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Abstract
Popular models for time series of count data are integer-valued autoregressive
(INAR) models, for which the literature mainly deals with parametric estimation. In
this regard, a semiparametric estimation approach is a remarkable exception which
allows for estimation of the INAR models without any parametric assumption on the
innovation distribution. However, for small sample sizes, the estimation performance
of this semiparametric estimation approach may be inferior. Therefore, to improve
the estimation accuracy, we propose a penalized version of the semiparametric
estimation approach, which exploits the fact that the innovation distribution is often
considered to be smooth, i.e. two consecutive entries of the PMF differ only slightly
from each other. This is the case, for example, in the frequently used INAR models
with Poisson, negative binomially or geometrically distributed innovations. For the
data-driven selection of the penalization parameter, we propose two algorithms and
evaluate their performance. In Monte Carlo simulations, we illustrate the superiority
of the proposed penalized estimation approach and argue that a combination of
penalized and unpenalized estimation approaches results in overall best INAR model
fits.
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1 Introduction

According to Du and Li (1991), the INAR(p) model is defined by the recursion

Xt ¼ a1 � Xt�1 þ a2 � Xt�2 þ . . .þ ap � Xt�p þ et; t 2 Z; ð1Þ

with innovation process et �i.i.dG; where the distribution G has range
N0 ¼ f0; 1; 2; . . .g. Furthermore, let a ¼ ða1; . . .; apÞ0 2 ð0; 1Þp denote the vector of
model coefficients with

Pp
i¼1 ai\1 and

ai � Xt�i ¼
XXt�i

j¼1

Zðt;iÞ
j ;

where “�” is the binomial thinning operator first introduced by Steutel and Van Harn

(1979). Here, Zðt;iÞ
j ; j 2 N; t 2 Z

� �
; i 2 1; . . .; p, are mutually independent Ber-

noulli-distributed random variables Zðt;iÞ
j �Binð1; aiÞ with PðZðt;iÞ

j ¼ 1Þ ¼ ai inde-
pendent of ðet; t 2 ZÞ. The special case p ¼ 1 results in the INAR(1) model
introduced by McKenzie (1985) and Al-Osh and Alzaid (1987). All the thinning
operations “�” are independent of each other and of et; t 2 Z. Furthermore, the
thinning operation at time t and et are independent of Xs; s\t.

Most researchers deal with parametric estimation of INAR models (see for
example Franke and Seligmann (1993), Freeland and McCabe (2005), Brännäs and
Hellström (2001) and Jung et al. (2005)), i.e. they assume G to lie in some parametric
class of distributions ðGh j h 2 H � RqÞ for some finite q 2 N. In contrast, Drost
et al. (2009) introduced a semiparametric estimator, which on the one hand keeps the
parametric assumption of the binomial thinning operation, but on the other hand
allows to estimate the innovation distribution nonparametrically. Using empirical
process theory, they derive asymptotic theory in terms of consistency and asymptotic
normality results and proved efficiency. Consequently, their estimation approach
does not require any parametric assumption regarding the innovation distribution,
and avoids the risk of a falsely specified parametric assumption and its undesirable
consequences. The approach estimates the coefficients of INAR models and the
innovation distribution simultaneously. The resulting semiparametric maximum
likelihood estimator

ðâsp; ĜspÞ ¼ ðâsp;1; . . .; âsp;p; Ĝspð0Þ; Ĝspð1Þ; Ĝspð2Þ; . . .Þ;
where âsp ¼ ðâsp;1; . . .; âsp;pÞ denotes the vector of the estimated INAR coefficients

and fĜspðkÞ; k 2 N0g are the estimated entries of the probability mass function
(PMF) of G, maximizes the conditional log-likelihood function logðLða;GÞÞ, i.e.
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8n 2 Zþ : ðâsp; ĜspÞ 2 arg max
ða;GÞ2½0;1�p� ~G

Yn
t¼0

Pa;G
ðXt�1;...;Xt�pÞ;Xt

 !
: ð2Þ

Here, ~G is the set of all probability measures on Zþ and Pa;G
ðXt�1;...;Xt�pÞ;Xt

are the

transition probabilities under the true model parameters a and G, i.e.

Pa;G
ðxt�1;...;xt�pÞ;xt ¼ Pa;G

Xp
i¼1

ai � Xt�i þ et ¼ xt j Xt�1 ¼ xt�1; . . .;Xt�p ¼ xt�p

 !

¼ ðBinðxt�1; a1Þ � . . . � Binðxt�p; apÞ � GÞfxtg;
with P the underlying probability measure and “�” denoting the convolution of
distributions. In the special case of an INAR(1) model the transition probabilities are
given by

Pa;GðXt ¼ xt j Xt�1 ¼ xt�1Þ ¼
Xminðxt;xt�1Þ

j¼0

xt�1

j

� �
ajð1� aÞxt�1�j

Pa;Gðet ¼ xt � jÞ;

where a is the coefficient of the INAR(1) model (McKenzie 1985; Al-Osh and Alzaid

1987). For k\minfXt �
Pp
i¼1

Xt�i j t ¼ pþ 1; . . .; ng or k[maxfXt j t ¼ 1; . . .; ng,
the values ĜspðkÞ; k 2 N0; are equal to 0. For further details, see Drost et al. (2009).

