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Abstract Three regularization concepts are assessed regarding their variational structure and interference
with the predicted physics of (quasi-)brittle damage: the fracture energy concept, viscous regularization and
micromorphic regularization. They are first introduced in a unified variational framework, depicting how they
distinctively evolve from incremental energy minimization. The analysis of a certain time interval of a one-
dimensional example is used to show how viscous and micromorphic regularization retains well-posedness
within the softening regime. Byway of contrast, the fracture energy concept is characterized by ill-posedness—
as known from previous non-variational analyses. Numerical examples finally demonstrate the limitations and
capabilities of each concept. The ill-posed local fracture energy concept leads by its design to a spatially
constant fracture energy—in line with Griffith’s theory. The viscous regularization, in turn, yields a well-posed
problem but artificial viscosity can add a bias to unloading and fracture thickness. Furthermore, and even
more important, a viscous regularization does not predict a spatially constant fracture energy due to locally
heterogeneous loading rates. Thewell-posedmicromorphic regularization is in linewith the underlying physics
and does not show this undesired dependency. However, it requires the largest numerical efforts, since it is
based on a coupled two-field formulation.

Keywords Variational framework · Damage mechanics · Fracture energy concept · Viscous regularization ·
Micromorphic regularization

1 Introduction

1.1 Motivation and intention of regularization

Regularization methods are frequently applied to ill-posed material models and damage models in particular.
Typical limitations of ill-posed models include equivocality, a lack of differentiability, instability and—turning
the view to the numerical implementation—a severe dependence on themesh of the discretization.As one result,
for instance, these limitations can hamper or even prevent a transfer between calibrated and new problems. By
considering local constitutive laws, it is well known that this leads to discontinuities [1] and mesh-dependent
simulation results. The underlying discretization affects the simulation as pointed out in [2,3]. This is a clear
obstacle for damage predictions that are critical for fail-safe operations and hazard-free environments [4,5].
Regularization methods hence aim at turning the model descriptions into well-posed problems with reliable
outcomes.
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Regularization is driven by mathematics and physics applications alike and has been the origin of an
impressive amount of studies from various disciplines. We thus find it helpful to first differentiate between
possibly distinct and often tacit terminology. Mathematical studies often approach regularity in the sense of
singularities and a resulting lack of uniqueness, e.g., by Lipschitz regularization for material softening [6],
coercive regularization [7] and for global problems [8]. Tornberg and Engquist [9], for instance, apply regular-
ization to PDEs with singularities. This rather mathematical interpretation of regularization is closely related
to regular functions and their properties, e.g., in terms of differentiability. The investigation of mathematical
properties can also involve the evaluation of physically sound limits, e.g., for penalty parameters or interface
thicknesses [10,11] or the convergence of solution sequences [12,13]. The interested reader is referred tomath-
ematically oriented literature, though, for general conditions on the well-posedness of systems of PDEs, e.g.,
regarding the domains, compatible initial and boundary conditions, function spaces, and also differentiability
and integrability to [10,14].

Engineering research, on the other hand, often introduces regularization to avoid implied problems such as
numerical instabilities, branching betweenmultiple solutions andmesh dependence [15–17]. Depending on the
problem at hand, this is replaced by different criteria. Convexity is one example, cf. [18] for solids undergoing
softening due to damage and plasticity. Bourdin et al. [12], for instance, state the strict convexity of the potential
energy to be a necessary and sufficient condition for the existence of a unique, smooth crack evolution. The
proof is given in the context of Griffith’s criterion and smoothness is assumed. Carstensen et al. [19] use the lack
of rank-one convexity, implying the lack of quasi-convexity, to demonstrate counterexamples that do not attain
a minimum and yield the formation of microstructures in finite-strain plasticity. Ortiz and Repetto [20] study
non-convex pseudoelastic energy functions with walls corresponding to single-slip deformations in crystals.
Coercivity, growth and monotonicity are often added as requirements to guarantee appropriate behavior at the
boundary of physically sound domains of definitions [21,22]. Junker et al. [23] achieve coercivity in viscous
regularization via rate limitation. The property of ellipticity—which is equivalent to rank-one convexity under
relatively weak assumptions—plays a major role for the well-posedness of systems of partial differential
equations [24,25]. The stability of linearized incremental steps or approximative elliptical functionals [12], for
example, can thus be easily related to the governing coefficient matrices and eigenvalues thereof. Forest and
Lorentz [26] complement the ellipticity condition by appropriate boundary and interface conditions. Material
instability is thus prevented as are boundary and interface instabilities. Accordingly, yet other criteria strongly
related to well-posedness are stability and branching or bifurcation. Clearly, this is not surprising, since the
Legendre-Hadamard ellipticity condition enjoys a long tradition within the analyses of material instabilities
in solid mechanics, cf. [27]. Instability can indicate a non-vanishing response for arbitrary small perturbations
(and thus a discontinuous dependency on initial or boundary conditions) and branching/bifurcations yield
ambiguity (losing uniqueness of the solution) [28,29], violating the last two Hadamard conditions [30,31].
This underlines that uniqueness may not be achievable in the context of well-posedness, let alone physical
for many mechanical problems. Pham and Marigo [32] emphasize the influence of geometry and boundary
conditions on the stability of gradient-enhanced damage models, while the present focus is on the material
stability.

1.2 Regularization options and reviewing them within a variational formulation

The variations of regularization methods are numerous and we shall first identify a unifying framework before
introducing different regularization methods. The framework of choice in this work is the variational formula-
tion. The regularization methods then follow either by slight modifications of its underlying Helmholtz energy
or by the dissipation function. This will allow us to rigorously highlight the differences of the governing equa-
tions. The fundamentals of the variational approach go back to Petryk [33], Comi and Perego [34], Ortiz and
Repetto [20], Carstensen et al. [19] and also to Miehe et al. [35]. Nowadays, a broad class of dissipative solids
are based on the variational formulation [35–37]. Even existing models can often be reformulated in terms of
an incremental energy, from which the balance laws and the evolution equations follow through stationarity
conditions [19,20]. Due to the variational approach, the analysis of the Hadamard conditions can be replaced
by the analysis of the convexity properties of the underlying potential. Therefore, the variational approach is
a suitable framework to compare the structure of the regularizations on the one hand and to investigate the
well-posedness on the other hand [35].

Based on this framework, we will apply known regularization methods to an underlying ill-posed material
model for (quasi)-brittle damage. We thus want to sketch three representative concepts. The first one is the
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so-called fracture energy concept (also known as crack-band theory), cf. [38,39] among others. The material
parameters are chosen in dependence of the characteristic length of the underlyingmesh, such that each element
has the same fracture energy. Clearly, this length also depends on the orientation of the element to the cracking
path which lead to the development of advanced calculation methods of the characteristic length [40,41]. By
doing so, the loading behavior and the fracture energy are unaffected by mesh refinements; the distribution
of the damage variable will still localize in only one element row and therefore remains dependent on the
underlying mesh [42].

Viscous regularization constitutes an alternative concept [43]. It is applied to a broad range ofmaterials, e.g.,
to themodeling of quasi-brittle damage [44] or softening elasto-plasticity [45]. The key idea is the incorporation
of a time dependence into the constitutive equations. By choosing that influence to be sufficiently large, the
softening behavior becomes mainly dependent on the time step and no longer on the mechanical behavior, i.e.,
the strains and stresses. Hence, the mechanical tangent remains positive definite as pointed out in [46]. On the
one hand, this leads to mesh-independent loading behavior as well as to mesh independent distributions of the
damage variable. On the other hand, the results are now additionally influenced by the loading rate, which can
be heterogeneous within the structure and which can interfere with additional time-dependent processes.

A third option for regularization are non-local theories [2,3]. The relevant variables are averaged over
a certain spatial domain, which exceeds the dimension of the one individual finite element. As a result, a
length scale defining the crack width is introduced into the constitutive model. This leads to mesh-independent
loading behavior as well as to mesh-independent distributions of local softening variables. Based on this,
the gradient regularization has been developed [47]. It results from the non-local theory through a Taylor
series expansion up to the second derivative [2,48]. The key idea is to include the gradient of the softening
variable into the constitutive framework. Penalization of these gradients hinders localization into one element
row. The neighboring elements will also show softening behavior in order to flatten the gradient. The gradient
regularization hence introduces a spatial length scale into the constitutive framework.Alternatively, the gradient
regularization might be approximated in a micromorphic manner [49,50]. This is often beneficial from an
implementation point of view, since it preserves the structure of the underlying local model. It is based on
the introduction of an additional global field, which is coupled to the softening variable. Instead of penalizing
the gradient of the damage variable directly, the gradient of the global additional field is considered. Similar
to the viscous regularization, the micromorphic regularization is applied to a broad range of materials being
isotropic brittle damage [50], anisotropic brittle damage [51] crystal plasticity and phase transformation [52],
isotropic ductile damage [53,54] and anisotropic ductile damage [55] to mention a few.

