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Abstract
In automated vehicles, the collaboration of human drivers and automated systems plays a decisive role in road safety, driver
comfort, and acceptance of automated vehicles. A successful interaction requires a precise interpretation and investigation
of all influencing factors such as driver state, system state, and surroundings (e.g., traffic, weather). This contribution
discusses the detailed structure of the driver-vehicle interaction, which takes into account the driving situation and the
driver state to improve driver performance. The interaction rules are derived from a controller that is fed by the driver state
within a loop. The regulation of the driver state continues until the target state is reached or the criticality of the situation is
resolved. In addition, a driver model is proposed that represents the driver’s decision-making process during the interaction
between driver and vehicle and during the transition of driving tasks. The model includes the sensory perception process,
decision-making, and motor response. The decision-making process during the interaction deals with the cognitive and
emotional states of the driver. Based on the proposed driver-vehicle interaction loop and the driver model, an experiment
with 38 participants is performed in a driving simulator to investigate (1) if both emotional and cognitive states become
active during the decision-making process and (2) what the temporal sequence of the processes is. Finally, the evidence
gathered from the experiment is analyzed. The results are consistent with the suggested driver model in terms of the
cognitive and emotional state of the driver during the mode change from automated system to the human driver.

Modellierung der Fahrer-Fahrzeug-Interaktion beim automatisierten Fahren

Zusammenfassung
In automatisierten Fahrzeugen spielt die Zusammenarbeit vom menschlichen Fahrer und automatisierten Systemen eine
entscheidende Rolle für die Verkehrssicherheit, den Fahrerkomfort und die Akzeptanz von automatisierten Fahrzeugen.
Eine erfolgreiche Interaktion erfordert eine präzise Interpretation aller Einflussfaktoren wie dem Fahrerzustand, dem
Systemzustand und den Umwelteinflüssen (z.B. Verkehr, Wetter). In diesem Beitrag wird eine detaillierte Struktur der
Fahrer-Fahrzeug-Interaktion diskutiert, welche die Fahrsituation und den Fahrerzustand berücksichtigt, um anschließend
die Leistung des Fahrers zu verbessern. Die Interaktion wird von einem Regler geleitet, der den Fahrerzustand als Ein-
gang innerhalb einer Schleife erhält. Die Regelung des Fahrerzustands erfolgt bis der Sollzustand erreicht wird. Darüber
hinaus wird ein Fahrermodell vorgeschlagen, das den Entscheidungsprozess des Fahrers während der Interaktion zwi-
schen dem Fahrer und dem Fahrzeug und während des Übergangs der Fahraufgaben darstellt. Das Modell umfasst den
sensorischen Wahrnehmungsprozess, die Entscheidungsfindung und die motorische Reaktion. Der Entscheidungsprozess
während der Interaktion befasst sich mit den kognitiven und emotionalen Zuständen des Fahrers. Auf der Grundlage der
vorgeschlagenen Fahrer-Fahrzeug-Interaktionsschleife und des Fahrermodells wird ein Experiment mit 38 Teilnehmern in
einem Fahrsimulator durchgeführt, um zu untersuchen, (1) ob sowohl emotionale als auch kognitive Zustände während des
Entscheidungsprozesses aktiv werden und (2) wie die zeitliche Abfolge der Prozesse aussieht. Schließlich werden die aus
dem Experiment gewonnenen Daten analysiert. Die Ergebnisse stimmen mit dem vorgeschlagenen Fahrermodell in Bezug
auf den kognitiven und emotionalen Zustand des Fahrers während des Moduswechsels vom automatisierten System zum
menschlichen Fahrer überein.
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1 Relatedworks

Parasuraman [46] presents a model for the levels of human-
machine interaction that employs a human-centered per-
spective. The proposed model defines automation in four
distinct classes based on the simple model of human in-
formation processing that includes four stages of sensory
processing, perception, decision making, and response se-
lection. It follows that automation can be applied to infor-
mation acquisition, in which data are collected from the
environment; information analysis, which involves extract-
ing features of the input data; decision and action selection,
where next actions are recommended to the driver; and ac-
tion implementation, with the automated system responding
directly to the driving situation. The use of a human-cen-
tered model for the interaction levels facilitates the design
and diagnosis of the driver-vehicle interaction concept.

1.1 Driver-vehicle interaction

In automated vehicles, driver-vehicle interaction (DVI) is
not merely limited to interface design but is responsible for
information processing and transition in dynamic, complex
situations. The H-metaphor [20] is a proposed interpreta-
tion of DVI. Inspired by horse riding, the H-metaphor re-
sembles the driver to the rider and the automated vehicle
to the horse. In this simulation, the automated vehicle is
assumed to interact appropriately with the environment, be
predictable, exhibit situationally appropriate behavior, have
a multimodal interface, and assist humans. Although the
H-metaphor is a simplification of the DVI, it is limited to
SAE Level 2 [45] and it is challenging to generalize it to
all driving scenarios.

Marberger et al. [36] propose a holistic model for the
transition process in SAE Level 3 [45] from automated
driving to manual driving and assign several phases to the
transition process: automated mode with AD compatible
driver state, takeover mode with the transition of driver
state, a post-transition mode where the driver intervenes
and stabilizes the control of the vehicle. The driver state
transition means the reorientation of the driver state from
non-driving related task (NDRT) or any other non-atten-
tive state to a wakeful attentive driver state. The driver in-
tervention [9] refers to the deactivation of the automated
mode by the driver, which can be issued in distinguished
ways depending on the system design. The control stabi-
lization interval is an additional time window required by
the driver to gain the driving precision and to increase the
control performance to the average driving performance of
the individuals.

