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Introduction

The structural vector autoregressive (SVAR) model is an important tool in applied macroeco-

nomics to analyze the effects of structural economic shocks on macroeconomic variables. Macroe-

conomic variables are typically driven by multiple structural shocks. The main difficulty in es-

timating the SVAR is to identify the structural shocks and their simultaneous impact on the

variables of interest. Traditional identification approaches rely on restrictions on the responses

to the structural shocks, see, e.g., Sims (1980) for short-run restrictions, Blanchard (1989) for

long-run restrictions, and Uhlig (2005) for sign restrictions. More recently, several data-driven

identification approaches have been proposed in the literature. These approaches do not require

any restrictions on the responses to the structural shocks, instead, identification is based on

stochastic properties of the shocks, see, e.g., Rigobon (2003), Lanne et al. (2010), Lütkepohl and

Netšunajev (2017), and Lewis (2021) for time-varying volatility, and Gouriéroux et al. (2017),

Lanne et al. (2017), Lanne and Luoto (2021), and Guay (2021) for non-Gaussian and independent

shocks.

This thesis is concerned with the estimation of the simultaneous interaction in non-Gaussian

SVAR models using generalized method of moments (GMM) estimators with higher-order mo-

ment conditions. The thesis contributes to the literature by providing global identification results

using coskewness and cokurtosis moment conditions, by proposing modifications to the GMM es-

timation procedure to improve the small sample performance of the SVAR GMM estimator in

the presence of higher-order moment conditions, and by developing a framework to combine

traditional short-run restrictions with data-driven identification and estimation approaches.

In Chapter 1, I propose a SVAR GMM estimator which minimizes the dependencies of the

shocks measured by covariance, coskewness, and cokurtosis conditions. The moment conditions

are derived from the assumption of independent structural shocks. The identification result

neither requires restrictions on the interaction nor does it require to specify the distribution of

the structural shocks a priori. Instead, identification requires that at most one shocks has zero

skewness and zero excess kurtosis. Moreover, identification requires valid moment conditions,

which holds if the structural shocks are independent. To reduce the computational burden of

the estimator, I propose a specific weighting scheme which allows to minimize the dependencies

1



of the shocks by maximizing the non-Gaussianity of the shocks measured by the skewness and

excess kurtosis of the shocks. A Monte Carlo experiment analyzes the finite sample performance

of the proposed SVAR GMM estimator and compares it to alternative data-driven estimators in

the SVAR literature. In the empirical illustration, I study the interaction of economic activity,

oil prices, and stock prices. I present evidence that oil and stock prices interact simultaneously

and cannot be ordered recursively.

In Chapter 2, I study the finite sample performance of the SVAR GMM estimator from the pre-

vious chapter and propose modifications to the GMM estimation procedure to improve the small

sample performance. A Monte Carlo experiment shows that the bias, variance, and distortion of

the test statistics of the SVAR GMM estimator (using standard two-step or continuous updating

weighting schemes) increases with the number of variables included in the SVAR. I demonstrate

that a large part of these performance issues is related to imprecise estimates of the asymptoti-

cally optimal weighting matrix and the asymptotic variance of the SVAR GMM estimator. Both

values require to estimate the variance of the coskewness and cokurtosis conditions, which are

co-moments up to order eight and difficult to estimate in small samples. Moreover, the number

of these higher-order co-moments increases quickly with the number of variables included in the

SVAR. I propose to use the assumption of independent shocks not only to derive moment con-

ditions but also to derive alternative estimators for the asymptotically optimal weighting matrix

and the asymptotic variance of the SVAR GMM estimator. With the assumption of independent

shocks, the higher-order co-moments contained in the weighting matrix and asymptotic variance

can be decomposed into a product of lower-order moments. I demonstrate in a Monte Carlo

experiment that this modification to the estimation of the optimal weighting matrix and variance

of the estimator greatly improve the performance of the SVAR GMM estimators in terms of bias,

variance, and distortion of the test statistics, especially in large SVAR models.

While the modifications to the GMM estimation procedure lead to a better finite sample perfor-

mance of the SVAR GMM estimators, the bias, variance, and distortion of the test statistics still

increase with the number of variables included in the SVAR. Therefore, estimates based on un-

restricted purely data-driven SVAR estimators tend to become less reliable when the number of

variables included in the SVAR increases. The following two chapters aim to solve this problem

by combining traditional restriction based approaches with data-driven estimation approaches

2



based on information in moments beyond the variance.

In Chapter 3, which is joint work with Andre Seepe, we propose a combination of restriction

based and data-driven estimation based on information in higher-order moments to analyze the

interaction of U.S. monetary policy and the stock market. In particular, we propose an estima-

tor which allows to order and identify some shocks recursively, while other shocks can remain

unrestricted and are identified based on independence and non-Gaussianity. A Monte Carlo

experiment illustrates how the performance of unrestricted purely data-driven SVAR estimators

based on independence and non-Gaussianity deteriorates with an increasing model size. However,

we show that ordering some shocks recursively can stop the performance decline of data-driven

SVAR estimators in large SVAR models. In the application, we assume that that output, in-

vestment, and inflation behave sluggishly such that they cannot respond to stock market and

monetary policy shocks within the same quarter. However, interest rates and stock returns re-

main unrestricted and can simultaneously respond to all shocks. Therefore, we impose a partly

recursive order such that output, investment, and inflation are ordered recursively, while interest

rates and stock returns remain unrestricted. We find that a positive stock market shock contem-

poraneously increases the nominal interest rate, while a contractionary monetary policy shock

leads to lower real stock returns on impact. Furthermore, we present evidence that monetary

policy is non-neutral with respect to real stock prices in the long-run.

In Chapter 4, which is joint work with Stephan Hetzenecker, we propose a rigorous framework to

combine restrictions with higher-order moment conditions to identify and estimate SVAR models.

The framework nests several SVAR estimators as special cases: i) the unrestricted SVAR GMM

estimator proposed in Chapter 1, ii) the unrestricted SVAR GMM estimator proposed proposed

by Lanne and Luoto (2021), iii) the partly recursive estimator proposed in Chapter 3, and iv)

the frequently used recursive SVAR estimator based on the Cholesky decomposition.

Our framework allows the researcher to specify an arbitrary block-recursive order, such that that

shocks in a given block can only influence variables in the same block or blocks order below. For a

given block-recursive order we derive a set of identifying moment conditions based on the assump-

tion of uncorrelated shocks across blocks and mean independent shocks within the blocks. We

then derive overidentifying higher-order moment conditions from the assumption of independent

shocks and show that these conditions can decrease the asymptotic variance of the estimator.
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In particular, we derive conditions under which the frequently applied estimator based on the

Cholesky decomposition is asymptotically inefficient. We discuss the trade-off between using only

the identifying moment conditions which yields robust estimates since it allows for some depen-

dencies of the structural shocks, and additionally using the overidentifying moment conditions

which yields efficient estimates, but can lead to biased estimates if the overidentifying moment

conditions contain invalid conditions. We propose to use a LASSO-type SVAR GMM estimator

to select the relevant and valid and to unselect the invalid and redundant overidentifying moment

conditions in a data-driven way. Our proposed LASSO-type SVAR GMM estimator is as robust

as the SVAR GMM estimator using only the identifying moment conditions and as efficient as

the SVAR GMM estimator which additionally uses all valid and relevant overidentifying moment

conditions. A Monte Carlo experiment illustrates how block-recursive restrictions can mitigate

the performance decline of non-Gaussian SVAR GMM estimators in the number of variables

included in the SVAR. The simulation also shows that the LASSO-type SVAR GMM estima-

tor successfully selects relevant moment conditions and increases the small sample performance

compared to other block-recursive SVAR GMM estimators.

We use the block-recursive framework to analyze the impact of flow and speculative shocks in

the oil market. In his seminal work, Kilian (2009) highlights that it is necessary to distinguish

between oil supply and oil demand shocks rather than including solely an oil price shock in the

oil market SVAR. We contribute to the oil market SVAR literature by explicitly distinguishing

between speculative demand and speculative supply shocks. We use our proposed block-recursive

framework and assume that oil production and economic activity is simultaneously only influenced

by flow supply and flow demand shocks, while the real oil price and real stock returns can

additionally contemporaneously be influenced by speculative supply and speculative demand

shocks. We find that flow supply shocks lead to an increase of oil production and to a decrease of

the real oil price. Flow demand shocks lead to an increase of economic activity and to an increase

of the real oil price. Moreover, a speculative supply shock leads to an immediate decrease of the

real oil price and to an increase of economic activity and oil production in the medium term.

Speculative demand shocks lead to an immediate increase of the real oil price and to an increase

of economic activity and oil production in the medium term. We demonstrate that an estimation

based on a fully recursive order cannot not distinguish between speculative supply and demand

4



shocks but rather contains a single speculative oil price shock and leads to counterintuitive results.

Additionally, we show that an unrestricted estimation based only on non-Gaussianity leads to

estimates with large confidence bands and no significant response of the real oil price to flow

supply and demand shocks. Therefore, the application illustrates how the combination of data-

driven and restrictions based identification allows to gain deeper insights into the transmission

of demand and supply shocks in the oil market.
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1 A Generalized Method of Moments Estimator for Struc-

tural Vector Autoregressions Based on Higher Moments5

1.1 Introduction

One of the most important tools to estimate the effects of economic shocks on a set of variables is

the structural vector autoregressive (SVAR) model. Due to the simultaneous nature of the inter-

action among economic variables, the identification of the underlying structural shocks generally

requires the researcher to impose restrictions on the system. A variety of identifying restrictions

have been proposed in the SVAR literature. The one factor all identification approaches have in

common is the assumption of uncorrelated structural shocks. Unfortunately, uncorrelatedness is

not sufficient to identify the simultaneous interaction.

A large part of the SVAR literature eliminates this lack of identification with short- or long-run

restrictions. For example, the often used recursive SVAR employs short-run zero restrictions be-

tween the included variables. However, these restrictions are often difficult to identify, or hardly

justifiable based on economic theory. Therefore, a number of proposals have been made to avoid

these restrictions. The general idea is to exploit the independence of the shocks and not merely

their uncorrelatedness. With independent and non-Gaussian shocks, results from the indepen-

dent component analysis (ICA) literature can be applied to identify the SVAR.

This study presents a generalized method of moments (GMM) estimator for non-Gaussian SVAR

models with independent shocks. The identification is derived as a straightforward extension of

traditional approaches that rely on the assumption of uncorrelated shocks to independent shocks.

The approach is purely data-driven and does not require any assumptions or restrictions apart

from independent and non-Gaussian shocks (more precisely: at most one shock is allowed to

have zero skewness or zero excess kurtosis). In macroeconomic applications, where restrictions

are scarce and traditional identification approaches fail, the proposed estimator allows identifi-

cation and estimation of a given SVAR by exploiting information contained in moments beyond

the variance.

Independence has rarely been used to identify SVAR models. A few authors use independent

5This is an Accepted Manuscript of an article published by Taylor & Francis in the Journal of Business & Eco-
nomic Statistics on March 2020, available online: http://wwww.tandfonline.com/10.1080/07350015.2020.1730858
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shocks to evaluate the fit of different causal orders (Hyvärinen et al. (2010) or Moneta et al.

(2013)). More recently, independence has been used to identify SVAR models without restric-

tions on the interaction of the included variables. Lanne et al. (2017) and Gouriéroux et al.

(2017) propose a maximum likelihood (ML) and a pseudo maximum likelihood (PML) estimator

for non-Gaussian SVAR models. Lanne and Luoto (2021) use cokurtosis conditions to derive a

GMM estimator for non-Gaussian SVAR models. The authors relax the assumption of indepen-

dent structural shocks and instead assume uncorrelated shocks with a few shocks additionally

satisfying cokurtosis restrictions. Herwartz (2018) proposes a method to find the least dependent

shocks, measured by the difference between the empirical copula and the copula under indepen-

dence. Herwartz and Plödt (2016) apply the method and analyze the interaction of real economic

activity, oil production, and the real price of oil.

The SVAR-GMM estimator proposed in this study requires no distributional assumptions, apart

from independent and non-Gaussian shocks. In contrast, the estimators proposed by Lanne et al.

(2017) and Gouriéroux et al. (2017) require the distribution of the structural shocks to be speci-

fied a priori. In macroeconomic applications, distributional restrictions are probably even harder

to derive from economic theory than traditional short- or long-run restrictions. The PML esti-

mator proposed by Gouriéroux et al. (2017) is robust to distributional misspecification to some

extent. Based on a Monte Carlo study, I demonstrate that misspecifying the distribution can

lead to a serious deterioration of the finite sample performance of the PML estimator. I find that

the SVAR-GMM estimator performs more robustly across different error term specifications and

it performs better than the misspecified PML estimator.

The moment conditions derived in this study ensure global identification up to sign and per-

mutation. However, the number of moment conditions increases quickly with the dimension of

the SVAR, which makes the estimator computationally expensive in large models. Lanne and

Luoto (2021) propose a GMM estimator that estimates the simultaneous relationships based on

a subset of the moment conditions derived herein. Relying only on a subset of the moment con-

ditions yields a computationally cheap estimator, but it also destroys the global identification

result. Therefore, the estimator proposed by Lanne and Luoto (2021) is only locally identified. I

propose an alternative way to decrease the computational burden of the estimator. By employing

a specific weighting scheme, one can gain a consistent, asymptotically normally distributed and

computationally cheap estimator, which is denoted as the fast SVAR-GMM estimator. In par-
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ticular, the fast SVAR-GMM estimator can be derived as the limit of the SVAR-GMM estimator

when the weights of the variance and covariance conditions tend to infinite weight. While this

weighting scheme obviously deviates from the asymptotically efficient weighting, the Monte Carlo

study shows that it leads to a good small sample performance of the fast SVAR-GMM estimator.

I find that neither the GMM estimator proposed by Lanne and Luoto (2021) nor the PML esti-

mator proposed by Gouriéroux et al. (2017) (with a pseudo distribution equal to a t-distribution)

are able to exploit information contained in the skewness of the structural shocks. Instead, both

estimators primarily rely on the excess kurtosis of the shocks. The estimator proposed in this

study is more general and can use information contained in the skewness and excess kurtosis. I

provide empirical evidence that macroeconomic variables such as economic activity, oil, or stock

prices are driven by skewed shocks. The Monte Carlo study reveals that estimators based on the

skewness have desirable small sample properties. In particular, I find that the small sample bias

and standard deviation of an estimator based on the skewness are driven by the relative skewness

of the shocks and I find no deterioration with a decreasing sample size.

In an empirical application, the estimator is applied to analyze the interaction of economic ac-

tivity, oil, and stock prices. SVAR models with oil and stock prices have often been identified by

imposing a recursive order on both variables, see Sadorsky (1999) or Kilian and Park (2009). I

challenge this practice and provide evidence that no zero restrictions on the simultaneous rela-

tionship between oil and stock prices are feasible.

The remainder of the paper is organized as follows. Section 1.2 presents the SVAR model and

derives the identification problem. Section 1.3 illustrates how the standard SVAR identification

approach relying on uncorrelated shocks can be extended to independent shocks. Section 1.4 in-

troduces the notation. Section 1.5 derives the identification of the SVAR model based on higher

moments and introduces the SVAR-GMM estimator. Section 1.6 derives the fast SVAR-GMM

estimator and Section 1.7 analyzes the finite sample properties of the estimators in a Monte Carlo

study. The estimator is applied in Section 1.8 to examine the interaction of economic activity,

oil, and stock prices. Concluding remarks are provided in Section 1.9.

Throughout this study, real numbers are denoted by R, natural numbers are denoted by N, and

the identity matrix is denoted by I. Moreover, the function vec(.) denotes the vectorization of a

matrix, det(.) denotes the determinant of a matrix, and the factorial of an integer n is denoted

by n!.
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1.2 SVAR model

This section briefly summarizes the identification problem in SVAR models. A detailed explana-

tion can be found in Kilian and Lütkepohl (2017). The SVAR is given by

A0yt = A1yt−1 + ...+Apyt−p + εt, (1.1)

with constant parameter matrices A0, ..., Ap ∈ Rn×n, the n-dimensional vector of time series

yt = [y1,t, ..., yn,t]
′ and the vector of structural shocks εt = [ε1,t, ..., εn,t]

′. The structural shocks

are supposed to satisfy the following assumptions.

Assumption 1.1. (i) εt is a vector of i.i.d. random variables.

(ii) εt has mutually independent components, meaning that εi,t is independent of εj,t for i 6= j.

(iii) Each component of εt has zero mean, unit variance, and finite third and fourth moments.

(iv) At most one component of ε has zero skewness and/or at most one component of ε has zero

excess kurtosis.

The parameter matrix governing the simultaneous interaction is assumed to be invertible.

Assumption 1.2. A0 ∈ A := {A ∈ Rn×n|det(A) 6= 0}.

Equation (1.1) cannot be estimated consistently by OLS since a non-diagonal matrix A0 leads to

endogenous regressors. The reduced form vector autoregression (VAR) is given by

yt = C1yt−1 + ...+ Cpyt−p + ut. (1.2)

The reduced form shocks ut are i.i.d. and the VAR can be estimated by OLS. However, the

estimated reduced form parameters and the reduced form shocks are of limited interest for the

structural analysis, which focuses on the structural parameters and the structural shocks. The

reduced form shocks can be written as a linear combination of the structural shocks

ut = A−1
0 εt. (1.3)

However, neither the parameters of the matrix governing the simultaneous interaction, nor the

structural shocks are known. That is, the structural shocks cannot be directly recovered from
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the estimated reduced form VAR, leaving us with an identification problem.

Define the unmixed innovations as the vector of random variables obtained by unmixing the

reduced form shocks by a matrix A ∈ A as

et(A) := Aut. (1.4)

If the unmixing matrix A is equal to A0, the unmixed innovations are equal to the structural

shocks. I show how to derive a system of moment conditions that globally identifies the matrix

governing the simultaneous interaction and the structural shocks up to sign and permutation.

The identification requires independent and non-Gaussian structural shocks. Intuitively, if the

unmixed innovations and the structural shocks have the same covariance, coskewness, and cokur-

tosis, the unmixed innovations and structural shocks are equal up to sign and permutation.

Note that equations (1.3) and (1.4) contain no lag structure and the shocks are i.i.d. over time.

Therefore, the time index is suppressed whenever possible.

1.3 Illustration: Identification and higher moments

This section uses a bivariate SVAR to illustrate the intuition behind the identification approach

presented in Section 1.5. The approach is a straightforward extension of the standard identifica-

tion scheme relying on uncorrelated shocks to higher moments and independent shocks. Basically,

the structural shocks are assumed to be mutually independent and thus uncorrelated, which al-

lows us to postulate moment conditions. However, these second-order moment conditions are

not sufficient for identification. Exploiting the implications of independent shocks concerning

higher-order moments allows us to postulate additional moment conditions and to identify the

SVAR.

Consider a bivariate SVAR such that the unmixed innovations are given bye1

e2

 =

a11 a12

a21 a22

u1

u2

 . (1.5)

One can now use Assumption 1.1 to derive the stochastic properties of the unknown structural

shocks and choose an unmixing matrix such that the unmixed innovations fulfill the same stochas-
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tic properties. Basically, every SVAR identification approach exploits the second-order properties

of the structural shocks. In particular, the structural shocks have unit variance and the unmixed

innovations should therefore satisfy the following variance conditions

1
!
= E

[
e2

1

]
= E

[
(a11u1 + a12u2)2

]
(1.6)

1
!
= E

[
e2

2

]
= E

[
(a21u1 + a22u2)2

]
. (1.7)

Moreover, the components ε1 and ε2 are assumed to be (second-order) uncorrelated and therefore

satisfy the covariance condition

0
!
= E [e1e2] = E [(a11u1 + a12u2)(a21u1 + a22u2)] . (1.8)

Exploiting all second-order properties yields three equations in the four unknown coefficients of

A. Therefore, infinitely many unmixing matrices A generate unmixed innovations satisfying the

second-order properties and second-order statistics are therefore not sufficient to identify A0.

If one coefficient of A0 is known a priori, the corresponding coefficient of the unmixing matrix A

can be restricted and the system is just identified, for example, see Rubio-Ramı́rez et al. (2010).

Using short-run restrictions of this kind is probably the most common way to solve the identifi-

cation problem. However, the approach requires the researcher to know half of the simultaneous

structure a priori and by relying solely on second-order moments, these restrictions cannot be

tested. Technically, short-run restrictions reduce the number of unknowns. Alternatively, one

could attempt to increase the number of equations while keeping the number of unknowns con-

stant. Increasing the number of equations until no short-run restrictions are required seems

appealing since one does not need to restrict the simultaneous structure a priori. Additional

equations can only be generated by imposing more structure on the stochastic properties of

structural shocks. The following argument shows how independence accomplishes that.

So far, only second-order properties of the structural shocks have been used. Independent and

non-Gaussian structural shocks allow information contained in moments beyond the variance

and covariance to be exploited. For independent structural shocks, it is fairly straightforward to

generate as many equations as desired. In particular, independence implies third-order uncorre-

latedness, E
[
ε21ε2

]
= E

[
ε21
]
E [ε2] = 0 and analogously E

[
ε1ε

2
2

]
= 0, and therefore the unmixed
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innovations should satisfy the coskewness conditions

0
!
=E

[
e2

1e2

]
= E

[
(a11u1 + a12u2)2(a21u1 + a22u2)

]
(1.9)

0
!
=E

[
e1e

2
2

]
= E

[
(a11u1 + a12u2)(a21u1 + a22u2)2

]
. (1.10)

Thus, independence allows us to generate further moment conditions analogously to the usual

approach based on second moments. If the shocks are non-Gaussian, these moment conditions

contain further information that allow the SVAR to be identified. The system of equations (1.6) -

(1.10) now contains five equations in the four unknowns. However, the system contains nonlinear

equations and thus, it is not obvious whether the system globally identifies the SVAR. Section

1.5 shows that the system indeed identifies the SVAR up to sign and permutation, given that the

structural shocks are independent and non-Gaussian.

1.4 Notation

The identification approach requires (co-)moments of order two, three, and four to be calculated.

The following notation yields a short expression to collect all (co-)moments of a given order r.

For an n-dimensional random variable x, define a moment generating index W = [w1, ..., wr] ∈

{1, ..., n}r with r ∈ N and let

xW := [xw1 , ..., xwr ]. (1.11)

Let the expected value be denoted by E [xW ] := E [xw1
...xwr ] and let ET [xW ] denote the respec-

tive sample counterpart. Furthermore, define a moment generating set W = {W1, ...,Wl} with

the moment generating indices Wi ∈ {1, ..., n}r for i = 1, ..., l and define

xW :=


xW1

...

xWl

 , E [xW ] :=


E [xW1

]

...

E [xWl
]

 and ET [xW ] :=


ET [xW1

]

...

ET [xWl
]

 . (1.12)

This notation can be used to generate a vector containing the r-th (co-)moments of an n-

dimensional random variable.
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For r ∈ N, define the r-th moments generating set as

M(r) = {[m1, ...,mr] ∈ {1, ..., n}r|m1 = ... = mr}. (1.13)

The set contains n elements and the vector E
[
εM(r)

]
contains all r-th moments of the structural

shocks and the vector E
[
eM(r)(A)

]
contains all r-th moments of the unmixed innovations. In

the bivariate example, the second moments generating set is equal to M(2) = {[1, 1] , [2, 2]} and

the variance of the structural shocks is given by

E
[
εM(2)

]
= E

ε1ε1
ε2ε2

 . (1.14)

For r ∈ N, define the r-th co-moments generating set as

C(r) = {[c1, ..., cr] ∈ {1, ..., n}r|[c1, ..., cr] /∈M(r) and ci ≤ cj for i < j}. (1.15)

The set contains (n+r−1)!
(n−1)!r! −n elements and can be used to generate the corresponding co-moments

of an n-dimensional random variable. In particular, the vector E
[
εC(r)

]
contains all r-th co-

moments of the structural shocks and the vector E
[
eC(r)(A)

]
contains all r-th co-moments of the

unmixed innovations. In the bivariate example, the second co-moments generating set is equal

to C(2) = {[1, 2]} and the covariance of the structural shocks is given by

E
[
εC(2)

]
= E [ε1ε2] . (1.16)

Analogously, the third co-moment generating set is equal to C(3) = {[1, 1, 2] , [1, 2, 2]} and the

coskewness of the structural shocks is given by

E
[
εC(3)

]
= E

ε1ε1ε2
ε1ε2ε2

 . (1.17)
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Additionally, for X = [x1, ..., xr] ∈ {1, ..., n}r define the index counting function

#X :=

[∑
x∈X

1x=1, ...,
∑
x∈X

1x=n

]
, (1.18)

where 1x=i =

1 , if x = i

0 , else

such that the i-th element of #X counts how often the index i

appears in X.

1.5 SVAR-GMM estimator

This section generalizes the identification technique outlined in Section 1.3 to an n-dimensional

non-Gaussian SVAR. I first derive a system of variance, covariance, coskewness, and cokurtosis

conditions, which globally identify the non-Gaussian SVAR up to sign and permutations. The

SVAR is then estimated by matching the moments via a GMM estimator.

First, the (co-)moments of the unknown structural shocks need to be derived. The (co-)moments

follow from Assumption 1.1.

Proposition 1.1. Let ε satisfy Assumption 1.1. It holds that

1. For [m1,m2] ∈M(2): E
[
ε[m1,m2]

]
= 1

2. For [c1, c2] ∈ C(2): E
[
ε[c1,c2]

]
= 0

3. For [c1, c2, c3] ∈ C(3): E
[
ε[c1,c2,c3]

]
= 0

4. For [c1, c2, c3, c4] ∈ C(4): E
[
ε[c1,c2,c3,c4]

]
=

1, if c1 = c2 and c3 = c4

0, else

Proof. Independence embedded in Assumption 1.1 implies that for C = [c1, ..., cr]

E [εC ] =

n∏
i=1

E
[
ε#Cii

]
, (1.19)

where #Ci is the i-th element of the index counting function, which counts how often the index i
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appears in C. All statements follow by plugging in the value of each factor implied by Assumption

1.1 (iii).

One can now match the (co-)moments of the structural shocks with the (co-)moments of the

unmixed innovations, which yields n variance conditions

E
[
eM(2)(A)

]
= E

[
εM(2)

]
⇐⇒ E

[
eM(2)(A)

]
− 1 = 0, (1.20)

n(n+1)
2 − n covariance conditions

E
[
eC(2)(A)

]
= E

[
εC(2)

]
⇐⇒ E

[
eC(2)(A)

]
= 0, (1.21)

n(n+1)(n+2)
6 − n coskewness conditions

E
[
eC(3)(A)

]
= E

[
εC(3)

]
⇐⇒ E

[
eC(3)(A)

]
= 0 (1.22)

and n(n+1)(n+2)(n+3)
24 − n cokurtosis conditions

E
[
eC(4)(A)

]
= E

[
εC(4)

]
, (1.23)

with E
[
εC(4)

]
as defined in Proposition 1.1.

The SVAR will only be identified up to sign and permutations. Let P be the set containing

all n × n signed permutation matrices. For any signed permutation matrix P ∈ P, the shocks

ε̃ := Pε and the mixing matrix Ã0 := PA0 generate the same reduced form shocks as the shocks

ε and the mixing matrix A0. This can easily be verified since u = A−1
0 ε = A−1

0 P−1Pε = Ã−1
0 ε̃.

Moreover, since ε̃ is only a signed permutation of ε, both vectors of shocks share the same

dependence structure and hence, the identification approach cannot identify the correct sign

and permutation. Identification up to permutation is equivalent to the problem of labeling

the structural shocks, see Lanne et al. (2017) or Gouriéroux et al. (2017). Labeling and thus

attaching a meaning to the shocks cannot be done statistically but remains for the researcher.

Since the identification approach cannot identify the correct sign and permutation, I redefine

the problem such that the indeterminacy of sign and permutation no longer appears in the new
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identification problem. Obviously, the indeterminacy is only removed from the statistical side

of the problem and the researcher still needs to label the shocks. Note that the indeterminacy

of scaling the shocks is already excluded from the identification problem by assuming shocks

with unit variance. Define the set of sign-permutation representatives analogously to the set

guaranteeing global identification in Lanne et al. (2017) as

A∗ := {A ∈ A|∀i, aii > 0 and ∀i < j, |aii| ≥ |aji|}. (1.24)

An element A ∈ A∗ is called a unique sign-permutation representative if, for any signed per-

mutation matrix P ∈ P with P 6= I, it holds that PA /∈ A∗. The set A∗ fulfills the following

properties:

Proposition 1.2. Almost all elements A ∈ A∗ are unique sign-permutation representatives. For

any matrix A ∈ A there exists at least one signed permutation matrix P with PA ∈ A∗.

Proof. An inner point A ∈ A∗ satisfies that ∀i < j, |aii| > |aji|. Let A ∈ A∗ be an inner point.

For any P ∈ P with P 6= I, it holds that for Ã := PA indices i < j exist with |ãii| < |ãji| and

thus, Ã /∈ A∗. Therefore, an inner point of A∗ is a unique sign-permutation representative. Only

the boundary of A∗ contains elements which are not unique sign-permutation representatives.

However, the boundary of the n2 dimensional manifold A∗ has dimension n2 − 1 and is thus a

null set in A∗. The second statement is trivial.

Since A0 almost surely has a unique representative in A∗, I replace Assumption 1.1 .

Assumption 1.3. A0 ∈ A∗ is a unique sign-permutation representative.

The following proposition is based on Comon (1994) and shows that the variance, covariance,

coskewness, and cokurtosis conditions globally identify the SVAR.
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Proposition 1.3. Let ε = A0u satisfy Assumption 1.1 and 1.3. For A ∈ A∗, it holds that

E


eM(2)(A)− 1

eC(2)(A)

eC(3)(A)

eC(4)(A)− E
[
εC(4)

]

 = 0 ⇐⇒ A = A0, (1.25)

with E
[
εC(4)

]
as defined in Proposition 1.1.

Proof. Let Ã ∈ A∗ solve the moment conditions. Let Q̃ := ÃA−1
0 and thus ẽ = Ãu = Q̃ε.

Assumption 1.1 implies that I = E [εε′] and since ẽ solves the variance and covariance condition,

it follows that Q̃ is orthogonal. The coskewness and cokurtosis conditions then imply that all

third- and fourth-order cross-cumulants of ẽ are zero. Assumption 1.1 ensures that the shocks

are non-Gaussian and have finite moments up to order four. One can therefore apply Comon

(1994) Theorem 16 and Comon (1994) equation (3.10), which yields that Q is in P and thus Ã is

a signed permutation of A0. With Assumption 1.3, it follows that Ã = A0. The other direction

is trivial.

If only the first (second) part of Assumption 1.1 (iv) is fulfilled, the cokurtosis (coskewness) con-

ditions can be dropped and the SVAR is still globally identified. However, even if the cokurtosis

(or alternatively the coskewness) conditions are dropped, there are still more moment conditions

than unknown parameters. Importantly, dropping additional moment conditions immediately

destroys the global identification result, see the Appendix 1.10.2. Lanne and Luoto (2021) basi-

cally identify the simultaneous interaction with a subsystem of the moment conditions used in

Proposition 1.3. In particular, their system contains the variance, covariance, and a subset of

the cokurtosis conditions. Therefore, their system is only locally identified. Without the global

identification result, the GMM objective function can have minima converging to solutions un-

equal to signed permutations of A0. Additionally, it is difficult to derive the consistency and

asymptotic normality of the estimator. In fact, the authors argue that the asymptotic properties

can be derived under standard assumptions. However, one of these standard assumptions is a

globally identified system.

17



With Proposition 1.3, the matrix A0 can be estimated by the SVAR-GMM estimator

ÂT (W ) := arg min
A∈A∗

JT (A,W ), (1.26)

with a positive semidefinite weighting matrix W and the objective function

JT (A,W ) :=


ET
[
eM(2)(A)

]
− 1

ET
[
eC(2)(A)

]
ET
[
eC(3)(A)

]
ET
[
eC(4)(A)

]
− E

[
εC(4)

]



′

W


ET
[
eM(2)(A)

]
− 1

ET
[
eC(2)(A)

]
ET
[
eC(3)(A)

]
ET
[
eC(4)(A)

]
− E

[
εC(4)

]

 . (1.27)

If the estimator only contains the variance, covariance, and coskewness conditions, it is denoted

as the SVAR-GMM estimator based on the coskewness. The SVAR-GMM estimator based on the

cokurtosis is defined analogously. The asymptotic properties of the estimator follow from standard

arguments. Given standard assumptions, which in particular include global identification ensured

by Proposition 1.3, the estimator ÂT is a consistent estimator for A0 and it is asymptotically

normally distributed with
√
T
(
vec(ÂT )− vec(A0)

)
d→ N(0,MSM ′), where M and S are defined

as usual, see Hall (2005). Additionally, the weighting matrixWopt = S−1 yields the estimator with

the minimum asymptotic variance, see Hall (2005). The two-step SVAR-GMM estimator denotes

the SVAR-GMM estimator under the standard two-step GMM procedure. Moreover, parameter

hypothesis tests can be performed as usual, see Hall (2005). Of course, the interpretation of a

test is always subject to the labeling of the shocks, see Lanne et al. (2017). Bonhomme and

Robin (2009) note that the asymptotic standard errors depend on the variances of third- and

fourth-order moments. In small samples, these moments are difficult to estimate, and the authors

suggest using bootstrap based confidence intervals instead of the estimated asymptotic standard

errors.

To summarize, if the structural shocks are independent and non-Gaussian, the identification

problem can be solved by extending the identification approach from covariance to coskewness

and cokurtosis conditions. The SVAR can then be estimated by the SVAR-GMM estimator.

However, the number of moment conditions used in Proposition 1.3 increases quickly with the

dimension of the SVAR. Therefore, the computational burden of the SVAR-GMM estimator
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can be high in large models. The next section shows how a specific weighting scheme applied

to the SVAR-GMM estimator leads to a consistent, asymptotically normally distributed and

computationally cheap estimator.

1.6 Fast SVAR-GMM estimator

This section derives the fast SVAR-GMM estimator. The fast SVAR-GMM estimator can be de-

rived by applying a specific weighting scheme to the SVAR-GMM estimator. First, the estimator

is whitened, meaning that the weights of the variance and covariance conditions of the SVAR-

GMM estimator tend to infinity. Second, a specific weighting matrix is applied to the higher-order

co-moment conditions. Put together, both steps allow a computationally cheap expression of the

estimator to be derived. Obviously, when the weighting is used to derive a computationally cheap

expression of the estimator, it can no longer be used to achieve asymptotic efficiency of the esti-

mator. Therefore, in large SVAR models, there is a trade-off between asymptotic efficiency and

computational expense. However, the Monte Carlo simulations in the next section reveal that the

asymptotic efficiency loss does not translate to finite samples. Instead, putting infinite weights

on the less volatile second-order moment conditions leads to a good small sample performance of

the fast SVAR-GMM estimator.

Consider the SVAR-GMM estimator from equation (1.26) with the weighting matrix

Wm :=

mI 0

0 W (3&4)

 , (1.28)

where I is an n(n+1)
2 × n(n+1)

2 dimensional identity matrix, such that the variance and covari-

ance conditions receive the weight m, and W (3&4) is the weighting matrix corresponding to the

coskewness and cokurtosis conditions. The weighting matrix Wm splits the objective function of

the SVAR-GMM estimator into a bi-objective function, where the first objective is to minimizes

the variance and covariance conditions and the second objective is to minimize the higher-order

co-moment conditions. The SVAR-GMM estimator can then be written as

ÂT (Wm) = arg min
A∈A∗

mJ
(2)
T (A, I) + J

(3,4)
T (A,W (3,4)), (1.29)
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with

J
(2)
T (A, I) =

ET [eM(2)(A)
]
− 1

ET
[
eC(2)(A)

]
′ I

ET [eM(2)(A)
]
− 1

ET
[
eC(2)(A)

]
 (1.30)

and

J
(3,4)
T (A,W (3,4)) =

 ET
[
eC(3)(A)

]
ET
[
eC(4)(A)

]
− E

[
εC(4)

]
′W (3,4)

 ET
[
eC(3)(A)

]
ET
[
eC(4)(A)

]
− E

[
εC(4)

]
 . (1.31)

When the weight m of the variance and covariance conditions tends to infinity, these moment

conditions become constraints to the optimization problem and yield the whitened SVAR-GMM

estimator defined as

ÂwhiteT (W (3,4)) := arg min
A∈A∗

J
(3,4)
T (A,W (3,4)) (1.32)

s.t. J
(2)
T (A, I) = 0.

Proposition 1.4. Let ε = A0u satisfy Assumption 1.1 and 1.3. Then any limit point of the

series ÂT (Wm) for m to infinity solves the optimization problem in equation (1.32).

Proof. Note that the term mJ
(2)
T (A, I) in equation (1.29) is a quadratic penalty term which

penalizes violations of the variance and covariance conditions. The statement then follows from

the convergence of penalty function methods, see Luenberger et al. (2016).

The whitened estimator puts infinite weight on the variance and covariance conditions. While this

weighting clearly deviates from the asymptotically efficient weighting matrix of the SVAR-GMM

estimator, the next section shows that putting higher weights on the less volatile second-order

moment conditions results in a good small sample performance of the estimator.

The whitened SVAR-GMM estimator is a GMM estimator subject to restrictions. Let VTV
′
T =

ET [uu′] be the Cholesky decomposition of the sample variance-covariance matrix of the reduced

form shocks. The restriction in equation (1.32) is then equivalent to the restriction

(AVT )(AVT )′ = I, (1.33)
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meaning that AVT is restricted to be an orthogonal matrix. In practice, it is not necessary to

keep track of this restriction. Instead, the whitened SVAR-GMM estimator can be calculated as

ÂwhiteT (W (3,4)) = ÔVT ,T (W (3,4))V −1
T with

ÔVT ,T (W (3,4)) := arg min
O∈O

J
(3,4)
T (OV −1

T ,W (3,4)), (1.34)

where O denotes the set of orthogonal matrices. Therefore, the constraint is an orthogonal

constraint and the optimization problem can be transformed into an unconstrained problem over

an Euclidean space, for example, see Lezcano-Casado and Martınez-Rubio (2019). For simplicity,

the indeterminacy of sign and permutation has been ignored, but could easily be fixed by defining

O∗ := {O ∈ O|OV −1
T ∈ A∗}.

Due to the random variable VT , the restriction of the whitened SVAR-GMM estimator is not

static. Therefore, consistency and asymptotic normality of the whitened SVAR-GMM estimator

do not follow from standard arguments but can be derived analogously.

Proposition 1.5. Let ε = A0u satisfy Assumption 1.1 and 1.3 and let the standard assump-

tions used in Lemma 5.2 and Lemma 5.4 in Hall (2005) hold. Furthermore, assume uniform

convergence in probability, sup
O∈O
|J (3,4)
T (OV −1

T ) − J (3,4)
T (OV −1)| p→ 0 for m → ∞, where V is the

Cholesky decomposition of the variance-covariance matrix, V V ′ = E [uu′], and VT is the sample

analog. The whitened SVAR-GMM estimator then satisfies the following properties:

• Consistency: ÂwhiteT (W (3,4))
P→ A0

• Asymptotic normality:
√
T (vec(ÂwhiteT (W (3,4)))− vec(A0))

d→ N(0, Z), where the variance

Z is given in Appendix 1.10.1.

Proof. Replacing the restriction (AVT )(AVT )′ = I with (AV )(AV )′ = I yields the estimator

ÂV,T (W (3,4)). The restriction of ÂV,T (W (3,4)) no longer contains a random variable and the

consistency of ÂV,T (W (3,4)) follows from Lemma 5.2 in Hall (2005). With VT being a consistent

estimator for V and the uniform convergence assumption, the consistency of ÂwhiteT (W (3,4)) can

be established. Asymptotic normality can be shown analogous to Lemma 5.4 in Hall (2005). A

detailed proof can be found in Appendix 1.10.1.
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Having established the asymptotic properties of the whitened SVAR-GMM, the next step in

deriving the fast SVAR-GMM estimator is to apply a specific weighting matrixW
(3,4)
fast to the third-

and fourth-order co-moment conditions. The fast weighting matrix allows a computationally

cheap expression for the whitened SVAR-GMM estimator to be established. The key idea is

related to a fundamental idea of ICA; minimizing the dependency means to maximize non-

Gaussianity. Define the fast weighting matrix W
(3,4)
fast as the diagonal matrix where the diagonal

element corresponding to the co-moment C ∈ C(r) with r ∈ {3, 4} is defined as

w
(r)
fast(C) :=

(
r

#C

)
=

r!∏n
i=1 #Ci!

, (1.35)

where #Ci denotes the i-th element of the counting function #C. Thus, for example, the weight

corresponding to the coskewness condition E
[
e2

1e
1
2

]
in equation (1.9) is equal to 3!

2!1! = 3. The fast

weighting matrix can now be used to derive a computationally cheap expression of the whitened

estimator, which is henceforth denoted as the fast SVAR-GMM estimator.

Proposition 1.6. Let ε = A0u satisfy Assumption 1.1 and 1.3. The estimator ÂwhiteT (W
(3,4)
fast )

is equal to

ÂwhiteT (W
(3,4)
fast ) =arg max

A∈A∗
H

(3,4)
T (A) (1.36)

s.t. J
(2)
T (A, I) = 0.

with

H
(3,4)
T (A) :=

∑
M∈M(3)

ET [eM (A)]
2

+
∑

M∈M(4)

(ET [eM (A)]− 3)
2
. (1.37)

Proof. The weights are constructed such that for a given sample of size T there exists a constant

ωT ∈ R with H
(3,4)
T (A) + J

(3,4)
T (A,W

(3,4)
fast ) = ωT for all A ∈ A∗ with J

(2)
T (A, I) = 0, which is the

sample counterpart of equation (3.10) in Comon (1994). Rearranging yields J
(3,4)
T (A,W

(3,4)
fast ) =

ωT − H
(3,4)
T (A), which proves the Proposition. The proof is written down in more detail in

Appendix 1.10.1.

The whitened SVAR-GMM estimator with the fast weighting matrix can therefore be calculated
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by equation (1.32) or equation (1.36). The former calculates the estimator by minimizing the

dependencies of the shocks captured by the objective function J
(3,4)
T (A,W

(3,4)
fast ) and the latter

by maximizing the non-Gaussianity of the shocks captured by the objective function H
(3,4)
T (A).

When the fast weighting matrix is used, Proposition 1.6 yields that both optimization problems

have the same solution.

In a bivariate SVAR, the objective function J
(3,4)
T (A,W

(3,4)
fast ) is equal to

J
(3,4)
T (A,W

(3,4)
fast ) =

3!

2!1!
ET
[
e1(A)2e2(A)

]2
+

3!

1!2!
ET
[
e1(A)e2(A)2

]2
(1.38)

+
4!

3!1!
ET
[
e1(A)3e2(A)

]2
+

4!

2!2!
ET
[
e1(A)2e2(A)2 − 1

]2
+

4!

1!3!
ET
[
e1(A)e2(A)3

]2
.

and the objective function H
(3,4)
T (A) is equal to

HT (A) = ET
[
e1(A)3

]2
+ ET

[
e2(A)3

]2
+ ET

[
e1(A)4 − 3

]2
+ ET

[
e2(A)4 − 3

]2
. (1.39)

In the bivariate example, the computational advantage of maximizing the non-Gaussianity of

the shocks compared to minimizing the dependencies of the shocks is small, since the former

requires five co-moments to be calculated and the latter requires four moments. However, the

computational advantage pays out in larger SVAR models. For example, an SVAR with five

variables leads to an objective function J
(3,4)
T (A,W

(3,4)
fast ) that contains 172 terms measuring the

unmixed innovations dependencies, compared to an objective function H
(3,4)
T (A) containing 10

terms measuring the unmixed innovations’ non-Gaussianity.

The fast SVAR-GMM estimator was derived by applying a weighting scheme to the SVAR-GMM

estimator. The fast SVAR-GMM estimator remains computationally cheap in large SVAR mod-

els. However, as a trade-off, one can no longer use the weighting matrix to achieve asymptotic

efficiency of the estimator. The next section shows that even though the fast SVAR-GMM esti-

mator may be asymptotically inefficient, it performs well in small samples and often outperforms

the asymptotically efficient two-step SVAR-GMM estimator.
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1.7 Finite sample properties

This section analyzes the finite sample performance of the SVAR-GMM estimators and compares

it to the GMM estimator proposed by Lanne and Luoto (2021) and to the PML estimator

proposed by Gouriéroux et al. (2017). I find that the SVAR-GMM estimators perform more

robustly throughout different specifications than the two alternatives. Moreover, the simulations

show that putting infinite weight on second-order moment conditions leads to a good performance

of the fast SVAR-GMM estimator in small samples. Additionally, the Monte Carlo simulation

sheds light on the impact of the degree of non-Gaussianity on the finite sample performance

of SVAR-GMM estimators. I find that estimators based on the skewness have desirable small

sample properties as the bias and standard deviation of the estimators is found to be almost

solely determined by the relative skewness and show no deterioration with a decreasing sample

size.

The setup of the Monte Carlo study is similar to the setup in Gouriéroux et al. (2017) with

u = A−1
0 ε and

A−1
0 =

cos(φ) −sin(φ)

sin(φ) cos(φ)

 , (1.40)

where φ = −π/5. The shocks are drawn from a distribution of the Pearson distribution family

with mean zero, unit variance, and different skewness/kurtosis parameters. A high excess kurto-

sis (skewness) is defined as the excess kurtosis (skewness) a standard normally distributed shock

does not exceed in a sample of 200 observations with a probability of 99.99% and is equal to

2.33 (0.53). The first Monte Carlo study contains three specifications. In the first specification,

both structural shocks have zero skewness and a high excess kurtosis. In the second specification,

both shocks have a high skewness and zero excess kurtosis. In the third specification, the first

shock is Gaussian, and the second shock has a high skewness and high excess kurtosis. Table 1.1

shows the mean bias and scaled standard deviation of the two-step SVAR-GMM estimator, the

fast SVAR-GMM estimator, the GMM estimator proposed by Lanne and Luoto (2021) with the

cokurtosis condition E
[
ε1ε

3
2

]
= 0, and the PML estimator proposed by Gouriéroux et al. (2017)

using a t-distribution with twelve degrees of freedom. The results are largely unaffected by the

chosen degrees of freedom.
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Table 1.1: Finite sample performance - Comparison of unrestricted non-Gaussian SVAR esti-
mators.

T = 200 T = 500 T = 5000
Specification 1 2 3 1 2 3 1 2 3

Â(W 2-step) −0.03
(6.43)

−0.01
(0.99)

−0.04
(5.46)

−0.02
(4.96)

−0.01
(0.69)

−0.02
(5.45)

0
(2.97)

0
(0.62)

0
(3.83)

Â(W fast) −0.02
(4.02)

−0.02
(3.05)

−0.03
(5.02)

−0.01
(3.84)

0
(2.51)

−0.01
(4.8)

0
(3.48)

0
(1.22)

0
(4.53)

GMMLL −0.03
(4.18)

−0.04
(7.48)

−0.03
(4.29)

−0.01
(5.61)

−0.03
(18.08)

−0.01
(5.07)

0
(5.41)

−0.02
(177.26)

0
(4.8)

PML −0.01
(3.1)

−0.1
(16.14)

−0.04
(6.05)

0
(2.57)

−0.1
(43.25)

−0.02
(7.89)

0
(2.15)

−0.15
(591.88)

0
(4.97)

Monte Carlo simulation with sample sizes 200, 500, and 5000 each with 10000 iterations. For an estimator Â

of A0, define the estimator B̂ := Â−1 of B := A−1
0 . Each entry shows the mean bias, E

[
b̂1,1 − b1,1

]
, and the

standard deviation of
√
T
(
b̂1,1 − b1,1

)
is shown in parentheses. Moreover, the element b1,1 of B is equal to

cos(−π/5). In specification one, both structural shocks have zero skewness and a high excess kurtosis. In the
specification two, both structural shocks have a high skewness and zero excess kurtosis. In specification three, the
first shock is Gaussian and the second shock has a high skewness and high excess kurtosis. The SVAR-GMM
estimator denoted by Â(W 2-step) is the two-step SVAR-GMM estimator and the fast SVAR-GMM estimator is

denoted by Â(W fast). The GMM estimator proposed by Lanne and Luoto (2021) is denoted by GMMLL and
uses the cokurtosis condition E

[
ε1ε32

]
= 0. The PML estimator proposed by Gouriéroux et al. (2017) is denoted

by PML and assumes a t-distribution with twelve degrees of freedom.