There are further concepts for well-posedmodeling of damage-inducedmaterial softening such as cohesive
zone models [56–60] based on a traction-separation law. These models fall into the range of so-called sharp
interface frameworks where the fracture zone shows a zero thickness—in contrast to the diffuse or smeared
approximations consideredwithin this paper, where the damage zone shows a finite thickness. Smeared approx-
imations of fracture consistent with an underlying sharp interface theory are phase-field models [36,61]. The
present focus, nevertheless, is on the explicit regularization of local models as a tool for achieving a well-posed
problem description.

While the number of individual regularization methods is quite impressive, a synoptic review is missing.
This is probably due to the novelty of recent developments and the challenge of a unified assessment. The
present work aims at contributing to this comparison by an analysis of the three aforementioned regularization
methods: the fracture energy concept, the viscous regularization and the micromorphic regularization. The
comparison will focus on the following key aspects: the variational structure, the well-posedness and the
characteristic response (loading behavior, damage field, fracture energy). The approaches are then compared
in terms of their numerical feasibility and their mutual compatibility and distinctive limitations. For that reason,
Sect. 2 recapitulates the variational formulation in its general form. Based on this method, a local prototype
model suitable formodeling isotropic quasi-brittle damage is presented in Sect. 3. In Sect. 4 the prototypemodel
is regularized with respect to the fracture energy concept, the viscous regularization and the micromorphic
approximation of the gradient regularization. It concludes with the first key result

• a juxtaposition of the mathematical formulations in a unified variational framework.

Secion 5 adds the examination of well-posedness. It closes by the second key result:

• highlighting how well-posedness is achieved via the respective coefficient tensors of the incremental step.

The numerical simulations in Sect. 6 finally extend the analysis to complex boundary value problems. The
numerical evaluation yields the third key result in the form of the regularization methods’

• physics predicted by the regularization and
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• numerical feasibility

The main findings and implications are summarized in Sect. 7.

2 Variational formulation

The variational derivation ofmaterialmodelswill be used as a unifying framework for the analytical comparison
of the regularization methods. This method can be traced back, at least, to Petryk [33], Comi and Perego [34],
Ortiz and Repetto [20] and also Carstensen et al. [19]. Since then, the topic has been strongly promoted by
Francfort and Marigo [36], Ortiz and Stainier [37], Miehe and Lambrecht [35], Petryk [62] and Mosler [63],
among others. The key idea is the introduction of potential I and its rate İ. The superposed dot ( •̇ ) denotes
the material time derivative. After adding powers due to external forces, balance and evolution equations then
follow jointly from stationarity. Due to the energetic approach, the convexity properties of the incremental
potential I are sufficient to determine the well-posedness of the resulting constitutive equations. In order to
recall the nomenclature and structure as briefly as necessary, the rate potential is chosen as

İ = ψ̇ + D , (1)

ψ = ψ loc(ε, κ) + ψmic(κ, ϕ, ∇ϕ) , (2)

D = Dloc (κ, κ̇) + Dvis (κ, κ̇) . (3)

Helmholtz energy ψ depends on the linearized strain tensor ε and scalar internal variable κ . It splits into two
parts: ψ loc defining solely the local model and ψmic accounting for the micromorphic gradient regularization.
The latter employs additional global field ϕ, cf. [49,50]. It will enter neither the local model nor the viscous
regularization. It bears emphasis that the choice of ϕ and ∇ϕ being energetic is not mandatory and actually
excludes certain material models, e.g., the phase-field model for fracture. However, these assumptions cover
all regularization methods addressed within the manuscript. The state dependent (dependence on κ and κ̇)
dissipation function is split in a similar manner. Dloc defines the local model and is homogeneous of order one
in κ̇ . Dvis is an extension in order to include viscosity as a regularization method. This set of equations allows
the representation of all three regularization methods. In what follows, the time-continuous case will first be
specified further, followed by the time-discrete counterpart.

2.1 Time-continuous setting

According to Petryk [62], Ortiz and Repetto [20], Carstensen et al. [19] andMiehe and Lambrecht [35], among
others, a rate potential Ė can be defined as

Ė =
∫
B
İ dV −

∫
B

ρ b · u̇ dV −
∫

∂B
t · u̇ dA , (4)

where İ is the potential presented in Eq. (1), u is the displacement field, ρ is the density of the material and
b and t are forces acting in body B and on its surface ∂B, respectively. The choice of potential (4) is not
mandatory. It is also admissible to apply external loads with respect to the micromorphic field ϕ, as it is done
for instance in [64]. The total variation of potential (4), given as

δĖ = δu̇Ė · δu̇ + δϕ̇ Ė δϕ̇ + ∂κ̇ Ė δκ̇ (5)

and forcing stationary, δĖ = 0, leads to the balance laws and the evolution equation as

δu̇Ė · δu̇ = 0 , δϕ̇ Ė δϕ̇ = 0 , ∂κ̇ Ė δκ̇ � 0 . (6)

Here, operator ∂κE denotes the subdifferential with respect to κ̇ . Starting with balance of linear momentum,
i.e., the computation of δu̇Ė · δu̇ = 0, yields

δu̇Ė · δu̇ =
∫
B

σ : δu̇ε̇ dV −
∫
B

ρ b · δu̇ dV −
∫

∂B
t · δu̇ dA = 0

⇔
∫

B
[div (σ ) + ρ b] · δu̇ dV =

∫

∂B
[σ · n − t] · δu̇ dA ,

(7)
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where σ is the Cauchy stress tensor in the framework of linearized kinematics following from the Helmholtz
energy as σ = ∂εψ . Through the application of the localization theorem to the weak form of balance of linear
momentum (7), it is transformed into its strong form known as

div (σ ) = −ρ b in B
σ · n = t on ∂B .

(8)

By following the same idea, the balance law for the additional global field ϕ is derived as

δϕ̇ Ė δϕ =
∫

B
ω δϕ̇ + � · δϕ̇∇ϕ̇ dV = 0

⇔
∫

B
[div (�) − ω] δϕ̇ dV =

∫

∂B
[� · n] δϕ̇ dA ,

(9)

which is also known as the balance of microforces, cf. [65]. Here, ω = ∂ϕψ and � = ∂∇ϕψ follow as
derivatives from Helmholtz energy (2). By, once again, applying the localization theorem to weak form (9),
the strong form of the balance of micro forces results in

div (�) = ω in B
� · n = 0 on ∂B .

(10)

The evolution equation of internal variable κ is left to be determined. It follows from stationarity of potential (4)
with respect to κ̇ , resulting in Biot’s equation, cf. [66], as

∂κ̇ Ė δκ̇ =
∫
B
[−Y + ∂κ̇D] δκ̇ dV � 0 (11)

or in its local format as

−Y + ∂κ̇D � 0 in B . (12)

Here, Y is the energetic dual quantity to internal variable κ and follows from Helmholtz energy (2) as Y =
−∂κψ . Evolution equation (12) can be recast in terms of an elastic domain. Its boundary is characterized by
δκ̇I = 0 and internal variable κ evolves, if the boundary of the elastic domain is reached (or exceeded within
the trial step). A further restriction to the evolution equation follows from the second law of thermodynamics.
The stress power associated with the model is

P = σ : ε̇ + ω ϕ̇ + � · ∇ϕ̇ , (13)

thus leading to dissipation inequality

D = P − ψ̇ = Y κ̇ ≥ 0 . (14)

2.2 Time-discrete setting

The time discretized formulation is not only required for the numerical implementation but will also allow
the assessment of the well-posedness of the incremental step. The variational framework turns thus into a
minimization problem. The time discretization of u̇, ϕ̇ and κ̇ are chosen as

u̇ = u − un
	t

, ϕ̇ = ϕ − ϕn

	t
, κ̇ = κ − κn

	t
. (15)

