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Abstract
This paper considers a paired data framework and discusses the question of marginal
homogeneity of bivariate high-dimensional or functional data. The related testing
problem can be endowed into a more general setting for paired random variables
taking values in a general Hilbert space. To address this problem, a Cramér–von-
Mises type test statistic is applied and a bootstrap procedure is suggested to obtain
critical values and finally a consistent test. The desired properties of a bootstrap test
can be derived that are asymptotic exactness under the null hypothesis and consistency
under alternatives. Simulations show the quality of the test in the finite sample case. A
possible application is the comparison of two possibly dependent stock market returns
based on functional data. The approach is demonstrated based on historical data for
different stock market indices.

Keywords Marginal homogeneity · Functional data · Bootstrap test · U -statistic ·
Cramér–von-Mises test · Stock market return

Mathematics Subject Classification 62G10 · 62G09

1 Introduction

Due to the availability of high-frequency data, statistical observations can be described
and modeled by random functions, the so-called stochastic processes. Since classical
methods are designed for vector-valued observations rather than for stochastic pro-
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cesses, they usually cannot be applied in this situation. The field of functional data tries
to close this gap. One popular solution to tackle this problem is to project the random
functions to the real line and then apply one of the classical methods. For example,
Cuesta-Albertos et al. (2006, 2007) applied the Kolmogorov–Smirnov goodness-of-fit
test to randomly projected square-integrable functions. Cuevas and Fraiman (2009)
extended this idea to more general spaces. Ditzhaus and Gaigall (2018) did the same
by discussing observations with values in a general Hilbert space. In this way, stochas-
tic processes as well as high-dimensional data can be discussed simultaneously. More
interaction between these two fields is desirable as stated by Goia and Vieu (2016) and
Cuevas (2014) in the functional data community as well as by Ahmed (2017) from
the high-dimensional side. Extending the idea of goodness-of-fit, Bugni et al. (2009)
studied the testing problem of whether the underlying distribution belongs to a pre-
specified parametric family. Hall and Van Keilegom (2002) discussed pre-processing
the functional data, which is in practice usually just available at finitely many time
points, in the context of two-sample testing. Recently, the two-sample testing problem
formultivariate functional data was discussed by Jiang et al. (2017) based on empirical
characteristic functions.

In this paper, we use also the projection idea mentioned, but we address a paired-
sample testing problem allowing for dependence. This approach and our test are
completely new. We suggest a procedure for testing marginal homogeneity in sep-
arable Hilbert spaces, where we consider not just a few random projections but all
projections from a sufficient large projection space. The advantage of our approach
is that no additional randomness influences the result of the test. With a view to the
consistency of the testing procedure, we apply a test statistic of Cramér–von-Mises
type. See Anderson and Darling (1952) and Rosenblatt (1952) for Cramér–von-Mises
tests in the usual cases of real-valued random variables and random vectors with real
components, and Gaigall (2019) for the application of a Cramér–von-Mises test for the
null hypothesis of marginal homogeneity for bivariate distributions on the Cartesian
square of the real line. However, the demand for consistency has a price: the distribu-
tion of the test statistic under the null hypothesis is unknown, and so related quantiles
are not available in practice. In contrast with the unpaired setting, exchangeability
is not given in general under the null hypothesis of marginal homogeneity. This is
already known for bivariate distributions on the Cartesian square of the real line, see
Gaigall (2019). For that reason, a permutation test, such as they are used by Hall and
Tajvidi (2002) and Bugni and Horowitz (2018) for the unpaired two-sample setting
under functional data, or in Bugni and Horowitz (2018) in the more general situation
of one control group against several treatment groups, is no option in our situation.
To solve this problem, we offer a bootstrap procedure to determine critical values. We
can show that the bootstrap test keeps the nominal level asymptotically under the null
hypothesis. Moreover, we prove the consistency of the bootstrap procedure under any
alternative.

While also other applications are possible, for instance to high-dimensional data, we
especially focus on functional data and stock market returns. In the field of empirical
finance, statistical inference of stock market prices is a widespread topic. Here, usual
statistical procedures are typically applied to stock market log returns. One popular
question is that of a suitable distributionalmodel whichmatchedwith the observations.
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For example, Göncü et al. (2016) apply different goodness-of-fit tests to data sets
consisting of daily stock market index returns for several emerging and developed
markets andGray andFrench (2008) consider the distribution of log stock index returns
of the S&P500 and deduce that the distributions do not follow a normal distribution but
demonstrate a greater ability for other distributional models. This topic is also treated
based on high-frequency data, seeMalevergne et al. (2005), where 5 min returns of the
Nasdaq Composite index and 1 min returns of the S&P 500 are considered. Besides
the topic of model selection for stock market returns, another interesting topic is the
comparison of different stock market returns as it is done in Midesia et al. (2016),
where annual pooled data of 100 conventional and Islamic stock returns are analyzed.
In this context, the dependence of the different stock prices is obvious and already
detected, see Min (2015), where the major 8 companies of the Korean stock market
are investigated, and should be taken into account.

The paper is structured as follows. We first introduce the model and our general
null hypothesis of marginal homogeneity in the paired sample setting in Sect. 2. We
introduce a Cramér–von-Mises type test for the aforementioned testing problem and
derive its asymptotic behavior with the help of the theory ofU -statistics. The resulting
asymptotic law under the null hypothesis can be transferred to a bootstrap counterpart
of the test statistic. In addition to these theoretical findings, we study the small sample
performance of the two resampling tests in a numerical simulation study presented
in Sect. 3. Finally, the application to stock market indices is outlined in Sect. 4. We
demonstrate the application of the test to the historical values of the stock market
indices Nikkei Stock Average from Japan, Dow Jones Industrial Average from the
US, and Standard & Poor’s 500 from the US. The test confirms the intuition that
the indices of the same county are much more comparable than indices of different
countries. Note that all proofs are conducted in the Appendix.