The PML estimator performs best in the first specification. This is not too surprising since the

PML estimator is essentially correctly specified (the shocks are drawn from a Pearson Type V II

distribution, which contains the t-distribution). However, the advantage of the PML estimator

compared to the SVAR-GMM estimators decreases with an increasing sample size. Moreover,

the performance of the PML estimator deteriorates with the degree of misspecification and it

performs worse than the SVAR-GMM estimators in specification two and three. In the second

specification, the misspecification of the PML estimator has particularly severe consequences as

the estimator cannot exploit the skewness to identify and consistently estimate the parameter

(see Appendix 1.10.3). The GMM estimator proposed by Lanne and Luoto (2021) performs best

in the third specification and small samples. However, its advantage vanishes with an increasing

sample size and in the largest sample, it performs worse than the SVAR-GMM estimators. Just

like the PML estimator, the GMM estimator proposed by Lanne and Luoto (2021) cannot identify

and consistently estimate the parameter in the second specification. Moreover, the estimator is

only locally identified and its performance depends on an optimization algorithm with a starting

value close to the true solution; see the Appendix 1.10.4 for an extension to a grid of starting

values.
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The two-step SVAR-GMM estimator uses an estimate of the asymptotically efficient weighting

matrix and in large samples it performs better than the fast SVAR-GMM estimator. However,

the Monte Carlo simulation shows that this result does not translate to small samples. In fact,

when the sample size is small the fast SVAR-GMM estimator performs better than the two-step

SVAR-GMM estimator in two out of three specifications. The two-step SVAR-GMM estimator

estimates the variances of the moment conditions and adjusts the weights, such that less volatile

moments receive higher weights. This weighting is asymptotically efficient, however, in small sam-

ples the variances of the moment conditions are difficult to estimate (compare this to Bonhomme

and Robin (2009)). Therefore, the weighting used by the two-step SVAR-GMM estimator may

rely on a few outliers and can be far away from being efficient. In contrast, the fast SVAR-GMM

estimator does not rely on estimated variances, but by construction, it puts infinite weight on the

less volatile second-order moment conditions, which explains the good finite sample performance

of the fast SVAR-GMM estimator.

In a second Monte Carlo simulation, I analyze the impact of the degree of non-Gaussianity and

the sample size on the SVAR-GMM estimators. I find that the results do not depend on the

weighting matrix and I therefore only report the results for the fast SVAR-GMM estimator. The

degree of non-Gaussianity is now chosen in relative terms. A low relative skewness (excess kur-

tosis) is defined as the sample skewness (excess kurtosis) a standard normally distributed shock

will not exceed in a sample of size T with a probability of 90%. A medium and high relative

skewness (excess kurtosis) is defined analogously for a probability of 99% and 99.99%. The val-

ues are calculated by bootstrap and are shown in Table 1.2. Defining the non-Gaussianity in

relative terms allows us to compare the impact of the skewness and excess kurtosis. Moreover, it

allows us to disentangle the effects of the non-Gaussianity and the sample size. The first part of

Table 1.2: Relative non-Gaussianity.

rel. skewness rel. excess kurtosis
low medium high low medium high

T = 200 0.22 0.4 0.68 0.4 0.97 2.33
T = 500 0.14 0.26 0.41 0.27 0.6 1.25
T = 5000 0.04 0.08 0.13 0.09 0.17 0.3

The table shows the quantiles (low is 0.9, medium is 0.99, high is 0.9999) of the sample skewness and sample
excess kurtosis of standard normally distributed shocks in a sample of size T in a Monte Carlo simulation with
5000000 simulated samples for each sample size.
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Table 1.3 shows the impact of the relative skewness on the fast SVAR-GMM estimators based on

coskewness conditions and the second part of the table shows the impact of the relative excess

kurtosis on the fast SVAR-GMM estimators based on cokurtosis conditions. In the first part of

the table, the structural shocks have zero excess kurtosis and a low, medium, or high relative

skewness. In the second part of the table, the shocks have zero skewness and a low, medium, or

high relative excess kurtosis.

Keeping the sample size unchanged and increasing the degree of non-Gaussianity has a positive

impact on the finite sample properties of the estimators. Intuitively, this finding is comparable

to the strength or weakness of an instrument in an instrumental variables estimation. Decreas-

ing the sample size and keeping the degree of non-Gaussianity unchanged reveals an important

difference between both estimators. The bias and standard deviation of the estimator based on

the coskewness appear to be entirely determined by the relative skewness and do not vary across

sample sizes. In contrast, the bias and standard deviation of the estimator based on the cokurto-

sis increase with a decreasing sample size. This finding can be explained by the sample variance

of the moment conditions, which increases with an increase of the excess kurtosis. The effect

is more pronounced in small samples and partly offsets the positive impact of a higher excess

kurtosis.

Table 1.3: Finite sample performance - The impact of non-Gaussianity.

T = 200 T = 500 T = 5000
Skewness low med high low med high low med high

Exc. kurtosis zero zero zero zero zero zero zero zero zero

Âr=3(W fast) −0.05
(0.23)

−0.03
(0.16)

−0.01
(0.08)

−0.06
(0.23)

−0.03
(0.15)

−0.01
(0.09)

−0.06
(0.24)

−0.03
(0.16)

−0.01
(0.09)

Skewness zero zero zero zero zero zero zero zero zero
Exc. kurtosis low med high low med high low med high

Âr=4(W fast) −0.05
(0.22)

−0.03
(0.18)

−0.02
(0.14)

−0.05
(0.21)

−0.03
(0.16)

−0.01
(0.11)

−0.05
(0.2)

−0.02
(0.13)

−0.01
(0.07)

Monte Carlo simulation with sample sizes 200, 500, and 5000 each with 10000 iterations. For an estimator Â

of A0, define the estimator B̂ := Â−1 of B := A−1
0 . Each entry shows the mean bias, E

[
b̂1,1 − b1,1

]
, and

the standard deviation of
(
b̂1,1 − b1,1

)
is shown in parentheses. Moreover, the element b1,1 of B is equal to

cos(−π/5). In the first part of the table, the structural shocks have zero excess kurtosis and a low, medium, or
high relative skewness. In the second part of the table, the shocks have zero skewness and a low, medium, or high
relative excess kurtosis. The relative skewness and relative excess kurtosis values are shown in Table 1.2. The fast
SVAR-GMM estimator based on the skewness is denoted by Âr=3(W fast) and the fast SVAR-GMM estimator

based on the kurtosis is denoted by Âr=4(W fast).
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In summary, I find that the SVAR-GMM estimators perform more robustly than the PML es-

timator proposed by Gouriéroux et al. (2017) and the GMM estimator proposed by Lanne and

Luoto (2021). Moreover, putting infinite weight on the less volatile lower-order moment condi-

tions leads to a good performance of the fast SVAR-GMM estimator in small samples. Finally,

the simulations show how the degree of non-Gaussianity influences the finite sample performance

of the SVAR-GMM estimators and reveals desirable small sample properties of estimators based

on the skewness.

1.8 Economic activity, oil, and stock prices

This section applies the SVAR-GMM estimator to analyze the simultaneous relationship between

economic activity, oil, and stock prices. It may be convincing to argue that the real economy

behaves sluggishly and does not respond to stock and oil price shocks contemporaneously. How-

ever, convincing arguments on how to contemporaneously restrict the stock and oil market are

lacking. Nevertheless, in applications (e.g., Sadorsky (1999), Kilian and Park (2009), or Apergis

and Miller (2009)), stock market shocks have been restricted to have no simultaneous impact on

oil prices. I provide evidence that the real economy may indeed behave sluggishly, but oil and

stock prices do not.

The SVAR is estimated with monthly US data from 1990 to 2018 and contains three variables:

a measure of real economic activity (EA), monthly real S&P 500 returns (SP), and the monthly

growth rates of real oil prices (OP). Real economic activity is measured as 100 times the log

difference of the monthly US Industrial Production Index. Real S&P 500 returns are calculated

as 100 times the log difference of the S&P 500 closing price deflated by the US CPI. The monthly

growth rates of real oil price are calculated as 100 times the log difference of the crude oil compos-

ite acquisition cost by refiners deflated by the US CPI. See Appendix 1.10.5 for more information

on the data sources.

The SVAR is given by

A0


EAt

SPt

OPt

 = α+

p∑
i=1

Ai


EAt−i

SPt−i

OPt−i

+


εEAt

εSPt

εOPt

 . (1.41)
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Based on the AIC criterion, I estimate the reduced form with a lag length of four months.

The moments of the residuals and the p-value of the Jarque-Bera test are shown in Table 1.4.

The Jarque-Bera test indicates non-Gaussian residuals with non-zero skewness and a positive

excess kurtosis. Based on the Monte Carlo simulation, I use the two-step SVAR-GMM estimator

Table 1.4: Economic activity, oil, and stock prices - Reduced form residuals.

Variance Skewness Kurtosis JB-Test
uEA 0.28 -0.84 10.71 0.00
uOP 44.49 0.14 3.73 0.02
uSP 15.53 -0.37 3.55 0.01

The JB-Test shows the p-value of the Jarque-Bera test.

to estimate the simultaneous relationship. The results presented below are robust to different

specifications and estimators, see Appendix 1.10.5.

The impulse response function (IRF) is shown in Figure 1.1. The shocks are labeled such that

economic activity shocks have a positive impact on oil and stock prices, oil price shocks have a

long-run negative impact on economic activity, and the remaining shock is labeled as the stock

market shock. According to the IRF, oil price shocks lead to a lagged decrease of economic

activity and an immediate decrease of stock returns. Stock market shocks lead to a long-run

increase of economic activity and an immediate increase of oil prices. Therefore, real economic

activity behaves sluggishly with no simultaneous response to stock or oil market shocks. However,

the stock and oil markets are found to interact simultaneously and no recursive order of both

variables appears viable.

1.9 Conclusion

This study proposes an identification approach based on higher moments, which is derived as

a straightforward extension of the usual SVAR identification approach relying on uncorrelated

shocks to independent shocks. Exploiting the skewness and excess kurtosis of the shocks allows

a non-Gaussian SVAR with independent structural shocks to be identified. The identification

result is used to derive the SVAR-GMM estimator and, as a computationally cheap alternative,

the fast SVAR-GMM estimator.

In the Monte Carlo simulation, I find that the SVAR-GMM estimators perform more robustly
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Figure 1.1: Economic activity, oil, and stock prices - Impulse responses.

Confidence intervals are calculated by bootstrap with 10000 replications. The interval shows the upper 0.9 and
lower 0.1 percentiles. The reduced form VAR is estimated with four lags and the simultaneous interaction is
estimated by the two-step SVAR-GMM estimator.

than two alternatives proposed in the literature. Moreover, due to its asymptotic efficiency, the

two-step SVAR-GMM estimator performs superior to the fast SVAR-GMM estimator in large

samples. However, in small samples the fast SVAR-GMM estimator often performs better than

the two-step SVAR-GMM estimator.

Finally, the empirical applications analyze the interaction between real economic activity, stock

and oil markets. I find that stock and oil prices interact simultaneously, while the real economy

appears to behave sluggishly with no contemporaneous reaction to oil and stock market shocks.

The application therefore illustrates how an SVAR can be estimated based on higher moments

without relying on incredible short-run restrictions.

1.10 Appendix

1.10.1 Appendix - Proofs

Proof of Proposition 1.5. Let VTV
′
T = ET [uu′] be the Cholesky decomposition of the sample

variance-covariance matrix of the reduced form shocks and let V V ′ = E [uu′] be the Cholesky
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decomposition of the variance-covariance matrix of the reduced form shocks. Define

ÂwhiteV,T (W (3,4)) :=arg min
A∈A∗

J
(3,4)
T (A,W (3,4)) (1.42)

s.t. J (2)(A, I) = 0,

where

J (2)(A, I) =

E [eM(2)(A)
]
− 1

E
[
eC(2)(A)

]
′ I

E [eM(2)(A)
]
− 1

E
[
eC(2)(A)

]
 (1.43)

and note that J (2)(A, I) = 0 is equivalent to (AV )(AV )′ = I, meaning that (AV ) is a orthogonal.

Consistency of ÂwhiteV,T (W (3,4)) follows from Lemma 5.2 of Hall (2005) and uses global identification

analogous to Proposition 1.3.

Let O∗ ⊂ O be a set of unique sign-permutation representatives of orthogonal matrices and let

O0 := A0V ∈ O∗. Given a weighting matrix W (3,4) define

ÔV,T := arg min
O∈O∗

J
(3,4)
T (OV −1,W (3,4)) (1.44)

and note that ÂwhiteV,T (W (3,4)) = ÔV,TV
−1 and therefore ÔV,T

p→ O0. Define

ÔVT ,T := arg min
O∈O∗

J
(3,4)
T (OV −1

T ,W (3,4)) (1.45)

and note that ÂwhiteT (W (3,4)) = ÔVT ,TV
−1
T . Consistency of ÔVT ,T requires to show that

lim
T→∞

P
[
0 ≤ J (3,4)

T (ÔVT ,TV
−1) < ε

]
= 1, (1.46)

for ε > 0, meaning that ÔVT ,T minimizes JT (OV −1) with probability one as T → ∞. The

uniform convergence assumption implies that

lim
T→∞

P

[
J

(3,4)
T (ÔVT ,TV

−1) < J
(3,4)
T (ÔVT ,TV

−1
T ) +

4

ε

]
= 1. (1.47)
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Moreover, ÔVT ,T minimizes JT (OV −1
T ) and thus

lim
T→∞

P

[
J

(3,4)
T (ÔVT ,TV

−1
T ) < J

(3,4)
T (ÔV,TV

−1
T ) +

4

ε

]
= 1. (1.48)

Additionally, the uniform convergence assumption implies that

lim
T→∞

P

[
J

(3,4)
T (ÔV,TV

−1
T ) < J

(3,4)
T (ÔV,TV

−1) +
4

ε

]
= 1. (1.49)

Finally, consistency of ÔV,T implies

lim
T→∞

P

[
J

(3,4)
T (ÔV,TV

−1) <
4

ε

]
= 1. (1.50)

Equation (1.46) then follows from JT (ÔVT ,TV
−1) ≥ 0 and equations (1.47), (1.48), (1.49), (1.50).

Consistency of ÔVT ,T can then be established analogous to part (ii) in the proof of Theorem 3.1.

in Hall (2005). With VT
p→ V and ÔVT ,T

p→ O0 it follows that ÂwhiteT (W (3,4)) = ÔVT ,TV
−1
T

P→

O0V
−1 = A0.

The proof of the asymptotic normality is analogous to Lemma 5.4 in Hall (2005). Denote the

whitened SVAR-GMM estimator as Â := ÂwhiteT (W (3,4)) and for simplicity assume that Â and

A0 are already vectorized and suppress the vec(.) notation. Note that the whitened SVAR-GMM

estimator is equal to

Â =arg min
A∈A∗

J
(3,4)
T (A,W (3,4)) (1.51)

s.t. g
(2)
T (A) = 0,

with

g
(2)
T (A) :=

ET [eM(2)(A)
]
− 1

ET
[
eC(2)(A)

]
 . (1.52)
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Furthermore, let

g
(3,4)
T (A) :=

 ET
[
eC(3)(A)

]
ET
[
eC(4)(A)

]
− E

[
εC(4)

]
 . (1.53)

and let G
(2)
T (A) := ET

∂
eM(2)(A)

eC(2)(A)

 /∂A′
 , G

(2)
0 (A) := E

∂
eM(2)(A)

eC(2)(A)

 /∂A′
 and

G
(3,4)
T (A) := ET

∂
eC(3)(A)

eC(4)(A)

 /∂A′
 as well as G

(3,4)
0 (A) := E

∂
eC(3)(A)

eC(4)(A)

 /∂A′
 respec-

tively. The Lagrangian function corresponding to equation (1.51) is equal to

L(A, ρ) = J
(3,4)
T (A,W (3,4))− 2g

(2)
T (A)′ρ (1.54)

and the first order conditions are given by

G
(3,4)
T (Â)′W (3,4)g

(3,4)
T (Â)−G(2)

T (Â)′ρ̂T = 0 (1.55)

g
(2)
T (Â) = 0. (1.56)

Using Â
p→ A0 and ρ̂

p→ 0 (analogous to Newey and McFadden (1994) [p.2218]) as well as

G
(2)
T (Â)

p→ G
(2)
0 (A0) and G

(3,4)
T (Â)

p→ G
(3,4)
0 (A0), equation (1.55) can be rewritten as

G
(3,4)
0 (A0)′W (3,4)T 1/2g

(3,4)
T (Â)−G(2)

0 (A0)′T 1/2ρ̂T (1.57)

and equation (1.56) can be written as

−T 1/2g
(2)
T (Â) = 0. (1.58)
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Using the Mean Value Theorem to linearize T 1/2g
(2)
T (Â) and T 1/2g

(3,4)
T (Â) around A0 yields

0

0

 =

 T 1/2g
(2)
T (A0)

G
(3,4)
0 (A0)′W (3,4)T 1/2g

(3,4)
T (A0)

 (1.59)

+

 G
(2)
0 (A0)′ 0

G
(3,4)
0 (A0)′W (3,4)G

(3,4)
0 (A0) −G(2)

0 (A0)′

T 1/2(Â−A0)

T 1/2(ρ̂)

+ op(1)

Define

H :=

 G
(2)
0 (A0)′ 0

G
(3,4)
0 (A0)′W (3,4)G

(3,4)
0 (A0) −G(2)

0 (A0)′

−1

(1.60)

and let

M(2) := H1:n2,1:n2+n(n−1)/2 (1.61)

M(3,4) := H1:n2,n2+n(n−1)/2+1:endG
(3,4)
0 (A0)′W (3,4), (1.62)

where Hi:j,k:l denotes the matrix containing rows i to j and columns k to l of H. With equation

(1.59) and the asymptotic normality of

 T 1/2g
(2)
T (A0)

T 1/2g
(3,4)
T (A0)

 ∼ N(0,

 S(2),(2) S(2),(3,4)

S(3,4),(2) S(3,4),(3,4)

), (1.63)

where S(2),(2) := lim
T→∞

V ar(T 1/2g
(2)
T (A0)), S(2),(3,4) := lim

T→∞
Cov(T 1/2g

(2)
T (A0), T 1/2g

(3,4)
T (A0)),

S(3,4),(2) := lim
T→∞

Cov(T 1/2g
(3,4)
T (A0), T 1/2g

(2)
T (A0)) and S(3,4),(3,4) := lim

T→∞
V ar(T 1/2g

(3,4)
T (A0)) it

follows that

T 1/2(Â−A0) ∼ N(0, Z), (1.64)

with Z = M(2)S(2),(2)M
′
(2)+M(2)S(2),(3,4)M

′
(3,4)+M(3,4)S(3,4),(2)M

′
(2)+M(3,4)S(3,4),(3,4)M

′
(3,4).

Let x be a an n-dimensional random variable with E [x] = 0 and E [xx′] = I. For C = [c1, c2, c3] ∈
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{1, ..., n}3 the third order (cross-)cumulant of x is equal to

Cum(xC) = Cum(xc1 , xc2 , xc3) = E [xc1xc2xc3 ] . (1.65)

For c = [c1, c2, c3, c4] ∈ {1, ..., n}4 the fourth order (cross-)cumulant of x is equal to

Cum(xC) = Cum(xc1 , xc2 , xc3 , xc4) =E [xc1xc2xc3xc4 ] (1.66)

− E [xc1xc2 ]E [xc3xc4 ] (1.67)

− E [xc1xc3 ]E [xc2xc4 ] (1.68)

− E [xc1xc4 ]E [xc2xc3 ] . (1.69)

Consider a sample of the random variable x for which ET [x] = 0 and ET [xx′] = I, then the

same equalities hold for the sample counterparts CumT (.) and ET (.).

Lemma 1.1. Let x be an n-dimensional random variable with E
[
xM(1)

]
= 0, E

[
xM(2)

]
= 1,

E
[
xC(2)

]
= 0 and E

[
xM(3)

]
<∞. Let ε satisfy Assumption 1.

1) For c ∈ C(3) it holds that E [xc] = Cum(xc) .

2) For c ∈ C(4) it holds that E [xc]− E [εc] = Cum(xc).

3) For m ∈M(3) it holds that E [xm] = Cum(xm).

4) For m ∈M(4) it holds that E [xm]− 3 = Cum(xm).

Consider a sample of the random variable x with ET
[
xM(1)

]
= 0, ET

[
xM(2)

]
= 1, ET

[
xC(2)

]
= 0

and ET
[
xM(3)

]
< ∞, then the same statements hold for the sample counterparts ET [.] and

CumT (.).

Proof. Statements 1) and 3) are trivial. Statement 2) holds since for C = [c1, c2, c3, c4] ∈ C(4)

E [εc] =

1 , if c1 = c2 and c3 = c4

0 , else

(1.70)
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and

Cum(xc) =

E [xc]− 1 , if c1 = c2 and c3 = c4

E [xc] , else

. (1.71)

Statement 4) holds since for C = [c1, c2, c3, c4] ∈M(4)

Cum(xc) = E [xc]− 3 (1.72)

The sample counterpart can be shown analogously.

Proof of Proposition 1.6. For A ∈ A∗ with J
(2)
T (A, I) = 0, there exists O ∈ O such that A =

OV −1
T . Therefore, Proposition 6 requires to show that there exists a constant ωT invariant to O,

such that

J
(3,4)
T (OV −1

T ,W
(3,4)
fast ) = ωT −H(3,4)

T (OV −1
T ). (1.73)

Define

ẽ(O) := e(OV −1
T ) = OV −1

T u = OV −1
T A−1

0 ε = Oε̃, (1.74)

with V −1
T A−1

0 ε = ε̃ and by construction I = ET [ε̃ε̃′]. Then the objective function

J
(3,4)
T (OV −1

T ,W
(3,4)
fast ) can be written as

J
(3,4)
T (OV −1

T ,W
(3,4)
fast ) =

∑
C∈C(3)

(
3

#C

)
ET [ẽC(O)]

2
+

∑
C∈C(4)

(
4

#C

)
(ET [ẽC(O)]− E [εC ])

2

(1.75)

and the objective function H
(3,4)
T (OV −1

T ) can be written as

H
(3,4)
T (OV −1

T ) =
∑

M∈M(3)

(
3

#M

)
ET [ẽM (O)]

2
+

∑
M∈M(4)

(
4

#M

)
(ET [ẽM (O)− 3])

2
, (1.76)
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since
(
r

#M

)
= 1 for M ∈M(r) and r ∈ {3, 4}. With Lemma 1.1 it follows that

J
(3,4)
T (OV −1

T ,W
(3,4)
fast ) =

∑
C∈C(3)

(
3

#C

)
CumT (ẽC(O))2 +

∑
C∈C(4)

(
4

#C

)
CumT (ẽC(O))2 (1.77)

and

H
(3,4)
T (OV −1

T ) =
∑

M∈M(3)

(
3

#M

)
CumT (ẽM (O))2 +

∑
M∈M(4)

(
4

#M

)
CumT (ẽM (O))2. (1.78)

The weights are constructed such that

J
(3,4)
T (OV −1

T ,W
(3,4)
fast ) +H

(3,4)
T (OV −1

T ) =

n∑
s1,...,s3=1

CumT (ẽs1(O), ..., ẽs3(O))2 (1.79)

+

n∑
s1,...,s4=1

CumT (ẽs1(O), ..., ẽs4(O))2.

Equation (3.10) in Comon (1994) states that on the population level, the right and side of the

equation (1.79) is invariant with respect to O ∈ O. However, the same statement also holds for the

sample counterpart and thus the right hand side of the equation (1.79) is invariant with respect to

O ∈ O. Let ωT :=
∑n
s1,...,s3=1 CumT (ẽs1(O), ..., ẽs3(O))2+

∑n
s1,...,s4=1 CumT (ẽs1(O), ..., ẽs4(O))2

and thus

J
(3,4)
T (OV −1

T ,W
(3,4)
fast ) = ωT −H(3,4)

T (OV −1
T ). (1.80)

Therefore equation (1.73) holds, which proves the proposition.

1.10.2 Appendix - Notes on identification

This section uses a bivariate example to illustrate why global identification up to sign and permu-

tation requires to include all coskewness conditions. Analogously, one can construct an example

based on cokurtosis conditions and show that including only n(n−1)/2 cokurtosis conditions (as

proposed by Lanne and Luoto (2021)) does not globally identify the SVAR.
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Let E [εi] = 0, E
[
ε2i
]

= 1 and E
[
ε3i
]

= 1 for i ∈ {1, 2} and let

ε1
ε2

 = A0

u1

u2

 , (1.81)

with A0 = I. Define the unmixed innovations ase1

e2

 =

 1 a1,2

a2,1 1

u1

u2

 . (1.82)

To simplify calculations, the moment condition E
[
e2
]

= 1 has been replaced by the assumption

a1,1 = a2,2 = 1. The covariance and coskewness conditions are given by

0 = E [e1e2] (1.83)

0 = E
[
e2

1e2

]
(1.84)

0 = E
[
e1e

2
2

]
. (1.85)

The system thus contains three equations in two unknowns (e1 and e2 are functions of a1,2 and

a2,1). Omitting one of the coskewness conditions leads to a system not identifying A0 up to sign

and permutations. Consider the system of two equations and two unknowns

0 = E [e1e2] (1.86)

0 = E
[
e2

1e2

]
. (1.87)

The first equation yields

0 = E [e1e2] = E [(ε1 + a1,2ε2)(a2,1ε1 + ε2)] (1.88)

=⇒ 0 = a2,1 + a1,2. (1.89)
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The second equation yields

0 = E
[
e2

1e2

]
= E

[
(ε1 + a1,2ε2)2(a2,1ε1 + ε2)

]
(1.90)

=⇒ 0 = a2,1 + a2
1,2. (1.91)

Therefore, A =

1 −1

1 1

 solves the system and thus A0 = I is not identified up to sign and

permutations.

1.10.3 Appendix - Notes on PML

Also the PML estimator proposed by Gouriéroux et al. (2017) is closely related to the maximiza-

tion of certain moments. To see this, consider the PML estimator with the pseudo distribution

of the i-th shock being equal to gi ∼ t(v), where t(v) denotes a t-distribution with v degrees of

freedom. The PML estimator is given by

ÔPML = arg max
O∈O

T∑
t=1

n∑
i=1

log gi(et,i) (1.92)

= arg max
O∈O

T∑
t=1

n∑
i=1

−1− v
2

log

(
1 +

e2
t,i

v − 2

)
(1.93)

Ignoring the weighting implied by the degrees of freedom and using log(1 + x) ≈ x− x2

2 yields

ÔPML ≈ arg max
O∈O

T∑
t=1

n∑
i=1

−e2
t,i +

e4
t,i

2
(1.94)

= arg max
O∈O

T

n∑
i=1

(
−T−1

T∑
t=1

e2
t,i

)
+ T

n∑
i=1

(
1

2
T−1

T∑
t=1

e4
t,i

)
(1.95)
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The shocks are normalized and thus T−1
∑T
t=1 e

2
t,i = 1 for i = 1, ..., n. It follows that the PML

estimator can be written as

ÔPML ≈ arg max
O∈O

n∑
i=1

(
T−1

T∑
t=1

e4
t,i

)
(1.96)

= arg max
O∈O

∑
M∈M(4)

ET [eM (O)] (1.97)

Therefore, maximizing the pseudo log likelihood function is approximately equal to maximiz-

ing the kurtosis of the unmixed innovations. Moreover, Equation (1.97) shows that the PML

estimator based on a t-distribution cannot utilize any information contained in third moments.

1.10.4 Appendix - Finite sample performance

This section contains the results of the first Monte Carlo study presented in Section 7, when

the estimators are calculated with an optimization routine using a grid of starting values. The

simulations show, that using a grid of starting values has almost no impact on the globally

identified SVAR-GMM estimators proposed in this paper, but obviously has a severe impact on

the locally identified GMM estimator proposed by Lanne and Luoto (2021).

The Monte Carlo study again uses u = A−1
0 ε with

A−1
0 =

cos(φ) −sin(φ)

sin(φ) cos(φ)

 , (1.98)

and φ = −π/5. The shocks are drawn from a distribution of the Pearson distribution family with

mean zero, unit variance, and different skewness/kurtosis parameters. In the first specification,

both structural shocks have zero skewness and a high excess kurtosis. In the second specification,

both shocks have a high skewness and zero excess kurtosis. In the third specification, the first

shock is Gaussian, and the second shock has a high skewness and high excess kurtosis. In Section

7 all estimators where calculated with local optimization routines using starting values close

to the true parameter Matrix A0. In this section, the optimization routine calculates several

minima based on different starting values. The estimator is then equal to the solution leading to
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the smallest minima. The starting values are equal to

Astart(φstart) =

cos(φstart) −sin(φstart)

sin(φstart) cos(φstart)

 , (1.99)

with φstart ∈ {2, 1.8, 1.6, 1.4, 1.2, 1, 0.8, 0.6, 0.4, 0.2, 0}. The simulation results are shown in Table

1.5.

Table 1.5: Finite sample performance - Comparison of unrestricted non-Gaussian SVAR estima-
tors (global optimization).

T = 200 T = 500 T = 5000
Specification 1 2 3 1 2 3 1 2 3

Â(W 2-step) −0.02
(6.51)

−0.01
(1.51)

−0.03
(6.08)

−0.01
(5.11)

0
(0.96)

−0.01
(5.58)

0
(3.7)

0
(0.83)

0
(3.91)

Â(W fast) −0.02
(4.49)

−0.02
(3.32)

−0.03
(5.53)

−0.01
(3.91)

0
(2.61)

−0.01
(4.99)

0
(3.48)

0
(1.22)

0
(4.52)

GMMLL −0.08
(15.38)

−0.06
(14.05)

−0.03
(10.3)

−0.09
(41.09)

−0.06
(35.39)

−0.01
(18.15)

−0.19
(582.78)

−0.06
(384.64)

0.01
(70.28)

PML −0.01
(3.11)

−0.1
(16.12)

−0.04
(6.06)

0
(2.57)

−0.1
(43.27)

−0.02
(7.87)

0
(2.15)

−0.15
(592.72)

0
(4.94)

Monte Carlo simulation with sample sizes 200, 500, and 5000 each with 10000 iterations. For an estimator Â

of A0, define the estimator B̂ := Â−1 of B := A−1
0 . Each entry shows the mean bias, E

[
b̂1,1 − b1,1

]
, and the

standard deviation of
√
T
(
b̂1,1 − b1,1

)
is shown in parentheses. Moreover, the element b1,1 of B is equal to

cos(−π/5). In specification one, both structural shocks have zero skewness and a high excess kurtosis. In the
specification two, both structural shocks have a high skewness and zero excess kurtosis. In specification three, the
first shock is Gaussian and the second shock has a high skewness and high excess kurtosis. The SVAR-GMM
estimator denoted by Â(W 2-step) is the two-step SVAR-GMM estimator and the fast SVAR-GMM estimator

is denoted by Â(W fast). The GMM estimator proposed by Lanne and Luoto (2021) is denoted by GMMLL

and uses the cokurtosis condition E
[
ε1ε32

]
= 0. The PML estimator proposed by Gouriéroux et al. (2017)

is denoted by PML and assumes a t-distribution with twelve degrees of freedom. Each estimator is calculated
as the minima of all local minima found by a local optimization routine based on the grid of starting values
φstart ∈ {2, 1.8, 1.6, 1.4, 1.2, 1, 0.8, 0.6, 0.4, 0.2, 0}.

1.10.5 Appendix - Application: Data and robustness checks

U.S. Industrial Production Index

Source: Board of Governors of the Federal Reserve System (US)

Retrieved from: FRED, Federal Reserve Bank of St. Louis

Link: https://fred.stlouisfed.org/series/INDPRO, August 25, 2018

Crude oil composite acquisition cost by refiner

Source: U.S. Energy Information Administration
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Link: https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=R0000____3&f=M,

August 12, 2018

S&P 500

Source: Yahoo! Finance

Link: https://finance.yahoo.com/quote/%5EGSPC?p=%5EGSPC, August 12, 2018

U.S. CPI

Source: U.S. Bureau of Labor Statistics

Retrieved from: FRED, Federal Reserve Bank of St. Louis

Link: https://fred.stlouisfed.org/series/CPIAUCSL, August 12, 2018

Table 1.6: Economic activity, oil, and stock prices - Descriptive statistics.

Mean Median Mode Std. deviation Variance Skewness Kurtosis Range

EA 0.13 0.15 0.41 0.58 0.34 -1.97 15.11 6.15

OP 0.03 0.14 -10.98 1.89 3.56 -1.35 9.42 16.48

SP 0.44 0.82 -17.7 4.12 17 -0.75 4.66 27.99

Real economic activity is measured as 100 times the log difference of the monthly US Industrial Production Index.
Real S&P 500 returns are calculated as 100 times the log difference of the the S&P 500 closing price deflated by
the US CPI. The monthly growth rates of real oil prices are calculated as 100 times the log difference of the crude
oil composite acquisition cost by refiners deflated by the US CPI.
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Figure 1.2: Economic activity, oil, and stock prices - Impulse responses (robustness checks).

1) Fast SVAR-GMM 2) PML

3) SVAR-GMM (2-step) with six lags The first and second set of IRFs are based on the re-
duced form described in Section 8. The first set of
IRFs is based on the fast SVAR-GMM estimator and
the second set of IRFs is based on the PML estimator
proposed by Gouriéroux et al. (2017) and uses a t-
distribution with twelve degrees of freedom. The third
set of IRFs estimates the reduced form with six lags
and the simultaneous relationship is estimated by the
two-step SVAR-GMM estimator. Confidence intervals
are calculated by bootstrap with 1000 replications and
the interval shows the upper 0.9 and lower 0.1 per-
centiles.
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2 A Feasible Approach to Incorporate Information in

Higher Moments in Structural Vector Autoregressions6

2.1 Introduction

In a non-Gaussian structural vector autoregression (SVAR) independent structural shocks im-

ply higher-order moment conditions which identify the simultaneous relationship without any

restrictions on the simultaneous interaction. These higher-order moment conditions can be used

to estimate the SVAR with a generalized of moments (GMM) or continuous updating estimator

(CUE), see, e.g., Lanne and Luoto (2021), Keweloh (2021b), or Guay (2021). However, with

higher-order moment conditions the long-run covariance matrix of the sample average of the mo-

ment conditions is difficult to estimate in small samples. Nevertheless, an accurate estimation

of the covariance matrix is crucial for the estimation of the asymptotically optimal weighting

matrix, the estimation of the asymptotic variance, and inference.

This study analyzes the small sample behavior of CUE and GMM estimators with higher-order

moment conditions in SVAR models. I find that standard approaches to estimate the long-run

covariance matrix lead to volatile and biased CUE and GMM estimators with distorted J and

Wald test statistics. Moreover, the performance of the estimators decreases with the model size,

to the point of limiting the usefulness of the approach for specifications usually considered in

macroeconometrics. I propose to use the assumption of mutually independent structural shocks

not only to derive moment conditions but also to estimate the asymptotically efficient weighting

matrix and the asymptotic variance. I demonstrate that this simple modification substantially

increases the small sample performance of the estimators.

The small sample behavior of CUE and GMM estimators in general has been studied extensively.

GMM estimators are known to exhibit a small sample bias and the CUE is associated with a

smaller bias, see, e.g., Hansen et al. (1996), Donald and Newey (2000), Han and Phillips (2006),

or Newey and Windmeijer (2009). Moreover, the inability to precisely estimate the asymptotic

variance leads to oversized Wald test statistics, see Burnside and Eichenbaum (1996). Therefore,

6A slightly different version of the chapter appeared as Keweloh, S. A. (2021), A feasible approach to incorporate
information in higher moments in structural vectorautoregressions, SFB 823 Discussion Paper series No. 22/2021,
https://doi.org/10.17877/DE290R-22416
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Burnside and Eichenbaum (1996) propose to use restrictions implied by the underlying model to

calculate test statistics. In the context of SVAR models, Bonhomme and Robin (2009), Keweloh

(2021b), and Guay (2021) recognize that due to higher-order moment conditions, the long-run

covariance matrix of the sample average of the moment conditions is particularly difficult to

estimate. For example, the covariance of cokurtosis moment conditions is of order eight and

therefore, difficult to estimate in samples with a few hundred observations. I show that exploiting

the assumption of mutually independent structural shocks simplifies the problem of estimating

the covariance of higher-order moment conditions. In particular, with independent structural

shocks, higher-order moments of the covariance matrix can be calculated as products of lower-

order moments. Therefore, I propose the SVAR CUE-MI and SVAR GMM-MI estimators, which

are SVAR CUE and SVAR GMM estimators exploiting the assumption of mutually independent

structural shocks to estimate the asymptotically optimal weighting matrix and the asymptotic

variance. A Monte Carlo simulation demonstrates that the SVAR CUE-MI and SVAR GMM-MI

outperform SVAR CUE and SVAR GMM estimators, which are not exploiting the assumption

of mutually independent shocks to estimate the optimal weighting and asymptotic variance.

It is well known that the number coskewness and cokurtosis conditions implied by independent

structural shocks increases quickly with the dimension of the SVAR. For example, with n = 2

variables, independent structural shocks imply two variance, one covariance, two coskewness

and three cokurtosis conditions, and with n = 4 variables independent structural shocks imply

four variance, six covariance, 16 coskewness and 31 cokurtosis conditions, see Keweloh (2021b).7

While the possible number of moment conditions increases quickly with the dimension of the

SVAR, the number of moments contained in the covariance matrix of the moment conditions

increases even more rapidly. In particular, for n = 2 variables the covariance matrix of all

second- to fourth-order moment conditions implied by mutually independent shocks is a 8 × 8

matrix with five co-moments of order four, six co-moments of order five, seven co-moments of

order six, eight co-moments of order seven, and nine co-moments of order eight. However, for

n = 4 variables the covariance matrix of all second- to fourth-order moment conditions implied

7Lanne and Luoto (2021) and Keweloh (2021b) propose GMM estimators which minimize the second- and
higher-order dependencies of the unmixed innovations. In contrast to that, the GMM estimator proposed by
Guay (2021) minimizes the distance of the second- and higher-order co-moments of the reduced form shocks to the
second- and higher-order co-moments implied by a mixture of independent structural shocks. The GMM estimator
proposed by Guay (2021) has even more higher-order moment conditions.
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by mutually independent shocks is a 57 × 57 matrix with 35 co-moments of order four, 56 co-

moments of order five, 84 co-moments of order six, 120 co-moments of order seven, and 165

co-moments of order eight. Exploiting the assumption of mutually independent shocks allows

to estimate the covariance matrix of all second- to fourth-order moment conditions implied by

mutually independent shocks as a product of n moments of order one, n moments of order two,

n moments of order three, n moments of order four, n moments of order five, and n moments

of order six. Therefore, with mutually independent shocks the researcher only needs to estimate

moments up to order six instead of order eight and the number of these moments increases linearly

in the dimension of the SVAR.

Mutually independent structural shocks simplify the estimation of the asymptotically optimal

weighting matrix and the asymptotic variance. In many cases, mutually independent structural

shocks are no additional assumption but assumed anyway to derive the identifying higher-order

moment conditions, see, e.g., Keweloh (2021b) and Guay (2021).8 However, some authors argue

that the assumption of mutually independent shocks is too strong, see, e.g., Kilian and Lütke-

pohl (2017, Chapter 14), Lewis (2021), or Lanne and Luoto (2021). In particular, independence

implies that the volatility processes of the shocks are independent. Lanne and Luoto (2021)

show that a suitable subset of n(n− 1)/2 asymmetric cokurtosis conditions is sufficient to ensure

local identification in a non-Gaussian SVAR.9 These asymmetric cokurtosis conditions can be

motivated by mutually mean independent shocks, which allows a dependence of the volatility

processes. Therefore, I derive analogous results for the estimation of the weighting matrix and

variance depending on mutually mean independent shocks. More generally, the approach pro-

posed in this study does not rely on a specific set of moment conditions. Instead, I argue that

the same statistical properties used to derive the moment conditions should be used to estimate

the asymptotically optimal weighting matrix and the asymptotic variance of the estimator.

The remainder of this article is organized as follows. Section 2.2 summarizes the SVAR model

and the main assumptions. Section 2.3 defines the GMM estimator for SVAR models based on

8Note that also the (pseudo) maximum-likelihood estimators proposed by Lanne et al. (2017) and Gouriéroux
et al. (2017) or the Bayesian approaches proposed by Lanne and Luoto (2020) and Anttonen et al. (2021) assume
independent shocks to ensure identification.

9Additionally, Lanne et al. (2021) show that the second-order moment conditions together with n(n − 1)/2
symmetric cokurtosis conditions can be sufficient to ensure global identification. However, the result only holds if
the structural shocks satisfy all cokurtosis moment conditions implied by independent shocks.
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higher-order moment conditions. Section 2.4 proposes novel estimators for the long-run covariance

matrix and the asymptotic variance by exploiting mutually independent shocks. Section 2.5

demonstrates the advantages of the proposed estimators over traditional estimators in a Monte

Carlo simulation. Section 2.6 concludes.

2.2 SVAR models

This section briefly explains the identification problem and common identification approaches

of SVAR models. A detailed overview can be found in Kilian and Lütkepohl (2017). Consider

the SVAR yt =
∑P
p=1Apyt−p + ut with an n-dimensional vector of observable variables yt =

[y1,t, ..., yn,t]
′, the reduced form shocks ut = [u1,t, ..., un,t]

′, and

ut = B0εt (2.1)

describing the impact of an n-dimensional vector of unknown structural shocks εt = [ε1,t, ..., εn,t]
′.

The matrix B0 ∈ Rn×n governs the simultaneous interaction and is assumed to be invertible.

Assumption 2.1. B0 ∈ B := {B ∈ Rn×n|det(B) 6= 0}.

The reduced form shocks can be estimated consistently, and for the sake of simplicity, I focus on

the simultaneous interaction in Equation (2.1) and treat the reduced form shocks as observable

random variables. The identically distributed structural shocks satisfy the following assumptions.

Assumption 2.2. εt is serially independent (εt is independent of εt̃ for t 6= t̃)

Assumption 2.3. εt has mutually uncorrelated components (εi,t is uncorrelated with εj,t for

i 6= j).

Assumption 2.4. Each component of εt has zero mean, unit variance, and finite third- and

fourth-order moments.

Based on the assumptions used so far, neither the matrix B0 nor the structural shocks εt are iden-

tified. Several identifying assumptions have been proposed in the literature ranging from short-

or long-run restrictions on the interaction of the variables (see, e.g., Sims (1980), or Blanchard

(1989)), over Proxy-SVAR models (see, e.g., Mertens and Ravn (2013)) up to sign restrictions
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(see, e.g., Uhlig (2005) or Peersman (2005)). A novel branch of the SVAR identification literature

uses non-Gaussian and independent shocks to identify the SVAR, see, e.g., Lanne et al. (2017),

Gouriéroux et al. (2017), Herwartz (2018), Lanne and Luoto (2021), Keweloh (2021b), or Guay

(2021)). These data-driven identification schemes do not require to impose any short- or long-run

restrictions on the interaction of the variables, instead, identification is based on statistical prop-

erties of the shocks. The most commonly used statistical property is the assumption of mutually

independent structural shocks.

Assumption 2.5. εt has mutually independent components (εi,t is independent of εj,t for i 6= j).

The independence assumption can be used to derive moment conditions, see, e.g., Keweloh

(2021b) or Guay (2021). However, the assumption of mutually independent shocks has been

criticized by several authors for being too restrictive, see, e.g., Kilian and Lütkepohl (2017,

Chapter 14), Lewis (2021), or Lanne and Luoto (2021). In particular, it appears plausible that

multiple macroeconomic shocks are driven by the same volatility process, which is not possible

with mutually independent shocks. The independence assumption can be relaxed to the weaker

assumption of mutually mean independent shocks.

Assumption 2.6. εt has mutually mean independent components (E [εi,t|ε−i,t] = 0 for i =

1, ..., n).

If the shocks are mutually mean independent, no shock contains any information on the mean of

another shock, however, shocks can contain information on the variance of other shocks and thus,

the assumption may be more plausible in some applications. Note that mutually mean indepen-

dent structural shocks are sufficient to derive the identifying coskewness conditions proposed in

Keweloh (2021b) and the identifying asymmetric cokurtosis conditions used in Lanne and Luoto

(2021). For the sake of simplicity, this study focuses on mutually independent shocks. Results

under the weaker assumption of mutually mean independent shocks can be obtained analogously

and are briefly sketched.

The assumption of mutually (mean) independent shocks can be used to generate higher-order

moment condition, however, these conditions are only informative if the structural shocks are

non-Gaussian. Therefore, identification requires non-Gaussian shocks embedded in the following

assumption.
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Assumption 2.7. At most one component of εt is Gaussian.

Note that depending on the particular identification approach a slight modification of Assumption

2.7 is required. For example, the GMM estimators proposed by Lanne and Luoto (2021), Keweloh

(2021b) or Guay (2021) require that the third- and/or fourth-order moments of at most one

structural shock is equal to the corresponding moment of a Gaussian shock.

2.3 SVAR GMM with higher-order moment conditions

This section briefly summarizes the SVAR estimators based on higher-order moment conditions

derived from mutually independent structural shocks. A detailed description can be found in

Lanne and Luoto (2021), Keweloh (2021b), or Guay (2021).

The reduced form shocks are equal to an unknown mixture of the unknown structural shocks,

ut = Bεt. Reversing this relationship yields the unmixed innovations e(B)t, defined as the

innovations obtained by unmixing the reduced form shocks with some invertible matrix B

e(B)t := B−1ut. (2.2)

If B is equal to the true mixing matrix B0, the unmixed innovations are equal to the structural

shocks. Assumption 2.4 and 2.5 can be used to derive moment conditions. In particular, the

structural shocks are uncorrelated with unit variance. Therefore, the unmixing matrix B should

yield uncorrelated unmixed innovations with unit variance, see Table 2.1. Moreover, independent

structural shocks yield coskewness or third-order moment conditions and cokurtosis or fourth-

order moment conditions, see Table 2.1.

In general, all variance, covariance, coskewness, and cokurtosis moment conditions derived from

independent structural shocks embedded in Assumption 2.5 can be written as

E[fm(B, ut)] = 0 with fm(B, ut) :=

n∏
i=1

e(B)mii,t −m0, (2.3)

where fm(B, ut) contains all variance and covariance conditions for m ∈ 2, all coskewness condi-
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Table 2.1: Illustration of moment conditions.

covariance / second-order conditions coskewness / third-order conditions

E[ε21,t] = 1 =⇒ E[e(B)2
1,t]

!
= 1

...

E[ε2n,t] = 1 =⇒ E[e(B)2
n,t]

!
= 1

E[ε1,tε2,t] = 0 =⇒ E[e(B)1,te(B)2,t]
!
= 0

...

E[ε21,tε2,t] = 0 =⇒ E[e(B)2
1,te(B)2,t]

!
= 0

E[ε1,tε
2
2,t] = 0 =⇒ E[e(B)1,te(B)2

2,t]
!
= 0

E[ε1,tε2,tε3,t] = 0 =⇒ E[e(B)1,te(B)2,te(B)3,t]
!
= 0

...

cokurtosis / fourth-order conditions

E[ε31,tε2,t] = 0 =⇒ E[e(B)3
1,te(B)2,t]

!
= 0

E[ε21,tε
2
2,t] = 1 =⇒ E[e(B)2

1,te(B)2
2,t]

!
= 1

E[ε1,tε
3
2,t] = 0 =⇒ E[e(B)1,te(B)3

2,t]
!
= 0

E[ε21,tε2,tε3,t] = 0 =⇒ E[e(B)2
1,te(B)2,te(B)3,t]

!
= 0

E[ε1,tε2,tε3,tε4,t] = 0 =⇒ E[e(B)2
1,te(B)2,te(B)3,te(B)4,t]

!
= 0

...

tions for m ∈ 3, and all cokurtosis conditions for m ∈ 4 with

2 := {[m0,m1, ....mn] ∈ {{0, 1}, {0, 1, 2}n}|
n∑
i=1

mi = 2 and (2.4)

m0 =

0, if ∃mi = 1 for mi ∈ m1, ....mn

1, otherwise

},

3 := {[m0,m1, ....mn] ∈ {{0, 1}, {0, 1, 2}n}|
n∑
i=1

mi = 3 and m0 = 0}, (2.5)

4 := {[m0,m1, ....mn] ∈ {{0, 1}, {0, 1, 2, 3}n}|
n∑
i=1

mi = 4 and (2.6)

m0 =

0, if ∃mi = 1 for mi ∈ m1, ....mn

1, otherwise

}.

