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Abstract
Classical turnpikes correspond to optimal steady states which are attractors of infinite-
horizon optimal control problems. In this paper,motivated bymechanical systemswith
symmetries, we generalize this concept to manifold turnpikes. Specifically, the neces-
sary optimality conditions projected onto a symmetry-induced manifold coincide with
those of a reduced-order problem defined on the manifold under certain conditions.
We also propose sufficient conditions for the existence of manifold turnpikes based
on a tailored notion of dissipativity with respect to manifolds. Furthermore, we show
how the classical Legendre transformation between Euler–Lagrange and Hamilton
formalisms can be extended to the adjoint variables. Finally, we draw upon the Kepler
problem to illustrate our findings.

Keywords Turnpikes · Geometric control · Motion primitives · Optimal control ·
Symmetry · Dissipativity
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1 Introduction

Studying the dynamics of classical mechanical systems has a long history. In par-
ticular, the differential geometric viewpoint, which focuses on coordinate-invariant
descriptions of mechanical systems, is given, e.g., in [38] and transferred to opti-
mal control in [4]. Here, system dynamics are encoded either in the Lagrangian or
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the Hamiltonian function which lead to the well-known Euler–Lagrange equations or
Hamilton equations, respectively. Of particular interest in this context is the study of
symmetries. For mechanical systems, symmetries are characterized by an invariance
of the Lagrangian with respect to translations or rotations of the system, for instance,
inducing a first integral, i.e., a quantity that is preserved along the system trajectory.
These symmetries can be described by actions of a Lie group. Due to symmetry, equiv-
alent trajectories exist, i.e., possibly controlled system trajectories which are identical
modulo the action of the Lie group. The close relation of symmetries and conserved
quantities (also called first integrals) of dynamical systems goes back to Noether’s
fundamental insights obtained in the 1920s. Symmetry can be exploited to reduce the
system dimension, see, e.g., [38] for an introduction. Dynamical systems with sym-
metry might show further structure in terms of relative equilibria, which are system
motions that are completely generated by the symmetry action and thus, partially sta-
tionary in all other directions. Relative equilibria are then obtained as steady states of
a symmetry reduced system. This can clearly be seen in the historical setting of Routh,
wherein symmetry is assumed as invariancewith respect to a subset of all configuration
states (see e.g., [3] for a concise introduction). The concept of symmetry in dynamical
systems transfers to control systems [3, 4, 11]. In very early works, symmetries of
optimal control problems have been considered based on symmetries of the optimal
control Hamiltonian (see e.g., [58]) and used to construct decompositions of optimal
feedback laws [26]. Symmetric optimal control problems have also been studied in [2,
12, 52, 53] where a Noether theorem for Optimal Control Problems (OCPs) is proven
leading to generalized conserved quantities along the solutions. More concretely, in
[51], first integrals of optimal control problems with symmetry are identified, i.e.,
quantities which are preserved along the state and adjoint trajectories (the so called
biextremals). The main motivation in the aforementioned works is to use first integrals
to reduce the dimension of the equations of motions for dynamical systems or control
problems. Relative equilibria have been generalized to control systems by Frazzoli et
al. who coined the notion of trim primitives [25]. Trim primitives can be exploited in
the analysis of OCPs, in motion planning, or in model predictive control of dynamical
systems [22–25].

In the context of optimal control in economics, the notation of turnpike phenomena
dates back to the foundational book of Dorfman [13], while earlier reference men-
tioning the phenomenon can be traced back to Ramsey [46] or von Neumann [59].
The turnpike phenomenon refers to a similarity property of OCPs whereby for vary-
ing initial conditions and varying horizon lengths the optimal solutions approach the
neighborhood of a specific steady state during the middle part of the horizon and the
time spend close to this steady state (a.k.a. the turnpike) grows as the horizon increases.
Analysis and investigation of this concept are a classical branch of optimal control for
economics, cf. [6, 39]. However, recently there has been a renewed interest in turnpike
properties for optimal control of finite- and infinite-dimensional systems [10, 31, 32,
36] and in the context of receding-horizon solutions to OCPs [17, 28]. Interestingly,
there exists a close relation between turnpike properties and dissipativity notions in
OCPs, see [19, 29]. Themain advantage of the dissipativity-based approach to turnpike
results is that it allows to uncover fundamental mechanisms generating the turnpike
phenomenon, see [16] for a recent literature overview. This way, it goes beyond the
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economics inspired approach which identifies the phenomenon in specific problems
and only rarely asked for generalized analysis.

Moreover, it deserves to be noticed that the turnpike—i.e., the steady state which is
approached be the optimal finite-horizon solutions andwhich under suitable conditions
turns out to be a stable equilibrium of the infinite-horizon optimal solutions [18]—
can be regarded as the attractor of the infinite-horizon OCP. Hence it is far from
surprise that this attractor can bemore general than a simple equilibrium. For example,
in [48] a periodic turnpike theorem is introduced. In [55], the concept of a turnpike
with respect to general sets was proved for infinite-dimensional nonlinear optimal
control. In [14, 15, 44] a class of time-varying turnpike properties (so called velocity
turnpikes) are analyzed, partially induced by symmetries. In [54], sufficient conditions
for the inversely proportional bound on the distance to the turnpike with respect to
the horizon length, already observed in [14, 15], are given via an analysis of the first-
order optimality conditions. Recently, in [20, 49] it was shown that minimization of
supplied energy in the context of port-Hamiltonian systems gives rise to an entire
linear subspace of turnpikes.

The contribution of the present paper is to link the realms of turnpikes, trim solu-
tions, and symmetries in OCPs for mechanical systems. Specifically, we consider
Lagrangian systems with symmetries. Based on the established concepts of trim solu-
tions, we show that if either one first formulates the OCP and then applies the trim
condition to the optimality system, or one first applies the trim condition and then
formulates a reduced OCP, one obtains the same result. While at first glance this looks
not surprising, the commutativity of problem reduction and optimization generalizes a
classical insight, wherein turnpikes are characterized as the attractive steady states of
the optimality system [21, 31, 56, 67]. Specifically, this approach provides a handle to
characterize time-varying turnpike solutions via a reduced OCP. Moreover, we show
that under mild assumptions—i.e., if one allows non-equilibrium solutions travelling
through the trimmanifold—adissipativity concept enables an elegant characterization.
Specifically, we introduce a notion of dissipation of optimal solutions with respect to
the distance to a manifold (here the trim manifold) and we show that this implies that
optimal system operation indeed occurs on this manifold. Moreover, we show that
the very same dissipativity condition implies the existence of a measure turnpike with
respect to the trim manifold, i.e., the optimal solutions will spend only limited amount
of time off the this manifold. In sum, the present paper does not only generalize our
previous conference publications [14, 15], it also introduces a novel manifold gener-
alization of the established dissipativity notion for OCPs. Moreover, as a by-product
of our investigations, we derive a transformation to map adjoints from OCPs stated
with Euler–Lagrange dynamics to the ones formulated with Hamiltonian dynamics
and vice versa without resolving the problems.

The remainder of the paper is structured as follows: InSect. 2,we introduce the prob-
lem setting and provide background on symmetries and trims as well as on Lagrangian
and Hamiltonian systems. Section 3 provides novel results on the equivalence of first
applying a specific problem reduction and then optimizing with the reversed order
sequence. Moreover, in this section we also introduce the concept of dissipativity of
OCPs with respect to manifolds and we show that this allows to state sufficient condi-
tions for a generalized turnpike property on manifolds, whereby the manifold may or
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may not be induced by an underlying symmetry. Section 5 links the former results to
mechanical systems in Hamiltonian form and shows how one may elegantly map the
adjoint variables between OCPs for Lagrangian and OCPs for Hamiltonian systems.
Finally, Sect. 6 illustrates our findings considering the Kepler problem. This paper
ends with conclusions and an outlook.
Notation: N denotes the positive integers, N0

.= N ∪ {0}, and R represents the real
numbers. L∞([0, T ],Rn) is the space of Lebesgue-measurable, essentially bounded
functions on the interval [0, T ]mapping intoRn , n ∈ N. Moreover, the Sobolev space
W 1,∞([0, T ],Rn) is the linear space of all functions x : [0, T ] → R

n such that
x, ẋ ∈ L∞([0, T ],Rn) where ẋ denotes the weak time derivative of x . Furthermore,
for x ∈ R

n and a nonempty set S ⊆ R
n , dist(x, S) is defined by inf y∈S ‖x − y‖ where

‖ · ‖ denotes the Euclidean distance in R
n .

