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Abstract
Artificial intelligence is advancing in everyday life and supports its user by generating fast
results in areas like communication or image recognition. This thesis aims at exploiting
the abilities of deep-learning techniques for deformable image registration (DIR) to im-
prove image alignment inmedicine. An unsupervised registration and fusionworkflow is
developed and evaluated for 39 head scans, produced with computed tomography (CT)
andmagnetic resonance imaging (MRI).The three-part workflow starts by preprocessing
the scans to unify the image formats and to perform affine transformation and rigid
registration. Then, a deep-learning model trained for DIR is applied to these images. To
obtain an appropriate configuration of the model, parameter tuning is required. The
evaluationwith themutual-informationmetric indicates an improvement in image align-
ment of up to 14%when using deep-learning-based DIR. Lastly, image fusion combines
the registered CT andMRI scans with a wavelet-basedmethod tomerge the information
of decomposed images. The workflow is designed for unimodal, e.g. 𝑇1- and 𝑇2-weighted
MRI scans, and multimodal, e.g. CT andMRI scans, image pairs. Since medical imaging
is an important basis of treatment-planning processes, the registered and fused images
obtained from this workflow are expected to enhance precision radiotherapy.

Kurzfassung
Künstliche Intelligenz wird im Alltag immer präsenter und unterstützt den Anwender
durch schnelle Ergebnisse in Bereichen wie Kommunikation oder Bilderkennung. Ziel
dieser Arbeit ist es, die Fähigkeiten von Deep-Learning-Techniken für deformierbare
Bildregistrierung zu nutzen, um die Übereinstimmung vonmedizinischen Bildern zu
verbessern. Ein automatisierter Registrierungs- und Fusionsworkflow wird für 39 CT-
undMRT-Aufnahmen des Kopfes entwickelt und evaluiert. Der dreiteiligeWorkflow be-
ginnt mit einerVorverarbeitung der Aufnahmen, um die Bildformate zu vereinheitlichen
und eine affine Transformation sowie rigide Registrierung durchzuführen. Dann wird
ein für DIR trainiertes Deep-Learning-Modell angewendet. Um eine geeignete Konfi-
guration des Modells zu erhalten, ist eine Parameteruntersuchung durchVariationen
erforderlich. Die Auswertung mit der Transinformationsmetrik zeigt eineVerbesserung
der Bildübereinstimmung um bis zu 14% bei Verwendung von Deep-Learning-basierter
DIR. Schließlich werden bei der Bildfusion die registrierten CT- undMRT-Aufnahmen
mit einerWavelet-basiertenMethode kombiniert, um die Informationen zerlegter Bilder
zusammenzuführen. DerWorkflow ist für unimodale, z. B. 𝑇1- und 𝑇2-gewichtete MRT-
Aufnahmen, und multimodale, z. B. CT- und MRT-Aufnahmen, Bildpaare konzipiert. Da
die medizinische Bildgebung eine wichtige Grundlage der Behandlungsplanung dar-
stellt, ist durch diesenWorkflow eineVerbesserung der Präzision in der Strahlentherapie
zu erwarten.
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1 Introduction

In medical imaging, information on the anatomy of the human body is provided by
variousmodalities, e.g. computed tomography (CT), magnetic resonance imaging (MRI)
or positron emission tomography (PET). The significant differences between these mod-
alities are caused by their physical concepts, which lead to different types of contrast
for the same human tissue. For example, MRI provides images with high soft-tissue dis-
tinctness, while CThas better bone contrast and geometric fidelity. [1]The characteristics
of CT are the basis for treatment planning in radiotherapy due to the availability of mass
attenuation coefficients for dose calculation. In combination with superior soft-tissue
contrast in MRI scans, especially between the tumour and the healthy tissue, the quality
of treatment plans can benefit from amore precise delineation of target volumes [1–3].
The images of different modalities are typically superimposed with rigid registrations

to outline regions in treatment-planning systems [4]. However, this process does not
consider the displacement of organs due to the immobilisation of the patient or the
distortion of MRI scans, which is supposed to originate from the magnetic fields [1, 4].
In the case of pediatric patients, further challenges, which impact the quality of treat-
ment planning, arise through patient immobilisation, physical growth and a prolonged
course of disease [5]. Therefore, deformable image registration (DIR), characterised
by individual displacements of each image pixel, is expected to improve multimodal
treatment-planning processes with more precise image alignment [3, 4].
In recent years, the interest in deep-learning-basedmedical image registration has

rapidly increased [3]. In detailed reviews [6, 7] about the developments and applications
of deep learning in medical image analysis, the outcome of most publications related
to image registration is summarised. Methods for image registration depend on the
modalities of the input images, their dimensions, and the region of interest. Moreover,
the broad field of deep learning involves multiple approaches to the architecture of
neural networks. [6]While generative adversarial networks (GANs) [8] are often used
to generate artificial data, which aim at approximating the target data, convolutional
neural networks (CNNs) are useful for image deformation or recognition by extracting
image features with the help of convolution operations [3, 6]. The type of training
process is an important choice. The reviews reveal that 31% and 21% of the publications
include unsupervised and supervised methods, respectively. Furthermore, 70% of the
publications focus on unimodal image registration. Unsupervised multimodal methods
mainly dealwith the images of the abdominal region [9–12] or the generation of synthetic
images with GANs [13–15], avoiding the challenge of defining accurate image-similarity
measures for the multimodal case. [7] Consequently, there is a lack of direct application
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1 Introduction

of unsupervised multimodal methods for deep-learning-based DIR. [6]
A popular deep-neural-network structure for CNNs is U-Net [16], which efficiently

