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Abstract

This thesis comprises recent studies on extensions of the standard model (SM) involving a heavy
Z ′ boson. In the SM, flavour-changing neutral current (FCNC) quark transitions only appear
at loop level and are highly suppressed. This puts forward flavourful Z ′ models, where the new
gauge boson couples non-universally to the known quarks and leptons at tree level. The models
are able address the persistent deviations of the SM seen in observables of rare B-meson decays
referred to as the B-anomalies. By supplementing the particle content of the SM with new scalars
and vector-like fermions, the occurrence of putative Landau poles present in general Z ′ scenarios
can be averted. We discuss dedicated models in the context of the B-anomalies that allow for a
stable and predictive theory up to the Planck scale. Moreover, flavour rotations also enable FCNC
transitions in the charm sector, where the resonance pollution in branching ratios of semileptonic
decays demands null test observables sensitive to physics beyond the SM. We investigate effects
in such decays and present unique correlations to CP -violating observables in hadronic decays,
accessible with future measurements by the LHCb and Belle II experiments. Recent studies
involving dineutrino modes are discussed as well. We exploit an interplay between neutrino and
charged lepton couplings within the SM effective field theory approach that connects decays of
opposite flavour sectors. In doing so, we derive limits on diverse sets of dineutrino branching ratios
and find novel tests of lepton universality using data from global fits of the B-anomalies.
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Kurzfassung

Die vorliegende Dissertation umfasst Studien zur Erweiterung des Standardmodells durch ein
schweres Z ′-Boson. Flavour-verändernde neutrale Ströme (FCNCs) von Quarkübergängen treten
im Standardmodell in höheren Ordnungen auf und sind stark unterdrückt. Die Implementation
von Z ′-Modellen ermöglicht solche Übergänge auf Baumgraphen-Niveau, induziert durch nicht-
universelle Kopplungen an die bekannten Quarks und Leptonen. Dies liefert eine mögliche Erklärung
der Diskrepanzen zwischen theoretischer Vorhersage und Messung in Observablen von seltenen
B-Meson-Zerfällen, den sogenannten B-Anomalien. Das Auftreten von Landau-Polen in eben
solchen Theorien kann durch das Hinzufügen von neuen Teilchen zum Standardmodell-Spektrum
abgewendet werden. In dieser Arbeit untersuchen wir ausgewählte Modelle, die eine direkte
Erklärung der B-Anomalien liefern und zusätzlich eine stabile Vorhersagekraft durch Abwesenheit
von Polen und Instabilitäten bis zur Planck-Skala innehaben. Auch in seltenen charm Zerfällen
können erhebliche Beträge zu FCNCs durch das Z ′-Boson generiert werden. In diesem Sektor spielt
das Aufstellen von null tests des Standardmodells, sensitiv zu Effekten neuer Physik, eine besondere
Rolle, da unter anderem semi-leptonische Verzweigungsverhältnisse durch die Verunreinigung von
auftretenden Resonanzen schwer zugänglich sind. Wir befassen uns deshalb außerdem mit der
Erforschung von Effekten neuer Physik in diesen Zerfällen und erarbeiten eindeutige Korrelationen
zwischen CP -verletzenden Observablen, welche mit zukünftigen Messungen von den Experimenten
LHCb und Belle II überprüft werden können. Wir präsentieren außerdem neue Studien zu
Teilchenzerfällen in zwei Neutrinos. Durch das Zusammenspiel zwischen Kopplungen von geladenen
Leptonen und Neutrinos unter Zuhilfenahme der effektiven Feldtheorie des Standardmodells
bestimmen wir obere Grenzen an eine Vielzahl von Neutrino-Verzweigungsverhältnissen, und
entwickeln neue Tests der Lepton-Universalität.
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Chapter

1
Introduction

The description of the fundamental building blocks of nature is one of the most intensely studied
topics in modern science. The question concerning the origin of matter particles and their
interactions has been the impetus for dedicated research of brilliant minds, which entailed major
achievements by joined efforts in the fields of physics and mathematics. With important theoretical
and experimental findings over the past century, a theory was developed known as the standard
model (SM) of particle physics. Its proposed particle spectrum was completed in 2012 with the
discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2].

While the SM provides the most accurate and precise description of our universe, it has several
shortcomings and cannot be the end of the story. It only describes three out of the four known
fundamental forces of nature, that is the electromagnetic, weak, and strong forces, whereas gravity
is not included. Hence, a consistent picture of physics is lacking at the Planck scale where
gravitational effects become relevant. Moreover, only five per cent of the observed mass-energy
budget of the universe is accounted for by fermionic matter, whereas the rest is composed of dark
matter and dark energy not included in the SM. In its original formulation, no neutrino masses
are present which is contradicted by the observation of neutrino oscillations [3, 4] implying small
but non-zero masses. Also, the apparent asymmetry between matter and antimatter present in
the universe hints at CP -violating physics that cannot be accounted for by the SM alone.

Consequently, the SM is developed as an effective field theory (EFT) that needs to be replaced by a
more fundamental theory at high scales. Many extensions have been put forward that incorporate
new particles and interactions which need to be tested by experiments, e.g. at particle colliders.
Thereby, the search for new physics (NP) is driven by several complementary approaches. In
collider experiments, the direct production and detection of new particles are limited by the centre
of mass energy realised at those facilities. However, a direct search is futile if the allocated energy
is too low for such particles to be created, which then only exist virtually and escape detection.
Hence, direct searches at current experiments are restricted to energies up to the TeV-scale. This
encourages possible indirect detections of new particles due to quantum fluctuations that are
indicated by deviations between the SM prediction and measurement. Indirect searches allow us
probe very high scales otherwise inaccessible, yet require extremely high precision in both theory
and experiment.

For instance, the persisting discrepancies in observables of rare B-decays probing lepton universality
(LU) offer first hints of beyond the standard model (BSM) physics with charged leptons, and are
collectively called the B-anomalies. Over the past decade, the first measurements by the Large
Hadron Collider beauty (LHCb) experiment [5, 6] motivated intense studies and elaboration of
many NP models. Recent results [7–9] with improved data and statistics remain in disagreement
with the SM prediction at 2-3σ.

Prime candidates to address these anomalies are U(1)′ extensions of the SM, where a new gauge
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Chapter 1 Introduction

boson, the Z ′ boson, enables a non-universal flavour structure. While constraints from theory
like gauge anomaly cancellation have to be met, they offer a vast model building opportunity,
with phenomenological implications for many flavour processes [10–15]. Flavourful Z ′ models can
upset established SM symmetries like LU or charged lepton flavour conservation (cLFC), and
generate sizeable contributions to rare decays. The study of these models constitutes the main
objective of this thesis. We present models in complementary sectors that are compatible with
stringent constraints from flavour-changing processes, employing flavour mixing as an essential
tool to induce the necessary effects in observables. In particular, tests of LU are studied closely in
charm and B-physics. Yet, a model-independent look beyond the SM is provided via the standard
model effective field theory (SMEFT) framework, relating physics of neutrinos and charged leptons.
Moreover, Z ′ models can support large weak phases relevant for additional CP violation beyond
the SM. Then again, the new U(1)′ symmetry with sizeable coupling strength at the electroweak
scale jeopardises the predictivity of the theory at higher energies, where Landau poles manifest
themselves way before the Planck scale. Therefore, we review model building approaches with an
extended fermionic and scalar sector that averts such divergences up to Planckian energies, and
discuss their phenomenological implications.

This thesis is based on the works in Refs. [16–21] and organised as follows. In Chap. 2, we
introduce the SM of particle physics, focussing on flavour mixing of SM fermions and exploring its
implications on quark and lepton transitions. Afterwards, we provide the theoretical foundation
necessary to study extensions of the SM in an EFT approach in Chap. 3. We also review the
persistent flavour anomalies in rare B-decays. They motivate a global fit of observables sensitive to
NP in b→ s transitions which is presented in Chap. 4. In Chap. 5, we work out a comprehensive
overview of various model building aspects in Z ′ scenarios. Due to our focus on NP-induced
contributions to rare decays, we discuss flavour rotations that modify the flavour-changing neutral
current (FCNC) transitions of interest. In addition, necessary theoretical prerequisites like gauge
anomaly cancellation and constraints from meson mixing are presented, while we also address
Landau poles in U(1)′ extensions. In Chap. 6, we start our investigations of Z ′ models in rare
charm decays. We present a class of models that induce sizeable contributions to semileptonic
Wilson coefficients while simultaneously evading tight meson mixing bounds. Promising null tests
observables are assessed focussing on Z ′-induced effects. Chapter 7 is devoted to NP studies
in hadronic charm decays. We exploit the rich CP phenomenology and SU(3) sum rules that
allow for pronounced NP effects, correlating different decay modes. The subsequent Chap. 8 puts
forward appropriate Planck-safe Z ′ models to explain the B-anomalies in a BSM theory that
remains predictive and perturbative towards Planckian energies. Recent works on correlations
between dineutrino and charged dilepton couplings in the SMEFT framework are compiled in
Chap. 9. Therein, we present novel tests of lepton universality and implications of possible BSM
scenarios. We conclude in Chap. 10.

Supplementary descriptions and details are provided in Apps. A to G. We use the LaTeX package
TikZ-Feynman [22] for all Feynman diagrams shown throughout this thesis.
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Chapter

2
Flavour physics in the
standard model

Following the literature [23–26], we recapitulate the standard model (SM) with a focus on its
flavour sector. In Sec. 2.1, we introduce the SM particles and gauge interactions, followed by
a brief review of the Higgs mechanism in Sec. 2.2. Section 2.3 deals with the flavour structure
and mixing, while Sec. 2.4 discusses flavour-changing quark transitions and their parametrisation.
Afterwards, we discuss symmetries of the SM in Sec. 2.5.

2.1 Field content and gauge symmetries of the
standard model

The SM describes all known elementary particles and their interactions with the exception of
gravity at the most fundamental level. It is constructed as a gauge quantum field theory (QFT)
with the local gauge group

GSM = U(1)Y × SU(2)L × SU(3)C , (2.1)

where SU(3)C denotes the symmetry of quantum chromodynamics (QCD), the theory of strong
interactions, while the gauge group of weak interactions is given by SU(2)L. The U(1)Y force is
felt by all particles with a non-zero hypercharge quantum number Y . The other quantum numbers
of SU(3)C and SU(2)L are called colour and weak isospin, respectively. While SU(3)C remains
intact, the electroweak sector, i.e. U(1)Y × SU(2)L, is spontaneously broken down to U(1)em, the
gauge group of quantum electrodynamics (QED), by the Higgs mechanism. The electric charge
Qe of a particle is related to its weak isospin component T 3 belonging to SU(2)L and hypercharge
Y via

Qe = T 3 + Y . (2.2)

This equation is the well-known Gell-Mann-Nishijima relation.

The matter content of the SM consists of two classes of fermions called quarks and leptons, where
the former includes the colour-charged up- and down-type quarks, denoted by u and d, respectively.
The latter is divided into electrically neutral neutrinos ν and electrically charged leptons e, both
carrying no colour. In addition, each fermion comes in three different copies or generations, which
yields in total six flavours of both quarks and leptons. These fields are separated into SU(2)L
doublets (Q for quarks, L for leptons) and SU(2)L singlets (U , D for quarks, E for leptons)
distinguishing their chirality as left-handed (LH) and right-handed (RH), respectively. We define
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Chapter 2 Flavour physics in the standard model

the chiral fields 1

Q ≡

⎛⎝uL
dL

⎞⎠ , L ≡

⎛⎝νL
eL

⎞⎠ , U ≡ uR , D ≡ dR , E ≡ eR , (2.3)

where generation and SU(3)C structure are left implicit. In Tab. 2.1, we summarise the field
content of the SM providing the respective transformation properties under GSM. By introducing
the complex scalar Higgs field H, fermion masses are realised which would be forbidden otherwise
due to gauge invariance. Likewise, the requirement of local gauge invariance predicts the existence
of massless gauge bosons for each part of the gauge group.

Field Flavour U(1)Y SU(2)L SU(3)C Qe T 3

Q

⎛⎝uL
dL

⎞⎠ ,

⎛⎝cL
sL

⎞⎠ ,

⎛⎝tL
bL

⎞⎠ 1
6 2 3

2
3

− 1
3

+ 1
2

− 1
2

U uR, cR, tR
2
3 1 3 2

3 0

D dR, sR, bR − 1
3 1 3 − 1

3 0

L

⎛⎝νeL
eL

⎞⎠ ,

⎛⎝νµL
µL

⎞⎠ ,

⎛⎝ντL
τL

⎞⎠ − 1
2 2 1

0

−1

+ 1
2

− 1
2

E eR, µR, τR −1 1 1 −1 0

H

⎛⎝ϕ+

ϕ0

⎞⎠ 1
2 2 1

1

0

+ 1
2

− 1
2

Table 2.1: Field content of the SM and transformation properties, where we show the different
flavours in terms of their SU(2)L components and the associated electric charge Qe.

Before reviewing the mechanism responsible for generating mass terms in Sec. 2.3, we break
down the most general renormalisable Lagrangian formulated within the SM that contains the
aforementioned matter fields.

The SM Lagrangian can be split into four parts as

LSM = Lfermion + Lgauge + LHiggs + LYuk , (2.4)

where the individual terms are given in Eqs. (2.5), (2.7), (2.10), and (2.19). We provide a short
recap of all terms in the following, starting with the gauge interactions of the SM fermions. The
kinetic terms and couplings to gauge bosons are embedded in

Lfermion = Qi /DQ + U i /DU +Di /DD + Li /DL + E i /DE , (2.5)

with the shorthand notation /D = Dµ γ
µ and summing over all generations and gauge indices

1We refer to App. A for the definition of chiral projectors, and details on the mathematical notation and conventions
employed throughout this thesis.

- 4 -



2.2 Electroweak symmetry breaking

implicitly. The gauge covariant derivatives Dµ for the different fermions fields are given by

DµQi =
(︁
∂µ − i g1 Y Bµ − i g2 T aW a

µ − i g3 tbGbµ
)︁
Qi ,

Dµ Ui =
(︁
∂µ − i g1 Y Bµ − i g3 tbGbµ

)︁
Ui ,

DµDi =
(︁
∂µ − i g1 Y Bµ − i g3 tbGbµ

)︁
Di ,

Dµ Li =
(︁
∂µ − i g1 Y Bµ − i g2 T aW a

µ

)︁
Li ,

DµEi =
(︁
∂µ − i g1 Y Bµ

)︁
Ei ,

(2.6)

universal for all generations. Here, Y is the (hypercharge) generator associated with the U(1)Y
group. Conversely, T a and tb denote the canonically normalised generators of SU(2)L and SU(3)C ,
respectively, with the number of (linear independent) generators a = 1, 2, 3 and b = 1, 2, . . . , 8
given by dimension of the Lie algebra as N2 − 1 in any SU(N) group. The gauge bosons of
U(1)Y , SU(2)L, and SU(3)C are represented by the fields Bµ, W a

µ , and Gbµ, respectively, with
corresponding couplings g1, g2, and g3. Following the notation commonly employed in the literature,
the gauge coupling g3 is also referred to as the strong coupling gs throughout this thesis.

Next, we display the kinetic term of the gauge bosons,

Lgauge = −1

4
Bµν B

µν − 1

4
W a
µνW

µν,a − 1

4
Gbµν G

µν,b , (2.7)

where the field strength tensors have the form

F aµν ≡ ∂µA
i
ν − ∂νA

i
µ + κ f ijkAjµA

k
ν (2.8)

for a given gauge group with coupling κ, gauge boson A, and structure constants f ijk of the
associated Lie algebra. As f ijk = 0 for any abelian symmetry, no self-couplings emerge for Bµν ,
while three and four gauge boson self-couplings follow for the non-abelian SU(2)L and SU(3)C ,
respectively. No explicit mass terms for both fermions and gauge bosons are allowed in the SM due
to the different transformation of LH and RH fields under SU(2)L and breaking gauge invariance,
respectively. This puts forward the Higgs mechanism giving mass to fermions and bosons via
electroweak symmetry breaking (EWSB).

2.2 Electroweak symmetry breaking

In the SM, theW±, Z0, and fermion masses are generated by the Higgs field through the breakdown
of the electroweak to the electromagnetic gauge symmetry,

U(1)Y × SU(2)L → U(1)em . (2.9)

The Lagrangian including the gauge and self-interactions of the Higgs reads

LHiggs = (DµH)
†
(DµH)− V (H) , (2.10)

with the scalar (tree-level) potential

V (H) = −µ2H†H + λ
(︁
H†H

)︁2
. (2.11)
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Chapter 2 Flavour physics in the standard model

For real, positive parameters µ, λ > 0 the potential is minimised, where the neutral component of
H acquires a non-zero vacuum expectation value (vev) that can be chosen as

⟨0|H |0⟩ = ⟨H⟩ = 1√
2

⎛⎝ 0

vh

⎞⎠ , vh =
µ√
λ
= 246 GeV . (2.12)

Then, ⟨H⟩ spontaneously breaks the electroweak symmetry down to the local gauge group U(1)em,
with the generator Qe and the photon as the massless gauge boson. After EWSB, the Higgs field
in unitary gauge is given by

H =
1√
2

⎛⎝ 0

vh + h

⎞⎠ , (2.13)

where h denotes the physical Higgs boson. By expanding the effective potential in Eq. (2.11) with
higher-order terms the extremum structure is altered and yields a metastable or unstable vacuum
after renormalisation group (RG) running of the quartic (self-)coupling λ [27–29].

To acquire massive gauge bosons, we follow Goldstone’s theorem [30] which states that spontaneous
symmetry breaking (SSB) of a global continuous symmetry yields a new scalar degree of freedom
(also known as Goldstone Boson) for every broken generator. However, in the case of a broken
gauge symmetry these bosons can be absorbed as extra polarisations of associated gauge bosons,
and hence do not appear in the particle spectrum. Then, massive gauge bosons are acquired
after inserting the Higgs vev into Eq. (2.10) and diagonalising the new mass terms. We identify
W±
µ ≡ 1/

√
2(W 1

µ ∓ iW 2
µ) as electrically charged gauge bosons. Due to mixing between Bµ and

W 3
µ , we define an orthogonal transformation⎛⎝Zµ

Aµ

⎞⎠ =

⎛⎝cos (θW) − sin (θW)

sin (θW) cos (θW)

⎞⎠⎛⎝W 3
µ

Bµ

⎞⎠ , (2.14)

where the Weinberg mixing angle is given by

tan (θW) =
g1
g2
. (2.15)

We identify the photon Aµ as a massless gauge boson, whereas the other one, Zµ, is massive. The
gauge-invariant mass terms for the gauge bosons are extracted from the kinetic terms in Eq. (2.10),
which yields in summary

MW =
g2 vh
2

, MZ =
MW

cos (θW)
=
gZ vh
2

, Mγ = 0 ,

gZ =
g2

cos (θW)
=

√︂
(g1)

2
+ (g2)

2
, e = g1 cos (θW) = g2 sin (θW) ,

(2.16)

where we have defined the electromagnetic coupling strength e. Utilising the relations in Eqs. (2.2)
and (2.16), the covariant derivative of the electroweak part can be written as

Dµ = ∂µ − i g2√
2

[︁
T+W+

µ + T−W−
µ

]︁
− i e

[︁
cot (θW) T 3 − tan (θW) Y

]︁
Zµ − i eQeAµ , (2.17)

with the shorthand notation T± = T 1 ± i T 2 for the SU(2)L generators.
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A useful parameter to test the SM can be constructed involving the ratio of Z- and W -boson
masses. To this end, we define the ρ parameter given at tree level by

ρ =
M2
W

M2
Z cos2 (θW)

= 1 . (2.18)

Modifications of this parameter can be realised in extensions of the SM with additional scalar
content, which we study later in this thesis. The relevance of such high-precision tests of the SM is
further emphasised by, e.g., the recent measurement of the W -boson mass by the Collider Detector
at Fermilab (CDF) experiment [31], which is in significant tension with the SM expectation.

2.3 The flavour structure of the standard model

The last part of the SM Lagrangian is given by the Yukawa sector

LYuk = −Y iju Qi H̃ Uj − Y ijd QiHDj − Y ije LiH Ej + h.c. , (2.19)

which describes the interactions of the SM fermions to the Higgs. Here, H̃ ≡ i σ2H∗ denotes the
charged conjugated Higgs field and the Yukawa couplings Yu,d,e are given by 3× 3 matrices, which
are a crucial part of the SM as they determine the flavour structure. Therefore, we explicitly show
the generation indices in Eq. (2.19). Most of the free parameters of the SM are included in this
sector, i.e. six quark masses, three charged lepton masses, three mixing angles and one phase. As
neutrinos are massless in the SM, no mixing occurs in the lepton sector as we show later in this
section.

As mentioned after Eq. (2.8), Dirac mass terms like mu uL uR explicitly break SU(2)L invariance,
and hence they are forbidden. However, by incorporating the Higgs doublet each term in Eq. (2.19)
is invariant under GSM. After SSB and the Higgs acquiring a vev, the fermion mass terms read

Lmass = − vh√
2

[︁
uL Yu uR + dL Yd dR + eL Ye eR

]︁
+ h.c. . (2.20)

To diagonalise the mass matrices, we define the bi-unitary transformations

u′L ≡ Vu uL , d′L ≡ Vd dL , e′L ≡ Vℓ eL ,

u′R ≡ Uu uR , d′R ≡ Ud dR , e′R ≡ Uℓ eR ,
(2.21)

where primed (unprimed) fields denote flavour (mass) eigenstates. Here, Vf and Uf are unitary
3 × 3 matrices, with f = u, d, ℓ for up-type quarks, down-type quarks, and charged leptons,
respectively. Going from flavour to mass basis yields diagonal Yukawa couplings yf = (Vf )

†
Yf Uf

with corresponding diagonal mass matrices Mf = vh/
√
2 yf , e.g. mc =M22

u = vh/
√
2 y22u . The

experimentally determined fermion masses read [32] 2

mu ≃ 2.2 MeV , mc ≃ 1.3 GeV , mt ≃ 173 GeV ,
md ≃ 4.7 MeV , ms ≃ 93 MeV , mb ≃ 4.2 GeV ,
me ≃ 0.511 MeV , mµ ≃ 106 MeV , mτ ≃ 1.78 GeV ,

(2.22)

2The quark masses are given in the MS scheme, where mu, md, and ms are computed at a scale µ ≈ 2 GeV while
mc(µ = mc) and mb(µ = mb). The top-quark mass mt is determined from direct measurements [32].
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Chapter 2 Flavour physics in the standard model

and are also displayed in Fig. 2.1. One observes that the fermion masses (and hence the Yukawa
couplings) follow a strong hierarchy within each species, where masses differ by up to several
orders of magnitude. The fact that SM parameters obey these peculiar hierarchies is part of the
SM flavour puzzle.

10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102

particle masses /GeV

u

d

c

s

t

b

e µ τ W

Z

H

ν1

ν2

ν3

Figure 2.1: Schematic visualisation of the mass hierarchies in the flavour sector. Numerical
values of fermion and boson masses are provided in Tab. B.2. The ranges for the neutrino
masses are based on the known squared mass differences from neutrino oscillations [32] and
the constraint on the sum of neutrino masses from cosmological data [33], where the lightest
neutrino could be massless. Figure adapted from Ref. [34].

The kinetic terms in Eq. (2.5) are also modified by this basis change. In the flavour basis (also
referred to as gauge basis), the gauge boson interactions do not mix different generations. In the
mass basis, this remains true for the neutral currents, e.g.

u′L u
′
L = uL (Vu)

†
Vu uL = uLuL , (2.23)

which are not affected by the rotations as the Z-boson and photon couplings are flavour universal.
However, a mismatch is generated for charged-current interactions altering the W± couplings. We
take a look at couplings to quarks first. In the mass basis, the relevant terms read

Lfermion ⊃ g2√
2

(︂
uL γ

µ VCKM dLW
+
µ + dL γ

µ (VCKM)
†
uLW

−
µ

)︂
, (2.24)

where the fields include the mass eigenstates up (u), charm (c), top (t) and down (d), strange (s),
and bottom (b) of the up- and down-type quarks, respectively. In Eq. (2.24), we have established
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [26, 35, 36]

VCKM ≡ (Vu)
†
Vd =

⎛⎜⎜⎜⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎟⎟⎟⎠ , (2.25)

which is responsible for flavour transitions in the SM. Known as the Glashow-Iliopoulos-Maiani
(GIM) mechanism [37], it prevents FCNC transitions at tree level in the SM due to the unitarity of
the CKM matrix. Yet, the GIM mechanism is present in many loop processes, where FCNCs emerge
in so-called penguin diagrams at loop level depicted in Fig. 2.2 for c→ u and b→ s transitions.

Before taking a closer look at the hierarchy of the CKM matrix, we conclude this section by
reviewing possible flavour mixing in the lepton sector, where the situation is different due to the
fact that neutrinos are massless and RH neutrino fields are not present in the SM. Again, writing
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c u
b, s, d

W

b s
t, c, u

W

Figure 2.2: Loop-level Feynman diagrams of FCNC transitions c→ u (left-hand side diagram)
and b→ s (right-hand side diagram) in the SM.

the relevant kinetic terms in the mass basis we find

Lfermion ⊃ g2√
2

(︂
eL γ

µ UPMNS νLW
−
µ + νL γ

µ (UPMNS)
†
eLW

+
µ

)︂
, (2.26)

with the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix parametrised as

UPMNS ≡ (Vℓ)
†
Vν , (2.27)

and the rotation to the mass eigenstates is then given by⎛⎜⎜⎜⎝
νe

νµ

ντ

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
ν1

ν2

ν3

⎞⎟⎟⎟⎠ . (2.28)

Here, we have introduced the (unitary) rotation matrix Vν for the neutrinos where flavour and
mass eigenstates are denoted by νℓ with ℓ = e, µ, τ and νi with i = 1, 2, 3, respectively. However,
as no Yukawa matrix for neutrinos is realised we are free to choose Vν arbitrarily. Consequently,
in the (original) formulation of the SM it is UPMNS = 1 conserving lepton flavour.

Due to the observation of neutrino oscillations, we know that neutrinos must possess small masses,
where cosmological data provides an upper bound

∑︁
mν ≲ 0.4 eV on the total neutrino mass [32,

33]. As its scale is tiny compared to the other mass scales (even compared to the electron, the
lightest SM particle), neutrino contributions to FCNCs in the charged lepton sector are negligible
by means of the GIM mechanism. Hence, (almost) no charged lepton flavour violation (cLFV) is
present in SM processes.

As the presence of non-zero neutrino masses already requires BSM physics, one can think of adding
a RH neutrino field to the SM, which transforms as a SM-singlet νR ∼ (0, 1, 1). Then, the Yukawa
Lagrangian in Eq. (2.19) is topped up with terms [26]

LYuk ⊃ −Y ijν LiH̃ νR,j −
1

2
νcR,iM

ij
N νR,j + h.c. , (2.29)

where Yν and MN denote the neutrino Yukawa and Majorana mass matrices, respectively. The
generation of neutrino masses via Yν assumes that neutrinos are Dirac particles, and thus masses
are generated similarly as in the quark sector. However, the expected tiny neutrino masses may
suggest a different mechanism for mass generation involving RH neutrinos. By assuming that the
neutrino is its own antiparticle, we are able to write down the Majorana mass term in Eq. (2.29).
Since this mass term is not protected by any symmetry, the mass matrix MN can be chosen
arbitrarily and may be much larger than the electroweak scale. This is the main idea of the seesaw
mechanism, where a high Majorana mass scale induces the light neutrino masses observed in
nature [38].
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Chapter 2 Flavour physics in the standard model

2.4 Hierarchies of the CKM matrix

The CKM matrix can be parametrised by three mixing angles θij and one complex phase δ. The
standard parametrisation of the fermion mixing matrix reads [32, 39]

VCKM =

⎛⎜⎜⎜⎝
c12 c13 c13 s12 s13 e−iδ

−c23 s12 − c12 s13 s23 eiδ −c13 c23 − s12 s13 s23 eiδ c13 s23
−s12 s23 − c12 c23 s13 eiδ −c12 s23 − c23 s12 s13 eiδ c13 c23

⎞⎟⎟⎟⎠ , (2.30)

where cij = cos (θij), sij = sin (θij) and i , j denote common generation indices.

Experimentally it holds s13 ≪ s23 ≪ s12 ≪ 1 [32], which motivates the Wolfenstein expansion [40],
that features the three mixing parameters λ, A, ρ and one source of CP violation η,

s12 ≡ λ =
|Vus|√︁

|Vud|2 + |Vus|2
, s23 ≡ Aλ2 =

|Vcb|√︁
|Vud|2 + |Vus|2

,

s13eiδ ≡ Aλ3 (ρ+ iη) = V ∗
ub .

(2.31)

For the last two CKM parameters an alternative, phase convention-independent convention exists
in the literature given by [32, 41]

ρ+ iη =
V ∗
ud

Vus V ∗
cb

=

(︃
1 +

1

2
λ2
)︃
(ρ̄+ iη̄) +O

(︁
λ4
)︁
. (2.32)

To highlight the hierarchical structure of the CKM matrix, we exploit its unitarity and expand in
powers of the small parameter λ = s12 ≃ 0.2. This yields

V
(3)

CKM =

⎛⎜⎜⎜⎝
1− 1

2λ
2 λ Aλ3 (ρ− i η)

−λ 1− 1
2λ

2 Aλ2

Aλ3 [1− (ρ+ i η)] −Aλ2 1

⎞⎟⎟⎟⎠+O
(︁
λ4
)︁
, (2.33)

given in the traditional way, where the superscript indicates the considered order in the expansion.
Then again, we can express the matrix in terms of κ̄ ≡ ρ̄+ i η̄, written up to higher orders as

V
(5)

CKM =

⎛⎜⎜⎜⎝
1− 1

2λ
2 − 1

8λ
4 λ Aλ3 κ̄∗

−λ+ 1
2 A

2λ5 (1− 2 κ̄) 1− 1
2λ

2 − 1
8λ

4
(︁
1 + 4A2

)︁
Aλ2

Aλ3 (1− κ̄) −Aλ2 + 1
2Aλ

4 (1− 2 κ̄) 1− 1
2A

2λ4

⎞⎟⎟⎟⎠+O
(︁
λ6
)︁
. (2.34)

The latest determined values of the Wolfenstein parameters obtained from a global fit read [32]

λCKM ≡ λ = 0.22650± 0.00048 , A = 0.790± 0.017 ,

ρ̄ = 0.141± 0.017 , η̄ = 0.357± 0.011 .
(2.35)

For details on the numerical input employed in our analyses see App. B, in particular Tab. B.1.

In both approximations, Eqs. (2.33) and (2.34), we readily see the dominantly diagonal structure
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of the CKM matrix. Transitions of quarks of different generation and charge (flavour), referred to
as flavour-changing charged currents (FCCCs), are therefore suppressed. Recent works regarding
a possible substructure of the CKM matrix beyond the Wolfenstein parametrisation and novel
CKM relations can be found in Refs. [42, 43].

Decays of particles, for instance D+→ π+µ+µ−, can be classified in terms of powers of λCKM that
enter the decay amplitudeA. Schematically, we write

A ∝

⎧⎪⎨⎪⎩
λ0CKM : Cabibbo-favoured (CF) ,
λ1CKM : singly Cabibbo-suppressed (SCS) ,
λ2CKM : doubly Cabibbo-suppressed (DCS) ,

(2.36)

that indicates the suppression of the amplitude in terms of the Wolfenstein parameter. The
unitarity of the CKM matrix,∑︂

k

Vik V
∗
jk = δij ,

∑︂
i

Vik V
∗
ij = δkj , (2.37)

gives rise to the following useful relation

λd + λs + λb = 0 , (2.38)

with fixed λq = VuqV
∗
cq. Analogously, one can construct

λu + λc + λt = 0 , (2.39)

where in this case λq′ = Vq′s(d)V
∗
q′b. To illustrate the GIM mechanism in loop processes, we consider

the FCNC b→ s (and b→ d) transitions where up-type quarks enter in the loop, cf. Fig. 2.2. The
generic structure is given by

P = λu fu + λc fc + λt ft = λc (fc − fu) + λt (ft − fu) , (2.40)

where fq ≡ f(mq,MW ) ∼ 1/(4π)2m2
q/m

2
W denotes a loop function [44]. We observe that the GIM

mechanism not only forbids tree-level FCNCs, but additionally suppresses FCNCs at loop level for
observables where only light quark masses appear. Moreover, we find that for degenerate masses
mu = mc = mt penguin contributions in Eq. (2.40) would vanish due to the unitarity of the CKM
matrix. For different masses, a GIM-suppression factor fc − fu ∝ (m2

c −m2
u)/m

2
W ≈ O

(︁
10−4

)︁
arises if only c- and u-quark contributions are relevant. For instance, a natural suppression of
certain observables in the K-meson (kaon) system is realised to the desired level. Conversely,
the GIM suppression fails whenever contributions of the top quark dominate in the loops due to
mt > mW ≫ mu,c . In FCNC c→ u transitions, the GIM mechanism implies an even stronger
suppression as light down-type quarks propagate in the loop.

2.5 Symmetries in the standard model

The SM exhibits accidental global symmetries that arise only as a consequence of imposing
renormalisability and gauge invariance. These symmetries can be either exact or approximate in
the SM, and are quite useful for constraining BSM physics due to typically tight experimental
constraints on a possible violation by NP. For instance, baryon-number conservation is an exact
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accidental symmetry in the SM. Conversely, in BSM scenarios baryon-number violating operators
can be present, though subject to stringent constraints from proton decay. Beyond that, other
approximate symmetries can be realised in gauge theories. While accidental symmetries persist
independent of parameter values of the theory, the emergence of approximate symmetries is only
due to the smallness of specific parameters, and entails an exact global symmetry when set to
zero.

Symmetries in the flavour sector

In the SM Lagrangian, we observe the large accidental flavour symmetry

GF =
[︁
U(3)Q ×U(3)U ×U(3)D

]︁
×
[︁
U(3)L ×U(3)E

]︁
. (2.41)

It is broken down by Yukawa interactions into

GF → U(1)B ×U(1)Le ×U(1)Lµ ×U(1)Lτ , (2.42)

which represents the conservation of baryon number B and individual lepton number L of each
generation in the SM. In particular, we have U(3)L × U(3)E → U(1)3 that infers 15 broken
generators for the lepton Yukawa. As the Yukawa matrices are in general parametrised by a
3 × 3 complex matrix that features 18 (free) parameters, we are left with 18 − 15 = 3 physical
parameters in this sector, whereas we count 36− 26 = 10 parameters in the quark sector.

In total, the SM can be described by 18 physical parameters, which we summarise given our
previous review of the SM flavour structure. We have three couplings g1, g2 and g3 embedded in
the kinetic Lagrangian given in Eq. (2.5), and further the vev vh and the quartic coupling λ in the
Higgs Lagrangian, see Eq. (2.10). The 13 remaining parameters are given by three charged fermion
masses, six quark masses as well as three mixing angles plus one physical phase all comprised in the
Yukawa sector in Eq. (2.19). The hierarchies between the various quark and charged lepton masses
shown in Fig. 2.1, together with the different structures observed in the two mixing matrices are
commonly referred to as the SM flavour puzzle. For a summary of different ideas developed to
address the puzzle see, e.g., Ref. [34].

The SU(3)F symmetry

An approximate global symmetry of the SM is the SU(2) isospin symmetry rotating up and
down quarks, which is broken due to quark masses for one thing. The isospin violation can be
parametrised by the ratio (mu −md)/ΛQCD, where ΛQCD ≈ O (0.1) GeV [32] denotes the QCD
confinement scale. Additional breaking is induced by the fine-structure constant αe since the u and
d quarks have different electric charges Qe. Moreover, promoting the strange quark to this picture
the SU(3)F flavour symmetry is realised assuming equal masses of the u, d, and s quarks. Due to
the apparent larger mass splitting between the strange and the lighter two quarks, this symmetry
is even more approximate. In fact, there are three SU(2) subgroups embedded in the SU(3)F .
We identify the familiar isospin (u ↔ d), as well as V -spin (u ↔ s) and U -spin (d ↔ s), where
the latter two, however, suffer from breaking of the order ms/ΛQCD similar to SU(3)F itself [25].
In Sec. 7.3, we explore the U -spin and isospin breaking patterns of U(1)′ extensions in hadronic
charm decays.
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Chapter

3
Tools and directions beyond
the standard model

The absence of NP particles or signals thereof close to the electroweak scale at LHC searches so
far suggests a wide scale-separation of electroweak and BSM physics. To establish a theoretical
framework that describes both low and high-energy physics, one has to keep in mind that the
dynamics at low energies are independent of the details of the high-energy dynamics, supported by
the decoupling theorem [45]. Physical processes are described in perturbation theory employing
a convergent expansion of (small) theory parameters. However, this necessitates a separation of
(electro)weak and QCD interactions, where only the former can be handled perturbatively. This puts
forward effective field theories (EFTs) which are important tools to portray a model-independent
view on physical processes at certain energy scales. These effective theories are constructed as a
simplified version of an underlying theory, where processes are described considering only relevant
degrees of freedom. The application of such tools allows us to parametrise BSM physics and
compute predictions that can be tested by experiments.

In this chapter, we introduce the main tools of theoretical particle physics and discuss how they
can be employed to test the SM while also providing predictions of BSM physics. We start by
reviewing the concept of renormalisation and study the running of couplings in the SM in Sec. 3.1.
Moving on, Sec. 3.2 deals with the concept of EFTs, followed by a brief overview of the SMEFT in
Sec. 3.3. Afterwards, we discuss flavour anomalies present in rare B-decays in Sec. 3.4.

3.1 Renormalisation and running of couplings

In particle physics, predictions for observables are computed in perturbation theory by expanding
them in powers of small parameters, i.e. coupling constants. While tree-level contributions serve as a
first approximation, more precise results are obtained by including higher-order corrections in which
loop contributions of Feynman diagrams need to be considered. However, those loop diagrams often
yield ultraviolet (UV) divergences evaluating momentum integrals at high energies, which are then
also preserved in Green’s functions and decay amplitudes. The concept of renormalisation removes
these unphysical infinities and consequently allows for the computation of finite predictions for
observables as functions of renormalised parameters of the theory, such as coupling constants and
masses that can be compared to those measured by experiments. To make the divergences explicit
in calculations and to renormalise all parameters of the Lagrangian at hand, a regularisation scheme
is utilised. As physical predictions do not depend on the chosen regulator and renormalisation
condition, all explicit dependencies need to cancel when computing observables. This is encoded
in the renormalisation group (RG) which is a convenient tool to improve perturbation theory
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results.

Theories, where all UV divergences can be cancelled by a finite number of so-called counterterms
to all orders in perturbation theory are called renormalisable theories. Conversely, theories that
require an infinite number of such counterterms to remove all the divergences are called non-
renormalisable theories. Then, generalising to individual interactions we describe operators with
coupling constants of mass dimension ∆ = 0 as marginal, while dimensions ∆ > 0 and ∆ < 0 are
termed relevant and irrelevant, respectively. That being said, non-renormalisable theories are still
very predictive at low energies, where only a certain number of non-renormalisable interactions
are important and can be fixed by a finite number of measurements. This puts forward the
construction of effective theories, where the relevant degrees of freedom of a certain process are
isolated. Such an effective description has only a limited range of applicability, i.e. the energy
scale of the process, and is generally non-renormalisable. Yet, it is more predictive in that range
than the corresponding overarching renormalisable theory. For instance, the effective Fermi theory
of weak decays is very predictive in the low-energy regime. Alas, perturbation theory breaks down
at energies 1/

√
GF ∼ 300 GeV and above, where GF denotes the Fermi constant. From the vast

literature concerning renormalisation, we consult Refs. [24, 26, 46] in this section.

To get an idea of how the procedure of renormalisation is applied, we consider the example of
QED, where we focus on the simplest version of the theory involving a single charged fermion, i.e.
electrons and positrons. The bare QED Lagrangian reads 1 [24]

LQED = ψ̄0

(︁
i /∂ −m0

)︁
ψ0 −

1

4
F0µν F

µν
0 − e0 ψ̄0 /A0 ψ0 , (3.1)

where Fµν0 = ∂µAν0 − ∂νAµ0 is the bare field strength tensor, while m0 and e0 denote the bare mass
and electric charge of the electron, respectively. The subscript ‘0’ is used to distinguish the bare
(unrenormalised) quantities from the corresponding physical ones, i.e. the observable mass me and
electric charge e of the electron. We define the renormalised quantities (without the subscript ‘0’)
by

Aµ =
1√
ZA

Aµ0 , ψ =
1√︁
Zψ

ψ0 , me =
1

Zm
m0 , e =

1

Ze
µ(d−4)/2 e0 . (3.2)

Here, the renormalisation scale µ enters employing the dimensional regularisation scheme [47,
48], where the dimensionality of spacetime is analytically continued from 4 to d < 4. This
ensures that the renormalised charge e is a dimensionless parameter. The Zi are referred to
as renormalisation constants and the renormalised fields are chosen such that their two-point
functions (i.e. renormalised propagators) have finite residue at p2 = m2

e. Expressed in terms of
renormalised fields and parameters, the QED Lagrangian can be written as

LQED = Zψ ψ̄ i /∂ ψ − Zm Zψme ψ̄ψ − ZA
4
Fµν F

µν − µ(4−d)/2 Ze Zψ
√︁
ZA e ψ̄ /Aψ

= ψ̄
(︁
i /∂ −me

)︁
ψ − 1

4
Fµν F

µν − µ(4−d)/2 e ψ̄ /Aψ (3.3)

+ ψ̄
[︁
(Zψ − 1) i /∂ − (Zψ Zm − 1)me

]︁
ψ − ZA

4
Fµν F

µν − µ(4−d)/2 (Ze Zψ
√︁
ZA − 1) ψ̄ /Aψ .

The first line of Eq. (3.3) exhibits the same structure as the original QED Lagrangian in Eq. (3.1),
and therefore gives rise to the usual QED Feynman rules. Without the additional terms in second
line one would still obtain UV divergences when computing the Feynman graphs. However, these

1For simplicity we omit gauge-fixing terms.
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3.1 Renormalisation and running of couplings

divergences are cancelled by counterterms ∼ Zi, which themselves generate additional Feynman
rules. Then, finite scattering amplitudes are obtained in renormalised perturbation theory using
the renormalised Lagrangian. The renormalisation constants are fixed by choosing a regularisation
scheme. In dimensional regularisation, logarithmically divergent integrals are rendered UV finite if
evaluated in d = 4− ε < 4 spacetime dimensions, where ε is an infinitesimal, positive parameter.
While UV singularities appear as 1/εn pole terms in d = 4 dimensions, they cancel when adding
the counterterms to the original Feynman diagrams, and we can take the limit ε→ 0 in the final
result. This way, the Zi can be computed at any given order in the coupling constant, requiring
that all divergences cancel at every order. To compute the counterterms it is convenient to employ
the minimal subtraction (MS) scheme, i.e. the MS scheme [48, 49], where only divergent parts are
absorbed and the rescaling µ2 = µ2 eγe/(4π) is applied to simplify results. Here, γe = 0.5772 . . .
denotes the Euler-Mascheroni constant. In the MS scheme, the renormalisation constants have the
structure

Zi = 1 +
z1
ε

e2

(4π)2
+
(︂z22
ε2

+
z21
ε

)︂ e4

(4π)4
+ . . . , (3.4)

where the counterterms in Zi appear at O
(︁
e2
)︁
in perturbation theory and have a perturbative

expansion in powers of the renormalised coupling e. Next, we consider the next-to-leading order
(NLO) contributions in QED to fix the renormalisation constants up to O

(︁
e2
)︁
. For instance, the

photon field renormalisation constant ZA is computed schematically by imposing

finite = + c , (3.5)

where the first diagram corresponds to the photon propagator correction via a vacuum polarisation
loop, and the second diagram is the counterterm −1/4 (ZA − 1)Fµν F

µν . Then, Eq. (3.5) is
satisfied for ε→ 0 by [24]

ZA = 1− 8

3

e2

(4π)2
1

ε
+O

(︁
e4
)︁
. (3.6)

In a similar way, the constants Zψ and Zm are extracted from

finite = + c , (3.7)

where the first diagram denotes the electron self-energy and the second one illustrates the coun-
terterm contributions ψ̄

[︁
(Zψ − 1) i /∂ − (Zψ Zm − 1)me

]︁
ψ. One derives the expressions

Zψ = 1− 2
e2

(4π)2
1

ε
+O

(︁
e4
)︁
, Zm = 1− 6

e2

(4π)2
1

ε
+O

(︁
e4
)︁
. (3.8)

The remaining constant Ze is fixed by considering vertex corrections,

finite = + c , (3.9)
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Chapter 3 Tools and directions beyond the standard model

which yields

Ze = 1 +
4

3

e2

(4π)2
1

ε
+O

(︁
e4
)︁
. (3.10)

With these results at hand, we can express the bare coupling e0 as

e0 = µε/2 eZe = µε/2 e

[︃
1 +

4

3

e2

(4π)2
1

ε

]︃
. (3.11)

As the µ-dependence appears only in the renormalised but not in bare Lagrangian, we must have

0 =
de0

d ln(µ)
= µε/2 eZe

[︃
ε

2
+

1

e

de
d ln(µ)

+
1

Ze

dZe
d ln(µ)

]︃
. (3.12)

This way, we obtain a differential equation called renormalisation group equation (RGE) that
encodes the scale dependence of the renormalised coupling e. To this end, we define the β-function

β(e) ≡ de
d ln(µ)

= −ε
2
e− e

1

Ze

dZe
d ln(µ)

= −ε
2
e+

e3

12π2
+O

(︁
e5
)︁
, (3.13)

which yields a finite result for ε → 0. In the last step we have inserted 1/Ze ≈ 1 − e2/(12π2 ε)
keeping terms to appropriate order. While the renormalisation scale can be set arbitrarily, one
typically chooses µ ≃ s, where s denotes the centre of mass energy of the process considered, to
guarantee a quick convergence of the series. The β-function is often expressed as a function of

αe =
e2

4π
, (3.14)

and β(αe) ≡ dαe/d ln(µ). Then, the RGE in Eq. (3.13) can be conveniently rewritten as

β(αe) =
dαe

d ln(µ)
= −2αe

(︄
ε

2
+

∞∑︂
k=0

βQED
k

(︂αe
4π

)︂k+1
)︄
. (3.15)

Solving Eq. (3.15) for ε→ 0 yields at leading order (LO)

αe(µ) =
αe(µ0)

1 +
βQED
0

4π αe(µ0) ln
(︂
µ2

µ2
0

)︂ , (3.16)

with βQED
0 = −4/3. The evolution of αe(µ) is fixed by a measurement of αe(µ0) at a certain

energy scale µ0. Since αe rises with increasing energy due to βQED
0 < 0, a divergence of the theory

is entailed at a large scale ΛQED, referred to as a Landau pole. Utilising the measurement of
αe(me) = 1/137 [32], we can identify this scale as µ0 = ΛQED ≈ 10286 eV. Hence, perturbation
theory in QED breaks down at short distances.
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3.1 Renormalisation and running of couplings

3.1.1 Renormalisation group evolution in the standard model

In the following, we review the RG evolution of the SM in the unbroken phase. Here, we use the
rescaled gauge couplings

αX =
X2

(4π)
2 with X = {g1, g2, g3} . (3.17)

To avoid confusion regarding the commonly used gauge coupling of the strong interaction αs which
is shy of a factor of 4π compared to the definition above, we distinguish between the two notations
as

αs =
g2s
4π

, α3 =
g23

(4π)2
. (3.18)

The Yukawa coupling of the t quark αt = y2t /(4π)
2 and the Higgs quartic αλ = λ/(4π)2 are also

taken into account, see notations given in App. A.4. Due to their subleading (yb, yτ ) or negligible
effects we do not consider the remaining Yukawa couplings of the SM in this discussion. In Fig. 3.1,

102 107 1012 1017 1022 1027 1032 1037

µ /GeV

10−5

10−4

10−3

10−2

α1

α2

α3

αt

αλ

Figure 3.1: RG evolution of couplings in the SM. Here, α1−3 are the gauge couplings, while the
t-quark Yukawa and Higgs quartic couplings are denoted by αt and αλ, respectively. The grey
area indicates the Planck scale, µPl ∼ 1019 GeV, where quantum gravity effects are expected to
become relevant. The RGEs are solved at two-loop accuracy for all couplings [21, 50].

we display the RG evolution of the SM couplings within two-loop accuracy. While not directly
shown in this plot, αλ acquires negative values at µ ∼ 1010 GeV, which has striking implications
as the vacuum configuration of the Higgs potential becomes metastable given the current Higgs
and t-quark mass measurements [28, 51]. This is explained by the fact that not all terms in the
β-function βλ are proportional to αλ itself, which is a feature only attributed to the Higgs quartic
in the SM [28].

In the following, we study the behaviour of the gauge couplings. The U(1)Y gauge coupling α1 runs
into a Landau pole in the UV regime due to its abelian nature, similar to the QED coupling αe.
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Chapter 3 Tools and directions beyond the standard model

The energy scale of this divergence, µLP, can be estimated by considering the LO RG running

βi ≡
dαi

d ln(µ)
= Bi α

2
i , (3.19)

where Bi denotes the one-loop coefficient, e.g. B1 = 41/3 > 0. Solving Eq. (3.19), we detect a
Landau pole at high energies for a positive coefficient Bi. Integrating Eq. (3.19) and solving for
1/αi(µLP) = 0 yields

ln
(︃
µLP

µ0

)︃
=

1

Bi αi(µ0)
. (3.20)

From electroweak measurements we fix α1(µ0 = mZ) = 8.1 · 10−4 [32], which reveals a Landau
pole at µLP ≈ 1041 GeV way beyond the Planck scale of µPl ∼ 1019 GeV. Conversely, the
coupling α3 features a divergence in the infrared (IR) regime µ → 0. The location of this pole
ΛQCD ≈ O (0.1) GeV is called the confinement scale, which depends on the number of active
quarks nf at the energy scale µ. The one-loop coefficient is given by B3 = −2βQCD

0 with 2

βQCD
0 (nf ) = 11− 2

3
nf . (3.21)

In the SM, we have nf = 6 for µ > mt, and hence B3 = −14 < 0 which dictates the opposite
behaviour compared to α1, where B1 > 0. The strong coupling asymptotically approaches zero at
highest energies which is called asymptotic freedom [52].

While in the SM the U(1)Y Landau pole arises at high energies beyond the validity of our theory,
the divergence can be moved towards significantly lower energies (below the Planck scale) when
additional BSM interactions are present in our theory. This is the case in U(1)′ extensions which
we further outline in Sec. 5.5.

3.2 Model-independent description with effective field
theories

Describing a physical process or system often involves widely separated energy scales. To successfully
distinguish and study the low-energy (long-distance) and high-energy (short-distance) contributions
independently, we need to identify those parameters which are very large (small) compared to the
relevant energy scale of the underlying process and put them to infinity (zero). A theoretical tool
that follows these basic principles and provides an approximate low-energy description is effective
field theories (EFTs), where low refers to energies E (significantly) smaller than an associated
large, fundamental energy scale Λ. In this framework, only the relevant degrees of freedom are
taken into account, i.e. those states with m ≪ Λ. Conversely, heavier excitations M ≫ Λ are
integrated out from the action, but remain encoded in the couplings of the formulated low-energy
Lagrangian. The approximate theory then involves an expansion in powers of E/Λ [53]. The
effective Lagrangian is derived using the operator product expansion (OPE). It allows us to replace
products of operators evaluated at different points by a sum over composite (local) operators in

2B3 = −2βQCD
0 holds in the convention of rescaled gauge couplings α3 = (g3)2/(4π)2 . See App. A.4 for details.
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3.2 Model-independent description with effective field theories

the limit of approaching points, i.e.

lim
x→y

A(x)B(y) =
∑︂
n

Cn(x− y)On(x) , (3.22)

for any operators A and B [24]. Most eminently, the coefficients Cn are independent of the external
states, thus the expansion holds at the operator level rendering the OPE a powerful method
applied in effective theories. The coefficients can be computed to a given order in perturbation
theory and then be utilised for any process. In perturbative EFTs only a finite number of operators
needs to be taken into account to acquire a given precision.

In what follows, we outline the main concepts of EFTs utilising the Fermi theory [54] as an
instructive example [55, 56]. Further in-depth literature on EFTs can be found in Refs. [44, 53, 55–
60]. Let us revisit the only flavour-changing interactions in the SM present in the charged-current
Lagrangians in Eqs. (2.24) and (2.26). After integrating out the heavy fields following the OPE,
we obtain an effective theory that describes the weak interaction in the SM at energies E ≪MW .
By going from the full to the effective theory the W boson is removed as an explicit, dynamical
degree of freedom. This yields local four-fermion operators as illustrated in Fig. 3.2.

d u

c s

pW

d u

c s

p � MW

Figure 3.2: Example of an effective four-fermion interaction obtained by integrating out the W
boson in the SM. The crossed dots in the right-hand side diagram indicate a local four-fermion
operator in the effective theory.

