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Abstract. In this note, an alternative approach to establish observability
for semigroups based on their smoothing properties is presented. The re-
sults discussed here reproduce some of those recently obtained in
[arXiv:2112.01788], but the current proof allows to get rid of several tech-
nical assumptions by following the standard complex analytic approach
established by Kovrijkine combined with an idea from [arXiv:2201.02370].
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1. Introduction and results. Uncertainty principles are frequently used in con-
trol theory to prove observability for certain abstract Cauchy problems. Often
this is done via the so-called Lebeau–Robbiano method, where an uncertainty
principle for elements in the spectral subspace, a so-called spectral inequality,
is combined with a dissipation estimate, see [5,11,21,26]. The aforementioned
spectral inequalities were studied for several differential operators, see, e.g.,
[4,6–10,17,20,22] and the references cited therein. Suitable dissipation esti-
mates to treat also semigroups generated by some quadratic differential op-
erators in the sense of Hörmander [12] (that is, by operators associated to
homogeneous quadratic polynomials via Weyl quantization) were provided in
[3,5,7,17].

A different approach was introduced in [16], based on [19]. It allows one
to derive observability estimates from uncertainty principles with error term
established for functions in the range of the semigroup associated to the ab-
stract Cauchy problem. In the situation of [16], these uncertainty principles
are established using Gelfand–Shilov smoothing effects. By the latter we mean
that for the strongly continuous contraction semigroup (T (t))t≥0 on L2(Rd),
there exist constants C ≥ 1, t0 ∈ (0, 1), ν > 0, and 0 < μ ≤ 1 with ν + μ ≥ 1,
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and r1 ≥ 0, r2 > 0, such that for all g ∈ L2(Rd), we have

‖(1 + |x|2)n/2∂βT (t)g‖L2(Rd) ≤ C1+n+|β|

tr1+r2(n+|β|) (n!)ν(|β|!)μ‖g‖L2(Rd) (1.1)

for all t ∈ (0, t0) and all n ∈ N, β ∈ N
d
0.

In this context, we prove the following variant of [16, Theorem 2.3].

Theorem 1.1. Suppose that f ∈ C∞(Rd) satisfies

‖(1 + |x|2)n/2∂βf‖L2(Rd) ≤ D1D
n+|β|
2 (n!)ν(|β|!)μ, n ∈ N0, β ∈ N

d
0, (1.2)

with some D1 > 0, D2 ≥ 1, ν ≥ 0, and 0 ≤ μ < 1. Moreover, let δ ∈ [0, 1] with
s = δν + μ < 1, and let ρ : Rd → (0,∞) be a measurable function satisfying

ρ(x) ≤ R(1 + |x|2)δ/2 for all x ∈ R
d (1.3)

with some R ≥ 1 and

ρ(x) ≤ η|x| for all |x| ≥ r0 (1.4)

with some η ∈ (0, 1) and some r0 ≥ 1.
Then, for every measurable set ω ⊂ R

d satisfying
|B(x, ρ(x)) ∩ ω|

|B(x, ρ(x))| ≥ γ for all x ∈ R
d (1.5)

with some γ ∈ (0, 1) and for every ε ∈ (0, 1], we have

‖f‖2L2(Rd) ≤ eK·
(
1+log 1

ε+D
2/(1−s)
2

)
‖f‖2L2(ω) + εD2

1, (1.6)

where K ≥ 1 is a constant depending on γ,R, r0, η, ν, s, and the dimension d.

Here, B(x, ρ(x)) denotes the open Euclidean ball of radius ρ(x) > 0 cen-
tered at x. Note that (1.4) is automatically satisfied if δ < 1 with, say, η = 1/2
and r0 ≥ (4R)1/(1−δ).

The estimate (1.6) differs from the usual form of an uncertainty principle
by the appearance of the term εD2

1. We call this the error term since it can
be chosen arbitrarily small.

In [16], the same result is proved but under more technical assumptions,
namely that ρ is a Lipschitz contraction with a uniform positive lower bound.
On the other hand, the case s = 1, which also allows μ = 1, is treated in [16]
but is not in the scope of the method we discuss here. However, [16] does not
present any application in terms of observability for this case.