2 Lagrangian systems with cyclic variables

Mechanical systems can be described by the Lagrange function

L(q, q̇) = 1

2
q̇�M(q)q̇ − V (q), (1)

composed of the kinetic energy 1
2 q̇

�M(q)q̇ with symmetric mass matrix M(q) ∈
R
n×n and potential energy V . Here, the time-dependent configuration variables are

denoted by q = q(t) ∈ Q, where Q is the n-dimensional configuration manifold.
The corresponding velocities q̇ = q̇(t) lie in the tangent space TqQ at q. The tangent
bundle is denoted by T Q, its dual, the cotangent bundle, by T ∗Q.

The Euler–Lagrange equation

d

d t

∂

∂ q̇
L(q, q̇) − ∂

∂ q
L(q, q̇) = f (u) (2)

with forcing term f : Rm → T ∗Q, m ∈ N, reads

M(q)q̈ + ∇m(q, q̇)q̇ − 1

2
q̇�∇m(q, q̇) + ∇V (q) = f (u) (3)

wherewe used the abbreviation∇m(q, q̇)
.= ∂

∂ q (M(q)q̇) to avoid tensor calculations.

2.1 Cyclic variables

A subclass of (Lagrangian) systems exhibits cyclic variables, which induce the follow-
ing structure. The configuration space can be split into copies of S1 and the so-called
shape space S, i.e., Q = S × (S1 × . . . × S1). Accordingly, the configuration vari-
ables q are split into shape variables s and cyclic variables θ , i.e., q = (s, θ), where
the dimension of θ defines the number of copies of S1. The variables θ are those
variables, which do not appear explicitly in the kinetic and potential energy, although
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their velocities do. This directly implies that also the Lagrangian is independent of the
cyclic variables θ ,

L(q, q̇) = L(s, ṡ, θ̇ ).

Finally, the existence of cyclic variables induces symmetry in the unforced system,
i.e., f (u) ≡ 0. The Euler–Lagrange equations (2) for θ reduce to

d

d t

∂

∂ θ̇
L(s, ṡ, θ̇ ) = 0,

i.e., pθ
.= ∂

∂ θ̇
L(s, ṡ, θ̇ ) is constant along system motions. This is a special case of

Noether’s theorem, which relates system symmetry to the existence of a conserved
quantity. In our case, the system symmetry is induced by the invariance of L w.r.t.
shifts in θ .

2.2 Block-diagonal mass matrix structure

As the mass matrix M and the potential energy V are both independent of the cyclic
variables θ we may write

M(q) =
[
M11(s) M12(s)
M21(s) M22(s)

]
and V (q) = V (s).

In the subsequent analysis, we make the following assumption to avoid technicalities.

Assumption 1 Let the matrix M be block diagonal, i.e., M12 = M21 = 0 holds. Let
further M(q) = M(s) be regular for all s ∈ S.

Invoking Assumption 1 to make use of the block-diagonal inertia matrix M , the
Euler–Lagrange equation (3) can be written as

[
M11 0
0 M22

] [
s̈
θ̈

]
+

[
∂
∂s (M11ṡ)ṡ
∂
∂s (M22θ̇ )ṡ

]
− 1

2

[
ṡ� ∂

∂s (M11ṡ) + θ̇� ∂
∂s (M22θ̇ )

0

]

+
[

∂V (s)
∂ s
0

]
=

[
fs(u)

fθ (u)

]
,

where we suppressed the argument s of the matrices Mii , i ∈ {1, 2}. Clearly, this can
be written as a first-order system

ṡ = vs

v̇s = M−1
11 (s)

(
v�
s
2

∂(M11(s)vs )
∂s + v�

θ

2
∂(M22(s)vθ )

∂s − ∂(M11(s)vs )
∂s vs − ∂V (s)

∂ s + fs(u)

)

θ̇ = vθ

v̇θ = M−1
22 (s)

(
− ∂

∂s
(M22(s)vθ )vs + fθ (u)

)
.

(EL)
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Remark 1 (Non-orthogonal forcing) Note that what we observed in Sect. 2.1, i.e.,

pθ
.= ∂

∂ vθ

L(s, ṡ, vθ ) = M22(s)vθ = const., (4)

does not hold in (EL) in the presence of forces. However, in case of orthogonal forcing
(i.e., orthogonal to the subspace spanned by cyclic variables), namely fθ (u) ≡ 0, pθ

remains an invariant along solutions to (EL).

2.3 Trim primitives

Symmetry in Lagrangian systems may lead to the existence of special trajectories,
so-called trim primitives (trims for short).

Definition 1 (Trim Primitive) Let a Lagrangian system (EL) be given. Assume
orthogonal forcing, i.e., fθ ≡ 0 holds. Then, a trajectory of the (EL) system
(s, vs, θ, vθ )(t; (s0, v0s , θ

0, v0θ )) emanating from the initial state (s0, v0s , θ
0, v0θ ) with

constant input u(t) ≡ ū, is called a trim (primitive) if it can be written for all t ≥ 0 as

s(t) = s0,

vs(t) = 0,

θ(t) = θ0 + v0θ · t,
vθ (t) = v0θ .

(5)

Roughly speaking, a trim is a motion of constant velocity only in the direction of
the cyclic variables while the shape space variables are constant. Note that we can
explicitly write down this specific type of trajectories, although we do not assume to
know the solution of (EL) in general.

Formally, trim primitives are motions along the group orbits of the symmetry group
and they correspond to relative equilibria in the uncontrolled case; for detailswe refer to
[22, 23] and [24, Section 2] for an illustrative example.Wedetail both characterizations
in the following.

2.3.1 Trim characterization via controlled potentials

Relative equilibria can be found by solving for the critical points of the amended
potential [38]. In [22, 23], this approach has been extended to controlled potentials in
order to compute trim primitives. Consider the function ν(s, u)

.= s� fs(u). Clearly,
∂ν
∂s = fs(u) holds. Then, we define the forced potential

V u(s, u)
.= V (s) − ν(s, u). (6)

Note that the Euler–Lagrange equations (EL) with orthogonal forcing can also be
derived as unforced Euler–Lagrange equationswith V u replacing the original potential
V . Interpreting the forcing as an additional parametrized potential allows us to apply
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the classical theory of relative equilibria [38]: The locked inertia tensor, i.e., the inertia
tensor if shape variables s are fixed, is given by M22(s). Then, we fix a valueμ∈ T �

q Q

of the conserved quantity (4), pθ = M22(s)vθ . For instance, using the initial values s0

and v0θ yields μ = M22(s0)v0θ . Lastly, we define the forced amended potential as

V u
μ(s, μ, u)

.= V u(s, u) + 1

2
μ�M−1

22 (s)μ. (7)

The following central lemma yields a way to derive trim primitives. A proof can be
found in [22, 23].

Lemma 1 Consider a Lagrangian system (EL) with orthogonal forcing, i.e., fθ ≡ 0.
Let (ŝ, μ̂, û) ∈ S× T �

q Q×R
m be a critical point of the forced amended potential (7),

i.e.,

∇sV
u
μ(ŝ, μ̂, û) = ∂V (s)

∂s
+ 1

2
μ� ∂

∂s
(M−1

22 (s)μ) − fs(u) = 0. (8)

Then, (ŝ, μ̂, û) defines a trim primitive in the following way:

s(t) = ŝ, vs(t) = 0,

θ(t) = θ0 + M22(ŝ)
−1μ̂ · t, vθ (t) = M22(ŝ)

−1μ̂,

u(t) = û,

with θ0 being an arbitrary initial value of the cyclic variable.