The effective Lagrangian reads

Leff = −4GF√
2

J−
µ J +µ +O

(︃
p2

M2
W

)︃
, (3.23)

where p denotes the momentum carried by the intermediate W boson and GF ≡
√
2 g2/(8M

2
W ) is

the Fermi constant. The charged currents are given by

J +
µ = Vij uL,iγµ dL,j + νL,i γµ eL,i , J−

µ =
(︁
J +
µ

)︁†
, (3.24)

where a summation over the flavour indices i, j is understood. While the truncation of the
operator series in the OPE yields a systematic approximation for low energy processes, the series is
equivalent to the full theory when considering all orders in 1/M2

W . One observes that the coupling
constant GF associated with the dimension-six operator J +J− is suppressed by two powers of
the fundamental scale, M2

W , a characteristic that emerges when integrating out heavy fields from
the fundamental theory at low energies. The effects of subleading terms in Eq. (3.23) are tiny
due to their suppression by powers of p2/m2

W and can be neglected for (almost) all practical
purposes. However, beyond tree-level approximation the contributions from strong interactions are
not accounted for in the effective description in Eq. (3.23). These challenges are met by performing
a general matching procedure, which we outline in the following.
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Chapter 3 Tools and directions beyond the standard model

We write down the OPE for the effective Lagrangian describing weak decays with the generic
structure

Leff = −4GF√
2

∑︂
i

Ci(µ)Oi(µ) , (3.25)

where the sum includes all possible gauge-invariant operators of a given dimension allowed by
symmetries. While the local operators Oi encode the dynamics at low energies, the high-energy
physics involving heavy masses are parametrised by the process-independent Wilson coefficients
Ci. Hence, non-perturbative and perturbative QCD effects are separated. The values of Ci are
extracted by matching the amplitude of the effective theory and the full theory.

Let us consider the quark transition c→ s ud depicted in Fig. 3.2. Neglecting strong interactions,
the transition is described by the Fermi theory in Eq. (3.23). Taking into account QCD corrections,
we obtain the generalisation

Leff = −4GF√
2
V ∗
csVud (C1O1 + C2O2) , (3.26)

with operators

O1 = (sα γµ PL cα) (uα γµ PL dα) , O2 = (sα γµ PL cβ) (uα γµ PL dβ) , (3.27)

assuming an implicit summation over repeated colour indices α, β. The Wilson coefficients are
determined by comparing the Feynman diagrams in the EFT with those of the full theory. From
tree-level matching we obtain C1(mW ) = 1+O (αs) and C2(mW ) = O (αs). The one-loop matching
results are given by

C1(µ) = 1 +
αs(µ)

4π

[︃
ln
(︃
m2
W

µ2

)︃
− 11

6

]︃
+O

(︁
α2
s

)︁
, (3.28)

C2(µ) = − 3
αs(µ)

4π

[︃
ln
(︃
m2
W

µ2

)︃
− 11

6

]︃
+O

(︁
α2
s

)︁
. (3.29)

One notices that the expansion parameter is in fact not given by αs/π ∼ 0.1, but instead reads
αs/π ln(m2

W /µ2) ∼ 0.8. A poor convergence of the expansion is a generic issue in perturbation
theory whenever widely separated scales Λ ≫ µ are present, and necessitates a resummation of
logarithmic terms. For instance considering QCD effects, large logarithms appear that need to
be resummed to all orders. This procedure is generally referred to as RG-improved perturbation
theory, in which αs ln (Λ/µ) is treated as an O (1) parameter, while αs ≪ 1. By solving the RGEs,
the large logarithms are resummed to all orders in the perturbative expansion. That is, in the
n-th order of RG-improved perturbation theory the terms of the from αns (µ) (αs(µ) ln (Λ/µ))

k are
summed to all order in k, with k = 0, 1, . . . , ∞. The nomenclature commonly utilised in the
literature is as follows. Resummation at LO (n = 0) incorporates all terms (αs ln(Λ/µ))k and
yields an O (1) contribution to the Wilson coefficients. At NLO, one further considers terms with
n = 1 of the form αs(αs ln(Λ/µ))k, all of which count as O (αs).

To better understand and actually perform such resummations, we need to study the renormalisation
of the operators contained in the effective Lagrangian. To this end, we check Eq. (3.25) recalling
that physical observables are scale-independent, which translates into

0 =
d (Ci(µ)Oi(µ))

d ln(µ)
=

dCi(µ)
d ln(µ)

Oi(µ) +
dOi(µ)
d ln(µ)

Ci(µ) . (3.30)
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Similar to the renormalisation outlined in Eq. (3.2), we define the bare operators

O0
i = Zij(µ)Oj(µ) . (3.31)

where an implicit summation over j is understood. The bare operators are independent of the
renormalisation scale µ, and hence it follows that

0 =
dO0

i

d ln(µ)
=

dZij
d ln(µ)

Oj +
dOj

d ln(µ)
Zij . (3.32)

Rewriting this equation yields

0 =
dOi

d ln(µ)
=

1

Zki

dZkj
d ln(µ)

Oj = −γij Oj , (3.33)

where we have introduced the matrix γij(αs) called the anomalous dimension matrix (ADM). It
describes the mixing of operators under scale variation, assuming that more than one operator is
present. The ADM itself depends on the scale µ only through the running coupling αs(µ). Since
by assumption the operators Oi are linearly independent, we just insert the definition of the ADM
in Eq. (3.30) and obtain

dCi
d ln(µ)

= γji Cj =
(︁
γT)︁

ij
Cj . (3.34)

The ADM can be expressed by an expansion in αs of the form

γij(α) =

∞∑︂
l=0

γ
(l)
ij

(︂ α
4π

)︂l+1

. (3.35)

Then, one determines the Wilson coefficients by solving the RGE in (3.34). In the case of a single
operator, the LO contribution reads [56]

C(µ) =
(︃
αs(Λ)

αs(µ)

)︃γ(0)/(2 βQCD
0 )

(1 +O (αs)) , (3.36)

where the running of αs is encoded in the corresponding β-function with the LO coefficient βQCD
0

defined in Eq. (3.21). If multiple Wilson coefficients Ci are present, the ADM is diagonalised before
solving the RGEs in the new basis.

Coming back to our EFT in Eq. (3.26), the lowest-order contribution to the ADM reads [56, 57]

γ =
αs
4π

⎛⎝−2 6

6 −2

⎞⎠ , (3.37)

which induces mixing between the operators O1,2 in the RG evolution due to its non-diagonal
structure. Employing the change of basis

C± = C1 ± C2 (3.38)

we find a diagonal ADM, where the lowest-order entries in Eq. (3.35) are given by the eigenvalues
of the matrix in Eq. (3.37), i.e. γ(0)± = −2± 6. Using these results, we can utilise the solution in

- 21 -



Chapter 3 Tools and directions beyond the standard model

Eq. (3.36) and obtain

C+(µ) =

[︃
αs(mW )

αs(µ)

]︃6/(33−2nf )

, C−(µ) =

[︃
αs(mW )

αs(µ)

]︃−12/(33−2nf )

. (3.39)

3.3 The standard model effective field theory

Following the EFT approach outlined in Sec. 3.2, we introduce a generalisation of the SM which
comprises all SM particles and their interactions applicable up to energies not exceeding the
scale Λ ∼ ΛNP. Assuming that the electroweak scale ∼ vh ≈ 246 GeV and the NP scale are
sufficiently separated, we can put forward an OPE consisting of dimension-five, dimension-six, and
higher-dimensional operators. They are solely built out of SM fields and are invariant under the
full SM gauge symmetry GSM, i.e. Eq. (2.1). The corresponding EFT is called standard model
effective field theory (SMEFT), where the degrees of freedom involving NP are integrated out and
only SM parameters remain as dynamical degrees of freedom. Hence, the Wilson coefficients of
the theory include only NP effects and can be conveniently used to test for BSM signatures. The
SMEFT is reduced to the SM at low energies, provided that no undiscovered but weakly coupled
light particles exist.

The SMEFT Lagrangian is given by

LSMEFT = L(4)
SM +

∞∑︂
d=5

L(d) , L(d) =
∑︂
k

1

Λd−4
C(d)
k O

(d)
k , (3.40)

where L(4)
SM is the usual renormalisable SM Lagrangian, while higher-dimensional operators are

suppressed by powers of Λ. By taking into account all operators allowed by gauge symmetries, the
Lagrangian in Eq. (3.40) can be renormalised order by order in 1/Λ. As the RG evolution between
the NP scale and the electroweak scale involves operator mixing, we stress that an observed pattern
of deviations from SM expectations at low-energy scales can differ significantly from the pattern of
Wilson coefficients present at energies where NP comes into play.

The dominant NP effects in SMEFT for phenomenological studies are induced by dimension-six
operators suppressed by a factor of 1/Λ2. Depending on the operator considered, current LHC
experiments are sensitive to Λ within O

(︁
1-103 TeV

)︁
assuming C ≈ 1. In total, there are 59

independent dimension-six operators assuming lepton- and baryon-number conservation which are
given in the so-called Warsaw basis [61] 3. Note that the fermion fields in these operators carry
additional flavour indices, which strictly speaking yields 2499 (1350 CP -even and 1149 CP -odd)
operators in full flavour generality assuming three generations of fermions. The corresponding
Wilson coefficients C(6)

k contain the information about NP at and above scales O (Λ). One readily
acknowledges that, e.g., a determination of all these Wilson coefficients from a comparison to SM
expectations at low-energy scales in this model-independent approach seems unfeasible due to
the vast number of free parameters. However, a classification of operators and studies of the RG

3Only a single operator exists at dimension-five, which is the lepton-number violating Weinberg operator [62]
responsible for Majorana masses of LH neutrinos in the spontaneously broken theory. The small neutrino masses
stipulated by neutrino oscillation experiments necessitate a very large scale of lepton-number violation Λ/L.
Generally, one assumes the scale Λ/L (Λ/B) to be much larger than Λ, which allows for a significant suppression
of lepton-number violating (baryon-number violating) operators compared to the conserving dimension-six
ones [63].
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Cll (LγµL)(LγµL) Cee (EγµE)(EγµE) Cle (LγµL)(EγµE)

C(1)
qq (QγµQ)(QγµQ) Cuu (UγµU )(UγµU ) Clu (LγµL)(UγµU )

C(3)
qq (Qγµσ

aQ)(QγµσaQ) Cdd (DγµD)(DγµD) Cld (LγµL)(DγµD)

C(1)
lq (LγµL)(QγµQ) Ceu (EγµE)(UγµU ) Cqe (QγµQ)(EγµE)

C(3)
lq (Lγµσ

aL)(QγµσaQ) Ced (EγµE)(DγµD) C(1)
qu (QγµQ)(UγµU )

C(1)
ud (UγµU )(DγµD) C(8)

qu (Qγµt
bQ)(UγµtbU )

C(8)
ud (Uγµt

bU )(DγµtbD) C(1)
qd (QγµQ)(DγµD)

C(8)
qd (Qγµt

bQ)(DγµtbD)

Table 3.1: Overview of selected dimension-six four-fermion operators and their corresponding
Wilson coefficient in SMEFT imposing baryon-number conservation. In this table, we categorise
the operators into classes (L̄L)(L̄L), (R̄R)(R̄R), and (L̄L)(R̄R) indicating the chirality of the
fermion fields involved while suppressing the flavour indices for brevity. The σa are the Pauli
matrices while tb denote the SU(3)C generators. Five additional operators with (L̄R)(R̄L) and
(L̄R)(L̄R) structure exist, but are not shown here [61].

effects proves useful in concrete models [26].

In Tab. 3.1, we display 20 four-fermion operators, which are categorised in terms of the chiralities
of the fermion fields involved while suppressing flavour indices. Here, we guide the reader towards
contributions of C(1)

lq , C(3)
lq , Clu, and Cld featuring couplings of quarks to LH lepton fields. These

kind of operators allow to expose correlations between charged leptons and neutrinos due to
SU(2)L-invariance of the SMEFT, which is investigated in Chap. 9. For reviews and applications
of the SMEFT, we refer to Refs. [26, 61, 63–68]. In particular, the complete set of dimension-six
operators is provided in Ref. [61].

3.4 Hints of new physics in rare B-decays

In this section, we review flavour anomalies present in measurements of rare B-decays that show
discernible deviations from their SM predictions. In doing so, we introduce the EFT description of
the underlying b→ s ℓ+ℓ− transition and review the key players of these anomalies.

The effective Hamiltonian for b→ s ℓ+ℓ− transitions at the b-quark scale µb ≈ mb is given by [69]

Hbsℓℓ
eff = −4GF√

2

αe
4π

Vtb V
∗
ts

[︃
C7O7 + C′

7O
′
7 +

∑︂
ℓ=e,µ,τ

∑︂
i=9,10,S,P

(︁
Cℓℓi Oℓℓi + C′ℓℓ

i O′ℓℓ
i

)︁]︃
, (3.41)
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with the semileptonic operators

Oℓℓ9 = (sLγµbL)(ℓγ
µℓ) , O′ℓℓ

9 = (sRγµbR)(ℓγ
µℓ) ,

Oℓℓ10 = (sLγµbL)(ℓ γ
µγ5ℓ) , O′ℓℓ

10 = (sRγµbR)(ℓγ
µγ5ℓ) ,

OℓℓS = mb (sL bR)(ℓ ℓ) , O′ℓℓ
S = mb (sR bL)(ℓ ℓ) ,

OℓℓP = mb (sL bR)(ℓ γ5 ℓ) , O′ℓℓ
P = mb (sR bL)(ℓγ5ℓ) .

(3.42)

Here and in the following, we employ a notation where ℓ = e, µ, τ are chosen as placeholders
for fields of a specific flavour and further used as flavour indices of the operators and Wilson
coefficients. Additional lepton flavour violating contributions induced via Wilson coefficients Cℓℓ′i

with ℓ ̸= ℓ′ are not considered at this point, but may be included straightforwardly in Eq. (3.41).
The contributions to dipole operators read

O7 =
mb

e
(sL σµν bR)F

µν , O′
7 =

mb

e
(sR σµν bL)F

µν , (3.43)

where Fµν denotes the electromagnetic field strength tensor. Contributions from primed operators
are negligible in the SM. The dominant contribution arises with LH quark currents from electroweak
penguin diagrams shown previously in the right-hand side diagram of Fig. 2.2, that yields lepton
universal couplings CSM

9 (mb) ≃ −CSM
10 (mb) ≃ 4.2. In addition, it is CSM

7 (mb) = −0.3 [70]. Due to
our focus on BSM effects, we expose the different contributions as

Cℓℓi = CSM
i + Ci,ℓ , C′ℓℓ

i = C′
i,ℓ , (3.44)

separating the SM contribution, CSM
i , and the pure NP one, Ci,ℓ.

While (pseudo)scalar and primed operators are highly suppressed and negligible in the SM due to
the small masses of leptons, they may become large in NP extensions. However, possible NP in
scalar operators can be constrained by Bs→ µ+µ− decays [71]. Tensor operators are not present
in the SM and also not induced in Z ′ models, and hence neglected in this thesis. See, e.g., Ref. [72]
for a comprehensive study of the weak effective theory (WET) framework of rare B-decays.

3.4.1 A brief review of the B-anomalies

In recent years, several deviations from SM predictions have been surfaced in measurements of
observables in rare B-decays. In the SM, these decays are highly suppressed due to the underlying
FCNC structure and therefore sensitive to NP. While these deviations represent a first hint of BSM
physics, statistical fluctuations as well as underestimated experimental or theoretical systematic
uncertainties cannot be ruled out at the moment. However, the huge set of experimental data
already available and updated measurements with reduced uncertainties expected in the future
elevate these flavour anomalies to be prime candidates for studies involving possible NP. The
deviations are collectively referred to as the B-anomalies and can be categorised as follows [69]:

(i) Apparent suppression of various branching ratios of exclusive decays with underlying
b→ s µ+µ− transition, e.g. B→ K µ+µ− and B→ K∗ µ+µ−, where the main source of
theoretical uncertainties comes from hadronic form factors.

(ii) Measurements of angular observables in B→ K∗µ+µ− decays deviate from the SM expecta-
tion. Compared to the branching ratio measurements, such optimised observables feature
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3.4 Hints of new physics in rare B-decays

smaller form factor uncertainties, however significant hadronic uncertainties remain present.

(iii) Tests of lepton universality (LU) have been analysed, where the ratio of muon and electron
modes in observables RK and RK∗ exhibits significant deviations from the SM prediction of
unity. In such ratios theoretical uncertainties are negligible, and their sensitivity is presently
only limited by statistical uncertainties in experiment.

Furthermore, apparent deviations from LU, i.e. τ -µ and τ -e universality, are observed in FCCCs
b→ c ℓν transitions [73–79], which appear at tree level in the SM. We do not consider them in
this work as they are less sensitive to NP effects compared to the loop-induced neutral-current
transitions. Our focus resides solely on observables of decays with an underlying FCNC b→ s
transition that can be modified by contributions involving a Z ′ boson. For a detailed review on
the full B-anomalies, see, e.g., Refs. [80, 81].

In what follows, we introduce the tests of LU in b→ s ℓ+ℓ− transitions. One of the key features
of the SM is LU, which states that all three generations of leptons interact identically except for
effects due to their different masses. In recent years, LU has been challenged by measurements of
observables that probe couplings to muons and electrons in branching ratios

RH =

∫︂ q2max

q2min

dB (B→ Hµ+µ−)

dq2
dq2∫︂ q2max

q2min

dB (B→ He+e−)

dq2
dq2

, (3.45)

with H = K, K∗, . . . [82, 83]. Here, q2 denotes the dilepton invariant mass squared, while q2min
(q2max) refers to the lower (upper) dilepton mass cut. These ratios provide a precise theoretical
prediction where hadronic uncertainties largely cancel in the ratio utilising a factorisation of
hadronic and leptonic parts of the branching ratios. Notably, experiments are able to measure
these observables with reduced uncertainties 4. Most prominently, the LHCb experiment has
performed several such measurements in different q2-bins with values below unity, which indicates
a different treatment of BSM physics towards muons and electrons. For instance, the latest
measurement [8]

RK+ |[1.1,6.0] = 0.846+0.042
−0.039 (stat)

+0.013
−0.012 (syst) (3.46)

exhibits a 3.1σ deviation from the SM prediction, RSM = 1 +O (%). Here, the respective q2-bin
in units of GeV2 is specified as a subscript, while the statistical (stat) and systematic (syst)
uncertainties are stated as well. The measurement of the related B to pseudoscalar ratio [9]

RK0
S
|[1.1,6.0] = 0.66+0.20

−0.14 (stat)
+0.02
−0.04 (syst) , (3.47)

in the same q2-region, reveals a similar reduction of the LU ratio with a smaller deviation about
1.5σ from the SM hypothesis. Moreover, measurements of ratios with a vector meson, H = K∗, in
the final state have been performed, where [84]

RK∗0 |[0.045,1.1] = 0.66+0.11
−0.07 (stat) ± 0.03 (syst) , (3.48)

RK∗0 |[1.1,6.0] = 0.69+0.11
−0.07 (stat) ± 0.05 (syst) , (3.49)

4It is crucial to impose identical cuts for electron and muon modes to ensure maximal cancellation of hadronic
uncertainties.
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differ from the SM hypothesis by 2.2 and 2.5 standard deviations, respectively. While assumed to
be affected by the same NP contributions, the measurements of RK0

S
(and RK∗+) suffer from a

reduced experimental efficiency at LHCb compared to its isospin partner due to the presence of a
long-lived K0

S or π0 meson in the final state [9].

In Tab. C.5, we give the full list of SM predictions and measurements of RK(∗) in different q2-
regions. Therein, we also show results obtained by the Belle collaboration which, in contrast to
the ones from LHCb, are in agreement with the SM predictions due to their large uncertainties.
However, the successor experiment Belle II is expected to provide improved measurements in the
near future [80, 85] which may reinforce the implications of the LHCb data. In Fig. 3.3, we display
selected measurements of RK∗0 with corresponding SM predictions.
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q2 /GeV2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
K

∗0 LHCb
Belle
BIP
CDHMV
EOS
flavio
JC

Figure 3.3: Comparison of LHCb [84] and Belle [86] RK∗0 measurements with the SM theo-
retical predictions [87–92].

A way to emphasise the potential of the LU ratios is to express their theory prediction in terms of
Wilson coefficients. By requiring parity and Lorentz invariance, we find that distinct combinations
of LH and RH coefficients appear in the decay amplitudes of exclusive semileptonic decays, that
is Ci + C′

i and Ci − C′
i for B→ K µ+µ− and B→ K∗ µ+µ−, respectively. Considering only linear

terms in BSM coefficients, we can cleanly isolate RH currents in the double ratio

RK∗

RK
≃ 1− 0.48 p

[︁
C′
9,µ − C′

10,µ −
(︁
C′
9,e − C′

10,e

)︁]︁
, (3.50)

where p ≃ 0.86 denotes the polarisation fraction of the K∗ meson [83].

As the dynamics of such FCNC decays are predicted within the SM with high precision, amplitudes
of such suppressed decays governed by b→ s transitions are perfect laboratories to look for NP.
Effects of BSM physics can be sizeable with respect to the competing SM processes, where new
particles can either participate in the loops or generate additional tree-level diagrams. In this
thesis, our focus resides on such contributions mediated by a new Z ′ gauge boson, see Chap. 8.
The determination of the necessary contributions favoured by the B-anomalies motivates a fit of
b→ s observables in terms of NP Wilson coefficients, which we present in Chap. 4.
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Chapter

4
Global fits of b→ s observables

With the EFT framework in Eq. (3.41), we can study the impact of BSM Wilson coefficients on
flavour observables. This can be done in a well-defined manner through a global fit, where all the
experimental data is fitted to the EFT framework. In doing so, we can exploit the complementarity
between different observables sensitive to certain types of combinations of Wilson coefficients,
which provides valuable information for the construction of NP models.

Motivated by the hints of LU violation outlined in Sec. 3.4, we perform a global fit with the tool
flavio [91] including b→ s ℓ+ℓ− (in particular b→ s µ+µ−) and b→ s γ data. We incorporate the
large set of available experimental data, e.g. (binned) branching ratios, angular observables such
as AFB, FH and P (′)

i as well as the RK(∗) observables. A complete list of the observables included
is given in App. C.1, closely following the approach in Refs. [93, 94]. In this chapter, we outline
the fit procedure in Sec. 4.1, and afterwards discuss the different fit set-ups and their results in
Sec. 4.2.

4.1 Preliminaries for a global fit

4.1.1 Statistical treatment of the data

One of the most challenging tasks for a precision analysis that combines a large number of flavour
observables, i.e. a global fit, is the proper and consistent treatment of both, experimental data
from measurements and theoretical uncertainties of the observables included. In the following,
we consider a set of observables O⃗, where the general idea is to find its theoretical predictions
Oth
i that agree best with the data available on those observables Oexp

i . This is done by generating
a likelihood from existing experimental data, and evaluating this function at the theoretical
predictions. One of the main purposes of the flavio package [91] is to implement and execute
this procedure. Schematically, the likelihood function is defined as

L(p⃗) =
∏︂
i

fi
(︁
Oexp
i ,Oth

i (p⃗)
)︁
, (4.1)

where the probability distribution functions (PDFs) fi computed for each individual measurement
i are multiplied. The theoretical predictions depend on a set of given input parameters p⃗ which
comprise additional sources of uncertainty. The maximum likelihood estimator, called the best-fit
point (point of highest probability), is obtained by maximising the likelihood function in Eq. (4.1).
However, in practice we are only interested in a subset of these parameters, which leads to a
splitting of p⃗ into fit parameters θ⃗ and nuisance parameters ν⃗, where the latter are integrated out.
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Consequently, one obtains a function that only depends on the fit parameters. Common methods
used for this splitting and the consecutive marginalisation of the nuisance parameters are the
Bayesian and the frequentist approach, which are both computationally quite demanding [93].

An alternative way of constructing a likelihood in flavio is the Fast-Likelihood approach, which
yields a likelihood independent of nuisance parameters reducing computation time and resources.

4.1.2 The Fast-Likelihood approach

Based on the Gaussian approximation of the likelihood, we write [93]

−2 ln
(︂
L(θ⃗)

)︂
≈ χ2 = ∆⃗

T
·
(︂
Cexp + Cth

(︂
θ⃗ = θ⃗c

)︂)︂−1

· ∆⃗ , (4.2)

with ∆⃗ = (O⃗
exp

− O⃗
th
(θ⃗)). Here, O⃗

exp
denotes the central values of the observables as measured

by experiments, while O⃗
th
(θ⃗) comprises the central values of the theoretical predictions in terms

of the nuisance parameters ν⃗ (but dependent on the fit parameters θ⃗). Cexp is a covariance matrix
that includes all experimental measurements, while Cth is a covariance matrix including the theory
predictions of the observables, evaluated for θ⃗ at their central values θ⃗c. Hence, the matrix Cth
involves all theoretical uncertainties and their correlations, and is computed by randomly sampling
the observables for nuisance parameters distributed according to their PDFs. Employing this
approach, the nuisance parameters in Cth are effectively integrated out and the likelihood function
to be optimised solely depends on the fit parameters of interest. Conversely, Cexp is obtained
from approximating the true experimental PDFs as a (multivariate) Gaussian distribution. We
emphasise that the validity of this approach relies not only on the assumption that experimental and
theoretical uncertainties are approximated as Gaussian, but also on the basis that the covariances
are assumed to be weakly dependent on the parameters θ⃗. Then, we are able to study the likelihood
function in the space of NP Wilson coefficients without worrying about nuisance parameters [91].

In our analysis, the covariance matrix Cexp is estimated by sampling all experimental probability
distributions (including their correlations) with a sample size of Nexp = 105 random values.
Afterwards, we extract the mean values as well as the combined covariance matrix from those
random samples. Similarly, the theoretical uncertainties and correlations are determined by
randomly sampling all input parameters with N = 104 according to their probability distributions.
By computing all observables for each sample, we obtain an estimate of the theoretical covariance
matrix Cth, which then also includes the theoretical correlations between the observables. We
have checked that the chosen sample sizes (Nexp = 105, N = 104) provide a sufficient trade-off
between the convergence of the fit results and computation time.

4.1.3 Obtaining a best-fit result

After computing the approximate negative log-likelihood defined as χ2 in Eq. (4.2), we obtain the
best-fit parameters of our global fit (that is the Wilson coefficients) by minimising the χ2 function.
This minimisation is performed using the MIGRAD algorithm implemented in the Python package
iminuit [95]. In doing so, we also extract the respective central values and 1σ uncertainties of
the fit parameters.
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The goodness of the fit can be described by the reduced chi-squared statistic [96]

redχ2 =
χ2

bf
ndof

=
χ2

bf
nobs − npara

, (4.3)

i.e. the χ2 value at the best-fit point divided by the number of degrees of freedom ndof. Here, nobs
and npara denote the number of observables included and number of fit parameters (also called
dimension of the fit), respectively. In simple terms, a value of redχ2 ∼ 1 indicates that the data is
well described by the chosen parameters and their variances (i.e. uncertainties). Conversely, large
deviations from unity suggest an inadequate description of the data by our results.

To estimate the deviation of a fit result from the SM hypothesis (all fit parameters fixed to
zero), we compute the pull in Gaussian standard deviations pullSM. This quantity is a function
of ∆χ2 = χ2

SM − χ2
bf and npara, already implemented in flavio by default [91]. For instance,

pullSM =
√︁
∆χ2 for a 1d fit with npara = 1.

4.2 Fit scenarios and results

In what follows, we report on the fit scenarios considered in our analyses and discuss their
results. We compute a likelihood function with flavio including different sets of observables.
Subsequently, the resulting χ2 function is minimised with respect to the NP Wilson coefficients
C(′)
(7,9,10),µ introduced in Eq. (3.41).

We study a variety of fit scenarios with different combinations of Wilson coefficients included:

• 1 dimensional fit with only C9,µ ,

• 1 dimensional fit with C9,µ = −C10,µ ,

• 2 dimensional fit with C(9,10),µ ,

• 4 dimensional fit with C(′)
(9,10),µ ,

• 6 dimensional fit with C(′)
(7,9,10),µ .

Consider for instance the 4d fit. In this scenario, we choose C9,µ, C10,µ, C′
9,µ, and C′

10,µ as fit
parameters while fixing all other NP Wilson coefficients to zero. The list above includes the most
interesting fit scenarios motivated by the search of NP in b→ s transitions. Nevertheless, also
different set-ups, e.g., allowing for only RH contributions or 1d fits with only C(′)

7 or C(′)
10,µ are

possible. In our fit procedure we assume real-valued Wilson coefficients.

Furthermore, when performing these fits we distinguish between two cases that feature different
sets of observables: global fits including only pure b→ s µ+µ− data (called ‘no RK(∗) ’) compiled
in Tabs. C.1 to C.3, and others (called ‘with RK(∗) ’), where we additionally include information
from b→ s e+e− observables such as RK(∗) and B0→ K∗0 e+e− observables listed in Tab. C.4. In
the latter case, these observables provide more stringent constraints on the Wilson coefficients
C(′)
7 [97]. However, the assumption has been made that electron modes do not suffer from NP

effects. In contrast, this assumption is not necessary in the case ‘no RK(∗) ’, with results of the
corresponding fits used in Chap. 9 taking into account only pure b→ s µ+µ− data.

The fit results for the two cases have been first published in Ref. [20]. After the publication, updated
measurements have been made available which include the latest LHCb measurements [9] of RK+
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and RK0
S
, see Eqs. (3.46) and (3.47), respectively, as well as updated combined measurements

of B0
(s) → µ+µ− branching ratios [98] and additional q2-bins of the differential Bs→ φµ+µ−

branching ratio [99]. The reader is referred to App. C for comprehensive details on those updates,
as well as the remastered fit results. They are compatible with the ones established in Ref. [20].

In the following, we present the published results that are employed in the subsequent studies of
this thesis.

4.2.1 Fit results using pure b→ s µ+µ− data

In Tab. 4.1, we display the best-fit values of the Wilson coefficients as well as their 1σ uncertainties.
The reduced χ2 and pull from the SM hypothesis are provided as well, see Eq. (4.3) and following.
We observe that all fit scenarios yield redχ2 ∼ 1 indicating a good fit and exhibit a significant
pull from the SM hypothesis, pullSM ∼ 4.5σ. The correlations between the fit parameters are
given in App. C.3, and are taken into account in the analyses presented in this thesis. In the 6d fit
scenario, the values of C7 and C′

7 are tiny and compatible with zero within 1σ uncertainties.

Global fits with pure b→ s µ+µ− data (‘no RK(∗) ’)

Dim. C9,µ C10,µ C′
9,µ C′

10,µ C7 C′
7 redχ2 pullSM

1 −0.91 ± 0.18 - - - - - 1.00 4.5σ

1 −0.68 ± 0.16 −C9,µ - - - - 0.99 4.7σ

2 −1.02 ± 0.19 0.46 ± 0.18 - - - - 0.96 4.9σ

4 −1.13 ± 0.18 0.31 ± 0.21 0.29 ± 0.33 −0.24 ± 0.19 - - 0.92 5.0σ

6 −1.15 ± 0.18 0.30 ± 0.20 0.22 ± 0.34 −0.24 ± 0.19 0.002 ± 0.01 0.02 ± 0.02 0.91 4.6σ

Table 4.1: Best-fit values and 1σ uncertainties of the Wilson coefficients from a fit with only
pure b→ s µ+µ− data for different NP scenarios. We also state the respective value of redχ2

(χ2 value at the best-fit point divided by the number of degrees of freedom) and pull from the
SM hypothesis, pullSM. Table taken from Ref. [20].

4.2.2 Fit results including RK(∗) data

Assuming that electron modes do not suffer from NP effects, we can append the lepton flavour
universality (LFU) observables compiled in Tab. C.4 to our analysis. Again, five different global
fits are performed and their results are shown in Tab. 4.2. Note that the pullSM gets enhanced
from ∼ 4.5σ up to ∼ 6σ compared to the previously shown results in Tab. 4.1. This strongly
supports the B-anomalies while being consistent with other global fits performed by, e.g., Refs. [69,
93, 94, 98, 100, 101]. In the remainder of this section, we briefly discuss dedicated fit results and
their implications.
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Global fits including RK(∗) data (‘with RK(∗) ’)

Dim. C9,µ C10,µ C′
9,µ C′

10,µ C7 C′
7 redχ2 pullSM

1 −0.83 ± 0.14 - - - - - 0.98 6.0σ

1 −0.41 ± 0.07 −C9,µ - - - - 0.99 6.0σ

2 −0.71 ± 0.17 0.20 ± 0.13 - - - - 0.97 5.9σ

4 −1.07 ± 0.17 0.18 ± 0.15 0.27 ± 0.32 −0.28 ± 0.19 - - 0.90 6.5σ

6 −1.08 ± 0.18 0.18 ± 0.15 0.27 ± 0.34 −0.28 ± 0.17 0.0005 ± 0.01 0.005 ± 0.006 0.89 6.1σ

Table 4.2: Best-fit values and 1σ uncertainties of the Wilson coefficients from a fit including
observables listed in Tabs. C.1 to C.4 for different NP scenarios. Table taken from Ref. [20].

6d fit scenario

In Fig. 4.1, we show likelihood contours for the 6d global fit scenario in the plane of NP Wilson
coefficients C9,µ versus C10,µ (left-hand side plot) and C9,µ versus C′

9,µ (right-hand side plot), while
the other coefficients are fixed to their central best-fit values. To illustrate the impact of the LFU
observables on the fit, we also show the contours of the corresponding fit including only pure
b→ s µ+µ− data in violet. One notices that different sets of observables have a distinct impact
on the allowed parameter space comparing both plots. The RK and RK∗ contours (in green and
orange) yield similar constraints in the C9,µ-C10,µ plane, whereas complementary likelihood regions
are given for C9,µ versus C′

9,µ. Together with the remaining observables, the global fit highlights the
necessity of NP contributions, especially C9,µ < 0, in the context of the B-anomalies. While both
C7 and C′

7 are consistent with the SM, we find that the preferred best-fit values hint at NP physics
with C9,µ < 0 and C10,µ ≥ 0. With the exception of C′

10,µ, the RH currents of semimuonic Wilson
coefficients are also less preferred than contributions of their LH counterparts. Supplementary
plots that show contours of different subsets of observables are displayed in Fig. C.1.

1d and 2d fit scenarios

As no C(′)
7 are induced by a Z ′ boson and LH current contributions are already sufficient to explain

the deviations, the results of the 1d and 2d fit scenarios are of special concern and are employed
in Chap. 8, devoted to studies of flavourful Z ′ models accounting for the B-anomalies.

Figure 4.2 visualises the results of the 2d fit in Tab. 4.2, where C9,µ and C10,µ are varied indepen-
dently. Supplementary plots are shown in Fig. C.2. Comparing the two plots in Fig. 4.2, one again
acknowledges the impact of including RK(∗) observables in the fit, similar to the 6d case. The
significant deviation from the SM hypothesis of C9,µ is inferred from the overlap of the different
individual contours. The 1d results listed in Tab. 4.2 confirm the overall picture of NP effects
induced by LH (vector) couplings favoured by the B-anomalies.
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Figure 4.1: Global fit to rare B-decay data on |∆b| = |∆s| = 1 transitions in a 6d scenario.
Depicted here are the likelihood contours using the 6d results from Tab. 4.2 in the plane of
NP Wilson coefficients C9,µ versus C10,µ (left-hand side plot) and C9,µ versus C′

9,µ (right-hand
side plot). The red contours (at 1-3σ) incorporate all observables used in the fit, whereas the
violet contours are obtained excluding LU ratios and B0→ K∗0 e+e− observables. We also show
contours using only certain subsets of observables, e.g. only RK (green), only RK∗ (orange)
and B→ K∗ µ+µ− angular observables (blue). The dashed grey line indicates C9,µ = −C10,µ.
Supplementary plots showing different contours are given in Fig. C.1.
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Figure 4.2: Global fit to rare B-decay data on |∆b| = |∆s| = 1 transitions in a 2d scenario, in
the plane of NP Wilson coefficients C9,µ versus C10,µ. The same colour coding for the contours
as in Fig. 4.1 is applied, where we display additional subsets of observables in the right-hand
side plot for comparison, i.e. differential branching ratios dB/dq2 (limegreen), lepton forward-
backward asymmetries AFB (beige), optimised angular observables Pi (gold) and fractions of
the longitudinal polarisation FL (cyan). For details on the observables included see App. C,
while supplementary plots can be found in Fig. C.2.
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Chapter

5
A guide for U(1)′ models

In this chapter, we provide details on the NP models of interest in this thesis, that is U(1)′

extensions. In those scenarios, the SM gauge group in Eq. (2.1) is augmented by an additional
abelian symmetry U(1)′, and becomes U(1)Y × SU(2)L × SU(3)C ×U(1)′. The associated gauge
boson of the U(1)′ is an electrically and colourless vector boson called the Z ′ boson.

The most general renormalisable Lagrangian for the new U(1)′ interaction is given by [102, 103]

LZ′ = −1

4
B′µν B′

µν + Lmix + Lint
Z′ , (5.1)

where B′µν denotes the U(1)′ field strength tensor. The Lmix includes kinetic mixing interactions
of the U(1)′ with the abelian U(1)Y group of the SM, see Sec. 5.4. The interactions of the boson
to SM fermions f ′ in the flavour basis can be parametrised as

Lint
Z′ = g4 Ff f

′
γµ f ′ Z ′

µ , (5.2)

with the U(1)′ gauge coupling g4 and generation-dependent U(1)′ charges Ff of the SM fermions,
where the notation Ff = {FQ , FU , FD , FL , FE} is understood. Additional interactions to, e.g.,
RH neutrinos νR with associated charges Fν can also be implemented in this Lagrangian. When
going from flavour basis (also called gauge basis) to the mass basis, non-universal fermion couplings
are constructed. They generally depend on the U(1)′ gauge coupling and charges of the fermions
under the U(1)′. Such a generation allows for FCNC couplings to quarks at tree level, and hence
constitutes an essential concept in our Z ′ model building.

In this thesis, we confine ourselves to studies of heavy Z ′ bosons with massesMZ′ in the TeV-range,
related to the breaking scale of the new symmetry. For studies that discuss NP interpretations
with light Z ′ bosons (with masses below or around the electroweak scale), see e.g. Refs. [104–108],
while we suggest Refs. [103, 109–113] for additional literature on Z ′ models and their parameter
constraints.

Details on the necessary fermion mixing are discussed in Sec. 5.1. Afterwards, we study gauge
anomaly cancellation which dictates theoretical constraints on the U(1)′ charges and derive
phenomenological constraints on Z ′ couplings from meson mixing in Secs. 5.2 and 5.3, respectively.
Some information on gauge-kinetic mixing is given in Sec. 5.4, while we conclude this chapter in
Sec. 5.5 with a review of Landau poles in U(1)′ extensions.
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5.1 Flavour rotations in Z′ set-ups

In this section, we outline how FCNC couplings to the Z ′ boson are generated via rotations from
the gauge to the mass basis, mainly focussing on the quark sector.

In Sec. 2.3, we have introduced four unitary rotations that exist in the quark sector, those for up
(down)-singlets Uu(Ud) and up (down)-doublets Vu(Vd). Those rotations are a priori unconstrained
except for the product

(Vu)
†
Vd ≡ VCKM , (5.3)

where VCKM denotes the CKM matrix as defined in Eq. (2.25). Following Eq. (5.2), we write out
the Z ′ couplings to quarks

Lint
Z′ ⊃ g4

(︂
u′LQ′ γµ u′L Z

′
µ + d

′
LQ′ γµ d′L Z

′
µ + u′R U ′ γµ u′R Z

′
µ + d

′
RD′ γµ d′R Z

′
µ

)︂
, (5.4)

with the structure of U(1)′ charges in the flavour basis parametrised by the diagonal matrices

Q′ = diag (FQ1 , FQ2 , FQ3) , U ′ = diag (FU1 , FU2 , FU3) , D′ = diag (FD1 , FD2 , FD3) . (5.5)

To better understand how FCNC couplings, which we call gjiL,R, are generated by flavour rotations,
we consider the first term in Eq. (5.4) while analogous results are obtained for the remaining terms.
Inserting the field rotations defined in Eq. (2.21), we find (only looking at the flavour structure)

u′LQ′ u′L = uL (Vu)
† Q′ Vu uL = uLQu uL . (5.6)

We observe that a flavour structure Q′ proportional to the identity matrix, e.g. Q′ = FQ · 1,
prevents FCNC transitions as Qu in the mass basis remains diagonal due to the unitarity of Vu. To
obtain off-diagonal entries in Qu, it is therefore pivotal to assume non-universal charges, FQi ̸= FQj ,
which yield FCNC couplings, provided that Vu ̸= 1. For instance, tree-level contributions to rare
charm decays via a Z ′ boson are of the form uL,1 Q12

u uL,2 = uLQ12
u cL with Q12

u ∼ (FQ2
− FQ1

).
Applying flavour rotations to the remaining terms in Eq. (5.4), we can summarise the flavour
structure in the mass basis

Qu = (Vu)
† Q′ Vu , Qd = (Vd)

† Q′ Vd , U = (Uu)
† U ′ Uu , D = (Ud)

† D′ Ud . (5.7)

Next, we study different mixing scenarios assuming distinct structures for the unitary matrices.
Utilising the general set-up, we investigate flavour mixing in the up-quark and down-quark sectors
with a focus on c→ u and b→ s transitions, respectively. While it is possible to allow for mixing
effects in both sectors simultaneously using an appropriate parametrisation, see e.g. Ref. [114,
115], we distinctly study flavour mixing in only up- or down-quark transitions.

5.1.1 Flavour rotations in the right-handed quark sector

The rotations for the RH quarks are unconstrained and a general parametrisation of unitary
3 × 3 matrices Uu,d can be chosen with n2 = 9 real independent parameters (five angles, four
phases) [116]. However, at this point we make some simplifying assumptions, since we focus
mainly on mixing between first and second generation in the up-sector for charm physics (with
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5.1 Flavour rotations in Z ′ set-ups

underlying c→ u transitions), and mixing between second and third generation in the down-sector
for B-physics (with underlying b→ s transitions). These assumptions are further motivated to
circumvent mixing between the first and second generation in the down-quark sector governed
by strong kaon constraints [110], which we comment on in Sec. 5.3.3. Hence, it is convenient to
utilise a 2× 2 rotation matrix and define the two unitary matrices

Uu =

⎛⎜⎜⎜⎝
cos (θu) −eiφR sin (θu) 0

e−iφR sin (θu) cos (θu) 0

0 0 1

⎞⎟⎟⎟⎠ , (5.8)

Ud =

⎛⎜⎜⎜⎝
1 0 0

0 cos (θd) −eiφR sin (θd)

0 e−iφR sin (θd) cos (θd)

⎞⎟⎟⎟⎠ , (5.9)

where θu and θd are the uc- and bs-mixing angles for the up- and down-type quark singlets,
respectively. In addition, we have introduced a CP -violating phase φR. Due to the SM-like CP
violation in the LH quark sector, flavour mixing in the RH sector provides the opportunity to
generate sizeable CP -violating effects. Here, we refer to Chap. 7 for a detailed study of weak
phases in U(1)′ extensions. We emphasise that by assuming mixing only in the down-quark sector
we do not generate FCNC transitions in the up-quark sector and vice versa. We also discard the
possibility of large cancellations between up- and down-quark flavour rotations, corresponding to
large mixing angles.

5.1.2 Mixing only in the up-quark sector

Assuming flavour rotations only in the up-sector, we set Vd ≈ 1, Ud ≈ 1. This infers Vu ≈ (VCKM)
†

maximising effects in the up-sector. First, we study the mixing in the LH quark sector by rotating
to the up mass basis via Eq. (5.7) which yields

Qu = VCKM Q′ (VCKM)
†
. (5.10)

Explicit values of the matrix elements Qij
u are listed in Tab. 5.1, where we also give entries in the

Wolfenstein parametrisation to analyse hierarchies of the ji-vertices.

For instance, the cu-vertex can be written as

Q12
u = (FQ2

− FQ1
) λs + (FQ3

− FQ1
) λb ≈ (FQ2

− FQ1
) λCKM , (5.11)

where the approximation λb ≪ λs ≈ λCKM with λq = V ∗
cqVuq, q = b, s, has been performed in

the last step. We find that in Z ′ models non-universal U(1)′ charges are necessary to generate
FCNC transitions, since flavour mixing between different generations i, j is proportional to their
difference of U(1)′ charges FQj − FQi . For charge assignments FQj = FQi , contributions can in
principle emerge via mixing terms if FQk ̸= FQi , however, those are highly suppressed and SM-like
due to CKM suppression. For instance, contributions in c→ u transitions where FQ1 = FQ2 are
given by (FQ3

− FQ1
) λb ∼ λ5CKM (FQ3

− FQ1
).
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Mixing Vertex
ji

Matrix element Qiju Qiju (Wolfenstein + O
(︁
λ3

CKM
)︁
)

up
-s

ec
to

r
on

ly
uu (1, 1)

FQ1
+

(︁
FQ2

− FQ1

)︁
|Vus|2

+
(︁
FQ3

− FQ1

)︁
|Vub|2

FQ1
+ λ2

CKM
(︁
FQ2

− FQ1

)︁
cc (2, 2)

FQ2
+

(︁
FQ1

− FQ2

)︁
|Vcd|2

+
(︁
FQ3

− FQ2

)︁
|Vcb|2

FQ2
− λ2

CKM
(︁
FQ2

− FQ1

)︁
tt (3, 3)

FQ3
+

(︁
FQ2

− FQ3

)︁
|Vts|2

+
(︁
FQ1

− FQ3

)︁
|Vtd|2

FQ3

cu (1, 2)

(︁
FQ2

− FQ1

)︁
V ∗
csVus

+
(︁
FQ3

− FQ1

)︁
V ∗
cbVub

λCKM
(︁
FQ2

− FQ1

)︁
tc (2, 3)

(︁
FQ3

− FQ2

)︁
V ∗
tbVcb

+
(︁
FQ1

− FQ2

)︁
V ∗
tdVcd

λ2
CKM A

(︁
FQ3

− FQ2

)︁
tu (1, 3)

(︁
FQ3

− FQ1

)︁
V ∗
tbVub

+
(︁
FQ2

− FQ1

)︁
V ∗
tsVus

0

Table 5.1: Overview of LH flavour rotations assuming mixing only in the up-quark sector.

Neglecting higher-order corrections O
(︁
λ3CKM

)︁
, the Z ′ coupling gcuL is simply given by

gcuL = Q12
u g4 ≈ (FQ2

− FQ1
)λCKM g4 . (5.12)

The diagonal couplings can be readily obtained as

giiL = FQi g4 +O
(︁
λ2CKM

)︁
. (5.13)

For the RH quarks, we rotate to the up mass basis as prescribed in Eq. (5.7), neglecting off-diagonal
mixing of the third-generation quark singlets. In Tab. 5.2, we provide the non-trivial matrix
elements U ij . The only non-vanishing FCNC Z ′-coupling to RH quarks is given by

gcuR = U12 g4 = (FU2
− FU1

) cos (θu) sin (θu) ei φR g4 , (5.14)

where again the non-universal charge assignment FU1 ̸= FU2 to generate FCNC contributions is
evident. The generation-diagonal couplings of interest read

guuR = U11 g4 =
[︁
FU1 cos2 (θu) + FU2 sin2 (θu)

]︁
g4 , (5.15)

gccR = U22 g4 =
[︁
FU2

cos2 (θu) + FU1
sin2 (θu)

]︁
g4 . (5.16)

In the limit θu ≪ 1, the contributions from other-generation U(1)′ charges can be neglected and
we obtain giiR ≈ FUi g4. The same is obviously true assuming universal charges FUi ≈ FUj .

5.1.3 Mixing only in the down-quark sector

Restricting ourselves to rotations only in the down-sector, it is Vu ≈ 1 , Uu ≈ 1. Hence, the
CKM-mixing solely resides in the down-sector, Vd ≈ VCKM. Following Eq. (5.7), we rotate in the
down mass basis via

Qd = (VCKM)
† Q′ VCKM . (5.17)
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Mixing Vertex
ji

Matrix element Uij

up
-s

ec
to

r
on

ly

uu (1, 1) FU1
cos2 (θu) + FU2

sin2 (θu)

cc (2, 2) FU2
cos2 (θu) + FU1

sin2 (θu)

tt (3, 3) FU3

cu (1, 2)
(︁
FU2

− FU1

)︁
cos (θu) sin (θu) e

iφR

tc (2, 3) 0

tu (1, 3) 0

Table 5.2: Overview of RH flavour rotations U ij in the quark sector assuming rotations only
in the up-sector and no mixing with the third generation, see Eq. (5.8).

A similar pattern arises as in the up-sector, where we list the corresponding entries of the matrix
Qd in Tab. 5.3. The mixing contribution for the bs-vertex is given by

Q23
d = (FQ3 − FQ2) V

∗
tsVtb + (FQ1 − FQ2) V

∗
usVub ≈ (FQ3 − FQ2) V

∗
tsVtb . (5.18)

which readily reveals the b→ s coupling

gbsL = Q23
d g4 ≈ (FQ3 − FQ2) V

∗
tsVtb g4 . (5.19)

For the diagonal couplings we find analogous expressions as in Eq. (5.13), where giiL = FQi g4 holds
neglecting terms O

(︁
λ2CKM

)︁
.

Mixing Vertex
ji

Matrix element Qijd Qijd (Wolfenstein + O
(︁
λ3

CKM
)︁
)

do
w

n-
se

ct
or

on
ly

dd (1, 1)
FQ1

+
(︁
FQ2

− FQ1

)︁
|Vcd|2

+
(︁
FQ3

− FQ1

)︁
|Vtd|2

FQ1
+ λ2

CKM
(︁
FQ2

− FQ1

)︁
ss (2, 2)

FQ2
+

(︁
FQ1

− FQ2

)︁
|Vus|2

+
(︁
FQ3

− FQ2

)︁
|Vts|2

FQ2
− λ2

CKM
(︁
FQ2

− FQ1

)︁
bb (3, 3)

FQ3
+

(︁
FQ2

− FQ3

)︁
|Vcb|2

+
(︁
FQ1

− FQ3

)︁
|Vub|2

FQ3

sd (1, 2)

(︁
FQ2

− FQ1

)︁
V ∗
cdVcs

+
(︁
FQ3

− FQ1

)︁
V ∗
tdVts

−λCKM
(︁
FQ2

− FQ1

)︁
bs (2, 3)

(︁
FQ3

− FQ2

)︁
V ∗
tsVtb

+
(︁
FQ1

− FQ2

)︁
V ∗
usVub

−λ2
CKM A

(︁
FQ3

− FQ2

)︁
bd (1, 3)

(︁
FQ3

− FQ1

)︁
V ∗
tdVtb

+
(︁
FQ2

− FQ1

)︁
V ∗
cdVcb

0

Table 5.3: Overview of LH flavour rotations assuming mixing only in the down-quark sector.

For the RH quarks, we rotate to the down mass basis following Eq. (5.7), neglecting off-diagonal
mixing of the first-generation quark singlets due to our focus on b→ s transitions. The matrix
elements Dij are listed in Tab. 5.4. We identify

gbsR = D23 g4 = (FD3
− FD2

) sin (θd) cos (θd) eiφR g4 , (5.20)
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whereas gbdR = D13 g4 = 0 and gsdR = D12 g4 = 0.

Mixing Vertex
ji

Matrix element Dij

do
w

n-
se

ct
or

on
ly

dd (1, 1) FD1

ss (2, 2) FD2
cos2 (θd) + FD3

sin2 (θd)

bb (3, 3) FD3
cos2 (θd) + FD2

sin2 (θd)

sd (1, 2) 0

bs (2, 3)
(︁
FD3

− FD2

)︁
cos (θd) sin (θd) e

iφR

bd (1, 3) 0

Table 5.4: Overview of RH flavour rotations Dij in the quark sector assuming rotations only
in the down-sector and no mixing with the first generation, see Eq. (5.9).

The generation-diagonal couplings read

gbbR = D33 g4 =
[︁
FD3 cos2 (θd) + FD2 sin2 (θd)

]︁
g4 , (5.21)

gssR = D22 g4 =
[︁
FD2

cos2 (θd) + FD3
sin2 (θd)

]︁
g4 , (5.22)

which for small bs-mixing angles θd ≪ 1 (or FDi ≈ FDj ) simplify to giiR ≈ FDi g4.

5.1.4 Flavour rotations in the lepton sector

As noted after Eq. (2.27), lepton flavour conservation in the SM is protected due to UPMNS = 1.
We can benefit from this SM feature as it is very sensitive to NP.