2 Testingmarginal homogeneity in Hilbert spaces

Let H be a Hilbert space, i.e., a real inner product space, where the inner product is
denoted by 〈·, ·〉. We suppose that H is separable with countable orthonormal basis
O = {ei ; i ∈ I }, where ei is the i-th basis element and the index set I is given by
the natural numbers I = N or the subset I = {1, . . . , |I |} ⊂ N. Now, let paired
observations be given

X j = (X j,1, X j,2), j = 1, . . . , n,

that are random variables with values in H × H . We suppose that X1, . . . , Xn are
independent and identical distributed, and we suppose that the distribution PX1 of X1
is unknown. For technical reasons, we suppose that for all i ∈ I the joint distribution
of 〈X1,1, ei 〉 and 〈X1,2, ei 〉 is absolutely continuous with density fi , where the set
{ fi (r , s) > 0; (r , s) ∈ R

2} is open and convex, compare with Gaigall (2019). While
we allow any dependence structure between X j,1 and X j,2, we like to infer the null
hypothesis of marginal homogeneity
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H : PX j,1 = PX j,2 versus K : PX j,1 �= PX j,2 .

Our main application is the functional data case, where our observations are mea-
surable and square-integrable real-valued functions X j,k(t), t ∈ [0, T ], k = 1, 2,
j = 1, . . . , n, on the interval [0, T ], and we consider the specific space H =
L2[0, T ] containing all measurable and square-integrable real-valued functions on
the interval [0, T ] of length T ∈ (0,∞) and equipped with the usual inner prod-
uct 〈 f , g〉 = ∫ T

0 f (x)g(x) dx , f , g ∈ H . A corresponding orthonormal basis
is given by normalized Legendre polynomials. Another possible application is the
high-dimensional case. Introducing the dimension d = |I |, considering the index
set I = {1, . . . , d} ⊂ N, and setting R

I = { f ; f : I �→ R}, we consider
random vectors X1,k , k = 1, 2, seen as random variables with values in the sep-
arable Hilbert space H = {x; x ∈ R

I ,
∑

i∈I x(i)2ri < ∞} with inner product
< x, x ′ >= ∑

i∈I x(i)x ′(i)ri , (x, x ′) ∈ H2, where the elements ei = δi/
√
ri ,

i ∈ I , define a countable orthonormal basis O = {ei ; i ∈ I } and η = ∑
i∈I riδi

is a measure on the index set I with ri ∈ (0,∞) for all i ∈ I . This point of view
enables an extension to the infinite-dimensional case d ∈ N ∪ {∞}, where I = N in
the infinite-dimensional case d = ∞, and X1,k = (X1,k(i))i∈I , k = 1, 2, are now
random sequences.

As postulated in the introduction, we project first the processes X j,i to the real line
and then apply a Cramér–von-Mises type test. With a view to the consistency of the
testing procedure, we choose a Cramér–von-Mises type test statistic. We note that a
Kolmogorov–Smirnov type test statistic, or a test statistic obtained by adding a suit-
able weight function, can be applied analogously. For the investigation of asymptotic
properties of our test, we use that the Cramér–von-Mises distance is connected to von
Mises’ type functionals, also known as V -Statistics. For that reason, the asymptotic
properties of a test based on another test statistic have to be treated separately. In
our approach, projection is done via the inner product, i.e., we consider 〈X j,i , x〉 for
x ∈ H . We consider all projections x from a sufficient large projection space h ⊂ H .
In fact, as explained in Ditzhaus and Gaigall (2018), the distributions of X1,1 and
X1,2 coincide if and only if 〈X1,1, x〉 and 〈X1,2, x〉 have the same distribution for all
projections x ∈ h, where

h =
⎧
⎨

⎩

k∑

j=1

m jei j ; k ∈ I , i1, . . . , ik ∈ I , i1 < · · · < ik,
k∑

j=1

m2
j = 1

⎫
⎬

⎭
.

This motivates the following test statistic:

CvMn =
∫

Dn(x)P(dx), (2.1)

where P is a suitable probability measure on the projection space h and Dn(x) is the
usual two-sample Cramér–von-Mises distance when applying the projection x ∈ h.

123



Testing marginal homogeneity in Hilbert spaces with… 753

Let

Fn,i (x, r) = 1

n

n∑

j=1

I〈x,X j,i 〉≤r , (x, r) ∈ H × R, i = 1, 2,

be the empirical distribution function of the real-valued random variables 〈x, X1,i 〉,
. . . , 〈x, Xn,i 〉. Then, the related two-sample Cramér–von-Mises distance is given by

Dn(x) = n
∫

[Fn,1(x, r) − Fn,2(x, r)]2 F̄n(x, dr),

where F̄n = (Fn,1 + Fn,2)/2. While more general measures P may be considered
(compare to Ditzhaus and Gaigall 2018), we focus here to the following specific
proposal. It is based on two probability measures ν1 and ν2 on the index set I such that
ν j ({i}) > 0 for all i ∈ I and j = 1, 2. These can be chosen arbitrarily in advance. In the
case of infinite-dimensional Hilbert space with orthonormal basis O = {ei ; i ∈ N}, it
is possible to choose Poisson distributions shifted by 1. Otherwise, for Hilbert spaces
of finite dimension d < ∞ with orthonormal basis O = {ei ; i = 1, . . . , d}, it is
possible to choose the uniform distribution on {1, . . . , d} for ν1 and ν2. Anyhow,
given these two probability measures, we generate a realization of P as follows:

Step 1. Generate a realization k ∈ I of the distribution ν1.
Step 2. Independently of Step 1, generate i1, . . . , ik ∈ I by k-times samplingwithout

replacement from the distribution ν2.
Step 3. Independently of Steps 1 and 2, generate a realization (m1, . . . ,mk) of the

uniform distribution on the unit circle in Rk .
Step 4. Set x = ∑k

j=1m jei j .