In practice, discrete probability distributions such as the Poisson, the negative
binomial or the geometric distribution are often used as innovation distribution G, see
Weiß (2018), Yang (2019), Al-Osh and Alzaid (1987), Al-Osh and Alzaid (1990).
The common feature of all these distributions is their smoothness in the sense that
consecutive entries of their PMFs differ only slightly from each other. However, for a
small sample size n, the semiparametric estimation approach of Drost et al. (2009)
may lead to rather non-smooth innovation distributions with unnatural gaps in their
PMF. For illustration, we consider a time series containing counts of transactions of
structured products (factor long certificates with leverage) from on-market and off-
market trading per trading day between February 1, 2017 and July 31, 2018 (thus
n ¼ 381). These data, which are plotted in Fig. 1, have first been presented by
Homburg et al. (2021), who derived them from the Cascade-Turnoverdata of the
Deutsche Börse Group. In the upper right corner, we see the estimated innovation
distribution using the semiparametric procedure of Drost et al. (2009) which turns out
to be smooth. In the second row, we consider only the first 100 observations of the
time series, where the first plot shows indeed a bimodal estimated innovation
distribution. In the third row, we only considered the first 20 observations. The lower-
left plot shows the resulting estimated PMF, which contains an unnatural gap with

Ĝspð3Þ being estimated exactly equal to zero while its neighbors Ĝspð2Þ and Ĝspð4Þ
are estimated positive. Hence, the resulting estimation is not smooth contrary to the
estimated innovation distribution on the whole time series. In general, such non-
smooth innovation distributions are not common in practice and instead, smoothly
estimated innovation distributions are often desired. In this paper, we want to use this
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prior knowledge and take advantage of a natural qualitative smoothness assumption
on the innovation distribution by proposing a version of the semiparametric
estimation approach, which penalizes the roughness of the innovation distribution.
The resulting estimated PMFs of this approach are contained in the right plots in the
second and third row, respectively. In comparison, the penalized estimation now
leads to a smoother estimation of the PMF without any gaps. We will have a closer
look at additional real data examples in Sect. 4. For long time series, the smoothing
caused by penalization is not of such great importance, because the distribution
estimated without penalization will be sufficiently smooth by itself. But for short
time series, estimation without smoothing will commonly lead to jagged estimated
innovation distributions although the true distribution behind the data might be
smooth. So the need for smoothing is of particular importance for short time series.

The paper is organized as follows. In Sect. 2, we introduce a penalized estimation
approach using roughness penalization and propose two algorithms for the data-
driven selection of the penalization parameter. Section 3 examines our estimation
approach in a comprehensive simulation study, where we compare the estimation
performance of the penalized and the unpenalized approach for different settings. In a
real data application in Sect. 4, we analyze the monthly demand of car spare parts to
illustrate our method and its practical relevance. In the conclusion in Sect. 5, we
summarize the results and give an outlook on further research questions.
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Fig. 1 From left to right and top to bottom: Plot of time series of counts of transactions of structured
products per trading day, the unpenalized estimation of the corresponding innovation distribution based on
the full data and the (un)penalized estimated innovation distribution for the first 100 and 20 observations,
respectively
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2 Penalized approach of fitting INAR models

Penalized estimation of count data is a modern topic in current statistical research.
Bui et al. (2021) consider parameter estimation in count data models using penalized
likelihood methods. In a time series context, Nardi and Rinaldo (2011) studied
LASSO penalization for fitting autoregressive time series models to get sparse
solutions, i.e. where some autoregressive coefficients are estimated exactly as zero.
Fokianos (2010) proposed an alternative estimation scheme for the estimation of
INAR models based on minimizing the least square criterion under ridge type of
constraints. Wang (2020) proposed a variable selection procedure for INAR(1)
models with Poisson distributed innovations including covariables by using
penalized estimation and Wang et al. (2021) introduced an order selection
procedure for INAR(p) and INARCH(p) models also by using penalized
estimation. By contrast, in this paper, we propose a penalized estimation approach
for INAR models which does not rely on a penalization of the INAR coefficients
(towards zero), but on a penalization of the roughness of the innovation distribution
(towards smoothness).