By assuming a similar misalignment between flavour and mass bases as in the quark sector, cLFV
can be induced in Z ′ scenarios with non-universal couplings to leptons gℓℓ′L,R, ℓ ̸= ℓ′. However, if
the PMNS matrix is only constructed from rotations in the neutrino sector, Ve = 1, no left-handed
cLFV is realised and it is gℓℓ′L = 0. By allowing for charged lepton rotations Ve ̸= 1, we can
induce non-zero couplings gℓℓ′L . Moreover, gℓℓ′R ̸= 0 is also possible via analogous rotations in
the RH lepton sector if right-handed neutrinos are present and charged under the U(1)′. The
most stringent bounds on these rotations are given by upper limits on the branching ratios of
purely leptonic decays involving lepton flavour violation (LFV). Current limits are O

(︁
10−8

)︁
for τ → (µ, e)ℓ, ℓ = e, µ, whereas O

(︁
10−12

)︁
is achieved for µ → eee and µ → eγ [32]. These

limits can be met by rotations θℓ ≲
√︁
B (µ→ eee) · (MZ′/g4)

2 · O (10) TeV−2, assuming rotations
only in the LH lepton sector and charges FLi ∼ O (1) chosen such that large cancellations are
avoided [111, 112]. Here, B (µ→ eee) provides the most stringent limits whenever couplings to
electrons are involved. We obtain the benchmark value θℓ ≲ O

(︁
10−3

)︁
taking the upper limit

B (µ− → e−e+e−) < 1 · 10−12 [32] as well as MZ′/g4 = 10 TeV. Additional remarks of LFV in Z ′

models are given in Sec. 6.4, whereas explicit flavour structures of charged leptons and neutrinos
are presented in Chap. 9.
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The flavour-diagonal couplings of the Z ′ boson to leptons are given by

gℓℓL = g4 FLi , gℓℓR = g4 FEi , (5.23)

where i = 1, 2, 3 for ℓ = e, µ, τ is understood.

5.2 Cancellation of gauge anomalies in U(1)′ extensions

After providing the necessary details on how non-diagonal couplings in FCNC transitions are
realised in Sec. 5.1, we now study constraints on the new charges Ff which enter the respective
couplings. The constraints arise from imposing gauge anomaly cancellation and need to be fulfilled
in every Z ′ scenario. In doing so, we summarise the tools and equations necessary to construct
anomaly-free Z ′ models. We refer to App. D for a brief introduction of anomaly cancellation in
QFTs, where we also moot the SM as an example of an anomaly-free theory. Instrumental for our
U(1)′ charge assignments is the fact that only chiral fermions (whether SM or new BSM fermions)
contribute to the gauge anomaly when charged non-trivially under the respective (gauge) group.

In U(1)′ extensions, gauge anomalies arise from six (potentially) non-vanishing triangle diagrams
involving at least one U(1)′ gauge boson, see Fig. D.1. The cancellation of such diagrams is
translated into Diophantine equations called anomaly cancellation conditions (ACCs). Taking into
account SM fermions (as well as three possible RH neutrinos νR with charges Fν), the corresponding
ACCs read as follows [11, 26],

[SU(3)C ]2 ×U(1)′ :

3∑︂
i=1

(2FQi − FUi − FDi) = 0 , (5.24a)

[SU(2)L]2 ×U(1)′ :

3∑︂
i=1

(3FQi + FLi) = 0 , (5.24b)

[U(1)Y ]
2 ×U(1)′ :

3∑︂
i=1

(FQi + 3FLi − 8FUi − 2FDi − 6FEi) = 0 , (5.24c)

gauge-gravity:
3∑︂
i=1

(6FQi + 2FLi − 3FUi − 3FDi − FEi − Fνi) = 0 , (5.24d)

U(1)Y × [U(1)′]
2
:

3∑︂
i=1

(︁
F 2
Qi − F 2

Li − 2F 2
Ui + F 2

Di + F 2
Ei

)︁
= 0 , (5.24e)

[U(1)′]
3
:

3∑︂
i=1

(︁
6F 3

Qi + 2F 3
Li − 3F 3

Ui − 3F 3
Di − F 3

Ei − F 3
νi

)︁
= 0 . (5.24f)

Compared to similar conditions present in the SM, which are universal for all three generations
of SM fermions and fix the U(1)Y charges, we now explicitly distinguish different generations.
Since the RH neutrinos are singlets under the SM gauge group, the charges Fνi only appear in
the gauge-gravity and [U(1)′]

3 constraints, see Eqs. (5.24d) and (5.24f), respectively. Overall, 18
charges are constrained by six ACCs. However, the system can be reduced to 15 charges when
decoupling the RH neutrinos by setting Fνi = 0. If any BSM fermions are considered in this
thesis, we include them as SM-singlets and vector-like charged, hence their charges drop out in the
ACCs. See Refs. [10, 11, 14, 117–119] for recent phenomenological applications that also include
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an advanced chiral BSM sector.

In our studies, we demand anomaly cancellation together with imposing phenomenological con-
straints to further reduce the number of free parameters in the model building process, which we
present at the appropriate place whenever relevant. They can be implemented into an advanced
system of equations combining anomaly cancellation and phenomenological input. In order to
extract solutions of the system, we use computational algebraic geometry and perform a Gröbner
basis computation to deduce the most reduced version of the system [118, 120].

In what follows, we give some closing remarks on the ACCs. A set of charges Ff that solves
Eq. (5.24) is referred to as a solution. In our studies, we exploit the following features.

• Rational solutions:
We assume that all U(1)′ charges are rational numbers Ff ∈ Q.

• Rescaling invariance:
Any solution can be rescaled by any rational number k ∈ Q, which gives Ff → k Ff , ∀f ,
which constitutes another solution. As this rescaling is equivalent to just rescaling the
U(1)′ gauge coupling, these solutions are in the same equivalence class and therefore not
independent from each other. Hence, we can consider only integer solutions Ff ∈ Z without
loss of generality.

• Permutation invariance of fermions:
The ACCs are invariant under the permutation of generation indices within each specific
species f , which is also known as charge inversion symmetry. However, this degeneracy of
charges for each species is lifted whenever additional (phenomenological) constraints, which
link certain generations of fermions, are added to the system.

In the next part, we study constraints on Z ′ couplings due to meson mixing which provides
stringent limits on the FCNC quark couplings gL,R. While not pivotal to every U(1)′ extension,
they need to be considered when studying rare decays.

5.3 Meson mixing in Z′ models

Up to this point, we have focussed mainly on FCNC transitions ∆F = 1. Here, we briefly discuss
FCNCs transitions of ∆F = 2, which induce strong constraints on the NP parameters elaborated
so far. The transitions describe neutral meson oscillations that generate mixing between the
neutral mesons and their antiparticles. Studies regarding meson mixing have already played a vital
role in tests of the SM and its extensions for many years. In addition to their absent tree-level
contributions in the SM, they occur within the SM to an excellent approximation only via box
diagrams with internal quark and W -boson exchanges.

In what follows, we provide constraints from mixing observables on our Z ′ model couplings that
outline the parameter space of NP parameters. Due to our emphasis on charm and B-physics, we
consider the corresponding D0-D0 mixing and B0

s -B0
s mixing effects, with mesons that include

up-type and down-type quarks, respectively. We also detail how constraints from kaon oscillations
are met. Before that, we shortly review the general formalism.
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The time evolution of meson mixing with, e.g., P = D0, Bs, . . . is described by the Schrödinger
equation and reads [121, 122]

i ∂
∂t

⎛⎝|P (t)⟩

|P (t)⟩

⎞⎠ = Hmix

⎛⎝|P (t)⟩

|P (t)⟩

⎞⎠ =

(︃
M̃ − i

2
Γ̃

)︃⎛⎝|P (t)⟩

|P (t)⟩

⎞⎠ , (5.25)

where M̃ and Γ̃ denote the mass and decay matrices, respectively. The CPT invariance requires
thatM ≡ M̃11 = M̃22 and Γ ≡ Γ̃11 = Γ̃22, while the off-diagonal elements obeyM12 ≡ M̃12 = M̃

∗
21

and Γ12 ≡ Γ̃12 = Γ̃
∗
21 due to the hermiticity of M̃ and Γ̃, respectively. The physical eigenstates

|P±⟩, with masses M± and decay rates Γ±, are obtained by diagonalising the Hamiltonian in
Eq. (5.25). The oscillations are parametrised by three physical quantities

x12 =
2 |M12|

Γ
, y12 =

|Γ12|
Γ

, φ12 = arg
(︃
M12

Γ12

)︃
. (5.26)

While the quantities x12 and y12 are CP -conserving, the phase difference φ12 induces CP violation
in mixing. The mass and width differences between P+ and P− are related to them as

∆M =M+ −M− = 2 |M12|, ∆Γ = Γ+ − Γ− = 2 |Γ12| cos (φ12) , (5.27)

where ∆M is simply the oscillation frequency and Γ = (Γ+ + Γ−)/2 denotes the average width.

5.3.1 Constraints from D0-D0 mixing

The Z ′-couplings gcuL and gcuR are subject to constraints from D0-D0 mixing, where the dominant
tree-level contribution in the SM as well as the contribution via a Z ′ boson are depicted in
Fig. 5.1.

c b, s, d u

cb, s, du

W W

c

u c

u

Z ′

Figure 5.1: Dominant contribution to the D0-D0 mixing amplitude in the SM via a box-
diagram (left-hand side diagram) and via a Z′ boson at tree level (right-hand side diagram).
For each diagram shown there is also a second one, obtained by a 90◦ rotation.

To study the impact of Z ′ contributions to D0-D0 mixing observables, we consider the latest
published world averages of the mixing observables that are collected in Eq. (B.5), where in
particular [123]

x12 ∈ [0.22 , 0.63]% , φ12 ∈ [−2.5◦, 1.8◦] . (5.28)

A recent update of those quantities is available online [124] and provided in Eqs. (7.59) and (B.6).
For the Z ′ models we impose

xZ
′

12 ≤ x12 , xZ
′

12 sin
(︂
φZ

′

12

)︂
≤ x12 sin (φ12) , (5.29)
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since no sufficiently controlled SM predictions of the mixing parameters are available in charm [125].
Following Eq. (5.25), the D0 −D0 transition amplitude reads

⟨D0|H∆c=2
eff |D0⟩ = ⟨D0|

∑︂
i

ciQi |D0⟩ =M12 −
i
2
Γ12 . (5.30)

The Hamiltonian in Eq. (5.30) includes eight operators generated at the scale µNP ≈MZ′ [126],

Q1 = (uLγµcL)(uLγ
µcL) , Q5 = (uRσµνcL)(uRσ

µνcL) ,

Q2 = (uLγµcL)(uRγ
µcR) , Q6 = (uRγµcR)(uRγ

µcR) ,

Q3 = (uLcR)(uRcL) , Q7 = (uLcR)(uLcR) ,

Q4 = (uRcL)(uRcL) , Q8 = (uLσµνcR)(uLσ
µνcR) .

(5.31)

As the hadronic matrix elements (HMEs) ⟨Qi⟩ ≡ ⟨D0|Qi |D0⟩ are computed at the low scale
µ = mc, the RG running of these operators to the NP scale µNP provokes an operator mixing
which needs to be taken into account.

In Z ′ models, the following ∆c = 2 Wilson coefficients are stipulated

c1 (µ =MZ′) =
(gcuL )

2

2M2
Z′
, c2 (µ =MZ′) =

gcuL gcuR
M2
Z′

, c6 (µ =MZ′) =
(gcuR )

2

2M2
Z′
, (5.32)

while the operator Q3 is radiatively induced and needs to be taken into account as well. Assuming
no interference with the SM, we can parametrise the Z ′ contribution to x12 as [126, 127]

xZ
′

12 =
1

ΓD0mD0

⃓⃓⃓
r1 c1(MZ′) ⟨Q1⟩ +

√
r1 c2(MZ′) ⟨Q2⟩

+
2

3
c2(MZ′) (

√
r1 − r−4

1 ) ⟨Q3⟩ + r1 c6(MZ′) ⟨Q6⟩
⃓⃓⃓
.

(5.33)

The renormalisation factor is given by [127]

r1 = r1(µ, MZ′) =

(︃
α
(4)
s (mb)

α
(4)
s (µ)

)︃ 6
25
(︃
α
(5)
s (mt)

α
(5)
s (mb)

)︃ 6
23
(︃
α
(6)
s (MZ′)

α
(6)
s (mt)

)︃ 2
7

, (5.34)

where the strong coupling αs at LO is provided in Eq. (A.30). After inserting the Wilson coefficients
in Eq. (5.32) into Eq. (5.33), we derive the formula

xZ
′

12 =
r1⟨Q1⟩

2ΓD0 mD0

⃓⃓
(gcuL )

2
+ (gcuR )

2 −X gcuL gcuR
⃓⃓

M2
Z′

, (5.35)

where

X = −2

(︃
√
r1 ⟨Q2⟩ +

2

3
(
√
r1 − r−4

1 ) ⟨Q3⟩
)︃
· (r1 ⟨Q1⟩)−1

. (5.36)

Utilising numerical values of the matrix elements given in Eq. (B.7), we obtain the benchmark
values X = 19.2, 24.0, 26.2 for MZ′ = 1, 5, 10 TeV, respectively.

Rearranging Eq. (5.35) and imposing Eq. (5.29) yields the quadratic equation⃓⃓
(gcuL )

2
+ (gcuR )

2 −X gcuL gcuR
⃓⃓
≤ x̃ , (5.37)

- 42 -



5.3 Meson mixing in Z ′ models

that is symmetric in terms of the couplings gcuL and gcuR , where

x̃ =
2x12 ΓD0 mD0 M2

Z′

r1⟨Q1⟩
∈ [2.2 , 6.4] · 10−7

(︃
MZ′

TeV

)︃2

. (5.38)

Here, the allowed 95%C.L. interval is determined by the experimental limit on x12 and the HMEs,
cf. Eqs. (5.28) and (B.7), respectively. Note that the function r1 also depends on MZ′ , and we
have assumed MZ′ ∼ 6 TeV in Eq. (5.38). In the maximum case of xZ′

12 = x12, we can rewrite
Eq. (5.37) as ⃓⃓

(gcuL )
2
+ (gcuR )

2 −X gcuL gcuR
⃓⃓
− x̃ = 0 . (5.39)

Solving Eq. (5.39) for gL,R ̸= 0 yields

|gcuL,R| = |gcuR,L|

(︄
X

2
±

√︄(︃
X2

4
− 1

)︃
+

x̃

|gcuR,L|2

)︄
. (5.40)

After employing x̃≪ |gcuR |2 and 4/X2 ≪ 1, the following two cases emerge

gcuL = X gcuR or gcuR = X gcuL ⇔ gcuL =
1

X
gcuR , (5.41)

at linear order neglecting terms O (1/X).

In the case of only one non-zero coupling the hierarchy in Eq. (5.41) is obviously irrelevant, and
we derive the upper limit

|gcuL,R| =
√
x̃ ≲ 8.0 · 10−4

(︃
MZ′

TeV

)︃
. (5.42)

Let us summarise the main implications of this study. The effects of Z ′-induced contributions
gucL,R can be strongly constrained by meson mixing. However, we can evade such bounds via a
cancellation whenever LH and RH couplings are present, imposing the hierarchy put forward in
Eq. (5.41). Throughout this thesis, we implement two different cases, which we anticipate in the
following to give the reader a clearer picture of the proposed hierarchy between the couplings.

• In Sec. 6.3, we study the hierarchical Z ′ models in Eq. (5.41) that evade the D0-D0 mixing
bounds assuming real-valued couplings.

• In Chap. 7, large CP -violating phases and hence complex-valued couplings are of special
interest. However, the relation in Eq. (5.41) imposes similar weak phases on both couplings
gcuL and gcuR , which unfortunately kills possible CP -violating effects as only SM-like CP
phases in gcuL are viable. For details, we refer to the discussion in Sec. 7.1.4.
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5.3.2 Constraints from B0-B0 mixing

In our Z ′ framework, the NP contributions with vector (colour-singlet) operators to Bq-mixing,
q = s, d, are described by the effective Hamiltonian [128]

H∆B=2
eff ⊃ 4GF√

2
v2bq

[︃
CLLbq (qLγ

µbL)
2
+ CRRbq (qRγ

µbR)
2
+ CLRbq (qLγ

µbL) (qRγµbR)

]︃
+ h.c. , (5.43)

where vbq = Vtb V
∗
tq and the Wilson coefficients are given by

CLLbq =
v−2
bq

4
√
2GF

(︂
gbqL

)︂2
M2
Z′

, CRRbq =
v−2
bq

4
√
2GF

(︂
gbqR

)︂2
M2
Z′

, CLRbq =

√
2 v−2

bq

4GF

gbqL gbqR
M2
Z′

. (5.44)

Here, we focus on transitions with q = s, while analogous relations are readily obtained for
Bd-mixing. In Fig. 5.2, we show the tree-level contributions to the B0

s -B0
s mixing amplitude

mediated by a Z ′ boson.

b

s b

s

Z ′

b s

bs

Z ′

Figure 5.2: B0
s -B0

s mixing contributions via a Z′ boson at tree level. Similar diagrams for
B0
d-B0

d mixing exist when swapping s with d quarks.

Taking the SM predictions as well as the experimental values of the mass differences of the B
mesons [128], collected in Eqs. (B.8) to (B.11), within their 2.5σ uncertainties, we obtain the total
(SM+NP) contribution normalised to the SM. It reads [21]

∆MSM+NP
s(d)

∆MSM
s(d)

≤ 1.156 (1.154) , (5.45)

where NP effects in both Bs- and Bd-mixing can be as large as 15% compared to the SM.

In what follows, we utilise a similar idea as for D-mixing to parametrise NP effects. Provided the
limit in Eq. (5.45), we can express the Bs-mixing contributions via a Z ′ boson as [21, 128]

∆MSM+NP
s

∆MSM
s

=

⃓⃓⃓⃓
1 + 200

(︃
5 TeV
MZ′

)︃2

·
[︃ (︁
gbsL
)︁2

+
(︁
gbsR
)︁2 −Xs g

bs
L gbsR

]︃⃓⃓⃓⃓
, (5.46)

with Xs ≈ 10 for MZ′ ∼ 5 TeV. Notice the similarity to the quadratic equation derived in
Eq. (5.39). Applying analogous simplifications, we minimise the NP-effects in Bs-mixing with(︁

gbsL
)︁2

+
(︁
gbsR
)︁2 −Xs g

bs
L gbsR = w , (5.47)

where w ≈ 0 has to hold, allowing for very small deviations from mixing constraints. Assuming
4/X2

s ≪ 1 together with w/(gbsR )2 ≪ 1, we solve Eq. (5.47) and re-encounter the hierarchical
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structure

gbsL = Xs g
bs
R or gbsL =

1

Xs
gbsR . (5.48)

For the case of only one non-vanishing coupling, the hierarchy collapses and we find the two
equivalent expressions at 99%C.L. [129]⃓⃓

gbsL,R
⃓⃓2

M2
Z′

≲ 1.24 · 10−5 TeV−2 ,
⃓⃓
gbsL,R

⃓⃓
≲ 3.5 · 10−3

(︃
MZ′

TeV

)︃
. (5.49)

Constraints from Bd-mixing on our Z ′ models are similar to those coming from Bs-mixing as
both sectors provide similar room for NP-effects, cf. Eq. (5.45), where Z ′-induced contributions
(gbqL ) ∼ vbq follow the CKM suppression of the SM. Adapting Eq. (5.46) for Bd-mixing [128], we
obtain the bound ⃓⃓

gbdL,R
⃓⃓
≲ 1.1 · 10−3

(︃
MZ′

TeV

)︃
, (5.50)

assuming only one non-vanishing coupling.

5.3.3 Constraints from K0-K0 mixing

In the down-sector, K0-K0 oscillations can be subject to NP effects and set tight constraints
on possible BSM couplings connected to s→ d transitions. A well-suited observable to study
short-distance CP -violating effects in these transitions is

εK =
κε e

i φε
√
2

Im
(︂
MK0

12

)︂
∆MK

, (5.51)

where small corrections from long-distance contributions are encoded in κε = 0.92 ± 0.02 [130].
The phase of εK is experimentally determined as φε = (43.5± 0.5)◦, and ∆MK = (3.484± 0.006) ·
10−15 GeV [32]. The comparison of the SM prediction with the experimental value [32, 131],

|εK |SM = (2.161± 0.183) · 10−3 , |εK |exp = (2.228± 0.011) · 10−3 , (5.52)

sets strong constraints on NP contributions.

In this thesis, we avoid BSM contributions to kaon observables by imposing appropriate (universal)
charge assignments to the s and d quarks whenever flavour rotations in the down-sector are present.
Due to gsdL = g4 Q12

d ∼ FQ2
− FQ1

, we set FQ2
= FQ1

to avoid tree-level kaon FCNCs in our Z ′

models, see Tab. 5.3. For RH quark transitions, we consider mixing only between the second
and third generation, stipulated by FD2 = FD1 . Moreover, CP -violating effects are not induced
assuming real-valued Wilson coefficients.
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5.4 Z-Z′ kinetic mixing interlude

Additional constraints on NP parameters can be worked out considering kinetic mixing between
the abelian sectors. This mixing manifests itself via the parameter η (with |η| < 1) as

Lmix = − 1

4 (1− η2)

(︂
Bµν B′µν

)︂⎛⎝ 1 −η

−η 1

⎞⎠ ⎛⎝Bµν
B′µν

⎞⎠ , (5.53)

where Bµν and B′µν are the field strength tensors of the U(1)Y and U(1)′ interactions, respectively.
As the parameter η is not natural, it cannot be switched off by adjusting theory parameters [21].
It also violates the custodial symmetry of the Higgs potential in Eq. (2.11).

For non-trivial kinetic mixing the ρ parameter is altered, ρSM = 1 as in Eq. (2.18), and reads

ρ−1 = 1 +
η2 sin2 (θW)

1− z2
with z =

(︃
MZ

MZ′

)︃ ⃓⃓⃓⃓
η=0

. (5.54)

Yet, a global fit of electroweak precision parameters [32],

ρ = 1.00039± 0.00019 , (5.55)

suggests a NP contribution of the opposite sign. Therefore, without any cancellations from other
sources, kinetic mixing is expected to be subleading at the electroweak scale, which necessitates

|η| ≲ O
(︁
10−2

)︁
. (5.56)

Implications of this are studied in Chap. 8. For details on accidental symmetries and kinetic
mixing involving Z ′ bosons facing the B-anomalies see, e.g., Ref. [13].

Z Z ′

Figure 5.3: Kinetic mixing induced by the U(1)Y and U(1)′ gauge bosons with a fermion loop.

Another way to prevent large kinetic mixing contributions is to impose a cancellation of the
one-loop diagram depicted in Fig. 5.3. This can be realised if

∑︁
f Yf Ff = 0 [132], which translates

into a linear equation of the U(1)′ charges to fermions,

3∑︂
i=1

(FQi − FLi + 2FUi − FDi − FEi) = 0 . (5.57)

For instance, the anomaly-free Z ′ models 1, 2, 4, 5, 9, 10, and 10µ presented in Tabs. 6.1 and 7.3
satisfy Eq. (5.57), and therefore one-loop contributions to kinetic mixing are cancelled in these
models. This is due to them featuring

∑︁3
i=1 Ffi = 0, where f = {Q, U, D, . . .}, and hence all

linear ACCs in Eq. (5.24) and Eq. (5.57) are fulfilled by this construction.
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5.5 Generic Landau poles in U(1)′ extensions

We recall from Sec. 3.1 that Landau poles in the RG flow indicate the breakdown of perturbation
theory. In what follows, we review bounds on arising Landau poles in U(1)′ extensions.

As outlined in Sec. 3.4, an explanation of the B-anomalies requires sizeable NP couplings. In our
case, O (1) couplings induced by a tree-level mediator dictate a scale of about 40 TeV [133, 134],
while generic lower bounds on the heavy Z ′ mass yield a NP scale of µ0 ≃ 5 TeV [135]. Then,
assuming a minimal model set-up to induce the b→ s µ+µ− transition via flavour mixing, we
estimate [21]

α4 (µ0 = 5 TeV) ∼ 1

(4π)2
(5 TeV/40 TeV)2

Vtb V ∗
ts FL2

FQ3

∼ 1

40π2

1

FL2
FQ3

(5.58)

for the U(1)′ gauge coupling α4 = g24/(4π)
2. The running of the gauge coupling as in Eq. (3.19)

implies a Landau pole at high energies. Interestingly, we find that the one-loop coefficient B4 is
bounded from below by the minimal amount of U(1)′ charges necessary to explain the B-anomalies
while simultaneously avoiding gauge anomalies through Eq. (5.24). We derive the bound

B4 ≳
16

3

(︁
F 2
L2

+ 3F 2
Q3

)︁
, (5.59)

which together with Eq. (5.58) yields

ln
(︃
µLP

µ0

)︃
=

1

B4 α4(µ0)
=

15π2

2

FL2
FQ3

F 2
L2

+ 3F 2
Q3

≲
15π2

4
√
3
. (5.60)

On a quantitative level, this relation can be translated into an upper bound for the scale of the
Landau pole,

µLP ≲ 1013 GeV ≪ µPl ∼ 1019 GeV . (5.61)

Here we make a few remarks. First, we note that by introducing additional U(1)′ couplings to SM or
BSM particles the Landau pole is shifted towards (significantly) lower energies. Figure 5.4 displays
the RG evolution of couplings in a benchmark model with beyond-minimal U(1)′ charge assignment
that yields a putative Landau pole at roughly µLP ≈ 3 · 107 GeV. The scenario corresponds to
a benchmark model BM3 discussed in Sec. 8.3, where possible BSM fields have been explicitly
decoupled. The scale of the Landau pole is further reduced if additional couplings to BSM particles
are introduced. Yet, there are ways to lift or mitigate the generic bound in Eq. (5.61) provided
fine-tuning assumptions. For example, larger bs-mixing angles in the LH quark sector can be
generated by assuming strong cancellations between Vd and Vu, which lowers α4(µ0) in Eq. (5.58).
However, we have discarded this possibility in our studies. Another way to reduce α4(µ0) is to
assume a smaller Z ′ mass. This becomes feasible in models with first- and second-generation quarks
being uncharged under the U(1)′, evading the limits from pp-production [135, 136]. Nonetheless,
while exploring such a setting, it is still possible to find Landau poles below the Planck scale
even for scenarios with MZ′ ≳ 1.8 TeV and decoupled BSM fields [20]. On a last note, one might
consider explaining the B-anomalies with substantially lighter Z ′ bosons (that is MZ′ ≲ 150 GeV)
as studied in, e.g., Ref. [134]. While fine-tuned flavour mixing is still of the essence, it may be
possible to push the Landau pole beyond Planckian energies. Yet, the in- or metastability of the
Higgs potential remains present in these scenarios [21].
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Figure 5.4: RG evolution of couplings in am U(1)′ extension of the SM as in the benchmark
scenario BM3 discussed in Sec. 8.3, without any BSM fields, see Chap. 8 for details. The U(1)′

gauge coupling α4 runs into a Landau pole at µLP ≈ 3 · 107 GeV. For consistency, the RGEs
are solved at two-loop accuracy for all couplings [21, 50].

5.5.1 Planck safety essentials

A concept to both tackle the Landau pole problem as well as stabilise the scalar potential is
the Planck safety approach. In general terms, such Planck-safe theories are characterised by the
absence of Landau poles and instabilities up to Planckian energies.

One possible way of constructing Planck-safe models is described in the following. It is well
established that Landau poles can be delayed or even removed by new Yukawa interactions, slowing
down the growth of the gauge couplings due to counteracting contributions in the β-functions [137,
138]. These Yukawa interactions can be integrated by introducing a rich scalar and fermionic BSM
particle content. Then, extensions of the SM may be realised in which Landau poles are moved
towards higher energies, possibly even beyond the Planck scale where quantised gravity effects
become strong. By doing so, new constraints on the BSM matter fields and their interactions are
introduced. Moreover, the instabilities in the scalar Higgs sector are avoided by certain conditions
complementary to phenomenological ones [139, 140].

In conclusion, Planck-safe model building can be realised given a flavourful BSM sector where
both fermions and scalars are instrumental. While new Yukawa and quartic couplings play an
important role in delaying putative Landau poles, the Higgs can be stabilised by, e.g., portal
couplings. As studied intensively over the past years, it is possible to find trajectories of the RG
flow that run into fixed points at highest scales and remove the arising Landau pole altogether
known as asymptotic safety [141–146]. In this thesis, we do not study the BSM parameter space
for fixed points of the theory, but instead scan for viable coupling trajectories that remain physical
and perturbative, i.e. 0 ≤ αi ≤ 1, up to the Planck scale. For recent studies of Planck-safe model
building concerning the (g − 2)µ anomalies see Ref. [139], whereas aspects of flavour via Higgs
portal couplings are provided in, e.g., Refs. [140, 147]. For more details, the reader is encouraged
to consult the cited literature and references therein.

Chapter 8 is dedicated to studies of Planck-safe model building explaining the B-anomalies with
flavourful Z ′ models. Therein, we give details on the particle content and review conditions on the
couplings and U(1)′ charges considered.
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Chapter

6
Flavourful U(1)′ extensions in
semileptonic charm decays

After providing the most important ingredients to Z ′ model building in the previous chapter,
we begin our investigations of NP-effects in rare charm decays which have been published in
Refs. [16, 17]. In this chapter, we study implications in semileptonic FCNC c→ u ℓ+ℓ− transitions,
whereas NP studies of CP -violating observables and U -spin-breaking in hadronic charm decays
are discussed in the subsequent Chap. 7.

First, we introduce the EFT description of c→ u ℓ+ℓ− transitions and discuss model-independent
bounds on Wilson coefficients in Sec. 6.1. In Sec. 6.2, we work out limits on possible Z ′ contributions.
Afterwards, Sec. 6.3 deals with Z ′ models that feature a certain hierarchical structure able to
evade tight constraints from D-mixing entailing sizeable effects in charm observables. Due to the
resonant pollution and poor convergence of the heavy quark expansion [148], SM null tests are
indispensable in this sector and are discussed in Sec. 6.4. Therein, we put a special emphasis on
tests that benefit from Z ′ contributions.

6.1 Effective description of c→ u ℓ+ℓ− transitions

In the SM, the FCNC |∆c| = |∆u| = 1 transitions appear at one-loop level as depicted in the
left-hand side diagram of Fig. 2.2. Contrary to studies of kaon or B-physics, internal down-type
quarks (d, s, b) propagate in the loop of c→ u transitions. The corresponding weak amplitude can
be expressed as [149]

A(c→ u) = λs (fs − fd + ξb [fb − fd]) , |ξb| = |λb/λs| ∼ 10−3 , (6.1)

with CKM factors λq = V ∗
cq Vuq encoding CP -violating phenomena in the SM. Here, fq denotes the

loop function defined after Eq. (2.40). The strong GIM suppression in these transitions is made
clear evaluating the leading term in Eq. (6.1), which yields a naive estimation of A(c→ u) ∼ 10−8.
Moreover, CP asymmetries induced by |ξb| are suppressed as well. Due to the combination of both
strong CKM and GIM suppression, the short-distance contributions in the SM are currently well
below experimental reach. That being said, electroweak contributions within the SM can differ
by several orders of magnitude depending on which contributions are taken into account [150],
while also being shielded by resonance contributions. Therefore, a robust theoretical framework is
instrumental to provide calculations beyond the naive estimation of the SM contribution.

Using the OPE, we can treat the short-distance and long-distance dynamics separately. However,
the determination of non-perturbative dynamics at low energies within a robust EFT framework
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proves challenging in charm due to ΛQCD ∼ mc, which hinders the convergence of the perturbative
expansion in powers of 1/mc. Therefore, the computation of the HMEs with naive factorisation
is not entirely reliable. The main OPE set-up is described for example in Ref. [151], where a
consistent expansion of the full SM computation for rare charm transitions to O (αs) within RG-
improved perturbation theory is available. In what follows, we outline the short- and long-distance
description.

6.1.1 Short-distance description

The effective Hamiltonian that describes rare c→ u ℓ+ℓ− processes is given by [72, 152]

Hcuℓℓ
eff ⊃ −4GF√

2

αe
4π

[︃
C7O7 + C′

7O
′
7 +

∑︂
ℓ=e,µ,τ

∑︂
i=9,10,S,P

(︁
Cℓℓi Oℓℓi + C′ℓℓ

i O′ℓℓ
i

)︁
+

∑︂
i=T,T5

Cℓℓi Oℓℓi
]︃

+
4GF√

2

[︃ ∑︂
q=d,s

V ∗
cqVuq

2∑︂
i=1

CiOqi
]︃
,

(6.2)

with the dimension-six operators

O7 =
mc

e
(uL σµν cR)F

µν ,

Oℓℓ9 = (uLγµcL)(ℓγ
µℓ) , Oℓℓ10 = (uLγµcL)(ℓγ

µγ5ℓ) ,

OℓℓS = (uLcR)(ℓℓ) , OℓℓP = (uLcR)(ℓγ5ℓ) ,

OℓℓT =
1

2
(uσµν c)(ℓ σ

µν ℓ) , OℓℓT5 =
1

2
(uσµν c)(ℓ σ

µνγ5 ℓ) .

(6.3)

The operators O′
i, where i = 7, 9, 10, S, P , are obtained by interchanging left-handed and right-

handed chiral fields. In the following, we suppress the lepton indices for both the coefficients
and operators to improve readability. The Wilson coefficients in Eq. (6.3) include SM and NP
contributions. However, in the SM no (pseudo)scalar and (pseudo)tensor operators are present,
therefore CSM

S,P,T,T5 = 0. In addition, the SM favours LH contributions while all C′
i are negligible.

Most notably, as the underlying FCNC transition resides in the up-sector, the GIM mechanism
removes penguin contributions to O7,9,10 at the W -scale µW , where the lights quark masses are
set to zero [153]. Only the current-current operators

Oq1 = (uLγµt
aqL)(qLγ

µtacL) , Oq2 = (uLγµqL)(qLγ
µcL) , q = d, s , (6.4)

induce effective SM contributions to O7,9,10 through RG running down to the charm scale µc. The
four-quark operators in Eq. (6.4) also dominate pure hadronic decays, such as D → KK and
D → ππ with details provided in App. F.1. Following Refs. [153, 154], we can estimate

Ceff
7 (q2 ≈ 0) ≃ −0.0011− 0.0041 i , (6.5)

Ceff
9 (q2) ≃ −0.021 [V ∗

cdVud L(q
2,md, µc) + V ∗

csVus L(q
2,ms, µc)] , (6.6)

where q2 denotes the dilepton invariant mass squared and the function L(q2,mq, µc) accounts for
the low dynamical effects stipulated by mq ̸= 0. See Ref. [154] for the explicit form of L(q2,mq, µc).
We find that Im(Ceff

7 ) increases from −0.004 at q2 = 0 to −0.0014 at high q2 at next-to-next-
to-leading order (NNLO), whereas |Ceff

9 | ≲ 0.01 for µc = mc = 1.275 GeV [153]. Moreover, it is
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6.1 Effective description of c→ u ℓ+ℓ− transitions

CSM
10 = 0 which delimits charm FCNC from B or kaon physics, and implies that effects from the

(V − A)-structure of the weak interaction are shut off at the charm scale. To summarise, the
vanishing Wilson coefficients read

C′SM
i = CSM

S = CSM
T,T5 = CSM

10 = 0 . (6.7)

As displayed in Fig. 6.1, we find that in D → Pℓ+ℓ− decay rates, P = K, π, the short-distance
SM contributions are negligible compared to the long-range resonance-induced effects, thus
schematically CSM

9 = Ceff
9 + CR

9 ≃ CR
9 . Due to our focus on NP effects, we follow our established

notation put forward for rare B-decays in Eq. (3.44), and refer to pure BSM c→ u ℓ+ℓ− Wilson
coefficients as C(′)

i,ℓ in this chapter to enhance readability whenever possible.

Lepton flavour violating contributions

Since lepton flavour violation is basically not present in the SM, observables sensitive to such
contributions provide clear signs of BSM physics if measured by experiment.

In our EFT approach, we can add operators that induce LFV in c→ u ℓ−ℓ′+ decays as [16]

HLFV
eff = −4GF√

2

αe
4π

∑︂
i

(︂
Kℓℓ

′

i Oℓℓ
′

i +K′ℓℓ′
i O′ℓℓ′

i

)︂
, (6.8)

with ℓ ̸= ℓ′. In this chapter, the K(′)
i denote lepton flavour violating Wilson coefficients where

the operators O(′)
i are constructed using the corresponding analogue of the operators in Eq. (6.2)

changing the flavour in the lepton currents accordingly. In Eq. (6.8), no O(′)
7 contribution exists as

the photon does not couple to different lepton flavours.

6.1.2 Long-distance description

The lack of knowledge about the hadronic effects in a hadronic transition is parametrised by
so-called form factors. The hadronisation of the operators in Eq. (6.3) yields a factorisation
between the lepton and quark currents written as [149]

⟨hc|Oi |F ℓ+ℓ−⟩ = ⟨hc|Hi
αi,...,αn |F ⟩ ⟨0|L

αi,...,αn
i |ℓ+ℓ−⟩ , (6.9)

where hc denotes a charged charmed hadron and F is the final state. The quark and lepton
currents, Hi

αi,...,αn and Lαi,...,αni , share the Lorentz indices α1, . . . , αn. While perturbation theory
in QED allows for the computation of ⟨0|Lαi,...,αni |ℓ+ℓ−⟩, non-perturbative techniques are required
to evaluate ⟨hc|Hi

αi,...,αn |F ⟩, which encodes the hadronic dynamics at low energies. In the case of
a D meson decaying into a pseudoscalar P , we are able to describe the vector (n = 1) and tensor
currents (n = 2) using q2-dependent functions known as form factors. The relevant D→ P form
factors are denoted by fi(q2), i = 0,+, T , where details and requisite input are given in App. E.3.
A comprehensive overview of available form factors for various charm decays can be found in
Ref. [149].

The dominant contributions to the operators O9,P result from D→ P γ∗ processes with γ∗ →M→
ℓ+ℓ−, where the different resonances M = ρ, φ, η, η′ present in the low-q2 region are annotated in
Fig. 6.1.
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−2 η

ρ/ω
η′

φ non-resonant SM

resonant SM

Figure 6.1: The differential branching ratio of the D+→ π+µ+µ− decay in the SM. The yellow
(blue) bands show pure resonant (short-distance) contributions. The band widths represent
theoretical uncertainties of hadronic form factors, resonance parameters and mc. Darker shaded
thin curves illustrate all parameters set to their central values with δρ = 0 and δφ = π (solid)
and δρ = δφ = 0 (dashed). We annotate the resonances M = ρ, φ, η, η′ in the low-q2 region.
Figure adapted from Ref. [16].

Their phenomenological shape comprises Breit-Wigner distributions and is given by

CR
9 (q

2) = aρe
i δρ
(︃

1

q2 −m2
ρ + imρΓρ

− 1

3

1

q2 −m2
ω + imωΓω

)︃
+

aφe
i δφ

q2 −m2
φ + imφΓφ

,

CR
P (q

2) =
aηe

i δη

q2 −m2
η + imφΓη

+
aη′

q2 −m2
η′ + imη′Γη′

,

(6.10)

where mM and ΓM denote the mass and the total decay rate of the resonance M , respectively. As
this parametrisation features various parameters, one has to employ simplifying assumptions and
utilise experimental input to reduce and, subsequently, determine as many parameters as possible.
In Eq. (6.10), the isospin limit aω = aρ/3 has been used to reduce the input and the corresponding
theoretical uncertainties. The aM parameters can be found in Tab. E.1 and have been computed
from measurements of branching ratios B (D → PM) and B (M → µ+µ−) [155]. However, the
strong phases δρ,φ,η remain undetermined and yield a large source of uncertainty illustrated by
the respective (yellow) bands in Fig. 6.1, which are varied numerically within [−π, π]. Due to
the challenging theoretical description of such resonant-dominated decays, further investigations
are required. For studies on resonance effects utilising the QCD factorisation approach see, e.g.,
Refs. [148, 156, 157]. In App. E, we provide explicit expressions of the (differential) branching
ratios of semileptonic and fully leptonic D → π decays.

6.1.3 Constraints on new physics Wilson coefficients

Here, we derive model-independent bounds on Wilson coefficients in charm, which can be used to
limit NP contributions in extensions of the SM such as Z ′ models. For instance, Wilson coefficients
can be constrained by the updated experimental upper limits on the D+→ π+µ+µ− branching
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ratio at 90%C.L. [158],

B (D+→ π+µ+µ−) < 6.7 · 10−8 . (6.11)

Using the branching ratio parametrisation in Eq. (E.1), we obtain [16, 149]

1.3 |C7|2 + 1.3 |C9|2 + 1.3 |C10|2 + 2.6 |CS |2 + 2.7 |CP |2 + 0.4 |CT |2 + 0.4 |CT5|2

+ 0.3Re (C9 C∗
T ) + 1.1Re (C10 C∗

P ) + 2.6Re (C7 C∗
9 ) + 0.6Re (C7 C∗

T ) ≲ 1 ,
(6.12)

where only BSM Wilson coefficients to muons are considered and RH currents are implicitly
included as Ci → Ci,µ + C′

i,µ to ease the notation. Analogously, the upper limit B
(︁
D0→ µ+µ−)︁ <

6.2× 10−9 [159] inserted into Eq. (E.3) yields

|CS − C′
S |2 + |CP − C′

P + 0.1 (C10 − C′
10) |2 ≲ 0.007 , (6.13)

and provides the best constraints on NP contributions to C(′)
10 for muons. Bounds on lepton flavour

violating Wilson coefficients can be extracted from the limits B (D+→ π+e±µ∓) < 210(220) · 10−9

and B
(︁
D0→ e±µ∓)︁ < 13 · 10−9 at 90%C.L. [158, 160]. With the corresponding branching ratio

formulae given in Eqs. (E.4) and (E.5), we find

0.4 |K9|2 + 0.4 |K10|2 + 0.9 |KS |2 + 0.9 |KP |2 + 0.1 |KT |2 + 0.1
⃓⃓
KT5

⃓⃓2
+0.2Re (K10 K∗

P ±K9 K∗
S) + 0.1Re (K9 K∗

T ±K10 K∗
T5) ≲ 1 ,

(6.14)

|KS −K′
S ± 0.04 (K9 −K′

9) |2 + |KP −K′
P ± 0.04 (K10 −K′

10) |2 ≲ 0.01 , (6.15)

with Ki = Ki,µe + K′
i,µe and Ki = Ki,eµ + K′

i,eµ for D→ P e+µ− and D→ P e−µ+, respectively.
For a summary of constraints on a plethora of NP Wilson coefficients and future prospects in
charm decays see Ref. [149].

6.2 New physics effects in rare charm decays

c

u `+

`−

Z ′

Figure 6.2: Tree-level diagram of a c→ u ℓ+ℓ− transition via a Z′ boson.

While in the SM contributions to c→ u ℓ+ℓ− processes are highly suppressed, NP contributions
via a Z ′ boson can be generated at tree level as depicted in Fig. 6.2. We describe the relevant
effective Hamiltonian by

Hcuℓℓ
Z′ ⊃

(︁
gcuL uLγ

µcLZ
′
µ + gcuR uRγ

µcRZ
′
µ + h.c.

)︁
+ gℓℓ

′

L ℓLγ
µℓ′LZ

′
µ + gℓℓ

′

R ℓRγ
µℓ′RZ

′
µ .

(6.16)

After integrating out the Z ′ boson and matching Eq. (6.16) with the Hamiltonian in Eq. (6.2), the
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following Wilson coefficients are induced

C9/10,ℓ = − π√
2GF αe

gcuL
(︁
gℓℓR ± gℓℓL

)︁
M2
Z′

,

C′
9/10,ℓ = − π√

2GF αe

gcuR
(︁
gℓℓR ± gℓℓL

)︁
M2
Z′

,

(6.17)

where we have made the lepton index explicit to distinguish different lepton currents. One may
also introduce the corresponding lepton flavour violating coefficients

K9/10,ℓℓ′ = − π√
2GF αe

gcuL

(︂
gℓℓ

′

R ± gℓℓ
′

L

)︂
M2
Z′

,

K′
9/10,ℓℓ′ = − π√

2GF αe

gcuR

(︂
gℓℓ

′

R ± gℓℓ
′

L

)︂
M2
Z′

,

(6.18)

where ℓ′ ̸= ℓ is understood and we recover Ci,ℓ = Ki,ℓℓ′ for ℓ′ = ℓ.

The bounds in Eqs. (6.12) to (6.14) can be translated into limits on the NP couplings gcuL,R and
gℓℓ

′

L,R of our effective Z ′ framework using Eqs. (6.17) and (6.18). At this point, we provide the
limits that are given in the published version of Ref. [16], as well as updated values employing the
latest experimental input available. The lepton flavour conserving bounds read

D+→ π+µ+µ− :
⃓⃓
gcuL + gcuR

⃓⃓√︂⃓⃓
gµµL
⃓⃓2

+
⃓⃓
gµµR
⃓⃓2

≲ 0.02 [0.04]

(︃
MZ′

TeV

)︃2

, (6.19)

D0→ µ+µ− :
⃓⃓
(gcuL − gcuR )(gµµL − gµµR )

⃓⃓
≲ 0.03

(︃
MZ′

TeV

)︃2

, (6.20)

where the value in brackets denotes the outdated limit from Ref. [16]. Similarly, we obtain

D+→ π+e±µ∓ :
⃓⃓
gcuL + gcuR

⃓⃓√︂⃓⃓
gµeL
⃓⃓2

+
⃓⃓
gµeR
⃓⃓2

≲ 0.04 [0.17]

(︃
MZ′

TeV

)︃2

, (6.21)

D0→ e±µ∓ :
⃓⃓
gcuL − gcuR

⃓⃓√︂⃓⃓
gµeL
⃓⃓2

+
⃓⃓
gµeR
⃓⃓2

≲ 0.07

(︃
MZ′

TeV

)︃2

, (6.22)

from the lepton flavour violating decays.

6.3 Hierarchical Z′ models

In what follows, we study Z ′ models that generate sizeable NP effects in charm, while satisfying
the limits derived in Eqs. (6.19) to (6.22). However, the tightest constraints are due to D0-D0

mixing which demands |gcuL,R| ≲ 8.0 · 10−4 in the case of only one non-zero coupling, see Eq. (5.42).
Then, assuming O(1) muon couplings in Eqs. (6.19) and (6.20), we find BSM Wilson coefficients

C(′)
9/10,µ ≲ O

(︁
10−2

)︁
, (6.23)

consistent with limits worked out in Refs. [161, 162].
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As promoted in Sec. 5.3.1, we can evade the mixing bound by assuming so-called hierarchical
couplings. In this case, it is possible to satisfy the mixing constraints for both gcuL ̸= 0 and gcuR ̸= 0
even with arbitrarily large values that obey the hierarchy in Eq. (5.41),

gcuL = X gcuR or gcuL =
1

X
gcuR , (6.24)

with X ≈ 20 assuming MZ′ in the TeV-range. Consequently, NP effects are only bounded by the
constraints from semileptonic decays in Eqs. (6.19) to (6.22).

We investigate this set-up in the context of anomaly-free Z ′ models assuming real couplings and
no weak phases φR = 0, i.e. no CP -violating effects. In doing so, we follow the model building
guidelines established in Chap. 5:

• The U(1)′ charges Ff of the SM fermions and (possible) new fermions satisfy the ACCs
listed in Eq. (5.24).

• We focus on FCNC transitions solely in the up-quark sector, and hence evade the strong
constraints from rare kaon decays [32]. The FCNC c→ u couplings are generated through
flavour mixing as (see Eqs. (5.12) and (5.14))

gcuL = g4 ∆FL λCKM , (6.25)
gcuR = g4 ∆FR cos (θu) sin (θu) , (6.26)

where

∆FL = FQ2 − FQ1 , ∆FR = FU2 − FU1 . (6.27)

We repeat the necessity of non-universal U(1)′ charges to the c and u quark, that is∆FL,R ̸= 0,
to generate the desired FCNC transitions at tree level.

From Eqs. (6.25) and (6.26) we determine the ratio

gcuR
gcuL

≃ ∆FR cos (θu) sin (θu)
∆FL λCKM

, (6.28)

which solely depends on the charge differences and mixing angles. We can classify

∆FR
∆FL

sin (2θu) ≃ 8 in the case gcuR
gcuL

= X ≈ 20 (RH-dominated) , (6.29)

∆FR
∆FL

sin (θu) ≃
1

100
in the case gcuR

gcuL
= 1/X ≈ 1/20 (LH-dominated) , (6.30)

assuming small mixing angles θu ≪ 1. In the RH-dominated case, a mild hierarchy between ∆FR
and ∆FL is needed, whereas we can accommodate the LH-dominated scenario with mixing alone,
i.e. θu ∼ 10−2. However, in both cases the ratio of both couplings is fixed as

C′
9,ℓ

C9,ℓ
=

C′
10,ℓ

C10,ℓ
=
gcuR
gcuL

=

{︄
X (RH-dominated)
1/X (LH-dominated)

. (6.31)

Both scenarios can be realised for a plethora of Z ′ models. A list of sample solutions is listed in
Tab. 6.1 and an overview of selected scenarios with specific assignments of relevant U(1)′ charges
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Model FQi FUi FDi FLi FEi Fνi

1 -4 -2 6 -2 1 1 0 0 0 3 -8 5 -3 6 -3 0 0 0

2 -6 3 3 -8 4 4 -10 10 0 1 -6 5 0 0 0 0 0 0

3 7 8 -20 -29 6 3 -19 4 25 0 9 6 3 14 13 0 0 0

4 -1 2 -1 -1 2 -1 0 0 0 0 1 -1 0 2 -2 -2 -1 3

5 -1 2 -1 -1 2 -1 2 -1 -1 0 1 -1 0 1 -1 0 0 0

6 -10 6 2 -13 2 3 -11 2 13 3 9 -6 2 6 4 0 0 0

7 1 1 1 1 1 1 1 1 1 -3 -3 -3 -3 -3 -3 -3 -3 -3

8 6 7 -15 -14 4 2 -25 9 20 11 -24 19 1 8 3 0 0 0

Table 6.1: Sample solutions of an anomaly-free U(1)′ extension of the SM+3 νR. In general, the
ordering of generations is arbitrary due to permutation invariance. In this chapter, however, we
explicitly use the ordering given here, that is, the i-th entry corresponds to the i-th generation,
unless mentioned otherwise. Table adapted from Ref. [16].

Model ∆FR ∆FL gcuR /gcuL case θu

1 3 2 1/X 0.008

2 12 9 1/X 0.009

3′ 35 1 X 0.122

3 35 1 1/X 0.0003

4 3 3 1/X 0.011

5 3 3 1/X 0.011

6 15 16 1/X 0.012

7 0 0 - -

8′ 18 1 X 0.244

8 18 1 1/X 0.0006

Table 6.2: Scenarios of anomaly-free Z′ models and the mixing angle θu for different charge
assignments taken from Tab. 6.1. The primed solutions are RH-dominated, whereas the unprimed
ones are LH-dominated. Table taken from Ref. [16].

is presented in Tab. 6.2. Let us briefly discuss the different solutions. While in general the charge
assignments within each fermion species can be chosen freely due to the permutation invariance
of charges, we explicitly use the fermion charges following the ordering in Tab. 6.1. Notably,
model 7, which exhibits universal charge assignments to leptons and quarks, is unable to generate
∆FL,R ̸= 0, and is given only for illustrative purposes. Extending the SM particle content by three
RH neutrino fields νR with non-zero U(1)′ charges Fν can also be realised as in model 4 (and 7).

The ratio ∆FR/∆FL ranges within ∼ [0.9, 35] for the models presented, while the mixing angle
θu is tuned according to Eqs. (6.29) and (6.30) and given in Tab. 6.2. We see that models with
∆FR/∆FL ≥ 8 can be either RH or LH-dominated, depending on the chosen flavour rotation
θu. Having specified different Z ′ models, we now work out parameter constraints for them. The
updated bound on the D+→ π+µ+µ− branching ratio in Eq. (6.19) can be rewritten as

g44 (λCKM ∆FL)
2

[︃
1 +

(︃
∆FR sin (2θu)
2∆FL λCKM

)︃]︃2 (︁
F 2
L2

+ F 2
E2

)︁
≲ 5.6 · 10−4

(︃
MZ′

TeV

)︃4

, (6.32)
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where we have inserted the expressions for gucL,R as well as the flavour-diagonal lepton couplings
in Eq. (5.23), that is gℓℓL = g4 FLi and gℓℓR = g4 FEi . Together with the constraints from D0-D0

mixing, the ratio g4/MZ′ is fixed for each model and two solutions emerge from Eq. (6.32). They
read

g24 ≲
0.12

∆FL

√︂
F 2
L2

+ F 2
E2

(︃
MZ′

TeV

)︃2

·

{︄
(1 +X)

−1
(RH-dominated)(︁

1 + 1
X

)︁−1
(LH-dominated)

. (6.33)

4 6 8 10
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Figure 6.3: Upper limits on the U(1)′ gauge coupling g4 as a function of the Z′ mass in
Eq. (6.33) for selected models with ∆FL,R ̸= 0 in Tab. 6.2. The black region is excluded by
direct searches in dimuon and dielectron spectra [32]. For lower values of g4, the bounds become
model-dependent as indicated by the lighter colouring, see main text. Updated figure adapted
from Ref. [16].