Our proof, as well as the one in [16], follows the approach from [13,14].
The main idea of the latter is to localize certain Bernstein-type inequalities
on so-called good elements of some covering of Rd. Since in the setting of The-
orem 1.1 there is no Bernstein-type inequality at disposal, the definition of
good elements replaces, in some sense, the missing Bernstein-type inequalities
needed. The proof then reduces to a local estimate for (quasi-)analytic func-
tions. For the latter, [16] uses an estimate for quasianalytic functions proven in
[23], see also the L2-version in [16, Proposition 5.10], and a suitable estimate for
the so-called Bang degree. By contrast, we rely on the more standard approach
for (complex) analytic functions from [13,14] by estimating Taylor expansions
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around suitable points. This is combined with ideas introduced in [7,8] that
incorporate the quadratic decay guaranteed by (1.2) in order to reduce the
considerations to a bounded subset of R

d. This allows us to obtain a more
streamlined proof while getting rid of the mentioned technical assumptions in
[16].

If (T (t))t≥0 is a strongly continuous contraction semigroup on L2(Rd)
satisfying the Gelfand–Shilov smoothing effects (1.1), then f = T (t)g with
g ∈ L2(Rd) and t ∈ (0, t0) satisfies (1.2) with

D1 =
C

tr1
‖g‖L2(Rd) and D2 =

C

tr2
.

Thus, choosing the constant ε in Theorem 1.1 appropriately, we are able to
apply [19, Lemma 2.1] in literally the same way as in the proof of [16, Theo-
rem 2.11] and thereby obtain the following observability result, which repro-
duces [16, Theorem 2.11]. We omit the proof for brevity.

Corollary 1.2. Suppose that (T (t))t≥0 is a strongly continuous contraction semi-
group satisfying (1.1) with some constants C ≥ 1, ν ≥ 0, 0 ≤ μ < 1, r1 ≥ 0,
r2 > 0, and let δ ∈ [0, 1] and ρ : Rd → (0,∞) be as in Theorem 1.1. Then

‖T (T )g‖2L2(Rd) ≤ N exp
(

N

T
2r2
1−s

) T∫

0

‖T (t)g‖2L2(ω) dt, g ∈ L2(Rd), T > 0,

for every measurable set ω ⊂ R
d satisfying (1.5) with some γ ∈ (0, 1). Here,

N ≥ 1 is a constant depending on γ,R, r0, η, ν, s, C, r2, and the dimension d.

As shown in [2, Corollary 2.2] and [16, Lemma 5.2], the semigroup generated
by the (negative) fractional (an-)isotropic Shubin operator −((−Δ)m + |x|2k)θ

with k,m ∈ N and θ > 1/(2m) satisfies (1.1) with

ν = max
{ 1

2kθ
,

m

k + m

}
and μ = max

{ 1
2mθ

,
k

k + m

}
.

Hence, Corollary 1.2 can be applied, which reproduces [16, Corollary 2.12].
It should however be mentioned that in the general case ν = μ = 1/2 of
Corollary 1.2 (a particular instance being a Shubin operator with k = m and
θ = 1) stronger results than Corollary 1.2 in terms of the conditions on ω are
available, see [7, Theorem 3.5]. More precisely, in this case the density γ is
allowed to be variable and exhibit a certain subexponential decay, so that ω
may even have finite measure. In the present setting, we are able to obtain a
variant of Theorem 1.1 where the density γ is allowed to exhibit a polynomial
decay, but the result seems not to be sufficient to give observability as in
Corollary 1.2, see Theorem 2.5 and Remark 2.6 below. If even k = m = 1,
the Shubin operator corresponds to the harmonic oscillator, for which also a
sharper observability constant can be obtained. Indeed, [7, Theorem 6.1] shows
that the observability constant can then be chosen to vanish as T → ∞. We
expect that such results also hold for the general Shubin operators. However,
this would require setting up a suitable spectral inequality for these operators,
which seems out of reach at the moment.
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2. Proof of Theorem 1.1. Let ε ∈ (0, 1], and choose

r :=
D2√
ε/2

≥ 1, (2.1)

so that

sup
x∈Rd\B(0,r)

1
1 + |x|2 ≤ ε

2D2
2

.