Note that all moment conditions except the symmetric cokurtosis conditions E[ε2i,tε
2
j,t] = 1 for

i 6= j can be derived from Assumption 2.6 and therefore, only require mutually mean independent

shocks.
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Based on all or a subset of the moment conditions presented above, Lanne and Luoto (2021) and

Keweloh (2021b) provide different local and global identification results for the following SVAR

GMM estimator

B̂T := arg min
B∈B

gT (B)′WgT (B), (2.7)

where gT (B) = 1
T

∑T
t=1 f(B, ut), and W is a positive semi-definite weighting matrix. Suppose

that f(B, ut) contains all or a subset of the moment conditions fm(B, ut) with m ∈ 2 ∪ 3 ∪ 4

such that the SVAR GMM estimator (2.7) is identified. Consistency and asymptotic normality

of the estimator follow from standard assumptions

B̂T
p→ B0

√
T (B̂T −B0)

d→ N (0,MSM ′)
with

M :=
(
G′S−1G

)−1
G′W

G := E
[
∂f(B0,ut)
∂vec(B)′

]
S := lim

T→∞
E [TgT (B0)gT (B0)′] ,

(2.8)

see Hall (2005). In particular, asymptotic normality requires that the matrix S exists and is

finite. For the SVAR GMM estimator based on second- to fourth-order moment conditions this

holds if εt has finite moments up to order eight. The weighting matrix W ∗ := S−1 leads to

the estimator B̂∗T with the asymptotic variance
√
T (B̂∗T − B0)

d→ N (0, (G′S−1G)−1), which is

the lowest possible asymptotic variance, see Hall (2005). Han and Phillips (2006) proposed the

continuous updating estimator estimator (CUE)

B̂T := arg min
B∈B

gT (B)′Ŵ (B)gT (B), (2.9)

where Ŵ (B) is a consistent estimator for the asymptotically optimal weighting matrix W ∗.

Han and Phillips (2006) and Newey and Windmeijer (2009) show that for i.i.d. observations and

a nonrandom weighting matrix W the expected value of a GMM objective function is equal to

E [gT (B)′WgT (B)] =E

∑
t6=t̃

f(B, ut)
′Wf(B, ut̃)

+ E

[∑
t

f(B, ut)
′Wf(B, ut)

]
(2.10)

=(1− T−1)E[f(B, ut)]
′WE[f(B, ut)] + trace(WS(B))/T, (2.11)
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where the second equality uses the nonrandom weighting matrix W and S(B) :=

E[f(B, ut)f(B, ut)
′]. The first term in Equation (2.11) is called signal term and is minimized

at B0 since E [f(B0, ut)] = 0. The second term in Equation (2.11) is called noise term and is

not minimized at B0. The impact of the noise term vanishes with T → ∞. Nevertheless, in a

finite sample the noise term can dominate the signal term and lead to a bias, especially in large

SVAR models with many moment conditions. If the weighting matrix W (B) is equal to S(B)−1,

the noise term in Equation (2.11) collapses to m/T , where m is equal to the number of moment

conditions. Therefore, the noise term no longer depends on B and hence leads to no bias. The

CUE is a feasible version of this approach and replaces W (B) = S(B)−1 with some estimator

Ŵ (B) = Ŝ(B)−1.

2.4 Estimating S and G

In practice, S and G are unknown and need to be estimated for inference and asymptotically

optimal weighting. These matrices can be difficult to estimate in small samples. In a GMM setup

not related to SVAR models Burnside and Eichenbaum (1996) propose to impose restrictions

of the underlying economic model on the estimator for S and G. They show that exploiting

additional information on S and G can improve the rejection rates of Wald tests in small samples.

This section shows how the structure of the SVAR can be used to improve the estimation of S

and G. In particular, I propose to exploit the assumption of serially and mutually independent

structural shocks. In the SVAR with second- to fourth-order moment conditions, estimation of

the long-run covariance matrix S is particularly difficult, since it requires to estimate moments

up to order eight. Bonhomme and Robin (2009), Keweloh (2021b), and Guay (2021) recognize

that the presence of these higher-order moments makes it difficult to estimate the asymptotically

optimal weighting matrix and the asymptotic variance of the estimator. I show that exploiting

the assumption of serially and mutually independent shocks largely simplifies the estimation of

the long-run covariance matrix S and yields more precise estimates of the asymptotically optimal

weighting matrix and the asymptotic variance. Additionally, for the first weighting step of the

SVAR GMM estimator, I propose an approximation of the asymptotically optimal weighting

matrix based on the assumption of mutually independent shocks not requiring any prior estimates

of B0.
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In the SVAR, the long-run covariance matrix of two arbitrary moment conditions fm(B, ut) =∏n
i=1 e(B)mii,t −m0 and fm̃(B, ut) =

∏n
i=1 e(B)m̃ii,t − m̃0 with m, m̃ ∈ 2∪3∪4 at B = B0 is equal

to

Sm,m̃ := lim
T→∞

E

[
T

(
1

T

T∑
t=1

fm(B0, ut)

)(
1

T

T∑
t=1

fm̃(B0, ut)

)]
(2.12)

= lim
T→∞

E

[
T

(
1

T

T∑
t=1

n∏
i=1

e(B0)mii,t −m0

)(
1

T

T∑
t=1

n∏
i=1

e(B0)m̃ii,t − m̃0

)]
(2.13)

=E

[
n∏
i=1

εmi+m̃ii,t

]
−m0E

[
n∏
i=1

εm̃ii,t

]
− m̃0E

[
n∏
i=1

εmii,t

]
+m0m̃0 (2.14)

+

∞∑
j=1

E

[
n∏
i=1

εmii,t ε
m̃i
i,t−j

]
−m0E

[
n∏
i=1

εm̃ii,t−j

]
− m̃0E

[
n∏
i=1

εmii,t

]
+m0m̃0

+

∞∑
j=1

E

[
n∏
i=1

εmii,t−jε
m̃i
i,t

]
−m0E

[
n∏
i=1

εm̃ii,t

]
− m̃0E

[
n∏
i=1

εmii,t−j

]
+m0m̃0,

where the last equality follows from identically distributed shocks and e(B0)t = εt. Therefore,

with fourth order moments m, m̃ ∈ 4 such that
∑n
i=1mi =

∑n
i=1 m̃i = 4, the long-run covariance

matrix Sm,m̃ contains co-moments of the structural shocks up to order eight. In practice, Sm,m̃

in Equation (2.14) can be estimated by replacing εt with e(B)t and some initial estimate or guess

B of B0 and a heteroscedasticity and autocorrelation consistent covariance (HAC) estimator, see

Newey and West (1994).

However, with serially independent structural shocks implied by Assumption 2.2 the expression

53



of Sm,m̃ simplifies to10

SSIm,m̃ = E

[
n∏
i=1

εmi+m̃ii,t

]
−m0E

[
n∏
i=1

εm̃ii,t

]
− m̃0E

[
n∏
i=1

εmii,t

]
+m0m̃0, (2.18)

where the superscript SI indicates that the equality Sm,m̃ = SSIm,m̃ only holds for serially inde-

pendent shocks. Let SSI denote S under the assumption of serially independent shocks. Based

on Equation (2.18), the long-run covariance under serially independent shocks can be estimated

by

ŜSIm,m̃(B) :=
1

T

T∑
t=1

[
n∏
i=1

e(B)mi+m̃ii,t

]
−m0

1

T

T∑
t=1

[
n∏
i=1

e(B)m̃ii,t

]
− m̃0

1

T

T∑
t=1

[
n∏
i=1

e(B)mii,t

]
+m0m̃0,

(2.19)

where B is an initial guess or a consistent estimator for B0. Let ŜSI(B) denote the esti-

mator where each element of the long-run covariance matrix is estimated by Equation (2.18).

Note that serially independent shocks imply that SSI = E [f(B0, ut)f(B0, ut)
′] and ŜSI(B) =

1
T

∑T
t=1 f(B, ut)f(B, ut)

′, which corresponds to the estimator for S under the frequently used

assumption of serially uncorrelated moment conditions.

With serially independent structural shocks the expression of the long-run covariance matrix

S simplifies to the covariance matrix SSI . Nevertheless, the covariance matrix SSIm,m̃ of two

fourth-order moments m, m̃ ∈ 4 is still of order eight and remains difficult to estimate in small

samples. Analogously, one can now exploit that the shocks are mutually independent to further

simplify the estimation of S. Note that many non-Gaussian identification approaches rely on the

assumption of mutual independent shocks to ensure identification, see, e.g., Lanne et al. (2017),

10To see this note that for j > 1

E

[
n∏
i=1

ε
mi
i,t ε

m̃i
i,t−j

]
−m0E

[
n∏
i=1

ε
m̃i
i,t−j

]
− m̃0E

[
n∏
i=1

ε
mi
i,t−j

]
+m0m̃0 (2.15)

= E

[
n∏
i=1

ε
mi
i,t

]
E

[
n∏
i=1

ε
m̃i
i,t−j

]
−m0E

[
n∏
i=1

ε
m̃i
i,t−j

]
− m̃0E

[
n∏
i=1

ε
mi
i,t−j

]
+m0m̃0 (2.16)

= E

[
n∏
i=1

ε
mi
i,t −m0

]
E

[
n∏
i=1

ε
m̃i
i,t−j − m̃0

]
= 0, (2.17)

where the first equality follows from serially independent shocks.
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Gouriéroux et al. (2017), or Keweloh (2021b). In this case, the researcher already relies on the

assumption of mutual independent shocks and may thus as well use it to simplify the estimation

of S.

With serially and mutually independent shocks implied by Assumption 2.2 and 2.5 the expression

of Sm,m̃ simplifies to

SSMI
m,m̃ =

n∏
i=1

E
[
εmi+m̃ii,t

]
−m0

n∏
i=1

E
[
εm̃ii,t
]
− m̃0

n∏
i=1

E
[
εmii,t
]

+m0m̃0, (2.20)

where the superscript SMI indicates that the equality Sm,m̃ = SSMI
m,m̃ only holds for serially

and mutually independent shocks. Let SSMI denote S under the assumption of serially and

mutually independent shocks. Based on Equation (2.20), the long-run covariance under serially

and mutually independent shocks can be estimated by

ŜSMI
m,m̃ (B) :=

n∏
i=1

1

T

T∑
t=1

[
e(B)mi+m̃ii,t

]
−m0

n∏
i=1

1

T

T∑
t=1

[
e(B)m̃ii,t

]
− m̃0

n∏
i=1

1

T

T∑
t=1

[
e(B)mii,t

]
+m0m̃0,

(2.21)

where B is an initial guess or a consistent estimator for B0.11 Let ŜSMI(B) denote the estimator

where each element of the long-run covariance matrix is estimated by Equation (2.21).

Exploiting mutually independent shocks allows to transform higher-order co-moments into a prod-

uct of lower-order moments. For example, consider the two moment conditions E[ε31,tε2,t] = 0 and

11Consistency of ŜSMI
m,m̃ (B̂T )

p→ SSMI
m,m̃ for B̂T

p→ B0 follow as usual from continuity of e(B)i,t, consistency of

B̂T which implies

P
(
|E
[
e(B̂T )si,t

]
− E

[
εsi,t
]
| > γ/2

)
→ 0 (2.22)

and uniform convergence of 1
T

∑T
t=1 e(B)si,t, such that SIp

B∈
| 1
T

∑T
t=1 e(B)si,t − E

[
e(B)si,t

]
| p→ 0 which implies

P

(
|
1

T

T∑
t=1

e(B̂T )si,t − E
[
e(B̂T )si,t

]
| > γ/2

)
→ 0 (2.23)

and therefore

P

(
|
1

T

T∑
t=1

e(B̂T )si,t − E
[
εsi,t
]
| > γ

)
→ 0. (2.24)

Therefore, if the structural shocks are serially and mutually independent, it holds that SSMI
m,m̃ = Sm,m̃ and hence

ŜSMI
m,m̃ (B̂T ) is also a consistent estimator for Sm,m̃.
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E[ε33,tε4,t] = 0, such that the covariance of both moment conditions is equal to E[ε31,tε2,tε
3
3,tε4,t],

a co-moment of order eight. However, with mutually independent shocks the covariance is equal

to E[ε31,t]E[ε2,t]E[ε33,t]E[ε4,t], a product of moments of order one and three. In general, the co-

variance matrix under serially independent shocks SSI requires to calculate co-moments of εt of

order four to eight and the covariance matrix under serially and mutually independent shocks

SSMI requires to estimate moments of εt of order one to six. Table 2.2 shows the number of

co-moments of εt contained in SSI and SSMI of a SVAR GMM estimator using all second- to

fourth- order moment conditions. The number of higher-order co-moments increases quickly with

the dimension of εt. For example, in an SVAR with n = 2 variables SSI requires to estimate nine

co-moments of order eight, however, in an SVAR with n = 4 this number grows to 156, and with

n = 6 variables SSI require to estimate 1287 co-moments of order eight. In contrast to that,

the number of higher-order moments in SSMI grows linearly in n. Therefore, using mutually

independent shocks to estimate S appears particularly beneficial in larger SVARs.

Table 2.2: Number of moments.

n = 2 n = 3 n = 4 n = 5 n = 6

Number of
GMM moment
conditions:

second-order 3 6 10 10 15
third-order 2 7 16 30 50
fourth-order 3 12 31 65 120
S dimension 8× 8 25× 25 57× 57 105× 105 185× 185

Number of
co-moments in
SSI :

fourth-order 5 15 35 70 126
fifth-order 6 21 56 126 252
sixth-order 7 28 84 210 462

seventh-order 8 36 120 330 792
eighth-order 9 45 156 495 1287

Number of
moments in
SSMI :

first-order 2 3 4 5 6
second-order 2 3 4 5 6
third-order 2 3 4 5 6
fourth-order 2 3 4 5 6
fifths-order 2 3 4 5 6
sixth-order 2 3 4 5 6

The table shows the number of GMM moment conditions implied by mutually independent shocks and the number
of co-moments of εt contained in SSI and SSMI in a SVAR with two to six variables.

In this study, I simultaneously use the assumption of serially and mutually independent shocks

to estimate S. However, one could also directly exploit mutually independent shocks to simplify

Sm,m̃ in Equation (2.14) without assuming serially independent shocks. Moreover, the weaker

assumption of mutually mean independent shocks can also be used to simplify the estimation of
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S. In particular, with serially independent and mutually mean independent shocks implied by

Assumption 2.2 and 2.6 the expression of Sm,m̃ simplifies to

SSMMI
m,m̃ = E

 n∏
i=1

mi+m̃i 6=1

εmi+m̃ii,t

 n∏
i=1

mi+m̃i=1

E
[
εmi+m̃ii,t

]
−m0E

 n∏
i=1
m̃i 6=1

εm̃ii,t

 n∏
i=1
m̃i=1

E
[
εm̃ii,t
]

(2.25)

−m̃0E

 n∏
i=1
mi 6=1

εmii,t

 n∏
i=1
mi=1

E
[
εmii,t
]

+m0m̃0,

where the superscript SMMI indicates that the equality Sm,m̃ = SSMMI
m,m̃ only holds for serially

independent and mutually mean independent shocks. For the sake of simplicity, the remainder

of the paper focuses on the assumption of mutually independent shocks.

The assumption of mutually independent structural shocks can also be used to estimate G re-

quired to estimate the asymptotic variance of the CUE or GMM estimator. For an arbitrary

moment condition fm(B, ut) =
∏n
i=1 e(B)mii,t −m0 with m ∈ 2∪3∪4 the derivative with respect

to bpq the element at row p and column q of B evaluated at B = B0 corresponds to an element

of G and is equal to

Gm,bql := E

[
∂fm(B0, ut)

∂bpq

]
(2.26)

=

n∑
j=1,j 6=q

−mjajpE

εmj−1
j,t ε

mq+1
q,t

n∏
i=1,i6=j,q

εmii,t

−mqaqpE

[
n∏
i=1

εmii,t

]
, (2.27)

with A = B−1
0 and ajp are the elements of A. The equality follows from e(B0)t = εt, the product

rule, and
∂e(B0)i,t
∂bpq

= −aipεq,t. Again, for mutually independent structural shocks implied by

Assumption 2.5 if follows

GMI
m,bql

=

n∑
j=1,j 6=q

−mjajpE
[
ε
mj−1
j,t

]
E
[
ε
mq+1
q,t

] n∏
i=1,i6=j,q

E
[
εmii,t
]
−mqaqp

n∏
i=1

E
[
εmii,t
]
, (2.28)

where the superscript MI indicates that the equality Gm,bql = GMI
m,bql

only holds for mutually

independent shocks. Let GMI denote G under the assumption of mutually independent shocks

and let Ĝ and ĜMI denote the corresponding estimators. Again, mutual independence allows to
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calculate higher-order co-moments as a product of lower-order moments. For example, in a SVAR

with n = 4 variables and a GMM estimator including all 4 variance, 6 covariance, 16 coskewness,

and 31 cokurtosis conditions implied by independent shocks with unit variance, the covariance

matrix G is a 57×16 dimensional matrix containing 10 co-moments of order two, 16 co-moments

of order three, and 31 co-moments of order four. In contrast to that, GMI contains four moments

of order one, four moments of order two, four moments of order three, four moments of order

four.

The assumption of serially and mutually independent shocks can also be used to derive a guess

for the optimal weighting matrix W ∗ without requiring an initial guess or estimate of the un-

known simultaneous interaction B0. Instead, the researcher can guess the distribution of each

structural shock εi,t for i = 1, ..., n and if the guess is correct Equation (2.20) directly yields

the true covariance matrix S, which can be used to calculate the optimal weighting matrix. In

practice, I recommend starting with the assumption of t- or normally distributed shocks to ap-

proximate S and hence W ∗. I find that even if the initially assumed distributions are incorrect,

the corresponding one-step GMM estimator performs similarly in terms of bias and interquartile

range to the one-step GMM estimator using the true asymptotically optimal weighting matrix.

This might be related to the fact that due to the normalization to mean zero and unit variance

shocks, the guess of higher-order moments is irrelevant for many moments. For example the two

moment conditions E[ε31,tε2,t] = 0 and E[ε31,tε3,t] = 0 require to estimate E[ε61,tε2,tε3,t]. However,

this co-moment of order eight is equal to zero for all independent shocks with mean zero and

finite second to six moments.

2.5 Monte Carlo Simulation

This section compares the impact of the estimates ŜSI , ŜSMI , Ĝ, and ĜMI on the finite sample

performance of CUE and GMM estimators. I simulate a SVAR ut = B0εt with n = 2 and n = 4
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variables with

B0 =

 1 0

0.5 1

 and B0 =


1 0 0 0

0.5 1 0 0

0.5 0.5 1 0

0.5 0.5 0.5 1

 . (2.29)

The structural shocks are drawn from a mixture of Gaussian distributions with mean zero, unit

variance, skewness equal to 0.89 and an excess kurtosis of 2.35. In particular, the shocks satisfy

εi = zφ1 + (1− z)φ2 with φ1 ∼ N (−0.2, 0.7), φ2 ∼ N (0.75, 1.5), z ∼ B(0.79), (2.30)

where B(p) indicates a Bernoulli distribution and N (µ, σ2) indicates a normal distribution. Sim-

ulations based on t-distributed shocks are shown in the appendix.

Before turning to different CUE and GMM estimators, I analyze the impact of the estimated

asymptotically efficient weighting matrix on the GMM loss. Figure 2.1 compares the average

and quantiles of the GMM objective function gT (B)′WgT (B) at B = B0 with all second- to

fourth-order moment conditions implied by mutually independent shocks for different weighting

matrices. The red loss serves as a benchmark and uses the true but in practice unknown asymp-

totically efficient weighting matrix, W ∗ = S−1. The blue loss uses the traditional estimator for

the asymptotically efficient weighting matrix relying on serially uncorrelated moment conditions

equivalent to serially independent shocks, ŴSI = ŜSI(B0)−1. The green loss corresponds to the

proposed estimator for the asymptotically efficient weighting matrix using serially and mutually

independent shocks, ŴSMI = ŜSMI(B0)−1. The simulation shows that the standard estimator

for the asymptotically efficient weighting matrix ŴSI is ill suited to approximate the asymptoti-

cally efficient weighting matrix in small samples. In the small SVAR with n = 2 and the smallest

sample size T = 100, the average GMM loss based on ŴSI is approximately seven times larger

than the average GMM loss based on the asymptotically efficient weighting matrix W ∗ and in the

large SVAR with n = 4 the average loss is approximately 132 times larger. In contrast to that, the

weighting scheme proposed in this study, ŴSMI , which exploits the mutual independence of the

structural shocks closely approximates the infeasible asymptotically efficient weighting scheme
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Figure 2.1: Finite sample performance - GMM loss at B0 for different weighting schemes.

Average, 10%, and 90% quantiles of the GMM loss gT (B)′WgT (B) with all second-, third-, and fourth-order

moment conditions implied by mutually independent shocks at B = B0 for W = S−1 in red, W = ŜSIT (B0)−1 in

blue, and W = ŜSMI
T (B0)−1 in green with 5000 simulations and sample sizes T = 100, 200, ..., 1000. The dotted

gray line shows the expected value of the GMM objective function at B0 and W = S−1 which is equal to m/T
where m denotes the number of moment conditions, compare Han and Phillips (2006) and Newey and Windmeijer
(2009).
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with W ∗ = S−1.

In the following, I analyze the impact of the weighting scheme on the following asymptotically

efficient estimators:

• GMM∗: A one-step GMM estimator with the asymptotically efficient weighting matrix

W = S−1.

• GMM: A two-step GMM estimator with W = I in the first step and W = ŜSI(B̂)−1 in the

second step.

• CUE: A continuous updating estimator with W (B) = ŜSI(B)−1.

• GMM-MI: A two-step GMM estimator with W = SSMI−1

Norm in the first step, W = ŜSI(B̂)−1

in the second step and SSMI
Norm denotes the long-run covariance matrix under serially and

mutually independent Gaussian shocks.

• CUE-MI: A continuous updating estimator with W (B) = ŜSMI(B)−1.

The estimator GMM∗ is infeasible since it uses the unknown asymptotically efficient weighting

matrix W = S−1 and it serves as a benchmark. The CUE and GMM estimators only use the

assumption of serially independent shocks or serially uncorrelated moment conditions to estimate

S and therefore, represent the traditional estimation approaches. The CUE-MI and GMM-MI

estimators are the novel estimators proposed in this study and rely on the assumption of serially

and mutually independent shocks to estimate S. All estimators use all second-, third-, and fourth-

order moment conditions implied by mutually independent shocks. In particular, for n = 2 the

estimators use three second-, two third-, and three fourth-order moment conditions and for n = 4

the estimators use 10 second-, 16 third-, and 31 fourth-order moment conditions. Note that all

analyzed estimators have the same asymptotic variance and are asymptotically efficient. The

appendix contains further results for the one-step GMM estimator using the identity weighting

matrix W = I, the approximation of the asymptotically efficient weighting matrix based on

serially and mutually independent Gaussian shocks W = SSMI−1

Norm , and the white fast weighting

matrix proposed in Keweloh (2021b).

Firstly, I analyze the impact of the weighting scheme on the finite sample bias and the interquartile

range. The elements of B are equal on the diagonal, upper- and lower- triangular. Therefore,
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Figure 2.2: Finite sample performance - Bias of the estimated elements.

Monte Carlo simulation with M = 5000 iterations and sample sizes T = 100, 200, ..., 1000. The figure shows the
average of the median absolute bias of the elements on the diagonal, upper-, lower- triangular of B̂. Let B̂m be
the estimator in one simulation m and 1 ≤ m ≤M . Let B̄m := abs(B̂m −B0) be the absolute bias in simulation
m. The median absolute bias over all simulations M is then denoted by bias := med(B̄m), which is a n × n
matrix containing the median absolute bias over all simulations for each element B̂ij . The average of the median

absolute bias of the elements on the diagonal, upper-, lower- triangular of B̂ is then the average of all elements on
the diagonal, upper-, lower- triangular of bias.

I summarizes the results for all elements on the diagonal, upper- and lower- triangular of B.

Figure 2.2 shows the average of the median absolute bias and Figure 2.3 shows the average of the

interquartile range (IQR) of the estimated elements on the diagonal, upper- and lower- triangular

matrix B̂. The results for all individual elements of B for T = 100 and T = 1000 are shown in

the appendix. The computation of the average of the median absolute bias and the average of the

interquartile range of the diagonal, upper-, lower-triangular elements is shown in the description

of the corresponding figure.

In small samples, all estimators are biased and the bias increases with the dimension of the SVAR.

The elements on the diagonal show the largest bias and the elements in the upper triangular

have the smallest bias. This pattern can be explained by a bias due to scaling, meaning that

for small T the GMM loss E [gT (B)′WgT (B)] is not minimized at B = B0 but at B = DB0
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where D = diag(d1, ..., dn) is a scaling matrix.12 Moreover, Figure 2.2 shows that the CUE has

the largest bias. In contrast to that, the CUE-MI performs notably better. In fact, in the large

SVAR it has the lowest bias on the diagonal and lower triangular of all estimators for sample sizes

with more than 100 observations. This behavior can be explained by Figure 2.1, which suggests

that in small samples, the estimator ŜSI(B0) poorly approximates S while ŜSMI(B0) yields a

much better approximation. Additionally, the derivation of the signal term in Equation (2.11)

requires a nonrandom weighting matrix W , which is not satisfied by the CUE. The signal term

of the CUE can only be written as E
[∑

t 6=t̃ f(B, ut)
′Ŝ(B)−1f(B, ut̃)

]
, which is not necessarily

minimized at B0. Therefore, the CUE can be biased since it searches for solutions which minimize

the GMM loss by manipulating the weights W (B) = Ŝ(B)−1.

Figure 2.3 shows that the average IQR of the estimated elements increases with the dimension

of the SVAR. Again, the CUE-MI and GMM-MI estimators perform better than the CUE and

GMM estimator. In particular, for n = 4 and T = 100 the average IQR of the GMM estimator

is two to three times larger than the average IQR of the CUE-MI.

Secondly, I analyze the impact of the weighting scheme and the estimation of the asymptotic

variance on the rejection frequencies for different tests. Figure 2.4 shows the rejection frequencies

at the 10% nominal level for a J-Test, the Wald test with H0 : Bi,j = 0 for j > i testing the

null hypothesis of a recursive SVAR, and a Wald test with the null hypothesis H0 : B1,n = 0

for n = 2 and n = 4. The Wald tests require an estimate of the asymptotic variance. The

estimators GMM∗, GMM, and CUE use the standard estimators ŜSIT (B̂) and Ĝ(B̂) and the esti-

mators GMM∗-MI, GMM-MI, and CUE-MI use the proposed estimators ŜSMI
T (B̂) and ĜMI(B̂)

12For example with W = I the noise term in Equation 2.11 is equal to

1

T
E
[
f(B0, ut)

′Wf(B0, ut)
]

=
1

T
E
[
f(B0, ut)

′f(B0, ut)
]
, (2.31)

which is the sum of the variances of the variance, covariance, and coskewness conditions. The variance of any
moment condition m of the type

∏n
i=1 e(B)

mi
i,t at B0 is equal to

E

[
n∏
i=1

e(B0)
2mi
i,t )

]
= E

[
n∏
i=1

ε
2mi
i,t

]
. (2.32)

Let S = diag(d1, ..., dn) be a scaling matrix and note that De(B0) = DB0u = e(DB0), such that

E

[
n∏
i=1

e
2mi
i,t (SB0)

]
= E

[
n∏
i=1

ε
2mi
i,t

d
2mi
i

]
=

1

d2m1
1 ...d2mnn

E

[
n∏
i=1

ε
2mi
i,t

]
. (2.33)

It is easy to see that at B0 an increase in the scaling parameter di, which corresponds to a decrease of the sample
variance of the i-th estimated structural shock, decreases the noise term and therefore, leads to a bias.
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Figure 2.3: Finite sample performance - Interquartile range of the estimated elements.

Monte Carlo simulation with M = 5000 iterations and sample sizes T = 100, 200, ..., 1000. The figure shows the
average of the interquartile range (IQR) of the elements on the diagonal, upper-, lower- triangular of B̂. Let B̂m be
the estimator in one simulation m and 1 ≤ m ≤M . The interquartile range over all simulations M is then denoted
by iqr := quartile(B̂m, 0.75)− quartile(B̂m, 0.25), which is a n×n matrix containing the interquartile range over

all simulations for each element B̂ij . The average of the interquartile range of the elements on the diagonal,

upper-, lower- triangular of B̂ is then the average of all elements on the diagonal, upper-, lower- triangular of iqr.
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Figure 2.4: Finite sample performance - Rejection rates.

Monte Carlo simulation with M = 5000 iterations and sample sizes T = 100, 200, ..., 1000. The figure shows the
rejection rates at α = 10% for J-Test, recursive SVAR Wald test, and Wald test with H0 : B1,n = 0 for n = 2 and
n = 4.

to estimate the asymptotic variance. The GMM∗-MI estimator is equal to the GMM∗ estimator

using the true asymptotically optimal weighting matrix W = S−1. The tests for GMM∗ and

GMM∗-MI only differ in the way the asymptotic variance is estimated. Figure 2.4 shows that

the distortion of the tests increases with an increase of the dimension of the SVAR, a decrease

of the sample size, and an increase of the number of hypothesis being jointly tested. The CUE

and GMM estimators have the largest distortions and they decrease only slowly with an increase

of the sample size. For example, even in the largest sample with T = 1000 observations the

CUE and GMM estimator reject the null hypothesis of a recursive SVAR in roughly 80% of

all cases. The rejection rates of CUE-MI and GMM-MI estimators are also distorted in small

samples, however, the distortion is much smaller and decreases more quickly with an increase of

the sample size. GMM∗ and GMM∗-MI both use the same estimator, the tests only differ due to

the estimated asymptotic variance. The smaller distortions of the GMM∗-MI tests compared to

the GMM∗ tests can solely be attributed to the impact of exploiting the assumption of mutually

independent shocks to estimate the asymptotic variance.
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2.6 Conclusion

This paper argues that the assumption of mutually independent shocks should be used to esti-

mate the asymptotically efficient weighting matrix and the asymptotic variance of SVAR CUE

and SVAR GMM estimators based on higher-order moment conditions. Without exploiting the

assumption of mutually independent shocks, estimating the covariance of fourth-order moment

conditions requires to estimate co-moments of order eight. This leads to biased and volatile

estimates and oversize test statistics in finite samples. With mutually independent shocks, the

covariance of the higher-order moment conditions can be estimated as the product of moments

up to order six. A Monte Carlo simulation demonstrates that the propose approach improves the

finite sample performance of the SVAR CUE and SVAR GMM estimators, especially in larger

SVAR models.

2.7 Appendix

2.7.1 Appendix - Simulation with mixture of Gaussian distributions

This section supplements the Monte Carlo simulation shown in Section 2.5. Table 2.3, 2.4, and

2.5 show the median (med), 0.25 quantile (q25), 0.75 quantile (q75), the 0.25 confidence level

(c25), and the 0.75 confidence level (c75).
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Table 2.3: Finite sample performance - All estimated elements for n = 2.

T = 100 T = 1000

GMM∗


1.0

0.93 1.09
0.93 1.07

−0.01
−0.13 0.12
−0.11 0.11

0.52
0.39 0.64
0.39 0.61

1.02
0.92 1.1
0.92 1.08




1.01
0.99 1.03
0.98 1.02

0.0
−0.04 0.04
−0.03 0.03

0.51
0.47 0.54
0.47 0.53

1.01
0.98 1.04
0.97 1.03



GMM


0.97

0.88 1.06
0.93 1.07

0.0
−0.17 0.17
−0.11 0.11

0.48
0.31 0.65
0.39 0.61

0.98
0.86 1.09
0.92 1.08




1.0
0.97 1.02
0.98 1.02

−0.0
−0.04 0.04
−0.03 0.03

0.5
0.46 0.54
0.47 0.53

1.0
0.97 1.03
0.97 1.03



CUE


0.84

0.75 0.94
0.93 1.07

−0.01
−0.2 0.2
−0.11 0.11

0.46
0.26 0.65
0.39 0.61

0.88
0.76 0.97
0.92 1.08




0.99
0.96 1.01
0.98 1.02

0.0
−0.04 0.04
−0.03 0.03

0.49
0.46 0.53
0.47 0.53

0.99
0.96 1.01
0.97 1.03



GMM −MI


1.01

0.93 1.1
0.93 1.07

−0.0
−0.13 0.12
−0.11 0.11

0.52
0.39 0.64
0.39 0.61

1.02
0.93 1.11
0.92 1.08




1.01
0.99 1.03
0.98 1.02

0.0
−0.03 0.04
−0.03 0.03

0.51
0.47 0.54
0.47 0.53

1.01
0.98 1.04
0.97 1.03



CUE −MI


0.97

0.89 1.04
0.93 1.07

−0.0
−0.12 0.11
−0.11 0.11

0.5
0.38 0.61
0.39 0.61

0.98
0.89 1.06
0.92 1.08




1.0
0.98 1.03
0.98 1.02

0.0
−0.03 0.04
−0.03 0.03

0.5
0.47 0.54
0.47 0.53

1.0
0.98 1.03
0.97 1.03


Monte Carlo simulation with 5000 iterations and sample sizes. Median (med), 0.25 quantile (q25), 0.75 quantile
(q75), the 0.25 confidence level (c25), and the 0.75 confidence level (c75), where the confidence levels are calculated
according to Bi,j ± z∗

σi,j√
T

with z∗ = 0.67 and σi,j is the square root of the variance of the element i, j according

to
√
T (B̂T −B0)

d→ N (0,MSM ′). For each element the data is shown as med
q25 q75
c25 c75

.
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Table 2.4: Finite sample performance - All estimated elements for n = 4 (Part 1).

T = 100 T = 1000

GMM∗



1.04
0.95 1.14
0.93 1.07

0.0
−0.12 0.14
−0.11 0.11

−0.0
−0.13 0.13
−0.11 0.11

−0.02
−0.14 0.13
−0.11 0.11

0.53
0.39 0.66
0.39 0.61

1.05
0.93 1.16
0.92 1.08

−0.01
−0.16 0.15
−0.12 0.12

−0.02
−0.17 0.15
−0.12 0.12

0.54
0.37 0.68
0.38 0.62

0.53
0.37 0.69
0.38 0.62

1.05
0.92 1.18
0.9 1.1

−0.02
−0.19 0.16
−0.14 0.14

0.54
0.35 0.71
0.36 0.64

0.54
0.35 0.72
0.36 0.64

0.54
0.35 0.7
0.36 0.64

1.05
0.89 1.19
0.89 1.11





1.02
1.0 1.05
0.98 1.02

−0.0
−0.04 0.04
−0.03 0.03

−0.0
−0.04 0.04
−0.03 0.03

0.0
−0.04 0.04
−0.03 0.03

0.51
0.48 0.55
0.47 0.53

1.03
1.0 1.05
0.97 1.03

0.0
−0.04 0.04
−0.04 0.04

−0.0
−0.04 0.04
−0.04 0.04

0.51
0.47 0.56
0.46 0.54

0.51
0.47 0.55
0.46 0.54

1.02
0.99 1.06
0.97 1.03

−0.0
−0.05 0.05
−0.04 0.04

0.51
0.46 0.56
0.46 0.54

0.51
0.46 0.56
0.46 0.54

0.51
0.46 0.56
0.46 0.54

1.03
0.99 1.07
0.96 1.04



GMM



1.0
0.85 1.19
0.93 1.07

0.13
−0.16 0.44
−0.11 0.11

0.05
−0.24 0.37
−0.11 0.11

0.01
−0.3 0.34
−0.11 0.11

0.46
0.12 0.81
0.39 0.61

1.0
0.83 1.21
0.92 1.08

0.1
−0.2 0.44
−0.12 0.12

0.02
−0.31 0.37
−0.12 0.12

0.47
0.1 0.84
0.38 0.62

0.51
0.13 0.89
0.38 0.62

0.98
0.77 1.21
0.9 1.1

0.05
−0.26 0.39
−0.14 0.14

0.46
0.06 0.85
0.36 0.64

0.5
0.11 0.91
0.36 0.64

0.5
0.08 0.92
0.36 0.64

0.87
0.58 1.13
0.89 1.11





0.96
0.94 0.99
0.98 1.02

−0.0
−0.04 0.04
−0.03 0.03

−0.0
−0.04 0.04
−0.03 0.03

0.0
−0.04 0.04
−0.03 0.03

0.48
0.44 0.52
0.47 0.53

0.96
0.93 1.0
0.97 1.03

−0.0
−0.05 0.05
−0.04 0.04

−0.0
−0.05 0.05
−0.04 0.04

0.48
0.44 0.53
0.46 0.54

0.48
0.43 0.53
0.46 0.54

0.96
0.92 1.0
0.97 1.03

−0.0
−0.06 0.05
−0.04 0.04

0.48
0.43 0.53
0.46 0.54

0.48
0.43 0.54
0.46 0.54

0.48
0.42 0.53
0.46 0.54

0.96
0.92 1.01
0.96 1.04



CUE



0.57
0.5 0.66
0.93 1.07

0.1
−0.08 0.26
−0.11 0.11

0.05
−0.13 0.22
−0.11 0.11

0.01
−0.19 0.21
−0.11 0.11

0.32
0.13 0.5
0.39 0.61

0.6
0.5 0.7

0.92 1.08

0.09
−0.1 0.28
−0.12 0.12

0.02
−0.19 0.22
−0.12 0.12

0.33
0.11 0.53
0.38 0.62

0.35
0.13 0.57
0.38 0.62

0.59
0.45 0.72
0.9 1.1

0.04
−0.17 0.24
−0.14 0.14

0.33
0.09 0.56
0.36 0.64

0.35
0.1 0.6

0.36 0.64

0.33
0.08 0.58
0.36 0.64

0.53
0.33 0.7
0.89 1.11





0.93
0.9 0.95
0.98 1.02

0.0
−0.04 0.04
−0.03 0.03

0.0
−0.04 0.04
−0.03 0.03

−0.0
−0.04 0.04
−0.03 0.03

0.46
0.42 0.51
0.47 0.53

0.93
0.89 0.96
0.97 1.03

−0.0
−0.05 0.05
−0.04 0.04

−0.0
−0.05 0.05
−0.04 0.04

0.46
0.41 0.51
0.46 0.54

0.46
0.41 0.51
0.46 0.54

0.93
0.89 0.97
0.97 1.03

−0.01
−0.06 0.05
−0.04 0.04

0.46
0.4 0.52
0.46 0.54

0.46
0.41 0.52
0.46 0.54

0.46
0.41 0.52
0.46 0.54

0.93
0.88 0.97
0.96 1.04


Monte Carlo simulation with 5000 iterations and sample sizes. Median (med), 0.25 quantile (q25), 0.75 quantile
(q75), the 0.25 confidence level (c25), and the 0.75 confidence level (c75), where the confidence levels are calculated
according to Bi,j ± z∗

σi,j√
T

with z∗ = 0.67 and σi,j is the square root of the variance of the element i, j according

to
√
T (B̂T −B0)

d→ N (0,MSM ′). For each element the data is shown as med
q25 q75
c25 c75

.
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Table 2.5: Finite sample performance - All estimated elements for n = 4 (Part 2).

T = 100 T = 1000

GMM −MI



1.1
0.98 1.22
0.93 1.07

0.0
−0.14 0.16
−0.11 0.11

−0.0
−0.15 0.15
−0.11 0.11

−0.01
−0.16 0.14
−0.11 0.11

0.56
0.39 0.71
0.39 0.61

1.1
0.96 1.24
0.92 1.08

−0.0
−0.18 0.18
−0.12 0.12

−0.01
−0.19 0.17
−0.12 0.12

0.56
0.38 0.73
0.38 0.62

0.56
0.38 0.74
0.38 0.62

1.1
0.94 1.25
0.9 1.1

−0.02
−0.2 0.19
−0.14 0.14

0.56
0.34 0.77
0.36 0.64

0.56
0.35 0.77
0.36 0.64

0.55
0.34 0.75
0.36 0.64

1.09
0.91 1.25
0.89 1.11





1.03
1.0 1.05
0.98 1.02

−0.0
−0.04 0.04
−0.03 0.03

−0.0
−0.04 0.04
−0.03 0.03

0.0
−0.04 0.04
−0.03 0.03

0.52
0.48 0.55
0.47 0.53

1.03
1.0 1.06
0.97 1.03

0.0
−0.04 0.04
−0.04 0.04

−0.0
−0.04 0.04
−0.04 0.04

0.51
0.47 0.56
0.46 0.54

0.51
0.47 0.55
0.46 0.54

1.03
0.99 1.06
0.97 1.03

−0.0
−0.05 0.05
−0.04 0.04

0.51
0.46 0.56
0.46 0.54

0.51
0.47 0.56
0.46 0.54

0.51
0.47 0.56
0.46 0.54

1.03
0.99 1.07
0.96 1.04



CUE −MI



0.91
0.83 0.99
0.93 1.07

−0.0
−0.11 0.11
−0.11 0.11

−0.01
−0.12 0.11
−0.11 0.11

−0.01
−0.13 0.1
−0.11 0.11

0.46
0.34 0.57
0.39 0.61

0.91
0.82 1.0
0.92 1.08

−0.01
−0.14 0.13
−0.12 0.12

−0.02
−0.15 0.11
−0.12 0.12

0.47
0.33 0.59
0.38 0.62

0.46
0.32 0.59
0.38 0.62

0.92
0.8 1.02
0.9 1.1

−0.03
−0.17 0.12
−0.14 0.14

0.48
0.33 0.62
0.36 0.64

0.47
0.31 0.6
0.36 0.64

0.45
0.31 0.6
0.36 0.64

0.91
0.78 1.02
0.89 1.11





0.99
0.97 1.01
0.98 1.02

−0.0
−0.04 0.04
−0.03 0.03

−0.0
−0.04 0.03
−0.03 0.03

0.0
−0.03 0.04
−0.03 0.03

0.5
0.46 0.53
0.47 0.53

0.99
0.97 1.02
0.97 1.03

0.0
−0.04 0.04
−0.04 0.04

−0.0
−0.04 0.04
−0.04 0.04

0.5
0.46 0.54
0.46 0.54

0.5
0.45 0.54
0.46 0.54

0.99
0.96 1.03
0.97 1.03

−0.0
−0.05 0.04
−0.04 0.04

0.5
0.45 0.54
0.46 0.54

0.5
0.45 0.54
0.46 0.54

0.5
0.45 0.54
0.46 0.54

0.99
0.96 1.03
0.96 1.04


Monte Carlo simulation with 5000 iterations and sample sizes. Median (med), 0.25 quantile (q25), 0.75 quantile
(q75), the 0.25 confidence level (c25), and the 0.75 confidence level (c75), where the confidence levels are calculated
according to Bi,j ± z∗

σi,j√
T

with z∗ = 0.67 and σi,j is the square root of the variance of the element i, j according

to
√
T (B̂T −B0)

d→ N (0,MSM ′). For each element the data is shown as med
q25 q75
c25 c75

.

Figure 2.5, 2.6, and 2.7 show the average of the median absolute bias, the average of the interquar-

tile range (IQR) of the estimated elements, and the rejection frequencies for the hypothesis tests.

The Figures contain results for the following estimators:

• GMM∗: A one-step GMM estimator with the asymptotically efficient weighting matrix

W = S−1.

• GMM-I: A one-step GMM estimator with W = I.

• GMM-N-MI: A one-step GMM estimator with W = SSMI−1

Norm , where SSMI
Norm denotes the

long-run covariance matrix under serially and mutually independent Gaussian shocks.

• GMMWF: A one-step GMM estimator with the fast weighting matrix proposed in Keweloh

(2021b).
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All estimators use all second- to fourth-order moment conditions implied by independent shocks.

The Wald tests require an estimate of the asymptotic variance. The estimators GMM∗ and

GMM-I use the standard estimators ŜSIT (B̂) and Ĝ(B̂) and the estimators GMM∗-MI, GMM-N-

MI, and GMMWF use the proposed estimators ŜSMI
T (B̂) and ĜMI(B̂) to estimate the asymptotic

variance. The GMM∗-MI estimator is equal to the GMM∗ estimator using the true asymptotically

optimal weighting matrix W = S−1. The tests for GMM∗ and GMM∗-MI only differ in the way

the asymptotic variance is estimated.

Figure 2.5: Finite sample performance - Bias of the estimated elements (one-step estimators).

Monte Carlo simulation with M = 5000 iterations and sample sizes T = 100, 200, ..., 1000. The figure shows the
average of the median absolute bias of the elements on the diagonal/upper-/lower- triangular of B̂. Let B̂m be

the estimator in one simulation m and 1 ≤ m ≤M . Let B̄m := abs(B̂m −B0) be the absolute bias in simulation
m. The median absolute bias over all simulations M is then denoted by bias := med(B̄m), which is a n × n
matrix containing the median absolute bias over all simulations for each element B̂ij . The average of the median

absolute bias of the elements on the diagonal/upper-/lower- triangular of B̂ is then the average of all elements on
the diagonal/upper-/lower- triangular of bias.
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Figure 2.6: Finite sample performance - Interquartile range of the estimated elements (one-step

estimators).

Monte Carlo simulation with M = 5000 iterations and sample sizes T = 100, 200, ..., 1000. The figure shows the
average of the interquartile range (IQR) of the elements on the diagonal/upper-/lower- triangular of B̂. Let B̂m

be the estimator in one simulation m and 1 ≤ m ≤ M . The interquartile range over all simulations M is then
denoted by iqr := quartile(B̂m, 0.75) − quartile(B̂m, 0.25), which is a n × n matrix containing the interquartile

range over all simulations for each element B̂ij . The average of the interquartile range of the elements on the

diagonal/upper-/lower- triangular of B̂ is then the average of all elements on the diagonal/upper-/lower- triangular
of iqr.
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Figure 2.7: Finite sample performance - Rejection rates (one-step estimators).

Monte Carlo simulation with M = 5000 iterations and sample sizes T = 100, 200, ..., 1000. The figure shows the
rejection rates at α = 10% for J-Test, recursive SVAR Wald test, and Wald test with H0 : B1,n = 0 for n = 2 and
n = 4.

2.7.2 Appendix - Simulation with t-distributed shocks

This section shows analogous results to the Monte Carlo simulation in Section 2.5. However, the

structural shocks are drawn from a t-distribution with seven degrees of freedom. Additionally,

the shocks have been normalized to unit variance by multiplying each shock with 1/
√

(v/(v − 2))

and v = 7.

72



Figure 2.8: Finite sample performance - Bias of the estimated elements (t-distribution).

Monte Carlo simulation with M = 5000 iterations and sample sizes T = 100, 200, ..., 1000. The figure shows the
average of the median absolute bias of the elements on the diagonal/upper-/lower- triangular of B̂. Let B̂m be

the estimator in one simulation m and 1 ≤ m ≤M . Let B̄m := abs(B̂m −B0) be the absolute bias in simulation
m. The median absolute bias over all simulations M is then denoted by bias := med(B̄m), which is a n × n
matrix containing the median absolute bias over all simulations for each element B̂ij . The average of the median

absolute bias of the elements on the diagonal/upper-/lower- triangular of B̂ is then the average of all elements on
the diagonal/upper-/lower- triangular of bias.
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Figure 2.9: Finite sample performance - Interquartile range of the estimated elements (t-

distribution).

Monte Carlo simulation with M = 5000 iterations and sample sizes T = 100, 200, ..., 1000. The figure shows the
average of the interquartile range (IQR) of the elements on the diagonal/upper-/lower- triangular of B̂. Let B̂m

be the estimator in one simulation m and 1 ≤ m ≤ M . The interquartile range over all simulations M is then
denoted by iqr := quartile(B̂m, 0.75) − quartile(B̂m, 0.25), which is a n × n matrix containing the interquartile

range over all simulations for each element B̂ij . The average of the interquartile range of the elements on the

diagonal/upper-/lower- triangular of B̂ is then the average of all elements on the diagonal/upper-/lower- triangular
of iqr.
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Figure 2.10: Finite sample performance - Rejection rates (t-distribution).

Monte Carlo simulation with M = 5000 iterations and sample sizes T = 100, 200, ..., 1000. The figure shows the
rejection rates at α = 10% for J-Test, recursive SVAR Wald test, and Wald test with H0 : B1,n = 0 for n = 2 and
n = 4.
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3 Monetary Policy and the Stock Market - A Partly Re-

cursive SVAR Estimator13

3.1 Introduction

Simultaneously identifying monetary policy and stock market shocks in a structural vector autore-

gression (SVAR) is an ongoing challenge for econometricians. Identifying both shocks requires to

impose an a priori structure. Most of the literature covers one of two extreme cases: I) identifying

all shocks based on restrictions concerning the short- or long-run interaction, or II) data-driven

approaches without restrictions, but based on heteroskedastic or non-Gaussian shocks. We argue

that neither of the two extreme cases is suited for the application at hand. In particular, we show

that commonly used short- and long-run restrictions on the interaction of monetary policy and

the stock market are not available. Additionally, purely data-driven estimators depend on latent,

volatile, or hardly observable features of the data, which leads to biased and volatile estimates

and distorted test statistics in small samples and reasonably large SVAR models.