In Fig. 6.3, the U(1)′ gauge coupling g4 is shown as a function of MZ′ for the LH- or RH-scenarios
given in Tab. 6.1 with parameter settings according to Tab. 6.2. The different lines correspond to
the upper limit in Eq. (6.33) for each scenario. We observe that the constraints for RH-dominated
scenarios are a factor X ≈ 20 stronger than for the corresponding LH-dominated ones due to
(1 +X)/(1 + 1/X) = X for X ̸= −1. The black region in Fig. 6.3 displays the excluded region
MZ′ ≲ 5 TeV from resonant searches in dilepton spectra [32]. However, the true lower bound for
MZ′ is different for every solution as it depends on the specific assignments of quark and lepton
charges, as well as the overall coupling strength. Thus, part of the parameter space g4 < 0.5 and
MZ′ < 5 TeV might still be allowed or constrained by other searches [163], indicated by the lighter
colouring. Figure 6.3 incorporates the updated bound from D+→ π+µ+µ− on the couplings,
see Eq. (6.33). Future (more stringent) limits will further reduce the allowed parameters space,
entailing smaller g4 or larger MZ′ . However, as of now, we still find sizeable contributions to
charm Wilson coefficients. The idea of hierarchical couplings as realised in this section proves
useful to not only relax present mixing bounds, but also reduce the substantial parameter space in
Z ′ model building.

Concluding this section, we compute the contributions to the Wilson coefficients C(′)
9/10,µ for the Z ′

models. Here, we choose a benchmark value MZ′ = 6 TeV, while in general the ratio g4/MZ′ fixes
the (maximally allowed) value of a Wilson coefficient, constrained by Eq. (6.33). The results are
listed in Tab. 6.3. We find that in scenarios, which are either LH- or RH-dominated, substantial
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Model g4
MZ′

/ TeV−1 C9,µ C10,µ C′
9,µ C′

10,µ

1 0.076 0.12 −0.83 0.01 −0.04

2 0.046 0.60 −0.60 0.03 −0.03

3′ 0.019 −0.04 −0.01 −0.86 −0.19

3 0.083 −0.82 −0.18 −0.04 −0.01

4 0.130 −0.80 −0.27 −0.04 −0.01

5 0.164 −0.84 0 −0.04 0

6 0.026 −0.83 0.17 −0.04 0.01

7 - 0 0 0 0

8′ 0.015 0.02 −0.04 0.41 −0.81

8 0.067 0.38 −0.75 0.02 −0.04

Table 6.3: Maximally induced c→ uµ+µ− Wilson coefficients C(′)
9/10,µ for LH- or RH-dominated

Z′ scenarios listed in Tab. 6.2. We also provide the corresponding ratio g4/MZ′ in units of
TeV−1 according to Eq. (6.33).

C9/10,µ or C′
9/10,µ can be induced. Due to the hierarchies in Eqs. (6.29) and (6.30), the primed

versus unprimed Wilson coefficients differ by the factor X ≈ 20 (modulo rounding in Tab. 6.3).
Notably, model 2 exhibits a (V −A)-structure (not only for muons) with C(′)

9,ℓ = −C(′)
10,ℓ as U(1)′

charges to lepton singlets FEi are zero. The challenge of how to detect these NP contributions is
approached in the next section, where null test observables in charm decays sensitive to C(′)

9/10,µ

are elaborated.

6.4 Study of null tests in D→ Pℓℓ decays

In what follows, we review a selection of null test observables predestined to find BSM effects in
charm decays. Based on approximate symmetry limits of the SM, such null test searches provide
the unique opportunity not only to test the SM, but further confine the underlying NP structure if
measured by experiment. We provide a brief overview of the different sets of null test observables
in rare semileptonic charm decays. Afterwards, we present tests of lepton universality and CP
asymmetries in Secs. 6.4.1 and 6.4.2, respectively, where contributions from Z ′ scenarios enter
prominently and can have pronounced effects.

Let us skim over selected null tests and review their NP sensitivity.

• Angular observables:

The lepton forward-backward asymmetry AFB(q
2) is mostly sensitive to combinations of

(pseudo)scalar and tensor operators, where effects of only scalar or pseudotensors are highly
suppressed, e.g. AFB ∝ Re

(︁
CSC∗

T + (CP + CR
P ) C∗

T5

)︁
for vanishing lepton masses [149].

The so-called ‘flat’ term FH(q
2) is enhanced for contributions to (pseudo)tensor and (pseu-

do)scalar operators as FH ∝ |CS |2+|CP +CR
P |2&|CT |2+|CT5|2, while SM-like contributions are

O
(︁
10−3-10−2

)︁
[149]. Large effects in both of these observables would point towards an under-

lying tensor or scalar nature of NP in these D→ P ℓℓ decays. The explicit parametrisations
of AFB and FH are given elsewhere [16].
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• Lepton flavour violation:

As indicated by Eqs. (6.14) and (6.15), constraints on lepton flavour violating opera-
tors in charm allow for sizeable NP contributions in differential branching ratios of, e.g.,
D+→ π+e±µ∓ or D+

s → K+e±µ∓ decays. Notably, resonance contributions are absent
in those processes, and hence the overall uncertainties are mainly due to form factors.
Especially, vector and axial-vector contributions K9,10 ∼ 0.5 score integrated branching
ratios B (D+→ π+e±µ∓) ∼ 10−7. While in Z ′ models LFV effects are model-dependent,
we estimate branching ratios up to O

(︁
10−11

)︁
, for instance B (D+→ π+e±µ∓) ≲ few · 10−12

assuming K9,10 ∼ 10−3 [16]. These benchmark values are in agreement with data from
τ → (µ, e)ℓℓ, with ℓ = e, µ, as well as µ→ eee and µ→ eγ decays [32].

• Lepton universality:

In the SM, lepton universality (LU) is realised by equal couplings of the electroweak gauge
bosons to leptons of different generations. Conversely, NP scenarios can easily induce
non-universal effects that can be probed by experiment. Familiar tests of LU have been
studied in the beauty sector with experimental data exhibiting notable deviations from the
SM prediction, see Sec. 3.4. BSM predictions of LU ratios in D → P1 P2 ℓ

+ℓ− [164] and
D → Pℓ+ℓ− [16] have been worked out. Examples for the latter are discussed in Sec. 6.4.1.

• CP asymmetries:

The studies of CP -violating effects can help to obtain information on NP Wilson coefficients
due to the negligible, CKM-suppressed SM contributions. While large contributions are
achieved in the vicinity of resonances, weak phases in the Wilson coefficients and strong
phases of the resonances are instrumental to generate CP asymmetries, see Sec. 6.4.2.

6.4.1 Tests of lepton universality

Apart from non-universal couplings to u and c quarks, we also allocate different couplings to
electrons and muons in our Z ′ models. This feature can be exploited by defining the ratio of
branching ratios analogous to the one for rare B-decays, cf. Eq. (3.45). It reads [161, 164]

RDP =

∫︂ q2max

q2min

dB (D→ Pµ+µ−)

dq2
dq2∫︂ q2max

q2min

dB (D→ Pe+e−)

dq2
dq2

, (6.34)

where q2 denotes the dilepton invariant mass squared, and q2min (q2max) indicates the lower (upper)
dilepton mass cut. The SM prediction near unity is given with high precision due to the impeccable
cancellation of QCD uncertainties [82]. Here, our focus lies on the observables RDπ testing the ratio
of D+→ π+µ+µ− and D+→ π+e+e− decays. While currently no experimental measurements of
these modes are available, we can study different NP scenarios and their impact on these LU
tests.

First, we discuss generic benchmarks with contributions from different types of Wilson coefficients,
while afterwards we analyse the contributions in our Z ′ set-ups. Assuming only NP contributions
to muons, we show the predicted ranges of RDπ in the full, low and high q2-integrated intervals
in Tab. 6.4. We include the same resonance parametrisation in Eq. (6.10) for electron and muon
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modes, varying the unknown strong phases δφ,ρ,η within [−π, π] that provide the main source of
uncertainty. We see that the low-q2 region suffers from the uncertainty of the strong phases, while
the full-q2 region remains insensitive to resonance and NP effects with SM-like ratios RDπ ≈ 1.
Conversely, NP effects in the high-q2 region can be quite sizeable. Large deviations from unity can
also be achieved in the low-q2 region, while keeping the large uncertainties in mind.

RDπ SM |C9| = 0.5 |C10| = 0.5 |C9| = ±|C10| = 0.5 |CS(P )| = 0.1 |CT | = 0.5 |CT5| = 0.5

full q2 1.00 ± O (%) SM-like SM-like SM-like SM-like SM-like SM-like

low q2 0.95 ± O (%) O (100) O (100) O (100) 0.9 . . . 1.4 O (10) 1.0 . . . 5.9

high q2 1.00 ± O (%) 0.2 . . . 11 3 . . . 7 2 . . . 17 1 . . . 2 1 . . . 5 2 . . . 4

Table 6.4: RDπ in the SM and in NP scenarios for different q2-bins. Ranges correspond to
uncertainties from form factors and resonance parameters. Due to large uncertainties at low
q2 in some cases only the order of magnitude of the largest values is given. Table taken from
Ref. [16].

RDπ Model 1 Model 2 Model 3 Model 3′ Model 4 Model 5 Model 6 Model 8 Model 8′

full q2 SM-like SM-like SM-like SM-like SM-like SM-like SM-like SM-like SM-like

low q2 1.8 . . . 5.5 O (100) O (50) O (50) O (100) O (100) 1.4 . . . 16 0.7 . . . 13 0.8 . . . 14

high q2 3.0 . . . 5.3 O (50) 3 . . . 30 3.5 . . . 31 2.0 . . . 36 1.7 . . . 37 3.5 . . . 30 1.3 . . . 17 1.4 . . . 17

Table 6.5: Same as Tab. 6.4, but for hierarchical Z′ models. See Tabs. 6.1 and 6.3 for chosen
model parameters.

Looking at the Z ′ models listed in Tab. 6.1, we spot that in most models (except models 4 and 5)
NP couplings to electrons exist, and hence Wilson coefficients C9/10,e are induced in addition to
C9/10,µ entering Eq. (6.34). However, due to the non-universal charge assignments of electrons and
muons, we find similar deviations from unity for RDπ , compiled in Tab. 6.5. As before, the full-q2
region is insensitive to NP effects, while huge deviations from the SM prediction can be achieved
in the low-q2 region. In addition, it is possible to test specific models, where for instance smaller
couplings to muons than to electrons are realised (with U(1)′ charges set accordingly) and induce
RDπ < 1. While measurements of the resonant-dominated dielectron modes are yet unavailable,
the expected future sensitivities at LHCb [165] enable first model-independent LU tests in the
upcoming years.

6.4.2 CP asymmetries

Another null test observable able to probe NP is the CP asymmetry [16, 154, 166], given by

ACP (q
2) =

1

Γ + Γ

(︃
dΓ
dq2

− dΓ
dq2

)︃
, (6.35)
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where Γ denotes the decay rate of the CP -conjugated mode, with the normalisation as in Eq. (E.2).
Expressing the difference of differential decay rates as

dΓ
dq2

− dΓ
dq2

=
G2

Fα
2
e

256π5m3
D

√︄
λDP

(︃
1−

4m2
ℓ

q2

)︃{︄
2

3
Im
(︃
C9 + 2 C7

mc

mD +mP

fT
f+

)︃
Im
(︁
CR
9

)︁(︃
1 +

2m2
ℓ

q2

)︃
λDP f

2
+

+ Im (CP ) Im
(︁
CR
P

)︁ q2
m2
c

(m2
D −m2

P )
2 f20

+ 4 Im (CT ) Im
(︁
CR
9

)︁ mℓ

mD +mP
λDP f+ fT

+ 2 Im (C10) Im
(︁
CR
P

)︁ mℓ

mc
(m2

D −m2
P )

2 f20

}︄
,

(6.36)

we identify the SM contribution ASM
CP as the first term in Eq. (6.36). This quantity is tiny due to

the small phases of the CKM factors in C9, see Eq. (6.6). Therefore, ACP can be used as a null
test of the SM and indicator of BSM physics.

In this chapter, we have confined ourselves to real-valued couplings in the Z ′ models presented.
Thus, no contributions are generated to ACP which is only sensitive to the imaginary part of
Wilson coefficients. Therefore, we require weak phases in our Z ′ framework to utilise this null
test. Chapter 7 comprises studies of CP asymmetries and direct CP violation in hadronic charm
decays, where Z ′ models that induce large weak phases and promising patterns of NP are put
forward. At this point, we illustrate NP effects by employing such a benchmark scenario, while
further details are provided in Chap. 7.
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Figure 6.4: The CP asymmetry ACP (q
2) in D+→ π+µ+µ− around the φ resonance, i.e.[︁

(mφ − 5Γφ)
2, (mφ + 5Γφ)

2
]︁
, (left-hand side plot) and at high q2 (right-hand side plot), where

mφ = 1.019 GeV and Γφ = 4.25 ·10−3 GeV [155]. We choose different values of δφ = 0, ±π/2, π
and employ C′

9,10 = 0.12 exp(iπ/2), a benchmark of model 10µ, cf. Tabs. 7.4 and 7.8 and details
provided in Sec. 7.4. The uncertainties are due to the other strong phases δρ,η, the form factors
and the c-quark mass mc.

We note that enhanced strong phases entering CR
9,P as resonance effects are vital to generate

a sizeable CP asymmetry [166]. In Fig. 6.4, we show ACP in D+→ π+µ+µ− around the φ-
resonance region (left-hand side plot) and at high-q2 (right-hand side plot) for different values of
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δφ employing a benchmark value of C′
9,10 = 0.12 exp(iπ/2). This benchmark is realised in model

10µ, see Tabs. 7.3 and 7.4. The band width corresponds to 1σ uncertainties by varying the phases
δρ,η within [−π, π], while uncertainties from form factors and mc are also included. In general,
large NP effects are induced by contributions to C9, while CT and C10,P are suppressed by the light
lepton mass and the completely negligible Im(CR

P (q
2 ≃ m2

φ)) at the φ resonance, respectively [16].
We find that regardless of the value of δφ strong BSM effects can emerge, while measuring ACP as
a binned observable is necessary to avoid a vanishing integrated asymmetry, which may occur due
to sign changes around q2 ∼ m2

φ.

- 62 -



Chapter

7
CP asymmetries in rare charm
decays

This chapter comprises studies of CP -violating NP in hadronic and semileptonic rare charm
∆c = ∆u = 1 transitions based on the author’s publication [17]. We consider flavourful, anomaly-
free Z ′ models with non-universal couplings to c and u quarks. Before that, we review the CP
phenomenology and present patterns of CP -violating NP in Sec. 7.1. The ∆ACP contributions
are discussed in Sec. 7.2 utilising Z ′ model building. Afterwards, we present U -spin and isospin
patterns which emerge in such models and report on correlations of CP -violating effects connecting
hadronic and semileptonic charm decays in Secs. 7.3 and 7.4, respectively. In closing this chapter,
we review benchmark models in the light of recently updated limits concerning D0-D0 mixing
parameters in Sec. 7.5. We conclude in Sec. 7.6.

In the late of 2011, direct CP violation in SCS D-decays was evidenced in the observable

∆ACP = ACP
(︁
K+K−)︁−ACP

(︁
π+π−)︁ . (7.1)

The measurement by the LHCb experiment [167], ∆ALHCb’11
CP = (−82 ± 24) · 10−4 with a 3.5σ

significance of the measured deviation from zero, provided the first evidence for CP violation in
the charm sector. Here, the time-integrated CP asymmetry for a final CP eigenstate f is given
by [168]

ACP (f) =
Γ(D0 → f)− Γ(D0 → f)

Γ(D0 → f) + Γ(D0 → f)
, (7.2)

and effects of indirect CP violation approximately cancel in ∆ACP . In 2019, LHCb reported on
the observation of direct CP violation with an updated measurement of [169]

∆ALHCb’19
CP = (−15.4± 2.9) · 10−4 , (7.3)

being 5.3σ away from zero, while the corresponding world average reads [123]

∆AHFLAV
CP = (−16.4± 2.8) · 10−4 . (7.4)

Even though ∆ACP is a manifestation of CP violation in decay, it constitutes no clear-cut sign of
possible NP. The SM contribution to the individual ACP is CKM-suppressed by a factor of [170]

ICKM ≡ 2 Im
(︃
V ∗
cbVub
V ∗
csVus

)︃
≈ 1.4 · 10−3 , (7.5)

and hence we naively estimate ∆ASM
CP ∼ O (αs/π) · ICKM ∼ 10−4, one order of magnitude below
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Eq. (7.3). An O (10) enhancement from hadronic effects cannot be ruled out as well [171–175],
in which case Eq. (7.3) is accounted for by the SM alone. However, other groups derive smaller
estimates utilising first principle QCD methods [125, 176], i.e. |∆ASM

CP | ≤ 3.6 ·10−4, which deviates
significantly from the experimental result favouring sizeable NP contributions to ∆ACP .

Due to this ongoing debate, we aim to generate NP contributions ∆ANP
CP ∼ 10−3 that can

accommodate the current measurement alone, assuming a negligible SM contribution.

7.1 CP phenomenology and Z′ models in charm

7.1.1 Parametrisation of CP -violating new physics

The SCS decay amplitudes Af and Af for the D0 and D0 meson, respectively, are given by [168]

Af = Atree
f ei φtree

f

(︂
1 + rf ei (δf+φf )

)︂
, Af = ηCP Atree

f e−i φtree
f

(︂
1 + rf ei (δf−φf )

)︂
. (7.6)

Here, ηCP = +(−)1 denotes the eigenvalue of CP even (odd) states. The parameters δf and φf
denote the strong (CP -conserving) and weak (CP -violating) relative phases, respectively. The
term Atree

f e±i φtree
f refers to the dominant tree-level contribution in the SM, whereas the relative

magnitude of all subleading amplitudes are described by the parameter rf . Using Eqs. (7.2)
and (7.6), we can write the CP asymmetry ACP (f) as

ACP (f) = − 2 rf sin (δf ) sin (φf )
1 + r2f + 2 rf cos (δf ) cos (φf )

= −2 rf sin (δf ) sin (φf ) +O
(︁
r2f
)︁
, (7.7)

where we have assumed rf ≪ 1 in the last step 1. We observe that both non-vanishing strong and
weak phases are needed to generate contributions to ACP (f), while the tree-level amplitude Atree

f

cancels. Since we are interested in NP effects contributing to this observable, we add a BSM term
to the D0 decay amplitude as

Af =
∑︂

q=d,s,b

λq (Aq
f )SM +ANP

f . (7.8)

The first term denotes the SM contribution with CKM factors λq = V ∗
cq Vuq and the second term

incorporates NP. Here and in the following, we employ the notation f = K and f = π for the
subscripts referring to the final states π+π− and K+K−, respectively. By exploiting the unitarity
of the CKM matrix, see Eq. (2.38), we obtain

AK = λs
(︁
As
K −Ad

K

)︁
SM +λb

(︁
Ab
K −Ad

K

)︁
SM +ANP

K ,

Aπ = λd
(︁
Ad
π −As

π

)︁
SM +λb

(︁
Ab
π −As

π

)︁
SM +ANP

π ,
(7.9)

where the first and second terms correspond to SCS and penguin contributions in the SM,
respectively. The latter contributions induce only small Wilson coefficients as they are strongly
CKM-suppressed compared to the SCS ones. Using Eq. (7.9) together with Eqs. (7.6) and (7.7),

1Since rf ∝ |λb/λd,s| ≈ 6 · 10−4, then O(r2f ) corrections can be safely neglected.
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we derive the formula

∆ACP = ∆ASM
CP +∆ANP

CP = ∆ASM
CP − 2

|λs,d|
∆rNP . (7.10)

The NP effects are embedded in

∆rNP = rNP
K sin (δK) sin (φK) + rNP

π sin (δπ) sin (φπ) , (7.11)

with

rNP
K =

⃓⃓⃓⃓
ANP
K

(As
K −Ad

K)SM

⃓⃓⃓⃓
, rNP

π =

⃓⃓⃓⃓
ANP
π

(Ad
π −As

π)SM

⃓⃓⃓⃓
, (7.12)

where the plus sign between the pion and kaon amplitudes in Eq. (7.11) emerges due to λd =
−λs+O (λb). Maximal NP effects in ∆ACP are generated for | sin (δK,π) | ≈ 1 and | sin (φK,π) | ≈ 1.
Note that no information on the sign of ∆rNP can be inferred a priori as it depends on the product
of strong and weak phases. Therefore, we set sin (δK,π) ∼ 1 (meaning either sign possible) in our
analysis. Moreover, we choose for the weak phases sin (φK,π) ∼ 1 following a similar guideline,
which is elaborated in Sec. 7.1.4.

To determine possible NP effects in ∆ACP , we also need the modulus of the leading SM amplitudes
(As

K −Ad
K)SM and (Ad

π −As
π)SM, which can be extracted from data on branching ratios of D → f

modes. In this chapter, we also study the related D+→ π+π0 and D0→ π0π0 decays, and hence
introduce the subscripts P = π′ and P = π0, respectively, to distinguish the different decay modes
in the following. The branching ratio for D → f modes reads [168]

B (D→ P1 P2) = τD

√︄
1−

4m2
P

m2
D

|AP |2

16πmD
, (7.13)

where τD denotes the lifetime of the D meson. The amplitude is parametrised as

AP = nP λP aP
GF√
2

(︁
m2
D −m2

P

)︁
fDP0

(︁
m2
P

)︁
fP , (7.14)

where λπ = λd, λK = λs and

nP =

{︄
1 P = π, π0,K
1√
2

P = π′ . (7.15)

Numerical values of the decay constants fP , form factors fDP0 as well as the respective lifetimes
τD are provided in Tab. B.3. With current experimental data on branching ratios [32] we compute
the parameters aP for the four decay modes, summarised in Tab. 7.1.
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Mode P B (Mode) aP

D0→ K+K− K (4.08 ± 0.06) · 10−3 1.19 ± 0.04

D0→ π+π− π (1.453 ± 0.024) · 10−3 0.94 ± 0.07

D0→ π0π0 π0 (8.26 ± 0.25) · 10−4 0.71 ± 0.05

D+→ π+π0 π′ (1.247 ± 0.033) · 10−3 0.77 ± 0.05

Table 7.1: Measured branching ratios [32] and parameters aP from Eq. (7.14) for different
D → f decay modes. Table taken from Ref. [17].

7.1.2 CP violation with Z′ models

The Z ′ couplings of interest are included in the effective Hamiltonian

Hcuℓℓ
Z′ ⊃

(︁
gcuL uLγ

µcLZ
′
µ + gcuR uRγ

µcRZ
′
µ + h.c.

)︁
+ gℓℓL ℓLγ

µℓLZ
′
µ + gℓℓR ℓRγ

µℓRZ
′
µ

+
∑︂

q=u,d,s

(︁
gqqL qLγ

µqLZ
′
µ + gqqR qRγ

µqRZ
′
µ

)︁
, (7.16)

which enhances the interaction previously considered in Eq. (6.16) by flavour-diagonal quark
couplings to the Z ′ boson, gqqL,R. In analogy to the lepton couplings, they are constructed by taking
the U(1)′ coupling g4 times the associated U(1)′ charge Ff as outlined in Sec. 5.1.2. The FCNC
couplings are given by

gcuL = g4 ∆FL λCKM , (7.17)
gcuR = g4 ∆FR cos (θu) sin (θu) exp(iφR) , (7.18)

as defined in Eqs. (5.12) and (5.14), respectively. The difference of U(1)′ charges to the doublet
(singlet) c and u quark is encoded in ∆FL = FQ2 − FQ1 (∆FR = FU2 − FU1) as introduced
in Eq. (6.27). To induce CP -violating effects we explicitly maintain the CP phase φR in the
right-handed coupling, while for gcuL only small (SM-like) phases are realised.

In Fig. 7.1, the tree-level Feynman diagrams for the relevant hadronic charm decays involving a Z ′

boson are displayed. Therein, the diagrams in the top row display the contributions to D0→ π+π−

and D0→ K+K− that enter ∆ANP
CP , but also induce U -spin breaking, whereas the diagrams in

the middle row can induce isospin breaking in D+→ π+π0, see discussion in Sec. 7.3.1.

7.1.3 Effective theory description of Z′ contributions

By inducing the non-universal quark couplings in Eqs. (7.17) and (7.18), additional NP four-quark
operators are generated in an EFT framework. The corresponding weak Hamiltonian at the scale
mb < µ < µEW is given by [177]

H|∆c|=1
eff ⊃ GF√

2

∑︂
i

˜︁C(′)
i
˜︁Q(′)
i + h.c. , (7.19)
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Figure 7.1: NP tree-level contributions via a Z′ boson for hadronic D-decays, that is
D0→ π+π−, D0→ K+K−, D0→ π+π− and D+→ π+π0 decays.

with the operators

˜︁Q7 = (uc)V−A
∑︂
q

FUi,Di (qq)V+A , ˜︁Q′
7 = (uc)V+A

∑︂
q

FQi (qq)V−A ,

˜︁Q8 = (uαcβ)V−A
∑︂
q

FUi,Di (qβqα)V+A , ˜︁Q′
8 = (uαcβ)V+A

∑︂
q

FQi (qβqα)V−A ,

˜︁Q9 = (uc)V−A
∑︂
q

FQi (qq)V−A , ˜︁Q′
9 = (uc)V+A

∑︂
q

FUi,Di (qq)V+A ,

˜︁Q10 = (uαcβ)V−A
∑︂
q

FQi (qβqα)V−A , ˜︁Q′
10 = (uαcβ)V+A

∑︂
q

FUi,Di (qβqα)V+A .

(7.20)

Here, the subscript (V ±A) is a shorthand notation that refers to the Dirac structures γµ(1± γ5),
q = u, c, d, s, b and α, β are the colour indices. The primed operators are obtained by interchanging
the chirality L↔ R of the currents in the unprimed operators as PL/R = (1∓ γ5)/2, while also
accounting for the different U(1)′ charges of quark doublet or singlets. The full Hamiltonian is
given in App. F.

By comparing the two Hamiltonians in Eqs. (7.16) and (7.19), we can write the corresponding
Wilson coefficients at the Z ′-boson mass scale µ =MZ′ as

˜︁C(′)
7 (MZ′) = ˜︁C(′)

9 (MZ′) =

√
2 g4 g

cu
L(R)

4GF M2
Z′

, ˜︁C(′)
8 (MZ′) = ˜︁C(′)

10 (MZ′) = 0 . (7.21)

These coefficients are evolved down to the charm scale at LO in the strong coupling αs via RGEs.
This induces non-zero values of ˜︁C(′)

8,10 at µ = mc, see App. F.2 for supplementary calculations and
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details. In doing so, we obtain the Wilson coefficients at the charm scale

˜︁C(′)
7 (mc) =

√
r1 ˜︁C(′)

7 (MZ′) ,

˜︁C(′)
8 (mc) =

˜︁C(′)
7 (MZ′)

(︂
1− r

9
2
1

)︂
+ 3 ˜︁C(′)

8 (MZ′)

3 r41
,

˜︁C(′)
9 (mc) =

˜︁C(′)
9 (MZ′)− ˜︁C(′)

10 (MZ′) + r31

(︂˜︁C(′)
9 (MZ′) + ˜︁C(′)

10 (MZ′)
)︂

2 r21
,

˜︁C(′)
10 (mc) =

˜︁C(′)
10 (MZ′)− ˜︁C(′)

9 (MZ′) + r31

(︂˜︁C(′)
9 (MZ′) + ˜︁C(′)

10 (MZ′)
)︂

2 r21
,

(7.22)

with the renormalisation factor r1 = r1(µ = mc, MZ′) defined in Eq. (5.34). For illustrative
purposes, we evaluate Eq. (7.22) for a benchmark value of MZ′ = 6 TeV, which yields

˜︁C(′)
7 (mc) = 0.83 ˜︁C(′)

7 (MZ′) ,˜︁C(′)
8 (mc) = 1.22 ˜︁C(′)

7 (MZ′) + 4.50 ˜︁C(′)
8 (MZ′) ,˜︁C(′)

9 (mc) = 1.40 ˜︁C(′)
9 (MZ′)− 0.72 ˜︁C(′)

10 (MZ′) ,˜︁C(′)
10 (mc) = −0.72 ˜︁C(′)

9 (MZ′) + 1.40 ˜︁C(′)
10 (MZ′) .

(7.23)

Furthermore, we define the functions

R1 (mc,MZ′) =
r−4
1

3
√
2GF λs

, R2 (mc,MZ′) =
2 r1 − r−2

1

3
√
2GF λs

, (7.24)

which incorporate the running of different combinations of Wilson coefficients and are of use in
subsequent calculations.

To compute the NP decay amplitudes ANP
f , we need to determine the respective HMEs for each

operator in Eq. (7.20). For the sake of brevity, we provide the necessary details on the derivation
of the HMEs in App. F.3. The results for D0→ K+K− and D0→ π+π− decays, as well as the
related D+→ π+π0 and D0→ π0π0 decays, are compiled in Tab. 7.2. Therein, we utilise the
shorthand notation

⟨. . .⟩K = ⟨K+K−| . . . |D0⟩ , ⟨. . .⟩π = ⟨π+π−| . . . |D0⟩ ,
⟨. . .⟩π′ = ⟨π+π0| . . . |D+⟩ , ⟨. . .⟩π0 = ⟨π0π0| . . . |D0⟩ .

(7.25)

The HMEs are expressed in terms of the associated SM matrix elements, that is ⟨Qs1⟩K and ⟨Qd1⟩π,
with Qp1 = (up)V−A(pc)V−A, for D0→ K+K− and D0→ π+π−, respectively. For D+→ π+π0

and D0→ π0π0 decays the SM contributions are proportional to ⟨Qu1 ⟩u = ⟨uu|Qu1 |D0⟩. Moreover,
we employ the chiral enhancements χK(mc) ≈ 3.626 and χπ(mc) ≈ 3.655 generated by (V −A)×
(V +A) operators at the charm mass scale, see Eq. (B.2). All entries in Tab. 7.2 are obtained in
the isospin limit, mu = md and e = 0. We impose this limit as isospin breaking corrections from
NP, FQi,Ui,Di ̸= 0, fully dominate compared to the ones within the SM. Then, ⟨Qu1 ⟩u = ⟨Qd1⟩d and
the ⟨ ˜︁Q9,10⟩π′,π0 vanish as they are proportional to (FQ1

− FQ1
) = 0.

The parametrisation of the HMEs in terms of SM contributions is convenient since in the formula
for ANP

CP in Eq. (7.10) only the ratio of NP and SM amplitudes enters, and therefore the elements
⟨Qs,d1 ⟩K,π cancel.
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P = K P = π P = π′ P = π0

⟨ ˜︁Q7⟩P
FD2

χK
NC

⟨Qs1⟩K
FD1

χπ

NC
⟨Qd1⟩π

(︂
FU1

−FD1

)︂
χπ

√
2NC

⟨Qu1 ⟩u

(︂
FU1

−FD1

)︂
χπ

2NC
⟨Qu1 ⟩u

⟨ ˜︁Q8⟩P FD2
χK ⟨Qs1⟩K FD1

χπ ⟨Qd1⟩π

(︂
FU1

−FD1

)︂
χπ

√
2

⟨Qu1 ⟩u

(︂
FU1

−FD1

)︂
χπ

2 ⟨Qu1 ⟩u

⟨ ˜︁Q9⟩P
FQ2
NC

⟨Qs1⟩K
FQ1
NC

⟨Qd1⟩π 0 0

⟨ ˜︁Q10⟩P FQ2
⟨Qs1⟩K FQ1

⟨Qd1⟩π 0 0

⟨ ˜︁Q′
7⟩P

FQ2
χK

NC
⟨Qs1⟩K

FQ1
χπ

NC
⟨Qd1⟩π 0 0

⟨ ˜︁Q′
8⟩P FQ2

χK ⟨Qs1⟩K FQ1
χπ ⟨Qd1⟩π 0 0

⟨ ˜︁Q′
9⟩P

FD2
NC

⟨Qs1⟩K
FD1
NC

⟨Qd1⟩π
FU1

−FD1√
2NC

⟨Qu1 ⟩u
FU1

−FD1
2NC

⟨Qu1 ⟩u

⟨ ˜︁Q′
10⟩P FD2

⟨Qs1⟩K FD1
⟨Qd1⟩π

FU1
−FD1√
2

⟨Qu1 ⟩u
FU1

−FD1
2 ⟨Qu1 ⟩u

Table 7.2: List of HMEs for the operators in Eq. (7.20) where χP = χP (µ), P = K,π, denote
the chiral enhancements and Ff is the associated U(1)′ charge. For more details, see the main
text and App. F.

7.1.4 Avoiding D0-D0 mixing constraints

Following Eqs. (5.37) and (5.38), the constraint from D-mixing on the couplings gcuL,R is given by

⃓⃓
(gcuL )

2
+ (gcuR )

2 −X gcuL gcuR
⃓⃓
≲ 6.4 · 10−7

(︃
MZ′

TeV

)︃2

, (7.26)

assuming complex-valued couplings, and X ≈ 20 for MZ′ in the TeV-range. The parameter X has
been determined in Eq. (5.36). The bound in Eq. (7.26) can be circumvented by inducing both
non-zero couplings gcuL , gcuR that exhibit the hierarchy gcuL = 1/X gcuR or gcuL = X gcuR , see Sec. 5.3.1.
Notably, Eq. (7.26) forces the CP phases of both couplings to be aligned, i.e. arg (gcuL ) ∼ arg (gcuR ).
As only SM-like CP phases in gcuL are allowed, cf. Eq. (7.17), we find that possible CP -violating
effects in charm are irrelevant in the case of both non-zero couplings gcuL ̸= 0 and gcuR ̸= 0. This
is the main difference compared to the Z ′ model set-up discussed in Sec. 6.3, where CP phases
have not been included, assuming real-valued, hierarchical couplings instead. Therefore, we choose
gcuL = 0 to generate sizeable CP phases in gcuR , which is possible by setting ∆FL = FQ2 − FQ1 = 0
while ∆FR = FU2 −FU1 ̸= 0 needs to hold at the same time. This can be achieved for a selection of
the Z ′ models listed in Tab. 6.1, where it is possible to rearrange U(1)′ charges due to permutation
invariance. We additionally consider new models 9 and 10 that feature large ∆FR and, conversely,
∆FL = 0 by construction. All models are compiled in Tab. 7.3. In models 9 and 10(µ), no U(1)′

charges FQi are present. Model 10µ is constructed from model 10 while choosing smaller couplings
to muons, FL2 and FE2 . As we consider only the complex-valued coupling gcuR ̸= 0, the bound in
Eq. (7.26) simplifies to

|gcuR | ≲ 8.0 · 10−4

(︃
MZ′

TeV

)︃
. (7.27)

- 69 -



Chapter 7 CP asymmetries in rare charm decays

Model FQi FUi FDi FLi FEi Fνi

2 3 3 -6 -8 4 4 -10 10 0 -6 5 1 0 0 0 0 0 0

4 -1 -1 2 -1 2 -1 0 0 0 -1 1 0 -2 2 0 -2 -1 3

5 -1 -1 2 -1 2 -1 2 -1 -1 -1 1 0 -1 1 0 0 0 0

9 0 0 0 -11 -2 13 7 7 -14 -8 3 5 -6 16 -10 0 0 0

10 0 0 0 -13 6 7 -1 -14 15 -15 15 0 -14 18 -4 0 0 0

10µ 0 0 0 -13 6 7 -1 -14 15 -15 0 15 -14 -4 18 0 0 0

Table 7.3: Selected Z′ models taken from Tab. 6.1 where ∆FL = 0 and ∆FR ̸= 0 are possible
through permutation of U(1)′ charges, see main text for details. We add models 9 and 10(µ),
where all FQi = 0. Model 10µ refers to model 10 with the smallest couplings to muons, i.e. FL2

and FE2 . Table taken from Ref. [17].

Additionally, the CP -violating observable x12 sin (φ12) in Eq. (5.28) provides an even stronger
bound on the phase of gcuR ,

x12 sin (φ12) ≲ 1.98 · 10−4 . (7.28)

However, it can be circumvented for certain choices of φR = arg (gR) around π/2 (or 3π/2), where
sin (φ12) = sin (2φR) ≃ 0 [17, 177]. Then, the contributions to ∆ACP are maximized while the
constraints from D-mixing are satisfied at the same time. We illustrate this interplay in Fig. 7.2,
where NP contributions to ∆ACP are shown in the φR-g4/MZ′ plane for the selected models 2
and 10(µ). The induced ∆ANP

CP is worked out in Eq. (7.30) and shown as green bands. We also
display the regions excluded by D-mixing, distinguishing between the bound on the absolute
value x12 (red hatched region) and the imaginary part x12 sin (φ12) (red region). In each plot a
dedicated benchmark point taken from Tab. 7.4 indicates a value of ∆ANP

CP ∼ 10−3 and φR ∼ π/2,
reproducing the world average of ∆ACP in Eq. (7.4).
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Figure 7.2: Exclusion regions from D0-D0 mixing (red regions) and contributions |∆ANP
CP |

(green bands) in the φR-g4/MZ′ plane. Constraints on the absolute value x12 are indicated by
the red hatched rectangle, whereas the parameter space excluded by constraints on the imaginary
part x12 sin (φ12) is displayed by the red region, cf. Eqs. (7.27) and (7.28), respectively. The
coloured markers indicate benchmarks listed in Tab. 7.4. Figure adapted from Ref. [17].
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Benchmark marker Model g4
MZ′

/ TeV−1 θu · 104 ∆FR φR |∆ANP
CP | · 103

golden star model 2 0.38 1.0 12 π/2 1.5

brown star model 4 1.40 1.0 3 π/2 1.7

blue star model 5 1.30 1.0 3 π/2 1.5

purple diamond model 9 2.30 0.36 9 π/2 1.6

pink diamond model 10 2.30 0.17 19 π/2 1.5

cyan diamond model 10µ 2.30 0.17 19 π/2 1.5

Table 7.4: List of benchmarks for Z′ models given in Tab. 7.3 with parameter settings that
generate ∆ANP

CP ∼ 10−3.

In what follows, we present a study involving Z ′ models that feature only RH couplings with a
CP phase φR = π/2 and generate sizeable effects in ∆ACP . We reveal and discuss NP patterns
for benchmark scenarios that suffice the input from Eq. (7.27).

7.2 Study of ∆ACP in Z′ models

Using Eq. (7.10), we can parametrise NP effects to ∆ACP as

∆ANP
CP = ANP

CP

(︁
K+K−)︁−ANP

CP

(︁
π+π−)︁ , (7.29)

with

ANP
CP

(︁
K+K−)︁ ∼ g24

M2
Z′
θu∆FR [cK FQ2

+ dK FD2
] ,

ANP
CP

(︁
π+π−)︁ ∼ g24

M2
Z′
θu∆FR [cπ FQ1 + dπ FD1 ] .

(7.30)

Here, we have employed sin (θu) cos (θu) ≈ θu ≪ 1 in Eq. (7.18) and set gcuL = 0 in accordance
with the assumptions outlined in Sec. 7.1.4. The parameters cπ,K and dπ,K encode the LO running
of the strong coupling via the functions R1,2 as well as the tree-level contributions aK,π fixed by
experiment, cf. Eq. (7.24) and Tab. 7.1, respectively. In addition, the parameters cπ,K include the
chiral enhancements χK,π induced by the operators ˜︁Q′

7,8. The exact form of these parameters is
given by

cK(π) = (−)
χK(π)

aK(π)
R1 (mc,MZ′) , dK(π) = (−)

1

aK(π)
R2 (mc,MZ′) , (7.31)

where numerical values for different Z ′ masses are given in Tab. 7.5.

Note that the sign of ANP
CP (f), with f = K+K−, π+π−, is always chosen to match the experimental

value of ∆ACP . This is possible since no information on the strong phases δK,π is available.
Therefore, sin (δK,π) sin (φR) ∼ 1 is used in Eq. (7.30). We remark that flipping the sign of θu
or choosing, e.g., φR = 3π/2 would have the same effect, but we do not consider this possibility
here.
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Figure 7.3: |∆ANP
CP | for different Z′ models (see plot titles) in the plane of g4/MZ′ versus

the parameter ∆ ˜︁FR = ∆FR · θu, together with the excluded region from D0-D0 mixing (red),
see Eq. (7.27). The pink dashed-dotted and dotted lines indicate the bounds from Eqs. (7.32)
and (7.33), respectively. The black region is excluded due to bounds coming from perturbativity
and direct searches in dimuon and dielectron spectra [32], that is g4 ≤ 4π and MZ′ ≥ 5 TeV,
respectively. The markers (stars, diamonds) refer to benchmark points in Tab. 7.4. Expanded
version of a figure taken from Ref. [17].
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MZ′ /TeV 2 4 6 8 10

cK 1.133 1.217 1.266 1.302 1.330

dK −0.046 −0.054 −0.058 −0.061 −0.063

cπ −1.446 −1.553 −1.616 −1.661 −1.698

dπ 0.058 0.068 0.074 0.077 0.080

dπ′ 0.071 0.083 0.090 0.094 0.098

dπ0 0.077 0.090 0.097 0.102 0.106

Table 7.5: Numerical values of parameters cK,π, dK,π and dπ′,π0 in units of TeV2 as defined in
Eqs. (7.31) and (7.46), respectively, for different Z′ masses. Table taken from Ref. [17].

In Fig. 7.3, we display contributions to ∆ANP
CP using Eq. (7.29) for the Z ′ models 2, 5, 9, 10,

and 10µ, see Tab. 7.3. We plot different contours in the plane of g4/MZ′ versus the parameter
∆ ˜︁FR = ∆FR · θu. The exclusion region from the D-mixing constraint in Eq. (7.27) is shown in red.
The corresponding plot of model 4 is omitted in Fig. 7.3 as only marginal differences to model
5 are present in terms of ∆ANP

CP -bands and exclusion bounds due to identical FQ1,2
. We show

both plots for models 10 and 10µ since different bounds coming from (semi)muonic D-decays,
shown as pink (dash-)dotted lines, are obtained. These bounds are extracted from upper limits
on branching ratios of D+→ π+µ+µ− and D0→ µ+µ− decays that have been worked out in
Eqs. (6.19) and (6.20), respectively. For gcuL = 0, they can be rewritten as 2

⃓⃓
gcuR
⃓⃓√︂

(gµµL )2 + (gµµR )2 = g24
⃓⃓
∆ ˜︁FR ⃓⃓√︂F 2

L2
+ F 2

e2 ≲ 0.04

(︃
MZ′

TeV

)︃2

, (7.32)

⃓⃓
gR (gµµL − gµµR )

⃓⃓
= g24

⃓⃓
∆ ˜︁FR (FL2

− FE2
)
⃓⃓
≲ 0.03

(︃
MZ′

TeV

)︃2

. (7.33)

As shown in Fig. 7.3, these bounds are in general weaker than those from D-mixing, however
they become relevant for models with large lepton couplings, i.e. models 9 and 10, close to the
(black) non-perturbativity region. On that account, model 10µ is constructed to evade the muon
constraints by choosing the smallest FL2

and FE2
through permutation of lepton charges. Hence,

improved bounds from future measurements would still allow for ∆ANP
CP ∼ 10−3 in this model.

Notably, models 2, 4, and 5 are the least affected by the constraints as they exhibit small couplings
to leptons (but also to quarks) compared to the other models. In consequence, they provide a
larger viable parameter space, allowing for ∆ANP

CP ∼ 4 · 10−3 (lime green band). We also show the
selected benchmark points for each model in Fig. 7.3 that pass the aforementioned constraints
while inducing ∆ANP

CP ∼ 10−3.

7.3 Symmetry patterns in hadronic charm decays

Flavour-breaking signatures are realised in Z ′ models due to the non-universal U(1)′ charges. They
entail large breaking effects that can significantly alter relations based on approximate SU(3)F
symmetries between hadronic charm decays. As put forward in Sec. 2.5, U -spin and isospin

2Here, we present Z′ scenarios employing the outdated upper limit on B
(︁
D+→ π+µ+µ−)︁

as stated in Eq. (6.19)
in brackets. Section 7.5 discusses the impact of updated measurements of observables on the Z′ benchmarks
studied in this chapter.
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Model βπ0 βπ′ Utot
break UNP

break

2 −0.02 −0.02 0.42 0.24

4 −0.03 −0.03 0.22 0

5 −0.10 −0.09 0.32 0.11

9 −1.89 −1.75 0.22 0

10(µ) 1.31 1.22 0.91∗ 1.19∗

Table 7.6: Values of βπ′ ,βπ0 in TeV−2 for selected Z′ models as defined in Eqs. (7.48) and (7.52),
respectively. The quantities Utot

break and UNP
break are also provided, see Eqs. (7.36), (7.40), and (7.41)

for their definitions. All values are given for MZ′ = 6 TeV. The asterisk indicates values obtained
with swapped modes in the definition of uKπ in Eq. (7.35), see Footnote 3. Table adapted from
Ref. [17].

breaking is already realised in the SM. However, they can experience enhancements in the presence
of NP contributions [173, 178, 179]. We present such breaking patterns induced by Z ′ models in
Secs. 7.3.1 and 7.3.2, and work out the CP asymmetry of D0→ π0π0 decays in Sec. 7.3.3.

7.3.1 U -spin breaking patterns in D0→ K+K− and D0→ π+π−

The relevant U -spin sum rule reads [178]

ACP
(︁
K+K−)︁+ACP

(︁
π+π−)︁ = 0 , (7.34)

which holds in the SU(3)F limit but is broken for FQ1
̸= FQ2

or FD1
̸= FD2

in a U(1)′ extension,
where different charges to d and s quarks are present. Deviations from this relation indicate U -spin
breaking and can be expressed as 3

U tot
break = |1 + uKπ| , uKπ =

ACP (K+K−)

ACP (π+π−)
, (7.35)

where Utot
break = 0 holds in the U -spin limit in Eq. (7.34). Employing our parametrisation of ACP

from Eq. (7.30), we obtain

U tot
break =

⃓⃓⃓⃓
1 +

cK FQ2 + dK FD2

cπ FQ1
+ dπ FD1

⃓⃓⃓⃓
, (7.36)

where numerical values for models 2, 4, 5, 9, and 10(µ), for MZ′ = 6 TeV, are provided in Tab. 7.6.
The variation of U tot

break due to the MZ′-dependence of the parameters cK,π , dK,π is at the (few)
percent level.

To study how U -spin breaking is generated in Z ′ models in more detail, we perform a Taylor
expansion in Eq. (7.36) up to O (dK , dπ). This is a valid approximation since the parameters dK,π

3To avoid large values Utot
break > 1, we set uKπ = ACP

(︁
π+π−)︁

/ACP
(︁
K+K−)︁

for model 10(µ). In this case, the
subscripts K,Q2, D2 and π,Q1, D1 in Eq. (7.36) and following need to be swapped.
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are small compared to the chirally-enhanced cK,π , that is dK,π/cK,π ≈ −0.05. We obtain

Utot
break =

⃓⃓⃓⃓
1 +

cK FQ2

cπ FQ1

− cK dπ FQ2
FD1

c2π F
2
Q1

+
dK FD2

cπ FQ1

⃓⃓⃓⃓
+O

(︁
d2K , d

2
π, dKdπ

)︁
, (7.37)

which can be simplified considering the two cases

(i)FQ1
= FQ2

̸= 0 : Utot
break ≈

⃓⃓⃓⃓
1 +

cK
cπ

− cK dπ FD1

c2π FQ1

+
dKFD2

cπFQ1

⃓⃓⃓⃓
, (7.38a)

(ii)FQ1
= FQ2

= 0 : Utot
break =

⃓⃓⃓⃓
1 +

dK FD2

dπ FD1

⃓⃓⃓⃓
=

⃓⃓⃓⃓
1 +

dK
dπ

+
dK (FD2 − FD1)

dπ FD1

⃓⃓⃓⃓
. (7.38b)

Case (i) holds for models 2, 4, and 5, whereas case (ii) is valid in models 9 and 10(µ). Note
that Utot

break = 0 is recovered for cK = −cπ, dK = −dπ and universal U(1)′ charges in the SU(3)F
limit.

In the following, we discuss the two cases. For FQ1
= FQ2

̸= 0, we identify different sources
of U -spin breaking. The second term in Eq. (7.38a) is responsible for effects coming from the
interference between SM amplitude and NP charges FQ1,2

. This contribution accounts for 22%
U -spin breaking, comparable to the expected breaking uncertainty of the SM. Conversely, the
last two terms in Eq. (7.38a) are pure NP U -spin breaking effects. However, they are suppressed
which can be seen by further simplifying Eq. (7.38a). We substitute dK ≈ cK/cπ dπ, which holds
numerically at the (sub-)percent level due to χπ ≈ χK , and obtain

Utot
break ≈

⃓⃓⃓⃓
1 +

cK
cπ

+
dK
cπ

(︃
FD2

− FD1

FQ1

)︃⃓⃓⃓⃓
. (7.39)

The pure NP U -spin breaking effects are given by

UNP
break(FQ1,2 ̸= 0) =

dK
cπ

⃓⃓⃓⃓
FD2

− FD1

FQ1

⃓⃓⃓⃓
≈ 0.04

⃓⃓⃓⃓
FD2

− FD1

FQ1

⃓⃓⃓⃓
, (7.40)

suppressed by the pion chiral enhancement and the function R2, see Eq. (7.31). Regarding case
(ii), where FQ1,2

= 0, we can express the pure NP-induced U -spin breaking as

UNP
break(FQ1,2

= 0) =

⃓⃓⃓⃓
dK (FD2

− FD1
)

dπ FD1

⃓⃓⃓⃓
≈ 0.78

⃓⃓⃓⃓
FD2

− FD1

FD1

⃓⃓⃓⃓
. (7.41)

In Tab. 7.6, the values of UNP
break for the Z ′ models are listed.

For models that obey case (i), we find U -spin breaking effects within the range of the expected
SM U -spin breaking ≲ 30% for values of FD2

− FD1
∼ O (1) as in model 5. The U -spin breaking

in model 4 is SM-like due to FDi = 0, hence UNP
break = 0. In contrast, large effects are possible

for FD2 − FD1 ∼ O (10) as in model 2, which would be observable with future sensitivities for
ACP (K+K−) and ACP (π+π−) collected in Tab. 7.7.

For models of case (ii), the NP U -spin breaking effects in Eq. (7.41) are unsuppressed. For instance,
in model 10(µ) large UNP

break is generated, though the SM-interference term with an opposite sign
slightly reduces the total U -spin breaking. Model 9 features FQ1

= FQ2
= 0 as well. However,

U -spin breaking emerges from dK ̸= −dπ only due to FD1
= FD2

in this model, which yields
SM-like effects as in model 4.
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Figure 7.4: Individual CP asymmetries ACP
(︁
K+K−)︁ versus ACP

(︁
π+π−)︁ with NP contribu-

tions of models 2, 5, 9, and 10(µ) indicated by yellow, blue, purple and cyan lines, respectively.
The green band denotes the experimental world average of ∆ACP in Eq. (7.4) at 1σ, while the
present 1σ regions of the individual asymmetries listed in Tab. 7.7 are shown as grey bands.
The U -spin limit in Eq. (7.34) is shown as a red dashed line, while SM-like U -spin breaking
≤ 30% is indicated by the red region for comparison. Figure adapted from Ref. [17].
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Figure 7.5: Future projections for ACP
(︁
K+K−)︁ versus ACP

(︁
π+π−)︁ with predictions in

the Z′ models 2, 5, 9, and 10(µ) in yellow, blue, purple and cyan lines, respectively. The
green band denotes the experimental world average of ∆ACP in Eq. (7.4) with projected 1σ
sensitivities according to Tab. 7.7. Indicated by the grey bands are two future measurements
of the individual asymmetries, i.e. future I (left-hand side plot) and future II (right-hand side
plot), with central values given in Eqs. (7.42) and (7.43), respectively, and uncertainties scaled
according to Tab. 7.7. The markers denote benchmark points listed in Tab. 7.4. Light and dark
grey bands correspond to LHCb Run 1-3 and Run 1-5, respectively. Around the benchmark
points of model 2 (left-hand side plot) and model 10µ (right-hand side plot) dashed and solid
ellipses are drawn for LHCb Run 1-3 and Run 1-5 sensitivities, respectively, assuming Gaussian
errors for simplicity. The U -spin limit in Eq. (7.34) is shown as a red dashed line, while SM-like
U -spin breaking ≤ 30% is indicated by the red region for comparison. Figure adapted from
Ref. [17].
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·10−4 Data σLHCb σBelleII

∆ALHCb
CP −15.4 ± 2.9 [169] 1.3 (0.3) –

∆AHFLAV
CP −16.4 ± 2.8 [123] 1.3 (0.3) –

ACP
(︁
D0→ K+K−)︁

−9 ± 11 [123] 3 (0.7) 3

ACP
(︁
D0→ π+π−)︁

12 ± 14 [123] 3 (0.7) 5

ACP
(︁
D0→ π0π0

)︁
−3 ± 64 [123] – 9

ACP
(︁
D+→ π+π0

)︁
+290 ± 290 ± 30 [180] – 17

Table 7.7: CP asymmetries and future sensitivities σ in units of 10−4 at LHCb Run 1-3 (Run
1-5) with 23 fb−1(300 fb−1) [165] and Belle II with 50 ab−1 [85]. Table adapted from Ref. [17].