The time index n + 1 is omitted for readability. By inserting approximations (15) into potentials (1) and (4)
and by subsequently performing a time integration leads to incremental potentials

I =
tn+1∫

tn

İ dt = ψ − ψn +
tn+1∫

tn

D dt , (16)
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E =
tn+1∫

tn

Ė dt =
∫
B
I dV −

∫
B

ρ b · [u − un] dV −
∫

∂B
t · [u − un] dA , (17)

whereψn = ψ(εn, ϕn, κn) denotes theHelmholtz energy of the previous time step andwhereψ = ψ(ε, ϕ, κ)
denotes the Helmholtz energy of the current time step n + 1. In contrast to rate potential (1), incremental
potential (16) depends only on u, ϕ, κ and no longer on the rates u̇, ϕ̇ and κ̇ . Similar to Sect. 2.1, the balance
and evolution laws follow jointly through stationarity of potential (17), i.e.,

δE = δuE · δu + δϕE δϕ + ∂κE δκ = 0 (18)

has to hold. The first term results in balance of linear momentum

δuE · δu =
∫
B

σ : δuε dV −
∫
B

ρ b · δu dV −
∫

∂B
t · δu dA = 0

⇔
∫

B
[div (σ ) + ρ b] · δu dV =

∫

∂B
[σ · n − t] · δu dA (19)

that is equivalent to time-continuous variation (7). Consequently, the local format of this balance law is
equivalent to the strong form of balance of linearmomentum (8) at time step tn+1. A straightforward calculation
of the second expression in total variation (18) yields

δϕE δϕ =
∫

B
ω δϕ + � · δϕ∇ϕ dV = 0

⇔
∫

B
[div (�) − ω] δϕ dV =

∫

∂B
[� · n] δϕ dA ,

(20)

which locally yields balance ofmicroforces (10) at time tn+1. The remaining variation results in Biot’s equation
for internal variable κ . It is given in its integral format as

∂κE δκ =
∫
B

⎡
⎣−Y + ∂κ

tn+1∫

tn

D dt

⎤
⎦ δκ dV � 0 . (21)

and in its local format as

−Y + ∂κ

tn+1∫
tn

D dt � 0 in B . (22)

The additional constraint due to the second law of thermodynamics is transformed in an analogous manner
into a constraint for the evolution equation. It results in

tn+1∫

tn

D dt =
κn+1∫

κn

Y dκ ≥ 0 . (23)

2.3 Determining well-posedness for local models

Due to the time-discrete variational framework, an analysis of the convexity properties of the incremental
energy E is sufficient to characterize the boundary value problem. Since potential E differs only in terms
of linear expressions from potential I, the convexity properties of potential E are identical to the convexity
properties of potential I, which allows to shift the analysis of the convexity properties to potential I. Following
Miehe and Lambrecht [35], among others, the thermodynamic driving forces σ , ω and � are given as

σ = ∂I
∂ε

= ∂I
∂ε

+ ∂I
∂κ

dκ

dε︸ ︷︷ ︸
=0

= dI
dε

, (24)
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ω = ∂I
∂ϕ

= ∂I
∂ϕ

+ ∂I
∂κ

dκ

dε︸ ︷︷ ︸
=0

= dI
dϕ

, (25)

� = ∂I
∂∇ϕ

= dI
d∇ϕ

(26)

and hence, follow also as total derivatives of the incremental energy. The product ∂κI dεκ vanishes, since
∂κI = 0 if internal variable κ evolves and otherwise dεκ = 0. By focusing on local models only, i.e.,
by neglecting ψmic and, thus, ϕ, the analysis of well-posedness is reduced to the analysis of the convexity
properties of I(u) or I(ε), respectively. In this case, the Hessian follows as

d2I
dε2

= ∂2I
∂ε2

+

⎡
⎢⎢⎣ ∂2I

∂ε ∂κ
+ ∂2I

∂κ ∂ε
+ ∂2I

∂κ2

dκ

dε︸ ︷︷ ︸
=0

⎤
⎥⎥⎦ ⊗ dκ

dε
+ ∂I

∂κ

d2κ

dε2︸ ︷︷ ︸
=0

= dσ

dε
. (27)

Thus, the condition for well-posedness (neglecting degree of freedom ϕ) reduces to

det

(
d2I
dε2

)
= det

(
dσ

dε

)
> 0 . (28)

2.4 Localized incremental step

Since the analysis in Sect. 2.3 is only applicable to local models, this subsection shows a unified framework in
order to determine the well-posedness of constitutive models at specific time steps. The approximation of the
evolution equations by an incremental step will later allow an analytical investigation of well-posedness. For
that reason, we simplify it further by assuming a localized variation for a spatially homogeneous problem, e.g.,
for a homogeneous bar under tension and focus solely on the critical time step at which the softening process
starts, i.e., when ∂κI = 0 is reached for the first time. The incremental step for a quadratic approximation of
δI = 0 then reads

δεI = σ − Lext = 0 ∀δε (29a)

δκI = 0 ∀δκ (29b)

δϕI = 0 ∀δϕ, (29c)

where Lext accounts for the influence of external loads. The first linearization with respect to time can be
written as

A · ξ̃ + G	 · 	ξ̃ + btotal = 0
(
+O(ξ̃

2
, 	ξ̃

2
)
)

, (30)

with symbol ξ̃ = (ε̃, κ̃, ϕ̃)T representing the summary of all variables. Increments are denoted as •̃, the
starting equilibrium configuration is denoted as •̄ and Kelvin notation is assumed for interpretation of the
products. Matrix A follows as a partial derivative of the incremental energy as

A := ∂2I
∂ξ2

=
⎡
⎢⎣

∂2Iεε ∂2Iεκ ∂2Iεϕ

∂2Iκκ ∂2Iκϕ

sym ∂2Iϕϕ

⎤
⎥⎦ . (31)

Similar, matrix G	 contains the partial derivatives with respect to Laplacian 	ξ̃ = (	ε̃, 	κ̃, 	ϕ̃)T . Since
the incremental step relies on a quadratic approximation of I, matrix G	 follows as

G	 := ∂2I
∂	ξ2

=
⎡
⎣ 0 0 0

0 0
sym −lκ

⎤
⎦ . (32)
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Lastly, vector btotal is left to be determined. It contains the external loads zext, the variation evaluated at the last
converged time step and boundary terms of ∇ϕ that are typically assumed to vanish at the body’s boundaries.
Thus, it reads

btotal =
⎡
⎣
⎛
⎝∂Iε

∂Iκ

∂Iϕ

⎞
⎠ +

⎛
⎝zext

0
0

⎞
⎠ +

⎛
⎝ 0

0
−lκ 	ϕ

⎞
⎠
⎤
⎦ . (33)

(30) shall be used to analyze whether and how regularization methods provide well-posedness. According to
the underlying variational structure, all matrices in 30 are defined by means of derivatives of the potential
I. This analysis is limited to the one-dimensional, incremental approximation of the respective models for
the sake of analytical accessibility. The simulations in Sect. 6 will then extend the findings to the numerical
analysis of complex problems.

3 Local prototype model

This section introduces and analyzes a local prototype model for isotropic quasi-brittle damage. This model
demonstrates the limitations of not regularizing and constitutes the starting point for doing so.

3.1 Constitutive equations

Following the variational formulation presented in Sect. 2, the constitutive equations are derived from incre-
mental potential I, which consists of Helmholtz energy ψ and dissipation function D. They are defined as

ψ = ψ loc(ε, κ) := f (κ) ψ0(ε) , (34)

D = Dloc(κ, κ̇) := − κ

cE
f ′(κ) |κ̇| , (35)

neglecting parts ψmic and Dvis. ψ0 represents the Helmholtz energy of an undamaged elastic solid and f is
a degradation function. f is assumed to be strictly monotonous and bounded between 1 and 0, i.e., f = 1
denotes virgin material points while f → 0 denotes fully damaged material points. A frequently made choice
is

ψ0(ε) = λ

2
tr (ε)2 + μ ε : ε = 1

2
ε : E : ε , (36)

f (κ) = exp

(
κ0 − κ p

κu

)
, (37)

where λ and μ are the Lamé parameters, κ0 is the threshold value for damage initiation and κu and p are
parameters defining the fracture energy and the softening response of the material. Insertion of both the
Helmholtz energy and the dissipation function into incremental potential (16) results in

I = f ψ0 − ψn +
tn+1∫

tn

D dt

= f ψ0 − ψn −
κn+1∫

κn

κ

cE
f ′ sign(κ − κn) dκ

(38)

where subscript n indicates quantities belonging to the previous time step. Byway of contrast, variables without
this subscript are associated with current time step tn+1. Since balance laws (19) and (20) are independent of
the specific choice of the dissipation function, only the derivation of the evolution equation remains of interest.
A straightforward computation of Biot’s equation (22) leads to

f ′ ψ0 = κ

cE
f ′

{
sign(κ − κn) if κ 
= κn

[−1, 1] else .
(39)
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By considering the second law of thermodynamics in incremental format, i.e.,

tn+1∫

tn

D dt =
κn+1∫

κn

− f ′ ψ0 dκ ≥ 0 ⇒ κ ≥ κn , (40)

the additional constraint κ ≥ κn has to be complied with. Due to the time-discrete setting, both equations (39)
and (40) can be combined into

κ = max (κn, cE ψ0) (41)

as the final evolution equation. A further analysis of the prototype model is given in “Appendix A” in the
form of intermediate calculations and explicit expressions for characteristic values required for parameter
identification.