The estimator proposed in this study combines the traditional identification approach based on

restrictions with the more recent data-driven approach based on non-Gaussianity. Our estimator

allows the researcher to rely on recursiveness restrictions if possible and to be agnostic on the

interaction of the variables and rely on data-driven estimates when necessary. The estimator is

applied to analyze the interaction of monetary policy and the stock market. We find evidence

against commonly used short- and long-run restrictions and demonstrate that a purely data-

driven estimator leads to imprecise estimates.

In the literature, the interaction of monetary policy and the stock market has been estimated

based on short-run restrictions (see e.g. Laopodis (2013)) and long-run restrictions (see Bjørnland

and Leitemo (2009) or Kontonikas and Zekaite (2018)). We argue that neither the short- nor the

long-run restrictions are plausible. In particular, stock market shocks can contain news about

future business cycle fluctuations (see e.g. Beaudry and Portier (2006)) and assuming that the

central bank does not react simultaneously to these shocks is, at least with low frequency data,

13joint work with Andre Seepe, a slightly different version of the chapter appeared as Keweloh, S.A. and A.
Seepe (2020), Monetary policy and the stock market - A partly recursive SVAR estimator, SFB 823 Discussion
Paper series No. 32/2020, https://doi.org/10.17877/DE290R-21722
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debatable. Moreover, recent studies (see for instance Moran and Queralto (2018), Bianchi et al.

(2019) and Jordà et al. (2022)) find evidence against the long-run neutrality of monetary policy,

which casts doubt on long-run restrictions used to identify monetary policy shocks.

Due to the unavailability of short- and long-run restrictions, several authors use data-driven ap-

proaches to estimate the interaction of monetary policy and the stock market. These approaches

do not require any restrictions on the interaction of the variables, but instead exploit a structure

imposed on the statistical properties of the shocks. Lütkepohl and Netšunajev (2017) estimate

the interaction of monetary policy and the stock market based on time-varying volatility and find

a negative impact of a tightening of monetary policy on stock prices. However, the authors are

unable to clearly label a stock market shock. Moreover, a tightening of monetary policy appears

to have an unexpected initial positive impact on output and inflation and therefore even the

labeling of the monetary policy shock is debatable. Lanne et al. (2017) estimate a SVAR based

on non-Gaussianity and find that a tightening of monetary policy has an immediate negative

impact on financial conditions. However, they are also unable to label any other shock and in

particularly cannot label a stock market shock.

Neither the traditional restriction based approaches nor the more recent purely data-driven ap-

proaches yield conclusive insights into the interaction of monetary policy and the stock market.

The restriction based approaches fail due to the unavailability of sufficiently many short- or long-

run restrictions and the data-driven approaches fail, since they impose such little structure that

finite sample estimates become volatile, up to the point that it becomes difficult to even label

the shocks.

We argue that the key to gain insight into the interaction of monetary policy and the stock

market is a combination of the traditional restriction based and the more recent data-driven

approach. In particular, the estimator proposed in this study allows to divide the variables of

the SVAR into a first block of recursively ordered variables and a second block of non-recursive

variables. Only the non-recursive block relies on data-driven estimates based on non-Gaussian

and independent shocks. The more recursiveness restrictions the researcher applies, the less the

estimator depends on moments beyond the variance. In a Monte Carlo simulation we show how

the performance of a purely data-driven estimator based on non-Gaussianity deteriorates with

a decreasing sample size and an increasing model size. However, the simulation also shows that
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exploiting the partly recursive order can stop the performance decline. Therefore, the estimator

proposed in this study allows the researcher to rely on all available recursiveness restrictions,

which reduces the dependence of the estimator on moments beyond the variance and thereby

increases the finite sample performance of the estimator.

In our application the variables output, investment, and inflation are assumed to be rigid and

are restricted such that they cannot respond to stock market and monetary policy shocks within

the same quarter. However, interest rates and stock returns remain unrestricted and can simul-

taneously respond to all shocks. We find that stock prices immediately decrease in response to a

tightening of monetary policy. Moreover, output, investment and stock prices show a persistent

negative reaction to monetary policy shocks. Given standard confidence bands we reject the null

hypothesis of a long-run zero effect of a monetary policy shock on stock prices. We thus find

evidence against the long-run restrictions used in Bjørnland and Leitemo (2009). In contrast to

the fully data-driven approaches in the literature we are able to label a stock market shock. We

find that positive stock market shocks behave like news shocks and indicate a future business

cycle expansion and the central bank reacts immediately with a tightening of monetary policy.

The remainder of this article is structured as follows. Section 3.2 shows that commonly used

identification schemes in the related literature come with caveats that render them not applicable

to analyze the interaction of monetary policy and the stock market. Section 3.3 derives our

estimator for partly recursive, partly non-Gaussian SVAR models and contains a Monte-Carlo

study illustrating how exploiting the partly recursive order increases the finite sample performance

of the estimator. In Section 3.4 we use the proposed partly recursive, partly non-Gaussian

SVAR estimator to analyze the interaction of the stock market and monetary policy. Section 3.5

concludes.

3.2 Monetary policy and the stock market

3.2.1 The unavailability of common identifying restrictions

In this section, we use a simple asset pricing model to illustrate that there is no indisputable

answer about the short- and long-run interaction of stock markets and monetary policy. We keep

the model intentionally simple to show that only a small deviation in basic assumptions can cast
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common short- or long-run restrictions inappropriate.

Consider that households can save by buying firm stocks of firm i at price vi,t, yielding dividend

di,t+1 in the next period or by a non-contingent bond bft yielding a guaranteed real interest at

rate rt. The no-arbitrage condition then is

1 + rt = Et
vi,t+1 + di,t+1

vi,t
. (3.1)

From this, one can acquire the central asset pricing equation of the form

vi,t = Et

∞∑
s=1

di,t+s∏s
j=1(1 + rt+j−1)

, (3.2)

so the current stock price is the expected discounted sum of future dividends. On the firm side,

assume a continuum of infinitely small firms with mass 1 and dividends of firm i are given by

di,t+s = yi,t+s − ji,t+s + bfi,t+1+s − (1 + rt+s−1)bfi,t+s − w̄n̄, (3.3)

where yi,t is output, ji,t investment in the physical capital stock, bfi,t are debt sales (where∫ 1

0
bfi,tdi = bft ), w̄ the constant real wage and n̄ labor input, also assumed constant for simplicity.

We assume further an accumulation of physical capital ki,t of the form

ki,t+1 = (1− δ)ki,t + ji,t, δ ∈ (0, 1). (3.4)

The production function reads

yi,t = Akαi,t(Ztn̄)1−α, α ∈ (0, 1), (3.5)

with A an exogenous scaling factor and Zt an aggregate productivity factor exogenous to the

individual firm. Consequently, the firm maximization problem reads

max
{ki,t+1+s,b

f
i,t+s}

∞∑
s=0

EtΛt+sdi,t+s, (3.6)

with Λt the firm’s discount factor and subject to (3.4)-(3.5). The optimality conditions yield the
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common interest rate parity condition of the form

EtAαk
α−1
i,t+1(Zt+1n̄)1−α + (1− δ) = 1 + rt, (3.7)

which says that in equilibrium the interest rate on foreign capital and the return on capital

investment will coincide. Now inserting (3.3)-(3.5) into (3.2) yields

vi,t = Et

∞∑
s=1

Akαi,t+s(Zt+sn̄)1−α − ki,t+s+1 + (1− δ)ki,t+s + bfi,t+1+s − (1 + rt+s−1)bfi,t+s − w̄n̄∏s
j=1(1 + rt+j−1)

.

(3.8)

Imposing the limiting condition limT→∞ bT = 0 then leads to future debt sales dropping out

from the asset pricing equation, as dividends cannot be debt-financed indefinitely. As becomes

evident, the dynamics of the numerator are then entirely driven by the evolution of capital. Using

Equation (3.7) then allows to find the evolution of capital as

ki,t+1 = Et

[(
αA

rt + δ

) 1
1−α

n̄Zt+1

]
. (3.9)

Now consider that the real interest rate increases once such that r′t > r∗t and for the rest of the

time r′t+s = r∗t+s,∀s > 0 (primes denote variables after the shock, asterisks variables without the

shock). The resulting response of dividends and stock prices now crucially depends on what we

assume about the productivity factor Zt:

1.) Exogenous growth: Assume a neoclassical growth model with decreasing marginal returns to

capital, so Zt is some exogenously growing variable.

2.) Endogenous growth: Assume an endogenous growth model, for instance a standard learning-

by-doing technology with Zt =
∫ 1

0
ki,t−1di = Kt−1.

Figure 3.1 shows the effect of an interest rate shock on stock prices for an exogenous and en-

dogenous growth model14. Assuming sticky prices, thus nominal and real variables move in the

same direction in the short-run, we can interpret the exogenous real interest rate increase as

equivalent to a monetary policy shock. Both models imply an immediate reaction of stock prices

14For simplicity we assume n̄ = 1, the initial debt bft = 0, w̄ = 0 and use a standard calibration of α = 1
3

,
δ = 0.1 and setting A = 0.46 to ensure a long-run output growth rate of about 3%.

80



Figure 3.1: Simulated response of real stock prices to a one-time exogenous interest rate increase
of about one percentage point as implied by the exogenous and endogenous growth model.
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to the monetary policy shock. However, in the exogenous growth model with decreasing returns

to capital, stock prices revert back to their long-run level, while under endogenous growth with

the learning-by-doing technology, the decrease in stock prices is permanent. This is because in

the first case the lower capital stock implies a higher marginal return of capital in the future,

which drives back capital to its old steady state, while in the second case it does not, because

the lower aggregate capital stock implies lower capital investment return for the individual firm.

Furthermore, interpret a stock price shock as news about higher future productivity that is not

realized today like in Beaudry and Portier (2006). For instance assume A is no longer a constant,

but time dependent. Assume now that in the next period A′t+1 > A∗t+1. From Equation (3.8)

it becomes evident that an increase in future dividends leads to an increase in stock prices now.

Because of A′t+1 > A∗t+1, we also know that y′t+1 > y∗t+1. A central bank aiming at flattening

business cycle fluctuations would immediately adjust its policy rate. Consequently, stock prices

will contemporaneously react to monetary policy shocks, as will monetary policy to stock market
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shocks.

Now the task of the econometrician would be to let the data decide, which of the two theoretical

approaches is correct. Of course, we need to make some assumptions to identify the structural

shocks. However, we know that a monetary policy shock will immediately influence stock prices

and vice versa, so we cannot impose a short-run restriction. Imposing a long-run restriction

means to ex ante decide that the model with decreasing returns is the right one and not the

endogenous growth model and strips us of the ability to let the data decide. In particular, our

application later on shows that indeed the endogenous growth model is favored by the data and

not the exogenous growth one. Thus we are in need of a data-driven identification approach,

which is the objective of the present paper.

3.2.2 Monetary policy and the stock market SVAR models

As a second step we review the approaches of the related literature to estimate the interaction of

monetary policy and the stock market in a SVAR. We show that there is a lack of a compelling

estimation approach that is both feasible, but not too restrictive for the problem at hand.

In a SVAR a vector of time series is explained by its past values and a linear combination of

structural shocks

yt = A1yt−1 + ...+Apyt−p + ut, (3.10)

ut = Bεt, (3.11)

with an n-dimensional vector of macroeconomic variables yt, parameter matrices A1, ..., Ap, a

non-singular matrix B, the n-dimensional vector of structural shocks εt and the n-dimensional

vector of reduced form shocks ut. Here, the vector of structural shocks will contain a monetary

policy and a stock market shock. The goal is to identify both shocks and estimate their impact on

the macroeconomic variables. The SVAR imposes only little a priori structure, however, without

further assumptions the structural shocks are not identified.

In general, the probably most frequently used identifying assumption is a recursive ordering,

meaning zero restrictions on the impact of some shocks, such that each variable is simultaneously
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only influenced by shocks ordered in rows below the variable. However, in the case of monetary

policy and the stock market zero restrictions on the interaction of both variables are hardly

credible. In particular, stock prices can contain news about future productivity, see Beaudry and

Portier (2006). Therefore, a positive stock price shock might indicate a future boom accompanied

by inflationary pressure and a stabilizing central bank would respond immediately. Consequently,

a zero restriction on the response of monetary policy to stock market shocks is difficult to defend.

Nevertheless, zero restrictions on the interaction of monetary policy and the stock market have

been used to estimate the interaction of both variables, see e.g. Laopodis (2013). However, these

estimates only reflect the interaction of monetary policy and the stock market if the identifying

assumptions are correct, which is at best questionable.

Due to the unavailability of credible short-run restrictions on the interaction of monetary policy

and the stock market, several authors identify the shocks based on restrictions on the long-run

interaction of both variables (see e.g. Bjørnland and Leitemo (2009) or Kontonikas and Zekaite

(2018)). In particular, the authors assume long-run neutrality of monetary policy, meaning the

monetary policy shock by construction has no long-run impact on real stock prices. Bjørnland

and Leitemo (2009) find that monetary policy and the stock market interact simultaneously. In

particular, a tightening of monetary policy leads to an immediate decrease of stock prices and a

positive stock market shock leads to an immediate tightening of monetary policy. Again, these

results only reflect the true interaction of both variables if the identifying long-run restriction is

correct. In contrast to the short-run restriction used in Laopodis (2013), the long-run restriction

used in Bjørnland and Leitemo (2009) is at least based on an underlying theory yielding long-run

neutrality of monetary policy. However, as shown in Section 3.2.1, a slight modification of the

theory from exogenous to endogenous growth already breaks the long-run neutrality result. In

fact, recent studies (see e.g. Moran and Queralto (2018), Bianchi et al. (2019) and Jordà et al.

(2022)) consistently find that monetary policy affects real variables much longer than usually

assumed15. These results cast doubt on the long-run restriction and the corresponding estimated

interaction of monetary policy and the stock market.

15For instance, Moran and Queralto (2018) and Bianchi et al. (2019) find that the impulse response of TFP is
significantly positive even 15 years after a negative monetary policy shock has hit the economy. Again as in the
previous section, higher productivity goes hand in hand with higher expected dividends. Therefore, stock prices
should not only decrease immediately, but permanently in response to an unexpected tightening of monetary
policy.
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Rigobon and Sack (2004) propose an estimator, which does not require any restrictions on the

short- or long-run interaction of the stock market and monetary policy. Instead, it is based

on heteroskedastic shocks and requires to a priori specify periods of different variances of the

monetary policy shock. The identification is thus based on a stochastic property of the structural

shocks and not on a restriction on the impact of the shocks. Specifying volatility regimes of

monetary policy may be straight-forward on a daily basis (by choosing all days with FOMC

announcements), however, with lower frequency data it becomes increasingly difficult. Therefore,

the estimator becomes infeasible in a typical macroeconomic application with monthly, quarterly

or even lower frequency data.

In general, identification based on time-varying volatility does not require to a priori spec-

ify volatility periods (see e.g. Rigobon and Sack (2003), Lanne et al. (2010), Lütkepohl and

Netšunajev (2017) or Lewis (2021)). In fact, a latent volatility process can be used for identifica-

tion without imposing much structure on the latent process. However, Lütkepohl and Netšunajev

(2017) argue that reliable estimators based on GARCH or Markov switching processes are only

available in small models and few volatility states. The intuition is simple: The more (cor-

rect) structure we impose on the latent process, the more precise the corresponding estimate.

Therefore, Lütkepohl and Netšunajev (2017) propose an estimator which imposes a parametric

smooth transition function between two states of the variance-covariance matrix of the reduced

form shocks. The estimator is applied to analyze the interaction of monetary policy and the

stock market. The authors find a small simultaneous negative response of the stock market to

a tightening of monetary policy. However, a tightening of monetary policy is also found to lead

to an initial increase of inflation and output. Due to the counterintuitive response of output and

inflation to the shock, the authors admit that labeling the shock as a monetary policy shock in a

”conventional” sense may be misleading. Additionally, the authors cannot label a stock market

shock and hence it remains unclear how monetary policy reacts to a stock market shock.

Another branch of the SVAR literature uses non-Gaussian and independent shocks for identifi-

cation (see e.g. Lanne et al. (2017), Gouriéroux et al. (2017), Lanne and Luoto (2021), Guay

(2021) and Keweloh (2021b)). Theses approaches are also data-driven and do not require to

impose any short- or long-run restrictions. Instead, these approaches require that the structural

shocks are mutually independent and at most one shock is allowed to be Gaussian. Intuitively,
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non-Gaussian shocks do contain information in moments beyond the variance, which allows to

identify the simultaneous interaction. In a short application Lanne et al. (2017) use a data-

driven identification approach imposing non-Gaussian and independent shocks to estimate the

interdependence of monetary policy and the stock market. The authors find that an unexpected

tightening of monetary policy has an immediate negative impact on financial conditions. How-

ever, they are unable to label a stock market shock. Therefore, it again remains unclear how

stock market shocks influence monetary policy.

To sum up, the commonly used short- and long-run restrictions regarding the interaction of mon-

etary policy and the stock market have implications on the underlying data generating process.

Until now there is no consensus about which theoretical model is correct and the estimation

should not depend on an a priori restriction to one or another model, but rather be able to

decide which fits the data best. On the other side, there are identification approaches that do not

rely on short- or long-run restrictions, but they are either not able to be generalized to a broader

macroeconomic setup or become less feasible the more variables are included into the VAR. Ide-

ally, the SVAR estimator should allow to factor in a priori restrictions that we are certain about,

but also allow a data-driven identification, when we are not certain about the underlying theory.

In the following section we propose an estimator that fulfills these criteria.

3.3 A partly recursive, partly non-Gaussian SVAR estimator

A non-Gaussian SVAR with independent shocks can be estimated based on restrictions governing

the interaction of the variables or based on information contained in moments beyond the variance

and without any assumptions on the interaction of the variables. At first glance, in a non-Gaussian

SVAR and from an asymptotic point of view, the traditional identification approach based on

restrictions appears to be unnecessarily restrictive. However, we show that in small samples

the performance of data-driven estimators based on non-Gaussianity quickly deteriorates with an

increasing model size, while the performance of a restriction based estimator is less affected by the

model and sample size. In macroeconomic applications, we can oftentimes derive some credible

restrictions based on economic theory. However, in many cases we cannot derive sufficiently many

restrictions to identify the SVAR based on second moments and the researcher is forced to rely

on additional, less credible restrictions or to use an unreliable purely data-driven estimator.
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The estimator proposed in this section combines the traditional restriction based approach with

the more recent data-driven approach based on non-Gaussianity. Our estimator allows the re-

searcher to rely on recursiveness restrictions if possible and to be agnostic on the interaction of

the variables and relying on data-driven estimates when necessary. In particular, the proposed

estimator allows to order some, but not all, shocks recursively. While the impact of the recursive

shocks is estimated based on second moments, the impact of the non-recursive shocks is estimated

based on non-Gaussianity. We show that in comparison to an unrestricted estimator solely based

on non-Gaussian and independent shocks, exploiting the partly recursive structure i) improves

the finite sample performance of the estimator, ii) reduces the burden of labeling the shocks, and

iii) relaxes the non-Gaussianity and independence assumptions.

3.3.1 Derivation of the estimator

Consider a partly recursive SVAR, meaning there exists m ∈ N with 0 ≤ m ≤ n and

B =



b11 0 . . . 0
...

. . .
. . .

...

bm1 . . . bmm 0 . . . 0

bm+1,1
. . . bm+1,m bm+1,m+1 bm+1,n

...
...

...

bn1 . . . bnm bn,m+1 bnn


. (3.12)

Therefore, the first m variables are ordered recursively, meaning they cannot contemporaneously

be influenced by structural shocks in rows ordered below. However, the last n − m variables

are not ordered recursively and can contemporaneously be influenced by all structural shocks.

Since the matrix B is only partly recursive, it cannot be identified solely by second moments.

However, the partly recursive structure can be combined with estimators based on independent

and non-Gaussian shocks.

The partly recursive SVAR can be estimated in three steps. For simplicity, consider a SVAR with
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four variables and the following partly recursive structure
u1

u2

u3

u4

 =


b11 0 0 0

b21 b22 0 0

b31 b32 b33 b34

b41 b42 b43 b44




ε1

ε2

ε3

ε4

 . (3.13)

The recursive part can be written asu1

u2

 =

b11 0

b21 b22

ε1

ε2

 , (3.14)

which is a simple recursive SVAR and can be identified and estimated based on second moments

(e.g. by applying the Cholesky decomposition to the variance-covariance matrix of the reduced

form shocks, see Kilian and Lütkepohl (2017)). The non-recursive part can be written as

u3

u4

 =

b31 b32

b41 b42

ε1

ε2

+

ν3

ν4

 , (3.15)

with the adjusted reduced form shocksν3

ν4

 =

b33 b34

b43 b44

ε3

ε4

 . (3.16)

Using the estimated structural shocks ε̂1 and ε̂2 from the first step allows to estimate the lower-

left block of B in Equation (3.15) by OLS. The adjusted reduced form shocks ν in Equation (3.15)

represent the variation in u3 and u4, which is unexplained by the structural shocks in the recursive

block. Therefore, the adjusted reduced form shocks only contain information from shocks in the

non-recursive block. However, Equation (3.16) is just an unrestricted SVAR in the two structural

shocks from the non-recursive block. The identification results and estimators based on non-

Gaussianity proposed by Lanne et al. (2017), Gouriéroux et al. (2017), Lanne and Luoto (2021),

Keweloh (2021b), or Guay (2021) can then be used to identify and estimate the non-recursive

block if the structural shocks in the non-recursive block are mutually independent and at most
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one shock is Gaussian. Note that the different estimators require slightly different assumptions

on the non-Gaussianity and independence of the structural shocks in the non-recursive block.

The partly recursive, partly non-Gaussian estimator can also be calculated in a single step. For

example, a partly recursive version of the GMM estimators proposed in Keweloh (2021b) and

Keweloh (2021a) can be obtained by including the second-order moment conditions of all shocks

and the higher-order moment conditions associated with the shocks in the non-recursive block.

Some estimators based on non-Gaussianity rely on an initial whitening step, see e.g. the PML

estimator proposed in Gouriéroux et al. (2017) or the whitened GMM estimators proposed in

Keweloh (2021b). In the preliminary whitening step the reduced form shocks are transformed into

uncorrelated shocks with unit variance and in the second step the optimization is performed over

orthogonal matrices, which correspond to rotations of the transformed reduced form shocks16.

Whitening is equivalent to an optimization subject to the constraint that the estimated struc-

tural shocks are uncorrelated with unit variance in the given sample, compare Keweloh (2021b).

However, in the partly recursive SVAR defined in Equation (3.12), the first m columns of B are

uniquely determined by the whitening constraint, imposing that the estimated structural shocks

have to be uncorrelated with unit variance. Therefore, a whitened estimator with partly recursive

constraints by definition only relies on second moments to identify and estimate the impact of

the shocks in the recursive block, see Appendix 3.6.1 for more details.

The partly recursive SVAR estimation approach presented above does not require independence

or non-Gaussianity of the structural shocks in the recursive block. Additionally, if we are only

interested in the impact of the shocks in the non-recursive block, the partly recursive SVAR

estimation approach is robust to misspecifications of the recursive order. In particular, if the

16Optimizing over orthogonal matrices is computationally simple, since it can be pulled back to an optimization
problem over the euclidean space, see Lezcano-Casado and Martınez-Rubio (2019). In Appendix 3.6.1 we propose
a similar transformation for the optimization problem over orthogonal matrices with partly recursive constraints.
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SVAR is only block recursive, such that there exists m ∈ N with 0 ≤ m ≤ n and

B =



b11 ... bm1 0 . . . 0
...

. . .
. . .

...
...

bm1 . . . bmm 0 . . . 0

bm+1,1
. . . bm+1,m bm+1,m+1 bm+1,n

...
...

...

bn1 . . . bnm bn,m+1 bnn


, (3.17)

the partly recursive SVAR estimation approach proposed above yields inconsistent estimates

for the upper-left and lower-left block of B, but remains consistent for the lower-right block

which represents the impact of the shocks in the non-recursive block. To see this, note that

falsely imposing a recursive order in Equation (3.14) yields inconsistent estimates of the upper-

left block of B. Additionally, using the shocks of the first step, here ε̂1 and ε̂2, to estimate

Equation (3.15) will also yield inconsistent estimates of the lower-left block of B. However, if the

shocks in the non-recursive block, here ε3 and ε4, have no simultaneous impact on the variables

in the recursive block, the shocks ε̂1 and ε̂2 obtained from the first step are equal to a linear

combination of the true shocks ε1 and ε2. Therefore, the adjusted reduced form shocks ν in

Equation (3.15) still represent the variation in u3 and u4 which is unexplained by the structural

shocks in the recursive block and hence, the non-recursive SVAR in Equation (3.16) remains

valid. The proposed estimator thus allows to identify and consistently estimate the impact

of a non-recursive block of variables if Equation (3.17) holds, meaning that all the shocks in

the non-recursive block have no simultaneous impact on the variables in the recursive block of

variables, and the shocks in the non-recursive block satisfy the independence and non-Gaussianity

assumptions.

Exploiting the partly recursive structure yields several advantages compared to an unrestricted

estimator solely identified by independence and non-Gaussianity. First, the Monte Carlo study

in Section 3.3.2 shows that exploiting the partly recursive order and thus decreasing the depen-

dence of the estimator on higher moments leads to an increase of the small sample performance

of the estimator. Second, every identification approach requires to impose an a priori structure.

In particular, if no restrictions on the interaction of the variables are imposed, the researcher
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has to impose that all shocks are independent and at most one shock is allowed to be Gaus-

sian. Both assumptions have bee criticized in the literature, see, e.g., Kilian and Lütkepohl

(2017, Chapter 14) or Olea et al. (2022). The partly recursive estimation approach decrease the

dependence on these non-Gaussianity and independence assumptions. Third, a data-driven iden-

tification scheme based only on non-Gaussian and independent shocks only identifies the shocks

up to labeling. Therefore, the researcher has to decide which impulse response belongs to which

shock. The task of labeling the shocks becomes increasingly difficult the more shocks are identi-

fied by this procedure, especially if the impulse responses of the variables are quite similar with

respect to two or more shocks. Imposing a partly recursive structure alleviates this burden on

the econometrician, since the shocks in the recursive block are already labeled by the identifying

assumptions of the partly recursive order.

3.3.2 Finite sample performance

In the following Monte Carlo study, we show that data-driven estimators based on non-

Gaussianity suffer from a curse of dimensionality, i.e. the bias and mean squared error (MSE)

increases quickly with an increasing model size and a decreasing sample size. However, we show

that exploiting the partly recursive structure can stop the curse of dimensionality.

We first simulate a small SVAR with n = 2 variables andu1t

u2t

 =

10 5

5 10

ε1t

ε2t

 . (3.18)

We then add two additional shocks ε3t and ε4t and obtain a SVAR with n = 4 variables with
u3t

u4t

u1t

u2t

 =


10 0 0 0

5 10 0 0

5 5 10 5

5 5 5 10




ε3t

ε4t

ε1t

ε2t

 . (3.19)

With this setup, the impact of ε1t and ε2t on u1t and u1t is identical in both SVARs and given

by the B matrix for n = 2 or the lower-right block of the B matrix for n = 4. Moreover, the
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structural shocks εit, i = 1, . . . , n, t = 1, . . . , T, are drawn independently and identically from the

two-component mixture

εit ∼ 0.79 N (−0.2, 0.72) + 0.21 N (0.75, 1.52),

where N (µ, σ2) indicates a normal distribution with mean µ and standard deviation σ. The

shocks have skewness 0.9 and excess kurtosis 2.4.

In the small SVAR with n = 2 the reported estimator uses no restrictions and thus contains only

a single non-recursive block. In the large SVAR with n = 4 one estimator uses no restrictions

meaning all shocks are contained in a single non-recursive block. Additionally, for n = 4 a

second estimator uses the restrictions from the partly recursive order such that the non-recursive

block only contains ε1t and ε2t. The non-recursive block is estimated with the SVAR GMM

estimator proposed by Keweloh (2021b) using all second- to fourth-order moment conditions

corresponding to the shocks in the non-recursive block. Additionally, we update the weighting

matrix continuously and use the assumption of serially and mutually independent shocks to

estimate the asymptotically optimal weighting matrix and the asymptotic variance as proposed in

Keweloh (2021a). In Appendix 3.6.2 we report analogous results for the PML estimator proposed

by Gouriéroux et al. (2017) and the whitened fast GMM estimator proposed by Keweloh (2021b).

Additionally, we show results for a similar simulation using t-distributed structural shocks. None

of the conclusions drawn in this section is sensitive to the alternative simulations.

Table 3.1 shows the average and MSE of each estimated element. The simulations show how

the performance in terms of bias and MSE of estimates based entirely on non-Gaussianity de-

creases with an increasing model size. In particular, the elements in the lower-right block of

the unrestricted SVAR GMM estimator for n = 4 are more biased and have a large MSE com-

pared corresponding elements of unrestricted SVAR GMM estimator for n = 2. This curse of

dimensionality is more pronounced in smaller samples. However, the simulation also shows that

exploiting the partly recursive structure stops the deterioration of the performance induced by a

larger model. In particular, the elements in the lower-right block of the partly recursive SVAR

GMM estimator for n = 4 exhibit a similar bias and MSE compared to corresponding elements

of the unrestricted SVAR GMM estimator for n = 2.
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Table 3.1: Finite sample performance - Partly recursive SVAR.

T n = 2 n = 4 n = 4
GMM GMM partly recursive GMM

100

9.73
(2.04)

4.67
(4.52)

4.97
(4.21)

9.55
(2.5)




9.13
(2.48)

−0.02
(3.64)

0.06
(3.71)

−0.04
(4.08)

4.58
(4.3)

9.14
(3.07)

−0.0
(4.54)

−0.1
(4.85)

4.52
(6.23)

4.6
(5.94)

9.23
(4.91)

4.22
(7.63)

4.57
(6.64)

4.61
(6.01)

4.81
(6.6)

8.89
(6.03)




9.94
(1.14)

. . .

4.98
(1.34)

9.88
(1.02)

. .

4.98
(1.86)

4.95
(1.54)

9.6
(2.3)

4.57
(5.06)

4.99
(1.86)

4.96
(1.59)

4.95
(4.59)

9.42
(2.75)



250

9.86
(0.86)

4.94
(1.58)

4.93
(1.64)

9.86
(0.75)




9.68
(0.61)

0.0
(1.51)

−0.02
(1.6)

−0.05
(1.45)

4.83
(1.67)

9.68
(0.94)

0.02
(2.0)

−0.08
(1.95)

4.87
(2.54)

4.81
(2.49)

9.73
(1.8)

4.7
(2.83)

4.89
(2.45)

4.85
(2.43)

4.93
(2.7)

9.58
(1.96)




9.98
(0.4)

. . .

4.99
(0.52)

9.97
(0.44)

. .

4.99
(0.75)

4.98
(0.62)

9.88
(0.76)

4.87
(1.69)

5.0
(0.74)

4.97
(0.63)

5.0
(1.57)

9.8
(0.88)



500

9.94
(0.32)

4.95
(0.63)

4.98
(0.6)

9.93
(0.34)




9.87
(0.24)

0.01
(0.58)

0.0
(0.61)

−0.02
(0.62)

4.93
(0.63)

9.85
(0.34)

0.02
(0.83)

0.0
(0.85)

4.94
(1.01)

4.91
(1.03)

9.87
(0.64)

4.92
(1.09)

4.95
(1.01)

4.92
(1.07)

4.94
(1.04)

9.85
(0.72)




9.99
(0.22)

. . .

5.0
(0.25)

9.96
(0.22)

. .

5.0
(0.36)

4.99
(0.3)

9.92
(0.34)

4.96
(0.67)

5.0
(0.36)

4.99
(0.31)

4.96
(0.64)

9.92
(0.36)



1000

9.99
(0.16)

4.99
(0.28)

5.0
(0.28)

9.97
(0.16)




9.93
(0.11)

−0.0
(0.29)

−0.01
(0.3)

−0.01
(0.29)

4.98
(0.31)

9.93
(0.17)

0.01
(0.39)

0.0
(0.39)

4.99
(0.49)

4.95
(0.5)

9.95
(0.32)

4.96
(0.51)

4.99
(0.47)

4.96
(0.5)

4.99
(0.5)

9.94
(0.32)




9.99
(0.11)

. . .

5.0
(0.12)

9.99
(0.11)

. .

5.01
(0.18)

5.0
(0.16)

9.97
(0.16)

4.97
(0.3)

5.0
(0.18)

5.0
(0.16)

5.01
(0.3)

9.97
(0.16)



5000

10.0
(0.03)

4.99
(0.06)

5.0
(0.06)

9.99
(0.03)




9.98
(0.02)

0.0
(0.05)

−0.0
(0.05)

−0.0
(0.05)

4.99
(0.06)

9.99
(0.03)

−0.01
(0.07)

0.0
(0.07)

5.0
(0.09)

5.0
(0.09)

9.99
(0.06)

4.99
(0.09)

5.0
(0.09)

5.0
(0.09)

4.99
(0.09)

9.99
(0.06)




10.0
(0.02)

. . .

5.0
(0.02)

10.0
(0.02)

. .

5.0
(0.04)

5.0
(0.03)

10.0
(0.03)

4.99
(0.06)

5.0
(0.04)

5.0
(0.03)

5.0
(0.06)

9.99
(0.03)


Monte Carlo simulation with M = 2000 replications. The table shows the average, 1/M

∑M
m=1 b̂

m
ij , and the

estimated mean squared error, 1/M
∑M
m=1

(
b̂mij − bij

)2
, of each estimated element b̂mij of bij denoting the element

of B in row i and column j. The table reports results for the SVAR GMM estimator without restrictions for n = 2
and n = 4, and the partly recursive SVAR GMM estimator for n = 4, which uses zero restrictions highlighted by
the dots.
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Table 3.2: Finite sample performance - Hypothesis tests in the partly recursive SVAR.

n = 2 n = 4 n = 4
GMM GMM partly recursive GMM

J − Test T = 100 5.6 4.1 6.1
T = 250 7.5 4.8 6.9
T = 500 8.5 7.9 8.8
T = 1000 9.2 11.4 9.2
T = 5000 10.5 10.8 8.9

Wald H0 : b = 0 T = 100 85.8 70.4 83.6
T = 250 99.0 93.5 98.2
T = 500 99.9 99.6 99.8
T = 1000 100 100 100
T = 5000 100 100 100

Wald H0 : b = 5 T = 100 17.6 21.8 19
T = 250 15.0 18.1 14.6
T = 500 11.7 13.9 12.7
T = 1000 9.4 13.5 11.4
T = 5000 10.3 9.9 9.9

Monte Carlo simulation with M = 2000 replications. The table shows the average the rejection rates at α = 10%
for the J-Test, a Wald test with H0 : b = 0 , and Wald test with H0 : b = 5, where b is equal to the element b12
for n = 2 and b34 for n = 4. The table reports results for the SVAR GMM estimator without restrictions for
n = 2 and n = 4, and the partly recursive SVAR GMM estimator for n = 4. We use the assumption of serially
and mutually independent shocks to estimate the asymptotic variance required for the Wald tests as proposed in
Keweloh (2021a).

Table 3.2 reports the rejection rates at α = 10% for the J-Test, a Wald test with H0 : b = 0,

and Wald test with H0 : b = 5, where b is equal to the element b12 for n = 2 and b34 for n = 4,

representing the impact of εit on u1t. In small samples, the rejection rate of the J-Test is distorted

for all estimators. We find a similar distortion of the unrestricted SVAR GMM estimator for n = 2

and the partly recursive SVAR GMM estimator for n = 4, while the distortion of the unrestricted

SVAR GMM estimator for n = 4 is larger. The Wald test with the null hypothesis H0 : b = 0

tests the null hypothesis of a recursive SVAR order of ε1t and ε2t. The null hypothesis is incorrect

and should be rejected. However, in small samples the unrestricted SVAR GMM estimator for

n = 4 rejects the null hypothesis less frequently than the unrestricted SVAR GMM estimator

for n = 2 and the partly recursive SVAR GMM estimator for n = 4. The Wald test with the

null hypothesis H0 : b = 5 should only be rejected in 10% of all simulations. However, Table 3.2

shows that in small samples, all estimators reject the null hypothesis too often. The distortion of

the two unrestricted estimators increases with the model size and imposing the partly recursive

order decreases the distortion.
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In macroeconomic applications, we oftentimes face relatively large models but only small samples

with at best a few hundred observations. In this case, purely data-driven estimates based on

non-Gaussianity become volatile and in a given application it can become difficult to draw any

conclusions on the interaction of the variables or even label the shocks. However, econometricians

have put much work into deriving and defending restrictions on the interaction of macroeconomic

variables. The simulations show how including traditional zero restrictions increases the finite

sample performance of a data-driven estimator based on non-Gaussianity. Therefore, we argue

that in a given application the researcher should include restrictions when possible and only rely

on a data-driven estimation when necessary.

3.4 The interdependence of U.S. monetary policy and the stock market

In this section, we apply the partly recursive estimation approach to analyze the interaction of

monetary policy and the stock market. We consider a SVAR in five variables with quarterly U.S.

data from 1983Q1 to 2019Q1 of the form

yt

It

πt

st

it


= α+ γt+

4∑
i=1

Ai



yt−i

It−i

πt−i

st−i

it−i


+



uyt

uIt

uπt

ust

uit


, (3.20)

where y denotes real output growth, I real investment growth, π the inflation rate, i the federal

funds rate and s real stock returns17. The consideration of the variables follows from Section 3.2,

where we constructed a model that either features long-run monetary neutrality or non-neutrality

based on the role of physical capital concerning productivity. The inclusion of output, investment

and stock prices allows to discriminate between the two models, as we would predict them to

17The inflation rate is defined as the quarter to quarter growth rate in the quarterly chain-type GDP price index
retrieved from the FRED. The GDP growth rate is given by the quarterly log-difference of real GDP retrieved from
the FRED. Real investment growth is given by the quarterly growth rate of real gross private domestic investment
obtained from the FRED. The nominal interest rate is defined as the Federal Funds Rate (FFR), where the effective
FFR (retrieved from FRED) is replaced by the shadow FFR provided by Wu and Xia (2016) for the Zero Lower
Bound observations during the Great Recession. Stock returns are defined as the quarterly log-difference in real
stock prices, where real stock prices are given by the S&P 500 index (retrieved from macrotrends.net) divided by
the chain-type GDP price index.
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either be influenced temporarily or permanently by a monetary policy shock. Furthermore, we

include output, investment and stock prices in growth rates in order to check on the validity

of potential long-run restrictions. The linear time trend is added to account for an eventual

long-term decline in the interest rate as discussed by for instance Carvalho et al. (2016).

We assume that real investment growth, real output growth and inflation behave sluggishly,

meaning they cannot react to monetary policy or stock market shocks within the same quarter.

These restrictions can be justified by price rigidities and capital adjustment costs as oftentimes

used in standard DSGE models, see for example Smets and Wouters (2007). However, inter-

est rates and stock returns are unrestricted and can contemporaneously respond to all shocks.

Therefore, we impose the following partly recursive structure

uyt

uIt

uπt

ust

uit


=



b11 0 0 0 0

b21 b22 0 0 0

b31 b32 b33 0 0

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55





ε1t

ε2t

ε3t

εsmt

εmpt


, (3.21)

where the non-recursive block contains the stock market shock εsmt and the monetary policy shock

εmpt . Identification of the shocks in the non-recursive block requires that neither the stock market,

nor the monetary policy shock simultaneously affect real output growth, real investment growth,

or inflation. Importantly, identification of the non-recursive block is robust to misspecifications

in the recursive block, meaning even if the data generating process is given by

uyt

uIt

uπt

ust

uit


=



b̃11 b̃12 b̃13 0 0

b̃21 b̃22 b̃23 0 0

b̃31 b̃32 b̃33 0 0

b̃41 b̃42 b̃43 b̃44 b̃45

b̃51 b̃52 b̃53 b̃54 b̃55





ε̃1t

ε̃2t

ε̃3t

εsmt

εmpt


, (3.22)

the partly recursive estimation approach based on the restrictions in Equation (3.21) is still able

to identify the stock market shock and the monetary policy shock.
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The SVAR is estimated by the partly recursive estimation approach with the restrictions imposed

in Equation (3.21). The non-recursive block containing the monetary policy and stock market

shock is estimated by the SVAR GMM estimator proposed in Keweloh (2021a) using two coskew-

ness and three cokurtosis conditions. We update the weighting matrix continuously and use the

assumption of serially and mutually independent shocks to estimate the asymptotically optimal

weighting matrix and the asymptotic variance as proposed in Keweloh (2021a).

Table 3.3 shows the skewness, kurtosis and the p-value of the Jarque-Bera test of the adjusted

reduced form shocks equal to

νst
νit

 =

ust
uit

−
b̂41 b̂42 b̂43

b̂51 b̂52 b̂53



e(B̂)1t

e(B̂)2t

e(B̂)3t

 , (3.23)

where e(B̂)1t, e(B̂)2t, and e(B̂)3t are the unmixed innovations of the recursive block. The ad-

justed reduced form shocks are equal to the variation in ust and uit unexplained by the unmixed

innovations in the recursive block. The unmixed innovations in the first block are linear com-

binations of the structural shocks in the recursive block. Therefore, the two adjusted reduced

form shocks are equal to a linear combination of the structural shocks in the non-recursive block,

which contains the stock market and monetary policy shock. We find strong evidence that one

Table 3.3: Monetary policy and the stock market - Non-Gaussianity of adjusted reduced form
shocks.

νst νit
Skewness −0.313 −0.407
Kurtosis 3.413 10.663
JB-Test 0.192 0

Skewness, kurtosis and the p-value of the Jarque-Bera test of the adjusted reduced form shocks.

of the adjusted reduced form shocks is non-Gaussian. Non-Gaussianity of the adjusted reduced

form shocks implies that at least one of the two structural shocks in the non-recursive block is

non-Gaussian, which is sufficient to identify the stock market and monetary policy shock.

Figure 3.2 shows the corresponding impulse response functions (IRFs) to the estimated stock

market and monetary policy shocks. The responses of stock returns, real investment growth and

real GDP growth are integrated to show the associated level effects, which makes it possible to
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visually check the validity of long-run restrictions. Exploiting the partly recursive order makes

Figure 3.2: Monetary policy and the stock market - Impulse responses.

The figure shows the responses to one standard deviation shocks in the partly recursive SVAR. The columns y, I,
and s show the cumulative responses of investment growth, output growth, and stock returns. Confidence bands
are symmetrical 68% and 80% bootstrap bands with 2000 replications in the bootstrap algorithm.

labeling straightforward: There is only one shock which leads to an increase of the interest rate

together with a decrease of output and a medium-run decrease of inflation in the non-recursive

block, which is what we would expect from a monetary policy shock. The remaining shock is

then labeled as the stock market shock.

The estimated lower-right block of the B matrix reads (asymptotic variance, Wald test statistic
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with H0 : Bij = 0 and p-value for the elements in parentheses)18

B̂lower−right =


5.22 −1.78

(27.21/141.4/0.0) (67.54/6.63/0.01)

0.08 0.33

(0.17/5.08/0.02) (0.31/50.06/0.0)

 . (3.24)

A one standard deviation stock market shock which increases stock prices by about 5.22% leads

to an immediate interest rate increase of approximately 0.08 percentage points. A one standard

deviation monetary policy shock leads to a decrease in stock prices of about 1.78%, while the

nominal interest rate increases about 0.33 percentage points. The estimated simultaneous inter-

action is qualitatively comparable to the results in Bjørnland and Leitemo (2009). The Wald

tests suggest that the simultaneous response of stock returns and interest rates to monetary

policy and stock market shocks is significant at the 5% level. Additionally, also the confidence

bands in Figure 3.2 suggest that both variables interact simultaneously and cannot be ordered

recursively.

Consistent with the news literature around Beaudry and Portier (2006), we find that a positive

stock market shock is followed by a business cycle expansion with an increase in real output growth

and real investment growth. Therefore, even if the central bank is not interested in stock prices

in the first place, a stock market shock implies a business cycle boom and the central bank, trying

to stabilize output, will increase the FFR. Additionally, we find that a contractionary monetary

policy shock induces a recession with a decrease in output, investment and prices. The future

recession and an efficient stock market, which immediately incorporates all available information,

then explains the initial negative response of stock prices to the monetary policy shock.

In Section 3.2 we presented two models: An exogenous growth model where monetary policy

shocks lead to transitory deviations in real output, real investment and real stock returns, and

an endogenous growth model where monetary policy shocks lead to permanent deviations in real

output, real investment and real stock returns. The estimator based on long-run restrictions

used in Bjørnland and Leitemo (2009) ex ante chooses the exogenous growth model and thus

18Based on Keweloh (2021a) we use the assumption of serially and mutually independent shocks to estimate
the asymptotic variance.
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does not allow to distinguish between both models. The partly recursive estimation approach

presented above does not require any restrictions on the short- or long-run impact of monetary

policy and stock market shocks. Therefore allows to discriminate between both models. Based

on the resulting impulse responses we find evidence that monetary policy is not neutral w.r.t

stock prices in the long-run. In particular, a contractionary monetary policy shock leads to a

permanent and significant decrease of output, investment and stock prices.

Moreover, the ability to identify structural shocks based on long-run restrictions depends on the

explanatory power of lagged variables. In particular, identifying the impact of monetary policy

shocks on real stock returns based on a long-run restriction requires that lagged variables in

the reduced form Equation (3.20) explain variation in real stock returns. However, we find that

real stock returns are only insignificantly affected by nearly all lagged variables and we cannot

reject the null hypothesis of the joint F-test that all considered lags have no impact on real

stock returns, see Appendix 3.6.3. If the null hypothesis is true such that real stock returns only

react simultaneously to structural shocks, imposing a long-run zero restriction on the response

of real stock prices to a monetary policy shock is equal to imposing a short-run zero restriction

on the response of real stock returns. Importantly, the explanatory power of lagged variables for

real stock returns has no impact on the partly recursive estimator proposed in this study. We

re-estimate the SVAR with the additional restriction that stock returns do not respond to any

lagged variables. The results are shown in Appendix 3.6.3 and we find an immediate and by

construction permanent effect of a monetary policy shock on stock prices, which is in line with

our results from before.

In Appendix 3.6.3 we conduct robustness checks regarding the observation period, the exclusion

of the linear time trend, the lag structure, the estimation method within the blocks, different

specifications, the inclusion of further control variables, and regarding the viability of our re-

cursiveness restrictions by estimating the SVAR without imposing any restrictions. Our main

results are found to be robust and remain qualitatively unchanged: Real stock returns and the

nominal interest rate both react immediately to monetary policy and stock market shocks and

the long-run impact of monetary policy shocks on real stock prices is persistently negative.
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3.5 Conclusion

The present paper proposes a partly recursive, partly non-Gaussian SVAR estimation approach,

which generalizes between the traditional restriction based and the more recent data-driven iden-

tification approach based on non-Gaussianity. In particular, we demonstrate how the SVAR

can be identified by combining traditional short-run zero restrictions and information retrieved

from moments beyond the variance. We show that purely data-driven estimators based on non-

Gaussianity suffer from a curse of dimensionality in small samples and large models. Exploiting

the partly recursive order can break the curse of dimensionality and increase the finite sample

performance, rendering our estimator to be more flexible and feasible for larger applications with

only limited data availability.

We apply the proposed partly recursive SVAR estimator to analyze the interaction of monetary

policy and the stock market. We argue that on the one hand there are not enough credible short

or long-run restrictions available to identify the SVAR based on restrictions on the interaction

of the variables. On the other hand, purely data-driven approaches typically become less and

less precise the more variables are considered in the SVAR. Employing our new estimator, we

find that real stock returns and interest rates both react simultaneously to stock market and

monetary policy shocks. In particular, a tightening of monetary policy leads to a recession and a

decrease of real stock returns and a positive stock market shock indicates a future business cycle

expansion and an immediate increase in interest rates. We find evidence against the long-run

neutrality of monetary policy: The estimates show that a tightening of monetary policy leads to

permanently lower output, investment, and real stock prices.

3.6 Appendix

3.6.1 Appendix - White SVAR estimators with partly recursive constraints

Let Q(B, u) be the objective function of a non-Gaussian SVAR estimator. Moreover, define

the unmixed innovation et(B) = B−1ut. A whitened SVAR estimator then requires that

1
T

∑T
t=1 et(B)e′t(B) = I, such that in a given sample the unmixed innovations are mutually

uncorrelated with unit variance.
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Estimating an n dimensional SVAR with m partly recursive constraints and T observations yields

the following optimization problem

B̂ := arg min
B∈Rn×n

Q(B, u) (3.25)

s.t. bi,j = 0, for i < j and i ≤ m.

