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Summary

This dissertation consists of three manuscripts on nonparametric methodology, i.e., Simultaneous infer-
ence for Kendall’s tau, Group sequential methods for the Mann-Whitney parameter, and The nonpara-
metric Behrens-Fisher problem in small samples. Owing to the cumulative character of this thesis, some
parts, in particular those dealing with notation and definitions, had to be repeated throughout the thesis.

The manuscript on Kendall’s tau (Nowak & Konietschke, 2021) extends results which I have initially
developed in my master’s thesis. While the master’s thesis only dealt with a linear transformation of
Kendall’s fiA and only briefly hinted as to how one could generalise this approach to multivariate factorial
designs, this dissertation fully develops a nonparametric estimation theory for multiple rank correlation
coefficients in terms of Kendall’s fiB , Somers’ D, as well as Kruskal and Goodman’s ‚, necessitating
joint estimation of both the probabilities of ties occurring and the probability of concordance minus
discordance. Moreover, I apply the proposed methods to the iris flower data set.

As for the second manuscript (Nowak, Mütze, & Konietschke, 2022a), I review and further develop
group sequential methodology for the Mann-Whitney parameter. With the aid of data from a clinical trial
in patients with relapse-remitting multiple sclerosis, I demonstrate how one could repeatedly estimate
the Mann-Whitney parameter during an ongoing trial together with repeated confidence intervals ob-
tained by test inversion. In addition, I give simple approximate power formulas for this group sequential
setting.

The last manuscript (Nowak, Pauly, & Brunner, 2022b) further explores how best to approximate
the sampling distribution of the Mann-Whitney parameter in terms of the nonparametric Behrens-Fisher
problem, an issue that has arisen from the preceding manuscript. In that regard, I explore different
variance estimators and a permutation approach that have been proposed in the literature and examine
some slightly modified ways as regards a small sample t approximation as well.

In all three manuscripts, I carried out simulations for various settings to assess the adequacy of the
proposed methods.

Apart from my supervisor Markus Pauly at the TU Dortmund University, I am particularly grateful
to Tobias Mütze, Frank Konietschke, and Edgar Brunner for their comments and suggestions.
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Extended summary

As already mentioned in the summary, this is a cumulative thesis comprising three manuscripts, namely,
Simultaneous inference for Kendall’s tau, Group sequential methods for the Mann-Whitney parameter,
and The nonparametric Behrens-Fisher problem in small samples.

The main purpose of the extended summary is to bring to the fore the core idea behind deriving the
asymptotic sampling distribution of nonparametric effects, that is to say, the probabilities necessary to
compute the Mann-Whitney parameter and the different versions of Kendall’s tau – no matter what their
true population values amount to. In that respect, I will exploit the fact that the proposed approach allows
for estimation of the joint asymptotic distribution of various effect estimators and that the resulting test
statistics can be inverted to produce confidence limits.

Section deals with univariate distribution and survival functions and provides a definition of the
Mann-Whitney parameter and its estimator, followed by a discussion on asymptotics. In Section , I like-
wise examine different versions of Kendall’s tau in terms of bivariate distribution and survival functions
to derive their asymptotic sampling distribution. Finally, in Section , I will give a brief introduction to
group sequential methodology using a simple example and then focus attention on the Mann-Whitney
parameter.

In introducing notation and defining the various effect quantities, I closely follow the pertinent sec-
tions in Brunner, Bathke, and Konietschke (2018), Nowak (2019), Nowak and Konietschke (2021),
Jennison and Turnbull (2000), Nowak et al. (2022a), as well as Nowak et al. (2022b). As for technical
details and proofs, I will generally refer to other sources or to those just mentioned.

Univariate distribution functions and the Mann-Whitney parameter

To enhance readability, I will introduce the notation in terms of real-valued random variables only.
However, all definitions and results are valid for any random variables mapping to a totally ordered set,
covering the more general case of ordered categorical data as well. From a somewhat different point
of view, one may just as well assign a real number, often referred to as a score, to each category, while
preserving the order, such as “no pain” ≡ 0, “moderate pain” ≡ 1, and “severe pain” ≡ 2 for a three-
point pain scale. Framing the problem this way, the consideration of real-valued random variables also
suffices for ordered categorical data.

Definition 1 (Univariate cumulative distribution and survival functions). Let X denote a univariate
real-valued random variable defined on the probability space (Ω;A;P). Then for any fixed x ∈ R, we
denote by

F−(x) = P (X < x) ; F+(x) = P (X ≤ x) ; F (x) = P (X < x) + 1=2 · P (X = x)

the left-continuous, the right-continuous, and the normalised versions of the cumulative distribution
function of X, respectively. In a similar vein, we call

S−(x) = P (X > x) ; S+(x) = P (X ≥ x) ; S(x) = P (X > x) + 1=2 · P (X = x)

the right-continuous, the left-continuous, and the normalised versions of the survival function of X.

Naturally, the use of the term survival function is questionable if X is not a time-to-event random
variable. For purposes of this thesis, however, the survival function only serves as a convenient technical
means to define asymptotic variances and their estimators.

To define the empirical distribution and survival functions, it is convenient to first introduce the
following count functions, see also Brunner et al. (2018).

Definition 2 (Count functions). Let x and y denote two real numbers. Then we call

c−(x; y) =

(
0; x ≤ y

1; x > y
; c+(x; y) =

(
0; x < y

1; x ≥ y
; c(x; y) =

8><>:
0; x < y
1=2; x = y

1; x > y

count functions.
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As just mentioned, I will now turn to the empirical distribution and survival functions.

Definition 3 (Univariate empirical distribution and survival functions). Let X1; : : : ; Xn
iid∼ F (x) denote

a random sample of n real-valued observations. For any x ∈ R, we denote by

bF−(x) =
1

n

nX
k=1

c−(x; Xk); bF+(x) =
1

n

nX
k=1

c+(x; Xk); bF (x) = 1

n

nX
k=1

c(x; Xk)

the left-continuous, the right-continuous and the normalised version of the empirical distribution func-
tion of X1; : : : ; Xn, respectively. Likewise, we call

bS−(x) =
1

n

nX
k=1

c−(Xk ; x); bS+(x) =
1

n

nX
k=1

c+(Xk ; x); bS(x) = 1

n

nX
k=1

c(Xk ; x)

the right-continuous, the left-continuous and the normalised version of the empirical survival function
of X1; : : : ; Xn.

Equipped with these definitions, I will now introduce the Mann-Whitney parameter and in due
course an estimator together with its asymptotic distribution.

Definition 4 (Mann-Whitney parameter). Let X1 ∼ F1(x) and X2 ∼ F2(x) denote two independent
real-valued random variables. Then the probability

p = P (X1 < X2) + 1=2 · P (X1 = X2)

is called the Mann-Whitney parameter.

The Mann-Whitney parameter p is also referred to as nonparametric relative effect ofX2 with respect
toX1 or probabilistic index (Brunner et al., 2018; Thas, De Neve, Clement, & Ottoy, 2012). To illustrate
its interpretation, suppose that X1 and X2 stand for responses from treatment arms 1 and 2 of a parallel
two-arm clinical trial and that lower values point to a more favourable outcome. Then the effect p is
nothing but the probability that a patient on arm 1 will fare better than one on arm 2, including 1=2 times
the probability of equal outcomes.

To ease estimation, I will now give a representation of the Mann-Whitney parameter p in terms of
Lebesgue-Stieltjes integrals.

Corollary 5 (Integral representation of p). Let X1 ∼ F1(x) and X2 ∼ F2(x) denote two independent
real-valued random variables. We can then express the Mann-Whitney parameter as

p =

Z
R

F1(x)dF2(x) =

Z
R

S2(x)dF1(x):

Proof. See Brunner et al. (2018) or Nowak (2019).

As a common shorthand notation, one may prefer to drop the function arguments and the integration
region, yielding p =

R
F1dF2 =

R
S2dF1. To give an estimator, all that is left to do is replace the

theoretical distribution functions with their empirical counterparts.

Definition 6 (Estimation of p). Let X11; : : : ; X1n1
i id∼ F1(x) and X21; : : : ; X2n2

i id∼ F2(x) denote two
independent random samples of real-valued observations. We can then estimate the Mann-Whitney
parameter p by

bp =

Z
R

bF1(x)d bF2(x):
Again, one could have used bp =

R
R
bS2(x)d bF1(x) as well. Moreover, as a shorthand we could instead

write bp =
R bF1d bF2 =

R bS2d bF1 just as before. As for the limiting distribution, I will rely on the central
limit theorem as applied by Brunner and Munzel (2000) and Brunner et al. (2018).
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Proposition 7 (Asymptotics of bp). Let X11; : : : ; X1n1
i id∼ F1(x) and X21; : : : ; X2n2

i id∼ F2(x) denote two
independent random samples of real-valued observations. With total sample size N = n1 + n2, Mann-
Whitney parameter p together with its estimator bp as given in Definitions 4 and 6, variance estimatorbff2A = N(

R bS2
2d
bF1 − bp2)=(n1 − 1) + N(

R bF 2
1 d
bF2 − bp2)=(n2 − 1), and under some mild regularity

conditions, we have convergence in distribution to a normal random variate, i.e.,
√
N(bp − p)=bffA D−−−−→

N→∞
N (0; 1):

Proof. As already alluded to, see Brunner and Munzel (2000) and / or Brunner et al. (2018).

Since I will later make use of the same approach to derive the joint asymptotic distribution of the
probabilities associated with Kendall’s tau, I will now informally describe the main idea behind the
proof. In essence, Brunner and Munzel (2000) and Brunner et al. (2018) suggest splitting

√
N(bp − p)

into sums of independent and identically distributed random variables and an asymptotically negligible
part. More specifically, consider

bp − p

=

Z bF1d bF2 − p

=

Z bF1d bF2 − p +

Z bF1dF2 − Z bF1dF2| {z }
=0

+

Z
F1d bF2 − Z F1d bF2| {z }

=0

+

Z
F1dF2 − p| {z }

=0

=

Z
F1d bF2 + Z bF1dF2 − 2p +

„Z bF1d bF2 − Z F1d bF2 − „Z bF1dF2 − Z F1dF2

««
=

Z
F1d bF2 + Z S2d bF1 − 2p +

„Z “bF1 − F1

”
d bF2 − Z “bF1 − F1

”
dF2

«
=

Z
S2d bF1 + Z F1d bF2 − 2p +

Z “bF1 − F1

”
d
“bF2 − F2

”
=

1

n1

n1X
i=1

S2(X1i ) +
1

n2

n2X
j=1

F1(X2j)− 2p +

Z “bF1 − F1

”
d
“bF2 − F2

”
:

Multiplication of both sides by the square root of the total sample size produces
√
N(bp − p)

=
√
N

0@ 1

n1

n1X
i=1

S2(X1i ) +
1

n2

n2X
j=1

F1(X2j)− 2p

1A
| {z }

=:AN

+
√
N

„Z “bF1 − F1

”
d
“bF2 − F2

”«
| {z }

=:BN

:

Observe that the random variables S2(X1i ) and F1(X2j) are only random through X1i and X2j respec-
tively, yielding sums of independent and identically distributed random variables. Moreover, one can
show that BN converges to zero in probability as N tends to infinity. Consequently,

√
N(bp − p) and AN

share the same limiting distribution and therefore the same asymptotic variance. Thus we can regard

ff2A = V(AN) =
N

n1
V(S2(X11)) +

N

n2
V(F1(X21)) =

N

n1

„Z
S2
2dF1 − p2

«
+
N

n2

„Z
F 2
1 dF2 − p2

«
as our variance estimand.

Bivariate distribution functions and Kendall’s tau

As intimated at the end of the previous section, I will now consider nonparametric association measures.
To begin with, I will give definitions of Kendall’s fiA and fiB , Somers’ D, and Kruskal and Goodman’s
‚ (Kendall & Gibbons, 1990; Kruskal, 1958; Somers, 1962; Goodman & Kruskal, 1954).
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Definition 8 (Versions of Kendall’s tau). Let (X1; Y1) and (X2; Y2) denote two independent and iden-
tically distributed two-dimensional real-valued random vectors. With DX = sgn(X1 − X2) and DY =
sgn(Y1 − Y2), we call

fiA = E (DXDY ) ; fiB =
E (DXDY )q

E
`
D2

X

´q
E
`
D2

Y

´ ; DY X =
E (DXDY )

E
`
D2

X

´ ; ‚ =
E (DXDY )

P (DXDY ̸= 0)

the population versions of Kendall’s fiA and fiB , Somers’D, and Kruskal and Goodman’s ‚, respectively.

If ties cannot occur almost surely, then all versions coincide, i.e., fiA = fiB = DY X = ‚. Similar
to Pearson’s product moment correlation coefficient % = Cov(X1; Y1)=

p
V(X1)V(Y1), all four versions

of Kendall’s tau would then amount to 1 if X1 and Y1 are perfectly positively associated, −1 in case of
perfect negative, and 0 in case of no association. However, if the occurrence of ties is possible, a variable
associated with itself, i.e., DY ≡ DX , would no longer imply imply that fiA = E(D2

X) = P(X1 ̸= X2)
equals 1, whereas fiB and ‚ scale the association in such a way that we would still have fiB = ‚ = 1.
On the other hand, Somers’ definition of DY X is motivated by the slope coefficient in a simple linear
regression model.

As was the case with the Mann-Whitney parameter, I will now introduce theoretical bivariate dis-
tribution and survival functions as well as their empirical counterparts with a view to expressing all
expectations and probabilities in Definition 8 in terms of Lebesgue-Stieltjes integrals to facilitate esti-
mation.

Definition 9 (Bivariate cumulative distribution and survival functions). Let (X; Y ) denote a two-dimensional
real-valued random vector defined on the probability space (Ω;A;P). For any (x; y) ∈ R2, we then
denote by

F−−(x; y) = P (X < x; Y < y) ;

F (x; y) = P (X < x; Y < y) + 1=2 · P (X < x; Y = y)

+ 1=2 · P (X = x; Y < y) + 1=4 · P (X = x; Y = y)

the bivariate cumulative distribution function of (X; Y ) left-continuous in both arguments and the nor-
malised version respectively. Likewise, we call

S−−(x; y) = P (X > x; Y > y) ;

S(x; y) = P (X > x; Y > y) + 1=2 · P (X > x; Y = y)

+ 1=2 · P (X = x; Y > y) + 1=4 · P (X = x; Y = y)

the bivariate survival function of (X; Y ) right-continuous in both arguments and the normalised version
respectively.

Definition 10 (Bivariate empirical distribution and survival functions). Let (X1; Y1); : : : ; (XN ; YN)
i id∼

F (x; y) denote a random sample of N paired real-valued observations. For any (x; y) ∈ R2, the
bivariate empirical distribution and survival functions corresponding to the ones in Definition 9 are
then given by

bF−−(x; y) =
1

N

NX
k=1

c−(x; Xk)c
−(y; Yk); bF (x; y) = 1

N

NX
k=1

c(x; Xk)c(y; Yk);

bS−−(x; y) =
1

N

NX
k=1

c−(Xk ; x)c
−(Yk ; y); bS(x; y) = 1

N

NX
k=1

c(Xk ; x)c(Yk ; y):

As mentioned before, I will now go on to express the expectations and probabilities used in the
definitions of the different versions of Kendall’s tau in terms of Lebesgue-Stieltjes integrals.
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Proposition 11 (Integral representation). Let (X; Y ) ∼ F (x; y) denote a two-dimensional real-valued
random vector and FX(x) as well as FY (y) the corresponding univariate marginal distribution func-
tions. Then, with DX = sgn(X1 − X2) and DY = sgn(Y1 − Y2), it holds

E (DXDY ) = 4

ZZ
R2

F (x; y)dF (x; y)− 1;

E
`
D2

X

´
= 2

Z
R

F−
X (x)dFX(x);

E
`
D2

Y

´
= 2

Z
R

F−
Y (y)dFY (y);

P (DXDY ̸= 0) = 1− 4

ZZ
R2

`
F (x; y)− F−−(x; y)

´
dF (x; y):

Proof. See Nowak and Konietschke (2021).

Consequently, using shorthand notation once again, we can treat the estimation problem of the
different versions of Kendall’s tau as one involving the estimands

RR
FdF ,

R
F−
X dFX ,

R
F−
Y dFY , andRR

(F − F−−)dF instead. As in the previous section, I suggest a simple plug-in approach to obtain
estimators, which gives rise to the following definition.

Definition 12 (Tau probabilities). Let (X1; Y1); : : : ; (XN ; YN)
i id∼ F (x; y) denote a random sample of

N paired real-valued observations and FX(x) as well as FY (y) the corresponding univariate marginal
distribution functions. Then we denote by

p = (p≪; pTX ; pTY ; pT )
′; where

p≪ =

ZZ
R2

F (x; y)dF (x; y);

pTX =

Z
R

F−
X (x)dFX(x);

pTY =

Z
R

F−
Y (y)dFY (y);

pT =

ZZ
R2

`
F (x; y)− F−−(x; y)

´
dF (x; y);

the vector of tau probabilities. Moreover, we can estimate p by

bp = (bp≪; bpTX ; bpTY ; bpT )′; where

bp≪ =

ZZ
R2

bF (x; y)d bF (x; y);
bpTX =

Z
R

bF−
X (x)d bFX(x);

bpTY =

Z
R

bF−
Y (y)d bFY (y);

bpT =

ZZ
R2

“bF (x; y)− bF−−(x; y)
”
d bF (x; y):

For example, to reconstruct Kendall’s fiB , it holds fiB = h(p) = (2p≪−0:5)=
√
pTXpTY . Moreover,

the estimator bfiB = h(bp) = (2bp≪ − 0:5)=
pbpTX bpTY coincides with the commonly used empirical

version (see also Kendall & Gibbons, 1990; Nowak & Konietschke, 2021). As for fiA, DY X and ‚, I
refer the reader to Nowak and Konietschke (2021) as well. Similar to the Mann-Whitney parameter, we
can rely on the multivariate central limit theorem to derive the asymptotic sampling distribution of these
nonparametric association measures.

Proposition 13 (Asymptotics of bp). Let (X1; Y1); : : : ; (XN ; YN)
i id∼ F (x; y) denote a random sample of

N paired real-valued observations and FX(x) as well as FY (y) the corresponding univariate marginal
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distribution functions. With bp and p given as in Definition 12 and under some mild regularity conditions,
we have

√
N (bp− p)

D−−−−→
N→∞

N4 (0;Σ) ;

where Σ can be consistently estimated by bΣ = 1
N−1

PN
k=1(buk − b̄u•)(buk − b̄u•)′, with

buk = (bUk ; bGk ; bHk ; bVk)′; k ∈ {1; : : : ; N}; wherebUk = bF (Xk ; Yk) + bS(Xk ; Yk);bGk = bF−
X (Xk) + bS−

X (Xk);bHk = bF−
Y (Yk) + bS−

Y (Yk);bVk = bF (Xk ; Yk) + bS(Xk ; Yk)− bF−−(Xk ; Yk)− bS−−(Xk ; Yk):

Proof. See Nowak and Konietschke (2021).

Corollary 14 (Asymptotics of bfiB). With h(x; y ; z; ·) = (2x−0:5)=
√
yz and under some mild regularity

conditions, it holds
√
N (h(bp)− h(p)) =

√
N (bfiB − fiB)

D−−−−→
N→∞

N
`
0; ff2h

´
;

where ff2h can be consistently estimated by bff2h = ∇h(bp)′ · bΣ · ∇h(bp).
Proof. Straightforward application of the delta method implies the desired result (see e.g. van der Vaart,
1998).

One can derive asymptotic results for Somers’ D and Goodman and Kruskal’s ‚ in a completely
analogous manner. As for Kendall’s fiA, some care needs to be taken (Nowak & Konietschke, 2021). As
I did in the previous section as regards the Mann-Whitney parameter, I will now informally justify the
result in Proposition 13 using similar arguments as before. To this end, consider

bp≪ − p≪

=

ZZ bFd bF − p≪

=

ZZ bFd bF − p≪ +

ZZ bFdF −
ZZ bFdF| {z }

=0

+

ZZ
Fd bF −

ZZ
Fd bF| {z }

=0

+

ZZ
FdF − p≪| {z }

=0

=

ZZ
Fd bF +

ZZ bFdF − 2p≪ +

„ZZ bFd bF −
ZZ

Fd bF −
„ZZ bFdF −

ZZ
FdF

««
=

ZZ
Fd bF +

ZZ
Sd bF − 2p≪ +

„ZZ “bF − F
”
d bF −

ZZ “bF − F
”
dF

«
=

ZZ
(F + S)d bF − 2p≪ +

ZZ “bF − F
”
d
“bF − F

”
=

1

N

NX
k=1

(F (Xk ; Yk) + S(Xk ; Yk))− 2p≪ +

ZZ “bF − F
”
d
“bF − F

”
:

Multiplication of both sides by the square root of the sample size yields
√
N(bp≪ − p≪)

=
√
N

0B@ 1

N

NX
k=1

(F (Xk ; Yk) + S(Xk ; Yk))| {z }
=:Uk

−2p≪

1CA+
√
N

ZZ “bF − F
”
d
“bF − F

”
| {z }

=:BN

:
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Since each Uk is only random through (Xk ; Yk), the first summand is nothing but a sum of independent
and identically distributed random variables, whereas BN converges to zero in probability as N tends to
infinity. Therefore,

√
N(bp≪ − p≪) and

√
N( 1

N

PN
k=1 Uk − 2p≪) share the same limiting distribution

so that we can treat V(U1) as our variance estimand.
By the same token, I will now turn to the probabilities of no ties occurring. More specifically, as tobpTX and pTX , we have

bpTX − pTX

=

Z bF−
X d
bFX − pTX

=

Z bF−
X d
bFX − pTX +

Z bF−
X dFX −

Z bF−
X dFX| {z }

=0

+

Z
F−
X d
bFX −

Z
F−
X d
bFX| {z }

=0

+

Z
F−
X dFX − pTX| {z }

=0

=

Z
F−
X d
bFX +

Z bF−
X dFX − 2pTX +

„Z bF−
X d
bFX −

Z
F−
X d
bFX −

„Z bF−
X dFX −

Z
F−
X dFX

««
=

Z
F−
X d
bFX +

Z
S−
Xd
bFX − 2pTX +

„Z “bF−
X − F−

X

”
d bFX −

Z “bF−
X − F−

X

”
dFX

«
=

Z `
F−
X + S−

X

´
d bFX − 2pTX +

Z “bF−
X − F−

X

”
d
“bFX − FX

”
=

1

N

NX
k=1

`
F−
X (Xk) + S−

X (Xk)
´
− 2pTX +

Z “bF−
X − F−

X

”
d
“bFX − FX

”
:

Multiplication of both sides by the square root of the sample size produces
√
N(bpTX − pTX)

=
√
N

0B@ 1

N

NX
k=1

`
F−
X (Xk) + S−

X (Xk)
´| {z }

=:Gk

−2pTX

1CA+
√
N

Z “bF−
X − F−

X

”
d
“bFX − FX

”
| {z }

=:BN

:

Again, each Gk is only random through Xk , while BN
P−→ 0 as N → ∞. Thus,

√
N(bpTX − pTX) and√

N( 1
N

PN
k=1 Gk −2pTX) share the same limiting distribution and we can regard V(G1) as our variance

estimand.
As for

√
N(bpTY − pTY ), we have V(H1) with H1 = F−

Y (Y1) + S−
Y (Y1). In a similar vein, since√

N(bpT − pT ) =
√
N(bp≪ − p≪) −

√
N(
RR bF−−d bF −

RR
F−−dF ), we define the corresponding

variance estimand as V(V1), where V1 = F (X1; Y1) + S(X1; Y1)− F−−(X1; Y1)− S−−(X1; Y1). More
importantly, these asymptotically equivalent statistics u1 = (U1; G1; H1; V1)

′ readily lend themselves to
joint estimation. Indeed, the theoretical asymptotic covariance matrix of the tau probability estimatorbp is simply Σ = E (eu1eu′1), where eu1 = u1 − E (u1). In that regard, one can also easily find the
asymptotic covariance matrix of tau probabilities arising from general multivariate distributions as well.
For instance, supposing the two subscripts (1) and (2) refer to two bp vectors, i.e., bp(1) and bp(2), assessing
the association of a disease progression score and a subjective pain scale in the same patients at time
points 1 and 2, respectively. With u1;(1) and u1;(2) denoting the corresponding asymptotically equivalent
statistics, yielding w1 = (u′1;(1);u

′
1;(2))

′, we can then express the asymptotic covariance matrix of the
estimator (bp′(1); bp′(2))′ by Σ = E (ew1ew′

1), where ew1 = w1 − E (w1).
The next section concerns joint estimation as well, but with respect to the Mann-Whitney parameter

in the context of accumulating data.

Group sequential methodology for the Mann-Whitney parameter

Group sequential methods address the problem of multiplicity issues arising in clinical trials when
performing repeated significance tests as to the same hypothesis on accumulating data. Following the

9



exposition of Jennison and Turnbull (2000), the key tool is the so-called canonical joint distribution. In
that regard, consider the following somewhat informal definition.

Definition 15 (Canonical joint distribution). Suppose a group sequential study with up to K analyses
yields the sequence of test statistics {Z1; : : : ; ZK}. We say these statistics follow the canonical joint
distribution with information levels {I1; : : : ;IK} for the parameter „ if

• (Z1; : : : ; ZK) is multivariate normal;

• E(Zk) = „
p
Ik ; k = {1; : : : ; K} ; and

• Cov(Zk1 ; Zk2) =
p
Ik1=Ik2 ; 1 ≤ k1 ≤ k2 ≤ K:

For readers unfamiliar with the concept of information levels, one may generally think of them as
the inverse variance of the estimator of the parameter „. Now, assuming we wished to test H0 : „ = „0
against H1 : „ ̸= „0, then, the higher the information levels, the closer to the null value the estimate of „
can be while still giving rise to rejection of the null hypothesis. In the context of survival analysis, „ may
refer to a log hazard ratio and {Z1; : : : ; ZK} to log-rank tests. If {Z1; : : : ; ZK} stand for two sample t
tests, then „ is a theoretical mean difference. To better illustrate the canonical joint distribution, I will
now present in more detail the arguably simplest example as given in Jennison and Turnbull (2000).