3.2 Ill-posedness

Following Sect. 2.4, well-posedness (or the lack thereof) is illustrated for the incremental approximation of an
initially homogeneous bar under tension. The stationary conditions for the local prototype model are

Apro · ξpro + bprototal = 0, Apro =
⎡
⎣ f̄ E f̄ ′ E ε̄

f̄ ′ E ε̄ − 1

cE
f̄ ′

⎤
⎦ , ξpro =

(
ε̃
κ̃

)
. (42)

The solution to this equation is obtained by inverting matrix Apro as long as it is regular. We can check
regularity via the eigenvalues

�
pro
1, 2 = f �̂

pro
1,2

�̂
pro
1,2 = cE E κu + p κ̄ p−1

2 cE κu
±

√[
cE E κu + p κ̄ p−1

2 cE κu

]2
+ E p

κu cE
κ̄ p−1

[
2 p

κu
κ̄ p − 1

]
.

(43)

At the beginning, both eigenvalues are real and positive for small ε and κ . Apro thus starts to be regular and
the problem starts to be well-posed. A change in sign occurs for one eigenvalue, though, at κ = cE ψ0 =
[κu/[2 p]]1/p and defines the onset of softening—rendering the model ill-posed. The other eigenvalue remains
always positive and corresponds to the evolution of κ that remains well defined itself. The aim of the subsequent
regularization techniques is to recoverwell-posedness, including secondary effects such as amesh-independent
solution.

Alternatively, the incremental energy can be analyzed according to Sect. 2.3. For the inelastic region, the
tangent follows as

d2I
dε2

= dσ

dε
= f E

[
1 − 2 p

κu
κ p

]
. (44)

Thus, as soon as κ > [κu/[2 p]]1/p the model becomes ill-posed. The ill-posedness is highlighted numeri-
cally by a one-dimensional example in “Appendix B” with more details on the evolution of eigenvalues and
corresponding eigenmodes.

4 Regularization concepts and selected example models

In view of the ill-posed local prototype model for (quasi-)brittle damage, three regularization concepts are
presented and examined analytically: the fracture energy concept, a viscous regularization and a micromorphic
gradient regularization.
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4.1 Fracture energy concept

The so-called fracture energy concept is not a regularization method from a mathematical point of view,
since the underlying equations remain ill-posed. In contrast to modifying the governing equations, the fracture
energy concepts adapts the solution scheme to fit the physical response.More precisely, thematerial parameters
are chosen in dependence on the underlying finite element discretization. As one major result, the integrated
physical quantities, e.g., the load–displacement diagram and the (constant) fracture energy, are matched to
experimental observations.

The fracture energy concept relies on an immediate localization after leaving the elastic region. Localized
inelastic deformation is observed in one element row as far as the finite element method is concerned. A brief
analysis of the properties of the prototype model is given in “Appendix A”. According to Eqs. (A.8) and (A.9),
immediate localization is guaranteed if the material parameters are chosen such that the inequality κu ≤ 2 κ0 p
holds. Additional constraints are associated with the maximum stress (A.9) and the fracture energy (A.1) and
have to be considered with respect to the element’s characteristic diameter de. While the maximum load turns
out to be independent of the underlying mesh, the fracture energy G f is reformulated into

G f = g f de , (45)

where g f is the volume specific energy. By means of a structured mesh, the element’s characteristic diameter
can be approximated well by the element length orthogonal to the crack surface, cf., e.g., [67]. Since, fracture
energy G f is given as a combination of material parameters and element characteristic diameters, the material
parameters have to be chosen for each element separately. It ensures that each element has the same dissipation
per crack surface. This, along with the immediate localization of damage, removes the effect of the numerical
discretization on the simulation results.

In summary, the material parameters have to be chosen for each element separately such that (i) the
maximum stress (A.9) as well as (ii) the fracture energy (A.1) show identical values for each element and
match the experimental observations. The problem description remains ill-posed but secondary effects such
as unphysical behavior or mesh dependence shall be avoided by a calibration between material and numerical
parameters.

4.2 Viscous regularization

The key idea of the viscous regularization is the introduction of a time dependence into the evolution of
the internal variable responsible for ill-posedness [43]. A straightforward option is to modify the dissipation
function for models based on an incremental energy. Helmholtz energy (2) and dissipation function (3) are
then given as

ψ = ψ loc(ε, κ) , (46)

D = Dloc(κ, κ̇) + Dvis(κ, κ̇) . (47)

While ψ loc and Dloc are adopted from the local prototype model, cf. Eqs. (34) and (35), additional dissipation
function

Dvis := − κ

cE
f ′ η

2
κ̇2 (48)

is the only difference compared to local prototype model 3.1. The quadratic rate term corresponds to the
viscosity, whereas a term linear depending on the rate results in a rate-independent model. By choosing an
exponent larger than two, the viscous model is extended to power law viscosity, cf. [37]. Since the viscosity is
employed here only to regularize the local model, the exponent two has been chosen for the sake of simplicity.
Insertion of Eqs. (46) and (47) into incremental energy (16) leads to

I = f ψ0 − ψn −
κn+1∫

κn

κ

cE
f ′ sign(κ − κn) dκ +

tn+1∫

tn

η

2 cE
κ f ′ [κ − κn]2

[t − tn]2
dt . (49)
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Since the second integral cannot easily be transformed into an integral over κ , the integral is approximated
numerically. By means of an implicit approximation, the incremental energy takes the form

I ≈ f ψ0 − ψn −
κn+1∫

κn

κ

cE
f ′ dκ − η

2 cE
κ f ′ [κ − κn]2

	t
. (50)

The additional time dependence in (50) affects the evolution equation of internal variable κ as

∂κI ≈ f ′ ψ0 − κ

cE
f ′

[
sign(κ − κn) − η

cE

κ − κn

	t

]
︸ ︷︷ ︸

∂κ̇ İ

− η

2 cE

[κ − κn]2

	t

[
f ′ + κ f ′′] � 0 (51)

where the first part is identical to the time-continuous variation ∂κ̇ İ � 0. Due to the continuity of κ , the second
part converges towards zero when time step	t is reduced, cf. [35]. Note that viscosity still affects the evolution
of κ under this approximation. A numerical demonstration is given in “Appendix” C. Assuming sufficiently
small time steps, the quadratic part of Eq. (51) is thus omitted in the following, so that the evolution equation
is approximated by

∂κI ≈ f ′ ψ0 − κ

cE
f ′

[
sign(κ − κn) − η

cE

κ − κn

	t

]
� 0

⇔ f ′ ψ0 =

⎧⎪⎨
⎪⎩

κ

cE
f ′ [−1, 1] if κ = κn

κ

cE
f ′

[
sign(κ − κn) + η

κ − κn

	t

]
else .

(52)

By combining this with constraint (40), the final form of the evolution equation is given as

κ = max
(
κn, κ tr)

with κ tr = κn

2
− 	t

2 η
+

√[
κn

2
− 	t

2 η

]2
+ 	t

η
cE ψ0 .