learns image features on a small-sized data set [6]. While the advantage of this method
was exploited for fast atlas-based DIR of brain MRI scans [17], the investigations in
this thesis employ a U-Net-shaped CNN for DIR of head CT and MRI scans. For the
input images of a deep neural network, preprocessing is required, which normalises the
images, for example, with affine transformation and rigid registration [4]. This ensures
that the deep neural network does not have to deal with linear transformations, but can
focus on diffeomorphic deformations [4]. This thesis contributes to that research field by
developing a workflow, which includes the preprocessing, the deformable registration
and the fusion. The outcome has the potential to facilitate treatment planning with fast
and direct application.
This thesis includes a detailed description of the information needed to obtain a

comprehensive overview of the research. The basics of relevant medical imaging mod-
alities are given in Chapter 2. The CT andMRI scanners and their scanning sequences,
which impact image reconstruction, are described besides the physical foundation.
Chapter 3 includes a collection of image-processing techniques and image-matching
metrics used in the upcoming investigations. The general concept of digital images is
also explained. The information on the available data sets is contained in Chapter 4
besides the description of image segmentation and adjustments for the preprocessing.
The deep neural network is introduced in Chapter 5. Moreover, various studies are
performed to find optimal parameter settings of the network. The registered images are
then used for image fusion, presented in Chapter 6. Themethodology to combine the
information frommultiple images and results for multimodal and unimodal fusion are
described. Lastly, an outlook on the clinical integration of the image-registration and
image-fusion workflow is given in Chapter 7. The conclusion in Chapter 8 summarises
the main results.
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2 Medical imaging

The ability to use non-invasive techniques for the visualisation of the human anatomy
originated over 100 years ago with X-rays. Since then, further imaging technologies have
been developed and improved for medical healthcare, resulting from the increase in
computing power of modern computers. Cross-sectional images are essential in clinical
settings formedical diagnosis, treatment planning in radiotherapy or surgery. Computed
tomography andmagnetic resonance imaging are two common imaging techniques,
which offer unique advantages. [18]The CT procedure is described in Section 2.1, while
general information on the MRI technique is summarised in Section 2.2.

2.1 Computed tomography

CT scans, providing high spatial resolution, are advantageous for the identification of
subtle abnormalities. The images are well suited for the visualisation of structures with
different densities, making them indispensable for the evaluation, for example, of bone
fractures or tumours. In addition, CT scans are useful for detecting foreign bodies, like
projectiles, in the case of traumatic injuries. However, these objects and other factors can
produce image artefacts, which decreases the quality of theCT scans. Artefacts can occur
due to metallic objects, patient movement or hardware issues. Therefore, research is
ongoing tominimise the impact of artefacts. Furthermore, exposure to ionising radiation
requires the observance of the radiation dose for patient safety. The balance between
radiation exposure and image quality is important to avoid unnecessary radiation and
to obtain sufficient quality for diagnostics, treatment planning or monitoring. [18]
Based on conventional radiography, the CT procedure involves X-rays to create de-

tailed cross-sectional images of the body, forming a three-dimensional scan. The X-rays
traverse the patient and attenuate depending on the tissue type. The attenuated in-
tensities are recorded with detectors, positioned opposite to the X-ray source. For the
scan acquisition, projections of the X-rays from different angles are required to generate
the two-dimensional images with special computer algorithms. [19]
The development and optimisation of the CT procedure produced several generations

of CT scanners. Each generation was built with the aim of increasing the image qual-
ity. [20]The general construction of CT scanners is described in Section 2.1.1. Methods
used for image reconstruction are presented in Section 2.1.2, while CT-specific properties
of image representation are captured in Section 2.1.3.
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2 Medical imaging

2.1.1 CT scanner

The basis of the CT scanner is an annular gantry in which the X-ray tube and the de-
tector module are located. For patient positioning, a patient table is connected to the
gantry, moving the patient in height, 𝑦 direction, and into the gantry, 𝑧 direction. [18]
Different generations of the gantry design were developed with the aim of reducing the
acquisition time. The first versions included a fixed configuration of an X-ray tube and
an opposite detector module, which rotated around the patient, placed in the centre
of the gantry, to perform a two-dimensional scan in the axial plane, 𝑥–𝑦 plane. The
movement of the patient through the gantry enabled the incremental acquisition of
three-dimensional scans. The limitation of this step-and-shoot sequence was caused by
the cable connection between the measuring components in the gantry and the energy
sources, which allowed a maximal rotation of 360°. The introduction of the slip-ring
technology led to contactless energy transfer, providing continuous rotation of the in-
ner components. [20]The spiral sequence is performed with a constant rotation of the
measuring components while constantly moving the patient through the gantry. This
technique decreased the acquisition time and is commonly used in clinical facilities. [21]
An essential part of the CT scanner is the X-ray tube, which produces electromagnetic

radiation. The vacuum tube consists of a cathode–anode pair for the emission and
collision of accelerated electrons. The filament of the cathode is heated up to release
thermal electrons, whose velocity increases due to the acceleration voltage,𝑈a, between
cathode and anode. High temperatures require cooling of the tube, which is realisedwith
coolant. The radiation energy depends on𝑈a, which ranges between 70 kVand 150 kV for
medical-diagnostic purposes. The anode is disk-shaped with a tilt from the edge to the
centre for the deflection of the radiation, producing a fan beam. Two constructions of the
X-ray tube overcome the issue of electrons always colliding at the same position. Either
the anode rotates inside the tubeor the anode is connected to the rotating tube, including
the cathode. The latter is beneficial for direct cooling of the anode. [21] Furthermore,
the radiation beam is regulated with various collimators and filters. The former ensure
that only photons with a certain direction pass the patient. The latter are employed to
filter low-energy and scattered photons to prevent unnecessary radiation exposure to
the patient. In modern CT scanners, the collimators are used to perform simultaneous
scans of multiple axial slices. [18]
The attenuated X-ray photons arrive at the detector module, which consists of con-