2.1 Penalized estimation approach using roughness penalty

The idea of our approach is to penalize the log-likelihood used in the semiparametric
estimation of the INAR model according to Drost et al. (2009). Thus, we still do not
assume a parametric class of distributions, we only use the assumed qualitative (i.
e. nonparametric) property of smoothness. More precisely, this refers to a roughness
penalization as introduced by Scott et al. (1980), which is e.g. used by Adam et al.
(2019) for developing a nonparametric approach to fit hidden Markov models to time
series of counts. We design the penalty term based on the idea of Tibshirani et al.
(2005), where differences of successive parameters are penalized. In this regard, we
allow for differences of order m 2 N. Applied to our setting, the estimation approach
based on Drost et al. (2009) now maximizes the penalized log-likelihood (compare (2))

logðLpenða;GÞÞ ¼ logðLða;GÞÞ � g 	 dG;m;
where g[ 0 is the so-called smoothing or penalization parameter, dG;m denotes a
suitable measure to quantify the roughness of G and m corresponds to the order of
difference. According to Tibshirani et al. (2005), a first possible roughness measure
for the penalization term is based on the L1 distance (LASSO penalization), i.e.

dG;m;1 ¼
Xmaxðx1;...;xnÞ

i¼m

j DmGðiÞ j; ð3Þ

where DmGðiÞ ¼ Dm�1ðDGðiÞÞ and DGðiÞ ¼ GðiÞ � Gði� 1Þ. In addition, we con-
sider the squared L2 distance (Ridge penalization) as second roughness measure, i.e.
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dG;m;2 ¼
Xmaxðx1;...;xnÞ

i¼m

ðDmGðiÞÞ2: ð4Þ

The idea behind choosing this second roughness measure is that it does not shrink the
differences of the successive entries of the PMF exactly to 0 (contrary to the first
roughness measure), but the differences become close to 0, which is more in line with
the idea of a smooth distribution (note the analogy of penalized regression, where the
L1 penalization is used for variable selection because of this property, see Fahrmeir
et al. (2013)). The order of the differences m is a tuning parameter. For m ¼ 1, we
penalize only the distance between two directly consecutive entries, for m ¼ 2 the
smoothness is extended to a triple of values, etc.

Remark 1 A possible extension would be to allow for different penalization weights
ðgiÞ for the individual (higher-order) differences of the entries of the PMF. For
instance, in the case of L1 penalization, the goal could be to maximize

logðLða;GÞÞ �
Xmaxðx1;...;xnÞ

i¼m

gi j DmGðiÞ j;

analogously for the case of L2 penalization.

Figure 2 shows a first exemplary result on a sample of an INAR(1) process with
n ¼ 25 observations, order of difference m ¼ 1 and smoothing parameter g ¼ 1
roughly chosen by eye. In this example, the benefit of penalization already becomes
clear. The penalized estimated innovation distributions are much closer to the true
Poi(1) innovation distribution (which was truncated at value six for clarity) than the
unpenalized estimated innovation distribution. Also, the difference between the L1
and the L2 penalization becomes visible. When using the L2 penalization, the
distances between the values of the PMF become small, when using the L1
penalization they are shrinked to zero.
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Fig. 2 Barplots of the (estimated) innovation distributions for one realization in the four cases (no
penalization, L1 penalization, L2 penalization, true distribution)
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2.2 Selection of the penalization parameter

Now, we propose two approaches to determine for a fixed roughness measure the
optimal smoothing/penalization parameter g, which is a trade-off between fit to the
data and the smoothness assumption. For this purpose, we adapt as a first approach
the cross-validation procedure described in Adam et al. (2019) to our setting.
Therefore, we split the data set into s blocks Fi; i ¼ 1; . . .; s, of roughly equal size. In
each fold i, Fð�iÞ denotes the in-sample data (data without Fi) and Fi the out-of-
sample data. This replicates the correct dependence structure except for the “glue
points”, which only has a minor effect in practice when the data originate from an
INAR model of small order. The greedy search algorithm is structured as follows:

Algorithm 1

(1) Choose an initial gð0Þ [ 0 and set z ¼ 0.
(2) For each fold i and for each value on a specified grid

f. . .; gðzÞ � 2c; gðzÞ � c; gðzÞ; gðzÞ þ c; gðzÞ þ 2c; . . .g
where c 2 R is a small constant, estimate the model with penalization on Fð�iÞ
and compute the penalized log-likelihood on Fi.

(3) Average the resulting log-likelihood values across all folds i and choose gðzþ1Þ

as the penalization parameter on the grid that yields the maximum value.
(4) Repeat steps 2) and 3) until gðzþ1Þ ¼ gðzÞ and define gopt :¼ gðzþ1Þ.

Furthermore, to avoid a potentially non-optimal selection of the penalization
parameter g caused by an inappropriate choice of the initial value gð0Þ, we propose a
second optimization algorithm. How we split the data in each fold j; j ¼ 1; . . .; ~s, in
in- and out-of-sample data is specified later in Sect. 3.

Algorithm 2

(1) For each fold j and each value g on a specified grid f0; ~c; 2~c; 3~c; . . .; ug on the
interval [0,u] for an appropriate upper bound u, estimate the model with
penalization on the in-sample data and compute the penalized log-likelihood
on the out-of-sample data.

(2) Average the resulting log-likelihood values across all folds j.
(3) Fit a polynomial of order r to the curve resulting from plotting the average out-

of-sample log-likelihood against the grid.
(4) Choose gopt as the value on the grid, where the curve takes its maximum value.