2.3.2 Trim characterization via partial steady states

A trim requires the shape space variables s to be at steady state. Then, ṡ = vs = 0
holds along the trim trajectory and thus, also v̇s = 0. This simplifies the corresponding
differential Equation in (EL) to (recall M11 is assumed to be regular for all s)

1

2
v�
θ

∂

∂s
(M22(s)vθ ) − ∂

∂s
V (s) + fs(u) = 0.

Lemma 2 (Trim condition)Consider a Lagrangian system (EL)with orthogonal forc-
ing, i.e., fθ ≡ 0. Let a function T be given by

T (s, vθ , u)
.= M−1

11 (s)

(
1

2
v�
θ

∂

∂s
(M22(s)vθ ) − ∂

∂s
V (s) + fs(u)

)
. (9)

Then, a triple (s̃, ṽθ , ũ) which satisfies T (s̃, ṽθ , ũ) = 0 defines a trim primitive when
setting s0 = s̃, v0θ = ṽθ and ū = ũ in Definition 1, with θ0 being an arbitrary initial
value of the cyclic variable.
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Corollary 1 Every triple (ŝ, μ̂, û) which satisfies (8) in Lemma 1, also satisfies
T (ŝ, v̂θ , û) = 0 with v̂θ = M22(ŝ)−1μ̂ in Lemma 2 and vice versa, using

M ′
22(s)

−1 = −M−1
22 (s)M ′

22(s)M
−1
22 (s). (10)

Finally, we introduce the trim manifold as a submanifold of T Q.

Definition 2 (Trim manifold) The trim manifold T is defined by

T .= {(s, vs, θ, vθ )
� ∈ T Q | vs = 0 and ∃u ∈ R

m : T (s, vθ , u) = 0},

with T defined by (9), i.e., the manifold of states for which a control exists such that
Definition 1 for trim primitives is satisfied.

Assuming orthogonal forcing ( fθ ≡ 0) in (EL), each point in the trim manifold can
serve as the initial value of a trim primitive. If an initial point (s0, v0s , θ

0, v0θ ) ∈ T and ū
are chosen such thatT (s0, v0θ , ū) = 0holds, then (s, vs, θ, vθ )(t; (s0, v0s , θ

0, v0θ )) ∈ T
for all t ≥ 0 given that u(t) ≡ ū, i.e., the trim primitive stays within the trimmanifold.

Remark 2 Moreover, the function T can be interpreted as an output map and the
dynamics on T can be understood as the zero dynamics of (EL) w.r.t. T (s, vθ , u) = 0.
Note that this viewpoint does not rely on the restriction to orthogonal forcing, i.e.,
allowing fθ (u) �= 0, more solutions besides trims which evolve in T may exist. For
more details on zero-dynamics, see [34, 41] and [43] for the link to symmetries.

In the following, we study the role of trim primitives and output-zeroing solutions
in optimal control. To simplify the further exposition, we will consider all variables to
be scalar-valued, i.e., (s, θ, vs, vθ ) ∈ R

4 and M11(s), M22(s) ∈ R. The implications
will be discussed in Remark 4. Note that by fixing the set of coordinates, we also
decide to leave the differential geometric setting and consider coordinates in the state
space R4. This leads to the following set of system equations

ṡ = vs,

v̇s = M−1
11 (s)

(
1

2
M ′

22(s)v
2
θ (t) − 1

2
M ′

11(s)v
2
s − V ′(s) + fs(u)

)
,

θ̇ = vθ ,

v̇θ = M−1
22 (s)

(−M ′
22(s)vθ (t)vs + fθ (u)

)
.

(11)

Note that in terms of the trim conditions, we may write v̇s = T (s, vθ , u) −
1
2M

−1
11 M ′

11(s)v
2
s , where the last term vanishes on T .

3 Optimal control of systems with symmetry

We start by formulating the Optimal Control Problem (OCP) subject to the first-order
Euler–Lagrange system (11). To this end, consider a continuously differentiable stage
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cost � : R
3 × R

m → R. Further, let an initial state (s0, v0s , θ
0, v0θ ) ∈ R

4 and a
time horizon T > 0 be given. The OCP we will consider in the following is given by

min
u∈L∞([0,T ],Rm )

∫ T

0
�(s(t), vs(t), vθ (t), u(t)) dt

subject to the system dynamics (11),

(s vs θ vθ )(0) = (s0 v0s θ0 v0θ ).

(OCP)

Our standing assumption on the stage cost is as follows.

Assumption 2 The stage cost is independent of θ , i.e., ∂�
∂θ

= 0 holds.

This assumption reflects the underlying symmetry property, i.e., we do not penalize θ

in the OCP.
We will now derive the first-order Necessary Conditions of Optimality (NCO)

for (OCP). As (OCP) does neither involve terminal constraints nor input constraints,
abnormality cannot occur, cf. [37, Rem. 6.9, p. 168], which allows us to normalize (and
hence omit) the multiplier of the stage cost in the following. We consider the adjoints
(co-states) λ = (

λs, λvs , λθ , λvθ

)
, and the (optimal control) Hamiltonian of (OCP),

H(s, vs , vθ , u, λ)
.= �(s, vs , vθ , u)

+

⎡
⎢⎢⎣

λs
λvs

λθ

λvθ

⎤
⎥⎥⎦

� ⎡
⎢⎢⎢⎣

vs

M−1
11 (s)

(
1
2M

′
22(s)v

2
θ− 1

2M
′
11(s)v

2
s −V ′(s)+ fs(u)

)
vθ

M−1
22 (s)

(−M ′
22(s)vθ vs+ fθ (u)

)

⎤
⎥⎥⎥⎦ .

Hence, the adjoint equations read

λ̇(t) = −

⎡
⎢⎢⎣

0 1 0 0
L1(s) −M−1

11 (s)M ′
11(s)vs 0 M−1

11 (s)M ′
22(s)vθ

0 0 0 1
L2(s) −M−1

22 (s)M ′
22(s)vθ 0 −M−1

22 (s)M ′
22(s)vs

⎤
⎥⎥⎦

� ⎡
⎢⎢⎣

λs
λvs

λθ

λvθ

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

∂�
∂s
∂�
∂vs

0
∂�
∂vθ

⎤
⎥⎥⎦

(12a)

with λ(T ) = 0, where L1(s) and L2(s) are defined by

L1(s)
.= M−1

11 (s)′
(

−1

2
M ′

11(s)v
2
s + 1

2
M ′

22(s)v
2
θ − V ′(s) + fs(u)

)

+ M−1
11 (s)

(
−1

2
M ′′

11(s)v
2
s + 1

2
M ′′

22(s)v
2
θ − V ′′(s)

)
,

= ∂

∂s

(
T (s, vθ , u) − 1

2
M−1

11 M ′
11(s)v

2
s

)
,

L2(s)
.= −M−1

22 (s)′M ′
22(s)vθvs − M−1

22 (s)M ′′
22(s)vθvs + M−1

22 (s)′ fθ (u).
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Observe that

M−1
11 (s)M ′

22(s)vθ = ∂

∂vθ

T (s, vθ , u).

Moreover, the gradient stationarity condition reads

0 = Hu =M−1
11 (s) f ′

s (u)λvs + M−1
22 (s) f ′

θ (u)λvθ + ∂�

∂u

= ∂

∂u
T (s, vθ , u)λvs + M−1

22 (s) f ′
θ (u)λvθ + ∂�

∂u
. (12b)

In order to identify turnpike phenomena in optimal control of Lagrangian systems
of type (11), we will study the optimal control problem when restricting it to the trim
manifold T via its necessary conditions of optimality.

3.1 Optimal control on the trimmanifoldT

We are interested in studying the output zeroing dynamics as introduced in Remark 2
in an optimal control setting. In the scalar case, the output zeroing condition (9) can
be rewritten as

T (s, vθ , u) = M−1
11 (s)

(
1

2
M ′

22(s)v
2
θ − V ′(s) + fs(u)

)
= 0. (13)

If (13) holds along a trajectory with the shape variable s being at steady state, i.e.,
vs(t) = 0 holds for all t ≥ 0, the solution stays within the trim manifold (cf. Defini-
tion 2). The trajectory is not necessarily a trim, though, since the control need not be
constant.

