays for 𝑠𝑑, 𝐷–meson decays
for 𝑐𝑢 (see Sec. 4.1), 𝐵–meson decays for 𝑏𝑠 and 𝑏𝑑. We quote all lepton flavor combinations that are
kinematically accessible and assume no large cancellations between LH and RH contributions. Further,
the limits provided are on the absolute values, whereas for 𝑏𝑠𝜇𝜇 and 𝑏𝑑𝜇𝜇 a separate range is given for
each chirality based on global fits presented later in this appendix. The remaining lines 3, 6, 10 and 14
are obtained utilizing information on low-energy meson decays into dineutrinos and the 𝑆𝑈(2)𝐿–link.
Due to this link only one chirality is constrained. From rare kaon decays, see Sec. 6.4, the RH 𝑠𝑑ℓℓ′
couplings and the LH 𝑐𝑢ℓℓ′ couplings are constrained assuming no large cancellation between these two
contributions is possible, hence lines three and six quote the same limits. The opposite combination
would be constrained from rare charm decays into dineutrinos, however the only available limit on𝐷0 → 𝜋0𝜈 ̄𝜈 is to weak to be competitive, see Sec. 6.2. Rare 𝐵–meson decays into dineutrinos constrain
RH charged lepton couplings in lines 10 and 14 of Tab. G.3 and LH 𝑡𝑐ℓℓ′ and 𝑡𝑢ℓℓ′ couplings, quoted
in lines 2 and 4 of Tab. G.4. Again, these bounds are obtained assuming no large cancellation between
LH and RH contributions is present.

Tab. G.4 also presents upper limits on four-fermion operators including tops from collider studies of
top plus charged dilepton processes in lines 1 and 3.

As expected, rare kaon data for charged dilepton and dineutrino final states result in tight constraints
on NP 𝑠𝑑ℓℓ′ couplings for all available lepton flavor combinations and are at least two orders better
than bounds from Drell-Yan searches. They also impose strong bounds on the LH 𝑐𝑢ℓℓ coupling, where
otherwise bounds from Drell-Yan and low-energy physics are in the same ballpark. For 𝑏𝑠 and 𝑏𝑑
couplings Drell-Yan limits are weaker than low-energy input due to the heavy bottom quark. Direct
limits from rare 𝐵–meson decays are roughly two orders better than indirect limits from dineutrino
final states whenever light charged leptons are involved, i.e. 𝑒𝑒, 𝜇𝜇 and 𝑒𝜇. The indirect limits are,
however, in the same ballpark or even better than direct ones whenever a 𝜏 is involved.
In the top sector direct experimental info is weak and indirect limits on the LH coupling from

rare 𝐵–meson data is roughly two orders of magnitude better for every single charged lepton flavor
combination.

Most precise experimental information is available for rare 𝐵–meson decays constraining both 𝑏𝑠𝜇𝜇
and 𝑏𝑑𝜇𝜇 four-fermion vector couplings. We perform a global fit for these.

