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Abstract

Single particle cryo-EM is getting increasingly accessible to researchers from diverse research
areas. Furthermore, recent innovations in cryo-EM hardware development and data acquisition
strategies have led to an increase in data quality as well as quantity. However, the overall quality
of a data set does not directly correlate with the quality of a single image or the number of images
collected, but also strongly depends on the sample itself. Nevertheless, with great data comes great
responsibility and just having a large data set is not necessarily advantageous. To get the most out
of a data collection, the researcher needs to carefully monitor and curate all data, ideally while its
still being collected.

Therefore, automated data processing and the analysis of the collected data live during acqui-
sition becomes increasingly important. To get the most information in the shortest amount of
time, ideally, all major pre-processing steps would be executed while the data are still collected. In
this way, the researcher gets direct feedback about the sample quality and has the chance to make
necessary adjustments to the data collection. While there are several tools available to execute the
processing pipeline, they all use a static set of input settings for each individual task, limiting their
applicability.

In this thesis, I present TranSPHIRE, a tool for fully automated on-the-fly data processing.
It executes all the important pre-processing steps required for the processing of single particle
projects, as well as filamentous samples, in a parallel manner. Additionally, the important metrics
of each processing step are presented via the TranSPHIRE GUI, allowing a fast evaluation of all
parameters and the data collection itself. TranSPHIRE also includes a machine learning based
feedback loop, which enables the optimization of particle picking for any given sample. Specifically,
the loop performs iterations of particle picking, 2D classification, and 2D class selection, followed
by training of a newmodel for particle picking. The curated particles can subsequently be subjected
to a 3D refinement within TranSPHIRE. For further analysis, the output particles and volumes can
eventually be transferred to other software packages, such as SPHIRE.

I demonstrate the capabilities of the TranSPHIRE pipeline based on three different scenarios:
A previously unknown data set; a data set consisting of two sub-populations, where only one is
targeted for particle picking; and a filamentous sample. All three scenarios lead to a high-resolution
3D reconstruction of the target protein in a fully automated manner. Therefore, fully automated
data processing and optimization could pave the way for high-throughput screenings of unknown
samples without user intervention.

Despite decades of research, processing of filamentous cryo-EM samples remains challenging.
One of the reasons is that most 3D refinement approaches require prior knowledge about the
helical symmetry parameters. However, for most samples the helical symmetry differs locally,
leading to model bias, low-resolution results, or even incorrectly reconstructed structures. Here,
I present sp_meridien_alpha.py, a modification of the single particle 3D refinement program
sp_meridien.py, to allow filamentous processing in the SPHIRE package. My refinement approach
utilizes filamentous constraints to help convergence and does not require previous knowledge
about the helical symmetry. Based on two examples, a tobacco mosaic virus and an actomyosin
data set, I show that the final resolution and overall map quality achieved by sp_meridien_alpha.py
surpasses the one achieved by sp_meridien.py.

In summary, the software tool TranSPHIRE and the filamentous 3D refinement program sp_meri-
dien_alpha.py combined simplify the cryo-EM data collection and processing and thereby present
a valuable contribution to the field.
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Zusammenfassung

Die Einzelpartikel-Kryo-EM wird immer zugänglicher für Forschende aus den verschiedensten
Forschungsgebieten. Weiterhin haben neueste Innovationen im Bereich der verwendeten Hard-
ware und neuartige Strategien bei der Datenakquise zu einem Anstieg der Qualität, sowie der
Quantität von Daten geführt. Allerdings korreliert die Qualität des Datensatzes nicht direkt mit der
Qualität eines einzelnen Bildes oder der Anzahl an aufgenommenen Bildern, sondern ist von der
verwendeten Probe abhängig. Doch aus großen Daten folgt große Verantwortung und nur einen
großen Datensatz aufzunehmen ist nicht immer vorteilhaft. Um das meiste aus der Datenakquise
herauszuholen, muss der Forschende diese genaustens überwachen und die Daten durchgängig
begutachten und bewerten. Dies geschieht idealerweise bereits während der Datenakquise.

Daher bekommt die automatische Prozessierung und Analyse der aufgenommenen Daten
während der Datenakquise eine immer größer werdende Bedeutung. Um alle nötigen Informationen
in möglichst kurzer Zeit zusammenzutragen, sollten idealerweise alle wichtigen Pre-Processing
Schritte noch während der Akquise durchgeführt werden. Auf diese Weise ist es möglich aus
den Informationen Rückschlüsse auf die Qualität der Probe zu ziehen und in die Datenakquise
einzugreifen. Es gibt bereits verschiedenste Tools zum Ausführen einer solchen Pipeline, doch
arbeiten diese mit statischen Settings, wodurch ihr Anwendungsgebiet eingeschränkt ist.

In dieser Doktorarbeit präsentiere ich TranSPHIRE; Ein Tool zur vollautomatischen Datenprozes-
sierung während der Datenaufnahme. Dabei führt es alle wichtigen Pre-Processing Schritte parallel
für Projekte der Einzelpartikelanalyse, sowie filamentöse Proben, aus. Weiterhin präsentiert es
alle Informationen über die einzelnen Schritte der Datenprozessierung innerhalb der TranSPHIRE
GUI, wodurch eine schnelle Evaluation der Datenakquise ermöglicht wird. TranSPHIRE beinhaltet
zusätzlich die auf maschinellem Lernen basierte „Feedback loop“, welche das „Particle picking“ so
optimiert, dass es sich an jede Probe anpasst. Genauer gesagt besteht diese aus einem iterativen
Prozess bestehend aus „Particle picking“, „2D classification“, „2D class selection“ und dem Trainie-
ren eines neuen Modells für das „Particle picking“. Die auf diese Weise gereinigten und optimierten
Partikel können daraufhin in ein anschließendes „3D refinement“ gegeben werden. Für die weitere
Analyse der Daten können die erzeugten Partikel und Volumen in andere Softwarepakete, wie
beispielsweise SPHIRE, überführt werden.

Die Möglichkeiten der TranSPHIRE Pipeline habe ich anhand von drei Szenarios demonstriert:
Eine zuvor unbekannte Probe, einem Datensatz mit zwei Populationen und eine filamentöse Probe.
In allen drei Fällen konnte vollautomatisch eine hochaufgelöste Struktur des gewünschten Proteins
erreicht werden. Daher könnte die vollautomatische Prozessierung und Optimierung den Weg
ebnen, um High-Throughput-Screening von unbekannten Proben für die Kryo-EM zu ermöglichen.

Trotz jahrelanger Forschung ist die Prozessierung von filamentösen Proben weiterhin eine
Herausforderung. Dies liegt unter anderem daran, dass die meisten „3D refinement“ Algorithmen
Vorwissen über die helikale Symmetry des Proteins benötigen. Allerdings ist die Symmetry in
den meisten Fällen lokal begrenzt, wodurch es zu niedrigen Auflösungen oder sogar inkorrekten
Strukturen kommen kann. Hier präsentiere ich sp_meridien_alpha.py, eine Modifikation des „3D
refinement“ Programms sp_meridien.py, welches die Prozessierung von filamentösen Proben im
SPHIRE Software Paket ermöglicht. Dabei erfordert mein angepasster Algorithmus kein Wissen
über die helikale Symmetry, sondern es werden Einschränkungen vom Filament selbst genutzt. In
dieser Arbeit zeige ich anhand von zwei Beispielen, einem Datensatz des Tabakmosaikvirus und
einem Actomyosin Datensatz, dass die erreichte Auflösung, sowie die Qualität der Rekonstruktion,
welche von sp_meridien_alpha.py erzeugt wurden, die von sp_meridien.py übertreffen.

Zusammenfassend lässt sich sagen, dass die Kombination aus TranSPHIRE und dem „3D refine-
ment“ Programm sp_meridien_alpha.py die Datenakquise und die Prozessierung in der Kryo-EM
vereinfacht und stellt daher einen wertvollen Beitrag für das Feld dar.
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Introduction 1
Biological mechanisms depend on the interactions between various participators such as proteins,
deoxyribonucleic acid (DNA), viruses, single molecules, membranes, and toxins and their envi-
ronment. In order to analyze the underlying mechanisms it is crucial to investigate the three
dimensional (3D) structures of the whole system, i.e., all participating components. Therefore,
high-resolution structural biology methods, such as transmission electron cryomicroscopy (cryo-
EM), X-ray crystallography, or nuclear magnetic resonance spectroscopy (NMR), are required to
shed light on the underlying mechanisms and pave the way for drug discovery research to find
possible treatments.

1.1 Structural biology

Proteins are macromolecules that are composed of at least one chain of amino acids (monomer). If
a protein consists of more than one monomer, the protein is referred to as a multimer. The 3D
structure of a protein can be characterized by four structural categories: the primary structure, the
secondary structure, the tertiary structure, and the quaternary structure (Figure 1.1a). The primary
structure is the amino acid sequence of which each chain of the protein is composed. Directly
neighboring amino acids form secondary structural elements like 𝛼 helices, 𝛽 sheets, 𝛽 turns, and 𝛺
loops. Interactions between amino acids that are farther away from each other fold the secondary
structural elements to the tertiary structure. A quaternary structure is only present in multimers
and describes the interaction between the individual monomers to form the final 3D structure of
the protein [99].

On the one hand, the protein structure can be simply described by the four structural categories.
On the other hand, predicting the final 3D structure is far from trivial, because environmental factors
like the pH-value, electric charges, proteins that assist with protein folding (such as chaperones),
and many others can have a huge influence on the final appearance [42] (Figure 1.1b).

Consequently, methods of high-resolution structural biology are required to analyze and identify
the 3D structure and shed light on the underlying mechanisms of protein interactions.
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1 Introduction

b

Primary structure Secondary structure

Tertiary structure Quaternary structure

a

α-helix β-sheet

Figure 1.1: Structural elements of a protein. a Exemplary diagram of the structural
elements of a protein. Figure adapted from [117]. b Even though the right and the left
structure share the same primary structure, their secondary, tertiary, and quaternary
structural elements differ significantly, emphasizing the need of high-resolution structural
biology methods. Figure taken and adapted from [118].

1.2 Methods of high-resolution structural biology

While there exist several methods to analyze the presence and interactions of biological samples,
three methods are commonly used to resolve the structure with close-to-atomic resolution: NMR,
X-ray crystallography, and cryo-EM.

1.2.1 Nuclear magnetic resonance spectroscopy

With NMR the interactions between electromagnetic radiation and atoms and their direct neigh-
bours is analyzed. When exposed to a magnetic field, atomic nuclei absorb electromagnetic
radiation at a nucleus specific frequency. The strength of the absorption is not only dependent
on the excited nuclei, but also on the atoms in the nearby environment. It is possible to calculate

2



1.2 Methods of high-resolution structural biology

the 3D structure of the sample at atomic resolution based on the information about the excited
atoms and the distance to their neighbours [10]. However, the number of contacts increases with
the total number of atoms in the sample and the method is mostly applicable to samples with a
molecular weight of about 30 kDa or less [74].

1.2.2 X-ray crystallography

Another very popular method is X-ray crystallography, where a biological sample is crystallized.
The resulting crystal is illuminated by an X-ray beam which results in a diffraction pattern based
on the crystal lattice. By rotating the crystal during the illumination the information from the
diffractions patterns at different angles can be used to calculate the 3D structure of the sample
[116]. This method used to be the most popular one for high-resolution structural biology, due to
the achievable resolution below 1Å, which is about the size of a single atom [59]. The downside of
the method is that the sample needs to arrange in a crystal lattice in the first place, which is highly
dependent on the size, complexity, and symmetry of the sample as well as external factors like
temperature and pressure. Additionally, the formation of a crystal by itself can change the native
3D structure of the observed sample [76].

1.2.3 Transmission electron cryomicroscopy

Cryo-EM is the newest of the high-resolution structural biology methods and received tremendous
attention when the Nobel Prize in chemistry was awarded ”for developing cryo-electronmicroscopy
for the high-resolution structure determination of biomolecules in solution” in 2017 [125]. In
cryo-EM, the sample is fixated in a thin, vitrified ice layer within the microscope and illuminated
with a beam of accelerated electrons [84, 55]. Recent advances in hard- and software led to the so
called ”Resolution Revolution” [67] which enabled the reconstruction of 3D structures up to 1.2Å
resolution [81, 137]. Even though the highest resolutions are reserved for very rigid samples, the
average regularly achieved resolution is nowadays in the range of 3.0Å to 7.5Å [84]. The molecular
weight of the protein should ideally be about 100 kDa or higher, because biological samples are
very fragile when they interact with the electrons of the beam. Consequently, only low dose rates
can be used during image acquisition to preserve the 3D structure, leading to exceptionally low
signal-to-noise ratios (SNRs) in the acquired images. Nevertheless, the Wang lab recently resolved
a protein of about 50 kDa to near-atomic-resolution [33], highlighting the potential of the new
technological advances.

The two main branches of cryo-EM are single particle analysis (SPA) and transmission electron
cryotomography (cryo-ET). In SPA hundreds to millions of projections of the same sample from
different, but unknown, angles are collected. With the help of statistical methods, the unknown
angles are determined and the 3D structure can be calculated [2]. In the case of cryo-ET, the sample
holder is rotated with a known angle and for each one image is acquired. On the one hand, in
cryo-ET the 3D structure can be directly calculated without statistical methods. On the other hand,
the same position is illuminated over and over again limiting the achievable resolution, as the
sample gets destroyed over time. Additionally, due to the geometry of the sample holder it is not
possible to acquire images for every rotation angle which leads to a so called missing wedge effect.
In order to compensate for the additional beam damage and the missing wedge, a method called
”subtomogram averaging” can be used. For this technique, those areas of the resulting tomogram
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that contain the same sample are aligned to each other, and the correctly rotated maps are averaged
[83]. Recently, with this strategy resolutions of about 3Å of in-vivo samples could be reached
[123].

1.3 High resolution transmission electron cryomicroscopy

Cryo-EM is becoming increasingly attractive for studies where the analysis of a native high-
resolution 3D structure is required, such as drug discovery research. In the following, the functional
principles of a transmission electron microscope (TEM) and the SPA workflow will be addressed.

1.3.1 Structure of the electron microscope

The transmission electron microscope consists of a column which can be roughly classified into
five parts (Figure 1.2).

I. Electron gun

II. Condenser system

III. Objective system

IV. Projection system

V. Detector

The column itself is under vacuum to reduce the amount of possible non-specimen particles
that could otherwise interact with the electrons [100].

I. Electron gun The electrons used for specimen illumination are extracted from the electron
source and accelerated towards the specimen. Firstly, the donor material is exposed to an external
energy source, such as heat or an electric field. Thus, the work function of the electron is reduced
and electrons can transition from the material into the evacuated column.

Even though there are several electron sources known, only one category is relevant in the
context of high-resolution cryo-EM: field emission guns. They can be categorized into Schottky
field emitters and cold field emitters, which both use a tapered material with a strong external field
applied to utilize the Schottky effect for electron extraction. Additionally, the field can be adjusted
to such an extend that the electrons leave only from the tip of the material with a very narrow
energy range. Therefore, the resulting electron beam has a high temporal and spatial coherence.

The cold field emitter uses only an electric field for electron extraction while the Schottky
field emitter is actively heated, resulting in a reduced need for high field strengths. On the one
hand, the coherence of the former is overall superior. On the other hand, the surface is prone to
contamination resulting in an overall unstable emission characteristic and demands even higher
vacuum. Therefore, the Schottky field emitter is currently the standard in the field due to its
superior stability and lifespan, despite the coherence being slightly inferior. However, recent
technological advances in field emission gun research led to a new generation of cold emission
field emitters installed in the latest versions of available high-end microscopes [15, 66].

After the electrons leave the electron source, a Wehnelt cylinder is used to focus the beam and
accelerate the electrons towards the condenser system [100].
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II. Condenser system The main purpose of the condenser system is to guarantee a parallel
electron beam for the illumination of the specimen. It consists of a few electromagnetic pole piece
lenses [110], i.e., electromagnetic coils with a metal core and a hole in the center for the electrons
to pass through, and a condenser aperture. While the lenses can be used to tilt, focus, and rotate
the beam, the condensor aperture filters out the electrons which are far away from the beam axis.
The electrons move with very high speed inside the column and, therefore, the electromagnetic
field interaction is very brief, resulting in deflection angles in the range of milliradian [133]. Due
to the geometry of the magnetic field, the electrons are deflected in a spiral shaped trajectory.
Compared to optical lenses, electromagnetic lenses cannot be produced with such high precision,
and the electromagnetic field can be easily disturbed by external sources [133].

III. Objective system The objective system is equipped with objective lenses to focus the
beam, the specimen stage where the specimen holder is placed during data acquisition, an objective
aperture to filter electrons with exceptionally high scattering angles, and a mechanism to insert
the specimen holder. The latter is located between two objective lenses to allow for the alignment
of the electron beam on the specimen.

Since lens aberrations degrade the signal, it is most important that the objective lens is ex-
ceptionally well manufactured, because the subsequent lenses of the projection system not only
magnify the image, but also the introduced error [133].

IV. Projection system The projection system consists of several lenses to magnify the image
and focus the beam on the detector. Magnifications ranging from 102 to 106 times can be achieved
by chaining multiple lenses together [133].

V. Detector In order to visualize the electrons after the projection system, a detector and/or a
fluorescent screen is installed at the bottom of the column. Prior to the ”Resolution Revolution”,
charge-coupled device (CCD) based detectors were used which detected the signal with the help
of a photodiode. Therefore, the incoming electrons needed to be translated into photons first for
detection before being converting back into electrons, which has a negative influence on the detec-
tion quantum efficiency (DQE) [20]. For this reason, complementary metal-oxide-semiconductor
(CMOS) based direct detecting devices (DDDs) are nowadays used for high-resolution cryo-EM,
where the incoming electrons are directly detected. The development of DDDs is a major part of
the ”Resolution Revolution” achievements and resulted in previously-unimaginable high DQEs
and the possibility to collect movies instead of single images per acquisition position [67]. As
a consequence, single electron events can be detected and the movies allow for the correction
of beam induced motion [8]. Nowadays, frame rates of more than 1 500 frames/s, a large field
of view of 4 092 pixel ×5 760 pixel, and super resolution approaches to increase the DQE for high
frequencies are commonly used [61].
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Detector

Projection system

Specimen holder

Condensor system

Objective system

Electron gun

Figure 1.2: Schematic illustration of an TEM. Lenses are highlighted in blue, apertures
in yellow, the specimen holder in dark yellow, the electron gun in light brown, and the
detector in green. Figure adapted from [47].

1.3.2 Specimen preparation

Since the protein is already in solution and the native conformation should ideally be preserved,
rapid freezing of the sample on a specimen holder, from now on referred to as ”grid”, is the fixation
method of choice for cryo-EM [55, 84, 126]. The grid is typically a round and thin piece of metal,
often copper or gold, with a radius of 1.525mm [126]. While the outer ring is stable to avoid
distortions the inner part is divided into empty squares arranged in a grid pattern.

On top of the squares is a thin support layer made of carbon, cellulose, or gold, which is specific
to the experiment at hand and can inter alia be a continuous layer, a layer with holes arranged in
a random pattern with a random size and shape, or the most commonly used holey layer, where
the holes are arranged in a regular pattern with pre-defined shape and size. When the sample
in solution is applied to the specimen holder, the surface tension of the solution is allowing the
specimen to be located within the empty holes. Ideally, the resulting solution layer is thin enough
to allow for a single layer of proteins, but the solution layer needs to be thick enough to avoid any
deformations or distortions. The ice thickness can be controlled by removing parts of the liquid
solution by blotting for a project dependent amount of time [126].
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To avoid ice crystals during the freezing process, which would destroy the protein, the sample
needs to be vitrified. Therefore, a method called ”plunge freezing” is commonly used where
tweezers with the prepared specimen holder attached are plunged into liquid ethane. Compared to
liquid nitrogen, liquid ethane is not subject to the Leidenfrost-effect, which describes the creation
of an insulating layer of gas when a material comes in contact with the liquid [70]. Hence, the
sample is frozen almost instantaneously keeping the specimen in its native state and leaving no
time to form ice crystals [126].

1.3.3 Image formation

For image acquisition, the prepared specimen holder is inserted in the objective system of the
microscope. Since the obtained image is the result of the interaction of the electrons with the
specimen, it is important to understand the underlying principles of image formation for a correct
interpretation.

Electron scattering The electrons of the beam and the electrons of the atomic shell of an
atom can interact via elastic and inelastic scattering (Figure 1.3a). Elastically scattered electrons are
deflected, but their energy is unchanged. Therefore, elastically scattered electrons carry structural
information encoded in their deflection angle and phase. On the other hand, inelastically scattered
electrons are also deflected, but energy is additionally transferred to the atoms they interact with.
Not only does the inelastically scattered electron lose part of its energy and can no longer contribute
to the structural information, but the transferred energy can also severely damage the structure
of the protein [100]. The ratio of elastic-to-inelastic scattering events is about 1⁄3 for biological
specimens and the probability is proportional to 𝑧

4
3 and 𝑧

1
3 for elastic and inelastic scattering,

respectively [104]. Additionally, the scattering angles of heavy atoms are in general larger than
the scattering angles of light atoms due to the increased size and charge of the atom [100]. The
resulting image in cryo-EM can therefore be considered as a projection of the specimen with the
structural information being encoded in its image contrast (Figure 1.3b).

Image contrast The resulting contrast of the image is a superposition of amplitude and phase
contrast and samples can be categorized into mainly amplitude or mainly phase objects depending
on the prominent contrast present [100, 133]. Pure amplitude objects only change the amplitude of
the incoming beam by changing the beams intensity. In contrast, pure phase objects only change
the phase of the beam due to differences in the density of the specimen. Weak-phase objects, such
as biological samples with small atomic numbers fixated in a thin ice layer, have a phase difference
of about 90° between the scattered and the unscattered beam. Therefore, the amplitude of the
resulting beam is almost identical to the amplitude of the incident beam leading to a homogeneous
grey image. Nonetheless, it is possible to introduce aberrations or use a phase plate to introduce
an additional phase shift of ideally +90° or -90° to the scattered beam and transfer the phase shift
variations into more pronounced amplitude variations. The difference between the signal present
directly after the specimen and the signal detected at the detector is described by the contrast
transfer function (CTF) (Section 1.3.4, Figure 1.3c).

By defocusing the specimen, the traveled distance of the electrons is artificially modified leading
to a phase shift and enhanced image contrast. However, this leads to a delocalisation of the
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structural information in the image as further discussed in section 1.3.4 [100, 133]. The most
commonly used phase plate, the Volta phase plate [16], consists of a piece of thin carbon to be
inserted in the back focal plane of the microscope. When the electrons are passing through the
carbon the charging effects introduce a phase shift to the scattered electrons. However, the amount
of introduced phase shift is dependent on the number of electrons that have already contributed to
the charging effect, requiring the position on the phase plate to be changed every few hours. The
introduced phase shift 𝛥𝜙 can be described by

𝛥𝜙(�⃗�, 𝛥𝑧) = 𝜋
2
(𝜆3𝐶s|�⃗�|

4 + 2𝜆𝛥𝑧|�⃗�|2) + phase shift , (1.1)

with the wavelength of the electrons 𝜆, the spatial frequency �⃗�, the spherical aberration 𝐶s, the
phase shift of the phase plate, and the difference in defocus 𝛥𝑧 [130, 31].
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Figure 1.3: a Schematic of the scattering events important for the image formation in
cryo-EM between the electrons of the beam (gray with green path) and an atom of the
specimen (electrons in black with blue path and the nucleus N). Inelastically scattered
electrons transmit parts of their energy to the electron of the shell leading to an ejected
secondary electron (SE). b The incoming electron beam interacts with the specimen and
leads to a two dimensional (2D) projection image with encoded structural information. c
Influence of the CTF on an image. (Left) Photograph of a fly (top) and the corresponding
power spectrum (bottom). Applying a CTF function with a defocus of 0.5 µm and a
B-factor of 100Å2 results in a frequency dependent contrast inversion and a dampening
of high-resolution details (top). The information at the zero-crossings of the CTF is lost,
as visualized by the Thon rings [127] in the power spectrum (bottom). Figure and caption
adapted from [90].

1.3.4 Resolution limitations

The ultimate aim of a high-resolution structure determination method is an atomic model repre-
senting atomic resolution. However, resolution limiting factors, introduced by the imaging system,
or the specimen itself prevent this goal. Therefore, it is important to get an understanding for the
underlying problems and how they can be accounted for.

Abbe diffraction limit Ernst Abbe figured out that the maximum achievable resolution
𝑑diffraction limit of a microscope is dependent on the imaging wavelength and that in vacuum it is
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defined as
𝑑diffraction limit =

𝜆
2 ⋅ sin(𝜃)

, (1.2)

with the diffraction limit 𝑑, the wavelength 𝜆, and the angular aperture 𝜃 of the aperture [19]. For
electrons accelerated with common voltages 𝑈B of 200 kV and 300 kV, the limit 𝑑diffraction limit is
about 0.025 pm and 0.019 pm, respectively. Hence, with the assumption of a small angular aperture
of 𝜃 ≥ 1°, the achievable resolution can be calculated to be about 𝑑diffraction limit ≤ 0.75Å and is
therefore smaller than the desired resolution and not a limiting factor in practical applications
[133].

Sampling theorem The Nyquist-Shannon sampling theorem describes the resolution limita-
tion introduced by the detector itself. A signal can only be lossless recovered when the condition

𝑓sampling > 2 ⋅ 𝑓signal (1.3)

with the sampling frequency 𝑓sampling and the signal frequency 𝑓signal is met [82]. Therefore, the
maximum lossless recoverable signal is 𝑓nyquist = 𝑓sampling/2, which is also known as the Nyquist
frequency.

For an imaging system using a DDD, which is composed of multiple discrete pixel, every electron
event inside one pixel is assigned to the pixels central coordinates. Hence, the sampling frequency
is 𝑓sampling = 1/pixel size, where pixel size is defined by pixel size = physical pixel size/magnification [100]. Thus,
the maximum achievable resolution 𝑑sampling theorem at a given magnification is

𝑑sampling theorem = 1
𝑓nyquist

= 2
𝑓sampling

= 2 ⋅ pixel size . (1.4)

Typically, pixel size values between 0.2Å and 1.5Å are used for high-resolution data sets,
limiting the resolution 𝑑sampling theorem to 0.4Å and 3.0Å, respectively. If a data set is able to reach
the maximum resolution 𝑑sampling theorem, and the sampling theorem is therefore the limiting factor,
it is possible to collect a new data set with a smaller pixel size, i.e., higher magnification.

Specimen motion The sample in high-resolution cryo-EM is typically embedded in a vitreous
ice layer on a grid. In terms of movement, motion is generally distinguished between two separate
types: stage-induced motion and beam-induced motion [8].

The stage-induced motion is introduced by the specimen stage itself. To collect a data set,
the area of interest on the specimen stage needs to be physically moved into the electron beam
with atomic precision in order to get imaged. However, the stage is still moving after the desired
coordinates are reached, due to relaxation effects and instabilities. Therefore, the stage-induced
motion has the character of linear motion.

The beam-induced motion is introduced by the electron beam itself. When the specimen is
illuminated by the electron beam the transferred energy excite the atoms of the specimen and,
hence, leads to motion. While ice melting effects show characteristics of linear motion, the motion
of excited atoms of the sample can be approximated with Brownian motion.

Even though the origin of specimen movement can be due to a multitude of reasons, the effect
on the resulting image is identical: image blurring and hence lost high-resolution information. In
order to compensate for the motion effects, modern DDD collect movies instead of single images
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with very short exposure times in the millisecond range. After acquisition, an alignment, in other
fields also known as image registration, of the frames to each other can compensate and mitigate
the negative influence in the resulting summed image [139, 45].

Beam-induced damage Beam-induced motion is not the only negative side effect induced
by the electron beam. Biological samples are highly sensitive to radiation damage, and therefore
the structure of the sample suffers after illuminations. Hence, to keep the structural information
as intact as possible, electron doses of about 40 electrons/Å2 to 60 electrons/Å2 are used for each
image. On the one hand, this preserves more information about the structure, on the other hand it
is not low enough to compensate for the damage in the high-resolution range. However, reducing
the overall electron dose used even more would reduce the already low SNR even more, rendering
the collected images useless for later alignment procedures. As a consequence, different dose
weighting schemes have emerged to reduce the influence of damaged structures on the high-
frequency information of the summed image by introducing frequency dependent weighting
factors per frame [139, 45, 8, 140].

Contrast transfer function When the electron beam passes through the imaging system,
different artifacts are introduced. The ones with the most impact are inter alia spherical aberration
(𝐶s), chromatic aberration (𝐶c), coherence of the electron beam, high-tension fluctuations, and a
misalignment of the optical system itself. Additionally, altering the defocus to increase the phase
shift, as described in 1.3.3, of the unscattered electron beam also plays a major role.

All those artifacts are described by the CTF, which is defined as

CTF (�⃗�) =
imagecontrast (�⃗�, 𝛥𝑍)

objectcontrast (�⃗�, 𝛥𝑍)
,

with �⃗� being the spatial frequency within the image [100]. As a result, the CTF can be approximated
to

CTF (�⃗�, 𝛥𝑧) = 𝑒−|�⃗�|
2 𝐵
4 ⋅ (√1 − 𝐴2 sin 𝛥𝜙(�⃗�, 𝛥𝑧) − √𝐴 cos 𝛥𝜙(�⃗�, 𝛥𝑧)) , (1.5)

with �⃗� being the spatial frequency, 𝛥𝑧 the additional defocus value, 𝐵 describing all negative effects
such as imperfections of the optical system and the coherence of the beam,𝐴 the amplitude contrast
of the specimen, and the additional phase shift 𝛥𝜙 described in equation 1.1.

The CTF is, therefore, describing how much information is present at a certain frequency in the
resulting image. Problems arise when the sign of the CTF is changing the first time, leading to
an inversion of the contrast and making the information past this point not directly interpretable
(Figure 1.3c). Hence, without further processing the resolution is limited to the frequency of the
first zero crossing.

CTF estimation programs have been developed to estimate the parameters of the CTF and allow
to correct for it. However, even if the contrast inversion can be accounted for by knowing the
shape of the CTF, information at frequencies where the CTF is zero cannot be recovered. Therefore,
the SPA approach tries to fill the gaps with information contributed by projections of the same
protein that were acquired at a slightly different defocus value.

The influence of the 𝐶s can be reduced by inserting a 𝐶s-corrector in the condenser system of
the microscope [133].
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The protein itself The most important factor for the resolution limitation is the protein itself,
because SPA assumes that the protein projections are exact copies of each other [86]. However,
there are several aspects like protein flexibility, air-water interface interactions, and aggrega-
tion/degradation of the sample that break the assumption.