A whitened SVAR estimator has an additional constraint

B̂ := arg min
B∈Rn×n

Q(B, u) (3.26)

s.t. bi,j = 0, for i < j and i ≤ m (3.27)

1

T

T∑
t=1

et(B)e′t(B) = I. (3.28)

However, due to the whitening constraint (3.28) the optimization problem (3.26) is difficult to

solve numerically.

First, we ignore the partly recursive constraint (3.27) and consider a white SVAR estimator with

the corresponding optimization problem

B̂ := arg min
B∈Rn×n

Q(B, u) (3.29)

s.t.
1

T

T∑
t=1

et(B)e′t(B) = I

The constrained optimization problem (3.29) can be transformed into an unconstrained opti-

mization problem over orthogonal matrices. Let V V ′ = 1
T

∑T
t=1 utu

′
t be the sky decomposition

of the sample variance-covariance matrix of the reduced form shocks. For simplicity, we ignore

the indeterminacy of sign and permutation. It holds that B̂ = V Ô with

Ô := arg min
O∈On×n

Q(V O, u), (3.30)

where On×n denotes the set of n×n dimensional orthogonal matrices. The optimization problem

over orthogonal matrices in Equation (3.30) has no constraints and can be pulled back to an
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optimization problem over the euclidean space, see Lezcano-Casado and Martınez-Rubio (2019).

Therefore, let exp(·) denote the matrix exponential function, let s(·) be the function which maps

a vector into a lower skew-symmetric matrix. It then holds that

Ô := arg min

θ∈R
n(n−1)

2

Q(VO(θ), u), (3.31)

where O(θ) = exp(s(θ)) maps the n(n−1)
2 dimensional vector θ into an orthogonal matrix.

Similar to the case without the partly recursive constraints, the optimization problem (3.26)

with the partly recursive constraints (3.27) can be transformed into an optimization problem

over orthogonal matrices such that B̂ = V Ô with

Ô := arg min
O∈On×n

Q(V O, u), (3.32)

s.t. (V O)i,j = 0, , for i < j and i ≤ m (3.33)

Let d = (n−m)(n−m−1)
2 and define the mapping between a d dimensional vector into an orthogonal

matrix which preserves the partly recursive constraint (3.33)

Om : Rd → On×n, θ 7−→

Im 0

0 exp(s(θ))

 , (3.34)

where Im denotes and m dimensional identity matrix. The optimization problem (3.32) can now

be pulled back to an unconstrained optimization problem over the euclidean space

Ô := arg min
θ∈Rd

Q(VOm(θ), u), (3.35)

which simplifies the numerical optimization problem.

We now show that in a SVAR with a whitening constraint, the first m columns of the B matrix

and therefore the first m recursively ordered shocks are determined by second moments due to the

whitening constraint. Put differently, no information in moments beyond the variance can affect

the estimated impact of the first m recursively ordered shocks since it is entirely determined by

102



the whitening constraint. For simplicity, consider the four dimensional example with m = 2
u1

u2

u3

u4

 =


b11 0 0 0

b21 b22 0 0

b31 b32 b33 b34

b41 b42 b43 b44




ε1

ε2

ε3

ε4

 (3.36)

which can be written as u1

u2

 =

b11 0

b21 b22

ε1

ε2

 (3.37)

u3

u4

 =

b31 b32

b41 b42

ε1

ε2

+

ν3

ν4

 (3.38)

ν3

ν4

 =

b33 b34

b43 b44

ε3

ε4

 . (3.39)

In a whitened SVAR, the unmixed innovations have to satisfy the condition 1
T

∑T
t=1 et(B)e′t(B) =

I. In particular, the matrix B has to satisfy

1

T

T∑
t=1

e1,t(B)e1,t(B) = 1 (3.40)

1

T

T∑
t=1

e2,t(B)e2,t(B) = 1 (3.41)

1

T

T∑
t=1

e1,t(B)e2,t(B) = 0. (3.42)

However, Equation (3.37) is a recursive SVAR which is uniquely determined by the variance and

covariance conditions (3.40)-(3.42). Therefore, in a whitened SVAR the parameters b11, b21, and

b22 and hence the first m estimated structural shocks, here ê1 and ê2, are uniquely determined

by second moments. Note that this solution is equal to the solution obtained by applying the

Cholesky decomposition to the variance covariance matrix of the reduced form shocks. Moreover,
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the whitening constraint implies

1

T

T∑
t=1

ê1,tv3,t(B) = 0 (3.43)

1

T

T∑
t=1

ê2,tv3,t(B) = 0 (3.44)

1

T

T∑
t=1

ê1,tv4,t(B) = 0 (3.45)

1

T

T∑
t=1

ê2,tv4,t(B) = 0. (3.46)

Replacing ε1 and ε2 with ê1 and ê2 in Equation (3.38) and exploiting the four conditions (3.43)-

(3.46) implies that the parameters b31, b32, b41, and b42 are again uniquely determined by second

moments. Therefore, the estimated impact of the first m recursively ordered shocks is uniquely

determined by second-order moment conditions derived from the whitening constraint.

3.6.2 Appendix - Finite sample performance

Table 3.4 and Table 3.5 report the results of the simulation in Section 3.3.2 using the white

fast SVAR GMM estimator proposed by Keweloh (2021b) and the PML estimator proposed by

Gouriéroux et al. (2017) to estimate the non-recursive block. Table 3.6 and 3.7 report the results

of a simulation analogous to the simulation in Section 3.3.2 using t-distributed structural shocks

with seven degrees of freedom.
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Table 3.4: Finite sample performance - Partly recursive SVAR (GMM white fast).

T n = 2 n = 4 n = 4

GMMWF GMMWF partly recursive GMMWF

100

9.77
(2.38)

4.83
(4.76)

4.91
(4.71)

9.69
(2.52)





9.15
(2.67)

−0.05
(4.44)

0.13
(4.82)

0.02
(5.07)

4.64
(5.1)

9.13
(3.66)

0.04
(5.94)

0.01
(6.13)

4.49
(7.73)

4.6
(7.76)

9.21
(5.88)

4.51
(8.05)

4.56
(8.04)

4.59
(7.73)

4.67
(7.71)

9.11
(6.34)





9.94
(1.14)

. . .

4.98
(1.34)

9.88
(1.02)

. .

4.98
(1.79)

4.95
(1.46)

9.59
(2.62)

4.75
(5.24)

4.99
(1.79)

4.96
(1.49)

4.84
(5.1)

9.56
(2.77)



250

9.86
(1.13)

4.96
(2.28)

4.92
(2.32)

9.88
(0.98)





9.62
(0.85)

−0.01
(2.31)

−0.02
(2.33)

−0.03
(2.18)

4.8
(2.57)

9.63
(1.43)

0.04
(2.82)

−0.04
(2.83)

4.86
(3.61)

4.76
(3.53)

9.68
(2.64)

4.75
(3.62)

4.87
(3.52)

4.8
(3.39)

4.89
(3.73)

9.59
(2.56)





9.98
(0.4)

. . .

4.99
(0.52)

9.97
(0.43)

. .

4.99
(0.73)

4.97
(0.61)

9.88
(1.02)

4.91
(2.07)

5.0
(0.71)

4.97
(0.62)

4.97
(2.13)

9.84
(0.98)



500

9.94
(0.44)

4.96
(0.94)

4.97
(0.91)

9.93
(0.44)





9.85
(0.3)

0.02
(0.92)

−0.01
(0.93)

−0.02
(0.93)

4.92
(1.01)

9.83
(0.49)

0.03
(1.19)

−0.0
(1.18)

4.95
(1.45)

4.89
(1.54)

9.86
(0.91)

4.89
(1.58)

4.95
(1.45)

4.91
(1.53)

4.94
(1.5)

9.82
(1.05)





9.99
(0.22)

. . .

5.0
(0.25)

9.96
(0.22)

. .

5.0
(0.35)

4.99
(0.3)

9.93
(0.43)

4.96
(0.94)

5.0
(0.36)

4.99
(0.3)

4.96
(0.91)

9.92
(0.46)



1000

9.99
(0.19)

5.0
(0.4)

4.99
(0.39)

9.98
(0.2)





9.93
(0.13)

0.02
(0.42)

−0.02
(0.41)

−0.0
(0.42)

4.95
(0.46)

9.94
(0.21)

0.01
(0.5)

−0.01
(0.52)

4.99
(0.64)

4.97
(0.65)

9.94
(0.41)

4.95
(0.69)

4.97
(0.64)

4.99
(0.65)

4.99
(0.67)

9.94
(0.45)





9.99
(0.11)

. . .

5.0
(0.12)

9.99
(0.11)

. .

5.01
(0.18)

5.0
(0.16)

9.97
(0.2)

4.98
(0.41)

5.0
(0.18)

5.0
(0.16)

5.0
(0.4)

9.98
(0.21)



5000

10.0
(0.04)

4.99
(0.07)

5.0
(0.07)

9.99
(0.04)





9.99
(0.02)

0.0
(0.06)

−0.01
(0.06)

−0.0
(0.06)

4.99
(0.07)

9.99
(0.04)

−0.01
(0.08)

0.0
(0.08)

5.0
(0.1)

5.01
(0.1)

9.98
(0.07)

4.99
(0.11)

5.0
(0.1)

5.0
(0.11)

4.99
(0.1)

9.99
(0.07)





10.0
(0.02)

. . .

5.0
(0.02)

10.0
(0.02)

. .

5.0
(0.04)

5.0
(0.03)

10.0
(0.04)

5.0
(0.07)

5.0
(0.04)

5.0
(0.03)

5.0
(0.07)

10.0
(0.04)


Monte Carlo simulation with M = 2000 replications. The table shows the average, 1/M

∑M
m=1 b̂

m
ij , and the

estimated mean squared error, 1/M
∑M
m=1

(
b̂mij − bij

)2
, of each estimated element b̂mij of bij denoting the element

of B in row i and column j. The table reports results for the white fast SVAR GMM estimator proposed by
Keweloh (2021b). The partly recursive white fast SVAR GMM estimator for n = 4 uses the zero restrictions
highlighted by the dots.
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Table 3.5: Finite sample performance - Partly recursive SVAR (PML).

T n = 2 n = 4 n = 4

PML PML partly recursive PML

100

9.76
(4.37)

4.22
(9.13)

5.26
(6.1)

9.16
(8.13)





9.32
(2.59)

−0.04
(3.61)

0.08
(3.66)

0.02
(3.83)

4.72
(4.13)

9.25
(3.62)

0.08
(4.86)

−0.06
(4.96)

4.61
(6.18)

4.64
(6.44)

9.48
(4.63)

3.79
(12.55)

4.63
(6.5)

4.68
(6.54)

5.27
(6.97)

8.65
(11.51)





9.94
(1.14)

. . .

4.98
(1.34)

9.88
(1.02)

. .

4.98
(1.79)

4.95
(1.46)

9.67
(3.36)

4.06
(9.84)

4.99
(1.79)

4.96
(1.49)

5.3
(5.78)

9.02
(8.21)



250

9.78
(3.29)

4.81
(3.23)

4.94
(2.98)

9.7
(3.6)





9.79
(0.52)

−0.0
(1.18)

0.0
(1.33)

−0.01
(1.18)

4.9
(1.32)

9.8
(0.84)

0.01
(1.52)

−0.05
(1.65)

4.91
(2.07)

4.9
(1.89)

9.84
(1.47)

4.77
(2.74)

4.92
(1.99)

4.93
(1.96)

4.99
(2.16)

9.69
(2.12)





9.98
(0.4)

. . .

4.99
(0.52)

9.97
(0.43)

. .

4.99
(0.73)

4.97
(0.61)

9.85
(2.1)

4.86
(2.14)

5.0
(0.71)

4.97
(0.62)

4.97
(2.42)

9.77
(1.88)



500

9.87
(1.91)

4.94
(0.88)

4.92
(1.62)

9.88
(1.22)





9.92
(0.23)

−0.01
(0.47)

−0.0
(0.5)

0.0
(0.49)

4.97
(0.54)

9.89
(0.34)

−0.0
(0.66)

0.01
(0.67)

4.98
(0.78)

4.94
(0.83)

9.9
(0.67)

4.96
(0.82)

4.97
(0.77)

4.94
(0.84)

4.94
(0.86)

9.91
(0.6)





9.99
(0.22)

. . .

5.0
(0.25)

9.96
(0.22)

. .

5.0
(0.35)

4.99
(0.3)

9.84
(2.01)

4.99
(0.67)

5.0
(0.36)

4.99
(0.3)

4.87
(2.09)

9.9
(0.55)



1000

9.98
(0.42)

5.0
(0.26)

4.99
(0.49)

9.98
(0.19)





9.95
(0.12)

0.01
(0.24)

−0.01
(0.24)

−0.0
(0.24)

4.98
(0.27)

9.96
(0.17)

0.0
(0.31)

−0.01
(0.3)

5.0
(0.39)

4.98
(0.38)

9.95
(0.4)

4.98
(0.4)

4.99
(0.39)

4.99
(0.37)

4.98
(0.5)

9.97
(0.3)





9.99
(0.11)

. . .

5.0
(0.12)

9.99
(0.11)

. .

5.01
(0.18)

5.0
(0.16)

9.95
(0.62)

4.99
(0.34)

5.0
(0.18)

5.0
(0.16)

4.98
(0.55)

9.97
(0.41)



5000

10.0
(0.03)

4.99
(0.05)

5.0
(0.05)

9.99
(0.03)





9.99
(0.02)

0.0
(0.04)

−0.0
(0.04)

−0.0
(0.04)

5.0
(0.05)

9.99
(0.03)

−0.01
(0.06)

0.0
(0.06)

5.0
(0.07)

5.0
(0.07)

9.99
(0.05)

4.99
(0.07)

5.0
(0.07)

5.0
(0.08)

5.0
(0.07)

9.99
(0.05)





10.0
(0.02)

. . .

5.0
(0.02)

10.0
(0.02)

. .

5.0
(0.04)

5.0
(0.03)

10.0
(0.03)

4.99
(0.05)

5.0
(0.04)

5.0
(0.03)

5.01
(0.05)

9.99
(0.03)


Monte Carlo simulation with M = 2000 replications. The table shows the average, 1/M

∑M
m=1 b̂

m
ij , and the

estimated mean squared error, 1/M
∑M
m=1

(
b̂mij − bij

)2
, of each estimated element b̂mij of bij denoting the element

of B in row i and column j. The table reports results for the PML estimator proposed by Gouriéroux et al. (2017)
using a t-distribution with seven degrees of freedom. The partly recursive PML estimator for n = 4 uses the zero
restrictions highlighted by the dots.
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Table 3.6: Finite sample performance - Partly recursive SVAR (t-distribution).

T n = 2 n = 4 n = 4

GMM GMM partly recursive GMM

100

 9.6
(3.65)

4.46
(9.64)

5.01
(8.74)

9.35
(4.37)





8.88
(3.43)

−0.04
(6.3)

−0.09
(6.58)

−0.12
(6.47)

4.5
(7.05)

8.82
(5.24)

−0.02
(8.15)

−0.03
(7.77)

4.56
(10.12)

4.34
(10.61)

8.88
(8.34)

4.1
(12.5)

4.6
(10.18)

4.39
(10.65)

4.64
(10.83)

8.63
(9.67)





9.97
(0.98)

. . .

4.98
(1.33)

9.89
(0.95)

. .

4.89
(1.8)

4.93
(1.48)

9.64
(3.24)

4.19
(9.99)

4.9
(1.78)

4.97
(1.45)

5.22
(8.33)

9.15
(4.96)



250

9.77
(1.62)

4.85
(4.27)

4.9
(4.03)

9.74
(1.78)





9.37
(1.38)

0.03
(3.51)

−0.0
(3.66)

−0.02
(3.88)

4.69
(3.96)

9.44
(2.12)

0.01
(4.06)

−0.04
(4.6)

4.72
(5.95)

4.69
(5.29)

9.45
(3.67)

4.5
(6.66)

4.74
(5.89)

4.7
(5.68)

4.82
(5.76)

9.23
(4.86)





9.97
(0.4)

. . .

4.98
(0.5)

9.99
(0.38)

. .

4.97
(0.7)

4.96
(0.59)

9.8
(1.44)

4.72
(4.41)

5.0
(0.7)

4.96
(0.59)

4.98
(3.93)

9.65
(1.91)



500

9.93
(0.63)

4.84
(2.09)

5.04
(1.82)

9.84
(0.9)





9.7
(0.55)

−0.01
(1.88)

0.02
(1.84)

0.02
(2.0)

4.87
(1.96)

9.67
(1.05)

0.04
(2.38)

−0.02
(2.38)

4.85
(2.75)

4.84
(2.99)

9.75
(1.68)

4.76
(3.36)

4.85
(2.93)

4.86
(2.99)

4.95
(2.72)

9.63
(2.4)





10.01
(0.2)

. . .

5.01
(0.24)

9.97
(0.2)

. .

5.01
(0.37)

4.98
(0.31)

9.91
(0.62)

4.9
(1.78)

5.01
(0.36)

4.99
(0.31)

4.99
(1.67)

9.86
(0.75)



1000

9.97
(0.29)

4.98
(0.78)

4.99
(0.77)

9.96
(0.32)





9.88
(0.14)

0.02
(0.78)

−0.0
(0.85)

−0.01
(0.76)

4.93
(0.83)

9.87
(0.35)

0.04
(1.02)

−0.03
(1.01)

4.95
(1.23)

4.91
(1.32)

9.88
(0.75)

4.91
(1.4)

4.95
(1.17)

4.93
(1.25)

4.96
(1.28)

9.84
(0.91)





10.0
(0.1)

. . .

5.01
(0.13)

9.98
(0.1)

. .

5.01
(0.18)

5.0
(0.15)

9.94
(0.28)

4.96
(0.88)

5.01
(0.18)

4.99
(0.15)

4.97
(0.79)

9.94
(0.37)



5000

10.0
(0.06)

4.99
(0.15)

5.0
(0.15)

9.99
(0.06)





9.98
(0.02)

0.0
(0.14)

−0.02
(0.15)

0.0
(0.16)

4.98
(0.15)

9.98
(0.06)

−0.01
(0.2)

0.0
(0.18)

5.0
(0.23)

5.0
(0.24)

9.96
(0.13)

5.0
(0.22)

4.99
(0.24)

4.99
(0.23)

4.97
(0.21)

9.98
(0.13)





10.01
(0.02)

. . .

5.0
(0.03)

10.0
(0.02)

. .

5.0
(0.03)

5.0
(0.03)

9.99
(0.05)

5.0
(0.14)

5.0
(0.03)

5.0
(0.03)

4.99
(0.13)

9.99
(0.05)


Monte Carlo simulation with M = 2000 replications. The structural shocks are drawn from a t-distribution with
seven degrees of freedom and normalized to unit variance by multiplying each shock with 1/

√
7/(7− 2). The

table shows the average, 1/M
∑M
m=1 b̂

m
ij , and the estimated mean squared error, 1/M

∑M
m=1

(
b̂mij − bij

)2
, of each

estimated element b̂mij of bij denoting the element of B in row i and column j. The table reports results for the
SVAR GMM estimator without restrictions for n = 2 and n = 4, and the partly recursive SVAR GMM estimator
for n = 4, which uses zero restrictions highlighted by the dots.
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Table 3.7: Finite sample performance - Hypothesis tests in the partly recursive SVAR (t-

distribution).

n = 2 n = 4 n = 4

CUE CUE partly recursive CUE

J − Test T = 100 3.4 1.0 2.15

T = 250 2.75 0.3 2.4

T = 500 3.7 1.9 4.1

T = 1000 6.35 5.8 6.15

T = 5000 8.1 8.5 7.6

Wald H0 : b = 0 T = 100 59.7 49.2 57.0

T = 250 85.3 72.7 84.0

T = 500 97.0 92.0 97.5

T = 1000 99.6 99.3 99.8

T = 5000 100 100 100

Wald H0 : b = 5 T = 100 18.8 17.1 19.4

T = 250 14.7 17.45 14.9

T = 500 12.3 15.1 12.2

T = 1000 11.9 14.1 11.4

T = 5000 10.8 9.7 9.2

Monte Carlo simulation with M = 2000 replications. The structural shocks are drawn from a t-distribution with
seven degrees of freedom. The shocks are normalized to unit variance by multiplying each shock with 1/

√
7/(7− 2).

The table shows the average the rejection rates at α = 10% for the J-Test, a Wald test with H0 : b = 0 , and
Wald test with H0 : b = 5, where b is equal to the element b12 for n = 2 and b34 for n = 4. The table reports
results for the SVAR GMM estimator without restrictions for n = 2 and n = 4, and the partly recursive SVAR
GMM estimator for n = 4. We use the assumption of serially and mutually independent shocks to estimate the
asymptotic variance required for the Wald tests as proposed in Keweloh (2021a).

3.6.3 Appendix - Application

This section contains supplementary material and robustness checks for the application presented

in Section 3.4. The estimated interaction of the stock market and monetary policy is found to

be robust to all applied robustness checks.

Table 3.8 shows descriptive statistics of the variables used in the SVAR.
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Table 3.8: Monetary policy and the stock market - Descriptive statistics.

Mean Median Std. deviation Variance Skewness Kurtosis

y 0.71 0.74 0.61 0.37 −0.83 6.46

I 1.1 0.95 3.15 9.90 −0.28 5.30

π 2.25 2.07 0.85 0.72 0.34 2.71

s 1.78 2.14 6.39 40.8 −0.73 4.99

i 3.69 4.02 3.43 11.76 −0.03 2.07

To check on our previous results, we estimate the SVAR without restrictions. In particular, we use

the unrestricted SVAR GMM estimator proposed in Keweloh (2021a) using all coskewness and

cokurtosis conditions. We update the weighting matrix continuously and use the assumption of

serially and mutually independent shocks to estimate the asymptotically optimal weighting matrix

and the asymptotic variance as proposed in Keweloh (2021a). Table 3.9 shows the correlation

between the estimated structural shocks from the non-recursive SVAR and the reduced form

shocks.

Table 3.9: Monetary policy and the stock market - Correlation of reduced form and estimated

structural shocks (unrestricted SVAR).

uy uI uπ us ui

εy 0.58 0.33 0.62 −0.29 0.08

εI 0.29 0.66 −0.26 −0.41 0.13

επ −0.5 0.06 0.73 −0.06 0.13

εsm 0.57 0.66 0.04 0.79 0.44

εmp −0.09 −0.19 −0.06 −0.4 0.85

Based on the correlation with the reduced form shocks we label the fourth shock as the stock

market shock and the fifth shock as the monetary policy shock. Table 3.10 shows the skewness,

kurtosis and p-value of the Jarque-Bera test of all estimated structural shocks in the unrestricted

SVAR.
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Table 3.10: Monetary policy and the stock market - Skewness, Kurtosis and p-value of the

Jarque-Bera test of estimated structural shocks (unrestricted SVAR).

εy εI επ εsm εmp

Skewness −0.064 0.632 −0.186 −1.185 −0.14

Kurtosis 2.412 4.848 2.968 6.629 12.325

JB-Test 0.345 0 0.663 0 0

Figure 3.3 shows the impulse responses for stock market and monetary policy shocks estimated

by the unrestricted SVAR.

Figure 3.3: Monetary policy and the stock market - Impulse responses (unrestricted SVAR).

The figure shows the responses to one standard deviation shocks in the unrestricted SVAR. The columns y, I, and
s show the cumulative responses of investment growth, output growth, and stock returns. Confidence bands are
symmetrical 68% and 80% bootstrap bands with 2000 replications in the bootstrap algorithm.
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The results are similar to the ones obtained using the partly recursive structure. Stock market

shocks have an immediate positive effect on the FFR, while a monetary policy shock has an

immediate and permanent negative effect on real stock prices. However, the confidence bands

are larger compared to the partly recursive estimation in the main text. The results illustrate

how combining a data-driven approach with zero restrictions on the short-run interaction allows

to decrease the variance of the estimator and to gain deeper insights into the interrelationship

between monetary policy and the stock market.

The last two columns of the estimated B matrix corresponding to the stock market and monetary

policy shock read (asymptotic variance, Wald test statistic with H0 : Bij = 0 and p-value for the

elements in parentheses)

B̂columns 4/5 =



0.26 −0.01

(0.56/17.43/0.0) (0.42/0.01/0.92)

1.55 −0.37

(12.09/27.84/0.0) (10.21/1.87/0.17)

0.01 0.0

(0.14/0.07/0.79) (0.1/0.03/0.87)

4.36 −2.11

(48.94/54.71/0.0) (59.38/10.61/0.0)

0.17 0.31

(0.17/24.57/0.0) (0.33/41.67/0.0)



. (3.47)

The unrestricted estimation confirms our finding on the interaction of monetary policy and the

stock market: A tightening of monetary policy induces a recession with a decrease in output,

investment, inflation and stock prices, and a positive stock market shock is accompanied by

an immediate increase in interest rates. Additionally, we again find evidence that no recursive

ordering of both variables is viable. Turning to the validity of the partly recursiveness assumption

used in Section 3.4, we find mixed results. In particular, we perform a joint Wald test with the

null hypothesis that the stock market and monetary policy shock have no simultaneous impact

on output growth, investment growth and inflation. The Wald statistic of this test is 27.063

with a p-value < 0.01 and, therefore, we would reject the hypothesis of the partly recursive order

111



used in Section 3.4 at any conventional significance level. However, Keweloh (2021a) shows that

in larger SVARs the Wald tests reject the null hypothesis too often, especially when multiple

hypotheses are tested jointly. Based on the element wise Wald tests shown above, we reject

the null hypothesis that stock market shocks have no simultaneous impact on investment and

output at the 1% level. However, the Wald test statistics are distorted and tend to reject the null

hypothesis too often, see Section 3.3.2. We conclude that due to biased and volatile estimates

and distorted test statistics in larger unrestricted SVAR models, it is difficult to judge whether

the partly recursive structure is correct.

We now check if our results are dependent on our estimation technique for the non-recursive

block. Therefore, we employ the PML estimator proposed by Gouriéroux et al. (2017) using the

assumption of t-distributed shocks with seven degrees of freedom to estimate the non-recursive

block. Figure 3.4 shows the results.
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Figure 3.4: Monetary policy and the stock market - Impulse responses (PML estimator).

The figure shows the responses to one standard deviation shocks in the partly recursive SVAR using the PML
estimator proposed by Gouriéroux et al. (2017) assuming t-distributed shocks with seven degrees of freedom to
estimate the non-recursive block. The columns y, I, and s show the cumulative responses of investment growth,
output growth, and stock returns. Confidence bands are symmetrical 68% and 80% bootstrap bands with 2000
replications in the bootstrap algorithm.

Additionally, we use the whitened fast SVAR GMM estimator proposed in Keweloh (2021a) to

estimate the non-recursive block. Figure 3.5 shows the results.
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Figure 3.5: Monetary policy and the stock market - Impulse responses (whitened fast SVAR

GMM estimator).

The figure shows the responses to one standard deviation shocks in the partly recursive SVAR using the whitened
fast SVAR GMM estimator proposed by Keweloh (2021b) to estimate the non-recursive block. The columns y, I,
and s show the cumulative responses of investment growth, output growth, and stock returns. Confidence bands
are symmetrical 68% and 80% bootstrap bands with 2000 replications in the bootstrap algorithm.

The change of the estimation technique does not change our results from Section 3.4: The interest

rate increases in response to a stock market shock and stock prices immediately decrease after a

monetary policy shock and stay permanently below the level without the shock.

Regarding our specification, we first check on the relevance of the time trend included in our

specification. We included a linear time trend to account for a potential drift in the nominal

interest rate as noted by Carvalho et al. (2016). Here we exclude the linear time trend from the

estimation procedure and assume that the nominal interest rate is stationary like in standard
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economic theory. Figure 3.6 shows the impulse responses of the stock price and FFR to a stock

market and monetary policy shock under the specification without a linear time trend.

Figure 3.6: Monetary policy and the stock market - Impulse responses (no trend).

The figure shows the responses to one standard deviation shocks in the partly recursive SVAR without a trend.
The columns y, I, and s show the cumulative responses of investment growth, output growth, and stock returns.
Confidence bands are symmetrical 68% and 80% bootstrap bands with 500 replications in the bootstrap algorithm.

The estimated interaction of monetary policy and the stock market is similar to the results

presented in Section 3.4. However, the confidence band of the stock price response to a monetary

policy shock is broader and the response becomes insignificant in the long run. Furthermore,

the response of output growth, investment growth, and the inflation rate to monetary policy

shocks is not significant. Therefore, excluding the time trend has an impact on the estimated

response of the macroeconomic variables to the monetary policy shock. We now additionally

exclude observation from 2007Q4 onward and obtain a similar observation period as Bjørnland
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and Leitemo (2009) and Kontonikas and Zekaite (2018). Figure 3.7 shows the resulting IRFs.

Figure 3.7: Monetary policy and the stock market - Impulse responses (no trend and 1983Q1 to

2007Q4).

The figure shows the responses to one standard deviation shocks in the partly recursive SVAR without a trend
and with data from 1983Q1 to 2007Q4. The columns y, I, and s show the cumulative responses of investment
growth, output growth, and stock returns. Confidence bands are symmetrical 68% and 80% bootstrap bands with
500 replications in the bootstrap algorithm.

Again, the simultaneous interaction of monetary policy and the stock market is not affected and

remains similar to the estimated interaction in Section 3.4. We also find the expected negative

response of output, investment, and inflation to a tightening of monetary policy. Additionally,

the assumption of long-run neutrality of monetary policy with respect to real stock prices cannot

be rejected in the shorter sample. However, we again find large confidence bands. Long-run

neutrality is part of the confidence band, but only one of several outcomes. Considering that
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including the time trend and the data from 2007Q4 onward results in more precise and conclusive

results we opt to keep them in the specification of the main body of the paper.

We also consider the exclusion of investment growth. We introduced investment due to the model

in Section 3.2, but of course investment does not have to be the driver behind endogenous growth.

Figure 3.8 shows the resulting IRFs.

Figure 3.8: Monetary policy and the stock market - Impulse responses (without investments).

The figure shows the responses to one standard deviation shocks in the partly recursive SVAR without investments.
The columns y and s show the cumulative responses of investment growth, output growth, and stock returns.
Confidence bands are symmetrical 68% and 80% bootstrap bands with 500 replications in the bootstrap algorithm.

As it turns out, our results from the main body of the paper remain unchanged.

Additionally, we include commodity price inflation (named com), defined as the logarithmic

difference in the producer price index (also taken from the FRED). For instance, Bjørnland and
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Leitemo (2009) argue that the inclusion of commodity price inflation helps to reduce the price

puzzle and thus should be included into the SVAR specification. We assume that commodity

price inflation can not react to stock market and monetary policy shocks. Figure 3.9 shows the

resulting IRFs.

Figure 3.9: Monetary policy and the stock market - Impulse responses (controlled for commodity

price inflation).

The figure shows the responses to one standard deviation shocks in the partly recursive SVAR controlled for
commodity price inflation. The columns y and s show the cumulative responses of investment growth, output
growth, and stock returns. Confidence bands are symmetrical 68% and 80% bootstrap bands with 500 replications
in the bootstrap algorithm.

The inclusion of commodity price inflation has no impact on the estimated interaction of monetary

policy and stock markets compared to Section 3.4.

Moreover, we use a lag length of two lags as suggested by the AIC. In Section 3.4 we use a higher
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lag order to allow for more dynamics. Figure 3.10 shows the resulting IRFs with two lags.

Figure 3.10: Monetary policy and the stock market - Impulse responses (two lags).

The figure shows the responses to one standard deviation shocks in the partly recursive SVAR with two lags.
The columns y, I, and s show the cumulative responses of investment growth, output growth, and stock returns.
Confidence bands are symmetrical 68% and 80% bootstrap bands with 500 replications in the bootstrap algorithm.

The results are robust to the change in the lag order.

Finally, we assume that real stock returns immediately incorporate all information and are not

affected by lagged variables. Table 3.11 shows the results of the OLS regression of stock prices

on four lags of all variables considered in the reduced form VAR.

119



Table 3.11: Monetary policy and the stock market - Reduced form estimation of real stock

returns.

Dep. Variable: st No. Observations: 141

F-statistic: 1.210 Prob (F-statistic): 0.255

R-squared: 0.176 Adj. R-squared: 0.031

coef. std.err. t-value p-value

yt−1 4.0194 1.601 2.510 0.013

It−1 -0.3623 0.311 -1.164 0.247

πt−1 -2.6205 2.583 -1.014 0.312

st−1 0.1299 0.094 1.377 0.171

it−1 -1.0525 1.508 -0.698 0.487

yt−2 1.0216 1.695 0.603 0.548

It−2 -0.1637 0.301 -0.543 0.588

πt−2 2.5525 3.992 0.639 0.524

st−2 -0.0264 0.094 -0.282 0.778

it−2 3.4615 2.484 1.394 0.166

yt−3 -2.1150 1.689 -1.252 0.213

It−3 -0.1494 0.299 -0.500 0.618

πt−3 0.4863 4.014 0.121 0.904

st−3 0.0800 0.096 0.837 0.404

it−3 -2.0406 2.453 -0.832 0.407

yt−4 -0.5387 1.814 -0.297 0.767

It−4 0.1995 0.300 0.665 0.507

πt−4 -1.2912 2.538 -0.509 0.612

st−4 -0.0105 0.093 -0.112 0.911

it−4 -0.6746 1.460 -0.462 0.645

As it can be seen, all but one of the lag coefficients are insignificant at standard significance levels.

The joint F-test of the lagged observations of all considered variables being not able to explain

anything about current real stock prices has an F-value of 1.21, which corresponds to a p-value of
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0.255. Therefore, we cannot reject the null hypothesis that real stock returns are not affected by

lagged variables. If this is true, stock prices will incorporate the effects of the shocks immediately

and will not adjust dynamically over time. We proceed by excluding all lagged variables from

the reduced form estimation of real stock prices and re-estimate the SVAR. Figure 3.11 shows

the resulting impulse responses for a stock market and monetary policy shock.

Figure 3.11: Monetary policy and the stock market - Impulse responses (zero lags for real stock

returns).

The figure shows the responses to one standard deviation shocks in the partly recursive SVAR with zero lags for
real stock returns. The columns y, I, and s show the cumulative responses of investment growth, output growth,
and stock returns. Confidence bands are symmetrical 68% and 80% bootstrap bands with 500 replications in the
bootstrap algorithm.

Again, our main results presented in Section 3.4 are robust to the changes in the lag order.
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4 Block-Recursive Non-Gaussian Structural Vector Au-

toregressions: Identification, Efficiency, and Moment Se-

lection19

4.1 Introduction

Identification of a structural vector autoregression (SVAR) requires to assume an a priori structure

of the model. Traditionally, identification is based on imposing structure on the interaction

of the variables, ideally derived from macroeconomic theory (e.g., short-run restrictions Sims

(1980) or long-run restrictions Blanchard and Quah (1993)). However, uncontroversial theoretical

restrictions are rare. More recently, data-driven approaches allow to identify the SVAR without

imposing any restrictions on the interaction. Instead, identification is achieved by imposing

structure on the stochastic properties of the shocks (e.g., time-varying volatility as discussed in

Rigobon (2003), Lanne et al. (2010), Lütkepohl and Netšunajev (2017), and Lewis (2021) or non-

Gaussian and independent shocks as discussed in Gouriéroux et al. (2017), Lanne et al. (2017),

Lanne and Luoto (2021), Keweloh (2021b), and Guay (2021)).

Traditional identification approaches may appear unnecessarily restrictive compared to novel

data-driven approaches. However, Olea et al. (2022) stress that these data-driven approaches rely

on information in higher moments, while traditional approaches only rely on second moments.

The data-driven approaches are sensitive to the imposed statistical properties on the higher

moments, while the traditional approaches are not and hence, are robust to these statistical

properties. Additionally, they argue that using economic theory for identification is a feature and

not a handicap and conclude that traditional identification approaches remain relevant.

We agree with their reasoning and recognize the advantages of identification approaches based

on economic theory. However, in many applications we can derive some, but not sufficiently

many convincing restrictions from economic theory to ensure identification. Therefore, with a

traditional purely restriction based approach, even the most plausible restrictions are worthless if

19joint work with Stephan Hetzenecker, a slightly different version of the chapter appeared as Keweloh, S.A. and
S. Hetzenecker (2021), Efficiency gains in structural vector autoregressions by selecting informative higher-order
moment conditions, SFB 823 Discussion Paper series No. 26/2021, http://dx.doi.org/10.17877/DE290R-22447
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there are not sufficiently many. We propose a Generalized Method of Moments (GMM) estimator

that combines the traditional identification approach based on restrictions with the more recent

data-driven approach based on non-Gaussianity. Our approach allows to impose a block-recursive

structure, meaning that shocks in a given block only influence variables in the same block or

blocks ordered below. The block-recursive structure seems plausible in many macroeconomic

applications. Examples include applications analyzing (i) the interaction of macroeconomic and

financial variables, where the former respond sluggishly while the latter respond quickly, or (ii)

the interaction of small and large open economies, where large economies may have an immediate

impact on small economics but not vice versa. Additionally, the block-recursive structure nests

two important special cases: a recursive and an unrestricted SVAR.

Identification based on higher moments and non-Gaussian shocks oftentimes relies on the assump-

tion of independent shocks which is criticized as too restrictive (see, e.g., Kilian and Lütkepohl

(2017, Chapter 14)). Importantly, our identification result does not rely on independent shocks

but is robust in the sense that it allows for various kinds of dependencies of the shocks. In par-

ticular, for a given block-recursive structure identification of the shocks within a given block is

based on a small (subset) of cokurtosis conditions derived from mean independence of the shocks

in the corresponding block.20 Therefore, identification within a block follows from Lanne and

Luoto (2021). Moreover, the impact of the shocks in one block on variables in another block is

identified based only on covariance conditions and not on higher-order moment conditions and

requires only uncorrelated shocks. Therefore, imposing a finer block-recursive structure reduces

the dependency of identification on higher-order moment conditions.

However, if the shocks are independent, using only the set of identifying conditions, which are

derived from mean independent shocks within blocks and uncorrelated shocks across blocks, can

be inefficient. To demonstrate this, we prove that in a recursive SVAR with independent shocks

the set of overidentifying higher-order moment conditions can contain additional information

20A common critique to the assumption of independent shocks is that it does not allow for multiple shocks
to be driven by the same volatility process. Thereby, it rules out a case which may be encountered for some
macroeconomic shocks. However, mean independent shocks and, in particular, the set of cokurtosis conditions
used for identification allow for these kinds of dependencies.
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and allows to decrease the asymptotic variance of the GMM estimator.21 Efficient estimation

requires to detect and select the valid and relevant overidentifying conditions. To this end, Lanne

and Luoto (2021) suggest to calculate the information and moment selection criteria proposed

by Andrews (1999) and Hall et al. (2007) for all possible combinations of moment conditions.

However, they note that this approach becomes infeasible in higher-dimensional SVARs.

In a general GMM setup, Cheng and Liao (2015) propose a LASSO-type GMM estimator, here-

after referred to as the penalized GMM estimator (pGMM), which consistently selects only rele-

vant and valid overidentifying conditions in a data-driven way. We apply the pGMM estimator to

the block-recursive SVAR to exploit potential efficiency gains from overidentifying moment con-

ditions. Our block-recursive SVAR pGMM estimator is consistent, asymptotically normal and

as efficient as the asymptotically efficient block-recursive SVAR GMM estimator, including all

valid and relevant overidentifying moment conditions. Importantly, these properties also hold if

there are invalid overidentifying moment condition which could arise due to dependent structural

shocks. Additionally, the SVAR pGMM estimator refrains from selecting valid but redundant

overidentifying conditions which would neither increase nor decrease the asymptotic variance of

the estimator but lead to imprecise estimates in small samples due to a many moments problem.

Guay (2021) also proposes to combine restrictions with non-Gaussian identification. In particular,

he tests which shocks of the SVAR are identified based on non-Gaussianity and subsequently, his

approach only uses restrictions to identify the remaining part of the SVAR. In this approach, if all

shocks are non-Gaussian, no restrictions have to be used and the SVAR can be estimated solely

by higher-order moment conditions. Consequently, the identification approach relies as heavily

on non-Gaussianity as possible and as little on restrictions as necessary. In contrast to that, our

identification approach relies as much as possible on economically justified restrictions and on

non-Gaussianity only when needed.22 To be precise, the more block-recursiveness restrictions the

21Note that this is not trivial. For example, in a linear regression model yt = β1xt+εt the GMM estimator with
the moment condition E[xtεt] = 0 is identified and efficient under (conditional) homoscedastic errors. Therefore,
including additional higher-order moment conditions like E[x2t εt] = 0 does not decrease the asymptotic variance
of the GMM estimator even if the shocks or variables are non-Gaussian.

22Keweloh and Seepe (2020) propose a similar approach to combine restrictions and data-driven estimation.
Their approach allows to identify and estimate a first block of shocks based on covariance conditions and re-
cursiveness assumptions and a second block of unrestricted shocks based on higher moments and independent
non-Gaussian shocks. They use a Monte Carlo simulation to show that imposing recursiveness restrictions leads
to a better performance of the estimator in terms of bias and variance. Note that their proposed partly-recursive
ordering is a special block recursive ordering and, thus, contained as a special case of the block recursive framework
proposed in this study.
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researcher imposes, the less identification depends on higher order-moment conditions.

We conduct two Monte Carlo experiments. In the first one, we demonstrate that the performance

of a purely data-driven estimator based on non-Gaussianity deteriorates substantially with both

a decreasing sample size and an increasing model size. However, exploiting the block-recursive

order can mitigate this performance decline. In the second Monte Carlo experiment, we illustrate

that the SVAR pGMM estimator successfully selects relevant moment conditions and increases

the finite sample performance compared to other block-recursive SVAR estimators for a given

block-recursive structure.

We use the block-recursive SVAR pGMM estimator to analyze the impact of oil supply and oil

demand shocks, including speculative oil supply and demand shocks, on the oil price. In his

seminal work, Kilian (2009) highlights that it is necessary to distinguish between oil supply and

demand shocks rather than including solely an oil price shock in the SVAR for the oil market.

However, oil prices are not only affected by supply and demand shocks, but also by speculative

shocks causing shifts in the expectations of forward-looking traders (see, e.g., Baumeister and

Kilian (2016)). In particular, new oil production technologies, anticipated wars, or news about

oil discoveries or about the (future) state of the economy can shift expectations of future oil

supply and future oil demand. The studies of Kilian and Murphy (2014), Juvenal and Petrella

(2015), Byrne et al. (2019), and Moussa and Thomas (2021) extend the original oil market SVAR

from Kilian (2009) to include speculative shocks. We contribute to this literature by explicitly

distinguishing between speculative supply and speculative demand shocks.

The remainder of the paper is organized as follows: Section 4.2 reviews the SVAR and different

identification schemes. Section 4.3 introduces the block-recursive SVAR. Section 4.4 derives

identifying and overidentifying moment conditions in a block-recursive SVAR, analyzes which of

the overidentifying conditions are redundant or relevant in a recursive SVAR, and describes the

block-recursive SVAR GMM and pGMM estimators. In Section 4.5, we present the Monte Carlo

experiments. In Section 4.6, we use the proposed block-recursive estimator to analyze the impact

of flow and speculative supply and demand shocks in the oil market. Section 4.7 concludes.
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4.2 Overview SVAR

This section briefly recalls the identification problem and common identification approaches for

SVAR models. A detailed overview can be found in Kilian and Lütkepohl (2017). Consider the

SVAR

yt = A1yt−1 + ...+Apyt−p +B0εt, (4.1)

with parameter matrices A1, ..., Ap ∈ Rn×n, an invertible matrix B0, an n-dimensional vector

of time series yt = [y1,t, ..., yn,t]
′ and an n-dimensional vector of i.i.d. structural shocks εt =

[ε1,t, ..., εn,t]
′ with mean zero and unit variance.

W.l.o.g. we focus on the simultaneous interaction of the SVAR given by

ut = B0εt, (4.2)

with the reduced form shocks ut = yt−A1yt−1− ...−Apyt−p, which can be estimated consistently

by OLS. The reduced form shocks are an unknown mixture B0 of the unknown structural shocks

εt. So far, neither the mixing matrix B0 nor the structural shocks εt are identified. To see this,

define the unmixed innovations e(B) as the innovations obtained by unmixing the reduced form

shocks with some matrix B

et(B) := B−1ut. (4.3)

Note that for B = B0, the unmixed innovations are equal to the structural shocks, i.e., et(B0) =

εt. Additionally, given an estimate B̂ of B0 we refer to et(B̂) as the estimated structural shocks.

The true structural shocks εt and the true mixing matrix B0 are unknown and without imposing

further structure, we cannot verify whether the mixing matrix B and the unmixed innovations

et(B) are equal to the true mixing matrix B0 and the true structural shocks εt.

To identify B0 and the shocks εt, the researcher has to impose structure on the SVAR. The

structure can be specified in two ways: We may

(i) impose more structure on the interaction of the shocks (see Sims (1980) for short-run re-
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strictions, Blanchard (1989) for long-run restrictions, and Uhlig (2005) for sign restrictions),

(ii) impose more structure on the stochastic properties of the structural shock (see Lanne et al.

(2010) for time-varying volatility or Gouriéroux et al. (2017), Lanne et al. (2017), Lanne

and Luoto (2021) Keweloh (2021b), and Guay (2021) for non-Gaussian shocks).

Imposing structure on the stochastic properties of the shocks can be used to derive conditions

for the unmixed innovations, while imposing structure on the interaction narrows the space of

possible mixing matrices used to unmix the reduced form shocks.

In applied work, the probably most frequently imposed structure are uncorrelated structural

shocks (meaning εi,t is restricted to be uncorrelated with εj,t for i 6= j) and a recursive interaction

(meaning restricting B0 such that bij = 0 for i < j where bij denotes the element at row i and

column j of B0). Uncorrelated shocks with unit variance can be used to derive (n + 1)n/2 (co-

)variance conditions from I = E [εtε
′
t]

!
= E [et(B)et(B)′]. A recursive interaction implies that

n(n − 1)/2 parameters of B0 are known a priori, leaving only (n + 1)n/2 unknown parameters

in the mixing matrix B. It is then straightforward to show that, if the remaining (n + 1)n/2

parameters of the restricted B matrix generate unmixed innovations et(B) which satisfy the

(n+ 1)n/2 (co-)variance conditions, the matrix B has to be equal to B0 and, hence, the unmixed

innovations are equal to the structural shocks, meaning the SVAR is identified.23

However, economic theory rarely allows to derive the required n(n− 1)/2 parameter restrictions

to ensure identification. More recently, identification methods based on non-Gaussian and in-

dependent shocks have been put forward in the literature (see Gouriéroux et al. (2017), Lanne

et al. (2017), Lanne and Luoto (2021), Keweloh (2021b), or Guay (2021)). These identification

schemes do not require to impose any restrictions on the impact of the shocks, in particular on

the matrix B0. Instead, the researcher has to impose structure on the stochastic properties of the

shocks. If the structural shocks are not only mutually uncorrelated but mutually independent, we

can derive additional moment conditions. For example, independent and mean zero shocks imply

that all entries of coskewness matrices E [εtε
′
tεi,t] for i = 1, . . . , n are zero except for the ith di-

agonal element, which contains the (unknown) skewness of the shock εi,t. Hence, we can exploit

that the mixing matrix B has to generate unmixed innovations, which satisfy the coskewness

23Note that this GMM approach is equivalent to the the frequently used estimator obtained by applying the
Cholesky decomposition to the variance-covariance matrix of the reduced form shocks.
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moment conditions derived from E [εtε
′
tεi,t]

!
= E [et(B)et(B)′ei,t(B)]. Similarly, we can use that

the mixing matrix B has to generate unmixed innovations which satisfy the cokurtosis moment

conditions derived from E [εtε
′
tεi,tεj,t]

!
= E [et(B)et(B)′ei,t(B)ej,t(B)].

4.3 Imposing structure in a SVAR

This section introduces the framework of the block-recursive SVAR. First, we discuss various

structures of the interaction of the shocks allowed in this framework and then, assumptions on

the stochastic properties of the shocks.

4.3.1 Imposing structure on the interaction of shocks

Traditionally, identification of a SVAR is based on the structure imposed on the interaction of the

shocks (see Section 4.2). These restriction based approaches require restrictions on the interaction

of the shocks to ensure identification, e.g., a recursive structure. The reasoning behind a recursive

structure is oftentimes the prejudice that some variables, e.g., some macroeconomic variables like

inflation, tend to move slowly, while other variables, e.g. financial variables like stock prices, react

faster. However, in practice this intuitive reasoning oftentimes allows to order only some, but

not all variables recursively. This motivates us to consider the block-recursive SVAR, meaning

that the structural shocks are ordered in blocks of consecutive shocks and each structural shock

can simultaneously affect all variables in the same block and in blocks ordered below but not

variables in blocks ordered above.24 Figure 4.1 shows different block-recursive structures in a

SVAR with four variables. The examples show that a block-recursive structure generalizes the

unrestricted SVAR and the fully-recursive SVAR and includes both as extreme cases.