The global fit to 𝑏 → 𝑠 𝜇+𝜇− data is performed using the python package flavio [279] and distinguish-
ing two cases: a fit including only 𝑏 → 𝑠 𝜇+𝜇− data, and another, which includes LFU ratios 𝑅𝐾∗ and
dielectron observables, such as 𝐵0 → 𝐾∗0 𝑒+𝑒−. We follow Refs. [55, 228, 318], which also us the flavio
package refer to these references and Ref. [7] for further details. Observables from 𝑏 → 𝑠 ℓℓ transitions
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Table G.3: Collection of upper limits on charged dilepton couplings 𝒦𝑞𝑞′ℓℓ′𝐴 for 𝑞𝑞′ =𝑠𝑑, 𝑐𝑢, 𝑏𝑠 and 𝑏𝑑 from high–𝑝𝑇 [213, 214] (top rows), charged dilepton kaon and 𝐵–decays
(mid rows) and derived ones from kaon and 𝐵–decays to dineutrinos (bottom rows).
Numbers are quoted on the modulus, except for 𝑏𝑠𝜇𝜇 and 𝑏𝑑𝜇𝜇 couplings were global
fit results are quoted, see text for details. LFV–bounds are quoted as flavor-summed,√|𝒦ℓ+ℓ′− |2 + |𝒦ℓ−ℓ′+ |2.𝑒𝑒 𝜇𝜇 𝜏𝜏 𝑒𝜇 𝑒𝜏 𝜇𝜏𝑠𝑑|𝒦𝑠𝑑ℓℓ′𝐿,𝑅 |DY 3.5 1.9 6.7 2.0 6.1 6.6|𝒦𝑠𝑑ℓℓ′𝐿,𝑅 | 5 × 10−2 1.6 × 10−2 – 6.6 × 10−4 – –|𝒦𝑠𝑑ℓℓ′𝑅 |𝜈 ̄𝜈 1.9 × 10−2 1.9 × 10−2 1.9 × 10−2 1.1 × 10−2 1.1 × 10−2 1.1 × 10−2𝑐𝑢|𝒦𝑐𝑢ℓℓ′𝐿,𝑅 |DY 2.9 1.6 5.6 1.6 4.7 5.1|𝒦𝑐𝑢ℓℓ′𝐿,𝑅 | 4.0 0.9 – 2.2 n.a.† –|𝒦𝑐𝑢ℓℓ′𝐿 |𝜈 ̄𝜈 1.9 × 10−2 1.9 × 10−2 1.9 × 10−2 1.1 × 10−2 1.1 × 10−2 1.1 × 10−2𝑏𝑠|𝒦𝑏𝑠ℓℓ′𝐿,𝑅 |DY 13 7.1 25 8.0 27 30𝒦𝑏𝑠ℓℓ′𝑅 0.04 [−0.03; −0.01] 32 0.1 2.8 3.4𝒦𝑏𝑠ℓℓ′𝐿 0.04 [−0.06; −0.04] 32 0.1 2.8 3.4𝒦𝑏𝑠ℓℓ′𝑅 |𝜈 ̄𝜈 1.4 1.4 1.4 1.8 1.8 1.8𝑏𝑑|𝒦𝑏𝑑ℓℓ′𝐿,𝑅 |DY 5.0 2.7 9.6 3.1 9.6 11𝒦𝑏𝑑ℓℓ′𝑅 0.09 [−0.03, 0.03] 21 0.2 3.4 2.4𝒦𝑏𝑑ℓℓ′𝐿 0.09 [−0.07, 0.02] 21 0.2 3.4 2.4𝒦𝑏𝑑ℓℓ′𝑅 |𝜈 ̄𝜈 1.8 1.8 1.8 2.5 2.5 2.5

listed in Tabs. B.1-B.3 in Ref. [228] are included, while adding the updated 2021 measurement of 𝑅𝐾
from LHCb [319], as well as radiative modes, 𝐵0(𝑠) → 𝜇𝜇 and 𝛬𝑏–decays. However, observables listed in
Tabs. B.4-B.9 of Ref. [228], which incorporate observables from charged current 𝐵–decays as well as
strange, charm and 𝜏-decays, are not included. A complete list of the utilized experimental input is
given in Ref. [228] and Table 7 and Table 8 of Ref. [7].