catenated units. These are arranged as an array to cover the fan beam. [18]The units can
be gas detectors, in which a gas, like xenon, is ionised through the X-ray photons. The
electrons produced are capturedwith high voltage between a cathode and an anode. [20]
In modern CT scanners, however, scintillator detectors with a scintillator medium and a
photosensor are used. First, the X-ray photons are converted into light whose intensity is
proportional to the energy of the photons per unit time. Then, the photosensor converts
the visible light into current, which is amplified and digitised. Themeasured signal needs
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2.1 Computed tomography
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Figure 2.1: Illustration of the different trajectories of the radiation beam. The detector
modules are represented as grey areas. Subfigure a: The parallel trajectory requires
an individual X-ray source for each beam. Subfigure b: The fan-beam geometry is
provided by a single X-ray source. The angle is different for each beam. Subfigure c:
Several fan beams are emitted along the 𝑧 axis for cone beams.

to be corrected as it does not correspond to the intensity of the X-ray photons. Disruptive
effects, e.g. the offset and afterglow of the detector and fluctuations in the X-ray tube,
are eliminated to obtain the attenuation values. [18]The digital signals are processed
with advanced algorithms in the computer system to reconstruct the cross-sectional
images. The operation console allows the clinician to adjust the scan parameters and to
monitor the scanning sequence. [21]

2.1.2 Image reconstruction

The principle of reconstructing a cross-sectional image from the attenuated radiation
intensity

𝐼(𝑆) = 𝐼0 exp(−∫
𝑆

0
𝜇(𝑠)d𝑠) (2.1)

is based on Lambert–Beer’s law. The X-ray photons traverse the patient and interact
with matter, which causes a reduction of the initial intensity, 𝐼0. The path, 𝑆, of the
photons is subdivided into several sections, 𝑠, with different attenuation coefficients,
𝜇(𝑠), depending on the density of the matter. The measurement of 𝐼(𝑆) has to be re-
peated for several angles with a minimal scan range of 180° to increase the quality of the
reconstructed image. [20]
The simplest reconstruction algorithm is the filtered back projection for radiation

beams with parallel trajectories (see Figure 2.1a) [18]. Themeasured intensities divided
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2 Medical imaging

by the initial intensity provide the line integral of the trajectory projection,

𝑝(𝜃, 𝜂) = − ln(
𝐼
𝐼0
) = ∫

∞

−∞
𝜇(𝜂, 𝑠)d𝑠 , (2.2)

for the angle 𝜃 and the distance 𝜂 from the centre, which corresponds to the Radon
transform [22]. The one-dimensional Fourier transform

𝑃(𝜃, 𝜔) = ∫
∞

−∞
𝑝(𝜃, 𝜂)e−2𝜋i𝜔𝜂 d𝜂 = ∫

∞

−∞
∫
∞

−∞
𝜇(𝜂, 𝑠)e−2𝜋i𝜔𝜂 d𝜂d𝑠 (2.3)

of Equation (2.2) is performed to connect the Radon transform to the frequency domain,
𝜔. As a mapping of the attenuation coefficients for the (𝑥, 𝑦) coordinates is desired to
generate the image, the coordinate substitution of 𝜂 and 𝑠 yields

𝑃(𝜃, 𝜔) = ∫
∞

−∞
𝜇(𝑥, 𝑦) exp(−2𝜋i𝜔 (𝑥 cos 𝜃 + sin 𝜃))d𝑥d𝑦 = 𝐹(𝜔 cos 𝜃, 𝜔 sin 𝜃) , (2.4)

which corresponds to the two-dimensional Fourier transform, 𝐹(𝜔 cos 𝜃, 𝜔 sin 𝜃). [18]
This is the Fourier slice theorem, which means that the frequency domain can be filled
with projections from different angles. The inverse two-dimensional Fourier transform
leads to the 𝜇(𝑥, 𝑦) distribution, but the scan with discrete angles requires interpolation.
Therefore, a high-pass filter can be applied to 𝑃(𝜃, 𝜔) in the frequency domain. Several
filters exist, which affect the definition and noise of the reconstructed image. Thus, a
filter has to be set in the scan protocol before the acquisition. [21]
In practice, the radiation beam corresponds to a fan-beam geometry (see Figure 2.1b)

with non-parallel trajectories of the projections. Therefore, the focus point

⃗𝑠(𝛼) = (𝑅f sin𝛼 −𝑅f cos𝛼 𝑧)
⊤
, (2.5)

which corresponds to the position of the X-ray source, is parameterised as a circular
trajectory at the position 𝑧 with the rotation angle 𝛼 and the circumference 𝑅f. The
directions of the beams, defined by the angle 𝛽, differ within the fan. The coordinate
transformations 𝜃 = 𝛼 + 𝛽 and 𝜂 = −𝑅f sin𝛽 convert the fan-beam trajectories, (𝛼, 𝛽),
into the parallel trajectories, (𝜃, 𝜂). One option for the reconstruction is to perform a
rebinning that includes interpolation and allows the filtered back projection for parallel
trajectories to be applied. Another method directly substitutes d𝜃 and d𝜂 in the formula
for the filtered back projection by d𝛼 and d𝛽, which, however, leads to considerable
computation. [18]
Furthermore, the extension to multi-slice scans introduced cone beams (see Fig-

ure 2.1c) with an additional 𝑧 component of the focus point for the slices, which are
tilted from the axial plane by the angle 𝛾. The reconstruction is based on the filtered back
projection for the fan-beam geometry, but includes a multiplication correction of the
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2.1 Computed tomography
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Figure 2.2: Illustration of the cone-beam geometry for CT scans. Subfigure a: The
lateral view in the 𝑥–𝑦 plane shows the circular trajectory of the X-ray source with the
circumference 𝑅f and the fan angle 𝛷. Subfigure b: The longitudinal depth of the cone
beam is limited by the collimator, 𝐶.