We now introduce the notation for the block-recursive SVAR. Suppose that the structural shocks

can be ordered into m ≤ n blocks of consecutive shocks. Let the indices p1 = 1 < p2 < . . . <

pm ≤ n denote the beginning of a new block and for a given block pi let ε̃pi,t and ũpi,t denote

24Zha (1999) derives identifying restrictions for the block-recursive SVAR. The author restricts not only the
simultaneous interaction, but also the lagged interaction. Our proposed block-recursive structure affects only the
simultaneous interaction, while the lagged interaction remains unrestricted.
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Figure 4.1: Examples of different block-recursive SVAR models.

Note: The figure illustrate how the the block structure can be defined by the structural shocks and our definition
of ε̃pi and ũpi , i = 1, . . . ,m.

the vectors of all structural and reduced form shocks in the ith block, such that

ε̃pi,t :=
[
εpi,t, εpi+1,t, . . . , εpi+1−1,t

]′
and ũpi,t :=

[
upi,t, upi+1,t, . . . , upi+1−1,t

]′
, (4.4)

where pm+1 := n+ 1 for ease of notation. Moreover, let li denote the number of shocks in block

i for i = 1, ...,m. The vector of all structural shocks εt can then be decomposed into the m

blocks εt = [ε̃′p1,t, . . . , ε̃
′
pm,t]

′ and the reduced form shocks can be decomposed analogously into

ut = [ũ′p1,t, . . . , ũ
′
pm,t]

′. The SVAR is block-recursive with m ≤ n blocks with p1 = 1 < p2 <

. . . < pm ≤ n, if shocks in the ith block have no simultaneous impact on reduced form shocks in

blocks j with j < i such that for i = 1, . . . ,m

bql = 0, for l ≥ pi and q < pi. (4.5)

Any block-recursive structure can be described by the following assumption.

Assumption 4.1. (Block-recursive interaction.)

For m ≤ n blocks with p1 = 1 < p2 < . . . < pm ≤ n and q, l = 1, ..., n let
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B0 ∈ Bbrec ≡ Bbrec(p1, . . . , pm) := {B ∈ B| bql = 0 if ∃pi ∈ {p1, ..., pm} with l ≥ pi and q < pi}.

4.3.2 Imposing structure on the stochastic properties of shocks

Imposing structure according to Assumption 4.1 on the interaction is not sufficient to ensure

identification and further assumptions on the dependence and potential non-Gaussianity of the

shocks are required. In the following, we discuss different structures imposed on the mutual

dependencies of the shocks.

Almost all identification approaches at least assume uncorrelated structural shocks such that

E [εi,tεj,t] = E [εi,t]E [εj,t] for i 6= j.25 Uncorrelated shocks are justified by the idea that a

given structural shock contains no information on other structural shocks, e.g., a structural

monetary policy shock should not depend on other structural shocks. In general, imposing

uncorrelated structural shocks does not rule out that the structural shocks are dependent. If they

are dependent, the interpretation of the estimated SVAR via impulse response functions can be

misleading. For example, consider the two random variables ε1 ∼ N (0, 1) and ε2 = ε2
1 − 1 such

that both random variables are uncorrelated, but dependent. Policy analysis based on impulse

response functions typically uses the ceteris paribus assumption that only a single shock varies,

while the other shocks remain unchanged. In the example above, both shocks are uncorrelated,

but nevertheless always move simultaneously. Therefore, uncorrelated structural shocks are not

sufficient to guarantee that the ceteris paribus assumption holds.

A more rigorous implementation of the idea that a given shock contains no information on

other shocks is to assume independent shocks such that E [h(εi,t)g(εj,t)] = E [h(εi,t)]E [g(εj,t)]

for i 6= j and any bounded, measurable functions g(·) and h(·). If shocks are independent,

a structural shock cannot contain any information on any other structural shock. Therefore,

independent structural shocks justify the ceteris paribus interpretation used in policy analysis

based on impulse response functions. However, several authors argue that the assumption of

independent structural shocks is too strong (cf. Kilian and Lütkepohl (2017, Chapter 14), Lanne

and Luoto (2021), Lanne et al. (2021), or Olea et al. (2022)). In particular, independence of

the shocks implies that also the volatility processes of the shocks are independent, which may

25Proxy-variable identification approaches are different and instead assume that structural shocks are uncorre-
lated with an external proxy variable (see, e.g., Stock and Watson (2012), or Mertens and Ravn (2013)).
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be too restrictive for some macroeconomic applications. For example, suppose that ε̃1,t and ε̃2,t

are drawn independently of each other and represent unscaled structural shocks. Moreover, in

each period an additional volatility shock vt is drawn independently of the other shocks and

the structural shocks are given by ε1,t = ε̃1,tvt and ε2,t = ε̃2,tvt. These structural shocks are

uncorrelated, but dependent since the variance of one shock contains information on the variance

of the other shock.

A compromise between the two extreme cases of uncorrelated and independent shocks is the

assumption of mean independent shocks, such that E [εi,tg(εj,t)] = E [εi,t]E [g(εj,t)] for i 6= j

with a bounded, measurable function g(·). If shocks are mean independent, a structural shock

cannot contain any information about the mean of other structural shocks. Mean independent

shocks can justify the ceteris paribus assumption used in impulse response analysis and at the

same time allow for dependent volatility processes. In particular, the two shocks ε1,t = ε̃1,tvt and

ε2,t = ε̃2,tvt defined above are mean independent since a given shock contains no information on

the mean of the other shock.

Imposing structure on the dependence of the structural shocks allows to derive moment conditions

(see, e.g., Lanne and Luoto (2021), Keweloh (2021b), or Guay (2021)). For i, j, k, l = 1, ..., n we

define the following moment conditions:

Variance: E[e(B)2
i,t]− 1 = 0 (4.6)

Covariance: E[e(B)i,te(B)j,t] = 0, for i < j (4.7)

Coskewness: E[e(B)2
i,te(B)j,t] = 0, for i 6= j (4.8)

E[e(B)i,te(B)j,te(B)k,t] = 0, for i < j < k (4.9)

Cokurtosis: E[e(B)3
i,te(B)j,t] = 0, for i 6= j (4.10)

E[e(B)2
i,te(B)j,te(B)k,t] = 0, for i 6= j, i 6= k, j < k (4.11)

E[e(B)i,te(B)j,te(B)k,te(B)l,t] = 0, for i < j < k < l (4.12)

E[e(B)2
i,te(B)2

j,t]− 1 = 0, for i < j (4.13)

The variance conditions in Equation (4.6) follow from the unit variance normalization. The re-

maining conditions are derived from different assumptions on the dependence of the structural
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shocks. In particular, uncorrelated structural shocks only imply the covariance conditions in

Equation (4.7). Mean independent shocks additionally imply the coskewness conditions in Equa-

tion (4.8) and (4.9) and the cokurtosis conditions in Equation (4.10)-(4.12). In addition, the

symmetric cokurtosis conditions in Equation (4.13) follow from independent shocks.

Moreover, note that if all structural shocks are Gaussian, the conditions in Equation (4.8)-(4.13)

do not contain information beyond the information contained in the variance and covariance

conditions.

4.4 Estimation of a block-recursive SVAR

In this section, we combine identification based on block-recursiveness restrictions and non-

Gaussian shocks. First, for a given block-recursive structure we derive corresponding identifying

asymmetric cokurtosis conditions based on mean independent shocks within the blocks. Impor-

tantly, identification is achieved without many higher-order moment conditions and holds under

fairly general conditions on the dependencies of the shocks. Second, we show that additional

overidentifying higher-order moment conditions, some of these conditions additionally require

the assumption of independent shocks, can decrease the asymptotic variance of the estimator if

the overidentifying conditions are valid. Third, we propose to use a LASSO-type GMM estimator

to select the valid and relevant overidentifying higher-order moment conditions in a data-driven

way. Consistency of the estimator only relies on the identifying moment conditions and, thus,

is robust to various kinds of dependencies of the shocks. Furthermore, it can exploit efficiency

gains from valid and relevant overidentifying conditions and ignore noise from valid but redundant

overidentifying conditions.

4.4.1 Identification

In this section, we show that identification of a block-recursive SVAR can be achieved by the

variance and covariance conditions in Equation (4.6) and (4.7) and the asymmetric cokurtosis

conditions in Equation (4.10) corresponding to innovations in the same block. The identification

result is robust in the sense that it allows for various sorts of dependencies of the shocks. To be

clear, shocks in different blocks only need to be uncorrelated and shocks in the same block only
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need to fulfill the asymmetric cokurtosis conditions.

Let E[f2(B, ut)] = 0 contain all variance and covariance conditions in Equation (4.6) and (4.7)

and let E[f4pk
(B, ut)] = 0 contain all asymmetric cokurtosis conditions from Equation (4.10)

corresponding to shocks in block k, e.g., E[e(B)3
i,te(B)j,t] = 0 for i, j = pk, ..., pk+1−1 and i 6= j.

We define the identifying moment conditions as

E[fN(B, ut)] := E


f2(B, ut)

f4p1
(B, ut)
...

f4pm
(B, ut)

 = 0. (4.14)

In the following, we simplify the notation for moment conditions, e.g., we write E[fN(B, ut)]

instead of E[fN(B, ut)] = 0. Note that the identifying moment conditions do not con-

tain asymmetric cokurtosis conditions of shocks in different blocks, e.g., the moment condi-

tions E[e(B)3
i,te(B)j,t] for shocks e(B)i,t and e(B)j,t in different blocks are not contained in

E[fN(B, ut)]. The conditions E[fN(B, ut)] can be justified by the following assumption.

Assumption 4.2. (Block-recursive mean independence.)

For m ≤ n blocks with p1 = 1 < p2 < . . . < pm ≤ n,

(i) all shocks are uncorrelated, i.e., E [εi,tεj,t] = 0 for i 6= j.

(ii) all shocks within the same block are mean independent, i.e., E [εi,t|ε−i,t] = 0 for i ∈ {pk, pk+

1, ..., pk+1 − 1} and −i = {pk, pk + 1, ..., pk+1 − 1}\i for k = 1, . . . ,m.

The identifying moment conditions contain n variance conditions, n(n−1)/2 covariance conditions

and
∑m
k=1 lk(lk − 1)/2 asymmetric cokurtosis conditions, where lk := pk+1 − pk denotes the

number of shocks in block k. Therefore, each additional specified block refines the identifying

moment conditions E[fN(B, ut)] such that they contain fewer higher-order moment conditions.

In the extreme case when the SVAR is specified recursively, meaning each block contains only one

variable, the identifying moment conditions contain no higher-order moment conditions. In the

other extreme case of a single block containing all variables, the identifying moment conditions

contain all n(n− 1) asymmetric cokurtosis conditions and are similar to the conditions proposed
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in Lanne and Luoto (2021).26

The following proposition shows that the identifying moment conditions are sufficient to locally

identify the block-recursive SVAR.

Proposition 4.1. (Identification in the block-recursive SVAR.)

Let ut = B0εt with m ≤ n blocks and B0 ∈ Bbrec ≡ Bbrec(p1, . . . , pm) such that Assumption

4.1 holds. Moreover, suppose that Assumption 4.2 holds. If at most one structural shock in each

block has zero excess kurtosis, the identifying moment conditions E[fN(B, ut)] = 0 locally identify

B = B0 for B ∈ Bbrec.

Proof. The proof recursively applies the identification result from Lanne and Luoto (2021) and

can be found in Appendix 4.8.3.

In Proposition 4.1 the impact of shocks on variables in different blocks is identified based on

covariance conditions. The interaction of shocks on variables within the same block is identified

based on asymmetric cokurtosis conditions and the local identification result of Lanne and Luoto

(2021). Local identification means that the moment conditions E[fN(B, ut)] identify B0 in a

small neighborhood of B0 (see Hall (2005)). Importantly, the proposition also holds for differ-

ent higher-order moment conditions ensuring identification within the blocks. For example, the

identifying conditions E[fN(B, ut)] could contain all variance-covariance, coskewness and cokur-

tosis conditions implied by independent structural shocks for each block. In this case, global

identification up to sign and permutation within each block follows from Keweloh (2021b).

Without further restrictions, data-driven approaches relying on non-Gaussian and independent

shocks can only ensure identification up to sign and permutation. This means that the order

and sign of the shocks in the impulse response functions is not identified. In practice, the

26Lanne and Luoto (2021) propose to select n(n− 1)/2 asymmetric cokurtosis conditions, which is sufficient for
local identification if none of the asymmetric conditions does include the third power of a Gaussian shock. They
advocate to rely on a moment selection criterion to avoid including redundant conditions or conditions of Gaussian
shocks. Additionally, Lanne and Luoto (2021) note that including all n(n− 1) asymmetric cokurtosis conditions
ensures local identification even if conditions related to Gaussian shocks are included. We argue that the degree
of overidentification remains reasonably small even if we include all asymmetric cokurtosis conditions. Therefore,
including redundant conditions can be expected to be rather harmless. For example, in a SVAR with four variables
and no restrictions the identifying moment conditions consists of 22 conditions to identify 16 parameters. Thus,
we suggest to use all asymmetric cokurtosis conditions in order to avoid the cumbersome process of selecting a
subset of the conditions.
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researcher has to manually assign labels to the shocks. Restricting the solution to a given block-

recursive structure simplifies the permutation or labeling problem. In particular, shocks can only

be permuted inside blocks. For instance, in example (b) in Figure 4.1 shocks from the second

block cannot be permuted into the first block since this violates the block-recursive structure.

Therefore, specifying a finer block-recursive structure simplifies the labeling of the shocks.

Define the block-recursive SVAR GMM estimator which minimizes the variance, covariance and

the asymmetric cokurtosis conditions over the set of block-recursive matrices as

B̂N := arg min
B∈Bbrec

gN(B)′WNgN(B), (4.15)

with a suitable weighting matrixWN and gN(B) := 1/T
∑T
t=1 fN(B, ut). Consistency and asymp-

totic normality follow from the identification result in Proposition 4.1 and standard assumptions

including valid moment conditions implied by the dependence structure imposed in Assumption

4.2. That is,

B̂N
p→ B0 (4.16)

√
T
(

(vec
(
B̂N

)
− vec (B0)

)
d→ N (0, VN) , (4.17)

where the formula for the asymptotic variance, VN, is standard but lengthy and, therefore,

deferred to Appendix 4.8.1. Moreover, under standard assumptions the weighting matrix

W ∗N := S−1
N with SN := limT→∞E[gN(B)gN(B)′] leads to the estimator B̂∗N with lowest possible

asymptotic variance (see, e.g., Hall (2005)).

In many applications, the researcher is only interested in some structural shocks. For this case,

we derive a partial identification result under weaker assumptions.

Proposition 4.2. (Partial identification in the block-recursive SVAR.)

Let ut = B0εt with m ≤ n blocks and B0 ∈ Bbrec ≡ Bbrec(p1, . . . , pm) such that Assumption 4.1

holds. Moreover, let Bi,0 denote the columns of B0 representing impact of the structural shocks

in the ith block. Let B̃brec := Bbrec(p̃1, . . . , p̃m̃) denote a potentially different block-recursive

interaction. Assume that there exists a block p̃j of B̃brec which contains the shocks of block pi,

i.e., there exits a j, 1 ≤ j ≤ m̃, such that p̃j = pi and p̃j+1 = pi+1.
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The moment conditions E

 f2(B, ut)

f4p̃j
(B, ut)

 = 0 locally identify Bi,0 for B ∈ B̃brec if the following

conditions hold:

1. The shocks εt are uncorrelated.

2. The asymmetric cokurtosis conditions of block p̃j hold.

3. At most one shock in block p̃j has zero excess kurtosis.

Proof. The proof can be found in Appendix 4.8.3.

Proposition 4.2 reveals that we can identify a specific block of shocks by using only the second

moments of all shocks and the asymmetric cokurtosis conditions of the shocks in the block of

interest as long as the block of interest is specified correctly and contains at most one Gaussian

shock. To see the advantages of the partial identification result, consider that we are only

interested in the last two structural shocks in Figure 4.1 (b). In this example, Proposition

4.2 implies that the impact of the last two shocks is identified even if (i) the first and second

shock are both Gaussian, (ii) the first and second shock do not satisfy the asymmetric cokurtosis

conditions but are only uncorrelated, or (iii) the block-recursive structure is misspecified as the

one displayed in Figure 4.1 (c). Additionally, Proposition 4.2 implies that the moment conditions

used in Proposition 4.1 identify the shocks in a block of interest if the block of interest is specified

correctly, contains at most one Gaussian shock, and there exists a B such that the moment

conditions are fulfilled. However, the B matrix can differ from B0, except for the columns

corresponding to the block of interest.

4.4.2 Overidentification and efficiency gains

In the previous section, we proposed a block-recursive SVAR GMM estimator, which uses only

a (small) subset of asymmetric cokurtosis conditions, and provide an identification result which

does not require independent shocks. However, the excluded set of coskewness and cokurtosis con-

ditions can decrease the asymptotic variance of the estimator and hence, increase the efficiency of

the estimator. In this section, we define the overidentified block-recursive SVAR GMM estimator
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which contains all coskewness and cokurtosis conditions implied by independent shocks. Addi-

tionally, we derive conditions for the redundancy and relevance of the overidentifying coskewness

and cokurtosis conditions in a recursive SVAR with independent structural shocks.

Assumption 4.3. (Independent shocks.)

All shocks are independent, i.e., εi,t is independent of εj,t for i 6= j.

For a given block-recursive SVAR, define the overidentifying moment conditions as

E[fD(B, ut)] = E

f3\N(B, ut)

f4\N(B, ut)

 , (4.18)

where E[f3\N(B, ut)] contains all coskewness conditions from Equation (4.8)-(4.9), and

E[f4\N(B, ut)] contains all cokurtosis conditions from Equation (4.10)-(4.13), implied by in-

dependent shocks and not included in the identifying moment conditions E[fN(B, ut)].

The overidentified block-recursive SVAR GMM estimator is defined as

B̂N+D := arg min
B∈Bbrec

gN(B)

gD(B)

′WN+D

gN(B)

gD(B)

 , (4.19)

with a suitable weighting matrix WN+D and gD(B) := 1/T
∑T
t=1 fD(B, ut). Note that the overi-

dentified block-recursive SVAR GMM estimator uses all coskewness and cokurtosis conditions

implied by independent shocks. That is, the moment conditions used for estimation are the same

as in the SVAR GMM estimator proposed by Keweloh (2021b). However, the latter estimator

neither uses restrictions nor distinguishes between identifying and overidentifying moment con-

ditions. In contrast to that, we allow for block-recursive restrictions. These restrictions allow to

transform identifying into overidentifying moment conditions.

Consistency and asymptotic normality of the overidentified block-recursive SVAR GMM estima-

tor in Equation (4.19) require that not only the identifying but also the overidentifying moment

conditions are valid, which holds if the shocks are independent as assumed in Assumption 4.3.
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That is,

B̂N+D
p→ B0 (4.20)

√
T
(

(vec
(
B̂N+D

)
− vec (B0)

)
d→ N (0, VN+D) , (4.21)

where the formula for the asymptotic variance, VN+D, is standard and can be found in Appendix

4.8.1. Again, under standard assumptions the weighting matrix W ∗N+D := S−1
N+D with SN+D :=

limT→∞E[gN+D(B0)gN+D(B0)′], where gN+D(B0) := [gN(B0)′, gD(B0)′]′, leads to the estimator

B̂∗N+D with lowest possible asymptotic variance (see, e.g., Hall (2005)).

Adding additional valid moment conditions can never increase the asymptotic variance of the

GMM estimator (see, e.g., Breusch et al. (1999)). Therefore, if the structural shocks are inde-

pendent such that the overidentifying conditions hold, the asymptotic variance of B̂∗N+D is equal

to or smaller than the asymptotic variance of B̂∗N. If including an additional moment condition

decreases the asymptotic variance of the estimator, the moment condition is called relevant, oth-

erwise the moment condition is called redundant. A moment condition is called partially relevant

for a subset of parameters if it decreases the asymptotic variance of a subset of parameters. If

this is not the case, the moment condition is called partially redundant.

In the following proposition, we show that overidentifying higher-order moment conditions in

E[fD(B, ut)] can decrease the asymptotic variance of the SVAR GMM estimator. To this end,

we consider the special case of a recursive SVAR with independent shocks. In this case, the

SVAR is identified solely by second-order moment conditions and all coskewness and cokurtosis

moment conditions are overidentifying. The proposition highlights that some coskewness and

cokurtosis conditions are always (partially) redundant, while other conditions are relevant if

certain conditions for the skewness, excess kurtosis, and elements of the inverse of B0 are fulfilled.

The proposition also implies that if at least one shock has a non-zero skewness, at least one higher-

order moment condition will be relevant and consequently, the recursive SVAR GMM estimator

based solely on second-order moment conditions, which is equal to frequently used estimator

obtained by applying the Cholesky decomposition, is inefficient.

Proposition 4.3. (Redundant and relevant moment conditions in the recursive SVAR.)

Let A := B−1
0 and let aql denote the element at row q and column l of A. Additionally let i, j, k, l ∈
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{1, ..., n} and i 6= j 6= k 6= l. The impact of a shock εq,t is equal to the unrestricted elements in the

q-th row of B0. In a recursive SVAR with independent structural shocks the following redundancy

statements hold w.r.t. the identifying second-order moment conditions E[f2(B, ut)].

Coskewness condition:

1. E[e(B0)ie(B0)je(B0)k] is redundant.

2. E[e(B0)2
i e(B0)j ] is partially redundant for the impact of the shock εq,t with q 6= j.

3. E[e(B0)2
i e(B0)j ] is partially redundant for the impact of the shock εj,t if and only if

for i < j for i > j

2E[ε3j,t]

E[ε4j,t]−1
ajj = 0.

2E[ε3j,t]

E[ε4j,t]−1
ajj + E[ε3i,t]aij = 0,

E[ε3i,t]ai,z = 0, z = j + 1, . . . , i.

Cokurtosis condition:

1. E[e(B0)ie(B0)je(B0)ke(B0)l] and E[e(B0)2
i e(B0)je(B0)k] are redundant.

2. E[e(B0)3
i e(B0)j ] is partially redundant for the impact of the shock εq,t with q 6= j.

3. E[e(B0)3
i e(B0)j ] is partially redundant for the impact of the shock εj,t if and only if

for i < j for i > j

2E[ε3j,t]E[ε3i,t]

E[ε4j,t]−1
ajj = 0.

2E[ε3j,t]E[ε3i,t]

E[ε4j,t]−1
ajj + (E[ε4i,t]− 3)aij = 0,

(E[ε4i,t]− 3)ai,z = 0, z = j + 1, . . . , i.

4. E[e(B0)2
i e(B0)2

j − 1] is partially redundant for the impact of the shock εq,t with q 6= i and

i < j.

5. E[e(B0)2
i e(B0)2

j − 1] is partially redundant for the impact of the shock εi,t with i < j if and

only if

E[ε3j,t]E[ε3i,t]ajz = 0, z = i, . . . , j.
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Proof. The proof can be found in Appendix 4.8.4.

In practice, the conditions in Proposition 4.3 cannot be verified since the matrix B0, the skewness,

and the kurtosis of the structural shocks are unknown a priori. Furthermore, Proposition 4.3 only

covers a recursive SVAR with independent shocks, i.e., if the shocks are only mean independent

or the SVAR has a different block-recursive structure, we do not have a theoretical result on

which moment conditions are relevant and which are not.

4.4.3 Data-driven moment selection

Section 4.4.1 provides an identification result for block-recursive SVARs only requiring a (small)

subset of cokurtosis conditions which is robust in the sense that it allows for various kinds of

dependencies of the shocks. Section 4.4.2 stresses that there is a trade-off between robustness

and efficiency of the estimator. For robustness, we leave out overidentifying conditions, which

has the downside that some of these conditions may be valid and relevant, i.e., decrease the

asymptotic variance of the estimator. However, an advantage is that one does not include po-

tentially invalid overidentifying conditions, which could lead to an inconsistent overidentified

block-recursive SVAR GMM estimator in Equation (4.19). Additionally, valid but redundant

overidentifying conditions can lead to a many moment problem and a poor finite sample per-

formance of the overidentified block-recursive SVAR GMM estimator, compare Cheng and Liao

(2015), Hall (2005), and Hall (2015). Therefore, we propose to use the pGMM estimator of

Cheng and Liao (2015) to detect and include only the relevant and valid overidentifying moment

conditions in a data-driven way. By including valid and relevant moment conditions in the esti-

mation, we exploit the asymptotic efficiency gains of relevant moments. By leaving out invalid

or redundant moment conditions, we can avoid inconsistent estimates and issues related to many

moment conditions.

In general, the overidentifying higher-order moment conditions E[fD(B, ut)] can be separated into

three sets: E[fA(B, ut)] contains valid and relevant moment conditions, E[fR(B, ut)] contains

valid but redundant conditions, and E[fI(B, ut)] contains invalid moment conditions. The goal is

to select the moments E[fA(B, ut)] and to leave out the moments E[fR(B, ut)] and E[fI(B, ut)].

However, in practice the researcher does not know whether a given moment condition is invalid,
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redundant, or valid and relevant. Therefore, we propose to detect and select the relevant and

valid overidentifying moment conditions in a data-driven way. Based on Cheng and Liao (2015),

we define the block-recursive SVAR pGMM estimator

{B̂pGMM
N+D , β̂} := arg min

{B,β}∈Λ

 gN(B)

gD(B)− β

′WN+D

 gN(B)

gD(B)− β

+ λ
∑
j∈D̃

ωj |βj |, (4.22)

where λ ≥ 0 is a tuning parameter specified by the researcher, β ∈ RkD is the vector of slackness

parameters, Λ := {Bbrec,R1×kD} is the parameter space of {B, β}, ω ∈ RkD is a vector of weights

used in the penalty term, and D̃ := {1, . . . , kD} with kD denoting the number of conditions in

E[fD(B, ut)].

The vector of slackness parameters β allows the moment conditions E[fD(B, ut)] to deviate from

zero without increasing the first part of the loss function and therefore, to decrease their impact on

the estimation. However, each element of β gets penalized in the second part of the loss function

and consequently, giving slack to overidentifying moments adds a cost, i.e., increases the loss

function. The vector of weights ω and the tuning parameter λ govern the cost of giving slack to

moment conditions. In particular, a smaller λ makes it cheaper to give slack to all overidentifying

moments and a smaller ωj makes it less costly to give slack to a specific overidentifying moment

j.

The pGMM estimator in Equation (4.22) has two special cases. First, if λ = 0, adding slack to

the overidentifying moments is not penalized. Therefore, the solution of the pGMM estimator

is B̂pGMM
N+D = B̂N and β̂ = gD

(
B̂N

)
, where B̂N is the solution of the the block-recursive SVAR

GMM estimator in Equation (4.15) using only the identifying moments E[fN(B, ut)] and the

weighting matrix WN, equal to the block of the weighting matrix WN+D corresponding to the

identifying conditions E[fN(B, ut)]. Second, if λ =∞, deviations of β̂ from zero become infinitely

costly for overidentifying moments with ωj > 0. Assuming ω > 0, the pGMM estimator cannot

give slack to any overidentifying moment condition. Thus, B̂pGMM
N+D = B̂N+D and β̂ = 0 minimize

the loss function of the pGMM estimator, where B̂N+D is the solution of the the overidentified

block-recursive SVAR GMM estimator in Equation (4.19), using the weighting matrix WN+D.

Choices of λ other than λ = 0 or λ =∞ lead to solutions which lie between these extreme cases.

In practice, we recommend using cross-validation to find the optimal value of λ.
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The penalty term uses weights ωj ≥ 0, ∀j ∈ D̃, to shrink the elements of β differently. Let

E[fDj
(B, ut)] for j ∈ D̃ correspond to one specific moment of E[fD(B, ut)]. A higher ωj leads

to more shrinkage for βj and consequently, makes it more likely that βj becomes zero, meaning

that the corresponding moment E[fDj
(B, ut)] gets selected. Furthermore, ωj = 0 implies that

even if the tuning parameter λ is large, there is no cost for giving slack to the moment condition

E[fDj
(B, ut)], implying that those moments do not influence the estimated B̂pGMM

N+D . Since we

aim to select only the relevant and valid moment conditions E[fA(B, ut), and not the invalid

E[fI(B, ut)] or redundant moment conditions E[fR(B, ut)], we would specify ωj > 0 for all valid

and relevant conditions, and ωj = 0 for all invalid or redundant conditions. To achieve this

without prior knowledge on E[fA(B, ut)], E[fR(B, ut)], and E[fI(B, ut)], Cheng and Liao (2015)

construct ωj allowing information-based adaptive adjustment for each moment in E[fD(B, ut)].

More precisely, they use

ωj =
µr1j
|β∗j

r2 |
, j ∈ D̃, (4.23)

where µj is a measure for the empirical relevance of the moment condition E[fDj
(B, ut)], relative

to the identifying moment conditions E[fN(B, ut)], and β∗j is a preliminary consistent estimator

of E[fDj (B0, ut)] and r1 ≥ r2 ≥ 0 are constants specified by the researcher. The use of 1/|β∗j
r2 |

resembles an adaptive LASSO penalty (cf. Zou (2006)) and implies that moments with small β∗j

are subject to more shrinkage. Since β∗j is a consistent estimator and the true value of β∗j for a

valid moment is zero, the adaptive penalty ensures that valid moments get selected. However,

using only the adaptive penalty, we would unintendedly incentivize the estimator to select also

redundant moments since, by definition, these are also valid. To avoid selecting redundant

moments, Cheng and Liao (2015) suggest to multiply the adaptive penalty with

µj = ρmax

(
V̂N − V̂N+Dj

)
, j ∈ D̃, (4.24)

where ρmax(A) is the maximum eigenvalue of a square matrix A and V̂N and V̂N+Dj are consistent

estimators of the efficient asymptotic variance-covariance matrices V ∗N and V ∗N+Dj
, defined in

Appendix 4.8.1. If the maximum eigenvalue of V ∗N − V ∗N+Dj
is positive, then adding moment

condition E[fDj
(B, ut)] to the conditions E[fN(B, ut)] decreases the asymptotic variance of the
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estimator and hence, moment condition E[fDj
(B, ut)] is relevant. Therefore, µj estimates the

empirical relevance of the moment E[fDj
(B, ut)].

27

Cheng and Liao (2015) show that, under conditions, the pGMM estimator consistently selects the

valid and relevant moments, i.e., limT→∞ P (β̂j = 0) = 1 if the moment condition E[fDj
(B, ut)]

is in E[fA(B, ut)], and does not select the invalid or redundant moments, i.e., limT→∞ P (β̂j =

0) = 0 if the moment condition E[fDj
(B, ut)] is in E[fR(B, ut)] or E[fI(B, ut)]. They also derive

that, under conditions, the pGMM estimator is a consistent estimator of B0 and asymptotically

normal with asymptotic variance VN+A.28 In our case, the conditions in particular require

that Assumption 4.2 holds. However, consistency and asymptotic normality do not rely on

independent shocks, i.e., Assumption 4.3. Even though the SVAR pGMM estimator uses the

moment conditions E[fN(B, ut)] and E[fD(B, ut)] for estimation, its asymptotic variance only

depends on the moments conditions E[fD(B, ut)] and E[fA(B, ut)]. That is, the SVAR pGMM

estimator successfully ignores the redundant and invalid moments and decreases the asymptotic

variance by incorporating the information contained in the relevant and valid moments. The

weighting matrix W ∗N+D := S−1
N+D leads to the estimator with the lowest possible asymptotic

variance (Hall, 2005), corresponding to the asymptotic variance of the oracle estimator. The

oracle estimator uses only moment conditions E[fN(B, ut)] and E[fA(B, ut)] and is infeasible in

practice without prior knowledge of E[fD(B, ut)] and E[fA(B, ut)]. However, the SVAR pGMM

estimator is as efficient as the oracle estimator asymptotically.

4.5 Finite sample performance

In this section, we conduct two Monte Carlo studies. The first one illustrates that the performance

of SVAR estimators can be improved substantially by exploiting the block-recursive structure.

This is especially relevant for SVARs with a large number of variables. The second Monte

27Cheng and Liao (2015) show that V ∗N − V ∗N+Dj
is positive semidefinite for every j ∈ D̃, implying that

the maximum eigenvalue of V ∗N − V ∗N+Dj
is nonnegative. Furthermore, note that both V̂N ≡ V̂N

(
B̂N

)
and

V̂N+Dj ≡ V̂N+Dj

(
B̂N

)
are evaluated at B̂N, which is obtained from Equation (4.15). Thereby, we do not rely

on B̂N+Dj to estimate V ∗N+Dj
since the moment associated with Dj may be invalid and hence, V̂N+Dj

(
B̂N+Dj

)
inconsistent for V ∗N+Dj

.
28This result is not explicitly stated in Cheng and Liao (2015) but follows from their Remark 3.5 using the

Cramér-Wold device, an arbitrary weighting matrix W and replacing the variance of the sample GMM estimator
with the asymptotic variance. We prove the result in Appendix 4.8.5 under Assumption 4.1 and 4.2.
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Carlo study focuses on how to incorporate information in overidentifying higher-order moment

conditions. More concretely, we demonstrate that the pGMM estimator selects relevant and does

not select redundant moment conditions in a data-driven way and thereby, improves the finite

sample performance.

For both Monte Carlo experiments, we consider three different sample sizes T = {100, 250, 1 000}

to analyze the influence of the sample size on the performance of the estimators. We independently

and identically draw each structural shock εit, i = 1, . . . , n, t = 1, . . . , T, from the two-component

mixture

εit ∼ 0.79 N (−0.2, 0.72) + 0.21 N (0.75, 1.52),

where N (µ, σ2) indicates a normal distribution with mean µ and standard deviation σ. The

shocks have skewness 0.9 and excess kurtosis 2.4.

We compare the finite sample performance of various SVAR estimators.29 Based on the sim-

ulations presented in Keweloh (2021a), we use continuous updating estimators (CUEs) instead

of GMM estimators and estimate the asymptotically efficient weighting matrix based on serially

and mutually independent shocks.30 We refer to the estimators as follows:

• GMM: Continuous updating estimator based on Equation (4.15) using only the identifying

moment conditions E[fN(B, ut)].

• oGMM: Overidentified continuous updating estimator based on Equation (4.19) using

the identifying moment conditions E[fN(B, ut)] and overidentifying moment conditions

E[fD(B, ut)].

• GMM-Oracle: Overidentified continuous updating estimator based on Equation (4.19) using

the identifying moment conditions E[fN(B, ut)] and the relevant overidentifying moment

conditions E[fA(B, ut)].

29The estimators are implemented in python and the pGMM estimator uses the solvers of Defferrard et al.
(2017).

30Keweloh (2021a) demonstrates that the inability to precisely estimate S, the long-run covariance matrix of the
moment conditions, and as consequence the efficient weighting matrix leads to a poor small sample performance
of CUE and two-step GMM estimators. Recognizing this downside, Keweloh (2021a) proposes a novel estimator
for S exploiting serially and mutually independent shocks.Keweloh (2021a) illustrates that the estimator for S
substantially increases the small sample performance of the two-step CUE and GMM estimator. Additionally,
Keweloh (2021a) illustrates that CUE estimators are less biased than GMM estimator in small samples.
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• pGMM: Continuous updating LASSO estimator based on Equation (4.22).

We only indicate which block-recursive structure is imposed for estimation, when necessary (e.g.,

when comparing an GMM estimator without restrictions with a block-recursive GMM estimator).

4.5.1 Block-Recursive Structure

We simulate a SVAR with n = 2 and n = 4 variables. The mixing matrices B0 are given by

B0 =

10 5

5 10

 and B0 =


10 5 0 0

5 10 0 0

5 5 10 5

5 5 5 10

 . (4.25)

The Monte Carlo study analyzes the impact of imposing a block-recursive structure for GMM

estimators. In the small SVAR with n = 2, we impose no restrictions. In the large SVAR

with n = 4, we estimate the GMM estimator without restrictions and the block-recursive GMM

estimator, using the block-recursive structure in Equation (4.25), i.e., we apply zero restrictions

for all elements where B0 is zero.31

Table 4.1 summarizes the results of M = 3, 500 Monte Carlo simulations. The table shows the

average of each estimated element b̄ij = 1/M
∑M
m=1 b̂

m
ij and the estimated mean squared error

(MSE), σ̂2
i,j = 1/M

∑M
m=1

(
b̂mij − bij

)2

, where bij denotes the element of B0 in row i and column

j and b̂mij its estimated value in Monte Carlo run m. Moreover, we calculate the average over the

empirical biases, Bias :=
∑n
i=1

∑n
j=1 wi,j

(
b̄ij − bij

)
, and the average over the estimated MSEs,

V ar :=
∑n
i=1

∑n
j=1 wi,j σ̂

2
i,j , across estimated elements in B̂, i.e., wi,j equals zero if b̂mij is restricted

to be zero and one over the number of estimated elements in B̂ otherwise. Additionally, we report

the number of moments used by each estimator. For each estimator, the average bias and MSE

decreases with the sample size. Furthermore, the simulation highlights how the performance of

the GMM estimators, which are based entirely on non-Gaussianity, decreases with an increasing

model size (e.g., the average bias and MSE for each sample size is up to 2.1 and 1.9 times higher for

31In this Monte Carlo study, we focus on GMM estimators. We include the oGMM, GMM-Oracle and pGMM
estimator in the second Monte Carlo study.
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Table 4.1: Finite sample performance - Block-recursive SVAR.

n=2 n=4

GMM GMM block-recursive GMM
T

=
1
00 B̂

[
9.78
(2.26)

4.90
(4.31)

4.90
(4.24)

9.76
(2.18)

] 
9.28
(3.24)

4.63
(4.82)

0.04
(5.31)

0.07
(5.27)

4.70
(4.87)

9.23
(3.20)

0.08
(5.32)

0.05
(5.14)

4.68
(6.54)

4.62
(6.74)

9.27
(5.01)

4.74
(6.54)

4.67
(6.67)

4.65
(6.53)

4.66
(6.48)

9.33
(4.93)




9.74
(2.31)

4.91
(4.30)

. .

4.87
(4.43)

9.74
(2.18)

. .

4.86
(2.51)

4.89
(2.44)

9.63
(2.17)

4.84
(4.41)

4.87
(2.56)

4.91
(2.45)

4.84
(4.24)

9.64
(2.34)


#Mo 5.00 22.00 14.00
Bias −0.1649 −0.3314 −0.1878
MSE 3.25 5.41 3.03

n=2 n=4

GMM GMM block-recursive GMM

T
=

25
0 B̂

[
9.88
(1.10)

4.90
(2.30)

4.98
(2.22)

9.85
(1.13)

] 
9.56
(1.64)

4.79
(2.77)

0.02
(3.19)

0.06
(3.21)

4.77
(2.69)

9.54
(1.65)

−0.01
(3.14)

0.04
(3.26)

4.74
(4.05)

4.83
(3.94)

9.56
(2.76)

4.83
(3.92)

4.74
(4.10)

4.82
(3.91)

4.79
(3.86)

9.61
(2.85)




9.87
(1.07)

4.91
(2.41)

. .

4.94
(2.33)

9.83
(1.15)

. .

4.93
(1.16)

4.91
(1.20)

9.81
(1.13)

4.92
(2.30)

4.94
(1.14)

4.92
(1.21)

4.91
(2.32)

9.84
(1.09)


#Mo 5.00 22.00 14.00
Bias −0.0982 −0.2065 −0.1069
MSE 1.69 3.18 1.54

n=2 n=4

GMM GMM block-recursive GMM

T
=

1
00

0 B̂

[
9.96
(0.24)

5.00
(0.46)

4.97
(0.48)

9.97
(0.22)

] 
9.92
(0.26)

4.99
(0.53)

0.00
(0.64)

0.02
(0.54)

4.95
(0.51)

9.94
(0.29)

0.00
(0.61)

0.02
(0.53)

4.95
(0.73)

4.99
(0.72)

9.92
(0.56)

4.99
(0.65)

4.95
(0.69)

4.99
(0.66)

4.96
(0.75)

9.95
(0.43)




9.97
(0.22)

5.02
(0.48)

. .

4.97
(0.46)

9.99
(0.24)

. .

4.98
(0.25)

5.01
(0.28)

9.96
(0.21)

4.99
(0.40)

4.98
(0.25)

5.01
(0.27)

4.98
(0.41)

9.97
(0.20)


#Mo 5.00 22.00 14.00
Bias −0.0262 −0.0295 −0.0124
MSE 0.35 0.57 0.31

The table reports the average b̄ij and the corresponding estimated MSE (in paren-

theses) of each estimated element in B̂ as well as the BIAS and MSE across esti-

mated elements in B̂ over 3, 500 Monte Carlo replicates. We estimate the GMM
estimator without restrictions for n = 2 and n = 4, and the block-recursive GMM
estimator for n = 4, which uses zero restrictions highlighted by the dots.

the GMM estimator with n = 4 compared to the GMM estimator with n = 2). The Monte Carlo

study illustrates how in a typical macroeconomic application, which rarely or if at all contains

more than a few hundred observations, data-driven estimates based on non-Gaussianity become
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less reliable the more variables the SVAR contains. However, the simulation also stresses that

exploiting the block-recursive structure annihilates the deterioration of the performance induced

by a larger model. That is, the average bias and MSE for each sample size in Table 4.1 is at least

1.8 and 1.8 times higher for the GMM estimator with n = 4 compared to the block-recursive

GMM estimator with n = 4. Using the block-recursive structure allows to identify the four

elements on the lower left of B0 (each with a value of 5) only by covariance moment conditions

(which explains why the average MSE of the block-recursive GMM estimator with n = 4 even

can be lower than or comparable to the GMM estimator with n = 2, which relies on higher-order

moment conditions).

Our results suggest that if in a given application well-justified restrictions are available, these

restrictions should be used as they substantially improve the performance of the estimator.

4.5.2 Recursive Structure

In this subsection, we simulate a recursive SVAR using n = 4 variables and

B0 =


10 0 0 0

5 10 0 0

5 5 10 0

5 5 5 10

 . (4.26)

For the estimation of B0, we impose a recursive order for all considered estimators, i.e., we use zero

restrictions for all elements where B0 is zero. In this setup, the pGMM, GMM-Oracle, and the

oGMM estimator are efficient estimators and have a smaller asymptotic variance than the GMM

estimator, which is equivalent to the estimator obtained by applying a Cholesky decomposition.

By using a recursive structure, we can apply Proposition 4.3 to calculate whether an overidenti-

fying moment condition is relevant or redundant. Therefore, we can analyze whether the pGMM

estimator selects relevant moment conditions and does not select redundant moment conditions.

With the imposed recursive order, the identifying moment conditions E[fN(B, ut)] contain 10

and the overidentifying conditions E[fD(B, ut)] contain 47 conditions. All moment conditions

in E[fD(B, ut)] are valid. More precisely, 17 of overidentifying conditions are redundant and 30
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overidentifying conditions are relevant.

The construction of the weights for the pGMM estimator as in Equation (4.23) requires an initial

consistent estimate B̂ to estimate β∗ and the asymptotic variance in Equation (4.24). To this end,

we apply the GMM estimator, which is the Cholesky estimator in this case. Moreover, we again

use the assumption of independent shocks to estimate the asymptotic variance, as proposed by

Keweloh (2021a). We use r1 = 2 and r2 = 1 in Equation (4.23) and additionally, we normalize the

weights such that they sum to one, i.e., we use ω∗j := ωj/
∑
k∈D̃ ωk, allowing for straightforward

comparison among the weights.

We choose the optimal λ for the pGMM estimator with 5-fold cross-validation from a sequence

of 10 potential values. The maximum value of the sequence of λ’s depends on the sample size,

ensuring that it is large enough to select all moments j for which ω∗j > 10−4.32 We also include

λ = 0 in the range of possible values to allow our estimator to simplify to the recursive SVAR.

The selection of the optimal tuning parameter is based on the median of the GMM loss of each

left-out fold.

Table 4.2 summarizes the results of M = 3, 500 Monte Carlo simulations. We report the same

summary statistics as in Table 4.1. In addition, we calculate the average number of moments

selected by the pGMM estimator and the median of the chosen λ’s for the pGMM estimator across

Monte Carlo runs. In Appendix 4.10, we display results including the Post-pGMM estimator

which uses the moments selected by pGMM in a second stage estimation.

The GMM estimator performs well in the smallest sample size in terms of bias and MSE. However,

the GMM estimator is asymptotically inefficient and has the largest MSE among all considered

estimators for T = 250 and T = 1000. Due to many moments, the oGMM estimator performs

worst in terms of bias and MSE among the considered estimators for T = 100. Yet, its perfor-

mance improves with sample size and it eventually outperforms the GMM estimator in terms of

MSE. The bias is highest for the oGMM and GMM-Oracle estimator across sample sizes, which

might be explained by the greater number of moments used by these estimators. Note that both

estimators are asymptotically efficient. Nevertheless, many moment conditions can still lead to a

finite sample bias. The MSE of the GMM-Oracle estimator is already comparable to the GMM

32We specify the maximum value of the sequence of λ’s in a data-driven way using the subgradient of Equation
(4.22) with respect to β. We give more details on how to construct the maximum value of the sequence of λ’s in
the cross-validation in Appendix 4.8.6.
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Table 4.2: Finite sample performance - Recursive SVAR and the pGMM estimator.

GMM oGMM GMM-Oracle pGMM

T
=

1
0
0 B̂


9.93
(1.09)

. . .

4.98
(1.21)

9.86
(1.02)

. .

4.97
(1.49)

4.95
(1.29)

9.83
(1.12)

.

4.96
(1.71)

4.93
(1.46)

4.91
(1.27)

9.78
(1.08)




9.77
(1.07)

. . .

4.90
(1.31)

9.71
(1.01)

. .

4.89
(1.69)

4.88
(1.43)

9.70
(1.10)

.

4.90
(2.07)

4.88
(1.74)

4.88
(1.46)

9.69
(1.09)




9.76
(1.07)

. . .

4.91
(1.17)

9.70
(1.02)

. .

4.91
(1.50)

4.88
(1.26)

9.69
(1.10)

.

4.92
(1.81)

4.88
(1.51)

4.88
(1.25)

9.67
(1.10)




9.96
(1.09)

. . .

5.00
(1.15)

9.88
(1.01)

. .

4.98
(1.46)

4.96
(1.22)

9.85
(1.11)

.

4.99
(1.71)

4.96
(1.42)

4.95
(1.21)

9.82
(1.10)


#Mo 10.00 57.00 40.00 24.22
Bias −0.0883 −0.1806 −0.1804 −0.0650
MSE 1.27 1.40 1.28 1.25

λ . . . 71.08

GMM oGMM GMM-Oracle pGMM

T
=

2
5
0 B̂


9.97
(0.43)

. . .

4.99
(0.51)

9.96
(0.43)

. .

4.98
(0.64)

5.00
(0.52)

9.93
(0.45)

.

4.98
(0.72)

4.99
(0.61)

4.98
(0.51)

9.91
(0.45)




9.90
(0.40)

. . .

4.96
(0.49)

9.90
(0.40)

. .

4.96
(0.65)

4.97
(0.51)

9.87
(0.42)

.

4.97
(0.73)

4.96
(0.61)

4.97
(0.49)

9.86
(0.42)




9.90
(0.40)

. . .

4.97
(0.44)

9.90
(0.40)

. .

4.97
(0.59)

4.97
(0.46)

9.87
(0.42)

.

4.98
(0.65)

4.97
(0.54)

4.96
(0.44)

9.85
(0.42)




9.99
(0.42)

. . .

5.01
(0.45)

9.97
(0.41)

. .

5.01
(0.59)

5.02
(0.46)

9.94
(0.42)

.

5.02
(0.66)

5.01
(0.55)

5.00
(0.44)

9.92
(0.43)


#Mo 10.00 57.00 40.00 27.20
Bias −0.0311 −0.0676 −0.0656 −0.0114
MSE 0.53 0.51 0.48 0.48

λ . . . 118.92

GMM oGMM GMM-Oracle pGMM

T
=

1
0
0
0 B̂


10.00
(0.11)

. . .

5.00
(0.13)

9.99
(0.11)

. .

4.99
(0.15)

4.99
(0.13)

9.99
(0.11)

.

4.99
(0.19)

4.99
(0.15)

4.99
(0.13)

9.98
(0.11)




9.98
(0.10)

. . .

4.99
(0.12)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.11)

9.98
(0.10)

.