A general approach to DVI should cover all levels of
automation and interaction and address situational and au-
toma-tion-related failures. Four of the main failures de-

tected in the human-machine relationship [24] are loss of
expertise as a consequence of assistance systems, com-
placency or overreliance of automation, trust and confi-
dence built on user experience, and loss of adaptability
to the environment caused by the human-out-of-loop phe-
nomenon. Hoc [24] introduces human-machine cooperation
where each agent (driver or vehicle) has a goal and can in-
terfere with the other agent in a way that it can manage the
interference by cooperating in planning and action. Four
requirements for efficient cooperation are [64] mutual pre-
dictability of driver and automated system, directability of
actions, shared situation representation with mutual inten-
tion, and calibrated reliance on automation to avoid over-
and under-trust.

1.2 Driver model in interaction concept

The collaboration of human and technology requires precise
product design based on the psychological and physiologi-
cal principles of the user. Since the development of driver
assistance systems and automated vehicles, DVI has be-
come a focus in the design process. One of the aims of the
DVI is to keep the driver in-the-loop when necessary and
to transfer the driving task step by step from the automated
system to the human driver [19]. Flemisch et al. [19] pro-
vide general guidance for the design of human-machine-
interface (HMI) to form a suitable mental model of the
user over the automated system and emphasizes the neces-
sity of verifying the driver’s activity level before the task
transition request. The driver state assessment component
monitors the driver directly through cameras and indirectly
by recording driver performance and detects driver inat-
tention due to driver distraction and drowsiness [52]. Even
though these two elements are crucial variables, identifying
the driver state requires more aspects to cover the com-
plex structure of the human being. Three of the existing
HMIs are mentioned below, all of which aim to increase
the driver’s mode awareness.

The first HMI is Continental’s automated assistance
in roadworks and congestion (ARC), which has a visual
modality in the instrument cluster and center console to
inform the driver about the level of automation, and haptic
feedback on the accelerator pedal to indicate to the driver
when the current velocity exceeds the maximum speed.
The second HMI is Volvo Technology’s automatic queue
assistance (AQuA), which has three levels of automation:
manual driving, longitudinal assistance system, and auto-
mated driving. AQuA is limited to 30kmh−1 and indicates
the level of automation and the extent to which the driver
is supported. The third HMI is the temporary autopilot
(TAP) [47, 48] of Volkswagen. TAP has three modes simi-
lar to AQuA, but it is designed for higher speeds of up to
130kmh−1.
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By transition of driving tasks in SAE Level 3 of automa-
tion, the driver state can be divided into three categories:
sensory state, motor state, and cognitive state, which are
evaluated under a specific arousal level and motivational
condition of drivers [36]. Even though a driver model is
not explicitly specified in this study, the assessment of the
current driver state and the target state for the driver are
mentioned as essentials for modeling the transition pro-
cess. Furthermore, the concept of driver availability [36]
is proposed as a temporal quantity that identifies at each
time step whenever the driver has sufficient time budget for
overtaking or not. Driver availability can be influenced by
three main factors that affect driver state. First, the NDRT,
which the drivers choose to perform during automated driv-
ing, has an impact on their sensory state [41]. Depending on
the modality of activity, the driver’s visual perception per-
formance may change. An auditory task concentrates the
driver’s gaze on the middle of the road [63] and a visual
task redirects the driver’s gaze from the driving scene to the
NDRT. Second, the driver’s characteristics, such as experi-
ence [31], cognitive capacity [28], and risk tolerance [42],
personalize each driver’s intervention performance. Third,
the way the takeover request (TOR) [22] is presented also
affects driver performance. Sensory latency, perceived ur-
gency [43], and the time required to maintain situation
awareness depend on the TOR design. The transition pro-
cess starts with automated driving (AD), where the driver
has an AD compatible driver state [36].

In the project “personalized, adaptive cooperative sys-
tems for highly automated cars (PAKoS)” collaboration
between the human driver and the automated system is
planned through driver monitoring, activity estimation, de-
sign of the HMI, and transition control [18]. The driver
state is defined as the body pose of the drivers [37], which
is observed by RGB- and depth-cameras during all driving
modes, from manual to automated driving. The recognition
of driver activity includes information about driver alert-
ness [67], which plays a crucial role in road safety. Activity
detection can also help to increase driver comfort by im-
plementing various control signals such as music or light.
However, the mental state of the driver cannot be fully
detected by behavioral measurements. Communication be-
tween the human and the vehicle also benefits from the de-
tection of driver gestures. Furthermore, the prediction of the
driver’s next action can prevent hazardous situations caused
by driver errors. Therefore, the gathered camera data is pro-
cessed with distinguishe-d algorithms to classify driver ac-
tivity [8, 51, 58, 62, 65]. Then, the results from interior
3D models and convolutional neural network-based models
are compared. To integrate driver characteristics into the
interaction process, a user profile and subprofiles [18] are
introduced, which are the key part of a mobile phone appli-
cation. The architecture of the user profile comprises three

levels: Persona, which is the personal information of the
driver; user needs, which explain the driver’s preferences;
product applications, which represent the user requirements
and the manufacturer-dependent application parameters. To
include specific configurations that are defined separately
by the driver for specific situations, such as family trips,
the subprofiles are added to the mobile phone application,
as well. The transition of the driving task from an automated
system to a human driver is identified in two phases. The
first phase is the preparation of the driver [17, 49, 50] where
the driver is informed about the intention of the automated
vehicle in the second phase of the transition. This process
is realized by a haptic seat, visual aides on the head-up
display (HUD), and auditory announcements [18]. The sec-
ond phase [34] is supporting the driver to overtake control
of the vehicle. In this phase, a game theory approach [59]
is utilized to realize collaborative driving based on hap-
tic shared control. The interaction is based on a differential
game between the human driver, the automated system, and
the vehicle.