3 Simulation study

We investigate the performance of the proposed procedure in a simulation study with
K ¼ 500 Monte Carlo samples of size n 2 f20; 50; 100; 250; 500; 1000g generated
from an INAR(1) process according to (1) for p ¼ 1 with different coefficients
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a 2 f0:2; 0:5; 0:8g and innovation distributions G 2 fPoið1Þ; NB 2; 23
� �

;Geo 1
2

� �
;

ZIP 1
2 ; 2
� �g, where ZIP denotes a zero-inflated Poisson distribution as in Jazi et al.

(2012). The parameters of the negative binomial, geometric and zero-inflated Poisson
distribution are hereby chosen to have the same expected value as the Poið1Þ
distribution. But contrary to the Poið1Þ distribution which is equidispersed, i.e. the
variance of the distribution equals its mean, they are overdispersed, i.e. their
variances are larger than their mean values. Another difference between the
considered innovation distributions is their (non-) smoothness, see also Fig. 12 in the
appendix. The Poi(1), NB 2; 23

� �
and Geo 1

2

� �
distributions are rather smooth, but the

ZIP 1
2 ; 2
� �

distribution, which shows a pronounced zero probability, is not. The effect
of this property on the roughness penalization is investigated in Subsect. 3.5.
Moreover, in Subsect. 3.2, we also provide a small simulation setting for higher-order
INAR processes and consider the case of an INAR(2) model. The implementation is
straightforward but is a lot more demanding such that we restrict the considered
setting to a rather small extent. To ensure the stationarity of the time series, we
actually generate nþ 100 observations and remove the first 100 observations. We
consider first (m ¼ 1) and second (m ¼ 2) order differences in the penalization term
(see Subsect. 3.4). As initialization for the smoothing parameter gð0Þ, we set gð0Þ ¼ 1
as in the example in Fig. 2 for the sample sizes n 2 f20; 50; 100; 250g and for
computing time reasons gð0Þ ¼ 0:5 for n 2 f500; 1000g.1 For the considered grid
around the smoothing parameter (see Algorithm 1) we choose c ¼ 0:05 resulting in
fgðzÞ � 0:1; gðzÞ � 0:05; gðzÞ; gðzÞ þ 0:05; gðzÞ þ 0:1g. Unless stated otherwise, we
use a ¼ 0:5 as true INAR(1) coefficient and Algorithm 1 with 10-fold cross
validation (s ¼ 10) as optimization algorithm. For the realization of the simulation
study, we use the statistical programming language R 4.1.2 (R Core Team 2021).

3.1 Roughness penalty for smooth innovations distributions and first order
differences

Figure 3 shows the L2 distances of the estimated innovation distributions to the true
Poið1Þ innovation distribution,

dðĜ;GÞ ¼
XM
i¼0

ðĜðiÞ � GðiÞÞ2;

for the different sample sizes and the respective estimation methods (unpenalized
(up), L1 penalization and L2 penalization) for some large enough M. We use M ¼ 70
as upper bound for the observations x1; . . .; xn since after this value the corresponding
probabilities of occurrence are negligibly small. When the sample size n is small, the
penalized estimation of the innovation distribution provides a large benefit compared
to the unpenalized estimation: The L2 distances of the penalized estimated to the true
innovation distribution are much smaller than those of the unpenalized estimated to
the true innovation distribution. Furthermore, the L2 penalization performs better

1 For large sample sizes n, gopt will be close to zero, so a lower initial value decreases the number of
iterations needed for Algorithm 1, which saves computing time.
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than the L1 penalization. In Table 3 in the appendix, we also report the variance, the
bias and the MSE of the first five estimated entries of the PMF resulting from the
different procedures for the different sample sizes n. We see that the penalized
estimation reduces both the variance, the absolute bias and consequently also the
MSE of the estimated innovation distribution, especially for small n. Figures 17 and
18 and Tables 6 and 7 in the appendix show the analog results for a true NB 2; 23

� �
and

Geo 1
2

� �
distribution, respectively. In general, regardless of the distribution and up to a

sample size of n ¼ 100, we see a clear improvement concerning the estimation
performance when using penalization. From a sample size of n ¼ 250 on, this
improvement can only be seen marginally with the different methods essentially
coinciding for large n. In Fig. 13 and Table 4 in the appendix, we show the results for
INAR coefficient a ¼ 0:2 and Poi(1) innovation distribution and, correspondingly, in
Fig. 15 and Table 5 for a ¼ 0:8. In the latter case, the benefit of the penalized
estimation compared to the unpenalized estimation is even larger than in the case
a ¼ 0:5. This is plausible because it is in general more difficult to estimate the
innovation distribution for a larger value of a as this also leads to a larger obser-
vations mean with innovations mean remaining constant. Therefore, more entries of
the PMF have to be estimated with the same amount of data. Contrary, for a ¼ 0:2,
we have (with analog arguments) less entries of the PMF which have to be estimated
with the same amount of data, which simplifies the estimation of the PMF in general
and the benefit of penalization decreases. Altogether, we can conclude that the benefit
of penalization is more pronounced with larger a, that is, with larger serial
dependency.