Therefore, digital purification is necessary to reach high resolution by either removing the
affected data from the data set or by creating homogeneous subsets.

1.3.5 Data processing

In order to tackle the challenges described in the previous sections, several open-source and pro-
prietary software packages like SPHIRE [79], EMAN2 [121], RELION [113], cisTEM [12], cryoSPARC
[96], SPIDER [38], IMAGIC [53], and SPARX [57] have been developed. Those cover most of the
SPA processing steps needed to obtain a 3D reconstruction of the protein at hand. However,
packages with a maximum-likelihood based 3D refinement approach, e.g., SPHIRE [79], RELION
[113], cisTEM [12], and cryoSPARC [96], perform significantly better for high-resolution cryo-EM.

Additionally, tools that fill niches missing in previously mentioned pipelines like crYOLO [131],
Cinderella [11], MotionCor2 [139], gCTF [138], WARP [123], LAFTER [98], ROME [134], and many
more have been contributed from all over the world.

During the course of this doctoral thesis, the software package SPHIRE [79] has been actively
developed and maintained and the outcome has been highly dependent on the tools included.
Therefore, an overview of the SPHIRE [79] pipeline and the included tools and methods is provided
in the following sections.

Theoretical background

A large variety of methods used in the SPA workflow have been developed over the past decades
[103]. Within the SPHIRE [79] pipeline, the core functionality can be reduced to five main methods:
Equal size K-means, maximum likelihood, projection matching, weighted back projection, and
convolutional neural networks.

Euclidean distance In euclidean space the euclidean distance is the length of a line between
two given points �⃗� and 𝐵. Therefore, it is also known as the 𝐿2 norm of the difference vector of
those two points which is calculated by the Pythagorean theorem

||𝐵 − �⃗�|| = √(𝐵1 − 𝐴1)2 + ... + (𝐵𝑛 − 𝐴𝑛)2 .

Maximum a posteriori probability estimation Nowadays, several high-resolution 2D
and 3D processing strategies utilize a maximum a posteriori based strategy to identify the projection
or alignment parameters of the particles [113, 96, 134, 79]. This method allows the approximation
of a best estimate of the unknown parameters based on empirical data, i.e., the particles collected at
the microscope. For this purpose, the likelihood for every combination of parameters and particles
is calculated and the set of parameters yielding the maximum likelihood value is assigned to the
particles

𝑃(𝛩|𝑋 , 𝑌 ) ≈ 𝑃(𝑋 |𝛩, 𝑌 ) ⋅ 𝑃(𝛩|𝑌 ) ,
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with 𝑋 being the observed data, 𝑌 being the prior information, 𝛩 being the best parameter set
considering 𝑋 and 𝑌, 𝑃(𝛩|𝑋 , 𝑌 ) being the maximum a posteriori estimate, the likelihood 𝑃(𝑋 |𝛩, 𝑌 )
quantifying the probability of observing the data given the model, and the prior 𝑃(𝛩|𝑌 ) expressing
how likely the model is given the prior information [113]. It should be noted that these parameter
assignments highly depend on the provided starting model and incorrect models are prone to lead
to incorrect results.

Equal size K-means Conceptionally, the K-means algorithm is a very easy to understand,
yet powerful clustering approach and is mainly used for the 2D classification step in the cryo-
EM pipeline [73]. The advantages are a guaranteed convergence and a simple implementation.
However, that the outcome is highly dependent on the initial cluster assignments and the clusters
are assumed to be clearly separated and of a circular shape are disadvantages of the algorithm.

In its most simple form it can be described by:

Algorithm 1 Description of the K-means algorithm

Require: Data is split randomly into 𝐾 clusters
Require: 𝐸𝑑 be the minimum squared Euclidean distance

while Cluster 𝐾 assignments change do
Average cluster 𝐾 assignments to get cluster representatives
Calculate the 𝐸𝑑 between every data point and every cluster representative
Re-assign cluster members based on the shortest 𝐸𝑑

end while

Since the input data set in cryo-EM is dominated by noise, those disadvantages have an even
greater impact on the outcome. Therefore, the SPARX [57] package developed an alternative
approach called Equal size K-means [136] which modifies the original workflow:

Algorithm 2 Description of the equal size K-means algorithm

Require: 𝐸𝑑 be the least squared Euclidean distance
Require: 𝑁 be the maximum number of members per cluster

while Particles available or no additional cluster found do
Require: Data set is split randomly into 𝐾 clusters

while Validated cluster 𝐾 is found do
for 𝑋 iterations do
Average cluster 𝐾 assignments to get cluster representatives
Calculate the 𝐸𝑑 between every data point and every cluster representative
Re-assign cluster members based on the shortest 𝐸𝑑 considering 𝑁

end for
Validate the heterogeneity of the cluster
Remove the members of heterogeneous clusters from the data set

end while
end while

Originally, the K-means algorithm is clustering the data set by area, but the Equal size K-
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means approach is additionally limiting the total number of particles 𝑁 per cluster. This has the
advantage that potentially large clusters are split into multiple smaller clusters allowing for a
higher assignment accuracy and overall more robust clustering results in noisy environments.

Fourier shell correlation Unlike other structure determination methods, the resolution of a
structure determined by cryo-EM cannot be directly determined and the resolution is typically
estimated with the help of the Fourier shell correlation (FSC) [51]. However, the FSC is not a
measure of resolution, but a measure of similarity between two 3D volumes, where the cross
correlation is calculated between each shell of those volumes in Fourier space. Afterwards is the
resolution of the volumes defined as the value of the first shell that has a correlation value smaller
than a certain threshold.

Nonetheless, the exact value of the threshold is under constant debate and several values have
been proposed [52]. The most commonly used ones are the FSC0.143 and the FSC0.5 criterion, where
the threshold is defined as 0.143 and 0.5, respectively.

Projection slice theorem The fundamental basis that high-resolution cryo-EM is build
upon is the projection slice theorem that enables the 3D reconstruction of an object based on 2D
projection images of the same object [7] (Figure 1.4). To do so, some requirements need to be
fulfilled, e.g., a parallel illumination and a specimen that is thin enough to transmit the beam: the
assumptions of the SPA process.

Assuming an image 𝐼𝑜, the theorem states that the 2D Fourier transform of an image 𝐼𝑝, which is
the projection along a known projection direction 𝑃 of the image 𝐼𝑜, is equivalent to the slice of
the 3D Fourier transform of 𝐼𝑜 normal to the same projection direction 𝑃. Therefore, in the core
of the SPA pipeline, the 3D refinement, it is the aim to identify the projection directions 𝑃 of the
individual projection images collected at the microscope

Figure 1.4: Illustration of the projection slice theorem using the 3D density of a bacterial
Tc Toxin (EMDB 10034, [71]). The initial 3D object can be reconstructed using 2D
projections of the object with known projection angles using a 3D Fourier transformation,
because the Fourier transform of each 2D represent a slice in the 3D Fourier space. Figure
and caption adapted from [90].
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Convolutional neural networks Neural network based applications have been sprouting
from the ground almost everywhere [18]. Therefore, it is not surprising that it is also applicable to
problems in cryo-EM and is already well-established in the processing step of particle picking [5,
131, 122].

For image recognition and classification, convolutional neural networks (CNNs) have proven to
be very effective [114]. Those consist of a feature extractor possibly followed by a fully connected
neural network.

In general, the feature extractor part consists of two types of layers: convolutional layers and
pooling layers. Convolution layers in a CNN learn kernels instead of weights, and instead of
multiplying the input with the associated weight, the output of the previous node is convoluted
with the kernel followed by a pixel-wise application of the activation function to introduce non-
linearity. The pooling layer reduces the dimensions, i.e., the parameter space of the output layer.
Most common are the max pooling, which summarizes the most activated presence of a feature,
and average pooling, which summarizes the average presence of a feature.

The fully connected neural network in its basic form consists of an input layer and an output
layer and every layer can additionally contain multiple nodes [114]. Between those two layers,
there can be additional 0 to 𝑁 so called hidden layers. While the input layer serves as the entry
point to the network architecture and receives the input data set, the output layers task is to
provide the result of the networks calculations. The optional hidden layers of the network modify
the data in a way that is interpretable by the output layer. The number of hidden layers 𝑁 should
be proportional to the complexity of the problem and the amount of training data at hand. While a
network consisting of just an input and an output layer can only learn linear functions to describe
the data set, every additional hidden layer allows for more complex relationships. However, the
demand for more training data increases with an increasing number of hidden layers to prevent
overfitting.

Each layer contains a certain number of nodes which are made of several inputs, associated
weights, an activation function, and one output. The inputs are the outputs of the nodes from the
previous layer connected to the node and the output is determined by the activation function. Each
input is multiplied with a weight associated with it and which is the target of the training procedure.
Afterwards, all the inputs are summed, and the sum is provided to the activation function, which
should introduce non-linearity to represent the character of real world data. During the training
of the network with sophisticated methods like back-propagation the weights of the network are
optimized so that the output of the output layer matches the labels of the input data set as accurate
as possible.

With these building blocks in place, a CNN is able to learn visual patterns from the input data
set and can interpret its content

Processing pipeline

The ultimate aim of the SPA pipeline is the high-resolution 3D reconstruction of the sample.
Therefore, the workflow requires all the steps that benefit a successful 3D refinement which does
the assignment of projection parameters to the projection images obtained from the micrographs
collected at the TEM, i.e., rotation inside the thin ice layer and centering relative to the reference
structure.
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A majority of the results produced in this thesis are based on the SPA software package SPHIRE
[79], which has been in parts developed in the Raunser lab. To classify the results in the context,
the basic SPA workflow is described in the following sections (Figure 1.5a).

Data acquisition First, the specimen holder is inserted into the TEM and typically followed by
the microscope alignment procedure. The data collection itself used to be a tedious manual process
that yielded about 30micrographs/h to 100micrographs/h. Nowadays, automated data collection
software packages like EPU [30], Serial EM [75], and Leginon [120] perform this procedure in a
fully automated manner. However, the yield is highly dependent on the acquisition strategy, i.e.,
how many images are acquired by shifting the beam without moving the stage, magnification, and
the camera used. In combination with hardware advances like aberration free image shift (AFIS) or
fringe-free illumination (FFI) the yield varies between 50micrographs/h to 600micrographs/h [9,
1, 32].

As described in section 1.3.4, it is crucial to collect the data set at different defocus values to
account for the effects of the CTF. Therefore, the defocus values needs to be as large as necessary to
have enough contrast, but on the other hand as small as possible to minimize artifacts. Additionally,
biological specimens suffer from beam damage requiring a total useable electron dose of 20 e−/Å2

to 60 e−/Å2 [45].
At every acquisition position a movie with a suitable total electron dose is collected, but the

number of frames per movie is dependent on the strategy and the stability of the TEM. Assuming
a fixed total dose, increasing the number of frames decreases the electron dose per frame, hence
reducing the contrast due to a smaller SNR. In contrast, decreasing the number of frames increases
the illumination time per frame, hence increasing the motion blur, while increasing the SNR.
Therefore, the number of frames is a trade-off between the information loss due to a low SNR and
the information loss due to motion blur.

The resulting movies typically contain between 40 frames to 300 frames with a dimension
between 4 000 pixel ×4 000 pixel and 12 000 pixel ×8 000 pixel per frame [61]. In order to safe disk
space, lossless compressions algorithms like TIFF LZW are used, reducing the file size by up to a
tenth of the original size.

Motion correction The reason for collecting movies consisting of frames with a small illu-
mination time instead of single image with a large illumination time is twofold. Firstly, the fixed
specimen is moving due to the induced energy from the electrons. Secondly, the specimen in the
sample is suffering from beam damage, rendering the information from later times of exposure
useless for high-resolution reconstruction. To account for those issues, the first step after data
acquisition is typically to perform motion correction and dose weighting [45, 139, 140].

Motion correction algorithms perform an image alignment of the single frames with respect to
each other. The drift can either be calculated on the whole micrograph or in patches. To increase
the robustness of the procedure, a software-specific polynomial fitted to the estimated shifts for
smoothing and the resulting shifts are applied to the individual frames.

To account for the beam-induced damage, the frames are weighted according to their cumulative
dose. Since the damage is least pronounced at the beginning of the exposure, i.e., high-resolution
information is most intact, the high-resolution information of the first frames is up-weighted while
it is down-weighted for later frames.
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CTF estimation The individual frames of the movie or the aligned average can be used to
estimate the influence of the CTF at the acquisition position [138, 106, 89]. To estimate the
parameters of equation 1.5, a fit against the oscillation of the values of the Fourier transform (FT) of
the image is performed. Therefore, to simplify the procedure, the values for the amplitude contrast
𝐴 and the spherical aberration 𝐶s are kept constant so that only the defocus 𝛥𝑧 and a possible
phase shift 𝛥𝜙 is estimated. Additionally, the astigmatism can be estimated by determining the
parameters of the CTF for one dimensional (1D) central sections at different angles.

Particle picking The later stages of the processing pipeline involve thousands to millions of
small regions extracted from the aligned micrographs. However, the positions of interest need to
be determined before extraction. Multiple options are available, like manual selection, template
matching, and CNN based approaches [131, 122, 5, 43, 121].

While manual particle selection is a tedious procedure involving labeling millions of locations
in noise dominated images, template matching has the advantage of being a semi-automated
technique. The provided reference image is compared with every position of the micrograph
and those regions with the highest local maximum are considered locations of interest. However,
drawbacks of this method are the inaccuracy, requiring sophisticated cleaning procedures, and
the possibly introduced model bias in case high-resolution images of the particle of interest are
provided as reference images [54].

Recently, CNN based particle pickers like crYOLO [131], Topaz [5], and WARP picker [123] have
revolutionized particle picking. With provided pre-trained models based on large training data
sets, previously unknown data sets can be picked with human level accuracy and with a speed
of multiple micrographs per second. Additionally, by picking a few micrographs manually and
training a model based on the provided data set allows for tailor-made models for specific samples
without the bias of template based procedures.

Particle extraction After the successful identification of potential locations of interest, they
are cropped out of the micrograph with a pre-defined box size to yield the so called ”particles”. On
the one hand, particle extraction has the advantage that the dimensions of the processed images
is reduced and subsequent processing steps are less computationally expensive. On the other
hand, neighboring particles might be included in the boxed out area influencing the alignment
calculations of subsequent processing steps. Additionally, the introduction of aberrations like
defocusing leads to a delocalization of structural information in real-space image, which is described
by the CTF. Hence, the choice of the box size is a trade-off between computational speed, including
necessary delocalized information, and the influence of neighboring particles. Additionally, the
centering of the particles, especially for elongated samples, turns out to be challenging, and a small
box size might remove parts of the sample’s density.

2D classification Due to the exceptionally low SNR of the micrographs, even the most sophis-
ticated particle picking procedures are prone to false-positive picks, i.e., structures falsely identified
as the intact sample of interest. This can either mean that contamination has been picked, but also
different conformations or aggregates of the sample. Therefore, 2D classification is used to clean
the data set from the falsely picked particles. The most commonly used classification algorithms
used in the field are either modifications of a maximum likelihood based approach or K-means.

17



1 Introduction

Maximum likelihood based implementations are fast and yield high-resolution classes. However,
the drawback is that classes with such a high resolution tend to attract particles of even different
conformations. This method is able to achieve high-resolution classes, however, at the cost of
homogeneity as they typically consist of multiple thousand members. K-means based algorithms
like ISAC [136] try to perform better in terms of homogeneous classes. However, this requires
more sophisticated sorting approaches, convergence criteria, and stability testing which makes it
more computationally demanding.

Additionally, deep-learning based classifiers like Cinderella [11] and 2DAssess [72] have been
developed, which are able to separate classes into ”kept” and ”discarded” based on the model
provided by the user.

Initial 3D reference Before a high-resolution 3D reconstruction of the sample can be calcu-
lated, the refinement algorithm needs an initial reference as a starting point. Even though noise
filled spheres or crystal structures of the sample are in principle possible to use, the refinement
algorithms profit from an initial reference that resembles a low-resolution version of the actual
target structure. Therefore, a multitude of initial 3D reconstruction algorithms are available that
calculate a low-resolution version from the data set itself [37].

One method is based on random conical tilt [36, 97], where two images of the same acquisition
position are taken, but the stage itself is tilted by a known amount between the acquisitions so
that the relative angle between the two projection images is known. Combining the information
of those projection pairs, the orientations of all molecules can be readily determined and the result
can be verified. Additionally, the handedness of the 3D structure can be correctly determined
due to the known angle between the pairs. The drawbacks of this method are the requirement to
collect pairs of images, since it is difficult to automate, and additional challenges regarding CTF
correction and stage stability due to the tilt.

The second common method that also results in a 3D reconstruction with the correct handedness
is cryo-ET. However, the resulting reconstruction has the limitations as described in section 1.2.3
regarding SNR and the missing wedge effects. Additionally, the collection of a tomographic
reconstruction requires different alignment parameters of the microscope than a SPA project and
is therefore rarely used for the initial reference creation.

Another method is the common lines approach [14]. As described in section 1.3.5, when all
the particles are projections of an exact copy of the same protein at different orientations the FTs
of the projections are central sections of the corresponding 3D structure. Therefore, all slices
share a common line in 3D Fourier space, and the common-lines algorithm tries to identify those
common lines and assign the correct orientations relative to each other. Since the homogeneity of
the sample cannot be guaranteed, and the low SNR of the sample also influences the SNR of the
FT, the success of this method is very dependent on the quality of the input.

Finally, the most commonly used methods are based on stochastic optimization procedures using
the raw extracted particles or previously obtained 2D class averages [26, 79, 96]. They require an
initial reference of some sort, e.g., a heuristic or random initialization to avoid model bias, and use
optimization methods like stochastic gradient descent and stochastic hill climbing to calculate an
initial reference. This has the advantage that no additional data acquisition strategies need to be
utilized, and the initial reference is based on the data set.

If an initial model is created from the data set itself without prior knowledge about its structure,
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the mechanism is referred to as ab initio 3D reconstruction. However, it should be noted that
mathematically speaking the outcome of a 3D ab initio reconstruction often can have two valid
outcomes with opposite handedness. This is due to the fact that projection information does
not have depth information, and therefore they are equivalent. To identify the correct result,
either a high-resolution 3D structure of the protein is necessary, as it is possible to identify the
correct handedness by the turn of an alpha helix, prior knowledge about the structure with, e.g., a
homologous 3D structure for comparison, or use of random conical tilt/cryo-ET.

3D refinement Undoubtedly, the heart of every structure determination project is the 3D
refinement, which tries to assign the correct projection parameters to the extracted particles to
obtain a high-resolution 3D structure. Nowadays, every software package has its own implementa-
tion that works in a fully automated manner and is taking care of the adjustment of parameters
like filter frequency based on the current resolution, information limit of the current images to
prevent overfitting, and the angular search strategy [113, 79, 119, 56].

One major prerequisite is an initial 3D model that ideally resembles a low-resolution version
of the expected final result and can be obtained by different ab initio 3D reconstruction methods.
A multitude of automated iterative 3D refinement strategies utilizing different heuristics have
emerged from the field which, at their core, consist of an alternation between projection parameter
assignment and 3D reconstruction:

Algorithm 3 3D refinement

Require: 𝑆 be a measure of similarity, e.g., likelihood, cross correlation coefficient, or
Euclidean distance.

Require: 𝑁 be the number of real data objects contributing to the 3D reconstruction.
This value is based on the heuristic used.

Require: Assign the provided initial model as the reference model
while Projection parameter assignment changes do
Generate reference projection images from the reference model
Calculate 𝑆 between the generated reference projections and the input data set
Take the 𝑁 highest similarities to reconstruct a 3D volume
Calculate the resolution of the 3D volume and perform adjustments like masking
Assign the reconstructed 3D volume as the reference model

end while

Due to the low SNR of the input data set, the refinement procedure is prone to overfitting and,
therefore, several safety measures have been developed. Firstly, most programs nowadays split
the particles randomly into two groups and each group is refined almost independently from
each other, which is commonly referred to as a ”gold standard” [46] refinement. Furthermore, the
information present in the particles is artificially limited based on the achieved resolution by the 3D
reconstruction of the previous refinement iteration either by low-pass filtering or downsampling
the particles and reference projections prior to comparison [56].

Additionally, the angular sampling that of the reference projections created is gradually adjusted
based on the performance of the refinement, i.e., the accuracy of projection parameter assignments
over multiple iterations. In the early stages of the refinement, the particles are compared with every
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created reference projection (global refinement mode), however, in later stages of the refinement
the comparison happens only between the reference projections that are in a close vicinity of
the previously assigned projection parameter (local refinement mode). Otherwise, the procedure
would not be computationally feasible. Since the number of comparisons approximately grows
exponentially with every increase of the angular sampling, often the mode of the refinement
changes when the angular sampling reaches an angular distance of 1.875° [79, 113].

The achieved resolution after each refinement iteration is assessed with the help of the FSC
as described in section 1.3.5. The volume used in the next iteration step is afterwards filtered
accordingly to prevent overfitting. Additionally, often a real-space 3Dmask, which encapsulates the
structure, is applied to reduce background and improve the alignment accuracy in the subsequent
iteration.

The final 3D reconstruction is always calculated with full information present and no masking
is applied.

Resolution estimation and sharpening After the 3D refinement is finished, the resolution
is again assessed [56, 79, 113]. Furthermore, the SNR can be increased by applying a mask to the
volumes and focusing the resolution estimation on the region that contains the sample.

Afterwards, the output is masked, low-pass filtered and sharpened to improve its usability for
structural analysis and model building. As the low-pass filter threshold, the estimated resolution
is typically used to prevent over-interpretation and increase the SNR. Sharpening the volume
corrects for the loss of contrast in the high-frequency range introduced by, e.g., radiation damage
and errors in the reconstruction procedure. While done correctly, sharpening can help to visualize
high-resolution features for model building, but the also enhanced noise can make the volume look
fragmented and harder to interpret. Therefore, algorithms that analyze the structure factor of the
volume are used to identify the optimal threshold [109].

Often samples are not rigid bodies, but consist of some rigid and some flexible parts, resulting in
a resolution gradient within the 3D reconstruction. Therefore, it is possible to filter each region of
the volumes by a local resolution value instead of the overall resolution. Such a local filter has the
advantage that worse resolved regions show a higher SNR, compared to a filter according to the
overall resolution, while better resolved regions allow for a more detailed analysis of the structure.

Additional processing steps To further improve the quality of the structure and account
for flexibility within the sample, additional processing steps can be executed. The most common
ones are inter alia 3D sorting, heterogeneity analysis, particle polishing, beam-tilt estimation, CTF
refinement, signal subtraction, and multi-body-refinement [87, 94, 56, 112, 80, 141].

3D sorting and heterogeneity analysis try to identify groups of particles originating from
identical copies of the sample. Afterwards, those homogenous subsets run separately through
the SPA pipeline resulting in a 3D volume per conformation. However, the resolution and SNR
of the resulting reconstruction is not necessarily increased, because the number of particles
per reconstruction is decreased. On the other hand, particle polishing, beam-tilt estimation,
and CTF refinement re-assess the parameters initially estimated for dose weighting and CTF
correction on a per-particle basis. This results in a higher SNR for higher frequencies, hence an
improved resolution based on the new parameters. Finally, signal subtraction and multi-body-
refinement computationally remove the rigid parts from the particles itself so that they can be
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refined individually to reduce the influence on another flexible part of the sample on the alignment.
The introduction of the additional processing steps allows for the design of a tailored processing

strategy for every project. However, the initial processing steps up to the first 3D reconstruction
are often so identical to each other that first approaches for automation have been taken.

Helical processing A helical filament consists of a single subunit that is repeated with its
specific helical symmetry parameters 𝛥𝜙 and 𝛥𝑧. The parameter 𝛥𝑧 describes the translational
difference along the helical axis between two adjacent subunits, while 𝛥𝜙 is the difference in
rotation between those. When it comes to helical processing, the general SPA workflow remains
identical, but certain steps are slightly modified and require different assumptions due to the
rod-like character of the sample [39]. Now, unlike in SPA, the particle extraction process works in a
way that each extracted particle image has one unique subunit in its center plus several additional
subunits, which themselves are the central subunits of the neighboring particle images. Therefore,
the informational overlap between individual particles can be up to 95 %.

Additionally, the projections originating from filaments only show so-called side-views of the
filament due to physical limitations such as their elongated shape, which often extends over several
holes or even grid squares, with an ice thickness of a few tens of nano meter. This has the effect that
the filament cannot tilt appreciable within the ice layer. However, the embedded filaments show a
repeating pattern that is small compared to the field of view. Therefore, all projections around the
equator are present in a single micrograph allowing for high-resolution structure determination.

The most common algorithms for the 3D reconstruction of helical samples were for a long time
Fourier-Bessel methods [64] and then single-particle based methods like Iterative Helical Realspace
Reconstruction (IHRSR) [23], while nowadays Bayesian based single-particle methods built on top
of IHRSR are heavily used [27, 50]. Fourier-Bessel methods take advantage of the fact that the FT
of a helical sample is a composition of different Bessel functions, which can be identified by the
pattern of diffraction maxima, the so-called layer lines, in the FT of the filament. Based on the
Bessel function information in combination with the knowledge about the symmetry parameters,
the 3D structure can be calculated. However, in case of a low SNR, protein flexibility, or helical
symmetry parameters diverging from the assumed symmetry, Fourier-Bessel methods are very
limited in their application [24].

Single-particle based methods try to overcome the limitations of Fourier-Bessel like Bessel
overlap for certain symmetries, the need to computationally straighten flexible filaments, weak
Bessel layers caused by weakly diffracting filaments based algorithms by treating the extracted
particles independently from each other during 3D refinement, as if they were part of a SPA project.
Additionally, the amount of particles within a data set is much larger in SPA based approaches
than Fourier-Bessel based approaches allowing to account for variability within the structure itself.
Most helical refinement programs like Helical RELION [50], SPIDER [38], SPARX [57], FREALIGN
[119], FREALIX [107], SPRING [17], and cryoSPARC [96] are at their core based on the IHRSR
algorithm which decouples the 3D reconstruction from the helical symmetry parameters:

However, calculating the helical symmetry based on potentially low-resolution 3D reconstruc-
tions and applying the best match to the volume used as a reference for the subsequent iteration
can lead to model bias and wrongly estimated structures and symmetry parameters. Therefore,
while useful for many data sets, the higher the flexibility of the filament at hand, the higher the
risk of model bias [91, 25].
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Algorithm 4 Iterative helical real space reconstruction

Require: 𝑃 be the assigned pose (Projection angles 𝛷, 𝛩, and 𝛹 and shifts 𝑠𝑥, 𝑠𝑦) of a
particle.

Require: 𝑆𝑦𝑚 be the helical symmetry parameters 𝛥𝜙 and 𝛥𝑧.
Require: An initial volume serving as the reference volume 𝑉 for the first iteration.
Require: 𝐶𝐶𝐶 be the cross-correlation coefficient calculated between a reference projec-

tion and a particle.
while The user defined number of iterations is not reached do

Calculate 2D projections from the reference volume 𝑉 along the azimuth.
Perform a multi-reference alignment with the particles from the data set.
Assign 𝑃 of the reference projections that led to the highest 𝐶𝐶𝐶 for each particle.
Calculate a 3D reconstruction based on the assignments to each particle.
Apply different combinations of 𝑆𝑦𝑚 to the reconstructed volume and determine the
best fit by least squares fit with the original volume.
Use the best fitting symmetrized volume as reference volume 𝑉 for the next iteration.

end while

Recent modifications of existing SPA workflows established in RELION [113] in the Raunser lab
showed that it is possible to achieve high resolution for flexible helical filaments like actin without
imposing any helical symmetry and hence reducing the risk of model bias [78].

1.3.6 Automated on-the-fly data processing

Automation is a tool to make processing tasks more standardized, efficient, and accessible for the
user, and its true potential can be utilized in combination with on-the-fly processing, i.e., processing
the data live during data acquisition. Nowadays, hundreds of images per hour are collected at the
microscope resulting in thousands of images per data set within a few days. However, possible
problems with the microscope alignment, data acquisition strategy, or sample quality cannot be
directly deduced from the visual appearance of the raw data itself. Therefore, possible problems
might show up days, weeks, or even months after the actual data collection, rendering the whole
data set useless. Since time for data acquisition is typically rare and expensive, collecting the data
set under the most optimal conditions is of utmost importance.

To assist with the evaluation of the data and to rule out the most obvious problems with the
microscope alignment, the incoming data can be immediately processed. The processing steps
can be separated into the three categories basic pre-processing, advanced pre-processing and 3D
processing. Basic pre-processing includes motion correction, CTF estimation, particle picking, and
particle extraction and is executed on a per micrograph level. Those steps provide insight into the
stability and accuracy of the microscope and the overall quality of the sample preparation. On the
other hand, advanced pre-processing consists of 2D classification and 2D class selection and is built
upon the results of the basic pre-processing but the processing itself is on a 2D basis. With the help
of those tasks it is possible to assess the quality of the sample itself and identify possible problems
like preferred orientation or heterogeneity. Finally, 3D processing includes all the remaining steps
of the SPA workflow and also builds upon the results of the basic pre-processing steps. However,
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the 3D processing can additionally be influenced by the results of the advanced pre-processing
steps. For example, particles could have been removed based on 2D classification results or 2D
classes are used instead of particles as an input for the initial 3D reference estimation. All in all, the
results of the live automated data processing allow the user to make educated decisions about the
status of their data acquisition settings depending on the different tasks executed and effectively
reduce the amount of unusable images.

Software like WARP [123], Focus [6], RELION [113], Scipion [108], Appion [68], cryoSPARC [96],
and cryoFlare [111] already tackle those tasks and are able to automate the processing up to a
certain point by chaining the individual steps of the SPA workflow together while collecting data
at the microscope. However, they lack the ability to optimize the input settings for the data itself
based on the behavior of the data set. First attempts of automated data optimization have been
done by the Cianfrocco lab that recently published a deep-learning based tool that is able to select
2D class averages of good quality after successful 2D classification, and therefore remove those
particles that are members of the class averages of worse quality or showing contamination [72].
However, it has not been designed for on-the-fly processing, and hence works best in a scenario
where the data set is already collected, and each individual step is executed one after the other on
the complete data set. An alternative approach has been implemented by the Liu lab, where the %⁄Res,
which is based on provided values by RELION [113] 2D classification, is evaluated and particles
belonging to 2D classes with a value below a certain threshold are removed [77]. Additionally,
the remaining particles are then used to re-train the particle picking model to yield better picking
results in a subsequent picking process.