Restricting to output-zeroing dynamics leads to the following reduced optimal con-
trol problem on the trim manifold T :

min
ū∈L∞([0,T ],Rm ), s̄∈R

∫ T

0
�(s̄, 0, v̄θ̄ , ū) dt

subject to ˙̄θ = v̄θ̄ ,

˙̄vθ̄ = M−1
22 (s̄) fθ (ū),

(θ̄ v̄θ̄ )(0) = (θ0 v0θ ),

T (s̄, v̄θ̄ , ū) = 0 ∀t ∈ [0, T ], as in (13).

(T -OCP)

We refer to [54, Equation (20)] and [55, Equation (2.2)] for a reduced OCP in a
general context that is, similar to (T -OCP), not given by a steady-state problem but
still allows for dynamics. In our case, the reduced OCP is given by the underlying
symmetry structure and hence intrinsically motivated. We will show in (3.3) that in
case of orthogonal forcing, (T -OCP) can be reduced to a steady-state OCP.
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Next, we derive the NCO of (T -OCP). To this end, we define its (optimal control)
Hamiltonian

H(v̄θ̄ , ū, s̄, λ̄θ̄ , λ̄v̄θ̄
)

.= �(s̄, 0, v̄θ̄ , ū) + λ̄θ̄ v̄θ̄ + λ̄v̄θ̄
M−1

22 (s̄) fθ (ū)

with the adjoints λ̄ = (λ̄θ̄ , λ̄v̄θ̄
). Since the output zeroing condition (13) is not included

in this Hamiltonian, we augment it by direct adjoining. This is also known as the
Lagrange formalism, see, e.g., [33]. The resulting (optimal control) Lagrangian is
given by

L(v̄θ̄ , ū, s̄, λ̄θ̄ , λ̄v̄θ̄
, λ̄T )

.= H(v̄θ̄ , ū, s̄, λ̄θ̄ , λ̄v̄θ̄
) + λ̄T T (s̄, v̄θ̄ , ū)

with the Lagrange multiplier λ̄T associated with the output zeroing condition (13).
Since the right-hand sides of the Hamiltonian H and the Lagrangian are independent
of θ̄ , we suppress θ̄ in the lists of arguments. Stationarity of the Lagrangian, i.e.,
∇(ū,s̄)L = 0, yields the NCO of (T -OCP):

˙̄λθ̄ = 0 (14a)

˙̄λv̄θ̄
= − ∂�

∂v̄θ̄

− ∂

∂v̄θ̄

T (s̄, v̄θ̄ , ū)λ̄T (14b)

0 = ∂�

∂ ū
+ ∂

∂ ū
fθ (ū)M−1

22 (s̄)λ̄v̄θ̄
+ ∂

∂ ū
T (s̄, v̄θ̄ , ū)λ̄T (14c)

0 = ∂�

∂ s̄
+ λ̄v̄θ̄

M−1
22 (s̄)′ fθ (ū) + ∂

∂ s̄
T (s̄, v̄θ̄ , ū)λ̄T (14d)

T (s̄, v̄θ̄ , ū) = M−1
11 (s)

(
1

2
M ′

22(s̄)v̄
2
θ̄

− V ′(s̄) + fs(ū)

)
= 0 (14e)

˙̄θ = v̄θ̄ (14f)

˙̄vθ̄ = M22(s̄)
−1 fθ (ū) (14g)

for a.e. t ∈ [0, T ], λ̄(T ) = 0 for all adjoint states and (θ̄ , v̄θ̄ )(0) = (θ0, v0θ ). Then,
in view of the terminal condition λ̄θ̄ (T ) = 0 and the associated adjoint Eq. (14a), we
directly obtain λ̄θ̄ ≡ 0 on [0, T ].

3.2 Relation of (OCP) and (T -OCP) via their NCO

The main result in this section is the following connection between the NCO of the
full and the reduced optimal control problems (OCP) and (T -OCP).

Proposition 1 (Correspondence of NCOs) Consider (OCP) and its reduced counter-
part (T -OCP) for a Lagrangian system of type (11). Suppose that Assumptions 1 and 2
hold. If an optimal solution and the corresponding Lagrange multiplier for (OCP) sat-
isfy ṡ�(t) = v�

s (t) = 0 and λ̇�
s (t) = 0 for t ∈ [t1, t2] ⊆ [0, T ], then they also satisfy

the dynamics of the first-order NCOs of (T -OCP) for all t ∈ [t1, t2] in the sense of
Table 1.
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Conversely, an optimal solution and the corresponding Lagrange multiplier
of (T -OCP) satisfy the dynamics of the first-order NCOs of (OCP) in the sense of
Table 1 and setting vs(t) = 0 and λs(t) = 0.

Proof We start with analyzing the NCO (12). With ṡ�(t) = v�
s (t) = 0 for an opti-

mal solution of (OCP), the primal dynamics (11) are equivalent to (14e)–(14g), i.e.,
the primal dynamics of the NCO (T -OCP) plus the output-zeroing condition
T (s, vθ , u) = 0.

Observe that in the adjoint Eq. (12a), we have λ̇θ = 0. Thus, with λθ (T ) = 0, we
have λθ ≡ 0. Applying the trim manifold constraints s ≡ const. and vs ≡ 0 to the
NCO (12) yields, suppressing the time argument for all functions,

λ̇s = − ∂

∂s
T (s, vθ , u)λvs − M−1

22 (s)′ fθ (u)λvθ − ∂�

∂s
(15a)

λ̇vs = −λs + M−1
22 (s)M ′

22(s)vθλvθ − ∂�

∂vs
(15b)

λ̇vθ = −M11(s)
−1M ′

22(s)vθλvs − ∂�

∂vθ

(15c)

0 = ∂

∂u
T (s, vθ , u)λvs + M−1

22 (s) f ′
θ (u)λvθ + ∂�

∂u
(15d)

with

∂

∂s
T (s, vθ , u) =M−1

11 (s)′
(
1

2
M ′

22(s)v
2
θ − V ′(s) + fs(u)

)

+ M−1
11 (s)

(
1

2
M ′′

22(s)v
2
θ − V ′′(s)

)
.

If λ̄v̄θ̄
= λvθ and λ̄T = λvs , then thegradient stationary condition (15d) is equivalent

to (14c). Then, with λ̄T = λvs we see that (15c) coincides with (14b). Further, if
λ̇s = 0, (15a) is equivalent to (14d), where we use that the primal variables of the

Table 1 Identification of the variables occurring in the NCOs of the reduced problem (T -OCP) and the full
problem (OCP)

NCOs of (T -OCP) NCO of (OCP) Identification

− λs 0 = λ̇s

λ̄T λvs λ̄T = λvs

λ̄θ̄ λθ λ̄θ̄ = λθ = 0 (since ∂�
∂θ

= 0)

λ̄v̄
θ̄

λvθ λ̄v̄
θ̄

= λvθ

s̄ s ˙̄s = ṡ = 0 (since s = const.)

− vs 0 = vs

θ̄ θ θ̄ = θ

v̄θ̄ vθ v̄θ̄ = vθ (since vs = 0)

ū u ū = u
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full OCP are constrained on T , i.e., T (s, vθ , u) = 0. Finally, (15b) does not have a
counterpart in the NCOs (14) of the reduced system, since λ̄T is not an adjoint variable
but a Lagrangian multiplier only. Nevertheless, the identifications show that given a
solution of the NCO of (T -OCP), this solution also satisfies the NCO of (OCP) with
ṡ�(t) = v�

s (t) = λ̇�
s (t) = 0 and vice versa. Table 1 summarizes the correspondence of

NCO variables for (OCP) and (T -OCP). ��
The result shows that one may commutate applying the output-zeroing condi-

tion (13) in (OCP) with applying the necessary conditions of optimality as first
considering (13) yields (T -OCP), cf. Fig. 1. While at first glance this result seems
to be of purely technical nature, it is of interest of its own in context of turnpike analy-
sis of OCPs. Recall that the main structure exploited in usual turnpike analysis is that
KKT conditions for an optimal steady state of a system with respect to some stage
cost � coincide with the steady-state conditions of the optimality system, see, e.g., [21,
31, 56, 67].