Example 16 (One sample normal mean). Let Xi
i id∼ N (—; ff2), i = 1; 2; : : : denote the responses of

interest. Suppose we wish to test the hypothesis H0 : — = —0 and that ff2 is known. With nk denoting
the cumulative number of observations available at analysis k ∈ {1; : : : ; K}, we can estimate — by

X̄(k) =
1

nk

nkX
i=1

Xi ∼ N (—;
ff2

nk
)

and define Ik =
˘
V(X̄(k))

¯−1
= nk=ff

2 the information for „ = —−—0 at analysis k . The standardised
test statistics are then given by Zk = (X̄(k) − —0)

√
Ik . Each Zk being a linear combination of the

independent normal variates Xi , the vector (Z1; : : : ; ZK) is multivariate normal. Marginally,

Zk ∼ N („
p
Ik ; 1); k ∈ {1; : : : ; K};

Finally, for k1 ≤ k2, we have

Cov(Zk1 ; Zk2) = Cov({X̄(k1) − —0}
p
Ik1 ; {X̄(k2) − —0}

p
Ik2)

=
p
Ik1
p

Ik2
1

nk1

1

nk2

nk1X
i=1

nk2X
j=1

Cov(Xi ; Xj)

=
p

Ik1
p

Ik2
1

nk1

1

nk2
nk1ff

2 =
p
Ik1
p

Ik2(Ik2)−1 =
p

Ik1=Ik2 :

Thus {Z1; : : : ; ZK} follow the canonical joint distribution with information levels {I1; : : : ;IK} for the
parameter „ = —− —0.

As might be expected, if one replaces ff2 with a consistent estimator, the resulting standardised
statistics would still asymptotically follow the canonical joint distribution. Moreover, one can also drop
the normality assumption, which is the subject of the next proposition. However, to avoid running the
risk that a simple application of the multivariate central limit theorem gets drowned in unnecessarily
complex notation, I will only consider an equally spaced two stage trial. Extending this result to the
general case of multi-stage trials with potentially unequal spacing should be straightforward.

Proposition 17 (Asymptotics of the one sample mean in an equally spaced two stage trial). Let (X‘)‘≥1

denote a sequence of independent and identically distributed real-valued random variables with — =
E(X1) and ff2 = V(X1) < ∞. Let further denote by n ∈ N the first stage sample size and consider
(Y‘)‘≥1, where Y‘ = 1=2 · (X‘ + Xn+‘). Defining the first and second stage sample means, i.e., X̄n =
1
n

Pn
i=1Xi and Ȳn = 1

n

Pn
i=1 Yi =

1
2n

P2n
i=1Xi , it then holds„ √

n
`
X̄n − —

´
√
2n
`
Ȳn − —

´« D−−−→
n→∞

N2 (0;Σ) ; Σ = ff2 ·
„

1
p
1=2p

1=2 1

«
:

10



Proof. The random vectors (X1; Y1); : : : ; (Xn; Yn) being independent and identically distributed with
V(X1) = ff2 and V(Y1) = Cov(X1; Y1) = 1=2 · ff2, the result follows directly from the multivariate
central limit theorem / Cramér-Wold device (see e.g. van der Vaart, 1998; Cramér & Wold, 1936).

Therefore, we can also make use of the canonical joint distribution when considering the Mann-
Whitney parameter. By Proposition 7 and the ensuing discussion of AN at the end of section , we can
easily think of (S2(X1‘))‘≥1 as well as (F1(X2‘))‘≥1 as the sequence of independent and identically
distributed random variables denoted by (X‘)‘≥1 in Proposition 17. The following proposition intends
to give a somewhat more precise account of this result.

Proposition 18 (Group sequential asymptotics regarding the Mann-Whitney parameter). Let X1i
i id∼

F1(x), i = 1; 2; : : : , and X2j
i id∼ F2(x), j = 1; 2; : : : , denote two independent random samples of real-

valued observations and suppose we wish to test the null hypothesis H0 : p = 1=2. With n1k and n2k as
well as bF (k)

1 and bF (k)
2 denoting the corresponding cumulative sample sizes and empirical distribution

functions at analysis k ∈ {1; : : : ; K}, we can estimate the Mann-Whitney parameter p by

bp (k) =

Z bF (k)
1 d bF (k)

2 =
1

n1k

1

n2k

n2kX
j=1

n1kX
i=1

c(X2j ; X1i ):

Moreover, with Ik = {(
R
S2
2dF1 − p2)=n1k + (

R
F 2
1 dF2 − p2)=n2k}−1 and Zk = (bp (k) − 1=2)

√
Ik

denoting the information and the resulting standardised statistic at analysis k ∈ {1; : : : ; K}, we have
that the sequence of statistics {Z1; : : : ; ZK} asymptotically follow the canonical joint distribution with
information levels {I1; : : : ;IK} for the parameter „ = p − 1=2.

Proof. See Nowak et al. (2022a).

The information levels just given are the ones associated with the Brunner-Munzel test (2000) and
can be consistently estimated by

bIk =

 R
(bS(k)

2 )2d bF (k)
1 − (bp (k))2

n1k − 1
+

R
(bF (k)

1 )2d bF (k)
2 − (bp (k))2

n2k − 1

!−1

:

Since the Brunner-Munzel test is known to be too liberal in small samples, one may prefer a version of
the test based on a logit transformed Mann-Whitney parameter, referred to as log win odds test by Nowak
et al. (2022a). On the other hand, one may wish to employ the information levels associated with the
Wilcoxon-Mann-Whitney test. In that case, however, the resulting standardised statistics asymptotically
follow the canonical joint distribution only if both distributions coincide, i.e., if F1 = F2, see Nowak
et al. (2022a). Consequently, we cannot invert the Wilcoxon-Mann-Whitney test to produce repeated
confidence intervals.

With the aid of Proposition 18, I will now provide an approximate power formula for this group
sequential setting.

Proposition 19 (Power regarding the Mann-Whitney parameter in a group sequential design). Let
X1i

i id∼ F1(x), i = 1; 2; : : : , and X2j
i id∼ F2(x), j = 1; 2; : : : , denote two independent random samples of

real-valued observations, where n1k and n2k are the corresponding cumulative sample sizes available
at analysis k ∈ {1; : : : ; K}, Nk = n1k + n2k . Assuming a constant sample size ratio t = n1k=Nk for all
stages k , the information levels are then given by

Ik =
Nkt(1− t)

(1− t)
R
S2
2dF1 + t

R
F 2
1 dF2 − p2

; k ∈ {1; : : : ; K}:

To test the hypothesis H0 : p ≤ 1=2 against H1 : p > 1=2 at a global one-sided nominal significance level
of ¸, let c1; : : : ; cK denote the critical values computed from aK-variate normal distribution with mean
vector 0 and covariance matrix R = (ri j)i ;j=1;:::;K , ri j =

q
Nmin(ki ;kj )=Nmax(ki ;kj ), and error spending

function of choice. The approximate power is then given by

Power ≈ 1− ΦR

“
c1 −

p
I1 · (p − 1=2) ; : : : ; cK −

p
IK · (p − 1=2)

”
;

11



where ΦR denotes the cumulative distribution function of a K-variate normal distribution with mean
vector 0 and covariance matrix R as just specified.

Proof. See Nowak et al. (2022a).

Similar to before, Nowak et al. (2022a) give approximate power formulas for the log win odds and
Wilcoxon-Mann-Whitney tests as well.

With simulation results indicating that all three tests, i.e., Brunner-Munzel, log win odds, and
Wilcoxon-Mann-Whitney, suffer from certain drawbacks, the last manuscript addressing the nonpara-
metric Behrens-Fisher problem in small samples (Nowak et al., 2022b) further explores different ways
to approximate the sampling distribution of the Mann-Whitney parameter. In that regard, the manuscript
reviews variance estimators proposed by Bamber (1975), DeLong, DeLong, and Clarke-Pearson (1988),
Perme and Manevski (2019), Brunner, Happ, and Friedrich (2021), as well as Shirahata (1993). In ad-
dition, the manuscript discusses a permutation method developed by Pauly, Asendorf, and Konietschke
(2016). It turns out that the variance estimator of Perme and Manevski (2019) together with a t approx-
imation and a particular choice of degrees freedom performs best in terms of maintaining the nominal
significance level. However, I arrived at this conclusion by a somewhat crude trial and error approach
based on simulations rather than mathematical arguments or derivations.

12
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Group sequential methods for the
Mann-Whitney parameter

Claus P Nowak1,2, Tobias Mütze3 , and Frank Konietschke1

Abstract
Late phase clinical trials are occasionally planned with one or more interim analyses to allow for early termination or

adaptation of the study. While extensive theory has been developed for the analysis of ordered categorical data in

terms of the Wilcoxon-Mann-Whitney test, there has been comparatively little discussion in the group sequential litera-

ture on how to provide repeated confidence intervals and simple power formulas to ease sample size determination.

Dealing more broadly with the nonparametric Behrens-Fisher problem, we focus on the comparison of two parallel treat-

ment arms and show that the Wilcoxon-Mann-Whitney test, the Brunner-Munzel test, as well as a test procedure based

on the log win odds, a modification of the win ratio, asymptotically follow the canonical joint distribution. In addition to

developing power formulas based on these results, simulations confirm the adequacy of the proposed methods for a

range of scenarios. Lastly, we apply our methodology to the FREEDOMS clinical trial (ClinicalTrials.gov Identifier:

NCT00289978) in patients with relapse-remitting multiple sclerosis.

Keywords
Brunner-Munzel test, error spending, group sequential methods, nonparametric relative effect, Wilcoxon-Mann-Whitney

test, win odds

1 Introduction
Since it is not uncommon for phase III clinical trials to run for a number of years, there is much interest in being able to
assess safety and efficacy while the trial is still ongoing. Unsurprisingly, regulatory authorities (EMA,1 FDA2) point out the
need to adequately address multiplicity issues and give practical guidance on group sequential methods, which allow for
repeated significance testing on accumulating data without inflating the nominal overall type I error rate.

While standard textbooks such as Jennison and Turnbull3, Proschan,4 or Wassmer and Brannath5 primarily discuss con-
tinuous, binary and survival endpoints, the Wilcoxon-Mann-Whitney test6–8 has also been extended to group sequential
settings.9–11 In our view, the estimand most naturally associated with the Wilcoxon-Mann-Whitney test is the probability

p = P(X1 < X2)+ 1/2 · P(X1 = X2),

where X1 ∼ F1 and X2 ∼ F2 denote two independent random variables. The quantity p is called nonparametric relative
effect of X2 with respect to X1, probabilistic index or Mann-Whitney parameter.12–15 Dividing p by its complement pro-
duces

p/(1− p),

the so-called win odds.16 Adding half of the probability of equal outcomes to P(X1 < X2) neatly aligns with Putter’s gen-
eralisation17 of the Wilcoxon-Mann-Whitney test to the case of ties. By the same token, Brunner et al.16 regard the win
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odds to be a tie corrected version of the win ratio P(X1 < X2)/P(X1 > X2), which has recently attracted attention in the
context of time-to-event data,18 continuous endpoints,19 and stratification.20 Of course, if tied values cannot occur
almost surely, that is, if P(X1 = X2) = 0, then p equals P(X1 < X2) and the win odds coincide with the win ratio.

To illustrate the interpretation of the nonparametric relative effect p, let us assume that X1 and X2 refer to outcomes from
treatment arms 1 and 2, respectively, and that lower values point to a more favourable outcome. Then p is nothing but the
probability that patients on arm 1 will fare better than those on arm 2, including 1/2 times the probability of equal out-
comes. Perhaps a little easier to interpret are the win odds. For instance, if p = 0.75, then the odds that a patient on
arm 1 will fare better than one on arm 2 are 3 : 1, with the possibility of equal outcomes equally allocated to the ‘fare
better’ and ‘fare worse’ scenarios.

However, asymptotic results of the Wilcoxon-Mann-Whitney test as commonly employed are only valid if both dis-
tributions coincide, that is, if F1 = F2. Hence the null hypothesis is usually formulated in terms of the distribution func-
tions as well, that is, H0 :F1 = F2 and not the Mann-Whitney parameter p as such. While F1 = F2 implies p = 1/2, the
reverse does not hold. For instance, any two symmetric distributions with the same centre of symmetry, such as two
normal distributions N (0, 1) and N (0, 4), would imply p = 1/2. In essence, the nonparametric Behrens-Fisher
problem addresses the testing problem H0 : p = 1/2, while making no further assumptions on F1 and F2, which is pre-
cisely the scenario that the Brunner-Munzel test12 was developed to deal with. In that regard, unlike the
Wilcoxon-Mann-Whitney test, the limiting distribution of the Brunner-Munzel test is normal with unit variance under
both the null and the alternative hypotheses, thus allowing for test inversion and computation of confidence intervals
for p, which in turn facilitates the derivation of simple power approximations in the group sequential setting.

A key tool in group sequential theory which we will also rely on here is the so-called canonical joint distribution.3–5,21

More precisely, a sequence of K test statistics {Z1, . . . , ZK} with information levels {I 1, . . . , IK} for a single parameter θ
are said to follow the canonical joint distribution if

(i) Z = (Z1, . . . , ZK ) follows a multivariate normal distribution,
(ii) E(Zk ) = θ

���I k
√

, k = 1, . . . , K,
(iii) Cov(Zk1 , Zk2 ) =

���������I k1/I k2

√
, 1 ≤ k1 ≤ k2 ≤ K.

As might be expected, group sequential versions of the nonparametric tests just discussed follow the canonical joint distri-
bution only asymptotically, which is why we will check its applicability for finite sample sizes by way of extensive simulations.

This paper is organised as follows. Section 2 introduces notation and group sequential methods for hypothesis tests
based on the nonparametric relative effect p, with derivations concerning the covariance structure of the corresponding
group sequential statistics Z referred to the appendix. Following a discussion on error spending in Section 3, we set out
results from simulation studies in Section 4 to assess type I error rates for finite sample sizes. Section 5 deals with the retro-
spective application of our proposed methodology to a completed clinical trial, whereas Section 6 outlines how to plan a
group sequential trial with the aid of simple approximate power formulas. More detailed results and technical considera-
tions regarding the simulations are provided in the Supplemental Material.

2 Nonparametric group sequential models
We start with notation from nonparametric theory necessary to develop group sequential models for the
Wilcoxon-Mann-Whitney test, the Brunner-Munzel test and a logit transformed version of the latter, which we refer to
as the log win odds test. With the asymptotic normality of the test statistics at issue already established for the fixed
sample size scenario, a vector Z of such statistics based on accumulating groups of data is asymptotically multivariate
normal by the Crámer-Wold theorem.22 Thus, in order to obtain the asymptotic joint distribution, it remains to properly
define the information levels and derive the expectation and covariance matrix of Z.

2.1 Notation
Let X be a univariate random variable representing real-valued or ordered categorical data, defined on the probability space
(Ω, A, P). Adopting common notation, we denote by

F−(x) = P(X < x) the left-continuous,

F+(x) = P(X ≤ x) the right-continuous,

F(x) = P(X < x)+ 1/2 · P(X = x) the normalised

2 Statistical Methods in Medical Research 0(0)
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version of the cumulative distribution function of X .23,24,12

Now suppose we have a sample of observations X1, . . . , Xn∼
iid
F. Then we call

F̂(x) = 1

n

∑n
j=1

c(x, Xj), c(x, X j) =
0 ifx < Xj

1/2 ifx = Xj

1 ifx > Xj

⎧⎪⎨⎪⎩ ,

the normalised version of the empirical cumulative distribution function. Moreover,

Ri = 1/2+
∑n
j=1

c(Xi, X j), i = 1, . . . , n,

denotes the mid-rank of Xi among the observations X1, . . . , Xn.
For two independent random variables X1 ∼ F1 and X2 ∼ F2, the probability

p = P(X1 < X2)+ 1/2 · P(X1 = X2) =
∫
F1dF2

is called nonparametric relative effect of X2 with respect to X1 (or of F2 with respect to F1). We say that

• X1 tends to smaller values than X2 if p > 1/2,
• X1 tends to larger values than X2 if p < 1/2,
• X1 and X2 are stochastically comparable if p = 1/2.

For a more comprehensive discussion on nonparametric theory we refer to Brunner et al.13

Throughout the remainder of this paper we will focus on a parallel two-arm clinical trial and consider accumulating
responses

X1i∼
iid
F1, i = 1, 2, . . . ,

X2j∼
iid
F2, j = 1, 2, . . . ,

from treatment arms 1 and 2, respectively. Apart from assuming that 0 < p < 1 and that there exists no x such that P(X1i =
x) = 1 or P(X2j = x) = 1, which excludes the degenerate cases of completely separated samples and one-point distribu-
tions, F1 and F2 are otherwise arbitrary.

With n1k and n2k denoting the cumulative number of observations available at analysis k = 1, . . . , K for the respective
treatments, Nk = n1k + n2k , we can estimate the nonparametric relative effect p by

p̂ (k) =
∫
F̂ (k)
1 dF̂ (k)

2 = 1

n1k

1

n2k

∑n2k
j=1

∑n1k
i=1

c(X2j, X1i) = 1

Nk

�R
(k)
2• − �R

(k)
1•

( )
+ 1/2,

with �R
(k)
g• = 1

ngk

∑ngk
i=1 R

(k)
gi , where R

(k)
gi is the mid-rank of Xgi among all observations

X11, . . . , X1n1k , X21, . . . , X2n2k

available at analysis k; g = 1, 2; i = 1, . . . , ngk .
For asymptotic results, we let both sample sizes tend to infinity such that neither vanishes, that is, ngk/Nk → γg > 0 for

both n1k → ∞ and n2k → ∞, g = 1, 2.

2.2 Wilcoxon-Mann-Whitney test allowing for ties
To test the hypothesis H0 :F1 = F2 against H1 :F1 ≠ F2, we employ at each interim analysis k the same test statistic as in
the fixed design, namely

Ẑk = p̂ (k) − 1/2
( ) ���

Î k

√
, k = 1, . . . , K , (1)

Nowak et al. 3
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with estimated information Î k = (Nkn1kn2k)/̂σ2Rk , where

σ̂2Rk =
1

Nk − 1

∑2
g=1

∑ngk
i=1

R(k)
gi − Nk + 1

2

( )2

, k = 1, . . . , K.

It is well known that each Ẑk converges in distribution to a standard normal random variate, provided the null hypothesis is
true.13

To derive the asymptotic joint distribution of Ẑ = (̂Z1, . . . , Ẑk) we need to compute its covariance matrix.
Proceeding in accord with Jennison and Turnbull,3 we first replace the estimated information with its population
version, resulting in

Zk = p̂ (k) − 1/2
( ) ���

I k

√
→
D
H0

N (0, 1), k = 1, . . . , K, (2)

I k = Nkn1kn2k( )/σ2Rk , (3)

where we assume the variance

σ2Rk = Nk Nk − 2( )
∫
F2dF − Nk − 3

4

{ }
− Nk

4

∫
F+ − F−( )

dF (4)

and therefore the true distribution F = F1 = F2 to be known.13 If F is continuous, the information simplifies to

I k = Î k = (12n1kn2k )/(Nk + 1).
Since σ̂2Rk are consistent estimators of σ2Rk , k = 1, . . . , K, the vector of Wilcoxon-Mann-Whitney test

statistics Ẑ has the same limiting distribution as its counterpart Z = (Z1, . . . , ZK ) with the true population infor-
mation. The limiting distribution being multivariate normal, it remains to establish the covariances of the com-
ponents of Z.

Proposition 1. Let Zk and I k be defined as in (2) and (3). Then, for 1 ≤ k1 ≤ k2 ≤ K,

Cov Zk1 , Zk2
( ) = ���������

I k1/I k2

√
.

2.3 Brunner-Munzel test
To test the null hypothesis H0 : p = 1/2 against H1 : p ≠ 1/2, we now compute, analogous to before, for each interim ana-
lysis k the Brunner-Munzel test statistic

Ẑk = p̂ (k) − 1/2
( ) ���

Î k

√
, k = 1, . . . , K , (5)

with estimated information Î k = (̂σ21k/n1k + σ̂22k/n2k )
−1, where

σ̂21k =
1

n22k (n1k − 1)

∑n1k
i=1

R(k)
1i − R(1k)

1i − �R
(k)
1• + n1 + 1

2

( )2

,

σ̂22k =
1

n21k (n2k − 1)

∑n2k
j=1

R(k)
2j − R(2k)

2j − �R
(k)
2• + n2 + 1

2

( )2

,

and R(gk)
gi denotes the mid-rank of Xgi among the observations of the gth treatment group Xg1, . . . , Xgngk available at analysis

k; g = 1, 2; i = 1, . . . , ngk .
For the derivation of the asymptotic covariance, we take an approach similar to before. Once again, we substitute the

estimated information with the true one

Zk = p̂ (k) − 1/2
( ) ���

I k

√
→
D N θ

���
I k

√
, 1

( )
, k = 1, . . . , K ,

θ = p− 1/2,

I k = σ21/n1k + σ22/n2k
( )−1

,

(6)
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where σ21 = V{F2(X1i)} and σ22 = V{(F1(X2j)}. However, since the definition of the variance components σ21 and σ
2
2 is actu-

ally based on an asymptotically equivalent version of the Zks, that is to say,

ZU
k = 1

n2k

∑n2k
j=1

F1 X2j

( )− 1

n1k

∑n1k
i=1

F2 X1i( )
{ } ���

I k

√
→
D N θ

���
I k

√
, 1

( )
, (7)

we compute the covariance accordingly. This result is given in the following proposition.

Proposition 2. Let ZU
k and I k be defined as in (7) and (6). Then, for 1 ≤ k1 ≤ k2 ≤ K,

Cov ZU
k1
, ZU

k2

( )
=

���������
I k1/I k2

√
.

Thus, Î k consistently estimating I k , k = 1, . . . , K, the sequence of Brunner-Munzel test statistics {Ẑ1, . . . , ẐK}
asymptotically follow the canonical joint distribution. In the nonsequential scenario, the test has been shown to be too
liberal for small sample sizes when using standard normal quantiles.12 Analogous to the parametric Behrens-Fisher
problem, they propose a Satterthwaite-Smith-Welch t-approximation25–27 with degrees of freedom estimated by

ν̂k = {̂σ21k/n1k + σ̂22k/n2k}
2

σ̂41k/ n21k n1k − 1( ){ }+ σ̂42k/ n22k n2k − 1( ){ } . (8)

Another way is to employ a variance stabilising transformation, such as the logit function, producing the logarithmised
win odds, which we will explore in the next subsection.

2.4 Log win odds test
To address the liberal behaviour of the Brunner-Munzel test, we now consider

ψ = ln p/ 1− p
( ){ }

,

ψ̂ (k) = ln p̂ (k)/ 1− p̂ (k)
( ){ }

,

at stage k = 1, . . . , K. Consequently, straightforward application of the delta method yields

Ẑk = ψ̂ (k) − 0
( ) ���

Î k

√
→
D N θ

���
I k

√
, 1

( )
, k = 1, . . . , K, (9)

Zk = ψ̂ (k) − 0
( ) ���

I k

√
→
D N θ

���
I k

√
, 1

( )
, k = 1, . . . , K , (10)

with effect θ = ψ − 0 and information levels

I k =
p 1− p
( ){ }2

σ21/n1k + σ22/n2k
,

Î k =
p̂ (k) 1− p̂ (k)

( ){ }2
σ̂21k/n1k + σ̂22k/n2k

,

which is nothing but {p(1− p)}2 times, or { p̂ (k)(1− p̂ (k))}2 times, the information for the corresponding effect p− 1/2
from the Brunner-Munzel test as in Section 2.3. Moreover, Proposition 2 together with the information obtained by the
delta method directly imply that the log win odds test statistics asymptotically follow the canonical joint distribution.

To recapitulate, in all three cases under the respective assumptions, the standardised test statistics {Z1, . . . , ZK} with
information {I 1, . . . , IK} for the parameter θ asymptotically follow the canonical joint distribution. The difference
between the Wilcoxon-Mann-Whitney and Brunner-Munzel tests arises solely from the way in which we define the infor-
mation, both distributions F1 and F2 needing to coincide for the former but not the latter. The log win odds test is nothing
but a Brunner-Munzel test based on the logit transformed nonparametric relative effect p.

Before we investigate the adequacy of the proposed methods by means of simulations, we turn our discussion to error
spending to explain in more detail the manner in which we wish to reject the null hypothesis.
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3 Error spending
Initially, group sequential methods required the number of interim looks to be specified in advance and equally spaced:
Pocock28 considered standard normal test statistics and derived local significance levels (‘stage levels’) which are identical
across all stages, while O’Brien and Fleming29 stage levels are extremely low at the first interim and increase with each
stage in such a way that the final stage level is quite close to the nominal overall significance level α. To avoid having
to specify the time or number of interim looks in advance, Lan and DeMets30 suggested the use of error spending functions,
which we will employ in the simulations.

With statistics and information levels Zk , Ẑk , I k , Î k , k = 1, . . . , K , given as in the previous section, a right-sided group
sequential test for efficacy maintains the nominal significance level α if the stage levels α1, . . . , αK are chosen such that

α = PH0 pk ≤ αk for some k = 1, . . . , K
( )

, (11)

where we regard the repeated p-values pk = 1−Φ(̂Zk), k = 1, . . . , K, to be random variables, Φ denoting the cumulative
distribution function of the standard normal distribution. The null hypothesis is rejected at stage k if pk ≤ αk and the trial is
consequently stopped. We do not, however, set up futility bounds.

To obtain specific stage levels, we split the global α into K positive parts πk (‘α spent at stage k’), k = 1, . . . , K , such
that

∑K
k=1 πk = α and

PH0 p1 > α1, . . . , pk−1 > αk−1, pk ≤ αk
( ) = πk .

To compute the stage levels α1, . . . , αk , we make use of the underlying limiting canonical joint distribution of the sta-

tistics {Ẑ1, . . . , Ẑk} and estimate the covariance of Ẑk and ẐK by
���������
Î k/Imax

√
, k = 1, . . . , K − 1, where Imax is the prespe-

cified information that we believe would be available if the total maximum sample size NK of the trial were observed under
the respective treatment allocation scheme.