projectionswith cos𝛾 and a three-dimensional back projection. A drawback of the three-
dimensional method is the vulnerability to artefacts due to incomplete data in circular
scans. Regarding the common scan technique with spiral trajectories, the focus point
differs from Equation (2.5) by replacing 𝑧with the constant movement, 𝑑′ = 𝑑/(2𝜋), of
the patient table with the table distance 𝑑 per revolution. The lateral angle, 𝛷, and the
longitudinal collimator value, 𝐶, of the cone beam, which are visualised in Figure 2.2,
define the pitch value, 𝑝 = 𝑑/𝐶, of the spiral trajectory. This value affects the image qual-
ity and has to be limited. Several algorithms exist for the reconstruction of multi-slice
spiral CT scans. One class of algorithms reduces the data to two-dimensional circular
scans, which can be used with the filtered back projection for fan-beam geometry. As
this method is limited to the angle of the cone beam, algorithms with three-dimensional
filtered back projection aremore appropriate. This class of algorithms is computationally
intense, but produces higher-quality images. [18]

2.1.3 Image display

The reconstructed CT scans contain the attenuation coefficients, 𝜇(𝑥, 𝑦), for each pixel
position, which are visualised in greyscale. For this, the greyscale values

𝑣CT =
𝜇 − 𝜇water
𝜇water

⋅ 1000 (2.6)
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2 Medical imaging

are computed by transforming the attenuation coefficients into the Hounsfield unit with
regard to the attenuation in water. Thus, the greyscale value for water is 0HU. While the
value −1000HU is obtained for air, the highest value of 3000HU is reached for bones.
TheHounsfield unit given in permill is advantageous due to the dense distribution of the
𝑣CT values of several organs near 0HU. Another property of image display of CT scans is
the limitation to relevant values as the human eye is not capable of differentiating 4000
greyscale values. Therefore, valuesbelowor above a specified range, e.g. thebonewindow
from 300HU to 1800HU or the brain window from 35HU to 85HU, are displayed in
black or white, respectively. [20]

2.2 Magnetic resonance imaging

Contrary to CT imaging, the patients are not exposed to ionising radiation in the case
of MRI, ensuring a safer imaging technique. The strong magnetic fields used during
acquisition can impact the physical well-being of some patients especially as the scan
procedure is time-consuming. [18] Moreover, patients with metallic foreign bodies, e.g.
implants, are not able to perform an MRI scan due to safety concerns related to the
magnetic fields. However, MRI is particularly well suited for the visualisation of soft
tissue, such as organs, muscles and the brain, as it provides high-resolution images that
support medical diagnostics. [21]
In the context of medical imaging, nuclear magnetic resonance is employed to gen-

erateMRI scanswith strongmagnetic fields. Atomic nuclei in the body, like hydrogen, are
excited in the presence ofmagnetic fields, resulting in nuclear spin resonance. The return
of excited nuclei to equilibrium emits high-frequency signals, which are detected with
receiver coils. This signal measurement involves the determination of tissue-dependent
relaxation times, which provide valuable information on the structure and composition
of the tissue. [21]
In Section 2.2.1, the hardware components that are required for the MRI procedure

are described. Section 2.2.2 contains the physical concept of nuclear spin resonance,
representing the basis of MRI. Lastly, the reconstruction method to produce MRI scans
is presented in Section 2.2.3.

2.2.1 MRI scanner

In general, the MRI scanner, generating magnetic fields and emitting high-frequency
signals, is constructed of three components: primary magnet, gradient system and
high-frequency transmitter. These components are arranged in a housing, which can be
cylindrical or open. The former shape is commonly used in clinics with electromagnetic
coils, operating between 1.5T and 3T. To prevent the impact of external electromagnetic
interference, the examination room is built as a Faraday cage. Body-part-specific receiver
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2.2 Magnetic resonance imaging

coils detect the high-frequency signals. Similar to CT scanners, a patient table is used to
position the patient. [18]
Thebasis of the scanprocedure is providedby theprimarymagnetic field,𝐵0, produced

with superconducting electromagnetic coils. The field has to be static and homogeneous
to evenly polarise the hydrogen nuclei in the patient. Therefore, additional shim coils are
implemented to control and adjust the homogeneity in the isocentre of 𝐵0. The coils of
the superconducting electromagnet are vacuumed in a cryogenic vessel, which includes
liquid helium for cooling up to 4K. The superconductivity allows stable magnetic fields
to be generated over a longer period of time, which cannot be switched off abruptly. An
emergency switch ensures that the superconductivity can be interrupted by heating up
a part of the coils. Gaseous helium can then escape through a safety valve. [18]
The gradient system generates linear gradient fields, 𝐺𝑥, 𝐺𝑦 and 𝐺𝑧, in the 𝑥, 𝑦 and

𝑧 directions to enable spatial coding of the signals with position-dependent magnetic
fields. The amplitude and the slew rate define the quality of the imaging, which is fast
for high amplitudes and high slew rates of the gradient fields. The system consists
of electromagnetic coils, which have cylindrical symmetry and are placed under the
primary magnet. The fast-switching gradient coils require high current; therefore, water
cooling is used to reduce the temperature of the gradient system. [18]
The high-frequency system is subdivided into two parts: transmitter and receiver coils.