Then (1.2) with n = 1 and β = 0 implies that

‖f‖2L2(Rd\B(0,r)) ≤ ε

2
·
‖(1 + |x|2)1/2f‖2L2(Rd)

D2
2

≤ εD2
1

2
. (2.2)

We abbreviate w(x) = wδ(x) = (1 + |x|2)δ/2. If δ < 1, we infer from [16,
Lemma 5.3] that (1.2) implies

‖wn∂βf‖L2(Rd) ≤ D1D̃
n+|β|
2 (n!)δν(|β|!)μ, n ∈ N0, β ∈ N

d
0, (2.3)

with D̃2 = 8νeνD2 ≥ 1. If δ = 1, then (2.3) agrees with (1.2) with D̃2 = D2 ≥
1. We therefore just work with (2.3) for the remaining part.

The proof of the theorem now follows the following lines: Inspired by [9], the
estimates (2.3) imply, in particular, that f is analytic, see Lemma A.1. More-
over, by (2.2), the L2-mass of f outside of the ball B(0, r) can be subsumed
into the error term, that is the second summand on the right hand side of (1.6).
Using Besicovitch’s covering theorem, the region B(0, r) is then covered with
(at most countably many) balls B(x, ρ(x)) satisfying B(x, ρ(x)) ∩ B(0, r) 
= ∅.
Based on (2.3) and following [13,14] and [16], these balls are classified into good
and bad ones, where on good balls local Bernstein-type estimates are available
and the contribution of bad balls can again be subsumed into the error term,
see Lemma 2.1. Following again [13,14], on good balls the local Bernstein-type
estimates allow to bound the Taylor expansions of f around suitably chosen
points, which by analyticity of f lead to local estimates of the desired form,
see Lemmas 2.2–2.4. Summing over all good balls finally concludes the proof.

We consider balls B(x, ρ(x)) with B(x, ρ(x)) ∩ B(0, r) 
= ∅. The latter
requires that |x| − ρ(x) < r and, thus, |x| < r0 or (1 − η)|x| ≤ |x| − ρ(x) < r,
that is, |x| < r/(1 − η). By Besicovitch’s covering theorem, see, e.g., [18,
Theorem 2.7], there is K0 ⊂ N and a collection of points (yk)k∈K0 with |yk| <
max{r0, r/(1 − η)} such that the family of balls Qk = B(yk, ρ(yk)), k ∈ K0,
gives an essential covering of B(0,max{r0, r/(1 − η)}) with overlap at most
κ ≥ 1. Here, the proof in [18, Theorem 2.7] and a simple calculation shows
that κ can be chosen as κ = Kd

Bes with a universal constant KBes ≥ 1. With
Q0 := R

d \
⋃

k∈K0
Qk and K := K0 ∪ {0}, the family (Qk)k∈K thus gives an

essential covering of Rd with overlap at most κ = Kd
Bes ≥ 1.

2.1. Good and bad balls. Similarly as in [16], we now define the so-called good
elements of the covering. We do this in such a way that we have some localized
Bernstein-type inequality on all good elements. More precisely, we say that
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Qk, k ∈ K0, is good with respect to f if for all m ∈ N0, we have
∑

|β|=m

1
β!

‖wm∂βf‖2L2(Qk)
≤ 2κ

ε
· 2m+1dmq2m

m!
‖f‖2L2(Qk)

,

where

qm = D̃2m
2 (m!)δν+μ = D̃2m

2 (m!)s.