3.3 Optimal control on trimmanifoldT with orthogonal forcing (f� ≡ 0)

Whereas in the last section we allowed for a general forcing term f (u) =
( fs(u), fθ (u))� we will now consider particular forcings that preserve the structural
symmetry of the system. As discussed in Remark 1, this means that fθ ≡ 0 such that
the forcing only acts orthogonal to the space spanned by symmetry variables, or, in
other words, forcing is only allowed for the shape space variables.

We are interested in how optimal trims look like, i.e., triples (s, vθ , u) satisfying
T (s, vθ , u) = 0 (recall (13)) that minimize the running cost. Here we assume now
that ṡ ≡ vs ≡ 0 as this is required for a trim according to Definition 1.

Due to fθ ≡ 0 and vs = 0 and as θ does occur neither in the cost functional nor on
the right-hand side of the dynamics, we consider the steady state optimization problem

min
(s̄,v̄θ ,ū)∈R3

�(s̄, 0, v̄θ , ū)

subject to T (s̄, v̄θ , ū) = 0 (as in (13)).
(SOP)

This problem is a particular version of (T -OCP) with fθ ≡ 0.
To derive NCO, we define the Lagrangian with an adjoint state λ̄ ∈ R

L(s̄, v̄θ , ū, λ̄) = �(s̄, 0, v̄θ , ū) + λ̄T (s̄, v̄θ , ū) (16)

and compute the stationarity conditions, omitting the argument s̄ of the mass matrices
and the potential:

0 = ∂L
∂ s̄

= ∂�

∂ s̄
+ λ̄

∂

∂ s̄
T (s̄, v̄θ , ū) (17a)

0 = ∂L
∂v̄θ

= ∂�

∂v̄θ

+ λ̄
∂

∂v̄θ

T (s̄, v̄θ , ū) (17b)

123



772 Mathematics of Control, Signals, and Systems (2022) 34:759–788

Fig. 1 Illustration of Propositions 1 and 2

0 = ∂L
∂ ū

= ∂�

∂ ū
+ λ̄

∂

∂ ū
T (s̄, v̄θ , ū) (17c)

0 = ∂L
∂λ̄

= T (s̄, v̄θ , ū). (17d)

Proposition 2 (Correspondence of NCOs (cont’d)) Consider (OCP) and its reduced
counterpart (SOP) for a Lagrangian system of type (11) with fθ ≡ 0. Suppose that
Assumptions 1 and 2 hold. If an optimal solution and the corresponding Lagrange
multiplier for (OCP) satisfy ṡ�(t) = v�

s (t) = 0, λ̇�
s (t) = 0 and λ̇�

vθ
(t) = 0 for

t ∈ [t1, t2] ⊆ [0, T ], then they also satisfy the dynamics of the first order NCOs of
(SOP) on [t1, t2] when identifying s̄ with s�, v̄θ with v�

θ , ū with u� and λ̄ with λ�
vs
. In

particular, v�
θ (t) = const., θ�(t) is linear and λ�

vs
(t) = const for all t ∈ [t1, t2].

Proof Theproof follows the same structure as the proof of Proposition1 setting fθ = 0.
��

The results of Propositions 1 and 2 are summarized in Fig. 1. In essence, these results
extend the usual turnpike analysis [6, 56, 67], in the sense that the turnpike now
corresponds to the solutions living on the trim manifold T . Moreover, note that even
on the level of (SOP) one considers situations more general than classical steady-
state turnpikes. The reason is that, while (SOP) is a steady-state problem, its optimal
solution characterizes a trim, which in turn corresponds to a continuum of dynamic
trajectories.

Remark 3 (Trims, velocity turnpikes and the trim manifold) In [14, 15] we proposed
the concept of velocity turnpikes to establish a link between symmetries, trims and
turnpike properties in OCPs. In essence, velocity turnpikes are a special case of the
trimmanifold approach considered in the present paper. To establish velocity turnpikes
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we considered systems

q̇ = v

v̇ = f (v, u),

i.e., the dynamics are assumed to be invariant of all configuration velocities. Geomet-
rically speaking, this system class corresponds to mechanical systems on Lie groups,
i.e., all position variables are cyclic. Since the stage cost � was not allowed to depend
on the cyclic variables either, one can rely on established turnpike concepts which
include all state variables except the position states. Based on the results of this
paper, the next generalization is to remove the assumption on cyclic variables and
to consider (mechanical) systems with general symmetries defined by left-actions
Ψ : G × T Q → T Q.

Remark 4 (Extension to the multi-variate case) In (11), we restrict our analysis to
the four-dimensional case. In order to use relative equilibria in the optimal control
problem and, particularly, within the turnpike analysis, the system representation is
given in coordinates. However, we conjecture that a differential geometric description
of turnpikes on the trimmanifold can be derived such that coordinate-free descriptions
which are also not limited to four dimensions can be derived. This is out of scope of
this paper, though.

While the analysis so far leveraged—at least partially—symmetries and trims, we
turn to a more general setting of manifold turnpikes.

4 Manifold turnpikes and optimal operation on amanifold

The basis of our subsequent developments is the following extension of (OCP)

min
u∈L∞([0,T ],Rm )

∫ T

0
�(s(t), vs(t), vθ (t), u(t)) dt

subject to the system dynamics (11)

(s vs θ vθ )(0) = (s0 v0s θ0 v0θ ),

ψ
(
(s vs θ vθ )(T )

)
≤ 0,

(OCPψ )

where ψ : R4 → R
nψ specifies a target set. For brevity, we use the shorthand

x
.= [

s vs θ vθ

]�

for the state vector. Then, defining the terminal set Ψ
.= {x ∈ R

4 | ψ(x) ≤ 0}, allows
to state the terminal constraint in (OCPψ ) as x(T ) ∈ Ψ .
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4.1 Sufficient conditions for manifold turnpikes

The concept of a turnpike property with respect to sets is given in [55] in the more
general framework of nonlinear optimal control in infinite dimensions. The authors
showed that optimal operation on a set, a controllability assumption with respect to
this set and a coercivity property on the optimal value function imply a weak turnpike
property with respect to this set [55, Theorem 1]. In the special case that the set is
given by an optimal equilibrium, i.e., is a singleton, they proved that strict dissipativity
implies the above mentioned coercivity property and a measure turnpike property, see
[55, Section 3]. Next we introduce a dissipativity framework for the turnpike property
in connection to optimal operation with respect to a manifold in order to generalize
this result.

Before we proceed, we require the following notation: A continuous function α :
R≥0 → R≥0 is said to be a class K-function if α(0) = 0 and α is monotonically
increasing, see also [35, 50] for further details on comparison functions.

Next, we want to show that (OCPψ ) exhibits a measure turnpike property with
respect to a manifold. To this end, we require both strict dissipativity as well as cost
controllability whereas the latter can be replaced by (potentially) weaker assumptions
referring to reachability. Note that we state the following definitions and Theorem 1
such that they are directly applicable to OCPs with more general system dynamics
evolving in Rn , n ∈ N, inputs u ∈ R

m , and stage costs � : Rn × R
m → R.

Definition 3 (Strict dissipativity w.r.t. a manifold) (OCPψ ) is said to be strictly dissi-
pative w.r.t. a manifold T ⊂ R

n on the set X ⊆ R
n if there exists a storage function

S : Rn → R≥0, that is bounded on compact sets, and a K-function α such that

S(x�(T )) − S(x0) ≤
∫ T

0
�(x�(t), u�(t)) − α(dist(x�(t), T )) dt ∀ T ≥ 0 (18)

for all optimal controls u� ∈ L∞([0, T ],Rm) and associated state trajectories x� ∈
W 1,∞([0, T ],Rn) with initial values x0 ∈ X.