The former excite the hydrogen nuclei in the patient by applying high-frequency pulses
with the Larmor frequency

𝜔0 = 𝛾𝐵0 , (2.7)

which includes the particle-specific gyromagnetic ratio, 𝛾, and is proportional to 𝐵0. A
high-frequency amplifier is additionally used to support the transmitter system. The
latter coils detect weak high-frequency signals, which are emitted by the excited nuclei
in the body. Due to its sensitivity, the receiver system is inactive during the emission
of the pulses from the transmitter coils. Moreover, the receiver system, consisting of
several surface coils, is placed near the patient to reduce noise effects. The form and
number of the coils depend on the body region. [18]

2.2.2 Physical concept

Atomic nuclei, which can contain protons and neutrons, have a nuclear spin, ⃗𝐼, if the
number of nucleons is odd. For some cases of evenly distributed nucleons, e.g. odd
numbers of both protons and neutrons, atoms also have a nuclear spin. The spin results
in a magnetic moment, �⃗� = 𝛾 ⃗𝐼, which provides the interaction with external magnetic
fields for nuclear spin resonance. Regarding MRI, hydrogen is important due to its large
presence in the human body. Its protons have the spin quantum number 𝐼 = ±1/2,
representing low- and high-energy states. The high gyromagnetic ratio of protons in
hydrogen exhibits high sensitivity to the magnetic field. In the presence of 𝐵0, the

9



2 Medical imaging

thermal equilibrium of the atomic nuclei is disturbed since the magnetic moment of the
protons leads to Larmor precession with the frequency 𝜔0.
Due to the nuclear spin, two energy states, resulting in parallel and antiparallel dis-

tribution of the atomic nuclei, are possible. The Boltzmann distribution, describing the
energy-state distribution, yields a magnitude of 106. This means that only a few nuclei
out of millions contribute to the macroscopic magnetisation, �⃗�, which is proportional
to themeasured signal inMRI. An increase in𝐵0 amplifies the high-frequency signal. [18]
Themacroscopic magnetisation with a static magnetic field requires an alternating

magnetic field, 𝐵1(𝑡), to cause nuclear spin resonance. For this, the field 𝐵1(𝑡), which is
perpendicular to 𝐵0 in 𝑧 direction, is applied as high-frequency pulses to tilt �⃗� through
a precession around the 𝑧 axis. The amplitude and the duration of 𝐵1(𝑡) affect the flip
angle, 𝛼. While a flip angle of 90° tilts �⃗� into the transverse 𝑥–𝑦 plane, lower 𝛼 values
lead to a smaller tilt of the longitudinal component𝑀𝑧 into the transverse plane. The
requirement for this resonance is that the frequency of the pulses corresponds to the
Larmor frequency. After the pulse is switched off, the precession of the magnetisation
decreases as the magnetisation �⃗� returns into the 𝑧 direction. This emits the char-
acteristic signals, which are detected with electromagnetic coils, sensitive to the rotating
transverse component𝑀𝑥𝑦. [21]
Relaxation describes the process for a system to return to equilibrium. Two mech-

anisms, which affect the image contrast of the MRI scan, are the basis of the MRI pro-
cedure. The longitudinal relaxation is related to the return of the longitudinal mag-
netisation

𝑀𝑧(𝑡) = 𝑀0 (1 − exp(−
1
𝑇1
𝑡)) (2.8)

to the initial state,𝑀0. The relaxation time 𝑇1 indicates that the magnetisation is ap-
proximately 63% in equilibrium, while𝑀𝑧(3𝑇1) ≈ 0.95𝑀0. The longitudinal relaxation,
which results from the interaction of the spins with the molecular environment, de-
pends on the tissue type and 𝐵0. In contrast, the transverse relaxation represents the
exponential decay of the transverse magnetisation

𝑀𝑥𝑦(𝑡) = 𝑀0 exp(−
1
𝑇2
𝑡) (2.9)

with 𝑇2 as the relaxation time for the decrease of𝑀𝑥𝑦 to 37%. This relaxation results
from spin–spin interactions, leading to the divergence of𝑀𝑥𝑦. Due to inhomogeneous
magnetic fields, the transverse relaxation is affected by additional dephasing effects,
which produce the free induction decay in the receiver coils. The signal is a decreasing
oscillation whose envelope decreases exponentially with 𝑇 ∗

2 , similar to Equation (2.9).
The two relaxation processes are visualised in Figure 2.3. The 𝑇1 and 𝑇2 relaxation times
strongly depend on the tissue type and the magnetic field. Both times provide valuable
information on the behaviour of the protons in the tissue, influencing the signal. [21]
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Figure 2.3: Relaxation processes during the MRI acquisition. The distributions of the
longitudinal (left) and transverse (right) relaxations are shown. The grey areas indicate
the states of the magnetisation components𝑀𝑧(𝑡) and𝑀𝑥𝑦(𝑡) for the relaxation times
𝑇1 and 𝑇2, respectively.