The contributions of models 2, 5, 9, and 10(µ) to the individual CP asymmetries ACP (K+K−) and
ACP (π+π−) are depicted in Figs. 7.4 and 7.5 as yellow, blue, purple, and cyan lines, respectively.
Model 4 is not shown as it features U -spin breaking similar to model 9. The U -spin limit in
Eq. (7.34) is indicated by the red dashed line, while the red contour highlights U -spin breaking
of 30%. In Fig. 7.4, we show the current experimental bounds listed in Tab. 7.7 as 1σ regions
in grey and green for the individual asymmetries and ∆ACP , respectively. Figure 7.5 illustrates
two possible measurements denoted as future I (left-hand side plot) and future II (right-hand side
plot). Therein, the light and dark grey bands indicate the projected sensitivities for the individual
asymmetries from LHCb Run 1-3 and Run 1-5, respectively. In a similar manner, the green bands
highlight the projections for ∆ACP . The central values of the measurements are chosen as

future I :
Acen
CP

(︁
K−K+

)︁
= −0.60 · 10−3 , Acen

CP

(︁
π−π−)︁ = 1.00 · 10−3 ,

(7.42)

future II :
Acen
CP

(︁
K−K+

)︁
= −1.45 · 10−3 , Acen

CP

(︁
π−π−)︁ = 0.15 · 10−3 .

(7.43)

They coincide approximately with values generated by two benchmark points, labelled by a golden
star (model 2) and a cyan diamond (model 10(µ)), whereas the uncertainties are scaled according
to Tab. 7.7. For completion, we also display the benchmark points for the other models taken from
Tab. 7.4. To illustrate the NP sensitivity, we show the 1σ regions of the projected uncertainties of
ACP (K+K−) and ACP (π+π−) as dashed (solid) orange ellipses for LHCb Run 1-3 (1-5) assuming
no correlations. We stress that future analyses that incorporate such correlations between the
individual asymmetries and ∆ACP are likely to be more powerful and distinguish between different
NP scenarios.

In the Z ′ models presented various amounts of U -spin breaking are realised. For instance, model
10(µ) features a 90% breaking that easily exceeds the expected amount present within the SM
of 30%. Conversely, the U -spin symmetry in model 2 is broken at the level of 40%, in the same
ballpark as the SM. The projected sensitivities of LHCb and Belle II in Tab. 7.7 have the potential
to signal NP in ACP (K+K−) and ACP (π+π−).
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7.3.2 Isospin breaking patterns in D+→ π+π0

In the following, we examine the isospin breaking induced by flavourful Z ′ models for FU1 ̸= FD1 ,
which can be probed studying the D+→ π+π0 decay. Its CP asymmetry ACP

(︁
D+→ π+π0

)︁
,

defined by

ACP
(︁
π+π0

)︁
=

Γ(D+ → f+)− Γ(D− → f−)

Γ(D+ → f+) + Γ(D− → f−)
, (7.44)

with f± = π±π0, is of special concern as it constitutes a clean null test of the SM [181]. Following
Sec. 7.2, we can parametrise the NP contribution as

ANP
CP

(︁
π+π0

)︁
∼ g24
M2
Z′
θu∆FR dπ′ (FD1

− FU1
) , (7.45)

where we have inserted the corresponding HMEs from Tab. 7.2, and assumed θu ≪ 1. The
parameter

dπ′ = − 1

aπ′
R2 (mc,MZ′) (7.46)

includes the SM tree-level contribution to D+→ π+π0, aπ′ , given in Tab. 7.1. Numerical values
of dπ′ for different Z ′ masses are collected in Tab. 7.5. By comparing Eq. (7.45) with the ∆ANP

CP

formula in Eq. (7.10), we find

ANP
CP

(︁
π+π0

)︁
∼ βπ′ ·∆ANP

CP , (7.47)

where

βπ′ =
dπ′ (FD1 − FU1)

cK FQ2
+ dK FD2

− cπ FQ1
− dπ FD1

. (7.48)

In Tab. 7.6, values of βπ′ for MZ′ = 6 TeV and different Z ′ models are provided. Note that we
have lost information about the signs of the leading SM decay amplitudes which interfere with
possible NP. Therefore, we are unable to predict the relative sign between ANP

CP

(︁
π+π0

)︁
and ∆ANP

CP

in Eq. (7.47) without a robust determination of the strong phases.

Nevertheless, we can study βπ′ in our NP models and the asymmetry induced for ∆ANP
CP ∼ 10−3

in the light of future measurements compiled in Tab. 7.7, which yields interesting findings. In
models 9 and 10(µ), values of ANP

CP

(︁
π+π0

)︁
∼ (1− 2) ·∆ANP

CP are generated which are within the
projected sensitivities of Belle II with 50 ab−1 [85]. However, models 2, 4, and 5 only induce
ANP
CP

(︁
π+π0

)︁
≲ 0.1 ·∆ANP

CP ∼ 10−4 which is beyond the reach of Belle II and LHCb. Additional
insight into this behaviour is gained by expanding Eq. (7.48) in the di up to O (di). Again, we
distinguish between the two cases FQ1

= FQ2
= 0 and FQ1

= FQ2
̸= 0. Barring extra enhancements

or suppressions for certain choices of U(1)′ charges, we parametrise the leading contributions as

(i) : βπ′(FQ1,2
̸= 0) =

dπ′

(cK − cπ)
· FD1

− FU1

FQ1

+O
(︁
d2i , didj

)︁
≈ 0.03 · FD1

− FU1

FQ1

, (7.49)

(ii) : βπ′(FQ1,2 = 0) =
dπ′

dK
· FD1

− FU1

FD2

+O
(︁
d2i , didj

)︁
≈ −1.55 · FD1

− FU1

FD2

, (7.50)

with i = K,π, π′. We observe that a suppression factor dπ′/ (cK − cπ) is present in models with
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FQ1
= FQ2

̸= 0. This is due to the chiral enhancement of the (V −A)× (V +A) operators, and
yields βπ′ ∼ O

(︁
10−2-10−1

)︁
. In contrast, the charge assignment FQ1 = FQ2 = 0, realised in models

9 and 10(µ), enables sizeable isospin breaking effects ∼ O (1) as the leading contributions scale
with dπ′/dK .

7.3.3 CP asymmetry for D0→ π0π0

In our Z ′ models, the CP asymmetry for the D0→ π0π0 decay is given by

ANP
CP

(︁
π0π0

)︁
∼ βπ0 ·∆ANP

CP , (7.51)

where

βπ0 =
dπ0 (FD1 − FU1)

cK FQ2
+ dK FD2

− cπ FQ1
− dπ FD1

. (7.52)

Here, we have simply replaced the subscripts π′ → π0 in Eqs. (7.45) and (7.46) to obtain Eq. (7.51).
Numerical values for βπ0 are given in Tab. 7.6. Promising patterns to detect NP employing with
this CP asymmetry have been worked out in, e.g., Ref. [182]. Moreover, Tab. 7.7 highlights
the pronounced experimental prospect at Belle II for ACP

(︁
π0π0

)︁
, with a future sensitivity of

σBelleII = 9 ·10−4, nearly a factor of two better compared to ACP
(︁
π+π0

)︁
. Values of ANP

CP

(︁
π0π0

)︁
∼

(1 − 2) ·∆ANP
CP emerge in models 9 and 10(µ), which are within the sensitivity of Belle II with

50 ab−1 [85] provided ∆ANP
CP ∼ 10−3.

As an additional test of our Z ′ framework, we define the ratio

ANP
CP

(︁
π0π0

)︁
ANP
CP (π+π0)

∼ βπ0

βπ′
=
aπ′

aπ0

= 1.08± 0.10 , (7.53)

valid for all models with FU1
̸= FD1

. However, Eq. (7.53) can be altered by uncertainties coming
from possible large, unknown strong phases.

7.4 Correlations between semileptonic and hadronic
D-decays

In the following, we investigate the interplay between NP contributions to hadronic observables,
i.e. CP asymmetries, with those of rare semileptonic decays in charm. To this end, we take a
look at the Wilson coefficients C(′)

9/10,ℓ dominant in c→ u ℓ+ℓ− transitions, defined in Sec. 6.3. As
outlined in Sec. 7.1.4, we have gcuL = 0 and therefore only the primed coefficients in Eq. (6.17)
remain,

C′
9/10,ℓ = − π√

2GF αe

gcuR
(︁
gℓℓR ± gℓℓL

)︁
M2
Z′

. (7.54)

Here, gℓℓR = g4 FEi and gℓℓL = g4 FLi as defined in Eq. (5.23), whereas the coupling gcuR is given by
Eq. (7.18).
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With Eq. (7.54) and utilising the parametrisation of ∆ANP
CP in Eq. (7.30), we obtain

Im
(︂
C′
9/10,ℓ

)︂
∼ π√

2GF αe
βℓℓ9/10 ·∆A

NP
CP , (7.55)

where

βℓℓ9/10 =
FEi ± FLi

cK FQ2
+ dK FD2

− cπ FQ1
− dπ FD1

. (7.56)

Numerical values of βℓℓ9/10 for ℓ = e, µ in units of TeV−2 are given in Tab. 7.8 for MZ′ = 6 TeV.
Assuming a benchmark value ∆ANP

CP ∼ 10−3 in Eq. (7.55), we find

Im
(︂
C′
9/10,ℓ

)︂
∼ 0.03 TeV−2 · βℓℓ9/10 . (7.57)

This implies C′
9/10,ℓ = O

(︁
10−2

)︁
for models 2, 4, and 5 that feature gcuL = 0, gcuR ̸= 0 and

βℓℓ9/10 = O
(︁
1 TeV−2

)︁
, consistent with results derived in Sec. 6.3. However, models with large

couplings to leptons in combination with FQ1 = FQ2 = 0, such as models 9 and 10(µ), can generate
C′
9/10,ℓ ≲ O

(︁
10−1

)︁
where βℓℓ9/10 = O

(︁
10 TeV−2

)︁
. The caveat remains that such models are at the

edge of semileptonic exclusion limits, as depicted in Fig. 7.3. They are confronted with updated
bounds on the Wilson coefficients in Sec. 7.5.

Model βµµ9 βµµ10 βee9 βee10

2 0.57 −0.57 −0.68 0.68

4 −1.04 −0.35 1.04 0.35

5 −0.67 0 0.67 0

9 −20.56 −14.07 15.15 −2.17

10 37.25 3.39 −32.73 1.13

10µ −4.52 −4.52 −32.73 1.13

Table 7.8: Values of βℓℓ9/10 in TeV−2, see Eq. (7.56), for ℓ = µ, e and evaluated at MZ′ = 6 TeV.
Table taken from Ref. [17].

Signals of NP in CP asymmetries of semileptonic D-decays are indicated by Im(C′
9/10,ℓ) ≳

O(10−2-10−1) [16, 164, 166]. Hence, all models presented in Tab. 7.3 can generate NP patterns in
c→ u ℓ+ℓ− decays with ∆ANP

CP ∼ 10−3.

In Figs. 7.6 and 7.7, we visualise the correlation between NP effects in ∆ACP and charm Wilson
coefficients Im(C′

9/10,ℓ). Plots on the left-hand side are for ℓ = e, while the case ℓ = µ is shown
in the right-hand side plots. In Fig. 7.6, the coloured lines represent values for Im(C′

10,ℓ) versus
Im(C′

9,ℓ), while allowing for |∆ANP
CP | ≤ 2 · 10−3. The dashed grey line indicates the scenario

Im(C′
9,ℓ) = −Im(C′

10,ℓ), which is realised by model 2 with vanishing FEi . Models 2, 4, and 5 (yellow,
brown, and blue lines) score smaller values Im(C′

9/10,ℓ) ≲ O
(︁
10−2

)︁
compared to models 9, 10, and

10(µ) (purple, cyan, and pink lines). Model 5 features vector-like U(1)′ charges to electrons and
muons, i.e. FLi = FEi . In this case, we find Im(C′

10,e) = Im(C′
10,µ) = 0. The charge assignment

FL2
= 0 in model 10µ entails Im(C′

9,µ) = Im(C′
10,µ), and able to generate both sizeable vector and

axial-vector contributions. Conversely, model 10 features FLi ≈ −FEi for both muon and electron
couplings. Hence, the axial-vector contributions are suppressed compared to purely vector ones,
that is |C′

10,ℓ| ≪ |C′
9,ℓ| and close to zero.
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The induced absolute value
⃓⃓
Im(C′

9/10,ℓ)
⃓⃓
as a function of ∆ANP

CP is shown in Fig. 7.7. Using the
same colour scheme as in Fig. 7.6, we present the contributions for vector (axial-vector) Wilson
coefficients as solid (dashed) lines, proportional to βℓℓ9(10). To avoid clutter, we do not show model
5 in Fig. 7.7 since very similar values of βℓℓ9 as in model 2 are generated. We also display dedicated
benchmark points taken from Tab. 7.4 for the different Z ′ models. The dashed grey regions
highlight the upper limits on the corresponding Wilson coefficients obtained from high-pT data
and experimental bounds on branching ratios [154, 183] barring cancellations,

|C(′)
9/10,µ| ≲ 1 , |C(′)

9/10,e| ≲ 3 . (7.58)
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Figure 7.6: Induced contributions Im(C′
10,ℓ) versus Im(C′

9,ℓ) for different Z′ models, where
ℓ = e and ℓ = µ is shown in the left-hand and right-hand side plot, respectively. The dashed
grey line corresponds to Im(C′

9,ℓ) = −Im(C′
10,ℓ). Figures adapted from Ref. [17].
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Figure 7.7:
⃓⃓
Im(C′

9/10,ℓ)
⃓⃓

as a function of ∆ANP
CP for different Z′ models, where ℓ = e and ℓ = µ

is shown in the left-hand and right-hand side plot, respectively. Solid (dashed) lines correspond
to contributions to vector (axial-vector) lepton couplings C′

9(10),ℓ. The coloured markers indicate
the benchmark points of model 2 (golden star), model 4 (brown star), model 9 (purple diamond),
and 10µ (pink diamond) listed in Tab. 7.4. The dashed grey region depicts exclusion limits, see
Eq. (7.58). Figures adapted from Ref. [17].
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7.5 Discussing updated limits of flavour observables

Since the publication of our work [16], the HFLAV collaboration has provided a recent update
on their global fit of D-mixing observables [124], which incorporates 2021 experimental data of
LHCb [184]. The update is given in Eq. (B.6). Relevant for our analysis are the updated values

x12 ∈ [0.314 , 0.503] % , φ12 ∈ [−1.2◦, 2.42◦] . (7.59)

The upper limit on gcuR , previously given by Eq. (7.27), thus reduces to

|gcuR | ≲ 7.1 · 10−4

(︃
MZ′

TeV

)︃
. (7.60)

The updated value of φ12 in Eq. (7.59) allows for slightly larger phases. However, since we employ
φR = 2φ12 ∼ π/2 to avoid constraints from x12 sin (φ12) in our analysis, we merely have to debate
the tightened bound on gcuR in Eq. (7.60).

In the studies presented in Secs. 7.2 to 7.4, we have employed the less restrictive limit on the Z ′

couplings in Eq. (6.19) coming from upper limits on D+→ π+µ+µ−. The improved bound (by
roughly a factor of two) also affects some Z ′ benchmarks, especially models with large couplings to
muons, i.e. models 9 and 10. The construction of model 10µ featuring small U(1)′ muon charges
evades this bound. For the full list of Z ′ models and dedicated benchmarks, see Tabs. 7.3 and 7.4,
respectively.
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Figure 7.8: Updated version of selected plots of Figs. 7.2 and 7.3 for model 10. In the left-hand
side plot, we add the exclusion regions from updated the D0-D0 mixing constraints, that is
x12 sin (φ12) (purple region) and the absolute value x12 (purple hatched rectangle). In the
right-hand side plot, we additionally show the improved exclusion region from updated D0-D0

mixing constraints (purple region) and the improved bound from D+→ π+µ+µ− in Eq. (6.19)
(yellow dash-dotted line). The cyan diamond marker refers to the benchmark point chosen in
Tab. 7.4. For discussions see the main text.

In Fig. 7.8, we give an updated version of the Figs. 7.2 and 7.3 for model 10, where the NP
contributions to ∆ACP in the φR-g4/MZ′ and g4-∆ ˜︁FR plane are displayed, respectively. In the
left-hand side plot, the overdrawn exclusion regions denote the updated D0-D0 mixing constraints.
The purple region is excluded from x12 sin (φ12), whereas the purple hatched rectangle indicates
absolute values x12 that exceed the experimental limit. We observe that the allowed parameter

- 82 -



7.6 Summary and conclusion

space is shifted and forbids values of |∆ANP
CP | ≳ 14 · 10−4. Therefore, the benchmark point selected

for model 10 (cyan diamond) is excluded. The same conclusions are drawn in the right-hand side
plot of Fig. 7.8, where the improved bound from D+→ π+µ+µ− is depicted as a yellow dash-dotted
line. However, we still find viable parameter space for smaller values of ∆ANP

CP ∼ few ·10−4. Similar
implications can be obtained for model 9 and its benchmark, which also features large Z ′ couplings
to muons. Conversely, the impact on the remaining models discussed in this chapter (models 2, 4,
and 5) is significantly smaller and benchmark points remain viable due to small couplings and
ratio g4/MZ′ , see corresponding plots in Figs. 7.2 and 7.3.

While certain benchmark points might be at the edge of being excluded (or excluded by future
data), they still provide insight into connections of CP -violating observables. We point out that a
possible interference between SM and NP contributions, which has been neglected in this study,
can enhance CP -violating effects. Then, even smaller NP contributions may become relevant in
the light of future measurements of ∆ACP and theory developments.

7.6 Summary and conclusion

The flavourful, anomaly-free Z ′ scenarios presented in Tab. 7.3 are viable candidates to induce both
∆ANP

CP ∼ 10−3 in hadronic charm decays as well as measurable CP asymmetries in semileptonic
c→ u ℓ+ℓ− modes above the SM. The underlying correlation between the two sectors has been
worked out in Sec. 7.4. Therein, we studied Z ′ models with couplings only to RH quark currents
featuring a weak phase φR = π/2. While the scenarios put forward in Chap. 6 evade D0-D0 mixing
constraints completely, they necessitate SM-like phases. Conversely, for models with only gcuR ̸= 0
these mixing bounds provide tight constraints on our models. However, a NP interpretation of
∆ACP can be achieved that suffices bounds from mixing and semi(muonic) experimental limits, see
Fig. 7.2. Relaxing our assumptions on the negligible SM contributions to ∆ACP , the implications
derived in this study can be used as upper limits on the Z ′ model parameters.

Supplementary cross-checks are given by CP asymmetries in D0→ π+π− and D0→ K+K− decays,
where U -spin breaking beyond the SM can be probed. We refer to Figs. 7.4 and 7.5 for benchmarks
employing present data and future sensitivities from colliders, respectively. Furthermore, related
CP asymmetries in D+→ π+π0 and D0→ π0π0 decays can even exceed ∆ANP

CP contributions,
making observations of isospin-violating NP accessible. Projected sensitivities at Belle II are
provided in Tab. 7.7.

As put forward in Sec. 6.4, the non-universality of lepton couplings in our Z ′ framework can
be probed in LU ratios, such as RDπ and RDsK . For instance, model 9 can achieve RDπ ≫ 1 due
to large muon couplings, while simultaneously inducing ANP

CP

(︁
π+π0

)︁
∼ ANP

CP

(︁
π0π0

)︁
≲ 2∆ANP

CP .
Conversely, model 10µ generates RDπ < 1 with sizeable NP U -spin breaking ANP

CP (π+π−) ≪
ANP
CP (K+K−) ∼ ∆ANP

CP [17]. We stress the importance of working out and testing correlations
between CP asymmetries to pin down the specific NP model. Hence, future CP studies of both rare
semileptonic and hadronic charm decays with improved data and sensitivities will help disentangle
the different NP patterns, with LHCb and Belle II as the main players.

Regarding future work of Z ′ models in this sector, the issue of Landau poles emerging in the
RG running needs to be addressed. Due to sizeable U(1)′ charges and coupling strength at the
charm scale, diverging couplings arise way below the Planck scale. One possibility to tame this
UV behaviour is devised by the Planck safety approach. It ensures the predictivity and stability
of the theory until the Planck scale, see Sec. 5.5.
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Chapter

8
Planck-safe U(1)′ explanations
for the B-anomalies

As previously discussed in Sec. 3.4, the keen interest for the B-anomalies hinting at NP effects in
b→ s ℓ+ℓ− transitions persists and motivates BSM model building in this sector. A plethora of
NP scenarios has been put forward to account for the deviations in these observables. Here, Z ′

models are prime candidates due to possible non-universal couplings to quarks and leptons at tree
level. While U(1)′ extensions are able to address the neutral-current b→ s ℓ+ℓ− anomalies, they
fall short of explaining the anomalies in the charged-current b→ c ℓν decays.

In this chapter, we present a study of anomaly-free Z ′ models, based on the findings published in
Ref. [21]. These models can account for the B-anomalies while providing a stable and predictive
theory up to Planckian energies. We outline the necessary BSM particle content and discuss viable
models in Secs. 8.1 and 8.2. Section 8.3 encompasses an analysis of viable RG trajectories for
a selected benchmark model, while phenomenological implications are provided in Sec. 8.4. We
summarise in Sec. 8.5.

8.1 The Z′ model set-up

In our investigation we consider Z ′ models that generate sizeable contributions to the Wilson
coefficients of the weak Hamiltonian in Eq. (3.41). They are induced at tree level with couplings
to b, s quarks and leptons as shown in Fig. 8.1.

b

s `+

`−

Z ′

Figure 8.1: Tree-level diagram of a b→ s ℓ+ℓ− transition via a Z′ boson.

The relevant Z ′ couplings are given by

LbsℓℓZ′ ⊃
(︁
gbsL sLγ

µbLZ
′
µ + gbsR sRγ

µbRZ
′
µ + h.c.

)︁
+ gℓℓL ℓLγ

µℓLZ
′
µ + gℓℓR ℓRγ

µℓRZ
′
µ , (8.1)

where ℓ = e, µ, τ is understood. By integrating out the Z ′ boson in Eq. (8.1) we obtain the effective
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Hamiltonian [128]

HZ′

eff ⊃ 1

2M2
Z′

[︂
gbsL (sLγ

µbL) + gbs∗L (bLγ
µsL) + gbsR (sRγ

µbR) + gbs∗R (bRγ
µsR)

+ gℓℓL (ℓLγ
µℓL) + gℓℓR (ℓRγ

µℓR)
]︂2
,

(8.2)

which evokes contributions to the Wilson coefficients C(′)
9/10,ℓ. As previously reviewed in Sec. 5.3.2,

the couplings gbsL,R entail additional Bs-mixing contributions, which are constrained by experimental
data. The NP Wilson coefficients relevant for b→ s ℓ+ℓ− transitions can be extracted by comparing
the effective Hamiltonians in Eqs. (3.41) and (8.2). We find

C(′)
9/10,ℓ = − π√

2GF αe VtbV ∗
ts

gbsL(R)

(︁
gℓℓR ± gℓℓL

)︁
M2
Z′

, (8.3)

where gℓℓL(R) refer to the flavour-diagonal Z ′ couplings to leptons given by Eq. (5.23). The non-
diagonal coupling of b- and s-quark doublets has been worked out in Sec. 5.1.3, and is given in
Eq. (5.19). It reads

gbsL = (FQ3 − FQ2) V
∗
tsVtb g4 , (8.4)

with VtbV ∗
ts ≈ −0.04. The global fit of b→ s Wilson coefficients discussed in Sec. 4.2 indicates that

the B-anomalies can be explained with NP in left-handed FCNC quark couplings only. Therefore,
we set

gbsR = 0 . (8.5)

This setting can be realised by choosing θd = 0 in Eq. (5.9), which entails a trivial rotation matrix
between flavour and mass eigenstates in the down-sector.

8.1.1 Beyond the standard model particle content and
interactions

In what follows, we review the particle content in our Z ′ model set-up. In analogy to our previous
studies in Chaps. 6 and 7, we introduce generation-dependent U(1)′ charges Ff for the SM quarks
(f = Q,U,D) and leptons (f = L,E), as well as for three RH neutrino fields (f = νR). Moreover, in
this analysis we explicitly involve the SM Higgs H and a Nf×Nf BSM scalar S, with corresponding
U(1)′ charges FH and FS , respectively. The scalar S is assumed to be a SM singlet with trivial
representations under the SM gauge group. The fermion sector is supplemented by Nf BSM
fermions ψL,R carrying universal U(1)′ charges.

In order to generate the heavy mass (∼TeV) of the Z ′ boson, we introduce a BSM scalar φ
as a SM singlet with Fφ ̸= 0, which is responsible for the SSB of the U(1)′ symmetry. In
Tab. 8.1, the relevant matter fields and their representations under the extended gauge group
U(1)Y × SU(2)L × SU(3)C ×U(1)′ are collected. Moreover, we make the following simplifying
assumptions. To avert additional gauge anomalies emerging from BSM fermions, see Sec. 5.2, we
consider only vector-like fermions that are complete SM singlets. In addition, those fermions come
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in three generations while S has vanishing U(1)′ charge. In summary, these conditions read

Nf = 3 , Fψ = FψL = FψR , FS = 0 , Yψ = 0 , r2 = 1 , r3 = 1 . (8.6)

Field Gen. U(1)Y SU(2)L SU(3)C U(1)′

SM fermions Q 3 + 1
6 2 3 FQi

L 3 − 1
2 2 1 FLi

U 3 + 2
3 1 3 FUi

D 3 − 1
3 1 3 FDi

E 3 −1 1 1 FEi

Higgs scalar H 1 + 1
2 2 1 FH

BSM fermions νR 3 0 1 1 Fνi

ψL Nf Yψ r2 r3 FψL

ψR Nf Yψ r2 r3 FψR

BSM scalars S Nf ×Nf 0 1 1 FS

φ 1 0 1 1 Fφ

Table 8.1: SM and BSM fields with multiplicities (number of generations i) and representations
under U(1)Y × SU(2)L × SU(3)C × U(1)′. In our analysis, we further impose Eqs. (8.6), (8.19),
and (8.20), as well as Eqs. (8.12) and (8.22), see main text. Table taken from Ref. [21].

8.1.2 The Yukawa sector

The SM Yukawa interaction in Eq. (2.19) is extended by a pure BSM Yukawa vertex as well as by
the coupling of RH neutrinos to the Higgs, Y ν . Thus, the Yukawa sector becomes

LYuk =Y iju Qi H̃ Uj + Y ijd QiHDj + Y ije LiH Ej + Y ijν Li H̃ νR,j + y ψ̄L,i Sij ψR,j + h.c. . (8.7)

In particular, the BSM Yukawa is described by a single universal coupling y, which is protected by
a U(3)ψL ×U(3)ψR flavour symmetry. We choose the FψL,R charges to be universal, which ensures
that this symmetry is only softly broken.

This symmetry further prohibits additional Yukawa interactions between SM or RH neutrino
fields and the BSM sector of ψL,R and S. While Majorana-like Yukawa couplings of neutrinos are
allowed for some models, we do not consider such scenarios here [21].

8.1.3 The scalar potential

With the BSM scalars S and φ, we can extend the scalar potential in Eq. (2.11). We write the
occurring mass and cubic terms as

V (2) + V (3) = m2
H

(︁
H†H

)︁
+m2

S tr
(︁
S†S

)︁
+m2

φ

(︁
φ†φ

)︁
+ µdet

[︁
det (S) + det

(︁
S†)︁]︁ , (8.8)
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where the last term involves determinants in flavour space and the trilinear coupling µdet. The
quartic interactions read

V (4) = λ (H†H)2 + s (φ†φ)2 + u tr
(︁
S†SS†S

)︁
+ v tr

(︁
S†S

)︁
tr
(︁
S†S

)︁
+ δ (H†H) tr

(︁
S†S

)︁
+ δ̃ (H†H)(φ†φ) + w (φ†φ) tr

(︁
S†S

)︁
,

(8.9)

featuring the Higgs (λ) and BSM (u, v, s) self-interactions as well as portal couplings (δ, δ̃,w). In
the BSM sector, two types of vacuum configurations are realised; a flavour-symmetric one (V +)
with quartic u > 0, and a symmetry-broken one (V −) with u < 0 [139, 140]. In the former setting,
the BSM scalar vev is flavour-diagonal, while V − possesses a vev only in one diagonal component
of S. At large, it can be shown that the classical potential in Eq. (8.9) is bounded from below
whenever the conditions [185–187]

λ > 0 , ∆ > 0 , s > 0 , δ′ = δ + 2
√
λ∆ > 0 , δ̃

′
= δ̃ + 2

√
λs > 0 ,

w′ = w + 2
√
s∆ > 0 , 2

√
λ∆s+ δ

√
s+ δ̃

√
∆+ w

√
λ+

√︂
δ′ δ̃

′
w′ > 0 ,

(8.10)

are satisfied. The parameter

∆ =

{︄
u
3 + v > 0 for u > 0 (V +)

u+ v > 0 for u < 0 (V −)
(8.11)

depends on the ground state for the BSM scalars. These stability conditions ensure a stable scalar
potential, and is one of the key elements of the Planck safety strategy, which guides the analysis
presented here. We refer to Sec. 5.5 for a brief discussion on Planck safety.

8.1.4 Gauge-kinetic mixing and scalar symmetry breaking

To ensure that the scales and mechanisms of the electroweak symmetry and the U(1)′ breaking
are independent, we fix

FH = 0 . (8.12)

This assumption also avoids additional kinetic mixing contributions which would affect the ρ
parameter as outlined in Sec. 5.4. Nonetheless, kinetic mixing between the two abelian sectors is
induced in our models via the parameter η ̸= 0, see Eq. (5.53). In our analysis, we avert large
mixing contributions by imposing the constraint on η put forward in Eq. (5.56), |η| ≲ O

(︁
10−2

)︁
.

This ensures kinetic mixing to be subleading at the electroweak scale. Moreover, corrections to
the photon and Z couplings gγ,Zf ∝ η Ff g4 of SM fermions f can be evaded for small values of g4
or η at the electroweak scale [21]. In what follows, we outline the SSB of the U(1)′ symmetry and
its implications on BSM parameters. After EWSB, cf. Eq. (2.13), we find

H =
1√
2

⎛⎝ 0

vh + h

⎞⎠ , φ =
1√
2
(vφ + ϕ) , (8.13)
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where the real modes h, ϕ are rotated into mass eigenstates via⎛⎝h′
ϕ′

⎞⎠ =

⎛⎝ cos (β) − sin (β)

sin (β) cos (β)

⎞⎠⎛⎝h
ϕ

⎞⎠ , (8.14)

and the scalar portal couplings induce the mixing angle

tan (2β) = δ̃ vh vφ
s v2φ − λ v2h

≈ δ̃

s

vh
vφ

. (8.15)

By acquiring a vev ⟨φ⟩ = vφ/
√
2 ̸= 0, we generate a Z ′ mass

MZ′ = |Fφ| g4 vφ , (8.16)

where no contribution from the SM Higgs appears stipulated by Eq. (8.12). Due to the new decay
channels of φ′ into SM fermions and gauge bosons introduced by the scalar mixing, the decay
width of the h′ to SM final states is reduced in consequence. The mixing angle is constrained by
combined Higgs signal strength measurements [32], which imply

sin2 (β) ≤ 0.01 . (8.17)

Employing Eqs. (8.15) to (8.17), we estimate

|Fφ| g4
δ̃

s
<

{︄
4.1 for MZ′ = 5 TeV
2.4 for MZ′ = 3 TeV

. (8.18)

While a non-vanishing vev of the scalar S may also be realised [140], the resulting mixing into
mass eigenstates becomes more elaborate but can be adjusted by the size of the scalar portal
couplings, |δ|, |δ̃|, and |w|.

8.1.5 Phenomenological constraints on Z′ model parameters

To conclude this section, we summarise additional constraints on the Z ′ model parameters. In
accordance with phenomenological reasoning, we further impose the following charge assignments.
First, we avoid severe constraints from K0-K0 oscillations [32] by fixing

FQ1
= FQ2

, FD1
= FD2

. (8.19)

This prohibits kaon FCNCs due to universal s and d quarks couplings, see discussion in Sec. 5.3.
Moreover, we forbid couplings of the Z ′ boson to electrons,

FL1
= FE1

= 0 . (8.20)

This setting is considered due to the following reasons. By choosing vanishing U(1)′ charges
to electrons, we can induce the required µ-e non-universality by construction, provided that
appropriate Z ′ couplings to muons are present. In addition, a Z ′ boson coupled to electrons with
sizeable g4 ≳ O (1) could affect electroweak observables at tree level measured at LEP [10, 188].
While such bounds are of course model-dependent, we evade possible constraints by neglecting
U(1)′ charges to electrons.
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Gauge invariance conditions in the Yukawa sector

The BSM Yukawa coupling y in Eq. (8.7) is assured to be gauge invariant due to the charge
assignments proposed in Eq. (8.6). Conversely, this is not given by default for the SM Yukawa
couplings but would necessitate the following conditions, i, j = 1, 2, 3,

Y iju : FQi + FH − FUj = 0 ,

Y ijd : FQi − FH − FDj = 0 ,

Y ije : FLi + FH − FEj = 0 ,

Y ijν : FLi − FH − Fνj = 0 .

(8.21)

In our analysis, however, we relax some of those constraints. We know that the necessary tree-level
FCNC via the Z ′-b-s quark vertex requires non-universal charges, i.e. FQ3

̸= FQ2
in Eq. (8.4). Yet,

this charge assignment cannot be realised if all conditions in Eq. (8.21) have to be met. Instead,
solving Eq. (8.21) for non-diagonal entries in Y iju and Y ijd yields universal charge assignments
FQ1 = FQ2 = FQ3 , while similar implications manifest themselves in the lepton sector.

As we are guided in our approach to explain the B-anomalies and ensure a stable RG flow that
includes the dominant (top and bottom) Yukawa couplings, we only impose the gauge invariance
conditions for the diagonal quark Yukawa elements in Eq. (8.21). Hence, we fix

Y iiu : FQi + FH − FUi = 0 ,

Y iid : FQi − FH − FDi = 0 ,
(8.22)

allowing for the corresponding mass terms. In doing so, we drop the related conditions for the
lepton sector, neglecting charged lepton and neutrino masses. For the same reasons, only the top
coupling Y 33

u is essential for the RG evolution, whereas other Yukawa couplings remain naturally
orders of magnitude smaller under the RG running.

Constraints on gbs
L from Bs-mixing

A Z ′ coupling gbsL ̸= 0 invariably generates a tree-level contribution to ∆Ms, i.e. to Bs-mixing,
see Sec. 5.3.2. As we confine ourselves to gbsR = 0, we use the bound in Eq. (5.49),⃓⃓

gbsL
⃓⃓2

M2
Z′

≲ 1.24 · 10−5 TeV−2 ≡ Imax . (8.23)

While this limit is quite strong, it can be met by Z ′ benchmark scenarios that are introduced in
Sec. 8.2. To quantify the Bs-mixing contribution, we define the ratio of induced over maximally
allowed mixing as

rBs =

⃓⃓
gbsL
⃓⃓2

M2
Z′

· 1

Imax
, (8.24)

where rBs ≤ 1 is understood. In Sec. 5.3.2, we have put forward a certain hierarchy of couplings,
that is gbsL = gbsR Xs, with Xs ≈ 10. In these scenarios, small RH currents gbsR ̸= 0 are present,
which allows to evade Bs-mixing constraints completely. We discuss this possibility in Sec. 8.4.3.
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8.2 Benchmark models explaining the B-anomalies

In this section, we present viable scenarios that induce NP effects accounting for the B-anomalies.
We employ selected fit results on the Wilson coefficients C9,µ and C10,µ, which have been presented
in Sec. 4.2. We determine three benchmark models (BMs) that predict NP near the matching scale
µ0 ≃ 5 TeV. Furthermore, a fourth scenario with a lower matching scale µ0 ≃ 3 TeV is identified
as well. The explicit U(1)′ charge assignments are compiled in Tab. 8.2.

model FQi FUi FDi FLi FEi Fνi FH Fψ Fφ

BM1
1
20

1
20 − 1

10
1
20

1
20 − 1

10
1
20

1
20 − 1

10 0 − 9
10

9
10 0 − 9

10
9
10 0 0 0 0 1 1

5

BM2 − 1
4 − 1

4
1
6 − 1

4 − 1
4

1
6 − 1

4 − 1
4

1
6 0 1 0 0 0 1 1

12 − 1
12 1 0 11

12
1
9

BM3 − 1
8 − 1

8 0 − 1
8 − 1

8 0 − 1
8 − 1

8 0 0 1
2

1
4 0 1

4
1
2 0 1

4
1
2 0 1 1

8

BM4 0 0 1
9 0 0 1

9 0 0 1
9 0 1

3 − 2
3 0 1

3 − 2
3 0 1

3 − 2
3 0 1 1

6

Table 8.2: U(1)′ charge assignments in the four benchmark models BM1−4. Note that the
charges are not given as integers, but instead are normalised by scaling the largest value of each
solution to one. Table taken from Ref. [21].
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angular B → K∗ µµ

RK

RK∗

global fit, with RK(∗)

BM1,4

BM2
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Figure 8.2: Likelihood contours as in the left-hand side plot of Fig. 4.2, with additional four
benchmarks given in Tabs. 8.2 and 8.4 and displayed as diamond-shaped markers. The dashed
line indicates C9,µ = −C10,µ. Note that BM1 and BM4 generate identical values of C(9,10),µ , see
main text for further details. Figure adapted from Ref. [21].

To generate the desired NP contributions via the semimuonic Wilson coefficients in Eq. (8.3), we
study different patterns that distinguish the four models presented. Motivated by the 1d and 2d
fit results in Tab. 4.2, we choose

BM1,4 : C9,µ ̸= 0 and C10,µ = 0 ,

BM2 : C9,µ = −C10,µ ,
BM3 : −C9,µ ≫ C10,µ > 0 ,

(8.25)

where BM4 is constructed as a minimal model with only the necessary U(1)′ charges to third-
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generation quarks. The model generates the same Wilson coefficients as BM1, see Tab. 8.2.

In Fig. 8.2, we display the corresponding Wilson coefficients together with selected likelihood
contours in the C9,µ-C10,µ plane. Moreover, these models are compliant with the theoretical and
phenomenological constraints brought forward in Sec. 8.1. In particular, we employ the ACCs
introduced in Eq. (5.24) to obtain anomaly-free Z ′ models. The gauge invariance of quark mass
terms and constraints from Bs-mixing in Eqs. (8.22) and (8.23), respectively, are satisfied as well.
The solutions presented also obey Eqs. (8.19) and (8.20) in accordance with kaon mixing and
electroweak precision measurements, respectively.

In the following, we discuss the different benchmarks beginning with some general remarks. To
generate NP scenarios with C9,µ = −C10,µ (as in BM2), we require gµµR = 0, that is FE2

= 0.
Conversely, models with C10,µ = 0 (as in BM1,4) are only possible with vector-like muon charges
FL2 = FE2 , cf. Eq. (8.3). The pattern that emerges for the 1d and 2d fit results in Tab. 4.2 reads

−C9,µ ≥ C10,µ ≥ 0 , (8.26)

and yields constraints on the relative sign of the quark and lepton charges. Viable Z ′ models that
match the pattern in Eq. (8.26) need to satisfy

FQ3 > FQ2 and FL2 ≥ FE2 ≥ 0

or FQ3 < FQ2 and FL2 ≤ FE2 ≤ 0 ,
(8.27)

following the input of the known signs of the relevant CKM elements and g24 > 0 in Eq. (8.3).

Moreover, the inclusion of RH neutrino charges Fν has a profound impact on which scenarios
are accessible. In the case of vanishing RH neutrino charges Fνi = 0, the theoretical and
phenomenological constraints necessitate

FH = 0 , Fq3 = −2Fq1 = −2Fq2 , FL3 = −FL2 , FE3 = −FE2 = ∓FL2 , (8.28)

where qi = Qi, Ui, Di . The desired pattern of Wilson coefficients in Eqs. (8.26) and (8.27) can only
be achieved by setting FL2 = FE2 in Eq. (8.28). While NP scenarios with C9,µ ̸= 0 are allowed,
such vector-like muon charges stipulate C10,µ = 0. Therefore, C10,µ ̸= 0 requires RH neutrinos in
our Z ′ framework that enter the ACCs in Eq. (5.24) and consequently relax the conditions in
Eq. (8.28). We observe that non-vanishing charges Fνi are mandatory for BM2,3 where C10,µ ̸= 0.
In BM4 the inclusion of RH neutrinos is also required to couple the Z ′ boson to third-generation
quarks only. Conversely, RH neutrinos are not needed in BM1, which is both compliant with
C10,µ = 0 and Eq. (8.28).

BM1 exhibits a distinct structure where the same U(1)′ charge for all representations of quarks
(qi = Qi, Ui, Di) and leptons (ℓi = Li, Ei) for a given generation i emerge, that is

Fq3 = −2Fq2 = −2Fq1 , Fℓ1 = 0 , Fℓ3 = −Fℓ2 . (8.29)

In addition to quark masses, this particular choice of charges also allows for diagonal lepton Yukawa
elements Y iie , see Eq. (8.21). To reproduce the best-fit value C9,µ = −0.83 given in Tab. 4.2,
we employ Eq. (8.3) and derive the matching condition α4(µ0) = g24/(4π)

2 = 1.87 · 10−2 for the
rescaled U(1)′ gauge coupling. In this case, the constraint from Bs-mixing in Eq. (8.24) is satisfied
with moderate rBs = 0.35.

In BM2, we have FE2 = 0 which provokes the best-fit values C9,µ = −C10,µ = −0.41, see Tab. 4.2.
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This leads to α4(µ0) = 5.97 · 10−3 and rBs = 0.86, near to but lower than the current Bs-mixing
bound in Eq. (8.23).

The pattern −C9,µ ≫ C10,µ > 0 is realised in BM3. We generate

C9,µ = −0.71 , C10,µ = +0.24 , (8.30)

with α4(µ0) = 4.60 · 10−2, which is in excellent agreement with the respective fit result in
Tab. 4.2. In contrast to the other benchmark models BM1,2,4, we have to adjust for two coefficients
simultaneously. We fix C9,µ to its best-fit value, while allowing C10,µ to be within the 1σ uncertainty
of its central fit value, i.e. C10,µ = 0.20± 0.13. Notably, no charges to third-generation quarks are
present In BM3. The required Z ′ couplings to the (mass eigenstate) b quarks are induced after
flavour rotations as detailed in Sec. 5.1.3.

In benchmark model BM4, we choose a lower matching scale than in BM1,2,3 as the vanishing
first- and second-generation quark charges yield a suppressed Z ′ production in pp-collisions,
and allow to mitigate constraints on the Z ′ mass [21]. Following this argument, BM4 can also
be considered minimal as it features fewer couplings compared to the other benchmarks. We
provide more details on the phenomenological implication of our Z ′ benchmarks in Sec. 8.4.
As in BM1, we have FL2 = FE2 , and hence C10,µ = 0. For identical C9,µ = −0.83, we obtain
α4(µ0 = 3 TeV) = 2.46 · 10−2. A model with a similar minimal set-up as BM4 has been studied in
Ref. [134]. Yet, a large tuning in flavour rotations is necessary in their set-up, while CKM-like
bs-mixing as in BM4 would violate the pattern in Eq. (8.27) and predict the wrong sign of C9,µ.
For convenience, we collect all features of the benchmark models in Tab. 8.4, at the end of this
chapter.

8.3 Planck safety in U(1)′ extensions

After presenting phenomenologically viable U(1)′ extensions that account for the B-anomalies
in Sec. 8.2, we move to the Planck safety analysis of these benchmarks models. We outline our
Planck safety analysis under general considerations in Sec. 8.3.1. Afterwards, dedicated results for
the benchmark model BM3 are presented in Sec. 8.3.2. We refer to Ref. [21] for details on the
other benchmark models.

In Sec. 5.5, we have discussed Landau poles that arise at energies µLP ≲ 1013 GeV when U(1)′

gauge interactions α4(µ0) ≃ O
(︁
10−2

)︁
with minimal U(1)′ charge assignments are included into

the RG flow. This limit lies well below the Planck scale µPl ∼ 1019 GeV, and is lowered even
further in scenarios with a beyond-minimal U(1)′ charge assignment, illustrated in Fig. 5.4. To
obtain a stable and predictive theory until the Planck scale, we consider a rich BSM particle sector
and new interactions put forward in Sec. 8.1. Following Sec. 5.5.1, we utilise the Planck safety
approach to ensure the predictivity and stability of our models up to the Planck scale.

8.3.1 Critical surface of model parameters and general
considerations

The RG running of the couplings determines possible Planck-safe trajectories, which can be
extracted for the different benchmark models BM1,2,3,4 introduced in Sec. 8.2. We consider the
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running of the gauge, Yukawa, quartic and portal couplings employing the rescaled couplings αi
given in Eqs. (A.33) and (A.37). In App. A.4, we provide the numerical values of the SM couplings
at the matching scale in Tab. A.1, which are extracted from experimental data. The RG evolution
of these couplings up to the matching scale remains unchanged. Moreover, we include the running
of the kinetic mixing parameter η, see Sec. 8.1.4, being constrained by Eq. (5.56). For the quartic
coupling αs we impose Eq. (8.18). As stated in Eq. (8.22), we only take into account the SM
Yukawa couplings of the t and b quark, denoted by yt and yb, respectively. The remaining Yukawa
couplings of the SM can safely be neglected due to their numerical smallness and (technical)
naturalness. Viable RG trajectories are given by finite and well-defined values of all couplings for
energies from the matching scale up to the Planck scale. Here, we fix the matching scale to

µ0 =

{︄
5 TeV for BM1,2,3

3 TeV for BM4

. (8.31)

Furthermore, we demand a stable scalar potential by imposing the conditions in Eq. (8.10) to hold
all the way up to Planckian energies.

Following the approach outlined in Ref. [140], the RG running is evolved numerically at two-loop
accuracy for all couplings starting at the matching scale. Then, the evolution of the couplings
via the corresponding β-functions is computed until the Planck scale. During this procedure,
we monitor the stability of the quantum vacuum and ensure the absence of Landau poles for
any RG trajectory. Since in each benchmark model the value of α4(µ0) is determined by the
Wilson coefficients needed to account for the B-anomalies, cf. Eq. (8.3), we define the set of initial
conditions

PC =
{︁
αy, αδ, αδ̃, αu, αv, αw, αs

}︁
|µ=µ0

. (8.32)

This set includes the values of the remaining couplings at the matching scale in Eq. (8.31).
Then, the BSM critical surface of parameters constitutes a set PC that leads to well-defined RG
trajectories up to the Planck scale.

To move arising Landau poles past the Planck scale through BSM Yukawa interactions, we require
a contribution

F 2
ψ · αy(µ0) ≳ O

(︁
10−1

)︁
. (8.33)

Simultaneously, the growth of α4 needs to be decelerated by choosing sufficiently small absolute
values of all other U(1)′ charges relative to |Fψ|. Due to their colour and isospin multiplicities
the quark charges heavily influence the growth of the U(1)′ gauge couplings. However, these
considerations coincide with the phenomenological constraints from Bs-mixing that demand
FQ2,3

/Fψ ≪ 1, see Tab. 8.2. Conversely, sizeable U(1)′ charges to leptons are needed in Eq. (8.3)
to accommodate the B-anomalies after all.

In the scalar sector, substantial contributions from at least one of the portals couplings δ or δ̃ to
the scalars S and φ are necessary to stabilise the Higgs potential in Eq. (8.9). We estimate the
preferred ranges

O
(︁
10−3

)︁
≲ αδ,δ̃ ≲ O

(︁
10−1

)︁
, (8.34)

where it is sufficient if one of the Higgs portals fulfils one of the conditions above, while the other
one can be chosen freely. The conditions in Eqs. (8.33) and (8.34) provide a major advantage in
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obtaining viable RG trajectories. Hence, they are key results of our RG analysis as in general the
parameter region is dominated by poles (and instabilities) [21].

8.3.2 Planck-safe trajectories in benchmark model 3

In BM3, the value of α4(µ0) = 4.60 · 10−2 dictates a putative Landau pole at µLP ≈ 25 TeV.
The location of the naive Landau pole bounds the masses of the ψ and S fields, Mψ, MS < µLP.
Previously, in Fig. 5.4 we have displayed the RG running of the same benchmark while disabling
the BSM fields ψ, S, and φ. This explains why in that scenario the Landau pole is located at
larger energies around 3 · 104 TeV. We remark that the addition of BSM fields lowers the potential
scale of the Landau pole due to additional U(1)′ charge carriers. However, the associated BSM
Yukawa interactions are able to move divergences past the Planck scale.

⨯ ⨯

Figure 8.3: Critical surface of parameters for the benchmark model BM3, projected onto
the {αy, αδ̃}|µ0 (left-hand side plot) and the {αδ, αδ̃}|µ0 (right-hand side plot) plane of
parameters. We set the matching scale µ0 = 5 TeV and αδ|µ0 = 10−2.5 (left-hand side
plot), αy|µ0 = 10−0.5 (right-hand side plot), together with {α4, η, αu, αv, αw, αs}|µ0 =
{4.60 · 10−2, 0, 10−4, 10−5, 10−6, 10−3.5}. The black cross corresponds to the sample tra-
jectory displayed in Fig. 8.4. The colour coding is as follows. An unstable vacuum (stable
vacuum V +) at the Planck scale is indicated in grey (blue). Brown and yellow regions illustrate
an unstable (αλ < −10−4) and a metastable (−10−4 < αλ < 0) Higgs at the Planck scale.
Landau poles that emerge at or before the Planck scale are shown in red. Figure taken from
Ref. [21].

Viable RG trajectories are obtained, scanning over the set of initial conditions PC in Eq. (8.32).
The prior estimates made under general considerations in Eqs. (8.33) and (8.34) are adjusted in
the latter case, where we find

10−1 ≲ αy(µ0) , (8.35)
10−4 ≲ αδ(µ0) ≲ 10−1 or 10−2.5 ≲ αδ̃(µ0) ≲ 10−1 . (8.36)

Results for BM3 are displayed in Fig. 8.3, where the UV critical surface at the Planck scale is shown
in terms of the couplings αy, αδ and αδ̃ at the matching scale. We observe that many parameters
settings are excluded due to poles (shown in red) and instabilities of the scalar potential (brown,
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yellow). However, we find a fair range of parameters space that allows for a stable ground state V +

(blue) at the Planck scale, while pushing Landau poles beyond Planckian energies. Visible in both
projections, we observe two disconnected pieces of the vacuum only separated by the occurrence
of poles for parameters in between. We further deduce that both Higgs portal couplings become
sizeable at µ0 in one of the regions, but remain within the limits established in Eq. (8.36).

105 107 109 1011 1013 1015 1017 1019

1

10-1

10-2

10-3

μ/GeV

Figure 8.4: Sample running of couplings for the benchmark model BM3 up to the
Planck scale µPl (grey area) showing trajectories for all couplings and the kinetic mix-
ing parameter η for µ0 = 5 TeV alongside {α4, η, αy, αδ, αδ̃, αu, αv, αw, αs}|µ0 = {4.60 ·
10−2, 0, 10−0.5, 10−2.5, 10−2.5, 10−4, 10−5, 10−6, 10−3.5}. Figure taken from Ref. [21].