We emphasize that in this definition strict dissipativity is a property of (OCPψ )which is
parametric in x0 and T . Alternatively, it can be defined as a property of the underlying
dynamical system, see the foundational works of Willems [60–62] or more recent
treatments in [40, 63]. Related to this, observe that similar to [19] in the definition
above we require the dissipation inequality (18) to hold only along optimal solutions.
This is a weaker property than assuming (18) to hold for all feasible trajectories.
However, in view of our aim to analyze the turnpike phenomenon, which refers to
parametric properties of optimal solutions (see Definition 5 below), this is a natural
setting, cf. also the remarks in [16, 17].

In addition to dissipativity, we further require certain reachability properties. Here,
we state the results based on cost controllability on a compact set, see [9] for details.
Definition 4 extends the previously proposed concepts of cost controllability intro-
duced in [27, 30, 57] for discrete-time systems and [47] in the continuous-time setting,
see [65, 66] for connections between continuous- and discrete-time systems and [64]
for a thorough comparison of cost controllability and its precursors.
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In the following we will denote by x(t; x0, u) a state trajectory evolving from the
dynamics (11) with control u and initial state x0, where with slight abuse of notation
we stick to the state space being R

n instead of R4.

Definition 4 (Cost controllability on a set X) Let a set X ⊆ R
n be given. Then,

assuming

��(x0)
.= inf

û∈Rm
�(x0, û) ∈ R, (19)

the (OCPψ ) with (optimal) value function VT : Rn → R ∪ {−∞,∞} defined by

VT (x0)
.= inf

u∈L∞([0,T ],Rm )

∫ T

0
�(x(t; x0, u), u(t)) dt

is called cost controllable if there exists a bounded and increasing growth function
BX : R≥0 → R≥0 such that

VT (x0) ≤ BX(T ) · ��(x0) ∀ x0 ∈ X, T ≥ 0. (20)

Condition (19) holds, e.g., if �(x, u) = �1(x) + �2(u) with continuous and positive
definite �2.

The strict dissipativity inequality (18) implies that the cost of optimal trajectories is
bounded from below by the distance to the trimmanifold. In particular, this means that
cost controllability in the sense of (20) implies that the manifold T can be approached
from any initial value x0 ∈ X.

Definition 5 (Manifold turnpike property) (OCPψ ) is said to have the manifold turn-
pike property w.r.t. a manifold T on a set X ⊆ R

n if, for all compact sets K ⊆ X

and for all ε > 0, there is a constant CK ,ε such that all optimal solutions consisting
of u� ∈ L∞([0, T ],Rm) and x�(·; x0, u�) ∈ W 1,∞([0, T ],Rn) satisfy

μ
(
{t ∈ [0, T ] | dist(x�(t; x0, u�), T ) > ε}

)
≤ CK ,ε ∀ x0 ∈ K , T > 0

where μ(S) denotes the Lebesgue-measure of a set S ⊆ R
n .

Next, we can state our main theorem of this section; namely that strict dissipativity and
cost controllability imply the turnpike property on manifolds. The techniques are an
adaptation of the arguments used for the turnpike property with respect to a controlled
steady state, see e.g., [19].

Theorem 1 Let (OCPψ ) be strictly dissipative w.r.t. a manifold T ⊆ R
n on X ⊆ R

n

and cost controllable onX. Further assume that �� is bounded on bounded sets. Then,
the OCP satisfies the manifold turnpike property with respect to T on X.
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Proof Let K ⊆ X be an arbitrary but fixed compact set. Moreover, for a given initial
value x0 ∈ K , let (x�, u�) be an optimal solution of the OCP in consideration. In view
of the assumed strict dissipativity (18), we obtain

∫ T

0
α(dist(x�(t), T )) dt ≤ S(x0) − S(x(T )) +

∫ T

0
�(x�(t), u�(t)) dt

≤ c1(K ) +
∫ T

0
�(x�(t), u�(t)) dt .

(21)

where c1(K )
.= supx0∈K S(x0) by boundedness on the compact set K and positivity of

the storage function S. Next, we estimate the last term using cost controllability (20),
i.e.,

∫ T

0
�(x�(t), u�(t))dt ≤ BX(T ) · ��(x0) ≤ c2(K )

for a constant c2(K ) ≥ 0 independent of T , where the last inequality follows by the
boundedness of � on compact sets and compactness of the set K and boundedness of
the growth function BX. Further, setting Sε = {t ∈ [0, T ] | dist(x�(t), T ) > ε}, we
get the estimate

∫ T

0
α(dist(x�(t), T )) dt =

∫
Sε

α(dist(x�(t), T )) dt

+
∫

[0,T ]\Sε

α(dist(x�(t), T )) dt ≥ μ(Sε) · α(ε)

usingmonotonicity of theK-functionα. Combining the derived inequalities, this yields
the upper boundCK ,ε

.= (c1(K )+c2(K ))/α(ε) onμ(Sε), which concludes the proof.
��

4.2 Optimal operation on amanifold

Besides establishing turnpike theorems, dissipativity can be used to deduce perfor-
mance results for model predictive control and to characterize the asymptotics of
optimal control problems. In this context, optimal operation at the turnpike, in our
case a manifold, plays an important role.

To the end of analyzing such links, we propose the following definition of optimal
operation on a manifold, which is a natural extension of the established concept of
optimal operation at steady state, cf. [1]. We assume in the following that the cost
functional is zero on the manifold. This can always be achieved, if the stage costs are
constant on the manifold, e.g., by subtracting the constant.

Definition 6 (Optimal operation on the trim manifold T ) Let the stage cost be zero
on the trim manifold T , which was defined in Definition 2, i.e., �(s, vs, vθ , u) = 0
if T (s, vθ , u) = 0 holds (in particular, x = (s vs θ vθ )

� ∈ T ). Then, System (11)
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is said to be optimally operated on the manifold T ⊆ R
4 if, for all x0 ∈ R

4 and
all control-state pairs (x, u) ∈ W 1,∞([0,∞),R4) × L∞([0,∞),Rm), the following
inequality holds

lim inf
T→∞

1

T

∫ T

0
�(s(t), vs(t), vθ (t), u(t)) dt ≥ 0. (22)

Optimally operated at the manifold means that the averaged costs for any trajectory
is at least as high as the averaged cost on the manifold in the limit.

Proposition 3 (Optimal operation on T ) Let (OCPψ ) be strictly dissipative on a
set X ⊆ R

4 such that the storage function S is bounded on the terminal region Ψ .
Moreover, let the stage cost � be zero on the manifold T ⊆ R

4 as assumed in Defini-
tion 6. Then, the system governed by the dynamics (11) is optimally operated on T .

Proof The proof follows along the lines of [19, Theorem 3] by contradiction. Let
x0 ∈ R

4 be given. Suppose that there exists a monotonically increasing sequence
{Tk}k∈N, Tk → ∞ for k → ∞, with (xk, uk) ∈ W 1,∞([0, Tk],R4)×L∞([0, Tk],Rm)

admissible for the OCP in consideration such that

lim inf
k→∞

1

Tk

∫ Tk

0
�(sk(t), vks (t), v

k
θ (t), u

k(t)) dt ≤ −δ (23)

for some δ > 0. Dividing the strict dissipativity inequality (18) by Tk yields

1

Tk

(
S(x�

k (Tk)) − S(x0)
)

≤ 1

Tk

∫ Tk

0
�(x�

k (t), u
�
k(t)) − α(dist(x�

k (t), T )) dt

where x�
k = x�

k (·; x0, u�
k) solves the OCP (OCPψ ) with optimization horizon Tk

(feasibility is ensured by the existence of the sequence (Tk)k∈N) and,with a slight abuse
of notation, �(x�

k (t), u
�
k(t)) denotes the stage cost evaluated along the corresponding

optimal control-state pair. Invoking the assumed boundedness of S on the terminal
region, the difference S(x�

k (T )) − S(x0) is bounded and the left-hand side converges
for k → ∞. Hence, taking non-negativity of α and optimality of the control-state pair
(u�

k, x
�
k ) into account, yields non-negativity of the left-hand side of inequality (23)

and, thus, 0 ≤ −δ, i.e., the desired contradiction. ��
Remark 5 (Link to overtaking optimality) A more classical concept, which originated
in the analysis of infinite-horizonOCPs, is overtaking optimality [5, 6]. That is, instead
of (22) consider

lim inf
T→∞

∫ T

0
�(s(t), vs(t), vθ (t), u(t)) dt −

∫ T

0
�(s̄, 0, v̄θ (t), ū(t)) dt ≥ 0. (24)

If this condition is considered for a fixed initial condition, it gives the concept of
overtaking optimality. If it is considered for a set of initial conditions, it defines a
generalized concept of optimal operation being characterized by (s̄, 0, v̄θ (t), ū(t)).
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We refer to [45, Chap. 4] for further (discrete-time) insights on the link between
overtaking optimality and optimal operation.