The error spending function prescribes precisely how the global α is to be spent across the stages. More formally, an
error spending function is defined as a nondecreasing function f : [0, ∞[ → [0, α] such that f (0) = 0 and f (t) = α for
all t ≥ 1. Then the amount of α allocated to stages k = 1, . . . , K is given by

π1 = f (I 1/IK ),

π2 = f (I k/IK )− f (I k−1/IK ), k = 2, . . . , K.

However, the true information levels are not known in advance. Therefore, we use Imax instead of IK and replace the
other information levels by their estimates,

π1 = f Î 1/Imax

( )
,

π2 = f Î k/Imax

( )
− f Î k−1/Imax

( )
, k = 2, . . . , K − 1,

πK = α− f ÎK−1/Imax

( )
.

As ÎK might turn out to be lower than Imax, the last equation ensures that the full amount of α still available is spent at

the last stage. Moreover, it is important to bear in mind that the information levels Î k are estimated at stage k and remain
unchanged thereafter.

4 Simulations
As the methods developed in Section 2 are of asymptotic nature, we explore their applicability for finite sample sizes in a
range of scenarios. To this end, we simulate the group sequential Wilcoxon-Mann-Whitney, Brunner-Munzel, and log win
odds tests given as in (1), (5), and (9), respectively. Assuming that lower values correspond to more favourable outcomes,
we want to show that treatment 1 is superior to treatment 2, yielding a one-sided efficacy test with H0 : p ≤ 1/2 against
H1 : p > 1/2 and a nominal overall significance level of α = 0.025. In that regard, it is perhaps more natural to view the
Wilcoxon-Mann-Whitney test as a means to test the null hypothesis H0 : p ≤ 1/2 as well, with F1 = F2 constituting a
model assumption under the null.
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To gauge the type I error rate of our proposed methods, we perform 100,000 simulation runs for each scenario, giving
rise to a Monte Carlo error of about 0.0003 based on a 95%-precision interval for a global α = 0.025. Altogether, we
present the results of 120 scenarios for each data generating process, that is all combinations of

• total maximum sample sizes NK = {144, 288, 576, 864, 1008},
• allocation ratios 1 : 1 or 2 : 1 (twice as many patients on treatment arm 1),
• two, three, or four stages, and
• two error spending functions.

More specifically, we consider O’Brien and Fleming29 as well as Pocock28 type error spending functions

fOF (t) = min 2− 2Φ
z1−α/2�

t
√

( )
, α

{ }
,

fPO(t) = min α ln 1+ e− 1( )t{ }, α[ ],
using the information fractions Î k/IK , k = 1, . . . , K to determine the amount of α to be spent since we know the true
maximum information IK . For the subsequent computation of the stage levels, we make use of the command
getDesignGroupSequential() from the R package rpact.31 In addition to using standard normal quantiles for
the Wilcoxon-Mann-Whitney, Brunner-Munzel, and log win odds tests, we compute rejection rates based on the
Satterthwaite-Smith-Welch t-approximation for the Brunner-Munzel test. As is suggested by Jennison and Turnbull3

and Wassmer and Brannath5 to provide satisfactorily accurate results for the two sample t-test, we use the same stage

levels for the t-approximation and change the computation of the repeated p-values only, namely pk = 1− F̂
νk
(̂Zk),

where F̂
νk
denotes the cumulative distribution function of the t-distribution with ν̂k degrees of freedom as in (8).

It might occur that our methods break down, for instance the variance estimate of the Brunner-Munzel test might be zero
in finite samples or the estimated information could actually decrease in a subsequent stage. Since this happened very rarely
and has virtually no influence on the results presented in the main paper, we relegate the discussion on exception handling
to the supplementary material. Moreover, we only report the overall type I error rate here, that is, the relative frequency of
simulation runs, where the null hypothesis could be rejected at some stage. Readers interested in a more detailed presen-
tation of the results such as cumulative rejection rates for each stage are again referred to the supplementary material.

4.1 Normal distribution
First we generated data from normal distributions, namely Xgi∼

iidN (μg , σ
2
g), g = 1, 2, i = 1, . . . , ng, for three different set-

tings as set out in Figures 1 to 3. In case of equal variances, the Wilcoxon-Mann-Whitney test best maintains the nominal
type I error rate for all total maximum sample sizes, whereas the Brunner-Munzel test with or without t-approximation
tends to be too liberal and the log win odds test too conservative for smaller samples sizes. In both heteroskedastic settings,
that is settings 2 and 3, the Wilcoxon-Mann-Whitney test exceeds the nominal significance level across all sample sizes if
the allocation ratio is 1:1. However, if twice as many patients receive treatment 1, then the Wilcoxon-Mann-Whitney test is
far too liberal if the data in treatment 1 is less dispersed than in treatment 2 and far too conservative conversely. Again, this
behaviour is not affected by sample size.

In line with the simulation results of Brunner and Munzel12 for the fixed sample size scenario, the rejection rates pattern
of the other tests are not affected by heteroskedasticity or different allocation schemes.

4.2 Ordinal data
Now we consider ordinal data divided into five categories C1 < C2 < C3 < C4 < C5, with a smaller index pointing to a more
favourable outcome. As in Brunner et al.,16 the probabilities of each category occurring are derived through a latent Beta
distribution: Let Ygi∼

iid
Beta(αg, βg), g = 1, 2, i = 1, . . . , ng, denote a Beta distributed random variable with shape para-

meters αg, βg > 0, such that the expectation and variance of Ygi are given by

E(Ygi) = αg
αg + βg

, V(Ygi) =
αgβg

(αg + βg)
2(αg + βg + 1)

.

Nowak et al. 7

39



Then, the random variable Xgi, g = 1, 2, i = 1, . . . , ng, is defined by

Xgi = Ck if Ygi ∈ 0.2(k− 1), 0.2k
[ ]

for k = 1, . . . , 5.

Consequently, the probability mass function of Xgi is nothing but

P(Xgi = Ck ) = P 0.2(k − 1) ≤ Ygi < 0.2k
{ }

for k = 1, . . . , 5.

We specify three different parameter settings to mimic the homo-/heteroskedasticity pattern for the normal scenarios in
Section 4.1. The results exhibit virtually the same behaviour as the normally distributed responses shown previously and
are therefore included in the online supplementary material.

Figure 1. Normal distribution—Setting 1

Notes: The lines show the relative frequency of the 100000 simulation runs, where the null hypothesis could be rejected at some stage

based on the Brunner-Munzel test (with t-approximation) as in (5), the Wilcoxon-Mann-Whitney test as in (1) and the log win odds test

as in (9) for five different total maximum sample sizes, two error spending functions, up to four stages in total as well as two different

allocation ratios.
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5 FREEDOMS clinical trial
The FREEDOMS clincial trial (ClinicalTrials.gov Identifier: NCT00289978) was a placebo-controlled phase III study
running from January 2006 to July 2009 to analyse the efficacy and safety of fingolimod in patients with
relapsing-remitting multiple sclerosis.32 The primary efficacy endpoint was the annualised relapse rate at 24 months
after baseline evaluation. The definition of a relapse was based on the Expanded Disability Status Scale (EDSS),33 with
values ranging from 0 (normal status) to 10 (death due to multiple sclerosis) and a step size of 0.5, although a value of
0.5 is not possible. Thus, a higher score on the EDSS indicates more severe disability.

In this paper, we focus on the EDSS score at 24 months, its change compared to the baseline (post minus prae), and its
direction of change, that is, whether the EDSS score at 24 month decreased (−1), stayed the same (0), or increased (+1)

Figure 2. Normal distribution—Setting 2

Notes: The lines show the relative frequency of the 100000 simulation runs, where the null hypothesis could be rejected at some stage

based on the Brunner-Munzel test (with t-approximation) as in (5), the Wilcoxon-Mann-Whitney test as in (1) and the log win odds test

as in (9) for five different total maximum sample sizes, two error spending functions, up to four stages in total as well as two different

allocation ratios.
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with respect to the baseline value. To simplify the presentation of the results, we only considered the complete cases data
set, that is, patients where the EDSS score was observed both at baseline and 24 months thereafter. Summary descriptive
statistics depicted in Table 1 reveal in all three cases that, at the end of the trial, the mean EDSS outcome of patients on the
placebo arm is higher and therefore less favourable than for those on the fingolimod 0.5 mg treatment.

While the original design of the FREEDOMS trial did not provide for interim looks, we now retrospectively analyse the
data as though there were two equally spaced stages. More specifically, the first 353 patients on either arm who completed
the 24 month evaluation form the basis of the first stage analysis, while all 706 patients are taken into account at the second
and therefore last stage. As we did in the simulation section, we consider the Wilcoxon-Mann-Whitney test, the
Brunner-Munzel test (with t-approximation) as well as the log win odds test and employ O’Brien and Fleming as well

Figure 3. Normal distribution—Setting 3

Notes: The lines show the relative frequency of the 100000 simulation runs, where the null hypothesis could be rejected at some stage

based on the Brunner-Munzel test (with t-approximation) as in (5), the Wilcoxon-Mann-Whitney test as in (1) and the log win odds test

as in (9) for five different total maximum sample sizes, two error spending functions, up to four stages in total as well as two different

allocation ratios.
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as Pocock type error spending functions. Since we do this analysis retrospectively, we can choose Imax = Î 2. In all scen-
arios the estimated information fractions Î 1/Î 2 are close to 0.5, essentially coinciding with the sample size fraction
353/706.

Analogous to the simulation section, we aim to reject H0 : p ≤ 1/2 at a global significance level of 2.5%. As Tables 2 to
4 demonstrate, we can reject the null hypothesis at some stage in any scenario and conclude that fingolimod treatment is
efficacious. Only the direction of change endpoint leads to early rejection, that is, when using Pocock type stage levels.
Even if the trial could not have been stopped at the interim, second stage p-values in the region of 0.1% would have resulted
in rejection eventually. Consistent with the results from the simulations, the p-values and confidence intervals from differ-
ent tests are fairly close.

6 Planning and sample size considerations
In planning a clinical trial, a careful examination of the power of different scenarios under the alternative appears to be
advisable at any rate. With the nonparametric relative effect p chosen as the efficacy estimand of the primary endpoint,
we now extend and slightly modify the approach to sample size planning for the fixed scenario proposed by Happ
et al.34 to the group sequential setting.

Table 2. Repeated effect estimates, p-values in % based on standard normal and t approximation (T), O’Brien and Fleming (αOF) and
Pocock type (αP) error spending stage levels in %.

Wilcoxon-Mann-Whitney Brunner-Munzel Log win odds

EDSS N Estimate p-value αOF αPO p-value (T) αOF αPO p-value αOF αPO

Month 24 353 0.545 7.20 0.16 1.56 7.19 (7.23) 0.15 1.54 7.29 0.16 1.56

706 0.558 0.34** 2.45 1.38 0.33** (0.33**) 2.45 1.39 0.35** 2.45 1.38

Change 353 0.564 1.60 0.14 1.53 1.60 (1.63) 0.14 1.53 1.69 0.14 1.52

706 0.560 0.21** 2.45 1.39 0.20** (0.21**) 2.45 1.40 0.22** 2.46 1.40

Direction 353 0.565 1.21* 0.15 1.54 1.20* (1.23*) 0.14 1.53 1.28* 0.14 1.53

706 0.563 0.09** 2.45 1.39 0.09** (0.09**) 2.45 1.40 0.10** 2.45 1.40

*Rejection with respect to Pocock type stage level only;
**Rejection with respect to both Pocock and O’Brien and Fleming type stage levels.

Table 3. Repeated 95%-confidence intervals based on Pocock type alpha spending function.

EDSS N Estimate Brunner-Munzel Brunner-Munzel (T) Log win odds

Month 24 353 0.545 0.479 0.610 0.479 0.610 0.478 0.609

706 0.558 0.511 0.606 0.511 0.606 0.511 0.605

Change 353 0.564 0.499 0.628 0.499 0.628 0.499 0.626

706 0.560 0.514 0.605 0.514 0.605 0.514 0.605

Direction 353 0.565 0.503 0.628 0.503 0.628 0.502 0.626

706 0.563 0.519 0.608 0.519 0.608 0.518 0.607

Table 1. Summary descriptive statistics for EDSS data at month 24, month 24 minus baseline (change), and direction of change from the

FREEDOMS clinical trial.

EDSS Treatment n Mean SD Min Median Max

Month 24 Fingolimod 0.5 mg 374 2.269 1.442 0 2 6.5

Placebo 332 2.545 1.507 0 2 7.0

Change Fingolimod 0.5 mg 374 0.004 0.878 −3 0 3.5

Placebo 332 0.131 0.936 −3 0 3.5

Direction Fingolimod 0.5 mg 374 −0.078 0.734 −1 0 1

Placebo 332 0.099 0.769 −1 0 1
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As before, we consider the hypothesis pair H0 : p ≤ 1/2 and H1 : p > 1/2 with a nominal overall significance level of
α = 0.025. To determine the power of a particular alternative, it is convenient to specify the distributions F1 and F2 as
well as a constant sample size ratio t = n1k/Nk for all stages k = 1, . . . , K such that F = tF1 + (1− t)F2 is the distribution
of the whole data ignoring the group structure, which appears in the variance formula (4) of the Wilcoxon-Mann-Whitney
test. If we then choose the sample sizes for the particular stages k = 1, . . . , K , we immediately get the true information
IWMW
k , IBM

k , ILWO
k as given in (3), (6) and (10), respectively. Approximate power formulas for the group sequential

Wilcoxon-Mann-Whitney, Brunner-Munzel and log win odds tests then take the form as provided in the following two
propositions.

Proposition 3 Let c1, . . . , cK denote the critical values computed from a K-variate normal distribution with mean vector 0,

covariance matrix RWMW = (rij)i,j=1,...,K , rij =
���������������������
IWMW
min (ki,k j)/IWMW

max (ki,k j)

√
, and error spending function of choice. Then the

approximate power of the group sequential Wilcoxon-Mann-Whitney test for H1 : p > 1/2 is given by

PowerWMW ≈ 1−ΦR

�������������
IBM
1 /IWMW

1

√
· c1−

�����
IBM
1

√
· p− 1/2
( )

, . . . ,
{ �������������

IBM
K /IWMW

K

√
· cK −

�����
IBM
K

√
· p− 1/2
( )}

,

where ΦR denotes the cumulative distribution function of a K-variate normal distribution with mean vector 0 and covari-
ance matrix R = (rij), rij =

���������������������
Nmin (ki,k j)/Nmax (ki,k j)

√
.

Proposition 4 Let c1, . . . , cK denote the critical values computed from a K-variate normal distribution with mean vector 0,
covariance matrix R = (rij), rij =

���������������������
Nmin (ki,k j)/Nmax (ki,k j)

√
, and error spending function of choice. Then the approximate

Table 4. Repeated 95%-confidence intervals based on O’Brien and Fleming type alpha spending function.

EDSS N Estimate Brunner-Munzel Brunner-Munzel (T) Log win odds

Month 24 353 0.545 0.454 0.635 0.453 0.636 0.454 0.633

706 0.558 0.516 0.601 0.516 0.601 0.516 0.600

Change 353 0.564 0.475 0.652 0.474 0.653 0.474 0.649

706 0.560 0.519 0.601 0.519 0.601 0.518 0.600

Direction 353 0.565 0.479 0.651 0.478 0.652 0.478 0.649

706 0.563 0.524 0.603 0.523 0.603 0.523 0.603

Table 5. Power of the Wilcoxon-Mann-Whitney (WMW), Brunner-Munzel (BM), and log win odds (LWO) tests for an equally spaced

two stage trial with ordinal data as in Section 4.2, p = 0.6, α1 = 0.6974797, β1 = 1, α2 = 3, β2 = 3.

t Test Error spending function N1 N2 Power formula Simulated power (stage one)

0.5 WMW Pocock 142 284 0.80382 0.80352 (0.48612)

0.5 BM Pocock 144 288 0.80231 0.79546 (0.47652)

0.5 LWO Pocock 152 304 0.80213 0.80372 (0.47272)

0.5 WMW O’Brien and Fleming 126 252 0.80008 0.79989 (0.16823)

0.5 BM O’Brien and Fleming 130 260 0.80597 0.79743 (0.19909)

0.5 LWO O’Brien and Fleming 136 272 0.80232 0.80717 (0.12543)

2/3 WMW Pocock 153 306 0.80488 0.80571 (0.46197)

2/3 BM Pocock 132 264 0.80784 0.80016 (0.47790)

2/3 LWO Pocock 138 276 0.80379 0.80569 (0.47236)

2/3 WMW O’Brien and Fleming 135 270 0.80472 0.80364 (0.13013)

2/3 BM O’Brien and Fleming 117 234 0.80417 0.79515 (0.19662)

2/3 LWO O’Brien and Fleming 123 246 0.80242 0.80582 (0.12398)

12 Statistical Methods in Medical Research 0(0)

44



power of the group sequential Brunner-Munzel and log win odds tests for H1 : p > 1/2 is given by

PowerBM ≈ 1−ΦR c1 −
�����
IBM
1

√
· p− 1/2
( )

, . . . , cK −
�����
IBM
K

√
· p− 1/2
( ){ }

,

PowerLWO ≈ 1−ΦR c1 −
������
ILWO
1

√
· ψ , . . . , cK −

������
ILWO
K

√
· ψ

( )
, ψ = ln {p/(1− p)},

respectively, where ΦR denotes the cumulative distribution function of a K-variate normal distribution with mean vector 0
and covariance matrix R as given above.

The critical values c1, . . . , cK as well as ΦR(·) can be easily obtained from the commands
getDesignGroupSequential and pmvnorm of the respective R packages rpact31 and mvtnorm.35 To demon-
strate the adequacy of the formulas just presented, the results of a small simulation study with 100,000 replications
based on the ordinal distribution defined as in Section 4.2 are depicted in Table 5.

7 Discussion
In this paper, we derived group sequential methodology for the Wilcoxon-Mann-Whitney, the Brunner-Munzel, and the
log win odds tests, establishing their convergence in distribution to the canonical joint distribution, with simulation
studies lending further support to the validity of our approach.

If one iswilling both to assume the distributions to be equal under the null and to dispensewith confidence intervals, the group
sequential Wilcoxon-Mann-Whitney test best maintains the nominal significance level, particularly if sample sizes are small.

In the presence of heteroskedasticity, the Wilcoxon-Mann-Whitney test is either too liberal or too conservative depend-
ing on the heteroskedasticity pattern and the sample size allocation ratio. On the other hand, the log win odds test never
exceeds the nominal significance level but does have a somewhat conservative tendency in certain scenarios. Nonetheless,
the log win odds test allows for test inversion to compute confidence limits for the log win odds, which can readily be
converted to the win odds or nonparametric relative effect scales. While the Brunner-Munzel test, with or without
t-approximation, can be inverted in the same manner, it tends to be too liberal, especially in case of small sample sizes.
In light of the fact that the Brunner-Munzel test gives rise to liberal test decisions for nominal significance levels
smaller than 0.05 in the nonsequential setting in small samples, this result is hardly surprising.

In the randomised clinical trial setting, there appears little reason to conclude that distributions under the null are not
identical. Still, if the treatment arms produce heteroskedastic outcomes in the alternative, one may well be led to infer
from the simulation results that the Wilcoxon-Mann-Whitney test might actually turn out to be less powerful than the
log win odds test in certain cases. However, as our case study in Section 5 suggests, the different behaviours of the
tests are presumably negligible when sample sizes are reasonably large.

Care should be taken when adopting our methods for multi-arm trials. While Dunnet-type36 many-to-one comparisons
should not pose particular difficulties, Tukey-type37 all-pairwise comparisons might lead to Efron’s paradox,38–40 that is,
the nonparametric relative effect as defined in this paper may point to nontransitive conclusions. If treatment 1 is more
beneficial than treatment 2 and treatment 2 is more beneficial than treatment 3, then it does not necessarily follow that treat-
ment 1 is more beneficial than treatment 3.

Since the variance estimators require the endpoint at issue to induce a rank representation and therefore all pairwise compar-
isons to be transitive, the methodology presented here does not cover hierarchical composite and possibly censored endpoints in
general termsas discussed inBuyse,41Cantagallo et al.,42 Péron et al.,43 orBuyse andPéron.44However, the idea of linkinggroup
sequential theory with generalised U -statistics45,46 might prove fruitful in extending our approach in this direction.
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Proofs
Proof of Proposition 1.We begin with the derivation of the covariance for the group sequential Wilcoxon-Mann-Whitney test statistics
assuming F = F1 = F2 and allowing for ties. Setting ζij = c(X2j , X1i), we have for 1 ≤ k1 ≤ k2 ≤ K

Cov(Zk1 , Zk2 ) = Cov p̂ (k1) − 1/2
( ) ����

I k1

√
, p̂ (k2) − 1/2
( ) ����

I k2

√{ }
=

����
I k1

√ ����
I k2

√ 1

n1k1

1

n2k1

1

n1k2

1

n2k2

∑n2k1
j=1

∑n1k1
i=1

∑n2k2
j′=1

∑n1k2
i′=1

Cov(ζij, ζi′j′ ).

First, we observe that [E{c(X2j, X1i)}]
2 = (

�
F1dF2)

2 = (
�
FdF)2 = 1/4. Now, with i ≠ i′ and j ≠ j′, there are four cases to distinguish,

that is

Cov ζij, ζi′j′
( ) = 0,

Cov ζij , ζij
( ) = P X1i < X2j

( )+ 1/4 · P X1i = X2j

( )− 1/4

= P X1i < X2j

( )+ 1/2 · P X1i = X2j

( )− 1/4 · P X1i = X2j

( )− 1/4

=
∫
FdF − 1/4

∫
F+ − F−( )

dF − 1/4,

= 1/4− 1/4

∫
F+ − F−( )

dF,

Cov ζij, ζi′j
( ) = E c X2j, X1i

( )
c X2j, X1i′
( ){ }− 1/4

=
∫
E c x, X1i( )c x, X1i′( ){ }dF2(x)− 1/4

=
∫
E c x, X1i( ){ }E c x, X1i′( ){ }dF2(x)− 1/4

=
∫
F2
1dF2 − 1/4 =

∫
F2dF − 1/4,

and by similar arguments, Cov(ζij, ζij′ ) =
�
F2dF − 1/4.

Altogether, there are
• n2k1n1k1 terms with index combination i = i′ and j = j′,
• n2k1n1k1 (n2k2 − 1) terms with i = i′ and j ≠ j′,
• n2k1n1k1 (n1k2 − 1) terms with i ≠ i′ and j = j′,
• n2k1n1k1 (n2k2 − 1)(n1k2 − 1) terms with i ≠ i′ and j ≠ j′.
Thus, if F = F1 = F2 but not necessarily continuous, the quadruple sum reduces to∑n2k2

j′=1

∑n1k2
i′=1

∑n2k1
j=1

∑n1k1
i=1

Cov ζij, ζi′j′
( )

= 1/4− 1/4

∫
F+ − F−( )

dF

{ }
n2k1n1k1 +

∫
F2dF − 1/4

( )
n2k1n1k1 n2k2 − 1

( )+ n2k1n1k1 n1k2 − 1
( ){ }

= n2k1n1k1 1/4− 1/4

∫
F+ − F−( )

dF +
∫
F2dF − 1/4

( )
Nk2 − 2
( ){ }

= n2k1n1k1 Nk2 − 2
( )∫

F2dF − Nk2 − 3

4
− 1/4

∫
F+ − F−( )

dF

{ }

= n2k1n1k1
σ2Rk2
Nk2

.
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Putting everything together, we obtain

Cov Zk1 , Zk2
( ) = ����I k1

√ ����I k2

√ 1

n1k1

1

n2k1

1

n1k2

1

n2k2
n2k1n1k1

σ2Rk2
Nk2

=
����
I k1

√ ����
I k2

√ 1

n1k2

1

n2k2

σ2Rk2
Nk2

=
����
I k1

√ ����
I k2

√
I k2

( )−1=
���������
I k1/I k2

√
.

In case of no ties, three of the four cases discussed above further simplify to Cov(ζij, ζij) = 1/4 and
Cov(ζij, ζi′j) = Cov(ζij, ζij′ ) = 1/12, producing the desired result.
Proof of Proposition 2. As for the Brunner-Munzel test, it holds for k1 ≤ k2,

Cov ZU
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1
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1
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1

n1k2
n1k1σ

2
1

( )
=
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√
,

which concludes the proof.
Proof of Proposition 3. As for the Wilcoxon-Mann-Whitney test, we first consider the fixed design, that is, K = 1, under H1 : p > 1/2.
Adopting the notation from Sections 2 and 6 we have

PowerWMW = P

�������
ÎWMW
1

√
· p̂ (1) − 1/2
( )
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{ }
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�������
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{ }
= P
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1

√
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≥
�������������
IBM
1 /IWMW

1
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{ }
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�����
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≥
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IBM
1 /IWMW

1

√
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�����
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1
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( ){ }

≈ 1−Φ
�������������
IBM
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1

√
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�����
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1

√
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( ){ }

,

since
�����
IBM
1

√
· ( p̂ (1) − p) is approximately standard normal under H1. Setting t = n1k/Nk for all k = 1, . . . , K immediately gives

IBM
k

( )−1= σ21
n1k

+ σ22
n2k

= 1

Nk
· Nk

n1k
· Nk

n2k
· n2kσ21

Nk
+ n1kσ22

Nk

( )
= N−1

k · 1− t( )σ21 + tσ22
t 1− t( ) ,

yielding
�����������
IBM
k1

/IBM
k2

√
= ���������

Nk1/Nk2

√
. The formula for general K follows directly from the canonical joint distribution.

Proof of Proposition 4. The arguments are completely analogous to the ones given for Proposition 3 and are therefore omitted.
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ABSTRACT

While there appears to be a general consensus in the literature on the definition of the estimand
and estimator associated with the Wilcoxon-Mann-Whitney test, it seems somewhat less clear as
to how best to estimate the variance. In addition to the Wilcoxon-Mann-Whitney test, we review
different proposals of variance estimators consistent under both the null hypothesis and the alternative.
Moreover, in case of small sample sizes, an approximation of the distribution of the test statistic
based on the t-distribution, a logit transformation and a permutation approach have been proposed.
Focussing as well on different estimators of the degrees of freedom as regards the t-approximation,
we carried out simulations for a range of scenarios, with results indicating that the performance
of different variance estimators in terms of controlling the type I error rate largely depends on the
heteroskedasticity pattern and the sample size allocation ratio, not on the specific type of distributions
employed. By and large, a particular t-approximation together with Perme and Manevski’s variance
estimator best maintains the nominal significance level

Keywords Brunner-Munzel test, Wilcoxon-Mann-Whitney test

1 Introduction

In the biomedical context, nonparametric methods are frequently indicated by ordered categorical data such as pain or
clinical severity scores. In order to nonparametrically test the null hypothesis of whether two unpaired samples produce
similar outcomes, the Wilcoxon-Mann-Whitney test [Mann and Whitney, 1947, Wilcoxon, 1945, 1947] is arguably the
one most commonly used in practice.