This step-by-step procedure determines P uniquely and is considered throughout the
remaining paper:

Assumption 1 Consider P given by STEPs 1–4.

As it is stated above, the concrete value of the test statistic can be obtained by Monte
Carlo simulation. A possible implementation of the procedure is analogous to the
implementation discussed in Section 2.2 in Ditzhaus and Gaigall (2018). In particular,
a finite number of realizations from the probability measure P can be used for the
approximation of the integral with respect to P in applications. In this regard, the
practical implementation of the procedure is related to the proposal considered in
Cuesta-Albertos et al. (2007), where the authors treat a one-sample goodness-of-fit
problem for functional data. In detail, the maximum over Kolmogorov–Smirnov type
test statistics for a finite and fixed number projections is considered there. The result is
a randomized test. In contrast, we treat a marginal homogeneity problem on the basis
of a paired-sample and consider the mean over Cramér–von-Mises type test statistics,
where our theoretical results, stated next, are available for the theoretical criterion,
i.e., if the number of projections tends to infinity and the mean is transferred in the
expectation. In fact, by increasing the number of random projections it is possible to
reduce the randomness in the testing procedure and to eliminate the randomness in
the limit.
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2.1 Asymptotic theory of the test statistic

For our asymptotic approach, we let n → ∞. It is well known that the Cramér–
von-Mises distance Dn is connected to von Mises’ type functionals, also known as
V -Statistics, which are closely related to U -Statistics. For a deeper introduction to
these kinds of statistics, we refer the reader to Koroljuk and Borovskich (1994) and
Serfling (2001). Our statistic CvMn can also be rewritten into a certain V -Statistic,
and thus, the same theory can be applied to obtain the following result.

Theorem 1 Let τ1, τ2, . . . be a sequence of independent, standard normal random
variables. Under the null hypothesis H and Assumption 1,

CvMn
d→ 3

∞∑

i=1

λiτ
2
i = Z , (2.2)

where (λi )i∈N is a sequence of non-negative numbers with
∑∞

i=1 λi < ∞ and λi > 0
for at least one i ∈ N implying that the distribution function of Z is continuous and
strictly increasing on the non-negative half-line.

In the proofs,more information about (λi )i∈N is provided. In short, they are eigenvalues
of a Hilbert–Schmidt operator corresponding to the kernel function of our V -statistic.

Theorem 2 Under the alternative K and Assumption 1, our statistic CvMn diverges,
i.e.,

CvMn
p→ ∞ as n → ∞.

In general, the test statistic CvMn is not distribution-free under the null hypothesis,
i.e., the distribution depends on the unknown distribution of X1. As it can be seen in
the proofs, the same applies to Z . Given that α ∈ (0, 1) is the significance level, neither
a (1 − α)-quantile cn,1−α of CvMn nor the (1 − α)-quantile c1−α of Z is available
as critical value in applications. To resolve this problem, we propose the estimation
of the quantiles via bootstrapping in the spirit of Efron (1979) and follow the idea in
Gaigall (2019), where the usual two-sample Cramér–von-Mises distance is applied to
bivariate random vectors with values in R2. Note that under the null hypothesisH the
expectations E[Fn,1(x, y)] = E[Fn,2(x, y)], (x, y) ∈ H × R, coincide, and thus, we
can rewrite our test statistic into

CvMn = n
∫ ∫

{Fn,1(x, y) − E[Fn,1(x, y)]
+ E[Fn,2(x, y)] − Fn,2(x, y)}2 F̄n(x, dy)P(dx).

Denote by X∗
jn = (X∗

jn,1, X
∗
jn,2), j = 1, . . . , n, a bootstrap sample from the original

observations X j , j = 1, . . . , n, obtained by n-times sampling with replacement. Let
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F∗
n,i , F̄

∗
n be the bootstrap counterparts of Fn,i and F̄n . Clearly, the conditional expecta-

tion E[F∗
n,i (x, y)|(X j ) j ] given the data (X j ) j=1,...,n equals Fn,i (x, y). Consequently,

the bootstrap counterpart of our test statistic is

CvM∗
n = n

∫ ∫ (
F∗
n,1(x, y) − Fn,1(x, y)

+Fn,2(x, y) − F∗
n,2(x, y)

)2
F̄∗
n (x, dy)P(dx).

Let c∗
n,1−α be a (1−α)-quantile of CvM∗

n given the original observations X1, . . . , Xn .
In applications, concrete values of c∗

n,1−α are obtained by Monte Carlo simulation.
In the proofs, we show that the bootstrap statistic mimics asymptotically the limiting
null distribution under the null hypothesis H implying that c∗

n,1−α is an appropriate
estimator for the unknown quantile cn,1−α or c1−α , while CvM∗

n and c∗
n,1−α remain

asymptotically finite under general alternatives. This results in an asymptotically exact
and consistent bootstrap test ϕ∗

n = ICvMn>c∗
n,1−α

.

Theorem 3 Suppose that Assumption 1 holds. Then, as n → ∞, we have

E[ϕ∗
n ] = P(CvMn > c∗

n,1−α) → αIH + IK,

where I· denotes the indicator function.