In the course of this thesis, the program TranSPHIRE [118] has been developed that enables
efficient on-the-fly data processing and data optimization utilizing established tools in the field
combined with new inventions from the SPHIRE [79] project. TranSPHIRE covers all of the initial
pre-processing steps of the SPA workflow and additionally implements the TranSPHIRE feedback
loop that automatically optimizes the particle picking performance in an iterative way based on
2D classification results (Figure 1.5).
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Figure 1.5: a Upper register (solid line): Overview of the integrated TranSPHIRE pipeline
and all automated processing steps. The pipeline includes file management tasks, i.e.,
parallelized data transfer, file compression, and file backup (gray); 2D processing, i.e.,
motion correction, CTF estimation, particle picking, 2D clustering, and 2D class selection
(turquoise); and 3D processing, i.e., ab initio 3D reconstruction and 3D refinement (red).
Additionally, the pipeline includes an automated feedback loop optimization to adapt
picking to the current data set during runtime (purple). Lower register (dotted line): The
SPHIRE software package forms the backend for TranSPHIRE and offers the tools used
for 2D and 3D processing. SPHIRE includes additional tools for advanced processing,
such as heterogeneity analysis and local resolution determination. b The TranSPHIRE
feedback loop. Gray arrows indicate the flow of data processing. Purple arrows indicate
the flow of the feedback loop. Left (input): Micrographs are initially picked using the
crYOLO general model. Center (processing): Particles are picked and extracted. Once
a pre-defined number of particles have been accumulated, the pipeline performs 2D
classification; the resulting 2D class averages are labeled as either ”kept” or ”discarded”
by Cinderella. Class labels and crYOLO box files are then used to re-train crYOLO and
adapt its internal model to the processed data. In the next feedback round this updated
model is used to re-pick the data. Right (output): After five feedback rounds, the complete
data set is picked with the final optimized picking model and 2D classified in batches. For
every batch a particles stack of ”kept” particles is created and available for 3D processing.
Figure and caption adapted from [118].
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1.4 Aim of this thesis

In the past few years, cryo-EM established itself as a key method for high-resolution structure
determination. While cryo-ET is still developing, the SPA approach leads to consistent structures
with a resolution of better than 4Å. However, the achievable resolution of a project is dependent
on factors like specimen preparation, microscope alignment, and the quality and purity of the
sample itself. Nonetheless, the resolution cannot be determined based on the visual appearance of
the raw data. Rather, computational demanding processing is required to obtain a 3D structure
which needs to be interpreted. Hence, it can take days, weeks, or even months to identify possible
problems during data acquisition, which would render the data useless. Therefore, it is of utmost
importance to not only increase the rate of the data collection, but additionally improve the quality
of the data.

The aim of this thesis was to develop an automated on-the-fly processing pipeline for the SPA
workflow with a focus on computational efficiency and adaption of the parameters to the data
at hand to provide crucial information about the quality of the data. Therefore, the pipeline
should cover all the necessary SPA steps up to the first 3D reconstruction to be able to detect the
most resolution limiting factors. To yield close-to-optimal initial results, certain steps of the data
processing would be optimized by a feedback-driven approach between particle picking and 2D
classification. Additionally, those metrics should be presented via a graphical user interface (GUI)
interface to provide as much information as possible and to allow for a fast analysis of the results
to be able to correct for them as soon as they occur. Furthermore, the pipeline should not only be
able to handle globular samples, but should work with filamentous samples as well.

Ultimately, the results of this thesis project would help to decrease the influence of resolution
limiting factors in a data set that prevents them to culminate in a high-resolution 3D reconstruction.
Combined with an efficient handling of computational resources, this approach can lead to high-
resolution 3D reconstructions during data acquisition paving the way for cryo-EM to become a
method for high-throughput structure determination.
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Material and Methods 2
2.1 Computational resources

The presented results related of the TranSPHIRE [118] project were produced on a single ma-
chine equipped with two Intel(R) Xeon(R) Gold 6128 central processing units (CPUs)(3.4 GHz),
three NVIDIA GeForce 1080 TI graphics processing units (GPUs), and 192GB random access
memory (RAM). Computational demanding processing like the 3D refinement or the ab initio 3D
reconstruction as well as the results of the refinement of filaments were performed on the local
high-performance computing (HPC) cluster CLEM. The nodes of the HPC cluster are equipped
with two Intel(R) Xeon(R) Gold 6134 CPUs (3.2 GHz) and 382GB RAM.

2.2 Data sets

2.2.1 Tobacco Mosaic Virus

A Tobacco Mosaic Virus (TMV) [40] data set was used for the evaluation of the refinement of fila-
ments. This data set consists of 14 micrograph movies and their respective helical box coordinates
and is available on EMPIAR entry EMPIAR-10020 [28]. The micrograph movies were collected at a
Titan Krios (FEI Thermo Fisher) microscope equipped with an X-FEG and operated at 300 kV using
Serial EM [75] for data acquisition. One collected movie contains 22 frames with an equal electron
dose of 1.95 e/Å2/frame and a pixel size of 1.126Å/pixel collected with a K2 Summit (Gatan, Inc)
direct electron detector.

For motion correction including dose weighting MotionCor2 [139] version 1.3.2 without patch
alignment was used. CTF estimation was performed using CTER [89, 79] with a 𝐶s value of 2.7
between 4Å and 30Å. Segments were created based on the provided box files on EMPIAR with
an overlap of 80 pixel and a box size of 300 using e2helixboxer.py from the EMAN2 [121] package.
For sp_meridien.py and sp_meridien_alpha.py the settings --delta=3.75, --radius=132, --xr=5, --ts=1,
--inires=15, --ccfpercentage=90 were used along with a soft-edge mask covering 85 % of the protein
along the helical axis. Additionally, for sp_meridien_alpha.py the settings --angle_method=M,
--theta_min=80, --theta_max=100, --howmany=16, --helical_rise=1.41, and --filament_width=130
were used. The used reference was created based on an biological assembly (PDB:4UDV [40]) with
a pixel size of 1.126Å/pixel and a box size of 300.

The provided soft-edge mask was created using the program sp_mask.py based on the pro-
vided reference with the settings --threshold=0.003 8, --fill_mask, --low_pass_filter_resolution=15,
--pixel_size=1.126, --ndilation=3, --edge_width=8, --second_mask_shape=cylinder, --s_threshold=1,
--s_nx=300, --s_ny=300, --s_nz=255, --s_ndilation=0, --s_edge_width=15, and --s_radius=150.

For the SPHIRE sharpening program sp_process.py --combinemaps the same soft-edge mask
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covering 60 % of the protein along the helical axis and --B_enhance=50 was used. The pro-
vided soft-edge mask was created using the program sp_mask.py based on the unfiltered re-
sult of the first meridien run with the settings --threshold=0.015, --ndilation=3, --edge_width=8,
--second_mask_shape=cylinder, --s_edge_width=8, --s_radius=140, --s_nz=180, --s_nx=300, and --
s_ny=300

2.2.2 Actomyosin

An actomyosin data set was used for the evaluation of the refinement of filaments and the
TranSPHIRE pipeline. This data was kindly provided by my colleague Dr. Sabrina Pospich [93]. The
data set was collected at a 𝐶s-corrected Titan Krios (FEI Thermo Fisher) microscope equipped with
an X-FEG and operated at 300 kV using EPU [30] for data acquisition. The collected movie contains
40 frames with an equal electron dose of 2.03 e/Å2/frame and a pixel size of 0.55Å/pixel collected
with a K2 Summit (Super resolution mode; Gatan, Inc) direct electron detector. Additionally, a GIF
quantum-energy filter with a slit width of 20 e V was used.

For the processing in TranSPHIRE the number of feedback loop iterations were set to five.
Within the TranSPHIRE pipeline the movies were drift corrected, dose weighted, and binned to a
pixel size of 1.10Å/pixel usingMotionCor2 [139] without patches to avoid filament distortions. CTF
estimation was performed using CTFFIND4 [106] with a 𝐶s value of 0.001 between 4Å and 30Å.
Since there is no general model for filaments available, a general model on data sets of actin
filaments, but not the actomyosin or other actin complexes, was trained. Due to the fact that actin
and actomyosin substantially differ in their visual appearance, this simulates the picking of an yet
unknown filament with the help of a general model.

During the feedback loop iterations, the crYOLO picking confidence threshold is set to 0.1 and
the anchor size to the estimated box size of 320 pixel. Additionally, the filament width parameters
was set to 100 pixel and the box distance to 25 pixel, which is about the distance of the helical
rise of 27.5Å. A filament needs to consist of at least six segments to be considered. Once the
fifth feedback round was finished, the picking confidence threshold was set to be 0.3, because
the threshold evaluation script is not available for filamentous trainings. The resulting picked
regions on the micrographs were extracted using the sp_window.py [79] program with a box size
of 320 pixel and the expected filament width of 100 pixel. 2D classification was executed in batches
of 20 000 particles with a provided particle radius of 160 pixel, a group size of 50, and a minimum
group size of 30. For the 2D class selection with Cinderella [11] the general model from the website
was used combined with a conservative confidence threshold of 0.1. Since filamentous samples
differ strongly from the training data of the single particle based general Cinderella model, the
TranSPHIRE pipeline was stopped after the 2D classification of the first feedback round to train a
new Cinderella model. In addition to the afterwards manually labeled 2D class averages, as ”kept”
labeled class averages of pure actin and as ”discarded” labeled class averages of contamination
was added to the data prior training. The crYOLO training was performed on a maximum of 50
micrographs that contained ”kept” labeled particles by Cinderella [11].

The evaluation of the resulting models from every feedback loop iteration was done using
sp_auto.py [79] on a fixed subset of 100 micrographs using identical input settings as described
above. For the evaluation of the refinement of filaments the cleaned stack of the final TranSPHIRE
feedback loop iteration with a crYOLO picking threshold of 0.3 containing 45 297 particles from 97
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different micrographs was used.
For sp_meridien.py and sp_meridien_alpha.py the settings --delta=1.875, --radius=132, --xr=5,

--ts=1, --inires=15, --ccfpercentage=90 were used alongwith a soft-edgemask covering 85 % of the pro-
tein along the helical axis. Additionally, for sp_meridien_alpha.py the settings --angle_method=M,
--theta_min=90, --theta_max=90, --howmany=16, --helical_rise=27.5, and --filament_width=20 were
used. The used reference was created based on an biological assembly (PDB:5JLH [22]) with a pixel
size of 1.1Å/pixel and a box size of 320.

The provided soft-edge mask was created using the program sp_mask.py based on the pro-
vided reference with the settings --threshold=0.008, --fill_mask, --low_pass_filter_resolution=15,
--pixel_size=1.1, --ndilation=3, --edge_width=8, --second_mask_shape=cylinder, --s_threshold=1, --
s_nx=320, --s_ny=320, --s_nz=272, --s_ndilation=0, --s_edge_width=15, and --s_radius=160.

For the SPHIRE sharpening program sp_process.py --combinemaps the same soft-edgemask cover-
ing 60 % of the protein along the helical axis and --B_enhance=50 was used. The provided soft-edge
mask was created using the program sp_mask.py based on the unfiltered result of the first meridien
run with the settings --threshold=0.01, --ndilation=3, --edge_width=8, --second_mask_shape=cylinder,
--s_edge_width=8, --s_radius=160, --s_nz=192, --s_nx=320, and --s_ny=320

2.2.3 Tc holotoxin

A Tc holotoxin data set was used for the evaluation of the TranSPHIRE pipeline. The sample is
the ABC holotoxin from Photorhabdus luminescens in lipid nanodisc [105] and is available on
EMPIAR entry EMPIAR-10313 [29]. This data set consists of the pre-pore and pore state of the
holotoxin, i.e., of a mixture of conformational states. The data set was collected at a 𝐶s-corrected
Titan Krios (FEI Thermo Fisher) microscope equipped with an X-FEG and operated at 300 kV using
EPU [30] for data acquisition. The collected movie contains 40 frames with an equal electron dose
of 1.52 e/Å2/frame and a pixel size of 0.525Å/pixel collected with a K2 Summit (Super resolution
mode; Gatan, Inc) direct electron detector. Additionally, a GIF quantum-energy filter with a slit
width of 20 e V was used.

For the processing in TranSPHIRE the number of feedback loop iterations were set to five.
Within the TranSPHIRE pipeline the movies were drift corrected, dose weighted, and binned to a
pixel size of 1.05Å/pixel using MotionCor2 [139] with a patch value of "3 3 0". CTF estimation
was performed using CTFFIND4 [106] with a 𝐶s value of 0.001 between 4Å and 30Å. For particle
picking, the general model of crYOLO was used.

During the feedback loop iterations, the crYOLO picking confidence threshold is set to 0.1 and
the anchor size to the estimated particle diameter of 205 pixel. Once the fifth feedback round was
finished, the optimal threshold was evaluated by the cryolo_evaluation.py to be 0.194 based on the
input training data. The resulting picked regions on the micrographs were extracted using the
sp_window.py [79] program with a box size of 420 pixel. 2D classification was executed in batches
of 20 000 particles with a provided particle radius of 160 pixel, a group size of 100, and a minimum
group size of 50. For the 2D class selection with Cinderella [11] the general model from the website
was used combined with a conservative confidence threshold of 0.1. To demonstrate the ability of
the TranSPHIRE feedback loop to learn how to distinguish sub-populations within the data, the
Cinderella model was trained on existing 2D class averages of the pore state as instances of ”kept”
classes (318) and 2D class averages of the pre-pore state mixed with contaminations as instances of
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”discarded” classes (644). The crYOLO training was performed on a maximum of 50 micrographs
that contained ”kept” labeled particles by Cinderella [11].

The evaluation of the resulting models from every feedback loop iteration was done using
sp_auto.py [79] on a fixed subset of 500 micrographs using identical input settings as described
above. For the 3D refinement, sp_meridien.py [79] was used with an initial model created by
sp_rviper.py [79] based on classes labeled as ”kept” by Cinderella [11] of each sp_auto.py [79] run is
used. Additionally, no symmetry was imposed and the refinement ran without a mask to prevent
model bias.

2.2.4 Transient receptor channel 4

A transient receptor channel 4 (TRPC4) data set was used for the evaluation of the TranSPHIRE
pipeline. This data set was received upon request from my colleague Dr. Deivanayagabarathy
Vinayagam and the sample is TRPC4 from zebra fish in lauryl maltose neopentyl glycol (LMNG)
detergent [129]. The data set was collected at a 𝐶s-corrected Titan Krios (FEI Thermo Fisher)
microscope equipped with an X-FEG and operated at 300 kV using EPU [30] for data acquisition.
The collected movie contains 50 frames with an equal electron dose of 1.77 e/Å2/frame and a pixel
size of 0.85Å/pixel collected with a K2 Summit (Super resolution mode; Gatan, Inc) direct electron
detector. Additionally, a GIF quantum-energy filter with a slit width of 20 e V was used.

For the processing in TranSPHIRE the number of feedback loop iterations were set to five. Within
the TranSPHIRE pipeline the movies were drift corrected and dose weighted using MotionCor2
[139] with a patch value of "5 5 20". CTF estimation was performed using CTFFIND4 [106] with
a 𝐶s value of 0.001 between 4Å and 30Å. To avoid bias of the crYOLO model TRPC related data
sets were removed from the training data prior training a new crYOLO model. Additionally, the
coordinates of 90 % of the resulting picks were were randomized to simulate a worst-case-scenario.

During the feedback loop iterations, the crYOLO picking confidence threshold is set to 0.1 and
the anchor size to the estimated particle diameter of 240 pixel. Once the fifth feedback round was
finished, the optimal threshold was evaluated by the cryolo_evaluation.py to be 0.357 based on
the input training data. The resulting picked regions on the micrographs were extracted using
the sp_window.py [79] program with a box size of 288 pixel. 2D classification was executed in
batches of 20 000 particles with a provided particle radius of 120 pixel, a group size of 100, and a
minimum group size of 50. For the gls2D class selection with Cinderella [11] the general model
from the website was used combined with a conservative confidence threshold of 0.1. The crYOLO
training was performed on a maximum of 50 micrographs that contained ”kept” labeled particles
by Cinderella [11].

The evaluation of the resulting models from every feedback loop iteration was done using
sp_auto.py [79] on a fixed subset of 500 micrographs using identical input settings as described
above. For the 3D refinement, sp_meridien.py [79] was used with an initial model created by
sp_rviper.py [79] based on classes labeled as ”kept” by Cinderella [11] in every feedback loop
iteration was used. Additionally, a c4 symmetry was imposed and the refinement ran without a
mask to prevent model bias.
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2.3 Refinement of filaments

For the adjustments made to the 3D refinement the program sp_meridien.py [79] from the SPHIRE
[79] package was used as a starting point (Algorithm 5). The SPHIRE [79] package is codistributed
with the cryo-EM software package EMAN2 [121] and the versions used for modifications were 1.3
and 2.31, respectively.

First, the particle stack is randomly split into two groupswith about the same defocus distribution.
Meridien has four operating modes: INITIAL, PRIMARY, EXHAUSTIVE, and RESTRICTED. Each
mode consists of two major steps: The coarse grid search and the fine grid search. The coarse
grid has an angular distance of twice the current angular distance (default current angular starting
distance --delta=7.5°), which results in a lower computational demand. The fine grid has an
angular distance of the current angular distance. Those projection parameters in the close proximity
of the best matches of the coarse grid search are evaluated for the final projection parameter
assignment. Finally, a 3D reconstruction is calculated from the particles with their respective
projection parameter assignments weighted by their likelihood. The resulting 3D reconstruction
is filtered to the current resolution and used as an input to the subsequent refinement iteration.
Once the procedure converges, i.e., the resolution does not increase and the assigned projection
parameters stay about the same, a final unfiltered 3D reconstruction is calculated.

During the INITIAL mode, only the very best reference match of each particle is taken into
account for the 3D reconstruction, which makes this step behave very similarly to the projection
matching strategy [88]. In the PRIMARY mode all reference matches of each particle are taken into
consideration for the fine grid searches that have negative squared Euclidean distance values above
−10. At the end of each step, only the best projection parameters whose accumulated likelihood is
smaller than a user defined threshold are taken into account for the 3D reconstruction (default
--ccfpercentage=99.9 %). The number of projections taken into account for each particle after
the final filtering define the smear value of the respective particle. Additionally, the background
noise is estimated from the data. The EXHAUSTIVE mode uses the same reference match method
as in PRIMARY, and uses the estimated background noise values of the PRIMARY step. During the
RESTRICTED mode, each particle is not compared to every possible reference projection, but only
to those within a small region around the best match from the previous iteration.
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Algorithm 5 Description of the Meridien algorithm

Center the input particles
Split the input particles into two independent groups
Filter the input reference to the user-defined resolution
Filter particles by reducing the image size
Set the filtered input reference as the reference volume
while Refinement did not converge do

if Iteration == 1 then
Set Mode to INITIAL

else if Mode == INITIAL then
Set mode to PRIMARY

else if Angular projection parameters did not change significantly and Resolution
did not improve then
if Angular accuracy is high then
Refinement converged

end if
Reduce the shift search range
Reduce the angular distance by half
Increase particle box size
if Mode == PRIMARY then
Set mode to EXHAUSTIVE

else if Mode == EXHAUSTIVE and delta <= 1.875 then
Set mode to RESTRICTED

end if
end if
Generate coarse and fine search grid for shifts and angles
Shake the search grids to prevent overfitting

Generate coarse grid reference projections from the reference volume
Calculate the Euclidean distance for each particle with each reference projection
Keep the best matches
Identify nearest neighbors on the fine grid to the best matches

Generate nearest neighbors reference projections from the reference volume
Calculate the Euclidean distance for each particle with each reference projection
Keep the best matches

Perform filtered 3D reconstruction
Set the reconstruction as the new reference volume

end while
Perform final unfiltered 3D reconstruction
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2.4 TranSPHIRE

The TranSPHIRE [118] implementation consists of three parts: the TranSPHIREGUI, the TranSPHIRE
worker, and the embedded external programs. TranSPHIRE is an open-source software for the Linux
operating system utilizing Python[35] version 3.6 and is freely available online (https://github.
com/MPI-Dortmund/transphire). The package can be installed with the Python package manager
PIP and a manual is available from the TranSPHIRE wiki (https://transphire.readthedocs.io)

2.4.1 TranSPHIRE GUI

The TranSPHIRE GUI serves as the entry point for the user and helps setting up the TranSPHIRE
session, manages the communication with the TranSPHIRE worker, and visualizes the results of
the individual worker processes. The GUI utilizes the wrapper PyQt [34] version 5.9.2 for the QT
[13] framework version 5.9.2. For data visualization, the data is imported with numpy [49] version
1.19.4 and visualized with matplotlib [58] version 3.3.3. Notifications can be sent via GUI pop-ups,
Telegram [124] bots with the help of the telepot [69] module, or e-mail.

2.4.2 TranSPHIRE worker

While the TranSPHIRE GUI focuses on the interaction with the user, the TranSPHIRE worker is
running the TranSPHIRE pipeline in several independent processes. The program utilizes the
multiprocessor module and the queue module of the shipped standard library for sub-process
spawning and for inter-process communication, respectively.

2.4.3 External software

Within the TranSPHIRE workflow several well established software packages and applications from
external sources are wrapped and available through the TranSPHIRE GUI. For motion correction
the software packagesMotionCor2 [139] and Unblur [45], for CTF estimation the software packages
CTER [89, 79], CTFFIND4 [106], and gCTF [138], for particle picking crYOLO [131], for particle
extraction sp_window.py [79], for 2D classification GPU ISAC [44], for 2D class selection Cinderella
[11], for 3D ab-initio reconstruction and 3D refinement sp_auto.py [79], which uses the programs
sp_rviper.py [79] for ab initio 3D reconstruction and sp_meridien.py [79] or sp_meridien_alpha.py
for the 3D refinement of single particles or filaments, respectively, and utility tools EMAN2 [121]
and IMOD [65].

The presented results were produced with TranSPHIRE [118] v1.4.50 and SPHIRE [79] v1.4.
Specifically, the software versions used were: Cuda 10.2.86 version of MotionCor2 [139] v1.3.0,
CTFFIND4 [106] v4.1.13 for CTF estimation, crYOLO [131] v1.6 for particle picking, SPHIRE sp_win-
dow.py [79] for particle extraction, GPU ISAC [44] v1.0 of SPHIRE ISAC [136] for 2D classification,
SPHIRE Cinderella [11] v0.5 for 2D class selection, SPHIRE sp_rviper.py [79] for ab initio 3D re-
construction, and SPHIRE sp_meridien.py [79] or sp_meridien_alpha.py executed via the SPHIRE
sp_auto.py [79] for the 3D refinement of single particles or filaments, respectively.
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Results 3
The aim of this thesis was to invent an automated cryo-EM workflow for single particles and
filamentous samples. As a starting point, the internally developed SPA software package SPHIRE
[79] was used. To add support for filamentous samples, modifications to the programs were
necessary, and those will be presented in section 3.1. Afterwards, the newly developed on-the-fly
processing tool TranSPHIRE [118] is presented in section 3.2. The results related to the TranSPHIRE
workflow have been published in Nature Communications [118].

3.1 Processing of filaments

To allow the processing of filamentous samples within the SPA based software package SPHIRE [79],
different modifications were necessary. The focus was on the 3D refinement, since it is the most
crucial step of every cryo-EM structure determination project. Additionally, minor adjustments to
the pre-processing programs, utility programs, and the SPHIRE [79] GUI were made.

3.1.1 Adjustments to pre-processing and utility programs

sp_window.py

The sp_window.py program extracts, i.e., crops out, the provided regions of interest from the
micrographs. Since cryo-EM micrographs have a low SNR, the identification of protein signal is
error prone and often leads to false-positive picks, i.e., regions marked as protein signal which
actually contain noise or contamination. Therefore, in the following the term ”particle” will be
used to refer to the content of the cropped area rather than a potential protein signal within the
cropped area. In SPA, the coordinates for the square regions of interest are chosen in a way that
each particle contains the center of the signal identified as protein in its center. Thus, one particle
contains potentially one unique asymmetric unit. On the other hand, in filamentous processing
rectangular regions of interest are used, whose coordinates are chosen in a way that contain the
center of the straight elongated signal identified as a filament in its center. Since helical filaments
are composed of the same repeating subunit, particles are extracted with an overlap so that each
particle contains a unique asymmetric unit in its center. Therefore, the protein within the particle
is commonly referred to as segment.

After the extraction of the particles, in SPA a circular mask is used to calculate the mean and the
standard deviation of the signal inside the central region, i.e., the area where the protein is located.
Those values are then used to normalize the image by subtracting the mean of the central region
and dividing by the standard deviation. Filamentous samples have a rod-like shape spanning over
the entire box along the helical axis, while often being much thinner perpendicular to it. Therefore,
a circular mask could include a lot of noise and can lead to distorted pixel statistics.
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To overcome this issue, a rectangular mask along the helical axis was introduced for the calcula-
tion of the image statistic. However, this requires knowledge about the orientation of the segment
inside the particle and the approximate width of the filament. Therefore, the orientation angle is
calculated from the orientation of the filament, since the filament is identified as a whole and the
individual particles are extracted from it afterwards. The orientation angle is saved in the metadata
for each particle so that it can be used in later stages of the processing. Additionally, the filament
id and the segment id are stored. The width of the filaments is provided by the user.

sp_isac2.py

The sp_isac2.py program performs 2D clustering to clean the data set of false-positive particles,
i.e., contamination or noise falsely identified as protein signal. Therefore, it provides an initial
overview of the 2D views present in the data. To yield the best clustering results, an initial global
2D alignment is performed which puts all particles into global register, i.e., find the orientation
which maximizes the overlap of similar features. Thus, all available particles are averaged to form a
first initial reference image. Afterwards, each particle is compared to the reference image to identify
the optimal particle orientation which overlaps best. A new reference image for the subsequent
iteration is created by averaging all particles after the respective 2D alignment parameters are
applied. Therefore, the particles are centered by their center of mass within their respective boxes
in an iterative way.

However, for filamentous samples, the segments always show a rod-like shape. Therefore, an
initial reference image containing only signal within a rectangle parallel to the X-axis and with
a width of the filament is used as a reference image for the first five out of overall 14 alignment
iterations. Thus, the alignment is guided to properly center the filaments in the center of the
box. Afterwards, the resulting shifts parallel to the helical axis are set to 0 for each particle prior
clustering. That is, because filamentous particles are extracted with an overlap of up to 95 %
based on the helical rise of the filament and the alignment procedure tends to overlap neighboring
particles by shifting along the helical axis. This would lead to identical central regions of the
particles for neighboring particles, and hence not only a distorted clustering result, but also
blurry class averages due to information from redundant members and the resulting missing noise
reduction. Therefore, it can be beneficial to disallow any particle shift during the main iterations
of sp_isac2.py by setting the parameter --xr=0, and allow the clustering can focus on the central
subunit of each individual particle.

Additionally, the particle normalization strategy using a rectangular mask instead of a circular
mask is adopted from sp_window.py.

sp_pipe.py

After the successful execution of sp_isac2.py, the utility tool sp_pipe.py is used to remove those
particles from the data set that were marked as outliers by the ISAC [136] algorithm. However,
this can break the continuity of particles originating from one filament. Therefore, the program
was modified to split fragmented filaments into sub-filaments that contain contiguous particles
and remove those sub-filaments that contain less than the user-defined number of particles. Since
contiguous filaments with only a few associated particles in the data set can lead to distorted
filament projection parameter statistics, it can be beneficial to remove those from the data set.

36



3.1 Processing of filaments

3.1.2 Adjustments to the 3D refinement

The sp_meridien.py program performs the 3D refinement to calculate a high-resolution reconstruc-
tion by identifying and assigning 3D projection parameters to the 2D particles. To work with
filamentous samples, a SPA based refinement strategy was implemented that utilizes additional
knowledge about the particles stemming from their filamentous character [78]. The modified
version is available as sp_meridien_alpha.py in the SPHIRE [79] package.

Filamentous constraints Firstly, the filaments formed by the individual subunits are typically
long compared to the size of the holes of the grid, and therefore the filaments are oriented almost
parallel to the thin ice layer. This results in an out-of-plane rotation angle 𝛩 to values close to 90°,
i.e., all angle combinations that are about perpendicular to the helical axis. Secondly, the particles
of a filament are extracted in a consecutive way. Therefore, neighboring particles inside a filament
should have similar shifts perpendicular to the helical axis, out-of-plane rotation angles 𝛩, and
in-plane rotation angles 𝛹. Thirdly, each particle of a filament is boxed with a unique central
subunit while neighboring subunits are unique central subunits of a neighboring particle. Hence,
the allowed shift along the helical axis per particle should not exceed about half the helical rise 𝛥𝑧
of the filamentous structure to prevent identical assignments of projection directions for the same
central subunit.

The projection directions in sp_meridien_alpha.py are described by the Euler angles 𝛷, 𝛩, and 𝛹.
To work properly, the 3D reference is expected to be orientated so that the helical axis is parallel
to the 𝑧-axis of the box. Therefore, a rotation around the helical axis is represented by the angle 𝛷
in the range from 0° to 360°, the out-of-plane rotation in respect to the thin ice layer is reflected
by the angle 𝛩 in the range from 0° to 180°, and the in-plane-rotation angle in respect to the thin
ice layer is reflected by the angle 𝛹 in the range from 0° to 360°, respectively. To account for the
first constrain the existing angular assignment creation method P has been modified to always
contain the out-of-plane rotation angle 𝛩 of 90°. Adapted from the P method, the newly created
methodM starts with a 𝛩 value of 90° and continues by subtracting and adding the current angular
distance value 𝛥𝛩 to identify all 𝛩 angles within the user-defined range. To approximate an even
distribution of angles within the whole range of possibilities, the angular distance 𝛥𝛷 between 𝛷
values for each 𝛩 value is defined with the help of the formula 𝛥𝛷 = 𝛥𝛩/sin 𝛩.

The second constraint can be used to analyze the behavior of a data set after each iteration
of the 3D refinement. By comparing the projection parameters of particles within one filament,
inconsistency of those particles can be identified for possible data set optimizations at a later
point in the processing pipeline. To identify outliers in the out-of-plane rotation angle 𝛩 the 𝛩mean

value of all particles within one filament is determined and all values outside the range 𝛩mean ± 15°
(default value) are considered outliers. On the other hand, the identification of outlier particles
within one filament for the in-plane rotation angle 𝛷 is more complex due to the periodic boundary
conditions of the angle at 360°, i.e., the angle 350° has the same angular distance of 10° from 0° and
360° as the angle 10°.