(53)

4.3 Micromorphic gradient regularization

The by now classic form of a gradient-enhanced continuum is

ψ(ε, κ) = f (κ) ψ0(ε) + lκ
2

[∇κ · ∇κ] , (54)

where the gradient of the internal variable to be regularized enters the constitutive equations. This changes the
structure of the underlying material model by shifting the evolution equations to the global/non-local level.
Alternatively, a gradient regularization can be approximated in a micromorphic manner. By following Forest
[49] and also Dimitrijevic and Hackl [50], the micromorphic part ψmic of Helmholtz energy (2) is given as

ψmic(ϕ, ∇ϕ, κ) := cκ

2
[ϕ − κ]2 + lκ

2
[∇ϕ · ∇ϕ] . (55)

κ is coupled to the additional, global field ϕ and the latter gradient is penalized instead. The evolution equation
for κ remains at the local level. Starting from the local prototype model, i.e., D = Dloc, the micromorphic
extension yields an incremental energy of the form

I = f ψ0 + cκ

2
[ϕ − κ]2 + lκ

2
[∇ϕ · ∇ϕ] − ψn −

κn+1∫

κn

κ

cE
f ′ sign(κ − κn) dκ . (56)
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Table 1 Generalized Mode

General Helmholtz energy ψ = f ψ0 + cκ

2
[ϕ − κ]2 + lκ

2
[∇ϕ · ∇ϕ]

General dissipation function D = − κ

cE
f ′ [|κ̇| + η κ̇2

]
Material parameter stress power

Local prototype η = 0, cκ = 0 P = σ : ε̇
Fracture energy η = 0, cκ = 0 P = σ : ε̇
Viscous regularization cκ = 0, η > 0 P = σ : ε̇
Gradient regularization η = 0 P = σ : ε̇ + ω ϕ̇ + � · ∇ϕ

This extension does not alter the balance equations (Sect. 2) but only the evolution equation. It is given through
Biot’s Eq. (22) as

f ′ ψ0 − cκ [ϕ − κ] = κ

cE
f ′

{
[−1, 1] if κ = κn

sign(κ − κn) else .
(57)

Once again, by considering the second law of thermodynamics with an associated stress power of the type
P = σ : ε̇ + ω ϕ̇ + � · ∇ϕ̇, the dissipation inequality follows as

tn+1∫

tn

D dt =
κn+1∫

κn

− [
f ′ ψ0 − cκ [ϕ − κ]

]
dκ ≥ 0 . (58)

Choosing a sufficiently large material parameter cκ enforces the identity κ ≈ ϕ and the dissipation inequality
can thus be approximated by means of

D − Dn =
κn+1∫

κn

− f ′ ψ0 dκ ≥ 0 . (59)

The dissipation inequality is formally identical to the dissipation of the underlying local prototype model
and thus constraint κ ≥ κn has also to be enforced for the gradient-enhanced model. Evolution Eq. (57) and
constraint (58) are combined via Karush–Kuhn–Tucker conditions with indicator function � as

� = f ′ [κ − cE ψ0] − cκ [ϕ − κ] ≤ 0 κ̇ ≥ 0 � κ̇ = 0 . (60)

4.4 Comparison of the regularization approaches

The variational approach allows the comparison of the three regularization concepts in a unified mathematical
structure. This is the first intermediate result, see Table 1 for a summarized juxtaposition. By applying a
general Helmholtz energy and a general dissipation function, each regularization concept can be derived from
a specific combination of material parameters η and cκ . The local prototype model is derived by choosing
viscosity η = 0 and penalty parameter cκ = 0, cf. Sect. 3—as well as the model regularized with respect to
the fracture energy. The model becomes rate dependent by choosing penalty parameter cκ = 0 and a viscosity
η > 0. The internal variable is coupled to additional field ϕ by choosing viscosity η = 0 and penalty parameter
cκ sufficiently large. Since the gradient of ϕ enters the constitutive behavior, the gradient of κ also implicitly
enters the constitutive behavior.

5 Well-posedness of the regularization concepts

The regularization concepts introduced in the previous chapter are supposed to restore well-posedness or, at
least, diminish effects deriving from ill-posedness. In this chapter, a one-dimensional bar under tension is
used to examine their well-posedness. It continues the analysis of the local prototype model from Sect. 3.2.
Well-posedness is thus only achieved in the sense of mesh-independent simulation results.
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5.1 Adaption of the fracture energy concept to ill-posedness

As mentioned previously in Sect. 3.2, the fracture energy concept is still characterized as an ill-posed boundary
value problem from a mathematical point of view. The material parameters are chosen in accordance to the
element’s characteristic diameter, see Sect. 4.1, such that the characteristic observations (here, the fracture
energy and the peak load) are identical for all elements.

5.2 Viscous regularization

Focusing on an incremental step (Sect. 2.4), the analysis of matrices A and G	 is sufficient to determine the
well-posedness of the constitutive equations. Since the viscous regularization does not introduce a gradient
dependence, matrix G	 vanishes and only stationary condition (30) has to be solved. Clearly, the existence of
a unique solution depends on the regularity of matrix A, given for the one-dimensional case as

Avis =
⎡
⎣ f̄ E f ′ E ε̄

f̄ ′ E ε̄ − 1

cE
f̄ ′

[
1 + η

	t
[2 κ̄ − κn]

]
⎤
⎦ . (61)

Here, the difference between matrix Apro and Avis is highlighted in gray color rendering the evolution equation
of κ time dependent. A straightforward computation of the eigenvalues results in

�vis
1,2 = f �̂vis

1,2 (62)

�̂vis
1,2 =

cE E κu + p κ̄ p−1
[
1 + η

	t
[2 κ̄ − κn]

]

2 cE κu

±

√√√√√√
⎡
⎢⎣
cE E κu + p κ̄ p−1

[
1 + η

	t
[2 κ̄ − κn]

]

2 cE κu

⎤
⎥⎦
2

− E p

κu cE
κ̄ p−1

[
1 + η

	t
[2 κ̄ − κn] − 2

p

κu
κ̄ p−1 cE ψ̄0

]
.

(63)

The eigenvalue belonging to the evolution equation of κ remains unconditionally positive. The sign of the
eigenvalue belonging to ε depends on the time step 	t . It remains positive as long as

1 + η

	t
[2 κ̄ − κn] − 2 cE p

κu
κ̄ p−1 ψ̄0 > 0

⇔ 	t < η κu
2 κ̄ − κn

2 cE p κ̄ p−1 ψ̄0 − 1
=: 	tcrit.

(64)

By the estimate of 2 κ̄ − κ̄n > κ̄ > κ
1/p
0 a lower bound for the critical time step can thus be specified as

	tcrit >
η κu

2 cE p ψ̄0
κ

[2−p]/p
0 , (65)

since effective energy ψ̄0 is limited due to the boundary value problem. As a consequence, the viscous regu-
larization guarantees well-posedness, if the time step is smaller than the critical one.

Alternatively, the well-posedness is investigated according to Sect. 2.3. Considering inelastic loading, the
tangent is given as

d2I
dε2

= dσ

dε
= f E

⎡
⎣1 − 	t

η
ψ0

p

κu
κ p−1

[[
κn

2
− 	t

2 η

]2
+ 	t

η
cE ψ0

]1/2
⎤
⎦ , (66)

which converges for 	t → 0 to

lim
	t→0

dσ

dε
= f E > 0 . (67)

Since a lower bound for the time step is specified in Eq. (65), the viscous example model is thus well-posed.
Again, a detailed numerical analysis of the viscous regularization on the basis of the one-dimensional bar is
given in “Appendix B”. It highlights the numerical evolution of eigenvalues and eigenmodes.
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5.3 Micromorphic gradient regularization

The coefficient matrices of the quadratically approximated incremental potential (30) read, until reaching the
point of ill-posedness,

Amic =
⎡
⎣ f̄ E − f̄ /κu E ε̄ 0

− f̄ /κu E ε̄ f̄ /(cE κu) +cκ −cκ

0 −cκ cκ

⎤
⎦ ,

G	 =
⎡
⎣0 0 0
0 0 0
0 0 −lκ

⎤
⎦ , btotal =

⎡
⎣−σ̃ ∗

0
0

⎤
⎦

. (68)

Overbars (•̄) indicate values of the starting point of the incremental step while a tilde (•̃) indicates the incre-
mental difference. The differences compared to the underlying prototype model are highlighted in gray color.