Manstetten et al. [35] restrict the driver state to two vari-
ables, distraction and sleepiness. Distraction is measured by
eye-tracking and facial features. Assessment of sleepiness
is simply done by measuring the PERCLOS [66] of drivers
which is a measure of eyelid openness. Monitoring these
quantified driver state variables, a driver model is defined
which detects the driver’s inattention through filtering, fea-
ture extraction, and distinguished classification methods. In
addition, the classifier receives the criticality of the driving
situation from an environment model as well. Furthermore,
the data that the HMI presents to the driver is a further input
of the driver model to achieve a classified driver state. The
detected driver state is then fed into a designed Attention
and Activity Assistance system (AAA) [32]. Depending on
the input signal, the AAA makes decisions, sends messages
to the other components and interacts with the driver. The
AAA is able to detect distraction, prevent monotony, recom-
mend breaks or route adjustments, and detect and prevent
sleepiness. The present contribution gives a comprehensive
DVI model in automated driving by equipping the feed-
back control structure [10] with a driver model. In the next
section, the fundamental aspects are explained. In Sect. 3
the structure of the feedback control for the DVI concept is
examined in detail. The proposed driver model is described
in Sect. 4. Sect. 5 illustrates an experiment performed in
a driving simulator. Subsequently, the results obtained from
the experiment are mapped to the proposed driver model to
discuss the conformity of the model. Finally, in Sect. 6 the
limitations of the experiment are explained and possible
next steps are named.
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2 Fundamental issues

The review of the available literature points to the demand
for a general framework for DVI, in which all influenc-
ing parameters are considered simultaneously and in real-
time. A comprehensive model for DVI can lead to a unique
structure that is useful in all driving situations and for all
automation levels. Besides, the interaction should be per-
sonalized for each driver to take into account the individual
differences. The present contribution is based on the inter-
action method proposed by [10], which suggests an online
feedback control as a method for DVI. This structure takes
into account the driver state and the situation criticality,
and adapts the TOR in real-time according to these factors
by receiving online feedback from them. Additionally, the
proposed DVI offers the possibility to define a driver model
and integrate it into the interaction procedure.

The interaction is a decision task for drivers. The deci-
sion can result in an action, such as overtaking driving task,
or it can only lead to a change in the driver state. Previously,
decision-making was considered as a cognitive process in-
volving thinking, computation, and problem-solving. Re-
cently, however, several theories support the importance of
emotions in decision-making [54]. The degree of pleasure
in the emotion influences the chosen strategy of information
processing in terms of top-down processing tending to pre-
existing knowledge structures when the mood is happy and
bottom-up processing with high attention to current details
when the mood is sad [57]. Lerner and Keltner [33] dis-
cuss that information processing and decision making can
be influenced by the degree of appraisal and the tendency
underlying the emotion in different emotional states with
the same degree of pleasure. This contribution hypothesizes
that the driver-vehicle interaction involves both emotional
and cognitive decision-making processes, which should be
considered in parallel. The popular models of cognition and
emotion are briefly discussed in this section.

2.1 Cognition architecture

Cognitive architectures refer to the structure of human
mind. One of the architectures for cognitive modeling is
adaptive control of thought-rational (ACT-R) [2]. The main
feature of ACT-R is that it assumes all components of
the brain as a unified single agent [1]. Furthermore, the
implementation of this architecture on real-world prob-
lems is possible. ACT-R consists of several cooperating
modules, each dedicated to a specific function. The exact
number of modules is not specified, but the main modules
related to the driving context are depicted in the Fig. 1,
adapted from [1]. The declarative module retrieves infor-
mation from the memory. The perceptual modules (e.g.,
visual, auditory, haptic) collect data from the field. Body

Fig. 1 ACT-R architecture adapted from [1]

motions are supervised by the manual module. The in-
tentional module conducts functions toward the illustrated
goal. Each module has a buffer as a communicator with
other modules, which stores a chunk of information from
the corresponding module. A central production system is
connected to the buffers. The production system organizes
all modules based on the information represented in the
buffers and generates the next behavior that updates the
manual buffer.

Another computational architecture of cognition, which
also includes motivation and emotion as well as their inter-
action, is the PSI theory [13]. According to PSI, the agent
adapts to the situation and acts in a goal-directed manner.
Cognition is modeled using quads, which are a combination
of five neurons, one central neuron, and four neighboring
neurons. Each of the neurons in the quads is responsible for
different parts of the cognitive process, such as searching
and backward scanning.