In Fig. 8.4, a sample Planck-safe trajectory of BM3 is depicted, with parameters settings corre-
sponding to the black cross in Fig. 8.3. Overall, we find a moderate but slow evolution of all
couplings between the matching and the Planck scale. Kinetic mixing reaches an O (1) value,
while the BSM Yukawa and U(1)′ coupling score values of O

(︁
10−1

)︁
. All other couplings remain

roughly within the range of O
(︁
10−3-10−2

)︁
. We also identify the so-called ‘walking regime’ in

Fig. 8.4, where the growth of couplings comes almost to a halt. Such regimes can be observed in
all viable trajectories and prove to be an essential feature of our model building. Comparable RG
trajectories are obtained when considering different Planck-safe parameter regions of Fig. 8.3. The
corresponding results for the other benchmark models BM1,2,4 are discussed in Ref. [21].

8.4 Phenomenological implications

In this section, we present phenomenological implications of our benchmark models. To this end,
we study predictions for dineutrino modes and discuss collider signatures that emerge in Z ′ models.
We also entertain the possibility of RH quark couplings and their impact on RK(∗) observables.

8.4.1 Predictions for dineutrino modes B→ K(∗)νν̄

A detailed parametrisation of SM and NP contributions to dineutrino modes q′ → q νν̄ is provided
in, e.g., Ref. [20] and also discussed in Chap. 9. It can be shown that a universal impact for
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all B→ Hνν̄, with H = K, K∗, . . . , branching ratios is present for vanishing RH quark currents.
This setting is realised for the Z ′ models considered in this analysis, see Sec. 8.2. Therefore, we
write [20]

B (B→ Hνν̄)

B (B→ Hνν̄)SM
=

1

3

(︄∑︂
i

|1 + FLi a|2 + |Fνi a|2
)︄
, (8.37)

where a = 2N−1 gbsL /
(︁
M2
Z′ XSM

)︁
and |a| ≪ 1. Here, XSM = −12.64 encodes the SM contribution,

see definition in Eq. (9.6). Inserting the U(1)′ charges and Wilson coefficients of the respective
benchmarks into Eq. (8.37), we obtain the values 1.003 ,1.05 ,1.08, 0.97 for BM1, BM2, BM3

and BM4, respectively. The tiny deviation from one in BM1 is due to a certain cancellation of
contributions. To be precise, the chosen second- and third-generation charges FL2 = −FL3 provoke
an cancellation of the interference term with the SM, cf. Tab. 8.2. Only the second term in Eq. (8.37)
encodes contributions from light RH neutrinos which is missing SM interference. Therefore, only
negligible contributions at the permille level are realised in BM2,3,4. We find that b→ s dineutrino
branching ratios are generally enhanced in NP scenarios addressing the B-anomalies, although
a mild suppression is obtained in BM4 where a > 0 and FL3 < 0. While current sensitivities of
the Belle II experiment allow for an observation of B0→ K0νν̄ and B0→ K∗0νν̄ decays at the
SM-level, the NP effects in our benchmarks are indistinguishable from the SM prediction within
present precision, see Tab. 9.3. Nevertheless, the study of branching ratios in dineutrino modes
allows for different patterns of NP that can validate or falsify concrete models, see Chap. 9.

8.4.2 Collider signatures

The Z ′ models in Sec. 8.2 provide a rich phenomenology that can be probed at different colliders.
In what follows, we present two key signatures, while expanded discussions can be found in
Ref. [21].

The decay width of a Z ′ boson decaying into fermion-antifermion pairs is given by [189]

Γ
(︁
Z ′ → fif̄ i

)︁
=

2πNf
C

3
α4MZ′

√︄
1−

4m2
fi

M2
Z′

·

[︄(︁
F 2
fLi + F 2

fRi

)︁
−

m2
f

M2
Z′

(︁
F 2
fLi − 6FfLiFfRi + F 2

fRi

)︁]︄
.

(8.38)

Here, kinetic mixing has been neglected, and the colour factor reads Nf
C = 3 for quarks and Nf

C = 1
otherwise. The decay Z ′ → ψψ̄ is kinematically allowed and becomes dominant if MZ′ > 2Mψ.
We find that the phase space suppression of the partial decay width Γ(Z ′ → ψψ̄) remains small
(< 5%) as long as Mψ ≲ 0.3MZ′ . The Z ′ cannot decay to SM gauge bosons at LO if kinetic
mixing is neglected. For Fs ̸= 0, the decay Z ′ → ss with s = h, φ can arise and its corresponding
decay width reads [189]

Γ (Z ′ → ss) ≃ π

3
α4MZ′ F 2

s

(︃
1− 4

m2
s

M2
Z′

)︃ 3
2

. (8.39)

The branching ratios B
(︁
Z ′ → fif̄ i, ss

)︁
can be computed via Eqs. (8.38) and (8.39), employing
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the charge assignments in Tab. 8.2 for the benchmark models BM1−4. The results are compiled in
Tab. 8.3.

Model jets b t e µ τ νe,µ,τ h ψ1,2,3 φ Γtot(Z′)

BM1 0.5 0.5 0.5 0 15 15 15 0 54 0.2 0.43MZ′

BM2 14 1.5 1.5 0 9 9 18 0 46 0.1 0.14MZ′

BM3 5 0 0 0 4 4 8 0 79 0.1 0.73MZ′

BM4 0 0.9 0.9 0 3 11 14 0 72 0.2 0.43MZ′

Table 8.3: Tree-level branching ratios in % for the different Z′ decay modes to fermion-
antifermion pairs and pairs of scalars, neglecting fermionic as well as kinetic mixing. The last
column displays the total Z′-width. The numerical values correspond to the scenario where
the decays Z′ → ψiψ̄i, φφ are kinematically allowed and hardly phase space suppressed (i.e.
Mψ,φ ≲ 0.3MZ′). If the decay to ψψ̄ is kinematically suppressed at a significant level or
forbidden, the other branching ratios increase by up to roughly a factor of 2, 4 and 5 in BM1,2,
BM3 and BM4, respectively. Table adapted from Ref. [21].

Therein, we also show the corresponding total Z ′-width Γtot(Z ′) obtained in the limitMψ ≲ 0.3MZ′ .
We find that the decay mode Z ′ → ψψ̄ (if kinematically allowed) provides the dominant contribution
in all benchmarks with a branching ratio of approximately 50%, 80% and 70% in BM1,2, BM3

and BM4, respectively. Another observation made in all scenarios is the substantial branching
ratio to dineutrinos B (Z ′ → νν̄) ranging from 8 to 18%. Thus, both these decay modes yield
missing energy signatures at colliders, Z ′ → invisible with a branching ratio of ∼ 65-85%. Such
signatures can be studied with future LHC searches.

The four benchmarks can be distinguished by their different branching ratios to leptons (muons
and tauons) but also to dijets, where BM2 provides the largest ratio of 14%. Conversely, in BM4

no dijets are produced via Z ′ decays due to the vanishing first- and second-generation Z ′ couplings.
Thus, a distinction of benchmarks is possible when measuring Z ′ branching ratios with an accuracy
of ∼ 10%.

Another finding in the benchmarks presented is their promising implications for future muon
colliders [190–193]. The Z ′ boson can be directly produced, either on- or off-shell, in the s-channel.
The cross section is enhanced by the large U(1)′ coupling as well as the requisite muon coupling
FL2

. In the following, we study the Z ′ production in dominant subsequent decays to invisibles
which provides a formidable discovery potential via µ+µ− → Z ′ → ψψ̄, νν̄. To lowest order, the
corresponding cross section is given as

σ
(︁
µ+µ− → Z ′ → ψψ̄, νν̄

)︁
=

s
(︁
F 2
L2

+ F 2
E2

)︁
(M2

Z′ − s)
2
+M2

Z′Γ2
Z′

· g44
48π

[︄
2NfF

2
ψ +

∑︂
i

(F 2
Li + F 2

νi)

]︄
, (8.40)

which is about 880, 72, 560 and 4800 times larger in the respective models BM1−4 compared to the
SM cross section σSM (µ+µ− → Z → νν̄) ≈ 1.94 · 10−11 GeV−2 for

√
s = 3 TeV [21]. For recent

muon collider studies of Z ′ models explaining the B-anomalies, we refer to Refs. [194, 195].

- 98 -



8.4 Phenomenological implications

8.4.3 Impact of right-handed quark currents

Throughout this chapter, we have focussed U(1)′ extensions that feature NP Wilson coefficients
C(9,10),µ with only LH quark couplings gbsL . While this assumption works perfectly to explain
the B-anomalies, it restricts RK ≃ RK∗ [83]. The latest experimental data from LHCb [8, 84],
collected in Tab. C.5, suggests in particular RK+ > RK∗0 in the q2-bin [1.1, 6.0] GeV2 at a level of
approximately 1σ. The first measurement of RK0

S
[9] does not follow this trend, but is subject to

sizeable uncertainties.

In the following, we consider simultaneous contributions of LH and RH quark couplings, gbsL and
gbsR , respectively. In Eq. (3.50), we have put forward a double ratio sensitive to primed Wilson
coefficients. This ratio can be simplified in the case of vanishing electron couplings and reads

RK∗

RK
≃ 1− 0.41

(︁
C′
9,µ − C′

10,µ

)︁
. (8.41)

The semileptonic Wilson coefficients obey the relation

C′
9,µ

C9,µ
=

C′
10,µ

C10,µ
=
gbsR
gbsL

≡ r , (8.42)

see Eq. (8.3). The 4d fit results in Tab. 4.2 favour r < 0, but they also remain consistent with
r = 0 varying uncertainties within 1-2σ. However, we can derive additional implications assuming
that C9,µ < 0 remains true in future updated global fits and that NP contributions to electrons
are tiny. Under these assumptions, we can distinguish{︄

r > 0 (hence C′
9,µ < 0) : RK∗ > RK ,

r < 0 (hence C′
9,µ > 0) : RK∗ < RK .

Interestingly, Z ′ contributions to Bs-mixing can be cancelled in a LH-dominated scenario gbsL =
gbsR Xs, with Xs ≈ 10, which has been put forward in Eq. (5.48). In this case, Eq. (8.42) can be
rewritten inserting the definition of gbsL Eq. (8.4). We obtain

sin (2 θd) =
2Vtb V

∗
ts

Xs

FQ3
− FQ2

FD3 − FD2

≈
(︁
−8 · 10−3

)︁
· FQ3

− FQ2

FD3 − FD2

, (8.43)

where θd denotes the bs-mixing angle for the down-type quark singlets, cf. Eq. (5.20). Hence, θd is
small in models with FQ3

− FQ2
of the same order or smaller as FD3

− FD2
. The ratios of Wilson

coefficients are strictly positive, that is r = 1/Xs > 0 in the preferred LH-dominated scenario.

In summary, we find that Z ′ models can be uniquely probed by a combined analysis of b→ s ℓ+ℓ−

transitions, Bs-mixing constraints, and universality ratios RK versus RK∗ . Moreover, related
muon-to-electron ratios, such as Rφ or RK1 , can help pinpoint the underlying chirality of the NP
quark currents [83].
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8.5 Summary of Planck-safe benchmark models

We have studied new flavourful U(1)′ extensions of the SM that account for the B-anomalies
presently hinting at NP in b→ s µ+µ− transitions. In doing so, we have enforced stability and
predictivity of the theory parameters via RG evolution up to the Planck scale. This is necessary
to avert Landau poles emerging well below Planckian energies when adding the U(1)′ coupling to
the RG flow, and further remedies the metastability of the scalar potential. We have extended the
particle content by including vector-like fermions, meson-like scalars and (in some models) RH
neutrinos, see Sec. 8.1.1. The new Yukawa couplings tame Landau poles while portal couplings are
crucial to stabilise the scalar potential, as illustrated in Sec. 8.3.2 for a sample RG trajectory.

The benchmark models presented each describe a viable fit scenario from Tab. 4.2, addressing the
B-anomalies. The main features are summarised in Tab. 8.4. We have explored the phenomenology
of these benchmark models, where distinct signatures for (future) lepton and hadron colliders
have been discussed in Sec. 8.4. Notably, we find that the Z ′ predominantly decays into invisibles,
where Z ′ → ψψ̄ dominates if kinematically allowed, see Tab. 8.3. Moreover, these models can be
extended and tested to accommodate future measurements.

Model µ0 α4(µ0) C9,µ C10,µ Y iiu,d Y iie Y iiν rBs B
(︁
Z′ → inv.

)︁
νR

BM1 5 TeV 1.87 · 10−2 −0.83 0 3 3 7 0.35 73 % 7

BM2 5 TeV 5.97 · 10−3 −0.41 −C9,µ 3 7 7 0.86 64 % 3

BM3 5 TeV 4.60 · 10−2 −0.71 +0.24 3 7 7 0.60 87 % 3

BM4 3 TeV 2.46 · 10−2 −0.83 0 3 3 3 0.70 86 % 3

Table 8.4: Key features of Planck-safe benchmark models (with charge assignments listed in
Tab. 8.2), showing the values of the matching scale µ0, the Wilson coefficients C(9,10),µ, the
gauge coupling α4, and the diagonal Yukawa interactions Y iiu,d,e,ν as in Sec. 8.2. In addition, we
list the branching ratio for Z′ decays to missing energy, whether RH neutrinos νR are included,
and the room left by the Bs-mixing constraint rBs ≤ 1 before RH currents need to be invoked,
with rBs defined in Eq. (8.24). Table taken from Ref. [21].

While Z ′ models with large MZ′ in the TeV-range are able to account for the B-anomalies, they
fall short of simultaneously explaining the (g − 2)µ discrepancy [196] due to tiny Z ′ one-loop
contribution to (g − 2)µ [197, 198]. This apparent mismatch can be interpreted as different types
of NP entering these anomalies, see, e.g., Refs. [199, 200]. This motivates future studies where the
Z ′ boson teams up with other NP particles, such as leptoquarks or vector-like fermions [201] that
can collectively explain flavour anomalies in different sectors.
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Chapter

9
Lepton universality tests in
dineutrino modes

Probing lepton universality (LU) in rare semileptonic decays provides an excellent opportunity
to find deviations from the SM. Regarding the current status of the persistent B-anomalies, it is
well motivated to construct additional tests involving other decay modes not only as a cross-check,
but also to pinpoint possible BSM scenarios that can account for those effects. Therefore, related
FCNC quark transitions into dineutrinos modes q′→ q νν̄ are ideal for testing universality and
discovering NP due to several reasons. Firstly, these modes are subject to similar loop and CKM
suppressions as q′→ q ℓ+ℓ− transitions, while neutrino masses require SM extensions. The flavour
of neutrinos cannot be tagged experimentally, and thus a measurement of dineutrino observables
involves an incoherent sum over all neutrino flavours i, j = e, µ, τ . In particular, the dineutrino
branching ratio is expressed as

B (q′ → q νν̄) =
∑︂
i,j

B (q′ → q νj ν̄i) . (9.1)

Notably, contributions from lepton universality violation, or lepton flavour violation, are included
by construction. This way, complementary experimental tests of LU and charged lepton flavour
conservation (cLFC) can be formulated. In this chapter, we study different lepton flavour structures
connecting the charged dilepton couplings to those of dineutrinos by SU(2)L-invariance in a model-
independent way. A clean environment to probe dineutrino modes is available at e+e−-facilities
such as Belle II and the BES III experiment, with promising expected yields for measurements
of missing energy [85, 202]. Furthermore, planned experiments like the Future Circular Collider
(FCC) with collider signatures of positron-electron collisions FCC-ee [203] will also advance NP
searches in these modes.

This chapter is based on collective findings first presented in Refs. [18–20]. Therein, detailed
studies in different flavour sectors, such as charm and B-physics, have been conducted, while
results for kaon and top couplings have been worked out as well. In what follows, we aim to present
the general idea of these studies. To this end, we review the correlation of dineutrino and charged
dilepton couplings present in the SMEFT framework in Sec. 9.1. This link is put to use in Sec. 9.2,
where predictions for dineutrino modes are worked out in the charm and B-sector. Subsequently,
in Sec. 9.3 we discuss novel tests probing LU in b→ s νν̄ transitions in a model-independent way.
Results for Z ′ models are described as well.
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9.1 SU(2)L-link between dineutrino and charged lepton
couplings

Here, we present a unified description of FCNC interactions between two quarks and two leptons,
separating contributions of charged leptons and neutrinos. Compared to the previously considered
EFT framework in Eq. (3.41) and Eq. (6.2), we utilise a slightly adapted notation where the
different flavour indices of quarks and leptons are made explicit. Below the electroweak scale,
µ < µEW, the Hamiltonian involving charged leptons is given by

Hℓ−i ℓ
+
j

eff ⊃ −4GF√
2

αe
4π

∑︂
A=L,R

KPαβijA OαβijA + h.c. , (9.2)

whereas for neutrinos we have

Hνiν̄j
eff = −4GF√

2

αe
4π

∑︂
A=L,R

CPαβijA QαβijA + h.c. , (9.3)

where the indices α, β and i, j denote the flavours of quarks and leptons, respectively. The
superscript P = D (P = U) refers to the down-quark sector (up-quark sector), for instance
Pαβ = D13 (U12) indicates b→ s (c→ u) transitions. The dimension-six operators OαβijA and
QαβijA cover the low-energy dynamics, where the relevant semileptonic operators read

OαβijL = (q αL γµq
β
L)(ℓ

j

Lγ
µℓ iL) , OαβijR = (q αRγµq

β
R)(ℓ

j

Lγ
µℓ iL) , (9.4)

while, in absence of RH neutrinos like in the SM, only the two dineutrino operators

QαβijL = (q αL γµq
β
L )(ν̄

j
Lγ

µν iL) , QαβijR = (q αRγµq
β
R)(ν̄

j
Lγ

µν iL) , (9.5)

appear in Eq. (9.3). The short-distance dynamics are encoded in the Wilson coefficients KPαβijk =

KPαβijA,SM + KPαβijA,NP and CPαβijk = CPαβijA,SM + CPαβijA,NP , where the separation between SM and BSM
contributions is made explicit. The SM Wilson coefficients are lepton (flavour) universal, which
gives

CDbsijL,SM = Vts V
∗
tbXSM δij , (9.6)

particularising for the b→ s transition. In Eq. (9.6), we have introduced the coefficient XSM =
−2Xt/ sin2 (θW) = −12.64 ± 0.15, which is known with a high accuracy, including two-loop
electroweak contributions [204] and NLO QCD corrections [205, 206]. Details on the derivation
of the function Xt is given in Refs. [131, 204]. The contributions CDαβijR,SM are negligible [207], and
hence are not considered in our studies. The semileptonic Wilson coefficients KD23ij

L,R are related to
the rare B-decay ones, previously defined in Eq. (3.44), as

KD23ij
L = Vtb V

∗
ts

(︂
Cij9 − Cij10

)︂
, KD23ij

R = Vtb V
∗
ts

(︂
C′ij
9 − C′ij

10

)︂
. (9.7)

Assuming µEW ≲ ΛNP, we can describe the set of FCNC transitions qβ → qα(ℓ
−
i ℓ

+
j , νiν̄j) in

SMEFT introduced in Sec. 3.3. The LO contributions are given by the four-fermion operators
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embedded in [61]

LSMEFT ⊃
C(1)
lq

v2h
(LγµL)(Qγ

µQ) +
C(3)
lq

v2h
(Lγµσ

aL)(QγµσaQ)

+
Clu
v2h

(LγµL)(Uγ
µU ) +

Cld
v2h

(LγµL)(Dγ
µD) ,

(9.8)

where σa are Pauli matrices and vh denotes the Higgs vev. We have suppressed the flavour indices
of the SU(2)L-doublet leptons L and quarks Q as well as the RH up-singlet (down-singlet) quarks
U (D) to avoid clutter. We remark that operators featuring charged lepton singlets E , such as
(QγµQ)(EγµE), are disconnected from the dineutrino processes and break the relation C9 = −C10
in WET. Additional operators that induce Z-penguins at tree level, such as (QγµQ)(H†DµH)
involving two Higgs fields H and a covariant derivate Dµ, are constrained by, e.g., electroweak and
top observables [208, 209]. They are negligible for the purpose of our investigations. Therefore, the
(axial-)vector operators in Eq. (9.8) provide a suitable model-independent basis for the description
of dineutrino modes due to their invariance under QCD-evolution [210], while corrections from
electroweak RG running [211] are not significant, see Ref. [20] for details.

By splitting the operators in Eq. (9.8) into SU(2)L-components, we derive the following link
between the couplings to dineutrinos (CPA ) and to charged dileptons (KP

A ) in the gauge basis

CUL = KD
L =

2π

αe

(︂
C(1)
lq + C(3)

lq

)︂
, CUR = KU

R =
2π

αe
Clu ,

CDL = KU
L =

2π

αe

(︂
C(1)
lq − C(3)

lq

)︂
, CDR = KD

R =
2π

αe
Cld .

(9.9)

A one-to-one map between the dineutrino and dilepton Wilson coefficients is realised for RH
quark currents, CU,DR = KU,D

R in both up-quark and down-quark sectors. In contrast, we obtain
CDL = KU

L and CUL = KD
L in the gauge basis for the LH quark currents, due to the relative minus

signs between C(1)
lq and C(3)

lq . This SU(2)L-link in the gauge basis is visualised in Fig. 9.1.

Appropriate field rotations are necessary to express KP
L and CPL in the mass basis, which are

denoted by calligraphic KPA and CPA included in Eq. (9.2) and Eq. (9.3), respectively. Employing
the unitary rotations introduced in Eq. (2.21), we obtain the relations

CPR = (UPMNS)
† KPR UPMNS , (9.10)

CPL = (UPMNS)
† KP

′

L UPMNS +O (λCKM) , (9.11)

where UPMNS is the PMNS matrix, and P = U,D for P ′ = D,U . By summing over the lepton
flavours i, j incoherently, as put forward in Eq. (9.1), a link between the couplings CPA and KPR is
established [18] ∑︂

ν=i,j

(︂
|CPijL |2 + |CPijR |2

)︂
= tr

(︂
CPL

(︁
CPL
)︁†

+ CPR
(︁
CPR
)︁†)︂

= tr
(︃
KPL

(︂
KP

′

L

)︂†
+KPL

(︁
KPR
)︁†)︃

+O (λCKM)

=
∑︂
ℓ=i,j

(︂
|KP

′ij
L |2 + |KPijR |2

)︂
+O (λCKM) .

(9.12)

Further details on this SU(2)L-link and the incorporated flavour rotations and assumptions are
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collected in App. G.

uLα

νi νj

uβ dLα

`Li `Lj

dLβ

C
Uαβij
L = K

Dαβij
L

uRα

νi νj

uRβ uRα

`Li `Lj

uRβ

C
Uαβij
R = K

Uαβij
R

Figure 9.1: Diagrams that display the NP contributions to up- and down-quark transitions
with dineutrinos CUL,R and dileptons KD

L,R, from the operators in Eq. (9.8) in the gauge basis,
with flavour indices α, β, i, j. The SU(2)L-link between neutrino and charged lepton operators
is exploited in Eq. (9.12) in the mass basis. Figure taken from Ref. [18].

Equation (9.12) provides the unique possibility to predict dineutrino rates for different lepton
flavour structures KPijL,R, which can be probed with lepton-specific measurements. We determine
the following structures

• lepton flavour universality (LFU) or equivalently called just lepton universality (LU):

KPL,R =

⎛⎜⎜⎜⎝
k 0 0

0 k 0

0 0 k

⎞⎟⎟⎟⎠ , (9.13)

• charged lepton flavour conservation (cLFC):

KPL,R =

⎛⎜⎜⎜⎝
kee 0 0

0 kµµ 0

0 0 kττ

⎞⎟⎟⎟⎠ , (9.14)

• general, including charged lepton flavour violation (cLFV):

KPL,R =

⎛⎜⎜⎜⎝
kee keµ keτ

kµe kµµ kµτ

kτe kτµ kττ

⎞⎟⎟⎟⎠ . (9.15)
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9.2 Correlations of different flavour sectors

In the following, we explore the rich playground of dineutrino modes using the SU(2)L-link in
Eq. (9.12). The differential branching ratio of dineutrino modes can be written as

dB (q′ → q νν̄)

dq2
= a+(q

2)x+P + a−(q
2)x−P , (9.16)

which is related to the final state hadron’s energy distribution in the initial state hadron rest frame
as dB/dq2 = 1/(2mM )dB/dE. Here, mM denotes the mass of the initial state hadron and q2

indicates the dineutrino invariant mass squared. In Eq. (9.16), the factors a±(q2) are decay mode
specific. and include the form factors and kinematics of the respective decay, see, e.g., Refs. [19,
20] for definitions. Consequently, all branching ratios depend on at most two combinations of
Wilson coefficients that can be chosen as

x±P =
∑︂
i,j

|CPijL ± CPijR |2 . (9.17)

Here, it proves useful to define the quantity

xP =
x+P + x−P

2
=
∑︂
i,j

(︂
|CPijL |2 + |CPijR |2

)︂
, x±P ≤ 2xP , (9.18)

which for instance enters in inclusive decays. The integrated branching ratio of dineutrino modes
is readily obtained as

B (q′ → q νν̄) = A+ x
+
P +A− x

−
P , (9.19)

with

A± =

∫︂ q2max

q2min

a±(q
2)dq2 , (9.20)

where q2min and q2max denote the allowed kinematic range which depends on the specific decay
mode, e.g. q2min = 0 and q2max = (mB0 −mK0)2 for the exclusive B0→ K0νν̄ decay. In Tab. 9.3,
we provide central values of A± with their symmetrised uncertainties for selected b→ s decay
modes. Interestingly, A− = 0 for decays into pseudoscalar mesons B → P , while A+ ≪ A− for
vector mesons B → V . Moreover, the relation A+ = A− holds in inclusive B → X(s) decays. This
complementarity between different decay modes is a result of parity conservation in the strong
interaction as well as Lorentz invariance. It can be exploited for instance to construct tests of LU,
see Sec. 9.3.

We discuss the implications of the SU(2)L-link for charm and beauty dineutrino modes in Secs. 9.2.1
and 9.2.2, respectively.

9.2.1 Predictions for charm

Due to the efficient GIM-cancellation in charm decays, the SM amplitude of c→ u dineutrino
transitions is perfectly negligible and therefore constitutes a clean null test of the SM. Recently,
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D0 → F A+ A− Bmax
LU Bmax

cLFC Bmax Nmax
LU /ηeff Nmax

cLFC/ηeff Nmax/ηeff

[10−8] [10−8] [10−7] [10−6] [10−6]

D0 → π0 0.9 0 6.1 3.5 13 47 k (395 k) 270 k (2.3 M) 980 k (8.3 M)

D0 → π0π0 0.7 · 10−3 0.21 1.5 0.8 3.1 11 k (95 k) 64 k (540 k) 230 k (2.0 M)

D0 → π+π− 1.4 · 10−3 0.41 2.8 1.6 5.9 22 k (180 k) 120 k (1.0 M) 450 k (3.8 M)

D0 → K+K− 4.7 · 10−6 0.004 0.03 0.02 0.06 0.2 k (1.9 k) 1.3 k (11 k) 4.8 k (40 k)

Table 9.1: Coefficients A± as defined in Eq. (9.20) for selected D0-meson decays into final
states F for central values of input [19]. Utilising Eq. (9.19), we provide the upper limits on
branching ratios Bmax

LU , Bmax
cLFC and Bmax corresponding to Eqs. (9.23) to (9.25), respectively.

The expected number of events, see Eq. (9.22), per reconstruction efficiency ηeff for Belle II
with 50 ab−1 (FCC-ee yields in parentheses) are given in the last three columns. Table taken
from Ref. [19].

the BES III experiment performed the first experimental search of the c→ u νν̄ process, where the
upper limit [212]

B
(︁
D0 → π0 νν̄

)︁
< 2.1 · 10−4 (9.21)

at 90%C.L. has been obtained. Current experiments like BES III [202], Belle II [85] as well as
other future e+e−-colliders such as the FCC-ee [203] are perfect for analyses of the corresponding
missing energy modes, with charm production rates from B (Z → cc) ≃ 0.12 [32] for the latter.
More quantitatively, we can parametrise the expected event rate for a decay hc → F νν̄, with a
charged hadron hc and final state F , as

N exp
F = ηeff N(hc)B (hc → F νν̄) , (9.22)

where ηeff denotes the reconstruction efficiency. The number of charmed hadrons N(hc) can be
fetched from Tab. G.8 with expected magnitudes of O

(︁
1010

)︁
.

Utilising the SU(2)L-link in Eq. (9.12) together with data on the charged lepton couplings Ksdℓℓ′L

and Kcuℓℓ′R , we are able to computed upper limits on the quantity xcu ≡ xU12
. Here, we have

adapted the notation U12 ≡ cu and D12 ≡ sd, while also i, j → ℓ, ℓ′ is understood. We employ
high-pT data provided in Tabs. G.1 and G.2 to obtain the upper limits [19]

xcu ≲ 34 (LU) , (9.23)
xcu ≲ 196 (cLFC) , (9.24)
xcu ≲ 716 (general) , (9.25)

assuming the inherent flavour structures of the lepton couplings, see Eqs. (9.13) to (9.15), in
each of those limits. Notably, we have included the O (λCKM) corrections in Eq. (9.12), where an
explicit derivation of the upper limits is provided in App. G.3. We remark that more stringent
bounds are obtained when including data from rare kaon decays in addition to those from (high-pT)
Drell-Yan processes. However, they are subject to cancellations and may not be considered fully
model-independent. We focus on the bounds given in Eqs. (9.23) to (9.25) for our subsequent
studies, whereas limits also including low energy constraints are listed in App. G.4.

In Fig. 9.2, we display the resulting upper bounds on selected charm dineutrino branching ratios,
employing Eq. (9.19) together with x±cu ≤ 2xcu. The corresponding A± factors as well as the
maximal branching ratio for the specific flavour structures denoted by Bmax

LU , Bmax
cLFC, and Bmax
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are provided in Tab. 9.1. In Fig. 9.2, we additionally show the relative statistical uncertainty
δB = 1/

√︁
ηeff N(hc)B against the branching ratio B, where the former scales as 1/

√︁
N exp
F , for

Belle II (green region) and FCC-ee (lilac region). We choose ηeff = 10−3 as a benchmark efficiency
shown as tilted lines, whereas the left-most boundaries of the respective regions correspond to
the ideal, no loss case ηeff = 1. All relevant values of N exp

F are listed in Tab. 9.1. We find that
for efficiencies of a permille or better, branching ratios of O

(︁
10−6

)︁
down to O

(︁
10−8

)︁
can be

discovered at 5σ (that is δB = 1/5) in D0-modes. Similar yields are obtained for other charm
modes given elsewhere [19]. Certainly, given corroborated estimates of ηeff and reduced systematic
uncertainties in the future, the reach of future measurements at charm factories can be worked
out more quantitatively. However, regions with branching ratios O

(︁
10−6-10−5

)︁
already cover

interesting physics as can be inferred from the computed maximal branching ratio limits. We
observe that all limits shown here are above ∼ 10−6, except for D0→ K+K− νν̄. Notably, the
branching ratio Bmax(D0→ π0 νν̄) = 1.3 · 10−5 is only one order of magnitude smaller than the
available experimental limit, see Eq. (9.21).

10−10 10−9 10−8 10−7 10−6 10−5 10−4

B(D0 → F ν ν̄
)

10−2

10−1

100

δB
( D

0
→

F
ν
ν̄
) 3 σ

5 σ

ηFCC-ee
eff = 10−3

ηBelleII
eff = 10−3

ηFCC-ee
eff ≤ 1

ηBelleII
eff ≤ 1

Bmax
LU

(
D0 → π0 ν ν̄

)

Bmax
cLFC

(
D0 → π0 ν ν̄

)

Bmax
(
D0 → π0 ν ν̄

)

Bmax
LU

(
D0 → π+ π− ν ν̄

)

Bmax
cLFC

(
D0 → π+ π− ν ν̄

)

Bmax
(
D0 → π+ π− ν ν̄

)

Bmax
LU

(
D0 → K+ K− ν ν̄

)

Bmax
cLFC

(
D0 → K+ K− ν ν̄

)

Bmax
(
D0 → K+ K− ν ν̄

)

Figure 9.2: Relative statistical uncertainty of the branching ratio δB versus the branching
ratio B for dineutrino decays of the D0 meson. The shaded areas correspond to the reach of the
reconstruction efficiency ηeff = 1, while the solid tilted lines depict the impact of ηeff = 10−3

for FCC-ee (lilac) and Belle II (green). Horizontal 3σ (dotted) and 5σ (dashed) black lines
illustrate δB = 1/3 and δB = 1/5, respectively. Vertical lines represent upper limits assuming
LU (solid), cLFC (dotted) and generic lepton flavour (dashed) for decay modes, compiled in
Tab. 9.1. To improve readability, the three lines for each decay mode are grouped together by a
shaded band. Figure adapted from Ref. [19].

The upper limits satisfy Bmax
LU < Bmax

cLFC < Bmax, and we can therefore infer that, e.g., a branching
ratio measurement Bexp in some mode with Bmax

LU < Bexp < Bmax
cLFC would be an indication of LU

violation. In contrast, a breakdown of cLFC is inferred by a branching ratio above Bmax
cLFC.

- 107 -



Chapter 9 Lepton universality tests in dineutrino modes

Reach of Z′ models in charm dineutrino modes

Specific BSM extensions, such as leptoquarks or Z ′ scenarios, feature a generic alignment between
the Wilson coefficients in the gauge basis

C(3)
lq = α C(1)

lq ,

KD
L = γ CDL = (1 + α)

(︃
2π

αe

)︃
C(1)
lq , KU

L =
1

γ
CUL = (1− α)

(︃
2π

αe

)︃
C(1)
lq ,

(9.26)

where γ = (1 + α)/(1 − α). In Z ′ models, where α = 0 (hence γ = 1), the Eq. (9.26) can be
simplified to

KU,D
L = CU,DL . (9.27)

Similar results and implications arise for leptoquark representations [19]. In particular, for c→ u
transitions it holds

xZ
′

cu <
∑︂
i,j

(︂
|KU12ij
R |2 + |KU12ij

L |2
)︂
. (9.28)

utilising the bounds on charged lepton couplings from high-pT data, we obtain

xZ
′

cu ≲ 15 (LU) , (9.29)

xZ
′

cu ≲ 85 (cLFC) , (9.30)

xZ
′

cu ≲ 288 (general) , (9.31)

which are stronger than the model-independent limits in Eqs. (9.23) to (9.25), nevertheless within
the same order of magnitude. The resulting upper limits on dineutrino branching ratios follow the
same reasoning and are compiled in Tab. 9.2.

Z′ models: KU
L = CUL

hc → F Bmax
LU Bmax

cLFC Bmax

[10−7] [10−6] [10−6]

D0 → π0 2.7 1.5 5.1

D0 → π0π0 0.6 0.4 1.2

D0 → π+π− 1.2 0.7 2.4

D0 → K+K− 0.01 0.007 0.03

Table 9.2: Upper limits Bmax
LU , Bmax

cLFC and Bmax extracted from the LU, cLFC and general
bounds on xZ

′
cu in Eqs. (9.29) to (9.31), respectively, see Eq. (9.19). Table taken from Ref. [19].

9.2.2 Predictions for beauty

To study the phenomenological implications in the B-sector, it is convenient to utilise the following
notation,

KU23

A,NP = KtcA , KD23

A,NP = KbsA , KU13

A,NP = KtuA , KD13

A,NP = KbdA . (9.32)
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Mode
A+ A− B (Mode)SM

B (Mode)exp
upper limit

derived
EFT limit

Belle II
@ 5 ab−1 (50 ab−1)

[10−8] [10−8] [10−8] [10−6] [10−6] %

B0→ K0 516 ± 68 0 391 ± 52 26 [213] 15 –

B+→ K+ 558 ± 74 0 423 ± 56 16 [214] 16i 30 (11)

B0→ K∗0 200 ± 29 888 ± 108 824 ± 99 18 [213] 18i 26 (9.6)

B+→ K∗+ 217 ± 32 961 ± 116 893 ± 107 40 [215] 19 25 (9.3)

Bs→ φ 184 ± 9 1110 ± 85 981 ± 69 5400 [216] 23 –

B0→ Xs 1834 ± 193 1834 ± 193 2800 ± 300 640 [216] 78 –

B+→ Xs 1978 ± 208 1978 ± 208 3000 ± 300 640 [216] 84 –

Table 9.3: SM predictions of dineutrino branching ratios of B→ Kνν̄ and B→ K∗νν̄ decays,
as well as related modes with underlying b→ s νν̄ transition. Also provided are the A±
parameters [21], see Eq. (9.19), and the current experimental upper limits on the branching
ratio at 90% C.L. in the fifth column. Derived EFT limits using Eq. (9.35) are displayed in
the sixth column, while projected Belle II sensitivities [85] for 5 ab−1 (50 ab−1) are given in the
last column. The superscript i denotes limits used as input in Eq. (9.35). Table adapted from
Ref. [21].

This highlights the respective quark transition and eases the notation of the dilepton couplings,
where we have omitted the subscript ‘NP’. In addition, we reduce clutter by using rescaled versions
of these quantities

κbqijR = KbqijR ·
(︁
Vtb V

∗
tq

)︁−1
, κtcijL = KtcijL · (VtbV ∗

ts)
−1

, κtuijL = KtuijL · (VtbV ∗
td)

−1
, (9.33)

where the dependence of the CKM matrix elements has been factorised. Similar changes in notation
can be implemented for the corresponding dineutrino Wilson coefficients.

In Tab. 9.3, we summarise the SM branching ratios for selected b→ s modes that are computed
using Eq. (9.19). In this case, Eq. (9.17) reads

x±bs =
∑︂
i,j

|CbsijL,SM +KtcijL ±KbsijR |2 . (9.34)

Here, we have inserted the connected dilepton couplings, neglecting O
(︁
λ2CKM

)︁
corrections that

stem from the SU(2)L-link in Eq. (9.12). Different sensitivities of Wilson coefficients in x± enter
the branching ratio parametrisation given in Eq. (9.19) for B→ P νν̄, B→ V νν̄, and inclusive
B→ Xs νν̄ decays. This fact can be exploited by using current experimental upper limits to
constrain

x+bs ≲ 2.9 , x−bs + 0.2x+bs ≲ 2.0 , (9.35)

extracted from the experimental limits on B+→ K+νν̄ and B0→ K∗0νν̄, see Tab. 9.3. Using
Eq. (9.35), we find indirect limits on the branching ratios of other dineutrino modes that hold
within our EFT framework. Exemplary EFT limits are collected in Tab. 9.3 for selected decay
modes, that is B→ K(∗)νν̄, Bs→ φνν̄ and inclusive B→ Xsνν̄ decays. An extended list that also
involves decay modes with underlying b→ d transitions is provided in Ref. [21]. We note that a
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bs ℓℓ′ ee µµ ττ eµ eτ µτ

|κbsℓℓ
′

L,R |DY 331 178 637 200 688 748

κbsℓℓ
′

L 1 [−1.6,−1.1] 806 2.5 71 86

κbsℓℓ
′

R 1 [0.2, 0.8] 806 2.5 71 86

|κbsℓℓ
′

R |νν̄ 35 35 35 45 45 45

Table 9.4: Upper limits on charged dilepton couplings κbsℓℓ
′

L,R from high–pT [183, 217] (top
row), charged dilepton B-decays (mid rows) and derived ones from three-body rare B-decays
to dineutrinos (bottom row). Numbers without ranges correspond to a limit on the modulus.
The µµ ranges are derived from the global fit results of Ref. [20], see Sec. 4.2 and Tab. 4.1
for details, with the departures from zero in KbsµµL corresponding to the B-anomalies. The
LFV-bounds are quoted as flavour-summed,

√︁
|κℓ+ℓ′− |2 + |κℓ−ℓ′+ |2, whereas the other bounds

are for a single coupling. Corresponding rescaled values for couplings KbsµµL,R = VtbV
∗
ts κ

bsµµ
L,R are

given in Tab. G.3 for completion. Table entries taken from Refs. [20, 21].

violation of these limits would be a sign of NP which is not embedded in our EFT description,
such as light BSM particles.

In the following, we study the impact of the dineutrino limits on flavour-specific charged dilepton
couplings. Afterwards, we compare them with direct limits extracted from high-pT data and rare
B-decays to charged leptons. The bound in Eq. (9.35) can be rewritten in terms of the rescaled
couplings κtcijL and κbsijR , see Eq. (9.33), which yields∑︂

i,j

|XSM δij + κtcijL + κbsijR |2 ≲ 1.8 · 103 ,
∑︂
i,j

|XSM δij + κtcijL − κbsijR |2 ≲ 1.3 · 103 . (9.36)

By assuming different lepton flavour structures we can utilise Eq. (9.36) to obtain limits on κtcijL

and κbsijR . For the three dedicated scenarios (LU, cLFC, and a general flavour structure) we obtain
the constraints [21]

LU : |κbsℓℓR | ≲ 23 , − 10 ≲ κtcℓℓL ≲ 35 ,

cLFC : |κbsℓℓR | ≲ 35 , − 22 ≲ κtcℓℓL ≲ 47 ,

general : |κbsℓℓ
′

R |≲ 32 , |κtcℓℓ
′

L | ≲ 32 ,

(9.37)

assuming real-valued couplings. A comprehensive list that incorporates the various limits on the
couplings κbsℓℓ′L is given in Tab. 9.4, where the limits in Eq. (9.37) are displayed in the bottom
row. Bounds extracted from Drell-Yan data and rare B-decays to charged leptons are given in the
top row and middle rows, respectively. Note that we quote the LFV-bounds as flavour-summed,
where the limits obtained in the general case (allowing for cLFV) in Eq. (9.37) are scaled as
|κbsℓℓ′R |νν̄ =

√
322 + 322 ≈ 45. The bounds from (semi)leptonic rare B-decays are computed using

flavio [91] with experimental upper limits taken from Ref. [32], assuming one coupling at a time,
|C9| = |C10| = κL/2 or |C′

9| = |C′
10| = κR/2. Supplementary tables that list upper limits on charged

dilepton couplings KL,R for other quark transitions can be found in App. G.2. We observe that
limits on couplings with dimuons κbsµµL,R from charged B-decays are the strongest, which have been
extracted from our global fit to b→ s data, see Sec. 9.3. Moreover, the bounds from dineutrinos
surpass the ones obtained via the direct dilepton data for ττ as well as eτ and µτ by a factor of 23,
2, and 2, respectively, whereas weaker constraints follow for ee and eµ. Comparing our findings to
Drell-Yan data, the dineutrino bounds on κbsℓℓ′L,R are a factor of 4 or more stronger (depending on
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the coupling) than those from high-pT. Similar results follows for limits on κbdℓℓ′L,R couplings [21].

Since the SU(2)L-link enables us to extract limits on LH top couplings κtcℓℓ′L as well, we can
compare such limits to those obtained by the 2021 analysis of CMS [218] with top quark productions
plus leptons (admixture of dielectrons and dimuons), κttℓℓL = [−196, 243], with ℓ = e, µ. Assuming
a top-philic flavour pattern [219] with FCNC couplings in the down mass basis we find κtcℓℓL ∼
VtbV

∗
ts κ

ttℓℓ
L = [−8, 10] somewhat stronger than the corresponding dineutrino limits, κtcℓℓL =

[−22, 47]. However, those limits from dineutrinos are available for all flavours ℓℓ′, as opposed to
collider limits from CMS, which are limited to ee and µµ only.

9.3 Universality tests with b→ s νν̄ transitions

As the SU(2)L-link is bidirectional, we can utilise data of charged dileptons to obtain bounds on
dineutrino modes. In what follows, we provide tests of lepton universality, where we focus on
B→ Kνν̄ and B→ K∗νν̄ decays, featuring an underlying b→ s transition.

In the LU limit, the branching ratio in Eq. (9.19) can be parametrised as

B (B→ Kνν̄)LU = ABK+ x+bs,LU , (9.38)

B (B→ K∗νν̄)LU = ABK
∗

+ x+bs,LU + ABK
∗

− x−bs,LU , (9.39)

with x±bs,LU = 3|VtbV ∗
ts|2

(︁
XSM + κtcℓℓL ± κbsℓℓR

)︁2 and ℓ fixed to the flavour with the strongest
constraints. As present rare top data is not able to put useful constraints on the couplings
κtcℓℓL [18], we instead solve B (B→ Kνν̄)LU in Eq. (9.38) for this coupling and insert the two
solutions into Eq. (9.39). This yields a correlation between the branching ratios,

B (B→ K∗νν̄)LU =
ABK

∗

+

ABK+

B (B→ Kνν̄)LU

+ 3ABK
∗

− |VtbV ∗
ts|

2

(︄√︄
B (B→ Kνν̄)LU

3 |VtbV ∗
ts|

2
ABK+

∓ 2κbsℓℓR

)︄2

,

(9.40)

which holds for any combination of charged and/or neutral decay modes with appropriate substi-
tution of the parameters A±, see Tab. 9.3.

As the most stringent limits on κbsℓℓR are given for ℓ = µ, we utilise the global fit approach outlined
in Chap. 4. In the following, we consider the 6d fit results of the NP Wilson coefficients C(′)

(7,9,10),µ

listed in Tab. 4.1 where only pure b→ s data has been included. Matching to the dineutrino basis,
we find

κbsµµL = C9,µ − C10,µ = −1.45± 0.29 ,

κbsµµR = C′
9,µ − C′

10,µ = 0.46± 0.26 ,
(9.41)

with an deviation from the SM hypothesis, κbsµµL,R = 0, at 4.6σ.

We use Eqs. (9.40) and (9.41) to display the correlations between B
(︁
B0→ K∗0νν̄

)︁
versus

B
(︁
B0→ K0νν̄

)︁
and B

(︁
B0→ K∗0νν̄

)︁
versus B (B+→ K+νν̄) shown in the left-hand and right-
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Figure 9.3: B
(︁
B0→ K∗0νν̄

)︁
versus B

(︁
B0→ K0νν̄

)︁
(left-hand side plot) and B

(︁
B0→ K∗0νν̄

)︁
versus B

(︁
B+→ K+νν̄

)︁
(right-hand side plot). SM predictions (blue diamond) with their

uncertainties (blue bars) from Tab. 9.3, where the resonant τ -background in the charged mode
is included as an additional uncertainty and the solid blue line indicates the scale of the pure
resonant contribution. The dark red regions (dashed red lines) represent the LU region given
by Eq. (9.40) where κbsµµR and A± have been scanned within their 1σ (2σ) uncertainties. The
light green region represents the validity of the EFT framework as in Eq. (9.35). Assuming the
couplings in Eq. (9.27), we display a specific BSM benchmark, which results in best-fit values
(yellow star) and 1σ regions (yellow ellipses) for a Z′ boson from b→ s global fits, see main
text for details. Hatched grey bands correspond to the current experimental 90% C.L. upper
limits, whereas the yellow boxes illustrate the projected experimental sensitivity (10% at the
chosen point) of Belle II with 50 ab−1 in Tab. 9.3. Figure adapted from Ref. [19].

hand side plot of Fig. 9.3, respectively. Scanning κbsµµR and the prefactors A±, see Tab. 9.3, within
their 1σ (2σ) uncertainties, one identifies

B
(︁
B0→ K∗0νν̄

)︁
LU

B
(︁
B0→ K0νν̄

)︁
LU

= 1.7 . . . 2.6 (1.3 . . . 2.9) . (9.42)

B
(︁
B0→ K∗0νν̄

)︁
LU

B (B+→ K+νν̄)LU
= 1.6 . . . 2.4 (1.2 . . . 2.7) . (9.43)

These limits are shown as the red LU regions in Fig. 9.3. Two measurements outside this region
would indicate a breakdown of LU. However, a measurement inside this region does not necessarily
imply LU. To avoid a double counting of uncertainties in the derivation of the LU region, we
separate branching ratio contributions into those coming from the SM, NP, and their interference
terms. Then, only the central values of the respective A± factors in Tab. 9.3 are inserted for
the pure NP contributions, whereas the SM term even incorporates correlations between the A±
factors. The interference term is scaled with A ∼

√
Acen ·Aunc, where Acen and Aunc refer to the

central value and the value including uncertainties of the corresponding A±, respectively. The SM
predictions are shown with their uncertainties as blue markers, taken from Tab. 9.3. The green
region represents the validity of our EFT framework, given by Eq. (9.35). The hatched grey bands
correspond to the currently available experimental 90%C.L. upper limits, while the unhatched
grey regions indicate the derived EFT limits, see Tab. 9.3. Then, a measurement between those
two areas would infer a clear hint of BSM physics not covered by the EFT framework. The widths
of the yellow boxes illustrate the projected experimental sensitivity (10% at the chosen point) of
Belle II with 50 ab−1 [85].
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The solid blue line (in the right-hand side plot) corresponds to the resonant branching ratio of a
B+ meson annihilating via τ+ν → K+ νν̄, B (D+→ K+ ν̄τντ )LD ∼ 5 · 10−7, such that the region
left of this line loses any sensitivity to possible NP. Correlations that include only neutral mesons
as in the left-hand side plot are not affected. Similar procedures can also be applied to perform
tests of cLFC. However, current limits on ττ couplings as given in Tab. 9.4 are unable to provide
information beyond the already established EFT limit, i.e. the green region.

Z′ boson benchmark

In Z ′ models, the alignment of Wilson coefficients KD
L = CDL is present, cf. Eq. (9.27). By giving

up the model-independent framework from our previous discussions, we gain the possibility to
predict LU branching ratios for all possible decay modes only using information from global fits.
For Z ′ models, where also RH quark couplings CDR ̸= 0 emerge, we employ the global fit results
in Eq. (9.41). In Fig. 9.3, the corresponding best-fit branching ratio prediction is displayed as a
yellow star while 1σ uncertainties (computed in a similar manner as the LU region) are indicated
by the enclosing ellipse. In this Z ′ scenario, predictions of the LU branching ratios of B→ K(∗)νν̄
decays read

B
(︁
B0→ K0νν̄

)︁
= (4.5± 0.6) · 10−6 , B (B+→ K+νν̄) = (4.9± 0.8) · 10−6 ,

B
(︁
B0→ K∗0νν̄

)︁
= (10.7± 1.1) · 10−6 , B (B+→ K∗+νν̄) = (11.6± 1.2) · 10−6 ,

(9.44)

which can be compared with their SM predictions and corresponding (experimental) limits provided
in Tab. 9.3.

9.4 Summary and conclusion

We have worked out a striking connection between dilepton and charged dineutrino couplings
established by the SU(2)L-invariance studied in SMEFT. While this link is applicable in many
flavour sectors, it allows us to probe the lepton flavour structure in dineutrino observables, e.g.
branching ratios related to missing energies measurements. We identify three different structures,
that is lepton universality, charged lepton flavour conservation, and an arbitrary structure allowing
for lepton flavour violation. Assuming these flavour structures, upper limits for charm dineutrino
branching ratios and b→ s couplings have been determined, see Tabs. 9.1 and 9.4, respectively.

As currently no direct observations of BSM physics have been made at colliders, synergies and
correlations across all flavour sectors provide the possibility to analyse existing data and hunt
towards NP patterns in these rare decay modes. Meanwhile, future refined theoretical work is
also vital, and can profoundly impact and improve the tests that have been put forward in this
chapter. In particular, improved data of form factors can significantly reduce the uncertainties of
branching ratio predictions.

The SU(2)L-link in Eq. (9.12) can be exploited in both directions, meaning limits from dineutrino
data directly affect dilepton couplings and vice versa. By including global fit results of b→ s µ+µ−

Wilson coefficients, we can study a relation between dineutrino branching ratios of B → vector
and pseudoscalar mesons to probe lepton universality. We have presented the LU regions in
Eqs. (9.42) and (9.43), which are further illustrated in Fig. 9.3. Furthermore, tests of the EFT
framework can be established, e.g. Eq. (9.35) for b→ s transitions, where a violation hints at light
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BSM particles such as RH neutrinos. Refs. [19, 20] provide estimates on the impact of additional
dimension-six operators induced by light RH neutrinos where improved (future) experimental
limits on B(D0 → νν̄) and B(B0

(s) → νν̄) can further constrain scalar and pseudoscalar operators
in charm and B-physics, respectively.

The data-driven bounds on branching ratios presented for rare charm dineutrino modes of up to
O
(︁
10−5

)︁
can be probed by e+e−-facilities as displayed in Fig. 9.2. Limits on dineutrino branching

ratios in flavourful Z ′ models with a simplified SMEFT framework, see Eq. (9.27), are stronger
than the model-independent ones, but within the same order of magnitude. We very much look
forward to updated analyses of Belle II and LHCb and improved theoretical input to further
elaborate on the suggested null and lepton universality tests able to disentangle different NP
scenarios.
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10
Summary and conclusion

In this thesis, we exploited the rich phenomenology of Z ′ models. A notable aspect of these
extensions is the presence of non-universal fermionic U(1)′ charges. Due to flavour rotations large
effects in FCNC transitions can be induced, which in contrast are strongly GIM-suppressed in
the SM. However, the new charges are subject to constraints from gauge anomaly cancellation
that have to be met, while also stringent phenomenological bounds on NP parameters from, e.g.,
meson mixing supplement the model-building approach presented in Chap. 5.