A trivial solution to the micromorphic problem is exactly the solution of the local prototype model, as

long as Amic is regular. More precisely speaking, ξmic = −Amic−1 · btotal with ϕ = κ = cE ψ0. For the
sake of simplicity, we assume the exponent p = 1 for the local prototype model. Also well-posedness of the
local prototype model and its micromorphic regularization are equivalent in this case (det

(
Apro) 
= 0 ⇔

det
(
Amic) 
= 0).
The regularization now becomes effective at the point of ill-posedness. It appears for ε = √

κu/[E cE ] ⇔
κ = κu/2. We now focus on how the micromorphic regularization affects the evolution of the solution. We
started from an initially homogeneous, uni-axial problem for the sake of illustration. At the onset of ill-
posedness, the system attains ε = σ ∗/[ f E], κ = 1/2 cE E ε2 and ϕ = κ . Neither Amic nor G	 have full rank
to allow for a classic solution, though. To find a solution, we have to split the problem. First, it can be shown
that the upper part of the equations system applying to ε and κ can be stated as

A2×3 · ξ̃ + b2×1
total = 0. (69)

Moreover, the parameter cκ > 0 of the gradient extension causes rank
(
A2×3

) = dim(b2×1
total) = dim(ε) +

dim(κ) = 2. Given this equation system, there is thus a linear reformulation such that ε̃ = [. . .] ϕ̃ and
κ̃ = [. . .] ϕ̃. The latter can be used to reformulate the last line of the first variation of the equilibrium condition
as

γ ϕ̃ + btotal,ϕ − lκ 	ϕ̃ = 0 , (70)

where btotal,ϕ denotes the third component of btotal. A one-dimensional stress (σ ∗) results in the boundary

condition term b being b = σ ∗ √
κu cE E . The value of γ is −c2κ

[
cκ + f̄ κ−1

u

[
c−1
E − E ε̄2 κ−1

u

]]−1
for a

homogeneous state. As the state becomes heterogeneous once damage localization appears, extra terms add
to γ due to the gradients at the damage region. These extra terms will also be necessary for well-posedness.
The role of γ will thus be discussed after we clarified the requirements for the respective solution structure.

As an intermediate result regarding well-posedness, we found that the incremental micromorphic problem
can be reduced to a second-order PDE of the auxiliary variable ϕ̃. According to the previous linear relation-
ships, ε̃ and κ̃ can be back calculated. Finding a solution, nevertheless, still requires further reformulations and
considerations. Notably, the problem description so far is still ill-posed as a substantial condition is yet miss-
ing, namely, localization. This becomes obvious by two properties of the mathematical structure. First of all,
simply inserting the parameters of the softening state into the pure reformulation, i.e., performing the quadratic
incremental approximation just around the softening point, yields γ = 0 ⇒ 	ϕ̃ = const. Assuming homo-
geneous Neumann boundary conditions ∇ ϕ = 0, the solution only reaches ϕ = const. Damage localization
as observed in experiments is clearly missing, rendering the solution unphysical. A second indicator for an
unphysical solution is the lack of a unique position for damage localization.

To achieve a regularized localization we must further assume two things, in addition to the micromorphic
regularization scheme. Firstly, an imperfection to uniquely locate the onset of damage localization and, sec-
ondly, a function space large enough to describe its shape. The imperfection can be artificially generated by a
heterogeneous initial damage field or geometry, for instance. The description by piecewise solution functions
is required mathematically, because a single function cannot solve the governing equation in this example.
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γ = 0 and∇ϕ = 0 enforce a single function to remain spatially constant. Only a split into piecewise functions
allows a localized damage progression. To be more precise, a split allows for a combination of trigonometric
wave solutions with decaying exponential functions and for non-zero gradients at their transition points. This
is well explained in the example found in [68], which provides an accessible (yet also extensive) analytical
solution of a simpler problem. This split into piecewise functions can also be seen in phase-field problems,
e.g., by a discontinuity in the non-zero gradient at the position of damage localization, cf. [61]. Non-academic
examples typically do not show this particular need for triggering localization. Applying the regularization
scheme suffices, because heterogeneity is usually given in more realistic problems.

Eventually, the piecewise solution for the increment of ϕ can be split into a particular solution and a
harmonic one. The particular ϕ̃p solution can simply be a constant in this example. The harmonic solution ϕ̃h

adds the regularization property. By exploiting its harmonic nature with	ϕ̃h = λ2ϕ̃h , the incremental problem
statement can be written as

⎡
⎣Amic +

⎛
⎝0 0 0
0 0 0
0 0 γ − lq λ2

⎞
⎠
⎤
⎦

︸ ︷︷ ︸
Amic
h

·
⎛
⎝ ε̃

κ̃
ϕ̃h

⎞
⎠ + btotal = 0 (71)

which is well-posed. This can indeed be seen as a new, convex(ified) variational formulation of the harmonic
micromorphic problem. In view of the elaborated derivations in [68] for an even simpler study, we omit a further
detailed analytic discussion and refer to the illustrative example given therein. The two important conditions to
make the problem finally well-posed—in addition to the micromorphic extension—are the introduction of an
imperfection and giving up the previous assumption of a perfectly homogeneous problem.A detailed numerical
analysis of the (harmonic) evolution of the eigenvalues and eigenmodes associated with the one-dimensional
bar is given in “Appendix B”.

5.4 Direct comparison of the regularization concepts by the localized incremental steps

The following comparison of the governing matrices summarizes the major findings of this section in the form
of the adaptions of each regularization concept

Apro =
⎡
⎣ f̄ E f̄ ′ E ε̄

f̄ ′ E ε̄ − 1

cE
f̄ ′

⎤
⎦ ,

Avis =
⎡
⎣ f̄ E f ′ E ε̄

f̄ ′ E ε̄ − 1

cE
f̄ ′

[
1 + η

	t
[2 κ̄ − κn]

]
⎤
⎦ ,

Amic =

⎡
⎢⎢⎣

f̄ E − f̄ /κu E ε̄ 0

− f̄ /κu E ε̄ − 1

cE
f̄ ′ +cκ −cκ

0 −cκ cκ + γ − lq λ2

⎤
⎥⎥⎦ .

(72)

It is clear that the example models contain the equations of the local models—only the part highlighted in gray
is different. This belongs to derivative ∂κκI, responsible for the evolution of internal variable κ .

6 Numerical results

The three regularization concepts are now examined numerically by two illustrative boundary value problems,
a pre-cracked plate and an L-shape. The properties of interest cover, among others, mesh objectivity, fracture
energy, unloading behavior, crack shape and transferability of model parameters to other boundary value
problems.



1532 K. Langenfeld et al.

6.1 Pre-cracked plate

6.1.1 Boundary value problem and numerical setup

The pre-cracked plate has a height and a width of 500 mm, see Fig. 1. The initial crack is located at the left side
with a length of 125 mm. A linearly distributed prescribed displacement (ū ∈ [0, 0.01] mm, ˙̄u = 0.01 mm/s)
is applied to the top and bottom. The assumption of plane stress is made for each calculation. Starting from an
initial mesh consisting of 16 × 16 elements, the area of interest is refined recursively. The two meshes after
three and four refinements will be used for evaluation, Fig. 7. The model parameters are given in Table 2. The
area-specific fracture energy is computed in the post-processing for each element according to Eq. A.1 and
summed up orthogonal to the emerging crack.

6.1.2 Results and discussion

The material parameters of the regularized models are chosen so that they match the same peak load and
integrated fracture energy, to make comparability as fair as possible. Consequently, the parameters differ from
model to model except for the elastic parameters.

As a first result, a simple transferability between themodels is not available and the regularization of amodel
involves a subsequent parameter adjustment. Moreover, the fracture energy concept requires mesh-dependent
material parameters. Here, only κu needs to be adjusted for the selected prototype models, cf. Table 2. This is
due to the fact that the crack emerges exclusively in the refined area. Apart from that, the loading behavior of
the micromorphic model (Fig. 3c) and of the prototype model (Fig. 3a) agrees qualitatively and quantitatively.

Fig. 1 Pre-cracked plate: Geometry and boundary conditions. Plane stress conditions are assumed. Homogeneous Neumann
boundary conditions are assumed as far as the gradient enhanced model is concerned

Table 2 Pre-cracked plate: Material parameters associated with the three example models

Name Symbol Value Value Value Unit
frac. eng. visc. micr.