2.2.3 Image acquisition
The gradient system of the MRI scanner generates three linear magnetic fields, which
are superposed upon 𝐵0. This allows the spatial domain to be subdivided into volume
elements, defining the spatial resolution of the MRI scan. The signals, evoked by the
high-frequency pulses, depend on the frequency

𝜔(𝑥, 𝑦, 𝑧) = 𝜔0 + 𝛾 (𝑥𝐺𝑥(𝑡) + 𝑦𝐺𝑦(𝑡) + 𝑧𝐺𝑧(𝑡)) , (2.10)

which is used for the spatial coding. A certain sequence of gradient fields ensures that
the signal of the corresponding volume elements can be measured. First, specific slices
within the volume can be selected for the signal measurement with high-frequency
pulses, which affect only magnetic moments with the resonance frequency of the pulses.
This can be controlled by applying the gradient field 𝐺𝑧 during the pulse. The thickness
of the selected slices can be adjusted through the bandwidth of the high-frequency pulse
and the slew rate of 𝐺𝑧. Then, the spatial coding in the 𝑥–𝑦 plane is performed with
a phase and frequency coding. After the selection of the slice, the gradient field 𝐺𝑦 is
applied for a certain time to obtain different phases along the 𝑦 direction. As the signal
of each phase has to be detected individually, the field𝐺𝑦 has to be applied several times
with different strengths. The gradient field 𝐺𝑥 is used during the measurement of the
signal. It changes the precession frequency of the magnetisation along the 𝑥 direction,
which characterises the signal by the individual frequency𝜔(𝑥) = 𝜔0+𝛾𝑥𝐺𝑥. The spatial
coding ensures that a discrete frequency domain is filled with the measured signals to
generate the MRI scan with the Fourier transform. [21]
The advantage of theMRI procedure is the variability of gradient and pulse sequences,

which highly affects the image contrast of the resulting scan. The echo time, 𝑇e, and the
repetition time, 𝑇r, are two essential parameters to control the impact of both relaxation
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2 Medical imaging

processes. The inversion-recovery sequence is used to determine the relaxation time
𝑇1 with 180° pulses, which invert the direction of the longitudinal magnetisation. The
magnetisation is forced to return to the initial state during an inversion time, 𝑇i. To
detect the signal, a 90° high-frequency pulse is applied to the recovered magnetisation,
producing a free induction decay whose amplitude corresponds to the longitudinal
magnetisation. A repetition of the 90° pulse is necessary to measure the exponential
distribution of the longitudinal relaxation with different 𝑇i values. The repetition time,
considering the recovery of the magnetisation, defines the interval for the next 180°
pulse. [21] In the spin-echo sequence, a 90° high-frequency pulse is applied to tilt the
longitudinal magnetisation into the transverse plane. A dephasing is caused by the
inhomogeneousmagneticfields. Therefore, anadditional180°pulse is usedafter the time
𝑇e/2 to flip themagnetisation, whichmeans that thedephasing is reversed. After the time
𝑇e, the magnetisation is refocused, producing a spin-echo signal. The application of the
second pulse is repeated several times to determine 𝑇2 from the decreasing amplitudes
of the spin-echo signals. [21] Moreover, the gradient-recalled sequence contains angles
of 𝛼 ≤ 90° to not flip the magnetisation completely into the 𝑥–𝑦 plane, reducing the
time to return to the initial state. This sequence is often used in combination with the
inversion-recovery sequence. [18]
The choice of the repetition and echo times correlates with the weighting of the MRI

scan. The inversion-recovery sequence is appropriate for generating𝑇1-weighted images,
while the spin-echo sequence is more variable in terms of image contrast. A large
repetition time and an echo time that approximately corresponds to 𝑇2 are required for
𝑇2-weighted MRI scans via the spin-echo sequence. For 𝑇1-weighted MRI scans, a short
echo timehas to be set, while the repetition time shouldmatch𝑇1. Due to large repetition
times of some seconds, the acquisition of a two-dimensional image can take several
minutes. Therefore, multi-slice acquisition can be performed for a three-dimensional
scan, where other slices that are at a sufficient distance from each other are measured
during the waiting time. [21]
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3 Digital image processing

In medical imaging, the acquired information is presented as digital images to evaluate
the anatomy of the patient. These can be used for the indication of diseases or the
planning and monitoring of a treatment, like surgery, radiotherapy or chemotherapy. In
Section3.1, the constructionof digital images is introduced,which includes typical image
types and medical terms. Basic operations for image processing as well as deep-neural-
network operations are summarised in Section 3.2. Afterwards, three metrics aiming at
measuring similarity in the image-registration process are described in Section 3.3.

3.1 Digital images

In computer science, images are realised by arranging rectangular picture elements
(pixels) in columns and rows. The numbers of columns and rows define the width and
the height of the image, respectively. The resolution, indicated by the number of pixels
per unit length, connects the represented object in the image with its real dimensions.
Each pixel of the grid-shaped image contains a specific value or a set of values, which
depends on the image type, e.g. greyscale images with one channel or colour-scale
images with three channels. The information of the images is expressed by a finite set
of numerical values that defines the range of pixel values as integers or floating-point
numbers. Usually, the range is defined by 2𝑘 values with 𝑘 as the bit depth, increasing
image quality with higher values. [23]
In general, an image, 𝐼(𝑥, 𝑦), is a two-dimensional matrix of a set of pixel values for

the coordinates 𝑥 and 𝑦. Since the medical scan of a patient contains a series of two-
dimensional images, the scan is represented as a three-dimensional array, 𝐼(𝑥, 𝑦, 𝑧), with
an additional axis for the coordinate 𝑧. The coordinate system of the array with its origin
at (0, 0, 0) in the upper left corner defines the location of each pixel. An illustration of a
three-dimensional array is shown in Figure 3.1a. An axial image is displayed in the 𝑥–𝑦
plane, where the 𝑥 and 𝑦 axes run from left to right and from back to front, respectively.
The other images or slices of a three-dimensional scan are concatenated along the 𝑧 axis
from top to bottom.
In this thesis, the Python programming language [24] is used for image processing.