To account for the wrapping, the original 𝛹 range from 0° to 360° is first translated to the range
from −180° to 180° by subtracting values larger than 180° by 360°. Afterwards, the median is
calculated based on the absolute values of the angles and the median gets a negative sign if the
number of negative angles is larger than the number of positive angles. The influence of the
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wrapping effect is reduced by adding the median value to all angles and adjust the angle ranges
again to −180° to 180°. Finally, the median is iteratively determined based on the rotated angles
until convergence, i.e., the median being 0 or is alternating between two values. Following the
determination of the median, the mean value is iteratively calculated based on the angle values
inside the range −30° to 30° (default value). Particles are then labeled 𝛹 outliers if they are not
within the range −15° to 15° (default value) around the determined mean value. Additionally, whole
filaments are considered outliers if more than 20 % of their particles are considered outliers. Those
statistics can be used to either remove filaments from the data set or interpolate the expected angle
values and start a subsequent local refinement.

Lastly, to avoid large shifts along the helical axis the respective 2D shift value is reduced to
the range − 𝛥𝑧/2 to 𝛥𝑧/2 before each iteration. However, the filaments are arbitrarily oriented and
therefore the component of the shift along the helical axis needs to be identified first with the
help of the known filament orientation from the particle extraction step. First, the shift vector 𝑠 is
rotated by the filament orientation angle 𝜓 by the rotation matrix 𝑀

𝑀 = (cos 𝜓 − sin 𝜓
sin 𝜓 cos 𝜓 )

to the rotated shift vector 𝑠rot = 𝑀 𝑠, whose X-axis represents the helical axis and the Y-axis the
shift perpendicular to the helical axis. Afterwards 𝑠rot,x is reduced to the valid range by

𝑠rot,x = ((𝑠rot,x +
𝛥𝑧
2
) mod 𝛥𝑧) − 𝛥𝑧

2
,

before rotating the shift vector 𝑠rot back to its original coordinate system 𝑠new = 𝑀T 𝑠rot.
Those changes are complemented by extra changes to the overall sp_meridien.py processing

strategy.

General processing strategy In addition to the changes introduced based on the filamentous
character, the processing strategy described in section 2.3 is modified to yield better results for
filamentous samples. Since the expected out-of-plane rotation angle 𝛩 value is about 90° the coarse
search grid only contains 𝛩 values of 90° (default --theta_min=90 and --theta_max=90) and is not
shaken for the initial search step. On the other hand, the fine search grid is not altered. However,
to include out-of-plane rotation angle values further away from 90° the howmany parameter, i.e.,
the number of neighboring points on the fine search grid to the best matches on the coarse search
grid, is increased from 4 to 10 (default value).

Limiting the number of comparisons on the coarse grid to values along the equator allows
for the usage of smaller initial angular distance values 𝛥𝛩 like 3.75° or even 1.875° to account for
filamentous samples with small helical twist and rise.

Finally, the initial 2D pre-alignment strategy is adopted from sp_isac2.py to only center the fila-
ments perpendicular to the helical axis and the particle normalization strategy using a rectangular
mask instead of a circular mask is adopted from sp_window.py.

The adapted strategy for helical specimen was tested on a TMV and an actomyosin data set.

Refinement of Tobacco Mosaic Virus To show the capabilities of the new refinement
strategy a TMV data set with 30 968 extracted filament particles from 14 micrographs were used.
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The initial reference was filtered to 15Å. The programs sp_meridien.py, i.e., without filament
related modifications, and sp_meridien_alpha.py, i.e., with filament related modifications, were run
five times each with identical settings on the same data set.

Running sp_meridien.py, the particles were divided into chunks of 16 066.20 ± 1 512.85 and
14 901.80 ± 1 512.85 for chunk 0 and chunk 1, respectively (Table 3.1, Table 5.2). The number of
iterations it took for the refinement to finish was 24.20 ± 3.35 with iteration 3.00 ± 0.00 being the
best iteration resulting in a final nominal resolution of (10.92 ± 2.89)Å. The FSC curves of the
individual runs show a drop at about 20Å followed by noise dominated values until about 9Å.
Afterwards, the values decrease slowly to a FSC value of about 0 (Figure 3.1d, Table 5.20-5.24). A
visual inspection of the resulting 3D reconstructions confirm the reported resolutions (Figure 3.1b).

Running sp_meridien_alpha.py, the particles were divided into chunks of 15 470.60 ± 1 098.54
and 15 497.40 ± 1 098.54 for chunk 0 and chunk 1, respectively (Table 3.1, Table 5.1). The number
of iterations it took for the refinement to finish was 22.00 ± 2.00 with iteration 22.00 ± 2.00 being
the best iteration resulting in a final nominal FSC0.143 resolution of (4.37 ± 0.08)Å. Calculations of
outliers resulted in 31.80 ± 42.63 and 47.20 ± 42.63 outliers for chunk 0 and chunk 1, respectively.
The FSC curves of the individual runs show a decreasing behavior from 1 starting at about 11Å to
0 at about 4Å (Figure 3.1c, Table 5.15-5.19). A visual inspection of the resulting 3D reconstructions
confirm the reported FSC0.143 resolutions (Figure 3.1a).

All in all, the modifications for filamentous samples present in sp_meridien_alpha.py led to a ma-
jor improvement of the achieved nominal FSC0.143 resolution from (10.92 ± 2.89)Å to (4.37 ± 0.08)Å.
In the runs using sp_meridien.py, the best iteration was 3.00 ± 0.00, which is internally the first
iteration taking into consideration for a resolution estimation. Therefore, the refinement could no
longer improve from that point on for the subsequent 21 iterations. On the other hand, running
sp_meridien_alpha.py the achieved high FSC0.143 resolution of (4.37 ± 0.08)Å can be confirmed by
a visual inspection of the 3D reconstruction and the healthy appearance of the FSC. The jitter in
the values of the FSC can be explained because only 14 micrographs were used, hence only 14
defocus groups, leading to missing information at certain spatial frequencies.

Table 3.1: 3D refinement results of the TMV data set running the helical version sp_meri-
dien_alpha.py and the SPA version sp_meridien.py with the same input settings five times
each.

Parameter sp_meridien_alpha.py sp_meridien.py

#Particles Chunk 0 15 470.60 ± 1 098.54 16 066.20 ± 1 512.85
#Outliers Chunk 0 31.80 ± 42.63 0.00 ± 0.00
#Particles Chunk 1 15 497.40 ± 1 098.54 14 901.80 ± 1 512.85
#Outliers Chunk 1 47.20 ± 42.63 0.00 ± 0.00
#Iterations 22.00 ± 2.00 24.20 ± 3.35
Best iteration 22.00 ± 2.00 3.00 ± 0.00
FSC0.143 resolution / Å 4.37 ± 0.08 10.92 ± 2.89
FSC0.5 resolution / Å 5.30 ± 0.21 18.39 ± 2.14
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a) b)

c) d)

Figure 3.1: Representative sharpened 3D reconstruction of TMV computed from 30 968
particles using a sp_meridien_alpha.py and b sp_meridien.py. The yellow and green
boxes indicate regions that are shown as close-up views in the center. Here, the atomic
model of TMV (PDB:6R7M, colored by monomer) is shown in addition to the density
map (transparent gray). While most of the secondary structure elements, including the
twist of the 𝛼-helices, were resolved by sp_meridien_alpha.py a, sp_meridien.py was only
able to reconstruct the overall shape of the protein b. c-d Masked FSC curves of the
reconstructions computed by sp_meridien_alpha.py c and sp_meridien.py d, respectively.
The black curve represents the average FSC curve, whereas the blue area illustrates
the spread of results, i.e., the worst and best FSC curve gained within a total of five
independent runs. Resolution values according to the FSC0.5 and FSC0.143 (gold standard)
criterion are given for the average FSC curve (black). The significant difference in the
map quality (see a-b) is in perfect agreement with the achieved resolutions, which is
significantly higher in case of sp_meridien_alpha.py c.

Refining actomyosin To show the capabilities of the new refinement strategy, a actomyosin
data set with 45 297 extracted filament particles from 97micrographs was used. The initial reference
was filtered to 15Å. The programs sp_meridien.py, i.e., without filament related modifications,
and sp_meridien_alpha.py, .i.e., with filament related modifications, were run five times each with
identical base settings.

Running sp_meridien.py, the particles were divided into chunks of 22 891.80 ± 1 979.52 and
22 405.20 ± 1 979.52 for chunk 0 and chunk 1, respectively (Table 3.2, Table 5.4). The number of
iterations it took for the refinement to finish was 17.20 ± 2.77 with iteration 17.20 ± 2.77 being
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the best iteration resulting in a final nominal FSC0.143 resolution of (4.47 ± 0.02)Å. The FSC curve
show a slight plateau in the range of 7Å to 5Å (Figure 3.2d, Table 5.10-5.14). A visual inspection
of the resulting 3D reconstructions confirm the reported nominal FSC0.143 resolutions (Figure 3.2b).
However, it is noticeable that the periphery of the 3D reconstruction is less well resolved compared
to the inner area.

Running sp_meridien_alpha.py, the particles were divided into chunks of 22 706.00 ± 514.94 and
22 591.00 ± 514.94 for chunk 0 and chunk 1, respectively (Table 3.2, Table 5.3). The number of itera-
tions it took for the refinement to finish was 23.60 ± 1.52 with iteration 23.40 ± 1.52 being the best
iteration resulting in a final nominal FSC0.143 resolution of (4.40 ± 0.20)Å. Calculations of outliers
resulted in 7 570.60 ± 148.22 and 7 631.00 ± 263.95 outliers for chunk 0 and chunk 1, respectively.
The FSC curve show a slight plateau in the range of 6Å to 5Å (Figure 3.2c, Table 5.5-5.9). A visual
inspection of the resulting 3D reconstructions confirm the reported nominal FSC0.143 resolutions
(Figure 3.2a). However, it is noticeable that the periphery of the 3D reconstructions is less well
resolved compared to the inner area.

All in all, the modifications for filamentous samples present in sp_meridien_alpha.py did not
improve the nominal FSC0.143 resolution of the 3D reconstructions compared to the unmodified
version sp_meridien.py. However, analyzing the overall FSC values of both programs the values
for sp_meridien_alpha.py are higher than those of the sp_meridien.py in the range from about
8Å to 4.5Å which is also reflected by the better FSC0.5 resolution of (6.83 ± 0.28)Å compared to
(7.49 ± 0.00)Å. A more detailed inspection of structural details confirms the presence of higher
resolved structural details in the 3D reconstructions of the modified version sp_meridien_alpha.py
(Figure 3.2e-f).

Table 3.2: 3D refinement results of the actomyosin data set.

Parameter sp_meridien_alpha.py sp_meridien.py

#Particles Chunk 0 22 706.00 ± 514.94 22 891.80 ± 1 979.52
#Outliers Chunk 0 7 570.60 ± 148.22 0.00 ± 0.00
#Particles Chunk 1 22 591.00 ± 514.94 22 405.20 ± 1 979.52
#Outliers Chunk 1 7 631.00 ± 263.95 0.00 ± 0.00
#Iterations 23.60 ± 1.52 17.20 ± 2.77
Best iteration 23.40 ± 1.52 17.20 ± 2.77
FSC0.143 resolution / Å 4.40 ± 0.20 4.47 ± 0.02
FSC0.5 resolution / Å 6.83 ± 0.28 7.49 ± 0.00
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a) b)

c) d)

Figure 3.2: Representative sharpened 3D reconstruction of actomyosin computed from
45 297 particles using a sp_meridien_alpha.py and b sp_meridien.py. The yellow and
green boxes indicate regions that are shown as close-up views in the center. Here, the
atomic model of actomyosin (PDB:7PLU, colored by monomer) is shown in addition to
the density map (transparent gray). While both programs were able to resolve most of the
secondary structure elements, including the twist of the 𝛼-helices, the density computed
by sp_meridien_alpha.py shows more details, such as the bound ligand (depicted in
yellow) and the 𝛽-hairpin. c-dMasked FSC curves of the reconstructions computed by
sp_meridien_alpha.py c and sp_meridien.py d, respectively. The black curve represents
the average FSC curve, whereas the blue area illustrates the spread of results, i.e., the
worst and best FSC curve gained within a total of five independent runs. Resolution
values according to the FSC0.5 and FSC0.143 (gold standard) criterion are given for the
average FSC curve (black). The significant difference in the map quality (see a-b) is in
perfect agreement with the achieved resolutions, which is significantly higher in case of
sp_meridien_alpha.py c.

3.1.3 Discussion

To enable filamentous processing in the SPHIRE [79] package modifications to the pre-processing
programs sp_window.py, sp_isac2.py, and sp_pipe.py were introduced to utilize information about
the filamentous character of the particles. The in-plane rotation, the filament id, and the segment id
are stored in the metadata of each particle. These parameters are used for normalization, limiting
the shift along the helical axis, and the calculation of filamentous consistency of the 3D projection
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parameters. Other modern software packages for filamentous processing, such as Helical RELION
[50] and cryoSPARC [96], follow a similar strategy in their pre-processing pipeline. However, their
maximum likelihood based 2D classification approaches tend to produce large inhomogeneous
classes. This can be problematic, because filamentous particles typically look very similar due to
their overlap during extraction and continuous repeat of the same asymmetric unit. The ISAC
[136] algorithm on the other hand is known for its capability to produce homogeneous classes with
few members. Therefore, ISAC [136] is very suitable to successfully classify filamentous particles.
RELION recently announced an improved version of its 2D classification algorithm which could
produce more homogeneous and smaller classes [101]. However, the usability for filamentous
particles needs to be investigated.

The 2D classification step assigns particles into groups of similar projection angles for a fast
cleaning and quality assessment of the data set. However, the continuity of filaments can be
destroyed due to the removal of particles assigned to ”discarded” classes. In the presented 3D
refinement program sp_meridien_alpha.py the consistency of the assigned projection parameters
for each particle within the same filament is analyzed. To create proper statistics, a minimum
number of contiguous particles per filament is required. Thus, filaments are split into contiguous
sub-filaments, and particles from sub-filaments that are too short are removed from the data set.
Other filamentous refinement methods do not perform consistency checks within one filament
and therefore do not require contiguous filaments.

Most of modern filamentous refinement programs, such as Helical RELION [50], SPIDER [38],
SPARX [57], FREALIGN [119], FREALIX [107], SPRING [17], and cryoSPARC [96], follow the IHRSR
approach, which combines 3D refinement with helical symmetry estimation. However, estimating
the helical symmetry parameters especially on low resolution structures can lead to model bias
and falsely estimated structures [91, 25]. To circumvent model bias due to assumptions about the
helical symmetry the 3D refinement program sp_meridien_alpha.py does implement a processing
strategy free from enforcement of helical symmetry. Enforcing a symmetry during processing has
the advantage that only a few particles are needed to achieve a high-resolution 3D reconstruction.
On the other hand, applying a symmetry assumes that each particle inside a filament has the exact
same information. Therefore, using a symmetry is especially useful for very rigid filaments with
little variation. However, the helical symmetry parameters differ locally in most specimens [24].

As an alternative to implying a helical symmetry, a filamentous processing strategy has been
developed in the Raunser lab which applies constraints to the processing stemming from the
geometry of filaments [78]. The original workflow is implemented in RELION and involves file
conversions, manual metadata adjustments, and the usage of advanced parameters in the 3D
refinement. The 3D refinement itself is executed in two steps, the first is a global refinement which
is limited to a search range for the out-of-plane rotation angle 𝛩 of 90° and the second is a local
refinement with a narrow search range close to the results of the first refinement. In between those
two refinements, the processing is stopped and the consistency of projection parameters within
a filament is analyzed. Filaments with many outliers are removed from the data set, while the
projection parameters of outliers in filaments with only a few outliers are adjusted to match the
filamentous constraints. In the implementation of sp_meridien_alpha.py, this strategy is available
natively in the refinement itself and no manual execution of the strategy is required. Additionally,
the consistency of projection parameters is not only calculated between the global and local
refinement, but in every refinement iteration. This consistency check allows for the monitoring of
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the refinements quality and might provide indications about possible problems with the data set.
The 3D refinement program sp_meridien.py has another very useful unique feature called ”user

functions”. With the help of user-provided functionality, the reference map for each refinement
iteration can be modified. Since sp_meridien_alpha.py has this functionality available as well, it is
possible to introduce for example helical symmetrization to the reference map to improve the SNR
of the map in early refinement iterations. Therefore, it is possible to combine the advantages of
the symmetry-free approach with some of the advantages of helical symmetry if applicable to the
project.

The next steps for the 3D refinement could be to utilize the consistency checks even more. For
example, it could be possible to calculate the helical symmetry parameters from the assignments of
the individual particles within a filament. Since hundreds to thousands of filaments are available
within one data set it is possible to get statistics about the helical symmetry to get an in-depth
understanding of the data set. Furthermore, the way outliers are determined and consistent
parameters are calculated could be optimized. The parameters currently used are optimized
especially for actin filaments, as it is the most used filamentous sample in the Raunser lab. Therefore,
it could be interesting to test multiple parameters such as theminimumfilament length or thresholds
for the outlier determination on a multitude of data sets to identify sets of parameters that work
best for most of them.

The programs sp_meridien.py and sp_meridien_alpha.py are developed for HPC systems, i.e.,
the performance increases as more compute processes are available. However, in the field of
cryo-EM the workflow switches increasingly from expensive and large computing clusters to
single workstations with at least one GPU. On the one hand, especially small research groups can
run GPU accelerated processing software, on the other hand, the system is maintainable even for
inexperienced users. RELION for example moved their algorithms to the GPU a few years ago and
gained an acceleration of more than an order-of-magnitude [62]. cryoSPARC [96] entered the field
one year later with the aim to solve the speed issue in cryo-EM workflows of these days. Their
algorithms and implementation manages to solve 3D structures within minutes or hours compared
to hours or days, while being able to result in a high resolution [95]. Therefore, rewriting the
sp_meridien_alpha.py refinement to run on the GPU can make it accessible to research groups
unable to afford an HPC system. A first step has already been made when the 2D classification
program ISAC [136] was ported to the GPU and made available as GPU ISAC [44].

Another possibility for performance optimization is the usage of a different file format for the
input images. Currently the Berkeley database (bdb) file format [85] is used, which slows down
input/output operations on many systems. An alternative approach is the self-defining text archive
and retrieval (STAR) file format used in RELION [48]. Reading the data from the STAR format is
not only faster, but due to the popularity of the RELION workflow the STAR format is also a well
established input and output format for most of the available software. Therefore, not only can the
performance of sp_meridien_alpha.py be further improved, but the program would additionally be
more accessible to more users. Hence, the SPHIRE [79] project will release soon a new version
which allows the STAR file format to be used for all input/output operations.

In terms of variety, the presented actomyosin data set and TMV data set are different in many
aspects such as visual appearance, rigidity, and helical symmetry parameters. Nevertheless, in
both cases the filamentous refinement yielded a high-resolution structure. A comparison with the
results of the unmodified SPA refinement revealed that both cases reached a higher resolution.
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This indicates that the filamentous refinement works for a multitude of data sets. When comparing
the achieved resolutions to the literature, the resolution is slightly worse than the published results
[50, 93]. However, this is expected due to the limited number of particles used for the refinement
combined with the absence of an applied helical symmetry. A limited number of particles was
chosen to avoid resolution saturation effects. In addition, the Raunser lab successfully published
high-resolution structures of filamentous samples [93, 92, 3, 41, 4].

All in all, the filamentous refinement strategy implemented in sp_meridien_alpha.py offers a
symmetry unbiased approach to reach high-resolution for filamentous samples, which is especially
beneficial for curved filaments and those with a flexible helical symmetry.

3.2 Automated processing with TranSPHIRE

Automated on-the-fly data processing which automatically adjusts to the data at hand is a crucial
step towards high-throughput structure determination. Therefore, I developed TranSPHIRE [118]:
an automated on-the-fly processing pipeline including a deep-learning based feedback loop to
optimize to the data at hand. Additionally, it provides a GUI for user input and visualization of
results. The source code of the program is available on Github [128].

3.2.1 Graphical User Interface

The interaction with the TranSPHIRE pipeline process and the visualization of the results is the
main purpose of the TranSPHIRE GUI 3.3. To keep the GUI responsive, tasks like the TranSPHIRE
pipeline, which runs the actual programs, and the TranSPHIRE data import, which imports the
results of the pipeline for visualization, are outsourced in separate processes. The administrative
area in the upper left part of the GUI allows the setup of notification receivers, import of previously
created setting templates, and to start or monitor the TranSPHIRE pipeline. Notifications can
either be received via E-Mail or a Telegram [124] bot and it is possible to specify multiple receivers.
Templates allowmodification of the TranSPHIRE default values for all present settings and therefore
minimizes required user input. Upon pressing the TranSPHIRE Start button, first all TranSPHIRE
inputs are checked for validity as far as possible and the provided settings are passed to the
TranSPHIRE pipeline process. Alternatively, the results of an already running TranSPHIRE pipeline
or a previous TranSPHIRE pipeline run can be visualized with the Monitor option.

The processing status area in the right part of the GUI informs about the available disk space on
the different systems involved in processing and the overall progress of the TranSPHIRE pipeline
process. The user is informed about possible problems like not having enough disk space or failing
processes of the TranSPHIRE pipeline. Additionally, a text area showing the log of the TranSPHIRE
pipeline is available and the pipeline log file, the error file, and the GUI log file can be opened
via the click of the respective button. The pipeline log file contains the information and errors
coming from the TranSPHIRE GUI regarding the setup of the TranSPHIRE pipeline. The error
file contains the information about failing individual programs running within the TranSPHIRE
pipeline processes. The GUI log stores the timestamps of the individual TranSPHIRE pipeline
processes. The notes button can be used to enter notes related to the data set.

The setup and visualization area in the lower left part of the GUI is used to set up the TranSPHIRE
pipeline and visualize its results. The first horizontal layer of tabs consists ofMount, Settings,
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Retrain, and Visualization.
Under the Mount tab, the user can mount previously specified file systems on a per-user basis.

Once mounted, its available and total disk space can be monitored in the processing status area of
the GUI.

The Settings tab is used to setup the TranSPHIRE pipeline. A vertical layer of tabs guides the
user through the setup process so that all required entries for the TranSPHIRE pipeline are filled.
If multiple programs are available for one tab entry, an additional vertical layer of tabs is present.
Additionally, each setting area under the vertical tabs has an additional horizontal layer of tabs
named Main, Advanced, and Rare which allows the assignment of priorities for each setting.
Hence, every possible setting of the process is exposed to the user to cover special needs for specific
use cases, but those settings which are changed on a regular basis are easy to access.

The Retrain area is used to fine-tune the results of the TranSPHIRE feedback loop. Here, the
results of the Cinderella [11] classification in ”kept” and ”discarded” 2D class averages is shown.
Additionally, adjustments can be made and the Cinderella [11] model can be trained to improve the
classification results.

The last horizontal tab Visualization provides an overview over all results of the TranSPHIRE
pipeline. Each processing program contains a horizontal tab bar comprising Overview, Show
images, Plot per micrograph, and Plot histogram. To allow for the monitoring of several of the
plots at the same time, each of the tab areas can be disconnected from the GUI and positioned on the
monitor as needed. The Plot per micrograph tab shows the result of the program for each output
parameter, which can be selected from a horizontal tab bar at the bottom, on a per micrograph
basis. To adjust the display, input areas for masking are available and additionally statistics like
the minimum, maximum, mean, or median are presented. Additionally, the Plot histogram
contains the same information as the Plot per micrograph area, but instead of presenting the
output parameters on a per micrograph bases they are shown in the form of a histogram. In the
Overview tab area, all plots available in the Plot per micrograph and Plot histogram tabs are
available at the same time. To check or adjust one plot in detail, left clicking it will navigate to the
respective plot area, while right clicking the plot will hide it from the overview. Therefore, a fast
analysis of the main parameters of the data acquisition is possible. Finally, the Show images tab
contains images on a per micrograph basis and shows information, such as the image, the power
spectrum, coordinates for particle picking, and class averages. The information presented in the
Visualization tab is prepared by the TranSPHIRE data import process, which checks for new
available data every 20 s, imports the data in the expected internal format, and is started during
the initialization of the TranSPHIRE pipeline process.
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Figure 3.3: The TranSPHIRE GUI is organized in tabs for initial setup, data processing
settings, and live visualization of data acquisition and processing results. Visualization
options include incoming micrographs (a), CTF fitting results (b), and phase shift (c),
picking results (d), and 2D class averages (e). The shown phase shift development follows
a logarithmic curve and helps experimentalists to decide when to switch to a new phase
plate position (c). The shown picking result depicts the use of an optimized picking
model, trained during runtime to only pick pore state particles (d). Output values can
be plotted as either a scatter plots or histograms, as shown here for the total number of
particles (f), and the overall drift per micrograph (g), respectively. This live monitoring
enables an early evaluation of data quality during data acquisition and provides initial
information about the protein structure. Figure and caption adapted from [118].
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3.2.2 TranSPHIRE pipeline

The TranSPHIRE pipeline process is started as a sub-process of the TranSPHIRE GUI when the
Start button is pressed (Figure 3.4). First, the provided settings in the GUI are passed to the
process, the required output folders are created, and the TranSPHIRE data import process is started.
Afterwards, the data queues used for communication between the processes are initialized. Each
queue exists in memory as well as files on the file system and the content is always synchronised.
Therefore, the status of the processing can be easily recovered even after a crash of the computer.
The user defined number of sub-processes, which run the actual processing of the TranSPHIRE
pipeline in a parallel manner, are started before an event loop handles the communication between
the TranSPHIRE GUI and the output of the TranSPHIRE pipeline sub-processes. Each sub-process
handles one individual task, and to utilize available hardware resources in an optimal way there
can be multiple processes of the same sub-process type. The event loop is exited when the Stop
button is pressed.
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Figure 3.4: TranSPHIRE workflow. Flow chart of the TranSPHIRE pipeline depicting
sequentially executed processes below each other and parallel running processes next
to each other. The workflow is highly adaptable allowing, for example, the binning of
super resolution data during motion correction and CTF estimation. All inputs from
the microscope, outputs from the involved processes, and additional statistics produced
by TranSPHIRE are monitored and presented live in the GUI. If specified, the processes
”Copy to work”, ”Copy to backup” and ”Copy to HDD” create a copy of the results of
each individual step to a workstation or cluster, a backup server, or an external hard
drive, respectively. Figure and caption adapted from [118].

Firstly, the Find task is constantly crawling the provided input directory for new incoming
micrographs. Once a new micrograph arrives, the Import task copies the related data to the local
machine for further processing. Afterwards, the Motion task performs motion correction on the
copied stack. Additionally, the stack is compressed by the Compress task if necessary and CTF
estimation is performed by the CTF task if the movie mode of the program is requested. On the
other hand, if the movie mode of the CTF estimation program should not be used the output of the
motion correction is used to perform CTF estimation.

The Picking task runs every 30 s and uses all the output of the Motion task that was produced
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during that time as input to limit program initialization overhead and therefore speedup the
pipeline. Once the Picking task, the CTF task, and the Picking task finished the processing of the
same micrograph the Extract task uses the outputs to perform particle extraction. Those extracted
particles are then used as an input for the Class2d task which performs 2D classification once a
specified amount of particles is accumulated. Afterwards, the Select2d task classifies the resulting
2D class averages into ”kept” and ”discarded” and selects those particles belonging to classes in
the ”kept” category. Finally, the Auto3d task performs ab initio 3D reconstruction, if no initial 3D
reference is provided, or directly performs 3D refinement once a specified amount of ”kept” classes
(200 by default) and particles (40 000 by default) is accumulated, respectively. However, ab initio
3D reconstruction is performed only once at the beginning and every subsequent 3D refinement
uses the resulting volume as input. The Auto3d process can be executed on a remote machine
available via secure shell (SSH) such as a HPC cluster, because the 3D refinement and the ab initio
3D reconstruction are computational expensive.

Each process within TranSPHIRE is responsible for a single process type such as data import,
motion correction, and CTF estimation. The process monitors its respective queue, starts as soon
as new data arrives, prepares the command to run, runs the command, prepares the outputs for
the subsequent tasks and visualization, and puts the micrograph into the queues of the subsequent
processes. Additionally, the process checks for conditions that needs to be met before running
the command like a certain amount of particles need to be extracted from several micrographs
before running 2D classification or 3D refinement. After the command has finished, the output is
analyzed for errors and values outside the user specified range. While oversubscribing the CPU is
typically not an issue due to plenty of RAM available, the RAM on the GPU is limited allowing
to run only one single task at at time. Therefore, an additional queue management system for
commands running on the GPU was developed to avoid crashes while scheduling the execution of
commands running on the CPU is left to the operating system.

While the basic TranSPHIRE pipeline is of linear character, the TranSPHIRE feedback loop
allows information from later parts of the pipeline influence the settings of tasks earlier in the
pipeline to perform data optimization. Specifically, the output of the 2D class selection is used to
improve the performance of the particle picking task utilizing the deep learning particle picker
crYOLO [131]. Therefore, during the feedback loop the Train2d process trains a new crYOLO model
based on the ”kept” particles after the Select2d process and the resulting model is used as the model
for Picking. Additionally, the queues for Extract, Class2d, Select2d, and Train2d are emptied at the
end of a feedback loop iteration, while the queue for the Picking process is reset to apply the new
model to all micrographs collected up to this point.

For the evaluation of the TranSPHIRE processing speed a Tc holotoxin data set consisting of 2 053
micrographs, each containing 36 particles on average, collected at a speed of 188micrographs/h
(Fig. 3.5). All TranSPHIRE processes were run on the same machine with 12 physical cores, two
GeForce GTX 1080 Ti GPU and 128GB of RAM. Shortly after the data collection stopped after about
11 h, the processes Import, Compress,Motion, and CTF finished processing as well. Additionally, the
processes for Picking, Extract, Class2d, and Select2d also finished after about 11 h. All five feedback
loop iterations finished after about 7.3 h allowing the first ab initio 3D reconstruction to start after
about 8 h and finish after about 9.1 h. The first feedback loop iteration finished after about 2 h with
first 2D class averages being available after about 1.4 h. Only the 3D refinement, which started after
about 9.1 h and were running for about 6.4 h, finished 4.5 h later than the data collection. All in all,
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the TranSPHIRE was able to process the incoming data as fast as new images were acquired. Only
the 3D refinement and ab initio 3D reconstruction, which took about 1.1 h and 6.4 h, respectively,
caused a delay which could be resolved by running them on a more powerful remote HPC system.