5 Hamiltonian perspective and Legendre transformation of OCPs

Evidently the Lagrangian approach and the Hamiltonian approach to describing
mechanical systemswith symmetries complement each other. Hence, it is fair to ask for
potential changes in the results of Sect. 3 if the analysis is done from the Hamiltonian
perspective instead of the Lagrangian one. Next we briefly investigate this aspect.

5.1 The Hamiltonian perspective onmechanical systems

Recall that the Euler–Lagrange equations (2) can alternatively be written in Hamilto-
nian form, i.e., q̇ = ∂H/∂ p, ṗ = −∂H/∂q + f (u), by means of the Hamiltonian

H(q, p) = 1

2
p�M−1(q)p + V (q), (25)

where M−1 is the inverse of the mass matrix. With configuration variables q ∈ Q,
the corresponding momenta p lie in the cotangent space T ∗

q Q. As M(q) is assumed
to be regular, the Lagrange function (1) and the Hamiltonian (25) are hyperregular1

and Euler–Lagrange and Hamilton equations are equivalent. The Legendre transform
of (1) gives the relation p = M(q)q̇ . In particular, under Assumption 1, the Hamilton
equations in shape and cyclic variables are

ṡ = M−1
11 (s)ps

ṗs = −1

2
M−1

11 (s)′ p2s − 1

2
M−1

22 (s)′ p2θ − V ′(s) + fs(u)

θ̇ = M−1
22 (s)pθ

ṗθ = fθ (u)

(H)

with ps = M11(s)vs, pθ = M22(s)vθ .
Assuming orthogonal forcing, i.e., fθ ≡ 0, the last equation of (H) directly gives

the conserved quantity induced by the symmetry, namely pθ = M22(s)vθ = const.
Recall the characterization of trim primitives in Lemma 1 via the forced amended
potential (7), which yields for (H)

∇sV
u
μ(s, μ, u) = V ′(s) + 1

2
M−1

22 (s)′μ2 − fs(u) = 0 (26)

with μ = pθ = M22(s)vθ . Corollary 1 states that ∇sV u
μ(s, μ, u) = T (s, M−1

22 pθ , u)

and thus, ∇sV u
μ(s, μ, u) can alternatively be used to define the trim manifold.

1 If the Legendre transform ∂L/∂ q̇ is a global isomorphism, then the Lagrangian is said to be hyperregular.
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With �̃(s, ps, θ, pθ )
.= �(s, M11(s)vs, θ, M22(s)vθ ) , the optimal control problem

(OCP), the reduced problem on the trim manifold (T -OCP), as well as the steady
state optimization problem (SOP) can alternatively be stated in the Hamiltonian set-
ting, i.e., replacing the corresponding Euler–Lagrange equations by the Hamiltonian
counterparts. In complete analogy, first-order necessary conditions for optimality can
be derived and compared in order to see that the problems lead to identical solutions
if the full optimal control problem is constrained to solutions satisfying ∇sV s

μ = 0.
Moreover, as we will show next, based on the knowledge of the underlying coordinate
change one can also derive a coordinate change for the adjoints.2

5.2 Legendre-induced transformation of adjoints

The diffeomorphism Φ : TqQ → T ∗
q Q given by

Φ :

⎡
⎢⎢⎣
s
vs
θ

vθ

⎤
⎥⎥⎦ �→

⎡
⎢⎢⎣

s
ps
θ

pθ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

s
vsM11(s)

θ

vθ M22(s)

⎤
⎥⎥⎦ (27)

maps (EL) to (H). Put differently, the coordinate change Φ is induced by the by the
Legendre transformation of (1) to (25).

Lemma 3 (Legendre-induced adjoint transformation) Consider (OCP) and let
(x�, u�, λ�) be an optimal lift. Consider a diffeomorphic coordinate changeΦ : Rn →
R
n, x �→ z valid along any optimal solution of (OCP). Let ν be the adjoint corre-

sponding to (OCP) expressed in the coordinates z = Φ(x). Then the corresponding
adjoints satisfy (

∂Φ

∂x

)�∣∣∣∣∣
x=Φ−1(z)

ν� = λ� (28)

In case of Φ from (27) we obtain

(
∂Φ

∂x

)�∣∣∣∣∣
x=Φ−1(z)

=

⎡
⎢⎢⎣
1 M ′

11vs 0 M ′
22vθ

0 M11 0 0
0 0 1 0
0 0 0 M22

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 M ′

11M
−1
11 ps 0 M ′

22M
−1
22 pθ

0 M11 0 0
0 0 1 0
0 0 0 M22

⎤
⎥⎥⎦ .

(29)

Proof Recall the optimal control Hamiltonian of (OCP) written in (x, u) coordinates

H(x, u, λ) = �(x, u) + λ� f (x, u).

2 Note that here we consider a Legendre transformation relating the mechanical Hamiltonian (25) to the
mechanical Lagrangian (1). One could as well consider a Legendre transformation of the optimal control
Hamiltonian, this leads to the Lax-Hopf formulas and related approaches, see [7, 8].
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Notice that in z − u coordinates the dynamics ẋ = f (x, u) read

ż = ∂Φ

∂x
f (x, u) = ∂Φ

∂x

∣∣∣∣
x=Φ−1(z)

f
(
Φ−1(z), u

)
.= g(z, u).

Now, consider the optimal control Hamiltonian of (OCP) expressed in z − u coordi-
nates

H̃(z, u, ν) = �̃(z, u) + ν�g(z, u).

Substituting the expression for g(z, u) and �̃(z, u)
.= �(Φ−1(z), u) yields

H̃(z, u, ν) = �(Φ−1(z), u) + ν� ∂Φ

∂x

∣∣∣∣
x=Φ−1(z)

f
(
Φ−1(z), u

)
.

Comparing the last equation with the one for H(x, u, λ) gives the first part of the

assertion. The expression for
(

∂Φ
∂x

)�
follows from the definition of Φ in (27). ��

We remark that the transformation of adjoints does mainly rely on Φ being a dif-
feomorphic coordinate change along optimal solutions. That is, it can be applied to
general OCPs. It is the structure of the matrix (29) which is induced by the underlying
Legendre transformation.

Lemma 3, which on the one hand is structurally not surprising while, on the other
hand, appears to not have been mentioned in the literature, is useful in at least two
contexts: (i) it allows to generate primal-dual initial guesses for OCP considering
{Lagrangian, Hamiltonian} dynamics by solving the counterpart, i.e., the OCP consid-
ering {Hamiltonian, Lagrangian} dynamics. This can be helpful for indirect solution
methods. It can also be used to cross-check the numerical solutions for adjoints of
those OCPs in an efficient manner. (ii) it answers the question for what changes in
the analysis of Sect. 3 if one swaps the Lagrangian for the Hamiltonian framework.
In short, all the results hold mutatis-mutandis and Lemma 3 shows how to map the
adjoint variables without re-doing the technical derivations. These insights and the use
of Lemma 3 are sketched in Fig. 2.

6 Kepler problem: optimal operation onmanifold turnpike

Lastly, let us illustrate the findings of Sect. 3: The first numerical example shows the
existence of non-trivial trim turnpikes, that is, turnpikes with non-stationary behavior
on the trim manifold. The second example illustrates the insides of Proposition 1
regarding the correspondence of primal variables in the respective optimal control
problems.