The six-dimensional fit to real Wilson coefficients 𝐶7, 𝐶9, 𝐶10 and primed counterparts in the first
case, i.e. the scenario without LFU and dielectron data, yields the following 1 𝜎 fit values, when
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Table G.4: Upper limits on charged dilepton couplings 𝒦𝑡𝑐ℓℓ′𝐴 and 𝒦𝑡𝑢ℓℓ′𝐴 from collider
studies [281, 282, 285] of top plus charged dilepton processes (top rows) and on LH couplings
derived from rare 𝐵–decays to dineutrinos (bottom rows). Numbers correspond to a limit on
the modulus and LFV–bounds are quoted as flavor-summed, √|𝒦ℓ+ℓ′− |2 + |𝒦ℓ−ℓ′+ |2.𝑒𝑒 𝜇𝜇 𝜏𝜏 𝑒𝜇 𝑒𝜏 𝜇𝜏𝑡𝑐|𝒦𝑡𝑐ℓℓ′𝐿,𝑅 | ∼ 200 ∼ 200 n.a. 36 136 136|𝒦𝑡𝑐ℓℓ′𝐿 |𝜈 ̄𝜈 1.9 1.9 1.9 1.8 1.8 1.8𝑡𝑢|𝒦𝑡𝑢ℓℓ′𝐿,𝑅 | ∼ 200 ∼ 200 n.a. 12 136 136|𝒦𝑡𝑢ℓℓ′𝐿 |𝜈 ̄𝜈 1.8 1.8 1.8 2.4 2.4 2.4

projected to NP couplings 𝜅𝑏𝑠𝜇𝜇𝐿,𝑅 , see also Eq. (6.24),𝜅𝑏𝑠𝜇𝜇𝐿 = 𝐶9 − 𝐶10 = −1.45 ± 0.29 ,𝜅𝑏𝑠𝜇𝜇𝑅 = 𝐶′9 − 𝐶′10 = 0.46 ± 0.26 . (G.6)

In Eq. (G.6) the clear tension between 𝑏 → 𝑠 𝜇+𝜇− data and the SM becomes apparent and is quantified
by the pull from the SM, pullSM, in units of standard deviations 𝜎. This fit gives pullSM = 4.6 𝜎, with
a goodness of fit 𝜒2/dof = 0.91. LFU and dielectron data is excluded, because we are interested in the
best available limit on dimuon couplings assuming LFU. As soon as dielectron modes and LFU ratios
are included, one explicitly breaks LFU when performing a fit to muon Wilson coefficients only.
The 1, 2, and 3 𝜎 fit contours are displayed as red shaded areas in the left plot of Fig. G.1 in the𝜅𝑏𝑠𝜇𝜇𝐿 –𝜅𝑏𝑠𝜇𝜇𝑅 plane, where the best fit point is indicated as a red point. The plot also displays the1 𝜎 regions for different sets of observables in blue for ⟨𝐹𝐿⟩, green for ⟨dℬ/d𝑞2⟩, orange for ⟨𝑃𝑖⟩, and

yellow for ⟨𝐴FB⟩. Finally, the red dashed lines show the impact of 𝑅𝐾(∗) data on the global fit.
For the 𝑏 → 𝑑 𝜇+𝜇− transition, there is currently only first information from global fits in Refs. [278,

321, 322], which are mainly based on the current experimental information on 𝐵+ → 𝜋+ 𝜇+𝜇−. However,
further input can be included from the recent update on ℬ(𝐵0 → 𝜇+𝜇−) = (0.56 ± 0.7) × 10−10 [263]
at 95% CL, where the quoted value includes the recent result from LHCb [323, 324], in addition to the
first evidence for ℬ(𝐵0𝑠 → �̄�∗ 0𝜇+𝜇−) = (2.9 ± 1.1) × 10−8 [325].

We use results from Ref. [320], where a four-dimensional fit to the aforementioned modes and data
from 𝐵+ → 𝜋+𝜇+𝜇− is performed, to obtain global fit ranges for 𝜅𝑏𝑑𝜇𝜇𝐿 and 𝜅𝑏𝑑𝜇𝜇𝑅 . The fit is only
four-dimensional because we do not consider dipole operators 𝐶7, 𝐶′7 in our fit. The main difference to
the results in 𝑏 → 𝑠 is that experimental information for 𝑏 → 𝑑 is much less constraining and we obtain
two solutions for the four-dimensional fit. We quote the solution with the smallest 𝜒2/dof = 0.28 that

144



G.2 Collecting bounds on Wilson coefficients in different sectors

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

κ
bsµµ
L

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

κ
bs
µ
µ

R

〈FL〉

dB/dq2

〈Pi〉

〈AFB〉

global fit 6d

global fit with RK(∗)