2.2 Emotional models

Two main categories of emotion theory are discrete emotion
theories [26, 60], and core affect/constructionist theories,
such as Russell’s circumplex model [55] and PAD [38].
The first group of theories assumes limited discrete basic
emotions for humans, which build all emotional experiences
of the human being. The basic emotions are the same for
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everybody and can vary in intensity [61], however, each
theory suggests different basic emotions [15, 26, 61]. The
second group of theories suggests that human emotion can
move in a two- or three-dimensional space. These theories
consider emotion to be a continuous value. Arousal and
pleasure are two of the main dimensions. Motivation ten-
dency, attention, or dominance are possible candidates for
the third dimension.

In the PSI theory, emotions are part of information pro-
cessing to adapt to current needs. Emotions are defined
in PSI by the three parameters resolution level, selection
threshold and activation as well as behavioral tendencies
and help in memory, planning and action processes [13].

3 Driver-vehicle interaction loop

Dargahi Nobari et al. [10] propose a controller with a feed-
back loop as a comprehensive structure for DVI. The con-
troller aims at regulating the driver state by exposing suit-
able stimuli. The suggested structure considers the driving
situation by utilizing a quantified scale for situation criti-
cality and adjusts the intensity and modality of the stimuli
in real-time concerning the driver state [11] and situation
criticality [10]. The feedback loop (Fig. 2) is made up of
the automated system, a target state estimator, a controller,
an interface, a human driver, and sensory equipment. The
controller is the main part of the loop that defines the con-
trol law for regulating the driver. The interfaces and sensors
are integrated to enable communication between the auto-
mated system and the human driver. In the feedback loop,
the driver obtains information about the automated system
from inside the vehicle and also information about the traf-
fic condition from outside the vehicle. This information can
contain useful data about the driving situation that can help
the driver with the driving task or decision making, and it
also contains useless data that causes in disturbances and
distracts the driver from the driving scene. Based on the per-
ceived information the driver state may vary. Therefore, the
system should always monitor the driver state and detect the
changes. These variations can cause the driver to be in an
unfitting driver state while driving or during collaboration
with the assistance system. Thus, a driver state controller
is integrated into the interaction loop that is supposed to
control the driver state. The controller also takes the driv-
ing situation into account. To achieve this goal, it requires
a measure of situation criticality. Depending on the situa-
tion criticality and the driver state, and based on a driver
model, the controller decides on proper stimuli to present
to the driver in order to improve driver performance [11] or
simply to bring the driver back into-the-loop and increase
the driver’s awareness.

3.1 Controller

The feedback controller is supposed to regulate the driver
state to achieve the desired state (target state) so that driv-
ing becomes safer and the driver has comfortable driving
experience. The controller is responsible for considering
the situation and selecting the proper interaction strategy.
As input, the controller obtains the driver state, the tar-
get state, the automation level, and the situation criticality.
The automation level identifies the distribution of tasks be-
tween the human driver and the automated system. This
distribution determines to what extent the driver should be
attentive or aware of the situation. Then, a target state must
be determined for the driver. The target state identifies the
most suitable driver state, which is reached by a minimal
change in the current driver state and leads to the safest
driving behavior. The target state thus is estimated based
on the current driver state and the driving situation. For ex-
ample, if an obstacle is ahead of the ego-vehicle, the driver
should first look at the obstacle to be aware of the hazard,
or if a jeopardizing event occurs behind the ego-vehicle,
the gaze direction of the driver should first change towards
the rearview mirror to perceive the information about the
hazard. The same applies to the motor state, where the
drivers should react by steering or braking depending on
the driving situation. The target state should be determined
individually for each driver. As an example, the average
heart rate (HR) value differs between the test subjects, so
the optimal HR value of the drivers during the driving task
would be different for each driver. Or the optimal arousal
level for the normal driving task without any critical situa-
tion is a medium level, but its precise value is not identical
for the drivers. By comparing the driver state and the tar-
get state, the controller can estimate the necessary intensity,
modality, and time of TOR to achieve the best driver per-
formance in the situation. After determining a target state
for the driver, a proper communication signal or stimuli
should be selected. The stimuli generation process is based
on a control law defined for the controller, which ranges
from a simple state controller to an optimal control mecha-
nism [53]. Using a state feedback controller, the driver state
is compared with the target state; if they are identical, then
stimuli are not required. The modality and intensity of the
stimuli depend on the situation criticality, the driver state,
and the automation level. Implementing an optimal control
strategy creates the opportunity to generate stimuli based
on defined objectives. This goal requires a driver model
that represents the relationship between TOR features and
driver performance. An optimal controller requires an ob-
jective function as well, which includes all desired goals
such as improving the driver state and increasing comfort in
the shortest possible time. The output (u) of the controller
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Fig. 2 Feedback control loop for
regulation of driver state

determines the intensity, modality, and exposure time of
stimuli.

3.2 Interface

In an automated driving context, the common methods of
communication with the driver are through visual presen-
tations such as warnings on displays [5, 68] and changes
in interior lighting [23], auditory signals such as voice or
alarm tones [5, 68], and haptic impulses like a vibration in
the driver seat and the steering wheel or resistive force on
the pedals [5, 68]. These stimuli are presented to the driver
and their intensity (e.g., volume, frequency) is continuously
adapted based on the input u.