Usually, the estimand related to the Wilcoxon-Mann-Whitney test is defined as the probability

p = P(X1 < X2) + 1/2 · P(X1 = X2),

where X1 ∼ F1 and X2 ∼ F2 denote two independent random variables corresponding to the two samples. The
quantity p is referred to as nonparametric relative effect of X2 with respect to X1 [Brunner and Munzel, 2000, Brunner
et al., 2018], probabilistic index [Thas et al., 2012] or Mann-Whitney parameter [Fay et al., 2018]. In the setting of a
parallel two-arm clinical trial, one may regard the random variables X1 and X2 as responses from treatment arms 1 and
2 respectively. Assuming that lower values imply a more beneficial outcome, one may interpret p as the probability that
a patient on arm 1 will fare better than one on arm 2, including 1/2 times the probability of equal outcomes.

While the literature seems to agree that the most suitable estimator of p, which we will refer to as p̂, are the corresponding
relative frequencies arising from all pairwise comparisons of the sample data, the question of how best to estimate the
variance of p̂ does not appear to be quite that settled.

The variance estimator employed in the Wilcoxon-Mann-Whitney test is unbiased and consistent, but only under the
assumption of equal distributions, i.e., F1 = F2. Hence the Wilcoxon-Mann-Whitney test can neither be inverted to
produce confidence intervals nor does it directly address the nonparametric Behrens-Fisher problem. In that regard,
assume both distribution F1 and F2 are symmetric with the same centre of symmetry but heterskedastic such as two
normal distributions with the same expectation but different variances, yielding a Mann-Whitney parameter of p = 1/2.
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The nonparametric Behrens-Fisher problem in small samples

To test the null hypothesis H0 : p = 1/2, Shirahata [1993] considers a number of variance estimators of p̂ under the
assumption that both distributions F1 and F2 are continuous while Bamber [1975] proposed an unbiased variance
estimator for general F1 and F2, be they continuous, discreet or neither. Moreover, DeLong et al. [1988], Brunner and
Munzel [2000] as well as Perme and Manevski [2019] put forward variance estimators consistent for arbitrary F1 and
F2 as well.

In small samples, Brunner and Munzel [2000] suggest the use of a t-approximation analogous to the Satterthwaite-
Smith-Welch approach [Satterthwaite, 1946, Smith, 1936, Welch, 1937] as regards the parametric Behrens-Fisher
problem. Using different degrees of freedom and different variance estimators allowing for ties, we carry out simulation
studies for a range of scenarios to gauge the performance of the resulting tests in terms of the type I error rate and
power. In addition, we consider a permutation test proposed by Pauly et al. [2016].

This manuscript proceeds as follows. In Section 2 we review nonparametric theory and give definitions of the test
statistics, whose empirical behaviour we examine as regards type I error rates and power in Section 3 and close with a
discussion of the results in Section 4. All proofs and derivations as well as more and more detailed simulation results
are given in the appendix.

2 Nonparametric model

We start with notation from nonparametric theory convenient for stating variance formulas and test statistics. Then we
go over the variance associated with the Wilcoxon-Mann-Whitney test, as well as variance estimators consistent for
arbitrary distributions F1 and F2. For sake of completeness, we will also briefly mention Shirahata’s [1993] formulas.
With the asymptotic normality of the resulting test statistics already established [Brunner et al., 2018], we will discuss
different estimators for the degrees of freedom in a small sample t-approximation as well as as the permutation approach
developed by Pauly et al. [2016].

2.1 Notation

Let X denote a univariate random variable defined on a probability space (Ω,A,P), which stands for real-valued or
ordered categorical responses. As is commonly done, we call

F−(x) = P(X < x) the left-continuous,

F+(x) = P(X ≤ x) the right-continuous,
F (x) = P(X < x) + 1/2 · P(X = x) the normalised

version of the cumulative distribution function of X [Lévy, 1925, Ruymgaart, 1980, Brunner and Munzel, 2000].

For a particular sample of observations X1, . . . , Xn
iid∼ F , we further denote by

F̂ (x) =
1

n

n∑

j=1

c(x,Xj), c(x,Xj) =





0 if x < Xj

1/2 if x = Xj

1 if x > Xj

,

the normalised version of the empirical cumulative distribution function. Moreover, we call

Ri = 1/2 +

n∑

j=1

c(Xi, Xj), i = 1, . . . , n,

the mid-rank of Xi among the observations X1, . . . , Xn.

As for two independent random variables X1 ∼ F1 and X2 ∼ F2, the Mann-Whitney parameter as given in the
Introduction has the following integral representation, i.e.,

p = P(X1 < X2) + 1/2 · P(X1 = X2) =

∫
F1dF2.

We say that

• X1 tends to smaller values than X2 if p > 1/2,

• X1 tends to larger values than X2 if p < 1/2,

2
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The nonparametric Behrens-Fisher problem in small samples

• X1 and X2 are stochastically comparable if p = 1/2.

For a more comprehensive treatment of nonparametric theory we refer to Brunner et al. [2018].

Throughout the remainder of this manuscript we will focus on a parallel two-arm clinical trial with responses

X1i
iid∼ F1, i = 1, . . . , n1,

X2j
iid∼ F2, j = 1, . . . , n2,

from treatment arms 1 and 2 respectively. With N = n1 + n2, we can estimate the nonparametric relative effect p by

p̂ =

∫
F̂1dF̂2 =

1

n1

1

n2

n2∑

j=1

n1∑

i=1

c(X2j , X1i) =
1

N
(R̄2• − R̄1•) + 1/2,

with R̄g• = 1
ng

∑ng

i=1Rgi, g = 1, 2, where Rgi is the mid-rank of Xgi among all N observations
X11, . . . , X1n1

, X21, . . . , X2n2
.

To address the nonparametric Behrens-Fisher problem, we consider the null hypothesis H0 : p = 1/2 against H1 : p 6=
1/2. Unsurprisingly, all resulting test statistics are based on the deviation of the Mann-Whitney parameter estimate from
1/2, i.e.,

p̂− 1/2.

For asymptotic results, we let both sample sizes tend to infinity such that neither vanishes, i.e., ng/N → γg > 0 for both
n1 →∞ and n2 →∞, g = 1, 2. Moreover, we assume 0 < p < 1 and that there exists no x such that P(X11 = x) = 1
or P(X21 = x) = 1, i.e., excluding the degenerate cases of completely separated samples and one-point distributions.

To obtain asymptotic standard normal test statistics, it remains to define suitable estimators of V(p̂), which is the
purpose of the next subsection.

2.2 Variance estimators

Under the assumption of equal distributions, i.e., F = F1 = F2, the variance estimand V(p̂) takes the following form,

σ2
WMW =

σ2
R

Nn1n2
, with σ2

R = N{(N − 2)

∫
F 2dF − N − 3

4
} − N

4

∫
(F+ − F−)dF.

If F = F1 = F2 holds, a consistent and unbiased estimator of the variance σ2
WMW is given by

σ̂2
WMW =

σ̂2
R

Nn1n2
, with σ̂2

R =
N3

N − 1
(

∫
F̂ 2dF̂ − 1/4) =

1

N

2∑

g=1

ng∑

i=1

(Rgi −
N + 1

2
)2, (1)

resulting in TWMW = (p̂− 1/2)/σ̂WMW
D−→ N (0, 1), which is nothing but the Wilcoxon-Mann-Whitney test allowing

for ties [Brunner et al., 2018]. In the context of this manuscript, we feel it more tenable to regard the Wilcoxon-Mann-
Whitney test as a way of testing the null hypothesis formulated in terms of p, i.e., H0 : p = 1/2, whereas F1 = F2

amounts to an additional assumption on the model under the null.

As for arbitrary distributions F1 and F2, Bamber [1975] as well as [Brunner et al., 2021a] provide a formula of the
variance estimand V(p̂), which reads in our notation as

σ2
N =

τ0 + (n2 − 1)τ1 + (n1 − 1)τ2 − (n1 + n2 − 1)p2

n1n2
,

where τ0 = p− 1/4 ·
∫

(F+
1 − F−1 )dF2, τ1 =

∫
(1− F2)2dF1, and τ2 =

∫
F 2
1 dF2.

Bamber [1975] as well as Brunner et al. [2021a] propose an unbiased variance estimator of σ2
N as well, namely,

σ̂2
N =

n2τ̂1 + n1τ̂2 − τ̂0 − (n1 + n2 − 1)p̂2

(n1 − 1)(n2 − 1)
, (2)

with τ̂0 = p̂− 1/4 ·
∫

(F̂+
1 − F̂−1 )dF̂2, τ̂1 =

∫
(1− F̂2)2dF̂1, and τ̂2 =

∫
F̂ 2
1 dF̂2. For a computationally more efficient

expression of σ̂2
N in terms of ranks, see Brunner et al. [2021a].
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Brunner and Munzel [2000] derived an estimator of σ2
N similar in structure to the variance estimator of the two-sample

t-test under heteroskedasticity, i.e.,

σ̂2
BM =

σ̂2
1

n1
+
σ̂2
2

n2
, where σ̂2

1 =
n1

n1 − 1
(τ̂1 − p̂2) and σ̂2

2 =
n2

n2 − 1
(τ̂2 − p̂2), (3)

with τ̂1 and τ̂2 as given in (2). For a computationally more efficient rank representation of σ̂2
1 and σ̂2

2 , see Brunner and
Munzel [2000]. Note that the estimator σ̂2

BM is identical to the one given in DeLong et al. [1988].

Perme and Manevski [2019] propose yet another estimator for σ2
N , which they refer to as exact, i.e.,

σ̂2
PM =

p̂(1− p̂) + (n2 − 1)σ̂2
1 + (n1 − 1)σ̂2

2

n1n2
, (4)

with σ̂2
1 and σ̂2

2 as just defined in (3).

In the Introduction, we have vaguely hinted at the consistency of the variance estimators. More precisely, the dominating
terms τ̂1, τ̂2, p̂2 are consistent for τ1, τ2, p2 and they converge, as weighted with the sample sizes in σ̂2

N (2), σ̂2
BM (3),

σ̂2
PM (4), to zero in probability with the same speed.

2.3 Shirahata’s formulas for continuous distributions

Assuming that ties cannot occur almost surely, Shirahata [1993] discusses the following four estimators, i.e., an unbiased
one, a bootstrap estimator, an estimator by Fligner and Policello [1981], and a jackknife estimator, which in our notation
read as

σ̂2
U =

n2
∫

(1− F̂−2 )2dF̂1 + n1
∫

(F̂+
1 )2dF̂2 −

∫
F̂+
1 dF̂2 − (n1 + n2 − 1)(

∫
F̂+
1 dF̂2)2

(n1 − 1)(n2 − 1)
,

σ̂2
B =

(n2 − 1)
∫

(1− F̂−2 )2dF̂1 + (n1 − 1)
∫

(F̂+
1 )2dF̂2 +

∫
F̂+
1 dF̂2 − (n1 + n2 − 1)(

∫
F̂+
1 dF̂2)2

n1n2
,

σ̂2
FP =

∫
(1− F̂−2 )2dF̂1

n1
+

∫
(F̂+

1 )2dF̂2

n2
−
∫
F̂+
1 dF̂2 + (n1 + n2 + 1)(

∫
F̂+
1 dF̂2)2

n1n2
,

σ̂2
J =

∫
(1− F̂−2 )2dF̂1

n1 − 1
+

∫
(F̂+

1 )2dF̂2

n2 − 1
− (n1 + n2 − 2)(

∫
F̂+
1 dF̂2)2

(n1 − 1)(n2 − 1)
.

In case of continuous distributions, however, it follows
∫
F̂+
1 dF̂2 =

∫
F̂1dF̂2 = p̂ = τ̂0,

∫
(1 − F̂−2 )2dF̂1 =∫

(1− F̂2)2dF̂1 = τ̂1,
∫

(F̂+
1 )2dF̂2 =

∫
F̂ 2
1 dF̂2 = τ̂2, so that then we can express the variance estimators as follows

σ̂2
U =

n2τ̂1 + n1τ̂2 − τ̂0 − (n1 + n2 − 1)p̂2

(n1 − 1)(n2 − 1)
= σ̂2

N ,

σ̂2
B =

(n2 − 1)τ̂1 + (n1 − 1)τ̂2 + τ̂0 − (n1 + n2 − 1)p̂2

n1n2
,

σ̂2
FP =

τ̂1
n1

+
τ̂2
n2
− τ̂0 + (n1 + n2 + 1)p̂2

n1n2
,

σ̂2
J =

τ̂1
n1 − 1

+
τ̂2

n2 − 1
− (n1 + n2 − 2)p̂2

(n1 − 1)(n2 − 1)
= σ̂2

BM .

2.4 Degrees of freedom

Analogous to the parametric Behrens-Fisher problem, Brunner and Munzel [2000] propose a Satterthwaite-Smith-Welch
t-approximation [Satterthwaite, 1946, Smith, 1936, Welch, 1937] for small samples with degrees of freedom estimated
by

df =
{σ̂2

1/n1 + σ̂2
2/n2}2

σ̂4
1/{n21(n1 − 1)}+ σ̂4

2/{n22(n2 − 1)} , (5)
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where σ̂2
1 and σ̂2

2 are defined as in (3). In addition, we will consider the degrees of freedom

df1 =
{σ̂2

1/(n1 − 1) + σ̂2
2/(n2 − 1)}2

σ̂4
1/{(n1 − 1)2(n1 − 2)}+ σ̂4

2/{(n2 − 1)2(n2 − 2)} , (6)

df2 =
{σ̂2

1/(n1 − 2) + σ̂2
2/(n2 − 2)}2

σ̂4
1/{(n1 − 2)2(n1 − 3)}+ σ̂4

2/{(n2 − 2)2(n2 − 3)} , (7)

df3 =
2

1/(n1 − 1) + 1/(n2 − 1)
, (8)

df4 =
σ̂4
N

σ̂4
1|N/(n1 − 1) + σ̂4

2|N/(n2 − 1)
, (9)

with σ̂2
N as in (2) and σ̂2

1|N = n2τ̂1−1/2·τ̂0−(n2−1/2)p̂2

(n1−1)(n2−1) , σ̂2
2|N = n1τ̂2−1/2·τ̂0−(n1−1/2)p̂2

(n1−1)(n2−1) .

The intuition behind using (6) and (7) in small samples is similar to (5), we merely assume that there were one (or
two) fewer observations in each of the two groups, with σ̂2

1 and σ̂2
2 remaining unchanged as in (5). On the other hand,

formulas (8) and (9) are loosely based on a Box-type [Box, 1954, Brunner et al., 2018] approximation as regards the
unbiased variance estimator.

Another way to address the liberal behaviour of the tests is to employ a variance stabilising transformation, such as the
logit function, or a permutation approach as described in Section 2.5 [Brunner et al., 2018, Pauly et al., 2016].

2.5 Test statistics

Collecting the test statistics with regard to the null hypothesis H0 : p = 1/2 allowing for ties, we have

TWMW = (p̂− 1/2)/σ̂WMW , (10)
TN = (p̂− 1/2)/σ̂N , (11)

TBM = (p̂− 1/2)/σ̂BM , (12)
TPM = (p̂− 1/2)/σ̂PM . (13)

For the Wilcoxon-Mann-Whitney test (10) we use the standard normal distribution to compute p-values, for the other
tests, (11) to (13), a central t-distribution with degrees of freedom given as in (5) to (9). As already alluded to, we will
additionally consider the following test statistics based on a logit transformation using the delta method, i.e.,

T logitN = p̂(1− p̂) · ln{p̂/(1− p̂)}/σ̂N , (14)

T logitBM = p̂(1− p̂) · ln{p̂/(1− p̂)}/σ̂BM , (15)

T logitPM = p̂(1− p̂) · ln{p̂/(1− p̂)}/σ̂PM . (16)

As with the Wilcoxon-Mann-Whitney test, we employ the standard normal distribution to obtain p-values for (14) to
(16).

Moreover, we will make use of the studentised permutation approach suggested by Pauly et al. [2016]. To this end,
we randomly allocate n1 out of the entire N = n1 + n2 observations from the whole sample as originating from
the first distribution F1, with the remaining n2 responses regarded as having been drawn from F2. Repeating this
procedure, say nperm = 10 000 times, and computing one of the test statistics as in (11) to (16) each time, we obtain a
permutation distribution on which to base rejection of the null hypothesis. More formally, we relabel the entire data
(X11, . . . , X1n1

, X21, . . . , X2n2
) =: (X1, . . . , XN ) and define a random variable π uniformly distributed on SN which

is the set of all permutations of 1, . . . , N . For a particular data set at hand, we then use the permuted pooled sample
(Xπ(1), . . . , Xπ(N)) – with the first n1 and last n2 components considered as belonging to samples 1 and 2 respectively
– to compute (11) to (16), yielding the permuted versions

T̃N , T̃BM , T̃PM , T̃
logit
N , T̃ logitBM , T̃ logitPM . (17)

With TN denoting the test statistic as in (11) based on the original data and T̃ 1
N , . . . , T̃

nperm

N the corresponding test
statistics of the nperm random permutations, we calculate the two-sided p-value as follows,

2 min(p1, p2), where p1 =
1

nperm

nperm∑

k=1

1(T̃ kN ≤ TN ) and p2 =
1

nperm

nperm∑

`=1

1(T̃ `N ≥ TN ).

As for the other test statistics, the permutation based p-values are computed in a completely analogous manner.
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3 Simulations

As the methods treated in Section 2 are of asymptotic nature, we explore their applicability for finite sample sizes in a
range of scenarios. In that regard, we consider the null hypothesis H0 : p = 1/2 against H1 : p 6= 1/2 at a two-sided
nominal significance level of α = 0.05. We first present simulation results for the asymptotic tests as defined in (10) to
(16). As far as the test statistics (11) to (13) are concerned, we only report rejection rates for degrees of freedom df2
(7) in the main manuscript as they outperformed the other versions. Simulations of permutation tests as in (17) being
computationally much more expensive, we restrict our focus to some select scenarios as outlined in Section 3.2.

In extreme cases as alluded to earlier, some variance estimates might actually turn out to be zero or negative as would
be the case in two completely separated samples. Since this happened very rarely and has virtually no bearing on the
results, we relegate the discussion of exception handling to the appendix.

3.1 Asymptotic tests

First we generate data from normal distributions, namely Xgi
iid∼ N (µg, σ

2
g), g = 1, 2, i = 1, . . . , ng . To gauge the type

I error rate of the different tests, we set µ1 = µ2 = 0 and perform 100 000 simulation runs for each scenario, giving rise
to a Monte Carlo error of about 0.0006 based on a 95%-precision interval for a nominal significance level of α = 0.05.
The results depicted in Table 1 indicate that Perme and Manveski’s test TPM (13) with df2 degrees of freedom (7) best
maintains the nominal significance level, especially for min(n1, n2) ≥ 15, although the difference from TN (11) as well
as TBM (12) is not particularly pronounced. However, in the heteroskedastic settings, the Wilcoxon-Mann-Whitney
test TWMW (10) is generally either far too liberal or far too conservative depending on sample size allocation. More
precisely, if more patients are allocated to the arm producing less dispersed outcomes, then TWMW (10) becomes
too liberal, and too conservative otherwise. While logit based tests, (14) to (16), virtually never exceed the nominal
significance level, they exhibit a somewhat conservative tendency in many cases. In that regard, we only present power
graphs for the tests TWMW (10) and TN (11), TBM (12), TPM (13) with df2 degrees of freedom (7) as set forth in
Figure 1. Unlike before, the power graphs are based on only 10 000 simulation runs per scenario.

Now we choose an ordinal 5-point-distribution with categories C1 < C2 < C3 < C4 < C5. As in Brunner et al. [2021b],
the probabilities of each category occurring are derived through a latent Beta distribution, i.e., we consider Beta random
variables Ygi

iid∼ B(αg, βg), g = 1, 2, i = 1, . . . , ng, with shape parameters αg, βg > 0, such that the expectation and
variance of Ygi are given by

E(Ygi) =
αg

αg + βg
, V(Ygi) =

αgβg
(αg + βg)2(αg + βg + 1)

.

Then we discretise Ygi to the random variable Xgi, g = 1, 2, i = 1, . . . , ng , as follows

Xgi = Ck if Ygi ∈ [0.2(k − 1), 0.2k[ for k = 1, . . . , 5.

Consequently, the probability mass function of Xgi is nothing but

P(Xgi = Ck) = P(0.2(k − 1) ≤ Ygi < 0.2k) for k = 1, . . . , 5.

Analogous to the normal setting, we consider a homo- and a heteroskedastic scenario as outlined in Table 2. As before,
TPM (13) with df2 degrees of freedom (7) best controls the nominal type I error rate. Moreover, the power graphs in
Figure 2 based on 10 000 simulation runs show a pattern similar to the normal scenarios as well.

3.2 Permutation tests

As for the type I error rate of the permutation tests (17) based on the approach proposed by Pauly et al. [2016], we
examine some of the scenarios as set out in Tables 1 and 2 using nperm = 10 000 random permutations per simulation
run. Bearing in mind that 10 000 simulation runs for each setting give rise to a Monte Carlo error of 0.002 for a
two-sided nominal significance level of α = 0.05, it still seems fair to us to observe in light of the results depicted
in Tables 3 and 4 that Perme and Manevski’s original TPM (13) with degrees of freedom df2 (7) better maintains the
nominal significance level on the whole.

More results as regards similar settings as in Pauly et al. [2016], i.e., exponential and binomial distributions, as well as
some power scenarios for normal and 5-point-distributions are provided in the appendix.
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Table 1: Type I error rates for normal distributions F1 = N (0, σ2
1) and F2 = N (0, σ2

2) based on 100 000 replications
at a two-sided nominal significance level of α = 0.05 as regards the test statistics TWMW (10); TN (11), TBM (12),
TPM (13) with degrees of freedom df2 (7); TLogitN (14), TLogitBM (15), TLogitPM (16)

n1 n2 σ1 σ2 TWMW TN TBM TPM TLogitN TLogitBM TLogitPM
7 7 1 1 0.05318 0.05527 0.04796 0.04304 0.02886 0.02318 0.01860

10 7 1 1 0.04348 0.05428 0.05003 0.04725 0.03545 0.02981 0.02441
7 10 1 1 0.04290 0.05399 0.04975 0.04708 0.03460 0.02899 0.02386

10 10 1 1 0.05320 0.05696 0.05225 0.04856 0.03583 0.02993 0.02710
15 15 1 1 0.05072 0.05651 0.05290 0.05012 0.04067 0.03691 0.03435
30 15 1 1 0.04906 0.05417 0.05183 0.05001 0.04498 0.04234 0.04050
15 30 1 1 0.04911 0.05431 0.05207 0.05004 0.04504 0.04240 0.04044
30 30 1 1 0.04950 0.05306 0.05138 0.04978 0.04510 0.04316 0.04163
15 45 1 1 0.04891 0.05340 0.05167 0.05040 0.04841 0.04624 0.04461
15 60 1 1 0.04889 0.05192 0.05044 0.04945 0.04957 0.04784 0.04641
15 75 1 1 0.04959 0.05292 0.05144 0.05046 0.05219 0.05059 0.04944
45 15 1 1 0.04945 0.05329 0.05150 0.05002 0.04835 0.04644 0.04489
60 15 1 1 0.04930 0.05262 0.05120 0.04995 0.05003 0.04844 0.04697
75 15 1 1 0.04918 0.05164 0.05055 0.04955 0.05100 0.04978 0.04859

7 7 1 3 0.07223 0.04572 0.04206 0.03917 0.02785 0.02442 0.02135
10 7 1 3 0.08066 0.04509 0.04320 0.04175 0.03273 0.02984 0.02716

7 10 1 3 0.04122 0.05091 0.04734 0.04540 0.03058 0.02694 0.02365
10 10 1 3 0.07141 0.05172 0.04893 0.04705 0.03310 0.02961 0.02835
15 15 1 3 0.06833 0.05235 0.05036 0.04926 0.03822 0.03577 0.03434
30 15 1 3 0.10568 0.05111 0.04995 0.04919 0.04008 0.03887 0.03810
15 30 1 3 0.03163 0.05299 0.05111 0.04973 0.04355 0.04140 0.04013
30 30 1 3 0.07001 0.05308 0.05218 0.05124 0.04572 0.04468 0.04372
15 45 1 3 0.01618 0.05185 0.04994 0.04859 0.04490 0.04314 0.04196
15 60 1 3 0.00965 0.05130 0.04978 0.04853 0.04642 0.04473 0.04332
15 75 1 3 0.00616 0.05263 0.05114 0.04978 0.04871 0.04720 0.04593
45 15 1 3 0.12749 0.05153 0.05080 0.05041 0.04236 0.04145 0.04075
60 15 1 3 0.14104 0.05116 0.05044 0.05000 0.04224 0.04145 0.04093
75 15 1 3 0.14588 0.05068 0.05009 0.04973 0.04233 0.04171 0.04134

7 7 1 5 0.08821 0.03694 0.03496 0.03319 0.02367 0.02168 0.02000
10 7 1 5 0.09850 0.03648 0.03563 0.03504 0.02702 0.02500 0.02380