−15.0 −12.5 −10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0

κ
bdµµ
L

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

κ
bd
µ
µ

R

B

(

B0
→ µ+µ−

)

B (B+
→ π+µ+µ−)

B

(

B0
s
→ K̄0∗µ+µ−

)

global fit

Figure G.1: Plots visualize results of global fits to rare 𝐵–decay data on |𝛥𝑏| = |𝛥𝑠| = 1
and on |𝛥𝑏| = |𝛥𝑑| = 1 transitions in the left and right plot, respectively. Left plot: 1, 2,
and 3 𝜎 contours and best fit point are shown in the 𝜅𝑏𝑠𝜇𝜇𝐿 –𝜅𝑏𝑠𝜇𝜇𝑅 plane as red shaded areas
and red point. blue, green, orange and yellow regions correspond to the 1 𝜎 contours for⟨𝐹𝐿⟩, ⟨dℬ/d𝑞2⟩, ⟨𝑃𝑖⟩ and ⟨𝐴FB⟩, respectively. The red dashed contours illustrate the impact
of 𝑅𝐾(∗) data on the global fit. Right plot: In the 𝜅𝑏𝑑𝜇𝜇𝐿 –𝜅𝑏𝑑𝜇𝜇𝑅 plane the red shaded areas
correspond to 1, 2, and 3 𝜎 fit contours and the best fit values are shown as a red point.
The impact of ℬ(𝐵+ → 𝜋+ 𝜇+𝜇−) and ℬ(𝐵0𝑠 → �̄�∗0 𝜇+𝜇−) is illustrated individually as 1𝜎
contours in orange and celeste, respectively. The 𝐵0 → 𝜇+𝜇− limit is included in the global
fit, but has small impact as apparent from the gray area, which fills the whole plot region.
The |𝛥𝑏| = |𝛥𝑑| = 1 fit results are adapted from [320].

gives 𝜅𝑏𝑑𝜇𝜇𝐿 = −3 ± 5 ,𝜅𝑏𝑑𝜇𝜇𝑅 = 0 ± 4 , (G.7)

with pullSM = 1.92 𝜎. Similar to the 𝑏 → 𝑠 case, the right plot of Fig. G.1 displays the 1, 2, and 3 𝜎
fit contours as red shaded areas and the best fit values as a red point in the 𝜅𝑏𝑠𝜇𝜇𝐿 –𝜅𝑏𝑠𝜇𝜇𝑅 plane. The
individual impact of ℬ(𝐵+ → 𝜋+ 𝜇+𝜇−) and ℬ(𝐵0𝑠 → �̄�∗0 𝜇+𝜇−) to the global fit are displayed as 1𝜎
contours in orange and celeste, respectively. The 𝐵0 → 𝜇+𝜇− limit has basically no impact on the fit.
It is illustrated as gray area, however covers the whole plot region. In order to improve the global fit
and reject the possibility of various solutions, future measurements of 𝑏 → 𝑑 𝜇+𝜇− modes are necessary.
For further details of the 𝑏 → 𝑑 𝜇+𝜇− global fit we refer to Ref. [320].