3.3 Driver

In this contribution, a driver is described by the driver state.
The driver state consists of sensory, motor, cognitive, and
emotional states. The sensory state defines what a person
can perceive from the environment at present. The motor
state is the degree to which a person reacts to the envi-
ronment through physical movements. The driver’s ability
to mentally process data and perceive and interpret sensory
stimuli is called the cognitive state. And the emotional state
reflects the feelings caused by internal or external stimuli.
During the interaction, the driver is exposed to communica-
tion signals or TOR generated by the automated system that
are synthetic and manipulable as well as disturbances origi-
nated from the surroundings, as non-manipulable influence.
All signals that are perceived by the driver can influence the
driver state.

3.4 Sensor

The interaction is composed of the data flow from the driver
to the system and vice versa. The automated system receives
the data from the driver by means of build-in sensors in
the vehicle and processes the collected data to estimate the
driver state. The sensory state is conventionally measured
by eye-trackers that follow the gaze behavior [3]. Besides,
the noise of the environment or the volume of the onboard
sound player can be evaluated as driver’s auditory avail-
ability. The measurement of the motor state is commonly

based on camera or accelerometers [7]. The assessment
of the cognitive state is only possible indirectly through
physiological data gathered from the heart and brain (e.g.,
electroencephalography activities, pupil diameter (PD), HR,
respiration rate) [30]. The emotional state can be estimated
from physiological data, behavioral and facial cues, and
subjective ratings on the basis of the psychological physi-
ology [25].

The sensory data is most of the time accompanied by
measurement noise. If the noise amplitude is not negligible,
a filter should also be applied to the data before estimating
the driver state.

4 Proposed driver model

As mentioned in the previous section, the controller requires
a driver model to generate stimuli based on the driver’s
characteristics. The driver model should have the basic and
irreducible state variables that are sufficient to describe the
driver behavior. The model is a representation of the human
driver for the vehicle so that the vehicle can interpret and
predict human behavior. The structure of the driver model
proposed in this contribution is based on the psychological
functions of the human brain. The inputs to the model are
the driver state and intensity of the stimuli that are exhibited
to the driver at present. The output of the model estimates
the performance of the driver in terms of reaction time and
reaction type, i.e. how fast the driver reacts to the stimuli
and whether the driver reacts by braking or steering. Inter-
action is a decision-making task for the drivers where they
choose not to react or to react with different functions.

As shown in the Fig. 3, the driver model consists of
the driver’s sensory perception, decision-making procedure,
and motor reaction, which interact with each other. The
logical sequence of the decision-making process starts with
sensory perception. Then a decision is made based on the
emotional and cognitive processes, and finally, an action is
selected.

4.1 Sensory perception

The drivers, first, sense the incoming data from surround-
ing. During the driving task, the main sensory data involves
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Fig. 3 Driver model in critical driving situations

visual, auditory, and haptic stimuli. Therefore, the visual
state such as gaze direction, haptic state such as sensing vi-
brations, and the auditory state such as whether the drivers
are listening to music or not, or the presence of ambient
auditory noise should be considered as a sensory state.

4.2 Decision-making procedure

After new data has been perceived, the decision-making
process starts. The decision can result in an action, such as
overtaking the driving task, or it can only lead to a change
in the driver state. When making a decision, the cognitive
process and the emotional process can both be active. These
two processes work in parallel and exchange information.
If an action is necessary, the decision is made based on the
processed information. Otherwise, the procedure remains
at the risk processing level. This contribution examines the
temporal sequence of drivers’ emotional and cognitive ac-
tivities and their response in takeover situations.

To model the cognitive decision-making process the
ACT-R [2] is adapted since it can handle dynamic, real-
world situations. Moreover, multitasking in the ACT-R
architecture has already been demonstrated for drivers.
Furthermore, the integrated ACT-R models have predictive
power that makes them suitable for the DVI loop. In the

context of automated driving, the perceptional modules can
be modeled by the attention of the driver to the driving
scene. The mental workload of the driver caused by NDRT
or any driving-irrelevant activity influences the declarative
and procedural memories of the driver. Therefore, the men-
tal workload of the driver should be investigated as well.
The intentional module described in the ACT-R architec-
ture represents the motivation and intention of the driver
during the driving task. According to ACT-R and several
other cognitive architectures [1, 27, 44], the minimum time
required for cognition is 50ms. That means, the reactions
faster than this amount are not decided by the cognitive
process but as a reflection.

The emotional process is specified according to the three-
dimensional emotional state model (PAD: pleasure, arousal,
and dominance) [38] that defines each emotion as a com-
bination of arousal, pleasure, and dominance. The ideal
amount for the best driving performance is defined with
positive pleasure and medium arousal [6].

4.3 Motor reaction

After the decision-making process, if an action is required,
the motor state of the driver is involved. In manual driv-
ing, drivers usually steer, press pedals, or communicate
with other traffic members explicitly and implicitly. In au-
tomated driving, these actions are reduced to steering and
pressing pedals in critical driving situations when the auto-
mated system asks for takeover. So, the position of hands
and feet, and the activity of the driver during automated
driving should be investigated to have precise knowledge
of the motor state of the driver.

According to the proposed driver model, the activity of
the driver’s emotional and cognitive states increases when-
ever the driver perceives a critical situation until the driver
makes a decision. Then the activity level decreases again
before the next decision situation. The next section de-
scribes an experiment that examines the driver’s emotional
and cognitive state during the driving mode change, where
the driver has to react to a critical driving situation. This
contribution hypothesizes that

1. the activity level of both emotion and cognition of the
drivers increases during the takeover situation,

2. the increase in activation levels occurs before the onset of
the response as a result of the decision-making process.