Young’s Modulus E 21000 21000 21000 [MPa]
Poisson’s ratio ν 0.2 0.2 0.2 [–]
Damage threshold κ0 0.25 0.08 0.4 [MPa]
Damage slope κu 0.055/0.066 0.072 1 [–]
Damage exponent p 0.125 0.5 1 [–]
Energy scaling factor cE 0.75 500 20000 [–]
Viscosity η — 2 — [1/s]
Penalty parameter cκ — — 100 [MPa]
Length parameter lκ — — 1 [N]
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Both models show a fast softening behavior up to a load below 2 kN, where the load–displacement diagram
shows a kink and slowly converges towards zero, as expected for degradation functions of exponential type.
In contrast to the prototype model and the micromorphic example model, the viscous model (Fig. 3b) does
not show any change in the softening behavior caused by the exponential function. All three regularization
methods eventually yield mesh-objective load–displacement diagrams.

The crack orientation also coincides in all simulations considering the distribution of degradation function
f , cf. Fig. 4. However, the damage distribution for the fracture energy concept localizes into one element row.
This behavior is neither observed for the viscous example model (Fig. 3b) nor for the micromorphic example
model (Fig. 3c). Both show a mesh-independent crack width. However, the viscous example model shows a
spatially varying crack width. This is due to the dependence of the model on the strain rate, which varies within
the structure.

The fracture energy concept shows a spatially constant fracture energy (Fig. 5). This is expected as the
material and numerical parameters have been adjusted accordingly. Also the micromorphic prototype model
shows an (almost) constant fracture energy with deviations below 9%. The fracture energy predicted by the
viscous prototype model, on the contrary, is far from constant. Also this unphysical influence is caused by the
heterogeneous strain rates within the structure, which already influenced the width of the emerging crack.

Fig. 2 Pre-cracked plate: Recursively refined discretizations

(a) (b) (c)

Fig. 3 Pre-cracked plate: Load–displacement diagram for the three examplemodels. The value r denotes the number of refinement
steps for the underlying discretizations according to Fig. 2
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(a)

(b)

(c)

Fig. 4 Pre-cracked plate: Distribution of the degradation function f for the three example models for 3 (left column) and 4 (right
column) recursive mesh refinements

6.2 L-shaped plate

6.2.1 Boundary value problem and numerical setup

The L-shaped plate is fixed at the top edge and loaded at the bottom right edge in vertical direction in
dependence on prescribed displacement ū ∈ [0, 0.05] mm, ˙̄u = 0.05 mm/s, Fig. 6. The assumption of plane
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Fig. 5 Pre-cracked plate: Plot of the fracture energy of the propagating crack w.r.t the horizontal coordinate (x) for the three
example models based on 4 recursive mesh refinements

stress has been made. Starting from the initial mesh with three regions of 8 × 8 elements each, the area of
interest is refined recursively, see examples in Fig. 7. Compared to the previous example, two further mesh
refinements have been studied due to higher sensitivity regarding mesh dependence. The finest mesh consists
of 54532 elements after six refinements. The material parameters have been adopted from Sect. 6.1, cf. Table 2.

6.2.2 Results and discussion

A major difference is the unloading behavior of the viscous model (Fig. 8b). While both the micromorphic
example model (Fig. 8c) and its local counterpart (Fig. 8a) show purely linear elastic unloading, this is not the
case for the viscous model. This is due to the introduced time dependence of the evolution equation, which
leads to further evolution of damage evenwhen theHelmholtz energy—themechanical driving force of internal
variable κ , cf. (53)—decreases. Apart from this, the findings regarding the load–displacement diagram agree
with those observed in the previous example. The micromorphic regularization (Fig. 8c) agrees qualitatively
with its local counterpart (Fig. 8a). However, the peak loads deviate by approximately 18%. A larger deviation
of approximately 20% of the peak load is observed between the viscous and the local example model. The peak
load of the viscous model is thereby strongly influenced by external loading rate ˙̄u. Although being a modest
deviation compared to other influences, it indicates the limited transferability of calibrated model parameters
from one boundary value problem to the other. A possible explanation lies in the shape of the emerging cracks
that may induce additional effects due to their curvature, see Fig. 9.

Fig. 6 L-shaped specimen: Geometry and boundary conditions. Plane stress conditions are assumed. Homogeneous Neumann
boundary conditions are assumed as far as the gradient enhanced model is concerned
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Fig. 7 L-shaped specimen: Recursively refined discretizations

(a) (b) (c)

Fig. 8 L-shaped specimen: Load–displacement diagram for the three example models. The value r denotes the number of
refinement steps for the underlying discretizations according to Fig. 7

The regularization methods prove again that they can reliably provide mesh-objective results. Similar to
the pre-cracked plate, the fracture energy concept results in a crack band width of one element, highlighting the
ill-posed equations. Furthermore, the fracture energy concept yields an (almost) horizontal crack orientation.
This is in significant contrast to the viscous regularization and the micromorphic regularization. Both show a
curved crack path as observed in experiments, cf. [69]. The viscous model, however, causes a varying crack
thickness, indicating again the unphysical dependence on the heterogeneous strain rate within the structure.

6.3 Implications for predictions of (quasi-)brittle damage

In summary, all three regularization techniques provide mesh-objective load–displacement diagrams. Devia-
tions for the presented examples can reach moderate amounts, though, such as 20% deviation regarding the
peak load.

The damage field is only mesh-objective for the viscous and the micromorphic regularization. Considering
the fracture energy concept, the damagewidth is related to the underlying discretization and requires an adaption
of material parameter κu . Furthermore, the fracture energy concept also shows the least reproducibility of the
crack path geometry as it does not accurately capture the curved crack for the L-shape problem, see also [67].

Further influences can be seen in the physical properties, e.g., the fracture energy, which is supposed to be
constant for (quasi-)brittle materials. This only holds for the fracture energy concept, since the parameters are
specifically chosen for that purpose. It is also almost constant for the micromorphic example model. If fracture
energy is a key observation to be made, the viscous regularization shows the least accuracy. This is explained
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(a)

(b)

(c)

Fig. 9 L-shaped specimen: Distribution of the degradation function f for the three example models

by the spatially heterogeneous strain rate distribution. The artificial viscosity moreover causes an unphysical
crack width and inelastic unloading behavior. This may be of increased relevance when modeling fatigue.

Aiming for the least interference with the actual damage physics, the micromorphic regularization seems
to be most promising. The numerical effort of the micromorphic example model, however, by far exceeds that
of the other two example models. It is based on an additional global field and increases the system of equations
by the number of nodes. In terms of the computation time the L-shaped specimen with four refinements times
took ∼ 25 minutes for the fracture energy concept and the viscous regularization and ∼ 92 minutes for the
micromorphic model. The fracture energy concept and the gradient model, moreover, would allow for further
improvement by choosing much larger time steps during unloading. Note that the implementational effort of
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the micromorphic approach is increased due to the implicit form of its evolution equation. The restrictions of
the fracture energy concept and the viscous regularization, on the other hand, require a substantial amount of
cumbersome corrections to achieve the reliability of the micromorphic approach.

7 Conclusions

Three regularization concepts suitable for (quasi-)brittle damage evolution have been presented and compared
to each other: the fracture energy concept, the viscous regularization and the micromorphic gradient regular-
ization. In order to make the comparison as fair as possible, they were derived by the method of incremental
energy minimization by only extending the incremental energy of an underlying ill-posed prototype model.

By doing so, the fracture energy concept does not modify the underlying prototype model and thus
remains ill-posed. Side-effects such as mesh dependence of the integrated structural response such as the
load–displacement diagram are avoided by adapting numerical and material parameters. The crack width and
path are nevertheless still affected by the mesh size.

The viscous and the micromorphic example models are well-posed. However, they can affect the physics
of the prototype model, which has been negligible for the micromorphic approach in the presented examples.
The viscous regularization most notably caused an unphysical crack width variation and inelastic unloading
behavior. Furthermore, the viscous regularization does not result in a spatially constant fracture energy—as
required for (quasi-)brittle material models.

A practical aspect to be considered is the computing time. For the L-shaped specimen discretized with
4558 elements, the computing time increases by a factor of 4 in the micromorphic case. This relates to the
additional global degrees of freedom and hence scales by the number of elements. In the viscous case, the
computation time is approximately identical to the fracture energy concept, but in general more stable.