Particle picking
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Data compression

2D classification
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Meta data import

Particle extraction

Ab initio 3D model
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Data transfer
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Figure 3.5: Timeline depicting the parallel execution of the processes of the TranSPHIRE
pipeline. Timings are based on a Tc holotoxin data set consisting of 2 053 micrographs,
each containing 36 particles on average, collected at a speed of 188micrographs/h (K2
super-resolution, 40 frames). TranSPHIRE ran on-the-fly up to the creation of an ab initio
3D reconstruction using default settings. Important milestones are denoted in black:
a first 2D class averages produced after 1.4 h; b end of the feedback loop after 7.3 h; c
ab initio 3D reconstruction after 9.1 h; and d final 3D reconstruction of the first batch
of particles after 15.5 h. Due to the internal scheduling of modern operating systems,
and because not every TranSPHIRE thread is always working to capacity, the number of
available CPUs (12 physical cores) and assigned TranSPHIRE threads (45) is not identical,
and does not limit the speed of the computations. Figure and caption adapted from [118].

3.2.3 TranSPHIRE feedback loop

Machine learning based particle pickers, such as crYOLO [131], train an internal model to learn
how to pick the particles optimally. On the one hand, if trained on a multitude of different data
sets it is possible to generalize to unseen data sets. On the other hand, this ability is limited
by the number and variety of available training data. Therefore, if the features present in the
data are too different from the features present in the training data the model is not guaranteed
to yield an optimal picking result. However, solving this issue requires different manual user
intervention steps, namely detection of the insufficient picking performance, manual picking of a
small representative subset of the data, and training of a new model based on the manually picked
data. The TranSPHIRE feedback loop resolves this issue of a non-optimal picking performance
without user intervention.

Initially, the user provides a generic crYOLO model, which is typically not trained on the collected
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data set or behaves poorly, and specifies a low picking confidence threshold to decrease the false-
negative picking rate, i.e., fewer particles will be missed. Afterwards, those identified particles
are extracted and provided to the 2D classification program GPU ISAC [44], which is known for
its ability to identify small groups of similar views in the data and is also able to discard noise
by its internal stability checks. Therefore, it effectively takes care of the increased false-positive
picks introduced by the low initial picking confidence threshold. Finally, those class averages
are classified by the deep-learning based binary classification tool Cinderella [11] into ”kept” and
”discarded” classes. The coordinates of those particles contributing to the ”kept” classes are then
used to train a new crYOLO picking model. Additionally, for single particle projects the optimal
picking confidence threshold for the model is evaluated by the cryolo_evaluation.py program of
the crYOLO package after the last feedback iteration. During the feedback iterations, however, a
conservative picking confidence threshold of 0.1 is used by default.

Once the new model and threshold is available they are used in subsequent processing and
replace the initially provided settings after the queues for particle picking, particle extraction, 2D
classification, and 2D class selection are reset. The loop runs by default five times to optimize the
crYOLO picking model to the data, and therefore improve the initial picking result which is crucial
for a fast high-resolution 3D refinement result.

In the following, three different scenarios of common cryo-EM use cases are presented: Particle
picking optimization of unknown data without user intervention, analysis of sub-populations
within the data, and the processing of helical specimen. For each case the TranSPHIRE pipeline
with the TranSPHIRE feedback loop enabled is run once. Every feedback iteration starts after about
20 000 particles are extracted, hence every feedback iteration operates on a different subset of the
data. However, the amount of extracted particles is often below 20 000, because particles that clip
the image border are rejected from being extracted. Therefore, the results of the feedback iterations
only serve as indications for the behavior of the respective crYOLO models and an additional
evaluation on a fixed number of micrographs was performed.

First, the results of the feedback loop and the evaluation of the models are presented. Their
results are discussed at the end of each subsection.

Optimize particle picking without user intervention

To demonstrate the ability of the TranSPHIRE feedback loop to optimize the particle picking
performance to yet unknown data, a data set of a TRPC4 membrane protein channel is used.

Feedback loop As an initial crYOLO model, a general model for crYOLO and Cinderella were
provided which had been trained based on training data which do not contain any TRPC data sets.
A liberal picking threshold value of 0.1 was used while 2D class selection was performed with a
liberal threshold of 0.1 to keep all particles and classes that might represent a protein. Additionally,
an objectively bad picking performance has been simulated to worsen the initial picking result by
the crYOLO general model even more by randomizing the coordinates of 90 % of the picks on each
micrograph before 2D classification in the first iteration of the feedback loop.

While the number of micrographs required to reach about 20 000 particles increased from 106
in the first feedback iteration to 951 in the second, the number dropped to 182 in the third and
gradually decreased further to 129 in the fifth feedback iteration (Table 3.3). The number of total
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particles picked per micrograph decreased from 184.58 to 19.01 from the first to the second feedback
iteration and afterwards gradually increased to 149.47 in the fifth feedback iteration. The yield
of ”kept” particles increased from 2.54 % to 60.89 % from the first to the fourth feedback iteration
and decreased to 49.94 % in the fifth. Similarly, the achieved resolution after the 3D refinement
improved from 13.60Å to 4.01Å from the first to the fourth feedback iteration and decreased to
4.08Å in the fifth.

The optimal picking confidence threshold for the model of the final fifth iteration was evaluated
to be 0.357 by the crYOLO evaluation tool.

Table 3.3: Results of the TranSPHIRE feedback loop of the TRPC4 data set. Each feedback
iteration started after about 20 000 particles were collected.

Feedback #Micrographs #Particles #Particles total / #Particles
iteration total Micrograph ”kept”

1 + T0.1 106 19 566 184.58 496
2 + T0.1 951 18 079 19.01 8 657
3 + T0.1 182 18 929 104.01 10 491
4 + T0.1 145 19 303 133.12 11 753
5 + T0.1 129 19 281 149.47 9 629

Feedback #Particles ”kept” / Particles ”kept” / Resolution /
iteration Micrograph % Å

1 + T0.1 4.68 2.54 13.60
2 + T0.1 9.10 47.88 4.22
3 + T0.1 57.64 55.42 4.15
4 + T0.1 81.06 60.89 4.01
5 + T0.1 74.64 49.94 4.08

Evaluation To evaluate the picking performance, the resulting crYOLO models after each
feedback iteration are used to perform particle picking on a fixed subset of 500 micrographs from
the data set (Table 3.4). Since the picking result of the first feedback iteration has been additionally
sabotaged, the performance of the general crYOLO model has been additionally evaluated for a
comparison with the final picking result.

Analyzing the particle picking performance, the absolute number of identified ”kept” classes
monotonically increased from 23.00 ± 1.18 to 360.00 ± 9.09 throughout the feedback loop. Addi-
tionally, the amount of ”kept” particles per micrograph increased from 4.17 ± 0.18 to 62.93 ± 1.12.
The achieved resolution increased from (5.51 ± 0.33)Å to (3.54 ± 0.04)Å, while the relative amount
of ”kept” particles stays between (44.83 ± 1.08) % and (49.25 ± 0.99) % after the second feedback
loop iteration.

Using the optimal confidence threshold of 0.357, the relative amount of ”kept” picks increased
from (47.86 ± 1.08) % to (56.16 ± 1.09) % while the number of ”kept” picks per micrograph slightly
decreased to 62.93 ± 1.22 from 67.73 ± 1.53. Additionally, the number of total picks per micrograph
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decreased from 141.52 ± 0.00 to 112.05 ± 0.00 reducing the total amount of picked particles by
about 26 %. However, the achieved resolution stays similar at about 3.5Å.

The reference run using the crYOLO general model with a confidence threshold of 0.1 as
input yielded 83 319.00 ± 0.00 particles, i.e., 166.64 ± 0.00 particles per micrograph. After 2D
classification and 2D class selection, 36 504.70 ± 881.47 ”kept” particles are left which translates
into 73.01 ± 1.76 ”kept” particles per micrograph and a yield of (43.81 ± 1.06) %. The final resolution
was (3.50 ± 0.03)Å.

Table 3.4: Results of the evaluation of the TranSPHIRE feedback loop on a subset of
500 micrographs of the TRPC4 data set. The listed values are the mean and standard
deviation based on repeating the evaluation runs 10 times.

Feedback #Particles #Particles total / #Particles
iteration total Micrograph ”kept”

ref + T0.1 83 319.00 ± 0.00 166.64 ± 0.00 36 503.70 ± 881.47
1 + T0.1 8 850.00 ± 0.00 17.70 ± 0.00 2 087.30 ± 89.18
2 + T0.1 48 857.00 ± 0.00 97.71 ± 0.00 21 903.50 ± 529.75
3 + T0.1 62 984.00 ± 0.00 125.97 ± 0.00 31 016.70 ± 622.11
4 + T0.1 73 175.00 ± 0.00 146.35 ± 0.00 33 228.10 ± 57.98
5 + T0.1 70 758.00 ± 0.00 141.52 ± 0.00 33 864.20 ± 766.45
5 + T0.375 56 026.00 ± 0.00 112.05 ± 0.00 31 467.00 ± 611.07

Feedback #Particles ”kept” / Particles ”kept” / Resolution /
iteration Micrograph % Å

ref + T0.1 73.01 ± 1.76 43.81 ± 1.06 3.50 ± 0.03
1 + T0.1 4.17 ± 0.18 23.59 ± 1.01 5.51 ± 0.33
2 + T0.1 43.81 ± 1.06 44.83 ± 1.08 3.64 ± 0.02
3 + T0.1 62.03 ± 1.24 49.25 ± 0.99 3.55 ± 0.03
4 + T0.1 66.46 ± 1.16 45.41 ± 0.79 3.55 ± 0.03
5 + T0.1 67.73 ± 1.53 47.86 ± 1.08 3.54 ± 0.04
5 + T0.375 62.93 ± 1.22 56.16 ± 1.09 3.56 ± 0.03
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Figure 3.6: a To simulate low quality picking, only 10 % of the initial crYOLO picks were
used while the remaining 90 % were re-positioned randomly (left). After the feedback
loop crYOLO reliably picks the TRPC4 particles (right). Figure from [118]. b Total
amount of 2D class averages produced in the first iteration of the feedback loop (top)
and 21 representative averages produced in the final iteration of the feedback loop
(bottom). c Progression of the number of particles labeled ”kept” when applying the
intermediate picking models of the feedback loop to a fixed subset of 500 micrographs.
The curve flattens out in the last iterations, indicating the convergence of the feedback
loop optimization. The values and errorbars represent the mean and standard deviation
of the values from 10 independent runs (Table 5.25-5.31) d FSC curves of the individual
3D reconstructions from a representative run computed from particles labeled ”kept”
(also see c). e Representative 𝛼-helix (amino acids 518–535) illustrating the improvement
of the density when using the final (bottom) compared to the initial (top) picking model.
f 3D reconstruction of TRPC4 computed from 500 micrographs using the optimized
picking model. Figures part a and b and caption taken and adapted from [118].
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Discussion Overall, the picking performance improved during the course of the feedback loop
without human intervention. While using the sabotaged crYOLO model merely 4.68 ”kept” particles
per micrograph were identified. However, the number monotonically increased until in the fourth
iteration 81.06 ”kept” particles per micrograph were selected. At the same time, the achieved
resolution improved from 13.60Å to 4.01Å which can be explained by the increased absolute
amount of ”kept” particles from 496 in the first iteration to 11 753 in the fourth. This indicates that
the extracted particles represent real projections of the protein, since the resolution would not
improve to about 4Å.

In the fifth iteration, only 9 629 ”kept” particles were extracted, i.e., 74.64 ”kept” particles per
micrograph, and a resolution of 4.08Å was achieved. However, since the start of the feedback
process is determined by the number of extracted particles and not by a fixed number ofmicrographs,
the particles were extracted from 129 instead of 145 micrographs, from which the 129 micrographs
are identical in both data sets. It can also be noted that the resolution only dropped slightly
from 4.01Å to 4.08Å even though about 2 000 less particles, i.e., about 20 %, were used for the 3D
refinement. This indicates, that overall more ”discarded” particles are extracted, but the ”kept”
particles are of higher quality compared to those of the fourth iteration.

The evaluation of the individual models support the findings of the feedback loop iterations.
After an increase in every value until the fourth iteration, the fifth iteration leads to the same
resolution of (3.55 ± 0.03)Å. Therefore, the increase from 62 984 to 73 175 extracted particles did
not lead to an improvement of the resolution, which can also be seen by the similar numbers
of ”kept” particles of 31 016.70 ± 622.11 and 33 228.10 ± 57.98. Additionally, the resulting crYOLO
model of the fifth feedback iteration resulted in comparable values as the input model to the fifth
iteration indicating that no further optimization has happened.

Using the optimal picking confidence threshold of 0.357 , only 56 026.00 ± 0.00 instead of about
70 000 particles were extracted. However, the amount of ”kept” particles only slightly decreased to
31 467.00 ± 611.07 while yielding a similar resolution of (3.56 ± 0.03)Å. However, in total almost
15 000 particles less are extracted from the same 500 micrographs. Therefore, a result of the
same quality could be obtained with about 80 % of the particles, and therefore only 80 % of the
computational cost is required.

Using the confidence value of 0.1 after the fifth feedback iteration, the achieved resolution of
(3.54 ± 0.04)Å is similar to the results of the general crYOLO model, (3.50 ± 0.03)Å. The smaller
resolution value could be explained by the amount of ”kept” particles which is about 3 000 higher,
however the total amount of extracted particles is about 85 % smaller.

Identifying sub-populations within a data set

Above, it was shown that the TranSPHIRE feedback loop is able to train a crYOLO model which
learned to pick the TRPC4 sample present in the images to near-completion starting from a very
poor picking performance. Therefore, a poorly behaving general model for crYOLO particle picking
and a general model unaware of TRPC4 was used for Cinderella 2D class selection. However,
it is also possible to utilize the TranSPHIRE feedback loop mechanism to select only a known
sub-population of the data by providing a Cinderella model which is specifically trained to label
only classes representing the ”kept” part of the data instead of a general one which can only
distinguish between particle and contamination or noise. Therefore, a data set of a Tc holotoxin
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was used which consists of the pore and the pre-pore state conformation of the protein, with a
proportion of about 20 % and 80 %, respectively (Figure 3.7a). The aim of the feedback loop in this
experiment was to target the pore state sub-population.

Feedback loop To target the pore state of the Tc holotoxin, a Cinderella model was trained
with pre-existing classes of the pore state labeled as ”kept” (318) and classes of the pre-pore state
and contamination labeled as ”discarded” (664). A general model was used as an initial model
for crYOLO. As a picking threshold a liberal value of 0.1 was used while 2D class selection was
performed with a liberal threshold of 0.1 to keep all particles and classes that might represent a
protein.

The number of micrographs required to reach about 20 000 particles gradually increased from
128 in the first feedback iteration to 254 in the fifth (Table 3.5). Similarly, the number of total
particles picked per micrograph continuously decreased from 139.83 to 74.93 from the first to the
fifth feedback iteration. While, the yield of ”kept” particles gradually increased from 13.73 % to
36.44 % from the first to the third feedback iteration, the number slightly decreased to 36.02 % in
the fourth before increasing to 37.62 % in the fifth feedback iteration. The achieved resolution after
the 3D refinement was 7.97Å, 8.40Å, 4.80Å, 6.36Å, and 4.75Å in the first, second, third, fourth,
and fifth feedback iteration, respectively.

The optimal picking confidence threshold for the model of the final fifth iteration was evaluated
to be 0.194 by the crYOLO evaluation tool.

Table 3.5: Results of the TranSPHIRE feedback loop for the Tc holotoxin data set. Each
feedback iteration started after about 20 000 particles were collected.

Feedback #Micrographs #Particles #Particles total / #Particles
iteration total Micrograph ”kept”

1 + T0.1 128 17 898 139.83 2 458
2 + T0.1 169 18 353 108.60 3 627
3 + T0.1 224 18 656 83.29 6 798
4 + T0.1 237 18 965 80.02 6 831
5 + T0.1 254 19 032 74.93 7 160

Feedback #Particles ”kept” / Particles ”kept” / Resolution /
iteration Micrograph % Å

1 + T0.1 19.20 13.73 7.97
2 + T0.1 21.46 19.76 8.40
3 + T0.1 30.35 36.44 4.80
4 + T0.1 28.82 36.02 6.36
5 + T0.1 28.19 37.62 4.75

Evaluation To evaluate the performance of the TranSPHIRE feedback loop a fixed subset of 500
micrographs was used from the data set (Table 3.6). The number of ”kept” classes, ”kept” particles,
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”kept” picks per micrograph, and the resolution of the 3D reconstruction remained about the same at
about 130, 13 000, 26, and 4.2Å respectively. However, the total picks per micrographmonotonically
decreased throughout the feedback loop from 124.71 ± 0.00 to 65.20 ± 0.00 which corresponds to
an increase in the relative number of ”kept” picks from (18.04 ± 0.79) % to (39.86 ± 1.56) %. Using
the optimized picking confidence threshold evaluated to be 0.194, the relative amount of ”kept”
picks further increased to (45.89 ± 2.09) %.

Table 3.6: Results of the evaluation of the TranSPHIRE feedback loop on a subset of 500
micrographs of the Tc holotoxin data set for the individual feedback iterations. The listed
values are the mean and standard deviation based on repeating the evaluation runs 10
times.

Feedback #Particles #Particles total / #Particles
iteration total Micrograph ”kept”

ini + T0.1 62 353.00 ± 0.00 124.71 ± 0.00 11 246.20 ± 492.47
1 + T0.1 47 602.00 ± 0.00 95.20 ± 0.00 12 192.60 ± 718.05
2 + T0.1 35 364.00 ± 0.00 70.73 ± 0.00 12 790.70 ± 584.05
3 + T0.1 33 823.00 ± 0.00 67.65 ± 0.00 13 007.20 ± 415.72
4 + T0.1 31 903.00 ± 0.00 63.81 ± 0.00 13 048.70 ± 73.90
5 + T0.1 32 598.00 ± 0.00 65.20 ± 0.00 12 994.90 ± 509.31
5 + T0.194 26 152.00 ± 0.00 52.30 ± 0.00 12 002.10 ± 545.64

Feedback #Particles ”kept” / Particles ”kept” / Resolution /
iteration Micrograph % Å

ini + T0.1 22.49 ± 0.98 18.04 ± 0.79 4.26 ± 0.03
1 + T0.1 24.39 ± 1.44 25.61 ± 1.51 4.23 ± 0.03
2 + T0.1 25.58 ± 1.17 36.17 ± 1.65 4.20 ± 0.04
3 + T0.1 26.01 ± 0.83 38.46 ± 1.23 4.25 ± 0.11
4 + T0.1 26.10 ± 1.48 40.90 ± 2.32 4.22 ± 0.04
5 + T0.1 25.99 ± 1.02 39.86 ± 1.56 4.19 ± 0.03
5 + T0.194 24.00 ± 1.09 45.89 ± 2.09 4.25 ± 0.07
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Figure 3.7: a The processed data set contains the Tc holotoxin in both the pre-pore
state (left) and the more rare pore state (right). In this experiment, the pore state was
specifically targeted. b Indication of the progression of the number of picked particles
(blue), those accounted during 2D classification (gray) and particles labeled ”kept”, i.e.,
representing the pore state (green) when applying the intermediate picking models of
the feedback loop to a fixed subset of 500 micrographs. Initial picking is dominated
by pre-pore state particles. This overhead is reduced with each iteration, while the
amount of picked pore state particle remains stable. c Representative 2D class averages
depicting the decrease of ”discarded” classes (pore state or low quality; marked magenta)
from an initial 68 % in the first feedback iteration (left) to 26 % after the last feedback
iteration (right). d Representative 2D class averages depicting the pore state as selected
by Cinderella in the final iteration of the feedback loop. e 3D reconstruction of the Tc
holotoxin pore state computed from 500 micrographs using the final optimized picking
model. Figure parts a, b, c, and d and caption adapted from [118].

Discussion Within the feedback iterations, the picking performance improved from 19.20 ”kept”
particles per micrograph to about 30 ”kept” particles per micrograph while decreasing the total
number of picked particles per micrograph from 139.83 to about 80. At the same time, the yield
of ”kept” particles in relation to the total picked particles increased from 13.73 % to about 37 %.
This indicates that the crYOLO model has successfully trained to focus on the pore state of the
target protein while decreasing the picks of the pre-pore state. There is no obvious difference in
numbers of ”kept” particles between the thirds, fourth, and fifth iteration. Therefore, the decreased
resolution of 6.36Å could be a statistical outlier due to the overall small number of 6 831 ”kept”
particles used within the refinement.
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Evaluating the performance on a fixed data set of 500 micrographs, similar observations are
made compared to the results of the TranSPHIRE feedback loop. The number of ”kept” parti-
cles per micrograph is about 25 while the total number of particles per micrograph decreased
from 124.71 ± 0.00 to about 65. This translates into a yield of about 40 % ”kept” particles from
(18.04 ± 0.79) %. Since the ratio of pore to pre-pore particles is about 20 % to 80 %, initially the
general crYOLO model picked the target pore state already almost to completion, but improved
throughout the curse course of the feedback loop to focus more on the pore state. Additionally, the
achieved resolution in every feedback round is at about 4.25Å.

Using the optimized picking threshold of 0.194, the ratio of ”kept” particles further increased to
(45.89 ± 2.09) %. In comparison with the results of the general model only 26 152.00 ± 0.00 total
particles were extracted instead of 62 353.00 ± 0.00, reducing the computational cost of subsequent
processing steps to about 40 %.

Automated data optimization of actomyosin

Filamentous proteins are of continuous character often span over the whole field of view of the
micrograph. Therefore, filaments are traced instead of picked and the particles are extracted
along the helical axis while filament crossings and contamination are avoided. TranSPHIRE can
not only perform on-the-fly automated processing for filamentous samples with the help of the
crYOLO filament mode, but is also able to learn how to pick yet unknown data with the help of the
TranSPHIRE feedback loop. To demonstrate the processing of as yet unknown filamentous data,
an actomyosin data set is used.

Feedback loop Since there is no general crYOLO model for filaments available, a new model
was trained based on previously collected bare filamentous actin data sets, which look different
from the actomyosin complex. The same holds true for a general model used in Cinderella, and
therefore a new Cinderella model was trained based on the 2D classification results of the first
TranSPHIRE feedback loop iteration. As a picking threshold a liberal value of 0.1 was used while
2D class selection was performed with a liberal threshold of 0.1 to keep all particles and classes
that might represent a protein.

The number of micrographs required to reach about 20 000 particles gradually decreased from
121 in the first feedback iteration to 18 in the fifth (Table 3.7). Similarly, the number of total particles
picked per micrograph continuously increased from 165.52 to 1 189.89 from the first to the fifth
feedback iteration. The yield of ”kept” particles gradually decreased from 82.12 % to 32.36 % from
the first to the fifth feedback iteration. The achieved resolution after the 3D refinement was 5.88Å,
5.12Å, 5.88Å, 4.98Å, and 8.74Å in the first, second, third, fourth, and fifth feedback iteration,
respectively.
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Table 3.7: Results of the TranSPHIRE feedback loop for the actomyosin data set. Each
feedback iteration started after about 20 000 particles were collected.

Feedback #Micrographs #Particles #Particles total / #Particles
iteration total Micrograph ”kept”

1 + T0.1 121 20 028 165.52 16 447
2 + T0.1 55 20 480 372.36 16 504
3 + T0.1 41 20 029 488.51 12 410
4 + T0.1 36 20 479 568.86 15 129
5 + T0.1 18 21 418 1 189.89 6 930

Feedback #Particles ”kept” / Particles ”kept” / Resolution /
iteration Micrograph % Å

1 + T0.1 135.93 82.12 5.88
2 + T0.1 300.07 80.59 5.12
3 + T0.1 302.68 61.96 5.88
4 + T0.1 420.25 73.88 4.98
5 + T0.1 385.00 32.36 8.74

Evaluation To evaluate the performance of the TranSPHIRE feedback loop a fixed subset of 100
micrographs was used from the data set (Table 3.8). Initially, the general crYOLO model for actin
filaments identified 14 307.00 ± 0.00 particles, i.e., 143.07 ± 0.00 particles per micrograph, from
which 12 288.20 ± 352.82 were marked as ”kept”, i.e., 122.88 ± 3.53 ”kept” particles per micrograph.
Throughout the feedback loop the amount of ”kept” particles monotonically increases to reach
53 735.50 ± 1 006.56 ”kept”particles, i.e., 537.36 ± 10.07 ”kept” particles per micrograph, in the fifth
feedback iteration and this values stays about the same with 53 356.90 ± 907.09 in the sixth feedback
iteration. On the other hand, the total amount of extracted particles increased from 14 307.00 ± 0.00
in the first to 109 973.00 ± 0.00 in the fifth iteration and also this value is in the similar range with
107 343.00 ± 0.00 in the sixth iteration. Therefore, the overall yield decreased from (85.89 ± 2.47) %
to about 50 %. The resolution of the first feedback iteration was (6.91 ± 0.58)Å which improved to
(4.55 ± 0.18)Å and (4.52 ± 0.12)Å in the fifth and sixth feedback iteration, respectively.

Using the more conservative picking confidence threshold of 0.3, 38 686.50 ± 454.78 ”kept”
particles from originally 51 483.00 ± 0.00 total particles were identified. Hence, the yield increased
to (75.14 ± 0.88) % resulting in a resolution of (4.78 ± 0.22)Å.
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Table 3.8: Results of the evaluation of the TranSPHIRE feedback loop on a subset of 100
micrographs of the actomyosin data set for the individual feedback iterations. The listed
values are the mean and standard deviation based on repeating the evaluation runs 10
times.

Feedback #Particles #Particles total / #Particles
iteration total Micrograph ”kept”

ini + T0.1 14 307.00 ± 0.00 143.07 ± 0.00 12 288.20 ± 352.82
1 + T0.1 35 792.00 ± 0.00 357.92 ± 0.00 30 008.20 ± 235.02
2 + T0.1 55 145.00 ± 0.00 551.45 ± 0.00 43 208.90 ± 33.00
3 + T0.1 63 917.00 ± 0.00 639.17 ± 0.00 46 089.40 ± 481.48
4 + T0.1 109 973.00 ± 0.00 1 099.73 ± 0.00 53 735.50 ± 1 006.56
5 + T0.1 107 343.00 ± 0.00 1 073.43 ± 0.00 53 356.90 ± 907.09
5 + T0.3 51 483.00 ± 0.00 514.83 ± 0.00 38 686.50 ± 454.78

Feedback #Particles ”kept” / Particles ”kept” / Resolution /
iteration Micrograph % Å

ini + T0.1 122.88 ± 3.53 85.89 ± 2.47 6.91 ± 0.58
1 + T0.1 300.08 ± 2.35 83.84 ± 0.66 4.76 ± 0.34
2 + T0.1 432.09 ± 0.33 78.36 ± 0.06 4.49 ± 0.15
3 + T0.1 460.89 ± 4.81 72.11 ± 0.75 4.43 ± 0.11
4 + T0.1 537.36 ± 10.07 48.86 ± 0.92 4.55 ± 0.18
5 + T0.1 533.57 ± 9.07 49.71 ± 0.85 4.52 ± 0.12
5 + T0.3 386.86 ± 4.55 75.14 ± 0.88 4.78 ± 0.22
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Figure 3.8: a Representative micrograph of the F-actin data used to train crYOLO. b
Progression of the number of ”kept” particles per micrograph (blue) and in total (gray)
when applying the intermediate picking models of the feedback loop to a fixed subset of
100 micrographs. The dipping curve at the end indicates the desired loss of low-quality
picks that are excluded when a higher picking threshold (0.3) is used. c Representative
micrograph of the actomyosin complex highlighting the weak initial picking results when
using the crYOLO model trained on F-actin data (see a). d Particle picking performance on
the same micrograph using the final picking model. While filaments are now traced much
more effectively, the model also picks unwanted filament crossings and contamination. e
Increasing the picking threshold from 0.1 to the default value of 0.3minimizes the amount
of false positive picks, while maintaining the desired filament traces. f Representative
2D class averages labeled ”kept” (top) and ”discarded” (bottom) by Cinderella based
on 100 micrographs and using the final model for picking. g 3D reconstruction of the
actomyosin complex computed from 100 micrographs using the initial picking model. h
3D reconstruction computed from the same 100 micrographs using the final optimized
picking model. The resolution is sufficient to verify the binding of a ligand (circled).
Figure parts a, c, d, e, and f and caption adapted from [118].
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Discussion The increased numbers in ”kept” particles per micrograph in combination with
the increased resolution throughout the feedback loop until the fourth iteration indicates that the
crYOLO model learns to pick the particles of interest. In the fifth iteration, the picking performance
of ”kept” particles per micrograph did decrease by about 10 %, but the total number of picked
particles per micrograph almost doubled. Therefore, the number of ”kept” particles and used
micrographs decreased to about 50 % which results in the comparably worse resolution of 8.74Å.
The behavior of the fifth iteration on the other hand indicates that the model learns to pick overall
more particles on the micrographs, but mainly increases the picking of ”discarded” particles.

Evaluation of the resulting models show the same behavior in numbers as the TranSPHIRE
feedback loop iterations. The number of ”kept” particles per micrograph, as well as the achieved
resolution, only changes slightly after the second feedback iteration. In agreement with the
feedback loop iterations, the number of picked particles per micrograph almost doubles in the
fourth feedback iteration while the number of ”kept” particles per micrograph further increases.
This strengthens the hypothesis that the model picks the micrographs more to completion with the
drawback of an increased false-positive rate, i.e., picking particles which actually do not represent
particles.

Changing the picking confidence threshold to a more conservative value of 0.3, the rate of false-
positive picks greatly decreases from almost 50 % to about 25 %. Additionally, a visual inspection of
the traced filaments shows that the amount of false positive picks minimizes while maintaining the
desired filament trace. However, the achieved resolution as well as the amount of ”kept” particles
per micrograph decreased at the same time. In combination with the resolution peak in the third
feedback iteration it could be concluded that the crYOLO model did not further improve in later
iterations. This, however, would need a larger data set to be analyzed on to rule out resolution
limitations due to the number of ”kept” particles used.

3.2.4 Discussion

TranSPHIRE automates the initial processing of the data set live during data acquisition by providing
common interfaces for different available processing tools. The provided GUI not only offers access
to the individual settings, but allows the user to choose between alternative programs for the
individual tasks. Due to the recent development of reliable software in combination with user-
focused interfaces, cryo-EM became more accessible and interesting for a larger amount of research
groups. Therefore, other software for automated data processing such as RELION [113], Focus [6],
Scipion [108],WARP [123], cryoSPARC [96], cryoFlare [111] and Appion [68] also provide GUI based
user input. However, each program has its own strategy how and which settings are exposed to the
user. The individual programs inWARP [123] and cryoFlare [111] have only limited options and
those are exposed to the user in the GUI. RELION [113] offers basic settings in its relion_it.py GUI to
setup the pipeline [63], but requires the user to change their Python options files in order to include
advanced options of the individual programs [102]. The tools Focus [6], Scipion [108], cryoSPARC
[96], and Appion [68] categorize the options into basic and advanced to help beginner users identify
at which options to look at. In TranSPHIRE the three categories Main, Advanced, and Rare are
used for the parameters and each category can be manually assigned by an experienced user based
on the needs of the data acquisition environment. This allows beginner and intermediate users
to setup a session without being overwhelmed by potentially many available options. However,
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expert users can access every option possible to tailor the processing pipeline to their individual
needs. All of the presented solutions group their settings by their individual tasks and arrange
them according to the order of their execution.