In astrodynamics, n-body problems are widely considered to describe the dynamics
of bodies in the gravitational field. The two-body problem is also known as the Kepler
problem and might be used to describe the motion of a spacecraft relative to a planet’s
or amoon’s gravitational field (ignoring all other influences frommore distant bodies).
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Fig. 2 Illustration of Lemma 3 and its use for optimal control of mechanical systems

Coordinates can be chosen to describe the motion of the second body, relatively to
the first body’s motion, via radius s ∈ R>0 and angle θ ∈ [0, 2π). With vs and vθ

denoting the corresponding velocities, the (energy) Lagrangian is given by

L(s, vs, θ, vθ ) = 1

2
m2

(
v2s + s2v2θ

)
+ γ

m1m2

s

with m1,m2 being the masses of the primary (e.g., planet) and the secondary (e.g.,
spacecraft) body andγ the gravitational constant.As in [42],we choose k

.= γm1m2 =
1.016895192894334 × 103 and m2 = 1.0.

We have L being independent of θ , so this is a cyclic variable. For fθ (u) = 0, the
conserved quantity is pθ = m2s2vθ (cf. Remark 1). Further, Assumption 1 is satisfied,
since the mass matrix is

M =
[
m2 0
0 m2s2

]
, in particular, M11(s) = m2, M22(s) = m2s

2,

and V (s) = −γ m1m2
s . Note that the Kepler problem is special in the fact that M11 is

constant and thus, M ′
11 = 0. Moreover, the model has a singularity at s = 0, so we

restrict to s > 0. Then, M22 �= 0 holds.
The Euler–Lagrange equations, directly written in first-order form, are

ṡ = vs, v̇s = sv2θ − γm1m2

m2s2
+ 1

m2
fs(u),

θ̇ = vθ , v̇θ = −2

s
vθvs + 1

m2s2
fθ (u),

with control u = (us, uθ )
� ∈ R

2 and forcing fs(u) = us , fθ (u) = uθ .
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For the function T of Lemma 2, we obtain

T (s, vθ , u) = sv2θ − k

m2s2
+ 1

m2
fs(u),

i.e., any triple (s̃, ṽθ , ũ) such that T (s̃, ṽθ , ũ) = 0 generates a trim primitive. Geomet-
rically, trim primitives are circular motions of body m2 about m1. The trim manifold
reads

T =
{
(s, vs, θ, vθ )

� ∈ T Q

∣∣∣∣ vs = 0, us = −m2sv
2
θ + k

s2

}
.

We consider optimal control problems of type (OCP) on a sufficiently long time
horizon T > 0. The starting point is defined as (s0, v0s , θ

0, v0θ ) = (5.0, 0.0, 0.0,√
k

m25.03
); this corresponds to a trim primitive with zero control us .

Furthermore, let x̃
.= (s̃, ṽs, θ̃ , ṽθ ) = (4.5, 0.0, 0.0,

√
k

m24.53
) be given and note

that T (s̃, ṽθ , ũ) = 0 holds for ũ = (0.0, 0.0), i.e., this defines an uncontrolled trim
primitive.

Firstly, let us consider the cost functional

�(s, vs, vθ , u) = 1

2
(x − x̃)�Q(x − x̃) + (u − ũ)�R(u − ũ) (30)

with Q = diag([1, 0, 1, 1]) and R = 10−2 · diag([1, 1]). A Mayer term is defined as
V f (x(T )) = 102 · (x(T ) − x f )�Q(x(T ) − x f ) with

x f = (s f , θ f , v
f
s , v

f
θ ) =

(
6.0, 0.0, 0.0,

√
k

m26.03

)
.

Recall that Mayer terms can equivalently be transformed into Lagrange terms and,
thus, this problems fits the framework of our analysis.

We solve the corresponding (OCP) with CasADI, using a direct method with the
RK-4 integrator for a discretizationwith 300 nodes on a time intervalwith T = 30. The

result is given in Fig. 3. A turnpike can be observed at (s̃, ṽθ , ũs) = (4.5,
√

k
m24.53

, 0.0)

with vs = vθ = uθ = 0 and all adjoints vanishing, too, for the largest part of the time
interval. The incoming and outgoing arcs are caused by the boundary conditions.
Mechanically, the solution corresponds to a circular-shaped turnpike orbit in the 2D-
plane, which is an element of the trim manifold.

While thefirst example specifically favors the s = 4.5-orbit by construction,wenow
consider running costs which are designed using the general trimmanifold description,
i.e.,

�(s, vs, vθ , u) = 5 × 103 · T (s, vθ , u)2 + 1

2
(s − s̃)2 + 1

2
(u − ũ)�R(u − ũ) (31)
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Fig. 3 Example with turnpike on a trim at s = 4.5 for quadratic cost functional as in (30) on time horizon
T = 30

with s̃ = 5.3, ũ = [0, 1]�, R = 10−3 · diag([1, 1]). Thus, the first term of � vanishes
whenever the system is on T . This criterion is complemented by the other two terms
with arbitrarily chosen values of s̃ and ũ. The intuition behind this stage cost is that
making � small the optimal solutions have to approach the set on which T (s, vθ , u)2 =
0, i.e., the trim manifold. Though a formal proof of manifold dissipativity for this
example is still open.
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Fig. 4 Example with turnpike on a trim obtained from running costs (31) on time horizon T = 100

Setting the initial condition to (s0, v0s , θ
0, v0θ ) = (5.3, 0.0, 0.0,

√
k

m25.33
) makes an

incoming arc obsolete; the system stays in the trim that is defined by the initial point
almost until the end of the time interval, when the term (u − ũ)�R(u − ũ) of � in
(31) rules the optimal solution. This can be observed in Fig. 4, in which we show
the computed solution for T = 100 (RK4-integrator with 200 discretization nodes).
Moreover, we depict the solution of (T -OCP), which we have solved with CasADI, as
well, using identical initial values for (θ̄ , v̄θ̄ , ū) and time horizon, with dashed lines.
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Recall that in (T -OCP), (θ̄ , v̄θ̄ , ū) are the dynamic states and controls, while s̄ is a
scalar parameter and T (s̄, v̄θ̄ , ū) = 0 is added as a nonlinear constraint. For both
problems, the same turnpike is approached, as can be seen in Fig. 4 in the subfigures
of the states and controls. However, the adjoints for s show different behavior, since
in (OCP), there is an initial condition on s, while in (T -OCP), there is not. Further
numerical discrepancies between the adjoints presumably stay in context with the
accuracy of which T = 0 is fulfilled when either considered within the objective
(in (OCP)) or as an equality constraint (in (T -OCP)). Note that we do not consider
terminal constraints in this example in order to match the setting of Proposition 1.

7 Conclusions and outlook

The paper has studied the link of turnpikes, trim solutions, and symmetries in OCPs
for mechanical systems. Specifically, we considered Lagrangian systems with sym-
metries. Based on the established concepts of trim solutions, we have shown that if
either one first formulates the OCP and then applies the trim condition to the opti-
mality system, or one first applies the trim condition and then formulates a reduced
OCP, one obtains the same result. This generalizes a classical insight, wherein turn-
pikes are characterized as the attractive equilibria of the optimality system. Hence, the
paper provides a novel characterization of time-varying—not necessarily periodic—
turnpike solutions via reduced OCPs. Moreover, we introduced a notion of dissipation
of optimal solutions with respect to the distance to a manifold (here the trim mani-
fold) which implies that optimal system operation occurs on this manifold. The paper
has also shown that the very same dissipativity condition implies the existence of a
measure turnpike with respect to the trim manifold, i.e., the optimal solutions will
spend only limited amount of time far from this manifold. Moreover, we investigated
how the Legendre transformation, which allows to switch from the Lagrangian to the
Hamiltonian perspective, induces a related coordinate change for adjoint variables.
This allows to directly transfer our results to the Hamiltonian setting.

In sum, the present paper introduced a novel manifold generalization of the estab-
lished dissipativity notion for OCPs. This way it addresses the gap between the
symmetry-based analysis ofOCPs ofmechanical systems and dissipativity-based turn-
pike analysis.

Future work should discuss how the developed notions can be leveraged in context
of receding-horizon optimal control. Moreover, it would be interesting to generalize
the concept of manifold turnpikes even further and to consider symmetries induced
by non-mechanical systems.
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