3 Simulations

Remembering that our test is suitable for random variables Xi, j , i = 1, 2, j =
1, . . . , n, with values in a general separate Hilbert space, we consider the separable
Hilbert space H consisting of all measurable and square-integrable functions on the
unit interval [0, 1]. This space is endowed with the usual inner product 〈·, ·〉 and
the normalized Legendre polynomials build a corresponding orthonormal basis O =
{ei ; i ∈ I }, I = N. We obtain our test statistic (2.1) by Monte Carlo simulation based
on 500 replications following Step 1–4 fromSect. 2. Thereby, we choose in Step 1 and
Step 2 a standard Poisson distribution shifted by 1, i.e., the distribution of N + 1 for
N ∼ Pois(1). In our simulations, the stochastic processes X j,i = (X j,i (t); t ∈ [0, 1])
have the form

X j,i (t) = ai B j,i (t) + bi t(t − 1), t ∈ [0, 1], i = 1, 2, j = 1, . . . , n

for parameters ai ∈ R\{0} and bi ∈ R and independent bivariate Brownian bridges
Bj = (Bj,1, Bj,2) on [0, 1], j = 1, . . . , n, with covariance structure

Cov(Bj,1(s), Bj,2(t)) = r(min(s, t) − st), s, t ∈ [0, 1], j = 1, . . . , n

for a dependence parameter r ∈ [0, 1]. Each simulation is based on 5000 simulation
runs. To obtain the critical values in the bootstrap procedure, we use Monte Carlo
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Table 1 Empirical sizes

X j,1(t) X j ,2(t) r α = 5% α = 10%

n = 20 n = 50 n = 20 n = 50

B j,1(t) B j ,2(t) 0 5.7 5.1 10.3 9.5

0.25 4.8 4.8 9.8 8.7

0.5 3.9 4.6 8.4 9.0

1.5B j,1(t) 1.5B j ,2(t) 0 5.5 5.3 10.4 10.1

0.25 5.0 4.6 10.2 8.9

0.5 3.6 5.1 8.1 10.1

2B j,1(t) 2B j ,2(t) 0 5.0 5.8 10.6 11.3

0.25 4.9 4.7 9.3 9.4

0.5 3.5 4.4 7.4 9.2

2.5B j,1(t) 2.5B j ,2(t) 0 6.1 5.2 11.6 10.0

0.25 4.7 4.7 9.6 10.0

0.5 3.6 4.0 8.6 8.3

B j,1(t) + 0.5t(1 − t) B j ,2(t) + 0.5t(1 − t) 0 5.2 5.1 10.1 10.3

0.25 5.1 5.4 10.2 10.3

0.5 3.6 4.5 8.0 8.6

B j,1(t) + t(1 − t) B j ,2(t) + t(1 − t) 0 5.7 4.8 10.6 9.2

0.25 4.6 4.7 9.6 9.9

0.5 3.5 4.2 7.4 8.7

B j,1(t) + 1.5t(1 − t) B j ,2(t) + 1.5t(1 − t) 0 5.5 5.8 11.0 11.0

0.25 4.4 5.3 9.4 10.4

0.5 3.8 4.0 7.5 8.5

B j,1(t) + 2t(1 − t) B j ,2(t) + 2t(1 − t) 0 5.5 5.1 10.6 10.3

0.25 4.7 4.8 9.0 9.7

0.5 3.4 4.8 8.1 9.3

simulation based on 999 replications. Empirical sizes of the bootstrap test are dis-
played in Table 1. The simulations are conducted for parameters r ∈ {0, 0.25, 0.5},
ai ∈ {1, 1.5, 2, 2.5}, and bi ∈ {0, 0.5, 1, 1.5, 2}, the sample sizes n ∈ {20, 50}, and
significance levels α ∈ {5%, 10%}. The empirical sizes are in almost all cases in a
reasonable range around the nominal level α. A systematic exception from this obser-
vations is the sizes of the bootstrap approach under the strong dependence setting
(r = 0.5) and the smaller sample size setup (n = 20). In this case, the bootstrap deci-
sions are rather conservative with corresponding empirical sizes from 3.4 to 3.9%with
an average of 3.6% for α = 5% as well as values from 7.4 up to 8.6% and an average
of 7.4% for α = 10%. However, increasing the sample sizes to n = 50 improves the
type-I error rate control; now we can observe in average a value of 4.5% for α = 5%
and of 9.0% for α = 10%, respectively, under the strong dependence setting.

To complement this study for empirical sizes, we conduct additional simulations,
now based on 1000 runs, under different alternative settings, where we vary the
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Table 2 Empirical power values for n = 20

X j,1(t) X j,2(t) r α = 5% α = 10%

B j,1(t) 1.5B j ,2(t) 0 10.7 19.9

0.25 10.0 21.0

0.5 12.0 25.2

B j,1(t) 2B j ,2(t) 0 22.6 42.9

0.25 36.3 58.7

0.5 50.6 73.1

B j,1(t) 2.5B j ,2(t) 0 47.2 74.3

0.25 62.5 85.0

0.5 84.7 94.3

B j,1(t) B j,2(t) + 0.5t(1 − t) 0 14.1 21.2

0.25 13.0 21.6

0.5 17.0 24.4

B j,1(t) B j,2(t) + t(1 − t) 0 35.2 46.9

0.25 45.1 57.0

0.5 52.8 66.4

B j,1(t) B j,2(t) + 1.5t(1 − t) 0 68.7 78.8

0.25 78.7 86.4

0.5 87.8 93.5

B j,1(t) B j,2(t) + 2t(1 − t) 0 92.6 96.0

0.25 95.8 97.4

0.5 98.9 99.4

parameters ai {1, 1.5, 2, 2.5} and bi ∈ {0, 0.5, 1, 1.5, 2} for the second component
X j,2 while keeping them fixed as (ai , bi ) = (1, 0) for the first one. In Table 2, the
results for the small sample size setting (n = 20) are displayed. Here, the power
values increase for growing parameters ai and bi , respectively, as well as for grow-
ing dependence parameter r . It is seen that the power increases as the dependence
parameter r increases in the most cases. A possible reason is that an increasing depen-
dence parameter r reduces the differences of the first and the second components
of the bivariate Brownian bridges Bj = (Bj,1, Bj,2) on [0, 1], j = 1, . . . , n, such
that the deterministic factors a2 ∈ {1, 1.5, 2, 2.5} or the deterministic additive terms
b2t(t − 1), t ∈ [0, 1], b2 ∈ {0, 0.5, 1, 1.5, 2}, in the second components X j,2,
j = 1, . . . , n, cause clear differences in the components X j,1 and X j,2, j = 1, . . . , n,
of the bivariate data. For two specific alternatives (ai , bi ) = (1.5, 0), (1, 1) under
moderate (r = 0.25) dependence, the power behavior is, moreover, investigated under
growing sample sizesn ∈ {20, 30, . . . , 70}, see Fig. 1. The resulting power curves have
a clear positive slope indicating a reasonable power behavior for increasing sample
sizes.
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Fig. 1 Power values for increasing sample sizes under moderate (r = 0.25) dependence