5 Experiment in a driving simulator

To assess the proposed driver model, the data gathered from
an experiment in a static driving simulator (Fig. 4) is exam-
ined. The utilized simulator has three screens that provide
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Fig. 4 Static driving simulator

a 120ı viewing angle, with SCANeR studio 1.81 software
as the simulation platform. Since the driver model repre-
sents the driver during decision-making in critical driving
situations, the experiment consisted of driving scenarios
with an automated vehicle where driver’s intervention is
required. The physiological data of participants was mea-
sured in real-time with an Empatica E4 wristband2. The
raw data collected by the Empatica E4 wristband, which
is equipped with a photoplethysmography sensor, included
EDA and blood volume pulse (BVP) to extract heart rate
variability (HRV). Gaze patterns and PD of the driver were
recorded by a Tobii Pro Glasses 2 eye-tracker3.

5.1 Procedure

All participants filled out a consent form at the beginning
and got informed about the experiment goals and function-
ality of the driving simulator and all of the measuring sen-
sors. To familiarize themselves with the driving simulator
and the virtual driving environment, the subjects were asked
to drive for twenty minutes in the simulator in both manual
and automated modes. After feeling comfortable and con-
venient with the driving simulator, the participants drove
seven driving scenarios with permuted order. In the next
subsections, the data obtained from one of these scenarios
is presented.

The driving scenario started in manual driving mode and
the participants were immediately asked to change to the
automated mode. The implemented automation was SAE
Level 2 [45] where the system was controlling the vehi-
cle in the lateral and longitudinal direction, however, the
human driver should all the time monitor the driving situa-

1 https://www.avsimulation.com/.
2 https://www.empatica.com/research/e4/.
3 https://www.tobiipro.com/.

Fig. 5 Critical driving situation in SAE Level 2: sudden deactivation of
the automated mode as a result of a pedestrian crossing the road about
42m before a possible accident with 3s time budget

tion and react to possible hazardous situations. The partici-
pants were beforehand informed about the performance of
the automated system and that they are responsible to the
driving during the whole scenario. Additionally, they were
instructed to monitor the driving scene carefully. The sce-
nario took place in dawn time where the lack of sunlight
had limited the sight distance. The drivers could turn on
the headlights of the vehicle, however, to keep the situation
the same for all participants, the limitation on sight dis-
tance was configured to remain the same even with lights
on. After activation of the automated mode, the vehicle
was driven for about 3min on one-lane streets of a city
with a speed limit of 50kmh−1. Occasional pedestrians on
sidewalks (2pedestriankm−1) and vehicles on the opposite
lane (1vehiclekm−1) were simulated to increase the accep-
tance of the driving scene. During the automated driving,
a hazardous situation occurred where a pedestrian on the
sidewalk suddenly turned into the street to cross the road
(Fig. 5). Facing this situation the automated mode turned off
without any warning. The driver was able to see the pedes-
trian on the sidewalk from 5s before the mode change,
and afterward, he could recognize the mode change by
a short beep and changes in the appearance of the dash-
board (Fig. 6). At this moment the participants had to con-
tinue driving and had a time budget of about 3s to avoid an
accident with the pedestrian. All of the participants react
to the critical situation after the mode change. After going
through this situation the drivers continue to drive manually
for a short time until the end of the scenario.

Fig. 6 Change in appearance of dashboard from automated mode to
manual mode
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5.2 Data collection

The sample included 38 university students (14 females,
24 males) with a valid driver’s license who aged from 18
to 32 (mean = 22.92, standard deviation = 3.20). Trials
of 5 participants were removed from the data analysis as
a result of technical problems and motion sickness.

To determine HRV, the RR-intervals (the intervals be-
tween successive heartbeats) are extracted from BVP. In
the literature, various methods for determining HRV are
presented. Here the RMSSD method based on 10 second
intervals is calculated using the equation

HRVRMSSD =

s
.RR1 − RR2/

2 + ::: + .RRn − RRn+1/
2

n
; (1)

where RRm are the sequential RR-intervals and n is the
number of RR-intervals in 10s. To be able to compare the
HRV of the subjects with each other, the normal value is
computed. Since the calculated HRV is based on RR-inter-
vals, the normalization follows [56]

HRVnorm =
HRVRMSSD

RR
; (2)

where RR is the average of RR-intervals. Finally, to stan-
dardize all physiological signals, their z-score [29] is deter-
mined by

xz =
x − �

�
; (3)

where � is the mean of the variable x and � is the standard
deviation of x.

5.3 Results and discussion

The task-related cognitive workload on the driver is re-
flected in the PD of the driver [21]. Therefore, the driver’s
cognitive state is assessed with pupil dilation. Engonopulos
et al. [16] state that the driving difficulty has significant ef-
fect on pupil dilation of right eye. Therefore, the data gath-
ered from right eye is considered in this study. An increase
in the driver’s cognitive workload leads to higher PD and
vice versa. Since changes in ambient light influence PD,
the index of pupillary activity (IPA) [14] is also computed
that is almost resistant to luminosity changes. The IPA esti-
mates the rate of change in PD so that introduces a measure
that is comparable between individuals. HRV and EDA are
mentioned as measures of the driver’s emotional state [4,
40]. HRV indicates emotional arousal and increases with
the emotional regulation of an individual. A decrease in
HRV shows an elevation in the driver’s emotions. Another
index for emotion is EDA that raises with increasing emo-

tional activity. The reaction of EDA to emotional changes
has a delay of 1 to 5s.