The fit results for 𝜅𝑅 for both 𝑏 → 𝑠 and 𝑏 → 𝑑 transition from Eqs. (G.6) and (G.7) serve as input
in the analysis of indirect LFU tests via dineutrino modes in Sec. 6.3, see Fig. 6.4.
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G.3 Differential distributions for dineutrino modes
In this appendix, we collect differential branching ratios for rare charm and rare beauty dineutrino
modes in several benchmarks. For rare charm transitions Fig. G.2 no SM curve is shown, as it is
suppressed by several orders of magnitude, due to the efficient GIM cancellation. We show for each
mode a dotted and a solid line together with their 1𝜎 uncertainty bands from form factors, where the
solid line corresponds to the LFU upper limit, whereas the dotted line is for the cLFC upper limit from
Tab. 6.3 in the first scenario, i.e. the scenario using upper limits from Drell-Yan high–𝑝𝑇 searches only
and including the 𝒪(𝜆) corrections discussed in App. G. The upper plot in Fig. G.2 is for 𝐷 → 𝑃𝜈 ̄𝑛𝑢
modes, in red, brown and dark green we show the 𝑞2 differential branching ratios for 𝐷0 → 𝜋0𝜈 ̄𝜈,𝐷+ → 𝜋+𝜈 ̄𝜈 and 𝐷+𝑠 → 𝐾+𝜈 ̄𝜈, respectively. For the charged modes the 𝜏 cut, see Eq. (6.12) in Sec. 6.2,
is illustrated as a vertical brown and green dashed line. The middle row plots show the 𝑞2 and 𝑝2
differential distributions for 𝐷0 → 𝑃1𝑃2𝜈 ̄𝜈 modes in the left and right plot, respectively, where 𝑝2 is
the invariant mass squared of the dihadron final state. Benchmark curves are shown for 𝐷0 → 𝜋0𝜋0𝜈 ̄𝜈,𝐷0 → 𝜋+𝜋−𝜈 ̄𝜈 and 𝐷0 → 𝐾+𝐾−𝜈 ̄𝜈 in orange, pink and cyan, respectively. The 𝐷0 → 𝐾+𝐾−𝜈 ̄𝜈 is
artificially enhanced by a factor 100 to be visible in the plots and in all modes 10 % uncertainties from
form factors are illustrated. The lower left plot shows 𝑞2 distributions for 𝛬𝑐 → 𝑝𝜈 ̄𝜈 and 𝛯+𝑐 → 𝛴+𝜈 ̄𝜈 in
brown and blue, respectively, and the bottom right plot shows the benchmark distributions for inclusive
dineutrino decays of the 𝐷0–, 𝐷+– and 𝐷+𝑠 –mesons in magenta, lime and green, respectively. For the
inclusive modes 10 % uncertainties are illustrated as band width in the plot and the distributions are
cut at 𝑞2

max = 𝑚2𝑐 for 𝐷0 and 𝐷+ and at the physical limit 𝑞2
max = (𝑚𝐷𝑠 − 𝑚𝐾)2 for the 𝐷𝑠 [326].

In Fig. G.3 we show the prediction for the differential branching ratios of 𝐵0 → 𝐾0𝜈 ̄𝜈, 𝐵0 → 𝐾∗0𝜈 ̄𝜈,𝐵0𝑠 → 𝜙𝜈 ̄𝜈, inclusive 𝐵0 → 𝑋𝑠𝜈 ̄𝜈, 𝐵0 → 𝜋0𝜈 ̄𝜈 and 𝐵0 → 𝜌0𝜈 ̄𝜈 in the upper left, upper right, middle
left, middle right, lower left and lower right plot, respectively , and each in the SM (black dotted line
and gray uncertainty band) and two BSM benchmarks in blue and red. The blue region depicts the
region spanned by varying dineutrino couplings within the ranges given in Eq. (6.20). This region
corresponds to the indirectly derived EFT limits provided in the fourth column of Tab. 6.5. The red
region is a combination of Eq. (6.20) and the LFU region defined in Eq. (6.35) and depicted as a red
cone in Fig. 6.4. For some this additional constrain gives a bound more stringent than the general
derived EFT limit, for others there is essentially no difference.
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Figure G.2: Differential branching ratios for the LFU and cLFC limit as solid and dotted
line, respectively, for several rare charm dineutrino modes, see 𝑦–labels, legends and text for
further details.
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Figure G.3: Several differential branching ratios for rare 𝐵–decays to dineutrinos, see𝑦–labels, are shown in the SM (black dotted line and gray uncertainty band) and two BSM
scenarios, the derived EFT limit using Eq. (6.20) (blue region, labeled as benchmark general)
for 𝑏 → 𝑠 𝜈 ̄𝜈 and 𝑏 → 𝑑 𝜈 ̄𝜈, respectively, and the LFU benchmark (red region, labeled as
benchmark LU ), see text for details.
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