4 Applications to stockmarket returns

In a possible application, the observations are obtained from stock market returns. To
be concrete, we consider two stock price processes and a time period [0, T0], where
T0 ∈ (0,∞) is a time horizon. The stock price processes are denoted by

Yi = (Yi (t); t ∈ [0, T0]), i = 1, 2,

where Yi is a random variable that takes values in the space of all measurable and
square-integrable real-valued functions on [0, T0]. Additional structural assumptions
on the underlying stochastic process for the stock prices are required. In the classical
models for stock prices, i.e., the exponential Lévy model, Black–Scholes model, and
Mertonmodel, the structural assumptionsmentioned are independence and stationarity
of the increments of a Lévy process. Seasonality effects, which are specific trends dur-
ing certain periods of the stock price processes, can disturb the stationarity assumption.
Figure 2 shows the mean monthly indices (open) of the Nikkei Stock Average (Nikkei
225), Dow Jones Industrial Average (DJIA), and Standard & Poor’s 500 (S&P 500)
from 01/01/1999 to 01/01/2019, where seasonality effects are clearly seen. We will
tackle this problem by splitting up the time horizon into n equal-sized time intervals to
obtain n observations for each stock price process. To be more specific, let T0 = nT
for T ∈ (0,∞) then we consider the time periods [0, T ], . . . , [(n − 1)T , nT ] and our
observations are the log-returns during these periods

X j,i (t) = log
Yi (t + ( j − 1)T )

Yi (( j − 1)T )
, t ∈ [0, T ], i = 1, 2, j = 1, . . . , n,

which are themselves measurable and square-integrable real-valued functions on
[0, T ]. In particular, we have the specific space H = L2[0, T ] containing all mea-
surable and square-integrable real-valued functions on the interval [0, T ] of length
T ∈ (0,∞) and equipped with the usual inner product 〈 f , g〉 = ∫ T

0 f (x)g(x) dx ,
f , g ∈ H . A corresponding orthonormal basis is given by normalized Legendre poly-
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Table 3 Empirical p-values of the test in percent

X1, j (t) X2, j (t) Monthly values Weekly values Daily values

DJIA S&P 500 73.6 57.7 65.7

Nikkei 225 S&P 500 5.5 12.3 6.5

Nikkei 225 DJIA 5.6 11.8 10.9

nomials. Thewell-knownmodels for stock pricesmentioned imply an independent and
identical distributed structure of the increments X j,i . In models with time-dependent
or stochastic volatility (volatility clustering for instance), this structure is may be vio-
lated. In fact, the theory ofU -Statistics is well developed and covers also cases where
the independent and identical distributed data structure is disturbed, see Chapters 2.3
and 2.4 of Lee (1990). We point out that our results are derived by application of
the theory of U -Statistics in the independent and identical distributed data case, but
it should be possible to extend and modify the approach in more general situations,
however, under suitable regularity conditions.

In what follows, we demonstrate the application of our test to the values (open) of
the stockmarket indicesNikkei StockAverage of Japan, Dow Jones Industrial Average
of the US, and Standard & Poor’s 500 of the US for the time period 01/01/1999 to
01/01/2019. For the demonstration of how the test works in applications, we consider
different frequencies of the data that are monthly values, weekly values, and daily
values, and a linear interpolation. The resulting time series (for the monthly values)
are presented in Fig. 3 and can be seen as square-integrable functions on the interval
[0, T0] for T0 = 20 (years). To cover seasonality effects indicated in Fig. 2, we split
the time horizon of 20 years into 20 subintervals each representing one year, i.e.,
T = 1 and n = 20. We apply our method to do pairwise comparisons of the indices,
where the test statistic is again approximated by 500 random projections following
Step 1–4 and the shifted Poisson distribution is used in Step 1 and Step 2 as in
Sect. 3. The resulting p-values for the bootstrap approach are displayed in Table 3
for 5000 resampling iterations, respectively. Since DJIA and S&P 500 reflect both the
US market, it is not surprising that the test leads to a very high p-value and, thus,
does not reject the null hypothesis. Comparisons of each of these US indices with the
Japanese Nikkei 225 lead to p-values much lower, but even above the typical used
5%-benchmark. The results are in line with the first graphical impression, which we
get in Fig. 3.
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A Proofs

We prove Theorem 1 in a more general way. Instead, of CvMn we consider

Sn =n
∫ ∫

([F1,n(x, y) − F1(x, y)]−
[
F2,n(x, y)−F2(x, y)

])2
Fn(x, dy)P(dx),

where

Fi (x, y) = P(〈x, X1,i 〉 ≤ y), (x, y) ∈ H × R, i = 1, 2.

Theorem 4 Suppose that Assumption 1 holds. Let τ1, τ2, . . . be a sequence of inde-
pendent, standard normal random variables. Under the null hypothesis H as well as
under any alternative, we have

Sn
d→ 3

∞∑

i=1

λiτ
2
i = Z , (A.1)

where (λi )i∈N is a sequence of non-negative numbers with
∑∞

i=1 λi < ∞ and λi > 0
for at least one i ∈ N implying that the distribution function of Z is continuous and
strictly increasing on the non-negative half-line.