Which programs are available for execution and how those are integrated into the individual
pipelines and GUIs is also dependent on the software. WARP [123] integrates only self-developed
tools which are only available from within the WARP pipeline. RELION [113] and cryoSPARC [96]
mainly integrate their self-developed tools but also provide wrappers to some selected externally
developed tools. Additionally, in the RELION [113] pipeline own tools can be integrated by adapting
the relion_it.py Python file before execution. Focus [6], Scipion [108], cryoFlare [111], and Appion
[68] require to write own modules for the individual externally developed tools, but provide
templates as a starting point. TranSPHIRE follows the idea of including externally developed and
well established software into its pipeline, and it is possible to include own programs by adapting
the Python source code. Since the knowledge of Python can be a hurdle to fully adapt to the needs
of the users. Therefore, in the future it could be beneficial to make external software available
to TranSPHIRE via human-readable data-serialization file formats such as YAML [135] or JSON
[60]. In this way, new software dependencies could be bundled to ship them with the TranSPHIRE
installation or could be shared within the TranSPHIRE community.

Another important purpose next to guiding the user through the setup of the pipeline is the
visualization of the results to allow for rapid adjustments of the data acquisition. RELION , Scipion,
and Appion focus on the execution of the pipeline and require the user to manually decide which
data are worth looking at and to generate the respective plots. cryoFlare and Focus are explicitly
designed to run live at the microscope immediately present statistics about the data set front-
and-center in their GUI.WARP and cryoSPARC go one step further and additionally allow to set
thresholds for ”kept” and ”discarded” micrographs right within the plots itself. Scipion, Appion,
cryoFlare, Focus,WARP , and cryoSPARC additionally present the individual results in a table format.
Therefore, a combination between manual and automatic micrograph selection is possible and
allows for the export of specific subsets of the data. TranSPHIRE falls into the category of cryoFlare
and Focus and presents the important metrics to the user once the Start button is pressed. The data
are presented in a timely manner, as a histogram over the entire data set, or in a per micrograph
summary. However, TranSPHIRE is not yet designed to select or deselect micrographs interactively,
but rather to provide a fast overview over the ongoing data collection. Therefore, there is no
table of micrographs focusing on the individual results, and also no interactive threshold selection
within the plots is available. Nevertheless, the advanced micrograph selection functionality could
be added to further increase the use cases of the TranSPHIRE GUI.

To which extend the processing pipeline processes the individual micrographs is highly de-
pendent on the software used. For example, WARP executes drift correction, CTF estimation and
particle picking. cryoFlare, Focus, RELION , Scipion, and Appion offer a completely program inde-
pendent linear pipeline creation and are therefore not limited to specific pipeline steps. cryoSPARC
offers the processing steps of drift correction, CTF estimation, 2D classification, and 3D refinement.
Similar to cryoSPARC , TranSPHIRE offers the processing steps from drift correction to 3D refine-
ment. However, more flexibility is offered to the user due to exchangeable programs in the drift
correction and CTF estimation step.

The processing of incomingmicrographs can be categorized into linear and non-linear workflows,
and all the presented programs apart from cryoFlare [111] implement a linear workflow. Linear
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workflows process the tasks one after the other, while each task in non-linear workflows can either
run in sequence or in parallel relative to other tasks. Therefore, non-linear workflows have the
potential to use the limited available resources more efficiently, because the different tasks need
different amount of resources and time to complete. In TranSPHIRE the workflow is dynamic and
of non-linear character. Especially utility tasks such as copying data to different locations or file
compression are often limited by the bandwidth between the involved machines. To avoid a delay
of the actual processing inter alia those utility tasks run in parallel to the data collection with
limited assigned resources.

The most important non-linear building block of the TranSPHIRE pipeline is the TranSPHIRE
feedback loop. After 2D class selection the ”kept” particles are used to train a new crYOLO [131]
model. Afterwards, the particle picking and all subsequent tasks are re-run on all the data using
the new model. Previously, the Cianfrocco lab showed that automated processing of cryo-EM data
sets can greatly benefit from deep-learning based 2D class selection [72] Additionally, using the
results of the 2D class selection to re-train a new model for particle picking was performed by the
Liu lab [77]. For those approaches to work, it is essential that the 2D classification step results in a
homogeneous class assignment. Since the ISAC [136] algorithm is known for its robustness and
homogeneous class assignments at the cost of computational expense compared to other modern
maximum likelihood based approaches, the less resource demanding GPU version GPU ISAC [44]
was chosen as the 2D classification program. To show the capabilities of the TranSPHIRE feedback
loop, its performance was evaluated with three different real-world applications: Processing of
a previously unknown data set, selection of a known subset within the data, and automated
processing of a filamentous sample.

The first scenario demonstrated the processing of previously unknown data based on a TRPC4
data set. The micrographs were almost picked to completion even though the initial particle picking
had merely a yield of 2.54 % ”kept” particles. Data sets in cryo-EM of the same sample show not
only variations across different microscopes and used detectors, but also at the same microscope
and detectors due to different sample preparation techniques and microscope optical settings.
Therefore, even a specifically trained model of the sample based on previously collected data sets
cannot guarantee a picking result with an optimal yield of ”kept” particles. However, those picking
issues could be automatically resolved with the help of the TranSPHIRE feedback loop and enable a
more reliable analysis of the data set based on 2D classifications and 3D refinements. The possibility
that the TranSPHIRE feedback loop could adapt to various, even as yet unknown, different data
sets could pave the way towards fully automated high-throughput cryo-EM processing.

The second scenario illustrated the automatic identification of a known subset within the data
set based on a Tc holotoxin data set consisting of particles representing the pore and pre-pore
state. Throughout the TranSPHIRE feedback loop the relative amount of ”kept” pore state particles
increased from (18.04 ± 0.79) % to (45.89 ± 2.09) %, reducing the amount of false-positive picks,
and speeding up subsequent processing steps. Therefore, the TranSPHIRE feedback loop could be
used to target different sub populations of the data.

Historically, proteins like TMV were added to the target sample to improve the homogeneity of
the ice layer, and therefore the distribution of the target sample within the ice layer. Additionally,
the added protein can be processed independently to verify the overall quality of the data collection
and rule out related issues during processing of the actual sample [21, 115].

The third scenario demonstrated the automatic processing of filamentous samples based on an
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actomyosin data set. Filamentous processing remains a challenging task for automated particle
picking, and therefore also automated 3D processing. However, the crYOLO [131] particle picker re-
leased a filament mode which works with specifically trained crYOLO models, but no general model
for filaments is yet available [132]. Therefore, the provided crYOLO model for the TranSPHIRE
feedback loop was specifically trained on a F-actin data set, but the TranSPHIRE feedback loop
was able to correctly identify the actomyosin protein as the sample of interest. However, it was
necessary to train a specific Cinderella [11] model for 2D class selection after the very first 2D
classification during the TranSPHIRE feedback loop. That the TranSPHIRE feedback loop was able
to identify the actomyosin based on a picking model that does not know about actomyosin is of
special importance, as it shows the potential of a general model for filamentous samples for crYOLO
and Cinderella. To my knowledge, a general approach for automated processing of filamentous
samples did previously not exist. Therefore, TranSPHIRE not only shows the potential for high-
throughput target screenings of known filamentous samples, but also for the initial processing of
unknown filamentous samples during data acquisition.

To improve even further TranSPHIRE and the TranSPHIRE feedback loop the re-training pro-
cedure of the crYOLO model could be optimized. Currently, the model is trained from scratch
without any prior knowledge injected. However, typical contamination caused by the sample
preparation could be ignored and lead to impure picking results, and it could be beneficial to add
examples of pure contamination to the training data. Additionally, crYOLO offers an experimental
fine-tune mode that uses less computational resources, runs faster, and should reduce the risk of
overfitting, as only the last few layers of the network are trained. It would be interesting to test
this mode for the TranSPHIRE feedback loop to further boost the picking performance, especially
for sparse-picking situations.

TranSPHIRE streamlines all major pre-processing steps live during data acquisition and the
TranSPHIRE feedback loop is able to improve particle picking in various situations in a fully
automated manner. Since more scientist are entering the field of cryo-EM to complement their
research, rather than having the structure of the sample as their primary aim, automated data
processing that does not require expert knowledge to reach high-resolution reconstructions gains
importance. Streamlining the pre-processing to run in an automated way has been available
for many years, but manual input was necessary at key points such as particle picking and 2D
class selection. With the help of the TranSPHIRE feedback loop the optimization of those two
steps are additionally automated and, depending on the use-case, require very little to no user
input. Therefore, TranSPHIRE helps beginners to reach high-resolution 3D reconstructions in an
automated manner, but due to its transparent input-settings design allows expert users to tackle
even the most challenging samples.

After the automation and optimization of the processing of the data collected at the microscope,
the next step would be to automatically optimize the data collection itself by feeding information
into the data collection software such as EPU [30], Serial EM [75], or Leginon [120]. For example,
information about high drift values in the last micrographs could be used to automatically increase
the waiting time between movement of the stage and acquiring an image. Additionally, the desired
defocus values set could be compared to the results of the actual data to automatically optimize the
distribution of defocus values. Furthermore, grids or holes can be skipped if the particle distribution
is very low to get the most out of the data acquisition. In this way, the collection of unwanted data
would be avoided and more useful data be collected.
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Conclusion 4
4.1 Automated processing with TranSPHIRE

In the course of this thesis, I presented the TranSPHIRE [118] pipeline. The TranSPHIRE pipeline
executes the pre-processing steps of the SPA cryo-EM pipeline in an automated way with the
focus on the parallel execution of the individual programs. Recent advancements in detectors in
combination with advanced automated data collection strategies such as AFIS or FFI allows for
the collection of up to 600micrographs/h [1, 9, 32]. However, how many micrographs are exactly
needed to reach a specific resolution to answer the underlying biological question is dependent
inter alia on the number of protein projections per micrograph, the stability of the microscope, the
microscope settings used during data collection, the homogeneity of the sample, and the thickness
of the thin ice layer on the grid. Therefore, automatic processing is of increasing importance to
get immediate feedback during data collection about the behavior and quality of the data set. The
feedback not only can potentially save a lot of wasted disk space, hence computational resources,
but additionally optimize the time spent at the microscope.

Over the last years, software likeWARP [123], Focus [6], RELION [113], Scipion [108], Appion
[68], cryoSPARC [96], and cryoFlare [111] started to provide an easy to access interface to chain
together different parts of the SPA pipeline for sequential or parallel execution. They present the
intermediate processing results to allow for an optimized data collection. While Focus [6], Scipion
[108], Appion [68], and cryoFlare [111] focus on the interaction of arbitrary software available in the
field,WARP [123], RELION [113], and cryoSPARC [96] mainly provide tools specifically designed
from their developers. TranSPHIRE is in between both categories providing interfaces to allow
arbitrary software from the field to interact with each other, but on the other hand implementing
unique features such as the presented novel TranSPHIRE feedback loop. Additionally, the focus is
on the usability for beginner users to get the data processing started, as well as the advanced user
that needs to tweak certain settings to get the most out of the data set from the very beginning.
Therefore, the TranSPHIRE interface allows for the setup of setting templates and the assignment
of each setting to one of the three categories Main, Advanced, and Rare for easy accessibility.

The TranSPHIRE feedback loop is able to influence earlier steps of the pipeline with knowledge
from later steps to improve the results of the individual steps; specifically the particle picking result
is optimized based on the results of the 2D classification. The Cianfrocco lab already showed that
the resolution of a data set can be improved automatically by using a deep-learning based 2D class
selection tool [72]. However, they did not use the ”kept” subset of particles to improve particle
picking. For the feedback loop to succeed, the two crucial steps are the 2D classification, which
needs to reliably cluster the provided particles, and the 2D class selection, which splits the resulting
2D class averages into ”kept” and ”discarded”. Since the ISAC [136] algorithm is known for its
ability to form stable and reliable class averages with homogeneous members, its GPU version
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GPU ISAC [44] was chosen for 2D classification. For 2D class selection, the deep-learning based
tool Cinderella [11] was used, which can be trained in various ways to select ”kept” and ”discarded”
subsets of the data.

The Liu lab implemented a different strategy for the feedback loop approach using 2D classifica-
tion in RELION [113] in combination with their metric %⁄Res to get the desired subset of ”kept” 2D
classes [77]. The metric %⁄Res is defined as the ratio of the percentage class distribution, i.e., the ratio
of assigned particles of a class and the total number of particles, and the respective resolution of
the class. However, those two metrics are highly correlated, because the resolution of a class is
dependent on the number of members [101]. Additionally, not only can large classes representing
protein result in high resolution, but also classes representing noise and contamination. Therefore,
it is possible that a deep-learning based classifier like Cinderella [11] or 2DAssess [72] could yield
more consistent and homogeneous results due to them focusing on features in the class averages
belonging to protein rather than statistics of the outcome.

I demonstrated three difference scenarios of the TranSPHIRE feedback loop that represent
common use cases in cryo-EM.

The first scenario showed the ability of the feedback loop to improve the particle picking
performance on an as yet unknown data set of a TRPC4 sample [129]. Furthermore, the initial
picks were sabotaged to only yield a very small number number of particles per micrograph for
training a new crYOLO [131] model. Nevertheless, the picking performance of crYOLO [131] could
be improved to a point where the target protein has been picked to completion on the micrographs.
This led to a resolution of about 3.5Å based on a data set containing 500 micrographs (Figure 3.6).

In the second scenario the particle picking was trained to pick only a specific subset of a Tc
holotoxin [105] data set. The data set consists of the common pre-pore state and the rare pore
state in a 5:1 ratio. To redirect the particle picking to specifically target the pore state, a Cinderella
[11] model had been trained prior execution which targets classes representing the pore state and
discards not only noise and contamination, but also high-resolution classes showing the pre-pore
state. By injecting this knowledge into the feedback loop the resulting crYOLO [131] model showed
a slight increase of pore state particles, and the pre-pore state particles were greatly reduced.
Therefore, the overall computational cost could be reduced to about 40 % while a resolution of
4.2Å could be obtained from 500 micrographs (Figure 3.7).

Thirdly, an actomyosin sample [93] was used to demonstrate the ability of the TranSPHIRE
feedback loop to also improve the picking performance of filamentous samples. A general model
for crYOLO [131] specifically trained on only pure F-actin data sets was used as input for the initial
particle picking. The visual appearance of F-actin and actomyosin is fundamentally different, and
therefore the actomyosin data can be considered unknown to the trained crYOLO [131] model.
Since there was also no specific Cinderella [11] model available the feedback loop was stopped
after the first 2D classification to train a specific model based on the obtained class averages. Even
though the initial crYOLO [131] model did not know about actomyosin and behaved accordingly,
the model improved throughout the course of the feedback loop so that a final resolution of about
4.5Å could be obtained from 100 micrographs (Figure 3.8).

In summary, TranSPHIRE offers an automatic processing pipeline that allows beginner users
as well as advanced users to monitor the progress and behavior of an ongoing data collection.
Therefore, upcoming issues can be tackled as soon as they arise enabling the acquisition of high
quality data sets. Additionally, the TranSPHIRE feedback loop is a tool to automatically improve
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the particle picking performance on a small subset of the data to allow for an efficient later use
of human and computational resources. In combination with an on-the-fly 3D refinement it is
possible to identify the conformational state of the protein or the binding of small molecules, if a
small molecule free reference structure is already available. Since this is performed live during
data collection, TranSPHIRE enables high-throughput screenings for different buffer conditions or
the binding of ligands.

The combination of crYOLO [131] for particle picking, GPU ISAC [44] for 2D classification, and
Cinderella [11] for 2D class selection is working due to their robustness, speed, and overall usability.
Recently, the authors of the software package RELION [113] presented their new approach for
2D classification which they claim to result in more homogeneous and smaller classes compared
to its predecessor [63]. Therefore, it could be interesting to check its performance within the
TranSPHIRE feedback loop.

The TranSPHIRE pipeline currently automates the data processing, optimizes the yield of
”kept” particles from the collected data, and reports possible problems with the data acquisition
parameters, e.g., defocus value discrepancies, high specimen drift, few particles per micrograph,
or phase shift values diverging from 90°, live to the user. In the future it would be ideal if the
knowledge about potential issues could be directly communicatedwith the data acquisition software.
Thus, the collection of unusable data could be reduced to a minimum further optimizing the
time spent for each data set at the microscope. While open-source software like Serial EM [75]
and Leginon [120] could be adapted to provide an interface for the communication of specific
problems, commercial products like EPU [30] would need to provide an interface for this kind of
communication. Optimization of the data collection setup based on the results of the collected data
could lead to a fully automated data acquisition workflow accessible to every user independent of
their experience and training.

4.2 Processing of filaments

While the protein in the SPA has a distinct shape with defined borders, a helical filament consists of
a continuous repeat of the same subunit. To enable the processing of filaments in the SPHIRE [79]
package, I presented a filamentous SPA 3D refinement approach available as sp_meridien_alpha.py
without the usage of a helical symmetry based on processing strategies developed in the Raunser
lab [78].

Typically, modern 3D refinement strategies such as Helical RELION [50], SPIDER [38], SPARX
[57], FREALIGN [119], FREALIX [107], SPRING [17], and cryoSPARC [96] are based on the IHRSR
[23] approach, which estimates and applies the helical symmetry parameters of the specimen to the
result of each refinement iteration. However, calculating the helical symmetry from low-resolution
structures can lead to model bias, wrongly estimated 3D structures, and incorrectly estimated
helical symmetry parameters [91, 25]. In the sp_meridien_alpha.py implementation, instead of
guiding the 3D refinement by applying an estimated helical symmetry, constraints stemming
from the filamentous character of the sample are used. These constraints include similar out-of-
plane rotation angles and in-plane rotation angles for neighboring particles, because particles are
segmented and extracted with a certain overlap from the same filament. Therefore, information
such as the direct neighbors of the particles, the in-plane rotation angle within the micrograph, and
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the parent filament affiliation are saved in the metadata of each particle. During the 3D refinement,
this information is used to identify particles which do not follow the filamentous character of the
specimen. Additionally, modifications to the reference angle generation method, the background
noise estimation, and shift limitations parallel to the helical axis of the specimen were implemented
in the 3D refinement as well as the 2D classification programs sp_isac2.py [79] and GPU ISAC [44].

To show the capability of sp_meridien_alpha.py to reach high-resolution 3D reconstructions an
actomyosin data set [93] and a TMV data set [40] were processed. The actomyosin data set reached
a nominal resolution of (4.40 ± 0.20)Å using 45 297 from 97 micrographs. Using the unmodified
version of sp_meridien.py [79], the nominal resolution was about the same at (4.47 ± 0.02)Å.
However a visual inspection of the inner area of the protein showed lower resolved features
compared to sp_meridien_alpha.py. For the TMV data set a nominal resolution of (4.37 ± 0.08)Å
could be achieved using 30 000 particles, i.e., 30 000 asymmetric units, from 14micrographs. Helical
RELION [50] achieved a resolution of 4.1Å from the same data set using 1 761 particles and
utilizing the helical symmetry of the data set in the 3D refinement. The difference in resolution is
expected, as TMV is a very rigid protein and its helical symmetry leat to effectively using about
1 761 × 30 ≈ 60 000 asymmetric units in the refinement, as each box contained 30 asymmetric units.

All in all, sp_meridien_alpha.py allows for the processing of high-resolution structures within
the SPHIRE [79] software package. On the one hand, using a SPA approach requires overall more
data to be collected, because each particle contributes only one asymmetric unit. On the other
hand, the implemented strategy does not require information about helical symmetry parameters
and hence reduces the risk of model bias. This can be especially advantageous for flexible filaments
that are bent or show local differences in their global helical symmetry.
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Glossary

1D one dimensional. 17

2D two dimensional. iv, v, 9, 12–14, 17, 18, 22–25, 28–30, 33, 36–38, 43, 44, 46, 47, 50–52, 54–57,
59, 60, 63, 65–67, 69–72

3D three dimensional. iv–vi, 1, 3, 4, 12, 14, 15, 18–25, 27, 30–33, 35, 37, 39–44, 50–53, 55–60, 63,
65–67, 71, 72, 87–89

AFIS aberration free image shift. 16, 69

bdb Berkeley database. 44

𝐶c chromatic aberration. 11

𝐶s spherical aberration. 8, 11, 17, 27–30

CCD charge-coupled device. 5

CMOS complementary metal-oxide-semiconductor. 5

CNN convolutional neural network. 15, 17

CPU central processing unit. 27, 50

cryo-EM transmission electron cryomicroscopy. 1–7, 9, 10, 12–15, 25, 31, 35, 44, 52, 64, 66, 67, 69,
70

cryo-ET transmission electron cryotomography. 3, 18, 19, 25

CTF contrast transfer function. 7, 9, 11, 16–18, 20, 22, 24, 33, 47, 49, 50, 65

DDD direct detecting device. 5, 10

DNA deoxyribonucleic acid. 1

DQE detection quantum efficiency. 5

FFI fringe-free illumination. 16, 69

FSC Fourier shell correlation. 14, 20, 39–42, 55, 90–109

FT Fourier transform. 17, 18, 21

GPU graphics processing unit. 27, 44, 50, 66, 69

GUI graphical user interface. 25, 33, 35, 45, 46, 48, 49, 64, 65
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Glossary

HPC high-performance computing. 27, 44, 50, 51

IHRSR Iterative Helical Realspace Reconstruction. 21, 43, 71

LMNG lauryl maltose neopentyl glycol. 30

NMR nuclear magnetic resonance spectroscopy. 1, 2

RAM random access memory. 27, 50

SNR signal-to-noise ratio. 3, 11, 16–21, 35, 44

SPA single particle analysis. 3, 4, 11, 12, 14–16, 18, 20–23, 25, 35, 37, 39, 44, 69, 71, 72

SSH secure shell. 50

STAR self-defining text archive and retrieval. 44

TEM transmission electron microscope. 4, 6, 15, 16

TMV Tobacco Mosaic Virus. 27, 38–40, 44, 66, 72, 87, 88, 100–109

TRPC4 transient receptor channel 4. 30, 52–56, 66, 70, 110–116
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Appendix 5

5.1 Filament results data

Table 5.1: 3D refinement results of the TMV data set running sp_meridien_alpha.py.

Run #Particles #Outliers #Particles #Outliers
Chunk 0 Chunk 0 Chunk 1 Chunk 1

1 15 807 79 15 161 0
2 16 591 0 14 377 78
3 16 099 1 14 869 78
4 15 095 1 15 873 79
5 13 761 78 17 207 1

Run #Iterations Best FSC0.143 resolution / FSC0.5 resolution /
iteration Å Å

1 21 21 4.39 5.28
2 24 24 4.44 5.63
3 23 23 4.44 5.28
4 23 23 4.28 5.28
5 19 19 4.28 5.04
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5 Appendix

Table 5.2: 3D refinement results of the TMV data set running sp_meridien.py.

Run #Particles #Outliers #Particles #Outliers
Chunk 0 Chunk 0 Chunk 1 Chunk 1

1 15 638 0 15 330 0
2 18 354 0 12 614 0
3 14 400 0 16 568 0
4 15 283 0 15 685 0
5 16 656 0 14 312 0

Run #Iterations Best FSC0.143 resolution / FSC0.5 resolution /
iteration Å Å

1 27 3 8.66 18.77
2 19 3 14.08 19.87
3 25 3 14.08 19.87
4 27 3 8.66 14.69
5 23 3 9.13 18.77

Table 5.3: 3D refinement results of the actomyosin data set running sp_meridien_alpha.py.

Run #Particles #Outliers #Particles #Outliers
Chunk 0 Chunk 0 Chunk 1 Chunk 1

1 22 825 7 444 22 472 7 787
2 23 418 7 647 21 879 7 374
3 22 874 7 419 22 423 7 611
4 22 285 7 565 23 012 7 992
5 22 128 7 778 23 169 7 391

Run #Iterations Best FSC0.143 resolution / FSC0.5 resolution /
iteration Å Å

1 26 26 4.40 6.77
2 23 23 4.46 6.77
3 23 23 4.69 7.33
4 22 22 4.24 6.64
5 24 23 4.19 6.64
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5.1 Filament results data

Table 5.4: 3D refinement results of the actomyosin data set running sp_meridien.py.

Run #Particles #Outliers #Particles #Outliers
Chunk 0 Chunk 0 Chunk 1 Chunk 1

1 24 925 0 20 372 0
2 22 189 0 23 108 0
3 24 546 0 20 751 0
4 20 011 0 25 286 0
5 22 788 0 22 509 0

Run #Iterations Best FSC0.143 resolution / FSC0.5 resolution /
iteration Å Å

1 14 14 4.46 7.49
2 15 15 4.46 7.49
3 17 17 4.46 7.49
4 20 20 4.51 7.49
5 20 20 4.46 7.49
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5.2 Filament FSC data

Table 5.5: Values of the FSCs from the five different runs executed by sp_meridien_al-
pha.py for the actomyosin data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.001 1.000 1.000 1.000 1.000 1.000
0.003 1.000 1.000 1.000 1.000 1.000
0.006 1.000 1.000 0.999 1.000 1.000
0.009 1.000 1.000 0.999 1.000 0.999
0.012 1.000 1.000 1.000 1.000 1.000
0.016 1.000 1.000 1.000 1.000 1.000
0.019 1.000 1.000 1.000 1.000 1.000
0.022 1.000 1.000 1.000 1.000 1.000
0.025 0.999 0.999 0.999 0.999 0.999
0.028 0.999 0.999 0.999 0.999 0.999
0.031 0.999 0.999 0.999 0.999 0.999
0.034 0.999 0.999 0.999 0.999 0.999
0.038 0.998 0.998 0.999 0.999 0.998
0.041 0.998 0.998 0.998 0.998 0.998
0.044 0.996 0.997 0.996 0.996 0.997
0.047 0.994 0.995 0.994 0.995 0.995
0.050 0.993 0.994 0.993 0.993 0.994
0.053 0.993 0.993 0.993 0.993 0.993
0.056 0.993 0.992 0.993 0.993 0.993
0.059 0.991 0.990 0.990 0.991 0.991
0.062 0.988 0.989 0.988 0.988 0.989
0.066 0.982 0.984 0.982 0.982 0.984
0.069 0.980 0.979 0.979 0.977 0.979
0.072 0.977 0.977 0.978 0.976 0.977
0.075 0.977 0.977 0.977 0.978 0.977
0.078 0.977 0.977 0.975 0.979 0.979
0.081 0.972 0.974 0.970 0.976 0.976
0.084 0.966 0.966 0.963 0.968 0.967
0.088 0.966 0.966 0.963 0.968 0.968
0.091 0.965 0.963 0.960 0.966 0.966
0.094 0.961 0.957 0.955 0.962 0.962
0.097 0.957 0.954 0.955 0.958 0.960
0.100 0.951 0.949 0.949 0.954 0.955
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5.2 Filament FSC data

Table 5.6: Values of the FSCs from the five different runs executed by sp_meridien_al-
pha.py for the actomyosin data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.103 0.942 0.937 0.939 0.947 0.946
0.106 0.935 0.929 0.930 0.939 0.939
0.109 0.926 0.922 0.923 0.931 0.936
0.112 0.928 0.926 0.924 0.933 0.938
0.116 0.921 0.918 0.914 0.930 0.929
0.119 0.909 0.904 0.895 0.915 0.914
0.122 0.886 0.884 0.864 0.900 0.890
0.125 0.864 0.857 0.844 0.877 0.867
0.128 0.837 0.823 0.806 0.844 0.843
0.131 0.818 0.802 0.787 0.827 0.821
0.134 0.799 0.780 0.765 0.806 0.804
0.138 0.767 0.753 0.739 0.782 0.784
0.141 0.736 0.736 0.702 0.768 0.760
0.144 0.699 0.707 0.659 0.742 0.738
0.147 0.649 0.644 0.593 0.690 0.692
0.150 0.589 0.569 0.517 0.616 0.609
0.153 0.564 0.541 0.481 0.593 0.589
0.156 0.554 0.532 0.482 0.605 0.606
0.159 0.551 0.538 0.490 0.608 0.605
0.162 0.518 0.514 0.445 0.590 0.582
0.166 0.485 0.464 0.404 0.547 0.539
0.169 0.454 0.437 0.374 0.496 0.490
0.172 0.437 0.406 0.351 0.471 0.463
0.175 0.435 0.399 0.352 0.469 0.465
0.178 0.427 0.408 0.359 0.466 0.478
0.181 0.400 0.378 0.305 0.436 0.453
0.184 0.356 0.332 0.269 0.403 0.425
0.187 0.374 0.347 0.297 0.432 0.433
0.191 0.374 0.350 0.289 0.429 0.429
0.194 0.347 0.326 0.264 0.423 0.416
0.197 0.326 0.295 0.238 0.408 0.392
0.200 0.333 0.304 0.249 0.411 0.394
0.203 0.327 0.312 0.249 0.415 0.399
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Table 5.7: Values of the FSCs from the five different runs executed by sp_meridien_al-
pha.py for the actomyosin data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.206 0.328 0.330 0.253 0.414 0.407
0.210 0.324 0.300 0.226 0.381 0.384
0.212 0.306 0.272 0.197 0.363 0.372
0.216 0.303 0.277 0.190 0.381 0.381
0.219 0.325 0.303 0.204 0.407 0.403
0.222 0.329 0.285 0.226 0.394 0.409
0.225 0.307 0.267 0.218 0.381 0.392
0.228 0.274 0.253 0.176 0.357 0.356
0.231 0.273 0.234 0.158 0.354 0.350
0.235 0.261 0.229 0.143 0.334 0.321
0.238 0.215 0.205 0.121 0.296 0.305
0.241 0.204 0.185 0.115 0.293 0.302
0.244 0.199 0.177 0.113 0.290 0.291
0.247 0.177 0.155 0.109 0.257 0.260
0.250 0.156 0.129 0.089 0.214 0.227
0.253 0.126 0.119 0.061 0.194 0.194
0.256 0.103 0.101 0.060 0.178 0.162
0.259 0.097 0.099 0.056 0.159 0.162
0.263 0.096 0.086 0.030 0.137 0.145
0.266 0.083 0.072 0.024 0.131 0.126
0.269 0.059 0.056 0.027 0.095 0.089
0.272 0.059 0.042 0.034 0.079 0.082
0.275 0.053 0.047 0.030 0.084 0.079
0.278 0.051 0.049 0.029 0.084 0.070
0.281 0.040 0.039 0.030 0.067 0.069
0.284 0.029 0.036 0.023 0.046 0.062
0.287 0.029 0.044 0.010 0.041 0.053
0.291 0.027 0.034 0.007 0.050 0.055
0.294 0.031 0.020 0.011 0.039 0.045
0.296 0.019 0.006 0.014 0.029 0.032
0.300 0.014 0.014 0.016 0.021 0.027
0.303 0.026 0.026 0.013 0.034 0.025
0.306 0.035 0.026 0.010 0.037 0.032
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5.2 Filament FSC data