4.99
(0.16)

4.99
(0.14)

4.99
(0.11)

9.97
(0.10)




9.98
(0.10)

. . .

4.99
(0.11)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.10)

9.98
(0.10)

.

4.99
(0.15)

4.99
(0.13)

4.99
(0.11)

9.97
(0.10)




10.00
(0.11)

. . .

5.00
(0.11)

9.99
(0.10)

. .

5.00
(0.13)

5.00
(0.11)

10.00
(0.10)

.

5.00
(0.16)

5.00
(0.13)

5.00
(0.11)

9.98
(0.10)


#Mo 10.00 57.00 40.00 29.59
Bias −0.0076 −0.0158 −0.0158 −0.0021
MSE 0.13 0.12 0.11 0.12

λ . . . 75.34

The table reports the average b̄ij and the corresponding estimated MSE (in parentheses) of each estimated element

in B̂ as well as the BIAS and MSE across estimated elements in B̂ over 3, 500 Monte Carlo replicates for the GMM
estimator, the oGMM estimator, the GMM-Oracle estimator, and the pGMM estimator. All estimator use zero
restrictions which are highlighted by the dots.

estimator in small samples. Relative to the other estimators, its MSE further decreases with

the sample size and it performs best in the largest sample size. In general, the GMM-Oracle

estimator is infeasible since the redundant moments are unknown a priori.In contrast to that, the

pGMM estimator is feasible and uses a data-driven approach to select the relevant and valid mo-

ments. The pGMM estimator performs well across all sample sizes in terms of bias and MSE. For

T = 100, its bias and MSE is notably smaller than the one of the oGMM and the GMM-Oracle
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estimator and surprisingly, also smaller than the one of the GMM estimator. In the largest sam-

ple, the pGMM estimator performs similar to the oGMM and GMM-Oracle estimator in terms of

MSE and best in terms of bias. The Post-pGMM estimator reported in Appendix 4.10 performs

similar to the pGMM estimator. The simulation shows that the pGMM estimator can, without

prior specification, distinguish informative from non-informative overidentifying moments, which

solves the many moments problem of the oGMM estimator and allows to exploit information in

overidentifying higher-order moments already in small samples.

Table 4.2 indicates that the average number of selected moments increases only slightly as T

increases. Even for T = 1000, the pGMM estimator only selects 20 out of 30 valid and relevant

overidentifying moments in addition to the 10 identifying moments. That said, the remaining

10 moments would only decrease the MSE from 0.12 to 0.11, indicating that the moments not

being selected would not lower the MSE much. Figure 4.2 illustrates that pGMM estimator

only selects relevant moments and manages to leave out redundant moments, especially as T

increases. Moreover, the share of selections of each moment across all Monte Carlo runs rises

with the sample size for the majority of relevant moments. In Figure 4.7, we plot the average

weight of each moment across Monte Carlo runs. By comparing Figure 4.2 and Figure 4.7, we

argue that there is a clear correlation between the average weight and the number of selections

of each moment. More precisely, all redundant moments have an average weight which is very

close to zero and hence, they are not selected by the pGMM estimator.
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Figure 4.2: Finite sample performance - Share of selected moments by the pGMM estimator.

(a) T = 100

(b) T = 250

(c) T = 1000
Note: The figure shows how often each moment gets selected. Redundant
moments (orange) and relevant moments (blue) are displayed on the x-axis.
Each x-axis label abbreviates a moment condition, e.g., [0, 1, 2, 1] corresponds
to E[e(B)01,t e(B)12,t e(B)23,t e(B)14,t].
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Figure 4.3: Finite sample performance - Illustration of influence of λ on β for the pGMM esti-
mator.

(a) Trace Plot (b) Selected Moments

Note: Panel (a) of the figure shows the values of β in dependence on log(λ) for one Monte Carlo run for T = 100

and the corresponding number of selected moments in D̃. Panel (b) of the figure splits the number of selected
moments into the number of selected redundant and the number of selected relevant moments for each log(λ).

Figure 4.3 highlights the influence of λ on β and hence, on the number of selected moment

conditions for one Monte Carlo run. For the purpose of illustration, we use a wider range of of

λ values for this plot. For instance, for log(λ) = −6 no overidentifying moment conditions are

selected and the solution of the pGMM estimator corresponds to the one of the GMM estimator.

Further, the number of selected moments increases as λ increases, i.e., the penalty shrinks the

elements of β to zero. Furthermore, the relevant moments get selected first when λ increases and

we do not select any redundant moment until λ becomes very large.

4.6 Disentangling speculative demand and supply shocks in the oil

market

In this section, we propose a SVAR model for the oil market to analyze the impact of flow and

speculative supply and of flow and speculative demand shocks on the real oil price. A flow oil

supply shock represents an exogenous deviation in the present amount of oil coming out of the

ground and a flow oil demand shock represents an exogenous deviation in the present amount of

oil being consumed. A speculative oil supply shock represents a shift in the expected future oil

supply and a speculative oil demand shock a shift in the expected future oil demand.
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We consider a SVAR with monthly data from January 1974 to December 2019 of the form
Ot

Yt

OPt

SRt

 = α+

12∑
i=1

Ai


Ot−i

Yt−i

OPt−i

SRt−i

+


uOt

uYt

uOPt

uSRt

 . (4.27)

The variable Ot is the log difference of global oil production, Yt is the log difference of industrial

production, measuring economic activity, OPt is the growth rate of real oil price, and SRt are

real monthly stock returns.33 We decompose the reduced form shocks ut into four structural

shocks with 
uOt

uYt

uOPt

uSRt

 =


b11 b12 0 0

b21 b22 0 0

b31 b32 b33 b34

b41 b42 b43 b41




εst

εdt

εs−expt

εd−expt

 , (4.28)

where εst is a flow supply shock for oil, εdt is a flow demand shock for oil, εs−expt is a speculative

oil supply shock, and εd−expt is a speculative oil demand shock. The block-recursive restrictions

in Equation (4.28) imply that oil production and economic activity behave sluggishly and can

contemporaneously only respond to flow supply and demand shocks, whereas oil prices and stock

returns can immediately incorporate all available information and contemporaneously respond to

flow and speculative supply and demand shocks.

The simultaneous relationship is estimated using the block-recursive SVAR pGMM estimator.34

In line with the Monte Carlo simulations, we apply continuous updating for the weighting

matrix and use the assumption of serially and mutually independent shocks to estimate the

33Global oil production is given by the global crude oil including lease condensate production obtained from the
U.S. EIA. We obtain industrial production by the monthly industrial production index in the OECD and six major
other countries from Baumeister and Hamilton (2019). The real oil price is equal to the refiner’s acquisition cost
of imported crude oil from the U.S. EIA deflated by the U.S. CPI. Real stock prices correspond to the aggregate
U.S. stock index constructed by the OECD deflated by the U.S. CPI.

34In Appendix 4.11, we conduct various robustness checks. In particular, we estimate the block-recursive SVAR
using the GMM estimator from Equation (4.15) and the overidentified GMM estimator from Equation (4.19).
Estimates using the white fast SVAR GMM estimator proposed by Keweloh (2021b) and the PML estimator
proposed by Gouriéroux et al. (2017) are qualitatively similar and available on request. Additionally, we report
results for different specifications of the variables in the block-recursive SVAR.
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asymptotically efficient weighting matrix as proposed by Keweloh (2021a). With the imposed

block-recursive structure, we can divide the moment conditions into 14 identifying conditions

E[fN(B, ut)] and 43 overidentifying conditions E[fD(B, ut)]. We use the same specifications to

construct the weights as in the Monte Carlo simulation, i.e., we use r1 = 2 and r2 = 1 in Equation

(4.23). For the cross-validation, we consider a range of 28 values for λ, including λ = 0. The max-

imum value of λ is chosen such that all conditions E[fD(B, ut)] for which ωj/
∑
k∈D̃ ωk > 10−7

get selected. With the chosen λ = 34679, which is the 27th value of the considered sequence, 12

coskewness and 12 cokurtosis conditions are selected.35

For each estimated structural shock, Table 4.3 shows the estimated skewness, kurtosis and p-

value of the Jarque-Bera test. To ensure identification, at most one structural shock in each

block may be Gaussian. With our block-recursive structure, each block contains only two shocks

and, therefore, it is sufficient for identification to show that at least one structural shock in

each block is non-Gaussian. Furthermore, the block-recursive structure implies that each of the

two unmixed innovations in the first block is equal to a linear combination of the two structural

shocks in the first block, i.e., if both structural shocks are Gaussian, the two unmixed innovations

have to be Gaussian as well. However, the skewness, kurtosis, and the Jarque-Bera test suggest

that the unmixed innovations in the first block are non-Gaussian and, hence, that at least one

structural shock in the first block is non-Gaussian. Consequently, the first block is identified.

Moreover, the unmixed innovations in the second block are equal to a linear combination of the

structural shocks in the second block (the argument follows from Equation (4.33) in the proof of

Proposition 4.2). Again, the skewness, kurtosis and the Jarque-Bera test suggest that the unmixed

innovations in the second block are non-Gaussian, implying that at least one structural shock in

the second block is non-Gaussian. Thus, the second block is also identified. Consequently, our

block-recursive SVAR is identified.

In Figure 4.4, we show impulse response functions (IRFs).

35Additionally, we compute the block-recursive SVAR pGMM estimator using the plugin rule λ =

k
r2/4
D T (−0.5−r2/4), where kD denotes the number of overidentifying moment conditions, see Cheng and Liao

(2015). The estimator selects 8 coskewness and 6 cokurtosis conditions.
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Table 4.3: Oil market SVAR - Non-Gaussianity of the estimated structural shocks.

εst εdt εs−expt εd−extt

Skewness −0.97 −0.21 0.46 −0.82
Kurtosis 9.92 4.58 6.79 6.88
JB-Test 0.00 0.00 0.00 0.00

Note: Skewness, kurtosis and the p-value of the Jarque-Bera test.

Figure 4.4: Oil market SVAR - Impulse responses.

Note: Impulse responses to the estimated structural shocks for the block-recursive SVAR pGMM estimator.
Confidence bands are symmetric 68% and 80% bands based on standard errors and 1000 replications. The rows
show the cumulative responses. The x-axis displays monthly lags.

With the block-recursive structure, labeling of the shocks in the plot of the IRFs is straightfor-

ward. In the first block, there is only one shock which leads to a significant immediate increase

of economic activity and, thus, an immediate increase in demand for oil. We label this shock

as the flow demand shock and the remaining shock in the first block as the flow supply shock.
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In the second block, one shock leads to an immediate increase of the real oil price and to a

long-run increase of economic activity. We label this shock as the speculative oil demand shock.

The remaining shock in the second block leads to an immediate decrease of the oil price and to

an increase of economic activity and oil production in the long-run, which corresponds to the

speculative oil supply shock.

Our results show that flow supply shocks immediately increase oil production and decrease the

real oil price and flow demand shocks increase economic activity and the real oil price. Moreover,

oil production responds to the demand shock with a lagged increase. Interestingly, we find that

real stock returns do not respond significantly to flow demand and supply shocks. With respect

to the speculative shocks, we find that a supply expectation shock leads to an increase of oil

production and of economic activity after one year. Furthermore, it immediately and permanently

decreases the real oil price and increases real stock returns. A speculative demand shock increases

oil production and economic activity. Additionally, the speculative demand shocks leads to an

immediate increase of the real oil price and of real stock returns.

Figure 4.5 shows the contribution of the estimated structural shocks to the evolution of the real

oil price. Figure 4.8 in Appendix 4.11 shows the historical evolution of the real oil price. Figure

4.5 suggests that the increase of the real oil price from 1978 to 1981 is mainly driven by flow

supply and speculative supply shocks. Moreover, we find that the decline of the real oil price from

1981 to 1985 is largely explained by speculative supply shocks. Additionally, the decrease in real

oil prices after the collapse of OPEC in 1985 and the peak of real oil prices during the Persian

Gulf War in 1990 can to a large extent be explained explained by speculative supply shocks. The

run-up in the real oil prices from 2003 to 2008 is driven by flow demand, speculative demand,

and speculative supply shocks. Flow demand and speculative demand shocks explain the plunge

of the real oil price during the financial crisis in 2008. Additionally, most of the recovery of the

real oil price after the financial crisis is explained by demand shocks. The collapse of the real

oil price since mid 2014 is related to flow demand, speculative demand, and speculative supply

shocks.

The IRFs in Figure 4.4 show no evidence against a recursive structure of the shocks in the first

block. That said, our results clearly suggest that the second block does not have a recursive

structure since the two structural shocks in the second block have an immediate impact on both
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Figure 4.5: Oil market SVAR - Real oil price evolution explained by the estimated structural
shocks.

Note: In each of the panels, we simulate the real oil price (blue line) by setting all but one of the shocks to zero
(and for ease of interpretation, we also set α = 0 in Equation (4.27)). The red vertical bars indicate the following
events: Iranian Revolution (1978 : 9), Iran Iraq War (1980 : 9), collapse of OPEC (1985 : 12), Persian Gulf War
(1990 : 8), Asian Financial Crisis of (1997 : 7), Iraq War (2003 : 1), the collapse of Lehman Brothers (2008 : 9),
and the oil price decline in mid 2014.
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reduced form shocks in the second block. As a robustness-check and to illustrate the impact of

misspecification in the second block, we estimate a recursive specification as proposed in Kilian

and Park (2009). That is, we restrict b12 and b34 in Equation (4.28) to zero. In this case, the

interpretation of the shocks changes and we refer to the third and fourth shock as speculative oil

price shock and residual stock market shock, respectively.

Figure 4.10 in Appendix 4.11 displays the IRFs of the recursive SVAR. The response of the real

oil price to flow supply and demand shocks in the recursive model is similar to the the one in

the block-recursive model. The speculative oil price shock leads to an decrease of the real oil

price. However, none of the remaining variables shows any significant response to the speculative

oil price shock, except for economic activity which shows a small negative reaction in the first

seven month. In the recursive SVAR for the oil market, we cannot distinguish between speculative

supply and speculative demand shocks. Rather, the speculative oil price shock contains a mixture

of the speculative supply and speculative demand shock. However, the impact of the speculative

oil price shocks on oil production and the economy should depend on the source of the speculative

oil price shock and, thus, it is not surprising that we are unable to find a clear response of oil

production, economic activity, and the stock market to the speculative oil price shock in the

recursive specification.

As a further robustness-check, we estimate the SVAR without any restrictions on the interaction,

i.e., we estimate the model without the zero restrictions given in Equation (4.28). In this case,

the labeling of the shocks is the same as in Equation (4.28). However, the difference is that

oil production and economic activity can now contemporaneously respond to speculative supply

and demand shocks. Figure 4.11 and Figure 4.12 in Appendix 4.11 show the corresponding IRFs.

Overall, the unrestricted responses in Figure 4.11 are comparable to the block-recursive responses

in Figure 4.4. However, the confidence bands are broader and there is no significant response of

the real oil price to flow supply and (almost) no significant response to flow demand shocks.

4.7 Conclusion

For a non-Gaussian block-recursive SVAR, we derive a small set of identifying moment condi-

tions based on the assumption of mean independent shocks. Moreover, we derive overidentifying
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moment conditions, some of these require mean independent shocks and some of these addition-

ally require independent shocks. We show that the overidentifying conditions can decrease the

asymptotic variance of the block-recursive SVAR GMM estimator. In particular, we prove that

the frequently applied Cholesky estimator can be inefficient. Since some of the overidentifying

moment conditions may be redundant, i.e., may not decrease the asymptotic variance, or be

invalid, i.e., may lead to inconsistent estimates, we employ the block-recursive SVAR pGMM

estimator to select only the relevant and valid overidentifying moment conditions.

We demonstrate in a Monte Carlo experiment that imposing a block-recursive structure substan-

tially increases the finite sample performance compared to unrestricted estimators. Furthermore,

a second Monte Carlo experiment highlights that, for a given block-recursive structure, the block-

recursive SVAR pGMM estimator selects only relevant moment conditions and thereby, increases

finite sample precision compared to the block-recursive SVAR GMM estimator and overidentified

block-recursive SVAR GMM estimator.

Our application analyzes the impact of flow and speculative supply and flow and speculative

demand shocks in the oil market. We argue that there are some but not enough well-justified

restrictions available to identify the SVAR based on second moments. Traditional approaches

would either rely on additional less credible restrictions or refrain from using any restrictions

and solely rely on non-Gaussianity. The proposed block-recursive estimator allows to utilize

only the well-justified restrictions and, therefore, offers a compromise between both approaches.

The application illustrates that by combining data-driven identification with traditional zero

restrictions we are able to gain deeper insights into the transmission of demand and supply

shocks in the oil market.
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4.8 Appendix - Supplementary Notation and Proofs

We include the formulas in Appendix 4.8.1 and 4.8.2 for completeness, even though they are

standard textbook results (cf. Hall (2005)).

4.8.1 Appendix - Asymptotic variance of the block-recursive SVAR GMM estima-

tor

The asymptotic variance of the block-recursive SVAR GMM estimator defined in Equation (4.15)

is given by

VN := MNSNM
′
N (4.29)

where

MN := (G′NWNGN)
−1
G′NWN, SN := lim

T→∞
E [TgN(B0)gN(B0)] ,

GN := E

[
∂fN(B0, ut)

∂vec(B)′

]
.

Consequently, using the weighting matrix W ∗N := S−1
N leads to the estimator B̂∗ with the asymp-

totic variance

V ∗N := (G′NS
−1
N GN)−1, (4.30)

which is the lowest possible asymptotic variance (see Hall (2005)).

4.8.2 Appendix - Asymptotic variance of the (overidentified) block-recursive SVAR

GMM estimator

The asymptotic variance of the overidentified block-recursive SVAR GMM estimator defined in

Equation (4.19) is given by

VN+D := MN+DSN+DM
′
N+D, (4.31)
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where

MN+D :=
(
G′N+DWN+DG

)−1
G′N+DWN+D, SN+D := lim

T→∞
E [gN+D(B0)gN+D(B0)′] ,

GN+D :=

GN

GD

 , gN+D(B0) :=

gN(B0)

gD(B0)

 ,
GD := E

[
∂fD(B0, ut)

∂vec(B)′

]
.

Using the weighting matrix W ∗N+D := S−1
N+D leads to the estimator B̂∗N+D with the asymptotic

variance

V ∗N+D := (G′N+DS
−1
N+DGN+D)−1, (4.32)

which is the lowest possible asymptotic variance (see Hall (2005)). To construct VN+Dj

and V ∗N+Dj
, j ∈ D̃, we replace the moment conditions fDj

(B, ut) by moment condition

fDj
(B, ut), j ∈ D̃, in Equation (4.31) and (4.32).

4.8.3 Appendix - Identification in the block-recursive SVAR

Proof of Proposition 4.1.

For ease of notation, we omit the time index t and w.l.o.g., consider an example with two blocks36

up1
up2

 =

B11,0 0

B21,0 B22,0

εp1
εp2

 and B =

B11 0

B21 B22

 ,
36If the SVAR contains more than two blocks, the procedure outlined in the proof can be repeated multiple

times to identify arbitrary many blocks. For example, a SVAR with three blocksup1up2
up3

 =

B11,0 0 0
B21,0 B22,0 0
B32,0 B32,0 B33,0

εp1εp2
εp3

 can be written as

[
up1
ũp2

]
=

[
B11,0 0

B̃21,0 B̃22,0

] [
εp1
ε̃p2

]
,

with ũp2 = [u′p2 , u
′
p3

]′, B̃22,0 =

[
B22,0 0
B32,0 B33,0

]
, B̃21,0 =

[
B21,0

B31,0

]
,and ε̃p2 = [ε′p2 , ε

′
p3

]′. Our proof then shows

how to identify B11,0, B̃21,0 =

[
B21,0

B31,0

]
, and εp1 . Defining

[
zp2
zp3

]
:=

[
up2
up3

]
−
[
B21,0

B31,0

]
εp1 then yields

[
zp2
zp3

]
=

[
B22,0 0
B32,0 B33,0

] [
εp2
εp3

]
,

which is another block-recursive SVAR with two blocks.

161



where up1 and up2 contain the reduced form shocks of the first and second block, εp1 and εp2

contain the structural shocks of the first and second block, and B11,0, B21,0, B22,0, B11, B21, and

B22 are the corresponding blocks of the matrices B0 and B.

First, let E[f2p1
(B, u)] = 0 contain all (co-)variance conditions of shocks in the first block. The

block-recursive structure implies that up1 = B11,0εp1 . If at most one structural shock in the

first block has zero excess kurtosis, it follows from Lanne and Luoto (2021) that the conditions

containing only shocks in the first block

E

f2p1
(B, u)

f4p1
(B, u)

 = 0

locally identify B11 = B11,0, the impact of the shocks in the first block on the variables in the

first block.

Second, let E
[
f2p1p2

(B, u)
]

= 0 contain all covariance conditions belonging to shocks in

both blocks. At the local solution B11 = B11,0, the covariance conditions containing shocks

of both blocks only hold if B21 = B21,0. To see this, rewrite the covariance conditions as

E [ep2(B)ep1(B)′] = 0. With the partitioned inverse of B and the block-recursive structure,

it holds that ep2(B) = −B−1
22 B21B

−1
11 B11,0εp1 + B−1

22 (B21,0εp1 +B22,0εp2). Therefore, with

B11 = B11,0 it holds that

E [ep2(B)ep1(B)′] = −B−1
22 B21E

[
εp1ε

′
p1

]
+B−1

22 B21,0E
[
εp1ε

′
p1

]
+B22,0E

[
εp2ε

′
p1

]
.

With E
[
εp1ε

′
p1

]
= I and E[εp2ε

′
p1 ] = 0, the condition E [ep2(B)ep1(B)′] = 0 implies 0 =

−B−1
22 (B21 −B21,0) at B11 = B11,0. Therefore, at the local solution B11 = B11,0 the covari-

ance conditions E
[
f2p1p2

(B, u)
]
, globally identify B21 = B21,0 the impact of shocks in the first

block on variables in the second block.

Finally, let E[f2p2
(B, u)] = 0 contain all (co-)variance conditions of shocks in the second block.

At the solution B11 = B11,0 and B21 = B21,0 the unmixed innovations of the second block ep2(B)

are mixtures of the structural shocks in the second block and are not influenced by shocks from the

first block. This follows from the partitioned inverse of B and the block-recursive structure such

that ep2(B) = B−1
22 B22,0εp2 . If at most one structural shock in the second block has zero excess
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kurtosis, it then again follows from Lanne and Luoto (2021) that at the solution B11 = B11,0 and

B21 = B21,0 the remaining conditions containing only shocks in the second block

E

f2p2
(B, u)

f4p2
(B, u)

 = 0

locally identify B22 = B22,0, meaning the impact of shocks in the second block on variables in

the second block.

Proof of Proposition 4.2.

To simplify the notation let

ũ1 := [u1, ..., upi−1]′, ẽ1(B) := [e1(B), ..., epi−1(B)]′, ε̃1 := [ε1, ..., εpi−1]′,

ũ2 := [upi , ..., upi+1−1]′, ẽ2(B) := [epi(B), ..., epi+1−1(B)]′, ε̃2 := [εpi , ..., εpi+1−1]′,

ũ3 := [upi+1
, ..., un]′, ẽ3(B) := [epi+1

(B), ..., en(B)]′, ε̃3 := [εpi+1
, ..., εn]′,

such that ũ1, ẽ1(B), and ε̃1 contain all reduce form shocks, unmixed innovations, and structural

shocks in blocks preceding the ith block of Bbrec, ũ2, ẽ2(B), and ε̃2 contain the innovations

and shocks in the i-th block of Bbrec, and ũ3, ẽ3(B), and ε̃3 contain the innovations and shocks

following block i of Bbrec. Moreover, we denote parts of the B0 matrix as follows
ũ1

ũ2

ũ3

 =


B11,0 0 0

B21,0 B22,0 0

B31,0 B32,0 B33,0



ε̃1

ε̃2

ε̃3

 ,

and B11, B21, B31, B22, B32, and B33 denote the respective parts of a given B matrix.

With the block-recursive structure and the partitioned inverse, it holds that

ẽ1(B) = B−1
11 B11,0ε̃1,

ẽ2(B) = −B−1
22 B21B

−1
11 B11,0ε̃1 +B−1

22 (B21,0ε̃1 +B22,0ε̃2) .
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For any matrix B satisfying E
[
f2(B, ut)

]
= 0 and, therefore, 0 = E [ẽ2(B)ẽ1(B)′] it holds that

0 = −B−1
22

(
B21,0 −B21B

−1
11 B11,0

)
B′11,0(B−1

11 )′ and, thus, B21 = B21,0B
−1
11,0B11. Any B Matrix

satisfying the condition 0 = E [ẽ2(B)ẽ1(B)′] thus yields innovations of the second block equal to

ẽ2(B) = B−1
22 B22,0ε̃2, (4.33)

meaning the innovations of the second block are equal to a linear combination of the structural

shocks in the second block. Applying the identification result from Lanne and Luoto (2021) yields

that the conditions E
[
f4p̃i

(B, ut)
]

= 0 locally identify B22,0.

Analogously, with the block-recursive structure and the partitioned inverse it holds that

ẽ3(B) =−B−1
33

[
B31 B32

]B11 0

B21 B22

−1 B11,0 0

B21,0 B22,0

ε̃1

ε̃2


+B−1

33

[B31,0 B32,0

]ε̃1

ε̃2

+B33,0ε̃3

 .

With B21 = B21,0B
−1
11,0B11 it follows that

ẽ3(B) =−B−1
33

[
B31 B32

] B−1
11 0

−B−1
22 B21,0B

−1
11,0B11B

−1
11 B−1

22

B11,0 0

B21,0 B22,0

ε̃1

ε̃2


+B−1

33

[B31,0 B32,0

]ε̃1

ε̃2

+B33,0ε̃3


=−B−1

33

[
B31 B32

] B−1
11 0

−B−1
22 B21,0B

−1
11,0 B−1

22

B11,0 0

B21,0 B22,0

ε̃1

ε̃2


+B−1

33 (B31,0ε̃1 +B32,0ε̃2 +B33,0ε̃3)

=−B−1
33

[
B31B

−1
11 −B32B

−1
22 B21,0B

−1
11,0 B32B

−1
22

]B11,0 0

B21,0 B22,0

ε̃1

ε̃2


+B−1

33 (B31,0ε̃1 +B32,0ε̃2 +B33,0ε̃3) .
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Hence, at B22 = B22,0 the condition E
[
f2(B, ut)

]
= 0 implies 0 = E[ẽ3(B)ẽ2(B)′] and therefore,

0 = B−1
33 (−B32B

−1
22 B22,0 +B32,0)

which implies B32 = B32,0.

4.8.4 Appendix - Redundant and relevant moment conditions in the recursive

SVAR

The proof of Proposition 4.3 requires to verify the redundancy conditions from Breusch et al.

(1999). However, verifying these conditions is a lengthy task. We derive analytical expressions

for the conditions in Appendix 4.9 and summarize them in Lemma 4.15 in Appendix 4.9. The

following proof of Proposition 4.3 uses Lemma 4.9 and 4.15 from Appendix 4.9.

Proof of Proposition 4.3.

In the recursive SVAR, the identifying moment conditions E[fN(B, ut)] only contain second-order

moment conditions and therefore, are referred to as E[f2(B, ut)] in this proof.

Breusch et al. (1999) show that overidentifying moment conditions E[fD(B, ut)] are redundant

w.r.t. the identifying moment conditions E[f2(B, ut)] if and only if

GD = SD2S
−1
2 G2,

where

GD := E

[
∂fD(B0, ut)

∂vec(B)′

]
, G2 := E

[
∂f2(B0, ut)

∂vec(B)′

]
,

S2 := lim
T→∞

E [g2(B0)g2(B0)′] , SD2 := lim
T→∞

E [gD(B0)g2(B0)′] .

Moreover, Breusch et al. (1999) show that overidentifying moment conditions E[fD(B, ut)] are

partially redundant w.r.t. E[f2(B, ut)] for a subset of coefficients b ⊂ vec(B) w.r.t. the moment
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conditions E[f2(B, ut)] if and only if

GbD − SD2S
−1
2 Gb2 =

(
G¬bD − SD2S

−1
2 G¬b2

) ((
G¬b2

)′
S−1
2 G¬b2

)((
G¬b2

)′
S−1
2 Gb2

)
, (4.34)

where

Gb2 := E

[
∂f2(ut, B0)

∂b′

]
, GbD := E

[
∂fD(ut, B0)

∂b′

]
,

G¬b2 := E

[
∂f2(ut, B0)

∂(¬b)′

]
, G−bD := E

[
∂fD(ut, B0)

∂(¬b)′

]
,

and where ¬b denotes all unrestricted elements of B not contained in b. With Lemma 4.9 it

holds that Gbi2
′
S−1
2 G

bj
2 = 0 for i, j ∈ {1, . . . , n} with i 6= j. Therefore, for any vector bi =

[bii, ..., bni] representing the impact of the ith structural shock εi,t it holds that Gbi2
′
S−1
2 G¬bi2 is

zero. Therefore, for any vector bi = [bii, ..., bni] the right hand side of Equation (4.34) is zero and

hence the partial redundancy condition simplifies to

GbiD − SD2S
−1
2 Gbi2 = 0.

The statements then follow from Lemma 4.15.

4.8.5 Appendix - Asymptotic variance of the block-recursive SVAR pGMM esti-

mator

We show how to derive the asymptotic variance of the pGMM estimator, VN+A, based on Remark

3.5 of Cheng and Liao (2015). We first show Lemma 4.1 and then apply the result in Remark 3.5

of Cheng and Liao (2015). Recall that E[fI(B, ut)] and E[fR(B, ut)] denote the sets of invalid

and redundant moment conditions, respectively. Denote E[fU(B, ut)] as moment conditions

either in E[fI(B, ut)] or E[fR(B, ut)] and the number of moment conditions E[fU(B, ut)] by kU.

Similarly, we denote kA as the number of moment conditions in E[fA(B, ut)]. Further, define the

number of unrestricted elements in vec(B) as dB . In the proof of Lemma 4.1, we use the indices

1 ≡ N + A, 2 ≡ (N + A,U), 3 ≡ (U,N + A), and 4 ≡ U to keep notation uncluttered. Let

ι∗ = (ι′,0′kU)′ where ι = (1, . . . , 1)′ is a dB×1 vector, i.e., ι∗′Aι∗ gives the leading dB×dB-upper
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west block of an arbitrary (dB + kU)× (dB + kU) matrix A.

Lemma 4.1.

ι∗′ (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1
ι∗ = VN+A,

where

Γ :=

GN+A 0(kN+kA)×kU

GU −IkU

 , VN+A := MN+ASN+AM
′
N+A

with

MN+A :=
(
G′N+AW

pi
N+AGN+A

)−1

G′N+AW
pi
N+A,

SN+A := lim
T→∞

E [gN+A(B0)gN+A(B0)′] ,

GN+A :=

GN

GA

 ,
W pi

N+A :=
(
WN+A −WN+A,I∪RW

−1
I∪RWI∪R,N+A

)
,

GA := E

[
∂fA(B0, ut)

∂vec(B)′

]
,

WN+D :=

 WN+A WN+A,I∪R,

WI∪R,N+A WI∪R

 ,
WN+A ∈ R(kN+kA)×(kN+kA),

WN+A,I∪R ∈ R(kN+kA)×(kD−kA),

WI∪R,N+A = W ′N+A,I∪R,

WI∪R ∈ R(kD−kA)×(kD−kA).

Proof. Recall that GN+A and GU have dimension (kN + kA) × dB and kU × dB , respectively.

We define

L :=

L1 L2

L3 L4

 := (Γ′WΓ)
−1
.
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Additionally, let

N :=

N1 N2

N3 N4

 := (Γ′WSN+DWΓ) ,

and denote the inverse of W by

W ipi :=

W ipi
1 W ipi

2

W ipi
3 W ipi

4

 := W−1 =

W1 W2

W3 W4

−1

.

Let W pi
1 :=

(
W1 −W2W

−1
4 W3

)
. Then, by the partitioned inverse, W ipi

1 :=
(
W pi

1

)−1

. By similar

arguments as leading to (2.18) in the Online Appendix of Cheng and Liao (2015), we get that

L1 =
(
G′1
(
W1 −W2W

−1
4 W3

)
G1

)−1
=
(
G′1W

pi
1 G1

)−1

and, by using the partitioned inverse formula again, and similar arguments as leading to (2.10),

(2.11) and (2.18) in the Online Appendix of Cheng and Liao (2015), that

L3 = −W−1
4 (−G′1W2 −G′4W4)

′
(
G′1W

pi
1 G1

)−1

=
(
W−1

4 W3G1 +G4

)
L1

= XL1, (4.35)

where we used that W ′4 = W4, W3 = W ′2 and X :=
(
W−1

4 W3G1 +G4

)
. Further, let

H :=

H1 H2

H3 H4

 := WSN+DW,
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where

H1 := W1S1W1 +W2S3W1 +W1S2W3 +W2S4W3

H2 := W1S1W2 +W2S3W2 +W1S2W4 +W2S4W4

H3 := W3S1W1 +W4S3W1 +W3S2W3 +W4S4W3

H4 := W3S1W2 +W4S3W2 +W3S2W4 +W4S4W4.

Note that H3 = H ′2 since W3 = W ′2, W1 = W ′1, W4 = W ′4, S3 = S′2, S1 = S′1 and S4 = S′4. Hence,

similar to (2.11) in the online Appendix of Cheng and Liao (2015),

N1 = G′1H1G1 +G′4H3G1 +G′1H2G4 +G′4H4G4

= G′1H1G1 +G′4H
′
2G1 +G′1H2G4 +G′4H4G4

N2 = −G′1H2 −G′4H4

N3 = N ′2

N4 = H4.

Then,

ι∗′ (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1
ι∗ = ι∗′LNLι∗

= L1N1L1 + L2N3L1 + L1N2L3 + L2N4L3

= L1N1L1 + L′3N3L1 + L1N2L3 + L′3N4L3

(4.35)
= L1N1L1 + L′1X

′N ′2L1 + L1N2XL1 + L′1X
′N4XL1

= L1 (N1 +X ′N ′2 +N2X +X ′N4X)L1, (4.36)

where we used that L′1 = L1, L′3 = L2, and N ′3 = N2.
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Next, define Y := N1 +X ′N ′2 +N2X +X ′N4X. Then, multiplying out gives

Y =G′1H1G1 +G′4H3G1 +G′1H2G4 +G′4H4G4 +
(
G′1W2W

−1
4 +G′4

)
(−H ′2G1 −H ′4G4)

+ (−G′1H2 −G′4H4)
(
W−1

4 W ′2G1 +G4

)
+
(
G′1W2W

−1
4 +G′4

)
H4

(
W−1

4 W ′2G1 +G4

)
=G′1W2W

−1
4 H4W

−1
4 W ′2G1 +G′1H1G1 −G′1W2W

−1
4 H ′2G1 −G′1H2W

−1
4 W ′2G1

=G′1
(
W2W

−1
4 H4W

−1
4 W ′2 +H1 −W2W

−1
4 H ′2 −H2W

−1
4 W ′2

)
G1

=G′1
(
W2W

−1
4 W3S1W2W

−1
4 W3 +W1S1W1 −W2W

−1
4 W3S1W1 −W1S1W2W

−1
4 W3

)
G1

=G′1
(
W1 −W2W

−1
4 W3

)
S1

(
W1 −W2W

−1
4 W3

)
G1

=G′1W
pi
1 S1W

pi
1 G1 (4.37)

Plugging (4.37) into (4.36), we obtain

ι∗′ (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1
ι∗

= L1

(
G′1W

pi
1 S1W

pi
1

)
G1L1

=
(
G′1W

pi
1 G1

)−1 (
G′1W

pi
1 S1W

pi
1 G1

)(
G′1W

pi
1 G1

)−1

=
(
G′N+AW

pi
N+AGN+A

)−1 (
G′N+AW

pi
N+ASN+AW

pi
N+AGN+A

)(
G′N+AW

pi
N+AGN+A

)−1

which was to show.

Note that in the following proposition, we treat the number of valid and relevant moment con-

ditions, kA, and the number of invalid moment conditions, kI, as fixed constants to keep our

asymptotic results for the pGMM estimator in line with the asymptotic results for the block-

recursive SVAR GMM estimator in Equation (4.19). Cheng and Liao (2015) allow both kA and

kI to increase with the sample size. However, their results also hold when the number of moment

conditions is fixed.

Proposition 4.4. Assume that the Assumptions in Theorem 3.3 of Cheng and Liao (2015) hold.

Further, assume that E
[
∂fA(B0,ut)
∂vec(B)′

]
= ∂E[fA(B0,ut)]

∂vec(B)′ and Assumption 4.1 and 4.2 hold. Then,

√
T
(
vec(B̂N+D)− vec(B0)

)
d→ N (0, VN+A)
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Proof. Define ΣCL := (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1

and γ =
(
ν′,0′kU

)′
where ν ∈ RdB

is an arbitrary vector. Then, by Remark 3.5 of Cheng and Liao (2015),

∣∣∣∣∣∣Σ1/2
CL γ

∣∣∣∣∣∣−1√
Tν′

(
vec(B̂N+D)− vec(B0)

)
d→ N (0, 1),

where ||a|| :=
√
a′a is the `2-norm of an arbitrary vector a.

Note that Lemma 4.1 immediately implies
∣∣∣∣∣∣Σ1/2

CLγ
∣∣∣∣∣∣ =

√
γ′ΣCLγ =

√
ν′VN+A(W )ν. Hence,

∣∣∣∣∣∣VN+A(W )1/2ν
∣∣∣∣∣∣−1√

Tν′
(
vec(B̂N+D)− vec(B0)

)
d→ N (0, 1),

where VN+A(W ) is the asymptotic variance of vec(B̂N+D) since it holds that

ν∗′VN+A(W )ν∗ =
∣∣∣∣∣∣VN+A(W )1/2ν

∣∣∣∣∣∣−2

ν′VN+A(W )ν = 1

where ν∗ :=
∣∣∣∣VN+A(W )1/2ν

∣∣∣∣−1
ν.

Consequently, using the Cramér-Wold device, we get

√
T
(
vec(B̂N+D)− vec(B0)

)
d→ N (0, VN+A).

4.8.6 Appendix - Choice of maximum λ in the cross-validation

In the following, we illustrate how to choose the maximum value of λ in the cross-validation.

Define the loss function of the pGMM estimator as

L∗(B, β) := L(B, β) + λ
∑
i∈D̃

ωi |βi|, (4.38)

where L(B, β) :=

 gN(B)

gD(B, β)

′W
 gN(B)

gD(B, β)

.

Further, let z ∈ ∂||β||1, where z ∈ RkD , denote the subgradient for the `1-norm evaluated at β,
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i.e.,

zi = sign(βi), ifβi 6= 0,

zi ∈ [−1, 1], ifβi = 0, (4.39)

for i = 1, . . . , kD (Wainwright, 2009). Then, the first order condition of the pGMM estimator

with respect to βi, i = 1, . . . , kD, evaluated at β and B is

∂L∗(B, β)

∂βi
=
∂L(B, β)

∂βi
+ λωi zi = 0 (4.40)

Note that ωi ≥ 0. However, if ωi = 0, βi is not penalized and therefore, we only consider

i ∈ P̃ := {j ∈ D̃| ωj > 0} for which, by definition, ωi > 0 when choosing the maximum value

of λ in the cross-validation. By (4.39) and (4.40), β = 0 = (0, . . . , 0)′ and B = B0 minimize the

loss function in (4.38) only if

1

ωi

∂L(B0,0)

∂βi
∈ λ[−1, 1],

for i ∈ P̃ . Thus,

max
i∈P̃

∣∣∣∣ 1

ωi

∂L(B0,0)

∂βi

∣∣∣∣ ≤ λ.
This motivates us to use

λmax = max
i∈P̃

∣∣∣∣ 1

ωi

∂L(B0,0)

∂βi

∣∣∣∣ .
as the largest value in the cross-validation. Note that any λ > λmax would not have an effect

on β as λmax already shrinks all elements of β to zero. In practice, we replace B0 and ωi by

consistent estimators to obtain λmax. Furthermore, we consider a weight ωj to be positive and

hence, j ∈ P̃ , if ωj/
∑
k∈D̃ ωk > 10−4.
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4.9 Appendix - Details on Proof of Proposition 4.3

4.9.1 Appendix - Notation and preparations part 1

Consider a recursive SVAR u = B0ε with independent structural shocks with mean zero and

unit variance. Let A := B−1
0 and aql [bql] denote the element at row q and column l of A

[B0]. Moreover, let ωi2 := ωii := E
[
ε2i
]
, ωi3 := ωiii := E

[
ε3i
]
, and ωi4 := ωiiii := E

[
ε4i
]

for

i = 1, . . . , n. Throughout the appendix, the superscript (∗) indicates that the equality follows from

e(B0) = ε with ε being mutually independent with mean zero and unit variance. Additionally,

the superscript (∗∗) indicates that the equality follows from B0 and hence A0 being recursive.

We divide the variance-covariance conditions E[f2(B, ut)] into a set of variance conditions

E[f2M
(B, ut)] := E


e(B)2

1,t − 1
...

e(B)2
n,t − 1

 , (4.41)

and n− 1 sets of covariance conditions E[f2C1
(B, ut)], . . . , E[f2Cn−1

(B, ut)] where

E[f2Ci
(B, ut)] := E


e(B)i,te(B)i+1,t

...

e(B)i,te(B)n,t

 , for i = 1, . . . , n− 1. (4.42)

We divide the coskewness conditions E[f3(B, ut)] into n subsets

E[f3ii
(B, ut)] := E



e(B)1,te(B)2
i,t

...

e(B)i−1,te(B)2
i,t

e(B)2
i,te(B)i+1,t

...

e(B)2
i,te(B)n,t


, for i = 1, . . . , n, (4.43)

and one additional subset E[f3rest(B, ut)] containing all remaining coskewness conditions of
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E[f3(B, ut)] not contained in a subset E[f3ii
(B, ut)], which are all coskewness conditions of

the type E[e(B)i,te(B)j,te(B)k,t] with i 6= j 6= k.

We divide the cokurtosis conditions E[f4(B, ut)] into n subsets

E[f4ii
(B, ut)] = E



e(B)1,te(B)3
i,t

...

e(B)i−1,te(B)3
i,t

e(B)3
i,te(B)i+1,t

...

e(B)3
i,te(B)n,t


, for i = 1, . . . , n, (4.44)

n− 1 subsets

E[f4iii
(B, ut)] = E


e(B)2

i,te(B)2
i+1,t

...

e(B)2
i,te(B)2

n,t

 , for i = 1, . . . , n− 1, (4.45)

and one additional subset E[f4rest(B, ut)] containing all remaining cokurtosis conditions of

E[f4(B, ut)] not contained in a subset E[f4ii
(B, ut)] or E[f4iii

(B, ut)], which are all cokurto-

sis conditions of the type E[e(B0)ie(B0)je(B0)ke(B0)l] and E[e(B0)2
i e(B0)je(B0)k] with i 6= j 6=

k 6= l.

Throughout the Appendix, we will use the following lemmata.

Lemma 4.2. The derivative of the i-th element of the unmixed innovations at B0 with respect

to an element bpq is given by

∂eit(B0)

∂bpq
=

−aipεqt, if i ≥ p

0, else

. (4.46)
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Proof.

∂et(B0)

∂bpq
=
∂B−1

0

∂bpq
ut (4.47)

=

(
−B−1

0

∂B0

∂bpq
B−1

0

)
ut (4.48)

= −B−1
0

∂B0

∂bpq
B−1

0 B0εt (4.49)

= −B−1
0

∂B0

∂bpq
εt (4.50)

= −A0
∂B0

∂bpq


ε1t
...

εnt

 (4.51)

= −


a1p

...

anp

 εqt recursive SVAR
= −



0
...

0

app
...

anp


εqt (4.52)

Lemma 4.3. For i = 1, . . . , n− 1 and j = 1, . . . , n let

G
bj:,j
2 :=

[
G
bj:,j
2M

, G
bj:,j
2C1

, . . . , G
bj:,j
2Cn−1

]′
(4.53)

with

G
bj:,j
2M

:= E

[
∂f2M

(ut, B0)

∂ (bjj , . . . , bnj)
′

]
, (4.54)

G
bj:,j
2Ci

:= E

[
∂f2Ci

(ut, B0)

∂ (bjj , . . . , bnj)
′

]
. (4.55)
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Then

G
bj:,j
2M

= −2


0(j−1)×(n−j+1)

ajj . . . ajn

0(n−j)×(n−j+1)


︸ ︷︷ ︸

n×(n−j+1)

= −2


0(j−1)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

n×(n−j+1)

(4.56)

and

G
bj:,j
2Ci

= 0(n−i)×(n−j+1), for i 6= j, (4.57)

G
bi:,i
2Ci

= −


ai+1,i ai+1,i+1 0

...
. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−i)×(n−i+1)

. (4.58)

Proof. Equation (4.56): The (q,r)-th entry of G
bj:,j
2Ci

is equal to

G
bj:,j
2Ci

(q, r) = E

[
∂(e(B0)2

q − 1)

∂bj+r−1,j

]
(∗)
=

−2aq,j+r−1, if q = j

0, else

. (4.59)

Equation (4.57) and (4.58): The (q,r)-th entry of G
bj:,j
2Ci

is equal to

G
bj:,j
2Ci

(q, r) = E

[
∂(e(B0)ie(B0)i+q)

∂bj+r−1,j

]
(∗)
=


−ai+q,j+r−1, if j = i

−ai,j+r−1
(∗∗)
= 0, if j = (i+ q)

0, else

. (4.60)
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Lemma 4.4. For i, j = 1, . . . , n let

G
bj:,j
3ii

:= E

[
∂f3ii

(ut, B0)

∂ (bjj , . . . , bnj)
′

]
, (4.61)

G
vec(B)
3rest

:= E

[
∂f3rest(ut, B0)

∂vec(B)′

]
. (4.62)

Then

G
bj:,j
3ii

= 0(n−1)×(n−j+1), for i 6= j, (4.63)

G
bi:,i
3ii

= −ωiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
...

. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

, (4.64)

and

G
vec(B)
3rest

= 0. (4.65)

Proof. Equation (4.63): The (q,r)-th entry of G
bj:,j
3ii

with q < i is equal to

G
bj:,j
3ii

(q, r) = E

[
∂(e(B0)2

i e(B0)q)

∂bj+r−1,j

]
=


−aq,j+r−1ωiii, j = i, q ≥ r + i− 1

−aq,j+r−1ωiii
(∗∗)
= 0, j = i, q < r + i− 1

0, else

(4.66)

and the (q,l)-th entry of G
bj:,j
3ii

with q ≥ i is equal to

G
bj:,j
3ii

(q, r) = E

[
∂(e(B0)2

i e(B0)q+1)

∂bj+r−1,j

]
=


−aq+1,j+r−1ωiii, j = i, q ≥ r + i− 1

−aq+1,j+r−1ωiii
(∗∗)
= 0, j = i, q < r + i− 1

0, else

. (4.67)
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Every element in G
vec(B)
3rest

can be written as E[
∂(e(B)a,te(B)b,te(B)c,t)

∂bq,l
] for some a, b, c ∈ {1, . . . , n}

with a 6= b 6= c. Equation (4.65) follows with Lemma 4.2, e(B0) = ε, and independence and mean

zero of εt.

Lemma 4.5. Let

G
bj:,j
4ii

:= E

[
∂f4ii

(ut, B0)

∂ (bjj , . . . , bnj)
′

]
, for i = 1, . . . , n− 1, j = 1, . . . , n, (4.68)

G
bj:,j
4iii

:= E

[
∂f4iii

(ut, B0)

∂ (bjj , . . . , bnj)
′

]
, for i, j = 1, . . . , n, (4.69)

G
vec(B)
4rest

:= E

[
∂f4rest(ut, B0)

∂vec(B)′

]
. (4.70)

Then

G
bi:,i
4ii

= −2


aii ain

aii ain


︸ ︷︷ ︸
(n−i)×(n−i+1)

= −2


aii

0(n−i)×(n−j)

aii


︸ ︷︷ ︸

(n−i)×(n−i+1)

, (4.71)

G
bj:,j
4ii

= 0(n−i)×(n−j+1), for i > j, (4.72)

G
bj:,j
4ii

= −2


0(j−i−1)×(n−j+1)

ajj . . . ajn

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

= −2


0(j−i−1)×(n−j+1)

ajj 0(1)×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

, for i < j, (4.73)
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and

G
bi:,i
4iii

= −ωiiii



a1i a1n

ai−1,i ai−1,n

ai+1,i ai+1,n

ani ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

= −ωiiii



0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
...