Proof Let x j = (x j,1, x j,2) ∈ H2, j ∈ N. We introduce the asymmetric kernel f
given, for every x1, x2, x3 ∈ H2, by

f (x1, x2, x3)

= 1

2

2∑

i=1

∫ [
I〈x1,1−x3,i ,u〉�0 − F1(u, 〈x3,i , u〉) − I〈x1,2−x3,i ,u〉�0 + F2(u, 〈x3,i , u〉)

]

×
[
I〈x2,1−x3,i ,u〉�0 − F1(u, 〈x3,i , u〉) − I〈x2,2−x3,i ,u〉�0 + F2(u, 〈x3,i , u〉)

]
P(du)

(A.2)
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as well as its symmetric version φ defined, for every x1, x2, x3 ∈ H2, by

φ(x1, x2, x3) = 1

3

(
f (x1, x2, x3) + f (x2, x3, x1) + f (x1, x3, x2)

)
.

Clearly,

Sn = 1

n2

n∑

i, j,k=1

f (Xi , X j , Xk) = 1

n2

n∑

i, j,k=1

φ(Xi , X j , Xk)

= 1

n2

n∑

i=1

φ(Xi , Xi , Xi ) + 3

n2

n∑

i, j=1; j �=i

φ(Xi , Xi , X j )

+ 1

n2
∑

1�i �= j �=k�n

φ(Xi , X j , Xk)

=: U1,n +U2,n +U3,n . (A.3)

By the classical strong law of large numbers as well as by its extension toU -statistics
of higher degrees (e.g., Koroljuk and Borovskich 1994, Theorem 3.1.1)

nU1,n
a.s.−→ E[φ(X1, X1, X1)] ∈ [−4, 4], and

U2,n
a.s.−→ 3 · E[φ(X1, X1, X2)] ∈ [−4, 4].

Thus, the first summand in (A.3) vanishes and the second one converges to a con-
stant, which we will specify later. For the third summand, we apply results about
weak convergence of U-statistics. Following Koroljuk and Borovskich (1994), we
first determine the rank of degeneracy of U3,n . For that purpose, we introduce

g1(x1) = E[φ(x1, X2, X3)] and g2(x1, x2) = E[φ(x1, x2, X3)] − g1(x1) − g1(x2)

for all x1, x2 ∈ H2. It is easy to check that for every x1, x2, x3 ∈ H2 we have

E[ f (X1, x2, x3)] = E[ f (x1, X2, x3)] = 0. (A.4)

Thus, we obtain for all x1 ∈ H2

g1(x1) = E
[
φ(x1, X2, X3)

] = E
{
E
[
φ(x1, X2, X3)

∣
∣X3

]} = 0 = E
[
φ(X1, X2, X3)

]
.

(A.5)

The function (x1, x2) �→ g2(x1, x2) = E[φ(x1, x2, X3)] = E[ f (x1, x2, X3)]/3 is
not constant equal to 0 with probability one, as explained at the end of the proof.
Summing up, we can conclude that the rank of theU -statisticU3,n is r = 2 (Koroljuk
and Borovskich 1994, p. 24). Consequently, applying Corollary 4.4.2 of Koroljuk and

123



764 M. Ditzhaus, D. Gaigall

Borovskich (1994) yields

U3,n
d→ 3

∞∑

i=1

λi (τ
2
i − 1),

where τ1, τ2, . . . is a sequence of independent, standard normal random variables and
(λi )i∈N is the collection of eigenvalues of the Hilbert–Schmidt operator h(·) �−→
E
[
g̃2(X1, X2)h(X2)|X1

]
with respective eigenfunctions (ϕi )i∈N. By Lemma 1, see

below, g2 is a degenerated and boundedMercer kernel. In analogy to the argumentation
of Leucht and Neumann (2013), see their proof of Theorem 2.1, an extension of
Mercer’s Theorem Sun (2005) yields that for all x1, x2 ∈ H2

g2(x1, x2) =
∞∑

i=1

λiϕi (x)ϕi (y). (A.6)

The sum‘s convergence does not only hold pointwisely but even absolutely and
uniformly on every compact subset of the Cartesian square of the support of PX1 .
Moreover,

λi � 0 for all i ∈ N and
∞∑

i=1

λi = E(g2(X1, X1)) = E(φ(X1, X1, X3)) < ∞.

(A.7)

The latter is exactly the limit of U2,n , which remained to be specified. Summing up,
the stated result about the weak convergence of Sn follows when g2 is, as stated above,
indeed not a constant function equal to 0. The latter as well as λi > 0 for at least
one i ∈ N hold if

∑∞
i=1 λi = E(g2(X1, X1)) is positive, which we discuss now.

Note that E(g2(X1, X1)) is non-negative. Contrary to our claim, we assume now that
E(g2(X1, X1)) = 0. Then, either g2 is a constant function equal to 0, and thus, the
rank of U3,n is r = 3 or the rank of the U3,n is still r = 2. If r = 2 is still true,
then by our above argumentation it follows that

∑∞
i=1 λi = 0 implying λi = 0 for

all i ∈ N and, consequently, Sn
p→ 0. If r = 3, then Sn

p→ 0 follows from Theorem

4.4.2 of Koroljuk and Borovskich (1994). Thus, either way Sn
p→ 0. Our assumptions

on the joint distribution of 〈X1,1, ei 〉 and 〈X1,2, ei 〉, i ∈ I , ensure that Assumption 1
and Assumption 2 in Gaigall (2019) are satisfied, and it follows from Theorem 1 and

Theorem 3 in Gaigall (2019) that Dn(e1)
d→ S as n → ∞, where S is a real-valued

random variable and not constantly zero. In all, from

Sn ≥ Dn(e1)ν1({1}) d→ S · ν1({1}) as n → ∞

together with ν1({1}) > 0 we obtain a contradiction. Thus, E(g2(X1, X1)) > 0 is true
and, in particular, g2 is not a constant function equal to 0 and λi > 0 for at least one
i ∈ N. ��
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Lemma 1 Suppose that Assumption 1 holds. The function g2 is a degenerated and
bounded Mercer kernel, i.e., it is continuous, symmetric and positive semidefinite.