Table 5.8: Values of the FSCs from the five different runs executed by sp_meridien_al-
pha.py for the actomyosin data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.309 0.014 0.029 0.006 0.026 0.026
0.312 0.021 0.029 −0.001 0.021 0.024
0.315 0.024 0.019 −0.004 0.028 0.034
0.319 0.017 0.022 −0.001 0.029 0.026
0.322 0.019 0.029 −0.003 0.020 0.016
0.325 0.027 0.026 0.009 0.037 0.019
0.328 0.028 0.014 0.003 0.030 0.019
0.331 0.015 0.015 −0.005 0.027 0.021
0.334 0.018 0.018 −0.005 0.024 0.016
0.337 0.013 0.024 −0.002 0.027 0.012
0.341 0.015 0.015 0.006 0.028 0.011
0.344 0.019 0.017 0.006 0.023 0.012
0.347 0.011 0.007 0.001 0.012 0.011
0.350 0.012 0.015 −0.003 0.021 0.021
0.353 0.007 0.019 0.003 0.027 0.016
0.356 0.009 0.023 0.008 0.036 0.012
0.359 0.017 0.018 0.009 0.029 −0.006
0.363 0.015 0.021 0.010 0.014 0.002
0.365 0.024 0.022 0.008 0.018 0.018
0.369 0.018 0.020 0.007 0.018 0.021
0.372 0.015 0.015 0.018 0.013 0.024
0.375 0.013 0.015 0.014 0.016 0.018
0.378 0.014 0.011 0.009 0.018 0.022
0.381 0.008 0.012 0.003 0.008 0.004
0.385 0.009 0.017 0.010 0.010 0.014
0.387 0.003 0.017 0.015 0.019 0.016
0.390 0.006 0.020 0.010 0.020 0.016
0.394 0.007 0.020 0.000 0.018 0.009
0.397 0.006 0.014 0.001 0.017 0.012
0.400 0.009 0.017 0.008 0.009 0.014
0.403 0.016 0.016 0.007 0.015 0.014
0.406 0.008 0.006 0.011 0.017 0.016
0.409 0.004 0.009 0.013 0.016 0.014
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Table 5.9: Values of the FSCs from the five different runs executed by sp_meridien_al-
pha.py for the actomyosin data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.412 0.002 0.012 0.012 0.012 0.012
0.415 0.003 0.008 0.015 0.008 0.012
0.418 0.003 0.011 0.013 0.006 0.018
0.421 0.006 0.009 0.005 0.013 0.013
0.425 0.004 0.012 0.007 0.016 0.017
0.428 0.009 0.020 0.013 0.022 0.015
0.431 0.007 0.016 0.013 0.028 0.018
0.435 0.011 0.015 0.010 0.022 0.013
0.438 0.010 0.014 0.015 0.009 0.012
0.440 0.005 0.005 0.003 0.007 0.007
0.444 −0.001 0.008 −0.001 0.011 0.007
0.447 0.000 0.011 −0.008 0.011 0.011
0.451 0.006 0.018 0.005 0.013 0.020
0.453 0.006 0.013 0.010 0.016 0.013
0.456 0.016 0.009 0.018 0.009 0.018
0.460 0.016 0.012 0.022 0.009 0.021
0.462 0.009 0.011 0.011 0.019 0.015
0.466 0.011 0.007 0.014 0.015 0.018
0.468 0.009 0.004 0.010 0.011 0.022
0.472 0.009 0.010 0.007 0.009 0.016
0.474 0.013 0.012 0.003 0.020 0.015
0.478 0.012 0.016 0.008 0.014 0.012
0.480 0.012 0.012 0.005 0.007 0.014
0.485 0.010 0.015 0.004 0.010 0.007
0.487 0.010 0.014 0.007 0.019 0.006
0.491 0.014 0.009 0.008 0.014 0.013
0.493 0.017 0.013 0.018 0.012 0.005
0.498 0.007 0.019 0.011 0.018 0.015
0.500 0.007 0.024 0.012 0.020 0.023
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5.2 Filament FSC data

Table 5.10: Values of the FSCs from the five different runs executed by sp_meridien.py
for the actomyosin data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.001 1.000 1.000 1.000 1.000 1.000
0.003 1.000 1.000 0.999 1.000 1.000
0.006 0.999 0.999 0.997 1.000 0.997
0.009 0.999 1.000 0.998 1.000 0.997
0.012 1.000 1.000 0.998 1.000 0.998
0.016 1.000 1.000 0.999 1.000 0.999
0.019 1.000 1.000 0.999 1.000 0.999
0.022 1.000 1.000 0.999 1.000 0.999
0.025 0.999 0.999 0.999 0.999 0.999
0.028 0.998 0.998 0.997 0.998 0.997
0.031 0.998 0.998 0.997 0.998 0.997
0.034 0.998 0.998 0.997 0.998 0.997
0.038 0.997 0.998 0.997 0.997 0.997
0.041 0.997 0.996 0.995 0.996 0.996
0.044 0.993 0.993 0.992 0.992 0.992
0.047 0.989 0.990 0.989 0.991 0.988
0.050 0.987 0.988 0.988 0.987 0.986
0.053 0.988 0.988 0.988 0.986 0.987
0.056 0.987 0.987 0.986 0.985 0.986
0.059 0.983 0.983 0.983 0.982 0.983
0.062 0.978 0.977 0.978 0.976 0.978
0.066 0.968 0.965 0.967 0.967 0.967
0.069 0.961 0.960 0.961 0.963 0.962
0.072 0.959 0.957 0.959 0.959 0.957
0.075 0.956 0.958 0.954 0.959 0.955
0.078 0.959 0.961 0.955 0.959 0.958
0.081 0.954 0.956 0.952 0.955 0.952
0.084 0.944 0.942 0.939 0.944 0.933
0.088 0.944 0.943 0.939 0.945 0.934
0.091 0.940 0.940 0.939 0.939 0.932
0.094 0.932 0.934 0.933 0.932 0.929
0.097 0.929 0.929 0.931 0.929 0.928
0.100 0.921 0.919 0.919 0.919 0.917
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Table 5.11: Values of the FSCs from the five different runs executed by sp_meridien.py
for the actomyosin data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.103 0.906 0.901 0.904 0.902 0.901
0.106 0.894 0.888 0.889 0.887 0.889
0.109 0.886 0.881 0.879 0.881 0.877
0.112 0.887 0.883 0.883 0.884 0.881
0.116 0.870 0.872 0.873 0.874 0.874
0.119 0.849 0.848 0.854 0.851 0.851
0.122 0.821 0.819 0.823 0.819 0.826
0.125 0.789 0.795 0.789 0.781 0.789
0.128 0.741 0.748 0.733 0.741 0.736
0.131 0.719 0.729 0.711 0.724 0.716
0.134 0.697 0.695 0.693 0.699 0.694
0.138 0.658 0.657 0.654 0.653 0.654
0.141 0.613 0.618 0.618 0.610 0.609
0.144 0.586 0.589 0.598 0.586 0.583
0.147 0.519 0.528 0.537 0.519 0.528
0.150 0.449 0.460 0.472 0.443 0.461
0.153 0.440 0.444 0.452 0.434 0.440
0.156 0.448 0.456 0.465 0.455 0.444
0.159 0.467 0.470 0.466 0.470 0.472
0.162 0.431 0.427 0.422 0.434 0.441
0.166 0.377 0.380 0.366 0.361 0.386
0.169 0.343 0.340 0.327 0.317 0.346
0.172 0.329 0.325 0.310 0.308 0.331
0.175 0.313 0.313 0.301 0.318 0.323
0.178 0.310 0.315 0.310 0.320 0.331
0.181 0.289 0.306 0.295 0.297 0.304
0.184 0.279 0.284 0.283 0.272 0.277
0.187 0.295 0.289 0.293 0.273 0.293
0.191 0.290 0.285 0.283 0.281 0.287
0.194 0.268 0.264 0.263 0.275 0.273
0.197 0.263 0.257 0.266 0.265 0.261
0.200 0.271 0.261 0.266 0.270 0.263
0.203 0.261 0.257 0.258 0.251 0.250
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5.2 Filament FSC data

Table 5.12: Values of the FSCs from the five different runs executed by sp_meridien.py
for the actomyosin data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.206 0.254 0.259 0.255 0.253 0.250
0.210 0.235 0.244 0.246 0.239 0.243
0.212 0.226 0.226 0.225 0.223 0.221
0.216 0.243 0.240 0.238 0.235 0.233
0.219 0.253 0.256 0.249 0.245 0.251
0.222 0.257 0.252 0.258 0.246 0.253
0.225 0.244 0.252 0.248 0.243 0.235
0.228 0.233 0.236 0.226 0.222 0.220
0.231 0.219 0.221 0.207 0.200 0.205
0.235 0.200 0.219 0.195 0.198 0.194
0.238 0.192 0.199 0.195 0.183 0.187
0.241 0.167 0.176 0.175 0.166 0.175
0.244 0.166 0.170 0.167 0.165 0.161
0.247 0.155 0.150 0.151 0.137 0.143
0.250 0.132 0.125 0.115 0.119 0.114
0.253 0.104 0.114 0.105 0.100 0.100
0.256 0.089 0.101 0.102 0.100 0.094
0.259 0.082 0.087 0.083 0.081 0.083
0.263 0.079 0.081 0.071 0.078 0.081
0.266 0.068 0.067 0.055 0.068 0.062
0.269 0.051 0.054 0.041 0.053 0.053
0.272 0.044 0.039 0.044 0.044 0.039
0.275 0.043 0.046 0.052 0.047 0.042
0.278 0.043 0.052 0.053 0.049 0.045
0.281 0.037 0.043 0.037 0.033 0.039
0.284 0.025 0.040 0.027 0.026 0.020
0.287 0.017 0.040 0.033 0.028 0.026
0.291 0.024 0.031 0.032 0.023 0.029
0.294 0.021 0.024 0.021 0.011 0.026
0.296 0.014 0.021 0.013 0.007 0.017
0.300 0.006 0.015 0.016 −0.002 0.013
0.303 0.003 0.010 0.005 −0.006 0.004
0.306 0.014 0.015 0.007 0.002 0.008
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Table 5.13: Values of the FSCs from the five different runs executed by sp_meridien.py
for the actomyosin data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.309 0.017 0.016 0.010 0.009 0.019
0.312 0.010 0.004 0.010 0.006 0.011
0.315 0.013 0.006 0.004 0.007 0.005
0.319 0.001 0.003 0.007 0.002 0.010
0.322 0.003 0.001 0.004 −0.001 0.004
0.325 −0.007 0.003 0.011 0.003 −0.003
0.328 −0.011 −0.006 0.013 0.001 −0.002
0.331 −0.004 0.002 0.001 0.002 0.000
0.334 0.007 −0.004 0.002 0.006 −0.005
0.337 0.003 −0.005 0.003 0.005 0.006
0.341 −0.004 −0.009 −0.004 0.001 −0.003
0.344 −0.004 −0.016 −0.003 −0.002 −0.010
0.347 −0.002 −0.004 −0.005 0.002 0.002
0.350 0.006 −0.001 0.001 0.005 0.003
0.353 0.005 0.002 0.003 0.006 0.002
0.356 0.003 0.006 −0.001 0.002 0.007
0.359 0.001 0.004 0.003 −0.002 0.000
0.363 0.005 0.001 −0.009 −0.010 −0.009
0.365 0.006 0.003 −0.003 −0.010 −0.007
0.369 0.007 −0.005 0.002 −0.007 −0.004
0.372 0.005 0.005 0.000 0.003 0.001
0.375 0.000 0.001 −0.003 −0.002 0.002
0.378 −0.006 −0.007 0.001 −0.008 −0.003
0.381 −0.007 −0.010 0.001 −0.004 −0.006
0.385 −0.007 −0.002 0.002 0.000 −0.012
0.387 −0.001 −0.002 −0.006 −0.003 −0.005
0.390 0.002 0.002 0.002 −0.003 0.002
0.394 0.007 0.005 0.000 −0.003 0.004
0.397 0.003 0.003 −0.002 −0.004 0.003
0.400 −0.005 0.003 0.003 −0.008 −0.005
0.403 −0.005 0.005 0.005 −0.003 −0.006
0.406 −0.008 0.003 −0.001 −0.001 −0.004
0.409 0.007 0.001 −0.001 0.005 0.001
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5.2 Filament FSC data

Table 5.14: Values of the FSCs from the five different runs executed by sp_meridien.py
for the actomyosin data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.412 0.006 −0.005 −0.005 0.007 0.000
0.415 0.000 −0.008 −0.006 0.000 −0.007
0.418 −0.005 −0.005 −0.001 0.000 −0.001
0.421 −0.004 −0.005 −0.003 0.004 0.001
0.425 0.000 0.000 0.000 0.004 −0.002
0.428 0.000 0.008 −0.003 0.005 0.000
0.431 0.002 0.009 −0.004 0.003 0.002
0.435 −0.002 0.003 0.000 0.001 −0.001
0.438 −0.004 −0.007 0.001 −0.009 0.005
0.440 −0.003 −0.008 −0.005 −0.008 −0.006
0.444 −0.003 −0.003 −0.002 −0.008 −0.009
0.447 0.002 −0.002 −0.004 −0.006 −0.005
0.451 0.005 0.001 0.006 −0.005 0.005
0.453 −0.005 0.005 −0.001 0.000 0.012
0.456 −0.002 −0.001 −0.002 0.002 0.011
0.460 0.001 0.000 −0.003 0.001 0.004
0.462 −0.004 0.005 −0.003 −0.007 0.001
0.466 −0.006 0.003 −0.010 −0.004 0.003
0.468 −0.005 0.002 −0.001 0.002 0.002
0.472 −0.008 −0.002 −0.003 −0.005 −0.006
0.474 −0.004 −0.002 0.000 −0.001 −0.007
0.478 −0.002 0.002 −0.007 0.000 −0.001
0.480 0.002 0.000 −0.001 0.000 −0.010
0.485 0.004 −0.001 −0.001 −0.001 −0.002
0.487 0.001 0.003 0.005 0.000 0.000
0.491 0.004 0.001 0.006 −0.001 −0.004
0.493 −0.001 −0.001 −0.001 0.007 −0.003
0.498 −0.001 −0.002 −0.002 0.006 −0.003
0.500 0.002 −0.004 0.002 0.003 −0.002
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Table 5.15: Values of the FSCs from the five different runs executed by sp_meridien_al-
pha.py for the TMV data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.001 1.000 1.000 1.000 1.000 1.000
0.003 1.000 1.000 1.000 1.000 1.000
0.007 0.999 0.999 0.999 0.997 0.999
0.010 1.000 0.999 1.000 1.000 1.000
0.013 1.000 0.999 1.000 1.000 0.999
0.017 0.999 0.998 0.999 0.999 0.999
0.020 0.997 0.997 0.999 0.996 0.995
0.023 1.000 0.999 1.000 0.999 0.999
0.027 0.998 0.998 0.998 0.997 0.998
0.030 0.998 0.997 0.998 0.997 0.998
0.033 0.995 0.996 0.997 0.994 0.996
0.037 0.989 0.992 0.992 0.984 0.993
0.040 0.989 0.993 0.994 0.985 0.994
0.043 0.989 0.993 0.995 0.986 0.994
0.047 0.991 0.992 0.993 0.991 0.994
0.050 0.993 0.993 0.995 0.994 0.994
0.053 0.986 0.987 0.990 0.989 0.987
0.057 0.979 0.983 0.981 0.984 0.981
0.060 0.959 0.971 0.970 0.963 0.962
0.063 0.944 0.960 0.954 0.953 0.945
0.067 0.956 0.973 0.968 0.969 0.966
0.070 0.960 0.974 0.965 0.969 0.969
0.073 0.969 0.978 0.971 0.972 0.968
0.077 0.967 0.971 0.966 0.965 0.963
0.080 0.958 0.961 0.958 0.960 0.959
0.083 0.944 0.949 0.956 0.953 0.961
0.087 0.950 0.957 0.962 0.953 0.961
0.090 0.955 0.953 0.966 0.946 0.955
0.093 0.957 0.959 0.967 0.954 0.954
0.097 0.960 0.966 0.970 0.965 0.961
0.100 0.964 0.973 0.974 0.970 0.971
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5.2 Filament FSC data

Table 5.16: Values of the FSCs from the five different runs executed by sp_meridien_al-
pha.py for the TMV data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.103 0.960 0.971 0.967 0.964 0.966
0.107 0.954 0.961 0.969 0.955 0.958
0.110 0.944 0.953 0.963 0.945 0.954
0.113 0.943 0.950 0.958 0.935 0.948
0.117 0.928 0.931 0.944 0.912 0.928
0.120 0.931 0.931 0.944 0.928 0.932
0.123 0.934 0.934 0.945 0.934 0.927
0.127 0.921 0.913 0.931 0.915 0.903
0.130 0.902 0.887 0.913 0.896 0.898
0.133 0.832 0.846 0.863 0.858 0.858
0.137 0.839 0.862 0.867 0.860 0.842
0.140 0.867 0.872 0.881 0.862 0.854
0.143 0.846 0.837 0.847 0.831 0.834
0.146 0.835 0.850 0.848 0.827 0.837
0.150 0.842 0.854 0.860 0.822 0.827
0.153 0.830 0.821 0.843 0.822 0.806
0.156 0.808 0.794 0.813 0.795 0.804
0.160 0.775 0.725 0.752 0.728 0.758
0.163 0.750 0.690 0.724 0.687 0.741
0.166 0.651 0.607 0.674 0.631 0.664
0.170 0.582 0.608 0.637 0.581 0.614
0.173 0.638 0.660 0.683 0.638 0.696
0.177 0.626 0.616 0.642 0.644 0.684
0.180 0.595 0.549 0.574 0.585 0.607
0.183 0.633 0.587 0.612 0.614 0.625
0.187 0.628 0.571 0.619 0.615 0.627
0.190 0.551 0.504 0.561 0.581 0.604
0.193 0.563 0.528 0.568 0.594 0.610
0.196 0.599 0.564 0.587 0.625 0.638
0.200 0.571 0.537 0.558 0.606 0.615
0.203 0.545 0.467 0.519 0.561 0.545
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Table 5.17: Values of the FSCs from the five different runs executed by sp_meridien_al-
pha.py for the TMV data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.206 0.531 0.463 0.515 0.543 0.556
0.210 0.518 0.510 0.532 0.556 0.586
0.213 0.533 0.484 0.527 0.570 0.583
0.216 0.480 0.380 0.444 0.495 0.518
0.220 0.443 0.396 0.451 0.503 0.520
0.223 0.464 0.433 0.467 0.547 0.563
0.226 0.401 0.378 0.416 0.484 0.499
0.230 0.402 0.353 0.404 0.464 0.507
0.233 0.348 0.303 0.341 0.423 0.447
0.236 0.303 0.256 0.280 0.387 0.374
0.240 0.323 0.252 0.269 0.396 0.372
0.243 0.298 0.230 0.254 0.408 0.353
0.247 0.225 0.188 0.231 0.349 0.292
0.250 0.237 0.197 0.217 0.319 0.323
0.253 0.205 0.165 0.161 0.290 0.295
0.256 0.144 0.109 0.127 0.282 0.241
0.260 0.086 0.077 0.092 0.199 0.190
0.263 0.072 0.075 0.093 0.160 0.164
0.267 0.047 0.053 0.054 0.119 0.125
0.270 0.031 0.035 0.048 0.093 0.088
0.273 0.007 0.004 0.028 0.069 0.063
0.276 0.020 0.017 0.051 0.079 0.066
0.280 0.007 0.016 0.014 0.048 0.037
0.283 0.020 0.019 0.004 0.035 0.010
0.286 0.020 0.019 0.010 0.035 0.017
0.290 0.008 0.016 0.028 0.030 0.022
0.293 0.014 0.018 0.032 0.025 0.023
0.296 0.013 0.026 0.028 0.022 0.015
0.300 −0.009 0.006 −0.001 0.007 −0.005
0.303 −0.002 0.011 −0.001 0.001 −0.013
0.307 0.007 0.012 −0.003 0.004 0.002
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5.2 Filament FSC data

Table 5.18: Values of the FSCs from the five different runs executed by sp_meridien_al-
pha.py for the TMV data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.310 0.006 −0.014 −0.015 −0.002 −0.002
0.313 0.011 −0.005 −0.003 −0.003 −0.004
0.316 0.003 0.010 0.000 −0.004 0.004
0.320 0.009 0.017 −0.001 −0.004 0.013
0.323 0.004 0.007 0.002 0.006 0.011
0.326 0.002 0.004 0.013 0.022 0.022
0.330 0.001 0.002 0.014 0.020 0.031
0.333 −0.010 −0.008 −0.004 −0.003 0.009
0.337 0.012 0.009 0.008 −0.009 0.020
0.340 0.006 0.008 0.019 0.005 0.027
0.343 −0.006 0.001 0.008 0.000 0.015
0.346 −0.001 0.007 0.014 0.008 0.011
0.349 0.001 0.005 0.013 0.005 0.010
0.353 0.002 0.004 0.007 0.006 0.005
0.356 0.006 0.001 0.013 0.005 −0.001
0.359 0.010 −0.003 0.020 0.005 0.003
0.363 0.010 −0.002 0.007 0.006 0.010
0.366 0.000 0.006 −0.001 0.005 0.015
0.370 −0.003 −0.007 0.001 −0.002 0.002
0.373 −0.007 −0.007 −0.003 −0.007 −0.002
0.376 −0.010 −0.007 −0.004 −0.003 −0.005
0.380 0.006 0.010 −0.003 0.004 −0.001
0.383 0.000 0.002 0.006 0.006 0.011
0.387 −0.013 0.003 0.015 0.003 0.008
0.389 −0.005 0.001 −0.004 −0.003 −0.002
0.393 0.008 −0.003 −0.002 0.000 0.010
0.396 0.003 −0.012 −0.002 −0.013 0.000
0.400 0.006 0.000 −0.002 −0.016 −0.003
0.403 0.004 0.001 −0.002 −0.007 −0.003
0.406 −0.010 −0.005 −0.007 −0.004 −0.003
0.409 0.004 −0.004 −0.008 −0.002 −0.008
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Table 5.19: Values of the FSCs from the five different runs executed by sp_meridien_al-
pha.py for the TMV data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.414 0.007 −0.002 0.010 0.004 −0.002
0.417 0.003 −0.001 0.002 0.004 0.006
0.420 −0.001 −0.004 −0.009 −0.008 −0.001
0.423 −0.008 −0.007 −0.010 −0.003 −0.003
0.426 −0.004 −0.013 0.001 0.005 0.002
0.429 0.007 −0.012 0.007 0.010 −0.003
0.433 0.001 −0.008 0.000 0.006 −0.006
0.436 −0.003 −0.010 −0.001 0.003 0.010
0.439 0.004 −0.005 −0.003 0.009 0.016
0.443 0.002 0.001 −0.001 0.001 0.005
0.446 −0.009 0.004 0.000 0.010 0.003
0.450 −0.008 −0.001 −0.002 0.016 0.007
0.454 −0.003 −0.002 0.010 0.004 0.010
0.455 −0.005 0.001 0.006 0.001 −0.003
0.459 0.003 −0.004 −0.006 0.003 −0.009
0.463 0.005 −0.002 −0.004 −0.001 −0.002
0.467 0.007 −0.006 −0.001 0.007 −0.008
0.469 0.008 −0.001 0.000 0.008 −0.001
0.473 0.003 0.007 −0.008 0.000 0.005
0.477 0.001 0.008 −0.003 −0.002 0.006
0.479 0.000 0.000 0.001 0.003 0.002
0.483 −0.001 −0.002 0.001 0.007 0.007
0.487 −0.001 −0.004 0.001 0.005 0.005
0.489 0.001 −0.006 −0.001 0.001 0.002
0.493 0.003 −0.003 0.003 0.006 0.005
0.496 0.008 0.000 0.006 −0.002 −0.003
0.500 0.010 −0.002 0.007 −0.001 0.000
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5.2 Filament FSC data

Table 5.20: Values of the FSCs from the five different runs executed by sp_meridien.py
for the TMV data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.001 1.000 1.000 1.000 1.000 1.000
0.003 0.999 0.999 0.999 1.000 1.000
0.007 0.991 0.982 0.994 0.994 0.992
0.010 0.998 0.996 0.998 0.999 0.998
0.013 0.999 0.997 0.997 0.999 0.999
0.017 0.993 0.986 0.986 0.994 0.994
0.020 0.992 0.982 0.981 0.992 0.991
0.023 0.997 0.991 0.990 0.997 0.996
0.027 0.986 0.965 0.966 0.990 0.982
0.030 0.979 0.951 0.939 0.986 0.977
0.033 0.958 0.902 0.878 0.967 0.955
0.037 0.928 0.771 0.761 0.920 0.920
0.040 0.946 0.812 0.830 0.933 0.934
0.043 0.945 0.844 0.881 0.951 0.943
0.047 0.944 0.866 0.891 0.942 0.942
0.050 0.952 0.869 0.896 0.945 0.943
0.053 0.894 0.710 0.748 0.880 0.866
0.057 0.813 0.556 0.505 0.787 0.769
0.060 0.655 0.318 0.294 0.669 0.563
0.063 0.468 0.175 0.165 0.522 0.255
0.067 0.619 0.201 0.311 0.661 0.381
0.070 0.547 0.236 0.279 0.573 0.423
0.073 0.512 0.203 0.189 0.558 0.456
0.077 0.534 0.239 0.245 0.577 0.503
0.080 0.482 0.176 0.160 0.456 0.402
0.083 0.416 0.125 0.105 0.371 0.310
0.087 0.481 0.194 0.145 0.501 0.316
0.090 0.411 0.147 0.163 0.436 0.220
0.093 0.533 0.209 0.317 0.534 0.233
0.097 0.588 0.318 0.404 0.623 0.439
0.100 0.662 0.405 0.387 0.651 0.562
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Table 5.21: Values of the FSCs from the five different runs executed by sp_meridien.py
for the TMV data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.103 0.596 0.269 0.263 0.561 0.482
0.107 0.516 0.179 0.224 0.484 0.414
0.110 0.483 0.139 0.193 0.447 0.331
0.113 0.394 0.090 0.129 0.363 0.256
0.117 0.289 0.038 0.068 0.205 0.156
0.120 0.341 0.077 0.099 0.235 0.201
0.123 0.370 0.103 0.092 0.248 0.222
0.127 0.257 0.060 0.070 0.188 0.132
0.130 0.190 0.047 0.048 0.145 0.066
0.133 0.127 0.008 0.010 0.059 0.015
0.137 0.123 0.018 0.019 0.050 0.042
0.140 0.146 0.054 0.034 0.081 0.070
0.143 0.103 0.035 0.031 0.072 0.034
0.146 0.092 0.029 0.038 0.057 0.041
0.150 0.113 0.009 0.034 0.066 0.044
0.153 0.131 0.029 0.028 0.053 0.068
0.156 0.132 0.020 0.020 0.032 0.028
0.160 0.093 0.019 −0.015 0.014 0.010
0.163 0.044 0.024 −0.007 0.014 0.002
0.166 0.043 0.000 −0.004 0.006 0.009
0.170 0.048 0.009 −0.003 0.023 0.009
0.173 0.050 0.007 0.008 0.028 0.025
0.177 0.036 0.008 −0.001 0.013 0.023
0.180 0.033 −0.004 0.001 0.009 0.002
0.183 0.039 −0.014 0.001 0.018 −0.006
0.187 0.060 −0.003 0.003 0.006 0.002
0.190 0.042 0.001 0.010 0.010 −0.002
0.193 0.031 0.006 0.004 0.022 0.006
0.196 0.031 0.005 0.014 0.021 0.008
0.200 0.035 −0.003 0.002 0.002 0.014
0.203 0.020 0.006 0.004 0.002 0.027
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5.2 Filament FSC data

Table 5.22: Values of the FSCs from the five different runs executed by sp_meridien.py
for the TMV data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.206 0.030 0.001 0.004 0.001 0.017
0.210 0.036 0.007 −0.005 0.009 −0.012
0.213 0.032 0.000 −0.006 0.013 −0.005
0.216 0.024 −0.001 −0.005 0.010 0.003
0.220 0.014 0.003 0.004 −0.004 −0.003
0.223 −0.002 0.017 0.004 0.008 −0.014
0.226 0.012 0.011 0.011 0.008 0.001
0.230 0.017 0.002 0.022 0.006 −0.007
0.233 −0.009 0.004 0.004 0.008 −0.010
0.236 −0.005 0.006 0.005 0.008 −0.003
0.240 −0.016 0.004 0.000 0.016 0.000
0.243 0.000 0.009 0.000 0.013 −0.005
0.247 0.003 0.012 0.005 0.010 −0.001
0.250 −0.007 0.005 0.004 0.010 −0.005
0.253 0.008 0.005 0.000 −0.004 −0.003
0.256 0.012 0.003 −0.001 −0.001 −0.001
0.260 0.005 0.008 −0.009 −0.002 −0.010
0.263 −0.001 0.014 −0.009 0.001 −0.001
0.267 −0.005 0.004 −0.002 −0.002 0.004
0.270 −0.007 −0.001 0.011 0.002 0.009
0.273 0.004 −0.012 0.004 0.011 0.000
0.276 0.008 −0.016 0.005 −0.007 0.003
0.280 −0.004 −0.003 0.007 −0.001 0.000
0.283 −0.007 0.004 0.022 0.006 −0.010
0.286 −0.004 0.007 0.005 0.006 −0.012
0.290 −0.002 0.002 −0.006 0.013 −0.005
0.293 −0.005 0.002 0.004 0.003 −0.004
0.296 0.001 −0.008 0.010 0.001 0.000
0.300 0.002 0.001 0.008 0.010 0.004
0.303 −0.006 0.007 0.004 0.009 0.005
0.307 0.004 0.001 0.010 0.016 0.004
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Table 5.23: Values of the FSCs from the five different runs executed by sp_meridien.py
for the TMV data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.310 0.001 0.008 0.000 0.012 0.002
0.313 −0.003 0.007 0.006 0.010 −0.002
0.316 0.000 0.001 0.004 0.005 0.002
0.320 −0.002 −0.007 0.002 0.002 −0.011
0.323 −0.006 0.006 0.006 −0.009 −0.010
0.326 −0.001 0.004 0.000 −0.003 0.002
0.330 −0.001 −0.008 −0.001 0.004 −0.001
0.333 0.010 −0.008 −0.005 0.006 0.008
0.337 0.007 0.000 −0.007 0.011 0.007
0.340 −0.002 0.004 −0.002 0.007 0.001
0.343 0.012 0.000 0.000 0.003 0.005
0.346 −0.004 0.001 0.006 −0.005 −0.004
0.349 −0.006 0.005 0.006 −0.009 0.003
0.353 0.002 0.014 0.009 −0.004 0.003
0.356 −0.003 0.009 0.001 0.002 0.005
0.359 0.001 0.003 0.000 0.004 0.003
0.363 0.002 0.005 −0.004 0.008 −0.002
0.366 0.009 0.006 0.002 0.005 0.004
0.370 0.005 0.006 0.000 0.007 −0.002
0.373 −0.002 0.007 −0.004 0.002 0.002
0.376 0.001 0.007 0.001 0.000 0.002
0.380 0.001 0.006 0.002 0.001 −0.002
0.383 0.005 0.001 −0.006 −0.003 −0.003
0.387 0.005 0.004 −0.005 −0.002 −0.013
0.389 −0.003 0.001 −0.009 0.010 −0.005
0.393 0.000 0.002 −0.004 0.006 0.004
0.396 −0.006 −0.001 0.000 0.002 −0.001
0.400 −0.003 0.000 −0.006 0.004 −0.006
0.403 −0.001 0.005 −0.002 0.007 −0.012
0.406 −0.006 0.005 0.000 0.010 −0.003
0.409 −0.001 0.004 −0.001 −0.003 −0.004
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5.2 Filament FSC data

Table 5.24: Values of the FSCs from the five different runs executed by sp_meridien.py
for the TMV data set.