We get confirming conclusions, when we consider the values of the optimal
smoothing parameter g, which approaches zero with increasing n, see Fig. 4 for the
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Fig. 3 Boxplots of the L2 distances of the estimated innovation distribution to the true Poi(1) innovation
distribution of an INAR(1) process for different sample sizes n. We report results for unpenalized (up), L1
and L2 penalized estimation
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case of a true Poi(1) innovation distribution, Figs. 19 and 20 in the appendix for the
cases of a true NB 2; 23

� �
and Geo 1

2

� �
innovation distribution and Figs. 14 and 16 in

the appendix in case of a true Poi(1) innovation distribution with a ¼ 0:2 and
a ¼ 0:8, respectively. Thus, for increasing n, the penalized and the unpenalized
estimation coincide as intuitively expected: For large n, there are enough
observations to learn the smoothness of the innovation distribution from the data
even without imposing smoothness through penalization.

3.2 Higher-order INAR processes

To show that our proposed procedure is also applicable for higher-order INAR
processes, we consider the case of a true INAR(2) process according to (1) for p ¼ 2
with coefficients a1 ¼ 0:3, a2 ¼ 0:2 and G ¼ Poið1Þ. Due to the high computing
time for the semiparametric estimation, we only consider a small simulation setup
with n ¼ 50 observations and K ¼ 100 Monte Carlo samples. We consider L1 and L2
penalization with first order differences and compare the performance with the case
of estimation without penalization. In Fig. 21 in the appendix, we see that also for
higher-order INAR models, penalized estimation of the innovation distribution
provides a clear benefit compared to unpenalized estimation. With penalization we
are closer to the true innovation distribution than without and we are able to reduce
the variance, the absolute bias and consequently the MSE of our estimation, see
Table 1. Again, L2 penalization works best.

3.3 Alternative selection of the penalization parameter

To investigate whether the results depend on the chosen initial parameter, we now
determine the optimal penalization parameter alternatively using Algorithm 2 with
u ¼ 5; ~c ¼ 0:1 and r ¼ 5. In this context, we want to address a potential practical
issue of Algorithm 1: the generation of the in- and out-of-sample data. For each of
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Fig. 4 Boxplots of the penalization parameter g selected by L1 penalization (upper panel) and L2
penalization (lower panel) for the different sample sizes n in the case of a true Poi(1) innovation
distribution of an INAR(1) process
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the 10 folds, 90% of the data becomes the in-sample data and the remaining 10% the
out-sample data. For small n, 10% of the data is small. To avoid this, we now use an
n-fold cross-validation (~s ¼ n) for sample sizes n 2 f20; 50g with Algorithm 2,
where starting from each observation the following 50% of the data is in- and the
other 50% is out-of-sample. When reaching the end of the time series, we start
again from its beginning.

In Fig. 5, we see the results of this alternative procedure compared to the previous
(iterative) procedure in Algorithm 1. It gives slightly better results than the iterative
method, but overall the distances are very similar. The same can be concluded when
considering Table 8. The alternative procedure leads to slightly lower MSE values,
but altogether the values resemble each other. The 10-fold cross-validation also
seems to be suitable and the resulting optimal parameters of the two procedures are
close to each other (see Fig. 6). In conclusion, if we determine the optimal parameter
from a sequence on a grid as in Algorithm 2, we tend to get slightly better results.
However, the price to pay is a much higher computing time than with the iterative
procedure. The iterative method needs a reasonably chosen starting value, but then it
gives similarly good results in considerably less computing time. In addition, when
using the alternative method, the question arises how to choose the upper limit of the
interval adequately. In the following, we will continue to use the iterative method
from Algorithm 1 but one should keep in mind that Algorithm 2 is also a practically
useful procedure.

Table 1 Variance, bias and MSE of the first five estimated entries of the PMF for n ¼ 50 in case of a true
Poi(1) innovation distribution of an INAR(2) process. We report results for unpenalized (up), L1 and L2
penalized estimation

n g0_up g0_L1 g0_L2 g1_up g1_L1 g1_L2

50 Variance 0.0269 0.0080 0.0070 0.0244 0.0037 0.0028

Bias −0.0499 −0.0571 −0.0016 −0.0317 −0.0786 −0.0393
MSE 0.0294 0.0113 0.0070 0.0254 0.0099 0.0043

n g2_up g2_L1 g2_L2 g3_up g3_L1 g3_L2

50 Variance 0.0193 0.0054 0.0045 0.0087 0.0073 0.0030

Bias 0.0369 0.0266 0.0193 0.0227 0.0719 0.0202

MSE 0.0207 0.0061 0.0048 0.0092 0.0124 0.0034

n g4_up g4_L1 g4_L2

50 Variance 0.0025 0.0043 0.0009

Bias 0.0127 0.0511 0.0070

MSE 0.0026 0.0069 0.0009
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3.4 Higher-order differences in penalization term