Prompted by the enduring B-anomalies with a plethora of b→ s ℓ+ℓ− and b→ s γ data available,
we performed global fits of b→ s Wilson coefficients in Chap. 4. The results obtained point
towards the evidence of lepton universality violation which can be realised by the presence of NP
in left-handed quark currents, see Tabs. 4.1 and 4.2. A minimal extension to account for these
deviations is given by Z ′ models that have been extensively studied in the literature. However,
these models are prone to Landau poles emerging before the Planck scale which need to be
addressed. We tackled this issue in Chap. 8, proposing the Planck safety approach that comes
with a great predictive power as only a small subset of models achieves a stable behaviour until
the Planck scale. Such viable Z ′ models were worked out in Secs. 8.2 and 8.3.

The previous studies can be complemented by information from FCNCs in the up-quark sector. In
Chap. 6, we studied rare charm decays where null test observables are instrumental to evade the
unknown description of the long-distance dynamics. Sizeable contributions to Wilson coefficients
present in these observables can be generated by certain sets of Z ′ models compiled in Tab. 6.1.
In particular, deviations from the lepton universality limit RDP = 1 are readily induced in such
models. The predictions are outlined in Sec. 6.4.1 and provide a clear-cut sign of NP if confirmed
by experiments. In addition, we worked out the implications of new sources of CP violation
in Chap. 7. We exploited CP asymmetries in hadronic charm decays, where a link between a
NP-dominated ∆ACP and semileptonic D-decays allows to probe different patterns in Z ′ models
within the reach of future LHCb and Belle II sensitivities [85, 165]. Furthermore, large U -spin
and isospin breaking effects are realised in these models and can also be accessed by the same
experiments.

Thanks to the SU(2)L-invariance in the SMEFT, a genuine connection between quark transitions
into dineutrinos with those into charged dileptons emerges. We investigated this link in Chap. 9
across multiple FCNC transitions in a model-independent way, but also in Z ′ scenarios that
provide more restrictive predictions. Using Drell-Yan and rare decay data, we derived upper limits
on various c→ u νν̄ branching ratios for distinct lepton flavour assumptions, see Tab. 9.1. The
link can also be applied to b→ s transitions, which in contrast yields improved limits on charged
τ -lepton couplings, see Tab. 9.4. In addition, we presented novel universality tests in B→ Kνν̄
and B→ K∗νν̄ decays illustrated in Fig. 9.3. Predictions for Z ′ models were also worked out.

Clear signs of NP are yet to be discovered at colliders, however the future experimental prospects,

- 115 -



Chapter 10 Summary and conclusion

both in the up- and down-sector, are promising and highly anticipated by the community. For
example, the first measurements by the Belle II experiment of the LU ratios RK(∗) are expected
in the near future [85], and will provide independent validations of the current deviations by
LHCb [8, 84]. While global fits are already well-established in the B-sector, future implementations
comprising observables in the up-sector are welcome, and indeed will be crucial to disentangle the
whole picture of the underlying BSM theory.
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Appendix

A
Notations and conventions

Throughout this thesis, we work in natural units, i.e. redefining the speed of light and Planck’s
constant as c = 1 and h̄ = 1, respectively. This gives all quantities dimensions of energy E (in
electron volt eV) to some power. Equivalently, we can define the mass dimension of a quantity
using E = mc2. For example, momentum p and masses m of particles are given in units of GeV,
whereas (life)times τ and lengths x have units 1/GeV. Their mass dimension is then given by
[p] = [m] = 1 (positive mass dimension) and [τ ] = [x] = −1 (negative mass dimension), respectively.
Common examples are

[dx] = [x] = [τ ] = −1 , [∂µ] = [pµ] = 1 ,

[S] =

[︃∫︂
d4xL

]︃
= 0 , [L] = 4 , [ψ] =

3

2
, [φ] = 1 ,

(A.1)

where the action S is assumed dimensionless. In Eq. (A.1), L denotes a Lagrangian (or Lagrangian
density), while ψ and φ refer to fermion and scalar fields, respectively.

Furthermore, we follow the conventions (except when explicitly noted otherwise) described in this
appendix that are commonly employed in the literature, e.g. Ref. [26].

A.1 Dirac algebra and spinors

We define the metric tensor as

gµν = diag (+1,−1,−1,−1) . (A.2)

The Dirac or gamma matrices γµ with µ = 0, 1, 2, 3 satisfy the anticommutation relation

{γµ, γν} = γµ γν + γνγµ = 2 gµν , (A.3)

where explicit expressions of γµ and γ5 are given elsewhere [23, 24, 26]. This implies a Dirac
algebra with 16 elements

S = 14×4, P = γ5, V = γµ, A = γµ γ5, T = σµν , (A.4)

where

γ5 = iγ0γ1γ2γ3 = γ5 , (A.5)

σµν =
i
2
[γµ, γν ] =

i
2
(γµγν − γνγµ) . (A.6)
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In Eq. (A.4), we organise the different structures as scalar (S), pseudoscalar (P ), vector (V ),
axial vector (A) and tensor (T ). The following relations are useful(︁

γ0
)︁†

= +γ0 ,
(︁
γi
)︁†

= −γi ,

(γµ)
†
= γ0γµγ0 , (γ0)

2
= 1 , (γi)

2
= −1 ,

{γ5, γµ} = 0 , (γ5)
†
= γ5 ,

(A.7)

with i = 1, 2, 3.

The chirality projectors are defined as

PL/R =
1∓ γ5

2
, (PA)

†
= PA , PA γµ = γµ P−A , (A.8)

with A = L,R, where −L = R and −R = L is understood. Furthermore, we give the charge
conjugation matrix C = iγ2 γ0 with selected properties

C (γ5)
T
C−1 = +γ5, CT = −C , C† = C−1 , C (PA)

T
= PA C . (A.9)

A fermion is described by a four-component Dirac spinor and its adjoint which are denoted by
ψ and ψ̄ ≡ (ψ)

†
γ0, respectively. Then, left-handed (LH) and right-handed (RH) fermions are

defined as chiral fields

ψL/R ≡ PL/R ψ =
1∓ γ5

2
ψ , (A.10)

ψ̄A ≡ ψA = ψ̄ P−A . (A.11)

Employing Eq. (A.9), we define the charge-conjugated spinors as

ψc ≡ C ψ
T
, (ψc)

c
= ψ , (A.12)

with chiral properties according to

ψcA ≡ (ψA)
c
= (ψc)−A = P−A ψ

c , (A.13)

ψ̄
c
A ≡ ψcA = (ψA)

c
= (ψc)−A = ψc PA . (A.14)

By expressing a Dirac fermion as

ψ = ψL + ψR , ψ̄ = ψ̄L + ψ̄R , (A.15)

we can identify the following properties

ψ̄γµψ = ψ̄LγµψL + ψ̄RγµψR (vector) , (A.16)
ψ̄ψ = ψ̄LψR + ψ̄RψL (scalar) , (A.17)

ψ̄γµγ5ψ = −ψ̄LγµψL + ψ̄RγµψR (axial vector) , (A.18)
ψ̄γ5ψ = ψ̄LψR − ψ̄RψL (pseudoscalar) . (A.19)

We note that vector-type terms with γµ and γµγ5 connect only fields of the same helicity, i.e. LH
or RH fields. Conversely, a helicity flip occurs for scalar-type terms only linking fields of opposite
helicity.
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These features manifest themselves when examining interaction and mass terms of fermionic
Lagrangians [26]

Lmass = −m
(︁
ψ̄RψL + ψ̄LψR

)︁
, (A.20)

Lint = +g Fψ
(︁
ψ̄LγµA

µψL + ψ̄RγµA
µψR

)︁
, (A.21)

where g and Fψ denote the gauge coupling and charge under a U(1) symmetry, respectively, and
m is the fermion mass. A helicity flip is needed to dynamically generate a mass term. This
statement generally holds for charged fermions while an exception marks the introduction of
so-called Majorana mass terms for neutral fermions, e.g. neutrinos as in Eq. (2.29). Gauge
interactions connect fields of the same helicity, and hence without a separate mass term it is not
possible to generate fermion masses radiatively through interactions.

A.2 Pauli matrices

The Pauli matrices σi are defined via the Lie algebra following[︁
σi, σj

]︁
= 2 i ϵijl σl,

{︁
σi, σj

}︁
= 2 i δij 1 , (A.22)

tacitly employing the Einstein summation notation. Here, the structure constant ϵijl is the
Levi-Civita tensor normalised as ϵ123 = +1, while δij denotes the Kronecker delta. The four Pauli
matrices can be written as

σ0 =

⎛⎝1 0

0 1

⎞⎠ , σ1 =

⎛⎝0 1

1 0

⎞⎠ , σ2 =

⎛⎝0 −i

i 0

⎞⎠ , σ3 =

⎛⎝1 0

0 −1

⎞⎠ . (A.23)

A.3 Fierz identities

Fierz identities or Fierz relations transfer a given chain of spinors into another one. They prove
useful when a calculation of matrix elements between external states is easier to perform using a
certain arrangement of spinors. The relevant Fierz identities at operator level [26, 220] read(︁

ψ̄1 γµ PA ψ2

)︁ (︁
ψ̄3 γ

µ PA ψ4

)︁
=
(︁
ψ̄1 γµ PA ψ4

)︁ (︁
ψ̄3 γ

µ PA ψ2

)︁
, (A.24)(︁

ψ̄1 γµ PA ψ2

)︁ (︁
ψ̄3 γ

µ PB ψ4

)︁
= (−2)

(︁
ψ̄1 γµ PB ψ4

)︁ (︁
ψ̄3 γ

µ PA ψ2

)︁
, (A.25)

with the projection operators PA ̸= PB as in Eq. (A.8). Using an improved notation, the identities
above can be compactly written as

[γµ PA]ij [γµ PA]kl = [γµ PA]il [γµ PA]kj , (A.26)
[γµ PA]ij [γµ PB ]kl = (−2) [PB ]il [PA]kj , (A.27)

with fermion indices i, j, k, l in flavour space.
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A.4 Details on the definition of couplings

The renormalisation factor r1 in Eq. (5.34) is evaluated via the running of the effective strong
coupling αs = g2s/(4π) at one loop [44, 221]. The corresponding RGE is given by

dαs
d ln(µ)

= −2βQCD
0

α2
s

4π
, (A.28)

with βQCD
0 = 11 − 2/3nf as in Eq. (3.21). As quark masses mq create additional higher-order

perturbation terms, they indirectly affect αs via the number of active quark flavours at the scale
µ, denoted as nf . A quark flavour f is referred to as active if mq < µ. At the quark thresholds,
we impose the boundary conditions

α
(nf−1)
s (µ = mq) = α

(nf )
s (µ = mq) . (A.29)

In the studies of Chaps. 6 and 7, we employ

α
(nf )
s (µ) =

α
(nf )
s (µ0)

1 + β̃0(nf )α
(nf )
s (µ0) ln

(︂
µ2

µ2
0

)︂ , (A.30)

where β̃0 = βQCD
0 /(4π). To compute the running while passing quark thresholds, we employ the

experimental input αs(MZ) = α
(5)
s (MZ) provided in Tab. B.1. For example, we obtain

α(4)
s (mb) = α(5)

s (mb) =
αs(MZ)

1 + β̃0(5)αs(MZ) ln
(︂
m2
b

M2
Z

)︂ , (A.31)

α(4)
s (mc) =

α
(4)
s (mb)

1 + β̃0(4)α
(4)
s (mb) ln

(︂
m2
c

m2
b

)︂ . (A.32)

Rescaling of gauge couplings

In what follows, we provide the notation of the rescaled couplings used in Chap. 8, where we follow
the notation of, e.g., Refs. [21, 137, 141, 142]. The gauge couplings read

αX =
X2

(4π)
2 with X = {g1, g2, g3, g4} , (A.33)

where the scaling differs from the convention commonly used in literature by a factor 4π. Due to
this rescaling, the RGE of the strong coupling in Eq. (A.28) gets modified and reads

dα3

d ln(µ)
= B3 α

2
3 , (A.34)
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µ0 = 3 TeV µ0 = 5 TeV

α1(µ0) 8.40 · 10−4 8.46 · 10−4

α2(µ0) 2.54 · 10−3 2.52 · 10−3

α3(µ0) 6.37 · 10−3 6.09 · 10−3

αt(µ0) 4.17 · 10−3 4.00 · 10−3

αb(µ0) 1.07 · 10−6 1.02 · 10−6

αλ(µ0) 5.18 · 10−4 4.80 · 10−4

Table A.1: Numerical values of SM parameters at matching scales µ0 = 3 TeV and µ0 = 5 TeV.
Table taken from Ref. [21].

with B3 = −2βQCD
0 . The solution can be written as

α3(µ) =
α3(µ0)

1− B3

2 α3(µ0) ln
(︂
µ2

µ2
0

)︂ , (A.35)

suppressing the active quark flavours for brevity. However, we avoid unnecessary confusion by
using the default notation for the fine-structure constant

αe ≡
e2

4π
. (A.36)

where e denotes the elementary charge. Then, αe(me) ≈ 1/137 at µ = me.

For completion, we give the corresponding rescaled Yukawa, quartic and portal couplings as utilised
in the Planck safety analysis of Ref. [21] and discussed in Sec. 8.3,

αY =
Y 2

(4π)
2 with Y = {yt, yb, y} ,

αZ =
Z

(4π)
2 with Z = {λ, δ, δ̃, u, v, w, s} .

(A.37)

In Tab. A.1, we provide the SM parameters at the matching scales µ0 = 3 TeV and µ0 = 5 TeV,
employed in the analysis of Chap. 8.
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Appendix

B
Numerical constants and
input parameters

In this appendix, we summarise the input parameters which are employed in the main calculations of
this thesis. In Tabs. B.1 to B.3, we list values of coupling constants, CKM parameters, masses, and
lifetimes divided into three separate tables. Therein, central values and the respective uncertainties
are given. Yet, we generally consider only the central values in our computations if not noted
otherwise. For instance, the uncertainties of the Fermi constant GF and the fine-structure constant
αe quoted in Tab. B.1 are minuscule and only stated here for the sake of completion. We also
provide useful functions and input on meson mixing parameters.

In Tab. B.1, we quote two numbers each for the CKM parameters in the Wolfenstein notation. The
first numbers are taken from the Particle Data Group (PDG) of 2018 [155], whereas the numbers
in brackets refer to the latest PDG input available in Ref. [32]. While the updated values have
only minor impact on the results presented herein, we clarify that Chaps. 6 and 7 utilise the older
numbers, while the updated numbers are included in the analyses of Chaps. 8 and 9.

For the conversion from seconds to GeV the following relation proves useful

6.5821 · 10−13 ps GeV = 6.5821 · 10−25 s GeV = 1 . (B.1)

We define the chiral enhancements [168]

χK(µ) =
2m2

K0

mc(µ)ms(µ)
,

χπ(µ) =
2m2

π0

mc(µ) (md +mu)(µ)
,

(B.2)

with values χK(mc) ≈ 3.626 and χπ(mc) ≈ 3.655 at the charm scale.

The Källén function is defined as

λ(a, b, c) ≡ a2 + b2 + c2 − 2(ab+ ac+ bc) . (B.3)

Moreover, we employ the kinematic function

λDP = λDP (q
2) = λ(m2

D,m
2
P , q

2) , (B.4)

with units [GeV]4. Here, q2 is the dilepton invariant mass squared, while mD and mP denote
constituent decay masses.
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D0-D0 mixing parameters

For the mixing parameters we use the latest published world averages of the HFLAV collabora-
tion [123]

x12 ∈ [0.22 , 0.63] % , y12 ∈ [0.50 , 0.75] % , φ12 ∈ [−2.5◦, 1.8◦] , (B.5)

quoting the allowed 95%C.L. intervals. However, a recent global fit update of the D-mixing
parameters is provided online awaiting publication. The updated values as of December 2021
read [124]

x12 ∈ [0.314 , 0.503] % , y12 ∈ [0.495 , 0.715] % , φ12 ∈ [−1.2◦, 2.42◦] . (B.6)

We discuss the impact of this update on the parameter space of Z ′ models in Sec. 7.5.

The HMEs of the operators Q1−3 and Q6 in Eq. (5.31) are computed at µ = 3 GeV. The numerical
values can be extracted from Ref. [222] and read

⟨Q1⟩ = 0.0805(55) GeV4 = ⟨Q6⟩ ,
⟨Q2⟩ = −0.2070(142) GeV4 ,

⟨Q3⟩ = 0.2747(129) GeV4 .

(B.7)

B0-B0 mixing parameters

The experimental world averages of the mass differences of the neutral B(s) mesons read [123]

∆M exp
d = (0.5065± 0.0019) ps−1 , (B.8)

∆M exp
s = (17.757± 0.021) ps−1 . (B.9)

For the SM predictions we employ the weighted averages [128]

∆MSM
d =

(︁
0.533+0.022

−0.036

)︁
ps−1 , (B.10)

∆MSM
s =

(︁
18.4+0.7

−1.2

)︁
ps−1 . (B.11)
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Appendix B Numerical constants and input parameters

Quantity Symbol Value Unit Reference

Fermi constant GF 1.1663787(6) ·10−5 GeV−2 PDG [32]

inv. fine-structure constant αe(me)
−1 137.035999150(33) PDG [32]

137.036 strong coupling constant αs(MZ) 0.1182(8) FLAG [223]

Wolfenstein parameter λCKM 0.22453(44) [0.22650(48)] PDG [155], [32]

A 0.836(15) [0.790(17)] PDG [155], [32]

ρ̄ 0.122(18) [0.141(17)] PDG [155], [32]

η̄ 0.355(12) [0.357(11)] PDG [155], [32]

Table B.1: Numerical values of input parameters used in this thesis. The values in parentheses
denote the respective uncertainty up to the given significant figure, e.g. 1.0(2) = 1.0± 0.2. For
the CKM input, we give the errors as symmetrised ones by taking the largest value of the upper
and lower uncertainties.

Quantity Symbol Value Unit Reference

W -boson mass MW 91.1876(21) GeV PDG [155]

Z-boson mass MZ 80.379(12) GeV PDG [155]

Higgs-boson mass MH 125.18(16) GeV PDG [155]

electron mass me 0.5109989461(31) ·10−3 GeV PDG [155]

muon mass mµ 0.1056583745(24) GeV PDG [155]

tauon mass mτ 1.77686(12) GeV PDG [155]

u-quark mass mu(2 GeV) 2.2(5) ·10−3 GeV PDG [155]

d-quark mass md(2 GeV) 4.7(5) ·10−3 GeV PDG [155]

averaged u, d mass at charm scale mu+md
2 (mc) 3.894(49) ·10−3 GeV Our analysis†

s-quark mass ms(2 GeV) 95(9) ·10−3 GeV PDG [155]

s-quark mass at charm scale ms(mc) 106.71(78) ·10−3 GeV Our analysis†

c-quark mass at charm scale mc(mc) 1.275(25) GeV PDG [155]

b-quark mass at b-scale mb(mb) 4.198(12) GeV PDG [32]

t-quark mass at t-scale mt(mt) 160(5) GeV PDG [155]

B0-meson mass mB0 5.27965(12) GeV PDG [32]

B+-meson mass mB+ 5.27934(12) GeV PDG [32]

Bs-meson mass mBs 5.36688(14) GeV PDG [32]

D0-meson mass mD0 1.86484(5) GeV PDG [32]

D+-meson mass mD+ 1.86966(5) GeV PDG [32]

Ds-meson mass mDs 1.96835(7) GeV PDG [32]

Table B.2: Continuation of Tab. B.1, which lists numerical values of the input parameters
used in this thesis. The quark masses are given in the MS scheme [32]. †We have computed the
masses using the rundec package [224] available in Python and Mathematica.

- 124 -



Quantity Symbol Value Unit Reference

muon lifetime τµ 2.1969811(22) ·10−6 s PDG [32]

tauon lifetime ττ 2.903(5) ·10−12 s PDG [32]

D0-meson lifetime τD0 0.4101(15) ·10−12 s PDG [32]

D+-meson lifetime τD+ 1.040(7) ·10−12 s PDG [32]

Ds-meson lifetime τDs 0.504(4) ·10−12 s PDG [32]

B0-meson lifetime τB0 1.519(4) ·10−12 s PDG [32]

B+-meson lifetime τB+ 1.638(4) ·10−12 s PDG [32]

Bs-meson lifetime τBs 1.515(4) ·10−12 s PDG [32]

π-meson decay constant fπ 130.2(8) ·10−3 GeV FLAG [223]

K-meson decay constant fK 155.7(7) ·10−3 GeV FLAG [223]

D-meson decay constant fD 212.0(7) ·10−3 GeV FLAG [223]

Ds-meson decay constant fDs 249.9(5) ·10−3 GeV FLAG [223]

B-meson decay constant fB 188(7) ·10−3 GeV FLAG [223]

Bs-meson decay constant fBs 227(7) ·10−3 GeV FLAG [223]

D → π form factor fDπ0 (0) 0.612(35) [225]†

fDπ0 (m2
π) 0.614(35) [225]†

D → K form factor fDK0 (0) 0.765(31) [225]†

fDK0 (m2
K) 0.789(28) [225]†

Table B.3: Continuation of Tabs. B.1 and B.2, which comprises lifetimes of leptons and mesons,
as well as meson decay constants and D → P form factors. †Values are obtained using the
fit results of the z-expansion parameters in Ref. [225] including correlations, see App. E.3 for
details.
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Appendix

C
Details on b→ s global fits

In this appendix, we provide details on the global fit of b→ s Wilson coefficients that is performed
using the flavio and iminuit packages available in Python [91, 95]. We summarise the observables
included in our fit and present results in Apps. C.1 and C.2, respectively. The correlation matrices
for the fit scenarios are given in App. C.3.

C.1 List of observables and data included

In our global fit, we study observables featuring little sensitivity to long-distance physics, which
provide an enhanced potential in NP searches. Such observables are often referred to as (theoreti-
cally) clean, where hadronic uncertainties of, e.g., form factors cancel at LO in the effective theory
considered. In addition, the experimental accessibility of these observables is formidable [226].
Incorporating a large number of such (binned and unbinned) observables in our fit is necessary to
sufficiently constrain the FCNC operators in b→ s transitions.

In the following, we give the complete list of observables and datasets used in the global fit,
where we follow Refs. [93, 94]. We provide several tables that include different sets of observables,
e.g. angular observables and (differential) branching ratios in Tabs. C.1 and C.2, respectively.
We include the observables listed in Table B.1-B.3 of Ref. [93], while additionally including the
recent measurements of RK0

S
and RK∗+ from LHCb [9], displayed in Tab. C.4 herein. In our

analysis, we focus on observables sensitive to the b→ s transition. Hence, we do not include
charged-current B-decays (b→ (c, u) ℓν), strange, charm or τ -lepton decays as well as LFV decays,
such as B+→ K+τµ, cf. Tables B.4 to B.9 in Ref. [93]. Conversely, we include observables
of radiative modes, B0

(s)→ µ+µ−and Λb-decays, which are already implemented in flavio, see
Tab. C.3. To minimise confusion, we highlight observables that are only included in our analysis
(and not implemented in the analysis of Ref. [93]) with a ◦ in Tabs. C.1 to C.4.

For the binned b→ s µ+µ− observables compiled in Tabs. C.1 and C.2, we take into account
all available data on angular observables in the optimised basis 1 [226], where we refer to, e.g.,
Ref. [249] for details on angular observables. The different (sub)sets of observables and bins
included vary depending on the experiment providing the data. Notably, in the region of the
cc resonances non-factorisable contributions diminish the validity of the QCD factorisation [70].
Thus, we do not take into account q2-bins between 6 and 8 GeV2. Moreover, we omit the q2-bin
[0.1, 0.98] GeV2 in our fit since different form factor treatments in flavio and Ref. [226] lead to
considerable discrepancies in the associated theoretical uncertainties in this bin. In contrast, a

1The optimised basis represents a sound trade-off between theoretical cleanliness and simplicity in their experimental
accessibility, see Ref. [226] and references therein.
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C.1 List of observables and data included

Observables q2-bins in GeV2 Datasets

⟨O⟩
(︁
B0→ K∗0µ+µ−)︁

⟨FL⟩, ⟨P1⟩, ⟨P2⟩, ⟨P3⟩,
⟨P ′

4⟩, ⟨P
′
5⟩, ⟨P

′
6⟩, ⟨P

′
8⟩

[1.1, 2.5], [2.5, 4],
[4, 6], [15, 19] LHCb’15 [227], LHCb’20 [228]

⟨FL⟩, ⟨P1⟩, ⟨P ′
4⟩,

⟨P ′
5⟩, ⟨P

′
6⟩, ⟨P

′
8⟩

[0.04, 2], [2, 4],
[4, 6]

ATLAS’17 [229]

⟨FL⟩, ⟨AFB⟩,
⟨P1⟩, ⟨P ′

5⟩
[1, 2], [2, 4.3],
[4.3, 6], [16, 19] CMS’17 [230]

⟨FL⟩, ⟨AFB⟩ [0, 2], [2, 4.3], [16, 19.3] CDF’12 [231]

⟨O⟩
(︁
B+→ K∗+µ+µ−)︁

⟨FL⟩, ⟨P1⟩, ⟨P2⟩, ⟨P3⟩
⟨P ′

4⟩, ⟨P
′
5⟩, ⟨P

′
6⟩, ⟨P

′
8⟩

[1.1, 2.5], [2.5, 4],
[4, 6], [15, 19] LHCb’20 [232]

⟨AFB⟩ [1.1, 2.5], [4, 6], [15, 19] LHCb’20 [232] ◦

⟨O⟩
(︁
B+→ K+µ+µ−)︁

⟨AFB⟩, ⟨FH⟩ [1.1, 2], [2, 3], [3, 4],
[4, 5], [5, 6], [15, 22] LHCb’14 [233] ◦

⟨O⟩
(︁
Λb→ Λµ+µ−)︁

⟨AhFB⟩, ⟨AlFB⟩, ⟨AlhFB⟩ [15, 20] LHCb’18 [234] ◦

⟨O⟩
(︁
Bs→ φµ+µ−)︁

⟨FL⟩, ⟨S3⟩, ⟨S4⟩, ⟨S7⟩ [0.1, 2], [2, 5], [15, 19] LHCb’15 [235]

Table C.1: Datasets on angular b→ sµ+µ− observables used in our fit. This list comprises
126 different observables. The ◦ highlights observables that are not included in the analysis of
Ref. [93].

good agreement is reached in all other bins. Following the set-up in Ref. [93], we always take into
account the narrow bins (if provided by the experiment) in the region of large hadronic recoil
(low-q2 region), while for low hadronic recoil (high-q2 region) we consider larger bin sizes averaging
over the kinematic region above the resonances. Observables of radiative B-decays as well as the
branching ratios of Bs→ µ+µ− and B0→ µ+µ− (due to their strong correlation) are also included
in our fit, where we provide the corresponding SM predictions and measurements in Tab. C.3.

While the previously presented observables are obtained from pure b→ s µ+µ− data, we list a
special set of observables that violate LFU in Tab. C.4. Assuming that electron modes do not suffer
from NP effects, we include observables with couplings to electrons that set strong constraints
on the Wilson coefficients C(′)

7 [97]. We include the datasets from LHCb and Belle, where the
measurements on the ratios of (differential) branching ratios RK(∗) provided by LHCb yield stronger
constraints on our fit due to their significantly smaller statistical and systematic uncertainties.
We refer to Tab. C.5 for a comparison and Sec. 3.4 for more details on the LU ratios. The Belle
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Appendix C Details on b→ s global fits

Observables q2-bins in GeV2 Datasets

⟨ dB
dq2

⟩
(︁
B0→ K∗0µ+µ−)︁

[1.1, 2.5], [2.5, 4], [4, 6], [15, 19] LHCb’16 [236]

⟨ dB
dq2

⟩
(︁
B+→ K∗+µ+µ−)︁

[0.1, 2], [2, 4], [4, 6], [15, 19] LHCb’14 [237]

⟨ dB
dq2

⟩
(︁
B0→ K0µ+µ−)︁

[0.1, 2], [2, 4], [4, 6], [15, 22] LHCb’14 [237]

⟨ dB
dq2

⟩
(︁
B+→ K+µ+µ−)︁ [1.1, 2], [2, 3], [3, 4],

[4, 5], [5, 6], [15, 22] LHCb’14 [237]

⟨ dB
dq2

⟩
(︁
Bs→ φµ+µ−)︁ [0.1, 2], [2, 5], [15, 19],

[1.1, 2.5], [2.5, 4], [4, 6] LHCb’15 [235], LHCb’21 [99] □

⟨ dB
dq2

⟩
(︁
Λb→ Λµ+µ−)︁

[2, 4], [4, 6], [15, 20] LHCb’15 [238] ◦

Table C.2: Datasets on binned differential branching ratios in b→ sµ+µ− observables used in
our fit. This list comprises 27 different observables. The ◦ highlights observables that are not
included in the analysis of Ref. [93]. The □ indicates new/updated measurements of observables
compared to the analysis of Ref. [20], see comments in the main text.

results are measured in more bins compared to LHCb 2. Additionally, we take into account the
observables

Q4,5 ≡ P ′µ
4,5 − P ′e

4,5 . (C.1)

They measure the difference of angular observables P ′
i between electrons and muons in the final

state, and thus constitute a null test of the SM. The list in Tab. C.4 is complemented by a set of
B0→ K∗0 e+e− observables, also included in the analysis of Ref. [93].

Updated measurements compared to the analysis in Ref. [20]

Since the publication of Ref. [20], where this global fit to b→ s data was presented first, updated
measurements of some observables have been made available to flavio. Hence, in this appendix we
perform an updated fit that includes the following changes compared to the analysis in Ref. [20]:

• We additionally include the latest LHCb measurement [99] of ⟨ dB
dq2 ⟩ (Bs→ φµ+µ−) with q2

bins [1, 2.5], [2.5, 4] and [4, 6] GeV2, see Tab. C.2.

• We use the updated combined measurement of B0
(s) → µ+µ− branching ratios [98] with

a Gaussian distribution fitted to the numerical combination of ATLAS, CMS and LHCb
results, see Tab. C.3. In Ref. [20], the 2020 combination [250] has been employed instead.

• We include the (first) LHCb measurements [9] of RK∗+ (and RK0
S
) which were not available

when our original analysis was realised.

2We remark that for the Belle measurements of RK0
S

and RK+ the updated values taken from the published
version of Ref. [245] are employed in our fit. The measurements list provided by flavio v2.3.3 only incorporates
the outdated values of version 1 as of May 2022. However, such changes have no noticeable impact on the fit due
to the large uncertainties of those measurements.
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C.1 List of observables and data included

Observables SM prediction Measurement/Limit

B
(︁
Bs→ µ+µ−)︁

(3.67 ± 0.14) · 10−9 (2.9 ± 0.3) · 10−9 combination 2021† [98] ◦ □

B
(︁
B0→ µ+µ−)︁

(1.14 ± 0.11) · 10−10 (0.6 ± 0.7) · 10−10 combination 2021† [98] ◦ □

B
(︁
B0→ K∗0γ

)︁
(41.8 ± 7.4) · 10−6 (43.3 ± 1.5) · 10−6 HFLAV’14 [239] ◦

B
(︁
B+→ K∗+γ

)︁
(42.5 ± 8.0) · 10−6 (42.1 ± 1.8) · 10−6 HFLAV’14 [239] ◦

B (B→ Xsγ) (329 ± 23) · 10−6 (327 ± 14) · 10−6 Belle’16 [240, 241] ◦

B (Bs→ φγ) (4.0 ± 0.5) · 10−5 (3.6 ± 0.5 ± 0.3 ± 0.6) · 10−5 Belle’14 [242] ◦
B
(︂
Bs→ K∗0γ

)︂
B
(︂
Bs→ φγ

)︂ 1.04 ± 0.19 1.19 ± 0.06 ± 0.04 ± 0.07 LHCb’12 [243] ◦

ACP
(︁
B0→ K∗0γ

)︁
0.005 ± 0.002 −0.002 ± 0.015 HFLAV’14 [239] ◦

ACP (Bs→ φγ) 0.004 ± 0.002 0.11 ± 0.29 ± 0.11 LHCb’19 [244] ◦

A∆
CP (Bs→ φγ) 0.03 ± 0.02 −0.67+0.37

−0.41 ± 0.17 LHCb’19 [244] ◦

Sφγ (−2 ± 2) · 10−4 0.43 ± 0.30 ± 0.11 LHCb’19 [244] ◦

SK∗γ −0.023 ± 0.014 −0.16 ± 0.22 HFLAV’14 [239] ◦

Table C.3: Datasets on observables of B0
(s)→ µ+µ−and B→ Xγ decays, where their SM

predictions are obtained using flavio. This list comprises 12 different observables. The ◦
highlights observables that are not included in the analysis of Ref. [93]. The □ indicates
new/updated measurements of observables compared to the analysis of Ref. [20]. †Latest
combination of ATLAS’18, CMS’19 and LHCb’21 results using a Gaussian distribution implemented in flavio.

Observables q2-bins in GeV2 Datasets

⟨R
K0

S
⟩ [0.1, 4], [1.0, 6.0], [14.18, 19] Belle’19 [245]

⟨R
K0

S
⟩ [1.1, 6] LHCb’21 [9] ◦ □

⟨RK+ ⟩ [0.1, 4], [1, 6], [14.18, 19] Belle’19 [245]

⟨RK+ ⟩ [1.1, 6] LHCb’21 [8]

⟨RK∗0 ⟩ [0.045, 1.1], [1.1, 6], [15, 19] Belle’19 [86]

⟨RK∗0 ⟩ [0.045, 1.1], [1.1, 6] LHCb’17 [84]

⟨RK∗+ ⟩ [0.045, 1.1], [1.1, 6], [15, 19] Belle’19 [86]

⟨RK∗+ ⟩ [0.045, 6.0] LHCb’21 [9] ◦ □

LU-violating observables

⟨Q4⟩, ⟨Q5⟩ [0.1, 4], [1, 6], [14.18, 19] Belle’16 [246]

B0→ K∗0 e+e− observables

⟨FL⟩, ⟨P1⟩, ⟨P2⟩, ⟨Im(AT)⟩ [0.002, 1.12], [0.0008, 0.257] LHCb’15 [247], LHCb’20 [248]

Table C.4: Datasets on observables in B→ K(∗)ℓ+ℓ− decays sensitive to LFU violation. This
list comprises 29 different observables. The ◦ highlights observables that are not included in
the analysis of Ref. [93]. The □ indicates new/updated measurements of observables compared
to the analysis of Ref. [20].
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Appendix C Details on b→ s global fits

q2-bin in GeV2 SM prediction Measurement Dataset Deviation

R
K0

S

[0.1, 4.0] 1.00 ± 0.01 1.62+1.31
−1.01 (stat) ± 0.02 (syst) Belle’19 [245] < 1.0σ

[1.0, 6.0] 1.00 ± 0.01 0.55+0.46
−0.34 (stat) ± 0.01 (syst) Belle’19 [245] < 1.0σ

[1.1, 6.0] 1.00 ± 0.01 0.66+0.20
−0.14 (stat) +0.02

−0.04 (syst) LHCb’21 [9] ∼ 1.5σ

[14.18, 19.0] 1.00 ± 0.01 1.57+1.28
−1.00 (stat) ± 0.02 (syst) Belle’19 [245] < 1.0σ

RK+

[0.1, 4.0] 1.00 ± 0.01 0.98+0.29
−0.26 (stat) ± 0.02 (syst) Belle’19 [245] < 1.0σ

[1.0, 6.0] 1.00 ± 0.01 1.39+0.36
−0.33 (stat) ± 0.02 (syst) Belle’19 [245] < 1.0σ

[1.1, 6.0] 1.00 ± 0.01 0.846+0.042
−0.039 (stat) +0.013

−0.012 (syst) LHCb’21 [8] ∼ 3.1σ

[14.18, 19.0] 1.00 ± 0.01 1.13+0.31
−0.28 (stat) ± 0.01 (syst) Belle’19 [245] < 1.0σ

RK∗0

[0.045, 1.1] 0.91 ± 0.03
0.46+0.55

−0.27 (stat) ± 0.13 (syst) Belle’19 [86] < 1.0σ

0.66+0.11
−0.07 (stat) ± 0.03 (syst) LHCb’17 [84] ∼ 2.2σ

[1.1, 6.0] 1.00 ± 0.01
1.06+0.63

−0.38 (stat) ± 0.14 (syst) Belle’19 [86] < 1.0σ

0.69+0.11
−0.07 (stat) ± 0.05 (syst) LHCb’17 [84] ∼ 2.5σ

[15, 19] 1.00 ± 0.01 1.12+0.61
−0.36 (stat) ± 0.10 (syst) Belle’19 [86] < 1.0σ

RK∗+

[0.045, 1.1] 0.91 ± 0.03 0.62+0.60
−0.36 (stat) ± 0.09 (syst) Belle’19 [86] < 1.0σ

[0.045, 6.0] 0.98 ± 0.02 0.70+0.18
−0.13 (stat) +0.03

−0.04 (syst) LHCb’21 [9] ∼ 1.4σ

[1.1, 6.0] 1.00 ± 0.01 0.72+0.99
−0.44 (stat) ± 0.15 (syst) Belle’19 [86] < 1.0σ

[15, 19] 1.00 ± 0.01 1.40+1.99
−0.68 (stat) ± 0.12 (syst) Belle’19 [86] < 1.0σ

Table C.5: List of RK(∗) observables for selected q2-bins used in our fit. We state the
experimental results while also indicating the corresponding collaboration and year of publication,
e.g. LHCb’21. The theoretical predictions in the SM are taken from Refs. [82, 87]. The deviation
of a measurement compared to its SM prediction, i.e. the pull from the SM in terms of standard
deviations, is also provided. Notably, the experimental results from Belle are compatible with
the SM due to their large uncertainties.
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C.2 Fit results and supplementary plots

In what follows, we display all results following the fit procedure outlined in Chap. 4. In doing so,
we iterate the fit results of Chap. 4 in Tabs. C.7 and C.8 for clarity. Revised fit results employing
updated measurements of some observables are compiled in Tabs. C.9 and C.10. Additional
information can be fetched from Tab. C.6.

Fit Fit Table Updated measurements nobs χ2
SM

no R
K(∗) Table C.7 7 162 183.33

with R
K(∗) Table C.8 7 189 223.48

no R
K(∗) Table C.9 ✓ 165 189.16

with R
K(∗) Table C.10 ✓ 194 232.93

Table C.6: Additional meta data for the fit scenarios presented in this thesis. The tick denotes
fits that include the updated measurements (see explanation at the end of App. C.1). nobs
denotes the number of observables included in the respective fit approach, whereas χ2

SM is the
χ2 function evaluated for SM-like (i.e. zero-valued) fit parameters.

The fit results in Tab. C.7 using only pure b→ s µ+µ− data (called ‘no RK(∗) ’) have been utilised
in the work of Ref. [20], and are presented in Chap. 9. Conversely, the best-fit values of scenarios
including RK(∗) and B0→ K∗0 e+e− observables (called ‘with RK(∗) ’) in Tab. C.8 feature in the
study of Planck-safe Z ′ models explaining the B-anomalies in Ref. [21]. They are discussed in
Chap. 8. Dedicated best-fit scenarios and their impact on BSM models are presented in Chap. 4.
Therein, Figs. 4.1 and 4.2 display the likelihood contours of global fit results and different (sub)sets
of observables for the 6d and 2d fit scenarios, respectively. Additional plots that show different
sets of observables are collected in Figs. C.1 and C.2.

Global fits with pure b→ s µ+µ− data (‘no RK(∗) ’)

Dim. C9,µ C10,µ C′
9,µ C′

10,µ C7 C′
7 redχ2 pullSM

1 −0.91 ± 0.18 - - - - - 1.00 4.5σ

1 −0.68 ± 0.16 −C9,µ - - - - 0.99 4.7σ

2 −1.02 ± 0.19 0.46 ± 0.18 - - - - 0.96 4.9σ

4 −1.13 ± 0.18 0.31 ± 0.21 0.29 ± 0.33 −0.24 ± 0.19 - - 0.92 5.0σ

6 −1.15 ± 0.18 0.30 ± 0.20 0.22 ± 0.34 −0.24 ± 0.19 0.002 ± 0.01 0.02 ± 0.02 0.91 4.6σ

Table C.7: Duplicate of Tab. 4.1, given here for clarity.
Best-fit values and 1σ uncertainties of the Wilson coefficients from a fit with only pure
b→ s µ+µ− data for different NP scenarios. We also provide the respective value of redχ2 and
pull from the SM hypothesis. Table taken from Ref. [20].
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Global fits including RK(∗) data (‘with RK(∗) ’)

Dim. C9,µ C10,µ C′
9,µ C′

10,µ C7 C′
7 redχ2 pullSM

1 −0.83 ± 0.14 - - - - - 0.98 6.0σ

1 −0.41 ± 0.07 −C9,µ - - - - 0.99 6.0σ

2 −0.71 ± 0.17 0.20 ± 0.13 - - - - 0.97 5.9σ

4 −1.07 ± 0.17 0.18 ± 0.15 0.27 ± 0.32 −0.28 ± 0.19 - - 0.90 6.5σ

6 −1.08 ± 0.18 0.18 ± 0.15 0.27 ± 0.34 −0.28 ± 0.17 0.0005 ± 0.01 0.005 ± 0.006 0.89 6.1σ

Table C.8: Duplicate of Tab. 4.2, given here for clarity.
Best-fit values and 1σ uncertainties of the Wilson coefficients from a fit also including the
observables listed in Tab. C.4 for different NP scenarios. We also provide the respective value
of redχ2 and pull from the SM hypothesis. Table taken from Ref. [20].
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Figure C.1: Supplementary contour plots to Fig. 4.1 that show different likelihood contours in
the 6d fit scenario ‘with RK(∗) ’, where the lower two plots display contours in the C10,µ-C′

10,µ

plane.

Fit results that include updated measurements

In Tabs. C.9 and C.10, the results using the updated measurements are compiled. In Fig. C.3, the
3σ contours for the 6d fit scenario are shown. We compare the preferred parameter regions to
illustrate the small but visible change when including the updated measurements. Nonetheless,
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Figure C.2: Supplementary contour plot to Fig. 4.2 that shows different likelihood contours in
the 2d fit scenario ‘with RK(∗) ’.

we stress that this update has no major impact on the overall fit results and implications for the
model building in this thesis. Thus, we only present the updated results in this appendix, while
the published results in Tabs. C.7 and C.8 are employed for all related studies.

Updated global fits with pure b→ s µ+µ− data (‘no RK(∗) ’)

Dim. C9,µ C10,µ C′
9,µ C′

10,µ C7 C′
7 redχ2 pullSM

1 −0.84 ± 0.21 - - - - - 1.07 3.5σ

1 −0.58 ± 0.12 −C9,µ - - - - 1.00 4.9σ

2 −1.07 ± 0.21 0.50 ± 0.13 - - - - 0.97 5.1σ

4 −1.13 ± 0.19 0.26 ± 0.20 0.19 ± 0.33 −0.26 ± 0.17 - - 0.93 5.1σ

6 −1.17 ± 0.20 0.25 ± 0.20 0.10 ± 0.34 −0.27 ± 0.17 0.002 ± 0.01 0.02 ± 0.02 0.93 4.7σ

Table C.9: Same as Tab. C.7 but for the updated fit.

Updated global fits including RK(∗) data (‘with RK(∗) ’)

Dim. C9,µ C10,µ C′
9,µ C′

10,µ C7 C′
7 redχ2 pullSM

1 −0.81 ± 0.15 - - - - - 1.03 5.7σ

1 −0.42 ± 0.07 −C9,µ - - - - 0.99 6.4σ

2 −0.61 ± 0.17 0.32 ± 0.10 - - - - 0.98 6.2σ

4 −1.08 ± 0.18 0.16 ± 0.14 0.17 ± 0.30 −0.31 ± 0.15 - - 0.91 6.8σ

6 −1.09 ± 0.18 0.15 ± 0.14 0.16 ± 0.30 −0.32 ± 0.15 0.001 ± 0.01 0.005 ± 0.004 0.91 6.4σ

Table C.10: Same as Tab. C.8 but for the updated fit.
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Figure C.3: Comparison of likelihood contours (at 1-3σ) for 6d fit scenarios where selected
planes of Wilson coefficients are displayed.
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C.3 Correlation of the fit parameters

The correlation matrices for the fit results ‘no RK(∗) ’ in Tab. C.7 are given by

Corr (2d) =

⎛⎝ 1.000 −0.257

−0.257 1.000

⎞⎠ , (C.2)

Corr (4d) =

⎛⎜⎜⎜⎜⎜⎜⎝
1.000 −0.109 0.128 0.251

−0.109 1.000 0.285 0.507

0.128 0.285 1.000 0.664

0.251 0.507 0.664 1.000

⎞⎟⎟⎟⎟⎟⎟⎠ , (C.3)

Corr (6d) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 −0.107 0.166 0.253 −0.200 −0.129

−0.107 1.000 0.307 0.515 0.098 −0.070

0.166 0.307 1.000 0.654 0.058 −0.232

0.253 0.515 0.654 1.000 0.051 −0.001

−0.200 0.098 0.058 0.051 1.000 0.046

−0.129 −0.070 −0.232 −0.001 0.046 1.000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C.4)

where the columns are ordered as {C9,µ, C10,µ}, {C9,µ, C10,µ, C′
9,µ, C′

10,µ}, and
{C9,µ, C10,µ, C′

9,µ, C′
10,µ, C7, C′

7} for the 2d, 4d, and 6d scenarios, respectively.

The parameters of the fit ‘with RK(∗) ’ shown in Tab. C.8 are correlated like so,

Corr (2d) =

⎛⎝ 1.000 0.479

0.479 1.000

⎞⎠ , (C.5)

Corr (4d) =

⎛⎜⎜⎜⎜⎜⎜⎝
1.000 0.350 0.133 0.427

0.350 1.000 0.562 0.502

0.133 0.562 1.000 0.799

0.427 0.502 0.799 1.000

⎞⎟⎟⎟⎟⎟⎟⎠ , (C.6)

Corr (6d) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 −0.486 −0.366 0.107 −0.212 0.011

−0.486 1.000 0.632 0.310 0.146 −0.036

−0.366 0.632 1.000 0.726 0.148 −0.033

0.107 0.310 0.726 1.000 0.055 0.001

−0.212 0.146 0.148 0.055 1.000 −0.010

0.011 −0.036 −0.033 0.001 −0.010 1.000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.7)
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For the updated fit results ‘no RK(∗) ’ in Tab. C.9 the following correlations are present

Corr (2d) =

⎛⎝ 1.000 −0.288

−0.288 1.000

⎞⎠ , (C.8)

Corr (4d) =

⎛⎜⎜⎜⎜⎜⎜⎝
1.000 −0.047 0.123 0.168

−0.047 1.000 0.412 0.752

0.123 0.412 1.000 0.596

0.168 0.752 0.596 1.000

⎞⎟⎟⎟⎟⎟⎟⎠ , (C.9)

Corr (6d) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 −0.046 0.181 0.175 −0.201 −0.186

−0.046 1.000 0.420 0.754 0.102 −0.059

0.181 0.420 1.000 0.593 0.054 −0.280

0.175 0.754 0.593 1.000 0.044 −0.046

−0.201 0.102 0.054 0.044 1.000 0.050

−0.186 −0.059 −0.280 −0.046 0.050 1.000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C.10)

while the updated fit results ‘with RK(∗) ’ compiled in Tab. C.10 feature

Corr (2d) =

⎛⎝ 1.000 0.405

0.405 1.000

⎞⎠ , (C.11)

Corr (4d) =

⎛⎜⎜⎜⎜⎜⎜⎝
1.000 0.444 0.171 0.484

0.444 1.000 0.650 0.691

0.171 0.650 1.000 0.772

0.484 0.691 0.772 1.000

⎞⎟⎟⎟⎟⎟⎟⎠ , (C.12)

Corr (6d) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 0.445 0.174 0.486 −0.127 −0.020

0.445 1.000 0.652 0.693 −0.007 −0.024

0.174 0.652 1.000 0.773 0.040 −0.022

0.486 0.693 0.773 1.000 −0.017 −0.010

−0.127 −0.007 0.040 −0.017 1.000 −0.007

−0.020 −0.024 −0.022 −0.010 −0.007 1.000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.13)

We point out the apparent strong correlations ∼ 0.5 in the pairs (C10,µ, C′
9,µ), (C10,µ, C′

10,µ),
(C′

9,µ, C′
10,µ), where similar findings have been presented for other global fits of, e.g., Ref. [100].
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Appendix

D
A brief review of gauge
anomalies

In this appendix, we offer a basic understanding of gauge anomalies and their cancellation to
obtain a consistent QFT. Later, we discuss anomaly cancellation in the SM as a useful example.
For details on this topic we refer to the literature, e.g. Refs. [24, 251–253], while we mostly follow
Ref. [254].

D.1 Gauge anomalies in a quantum field theory

In the description of QFTs symmetries play an important role. A symmetry of the classical action
is a transformation of the fields that leaves the action invariant, such as gauge transformations.
When promoting the classical formalism to a QFT, these symmetries correspond to Ward and
Slavnov-Taylor identities for abelian and non-abelian theories in the path integral formalism,
respectively. However, these identities can be violated if the functional integral measure is not
invariant under the symmetry, which prohibits a conservation of the associated quantum current.
In general terms such a violation is referred to as a gauge anomaly.

We review the abelian anomaly as an instructive and simple example introducing a massless
(complex) spin-1/2 fermion in some representation R of the gauge group G considered. The
Lagrangian is given by

L = −1

4
F aµν F

µν,a + Lmatter[ψ, ψ̄,Dµψ,Dµψ̄] , (D.1)

where the precise form of the field strength tensor F aµν is left unspecified as it is not needed in the
present discussion of anomalies. Relevant however is the fermionic part which reads

Lmatter[ψ, ψ̄,Dµψ,Dµψ̄] = −ψ̄ /Dψ = −ψ̄
(︂
/∂ − i /AR

)︂
ψ . (D.2)

Here, we assume standard interactions of the fermion with the gauge field A via a covariant
derivative Dµ that (in this particular example) does not include the chirality matrix γ5. Following
the path-integral formalism, we study the effect of transformations on the fermion measures Dψ
and Dψ̄ in the effective action

ei ˜︂W [A] =

∫︂
DψDψ̄ ei

∫︁
Lmatter[ψ,ψ̄,Dµψ,Dµψ̄] . (D.3)
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While local transformations

ψ(x) → ψ′(x) = U(x)ψ(x) ,

ψ̄(x) → ψ̄
′
(x) = U(x) ψ̄(x) , U(x) = iγ0 U†(x) iγ0 ,

(D.4)

where U(x) denotes a unitary matrix, generally do not leave the effective action invariant, we are
interested in the effects of such transformations on the fermion measures Dψ and Dψ̄ only. As we
consider fermion measures for anticommuting fields, they transform according to

Dψ → Dψ′ = (detU)−1 Dψ , Dψ̄ → Dψ̄′
=
(︁
detU

)︁−1 Dψ̄ , (D.5)

with the operators U and U obtained by ⟨x| U |y⟩ = U(x) δ4(x− y) and ⟨x| U |y⟩ = U(x) δ4(x− y),
respectively. In the following, we specify the matrix U(x) considering two cases of non-chiral and
chiral transformations.

D.1.1 Non-chiral versus chiral unitary transformations

First, we let U be a unitary non-chiral transformation of the form

U(x) = eiϵα(x)hα , (D.6)

with Hermitian generators (hα)† = hα and [γµ, hα] = 0. We find that since

U(x) = iγ0 e−iϵα(x)hα iγ0 = e−iϵα(x)hα
(︁
iγ0
)︁2

= e−iϵα(x)hα = U−1(x) , (D.7)

also U = U−1, and thus the fermion measure is invariant under the transformation, cf. Eq. (D.5):

(detU)−1 (︁detU)︁−1
= 1 . (D.8)

We deduce that no gauge anomalies emerge for matter fields that couple non-chirally to the gauge
fields. We note that assuming non-chiral couplings in the Lagrangian (D.2) is necessary to ensure
gauge invariance when regularising the functional determinants detU and detU .