Proof It is easy to see that g2 is bounded and symmetric. The degeneracy follows
immediately from (A.4). For arbitrary k ∈ N let c1, . . . , ck ∈ R. Then,

k∑

i, j=1

ci c j g2(xi , x j ) = 1

2

2∑


=1

E
[∫ { k∑

i=1

ci
[
I〈xi,1,x〉�〈X3,
,x〉 − F1

(
x, 〈X3,
, x〉

)

− I〈xi,2,x〉�〈X3,
,x〉 + F2(x, 〈X3,
, x〉)
]}2P(dx)

]
� 0.

Hence, g2 is positive semidefinite. For the continuity proof, let (x1n)n∈N and (x2n)n∈N
be sequences in H2 such that limn→∞ x jn = x j ∈ H2, j = 1, 2. By Lemma 3.1 of
Ditzhaus and Gaigall (2018)

I〈x,x3,
−y〉�=0 = 1 (A.8)

for P × PX1,
 -almost all (x, x3,
) and every y ∈ H . This and the continuity of the
inner product imply for P-almost all x and every m, 
 ∈ {1, 2} that

lim
n→∞ I〈x,x jn,m 〉�〈x,X3,
〉 = I〈x,x j,m 〉�〈x,X3,
〉 with probability one.

Consequently, g2(x1n, x2n) converges to g2(x1, x2). ��
Proof of Theorem 1 Since F1 = F2 and, thus, Sn = CvMn under the null hypotheses,
the statement follows immediately from Theorem 4. ��
Proof of Theorem 2 First, observe that

n−1CvMn = n−1Sn

+ 2
∫ ∫

[Fn,1(x, y) − F1(x, y) − Fn,2(x, y)

+ F2(x, y)][F1(x, y) − F2(x, y)]F̄n(x, dy)P(dx)

+
∫ ∫

[F1(x, y) − F2(x, y)]2 F̄n(x, dy)P(dx).

By Theorem 4, n−1Sn converges in probability to 0. By the Cauchy–Schwarz inequal-
ity, the absolute value of the second summand is bounded from above by 2

√
n−1Sn . In

particular, the second summand vanishes in probability as well. The third summand
can be rewritten as

1

2n

n∑

j=1

2∑

k=1

∫ [
F1(x, 〈x, X j,k〉) − F2(x, 〈x, X j,k〉)

]2P(dx) = 1

2n

n∑

j=1

g(X j ),

for an appropriate function g. By the strong law, this sum converges almost surely to
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1

2

2∑

k=1

∫
E
[{

F1(x, 〈x, X3,k〉) − F2(x, 〈x, X3,k〉)
}2]P(dx)

= 1

2

2∑

k=1

∫
[
F1(x, y) − F2(x, y)

]2
Qk[d(x, y)], (A.9)

where Qk is the distribution introduced at the proof’s end of Theorem 4. In analogy to
the argumentation of Ditzhaus and Gaigall (2018) in the proof for their Theorem 3.2,
we can conclude that each summand from (A.9) is strictly positive. Finally, we obtain

n−1CvMn
p→ 1

2

2∑

k=1

∫
[
F1(x, y) − F2(x, y)

]2
Qk(d(x, y)) > 0.

��
Proof of Theorem 3 From now on, we suppose that the data X1, . . . , Xn are fixed and
we operate on the conditional space. In particular, we can treat Fn,i , i = 1, 2, as
a non-random function, which converges, without loss of generality, pointwisely to
Fi . First, we remark that the distribution of the bootstrap sample depends on the
sample size. Moreover, the distribution of X∗

in converges weakly to the distribution
of Xi . Thus, by Theorem 1.10.4 of Van der Vaart and Wellner (1996) we can assume
without loss of generality that X∗

in converges to X ′
i for all i ∈ N with probability

one, where X ′
i has the same distribution as Xi , and that X ′

r is independent from
X∗
1n, . . . , X

∗
(r−1)n, X

∗
(r+1)n, . . . for all r ∈ N. Now, define

f ∗
n (x1, x2, x3)

= 1

2

2∑

k=1

∫ [
I〈x,x1,1−x3,k 〉�0 − Fn,1(x, 〈x, x3,k〉) − I〈x,x1,2−x3,k 〉�0 + Fn,2(x, 〈x, x3,k〉)

]

×
[
I〈x,x2,1−x3,k 〉�0 − Fn,1(x, 〈x, x3,k〉) − I〈x,x2,2−x3,k 〉�0 + Fn,2(x, 〈x, x3,k〉)

]
P(dx).

Then, we have

CvM∗
n = 1

n2

n∑

i, j,k=1

f ∗
n (X∗

in, X
∗
jn, X

∗
kn).