So far we only considered first order differences (m ¼ 1). Now we want to see if
penalizing higher-order differences (e.g. m ¼ 2) is able to improve the performance
of our penalized estimation method. In Fig. 7 and Table 10 in the appendix it is
visible for the case of a true Poi(1) innovation distribution and L2 penalization that
also the penalization of differences of higher order performs better than the
unpenalized estimation in the cases of small sample sizes, and that it comes close to
the penalization of first order differences. Similar results are in Fig. 22 and Table 9,
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Fig. 5 Boxplots of the L2 distances of the estimated innovation distribution to the true Poi(1) innovation
distribution of an INAR(1) process for the different sample sizes n. We report results for unpenalized (up)
and L2 penalized estimation using either the iterated Algorithm 1 (A1) or the alternative Algorithm 2 (A2)
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Fig. 6 Boxplots of the penalization parameter g selected by L2 penalization using Algorithm 1 (A1, upper
panel) and Algorithm 2 (A2, lower panel) for the different sample sizes n in the case of a true Poi(1)
innovation distribution of an INAR(1) process
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both in the appendix, where we see the results of first and second order differences
for the L1 penalization. In case of L1 penalization, we would prefer second order
differences for small sample sizes. Overall, however, the L2 penalization of first-order
differences performs best.

3.5 Non-smooth innovation distribution

Finally, let us consider the case of ZIP 1
2 ; 2
� �

distributed innovations and consider
Fig. 8. The results are as expected. Since the ZIP distribution is not smooth (see
Fig. 12 in the appendix), the smoothness assumption and hence the penalization is
not suitable. The boxplots reflect this: Except for sample size n ¼ 20, the penalized
estimation procedure provides no benefit and for some n even leads to slightly higher
L2 distances from the true ZIP 1

2 ; 2
� �

distribution than the unpenalized procedure. As
we can see in Table 11, the penalized estimation leads to a higher absolute bias when
estimating the first (non-smooth) entry, G(0), of the PMF. As sample size n increases,
the penalization has less impact, as there is enough data to detect the incorrect
assumption such that the unpenalized and the penalized procedures coincide.

For comparison, let’s take a look at the results with a true ZIP 1
2 ; 2
� �

distribution
when we exclude G(0) from the penalization displayed in Fig. 9, i.e. when we
consider

~dG;m;1 ¼
Xmaxðx1;...;xnÞ

i¼mþ1

j DmGðiÞ j and ~dG;m;2 ¼
Xmaxðx1;...;xnÞ

i¼mþ1

ðDmGðiÞÞ2;

instead of dG;m;1 and dG;m;2 defined in (3) and (4). It becomes clear what we would
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Fig. 7 Boxplots of the L2 distances of the estimated innovation distribution to the true Poi(1) innovation
distribution of an INAR(1) process for the different sample sizes n. We report results for unpenalized (up)
and L2 penalized estimation using either first order (diff1) or second order (diff2) differences
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expect: By excluding the “non-smooth entry” G(0) of the PMF of the innovation
distribution from penalization, the penalized estimation works well again and pro-
vides a benefit for small n. In this case, the penalized estimation now results in a
lower absolute bias of the estimated PMF’s first entry compared to the unpenalized
estimation (compare Table 12). However, this benefit is not as pronounced as in the
cases of a true Poi(1), NB 2; 23

� �
and Geo 1

2

� �
innovation distribution. This can

probably be explained by the fact that the ZIP 1
2 ; 2
� �

distribution has most of its mass
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Fig. 8 Boxplots of the L2 distances of the estimated innovation distribution to the true ZIP 1
2 ; 2
� �

innovation distribution of an INAR(1) process for the different sample sizes n. We report results for
unpenalized (up), L1 and L2 penalized estimation
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Fig. 9 Boxplots of the L2 distances of the estimated innovation distribution to the true ZIP 1
2 ; 2
� �

innovation distribution of an INAR(1) process for the different sample sizes n. We report results for
unpenalized (up), L1 and L2 penalized estimation without smoothing of G(0) (nz)
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in zero and the corresponding entry of the PMF, G(0), remains unaffected by the
penalization. Consequently, the results from penalized and unpenalized estima-
tion do not differ substantially from each other.

In summary, if the smoothness assumption of the innovation distribution is
correctly imposed, it provides a large benefit for small sample size n. This holds
whether the true underlying distribution is equidispersed or overdispersed. The best
results are obtained for L2 penalization and first-order differences.

3.6 Estimation of the INAR coefficient

A drawback of the penalized estimation is that the estimation of the INAR coefficient
a no longer works well for small sample size n, see Fig. 23 in the appendix. A
strength of the semiparametric estimation approach of Drost et al. (2009) is the
accurate joint estimation of the INAR coefficient and the innovation distribution.
This joint estimation accuracy is not maintained when penalization is used for small
n. The L2 distances of the penalized estimated INAR coefficient a to the true value
are higher than for the unpenalized estimated coefficient. For increasing n, the
estimation of a improves, but since the benefit of the penalized estimation lies in the
cases where n is small, this is no comfort.