. . .

ani . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

, (4.74)

G
bj:,j
4iii

= −3


0(j−1)×(n−j+1)

aij . . . ain

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

(4.75)

= −3


0(j−1)×(n−j+1)

aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

, for i > j, (4.76)

G
bj:,j
4iii

= −3


0(j−1−1)×(n−j+1)

aij . . . ain

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

= 0(n−1)×(n−j+1), for i < j, (4.77)

and

G
vec(B)
4rest

= 0. (4.78)
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Proof. Equation (4.71), (4.72), and (4.73): The (q,r)-th entry of G
bj:,j
4ii

is equal to

G
bj:,j
4ii

(q, r) = E

[
∂(e(B0)2

i e(B0)2
i+q − 1)

∂bj+r−1,j

]
(∗)
=



−2ai,j+r−1, if j = i, r = 1

−2ai,j+r−1
(∗∗)
= 0, if j = i, r 6= 1

−2ai+q,j+r−1, if j = i+ q, r = 1

−2ai+q,j+r−1
(∗∗)
= 0, if j = i+ q, r 6= 1

0, else

. (4.79)

Equation (4.74), (4.75), and (4.77): The (q,r)-th entry of G
bj:,j
4iii

with q < i is equal to

G
bj:,j
4iii

(q, r) = E

[
∂(e(B0)3

i e(B0)q)

∂bj+r−1,j

]
(∗)
=



−aq,j+r−1ωiiii
(∗∗)
= 0, if j = i

−3ai,j+r−1, if j = q, r ≤ i− j + 1

−3ai,j+r−1
(∗∗)
= 0, if j = q, r > i− j + 1

0, else

. (4.80)

The (q,r)-th entry of P ji with q ≥ i is equal to

G
bj:,j
4iii

(q, r) = E

[
∂(e(B0)3

i e(B0)q+1)

∂bj+r−1,j

]
(∗)
=



−aq+1,j+r−1ωiiii, if j = i, q − r ≥ j − 2

−aq+1,j+r−1ωiiii
(∗∗)
= 0, if j = i, q − r < j − 2

−3ai,j+r−1, if j = q + 1

0, else

.

(4.81)

Equation (4.78) follows analogously to Equation (4.65).
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Lemma 4.6. The matrix S2 = E [f2(ut, B0)f2(ut, B0)′] can be written as

S2 =

 S2M S2M2C

S2C2M S2C

 , with

S2M := E [f2M (ut, B0)f2M (ut, B0)′] ,

S2M2C := E [f2M (ut, B0)f2C (ut, B0)′] ,

S2C2M := E [f2C (ut, B0)f2M (ut, B0)′] ,

S2C := E [f2C (ut, B0)f2C (ut, B0)′] ,

(4.82)

and

S2M =


ω1111 − 1 0

. . .

0 ωnnnn − 1


︸ ︷︷ ︸

n×n

, (4.83)

S2M2C = 0n×n(n−1), (4.84)

S2C2M = 0n(n−1)×n, (4.85)

S2C = In(n−1)×n(n−1). (4.86)

Therefore, S2 is equal to

S2 =


ω1111 − 1 0

. . . 0n×n(n−1)

0 ωnnnn − 1

0n(n−1)×n In(n−1)×n(n−1)

 . (4.87)

Proof. Equation (4.83), (4.84), (4.86), and (4.87): The (q,r)-th entry of S2M is equal to

S2M (q, r) = E
[
(e(B0)2

q − 1)(e(B0)2
r − 1)

] (∗)
=

ωqqqq − 1, if q = r

0, else

. (4.88)

Any entry of S2M2C can be written as

E
[
(e(B0)2

a − 1)(e(B0)be(B0)c)
] (∗)

= 0 (4.89)
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for some a, b, c ∈ {1, . . . , n} with b 6= c. Any entry of S2C2C can be written as

E [(e(B0)ae(B0)b)(e(B0)ce(B0)d)]
(∗)
=

1, if a = c, b = d

0, else

, (4.90)

for some a, b, c, d ∈ {1, . . . , n} with a 6= b and c 6= d. The case a = c and b = d occurs at the

diagonal of S2C2C .

Lemma 4.7. For i = 1, . . . , n and j = 1, . . . , n− 1 let

S3ii2 =
[
S3ii2M

S3ii2C1
. . . S3ii2Cn−1

]
, (4.91)

S3rest2 =
[
S3rest2M

S3rest2C1
. . . S3rest2Cn−1

]
(4.92)

with

S3ii2M
:= E [f3ii

(ut, B0)f2M
(ut, B0)′] , (4.93)

S3ii2Cj
:= E

[
f3ii

(ut, B0)f2Cj
(ut, B0)′

]
, (4.94)

S3rest2M
:= E [f3rest(ut, B0)f2M

(ut, B0)′] , (4.95)

S3rest2Cj
:= E

[
f3rest(ut, B0)f2Cj

(ut, B0)′
]
, (4.96)

and

S3ii2M
=



ω111 0 0

. . . 0 0(n−i)×(n−i)

0 ω(i−1)3 0

0 ω(i+1)3 0

0(i−1)×(i−1) 0
. . .

0 0 ωnnn


︸ ︷︷ ︸

(n−1)×(n)

(4.97)
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and

S3ii2Ci
= ωiii

0(i−1)×(n−i)

I(n−i)×(n−i)


︸ ︷︷ ︸

(n−1)×(n−j)

, for i = 1, . . . , n− 1, (4.98)

S3ii2Cj
= 0(n−1)×(n−j), for i < j, (4.99)

S3ii2Cj
= ωiii


0(j−1)×(n−j)

01×(i−j−1) 1 01×(n−i)

0(n−j−1)×(n−j)


︸ ︷︷ ︸

(n−1)×(n−j)

, for i > j, (4.100)

and

S3rest2 = 0. (4.101)

Proof. Equation (4.97): The (q,r)-th entry of S3ii2M
with q < i is equal to

S3ii2M
(q, r) = E

[
(e(B0)2

i e(B0)q)(e(B0)2
r − 1)

] (∗)
=

ωqqq, if r = q

0, else

(4.102)

and the (q,r)-th entry of S3ii2M
with q ≥ i is equal to

S3ii2M
(q, r) = E

[
(e(B0)2

i e(B0)q+1)(e(B0)2
r − 1)

] (∗)
=

ω(q+1)3 , if r = q + 1

0, else

. (4.103)

Equation (4.98), (4.99) and (4.100): The (q,r)-th entry of S3ii2Cj
with q < i is equal to

S3ii2Cj
(q, l) = E

[
(e(B0)2

i e(B0)q)(e(B0)je(B0)j+r)
] (∗)

=

ωiii, if i = j + r, j = q

0, else

(4.104)
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and the (q,r)-th entry of S3ii2Cj
with q ≥ i is equal to

S3ii2Cj
(q, l) = E

[
(e(B0)2

i e(B0)q+1)(e(B0)je(B0)j+r)
] (∗)

=

ωiii, if i = j, q + 1 = j + r

0, else

.

(4.105)

Equation (4.101) holds, since every moment condition in E[f3rest(ut, B0)f2M (ut, B0)′] can be

written as

E
[
(e(B0)ae(B0)be(B0)c)(e(B0)2

d − 1)
]

(4.106)

for some a, b, c, d = {1, . . . , n} and a 6= b 6= c, which implies

E
[
(e(B0)ae(B0)be(B0)c)(e(B0)2

d − 1)
]

= 0 by independence and mean zero of ε.

Lemma 4.8. Let

S4ii2 =
[
S4ii2M

S4ii2C1
. . . S4ii2Cn−1

]
, for i = 1, . . . , n− 1, (4.107)

S4iii2 =
[
S4iii2M

S4iii2C1
. . . S4iii2Cn−1

]
, for i = 1, . . . , n, (4.108)

S4rest2 =
[
S4rest2M

S4rest2C1
. . . S4rest2Cn−1

]
(4.109)

with

S4ii2M
:= E [f4ii

(ut, B0)f2M (ut, B0)′] , for i = 1, . . . , n− 1, (4.110)

S4ii2Cj
:= E

[
f4ii

(ut, B0)f2Cj (ut, B0)′
]
, for i, j = 1, . . . , n− 1, (4.111)

S4iii2M
:= E [f4iii

(ut, B0)f2M (ut, B0)′] , for i = 1, . . . , n, (4.112)

S4iii2Cj
:= E

[
f4iii

(ut, B0)f2Cj (ut, B0)′
]
, for j = 1, . . . , n− 1, i = 1, . . . , n, (4.113)

S4rest2M
:= E [f4rest(ut, B0)f2M (ut, B0)′] , (4.114)

S4rest2Cj
:= E

[
f4rest(ut, B0)f2Cj (ut, B0)′

]
, for j = 1, . . . , n− 1, (4.115)
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and

S4ii2M
=


ωiiii − 1 ω(i+1)4 − 1 0

0(n−i)×(i−1)

...
. . .

ωiiii − 1 0 ωnnnn − 1


︸ ︷︷ ︸

(n−i)×(n)

, (4.116)

S4iii2M
= ωiii



ω111 0 0

. . . 0 0(n−i)×(n−i)

0 ω(i−1)3 0

0 ω(i+1)3 0

0(i−1)×(i−1) 0
. . .

0 0 ωnnn


︸ ︷︷ ︸

(n−1)×(n)

, (4.117)

and

S4ii2Ci
= ωiii


ω(i+1)3 0

. . .

0 ωnnn


︸ ︷︷ ︸

(n−i)×(n−i)

, (4.118)

S4ii2Cj
= 0(n−i)×(n−j), for i 6= j, (4.119)

S4iii2Ci
= ωiiii

0(i−1)×(n−j)

I(n−i)×(n−j)


︸ ︷︷ ︸

(n−1)×(n−i)

, (4.120)

S4iii2Cj
= 0(n−1)×(n−j), for i < j, (4.121)

S4iii2Cj
= ωiiii


0(j−1)×(n−j)

01×(i−j−1) 1 01×(n−i)

0(n−j−1)×(n−j)


︸ ︷︷ ︸

(n−1)×(n−j)

, for i > j, (4.122)
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and

S4rest2 = 0. (4.123)

Proof. Equation (4.116): The (q,r)-th entry of S4ii2M
is equal to

S4ii2M
(q, r) = E

[
(e(B0)2

i e(B0)2
i+q − 1)(e(B0)2

r − 1)
]

(4.124)

(∗)
=


ωiiii − 1, if r = i

ω(i+q)4 − 1, if r = i+ q

0, else

. (4.125)

Equation (4.117): The (q,r)-th entry of S4iii2M
with q < i is equal to

S4iii2M
(q, r) = E

[
(e(B0)3

i e(B0)q)(e(B0)2
r − 1)

] (∗)
=

ωiiiωqqq, if r = q

0, else

(4.126)

and the (q,r)-th entry of SS4iii2M
with q ≥ i is equal to

S4iii2M
(q, r) = E

[
(e(B0)3

i e(B0)q+1)(e(B0)2
r − 1)

] (∗)
=

ωiiiω(q+1)3 , if r = q + r

0, else

. (4.127)

Equation (4.118) and (4.119): The (q,r)-th entry of S4ii2Cj
is equal to

S4ii2Cj
(q, r) = E

[
(e(B0)2

i e(B0)2
i+q − 1)(e(B0)je(B0)j+r)

] (∗)
=


0, if i 6= j

ωiiiω(i+q)3 , if i = j, q = r

0, if i = j, q 6= r

.

(4.128)
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Equation (4.120), (4.121), and (4.122): The (q,r)-th entry of S4iii2Cj
with q < i is equal to

S4iii2Cj
(q, r) = E

[
(e(B0)3

i e(B0)q)(e(B0)je(B0)j+r)
] (∗)

=



0, if i < j

ωiiii, if i = j, q = j + r (∗∗∗)

0, if i = j, q 6= j + r

ωiiii, if i > j, q = j

0, if i > j, q 6= j

(4.129)

and note that for q < i the case (∗∗∗) never occurs since i > q = j + r = i + r implies r < 0.

Moreover, the (q,r)-th entry of S4iii2Cj
with q ≥ i is equal to

S4iii2Cj
(q, r) = E

[
(e(B0)3

i e(B0)q+1)(e(B0)je(B0)j+r)
] (∗)

=



0, if i < j

ωiiii, if i = j, q + 1 = j + r

0, if i = j, q + 1 6= j + r

ωiiii, if i > j, q + 1 = j (∗∗∗)

0, if i > j, q + 1 6= j

(4.130)

and note that for q ≥ i the case (∗∗∗) never occurs since q + 1 = j < i ≤ q implies 1 < 0.

Equation (4.123)) holds, since every moment condition in E[f4rest(ut, B)f2Cj (ut, B0)′] can be

written as

E [(e(B0)ae(B0)be(B0)c)(e(B0)de(B0)f )] (4.131)

a, b, c, d, f = {1, . . . , n} and a 6= b 6= c, which implies E [(e(B0)ae(B0)be(B0)c)(e(B0)de(B0)f )] =

0 by independence and mean zero of ε.
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4.9.2 Appendix - Preparations part 2

Lemma 4.9. For bpq and bp̃q̃ with p, q, p̃, q̃ ∈ {1, . . . , n} and p ≥ q and p̃ ≥ q̃ and q 6= q̃ it holds

that

(G
bpq
2 )′S−1

2 G
bp̃q̃
2 = 0. (4.132)

Proof. For bpq and bp̃q̃ with p, q, p̃, q̃ ∈ {1, . . . , n} and p ≥ q and p̃ ≥ q̃ and q 6= q̃ it holds that

(G
bpq
2 )′S−1

2 G
bp̃q̃
2 = (G

bpq
2M

)′S−1
2 G

bp̃q̃
2M

+

n−1∑
i=1

(G
bpq
2Ci

)′S−1
2 G

bp̃q̃
2Ci

. (4.133)

The statement then follows by plugging in Equation (4.56), (4.57), and (4.58).

With Lemma 4.9 it holds that Gbi2
′
S−1
2 G

bj
2 = 0 for i, j ∈ {1, . . . , n} with i 6= j. Therefore, for

any vector bi = [bii, . . . , bni] representing the impact of the i-th structural shock εi,t it holds that

Gbi2
′
S−1
2 G¬bi2 is zero. Therefore, for any vector bi = [bii, . . . , bni] the right hand side of Equation

(4.34) is zero and hence Equation (4.34) simplifies to

GbiD − SD2S
−1
2 Gbi2 = 0. (4.134)

The following Lemmas yield analytic expressions for SD2S
−1
2 Gbi2 in Equation (4.134).

Lemma 4.10. For i, j = 1, . . . , n it holds that
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S3ii2M
S−1
2M
G
bj:,j
2M

= −2
1

ωjjjj − 1
(4.135)

×



ω111 0 0

. . . 0 0(n−i)×(n−i)

0 ω(i−1)3 0

0 ω(i+1)3 0

0(i−1)×(i−1) 0
. . .

0 0 ωnnn


︸ ︷︷ ︸

(n−1)×(n)

×


0(j−1)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

n×(n−j+1)

.

For i = j

S3ii2M
S−1
2M
G
bj:,j
2M

= On−1×n−j+1. (4.136)

For i < j

S3ii2M
S−1
2M
G
bj:,j
2M

= − 2ωjjj
ωjjjj − 1


0(j−2)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

. (4.137)
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For i > j

S3ii2M
S−1
2M
G
bj:,j
2M

= − 2ωjjj
ωjjjj − 1


0(j−1)×(n−j+1)

ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

. (4.138)

Furthermore, for i = j

S3ii2Ci
G
bi:,i
2Ci

= −ωiii

0(i−1)×(n−i)

I(n−i)×(n−i)


︸ ︷︷ ︸

(n−1)×(n−i)


ai+1,i ai+1,i+1 0

...
. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−i)×(n−i+1)

(4.139)

= −ωiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
...

. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

. (4.140)

For i < j

S3ii2Cj
G
bj:,j
2Cj

= 0(n−1)×(n−j)


aj+1,j aj+1,j+1 0

...
. . .

anj an,j+1 . . . ann


︸ ︷︷ ︸

(n−j)×(n−j+1)

= 0(n−1)×(n−j+1). (4.141)
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For i > j

S3ii2Cj
G
bj:,j
2Cj

= −ωiii


0(j−1)×(n−j)

01×(i−j−1) 1 01×(n−i)

0(n−j−1)×(n−j)


︸ ︷︷ ︸

(n−1)×(n−j)


aj+1,j aj+1,j+1 0

...
. . .

anj an,j+1 . . . ann


︸ ︷︷ ︸

(n−j)×(n−j+1)

(4.142)

= −ωiii


0(j−1)×(n−j+1)

aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

. (4.143)

Proof. Follows from Lemma 4.3, Lemma 4.6, and Lemma 4.7 and simple matrix algebra.

Lemma 4.11. For i = 1, . . . , n and j = 1, . . . , n− 1 it holds that

S4iii2M
S−1
2M
G
bj:,j
2M

= −2
ωiii

ωjjjj − 1
(4.144)

×



ω111 0 0

. . . 0 0(n−i)×(n−i)

0 ω(i−1)3 0

0 ω(i+1)3 0

0(i−1)×(i−1) 0
. . .

0 0 ωnnn


︸ ︷︷ ︸

(n−1)×(n)

×


0(j−1)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

n×(n−j+1)

.
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For i = j

S4iii2M
S−1
2M
G
bj:,j
2M

= On−1×n−j+1. (4.145)

For i < j

S4iii2M
S−1
2M
G
bj:,j
2M

= − 2ωjjjωiii
ωjjjj − 1


0(j−2)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

. (4.146)

For i > j

S4iii2M
S−1
2M
G
bj:,j
2M

= − 2ωjjjωiii
ωjjjj − 1


0(j−1)×(n−j+1)

ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

. (4.147)

Furthermore, for i = j

S4iii2Ci
G
bi:,i
2Ci

= −ωiiii

0(i−1)×(n−i)

I(n−i)×(n−i)


︸ ︷︷ ︸

(n−1)×(n−i)


ai+1,i ai+1,i+1 0

...
. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−i)×(n−i+1)

(4.148)

= −ωiiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
...

. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

. (4.149)
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For i < j

S4iii2Cj
G
bj:,j
2Cj

= 0(n−1)×(n−j)


aj+1,j aj+1,j+1 0

...
. . .

anj an,j+1 . . . ann


︸ ︷︷ ︸

(n−j)×(n−j+1)

= 0(n−1)×(n−j+1). (4.150)

For i > j

S4iii2Cj
G
bj:,j
2Cj

= −ωiiii


0(j−1)×(n−j)

01×(i−j−1) 1 01×(n−i)

0(n−j−1)×(n−j)


︸ ︷︷ ︸

(n−1)×(n−j)


aj+1,j aj+1,j+1 0

...
. . .

anj an,j+1 . . . ann


︸ ︷︷ ︸

(n−j)×(n−j+1)

(4.151)

= −ωiiii


0(j−1)×(n−j+1)

aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

. (4.152)

For i = 1, . . . , n− 1 and j = 1, . . . , n− 1

S4ii2M
S−1
2M
G
bj:,j
2M

= −2
1

ωjjjj − 1
(4.153)

×


ωiiii − 1 ω(i+1)4 − 1 0

0(n−i)×(i−1)

...
. . .

ωiiii − 1 0 ωnnnn − 1


︸ ︷︷ ︸

(n−i)×(n)

×


0(j−1)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

n×(n−j+1)

.
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For i = j

S4ii2M
S−1
2M
G
bj:,j
2M

= −2
ωiiii − 1

ωiiii − 1


ajj

0(n−i)×(n−j)

ajj


︸ ︷︷ ︸

(n−i)×(n−j+1)

= −2


ajj

0(n−i)×(n−j)

ajj


︸ ︷︷ ︸

(n−i)×(n−j+1)

. (4.154)

For i < j

S4ii2M
S−1
2M
G
bj:,j
2M

= −2
ωjjjj − 1

ωjjjj − 1


0(j−i−1)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

= −2


0(j−i−1)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

.

(4.155)

For i > j

S4ii2M
S−1
2M
G
bj:,j
2M

= 0(n−i)×(n−j+1). (4.156)

Furthermore,

S4ii2Ci
G
bi:,i
2Ci

= −ωiii


ω(i+1)3 0

. . .

0 ωnnn


︸ ︷︷ ︸

(n−i)×(n−i)


ai+1,i ai+1,i+1 0

...
. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−i)×(n−i+1)

(4.157)

= −ωiii


ai+1,iω(i+1)3 ai+1,i+1ω(i+1)3 0

...
. . .

aniωnnn an,i+1ωnnn . . . annωnnn


︸ ︷︷ ︸

(n−i)×(n−i+1)

. (4.158)

Proof. Follows from Lemma 4.3, Lemma 4.6, and Lemma 4.8 and simple matrix algebra.
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Lemma 4.12. For i, j = 1, . . . , n and i = j

G
bj:,j
3ii
− S3ii2S

−1
2 G

bj:,j
2 = −ωiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
...

. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

(4.159)

+ ωiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
...

. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

= 0(n−1)×(n−i+1). (4.160)

For i, j = 1, . . . , n and i < j

G
bj:,j
3ii
− S3ii2S

−1
2 G

bj:,j
2 =

2ωjjj
ωjjjj − 1


0(j−2)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

. (4.161)

For i, j = 1, . . . , n and i > j

G
bj:,j
3ii
− S3ii2S

−1
2 G

bj:,j
2 =

2ωjjj
ωjjjj − 1


0(j−1)×(n−j+1)

ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

(4.162)

+ ωiii


0(j−1)×(n−j+1)

aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.
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Proof. For i, j = 1, . . . , n let

W
bj:,j
3ii

:= S3ii2S
−1
2 G

bj:,j
2 . (4.163)

Then, for i = 1, . . . , n− 1

W
bi:,i
3ii

= −ωiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
...

. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

, (4.164)

for i = n

W
bi:,i
3ii

= 0(n−1)×1, (4.165)

for i < j

W
bj:,j
3ii

= − 2ωjjj
ωjjjj − 1


0(j−2)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

, (4.166)

for i > j

W
bj:,j
3ii

= − 2ωjjj
ωjjjj − 1


0(j−1)×(n−j+1)

ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

−ωiii


0(j−1)×(n−j+1)

aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

(4.167)
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Moreover, it holds that

W
bj:,j
3ii

=
[
S3ii2M

, S3ii2C1
, . . . , S3ii2Cn−1

]S2M
0

0 In(n−1)×n(n−1)

−1 [
G
bj:,j
2M

, G
bj:,j
2C1

, . . . , G
bj:,j
2Cn−1

]′
(4.168)

= S3ii2M
S−1
2M
G
bj:,j
2M

+

n−1∑
q=1

S3ii2Cq
G
bj:,j
2Cq

. (4.169)

From Lemma 4.3 it follows that G
bj:,j
2Cq

= 0 for i 6= j and, hence, for i = 1, . . . , n, j = 1, . . . , n− 1

W
bj:,j
3ii

= S3ii2M
S−1
2M
G
bj:,j
2M

+ S3ii2Cj
G
bj:,j
2Cj

(4.170)

and for j = n

W
bj:,j
3ii

= S3ii2M
S−1
2M
G
bj:,j
2M

. (4.171)

With Lemma 4.10 (implying S3ii2M
S−1
2M
G
bi:,i
2M

= 0 and S3ii2Cj
G
bj:,j
2Cj

= 0 for i < j) it follows that

W
bi:,i
3ii

= S3ii2Ci
G
bi:,i
2Ci

, for i < n, (4.172)

W
bi:,i
3ii

= 0(n−1)×1, for i = n, (4.173)

W
bj:,j
3ii

= S3ii2M
S−1
2M
G
bj:,j
2M

, for i < j, (4.174)

W
bj:,j
3ii

= S3ii2M
S−1
2M
G
bj:,j
2M

+ S3ii2Cj
G
bj:,j
2Cj

, for i > j. (4.175)

The statements then follow with Lemma 4.10 and Lemma 4.4.
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Lemma 4.13. For i, j = 1, . . . , n− 1 and i = j

G
bj:,j
4ii
− S4ii2S

−1
2 G

bj:,j
2 = −2


aii
... 0(n−i)×(n−j)

aii


︸ ︷︷ ︸

(n−i)×(n−i+1)

+2


aii
... 0(n−i)×(n−i)

aii


︸ ︷︷ ︸

(n−i)×(n−i+1)

(4.176)

+ ωiii


ai+1,iω(i+1)3 ai+1,i+1ω(i+1)3 0

...
. . .

aniωnnn an,i+1ωnnn . . . annωnnn


︸ ︷︷ ︸

(n−i)×(n−i+1)

= ωiii


ai+1,iω(i+1)3 ai+1,i+1ω(i+1)3 0

...
. . .

aniωnnn an,i+1ωnnn . . . annωnnn


︸ ︷︷ ︸

(n−i)×(n−i+1)

. (4.177)

For i = 1, . . . , n− 1, j = 1, . . . , n, and i > j

G
bj:,j
4ii
− S4ii2S

−1
2 G

bj:,j
2 = 0(n−i)×(n−j+1) − 0(n−i)×(n−j+1) (4.178)

= 0(n−i)×(n−j+1). (4.179)

For i = 1, . . . , n− 1, j = 1, . . . , n, and i < j

G
bj:,j
4ii
− S4ii2S

−1
2 G

bj:,j
2 = −2


0(j−i−1)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

+2


0(j−i−1)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

(4.180)

= 0(n−i)×(n−j+1). (4.181)

Proof. For i = 1, . . . , n− 1, j = 1, . . . , n let

W
bj:,j
4ii

:= S4ii2S
−1
2 G

bj:,j
2 . (4.182)
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Then, for i = 1, . . . , n− 1

W
bi:,i
4ii

= −2


aii

0(n−i)×(n−i)

aii


︸ ︷︷ ︸

(n−i)×(n−i+1)

−ωiii


ai+1,iω(i+1)3 ai+1,i+1ω(i+1)3 0

...
. . .

aniωnnn an,i+1ωnnn . . . annωnnn


︸ ︷︷ ︸

(n−i)×(n−i+1)

, (4.183)

for i < j

W
bj:,j
4ii

= −2


0(j−i−1)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−i)×(n−j+1)

, (4.184)

and for i > j

W
bj:,j
4ii

= 0(n−i)×(n−j+1). (4.185)

Moreover, it holds that

W
bj:,j
4ii

=
[
S4ii2M

S4ii2C1
. . . S4ii2Cn−1

]S2M
0

0 In(n−1)×n(n−1)

−1 [
G
bj:,j
2M

, G
bj:,j
2C1

, . . . , G
bj:,j
2Cn−1

]′
(4.186)

= S4ii2M
S−1
2M
G
bj:,j
2M

+

n−1∑
q=1

S4ii2Cq
G
bj:,j
2Cq

. (4.187)

From Lemma 4.3 it follows that G
bj:,j
2Cq

= 0 for i 6= j and, hence, for i = 1, . . . , n, j = 1, . . . , n− 1

W
bj:,j
4ii

= S4ii2M
S−1
2M
G
bj:,j
2M

+ S4ii2Cj
G
bj:,j
2Cj

(4.188)

and for j = n

W
bj:,j
4ii

= S4ii2M
S−1
2M
G
bj:,j
2M

. (4.189)
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From Lemma 4.8 it follows that S4ii2Cj
= 0 for i 6= j and, hence,

W
bi:,i
4ii

= S4ii2M
S−1
2M
G
bi:,i
2M

+ S4ii2Ci
G
bi:,i
2Ci

(4.190)

W
bj:,j
4ii

= S4ii2M
S−1
2M
G
bj:,j
2M

, for i 6= j. (4.191)

The statements then follow with Lemma 4.11 and Lemma 4.5.

Lemma 4.14. For i , j = 1, . . . , n and i = j

G
bj:,j
4iii
− S4iii2S

−1
2 G

bj:,j
2 = −ωiiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
...

. . .

ani . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

(4.192)

+ ωiiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
...

. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

= 0(n−1)×(n−i+1). (4.193)
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For i, j = 1, . . . , n and i > j

G
bj:,j
4iii
− S4iii2S

−1
2 G

bj:,j
2 = −3


0(j−1)×(n−j+1)

aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

(4.194)

+
2ωjjjωiii
ωjjjj − 1


0(j−1)×(n−j+1)

ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

+ ωiiii


0(j−1)×(n−j+1)

aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

(4.195)

= (ωiiii − 3)


0(j−1)×(n−j+1)

aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

(4.196)

+
2ωjjjωiii
ωjjjj − 1


0(j−1)×(n−j+1)

ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.
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For i, j = 1, . . . , n and i < j

G
bj:,j
4iii
− S4iii2S

−1
2 G

bj:,j
2 = 0(n−1)×(n−j+1) +

2ωjjjωiii
ωjjjj − 1


0(j−2)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

(4.197)

=
2ωjjjωiii
ωjjjj − 1


0(j−2)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

. (4.198)

Proof. For i, j = 1, . . . , n let

W
bj:,j
4iii

:= S4iii2S
−1
2 G

bj:,j
2 . (4.199)

Then, for i = 1, . . . , n− 1

W
bi:,i
4iii

= −ωiiii


0(i−1)×(n−i+1)

ai+1,i ai+1,i+1 0
...

. . .

ani an,i+1 . . . ann


︸ ︷︷ ︸

(n−1)×(n−i+1)

. (4.200)

For i = n

W
bj:,j
4iii

= 0(n−1)×1. (4.201)
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For i < j

W
bj:,j
4iii

= − 2ωjjjωiii
ωjjjj − 1


0(j−2)×(n−j+1)

ajj 01×(n−j)

0(n−j)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

. (4.202)

For i > j

W
bj:,j
4iii

= − 2ωjjjωiii
ωjjjj − 1


0(j−1)×(n−j+1)

ajj 01×(n−j)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

−ωiiii


0(j−1)×(n−j+1)

aij . . . aii 01×(n−i)

0(n−j−1)×(n−j+1)


︸ ︷︷ ︸

(n−1)×(n−j+1)

.

(4.203)

Moreover, it holds that

W
bj:,j
4iii

=
[
S4iii2M

, S4iii2C1
, . . . , S4iii2Cn−1

]S2M
0

0 In(n−1)×n(n−1)

−1 [
G
bj:,j
2M

, G
bj:,j
2C1

, . . . , G
bj:,j
2Cn−1

]′
(4.204)

= S4iii2M
S−1
2M
G
bj:,j
2M

+

n−1∑
q=1

S4iii2Cq
G
bj:,j
2Cq

. (4.205)

From Lemma 4.3 it follows that G
bj:,j
2Cq

= 0 for i 6= j and, hence, for i = 1, . . . , n, j = 1, . . . , n− 1

W
bj:,j
4iii

= S4iii2M
S−1
2M
G
bj:,j
2M

+ S4iii2Cj
G
bj:,j
2Cj

(4.206)

and for j = n

W
bj:,j
4iii

= S4iii2M
S−1
2M
G
bj:,j
2M

. (4.207)
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With Lemma 4.11 it follows that

W
bi:,i
4iii

= S4iii2Ci
G
bi:,i
2Ci

, for i < n, (4.208)

W
bi:,i
4iii

= 0(n−1)×1, for i = n, (4.209)

W
bj:,j
4iii

= S4iii2M
S−1
2M
G
bj:,j
2M

, for i < j, (4.210)

W
bj:,j
4iii

= S4iii2M
S−1
2M
G
bj:,j
2M

+ S4iii2Cj
G
bj:,j
2Cj

, for i > j. (4.211)

The statements then follow with Lemma 4.11 and Lemma 4.5.

4.9.3 Appendix - Final Lemma

We now combine the conditions in Lemma 4.12 - 4.14 into conditions for specific moment condi-

tions.

Lemma 4.15. In a recursive SVAR with independent shocks, it holds that for i, j, k, l ∈ {1, . . . , n}

1. coskewness moment condition E[fD(B, ut)] = E[e(B)ie(B)je(B)k] with i 6= j 6= k satisfy

GbD − SD2S
−1
2 Gb2 = 0 (4.212)

for every unrestricted element b of B0.

2. coskewness moment condition E[fD(B, ut)] = E[e(B)2
i e(B)j ] with i 6= j satisfy

G
bpq
D − SD2S

−1
2 G

bpq
2 =



2E[ε3j,t]

E[ε4j,t]−1
ajp, ifp = j, q = j, i < j,

2E[ε3j,t]

E[ε4j,t]−1
ajp + E[ε3i,t]aip, if q = j, p = j, i > j,

E[ε3i,t]aip, if q = j, p = j + 1, . . . , i, i > j,

0, else

.

(4.213)

3. cokurtosis conditions E[fD(B, ut)] = E[e(B0)ie(B0)je(B0)ke(B0)l] and E[fD(B, ut)] =
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E[e(B0)2
i e(B0)je(B0)k] with i 6= j 6= k 6= l satisfy

GbD − SD2S
−1
2 Gb2 = 0 (4.214)

for every unrestricted element b of B0.

4. cokurtosis conditions E[fD(B, ut)] = E[e(B0)2
i e(B0)2

j − 1] with i 6= j satisfy

G
bpq
D − SD2S

−1
2 G

bpq
2 =

E[ε3i,t]E[ε3j,t]ajp, if q = i, p = i, . . . , j,

0, else

. (4.215)

5. cokurtosis conditions E[fD(B, ut)] = E[e(B0)3
i e(B0)j ] with i 6= j satisfy

G
bpq
D − SD2S

−1
2 G

bpq
2 =



2E[ε3j,t]E[ε3i,t]

E[ε4j,t]−1
ajp, if p = j, q = j, i < j,

2E[ε3j,t]E[ε3i,t]

E[ε4j,t]−1
ajp + (E[ε4i,t]− 3)aip, if q = j, p = j, i > j,

(E[ε4i,t]− 3)aip, if q = j, p = j + 1, . . . , i > j,

0, else

.

(4.216)

Proof. The statements directly follow from Lemma 4.12 - 4.14.
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4.10 Appendix - Finite sample performance

Table 4.4: Finite sample performance - Recursive SVAR and the pGMM estimator including

Post-LASSO.

GMM oGMM GMM-Oracle pGMM Post-pGMM

T
=

10
0 B̂


9.93
(1.09)

. . .

4.98
(1.21)

9.86
(1.02)

. .

4.97
(1.49)

4.95
(1.29)

9.83
(1.12)

.

4.96
(1.71)

4.93
(1.46)

4.91
(1.27)

9.78
(1.08)




9.77
(1.07)

. . .

4.90
(1.31)

9.71
(1.01)

. .

4.89
(1.69)

4.88
(1.43)

9.70
(1.10)

.

4.90
(2.07)

4.88
(1.74)

4.88
(1.46)

9.69
(1.09)




9.76
(1.07)

. . .

4.91
(1.17)

9.70
(1.02)

. .

4.91
(1.50)

4.88
(1.26)

9.69
(1.10)

.

4.92
(1.81)

4.88
(1.51)

4.88
(1.25)

9.67
(1.10)




9.96
(1.09)

. . .

5.00
(1.15)

9.88
(1.01)

. .

4.98
(1.46)

4.96
(1.22)

9.85
(1.11)

.

4.99
(1.71)

4.96
(1.42)

4.95
(1.21)

9.82
(1.10)




9.84
(1.06)

. . .

4.96
(1.09)

9.79
(1.01)

. .

4.94
(1.39)

4.93
(1.19)

9.77
(1.11)

.

4.94
(1.61)

4.93
(1.38)

4.91
(1.18)

9.73
(1.11)


#Mo 10.00 57.00 40.00 24.22 24.22

Bias −0.0883 −0.1806 −0.1804 −0.0650 −0.1256

MSE 1.27 1.40 1.28 1.25 1.21

λ . . . 71.08 .

GMM oGMM GMM-Oracle pGMM Post-pGMM

T
=

25
0 B̂


9.97
(0.43)

. . .

4.99
(0.51)

9.96
(0.43)

. .

4.98
(0.64)

5.00
(0.52)

9.93
(0.45)

.

4.98
(0.72)

4.99
(0.61)

4.98
(0.51)

9.91
(0.45)




9.90
(0.40)

. . .

4.96
(0.49)

9.90
(0.40)

. .

4.96
(0.65)

4.97
(0.51)

9.87
(0.42)

.

4.97
(0.73)

4.96
(0.61)

4.97
(0.49)

9.86
(0.42)




9.90
(0.40)

. . .

4.97
(0.44)

9.90
(0.40)

. .

4.97
(0.59)

4.97
(0.46)

9.87
(0.42)

.

4.98
(0.65)

4.97
(0.54)

4.96
(0.44)

9.85
(0.42)




9.99
(0.42)

. . .

5.01
(0.45)

9.97
(0.41)

. .

5.01
(0.59)

5.02
(0.46)

9.94
(0.42)

.

5.02
(0.66)

5.01
(0.55)

5.00
(0.44)

9.92
(0.43)




9.93
(0.41)

. . .

4.98
(0.44)

9.92
(0.41)

. .

4.98
(0.57)

4.99
(0.45)

9.89
(0.43)

.

4.99
(0.64)

4.98
(0.54)

4.97
(0.44)

9.87
(0.44)


#Mo 10.00 57.00 40.00 27.20 27.20

Bias −0.0311 −0.0676 −0.0656 −0.0114 −0.0480

MSE 0.53 0.51 0.48 0.48 0.48

λ . . . 118.92 .

GMM oGMM GMM-Oracle pGMM Post-pGMM

T
=

10
00 B̂


10.00
(0.11)

. . .

5.00
(0.13)

9.99
(0.11)

. .

4.99
(0.15)

4.99
(0.13)

9.99
(0.11)

.

4.99
(0.19)

4.99
(0.15)

4.99
(0.13)

9.98
(0.11)




9.98
(0.10)

. . .

4.99
(0.12)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.11)

9.98
(0.10)

.

4.99
(0.16)

4.99
(0.14)

4.99
(0.11)

9.97
(0.10)




9.98
(0.10)

. . .

4.99
(0.11)

9.97
(0.10)

. .

4.99
(0.13)

4.99
(0.10)

9.98
(0.10)

.

4.99
(0.15)

4.99
(0.13)

4.99
(0.11)

9.97
(0.10)




10.00
(0.11)

. . .

5.00
(0.11)

9.99
(0.10)

. .

5.00
(0.13)

5.00
(0.11)

10.00
(0.10)

.

5.00
(0.16)

5.00
(0.13)

5.00
(0.11)

9.98
(0.10)




9.99
(0.11)

. . .

5.00
(0.11)

9.98
(0.11)

. .

4.99
(0.13)

4.99
(0.11)

9.98
(0.10)

.

5.00
(0.16)

4.99
(0.13)

4.99
(0.11)

9.97
(0.11)


#Mo 10.00 57.00 40.00 29.59 29.59

Bias −0.0076 −0.0158 −0.0158 −0.0021 −0.0122

MSE 0.13 0.12 0.11 0.12 0.12

λ . . . 75.34 .

The table reports the average b̄ij and the corresponding estimated MSE (in parentheses) of each estimated

element in B̂ as well as the BIAS and MSE across estimated elements in B̂ over 3, 500 Monte Carlo replicates
for the GMM estimator, the oGMM estimator, the GMM-Oracle estimator, the pGMM estimator, and the Post-
pGMM estimator. The Post-pGMM estimator uses only the overidentifying moment conditions selected by the
pGMM estimator for the estimation of the block-recursive SVAR. All estimator use zero restrictions which are
highlighted by the dots.
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Figure 4.6: Finite sample performance - Relationship of chosen λCV and the number of selected

moments across Monte Carlo runs in the recursive SVAR.

(a) T = 100

(b) T = 250

(c) T = 1000

Note: The figure shows the chosen λCV in the cross-validation and the corre-
sponding number of selected moments for each of the M = 3, 500 Monte Carlo
simulations.

207



Figure 4.7: Finite sample performance - Average weight of moments across Monte Carlo runs.

(a) T = 100

(b) T = 250

(c) T = 1000

Note: Redundant moments (orange) and relevant moments (blue) are displayed
on the x-axis. Each x-axis label abbreviates a moment condition, e.g., [0, 1, 2, 1]
corresponds to E[e(B)01,t e(B)12,t e(B)23,t e(B)14,t].
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4.11 Appendix - Empirical illustration

This section contains supplementary material and robustness checks for the application presented

in Section 4.6. Table 4.5 shows descriptive statistics of the variables used in the SVAR. Table 4.6

Table 4.5: Oil market SVAR - Descriptive statistics.

Mean Median Std. deviation Variance Skewness Kurtosis
Ot 0.078 0.19 1.5 2.26 −1.66 10.8
Yt 0.20 0.29 0.60 0.37 −1.2 5.21

OPt 0.32 0.03 7.31 53.4 0.06 4.46
SRt 0.34 0.62 3.61 13.03 −0.82 3.67

shows the correlation between the estimated structural shocks from the block-recursive SVAR

pGMM estimator and the reduced form shocks. Figure 4.8 shows the historical evolution of the

Table 4.6: Oil market SVAR - Correlation of reduced form and estimated structural shocks.

uO uY uOP uSR

εs 1 −0.03 −0.13 −0.05
εd 0.06 1 0.12 0.06

εs−exp −0.08 0.02 0.94 −0.27
εd−exp −0.05 0.02 0.33 0.96

real oil price.

Figure 4.8: Real oil price.

Note: The vertical bars indicate the following events: Iranian Revolution 1978 : 9, Iran Iraq War 1980 : 9, collapse
of OPEC 1985 : 12, Persian Gulf War 1990 : 8, Asian Financial Crisis of 1997 :7, Iraq War 2003 : 1, the collapse
of Lehman Brothers (2008 : 9), and the oil price decline in mid 2014.
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Figure 4.9 shows the estimated structural shocks across years.

Figure 4.9: Oil market SVAR - Estimated structural shocks, averaged to annual frequency.

Note: The figure shows the average across years for each estimated structural shocks of the block-recursive SVAR
pGMM estimator.

Figure 4.10 shows the IRF for the recursive oil market SVAR from Section 4.6 estimated with the

SVAR GMM estimator from Equation (4.15). In the recursive SVAR, the SVAR GMM estimator

is just identified and equal to the estimator obtained by applying the Cholesky decomposition to

the variance-covariance matrix of the reduced form shocks.

210



Figure 4.10: Oil market SVAR - Impulse responses (recursive SVAR).

Note: Impulse responses to the recursive oil market SVAR from Section 4.6 estimated with the recursive SVAR
GMM estimator from Equation (4.15), equal to the estimator obtained by applying the Cholesky decomposition to
the variance-covariance matrix of the reduced form shocks. Confidence bands are symmetric 68% and 80% bands
based on standard errors and 500 replications. The rows show the cumulative responses. The shock εop−exp

denotes a speculative oil price shock and the shock εsm represents a residual stock market shock.

Figure 4.11 shows the IRF for the unrestricted oil market SVAR from Section 4.6 estimated with

the unrestricted SVAR GMM estimator from Equation (4.15) where the weighting matrix is con-

tinuously updated and estimated based on the assumption of serially and mutually independent

shocks.
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Figure 4.11: Oil market SVAR - Impulse responses (unrestricted SVAR with GMM).

Note: Impulse responses to the estimated structural shocks for the unrestricted oil market SVAR from Section
4.6 estimated with the unrestricted SVAR GMM estimator from Equation (4.15) where the weighting matrix
is continuously updated and estimated based on the assumption of serially and mutually independent shocks.
Confidence bands are symmetric 68% and 80% bands based on standard errors and 500 replications. The rows
show the cumulative responses.

Figure 4.12 shows the IRF for the unrestricted oil market SVAR from Section 4.6 estimated with

the overidentified restricted SVAR GMM estimator from Equation (4.19) where the weighting

matrix is continuously updated and estimated based on the assumption of serially and mutually

independent shocks.

212



Figure 4.12: Oil market SVAR - Impulse responses (unrestricted SVAR with oGMM).

Note: Impulse responses to the estimated structural shocks for the unrestricted oil market SVAR from Section 4.6
estimated with the overidentified unrestricted SVAR GMM estimator from Equation (4.19) where the weighting
matrix is continuously updated and estimated based on the assumption of serially and mutually independent
shocks. Confidence bands are symmetric 68% and 80% bands based on standard errors and 500 replications. The
rows show the cumulative responses.

Figure 4.13 shows the IRF for the block-recursive oil market SVAR from Section 4.6 estimated

with the block-recursive SVAR GMM estimator from Equation (4.15) where the weighting ma-

trix is continuously updated and estimated based on the assumption of serially and mutually

independent shocks.
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Figure 4.13: Oil market SVAR - Impulse responses (block-recursive SVAR with GMM).

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Section
4.6 estimated with the block-recursive SVAR GMM estimator from Equation (4.15) where the weighting matrix
is continuously updated and estimated based on the assumption of serially and mutually independent shocks.
Confidence bands are symmetric 68% and 80% bands based on standard errors and 500 replications. The rows
show the cumulative responses.

Figure 4.14 shows the IRF for the block-recursive oil market SVAR from Section 4.6 estimated

with the overidentified block-recursive SVAR GMM estimator from Equation (4.19) where the

weighting matrix is continuously updated and estimated based on the assumption of serially and

mutually independent shocks.
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Figure 4.14: Oil market SVAR - Impulse responses (block-recursive SVAR with oGMM).

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Sec-
tion 4.6 estimated with the overidentified block-recursive SVAR GMM estimator from Equation (4.19) where
the weighting matrix is continuously updated and estimated based on the assumption of serially and mutually
independent shocks. Confidence bands are symmetric 68% and 80% bands based on standard errors and 500
replications. The rows show the cumulative responses.

Figure 4.15 shows the IRF for the block-recursive oil market SVAR from Section 4.6 using 24

lags estimated with the block-recursive SVAR GMM estimator from Equation (4.15) where the

weighting matrix is continuously updated and estimated based on the assumption of serially and

mutually independent shocks.

215



Figure 4.15: Oil market SVAR - Impulse responses (using 24 instead of 12 lags).

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Section
4.6 24 estimated with the block-recursive SVAR GMM estimator from Equation (4.15) where the weighting matrix
is continuously updated and estimated based on the assumption of serially and mutually independent shocks.
Confidence bands are symmetric 68% and 80% bands based on standard errors and 500 replications. The rows
show the cumulative responses.

Figure 4.16 shows the IRF for the block-recursive oil market SVAR from Section 4.6 using the

percentage deviation of industrial production from a linear trend instead of the log difference of

industrial production. The SVAR is estimated with the block-recursive SVAR GMM estimator

from Equation (4.15) where the weighting matrix is continuously updated and estimated based

on the assumption of serially and mutually independent shocks.
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Figure 4.16: Oil market SVAR - Impulse responses (using the percentage deviation of industrial

production from a linear trend).

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Section
4.6 using the percentage deviation of industrial production from a linear trend instead of the log difference of
industrial production. The SVAR is estimated with the block-recursive SVAR GMM estimator from Equation
(4.15) where the weighting matrix is continuously updated and estimated based on the assumption of serially and
mutually independent shocks. Confidence bands are symmetric 68% and 80% bands based on standard errors and
500 replications. The rows Ot, OPt, and SRt show the cumulative responses.

Figure 4.17 shows the IRF for the block-recursive oil market SVAR from Section 4.6 using log of

real oil price instead of real oil price growth and the percentage deviation of industrial production

from a linear trend instead of the log difference of industrial production. The SVAR is estimated

with the block-recursive SVAR GMM estimator from Equation (4.15) where the weighting ma-

trix is continuously updated and estimated based on the assumption of serially and mutually

independent shocks.
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Figure 4.17: Oil market SVAR - Impulse responses (using the percentage deviation of industrial

production from a linear trend and the log of the real oil price).

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Section
4.6 using the log of the real oil price instead of real oil price growth and the percentage deviation of industrial
production from a linear trend instead of the log difference of industrial production. The SVAR is estimated
with the block-recursive SVAR GMM estimator from Equation (4.15) where the weighting matrix is continuously
updated and estimated based on the assumption of serially and mutually independent shocks. Confidence bands
are symmetric 68% and 80% bands based on standard errors and 500 replications. The rows Ot and SRt show
the cumulative responses.

Figure 4.18 shows the IRF for the block-recursive oil market SVAR from Section 4.6 using log

of real oil price instead of real oil price growth. The SVAR is estimated with the block-recursive

SVAR GMM estimator from Equation (4.15) where the weighting matrix is continuously updated

and estimated based on the assumption of serially and mutually independent shocks.
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Figure 4.18: Oil market SVAR - Impulse responses (using the log of the real oil price).

Note: Impulse responses to the estimated structural shocks for the block-recursive oil market SVAR from Section
4.6 using the log of the real oil price instead of real oil price growth. The SVAR is estimated with the block-
recursive SVAR GMM estimator from Equation (4.15) where the weighting matrix is continuously updated and
estimated based on the assumption of serially and mutually independent shocks. Confidence bands are symmetric
68% and 80% bands based on standard errors and 500 replications. The rows Ot, Yt, and SRt show the cumulative
responses.
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