Resolution / 1/𝑝𝑖𝑥𝑒𝑙 FSC run 1 FSC run 2 FSC run 3 FSC run 4 FSC run 5

0.414 0.004 0.003 0.003 −0.008 −0.001
0.417 0.004 0.000 0.000 −0.003 0.000
0.420 0.003 −0.003 −0.005 −0.008 0.000
0.423 0.002 0.000 −0.004 0.002 0.002
0.426 0.004 0.000 −0.001 −0.002 0.001
0.429 0.006 −0.001 −0.001 0.010 0.005
0.433 −0.006 −0.005 0.006 0.005 0.003
0.436 −0.005 −0.005 0.002 0.000 0.000
0.439 0.006 −0.001 −0.005 0.003 −0.002
0.443 0.004 0.002 −0.002 −0.003 0.004
0.446 −0.002 0.002 0.000 −0.004 −0.004
0.450 0.005 0.001 −0.002 −0.004 −0.005
0.454 0.002 0.002 0.005 −0.009 0.003
0.455 0.002 −0.002 −0.001 −0.001 −0.005
0.459 0.000 0.000 0.001 0.006 −0.006
0.463 0.005 −0.001 0.004 0.006 0.000
0.467 0.003 0.000 −0.002 0.003 −0.001
0.469 −0.003 −0.002 0.003 0.009 −0.001
0.473 −0.001 −0.004 0.002 0.007 −0.007
0.477 0.000 −0.005 0.007 0.003 −0.004
0.479 0.002 0.001 0.000 0.001 −0.002
0.483 0.004 −0.002 −0.004 0.003 0.000
0.487 0.002 −0.004 −0.001 0.002 0.001
0.489 −0.001 0.001 0.001 0.000 0.004
0.493 0.002 0.002 −0.001 0.006 0.003
0.496 −0.002 −0.004 −0.003 0.000 0.002
0.500 0.006 −0.006 −0.003 −0.002 0.002
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5.3 TranSPHIRE feedback loop results data TRPC4

Table 5.25: TranSPHIRE feedback loop evaluation results of the TRPC4 data set of iteration
zero using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

0 + T0.1 01 83 319 166.64 36 751 73.50
0 + T0.1 02 83 319 166.64 36 223 72.45
0 + T0.1 03 83 319 166.64 37 671 75.34
0 + T0.1 04 83 319 166.64 35 602 71.20
0 + T0.1 05 83 319 166.64 36 507 73.01
0 + T0.1 06 83 319 166.64 35 801 71.60
0 + T0.1 07 83 319 166.64 37 639 75.28
0 + T0.1 08 83 319 166.64 36 922 73.84
0 + T0.1 09 83 319 166.64 34 755 69.51
0 + T0.1 10 83 319 166.64 37 166 74.33

Feedback Run Particles ”kept” / Resolution /
iteration % Å

0 + T0.1 01 0.44 3.50
0 + T0.1 02 0.43 3.45
0 + T0.1 03 0.45 3.45
0 + T0.1 04 0.43 3.50
0 + T0.1 05 0.44 3.50
0 + T0.1 06 0.43 3.55
0 + T0.1 07 0.45 3.50
0 + T0.1 08 0.44 3.50
0 + T0.1 09 0.42 3.45
0 + T0.1 10 0.45 3.55
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5.3 TranSPHIRE feedback loop results data TRPC4

Table 5.26: TranSPHIRE feedback loop evaluation results of the TRPC4 data set of iteration
one using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

1 + T0.1 01 8 850 17.70 2 293 4.59
1 + T0.1 02 8 850 17.70 1 931 3.86
1 + T0.1 03 8 850 17.70 2 019 4.04
1 + T0.1 04 8 850 17.70 2 114 4.23
1 + T0.1 05 8 850 17.70 2 058 4.12
1 + T0.1 06 8 850 17.70 2 067 4.13
1 + T0.1 07 8 850 17.70 2 102 4.20
1 + T0.1 08 8 850 17.70 2 112 4.22
1 + T0.1 09 8 850 17.70 2 037 4.07
1 + T0.1 10 8 850 17.70 2 140 4.28

Feedback Run Particles ”kept” / Resolution /
iteration % Å

1 + T0.1 01 0.26 5.44
1 + T0.1 02 0.22 5.56
1 + T0.1 03 0.23 5.83
1 + T0.1 04 0.24 5.21
1 + T0.1 05 0.23 5.97
1 + T0.1 06 0.23 5.69
1 + T0.1 07 0.24 5.32
1 + T0.1 08 0.24 4.80
1 + T0.1 09 0.23 5.44
1 + T0.1 10 0.24 5.83
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Table 5.27: TranSPHIRE feedback loop evaluation results of the TRPC4 data set of iteration
two using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

2 + T0.1 01 48 857 97.71 22 486 44.97
2 + T0.1 02 48 857 97.71 21 603 43.21
2 + T0.1 03 48 857 97.71 21 674 43.35
2 + T0.1 04 48 857 97.71 22 233 44.47
2 + T0.1 05 48 857 97.71 21 795 43.59
2 + T0.1 06 48 857 97.71 21 367 42.73
2 + T0.1 07 48 857 97.71 21 547 43.09
2 + T0.1 08 48 857 97.71 22 425 44.85
2 + T0.1 09 48 857 97.71 22 822 45.64
2 + T0.1 10 48 857 97.71 21 083 42.17

Feedback Run Particles ”kept” / Resolution /
iteration % Å

2 + T0.1 01 0.46 3.65
2 + T0.1 02 0.44 3.65
2 + T0.1 03 0.44 3.60
2 + T0.1 04 0.46 3.65
2 + T0.1 05 0.45 3.65
2 + T0.1 06 0.44 3.65
2 + T0.1 07 0.44 3.65
2 + T0.1 08 0.46 3.65
2 + T0.1 09 0.47 3.60
2 + T0.1 10 0.43 3.65
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Table 5.28: TranSPHIRE feedback loop evaluation results of the TRPC4 data set of iteration
three using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

3 + T0.1 01 62 984 125.97 31 489 62.98
3 + T0.1 02 62 984 125.97 30 175 60.35
3 + T0.1 03 62 984 125.97 30 976 61.95
3 + T0.1 04 62 984 125.97 30 948 61.90
3 + T0.1 05 62 984 125.97 30 593 61.19
3 + T0.1 06 62 984 125.97 31 936 63.87
3 + T0.1 07 62 984 125.97 31 445 62.89
3 + T0.1 08 62 984 125.97 29 915 59.83
3 + T0.1 09 62 984 125.97 30 961 61.92
3 + T0.1 10 62 984 125.97 31 729 63.46

Feedback Run Particles ”kept” / Resolution /
iteration % Å

3 + T0.1 01 0.50 3.55
3 + T0.1 02 0.48 3.60
3 + T0.1 03 0.49 3.60
3 + T0.1 04 0.49 3.55
3 + T0.1 05 0.49 3.55
3 + T0.1 06 0.51 3.55
3 + T0.1 07 0.50 3.55
3 + T0.1 08 0.47 3.55
3 + T0.1 09 0.49 3.50
3 + T0.1 10 0.50 3.55
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Table 5.29: TranSPHIRE feedback loop evaluation results of the TRPC4 data set of iteration
four using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

4 + T0.1 01 73 175 146.35 32 757 65.51
4 + T0.1 02 73 175 146.35 34 141 68.28
4 + T0.1 03 73 175 146.35 33 676 67.35
4 + T0.1 04 73 175 146.35 33 464 66.93
4 + T0.1 05 73 175 146.35 33 019 66.04
4 + T0.1 06 73 175 146.35 33 209 66.42
4 + T0.1 07 73 175 146.35 32 541 65.08
4 + T0.1 08 73 175 146.35 33 637 67.27
4 + T0.1 09 73 175 146.35 33 685 67.37
4 + T0.1 10 73 175 146.35 32 152 64.30

Feedback Run Particles ”kept” / Resolution /
iteration % Å

4 + T0.1 01 0.45 3.55
4 + T0.1 02 0.47 3.55
4 + T0.1 03 0.46 3.50
4 + T0.1 04 0.46 3.55
4 + T0.1 05 0.45 3.55
4 + T0.1 06 0.45 3.55
4 + T0.1 07 0.44 3.55
4 + T0.1 08 0.46 3.60
4 + T0.1 09 0.46 3.50
4 + T0.1 10 0.44 3.60
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Table 5.30: TranSPHIRE feedback loop evaluation results of the TRPC4 data set of iteration
five using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

5 + T0.1 01 70 758 141.52 33 704 67.41
5 + T0.1 02 70 758 141.52 33 935 67.87
5 + T0.1 03 70 758 141.52 34 584 69.17
5 + T0.1 04 70 758 141.52 32 127 64.25
5 + T0.1 05 70 758 141.52 34 118 68.24
5 + T0.1 06 70 758 141.52 33 628 67.26
5 + T0.1 07 70 758 141.52 34 032 68.06
5 + T0.1 08 70 758 141.52 34 409 68.82
5 + T0.1 09 70 758 141.52 33 106 66.21
5 + T0.1 10 70 758 141.52 34 999 70.00

Feedback Run Particles ”kept” / Resolution /
iteration % Å

5 + T0.1 01 0.48 3.50
5 + T0.1 02 0.48 3.55
5 + T0.1 03 0.49 3.55
5 + T0.1 04 0.45 3.55
5 + T0.1 05 0.48 3.60
5 + T0.1 06 0.48 3.60
5 + T0.1 07 0.48 3.50
5 + T0.1 08 0.49 3.50
5 + T0.1 09 0.47 3.50
5 + T0.1 10 0.49 3.55
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Table 5.31: TranSPHIRE feedback loop evaluation results of the TRPC4 data set of iteration
five using a threshold of 0.375.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

5 + T0.375 01 56 026 112.05 31 513 63.03
5 + T0.375 02 56 026 112.05 32 320 64.64
5 + T0.375 03 56 026 112.05 32 066 64.13
5 + T0.375 04 56 026 112.05 31 234 62.47
5 + T0.375 05 56 026 112.05 30 244 60.49
5 + T0.375 06 56 026 112.05 32 176 64.35
5 + T0.375 07 56 026 112.05 31 587 63.17
5 + T0.375 08 56 026 112.05 31 131 62.26
5 + T0.375 09 56 026 112.05 30 798 61.60
5 + T0.375 10 56 026 112.05 31 601 63.20

Feedback Run Particles ”kept” / Resolution /
iteration % Å

5 + T0.375 01 0.56 3.55
5 + T0.375 02 0.58 3.60
5 + T0.375 03 0.57 3.50
5 + T0.375 04 0.56 3.55
5 + T0.375 05 0.54 3.60
5 + T0.375 06 0.57 3.60
5 + T0.375 07 0.56 3.55
5 + T0.375 08 0.56 3.60
5 + T0.375 09 0.55 3.55
5 + T0.375 10 0.56 3.55
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5.4 TranSPHIRE feedback loop results data holotoxin

Table 5.32: TranSPHIRE feedback loop evaluation results of the holotoxin data set of
iteration zero using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

0 + T0.1 01 62 353 124.71 10 806 21.61
0 + T0.1 02 62 353 124.71 11 903 23.81
0 + T0.1 03 62 353 124.71 11 126 22.25
0 + T0.1 04 62 353 124.71 11 717 23.43
0 + T0.1 05 62 353 124.71 11 664 23.33
0 + T0.1 06 62 353 124.71 10 329 20.66
0 + T0.1 07 62 353 124.71 11 170 22.34
0 + T0.1 08 62 353 124.71 11 684 23.37
0 + T0.1 09 62 353 124.71 11 391 22.78
0 + T0.1 10 62 353 124.71 10 672 21.34

Feedback Run Particles ”kept” / Resolution /
iteration % Å

0 + T0.1 01 0.17 4.28
0 + T0.1 02 0.19 4.20
0 + T0.1 03 0.18 4.28
0 + T0.1 04 0.19 4.28
0 + T0.1 05 0.19 4.28
0 + T0.1 06 0.17 4.28
0 + T0.1 07 0.18 4.28
0 + T0.1 08 0.19 4.28
0 + T0.1 09 0.18 4.24
0 + T0.1 10 0.17 4.24
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Table 5.33: TranSPHIRE feedback loop evaluation results of the holotoxin data set of
iteration one using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

1 + T0.1 01 47 602 95.20 12 592 25.18
1 + T0.1 02 47 602 95.20 12 807 25.61
1 + T0.1 03 47 602 95.20 12 008 24.02
1 + T0.1 04 47 602 95.20 12 503 25.01
1 + T0.1 05 47 602 95.20 11 360 22.72
1 + T0.1 06 47 602 95.20 12 127 24.25
1 + T0.1 07 47 602 95.20 10 622 21.24
1 + T0.1 08 47 602 95.20 12 041 24.08
1 + T0.1 09 47 602 95.20 12 613 25.23
1 + T0.1 10 47 602 95.20 13 253 26.51

Feedback Run Particles ”kept” / Resolution /
iteration % Å

1 + T0.1 01 0.26 4.20
1 + T0.1 02 0.27 4.28
1 + T0.1 03 0.25 4.24
1 + T0.1 04 0.26 4.20
1 + T0.1 05 0.24 4.24
1 + T0.1 06 0.25 4.20
1 + T0.1 07 0.22 4.28
1 + T0.1 08 0.25 4.20
1 + T0.1 09 0.26 4.24
1 + T0.1 10 0.28 4.24
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Table 5.34: TranSPHIRE feedback loop evaluation results of the holotoxin data set of
iteration two using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

2 + T0.1 01 35 364 70.73 12 791 25.58
2 + T0.1 02 35 364 70.73 12 630 25.26
2 + T0.1 03 35 364 70.73 12 832 25.66
2 + T0.1 04 35 364 70.73 13 477 26.95
2 + T0.1 05 35 364 70.73 11 206 22.41
2 + T0.1 06 35 364 70.73 13 118 26.24
2 + T0.1 07 35 364 70.73 13 146 26.29
2 + T0.1 08 35 364 70.73 13 176 26.35
2 + T0.1 09 35 364 70.73 12 670 25.34
2 + T0.1 10 35 364 70.73 12 861 25.72

Feedback Run Particles ”kept” / Resolution /
iteration % Å

2 + T0.1 01 0.36 4.20
2 + T0.1 02 0.36 4.20
2 + T0.1 03 0.36 4.24
2 + T0.1 04 0.38 4.20
2 + T0.1 05 0.32 4.28
2 + T0.1 06 0.37 4.16
2 + T0.1 07 0.37 4.20
2 + T0.1 08 0.37 4.20
2 + T0.1 09 0.36 4.16
2 + T0.1 10 0.36 4.16
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Table 5.35: TranSPHIRE feedback loop evaluation results of the holotoxin data set of
iteration three using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

3 + T0.1 01 33 823 67.65 12 707 25.41
3 + T0.1 02 33 823 67.65 12 684 25.37
3 + T0.1 03 33 823 67.65 13 616 27.23
3 + T0.1 04 33 823 67.65 13 514 27.03
3 + T0.1 05 33 823 67.65 12 788 25.58
3 + T0.1 06 33 823 67.65 13 431 26.86
3 + T0.1 07 33 823 67.65 12 761 25.52
3 + T0.1 08 33 823 67.65 12 416 24.83
3 + T0.1 09 33 823 67.65 13 437 26.87
3 + T0.1 10 33 823 67.65 12 718 25.44

Feedback Run Particles ”kept” / Resolution /
iteration % Å

3 + T0.1 01 0.38 4.57
3 + T0.1 02 0.38 4.16
3 + T0.1 03 0.40 4.24
3 + T0.1 04 0.40 4.20
3 + T0.1 05 0.38 4.20
3 + T0.1 06 0.40 4.20
3 + T0.1 07 0.38 4.24
3 + T0.1 08 0.37 4.24
3 + T0.1 09 0.40 4.16
3 + T0.1 10 0.38 4.24
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Table 5.36: TranSPHIRE feedback loop evaluation results of the holotoxin data set of
iteration four using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

4 + T0.1 01 31 903 63.81 12 687 25.37
4 + T0.1 02 31 903 63.81 12 580 25.16
4 + T0.1 03 31 903 63.81 13 851 27.70
4 + T0.1 04 31 903 63.81 13 760 27.52
4 + T0.1 05 31 903 63.81 12 847 25.69
4 + T0.1 06 31 903 63.81 12 304 24.61
4 + T0.1 07 31 903 63.81 11 789 23.58
4 + T0.1 08 31 903 63.81 14 150 28.30
4 + T0.1 09 31 903 63.81 12 771 25.54
4 + T0.1 10 31 903 63.81 13 748 27.50

Feedback Run Particles ”kept” / Resolution /
iteration % Å

4 + T0.1 01 0.40 4.24
4 + T0.1 02 0.39 4.24
4 + T0.1 03 0.43 4.16
4 + T0.1 04 0.43 4.20
4 + T0.1 05 0.40 4.20
4 + T0.1 06 0.39 4.28
4 + T0.1 07 0.37 4.28
4 + T0.1 08 0.44 4.20
4 + T0.1 09 0.40 4.20
4 + T0.1 10 0.43 4.16
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Table 5.37: TranSPHIRE feedback loop evaluation results of the holotoxin data set of
iteration five using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

5 + T0.1 01 32 598 65.20 13 142 26.28
5 + T0.1 02 32 598 65.20 13 128 26.26
5 + T0.1 03 32 598 65.20 12 843 25.69
5 + T0.1 04 32 598 65.20 12 889 25.78
5 + T0.1 05 32 598 65.20 13 303 26.61
5 + T0.1 06 32 598 65.20 11 579 23.16
5 + T0.1 07 32 598 65.20 13 038 26.08
5 + T0.1 08 32 598 65.20 13 483 26.97
5 + T0.1 09 32 598 65.20 13 388 26.78
5 + T0.1 10 32 598 65.20 13 156 26.31

Feedback Run Particles ”kept” / Resolution /
iteration % Å

5 + T0.1 01 0.40 4.20
5 + T0.1 02 0.40 4.16
5 + T0.1 03 0.39 4.20
5 + T0.1 04 0.40 4.20
5 + T0.1 05 0.41 4.20
5 + T0.1 06 0.36 4.24
5 + T0.1 07 0.40 4.16
5 + T0.1 08 0.41 4.16
5 + T0.1 09 0.41 4.13
5 + T0.1 10 0.40 4.20
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Table 5.38: TranSPHIRE feedback loop evaluation results of the holotoxin data set of
iteration five using a threshold of 0.194.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

5 + T0.194 01 26 152 52.30 10 981 21.96
5 + T0.194 02 26 152 52.30 10 999 22.00
5 + T0.194 03 26 152 52.30 12 302 24.60
5 + T0.194 04 26 152 52.30 12 338 24.68
5 + T0.194 05 26 152 52.30 11 991 23.98
5 + T0.194 06 26 152 52.30 12 687 25.37
5 + T0.194 07 26 152 52.30 11 879 23.76
5 + T0.194 08 26 152 52.30 12 296 24.59
5 + T0.194 09 26 152 52.30 12 333 24.67
5 + T0.194 10 26 152 52.30 12 215 24.43

Feedback Run Particles ”kept” / Resolution /
iteration % Å

5 + T0.194 01 0.42 4.20
5 + T0.194 02 0.42 4.36
5 + T0.194 03 0.47 4.20
5 + T0.194 04 0.47 4.20
5 + T0.194 05 0.46 4.20
5 + T0.194 06 0.49 4.24
5 + T0.194 07 0.45 4.40
5 + T0.194 08 0.47 4.24
5 + T0.194 09 0.47 4.20
5 + T0.194 10 0.47 4.24

123



5 Appendix

5.5 TranSPHIRE feedback loop results data actomyosin

Table 5.39: TranSPHIRE feedback loop evaluation results of the actomyosin data set of
iteration zero using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

0 + T0.1 01 14 307 143.07 12 461 124.61
0 + T0.1 02 14 307 143.07 12 353 123.53
0 + T0.1 03 14 307 143.07 12 173 121.73
0 + T0.1 04 14 307 143.07 12 423 124.23
0 + T0.1 05 14 307 143.07 11 282 112.82
0 + T0.1 06 14 307 143.07 12 454 124.54
0 + T0.1 07 14 307 143.07 12 251 122.51
0 + T0.1 08 14 307 143.07 12 562 125.62
0 + T0.1 09 14 307 143.07 12 423 124.23
0 + T0.1 10 14 307 143.07 12 500 125.00

Feedback Run Particles ”kept” / Resolution /
iteration % Å

0 + T0.1 01 0.87 6.89
0 + T0.1 02 0.86 6.29
0 + T0.1 03 0.85 6.89
0 + T0.1 04 0.87 6.29
0 + T0.1 05 0.79 6.40
0 + T0.1 06 0.87 6.89
0 + T0.1 07 0.86 7.79
0 + T0.1 08 0.88 6.89
0 + T0.1 09 0.87 8.15
0 + T0.1 10 0.87 6.64
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Table 5.40: TranSPHIRE feedback loop evaluation results of the actomyosin data set of
iteration one using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

1 + T0.1 01 35 792 357.92 29 649 296.49
1 + T0.1 02 35 792 357.92 29 662 296.62
1 + T0.1 03 35 792 357.92 29 963 299.63
1 + T0.1 04 35 792 357.92 30 177 301.77
1 + T0.1 05 35 792 357.92 30 179 301.79
1 + T0.1 06 35 792 357.92 30 136 301.36
1 + T0.1 07 35 792 357.92 29 692 296.92
1 + T0.1 08 35 792 357.92 30 259 302.59
1 + T0.1 09 35 792 357.92 30 139 301.39
1 + T0.1 10 35 792 357.92 30 226 302.26

Feedback Run Particles ”kept” / Resolution /
iteration % Å

1 + T0.1 01 0.83 5.35
1 + T0.1 02 0.83 4.54
1 + T0.1 03 0.84 4.48
1 + T0.1 04 0.84 4.54
1 + T0.1 05 0.84 4.54
1 + T0.1 06 0.84 4.54
1 + T0.1 07 0.83 4.78
1 + T0.1 08 0.85 5.35
1 + T0.1 09 0.84 5.05
1 + T0.1 10 0.84 4.48
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Table 5.41: TranSPHIRE feedback loop evaluation results of the actomyosin data set of
iteration two using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

2 + T0.1 01 55 145 551.45 42 594 425.94
2 + T0.1 02 55 145 551.45 43 657 436.57
2 + T0.1 03 55 145 551.45 43 078 430.78
2 + T0.1 04 55 145 551.45 42 915 429.15
2 + T0.1 05 55 145 551.45 43 274 432.74
2 + T0.1 06 55 145 551.45 43 748 437.48
2 + T0.1 07 55 145 551.45 42 959 429.59
2 + T0.1 08 55 145 551.45 43 276 432.76
2 + T0.1 09 55 145 551.45 43 417 434.17
2 + T0.1 10 55 145 551.45 43 171 431.71

Feedback Run Particles ”kept” / Resolution /
iteration % Å

2 + T0.1 01 0.77 4.42
2 + T0.1 02 0.79 4.48
2 + T0.1 03 0.78 4.42
2 + T0.1 04 0.78 4.37
2 + T0.1 05 0.78 4.72
2 + T0.1 06 0.79 4.32
2 + T0.1 07 0.78 4.32
2 + T0.1 08 0.78 4.54
2 + T0.1 09 0.79 4.78
2 + T0.1 10 0.78 4.54
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Table 5.42: TranSPHIRE feedback loop evaluation results of the actomyosin data set of
iteration three using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

3 + T0.1 01 63 917 639.17 46 493 464.93
3 + T0.1 02 63 917 639.17 46 290 462.90
3 + T0.1 03 63 917 639.17 46 197 461.97
3 + T0.1 04 63 917 639.17 46 837 468.37
3 + T0.1 05 63 917 639.17 46 196 461.96
3 + T0.1 06 63 917 639.17 45 703 457.03
3 + T0.1 07 63 917 639.17 46 214 462.14
3 + T0.1 08 63 917 639.17 45 650 456.50
3 + T0.1 09 63 917 639.17 45 024 450.24
3 + T0.1 10 63 917 639.17 46 290 462.90

Feedback Run Particles ”kept” / Resolution /
iteration % Å

3 + T0.1 01 0.73 4.32
3 + T0.1 02 0.72 4.42
3 + T0.1 03 0.72 4.54
3 + T0.1 04 0.73 4.48
3 + T0.1 05 0.72 4.32
3 + T0.1 06 0.72 4.48
3 + T0.1 07 0.72 4.65
3 + T0.1 08 0.71 4.48
3 + T0.1 09 0.70 4.32
3 + T0.1 10 0.72 4.27
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Table 5.43: TranSPHIRE feedback loop evaluation results of the actomyosin data set of
iteration four using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

4 + T0.1 01 109 973 1 099.73 54 061 540.61
4 + T0.1 02 109 973 1 099.73 52 187 521.87
4 + T0.1 03 109 973 1 099.73 53 855 538.55
4 + T0.1 04 109 973 1 099.73 55 430 554.30
4 + T0.1 05 109 973 1 099.73 52 348 523.48
4 + T0.1 06 109 973 1 099.73 52 860 528.60
4 + T0.1 07 109 973 1 099.73 54 363 543.63
4 + T0.1 08 109 973 1 099.73 54 414 544.14
4 + T0.1 09 109 973 1 099.73 53 167 531.67
4 + T0.1 10 109 973 1 099.73 54 670 546.70

Feedback Run Particles ”kept” / Resolution /
iteration % Å

4 + T0.1 01 0.49 4.42
4 + T0.1 02 0.47 4.78
4 + T0.1 03 0.49 4.37
4 + T0.1 04 0.50 4.59
4 + T0.1 05 0.48 4.42
4 + T0.1 06 0.48 4.42
4 + T0.1 07 0.49 4.78
4 + T0.1 08 0.49 4.72
4 + T0.1 09 0.48 4.27
4 + T0.1 10 0.50 4.72
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5.5 TranSPHIRE feedback loop results data actomyosin

Table 5.44: TranSPHIRE feedback loop evaluation results of the actomyosin data set of
iteration five using a threshold of 0.1.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

5 + T0.1 01 107 343 1 073.43 53 228 532.28
5 + T0.1 02 107 343 1 073.43 52 331 523.31
5 + T0.1 03 107 343 1 073.43 54 340 543.40
5 + T0.1 04 107 343 1 073.43 53 041 530.41
5 + T0.1 05 107 343 1 073.43 51 780 517.80
5 + T0.1 06 107 343 1 073.43 55 097 550.97
5 + T0.1 07 107 343 1 073.43 53 774 537.74
5 + T0.1 08 107 343 1 073.43 53 615 536.15
5 + T0.1 09 107 343 1 073.43 52 810 528.10
5 + T0.1 10 107 343 1 073.43 53 553 535.53

Feedback Run Particles ”kept” / Resolution /
iteration % Å

5 + T0.1 01 0.50 4.54
5 + T0.1 02 0.49 4.65
5 + T0.1 03 0.51 4.37
5 + T0.1 04 0.49 4.42
5 + T0.1 05 0.48 4.59
5 + T0.1 06 0.51 4.59
5 + T0.1 07 0.50 4.72
5 + T0.1 08 0.50 4.32
5 + T0.1 09 0.49 4.42
5 + T0.1 10 0.50 4.59
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Table 5.45: TranSPHIRE feedback loop evaluation results of the actomyosin data set of
iteration five using a threshold of 0.3.

Feedback Run #Particles #Particles total / #Particles #Particles ”kept” /
iteration total Micrograph ”kept” Micrograph

5 + T0.3 01 51 483 514.83 38 478 384.78
5 + T0.3 02 51 483 514.83 39 325 393.25
5 + T0.3 03 51 483 514.83 38 333 383.33
5 + T0.3 04 51 483 514.83 38 486 384.86
5 + T0.3 05 51 483 514.83 37 722 377.22
5 + T0.3 06 51 483 514.83 38 999 389.99
5 + T0.3 07 51 483 514.83 38 816 388.16
5 + T0.3 08 51 483 514.83 38 733 387.33
5 + T0.3 09 51 483 514.83 38 651 386.51
5 + T0.3 10 51 483 514.83 39 322 393.22

Feedback Run Particles ”kept” / Resolution /
iteration % Å

5 + T0.3 01 0.75 4.84
5 + T0.3 02 0.76 4.98
5 + T0.3 03 0.74 4.54
5 + T0.3 04 0.75 4.84
5 + T0.3 05 0.73 4.98
5 + T0.3 06 0.76 5.05
5 + T0.3 07 0.75 4.84
5 + T0.3 08 0.75 4.42
5 + T0.3 09 0.75 4.84
5 + T0.3 10 0.76 4.42
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