7 10 1 5 0.04932 0.04573 0.04335 0.04229 0.02883 0.02666 0.02399
10 10 1 5 0.08485 0.04618 0.04453 0.04376 0.03061 0.02890 0.02805
15 15 1 5 0.08132 0.05108 0.04987 0.04928 0.03690 0.03543 0.03458
30 15 1 5 0.12597 0.05022 0.04948 0.04907 0.03803 0.03722 0.03669
15 30 1 5 0.03419 0.05207 0.05079 0.04985 0.04309 0.04149 0.04059
30 30 1 5 0.08136 0.05257 0.05186 0.05128 0.04465 0.04387 0.04345
15 45 1 5 0.01548 0.05039 0.04890 0.04800 0.04333 0.04222 0.04151
15 60 1 5 0.00770 0.05111 0.04984 0.04898 0.04580 0.04473 0.04347
15 75 1 5 0.00431 0.05116 0.05003 0.04899 0.04731 0.04634 0.04530
45 15 1 5 0.15064 0.05092 0.05044 0.05015 0.03894 0.03833 0.03791
60 15 1 5 0.16777 0.05023 0.04993 0.04979 0.03828 0.03769 0.03731
75 15 1 5 0.17407 0.05004 0.04986 0.04961 0.03914 0.03882 0.03852
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Normal distributions with µ2 = 0 , σ1 = 1 and σ2 = 1
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Figure 1: Power graphs for normal distributions based on 10 000 simulation runs
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Table 2: Type I error rates for the 5-point distributions with latent F1 = B(α1, β1) and F2 = B(5, 4) based on 100 000
replications at a two-sided nominal significance level of α = 0.05 as regards the test statistics TWMW (10); TN (11),
TBM (12), TPM (13) with degrees of freedom df2 (7); TLogitN (14), TLogitBM (15), TLogitPM (16)

n1 n2 α1 β1 TWMW TN TBM TPM TLogitN TLogitBM TLogitPM
7 7 5 4 0.04611 0.05628 0.05045 0.04129 0.03990 0.03889 0.02723

10 7 5 4 0.04761 0.05391 0.05298 0.04431 0.04309 0.04004 0.03127
7 10 5 4 0.04769 0.05457 0.05350 0.04426 0.04320 0.04016 0.03184

10 10 5 4 0.04832 0.05450 0.05316 0.04798 0.04072 0.03944 0.03263
15 15 5 4 0.04875 0.05440 0.05315 0.04910 0.04330 0.04208 0.03741
30 15 5 4 0.04814 0.05212 0.05140 0.04825 0.04591 0.04513 0.04194
15 30 5 4 0.04902 0.05391 0.05315 0.04990 0.04743 0.04668 0.04344
30 30 5 4 0.04857 0.05175 0.05115 0.04875 0.04577 0.04521 0.04266
15 45 5 4 0.04923 0.05258 0.05201 0.04961 0.04996 0.04937 0.04675
15 60 5 4 0.05026 0.05292 0.05248 0.05041 0.05288 0.05231 0.05004
15 75 5 4 0.04959 0.05263 0.05228 0.05055 0.05426 0.05396 0.05188
45 15 5 4 0.04898 0.05186 0.05144 0.04909 0.04942 0.04892 0.04610
60 15 5 4 0.04868 0.05194 0.05142 0.04940 0.05191 0.05136 0.04899
75 15 5 4 0.04856 0.05090 0.05054 0.04906 0.05263 0.05217 0.05033

7 7 1.2071 1 0.05763 0.05126 0.04755 0.04387 0.03552 0.03366 0.02719
10 7 1.2071 1 0.04264 0.05281 0.05086 0.04506 0.03508 0.03298 0.02710

7 10 1.2071 1 0.07446 0.05213 0.05046 0.04612 0.04219 0.03910 0.03381
10 10 1.2071 1 0.05798 0.05432 0.05293 0.04872 0.03863 0.03638 0.03171
15 15 1.2071 1 0.05579 0.05146 0.05031 0.04752 0.04035 0.03912 0.03606
30 15 1.2071 1 0.03218 0.05345 0.05251 0.05029 0.04528 0.04408 0.04154
15 30 1.2071 1 0.08897 0.05188 0.05131 0.04977 0.04529 0.04446 0.04248
30 30 1.2071 1 0.05827 0.05120 0.05065 0.04917 0.04508 0.04436 0.04264
15 45 1.2071 1 0.10304 0.05027 0.04976 0.04876 0.04582 0.04528 0.04399
15 60 1.2071 1 0.11529 0.05152 0.05116 0.05029 0.04857 0.04813 0.04702
15 75 1.2071 1 0.12079 0.05096 0.05064 0.05008 0.04851 0.04815 0.04739
45 15 1.2071 1 0.02028 0.05296 0.05196 0.04966 0.04718 0.04624 0.04375
60 15 1.2071 1 0.01493 0.05145 0.05075 0.04874 0.04806 0.04725 0.04507
75 15 1.2071 1 0.01190 0.05180 0.05111 0.04917 0.05009 0.04916 0.04721

Table 3: Type I error rates for normal distributions F1 = N (0, σ2
1) and F2 = N (0, σ2

2) at a two-sided nominal
significance level of α = 0.05 for the studentised permutation tests as given in (17) based on 10 000 random permutations
for each of the 10 000 replications

n1 n2 σ1 σ1 T̃N T̃BM T̃PM T̃LogitN T̃LogitBM T̃LogitPM
7 7 1 1 0.0486 0.0492 0.0492 0.0492 0.0482 0.0485
7 10 1 1 0.0473 0.0484 0.0486 0.0471 0.0485 0.0484

10 7 1 1 0.0489 0.0501 0.0502 0.0501 0.0509 0.0498
10 10 1 1 0.0505 0.0507 0.0507 0.0510 0.0505 0.0504
15 15 1 1 0.0507 0.0506 0.0507 0.0500 0.0503 0.0505
15 30 1 1 0.0525 0.0525 0.0523 0.0526 0.0526 0.0526
30 15 1 1 0.0494 0.0494 0.0495 0.0496 0.0496 0.0494
30 30 1 1 0.0526 0.0525 0.0525 0.0523 0.0523 0.0525
15 45 1 1 0.0529 0.0528 0.0529 0.0520 0.0525 0.0525
45 15 1 1 0.0509 0.0510 0.0507 0.0508 0.0510 0.0512

7 7 1 3 0.0477 0.0546 0.0553 0.0381 0.0388 0.0396
7 10 1 3 0.0421 0.0439 0.0466 0.0415 0.0435 0.0445

10 7 1 3 0.0602 0.0638 0.0651 0.0410 0.0414 0.0418
10 10 1 3 0.0563 0.0579 0.0603 0.0494 0.0514 0.0533
15 15 1 3 0.0520 0.0529 0.0538 0.0468 0.0485 0.0500
15 30 1 3 0.0436 0.0445 0.0448 0.0474 0.0480 0.0485
30 15 1 3 0.0548 0.0561 0.0567 0.0436 0.0453 0.0469
30 30 1 3 0.0521 0.0531 0.0535 0.0499 0.0512 0.0516
15 45 1 3 0.0430 0.0431 0.0432 0.0484 0.0487 0.0490
45 15 1 3 0.0542 0.0550 0.0558 0.0403 0.0412 0.0420
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Beta 5−point distribution with β1 = 4 , α2 = 5 and β2 = 4
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Figure 2: Power graphs for Beta 5-point distributions based on 10 000 simulation runs
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Table 4: Type I error rates for the 5-point distributions with latent F1 = B(α1, β1) and F2 = B(5, 4) at a two-sided
nominal significance level of α = 0.05 for the studentised permutation tests as given in (17) based on 10 000 random
permutations for each of the 10 000 replications

n1 n2 α1 β1 T̃N T̃BM T̃PM T̃LogitN T̃LogitBM T̃LogitPM
7 7 5 4 0.0237 0.0235 0.0235 0.0225 0.0223 0.0224
7 10 5 4 0.0306 0.0307 0.0309 0.0316 0.0309 0.0313

10 7 5 4 0.0275 0.0276 0.0279 0.0271 0.0270 0.0273
10 10 5 4 0.0342 0.0337 0.0338 0.0336 0.0338 0.0341
15 15 5 4 0.0421 0.0421 0.0420 0.0418 0.0419 0.0419
15 30 5 4 0.0464 0.0464 0.0467 0.0469 0.0468 0.0463
30 15 5 4 0.0407 0.0407 0.0406 0.0412 0.0412 0.0410
30 30 5 4 0.0490 0.0489 0.0489 0.0487 0.0488 0.0490
15 45 5 4 0.0481 0.0479 0.0478 0.0483 0.0483 0.0483
45 15 5 4 0.0464 0.0464 0.0465 0.0466 0.0464 0.0462

7 7 1.2071 1 0.0365 0.0366 0.0385 0.0319 0.0321 0.0329
7 10 1.2071 1 0.0474 0.0475 0.0483 0.0413 0.0414 0.0422

10 7 1.2071 1 0.0388 0.0401 0.0405 0.0391 0.0398 0.0421
10 10 1.2071 1 0.0486 0.0487 0.0492 0.0450 0.0450 0.0468
15 15 1.2071 1 0.0531 0.0535 0.0543 0.0502 0.0507 0.0521
15 30 1.2071 1 0.0575 0.0576 0.0586 0.0522 0.0525 0.0541
30 15 1.2071 1 0.0501 0.0501 0.0504 0.0524 0.0528 0.0528
30 30 1.2071 1 0.0566 0.0570 0.0571 0.0554 0.0559 0.0562
15 45 1.2071 1 0.0534 0.0536 0.0544 0.0460 0.0462 0.0468
45 15 1.2071 1 0.0440 0.0442 0.0440 0.0475 0.0477 0.0476

4 Discussion

In this manuscript, we reviewed different variance estimators for the Mann-Whitney parameter and, more generally,
different ways of how to approximate its sampling distribution in small samples. To stick to the unbiased variance
estimator appears to be somewhat ill-advised. Indeed, in almost all scenarios Perme and Manevski’s TPM (13) with
degrees of freedom df2 (7) seems preferable in terms of controlling the type I error rate. Of course, Perme and
Manevski’s variance estimator is not unbiased and the particular choice of degrees of freedom lack a sound theoretical
justification, even if they are consistent.

In heteroskedastic settings, the Wilcoxon-Mann-Whitney test TWMW (10) performs poorly, particularly in case of
unequal sample sizes, a pattern which also very slightly emerges when using the permutation approach (17) by Pauly
et al. [2016].

As far as group sequential models for the Mann-Whitney parameter are concerned, it would be interesting to examine
whether the test statistics, in particular TPM (13) with df2 (7), would equally well maintain one-sided nominal
significance levels close to zero and up to 0.025. With that caveat in mind, we would further like to point out that TPM
(13) with df2 (7) works very well for sample sizes min(n1, n2) ≥ 15 for a range of different distributions and tends to
be somewhat conservative in smaller samples.
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Appendix
This appendix consists of two main parts. First, we discuss the different variance estimators, translate them into our
notation and briefly outline our approach to the Box-type degrees of freedom as regards the unbiased variance estimator.
Second, we focus on the simulations, dealing with exception handling and providing more detailed results and results
from settings not considered in the main manuscript.

Part I – Variance estimators and degrees of freedom

First we extend our notation of nonparametric theory, then we discuss the variance estimand and its different estimators.
Lastly, we briefly explain how we arrived at the Box-type formulas of the degrees of freedom.

General notation

Let X denote a random variable representing ordered categorical or real data, defined on some probability space
(Ω,A,P) . Then we define for each possible value x the following versions of distribution functions

F+(x) = P(X ≤ x),

F−(x) = P(X < x),

F (x) = P(X < x) + 1/2 · P(X = x).

Now suppose we have a sample of observations X1, . . . , Xn
iid∼ F (x). The empirical distribution functions then take

the form

F̂+(x) =
1

n

n∑

i=1

c+(x,Xi), c+(x,Xi) =

{
0 if x < Xi

1 if x ≥ Xi
,

F̂−(x) =
1

n

n∑

i=1

c−(x,Xi), c−(x,Xi) =

{
0 if x ≤ Xi

1 if x > Xi
,

F̂ (x) =
1

n

n∑

i=1

c(x,Xi), c(x,Xi) =





0 if x < Xi

1/2 if x = Xi

1 if x > Xi

.

Now we define the nonparametric relative effect and give some of its properties, which we will use in the derivations
later on.

Let Xij ∼ Fi(x), i = 1, 2, j = 1, . . . , ni be independent random variables. Then the nonparametric relative effect is
given by

p = P(X1j < X2j′) + 1/2 · P(X1j = X2j′) =

∫
F1dF2

for all j = 1, . . . , n1 and j′ = 1, . . . , n2. In particular, if F = F1 = F2, then
∫
FdF = 1/2.

LetXij ∼ Fi(x), i = 1, . . . , d, j = 1, . . . , ni be independent real-valued random variables. Then for all i, i′ = 1, . . . , d
as well as j = 1, . . . , ni and j′ = 1, . . . , ni′ it holds

E(F̂i(x)) = E(c(x,Xij)) = Fi(x),

E(F̂i(Xi′j′)) = E(c(Xi′j′ , Xij)) =

∫
FidFi′ .

We will also be using the survival functions
S+(x) = P(X ≥ x),

S−(x) = P(X > x),

S(x) = P(X > x) + 1/2 · P(X = x),

with their empirical counterparts Ŝ+(x), Ŝ−(x), and Ŝ(x) defined accordingly. Note that

E(Ŝi(x)) = E(c(Xij , x)) = Si(x),

E(Ŝi(Xi′j′)) = E(c(Xij , Xi′j′)) =

∫
SidFi′ .
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Variance estimand

In our notation, we have for the general case of arbitrary F1 and F2,

σ2
N = V(p̂) =

τ0 + (n2 − 1)τ1 + (n1 − 1)τ2 − (n1 + n2 − 1)p2

n1n2
,

where

τ0 =

∫
F1dF2 − 1/4 ·

∫
(F+

1 − F−1 )dF2

︸ ︷︷ ︸
=P(X1=X2)=:β

= p− 1/4 · β,

τ1 =

∫
S2
2dF1 =

∫
(1− F2)2dF1,

τ2 =

∫
F 2
1 dF2.

If both distributions coincide, i.e., F1 = F2, and are continuous, then it holds τ0 = 1/2, τ1 = τ2 = 1/3, yielding
σ2
N = n1+n2+1

12n1n2
.

In the unpublished preprint of Brunner et al. [2021a], we find formula (1.9), i.e.,

σ2
N =

(n2 − 1)σ2
1 + (n1 − 1)σ2

2 + p(1− p)− 1/4 · β
n1n2

,

where

σ2
1 = V(F2(X11)) =

∫
{F2 − (1− p)}2dF1 =

∫
(S2 − p)2dF1 =

∫
S2
2dF1 − 2p

∫
S2dF1 + p2 = τ1 − p2,

σ2
2 = V(F1(X21)) =

∫
(F1 − p)2dF2 =

∫
F 2
1 dF2 − 2p

∫
F1dF2 + p2 = τ2 − p2.

So it should be evident that both definitions of σ2
N are equivalent.

Bamber’s [1975] definition of σ2
N , which he calls σ2

a, is equivalent as well. Assuming that X refers to sample 1 and Y
to sample 2, it holds BY Y X = 4τ1 − 4p + 1 as well as BXXY = 4τ2 − 4p + 1. With FX = F1 and FY = F2 and
taking P(Y1, Y2 < X) to mean P(Y1 < X,Y2 < X), we can deduce

BY Y X = P(Y1 < X,Y2 < X) + P(X < Y1, X < Y2)− 2P(Y1 < X < Y2)

=

∫
P(Y1 < x, Y2 < x)dFX(x) +

∫
P(Y1 > x, Y2 > x)dFX(x)− 2

∫
P(Y1 < x, Y2 > x)dFX(x)

=

∫
P(Y1 < x)P(Y2 < x)dFX(x) +

∫
P(Y1 > x)P(Y2 > x)dFX(x)− 2

∫
P(Y1 < x)P(Y2 > x)dFX(x)

=

∫
{F−Y (x)}2dFX(x) +

∫
{S−Y (x)}2dFX(x)− 2

∫
{F−Y (x)S−Y (x)}dFX(x)

=

∫
{S−Y (x)− F−Y (x)}2dFX(x)

=

∫
{S−Y (x) + 1/2 · P(Y = x)− F−Y (x)− 1/2 · P(Y = x)}2dFX(x)

=

∫
{SY (x)− FY (x)}2dFX(x)

=

∫
{2SY (x)− 1}2dFX(x)

= 4

∫
S2
Y dFX − 4

∫
SY dFX + 1

= 4

∫
S2
2dF1 − 4

∫
S2dF1 + 1

= 4τ1 − 4p+ 1.
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By the same token, it holds
BXXY = P(X1 < Y,X2 < Y ) + P(Y < X1, Y < X2)− 2P(X1 < Y < X2)

=

∫
P(X1 < y,X2 < y)dFY (y) +

∫
P(X1 > y,X2 > y)dFY (y)− 2

∫
P(X1 < y,X2 > y)dFY (y)

=

∫
P(X1 < y)P(X2 < y)dFY (y) +

∫
P(X1 > y)P(X2 > y)dFY (y)− 2

∫
P(X1 < y)P(X2 > y)dFY (y)

=

∫
{F−X (y)}2dFY (y) +

∫
{S−X(y)}2dFY (y)− 2

∫
{F−X (y)S−X(y)}dFY (y)

=

∫
{F−X (y)− S−X(y)}2dFY (y)

=

∫
{S−X(y) + 1/2 · P(X = y)− F−X (y)− 1/2 · P(X = y)}2dFY (y)

=

∫
{FX(y)− SX(y)}2dFY (y)

=

∫
{2FX(y)− 1}2dFY (y)

= 4

∫
F 2
XdFY − 4

∫
FXdFY + 1

= 4

∫
F 2
1 dF2 − 4

∫
F1dF2 + 1

= 4τ2 − 4p+ 1.

Note that in our notation NX = n1 and NY = n2 as well as A = p, so that

σ2
a =

1

4NXNY

{
P(X 6= Y ) + (NX − 1)BXXY + (NY − 1)BY Y X − 4(NX +NY − 1)(A− 1/2)2

}

=
1

4n1n2

{
1− β + (n1 − 1)(4τ2 − 4p+ 1) + (n2 − 1)(4τ1 − 4p+ 1)− 4(n1 + n2 − 1)(p− 1/2)2

}

=
(n1 − 1)τ2 + (n2 − 1)τ1 − (n1 + n2 − 1)p2

n1n2

+
1− β − (n1 + n2 − 2)(4p− 1) + 4(n1 + n2 − 1)(p− 1/4)

4n1n2

=
(n1 − 1)τ2 + (n2 − 1)τ1 − (n1 + n2 − 1)p2

n1n2
+

4p− β
4n1n2

=
τ0 + (n1 − 1)τ2 + (n2 − 1)τ1 − (n1 + n2 − 1)p2

n1n2
= σ2

N .

As for Perme and Manevski [2019], they define

V(θ̂) =
θ(1− θ)
mn

+
n− 1

nm
V(SY (X)) +

m− 1

mn
V(SX(Y )),

which in our notation should read as

V(p̂) =
p(1− p)
n1n2

+
n2 − 1

n1n2
V(S−2 (X11)) +

n2 − 1

n1n2
V(S−1 (X21)),

However, this formula assumes that FX and FY are both continuous. Perme and Manevski say as much in the
supplementary material, i.e., “For better clarity of all the derivations, we shall assume that both FX and FY are
continuous (the extension of formulae to the case of ties is then straightforward)”. In the main paper they state “This
work focuses on continuous random variables X and Y . In practice, the data may often be documented on a discrete
scale and thus ties can occur. Therefore, we shall always extend the definition to the case of ties.” Nonetheless, Perme
and Manevski seemingly do not explicitly set out what they consider to be the variance estimand in case of ties. In any
event, in case of continuity we have

V(S−2 (X11)) = V(S2(X11)) = V(1− F2(X11)) = V(F2(X11)) = σ2
1 ,

V(S−1 (X21)) = V(S1(X21)) = V(1− F1(X21)) = V(F1(X21)) = σ2
2 ,

β = 0.
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Thus Perme and Manevski’s formula is equal to our definition of σ2
N so long as both distributions F1 and F2 are

continuous.

Variance estimation

Our plug-in estimators for τ0, τ1, τ2, p2 are given by

τ̂0 = p̂− 1/4 · β̂, with β̂ =
1

n1

1

n2

n2∑

j=1

n1∑

i=1

I(X2j = X1i), I(X2j = X1i) =

{
1 if X2j = X1i

0 if X2j 6= X1i
,

τ̂1 =

∫
Ŝ2
2dF̂1 =

1

n1

n1∑

i=1

{Ŝ2(X1i)}2 =
1

n1

n1∑

i=1

{ 1

n2

n2∑

j=1

c(X2j , X1i)}2,

τ̂2 =

∫
F̂ 2
1 dF̂2 =

1

n2

n2∑

j=1

{F̂1(X2j)}2 =
1

n2

n2∑

j=1

{ 1

n1

n1∑

i=1

c(X2j , X1i)}2,

p̂2 = (

∫
F̂1dF̂2)2 =


 1

n1

1

n2

n2∑

j=1

n1∑

i=1

c(X2j , X1i)




2

.

It can readily be seen that E(τ̂0) = τ0 since p̂ and β̂ are unbiased. As regards τ̂1 and τ̂2, we find

E(τ̂1) =
1

n1

n1∑

i=1

{ 1

n2

1

n2

n2∑

j=1

n2∑

j′=1

E(c(X2j , X1i)c(X2j′ , X1i))}

=
1

n1

1

n2

1

n2

n1∑

i=1

n2∑

j=1

n2∑

j′=1
j′ 6=j

E(c(X2j , X1i)c(X2j′ , X1i)) +
1

n1

1

n2

1

n2

n1∑

i=1

n2∑

j=1

E(c(X2j , X1i)c(X2j , X1i))

=
n2 − 1

n2

∫
S2
2dF1 +

1

n2
E(c(X21, X11)2) =

n2 − 1

n2
τ1 +

1

n2
τ0.

In a similar vein, it follows

E(τ̂2) =
1

n2

n2∑

j=1

{ 1

n1

1

n1

n1∑

i=1

n1∑

i′=1

E(c(X2j , X1i)c(X2j , X1i′))}

=
1

n2

1

n1

1

n1

n2∑

j=1

n1∑

i=1

n1∑

i′=1
i′ 6=i

E(c(X2j , X1i)c(X2j , X1i′)) +
1

n2

1

n1

1

n1

n2∑

j=1

n1∑

i=1

E(c(X2j , X1i)c(X2j , X1i))

=
n1 − 1

n1

∫
F 2
1 dF2 +

1

n1
E(c(X21, X11)2) =

n1 − 1

n1
τ2 +

1

n1
τ0.

As for p̂2, we now look to

E(p̂2) = E(
1

n1

1

n2

n2∑

j=1

n1∑

i=1

c(X2j , X1i)
1

n1

1

n2

n2∑

j′=1

n1∑

i′=1

c(X2j′ , X1i′))

=
1

n1

1

n2

1

n1

1

n2

n2∑

j=1

n1∑

i=1

n2∑

j′=1

n1∑

i′=1

E(c(X2j , X1i)︸ ︷︷ ︸
=:ζij

c(X2j′ , X1i′)︸ ︷︷ ︸
=:ζi′j′

)
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Looking at the quadruple sum produces

n2∑

j′=1

n1∑

i′=1

n2∑

j=1

n1∑

i=1

E(ζijζi′j′)

=

n2∑

j′=1

n1∑

i′=1

n2∑

j=1
j 6=j′

n1∑

i=1
i 6=i′

E(ζijζi′j′) +

n2∑

j′=1

n1∑

i′=1

n2∑

j=1
j 6=j′

E(ζi′jζi′j′) +

n2∑

j′=1

n1∑

i′=1

n1∑

i=1
i 6=i′

E(ζij′ζi′j′) +

n2∑

j′=1

n1∑

i′=1

E(ζi′j′ζi′j′),

= n1n2(n2 − 1)(n1 − 1){
∫
F1dF2}2 + n1n2(n2 − 1)

∫
S2
2dF1 + n1n2(n1 − 1)

∫
F 2
1 dF2 + n1n2E(ζ211).

Therefore, we have

E(p̂2) =
(n2 − 1)(n1 − 1)

n1n2
p2 +

n2 − 1

n1n2
τ1 +

n1 − 1

n1n2
τ2 +

1

n1n2
τ0.

An unbiased estimator of σ2
N should then take the form

σ̂2
N =

n2τ̂1 + n1τ̂2 − τ̂0 − (n1 + n2 − 1)p̂2

(n1 − 1)(n2 − 1)
.

To check the unbiasedness of σ2
N , consider

(n1 − 1)(n2 − 1)E(σ̂2
N )

= n2E(τ̂1) + n1E(τ̂2)− E(τ̂0)− (n1 + n2 − 1)E(p̂2)

= (n2 − 1)τ1 + τ0 + (n1 − 1)τ2 + τ0 − τ0
− n1 + n2 − 1

n1n2
{(n1 − 1)(n2 − 1)p2 + (n2 − 1)τ1 + (n1 − 1)τ2 + τ0}

=

(
1− n1 + n2 − 1

n1n2

)
{τ0 + (n2 − 1)τ1 + (n1 − 1)τ2} −

(n1 − 1)(n2 − 1)

n1n2
(n1 + n2 − 1)p2.

Now since
(

1− n1+n2−1
n1n2

)
= (n1−1)(n2−1)

n1n2
, it follows that E(σ̂2

N ) = σ2
N .