We call Qk, k ∈ K0, bad if it is not good.
Although we can not show that the mass of f on the good balls covers some

fixed fraction of the mass of f on the whole of Rd, inequality (2.3) nevertheless
implies that the mass of f on the bad balls is bounded by εD2

1/2. Hence, the
contribution of the bad elements can likewise be subsumed into the error term.
This is summarized in the following result.

Lemma 2.1. We have

‖f‖2L2(Rd) ≤ ‖f‖2L2(
⋃

k : Qk good Qk)
+ εD2

1.

Proof. Since

‖f‖2L2(Rd) ≤ ‖f‖2L2(
⋃

k : Qk good Qk)
+ ‖f‖2L2(

⋃
k : Qk bad Qk)

+ ‖f‖2L2(Q0)
,

it suffices to show that
∑

k : Qk bad

‖f‖2L2(Qk)
+ ‖f‖2L2(Q0)

≤ εD2
1. (2.4)

To this end, we first note that Q0 ⊂ R
d \B(0, r) and, thus, ‖f‖2L2(Q0)

≤ εD2
1/2

by estimate (2.2). Let now Qk, k ∈ K0, be bad, that is, there is n ∈ N0 such
that

‖f‖2L2(Qk)
≤ ε

2κ
· n!
2n+1dn

∑

|β|=n

1
β!

(‖wn∂βf‖L2(Qk)

qn

)2

≤ ε

2κ

∞∑

m=0

m!
2m+1dm

∑

|β|=m

1
β!

(‖wm∂βf‖L2(Qk)

qm

)2

.

Summing over all bad Qk with k ∈ K0 and using (2.3) then gives
∑

k∈K0
Qk bad

‖f‖2L2(Qk)
≤ ε

2
· D2

1

∞∑

m=0

m!
2m+1dm

∑

|β|=m

1
β!

=
ε

2
· D2

1

∞∑

m=0

1
2m+1

=
ε

2
D2

1,

where we used that
∑

|β|=m 1/β! = dm/m!. This proves (2.4). �

Now, as in [9], see also [10,13,14], we use the definition of good elements
to extract a pointwise estimate for the derivatives of f .

Lemma 2.2. Let Qk be good. Then there is xk ∈ Qk such that for all β ∈ N
d
0

with |β| = m ∈ N0, we have

|∂βf(xk)| ≤
(2κ

ε

)1/2

· 2m+1dm/2 · C(k,m)1/2 ·
‖f‖L2(Qk)√

|Qk|
(2.5)
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with
C(k,m) = q2m sup

x∈Qk

w(x)−2m. (2.6)

Proof. Assume that for all x ∈ Qk, there is m = m(x) ∈ N0 such that

∑

|β|=m

1
β!

|∂βf(x)|2 >
2κ

ε
· 4m+1dm

m!
· C(k,m) ·

‖f‖2L2(Qk)

|Qk| .

Reordering the terms and summing over all m ∈ N0 in order to get rid of the
x-dependence, we then obtain

‖f‖2L2(Qk)

|Qk| <
ε

2κ

∞∑

m=0

m!
4m+1dmC(k,m)

∑

|β|=m

1
β!

|∂βf(x)|2 (2.7)

for all x ∈ Qk. We observe that

‖∂βf‖2L2(Qk)
= ‖w−mwm∂βf‖2L2(Qk)

≤ sup
x∈Qk

w(x)−2m · ‖wm∂βf‖2L2(Qk)
.

Thus, integrating (2.7) over x ∈ Qk and using that Qk is good gives

‖f‖2L2(Qk)
<

ε

2κ

∞∑

m=0

m!
4m+1dmC(k,m)

∑

|β|=m

1
β!

‖∂βf‖2L2(Qk)

≤ ‖f‖2L2(Qk)

∞∑

m=0

2−m−1 = ‖f‖2L2(Qk)
,

leading to a contradiction. Hence, there is xk ∈ Qk such that for all β ∈ N
d
0

with |β| = m, we have

|∂βf(xk)|2 ≤
∑

|β|=m

m!
β!

|∂βf(xk)|2 ≤ 2κ

ε
· 4m+1dm · C(k,m) ·

‖f‖2L2(Qk)

|Qk| ,

and taking square roots proves the claim. �

2.2. The local estimate. In order to estimate f on each (good) Qk, k ∈ K0,
we use a complex analytic local estimate that goes back to [13,14,24]. It has
later been used in [9] and implicitly also in [4,10,17,27]. We rely here on a
particular case of the formulation in [9].