As the effect of decision making on drivers’ emotional
and cognitive activity levels is investigated, drivers had to
be calm and not cognitively engaged before the critical sit-
uation. Therefore, the experiment was conducted in SAE
Level 2, in which drivers were not allowed to perform
NDRT and were only required to observe the driving situ-
ation. At the same time, the situation was kept stress-free.
Although the experiment was conducted in the same way
for all of the participants, it was not guaranteed that the
drivers were completely relaxed/unconcerned and the ini-
tial state of the subjects was identical at the beginning of
the designed critical situation. Therefore, when analyzing
the results, the participants are divided into two groups ac-
cording to their initial HRV 5s before the mode change,
and the dynamics of their HRV during the transition of
the driving task. The participants in group 1 have a rela-
tively high HRV at 5s before the mode change followed
by decrements, which can be interpreted as calm drivers
who trust the automated system. However, participants in
group 2 have a lower HRV at 5s before the mode change
and later an incremental rate, which shows that they were
already excited before the critical situation or did not trust
the automated system.

Fig. 7 is an example of the variation in physiological
measurements of drivers in both groups during the driv-
ing scenario, with a time span of 10s including the mode
change. The x-axis shows the time in seconds in which the
mode change time is set to zero. The negative and positive
amounts show the time before and after the mode change,
respectively. In this diagram, under the assumption that the
ambient light is almost constant throughout the whole sce-
nario, the z-score of the PD of the driver is depicted as
a measure of the driver’s cognitive state. The applied auto-
mated system was limited to SAE Level 2 and the driver was
instructed to be attentive to the driving scene. The driver
could see the pedestrian on the sidewalk from 5s before the
mode change. Fig. 7a shows data of a driver from group
1. 4s before the mode change the HRV of the driver sud-
denly decreased and remained low. Sequentially PD of the
driver started to grow 1s before the mode change and be-
fore taking action and remained high. The early changes in
physiological data indicate the start of the decision-making
process before the first action and during the driving pro-
cess by the driver. The increase in EDA also confirms the
increase in emotional activity. Furthermore, the decrease in
HRV occurred before the increase in PD, which may indi-
cate that emotional decision-making is a faster process than
cognitive.

In Fig. 7b, the subject initially has low HRV, which
means that the driver is already agitated and actively mak-
ing decisions, so seeing the pedestrian did not cause any
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Fig. 7 Physiological data of two
sample drivers from 5s before
to 5s after the mode change:
z-score of pupil dilation from
right eye, z-score of HRV, and
z-score of EDA. a Physiological
data from one sample driver of
group 1, b Physiological data
from one sample driver of group
2

0

0.2

0.4

0.6

0.8

1

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5
z-

sc
o
re

 [
]

T ime [s]

PD

HRV

EDA

0

0.2

0.4

0.6

0.8

1

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

z-
sc

o
re

 [
]

T ime [s]

PD

HRV

EDA

a

b

change in the emotional and cognitive state; HRV remained
low until a few seconds after the mode change. A noticeable
change in cognitive state occurred after the mode change,
when the participant had to control the vehicle manually.
The observations from both samples agreed with the pro-
posed driver model.

Fig. 8 presents the statistical results of all participants
separately in two groups. The thin lines are the data of the
participants and the thick lines are the mean value from all
participants of the group. To get a comprehensive overview
of the statistical data, the distribution of the changes of the
physiological values are depicted in Fig. 9 using the kernel
distribution estimation (KDE). Again, the zero point of the
time axis is set to the mode change time.

HRV For drivers in group 1, HRV decreases from
a higher initial value (Fig. 8a), and the negative slope per-
sists until 1 to 2s after the mode change, where the slope
becomes positive. In contrast, the HRV of drivers in group
2 has a low initial value (Fig. 8b). Within the first 5 s, HRV
remains constant, and around the time of the mode change,
the value of HRV increases.

EDA The EDA value for both groups is almost the same
at the initial and throughout the critical situation, however,
the final EDA value (5s after the mode change) of group
1 is lower than that of group 2 (Fig. 8c and d. Fig. 9a
shows the distribution of the first increase in EDA due to the
pedestrian for both groups. According to the KDE diagram,
the increase in EDA for group 2 occurs before the time of
the mode change, showing that group 2 already has higher
emotional activity before this event.

Pupil The mean value of drivers’ PD is almost identi-
cal in both groups (Fig. 8e and f), except that in group 1,
PD increases before the mode change when drivers process
the situation, whereas for drivers in group 2, the noticeable
change in PD occurs after the mode change when drivers
continue to drive the vehicle manually (Fig. 9b). Fig. 10 ad-
ditionally shows the IPA of drivers with 1s time step. For
each time step, the mean value and the standard deviation
of the IPA among drivers are shown. The behavior of IPA
differs slightly from PD, which can be explained by the un-
avoidable light pollution of the screens. Again, the IPA of
drivers approves that the peak of drivers’ cognitive activity
in group 1 happens before the mode change and in group
2 after the mode change. The peak in the graph of group
1 manifests a decision-making process without further ac-
tions, while the crossing pedestrian is seen, and the peak in
the graph of group 2 is caused by the decision made on the
drivers’ reaction to the situation.