Brunner form of the unbiased variance estimator

Now we want to have a closer look at the estimator in (2.39) derived as in the unpublished preprint of Brunner et al.
[2021a],

σ̂2
N =

1

n1(n1 − 1)n2(n2 − 1)

(
2∑

i=1

ni∑

k=1

(
Rik −R(i)

ik −
[
R̄i• −

ni + 1

2

])2

− n1n2
[
θ̂(1− θ̂)− 1

4
β̂

])
,

where θ̂ =
∫
F̂2dF̂1 = 1− p̂ and β̂ = 1

n1n2

∑n2

j=2

∑n1

i=1 I(X2j = X1i). First recall the following identities as regards
the rank representations,

n2F̂2(X1i) = R1i −R(1)
1i , 1− p̂ =

∫
F̂2dF̂1 =

1

n1

n1∑

i=1

F̂2(X1i) =
1

n2
(R̄1• −

n1 + 1

2
),

n1F̂1(X2j) = R2j −R(2)
2j , p̂ =

∫
F̂1dF̂2 =

1

n2

n2∑

j=1

F̂1(X2j) =
1

n1
(R̄2• −

n2 + 1

2
),

where R(1)
1i and R(2)

2j denote the so-called internal ranks with respect to the first and second sample. That is to say R(1)
1i

is the mid-rank of X1i among X11, . . . , X1n1
whereas R(2)

2j is the mid-rank of X2j among X21, . . . , X2n2
.
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Together with the equality
∫
F̂ 2
2 dF̂1 − (

∫
F̂2dF̂1)2 =

∫
(1− Ŝ2)2dF̂1 − (1−

∫
Ŝ2dF̂1)2

= 1 +

∫
Ŝ2
2dF̂1 − 2

∫
Ŝ2dF̂1 − {1 + (

∫
Ŝ2dF̂1)2 − 2

∫
Ŝ2dF̂1}

=

∫
Ŝ2
2dF̂1 − (

∫
Ŝ2dF̂1)2

=

∫
Ŝ2
2dF̂1 − p̂2,

this produces

n1∑

i=1

(
R1i −R(1)

1i −
[
R̄1• −

n1 + 1

2

])2

=

n1∑

i=1

(
n2F̂2(X1i)− n2

∫
F̂2dF̂1

)2

= n22

n1∑

i=1

(
F̂2(X1i)−

∫
F̂2dF̂1

)2

= n22n1
1

n1

n1∑

i=1

(
F̂ 2
2 (X1i)− 2F̂2(X1i)

∫
F̂2dF̂1 + (

∫
F̂2dF̂1)2

)

= n22n1{
∫
F̂ 2
2 dF̂1 − (

∫
F̂2dF̂1)2} = n22n1{

∫
Ŝ2
2dF̂1 − p̂2} = n22n1(τ̂1 − p̂2),

n2∑

j=1

(
R2j −R(2)

2j −
[
R̄2• −

n2 + 1

2

])2

=

n2∑

j=1

(
n1F̂1(X2j)− n1

∫
F̂1dF̂2

)2

= n21

n2∑

j=1

(
F̂1(X2j)−

∫
F̂1dF̂2

)2

= n21n2
1

n2

n2∑

j=1

(
F̂ 2
1 (X2j)− 2F̂1(X2j)

∫
F̂1dF̂2 + (

∫
F̂1dF̂2)2

)

= n21n2{
∫
F̂ 2
1 dF̂2 − (

∫
F̂1dF̂2)2} = n21n2{

∫
F̂ 2
1 dF̂2 − p̂2} = n21n2(τ̂2 − p̂2),

θ̂(1− θ̂)− 1

4
β̂

= p̂(1− p̂)− 1

4
β̂ = p̂− 1

4
β̂ − p̂2 = τ̂0 − p̂2.

Now putting everything together we find

σ̂2
N =

n22n1(τ̂1 − p̂2) + n21n2(τ̂2 − p̂2)− n1n2(τ̂0 − p̂2)

n1(n1 − 1)n2(n2 − 1)

=
n2(τ̂1 − p̂2) + n1(τ̂2 − p̂2)− τ̂0 + p̂2

(n1 − 1)(n2 − 1)

=
n2τ̂1 + n1τ̂2 − τ̂0 − (n1 + n2 − 1)p̂2

(n1 − 1)(n2 − 1)
.

Bamber form of the unbiased variance estimator

As to Bamber’s [1975] notation, he labels observations from sample 1 as X1, . . . , XNX
and from sample 2 as

Y1, . . . , YNY
. He then goes on to define an estimator for BY Y X , that is

bY Y X = p(Y1, Y2 < X) + p(X < Y1, Y2)− 2p(Y1 < X < Y2),
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where

p(Y1, Y2 < X) =
1

NXNY (NY − 1)

NX∑

i=1

NY∑

j=1

NY∑

j′=1
j′ 6=j

I(Yj < Xi)I(Yj′ < Xi)

=
1

NXNY (NY − 1)





NX∑

i=1



NY∑

j=1

I(Yj < Xi)




2

−
NX∑

i=1

NY∑

j=1

I(Yj < Xi)





=
NY

NX(NY − 1)

NX∑

i=1

{F̂−Y (Xi)}2 −
∑NX

i=1

∑NY

j=1 I(Yj < Xi)

NXNY (NY − 1)
,

p(X < Y1, Y2) =
1

NXNY (NY − 1)

NX∑

i=1

NY∑

j=1

NY∑

j′=1
j′ 6=j

I(Yj > Xi)I(Yj′ > Xi)

=
1

NXNY (NY − 1)





NX∑

i=1



NY∑

j=1

I(Yj > Xi)




2

−
NX∑

i=1

NY∑

j=1

I(Yj > Xi)





=
NY

NX(NY − 1)

NX∑

i=1

{Ŝ−Y (Xi)}2 −
∑NX

i=1

∑NY

j=1 I(Yj > Xi)

NXNY (NY − 1)
,

p(Y1 < X < Y2) =
1

NXNY (NY − 1)

NX∑

i=1

NY∑

j=1

NY∑

j′=1
j′ 6=j

I(Yj < Xi)I(Yj′ > Xi)

=
1

NXNY (NY − 1)




NX∑

i=1

NY∑

j=1

NY∑

j′=1

I(Yj < Xi)I(Yj′ > Xi)−
NX∑

i=1

NY∑

j=1

I(Yj < Xi)I(Yj > Xi)





=
NY

NX(NY − 1)

NX∑

i=1

{F̂−Y (Xi)Ŝ
−
Y (Xi)}.

Further note that he calls uX =
∑NY

j=1 I(Yj < X) and vX =
∑NY

j=1 I(Yj > X).

Similar to before, it holds for each i ∈ {1, . . . , NX} that

{Ŝ−Y (Xi)}2 + {F̂−Y (Xi)}2 − 2F̂−Y (Xi)Ŝ
−
Y (Xi)

= {Ŝ−Y (Xi)− F̂−Y (Xi)}2 = {Ŝ−Y (Xi) +
1

2

NX∑

j=1

I(Yj = Xi)− F̂−Y −
1

2

NX∑

j=1

I(Yj = Xi)}2

= {ŜY (Xi)− F̂Y (Xi)}2 = {2ŜY (Xi)− 1}2

= 4Ŝ2
Y (Xi)− 4ŜY (Xi) + 1.

Therefore it follows,

bY Y X =
NY

NY − 1
{4
∫
Ŝ2
Y dF̂X − 4

∫
ŜY dF̂X + 1} − 1− β̂

NY − 1

=
n2

n2 − 1
{4
∫
Ŝ2
2dF̂1 − 4

∫
Ŝ2dF̂1 + 1} − 1− β̂

n2 − 1

=
n2

n2 − 1
{4τ̂1 − 4p̂+ 1} − 1− β̂

n2 − 1
.

By the same arguments, it should then hold

bXXY =
n1

n1 − 1
{4τ̂2 − 4p̂+ 1} − 1− β̂

n1 − 1
.
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Now putting everything together we again find

s2a =
p(X 6= Y ) + (NX − 1)bXXY + (NY − 1)bY Y X − 4(NX +NY − 1)(a− 1/2)2

4(NX − 1)(NY − 1)

=
1− β̂ + n1(4τ̂2 − 4p̂+ 1)− 1 + β̂ + n2(4τ̂1 − 4p̂+ 1)− 1 + β̂ − 4(n1 + n2 − 1)(p̂− 1/2)2

4(n1 − 1)(n2 − 1)

=
n1τ̂2 + n2τ̂1 − (n1 + n2 − 1)p̂2

(n1 − 1)(n2 − 1)

+
β̂ − 4p̂(n1 + n2) + 4p̂(n1 + n2 − 1) + n1 + n2 − 1− (n1 + n2 − 1)

4(n1 − 1)(n2 − 1)

=
n1τ̂2 + n2τ̂1 − (n1 + n2 − 1)p̂2

(n1 − 1)(n2 − 1)
+

β̂ − 4p̂

4(n1 − 1)(n2 − 1)

=
n1τ̂2 + n2τ̂1 − (n1 + n2 − 1)p̂2 − τ̂0

(n1 − 1)(n2 − 1)
= σ̂2

N .

So we see that Bamber’s definition of the estimator σ̂2
N is equivalent as well.

Perme and Manevski’s estimators

As to Perme and Manevski’s [2019] notation, they have X1, . . . , Xm for sample one and Y1, . . . , Yn for sample 2. They
give two estimators

V̂DL(θ̂) =
1

m
V̂(SY (X)) +

1

n
V̂(SX(Y )),

V̂DLe(θ̂) =
θ̂(1− θ̂)
mn

+
n− 1

mn
V̂(SY (X)) +

m− 1

mn
V̂(SX(Y )),

where

V̂(SY (X)) =
1

m− 1

m∑

i=1

(Vi• − θ̂)2,

V̂(SX(Y )) =
1

n− 1

n∑

j=1

(V•j − θ̂)2,

with Vi• = 1
n

∑n
j=1 Vij , V•j = 1

m

∑m
i=1 Vij where Vij = c(Yj , Xi) according to our notation using the normalised

version of the count function.

So these quantities should equal

Vi• =
1

n

n∑

j=1

Vij =
1

n

n∑

j=1

c(Yj , Xi) = ŜY (Xi) = Ŝ2(X1i),

V•j =
1

m

m∑

i=1

Vij =
1

m

m∑

i=1

c(Yj , Xi) = F̂X(Yj) = F̂1(X2j).
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Therefore, it follows

V̂(SY (X)) =
1

n1 − 1

n1∑

i=1

(Ŝ2(X1i)− p̂)2 =
1

n1 − 1

n1∑

i=1

(Ŝ2
2(X1i)− 2p̂Ŝ2(X1i) + p̂2)

=
n1

n1 − 1
(

∫
Ŝ2
2dF̂1 − 2p̂

∫
Ŝ2dF̂1 + p̂2)

=
n1

n1 − 1
(τ̂1 − p̂2) = σ̂2

1 ,

V̂(SX(Y )) =
1

n2 − 1

n2∑

j=1

(F̂1(X2j)− p̂)2 =
1

n2 − 1

n2∑

j=1

(F̂ 2
1 (X2j)− 2p̂F̂1(X2j) + p̂2)

=
n2

n2 − 1
(

∫
F̂ 2
1 dF̂2 − 2p̂

∫
F̂1dF̂2 + p̂2)

=
n2

n2 − 1
(τ̂2 − p̂2) = σ̂2

2 .

Equipped with these results it follows that

V̂DL(θ̂) = V̂DL(p̂) =
σ̂2
1

n1
+
σ̂2
2

n2
=
τ̂1 − p̂2
n1 − 1

+
τ̂2 − p̂2
n2 − 1

= σ̂2
BM ,

in other words, the variance estimator proposed by DeLong et al. (1988) is identical to Brunner and Munzel’s (2000).
As for the estimator Perme and Manevski call exact, we have

V̂DLe(θ̂) = V̂DLe(p̂) =
p̂(1− p̂) + (n2 − 1)σ̂2

1 + (n1 − 1)σ̂2
2

n1n2

=
p̂(1− p̂)
n1n2

+
(n2 − 1)(τ̂1 − p̂2)

n2(n1 − 1)
+

(n1 − 1)(τ̂2 − p̂2)

n1(n2 − 1)
= σ̂2

PM .

Shirahata’s formulas

Shirahata [1993] only considers continuous distributions, assuming two independent samples X1, . . . , Xm ∼ F (x)
and Y1, . . . , Yn ∼ G(x). To ease the translation of his formulas into our notation, we exchange the samples, i.e, we set
(X1, . . . , Xm) = (X21, . . . , X2n2

) and (Y1, . . . , Yn) = (X11, . . . , X1n1
). Hence F (x) = F2(x) and G(x) = F1(x).

Moreover Shirahata uses the count function u(x) = 1 or 0 according as x ≥ 0 or x < 0. Hence we have the following
equivalence

u(Xi − Yj) =

{
1 if Xi − Yi ≥ 0

0 if Xi − Yi < 0

}
=

{
1 if Xi ≥ Yi
0 if Xi < Yi

}
= c+(Xi, Yj) = c+(X2i, X1j).

Hence the quantities in Section 2 in Shirahata should read in our notation as

ζ11 = θ = E(u(X1 − Y1)) = E(c+(X21, X11)) =

∫
F+
1 dF2,

ζ21 = E(u(X1 − Y1)u(X2 − Y1)) = E(c+(X21, X11)c+(X22, X11))

=

∫
E(c+(X21, x)c+(X22, x))dF1(x)

=

∫
(S+

2 )2dF1,

ζ12 = E(u(X1 − Y1)u(X1 − Y2)) = E(c+(X21, X11)c+(X21, X12))

=

∫
E(c+(x,X11)c+(x,X12))dF2(x)

=

∫
(F+

1 )2dF2,

ζ22 = θ2 = (

∫
F+
1 dF2)2.
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So in case of continuous distributions we have ζ11 = p = τ0, ζ21 =
∫
S2
2dF1 = τ1, ζ22 =

∫
F 2
1 dF2 = τ2, and

ζ22 = p2. Hence in case of no ties, it follows that their formula of the theoretical variance coincides with ours,

σ2 =
1

mn
{ζ11 + (m− 1)ζ21 + (n− 1)ζ12 − (m+ n− 1)ζ22}

=
1

n1n2
{τ0 + (n2 − 1)τ1 + (n1 − 1)τ2 − (n1 + n2 − 1)p2} = σ2

N .

As for the estimator, Shirahata considers the quantities B, C2 and D2, which we will now translate into our notation,
i.e.,

B =

m∑

i=1

n∑

j=1

u(Xi − Yj) =

n2∑

i=1

n1∑

j=1

c+(X2i, X1j) =

n2∑

i=1

n1F̂
+
1 (X2i) = n1n2

∫
F̂+
1 dF̂2,

C2 =

n∑

j=1

(
m∑

i=1

u(Xi − Yj)
)2

=

n1∑

j=1

(
n2∑

i=1

c+(X2i, X1j)

)2

=

n1∑

j=1

n22{Ŝ+
2 (X1j)}2

= n1n
2
2

∫
(Ŝ+

2 )2dF̂1,

D2 =
m∑

i=1




n∑

j=1

u(Xi − Yj)




2

=

n2∑

i=1




n1∑

j=1

c+(X2i, X1j)




2

=

n2∑

i=1

n21{F̂+
1 (X2i)}2

= n21n2

∫
(F̂+

1 )2dF̂2.

Shirahata considers a range of variance estimators, the first one being the unbiased one,

σ̂2
U =

1

m(m− 1)n(n− 1)

(
−m+ n− 1

mn
B2 −B + C2 +D2

)

=
1

n1(n1 − 1)n2(n2 − 1)

(
−n1 + n2 − 1

n1n2
n21n

2
2(

∫
F̂+
1 dF̂2)2 − n1n2

∫
F̂+
1 dF̂2

+ n1n
2
2

∫
(Ŝ+

2 )2dF̂1 + n21n2

∫
(F̂+

1 )2dF̂2

)

=
n2
∫

(Ŝ+
2 )2dF̂1 + n1

∫
(F̂+

1 )2dF̂2 −
∫
F̂+
1 dF̂2 − (n1 + n2 − 1)(

∫
F̂+
1 dF̂2)2

(n1 − 1)(n2 − 1)
.

Their bootstrap estimator is given by

σ̂2
B =

1

m2n2

(
−m+ n− 1

mn
B2 +B +

m− 1

m
C2 +

n− 1

n
D2

)

=
1

n21n
2
2

(
−n1 + n2 − 1

n1n2
n21n

2
2(

∫
F̂+
1 dF̂2)2 + n1n2

∫
F̂+
1 dF̂2

+
n2 − 1

n2
n1n

2
2

∫
(Ŝ+

2 )2dF̂1 +
n1 − 1

n1
n21n2

∫
(F̂+

1 )2dF̂2

)

=
(n2 − 1)

∫
(Ŝ+

2 )2dF̂1 + (n1 − 1)
∫

(F̂+
1 )2dF̂2 +

∫
F̂+
1 dF̂2 − (n1 + n2 − 1)(

∫
F̂+
1 dF̂2)2

n1n2
.

The simple version of the Fligner and Policello [1981] estimator then takes the form

σ̂2
FP =

1

m2n2

(
−m+ n+ 1

mn
B2 −B + C2 +D2

)

=
n2
∫

(Ŝ+
2 )2dF̂1 + n1

∫
(F̂+

1 )2dF̂2 −
∫
F̂+
1 dF̂2 − (n1 + n2 + 1)(

∫
F̂+
1 dF̂2)2

n1n2

=

∫
(Ŝ+

2 )2dF̂1

n1
+

∫
(F̂+

1 )2dF̂2

n2
−
∫
F̂+
1 dF̂2 + (n1 + n2 + 1)(

∫
F̂+
1 dF̂2)2

n1n2
.
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Lastly they consider the jackknife estimator

σ̂2
J =

1

m(m− 1)n(n− 1)

(
−m+ n− 2

mn
B2 − m− 1

m
C2 +

n− 1

n
D2

)

=
1

n1(n1 − 1)n2(n2 − 1)

(
−n1 + n2 − 1

n1n2
n21n

2
2(

∫
F̂+
1 dF̂2)2

+
n2 − 1

n2
n1n

2
2

∫
(Ŝ+

2 )2dF̂1 +
n1 − 1

n1
n21n2

∫
(F̂+

1 )2dF̂2

)

=

∫
(Ŝ+

2 )2dF̂1

n1 − 1
+

∫
(F̂+

1 )2dF̂2

n2 − 1
− (n1 + n2 − 2)(

∫
F̂+
1 dF̂2)2

(n1 − 1)(n2 − 1)
.

Box-type approximation of degrees of freedom

To begin with, we summarise the pertinent results of Box-type [1954] degrees of freedom as developed in Chapter
7.5.1.2 of Brunner et al. [2018].

First, we consider independent normal random variables X11, . . . , X1n1
∼ N (µ1, σ

2
1) as well as X21, . . . , X2n2

∼
N (µ2, σ

2
2), N = n1 + n2, X̄ = (

∑n1

i=1X1i/n1
∑n2

j=1X2j/n2)>. Then we have

SN = Cov(
√
NX̄) =

2⊕

i=1

Nσ2
i /ni = N

(
σ2
1/n1 0
0 σ2

2/n2

)
,

ŜN = N

(
σ̂2
1/n1 0
0 σ̂2

2/n2

)
,

where σ̂2
g = 1

ng−1
∑ng

i=1(Xgi − X̄g•)2, g = 1, 2. Furthermore we will need

Λ =

((
n1 0
0 n2

)
−
(

1 0
0 1

))−1
=

(
1/(n1 − 1) 0

0 1/(n2 − 1)

)
.

As for the contrast matrix (centering matrix), we have

C =

(
1 0
0 1

)
− 1

2

(
1 1
1 1

)
=

1

2

(
1 −1
−1 1

)
,

resulting in

T = C>(CC>)−C = C, DT =
1

2

(
1 0
0 1

)
,

since C is positive semi-definite, symmetric and idempotent.

Then the approximate degrees of freedom for the two sample t test are given by

f0 = [tr (DTSN )]
2
/tr
(
D2
TS2

NΛ
)
, f̂0 =

[
tr
(
DT ŜN

)]2
/tr
(
D2
T Ŝ2

NΛ
)
,

which then simplifies to

DT ŜN =
N

2

(
1 0
0 1

)(
σ̂2
1/n1 0
0 σ̂2

2/n2

)
=
N

2

(
σ̂2
1/n1 0
0 σ̂2

2/n2

)
,

[
tr
(
DT ŜN

)]2
=
N2

4

(
σ̂2
1/n1 + σ̂2

2/n2
)2
,

D2
T Ŝ2

NΛ =
N2

4

(
1 0
0 1

)(
σ̂4
1/n

2
1 0

0 σ̂4
2/n

2
2

)(
1/(n1 − 1) 0

0 1/(n2 − 1)

)

tr
(
D2
T Ŝ2

NΛ
)

=
N2

4

(
σ̂4
1

n21(n1 − 1)
+

σ̂4
2

n22(n2 − 1)

)
,

yielding f̂0 =
(
σ̂2
1/n1 + σ̂2

2/n2
)2
/
(

σ̂4
1

n2
1(n1−1) +

σ̂4
2

n2
2(n2−1)

)
.
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For the degrees of freedom proposed by Brunner and Munzel, the derivation is completely analogous. To
this end, consider X11, . . . , X1n1 ∼ F1 as well as X21, . . . , X2n2 ∼ F2, N = n1 + n2, X̄ =
(
∑n1

i=1 F2(X1i)/n1
∑n2

j=1 F1(X2j)/n2)>. Then we have

SN = Cov(
√
NX̄) =

2⊕

i=1

Nσ2
i /ni = N

(
σ2
1/n1 0
0 σ2

2/n2

)
,

ŜN = N

(
σ̂2
1/n1 0
0 σ̂2

2/n2

)
,

with variances σ2
1 = V(F2(X11)) = τ1 − p2, σ2

2 = V(F1(X21)) = τ2 − p2, and estimators σ̂2
1 = n1

n1−1 (τ̂1 − p̂2) and

σ̂2
2 = n2

n2−1 (τ̂2 − p̂2), yielding f̂0 =
(
σ̂2
1/n1 + σ̂2

2/n2
)2
/
(

σ̂4
1

n2
1(n1−1) +

σ̂4
2

n2
2(n2−1)

)
.

The idea behind the newly adjusted degrees of freedom is to derive them similarly as for the Brunner-Munzel [2000]
test, but using the empirical distribution functions to compute the mean vector instead of the theoretical ones, i.e.,
X̄ = (

∑n1

i=1 F̂2(X1i)/n1
∑n2

j=1 F̂1(X2j)/n2)>.

To obtain the entries of SN = Cov(
√
NX̄), we will first consider the following quantities

ψ2
1 = V(F̂2(X11)) = V(1− Ŝ2(X11)) = V(Ŝ2(X11)) = E((Ŝ2(X11))2)− (E(Ŝ2(X11)))2,

ψ1|1 = Cov(F̂2(X11), F̂2(X12)) = Cov(Ŝ2(X11), Ŝ2(X12)),

ψ2
2 = V(F̂1(X21)) = E((F̂1(X21))2)− (E(F̂1(X21)))2,

ψ2|2 = Cov(F̂1(X21), F̂1(X21)),

ψ12 = Cov(F̂2(X11), F̂1(X21)) = −Cov(Ŝ2(X11), F̂1(X21))

= −E(Ŝ2(X11), F̂1(X21)) + E(Ŝ2(X11))E(F̂1(X21)).

So we now consider

E(Ŝ2(X11)) =
1

n2

n2∑

`=1

E(c(X2`, X11)) =

∫
F1dF2 = p,

E(F̂1(X21)) =
1

n1

n1∑

k=1

E(c(X21, X1k)) =

∫
F1dF2 = p.

Moreover,

E((Ŝ2(X11))2) =
1

n22

n2∑

`=1

n2∑

`′=1

E(c(X2`, X11)c(X2`′ , X11))

=
1

n22

n2∑

`=1

n2∑

`′=1
`′ 6=`

E(c(X2`, X11)c(X2`′ , X11)) +
1

n22

n2∑

`=1

E(c(X2`, X11)c(X2`, X11))

=
n2 − 1

n2

∫
S2
2dF1 +

1

n2
E(c(X21, X11)2) =

n2 − 1

n2
τ1 +

1

n2
τ0,

E(Ŝ2(X11)Ŝ2(X12)) =
1

n22

n2∑

`=1

n2∑

`′=1

E(c(X2`, X11)c(X2`′ , X12))

=
1

n22

n2∑

`=1

n2∑

`′=1
`′ 6=`

E(c(X2`, X11)c(X2`′ , X12)) +
1

n22

n2∑

`=1

E(c(X2`, X11)c(X2`, X12))

=
n2 − 1

n2
p2 − 1

n2

∫
F 2
1 dF2 =

n2 − 1

n2
p2 +

1

n2
τ2,
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E((F̂1(X21))2) =
1

n21

n1∑

k=1

n1∑

k′=1

E(c(X21, X1k)c(X21, X1k′))

=
1

n21

n1∑

k=1

n1∑

k′=1
k′ 6=k

E(c(X21, X1k)c(X21, X1k′)) +
1

n21

n1∑

k=1

E(c(X21, X1k)c(X21, X1k))

=
n1 − 1

n1

∫
F 2
1 dF2 +

1

n2
E(c(X21, X11)2) =

n1 − 1

n1
τ2 +

1

n1
τ0,

E(F̂1(X21)F̂1(X22)) =
1

n21

n1∑

k=1

n1∑

k′=1

E(c(X21, X1k)c(X22, X1k′))

=
1

n21

n1∑

k=1

n1∑

k′=1
k′ 6=k

E(c(X21, X1k)c(X22, X1k′)) +
1

n21

n1∑

k=1

E(c(X21, X1k)c(X22, X1k))

=
n1 − 1

n1
p2dF2 +

1

n2

∫
S2
2dF1 =

n1 − 1

n1
p2 +

1

n1
τ1,

as well as

E(Ŝ2(X11), F̂1(X21)) =
1

n1n2

n1∑

k=1

n2∑

`=1

E(c(X2`, X11)c(X21, X1k))

=
1

n1n2

n1∑

k=2

n2∑

`=2

E(c(X2`, X11)c(X21, X1k)) +
1

n1n2
E(c(X21, X11)c(X21, X11))

+
1

n1n2

n1∑

k=2

E(c(X21, X11)c(X21, X1k)) +
1

n1n2

n2∑

`=2

E(c(X2`, X11)c(X21, X11))

=
(n1 − 1)(n2 − 1)p2 + τ0 + (n1 − 1)τ2 + (n2 − 1)τ1

n1n2
.