Instead, we can solve this problem by taking only the estimator for the innovation
distribution from the penalized approach and estimating the INAR coefficient with
the unpenalized (efficient) estimation approach of Drost et al. (2009). In Fig. 23, we
see that it is indeed preferable to combine the unpenalized estimation of the INAR
coefficient a and the penalized estimation of the innovation distribution G. Also
when looking at the MSE, it is clear that this combination outperforms all other
estimation approaches under consideration.

4 Real data example

For modeling intermittent demand, Syntetos and Boylan (2021) consider the
equidispersed Poisson distribution on the one hand, and, as the demand variability
may be severe when demand is intermittent, overdispersed distributions from the
Compound-Poisson family (such as the negative binomial distribution) on the other
hand. All these parametric distributions are smooth. With our novel penalized
semiparametric estimation approach, we get smooth distributions without parametric
assumptions, and as we saw in our simulations, our penalization procedure works
well for both equi- and overdispersed distributions. By contrast, if using an
unpenalized non-parametric estimation approach such as the empirical distribution
function (EDF), Syntetos and Boylan (2021) criticize that demand values not
observed in the past are automatically assigned zero probabilities for the future.
Furthermore, they state that an EDF provides a perfect fit to the historical data, but it
does not ensure the goodness of fit to the demand over the forecast horizon,
especially with respect to higher percentiles. Again, these drawbacks are omitted
with our penalized estimation approach. Finally, historical demand time series are
often rather short, see the demand count time series provided by Snyder (2002) as
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an example, such that smoothing approaches would be particularly welcome. For
these reason, the forecasting of intermittent demand appears to be a promising
application area for our proposed penalized semiparametric estimation procedure.

Therefore, we consider time series (n ¼ 51) of the monthly demand of different
car spare parts offered by an Australian subsidiary of a Japanese car company from
January 1998 to March 2002 (Snyder 2002). Figure 10 contains an exemplary time
series of car part 2404. The observations vary between 0 and 5 and the up and down
movements indicate a moderate autocorrelation level. After inspecting the corre-
sponding (P)ACF also included in Fig. 10, we conclude that an AR(1)-like model
might be appropriate for describing the serial dependence of the time series.
Moreover, L2 penalization with first order differences leads to an estimated
innovation distribution without any unnatural gaps, i.e. zero values, in the PMF.

Now consider the 1-step median prediction and the 90% quantile of the 1-step
prediction of the demand for car spare part 2404. The latter serves here as a worst-
case scenario for spare parts requirements. Therefore, we determine the median and
the 90% quantile of the predictive distribution Pð. . . j yÞ, where y 2 0; . . .; 10. Based
on the results of the simulation study in Subsect. 3.6, we use the penalized estimated
innovation distribution and the unpenalized estimated INAR coefficient to determine
the conditional predictive distribution. Table 2 shows that the penalized estimation
tends to lead to higher predicted values (more conservative prediction). Conse-
quently, without penalizing the innovation distribution, the predictions for the
demand for spare parts may be too low, which can lead to a lack of spare parts.
Moreover, the penalization of the innovation distribution (especially for such short
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Fig. 10 From left to right and top to bottom: Plot of time series of monthly demand for car spare part 2404,
its corresponding ACF and PACF and the unpenalized and the penalized estimated innovation distribution
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time series) can serve as a robustness analysis to identify possible
uncertainties in the forecast at an early stage.

In addition, we consider car spare part 1971. Figure 11 again suggests an AR(1)-
like model and a moderate autocorrelation level. The observations vary between 0
and 4 and there may be zero inflation in this time series. Therefore, in addition to the
unpenalized and penalized estimates, we also consider the penalized estimate of the
innovation distribution, where G(0) is not smoothed (see Subsect. 3.5). It becomes
clear that this last estimation procedure yields more plausible results than when G(0)
is smoothed. Again, the penalized estimation procedure yields a slightly smoother
innovation distribution than the unpenalized estimation. In summary, if there is a
reasonable suspicion of zero inflation, G(0) should not be smoothed.