Lemma 2.3 (see [9, Lemma 3.5]). Let k ∈ K0, and suppose that the function
f |Qk

: Qk → C has a bounded analytic extension F : Qk + D8ρ(xk) → C, where
D8ρ(xk) = D(0, 8ρ(xk)) × · · · × D(0, 8ρ(xk)) ⊂ C

d is the complex polydisk of
radius 8ρ(xk).

Then, for every measurable set ω ⊂ R
d with |Qk ∩ ω| > 0, we have

(
24d2d · |Qk|

|Qk ∩ ω|
)1+4 log Mk/ log 2

‖f‖2L2(Qk∩ω) ≥ ‖f‖2L2(Qk)
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with

Mk :=

√
|Qk|

‖f‖L2(Qk)
· sup

z∈Qk+D8ρ(xk)

|F (z)| ≥ 1.

On good Qk, the hypotheses of Lemma 2.3 are indeed satisfied, and the
pointwise estimates (2.5) can be used to obtain a suitable upper bound for the
quantity Mk.

Lemma 2.4. Let Qk be good. Then the restriction f |Qk
has a bounded analytic

extension Fk : Qk + D8ρ(xk) → C, and Mk as in Lemma 2.3 satisfies

log Mk ≤ log(2K ′) +
1
2

log
(2κ

ε

)
+ D1/(1−s),

where K ′ ≥ 1 is a constant depending only on s and where

D = 40d3/2D̃2
2R max{r0, (1 − η)−1}.

Proof. Let xk ∈ Qk be a point as in Lemma 2.2. For every z ∈ xk + D10ρ(xk),
we then have

∑

β∈N
d
0

|∂βf(xk)|
β!

|(z − xk)β |

≤
∑

m∈N0

∑

|β|=m

1
β!

(2κ

ε

)1/2

2m+1dm/2C(k,m)1/2(10ρ(xk))|β| ‖f‖L2(Qk)√
|Qk|

= 2
(2κ

ε

)1/2 ‖f‖L2(Qk)√
|Qk|

∑

m∈N0

C(k,m)1/2 (20d3/2ρ(xk))m

m!
,

where for the last inequality we again used that
∑

|β|=m 1/β! = dm/m!. Taking
into account that Qk + D8ρ(xk) ⊂ xk + D10ρ(xk) and that f is analytic by
Lemma A.1, this shows that the Taylor expansion of f around xk defines a
bounded analytic extension Fk : Qk + D8ρ(xk) → C of f and that

Mk ≤ 2
(2κ

ε

)1/2 ∞∑

m=0

C(k,m)1/2 (20d3/2ρ(xk))m

m!
. (2.8)

Now, suppose first that |xk| ≤ r0 with r0 ≥ 1 as in (1.4). Then

ρ(xk) ≤ R(1 + r20)
δ/2 ≤ R(1 + r20)

1/2 ≤ 2Rr0.

Using (2.8), (2.6), and the definition of qm, it follows that

Mk ≤ 2
(2κ

ε

)1/2 ∞∑

m=0

qm · sup
x∈Qk

1
w(x)m

· (40d3/2Rr0)m

m!

≤ 2
(2κ

ε

)1/2 ∞∑

m=0

(40d3/2D̃2
2Rr0)m

(m!)1−s
,

where we have taken into account that w(x) ≥ 1 for all x ∈ R
d.
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On the other hand, if |xk| ≥ r0, then for all x ∈ Qk, we have by (1.4) the
lower bound |x| ≥ |xk| − ρ(xk) ≥ (1 − η)|xk| > 0 and, thus,

ρ(xk)
w(x)

≤ Rw(xk)
w(x)

≤ 2R
( |xk|

|x|
)δ

≤ 2R

(1 − η)δ
≤ 2R

1 − η
.