The NumPy library [25] includes several processing tools to access, manipulate and
change the information of the images in the form of arrays. The ImageJ programme [26]
and the Matplotlib library [27] are used for the visualisation of the images.
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Figure 3.1: Illustration of a three-dimensional array andmedical perspectives. Sub-
figure a: The pixels are arranged in a three-dimensional array with 𝑖 columns, 𝑗 rows
and 𝑘 slices. The coordinate system defines fixed discrete pixel positions and has its
origin in the upper left corner. Subfigure b: The axial, sagittal and coronal perspectives
with regard to a medical scan as well as their combination are visualised to show the
three-dimensional mapping.

3.1.1 Image types

Several types of depiction exist for digital images, which depend on the number of
channels and the bit depth. Images with one channel are called greyscale images and
contain one value per pixel. In contrast, colour-scale images contain a set of three
or four values per pixel in the form of the RGB or CMYK colour model. Furthermore,
images can also include negative pixel values. These special images are helpful during
the application of image-processing techniques that generate negative values. [23]
Binary images with 𝑘 = 1 are a subset of greyscale images. This means that only two

integers are candidates for the pixel value. The result is a black-and-white representation,
which separates the foreground from the background with the pixel value 0. Other bit
depths, for example, are 8, 12, 14 or 16, increasing the range of pixel values. An 8-bit
image contains 256 integers to display different grey values. The number of integers can
extend to 65 536 for 𝑘 = 16. [23]
The bit depth of colour-scale images is similar to that of greyscale images, but is

multiplied by the number of channels. The typical numbers 24, 36 or 42 are used to
represent the RGB colour space with the same integer range for each channel. For
example, a 24-bit image has 256 possible integers per pixel and channel. The CMYK
colour space is realised by four channels with 𝑘 = 32 and an integer range of [0, 255] per
channel. [23]
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3.2 Image processing

3.1.2 Medical images

The standard to manage the outcome of medical imaging is the DICOM [28] format,
which stores information on the patient, the scan sequence and the image properties.
Asmentioned in Chapter 2, the studies in this thesis employ CT andMRI scans for image
registration and fusion.
The pixel values of the CT scans are constructed of 12-bit integers with a range of

[0, 4095]. The speciality of the CT scans is the connection of the pixel values, 𝑥, to the
Hounsfield unit, which can be accessed with the linear calibration function

𝑦 = 𝑎𝑥 + 𝑏 . (3.1)

The Hounsfield values, 𝑦, are calculated via a scaling factor, 𝑎, and a shift parameter,
𝑏. For the CT scans in this thesis, the numbers are 𝑎 = 1 and 𝑏 = −1024, defining the
Hounsfield range [−1024, 3701] (see Section 2.1.3). This facilitates the identification of
tissue, e.g. fluids and bones, for image processing. Contrary to CT, MRI scans have an
arbitrary distribution of pixel values. Although 16 bits are allocated to these scans with
signed integers, the pixel values vary between 0 and 9999.
The three-dimensional scan of a patient can be visualised through different per-

spectives, exemplified in Figure 3.1b. For images of the head, the side view is realised
with the sagittal plane, which spans in the 𝑥–𝑧 plane. The coronal plane is given by the 𝑦
and 𝑧 axes and splits the head into a rear and front part. The common perspective of the
𝑥–𝑦 plane is called the axial plane. [23]
A set of parameters that is stored in the DICOM files provides information on the

resolution of the scans. The pixel spacing, given in the range of millimetres, specifies the
dimensions of the pixels in the 𝑥 and 𝑦 directions. In addition, the slice thickness and
distance provide information on the extension along the 𝑧 axis. The slice thickness can
either be larger or smaller than the slice distance, which depends on the scanparameters,
set during the acquisition. In the latter case, some parts of the patient’s anatomy are not
scanned, reducing the resolution of the scan.

3.2 Image processing

Amodification of the images can be achieved by various techniques, depending on the
objective. The simple geometric transformations described in Section 3.2.1 are useful for
changing images regarding the position, size or form. To manipulate the pixel values of
images, filter operations canbe applied to influence the edges by softening or sharpening
(see Section 3.2.2). Furthermore, image operations for special deep neural networks
with the aim of extracting image features are explained in Section 3.2.3.
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3.2.1 Geometric transformations

The transformation of a source image, 𝑆, is performed with a transformation function,
𝐴, to generate the target image, 𝑇. The function is an 𝑛×𝑛 matrix, which contains
parameters to compute the target pixel positions

�⃗�′ = 𝐴 ⋅ �⃗� (3.2)

based on the source positions, �⃗�. The size, 𝑛, of 𝐴 depends on the dimension of the
source image, which leads to 𝑛 = 3 and 𝑛 = 4 for two- and three-dimensional images,
respectively. The number of parameters in 𝐴 varies with the number of geometric op-
erations that are chosen for the transformation. [23] Transformations of an image can
be classified into three types: rigid, affine and deformable. The rigid transformation is
characterised by the fact that the pixel distances are maintained, which is accomplished
by translation, rotation and reflection. By adding operations like scaling and shearing,
the transformation type turns from rigid to affine. This means that the pixel distances
change, while the parallelism of lines is preserved. The deformable transformation
warps the image with unique displacement vectors for each pixel. Thus, the number of
displacement parameters increases with the dimension and the number of pixels. [4]

Operations For the translation operation, one parameter, 𝑡𝑖, per dimension guar-
antees the displacement along the accompanying axis, 𝑖. The rotation of the image
around the centre requires an angle, 𝛼. The two-dimensional transformation functions
for rigid operations are defined as

𝐴translation =
⎛

⎝

1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

⎞

⎠
and 𝐴rotation =

⎛

⎝

cos𝛼 − sin𝛼 0
sin𝛼 cos𝛼 0
0 0 1

⎞

⎠
. (3.3)

Regarding the affine operations, the parameter 𝑠𝑖 scales the image along the axis 𝑖, while
the shearing parameter 𝑏𝑗 of axis 𝑗 is applied to distort the image along the axis 𝑖. In
general, the transformation functions