In conclusion, the fracture energy concept can only be a valid option if new boundary value problems do
not deviate much from successfully calibrated settings and if computation time is relevant. In the ideal case,
remeshing of the damage domain is prevented. However, if complex geometries of the crack path are important,
the fracture energy concept is not promising, since a mesh bias is observed within the numerical analyses. The
viscous regularization may be a viable option for spatially constant or controllable strain rates or if viscosity
is naturally given due to the material. In other cases, the micromorphic model remains with the most reliable
prediction. Its advantages due to unaltered material response then outweigh the higher implementation and
computational effort. The presented analysis aims at supporting such estimates and future developments.
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Appendix A: Physical properties of the fracture energy concept—Choice of the model parameters

The focus is on the physical behavior of the local prototype model. Explicit expressions are derived for damage
initiation, the maximum stress and the fracture energy, which are necessary for the application of the fracture
energy concept. Considering a spatially homogeneous problems—such as a one-dimensional bar—the fracture
energy can be computed as

G f = 1

Ac

∫

B

∞∫

t=0

σ : ε̇ dt = 1

Ac

∫

B
g f dV , (A.1)

http://creativecommons.org/licenses/by/4.0/
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Table 3 Analytical solution of integral g2f in Eq. (A.4) in dependence of parameter p

p cE g2f

1 κu

1/2 2
[
κ0 κu + κ2

u

]
1/4 4

[
6 κ4

u + 6 κ0 κ3
u + 3 κ2

0 κ2
u + κ3

0 κu
]

1/8 8
[
5040 κ8

u + 5040 κ0 κ7
u + 2520 κ2

0 κ6
u + 840 κ3

0 κ5
u

+210 κ4
0 κ4

u + 42 κ5
0 κ3

u + 7 κ6
0 κ2

u + κ7
0 κu

]

where Ac is the area of the emerging crack and g f the volume specific energy. By using identity

∞∫

t=0

σ : ε̇ dt +
∞∫

t=0

−Y κ̇ + D dt

︸ ︷︷ ︸
=0

=
∞∫

t=0

ψ̇ + D dt

= ψ(t = ∞)︸ ︷︷ ︸
=0

− ψ(t = 0)︸ ︷︷ ︸
=0

+
∞∫

t=0

D dt ,

(A.2)

due to dissipation function D being homogeneous of degree one in κ̇ , specific energy g f follows as

g f =
∞∫

t=0

σ : ε̇ dt =
∞∫

t=0

D dt . (A.3)

A subsequent calculation leads to

g f =
∞∫

t=0

D dt = −
∞∫

κ
1/p
0

κ

cE
f ′ dκ = −

[ κ

cE
f
]∞
κ
1/p
0︸ ︷︷ ︸

g1f

+
∞∫

κ
1/p
0

1

cE
f dκ

︸ ︷︷ ︸
g2f

. (A.4)

The expression g1f follows as

g1f = 1

cE
κ
1/p
0 (A.5)

and g2f in dependence on material parameter p given in Table 3. For further analysis of the prototype model,
the one-dimensional bar is considered. The stress strain relation is given as

σ = exp

(
κ0 − κ p

κu

)
E ε

with κ = max

(
κn,

1

2
cE E ε2

)
.

(A.6)

We further restrict the equations to the purely monotonously increasing case since load reversal leads to
purely elastic behavior. Hence, the stress-strain relation can be reformulated as

σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E ε if ε ≤

√
2 κ

1/p
0

cE E

exp

(
κ0 − κ p

κu

)
E ε else

. (A.7)
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The maximum stress occurs at

ε =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
2

cE E
κ
1/p
0

]1/2
if κu ≤ 2 κ0 p[

2

cE E

[
κu

2 p

]1/p]1/2

else

(A.8)

with its maximum value being

σmax =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
2 E

cE
κ
1/p
0

]1/2
if κu ≤ 2 κ0 p

exp

(
κ0

κu
− 1

2 p

) [
2 E

cE

[
κu

2 p

]1/p]1/2

else .

(A.9)

Appendix B: Numerical analysis—One-dimensional bar

The present numerical framework highlights the damage evolution by monitoring the eigenvalues and the
eigenmodes of the one-dimensional problem, respectively. The one-dimensional bar has a length of 20 mm,
is fixed on the left side and loaded on the right side. The material parameters are taken from Table 2 and an
imperfection in form of a lowered threshold value κ0 is applied at coordinate x = 10 mm. The local model
shows a change of sign in the lowest eigenvalue at the onset of damage-induced softening, see Fig. 10a, where
the eigenmode corresponding to the negative eigenvalue changes from a continuous mode (associated to the
previous elastic domain) to a discontinuous mode (Fig. 10b). This mode leads to a change of sign of the
displacement field at the imperfection. Hence, it leads to a discontinuous displacement field and to a damage
field, which localizes solely in the imperfect element.

The viscous example model shows a different behavior. The evolution of the eigenvalues and the corre-
sponding eigenmodes is shown in Fig. 11. In contrast to the local model, no instantaneous changes of the
eigenvalues and the corresponding eigenmodes is observed for the viscous example model. Furthermore, the
eigenvalues decrease slowly towards zero (but remain positive) (Fig. 11a), such that even at the onset of soft-
ening the eigenmodes (Fig. 11b) are identical to those associated to the elastic region. Unfortunately, this is
associatedwith a degradation of all elements of the one-dimensional bar. The eigenmodes develop a discontinu-
ity at the imperfection with further decreasing eigenvalues. These discontinuities do not appear instantaneously
(as for the local model), but continuously until they obtain the final form associated with a completely softened
state, cf. Fig. 11c. At this state, almost all elements show an identical material degradation. Only the imperfect
element is softened a little further, where the difference between these values is dependent on the size of the
applied imperfection.

(a) (b) (c)

Fig. 10 One-dimensional example: Fracture energy concept. Evolution of the lowest three eigenvalues and corresponding eigen-
modes at the onset of softening and at a fully softened state
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(a) (b) (c)

Fig. 11 One-dimensional example: Viscous example model. Evolution of the lowest three eigenvalues and corresponding eigen-
modes at the onset of softening and at a fully softened state

(a) (b) (c)

Fig. 12 One-dimensional example: Micromorphic example model. Evolution of the lowest three eigenvalues and corresponding
eigenmodes at the onset of softening and at a fully softened state

The micromorphic example model shows again a different behavior, see Fig. 12. The eigenvalues decrease
instantaneously at the onset of softening towards zero (but remain positive), cf. Fig. 12a. The eigenmodes asso-
ciated with the displacement field at the onset of softening qualitatively agree with those for the elastic region
and (more important) do not show any discontinuities (Fig. 12b). Even at a fully softened state Fig. 12c does
not show any discontinuities but a consistent localization width. Furthermore, the transition of the eigenmodes
from those in Fig. 12b to the ones in Fig. 12c takes place in a continuous manner.

According to the analyses inSect. 5,well-posednesswas investigated in this paper bymeans of the governing
coefficient matrices and their eigenvalues. Within a finite element framework based on a Bubnov-Galerkin
ansatz, positive eigenvalues of theses matrices result in positive eigenvalues of the stiffness matrix. Hence, the
transition of the smallest eigenvalue of the local model from a positive to a negative sign highlights again the
ill-posedness of this model—in contrast to the viscous and the micromorphic relaxed models for which the
eigenvalues remain positive.

Appendix C: Difference between the time-continuous and the time-discrete variation

As shown in Sect. 4.2, the evolution equation for the time-continuous case has been further approximated. In
order to quantify the difference, both evolution equations—the continuous one ∂κ̇D ∂κ̇ � 0 and the timediscrete
one ∂κD ∂κ � 0—have been applied to a one-dimensional example. The error intrinsic to this approximation
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(a) (b)

Fig. 13 One-dimensional example: Viscous example model. Time-continuous evolution equation vs time-discrete evolution
equation

is numerically analyzed here. The material parameters have been chosen according to Table 2 and the strain
rate is set to ε̇ = 10−3 1/s. The results are shown in terms of degradation function f (Fig. 13a) and in terms
of the relative difference with respect to the time-continuous variation (Fig. 13b). The black graph provides
the reference and corresponds to the time-continuous variation with a chosen time step of 	t = 10−4 s. The
blue, green and red graphs belong to the time-discrete counterpart and are calculated with different time steps.
The evolution of degradation function f (Fig. 13a) only differs marginally. According to Fig. 13b the relative
difference decreases with a decreasing time step. For a time step of 	t = 10−3 the relative difference is below
1 % and for a time step of 	t = 10−3 even below 1 �. Thus, the time-discrete evolution equation indeed
converges to the time-continuous one.
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