Table 2 Unpenalized and penalized 1-step median prediction and 90% quantile of the 1-step prediction of
the demand for car spare part 2404 when observing demand y

y 0 1 2 3 4 5 6 7 8 9 10

Median
(unpenalized)

1 1 1 1 2 2 2 3 3 3 3

Median (penalized) 1 1 1 2 2 2 2 3 3 3 3

90% quantile
(unpenalized)

2 2 3 3 4 4 4 5 5 5 6

90% quantile
(penalized)

2 3 3 4 4 4 5 5 5 6 6

0 10 20 30 40 50

0
1

2
3

4

Series 1971

Index

x

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF Series 1971

2 4 6 8 10

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

Lag

PA
C

F

PACF Series 1971

0 1 2 3 4

unpenalized

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4

penalized

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4

penalized (without zero)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 11 Plot of time series of monthly demand for car spare part 1971, its corresponding ACF and PACF,
the unpenalized and the penalized estimated innovation distribution and the penalized estimated innovation
distribution excluding the first entry of the PMF (from left to right and from top to bottom)
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5 Conclusion

Although semiparametric estimation yields a decent fit in INAR models, its
performance is often not convincing for small sample sizes. Therefore, we proposed a
penalization approach that exploits a qualitative smoothness assumption fulfilled by
commonly used innovation distributions. A simulation study showed that our
penalization approach provides a large benefit in estimating the innovation
distribution, especially for small sample sizes. Additionally, we showed that the
combination of unpenalized estimation of INAR coefficients and penalized
estimation of the innovation distribution provided the best performance. Future
research should investigate whether additional penalization of the INAR coefficients
may result in further benefit. Furthermore, as the penalization approach proved to be
beneficial for forecasting, one may also think of an application in statistical process
control, i.e. for the design of control charts relying on a fitted INAR(1) model.
Another interesting issue for future research is the application of our proposed
method on integer-valued autoregressive models on Z, such as those proposed by
Kim and Park (2008) or Liu et al. (2021).

Appendix

See Figures 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23.
See Tables 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.
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Fig. 13 Boxplots of the L2 distances of the estimated innovation distribution to the true Poi(1) innovation
distribution of an INAR(1) process for the different sample sizes n and a ¼ 0:2. We report results for
unpenalized (up), L1 and L2 penalized estimation
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Fig. 14 Boxplots of the penalization parameter g selected by L1 penalization (upper panel) and L2
penalization (lower panel) for the different sample sizes n in the case of a true Poi(1) innovation
distribution of an INAR(1) process and a ¼ 0:2

123

Semiparametric estimation of INAR models... 383



0.0

0.3

0.6

0.9

up_poi L1_poi L2_poi
scenarios

L2
_d

is
t

n=20

0.0

0.3

0.6

0.9

up_poi L1_poi L2_poi
scenarios

L2
_d

is
t

n=50

0.0

0.3

0.6

0.9

up_poi L1_poi L2_poi
scenarios

L2
_d

is
t

n=100

0.0

0.3

0.6

0.9

up_poi L1_poi L2_poi
scenarios

L2
_d

is
t

n=250

0.0

0.3

0.6

0.9

up_poi L1_poi L2_poi
scenarios

L2
_d

is
t

n=500

0.0

0.3

0.6

0.9

up_poi L1_poi L2_poi
scenarios

L2
_d

is
t

n=1000

Fig. 15 Boxplots of the L2 distances of the estimated innovation distribution to the true Poi(1) innovation
distribution of an INAR(1) process for the different sample sizes n and a ¼ 0:8. We report results for
unpenalized (up), L1 and L2 penalized estimation

0

2

4

6

20 50 100 250 500 1000
sample_size

pe
na

l_
op

t

L1_poi

0

2

4

6

20 50 100 250 500 1000
sample_size

pe
na

l_
op

t

L2_poi

Fig. 16 Boxplots of the penalization parameter g selected by L1 penalization (upper panel) and L2
penalization (lower panel) for the different sample sizes n in the case of a true Poi(1) innovation
distribution of an INAR(1) process and a ¼ 0:8
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Fig. 17 Boxplots of the L2 distances of the estimated innovation distribution to the true NB 2; 23
� �

innovation distribution of an INAR(1) process for the different sample sizes n. We report results for
unpenalized (up), L1 and L2 penalized estimation
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Fig. 18 Boxplots of the L2 distances of the estimated innovation distribution to the true Geo 1
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innovation

distribution of an INAR(1) process for the different sample sizes n. We report results for unpenalized (up),
L1 and L2 penalized estimation
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Fig. 19 Boxplots of the penalization parameter g selected by L1 penalization (upper panel) and L2
penalization (lower panel) for the different sample sizes n in the case of a true NB 2; 23
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Fig. 21 Boxplots of the L2 distances of the estimated innovations distribution to the true Poi(1) innovation
distribution of an INAR(2) process and n ¼ 50. We report results for unpenalized (up), L1 and L2 penalized
estimation
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Fig. 22 Boxplots of the L2 distances of the estimated innovation distribution to the true Poi(1) innovation
distribution of an INAR(1) process for the different sample sizes n. We report results for unpenalized (up)
and L1 penalized estimation using either first order (diff1) or second order (diff2) differences
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Fig. 23 Boxplots of the L2 distances between (1) unpenalized estimated INAR coefficient a and the true
INAR coefficient a, (2) L2 penalized and true a, (3,4) their related estimated innovation distribution and the
true Poi(1) innovation distribution of an INAR(1) process for different sample sizes n and their
corresponding MSE (rounded to four digits)
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