Using again (2.8) and (2.6) then gives

Mk ≤ 2
(2κ

ε

)1/2 ∞∑

m=0

qm · sup
x∈Qk

ρ(xk)m

w(x)m
· (20d3/2)m

m!

≤ 2
(2κ

ε

)1/2 ∞∑

m=0

(40d3/2D̃2
2R/(1 − η))m

(m!)1−s
.

We conclude that for both cases |xk| ≤ r0 and |xk| ≥ r0, we have

Mk ≤ 2
(2κ

ε

)1/2 ∞∑

m=0

(40d3/2D̃2
2R max{r0, (1 − η)−1})m

(m!)1−s

= 2
(2κ

ε

)1/2 ∞∑

m=0

Dm

(m!)1−s
.

We estimate the series using the asymptotics

∞∑

m=0

xm

(m!)p
=

epx1/p

p1/2(2πx1/p)(p−1)/2

{
1 + O

( 1
x1/p

)}
(p ∈ (0, 4], x → ∞)

derived in [25, Chapter 8, Eq. (8.07)]. Thereby,

∞∑

m=0

Dm

(m!)1−s
≤ K ′eD1/(1−s)

,

where K ′ is a constant depending only on s. Hence,

Mk ≤ 2K ′
(2κ

ε

)1/2

eD1/(1−s)

and therefore

log Mk ≤ log(2K ′) +
1
2

log
(2κ

ε

)
+ D1/(1−s). �

We are now in position to prove our main result.

Proof of Theorem 1.1. By hypothesis, we have |Qk|/|Qk ∩ ω| ≤ 1/γ. Combin-
ing this with Lemma 2.3 and the estimate for log Mk derived in Lemma 2.4,
we obtain for all good Qk that
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(24d · 2d

γ

)5+
(
4 log(K′)+2 log( 2κ

ε )+4D1/(1−s)
)
/ log 2

‖f‖2L2(Qk∩ω) ≥ ‖f‖2L2(Qk)
.

In particular,
( 1

γ

)K′′·
(
1+log 1

ε+D
2/(1−s)
2

)

‖f‖2L2(Qk∩ω) ≥ ‖f‖2L2(Qk)
, (2.9)

where K ′′ ≥ 1 is a constant depending on R, r0, η, ν, s, and the dimension d.
Summing over all good Qk gives

∑

k : Qk good

‖f‖2L2(Qk)
≤

( 1
γ

)K′′·
(
1+log 1

ε+D
2/(1−s)
2

)
∑

k : Qk good

‖f‖2L2(Qk∩ω)

≤ κ
( 1

γ

)K′′·
(
1+log 1

ε+D
2/(1−s)
2

)

‖f‖2L2(ω).

Together with Lemma 2.1 this proves the theorem with K ≤ K ′′ log(1/γ) +
log κ. �

A slight adaptation of the proof of Theorem 1.1 allows us to consider a
variable density γ = γ(x) with a polynomial decay.

Theorem 2.5. Let D1,D2, μ, ν, and δ be as in Theorem 1.1 above, and suppose
that f satisfies (1.2). Let ω ⊂ R

d be any measurable set satisfying

|B(x, ρ(x)) ∩ ω|
|B(x, ρ(x))| ≥ γ0

1 + |x|a for all x ∈ R
d

with some γ0 ∈ (0, 1) and some a > 0.
Then

‖f‖2L2(Rd) ≤ eK·(1+log 1
ε+D

2/(1−s)
2 )2‖f‖2L2(ω) + εD2

1, (2.10)

where K ≥ 1 is a constant depending on γ0, R, r0, η, ν, s, a, and the dimension
d.