Conversely, in the case of unitary chiral transformations

U(x) = eiϵα(x)hα γ5 , (D.9)

we observe a striking difference compared to the previous case. While the fact that γ5 = (γ5)
†

renders the transformation in Eq. (D.9) unitary, it follows due to the anticommutation of γ5 and
γ0 that

U(x) = iγ0 e−iϵα(x)hαγ5 iγ0 = e+iϵα(x)hαγ5
(︁
iγ0
)︁2

= e+iϵα(x)hαγ5 = U(x) . (D.10)

This yields U = U , and thus the transformation behaviour of the fermion measure is guided by

(detU)−1 (︁detU)︁−1
= (detU)−2

. (D.11)
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After performing some algebra [254], the above expression can be written as

(detU)−2
= ei

∫︁
d4x ϵα aα(x) , (D.12)

with the local anomaly function

aα(x) = −2 δ4(0) tr (hα γ5) . (D.13)

It can be shown that the gauge anomaly for chiral transformations can be extracted from a one-loop
triangle diagram computation, displayed in Fig. D.1. Furthermore, anomalies only emerge for
chiral and massless fermions in non-abelian gauge symmetries, where the contributions of ψL and
ψR are additive and only differ sign-wise.

G

G′

G′′

Figure D.1: A triangle Feynman diagram coupling to gauge bosons G, G′ and G′′ with an
inner fermion loop.

D.1.2 Cancellation of gauge anomalies

We describe the contribution to the anomaly from LH fermions as DRL
i

αβγ , where RL
i denotes the

representation of the fermion field ψL,i under the gauge group G. Similarly, each RH fermion ψR,i
contributes with −DRR

i

αβγ . The total anomaly can be written as

Aα =
∑︂
i

AL
α|ψL,i +

∑︂
j

AR
α |ψR,j ∝ Pβγ

(︃∑︂
i

D
RL
i

αβγ −
∑︂
j

D
RR
j

αβγ

)︃
, (D.14)

which vanishes trivially in the case of non-chiral fermions (often referred to as vector-like fermions).
Here, Pβγ denotes an expression involving a partial derivative acting on combinations of gauge
fields, where the explicit form is given in Ref. [254]. We define the group theoretical factor

DR
αβγ = strR (hα hβ hγ) (D.15)

which denotes the symmetrised trace of the generators hα of a corresponding gauge interaction G.
This quantity parametrises the anomaly illustrated in Fig. D.1. Then, gauge anomalies are present
if the trace in Eq. (D.15) is non-vanishing.

As there are many possible combinations of generators that can appear in Eq. (D.15), it proves
crucial to know which gauge group (factors) and which representations lead to anomalies. In the
following, we study possible sources of anomalies utilising the SM gauge group as an instructive
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example. We refer to Refs. [253, 254] for in-depth group theoretical discussions and details on
more general group structures.

D.2 Anomaly cancellation in the standard model

The SM gauge group in the unbroken phase reads

GSM = U(1) × SU(2) × SU(3) , (D.16)

where we have dropped the usual subscripts as in Eq. (2.1) to ease the readability in this
discussion.

Naively, the following combinations can give rise to anomalies:

(1) [SU(3)]
2 × SU(2)

(2) SU(3) × [SU(2)]2

(3) SU(3) × SU(2) ×U(1)

(4) SU(3) ×U(1) ×U(1)

(5) SU(2) × [U(1)]
2

(6) [SU(2)]3

(7) [SU(3)]3

(8) [SU(3)]2 ×U(1)

(9) [SU(2)]2 ×U(1)

(10) [U(1)]
3

(11) U(1)-gravity

Following the labelling in Fig. D.1, we refer to the anomalies that arise from these different
possibilities as G−G′ −G′′ anomalies. That being said, it is useful to distinguish between the
simple U(1) factor and Gs = SU(2), SU(3), with traceless generators for the latter [255]:

tr (hδ) = 0 for any SU(N) Lie algebra. (D.17)

To this end, it is convenient to redefine the Lie algebra generators satisfying

trR (hα hβ) = tr
(︁
hRα h

R
β

)︁
= g2i C

(i)
R δαβ , (D.18)

for each simple and Gi factor. Here, gi and C(i)
R denote the associated gauge coupling and the

Casimir, respectively, with, e.g., CN = CN = 1/2 for Gi = SU(N). We can dismiss certain cases
above. The cases (1) − (5) yield vanishing contributions, where the trace can be factorised as
always one non-abelian factor Gs appears alone. Moreover, only non-zero contributions arise if a
U(1) and SU(N) with n ≥ 3 are involved, which renders DR

αβγ = 0 for case (6). While (7) also
gives no contribution, it is not obvious at first glance on why this is true. Here, we make use of
the fact that also for groups with only real or pseudoreal representations no contributions appear.
Then, considering the SM fermions in Tab. 2.1 (reading the table from top to bottom) the total
(reducible) SU(3) representations that occur are given by R = (3 + 3) + 3 + 3 + (1 + 1). As 3 is
the complex conjugate of 3, we find only real representations entailing DR

αβγ = 0.

For the four remaining cases we need to check if anomalies emerge by evaluating the trace of
generators explicitly. Using the group theoretical properties defined above, we obtain dedicated
equations for each of the cases which we collectively call anomaly cancellation conditions (ACCs).
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Obviously, all these conditions need to hold for a consistent QFT. We summarise

[SU(3)]2 ×U(1) : A331 = trR (tα tβ Y ) , (D.19)

[SU(2)]2 ×U(1) : A221 = trR (Tα Tβ Y ) , (D.20)

[U(1)]
3
: A111 = trR (Y Y Y ) , (D.21)

U(1)-gravity : Agg1 = trR (Y ) , (D.22)

where Y , T , and t denote the generators of U(1), SU(2), and SU(3), respectively, see Eq. (2.6).
Starting with Eq. (D.19), we confirm that indeed the SM with its known fermions is free of any
gauge anomaly. For brevity, we consider only one generation of fermions while utilising the fermion
charges and representations listed in Tab. 2.1.

For the combination [SU(3)]2×U(1) only fermions charged under both SU(3) and U(1) contribute
(in this case the quarks), where we need to consider the multiplicity (of SU(2)) of each fermion.
Rewriting the trace yields
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(D.23)

In an analogous manner, we obtain for Eq. (D.20) the expression

A221 = tr
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TR
α TR
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T 2
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2
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·
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(D.24)

where solely SU(2) doublets contribute accounting for the multiplicity of SU(3). For the two
remaining combinations in Eq. (D.21) and Eq. (D.22) we find vanishing contributions in both
cases,

A111 = tr
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Y R Y R Y R)︁ = 2 ·
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(D.25)

Agg1 = tr
(︁
Y R)︁ = 2 ·

(︃
1

2
g1

)︃
+ (−g1) + 3 · 2 ·
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6
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)︃
+ 3 ·
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3
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)︃
= 0 .

(D.26)

This demonstrates that each generation of the SM is an anomaly-free set, and therefore the full
SM with all three generations features no gauge anomalies. The same holds true for the broken
phase of the SM following similar reasoning for anomaly cancellation in SU(3)C ×U(1)em.
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D.3 Anomaly cancellation in new physics scenarios

This work focuses on NP models that involve an extended gauge group with a new Z ′ gauge boson.
The absence of gauge anomalies enforces new conditions on this interaction, in particular on the
associated charges of fermions. This concerns not only the SM fermions, but also (possible) new
fermions that might be included in BSM model building. We study the details of such ACCs in
Sec. 5.2, and give some remarks regarding the general idea of these conditions in terms of BSM
physics in the following.

We emphasise that new chiral fermions, which are differently charged under the SM gauge group,
add to the gauge anomaly. Hence, they need to be fixed according to the above ACCs. Consequently,
BSM fermions are often included as vector-like or even as SM-singlets (meaning trivially charged
under the SM gauge group) to evade this issue completely. Then, only the ACCs involving the
new gauge group factor need to be taken into account. While also grand unified theories, such as
lepton-colour unification in Pati-Salam models [256], can be considered, more commonly studied
are extensions of the SM gauge group by an additional U(1)′ factor. In this particular case, six
conditions have to be met that are given in Eq. (5.24). These conditions exhibit a similar structure
as the SM ones, where instead the new charges play the role of the hypercharge. Indeed, the
fermion hypercharges in the SM are chosen such that the ACCs in Eqs. (D.19) to (D.22) are
satisfied.
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Appendix

E
Parametrisations of
q2-distributions in rare charm
decays

In this appendix, we provide the parametrisation of c→ u ℓ+ℓ− decay distributions taken from
Ref. [16]. Numerical values of the resonance parameters are provided in Tab. E.1, whereas masses,
decay constants, and lifetimes can be found in App. B. Some information on D→ P form factors
is given at the end of this chapter.

E.1 Lepton flavour conserving decays

Within the EFT framework outlined in Eq. (6.2), we parametrise the differential semileptonic
decay distribution D→ Pℓ+ℓ− as

dΓ
dq2

=
G2

F α
2
e
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(E.1)

with λDP = λ(m2
D,m

2
P , q

2) defined in Eq. (B.4). In Eq. (E.1), we have neglected the up-quark mass
and applied the notation Ci → Ci + C′

i to condense LH and RH quark-current contributions [16].
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The q2-integrated decay rate is readily obtained as

Γ = Γ
(︁
q2min, q

2
max
)︁
=

∫︂ q2max

q2min

dΓ
dq2

dq2 . (E.2)

The full leptonic D0→ ℓ+ℓ− branching ratio reads

B
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(E.3)

where fD and τD0 denote the D0-meson decay constant and lifetime, respectively.

E.2 Lepton flavour violating decays

The differential distribution for the lepton flavour violating D→ Pe±µ∓ decays is given as

dΓ (D → Pe±µ∓)

dq2
=
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where the electron mass has been neglected. Furthermore, Ki = Ki,µe+K′
i,µe and Ki = Ki,eµ+K′

i,eµ

for D→ P e+µ− and D→ P e−µ+, respectively, is understood. The branching ratio for leptonic
decays reads
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(E.5)
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E.3 D → P form factors

aρ/ GeV−2 aφ/ GeV−2 aη/ GeV−2 aη′/ GeV−2

D+ → π+ 0.18 ± 0.02 0.23 ± 0.01 (5.7 ± 0.4) × 10−4 ∼ 8 × 10−4

D0 → π0 0.86 ± 0.04 0.25 ± 0.01 (5.3 ± 0.4) × 10−4 ∼ 8 × 10−4

Ds → K 0.48 ± 0.04 0.07 ± 0.01 (5.9 ± 0.7) × 10−4 ∼ 7 × 10−4

Table E.1: Phenomenological resonance parameters in Eq. (6.10) extracted from the experi-
mental measurements of B (D → πM) and B (Ds → KM) [155] with resonances M = ρ, φ, η, η′

decaying to µ+µ−. Table taken from Ref. [16].

E.3 D → P form factors

The HMEs for D-meson decays into a pseudoscalar P can be parametrised as [154]

⟨P (k)|u γµ c |D(p)⟩ =
[︃
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]︃
f+(q

2) + qµ
m2
D −m2

P

q2
f0(q

2) , (E.6)

⟨P (k)|uσµν (1± γ5) c |D(p)⟩ = −i (pµkν − kµpν ± i ϵµνρσ pρ kσ)
2 fT (q

2)

mD +mP
, (E.7)

where qµ = (pD − pP )
µ = (pℓ+ + pℓ−)

µ. We identify the form factors f+,0(q2) and fT (q2) in the
vector and tensor current, respectively.

In this thesis, we use the D → π and D → K form factors available in Refs. [225, 257] where
lattice QCD methods have been employed. The form factors are described via the z-expansion

fi(q
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1

1− Pi q2

[︃
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for i = +, 0, T , and with
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2
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2
. (E.9)

We refer to Refs. [225, 257] for numerical values of the fi(0), ci, and Pi parameters, where central
values as well as their covariances are provided. Values for the form factor f0(q2) at low q2, i.e.
q2 = 0 and q2 = m2

P , are given in Tab. B.3. We note that for D0 → π0 decays the respective
form factors receive an additional isospin factor fi → fi/

√
2, following |π0⟩ = 1/

√
2
(︁
|uu⟩ − |dd⟩

)︁ 1.
Moreover, for Ds → K decays we use the D → π form factors [16, 258]. See Appendix A of
Ref. [16] and references therein for further details.

1This normalisation is also employed when computing the branching ratio B
(︁
D+→ π+π0

)︁
, whereas it cancels for

B
(︁
D0→ π0π0

)︁
due to identical particles in the final states, see Eq. (7.15).
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Appendix

F
Effective Hamiltonian and
hadronic matrix elements for
∆c = 1 processes

In the following, we provide the full effective Hamiltonian relevant for ∆c = 1 processes. We
summarise the effective operators as well as NP operators induced by a Z ′ boson in App. F.1.
Details on the RG evolution of the new four-quark operators are provided in App. F.2. In App. F.3,
we present calculations of hadronic matrix elements (HMEs) in the naive factorisation ansatz.

F.1 Overview of effective operators

The relevant contributions to the SCS D-meson decays, i.e. D0→ K+K− and D0→ π+π−, can
be described by the following effective Hamiltonian at the scale mb < µ < µEW [168, 177]

H∆c=1
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GF√
2
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2∑︂
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C(p)
l Q
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l Q
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)︂]︃
+ h.c. ,

(F.1)

where the index p runs over all active down-type quark flavours (p = d, s, b) and λp = VcpV
∗
up.

Note that λd,s ∼ λCKM ≈ 0.2, whereas λb ∼ λ5CKM = O
(︁
10−4

)︁
. In what follows, we define the

various operators that appear in the Hamiltonian. The so-called current-current operators Qpi
read

Qp1 = (up)V−A(pc)V−A , (F.2)
Qp2 = (uαpβ)V−A(pβcα)V−A , (F.3)

where α, β denote colour indices that are implicitly summed over and (V ±A) refer to the Dirac
structures γµ(1± γ5), e.g.

(up)V−A = u γµ (1− γ5) p = uα γµ (1− γ5) pα = (uαpα)V−A . (F.4)

The operator Qp1 provides the dominant tree-level SM contribution, Cp1 ≃ 1, at the matching scale
µ via a W -boson exchange. The corresponding Feynman diagrams relevant in this thesis are
depicted in Fig. F.1. The operators in Eqs. (F.2) and (F.3) are related to the current-current
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F.1 Overview of effective operators

analogues Od,s1,2 introduced in Eq. (6.4) by Fierz identities and employing the colour structure
embedded in the SU(3)C generators.

c d

u u

u

d

W+

D0

π+

π−
c s

u u

u

s

W+

D0
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c d
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Figure F.1: SM tree-level contribution via a W boson for selected hadronic D-decays.

The QCD penguin operators Q3,4,5,6 and QED penguin operators Q7,8,9,10 are given by

Q3 = (uc)V−A
∑︂
q

(qq)V−A , (F.5)

Q4 = (uαcβ)V−A
∑︂
q

(qβqα)V−A , (F.6)

Q5 = (uc)V−A
∑︂
q

(qq)V+A , (F.7)

Q6 = (uαcβ)V−A
∑︂
q

(qβqα)V+A , (F.8)

Q7 =
3

2
(uc)V−A

∑︂
q

eq(qq)V+A , (F.9)

Q8 =
3

2
(uαcβ)V−A

∑︂
q

eq(qβqα)V+A , (F.10)

Q9 =
3

2
(uc)V−A

∑︂
q

eq(qq)V−A , (F.11)

Q10 =
3

2
(uαcβ)V−A

∑︂
q

eq(qβqα)V−A , (F.12)

Here, eq is the electric charge of the quark q. The operators Q3,4,5,6 are first generated at O (αs)
and proportional to VubV ∗

cb. The latter is also true for the operators Q7,8,9,10, which are negligible
in the SM as they appear at O (αe).
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The chromomagnetic operator Q8g

Q8g =
gs
8π2

mcuα σ
µν(1 + γ5) cβt

a
αβ G

a
µν , (F.13)

is also generated at O (αs), where Gaµν represents the strong field strength tensor. Scalar and
tensor operators are given by

Q
(p)
S1 = (uPLp)(pPLc) , (F.14)

Q
(p)
S2 = (uαPLpβ)(pβPLcα) , (F.15)

Q
(p)
T1 = (uσµνPLp)(p σ

µνPLc) , (F.16)

Q
(p)
T2 = (uα σµνPLpβ)(pβσ

µνPLcα) , (F.17)

where tensor operators do not contribute to D0→ K+K− and D0→ π+π− decays in naive
factorisation, but can mix with the scalar ones under RG running [177]. Note that the corresponding
primed counterparts Q′ for the aforementioned operators in Eqs. (F.5) to (F.17) are obtained by
the obvious replacement γ5 → −γ5.

In this thesis, our focus lies on the current-current operators Qpi and their relation to NP-induced
operators ˜︁Q(′)

k , which we outline in the following.

F.1.1 New physics operators with additional U(1)′ charges

The remaining operators ˜︁Q(′)
k in Eq. (F.1) describe NP contributions via a Z ′ boson. We define

them as
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,

(F.18)

˜︁Q′
7 = (uc)V+A

∑︂
q

FQi (qq)V−A , (F.19)

˜︁Q8 = (uαcβ)V−A
∑︂
q

FUi,Di (qβqα)V+A , (F.20)

˜︁Q′
8 = (uαcβ)V+A

∑︂
q

FQi (qβqα)V−A , (F.21)

˜︁Q9 = (uc)V−A
∑︂
q

FQi (qq)V−A , (F.22)

˜︁Q′
9 = (uc)V+A

∑︂
q

FUi,Di (qq)V+A , (F.23)

˜︁Q10 = (uαcβ)V−A
∑︂
q

FQi (qβqα)V−A , (F.24)

˜︁Q′
10 = (uαcβ)V+A

∑︂
q

FUi,Di (qβqα)V+A , (F.25)
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where q = u, c, d, s, b and Ff denotes the associated U(1)′ charge. In Eq. (F.18), we explicitly
write out the sum for the operator ˜︁Q7 to illustrate how the different quark currents enter.

F.2 Matching and running of new physics four-quark
operators

We relate the corresponding Wilson coefficients at the Z ′ mass scale

˜︁C7 (MZ′) = ˜︁C9 (MZ′) ,˜︁C′
7 (MZ′) = ˜︁C′

9 (MZ′) ,˜︁C(′)
8 (MZ′) = ˜︁C(′)

10 (MZ′) = 0 .

(F.26)

These coefficients are evolved down to the charm scale at LO in αs via RGEs, where the top and
bottom quarks are integrated out at their respective hold scales. Following Eq. (3.34), the RGE of
the Wilson coefficients is given in general terms by

d˜︁C⃗(µ)
d ln(µ)

− γT(µ) ˜︁C⃗(µ) = 0 , (F.27)

where ˜︁C⃗ is a vector that includes the Wilson coefficients in question and γ is the ADM expressed
by a perturbative expansion γ(µ, αs) = γ(0) αs4π + γ(1)

(︁
αs
4π

)︁2
+ . . . , cf. Eq. (3.35). The solution of

Eq. (F.27) can be formally written as

˜︁C⃗ (µ1) = U (µ1, µ2) ˜︁C⃗ (µ2) , (F.28)

or expressed as

˜︁C⃗ (mc) = U4 (mc,mb) Û5 (mb,mt) Û6 (mt,MZ′) ˜︁C⃗ (MZ′) , µ1 < µ2 , (F.29)

where Ûnf (µ1, µ2) ≡Mnf (µ1)Unf (µ1, µ2). Here, Unf (µ1, µ2) denotes the evolution matrix from
scale µ2 to µ1 in an EFT with nf active flavours. The threshold matricesMnf match the associated
effective theories with nf − 1 and nf active flavours, but are given by the identity matrix at LO.
The evolution matrix Unf is computed by [177]

Unf (µ1, µ2) = V

⎡⎣(︄α(nf )
s (µ2)

α
(nf )
s (µ1)

)︄a⃗0⎤⎦
D

V −1 , (F.30)

where we have introduced the shorthand notation a⃗0 ≡ γ⃗(0)/(2βQCD
0 ). The vector γ⃗(0) contains

the diagonal elements of the diagonal matrix γ(0)D which is defined via the change of basis

γ
(0)
D = V −1

(︂
γ(0)

)︂T
V . (F.31)
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The ADM describing the RG evolution of the operators in Eq. (7.20) at LO reads [177]
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⎞⎟⎟⎟⎟⎟⎟⎠ , (F.32)

where NC = 3 denotes the number of colours. Due to parity conservation in QCD, γ(0) is identical
for both ˜︁Qi and ˜︁Q′

i. With µ2 =MZ′ and µ1 = mc, we find the following analytical expression for
the running of the Wilson coefficients
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(F.33)

with the renormalisation factor r1 = r1(µ = mc, MZ′) defined in Eq. (5.34).

F.3 Hadronic matrix elements in naive factorisation

In order to derive an estimation of the HMEs, we employ the factorisation of currents for non-
leptonic decays which is given by

⟨P+P−|Qi |D0⟩ = ⟨P+| (q1,α1
Γ1 q2,α1

) |0⟩ ⟨P−| (q3,α2
Γ2 q4,α2

) |D0⟩ BP
+P−

i . (F.34)

Here, P = π,K and Γ1,2 refer to possible Dirac structures of the four-quark operator

Qi = (q1,α1
Γ1 q2,α1

)(q3,α2
Γ2 q4,α2

) ≡ (qα1
1 Γ1 q

α1
2 )(qα2

3 Γ2 q
α2
4 ) , (F.35)

exposing the colour indices αi. Note that this factorisation is only possible for quark currents
with same colour indices. In naive factorisation it is BP+P−

= 1. Nevertheless, in what follows
we keep these factors for expediency, while often referring to HMEs as ‘matrix elements’ or just
‘elements’.

In general, three different colour structures emerge

⟨QD⟩ = δα1α2
δα3α4

⟨P+P−| (qα1
1 Γ1 q

α2
2 ) (qα3

3 Γ2 q
α4
4 ) |D0⟩ , (F.36)

⟨QC⟩ = δα1α4δα3α2 ⟨P+P−| (qα1
1 Γ1 q

α2
2 ) (qα3

3 Γ2 q
α4
4 ) |D0⟩ , (F.37)

⟨QM⟩ = [ta]α1α2
[ta]α3α4

⟨P+P−| (qα1
1 Γ1 q

α2
2 ) (qα3

3 Γ2 q
α4
4 ) |D0⟩ , (F.38)

where the ta are SU(3)C generators. The subscripts of the operators indicate the underlying colour
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structures of the currents, i.e. D (disconnected), C (connected), and M (mixed).

Employing the colour rearrangement identity [26, 220]

[ta]α1α2
[ta]α3α4

= − 1

2NC
δα1α2

δα3α4
+

1

2
δα1α4

δα3α2
, (F.39)

which can be viewed as a special Fierz identity, we find that

⟨QM⟩ = − 1

2NC
⟨QD⟩ + 1

2
⟨QC⟩ . (F.40)

It follows that

⟨QD⟩ = NC ⟨QC⟩BP
+P−

, (F.41)

where BP+P− ≡ 1− b with b = 2 ⟨QM⟩
⟨QC⟩ . As a meson state and the vacuum are colourless, we have

⟨QM⟩ = ⟨P+P−| (q1 Γ1 t
a q2) (q3 Γ2 t

a q4) |D0⟩

= ⟨P+| (q1 Γ1 t
a q2) |0⟩ ⟨P−| (q3 Γ2 t

a q4) |D0⟩ BP
+P−

= 0 ,
(F.42)

and recover BP+P− |naive = 1 in naive factorisation. However, beyond naive factorisation the
BP

+P− parameters contain other corrections and are order one [26, 44].

In the next part, the matrix elements for the operators discussed for D0→ K+K− and D0→ π+π−

decays are provided, where we show results for current-current and penguin operators in Apps. F.3.1
and F.3.2, respectively. For more details as well as studies involving, e.g., scalar or chromomagnetic
operators we refer to Ref. [177]. The matrix elements for the NP-inducing operators are presented
in App. F.3.3. Therein, we also derive the relevant matrix elements of related D0→ π0π0 and
D+→ π+π0 decays, extending the shorthand notation for the elements ⟨Qi⟩P by P = π0 , π′,
respectively.

F.3.1 Current-current operators

Qp
1 and Qp

2 for p = d, s

By comparing the colour structure in Eqs. (F.36) to (F.38) with the current-current operators
in Eqs. (F.2) and (F.3), we can directly infer the relations ⟨Qp1⟩ ↔ ⟨QD⟩ and ⟨Qp2⟩ ↔ ⟨QC⟩
between the matrix elements, and can immediately apply Eq. (F.41). For the K+K− final state
only p = s gives a non-zero element as p = d only contributes at higher order in αs via weak
annihilation [168], whereas only p = d gives a contribution for the π+π− final state. We find

P = K:

⟨Qd1⟩K = 0 , (F.43)
⟨Qs1⟩K = NC ⟨Qs2⟩K Bs1 , (F.44)

P = π:

⟨Qs1⟩π = 0 , (F.45)
⟨Qd1⟩π = NC ⟨Qd2⟩π Bd1 . (F.46)
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F.3.2 QCD and QED penguin operators

Relating the matrix elements is not as obvious as before in the case of penguin operators. Here,
we employ Fierz identities to infer the possible contributions from these operators. The general
idea is to relate the matrix elements of all penguin operators back to those of the SM-dominant
current-current operators ⟨Qs,d1 ⟩K,π.

Q3 and Q4

As an example, we start with the HME of the operator Q4 for the K+K− final state, where P = K.
We write

⟨Q4⟩K = ⟨K+K−| (uαcβ)V−A
∑︂
q

(qβqα)V−A |D0⟩

= ⟨. . .|
∑︂
q

(uαqα)V−A(qβcβ)V−A |. . .⟩ ,
(F.47)

where we have employed the Fierz identity given in Eq. (A.26) and introduced a simplified braket
notation for enhanced readability. At this point, we assume that only q = s contributes to ⟨Q4⟩K
which yields

⟨Q4⟩K = ⟨. . .|
∑︂
q

(uq)V−A(qc)V−A |. . .⟩ =
∑︂
q

⟨. . .| (uq)V−A(qc)V−A |. . .⟩

= ⟨. . .| (us)V−A(sc)V−A |. . .⟩ ˆ︁B2
s = ⟨Qs1⟩K ˆ︁B2

s .

(F.48)

In the second line we have identified the operator ⟨Qs1⟩K , where the hatted parameter ˆ︁Bs2 accounts
for the fact that only q = s in ⟨Q4⟩K has been considered.

The calculations for the operator Q3 follow a similar strategy. We apply the Fierz identity in
Eq. (A.26) and find for q = s

⟨Q3⟩K = ⟨K+K−| (uαcα)V−A(sβsβ)V−A |D0⟩
= ⟨. . .| (uαsβ)V−A(sβcα)V−A |. . .⟩ .

(F.49)

Then, we employ Eq. (F.41) where only colour indices are interchanged while the quark (flavour)
structure remains unchanged. It follows that

⟨Q3⟩K = ⟨. . .| (uαsβ)V−A(sβcα)V−A |. . .⟩

=
1

NC
⟨. . .| (uαsα)V−A(sβcβ)V−A |. . .⟩ 1

Bs2
=

1

NC
⟨Q4⟩K

1

Bs2
,

(F.50)

which now has the correct quark content in the factorised currents. This enables us to relate the
two HMEs using Eq. (F.41). We obtain

⟨Q4⟩K = NC ⟨Q3⟩K Bs2 , (F.51)

which we conveniently summarise as
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P = K:

⟨Q4⟩K = NC ⟨Q3⟩K Bs2 , (F.52)

⟨Q4⟩K = ⟨Qs1⟩K ˆ︁Bs2 , (F.53)

P = π:

⟨Q4⟩π = NC ⟨Q3⟩π Bd2 , (F.54)

⟨Q4⟩π = ⟨Qd1⟩π ˆ︁Bd2 . (F.55)

Analogous relations hold for the primed counterparts of the penguin operators, which are skipped
here for the sake of brevity.

Q5 and Q6

Here, we follow the same method as before while applying the Fierz identity in Eq. (A.27). As an
example, we rewrite

⟨Q5⟩K = ⟨K+K−| (uc)V−A
∑︂
q

(qq)V+A |D0⟩

= ⟨. . .| (−2)
∑︂
q

(uαqβ)S−P (qβcα)S+P |. . .⟩ ,
(F.56)

where the shorthand notation S ± P refer to the Dirac structures 1± γ5. We obtain

⟨Q5⟩K =
1

NC
⟨Q6⟩K

1

B3
s

. (F.57)

In addition, only q = s contributions to ⟨Q6⟩K and after relating (S − P )× (S + P )-terms with
the (V −A)× (V ∓A) ones (see Ref. [168], Eq. (A5) for details) we derive

⟨Q6⟩K = χK ⟨Qs1⟩K ˆ︁Bs3 , (F.58)

with the chiral enhancement χK defined in Eq. (B.2). With similar reasoning for P = π operators,
we obtain

P = K:

⟨Q6⟩K = NC ⟨Q5⟩K Bs3 , (F.59)

⟨Q6⟩K = χK ⟨Qs1⟩K ˆ︁Bs3 , (F.60)

P = π:

⟨Q6⟩π = NC ⟨Q5⟩π Bd3 , (F.61)

⟨Q6⟩π = χπ ⟨Qd1⟩π ˆ︁Bd3 . (F.62)

Qi for i = 7, 8, 9, 10

Analogous derivations for the matrix elements of Q7,8,9,10 yield
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P = K:

⟨Q8⟩K = NC ⟨Q7⟩K Bs4 , (F.63)

⟨Q8⟩K =
3

2
es χK ⟨Qs1⟩K ˆ︁Bs4 , (F.64)

⟨Q10⟩K = NC ⟨Q9⟩K Bs5 , (F.65)

⟨Q10⟩K = es ⟨Qs1⟩K ˆ︁Bs5 , (F.66)

P = π:

⟨Q8⟩π = NC ⟨Q7⟩π Bd4 , (F.67)

⟨Q8⟩π =
3

2
ed χπ ⟨Qd1⟩π ˆ︁Bd4 , (F.68)

⟨Q10⟩π = NC ⟨Q9⟩π Bd5 , (F.69)

⟨Q10⟩π = ed ⟨Qd1⟩π ˆ︁Bd5 , (F.70)

where es = ed = − 1
3 denotes the electric charge of the corresponding quark.

F.3.3 New physics operators ˜︁Qi for i = 7, 8, 9, 10

In the following, we show the results for the NP operators that are of special interest in Sec. 6.3.
For better comparison, we set Bi = 1 directly working in naive factorisation, and obtain

P = K:

⟨ ˜︁Q7⟩K =
1

NC
⟨ ˜︁Q8⟩K , (F.71)

⟨ ˜︁Q8⟩K = FD2 χK ⟨Qs1⟩K , (F.72)

⟨ ˜︁Q9⟩K =
1

NC
⟨ ˜︁Q10⟩K , (F.73)

⟨ ˜︁Q10⟩K = FQ2
⟨Qs1⟩K , (F.74)

P = π:

⟨ ˜︁Q7⟩π =
1

NC
⟨ ˜︁Q8⟩π , (F.75)

⟨ ˜︁Q8⟩π = FD1 χπ ⟨Qd1⟩π , (F.76)

⟨ ˜︁Q9⟩π =
1

NC
⟨ ˜︁Q10⟩π , (F.77)

⟨ ˜︁Q10⟩π = FQ1
⟨Qd1⟩π , (F.78)

where FQ1,2
and FD1,2

refer to the U(1)′ charges of the doublet and singlet d (s) quarks, respectively.
Similarly, we can extract matrix elements for P = π0, π′ in terms of the current-current operators,
cf. Eqs. (F.2) and (F.3),

Qq1 = (uq)V−A(qc)V−A , (F.79)
Qq2 = (uαqβ)V−A(qβcα)V−A , (F.80)

with q = u, d. Together with the shorthand notation ⟨. . .⟩q = ⟨qq| . . . |D0⟩, we find the following
expressions for the matrix elements
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P = π′:

⟨ ˜︁Q7⟩π′ =
1

NC
⟨ ˜︁Q8⟩π′ , (F.81)

⟨ ˜︁Q8⟩π′ =
(FU1

− FD1
) χπ√

2
⟨Qu1 ⟩u , (F.82)

⟨ ˜︁Q9⟩π′ =
1

NC
⟨ ˜︁Q10⟩π′ = 0 , (F.83)

⟨ ˜︁Q10⟩π′ = 0 , (F.84)

P = π0:

⟨ ˜︁Q7⟩π0 =
1

NC
⟨ ˜︁Q8⟩π0 , (F.85)

⟨ ˜︁Q8⟩π0 =
(FU1 − FD1) χπ

2
⟨Qu1 ⟩u , (F.86)

⟨ ˜︁Q9⟩π0 =
1

NC
⟨ ˜︁Q10⟩π0 = 0 , (F.87)

⟨ ˜︁Q10⟩π0 = 0 , (F.88)

working in the isospin limit mu = md, that is ⟨Qu1 ⟩u = ⟨Qd1⟩d. In this limit, ⟨ ˜︁Q9,10⟩π′,π0 vanish as
they are proportional to (FQ1

− FQ1
) = 0. The factor 1/

√
2 for P = π0 is due to the additional

π0 meson in the final state.

The results for the primed counterparts are obtained by interchanging the U(1)′ charges FQi ↔ FDi
in the expressions above. They are compiled in Tab. 7.2.
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Appendix

G
Charged lepton and neutrino
links via SU(2)L-symmetry

In this appendix, we provide ancillary calculations and details of the SU(2)L-link outlined in
Chap. 9. We review the correlations between dineutrino and charged dilepton Wilson coefficients
in App. G.1. Supplementary tables listing constraints on charged dilepton couplings KL,R can
be found in App. G.2. They are taken from Ref. [18]. In Apps. G.3 and G.4, we provide details
on the derivation of charm dineutrino limits and present updated results of dineutrino branching
ratios, respectively.

G.1 Connection of Wilson coefficients in the mass basis

The dineutrino and dilepton Wilson coefficients in the gauge basis are given by CPA and KP
A ,

respectively, with A = L,R and P = U,D. The SU(2)L-link in Eq. (9.9) relates the couplings of
dineutrinos and dileptons as CDL = KU

L ,CUL = KD
L and CU,DR = KU,D

R in the gauge basis.

Going to mass basis, we perform a field rotation to obtain the calligraphic CPA and KPA coefficients.
Using the biunitary rotations defined in Eq. (2.21), we identify four different unitary rotations
in the quark sector, corresponding to the left-handed (right-handed) Vu,d (Uu,d), both for up-
and down-type quarks. Conversely, for leptons two rotations are required, Vℓ and Vν , as we only
consider couplings to LH leptons, cf. Eqs. (9.4) and (9.5). Employing these rotations, we write the
Wilson coefficients in the mass basis as

CDL = (Vν)
†
(Vd)

†
CDL Vd Vν , CDR = (Vν)

†
(Ud)

†
CDR Ud Vν ,

KDL = (Vℓ)
†
(Vd)

†
KD
L Vd Vℓ , KDR = (Vℓ)

†
(Ud)

†
KD
R Ud Vℓ ,

(G.1)

and

CUL = (Vν)
†
(Vu)

†
CUL Vu Vν , CUR = (Vν)

†
(Uu)

†
CUR Uu Vν ,

KUL = (Vℓ)
†
(Vu)

†
KU
L Vu Vℓ , KUR = (Vℓ)

†
(Uu)

†
KU
R Uu Vℓ .

(G.2)

As CU,DR = KU,D
R , we identify

CDR = (Vν)
†
(Ud)

†
KD
R Ud Vν = (UPMNS)

† [︁KDR ]︁ UPMNS , (G.3)

CUR = (Vν)
†
(Uu)

†
KU
R Uu Vν = (UPMNS)

† [︁KUR]︁ UPMNS , (G.4)
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where UPMNS = (Vℓ)
†Vν is the PMNS matrix, see Eq. (2.27). In the LH quark sector, the analogous

relations feature a different structure,

CDL = (UPMNS)
†
[︂
(VCKM)

† KUL VCKM

]︂
UPMNS , (G.5)

CUL = (UPMNS)
†
[︂
VCKM KDL (VCKM)

†
]︂
UPMNS , (G.6)

where the CKM matrix VCKM = (Vu)
†
Vd, see Eq. (2.25), enters prominently due to the link

between up- and down-sector. We define

LDαβ =
[︂
(VCKM)

† KUL VCKM

]︂
αβ

, (G.7)

LUαβ =
[︂
VCKM KDL (VCKM)

†
]︂
αβ

, (G.8)

where we have made the quark flavours α, β explicit. For instance, expanding Eqs. (G.5) and (G.6)
in the Wolfenstein parameter λCKM ≈ 0.2, we obtain

LD23 = KU23

L +O (λCKM) , (G.9)
LD13 = KU13

L +O (λCKM) , (G.10)

for b→ s and b→ d transitions, respectively. Note that switching off mixing between the first and
second generation entails suppressed CKM corrections, i.e. O

(︁
λ2CKM

)︁
for LD23 and O

(︁
λ3CKM

)︁
for

LD13.

G.2 Bounds on lepton-specific Wilson coefficients

Here, we summarise the various limits on charged dilepton couplings which have been compiled
from Ref. [18]. Upper limits on Ksdℓℓ′L,R and Kcuℓℓ′L,R are provided in Tabs. G.1 and G.2, respectively.
Moreover, Tabs. G.3 and G.4 summarise the derived limits from b→ s and b→ d couplings,
respectively. Constraints on top-couplings Ktcℓℓ′L,R and Ktuℓℓ′L,R are listed in Tabs. G.5 and G.6,
respectively.

sd ℓℓ′ ee µµ ττ eµ eτ µτ

|Ksdℓℓ
′

L,R |DY 3.5 1.9 6.7 2.0 6.1 6.6

|Ksdℓℓ
′

L,R | 5 · 10−2 1.6 · 10−2 – 6.6 · 10−4 – –

|Ksdℓℓ
′

R |aνν̄ [−1.9, 0.7] · 10−2 [−1.9, 0.7] · 10−2 [−1.9, 0.7] · 10−2 1.1 · 10−2 1.1 · 10−2 1.1 · 10−2

Table G.1: Upper limits on charged dilepton couplings Ksdℓℓ
′

L,R from high-pT [183, 217] (top
row), charged dilepton K-decays (mid row) and derived ones from kaon decays to dineutrinos
(bottom row). Numbers correspond to a limit on the modulus. LFV-bounds are quoted as
flavour-summed,

√︁
|Kℓ+ℓ′− |2 + |Kℓ−ℓ′+ |2. aObtained assuming no large cancellations between

KsdR and KcuL . Table taken from Ref. [18].
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cu ℓℓ′ ee µµ ττ eµ eτ µτ

|Kcuℓℓ
′

L,R |DY 2.9 1.6 5.6 1.6 4.7 5.1

|Kcuℓℓ
′

L,R | 4.0 0.9 – 2.2 n.a.† –

|Kcuℓℓ
′

L |aνν̄ [−1.9, 0.7] · 10−2 [−1.9, 0.7] · 10−2 [−1.9, 0.7] · 10−2 1.1 · 10−2 1.1 · 10−2 1.1 · 10−2

Table G.2: Upper limits on charged dilepton couplings Kcuℓℓ
′

L,R from high-pT [183, 217] (top
row), charged dilepton D-decays (mid row) and derived ones from kaon decays to dineutrinos
(bottom row). Numbers correspond to a limit on the modulus. LFV-bounds are quoted as
flavour-summed,

√︁
|Kℓ+ℓ′− |2 + |Kℓ−ℓ′+ |2. †No limit on D0 → e±τ∓ available. aObtained

assuming no large cancellations between KsdR and KcuL . Table taken from Ref. [18].

bs ℓℓ′ ee µµ ττ eµ eτ µτ

|Kbsℓℓ
′

L,R |DY 13 7.1 25 8.0 27 30

Kbsℓℓ
′

L 0.04 [−0.06,−0.04] 32 0.1 2.8 3.4

Kbsℓℓ
′

R 0.04 [−0.03,−0.01] 32 0.1 2.8 3.4

|Kbsℓℓ
′

R |νν̄ 1.4 1.4 1.4 1.8 1.8 1.8

Table G.3: Upper limits on charged dilepton couplings Kbsℓℓ
′

L,R from high-pT [183, 217] (top
row), charged dilepton B-decays (mid rows) and derived ones from three-body rare B-decays
to dineutrinos (bottom row). Numbers without ranges correspond to a limit on the modulus.
The µµ ranges are derived from the global fit results of Ref. [20], see Sec. 4.2 and Tab. C.7
therein for details, with the departures from zero in KbsµµL corresponding to the B-anomalies.
LFV-bounds are quoted as flavour-summed,

√︁
|Kℓ+ℓ′− |2 + |Kℓ−ℓ′+ |2, whereas the other bounds

are for a single coupling. Table taken from Ref. [18].

bd ℓℓ′ ee µµ ττ eµ eτ µτ

|Kbdℓℓ
′

L,R |DY 5.0 2.7 9.6 3.1 9.6 11

Kbdℓℓ
′

L 0.09 [−0.07, 0.02] 21 0.2 3.4 2.4

Kbdℓℓ
′

R 0.09 [−0.03, 0.03] 21 0.2 3.4 2.4

|Kbdℓℓ
′

R |νν̄ 1.8 1.8 1.8 2.5 2.5 2.5

Table G.4: Upper limits on charged dilepton couplings Kbdℓℓ
′

L,R from high-pT [183, 217] (top
row), charged dilepton B-decays (mid rows) and derived ones from three-body rare B-decays to
dineutrinos (bottom row). Numbers without ranges correspond to a limit on the modulus. The
µµ ranges are derived from a global fit of b→ d observables [18]. LFV-bounds are quoted as
flavour-summed,

√︁
|Kℓ+ℓ′− |2 + |Kℓ−ℓ′+ |2, whereas the other bounds are for a single coupling.

Table taken from Ref. [18].
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tc ℓℓ′ ee µµ ττ eµ eτ µτ

|Ktcℓℓ
′

L,R | ∼ 200 ∼ 200 n.a. 36 136 136

|Ktcℓℓ
′

L |νν̄ [−1.9, 0.9] [−1.9, 0.9] [−1.9, 0.9] 1.8 1.8 1.8

Table G.5: Upper limits on charged dilepton couplings Ktcℓℓ
′

L,R from collider studies [218, 259,
260] of top plus charged dilepton processes (top row) and on charged dilepton couplings Ktcℓℓ

′
L

derived from three-body rare B-decays to dineutrinos (bottom row), see Ref. [18] for details.
Numbers correspond to a limit on the modulus except when a range is given. LFV-bounds are
quoted as flavour-summed,

√︁
|Kℓ+ℓ′− |2 + |Kℓ−ℓ′+ |2, whereas the other bounds are for a single

coupling. Table taken from Ref. [18].

tu ℓℓ′ ee µµ ττ eµ eτ µτ

|Ktuℓℓ
′

L,R | ∼ 200 ∼ 200 n.a. 12 136 136

|Ktuℓℓ
′

L |νν̄ [−1.6, 1.8] [−1.6, 1.8] [−1.6, 1.8] 2.4 2.4 2.4

Table G.6: Same as Tab. G.5 but for couplings Ktuℓℓ
′

L,R . Table taken from Ref. [18].
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G.3 Extracting bounds on c→ u dineutrino branching
ratios

In what follows, we provide details on the computation of the limits on xcu collected in Eqs. (9.23)
to (9.25). In doing so, we write

CcuL = (UPMNS)
† KsdL UPMNS + λCKM (UPMNS)

† (︁KssL −KddL
)︁
UPMNS +O

(︁
λ2CKM

)︁
, (G.11)

where we have replaced the superscripts with their associated quark transition, e.g. U12 = cu and
D12 = sd, to ease the notation. Utilising the trace identity in Eq. (9.12), we obtain

xcu =
∑︂
ν=i,j

(︂
|CcuijL |2 + |CcuijR |2

)︂
= tr

(︃
CcuijL

(︂
CcuijL

)︂†
+ CcuijR

(︂
CcuijR

)︂†)︃

= tr
(︃
KsdijL

(︂
KsdijL

)︂†
+KcuijR

(︂
KcuijR

)︂†)︃
+ δxcu +O

(︁
λ2CKM

)︁
=
∑︂
ℓ=i,j

(︂
|KsdijL |2 + |KcuijR |2

)︂
+ δxcu +O

(︁
λ2CKM

)︁
,

(G.12)

with the O (λCKM) corrections given by

δxcu = 2λCKM tr
(︃
Re
(︃
KsdijL

(︂
KssijL −KddijL

)︂†)︃)︃
= 2λCKM

∑︂
ℓ=i,j

Re
(︂
KsdijL Kssij∗L −KsdijL Kddij∗L

)︂
.

(G.13)

To study the lepton flavour structure and also put bounds on the rare charm dineutrino branching
ratios, it is convenient to further introduce

Rℓℓ
′
= |Ksdℓℓ

′

L |2 + |Kcuℓℓ
′

R |2 ,

Rℓℓ
′

± = |Ksdℓℓ
′

L ±Kcuℓℓ
′

R |2 ,

δRℓℓ
′
= 2λCKM Re

(︂
Ksdℓℓ

′

L Kssℓℓ
′∗

L −Ksdℓℓ
′

L Kddℓℓ
′∗

L

)︂
.

(G.14)

These quantities obey the relations Rℓℓ′+ +Rℓℓ
′

− = 2Rℓℓ
′ and Rℓℓ′± ≤ 2Rℓℓ

′ . Furthermore, δRℓℓ′ <
2λ |Ksdℓℓ′L |

(︂
|Kssℓℓ′L |+ |Kddℓℓ′L |

)︂
. We use the limits on charged lepton couplings from, e.g., high-pT

data to derive bounds on Rℓℓ
′ and δRℓℓ

′ given in Tab. G.7. The high-pT limits on Ksdℓℓ′L and
Kcuℓℓ′R can be fetched from Tabs. G.1 and G.2, whereas the bounds on the ss- and dd-couplings
are given elsewhere [19].

Finally, we can establish the upper limits on xcu for the different flavour patterns,

xcu = 3 rµµ ≲ 34 (LU) , (G.15)
xcu = ree + rµµ + rττ ≲ 196 (cLFC) , (G.16)
xcu = ree + rµµ + rττ + 2 (reµ + reτ + rµτ ) ≲ 716 (general) , (G.17)

equivalent to the bounds given in Eqs. (9.23) to (9.25).
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ee µµ ττ eµ eτ µτ

Rℓℓ
′

21 6.0 77 6.6 59 70

δRℓℓ
′

19 5.4 69 5.7 55 63

rℓℓ
′

39 11 145 12 115 133

Table G.7: Bounds on Rℓℓ
′

and δRℓℓ
′

from Eq. (G.14), as well as their sum, rℓℓ
′
= Rℓℓ

′
+ δRℓℓ

′
.

Table taken from Ref. [19].

hc f(c → hc) N(hc) (a) N(hc) (b)

D0 0.59 6 · 1011 8 · 1010

D+ 0.24 3 · 1011 3 · 1010

D+
s 0.10 1 · 1011 1 · 1010

Λ+
c 0.06 7 · 1010 8 · 109

Table G.8: Charm fragmentation fractions f(c→ hc) [261] and the number of charmed hadrons
hc, N(hc) = 2 f(c → hc)N(cc), expected at benchmarks with N(cc) = 550 · 109 (a, FCC-ee)
and N(cc) = 65 · 109 (b, Belle II with 50 ab−1) [85]. Table taken from Ref. [19].

Fragmentation fractions f(c → hc) [261] of a charm quark to a charmed hadron hc are listed
in Tab. G.8, where we also give the number of charmed hadrons N(hc) = 2 f(c → hc)N(cc)
for FCC-ee and Belle II benchmark cc numbers [85], N(cc) = 550 · 109 and N(cc) = 65 · 109,
respectively.

G.4 Updated limits on c→ u dineutrino branching
ratios

Here, we provide updated benchmark values for charm dineutrino modes following improved limits
on xcu, which are constructed using low energy constraints in addition to the high-pT ones [18]

xcu ≲ 2.6 (LU) , (G.18)
xcu ≲ 156 (cLFC) , (G.19)
xcu ≲ 655 (general) . (G.20)

Compared to the respective limits in Eqs. (G.15) to (G.17), we see that the inclusion of rare kaon
data on |Ksdℓℓ′L | and |Kcuℓℓ′R |, given in Tabs. G.1 and G.2, respectively, significantly improves the
limits on xcu. However, they are not available for all couplings, e.g. ττ and µτ . Therefore, in our
main discussion we choose to include bounds from Drell-Yan data.

The updated upper limits on dineutrino branching ratios are compiled in Tab. G.9. In Fig. G.1, we
give an updated version of Fig. 9.2 which illustrates the resulting upper limits on selected charm
dineutrino branching ratios assuming a specific lepton flavour structure.

- 161 -



Appendix G Charged lepton and neutrino links via SU(2)L-symmetry

D0 → F A+ A− Bmax
LU Bmax

cLFC Bmax Nmax
LU /ηeff Nmax

cLFC/ηeff Nmax/ηeff

[10−8] [10−8] [10−7] [10−6] [10−6]

D0 → π0 0.9 0 0.5 2.8 12 3.5 k (30 k) 210 k (1.8 M) 890 k (7.6 M)

D0 → π0π0 0.7 · 10−3 0.21 0.1 0.7 2.8 0.8 k (7.1 k) 51 k (430 k) 210 k (1.8 M)

D0 → π+π− 1.4 · 10−3 0.41 0.2 1.3 5.4 1.6 k (14 k) 98 k (830 k) 410 k (3.5 M)

D0 → K+K− 4.7 · 10−6 0.004 0.002 0.01 0.06 0.02 k (0.1 k) 1.0 k (8.8 k) 4.4 k (37 k)

Table G.9: Updated version of Tab. G.9. Coefficients A± as in Eq. (9.20) for selected D0-meson
decays into final states F for central values of input. Utilising Eq. (9.19), we provide the upper
limits on branching ratios Bmax

LU , Bmax
cLFC and Bmax corresponding to Eqs. (G.18) to (G.20),

respectively. The expected number of events, see Eq. (9.22), per reconstruction efficiency ηeff
for Belle II with 50 ab−1 (FCC-ee yields in parentheses) is updated as well and given in the last
three columns.

10−10 10−9 10−8 10−7 10−6 10−5 10−4

B(D0 → F ν ν̄
)

10−2

10−1

100

δB
( D

0
→

F
ν
ν̄
) 3 σ

5 σ

ηFCC-ee
eff = 10−3

ηBelleII
eff = 10−3

ηFCC-ee
eff ≤ 1

ηBelleII
eff ≤ 1

Bmax
LU

(
D0 → π0 ν ν̄

)

Bmax
cLFC

(
D0 → π0 ν ν̄

)

Bmax
(
D0 → π0 ν ν̄

)

Bmax
LU

(
D0 → π+ π− ν ν̄

)

Bmax
cLFC

(
D0 → π+ π− ν ν̄

)

Bmax
(
D0 → π+ π− ν ν̄

)

Bmax
LU

(
D0 → K+ K− ν ν̄

)

Bmax
cLFC

(
D0 → K+ K− ν ν̄

)

Bmax
(
D0 → K+ K− ν ν̄

)

Figure G.1: Same as Fig. 9.2, but displaying upper limits assuming LU (solid), cLFC (dotted)
and generic lepton flavour (dashed) taken from Tab. G.9.

- 162 -



G.4 Updated limits on c→ u dineutrino branching ratios

- 163 -



Abbreviations

ACC anomaly cancellation condition
ADM anomalous dimension matrix
ATLAS A Toroidal LHC ApparatuS

BES Beijing Spectrometer
BSM beyond the standard model

CDF Collider Detector at Fermilab
CF Cabibbo-favoured
CKM Cabibbo-Kobayashi-Maskawa
cLFC charged lepton flavour conservation
cLFV charged lepton flavour violation
CMS Compact Muon Solenoid

DCS doubly Cabibbo-suppressed

EFT effective field theory
EWSB electroweak symmetry breaking

FCC Future Circular Collider
FCCC flavour-changing charged current
FCNC flavour-changing neutral current
FLAG Flavour Lattice Averaging Group

GIM Glashow-Iliopoulos-Maiani

HFLAV Heavy Flavor Averaging Group
HME hadronic matrix element

IR infrared

LEP Large Electron–Positron Collider
LFU lepton flavour universality
LFV lepton flavour violation
LH left-handed

LHC Large Hadron Collider
LHCb Large Hadron Collider beauty
LO leading order
LU lepton universality

MS minimal subtraction

NLO next-to-leading order
NNLO next-to-next-to-leading order
NP new physics

OPE operator product expansion

PDF probability distribution function
PDG Particle Data Group
PMNS Pontecorvo-Maki-Nakagawa-Sakata

QCD quantum chromodynamics
QED quantum electrodynamics
QFT quantum field theory

RG renormalisation group
RGE renormalisation group equation
RH right-handed

SCS singly Cabibbo-suppressed
SM standard model
SMEFT standard model effective field theory
SSB spontaneous symmetry breaking

UV ultraviolet

vev vacuum expectation value

WET weak effective theory
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