Collecting terms, we have

ψ2
1 =

n2 − 1

n2
τ1 +

1

n2
p− 1

4n2
β − p2 =

1

n2

[
(n2 − 1)(τ1 − p2) + p− p2 − 1

4
β

]

=
1

n2

[
(n2 − 1)σ2

1 + p(1− p)− 1

4
β

]
,

ψ2
2 =

n1 − 1

n1
τ2 +

1

n1
p− 1

4n1
β − p2 =

1

n1

[
(n1 − 1)(τ2 − p2) + p− p2 − 1

4
β

]

=
1

n1

[
(n1 − 1)σ2

2 + p(1− p)− 1

4
β

]
,

ψ1|1 =
n2 − 1

n2
p2 +

1

n2
τ2 − p2 =

1

n2
(τ2 − p2) =

1

n2
σ2
2 ,

ψ2|2 =
n1 − 1

n1
p2 +

1

n1
τ1 − p2 =

1

n1
(τ1 − p2) =

1

n1
σ2
1 ,

which are the same terms as in equations (2.32), (2.33), (2.34), and (2.35) of Brunner et al. [2021a] multiplied by either
n22 or n21. Now we turn to

ψ12 = p2 − (n1 − 1)(n2 − 1)p2 + τ0 + (n1 − 1)τ2 + (n2 − 1)τ1
n1n2

= − (n1 − 1)τ2 + (n2 − 1)τ1 + τ0 − (n1 + n2 − 1)p2

n1n2
= −σ2

N = −V(p̂),
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Now, since

V(
1

n1

n1∑

i=1

F̂2(X1i)) =
1

n21

n1∑

i=1

V(F̂2(X1i)) +
1

n21

n1∑

k=1

n1∑

k′=1
k′ 6=k

Cov(F̂2(X1k), F̂2(X1k′))

=
1

n21
n1ψ

2
1 +

1

n21
n1(n1 − 1)ψ1|1

=
1

n1n2

[
(n2 − 1)σ2

1 + p(1− p)− 1

4
β

]
+
n1 − 1

n1n2
σ2
2 = σ2

N ,

V(
1

n2

n2∑

j=1

F̂1(X2j)) =
1

n22

n2∑

j=1

V(F̂1(X2j)) +
1

n22

n2∑

`=1

n2∑

`′=1
`′ 6=`

Cov(F̂1(X2`), F̂1(X2`′))

=
1

n22
n2ψ

2
2 +

1

n22
n2(n2 − 1)ψ2|2

=
1

n1n2

[
(n1 − 1)σ2

2 + p(1− p)− 1

4
β

]
+
n2 − 1

n1n2
σ2
1 = σ2

N ,

and finally

Cov(
1

n1

n1∑

i=1

F̂2(X1i),
1

n2

n2∑

j=1

F̂1(X2j)) =
1

n1n2

n1∑

i=1

n2∑

j=1

Cov(F̂2(X1i), F̂1(X2j)) =
n1n2
n1n2

ψ12 = −σ2
N .

Therefore, we have

SN = Cov(
√
NX̄) = Nσ2

N

(
1 −1
−1 1

)
, ŜN = Nσ̂2

N

(
1 −1
−1 1

)
.

If we are to derive the degrees of freedom in an analogous manner as before, we should get

DT ŜN =
Nσ̂2

N

2

(
1 0
0 1

)(
1 −1
−1 1

)
=
Nσ̂2

N

2

(
1 −1
−1 1

)

[
tr
(
DT ŜN

)]2
= N2σ̂4

N ,

D2
T Ŝ2

NΛ =
N2σ̂4

N

4

(
1 0
0 1

)(
2 −2
−2 2

)(
1/(n1 − 1) 0

0 1/(n2 − 1)

)

=
N2σ̂4

N

2

(
1/(n1 − 1) −1/(n2 − 1)
−1/(n1 − 1) 1/(n2 − 1)

)

tr
(
D2
T Ŝ2

NΛ
)

=
N2σ̂4

N

2

(
1

n1 − 1
+

1

n2 − 1

)
,

yielding f̂0 = 2/
(

1
n1−1 + 1

n2−1

)
.

Furthermore, we now consider a simple heuristic alternative which may be viewed as a middle ground of the Brunner-
Munzel approach and the approach just developed. To this end, recall the Brunner form of the unbiased variance
estimator, i.e.,

σ̂2
N =

1

n1(n1 − 1)n2(n2 − 1)

(
2∑

i=1

ni∑

k=1

(
Rik −R(i)

ik −
[
R̄i• −

ni + 1

2

])2

− n1n2
[
θ̂(1− θ̂)− 1

4
β̂

])
.

We now split this unbiased estimator into two “symmetric” parts,

σ̂2
1|N =

1

n1(n1 − 1)n2(n2 − 1)

(
n1∑

k=1

(
R1k −R(1)

1k −
[
R̄1• −

n1 + 1

2

])2

− 1

2
n1n2

[
θ̂(1− θ̂)− 1

4
β̂

])
,

σ̂2
2|N =

1

n1(n1 − 1)n2(n2 − 1)

(
n2∑

`=1

(
R2` −R(2)

2` −
[
R̄2• −

n2 + 1

2

])2

− 1

2
n1n2

[
θ̂(1− θ̂)− 1

4
β̂

])
,
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such that σ̂2
1|N + σ̂2

2|N = σ̂2
N . Moreover, we artificially set the covariances zero so that now we have

ŜN = N

(
σ̂2
1|N 0

0 σ̂2
2|N

)
.

With this artificial covariance matrix, we now compute the degrees of freedom similar to before,

DT ŜN =
N

2

(
1 0
0 1

)(
σ̂2
1|N 0

0 σ̂2
2|N

)
=
N

2

(
σ̂2
1|N 0

0 σ̂2
2|N

)
,

[
tr
(
DT ŜN

)]2
=
N2

4

(
σ̂2
1|N + σ̂2

2|N

)2
,

D2
T Ŝ2

NΛ =
N2

4

(
1 0
0 1

)(
σ̂4
1|N 0

0 σ̂4
2|N

)(
1/(n1 − 1) 0

0 1/(n2 − 1)

)

tr
(
D2
T Ŝ2

NΛ
)

=
N2

4

(
σ̂4
1|N/(n1 − 1) + σ̂4

2|N/(n2 − 1)
)
,

yielding f̂0 =
(
σ̂2
1|N + σ̂2

2|N

)2
/
(
σ̂4
1|N/(n1 − 1) + σ̂4

2|N/(n2 − 1)
)

= σ̂4
N/
(
σ̂4
1|N/(n1 − 1) + σ̂4

2|N/(n2 − 1)
)

.

Part II – Simulations

Now, we will briefly discuss how we dealt with cases where the variance estimates turned out to be zero or negative.
Thereafter, we will present simulation results in more detail and for more settings than in the main manuscript.

Exception handling

The fact that σ̂2
WMW ≤ 0 can only occur when all outcomes for patients on both treatment arms coincide, that is to say,

x11 = · · · = x1n1
= x21 = · · · = x2n2

,

yielding
∫
F̂ 2dF̂ = 1/4 and consequently σ̂2

WMW = 0. With the Mann-Whitney parameter p remaining unchanged, we
then pretended that the last observation was different,

x11 = · · · = x1n1k
= x21 = . . . 6= x2n2k

,

yielding σ̂2
WMW = 1/4n1n2 and thus TWMW = 0 leading to nonrejection of the null hypothesis. We likewise set

TN and TBM to zero as well in such cases, although we replaced the variances in a different manner, i.e., we always
used max(1/n2

1n
2
2 , σ̂

2
N ) instead of σ̂2

N and max(1/n2
1n

2
2 , σ̂

2
BM ) instead of σ̂2

BM . Note that if all values in both samples
coincide, we would have p̂2 = τ̂0 = τ̂1 = τ̂2 = 1/4, yielding σ̂2

N = σ̂2
BM = 0. Moreover, σ̂2

PM = 1/4n1n2.

These lower bounds for the unbiased and Brunner-Munzel variance estimates are motivated by the opposite degenerate
case, i.e., completely separated samples without ties such as

x11 < · · · < x1n1k
< x21 < · · · < x2n2k

or x11 > · · · > x1n1k
> x21 > · · · > x2n2k

,

such that either p̂2 = τ̂0 = τ̂1 = τ̂2 = 1 or p̂2 = τ̂0 = τ̂1 = τ̂2 = 0, producing σ̂2
N = σ̂2

BM = σ2
PM = 0. Taking

a similar approach as before (see also Brunner et al. 2018 and 2021a), we then pretended the sample was slightly
different, i.e.,

x11 < · · · < x1(n1−1) < x21 < x1n1 < x22 < · · · < x2n2k
,

or
x11 > · · · > x1(n1−1) > x21 > x1n1

> x22 > · · · > x2n2k
,

yielding a slight change in the effect estimate p̂ = 1− 1/n1n2 or p̂ = 1/n1n2 respectively. In this changed settings, we
would have σ̂2

N = σ̂2
BM = 1/n2

1n
2
2. As regards the logit transformation, we employed the changed Mann-Whitney effect

estimates as well so that the resulting test statistics would not be undefined. As for Perme and Manveski’s [2019]
approach in completely separated samples, we used their new “shift method” to construct confidence intervals for p and
rejected the null hypothesis if and only if the number 1/2 was not an element of this confidence interval.

As far as the degrees of freedom in separated samples are concerned, we assumed σ̂2
1 = σ̂2

2 > 0, giving rise to
df = {N2(n1 − 1)(n2 − 1)}/{n21(n1 − 1) + n22(n2 − 1)}. The other degrees of freedom were chosen accordingly.

However, since we only considered scenarios with min(n1, n2) ≥ 7, one might just as well have opted to always reject
the null hypothesis in case of completely separated samples and never to reject it when all values coincide – no matter
which test statistic is at issue. It would have virtually never resulted in a different decision.
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More simulation results – Tables and Graphs

Tables 5 to 12 show more detailed simulation results in terms of type I error rates for scenarios already treated in the
main manuscript, while Table 13 reports type I error rates for Pauly et al.’s studentised permutation approach [2016]
for exponential and binomial distributions not considered before. Figures 3 to 15 depict power curves for a range of
distributions, whereas Tables 14 to 16 provide power results for Pauly et al.’s studentised permutation approach as
regards a Mann-Whitney effect of p = 0.7.

Table 5: Mean variance estimates as regards normal distributions F1 = N (0, σ2
1) and F2 = N (0, σ2

2) based
on 100 000 replications, with V(p̂) and sep denoting the true variance estimand and the relative frequency of
the occurrence of completely separated samples respectively

n1 n2 σ1 σ2 V(p̂) σ̂2
N σ̂2

WMW σ̂2
BM σ̂2

PM sep
7 7 1 1 0.02551020 0.02551208 0.02551020 0.02721286 0.02790682 0.00057

10 7 1 1 0.02142857 0.02142512 0.02142857 0.02261603 0.02321162 0.00009
7 10 1 1 0.02142857 0.02145043 0.02142857 0.02264110 0.02323616 0.00011

10 10 1 1 0.01750000 0.01749250 0.01750000 0.01832616 0.01881817 0.00000
15 15 1 1 0.01148148 0.01147906 0.01148148 0.01184935 0.01211924 0.00000
30 15 1 1 0.00851852 0.00851658 0.00851852 0.00870183 0.00884963 0.00000
15 30 1 1 0.00851852 0.00851616 0.00851852 0.00870137 0.00884913 0.00000
30 30 1 1 0.00564815 0.00564761 0.00564815 0.00574021 0.00582036 0.00000
15 45 1 1 0.00753086 0.00752970 0.00753086 0.00765317 0.00775451 0.00000
15 60 1 1 0.00703704 0.00703405 0.00703704 0.00712667 0.00720374 0.00000
15 75 1 1 0.00674074 0.00674097 0.00674074 0.00681506 0.00687722 0.00000
45 15 1 1 0.00753086 0.00752664 0.00753086 0.00765009 0.00775143 0.00000
60 15 1 1 0.00703704 0.00703678 0.00703704 0.00712939 0.00720646 0.00000
75 15 1 1 0.00674074 0.00674270 0.00674074 0.00681678 0.00687894 0.00000
7 7 1 3 0.02887661 0.02888177 0.02551020 0.03002283 0.03024767 0.00192

10 7 1 3 0.02785149 0.02784806 0.02142857 0.02864640 0.02885283 0.00100
7 10 1 3 0.02089686 0.02089052 0.02142857 0.02169008 0.02199699 0.00017

10 10 1 3 0.01997431 0.01997592 0.01750000 0.02053410 0.02078088 0.00010
15 15 1 3 0.01319212 0.01319536 0.01148148 0.01344344 0.01359980 0.00000
30 15 1 3 0.01253662 0.01253765 0.00851852 0.01266181 0.01274569 0.00000
15 30 1 3 0.00712746 0.00712714 0.00851852 0.00725117 0.00734695 0.00000
30 30 1 3 0.00653401 0.00653393 0.00564815 0.00659594 0.00664655 0.00000
15 45 1 3 0.00510591 0.00510523 0.00753086 0.00518793 0.00525571 0.00000
15 60 1 3 0.00409514 0.00409414 0.00703704 0.00415615 0.00420844 0.00000
15 75 1 3 0.00348867 0.00348763 0.00674074 0.00353725 0.00357981 0.00000
45 15 1 3 0.01231812 0.01231834 0.00753086 0.01240100 0.01245807 0.00000
60 15 1 3 0.01220887 0.01221170 0.00703704 0.01227375 0.01231707 0.00000
75 15 1 3 0.01214332 0.01214928 0.00674074 0.01219889 0.01223372 0.00000
7 7 1 5 0.03104145 0.03103983 0.02551020 0.03182096 0.03174387 0.00386

10 7 1 5 0.03054540 0.03053915 0.02142857 0.03108554 0.03106235 0.00300
7 10 1 5 0.02199142 0.02198072 0.02142857 0.02252815 0.02262856 0.00039

10 10 1 5 0.02156546 0.02156787 0.01750000 0.02194920 0.02203857 0.00026
15 15 1 5 0.01429217 0.01429766 0.01148148 0.01446706 0.01455033 0.00001
30 15 1 5 0.01400327 0.01400415 0.00851852 0.01408901 0.01413427 0.00000
15 30 1 5 0.00735018 0.00735051 0.00851852 0.00743522 0.00749513 0.00000
30 30 1 5 0.00710368 0.00710316 0.00564815 0.00714553 0.00717718 0.00000
15 45 1 5 0.00503618 0.00503644 0.00753086 0.00509293 0.00513693 0.00000
15 60 1 5 0.00387919 0.00387916 0.00703704 0.00392152 0.00395603 0.00000
15 75 1 5 0.00318499 0.00318451 0.00674074 0.00321842 0.00324679 0.00000
45 15 1 5 0.01390698 0.01390648 0.00753086 0.01396295 0.01399380 0.00000
60 15 1 5 0.01385883 0.01386002 0.00703704 0.01390245 0.01392595 0.00000
75 15 1 5 0.01382994 0.01383470 0.00674074 0.01386858 0.01388745 0.00000
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Table 6: Type I error rates for normal distributions F1 = N (0, σ2
1) and F2 = N (0, σ2

2) based on 100 000
replications at a two-sided nominal significance level of α = 0.05 as regards the test statistics TWMW and
TN with t-approximation and different degrees of freedom

n1 n2 σ1 σ2 TWMW TN (df) TN (df1) TN (df2) TN (df3) TN (df4)
7 7 1 1 0.05318 0.06381 0.05821 0.05527 0.05477 0.06041

10 7 1 1 0.04348 0.06358 0.06034 0.05428 0.05297 0.06242
7 10 1 1 0.04290 0.06265 0.05972 0.05399 0.05251 0.06152

10 10 1 1 0.05320 0.06310 0.06058 0.05696 0.05148 0.06199
15 15 1 1 0.05072 0.05809 0.05736 0.05651 0.04973 0.05786
30 15 1 1 0.04906 0.05595 0.05518 0.05417 0.05116 0.05587
15 30 1 1 0.04911 0.05588 0.05505 0.05431 0.05121 0.05585
30 30 1 1 0.04950 0.05336 0.05327 0.05306 0.04917 0.05332
15 45 1 1 0.04891 0.05535 0.05453 0.05340 0.05308 0.05533
15 60 1 1 0.04889 0.05401 0.05292 0.05192 0.05333 0.05401
15 75 1 1 0.04959 0.05562 0.05432 0.05292 0.05596 0.05555
45 15 1 1 0.04945 0.05556 0.05457 0.05329 0.05305 0.05551
60 15 1 1 0.04930 0.05509 0.05388 0.05262 0.05436 0.05502
75 15 1 1 0.04918 0.05434 0.05309 0.05164 0.05512 0.05426

7 7 1 3 0.07223 0.06006 0.04757 0.04572 0.05560 0.04757
10 7 1 3 0.08066 0.05910 0.05070 0.04509 0.06123 0.05169

7 10 1 3 0.04122 0.05436 0.05316 0.05091 0.04560 0.05369
10 10 1 3 0.07141 0.05720 0.05517 0.05172 0.05195 0.05541
15 15 1 3 0.06833 0.05484 0.05383 0.05235 0.05151 0.05380
30 15 1 3 0.10568 0.05408 0.05265 0.05111 0.05651 0.05341
15 30 1 3 0.03163 0.05351 0.05326 0.05299 0.04671 0.05313
30 30 1 3 0.07001 0.05367 0.05338 0.05308 0.05215 0.05338
15 45 1 3 0.01618 0.05240 0.05210 0.05185 0.04451 0.05226
15 60 1 3 0.00965 0.05170 0.05157 0.05130 0.04416 0.05175
15 75 1 3 0.00616 0.05321 0.05297 0.05263 0.04573 0.05328
45 15 1 3 0.12749 0.05448 0.05322 0.05153 0.05882 0.05419
60 15 1 3 0.14104 0.05398 0.05269 0.05116 0.05974 0.05373
75 15 1 3 0.14588 0.05344 0.05207 0.05068 0.05964 0.05307

7 7 1 5 0.08821 0.06395 0.03841 0.03694 0.06155 0.03766
10 7 1 5 0.09850 0.06031 0.04039 0.03648 0.06859 0.04089

7 10 1 5 0.04932 0.04751 0.04705 0.04573 0.04233 0.04723
10 10 1 5 0.08485 0.04977 0.04885 0.04618 0.04762 0.04876
15 15 1 5 0.08132 0.05361 0.05249 0.05108 0.05200 0.05246
30 15 1 5 0.12597 0.05277 0.05160 0.05022 0.05638 0.05224
15 30 1 5 0.03419 0.05273 0.05244 0.05207 0.04689 0.05203
30 30 1 5 0.08136 0.05328 0.05297 0.05257 0.05253 0.05292
15 45 1 5 0.01548 0.05063 0.05052 0.05039 0.04300 0.05038
15 60 1 5 0.00770 0.05121 0.05117 0.05111 0.04305 0.05110
15 75 1 5 0.00431 0.05140 0.05130 0.05116 0.04373 0.05134
45 15 1 5 0.15064 0.05355 0.05230 0.05092 0.05875 0.05322
60 15 1 5 0.16777 0.05333 0.05194 0.05023 0.05951 0.05302
75 15 1 5 0.17407 0.05311 0.05171 0.05004 0.05931 0.05282
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Table 7: Type I error rates for normal distributions F1 = N (0, σ2
1) and F2 = N (0, σ2

2) based on 100 000
replications at a two-sided nominal significance level of α = 0.05 as regards the test statistics TWMW and
TBM with t-approximation and different degrees of freedom

n1 n2 σ1 σ2 TWMW TBM (df) TBM (df1) TBM (df2) TBM (df3) TBM (df4)
7 7 1 1 0.05318 0.05759 0.05527 0.04796 0.04444 0.05527

10 7 1 1 0.04348 0.05732 0.05453 0.05003 0.04652 0.05593
7 10 1 1 0.04290 0.05653 0.05416 0.04975 0.04611 0.05516

10 10 1 1 0.05320 0.05625 0.05454 0.05225 0.04642 0.05547
15 15 1 1 0.05072 0.05454 0.05381 0.05290 0.04624 0.05432
30 15 1 1 0.04906 0.05341 0.05266 0.05183 0.04871 0.05335
15 30 1 1 0.04911 0.05372 0.05303 0.05207 0.04904 0.05361
30 30 1 1 0.04950 0.05170 0.05160 0.05138 0.04745 0.05168
15 45 1 1 0.04891 0.05353 0.05275 0.05167 0.05116 0.05347
15 60 1 1 0.04889 0.05244 0.05159 0.05044 0.05190 0.05241
15 75 1 1 0.04959 0.05420 0.05290 0.05144 0.05464 0.05418
45 15 1 1 0.04945 0.05362 0.05264 0.05150 0.05125 0.05354
60 15 1 1 0.04930 0.05329 0.05239 0.05120 0.05261 0.05331
75 15 1 1 0.04918 0.05292 0.05174 0.05055 0.05384 0.05289
7 7 1 3 0.07223 0.05751 0.04572 0.04206 0.05082 0.04572

10 7 1 3 0.08066 0.05703 0.04741 0.04320 0.05842 0.04918
7 10 1 3 0.04122 0.05191 0.05114 0.04734 0.04171 0.04881

10 10 1 3 0.07141 0.05358 0.05201 0.04893 0.04961 0.05216
15 15 1 3 0.06833 0.05267 0.05154 0.05036 0.04949 0.05156
30 15 1 3 0.10568 0.05276 0.05137 0.04995 0.05525 0.05208
15 30 1 3 0.03163 0.05159 0.05137 0.05111 0.04474 0.05127
30 30 1 3 0.07001 0.05265 0.05244 0.05218 0.05117 0.05245
15 45 1 3 0.01618 0.05026 0.05011 0.04994 0.04294 0.05022
15 60 1 3 0.00965 0.05014 0.05002 0.04978 0.04290 0.05016
15 75 1 3 0.00616 0.05166 0.05146 0.05114 0.04444 0.05177
45 15 1 3 0.12749 0.05373 0.05237 0.05080 0.05804 0.05319
60 15 1 3 0.14104 0.05353 0.05210 0.05044 0.05906 0.05312
75 15 1 3 0.14588 0.05294 0.05153 0.05009 0.05903 0.05264
7 7 1 5 0.08821 0.06286 0.03694 0.03496 0.05923 0.03694

10 7 1 5 0.09850 0.05970 0.03836 0.03563 0.06734 0.03960
7 10 1 5 0.04932 0.04667 0.04620 0.04335 0.04022 0.04383

10 10 1 5 0.08485 0.04802 0.04721 0.04453 0.04680 0.04718
15 15 1 5 0.08132 0.05215 0.05087 0.04987 0.05054 0.05077
30 15 1 5 0.12597 0.05223 0.05097 0.04948 0.05565 0.05149
15 30 1 5 0.03419 0.05133 0.05112 0.05079 0.04559 0.05074
30 30 1 5 0.08136 0.05252 0.05217 0.05186 0.05181 0.05218
15 45 1 5 0.01548 0.04907 0.04899 0.04890 0.04202 0.04884
15 60 1 5 0.00770 0.04998 0.04992 0.04984 0.04198 0.04980
15 75 1 5 0.00431 0.05018 0.05010 0.05003 0.04260 0.05012
45 15 1 5 0.15064 0.05315 0.05184 0.05044 0.05825 0.05266
60 15 1 5 0.16777 0.05297 0.05155 0.04993 0.05919 0.05266
75 15 1 5 0.17407 0.05279 0.05132 0.04986 0.05906 0.05249
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Table 8: Type I error rates for normal distributions F1 = N (0, σ2
1) and F2 = N (0, σ2

2) based on 100 000
replications at a two-sided nominal significance level of α = 0.05 as regards the test statistics TWMW and
TPM with t-approximation and different degrees of freedom

n1 n2 σ1 σ2 TWMW TPM (df) TPM (df1) TPM (df2) TPM (df3) TPM (df4)
7 7 1 1 0.05318 0.05639 0.05139 0.04304 0.04444 0.05411

10 7 1 1 0.04348 0.05525 0.05165 0.04725 0.04510 0.05371
7 10 1 1 0.04290 0.05494 0.05134 0.04708 0.04464 0.05322

10 10 1 1 0.05320 0.05370 0.05181 0.04856 0.04380 0.05302
15 15 1 1 0.05072 0.05183 0.05109 0.05012 0.04405 0.05163
30 15 1 1 0.04906 0.05163 0.05095 0.05001 0.04691 0.05158
15 30 1 1 0.04911 0.05177 0.05110 0.05004 0.04717 0.05169
30 30 1 1 0.04950 0.05013 0.04998 0.04978 0.04604 0.05013
15 45 1 1 0.04891 0.05221 0.05140 0.05040 0.04985 0.05220
15 60 1 1 0.04889 0.05144 0.05046 0.04945 0.05056 0.05138
15 75 1 1 0.04959 0.05293 0.05174 0.05046 0.05350 0.05288
45 15 1 1 0.04945 0.05208 0.05122 0.05002 0.04985 0.05202
60 15 1 1 0.04930 0.05223 0.05121 0.04995 0.05119 0.05217
75 15 1 1 0.04918 0.05185 0.05075 0.04955 0.05288 0.05181
7 7 1 3 0.07223 0.05626 0.04437 0.03917 0.05082 0.04532

10 7 1 3 0.08066 0.05629 0.04612 0.04175 0.05760 0.05443
7 10 1 3 0.04122 0.05375 0.04814 0.04540 0.04084 0.04766

10 10 1 3 0.07141 0.05220 0.05021 0.04705 0.04767 0.05061
15 15 1 3 0.06833 0.05131 0.05036 0.04926 0.04825 0.05034
30 15 1 3 0.10568 0.05191 0.05047 0.04919 0.05437 0.05111
15 30 1 3 0.03163 0.05026 0.05003 0.04973 0.04355 0.04990
30 30 1 3 0.07001 0.05178 0.05157 0.05124 0.05034 0.05156
15 45 1 3 0.01618 0.04904 0.04881 0.04859 0.04187 0.04892
15 60 1 3 0.00965 0.04901 0.04879 0.04853 0.04174 0.04907
15 75 1 3 0.00616 0.05047 0.05023 0.04978 0.04333 0.05054
45 15 1 3 0.12749 0.05307 0.05171 0.05041 0.05746 0.05266
60 15 1 3 0.14104 0.05299 0.05155 0.05000 0.05860 0.05271
75 15 1 3 0.14588 0.05257 0.05124 0.04973 0.05871 0.05227
7 7 1 5 0.08821 0.06181 0.03626 0.03319 0.05923 0.03663

10 7 1 5 0.09850 0.05944 0.03790 0.03504 0.06700 0.05817
7 10 1 5 0.04932 0.05706 0.04410 0.04229 0.03960 0.04338