Define

S′
n = 1

n2

n∑

i, j,k=1

f (X ′
i , X

′
j , X

′
k) and κn,i, j,k = f ∗

n (X∗
in, X

∗
jn, X

∗
kn) − f (X ′

i , X
′
j , X

′
k),

where f is defined in (A.2). By Theorem 4, S′
n converges in distribution to Z . Com-

bining this and

E[(CvM∗
n − S′

n)
2] = n−4

n∑

i1,...,i6=1

E[κn,i1,i2,i3κn,i4,i5,i6 ] → 0 as n → ∞ (A.10)
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under the null hypothesis, where the proof of (A.10) is given later, yields conditional
convergence

CvM∗
n

d→ Z as n → ∞

given the observations X1, . . . , Xn underH for Z from Theorem 1. Consequently, we

can deduce that c∗
n,1−α

p→ c1−α under H and, in particular, the statement under H
follows, compared to Lemma 1 of Janssen and Pauls (2003). For the statement under
the alternative, it remains to show that (CvM∗

n)n∈N is a tight sequence of real-valued
random variables, compared to Theorem 7 of Janssen and Pauls (2003), i.e., we have
to show

lim sup
K→∞

lim sup
n→∞

P(|CvM∗
n| � K ) = 0.

In contrast with (A.10), it remains now to show

lim sup
n→∞

E[(CvM∗
n − S′

n)
2] � M < ∞. (A.11)

To sum up, we need to verify (A.10) for the statement under H and (A.11) for the
statement under K. For this purpose, we divide the corresponding sum in (A.10) into
the following six sums

In,p = n−4
n∑

i1,...,i6=1

E[κn,i1,i2,i3κn,i4,i5,i6 ]I|{i1,...,i6}|=p, p = 1, . . . , 6.

First, we will prove that In,p converges to 0 for p ∈ {1, 2, 3, 5, 6} independently
whether the null hypothesis or the alternative is true. In the end, we discuss In,4
separately under the null hypothesis and the alternative. For all considerations below,
remind that κn,i, j,m is uniformly bounded by 8. As a first consequence of this, we
obtain that as n → ∞

In,1 + I2,n + I3,n � 82

n4
[n + (26 − 1)n(n − 1) + (36 − 26)n(n − 1)(n − 2)] → 0.

Let us have now a look on all summands with |{i1, . . . , i6}| = 5. Let r be the number
that appears twice within the indices i1, . . . , i6. Observe that (A.4) also holds for the
bootstrap sample, i.e.,

E[ f ∗
n (X∗

1n, x2, x3)] = E[ f ∗
n (x1, X

∗
2n, x3)] = 0.

Combining this and (A.4) yields E[κn,i, j,k |X ′
r , X

∗
r ] = 0with probability onewhenever

|{i, j, k}| = 3. Consequently,

E[κn,i1,i2,i3κn,i4,i5,i6 ] = E{E[κn,i1,i2,i3 |X ′
r , Xr ,∗]E[κn,i4,i5,i6 |X ′

r , Xr ,∗]} = 0

123



768 M. Ditzhaus, D. Gaigall

Clearly, the same can be shown for the case |{i1, . . . , i6}| = 6. Hence, In,5 + In,6 = 0.
Now, we consider In,4. Due to the boundedness of κn,i, j,m , we always obtain

In,4 � 82

n4
(46 − 36)n(n − 1)(n − 2)(n − 3) � 220.

From this and the previous considerations,we can conclude (A.11).Now, let us suppose
that the null hypothesis is true. Due to symmetry κn,i, j,k = κn, j,i,k we get

In,4 � 8

n4
(46 − 36)n(n − 1)(n − 2)(n − 3)

max
{
E[|κn,1,1,2|] + E[|κn,1,2,2|] + E[|κn,1,3,2|]

}
.

Consequently, it is sufficient for (A.10) to prove

lim
n→∞ κn,1, j,2 = 0 in probability (A.12)

for j = 1, 2, 3. From the continuity of the inner product, (A.8), the underlying inde-
pendence and the convergence of X∗

1n , X
∗
2n , X

∗
3n we obtain that with probability one

lim
n→∞ I〈x,X∗

rn,k 〉�〈x,X∗
2n,l 〉 = I〈x,X ′

r ,k 〉�〈x,X ′
2,l 〉 for P-almost all x, (A.13)

every r ∈ {1, 3} and k, l ∈ {1, 2}. Analogously, we have

Fn,k(x, 〈x, X∗
2n,l〉) = E

[
I〈x,X∗

1n,k 〉�〈x,X∗
2n,l 〉|X∗

2n,l

]

a.s.→ E
[
I〈x,X ′

1,k 〉�〈x,X ′
2,l 〉|X ′

2,l

]
= Fk(x, 〈x, X ′

2,l〉) as n → ∞. (A.14)

Combining (A.13) and (A.14) shows (A.12) for the case j ∈ {1, 3}. The reason why
we need to be more careful in the case j = 2 is that, in general, (A.13) is false if
r = j = 2. However, the integrals appearing in the limiting f (X ′

1, X
′
2, X

′
2) vanish

when they are restricted to the crucial (random) set A = {x : 〈x, X ′
2,2 − X ′

2,1〉 = 0}.
To be more specific, since the null hypothesis is true and, hence, F1 = F2, we obtain

2∑

k=1

∫

A

[
I〈x,X ′

1,1−X ′
2,k 〉�0 − F1(x, 〈x, X ′

2,k〉) − I〈x,X ′
2,2−X ′

2,k 〉�0 + F2(x, 〈x, X ′
2,k〉)

]

×
[
I〈x,X ′

2,1−X ′
2,k 〉�0 − F1(x, 〈x, X ′

2,k〉) − I〈x,X ′
2,2−X ′

2,k 〉�0 + F2(x, 〈x, X ′
2,k〉)

]

× P(dx)

= 2
∫

A

[
I〈x,X ′

1,1−X ′
2,1〉�0 − F1(x, 〈x, X ′

2,1〉) − I〈x,X ′
1,2−X ′

2,1〉�0 + F1(x, 〈x, X ′
2,1〉)

]

×
[
F1(x, 〈x, X ′

2,1〉) − F1(x, 〈x, X ′
2,1〉)

]
P(dx) = 0.

Thus, (A.12) follows again from (A.13), (A.14), the continuity of the inner product,
and the convergence of X∗

1n and X∗
2n . ��
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