Proof. We have |Qk|/|Qk ∩ ω| ≤ (1 + |yk|a)/γ0, and it is easily checked that

1 + |yk|a ≤ 21+ara
0

(1 − η)a
ra

for all k ∈ K0. Since r is as in (2.1), this shows

log(1 + |yk|a) ≤ K̃
(
1 + log

1
ε

+ log D2

)
,

where K̃ ≥ 1 is a constant depending on r0, η, and a. In light of the inequality
log D2 ≤ D

2/(1−s)
2 , the theorem now follows in the same way as Theorem 1.1.

�

Remark 2.6. The exponent in (2.10) depends on ε essentially by (log(1/ε))2,
as compared to just log(1/ε) in (1.6) of Theorem 1.1. To the best of our
knowledge, the proof of the observability estimate from [16,19] does not work
with the kind of dependence in (2.10).
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Appendix A: Analyticity. The following result establishes that Gelfand–Shilov
smoothing effects as in (1.1) guarantee analyticity of the functions in the range
of the semigroup. This is required in order to follow the complex analytic
approach discussed in the main text.

Lemma A.1. Let f ∈ C∞(Rd) be such that

‖∂βf‖L2(Rd) ≤ C1C
|β|
2 β! for all β ∈ N

d
0

with some constants C1, C2 > 0. Then f is analytic in R
d.

Proof. Choose σ ∈ (0, 1] with 2C2σ < 1. Let y ∈ R
d, and let B = B(y, τ)

be an open ball around y with τ < σ/d. We show that the Taylor series of f
around y converges in B and agrees with f there. To this end, it suffices to
establish

∑

α∈N0

‖∂αf‖L∞(B)

α!
τ |α| < ∞; (A.1)

cf. [15, Theorem 2.2.5 and Proposition 2.2.10].
We proceed similarly as in the proof of [9, Lemma 3.2]: Since B satisfies

the cone condition, by Sobolev embedding, there exists a constant c > 0,
depending only on τ and the dimension, such that ‖g‖L∞(B) ≤ c‖g‖W d,2(B)

for all g ∈ W d,2(B), see, e.g., [1, Theorem 4.12]. Applying this to g = ∂αf |B
with |α| = m ∈ N0, we obtain

‖∂αf‖2L∞(B) ≤ c2‖∂αf‖2W d,2(B) ≤ c2‖∂αf‖2W d,2(Rd)

= c2
∑

|β|≤d

‖∂β+αf‖2L2(Rd) ≤ c2
m+d∑

k=m

∑

|β|=k

‖∂βf‖2L2(Rd).

Taking the square root and using the hypothesis gives

‖∂αf‖L∞(B) ≤ c
m+d∑

k=m

∑

|β|=k

‖∂βf‖L2(Rd) ≤ cC1

m+d∑

k=m

Ck
2

∑

|β|=k

β!.

We clearly have
∑

|β|=k

β! ≤ k! · #{β ∈ N
d
0 | |β| = k} ≤ k!2k+d−1.

In view of the choice of σ, we thus further estimate

‖∂αf‖L∞(B) ≤ 2d−1cC1

m+d∑

k=m

(2C2)kk! ≤ 2d−1cC1
(m + d)!
σm+d

m+d∑

k=m

(2C2σ)k

≤ 2d−1cC1

σd

∞∑

k=0

(2C2σ)k · (m + d)!
σm

=: C0 · (m + d)!
σm

.

Now,
∑

|α|=m

‖∂αf‖L∞(B)

α!
≤ C0

(m + d)!
σm

∑

|α|=m

1
α!

= C0

( d

σ

)m (m + d)!
m!
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≤ C0

( d

σ

)m

(m + d)d,

and since τ is chosen such that dτ/σ < 1, this shows (A.1) and, hence, com-
pletes the proof. �
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[7] Dicke, A., Seelmann, A., Veselić, I.: Control problem for quadratic parabolic

differential equations with sensor sets of finite volume or anisotropically decaying

density. arXiv:2201.02370 (2022)
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[21] Nakić, I., Täufer, M., Tautenhahn, M., Veselić, I.: Sharp estimates and homog-
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