10 10 1 5 0.08485 0.04748 0.04596 0.04376 0.04546 0.04606
15 15 1 5 0.08132 0.05136 0.05019 0.04928 0.04981 0.05016
30 15 1 5 0.12597 0.05169 0.05037 0.04907 0.05529 0.05113
15 30 1 5 0.03419 0.05050 0.05021 0.04985 0.04479 0.04985
30 30 1 5 0.08136 0.05194 0.05166 0.05128 0.05128 0.05165
15 45 1 5 0.01548 0.04823 0.04810 0.04800 0.04138 0.04784
15 60 1 5 0.00770 0.04914 0.04908 0.04898 0.04093 0.04902
15 75 1 5 0.00431 0.04915 0.04910 0.04899 0.04195 0.04906
45 15 1 5 0.15064 0.05276 0.05164 0.05015 0.05778 0.05235
60 15 1 5 0.16777 0.05273 0.05118 0.04979 0.05890 0.05236
75 15 1 5 0.17407 0.05257 0.05114 0.04961 0.05894 0.05217
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Table 9: Mean variance estimates as regards the 5-point distributions with latent F1 = B(α1, β1) and
F2 = B(5, 4) based on 100 000 replications, with V(p̂) and sep denoting the true variance estimand and the
relative frequency of the occurrence of completely separated samples respectively

n1 n2 α1 β1 V(p̂) σ̂2
N σ̂2

WMW σ̂2
BM σ̂2

PM sep
7 7 5 4 0.02135081 0.02134561 0.02136648 0.02178287 0.02333416 0.00009

10 7 5 4 0.01808278 0.01810689 0.01809247 0.01841288 0.01955837 0.00001
7 10 5 4 0.01808278 0.01808238 0.01809247 0.01838821 0.01953452 0.00001

10 10 5 4 0.01485400 0.01486281 0.01486064 0.01507701 0.01592065 0.00000
15 15 5 4 0.00985519 0.00985734 0.00985846 0.00995248 0.01035631 0.00000
30 15 5 4 0.00736765 0.00737328 0.00736927 0.00742084 0.00762987 0.00000
15 30 5 4 0.00736765 0.00737174 0.00736927 0.00741930 0.00762835 0.00000
30 30 5 4 0.00490385 0.00490477 0.00490462 0.00492854 0.00503659 0.00000
15 45 5 4 0.00653847 0.00654040 0.00653950 0.00657210 0.00671303 0.00000
15 60 5 4 0.00612388 0.00612619 0.00612402 0.00614996 0.00625626 0.00000
15 75 5 4 0.00587513 0.00587719 0.00587532 0.00589620 0.00598153 0.00000
45 15 5 4 0.00653847 0.00653712 0.00653950 0.00656879 0.00670973 0.00000
60 15 5 4 0.00612388 0.00612755 0.00612402 0.00615131 0.00625762 0.00000
75 15 5 4 0.00587513 0.00587810 0.00587532 0.00589710 0.00598242 0.00000
7 7 1.2071 1 0.02458929 0.02473559 0.02303112 0.02530736 0.02629003 0.00037

10 7 1.2071 1 0.01858647 0.01864873 0.01961235 0.01904997 0.01984263 0.00002
7 10 1.2071 1 0.02308031 0.02321632 0.01929195 0.02361703 0.02434381 0.00012

10 10 1.2071 1 0.01712232 0.01719060 0.01596299 0.01747059 0.01805212 0.00002
15 15 1.2071 1 0.01136812 0.01140776 0.01056297 0.01153218 0.01182431 0.00000
30 15 1.2071 1 0.00673455 0.00673987 0.00797797 0.00680209 0.00696066 0.00000
15 30 1.2071 1 0.01026745 0.01029732 0.00774917 0.01035954 0.01051018 0.00000
30 30 1.2071 1 0.00566068 0.00566779 0.00524136 0.00569890 0.00578042 0.00000
15 45 1.2071 1 0.00990409 0.00993534 0.00680155 0.00997680 0.01007819 0.00000
15 60 1.2071 1 0.00972377 0.00974447 0.00632434 0.00977558 0.00985204 0.00000
15 75 1.2071 1 0.00961620 0.00963242 0.00603741 0.00965731 0.00971867 0.00000
45 15 1.2071 1 0.00518592 0.00518722 0.00710263 0.00522868 0.00533715 0.00000
60 15 1.2071 1 0.00441069 0.00441226 0.00666124 0.00444337 0.00452578 0.00000
75 15 1.2071 1 0.00394525 0.00394590 0.00639503 0.00397079 0.00403718 0.00000
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Table 10: Type I error rates for the 5-point distributions with latent F1 = B(α1, β1) and F2 = B(5, 4) based
on 100 000 replications at a two-sided nominal significance level of α = 0.05 as regards the test statistics
TWMW and TN with t-approximation and different degrees of freedom

n1 n2 α1 β1 TWMW TN (df) TN (df1) TN (df2) TN (df3) TN (df4)
7 7 5 4 0.04611 0.06294 0.05821 0.05628 0.04818 0.06200

10 7 5 4 0.04761 0.06245 0.05867 0.05391 0.04932 0.06146
7 10 5 4 0.04769 0.06237 0.05892 0.05457 0.04928 0.06124

10 10 5 4 0.04832 0.06102 0.05821 0.05450 0.04865 0.06063
15 15 5 4 0.04875 0.05580 0.05517 0.05440 0.04825 0.05570
30 15 5 4 0.04814 0.05393 0.05308 0.05212 0.04889 0.05389
15 30 5 4 0.04902 0.05532 0.05466 0.05391 0.05067 0.05526
30 30 5 4 0.04857 0.05226 0.05202 0.05175 0.04802 0.05225
15 45 5 4 0.04923 0.05476 0.05375 0.05258 0.05255 0.05480
15 60 5 4 0.05026 0.05531 0.05411 0.05292 0.05466 0.05537
15 75 5 4 0.04959 0.05517 0.05403 0.05263 0.05590 0.05518
45 15 5 4 0.04898 0.05401 0.05294 0.05186 0.05199 0.05404
60 15 5 4 0.04868 0.05392 0.05296 0.05194 0.05360 0.05393
75 15 5 4 0.04856 0.05345 0.05208 0.05090 0.05408 0.05345

7 7 1.2071 1 0.05763 0.06234 0.05709 0.05126 0.05274 0.05870
10 7 1.2071 1 0.04264 0.05924 0.05621 0.05281 0.04510 0.05696

7 10 1.2071 1 0.07446 0.06349 0.05771 0.05213 0.05829 0.06074
10 10 1.2071 1 0.05798 0.05992 0.05740 0.05432 0.05162 0.05843
15 15 1.2071 1 0.05579 0.05340 0.05245 0.05146 0.04793 0.05281
30 15 1.2071 1 0.03218 0.05412 0.05383 0.05345 0.04716 0.05398
15 30 1.2071 1 0.08897 0.05436 0.05315 0.05188 0.05484 0.05390
30 30 1.2071 1 0.05827 0.05173 0.05149 0.05120 0.04915 0.05156
15 45 1.2071 1 0.10304 0.05312 0.05175 0.05027 0.05639 0.05277
15 60 1.2071 1 0.11529 0.05395 0.05294 0.05152 0.05833 0.05380
15 75 1.2071 1 0.12079 0.05404 0.05257 0.05096 0.05932 0.05384
45 15 1.2071 1 0.02028 0.05380 0.05342 0.05296 0.04658 0.05386
60 15 1.2071 1 0.01493 0.05258 0.05207 0.05145 0.04643 0.05276
75 15 1.2071 1 0.01190 0.05324 0.05252 0.05180 0.04777 0.05340
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Table 11: Type I error rates for the 5-point distributions with latent F1 = B(α1, β1) and F2 = B(5, 4) based
on 100 000 replications at a two-sided nominal significance level of α = 0.05 as regards the test statistics
TWMW and TBM with t-approximation and different degrees of freedom

n1 n2 α1 β1 TWMW TBM (df) TBM (df1) TBM (df2) TBM (df3) TBM (df4)
7 7 5 4 0.04611 0.06189 0.05808 0.05045 0.04776 0.05866

10 7 5 4 0.04761 0.06048 0.05711 0.05298 0.04742 0.05976
7 10 5 4 0.04769 0.06040 0.05723 0.05350 0.04756 0.05953

10 10 5 4 0.04832 0.05881 0.05668 0.05316 0.04747 0.05814
15 15 5 4 0.04875 0.05496 0.05421 0.05315 0.04744 0.05485
30 15 5 4 0.04814 0.05318 0.05232 0.05140 0.04836 0.05308
15 30 5 4 0.04902 0.05477 0.05409 0.05315 0.04977 0.05469
30 30 5 4 0.04857 0.05159 0.05142 0.05115 0.04748 0.05154
15 45 5 4 0.04923 0.05417 0.05315 0.05201 0.05199 0.05416
15 60 5 4 0.05026 0.05486 0.05361 0.05248 0.05422 0.05490
15 75 5 4 0.04959 0.05480 0.05362 0.05228 0.05545 0.05481
45 15 5 4 0.04898 0.05342 0.05239 0.05144 0.05127 0.05339
60 15 5 4 0.04868 0.05351 0.05263 0.05142 0.05318 0.05348
75 15 5 4 0.04856 0.05303 0.05181 0.05054 0.05369 0.05308
7 7 1.2071 1 0.05763 0.05988 0.05598 0.04755 0.05076 0.05678

10 7 1.2071 1 0.04264 0.05560 0.05366 0.05086 0.04357 0.05462
7 10 1.2071 1 0.07446 0.06077 0.05624 0.05046 0.05599 0.05909

10 10 1.2071 1 0.05798 0.05816 0.05533 0.05293 0.04954 0.05635
15 15 1.2071 1 0.05579 0.05221 0.05141 0.05031 0.04682 0.05171
30 15 1.2071 1 0.03218 0.05309 0.05288 0.05251 0.04634 0.05305
15 30 1.2071 1 0.08897 0.05357 0.05250 0.05131 0.05417 0.05325
30 30 1.2071 1 0.05827 0.05115 0.05092 0.05065 0.04840 0.05100
15 45 1.2071 1 0.10304 0.05249 0.05135 0.04976 0.05595 0.05218
15 60 1.2071 1 0.11529 0.05373 0.05260 0.05116 0.05793 0.05350
15 75 1.2071 1 0.12079 0.05372 0.05224 0.05064 0.05903 0.05348
45 15 1.2071 1 0.02028 0.05292 0.05242 0.05196 0.04578 0.05306
60 15 1.2071 1 0.01493 0.05177 0.05129 0.05075 0.04573 0.05192
75 15 1.2071 1 0.01190 0.05247 0.05186 0.05111 0.04696 0.05266
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Table 12: Type I error rates for the 5-point distributions with latent F1 = B(α1, β1) and F2 = B(5, 4) based
on 100 000 replications at a two-sided nominal significance level of α = 0.05 as regards the test statistics
TWMW and TPM with t-approximation and different degrees of freedom

n1 n2 α1 β1 TWMW TPM (df) TPM (df1) TPM (df2) TPM (df3) TPM (df4)
7 7 5 4 0.04611 0.05712 0.05114 0.04129 0.04050 0.05519

10 7 5 4 0.04761 0.05410 0.05124 0.04431 0.04190 0.05298
7 10 5 4 0.04769 0.05465 0.05167 0.04426 0.04192 0.05363

10 10 5 4 0.04832 0.05175 0.05097 0.04798 0.04230 0.05153
15 15 5 4 0.04875 0.05055 0.05006 0.04910 0.04307 0.05048
30 15 5 4 0.04814 0.04998 0.04915 0.04825 0.04543 0.04992
15 30 5 4 0.04902 0.05166 0.05076 0.04990 0.04677 0.05164
30 30 5 4 0.04857 0.04915 0.04894 0.04875 0.04518 0.04914
15 45 5 4 0.04923 0.05158 0.05071 0.04961 0.04925 0.05168
15 60 5 4 0.05026 0.05260 0.05161 0.05041 0.05220 0.05276
15 75 5 4 0.04959 0.05300 0.05186 0.05055 0.05373 0.05302
45 15 5 4 0.04898 0.05093 0.05008 0.04909 0.04871 0.05101
60 15 5 4 0.04868 0.05173 0.05076 0.04940 0.05106 0.05176
75 15 5 4 0.04856 0.05124 0.05019 0.04906 0.05204 0.05126
7 7 1.2071 1 0.05763 0.05605 0.05002 0.04387 0.04589 0.05261

10 7 1.2071 1 0.04264 0.05278 0.04991 0.04506 0.04032 0.05047
7 10 1.2071 1 0.07446 0.05799 0.05296 0.04612 0.05315 0.05534

10 10 1.2071 1 0.05798 0.05378 0.05169 0.04872 0.04558 0.05254
15 15 1.2071 1 0.05579 0.04953 0.04858 0.04752 0.04430 0.04898
30 15 1.2071 1 0.03218 0.05090 0.05065 0.05029 0.04391 0.05086
15 30 1.2071 1 0.08897 0.05202 0.05091 0.04977 0.05278 0.05161
30 30 1.2071 1 0.05827 0.04972 0.04946 0.04917 0.04702 0.04956
15 45 1.2071 1 0.10304 0.05132 0.05009 0.04876 0.05475 0.05104
15 60 1.2071 1 0.11529 0.05284 0.05160 0.05029 0.05679 0.05268
15 75 1.2071 1 0.12079 0.05288 0.05140 0.05008 0.05821 0.05266
45 15 1.2071 1 0.02028 0.05040 0.05004 0.04966 0.04394 0.05048
60 15 1.2071 1 0.01493 0.04991 0.04935 0.04874 0.04385 0.05004
75 15 1.2071 1 0.01190 0.05064 0.05003 0.04917 0.04494 0.05078

Table 13: Type I error rates for exponential and binomial distributions at a two-sided nominal significance
level of α = 0.05 for the studentised permutation tests based on 10 000 random permutations for each of the
10 000 replications

n1 n2 F1 F2 T̃N T̃BM T̃PM T̃Logit
N T̃Logit

BM T̃Logit
PM

7 7 E(1) E(1) 0.0488 0.0506 0.0502 0.0493 0.0484 0.0479
7 10 E(1) E(1) 0.0484 0.0495 0.0496 0.0477 0.0485 0.0487

10 7 E(1) E(1) 0.0460 0.0473 0.0473 0.0465 0.0475 0.0473
10 10 E(1) E(1) 0.0503 0.0501 0.0504 0.0509 0.0508 0.0509
15 15 E(1) E(1) 0.0503 0.0501 0.0502 0.0503 0.0504 0.0502
15 30 E(1) E(1) 0.0478 0.0481 0.0484 0.0484 0.0481 0.0480
30 15 E(1) E(1) 0.0533 0.0531 0.0531 0.0531 0.0530 0.0531
30 30 E(1) E(1) 0.0508 0.0508 0.0507 0.0506 0.0506 0.0507
15 45 E(1) E(1) 0.0498 0.0497 0.0498 0.0503 0.0501 0.0502
45 15 E(1) E(1) 0.0499 0.0499 0.0499 0.0506 0.0504 0.0501
7 7 B(5, 0.6) B(5, 0.6) 0.0319 0.0321 0.0325 0.0308 0.0309 0.0311
7 10 B(5, 0.6) B(5, 0.6) 0.0341 0.0345 0.0350 0.0346 0.0348 0.0350

10 7 B(5, 0.6) B(5, 0.6) 0.0353 0.0355 0.0356 0.0347 0.0349 0.0353
10 10 B(5, 0.6) B(5, 0.6) 0.0420 0.0415 0.0415 0.0424 0.0425 0.0422
15 15 B(5, 0.6) B(5, 0.6) 0.0453 0.0454 0.0456 0.0459 0.0461 0.0458
15 30 B(5, 0.6) B(5, 0.6) 0.0508 0.0507 0.0510 0.0505 0.0505 0.0507
30 15 B(5, 0.6) B(5, 0.6) 0.0469 0.0470 0.0470 0.0470 0.0469 0.0469
30 30 B(5, 0.6) B(5, 0.6) 0.0498 0.0498 0.0497 0.0496 0.0496 0.0496
15 45 B(5, 0.6) B(5, 0.6) 0.0491 0.0490 0.0493 0.0489 0.0489 0.0490
45 15 B(5, 0.6) B(5, 0.6) 0.0514 0.0514 0.0515 0.0515 0.0516 0.0516
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Normal distributions with µ2 = 0 , σ1 = 1 and σ2 = 1
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Figure 3: Power graphs for normal distributions based on 10 000 simulation runs

Normal distributions with µ2 = 0 , σ1 = 1 and σ2 = 2
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Figure 4: Power graphs for normal distributions based on 10 000 simulation runs

36

85



The nonparametric Behrens-Fisher problem in small samples

Normal distributions with µ2 = 0 , σ1 = 1 and σ2 = 3
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Figure 5: Power graphs for normal distributions based on 10 000 simulation runs

Normal distributions with µ2 = 0 , σ1 = 1 and σ2 = 4
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Figure 6: Power graphs for normal distributions based on 10 000 simulation runs
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Normal distributions with µ2 = 0 , σ1 = 1 and σ2 = 5
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Figure 7: Power graphs for normal distributions based on 10 000 simulation runs

Beta distributions with β1 = 4 , α2 = 5 and β2 = 4
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Figure 8: Power graphs for Beta distributions based on 10 000 simulation runs
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Beta distributions with β1 = 1 , α2 = 3 and β2 = 4
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Figure 9: Power graphs for Beta distributions based on 10 000 simulation runs

Beta 5−point distribution with β1 = 4 , α2 = 5 and β2 = 4
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Figure 10: Power graphs for Beta 5-point distributions based on 10 000 simulation runs
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Beta 5−point distributions with β1 = 1 , α2 = 5 and β2 = 4
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Figure 11: Power graphs for Beta 5-point distributions based on 10 000 simulation runs

Beta 10−point distributions with β1 = 4 , α2 = 5 and β2 = 4
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Figure 12: Power graphs for Beta 10-point distributions based on 10 000 simulation runs
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Beta 10−point distributions with β1 = 1 , α2 = 5 and β2 = 4
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Figure 13: Power graphs for Beta 10-point distributions based on 10 000 simulation runs

Bernoulli distribution with p2 = 0.7
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Figure 14: Power graphs for Bernoulli distributions based on 10 000 simulation runs
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Bernoulli distribution with p2 = 0.8
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Figure 15: Power graphs for Bernoulli distributions based on 10 000 simulation runs

Table 14: Power results for Mann-Whitney parameter p = 0.7 as regards normal distributions F1 = N (µ1, σ
2
1)

and F2 = N (µ2, σ
2
2) at a two-sided nominal significance level of α = 0.05 for the studentised permutation

tests based on 10 000 random permutations for each of the 10 000 replications

n1 n2 µ1 µ2 σ1 σ2 T̃N T̃BM T̃PM T̃Logit
N T̃Logit

BM T̃Logit
PM

7 7 -0.7416 0 1 1 0.2264 0.2294 0.2293 0.2253 0.2224 0.2248
7 10 -0.7416 0 1 1 0.2719 0.2742 0.2746 0.2676 0.2695 0.2706

10 7 -0.7416 0 1 1 0.2734 0.2760 0.2757 0.2695 0.2715 0.2708
10 10 -0.7416 0 1 1 0.3365 0.3364 0.3358 0.3374 0.3373 0.3367
15 15 -0.7416 0 1 1 0.4883 0.4879 0.4887 0.4882 0.4882 0.4879
15 30 -0.7416 0 1 1 0.6116 0.6116 0.6116 0.6076 0.6079 0.6088
30 15 -0.7416 0 1 1 0.6046 0.6048 0.6045 0.6032 0.6037 0.6034
30 30 -0.7416 0 1 1 0.7839 0.7841 0.7843 0.7848 0.7843 0.7839
15 45 -0.7416 0 1 1 0.6531 0.6529 0.6533 0.6497 0.6502 0.6502
45 15 -0.7416 0 1 1 0.6442 0.6441 0.6445 0.6395 0.6401 0.6398
7 7 -1.6583 0 1 3 0.2110 0.2335 0.2353 0.1712 0.1740 0.1831
7 10 -1.6583 0 1 3 0.2677 0.2748 0.2841 0.2604 0.2733 0.2781

10 7 -1.6583 0 1 3 0.2449 0.2555 0.2598 0.1789 0.1827 0.1843
10 10 -1.6583 0 1 3 0.3052 0.3147 0.3219 0.2793 0.2870 0.2920
15 15 -1.6583 0 1 3 0.4314 0.4358 0.4398 0.4140 0.4199 0.4259
15 30 -1.6583 0 1 3 0.6650 0.6667 0.6686 0.6747 0.6783 0.6803
30 15 -1.6583 0 1 3 0.4582 0.4623 0.4669 0.4184 0.4241 0.4282
30 30 -1.6583 0 1 3 0.7209 0.7237 0.7253 0.7134 0.7161 0.7183
15 45 -1.6583 0 1 3 0.8098 0.8109 0.8111 0.8216 0.8221 0.8224
45 15 -1.6583 0 1 3 0.4560 0.4598 0.4625 0.4079 0.4133 0.4188
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Table 15: Power results for Mann-Whitney parameter p = 0.7 as regards 5-point Beta distributions with latent
F1 = B(α1, β1) and F2 = B(5, 4) at a two-sided nominal significance level of α = 0.05 for the studentised
permutation tests based on 10 000 random permutations for each of the 10 000 replications

n1 n2 α1 β1 T̃N T̃BM T̃PM T̃Logit
N T̃Logit

BM T̃Logit
PM

7 7 2.86332 4 0.1948 0.1944 0.1936 0.1915 0.1905 0.1899
7 10 2.86332 4 0.2476 0.2477 0.2480 0.2458 0.2445 0.2455

10 7 2.86332 4 0.2555 0.2559 0.2551 0.2546 0.2553 0.2564
10 10 2.86332 4 0.3263 0.3260 0.3267 0.3251 0.3251 0.3261
15 15 2.86332 4 0.5060 0.5059 0.5054 0.5058 0.5058 0.5059
15 30 2.86332 4 0.6268 0.6270 0.6281 0.6228 0.6230 0.6236
30 15 2.86332 4 0.6586 0.6584 0.6584 0.6598 0.6596 0.6598
30 30 2.86332 4 0.8314 0.8314 0.8313 0.8313 0.8312 0.8314
15 45 2.86332 4 0.6697 0.6697 0.6706 0.6628 0.6631 0.6646
45 15 2.86332 4 0.7183 0.7180 0.7183 0.7192 0.7189 0.7191
7 7 0.57606 1 0.2158 0.2168 0.2238 0.1907 0.1914 0.1956
7 10 0.57606 1 0.2437 0.2464 0.2531 0.1997 0.2004 0.2032

10 7 0.57606 1 0.2710 0.2745 0.2787 0.2722 0.2761 0.2839
10 10 0.57606 1 0.3126 0.3154 0.3200 0.2924 0.2953 0.2998
15 15 0.57606 1 0.4630 0.4647 0.4686 0.4500 0.4516 0.4569
15 30 0.57606 1 0.5012 0.5027 0.5065 0.4704 0.4726 0.4773
30 15 0.57606 1 0.6977 0.6983 0.6991 0.7069 0.7079 0.7090
30 30 0.57606 1 0.7631 0.7634 0.7653 0.7578 0.7588 0.7603
15 45 0.57606 1 0.4971 0.4985 0.5020 0.4576 0.4593 0.4649
45 15 0.57606 1 0.8100 0.8103 0.8097 0.8237 0.8241 0.8239

Table 16: Power results for Mann-Whitney parameter p = 0.7 as regards exponential and binomial distributions
at a two-sided nominal significance level of α = 0.05 for the studentised permutation tests based on 10 000
random permutations for each of the 10 000 replications

n1 n2 F1 F2 T̃N T̃BM T̃PM T̃Logit
N T̃Logit

BM T̃Logit
PM

7 7 E(2.33333) E(1) 0.2302 0.2336 0.2328 0.2274 0.2256 0.2281
7 10 E(2.33333) E(1) 0.2784 0.2809 0.2810 0.2817 0.2831 0.2839

10 7 E(2.33333) E(1) 0.2765 0.2797 0.2810 0.2638 0.2658 0.2659
10 10 E(2.33333) E(1) 0.3417 0.3420 0.3424 0.3412 0.3419 0.3418
15 15 E(2.33333) E(1) 0.4797 0.4789 0.4796 0.4799 0.4801 0.4796
15 30 E(2.33333) E(1) 0.6429 0.6425 0.6423 0.6478 0.6471 0.6464
30 15 E(2.33333) E(1) 0.5646 0.5655 0.5661 0.5562 0.5570 0.5572
30 30 E(2.33333) E(1) 0.7921 0.7921 0.7917 0.7922 0.7923 0.7922
15 45 E(2.33333) E(1) 0.7002 0.6993 0.6992 0.7049 0.7040 0.7038
45 15 E(2.33333) E(1) 0.5947 0.5956 0.5974 0.5808 0.5823 0.5832
7 7 B(5, 0.43129) B(5, 0.6) 0.2072 0.2090 0.2088 0.2044 0.2041 0.2049
7 10 B(5, 0.43129) B(5, 0.6) 0.2602 0.2616 0.2620 0.2559 0.2566 0.2582

10 7 B(5, 0.43129) B(5, 0.6) 0.2679 0.2674 0.2676 0.2653 0.2653 0.2667
10 10 B(5, 0.43129) B(5, 0.6) 0.3323 0.3324 0.3325 0.3323 0.3321 0.3327
15 15 B(5, 0.43129) B(5, 0.6) 0.5140 0.5138 0.5131 0.5150 0.5152 0.5148
15 30 B(5, 0.43129) B(5, 0.6) 0.6426 0.6426 0.6430 0.6393 0.6395 0.6410
30 15 B(5, 0.43129) B(5, 0.6) 0.6339 0.6341 0.6342 0.6327 0.6322 0.6323
30 30 B(5, 0.43129) B(5, 0.6) 0.8161 0.8162 0.8160 0.8165 0.8165 0.8162
15 45 B(5, 0.43129) B(5, 0.6) 0.6803 0.6805 0.6812 0.6738 0.6738 0.6746
45 15 B(5, 0.43129) B(5, 0.6) 0.6834 0.6835 0.6834 0.6825 0.6824 0.6824
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