Consistent with the first hypothesis drivers in both groups
exhibit elevated cognitive and emotional activity, but with
different patterns. For group 1, emotional and cognitive
activities increase before the mode change. For group 2,
emotional activity was already higher initially (5 s before
the mode change). Cognitive activity is also almost high
before the mode change and has a peak about 1s after the
mode change (Fig. 10b). According to the second hypoth-
esis, the increase in the activation level of emotional and
cognitive states is expected to occur before the onset of the
mode change, which is due to decision-making. This result
is clearly seen in the physiological data of group 1. How-

K



Forsch Ingenieurwes (2022) 86:65–79 75

Fig. 8 Physiological data gath-
ered from participants during the
mode change (cont.). a HRVz

of all participants of group 1,
b HRVz of all participants of
group 2, c EDAz of all partici-
pants of group 1, d EDAz of all
participants of group 2, e PDz

from right eye of all participants
of group 1, f PDz from right eye
of all participants of group 2

0.1

0.3

0.5

0.7

0.9

1.1

1.3

-5 -4 -3 -2 -1 0 1 2 3 4 5

H
R

V
z

[]

T ime [s]

-5 -4 -3 -2 -1 0 1 2 3 4 5

Time [s]

Participants

Mean

0.7

0.8

0.9

1

1.1

1.2

z

PDz of initially not excited drivers

0.2

0.3

0.4

0.5

0.6

0.2

0.3

0.4

0.5

0.6

IP
A

 [
H

z]

0.6

0.7

0.8

0.9

1

1.1

1.2

PDz of initially excited drivers

0.6

0.7

0.8

0.9

1

1.1

1.2

z
[]

EDAz of initially excited drivers

Participants

Mean

1

0.6

0.7

0.8

0.9

1

1.1

1.2

E
D

A
z 

[]

Participants

Mean

0.1

0.3

0.5

0.7

0.9

1.1

1.3

-5 -4 -3 -2 -1 0 1 2 3 4 5

H
R

V
z

[]

T ime [s]

Participants

Mean

0.5

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

E
D

A
z

[]

0.6

0.7

0.8

0.9

1

1.1

1.2

E
D

A
z

[]

T ime [s]

Participants

Mean

Participants

Mean

a

b

c

d

e

f

0.1

0.2

0.3

0.4

0.5

0.6

-5 4 -3 -2 -1 0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

-5 4 -3 -2 -1 0 1 2 3 4 5

IP
A

 [
H

z]

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
D

z
[]

T ime [s]

Participants

Mean

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
D

z
[]

T ime [s]

Participants

Mean

K



76 Forsch Ingenieurwes (2022) 86:65–79

Fig. 9 Comparison of the onset
of increase in the physiological
data between two groups using
KDE. aKDE of onset of increase
in EDA, b KDE of onset of
increase in PD

a b

Fig. 10 Comparison of IPA
between two groups during
the mode change. a Mean and
standard deviation of IPA from
right eye of group 1, bMean and
standard deviation of IPA from
right eye of group 2
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ever, for group 2, it is difficult to determine the exact time of
activation for emotional and cognitive states because they
are already quite active.

The results of both groups on the temporal sequence
of emotional and cognitive activities of the drivers show
that emotional activation occurs before cognitive activation.
One reason for this may be the nature of these processes.
Mohr et al. [39] indicate that the emotional processing in
risky decisions is a fast procedure that roughly estimates the
negative outcome of the situation and prepares the body for
the reaction, however, cognitive processing computes the
probability of negative and positive outcomes and estimates
the riskiness of the situation.

6 Summary and future work

In this contribution, first, a comprehensive framework for
DVI is discussed. Then, a qualitative driver model in the
context of automated driving is proposed to model the deci-
sion-making process during the interaction between driver
and vehicle and during the transition of driving tasks. Fi-
nally, an experiment is designed and conducted to investi-
gate the defined hypotheses about the driver model.

In the discussed DVI framework, the driver can always
be informed about the intentions of the automated vehicle
through interfaces, and the vehicle can predict the driver’s

response based on a driver model, thus achieving mutual
predictability. In the proposed interaction, both agents are
able to assess each other’s actions and states (directabil-
ity). The automated system constantly compares the driver’s
state with the target state and exposes the driver to stimuli
when distracted. On the other hand, the driver is constantly
aware of the state of the automated system and can inter-
vene at any time. The inclusion of a situation criticality
block in the system also guarantees a common situation
representation. In addition, monitoring the driver through
sensors will prevent driver over-trust in the automated sys-
tem by, for example, alerting distracted drivers when they
are expected to monitor the situation or sleeping drivers
when they are supposed to be awake. The integrated con-
troller, in turn, improves emotions such as under-trust by
providing a comfortable interior environment.

One of the biggest challenges in traffic psychology is
to find a reliable interpretation of physiological measures.
Most of the variables are highly correlated, and this correla-
tion complicates the analysis [12]. Furthermore, statistical
significance is more likely to be a false positive than a true
positive [12].

The next step of this study is to consider alternative cog-
nitive and emotional architectures for the driver model. In
addition, the experiment should be repeated with a larger
number of participants with a variety of characteristics and
backgrounds. Furthermore, the definition of the mathemat-
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ical representation of the driver model and the integration
of the mathematical model into the controller to complete
the control loop is required.
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