𝐴scaling =
⎛

⎝

𝑠𝑥 0 0
0 𝑠𝑦 0
0 0 1

⎞

⎠
and 𝐴shearing =

⎛

⎝

1 𝑏𝑥 0
𝑏𝑦 1 0
0 0 1

⎞

⎠
(3.4)

are used for two-dimensional images. [23] Furthermore, the reflection of images always
refers to an axis in two dimensions or to a plane in three dimensions. This operation is
useful for data augmentation in machine-learning processes (see Section 5.3.1).
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Mapping The source-to-target mapping enables the generation of 𝑇 by computing the
modifiedpixel positions asdefined inEquation (3.2). Thismethodcan lead to insufficient
results, e.g. if multiple pixel values of 𝑆 are assigned to the same pixel in 𝑇. Hence, the
target-to-sourcemapping is the superior option, avoiding these complications. For each
pixel of 𝑇, the position in 𝑆 is calculated with the inverse transformation function, 𝐴−1.
Since the reverse computation leads to positions between several pixels, this mapping
requires an interpolation for the choice of the pixel values in 𝑇. Several interpolation
methods, using neighbouring pixel information, are available for the transformation.
The nearest-neighbour method takes the value of the next pixel by rounding up the
calculated position in 𝑆. The target image can appear pixelated due to the single pixel
information. The quality of 𝑇 improves by increasing the number of pixel values in the
interpolation process. The bi-linear interpolation uses the four pixel values that are
adjacent to the calculated pixel position by applying linear interpolations along the 𝑥
and 𝑦 axes. A more detailed and computationally intense interpolation is achieved with
the bi-cubic method, occupying the 16 nearest pixel values for the determination of
cubic polynomial functions. [23]

3.2.2 Manipulation

In image processing, direct manipulation of the pixel values can be used to produce
filtered images, which can support the search for edges or contours, or to generate
binary images. Regarding image segmentation, algorithms like the flooding algorithm
are useful to fill closed contours in binary images [23].

Global filters The application of filters aims at modifying the image to reduce noise
or to increase its smoothness. Linear filters, affecting the whole image, have the dis-
advantage that desired features are alsomanipulated. In contrast, non-linear filters allow
the specification of the properties to be filtered. Therefore, the non-linear operation com-
putes the new pixel values according to a filter region by using a kernel with a specified
size. As the centre of the kernel is placed on the pixel under consideration, the kernel
dimensions should be odd. Themaximum andminimum filters, for example, select the
highest and lowest values of the kernel, respectively. Themedian filter determines the
median value of the kernel. [23]

Morphological filters To change the form and size of the image content, morpho-
logical filters are useful. These filters are especially designed for binary images, but they
are also applicable to greyscale and colour-scale images. The basic operations, called
dilation and erosion, are related to the increase and decrease in size, respectively. These
operations include a structural kernel with an origin, which is applied to each pixel
position of the image. Regarding the image type, the pixel values of both image and
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kernel can either be zero or unity in case of binary images. For the dilation, the values of
the kernel are transferred to the image if the value of the origin and the corresponding
pixel value agree. In contrast, the erosion, where the kernel is mapped onto the image
if all values of the kernel are in agreement with the pixel values in the corresponding
area, reduces the size. Furthermore, the combination of dilation and erosion leads
to two other operations: opening and closing. The former consists of the successive
application of erosion and dilation, which removes image features smaller than the
kernel and smooths the image afterwards. For the latter, dilation and erosion are applied
to close gaps that are smaller than the kernel. [23]

Thresholding The threshold technique converts greyscale or colour-scale images
into binary images. For this, a pixel value has to be determined as the threshold for
the separation into foreground and background. The computation of the threshold
is often performed with the image histogram. The isodata method, for example, cal-
culates the mean of the pixel values based on the histogram. This divides the histogram
into two parts, for which the means are again calculated to compute their average, rep-
resenting the threshold. The iterative procedure is repeated until the threshold does not
change. [23] Other methods, like Yen [29] and Li [30], are based on the entropy of the
pixel-value distribution. While the Yen method is designed to determine a threshold
for a maximal entropy through the probability distribution of the pixel values, the Li
method minimises the cross-entropy according to the Kullback–Leibler divergence [31].

3.2.3 Deep-neural-network operations

Deep learning is one option to apply deformable transformations to images for direct
and fast image registration. Deep neural networks are used to extract image features
through simple operations, which are implemented in the networks and contribute to
their architecture. In this thesis, two types of operations are needed; while convolution
represents the basis, image contraction and expansion enable resizing.

Convolution The aim of extracting features from images is achieved with convolution
operations. The foundation of a convolution is a 𝑘-dimensional kernel, having the
same dimension as the image. The sequence to obtain two-dimensional feature maps,
shown in Figure 3.2, is described in the following. The kernel of size 𝑛 × 𝑚 contains
the weights 𝑤𝑛𝑚, which are multiplied by the corresponding pixel values during the
sliding procedure. For the pixel position 𝑝𝑖𝑗, the 𝑛 ⋅ 𝑚multiplied values are added to
determine the value of the feature map 𝑓𝑖𝑗. The properties of the convolution are defined
by the stride and the padding. The stride specifies the step width of the kernel, while the
padding controls the computation outside the image by adding a specified value. Both
parameters impact the size of the resulting feature map. For example, a stride of two
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Figure 3.2: Procedure of the convolution operation. The kernel (blue) is applied to the
image (grey) to produce the feature map (blue greyish). For this, the kernel slides over
the image to determine the values 𝑓𝑖𝑗. The size of the featuremap depends on the stride
and the padding. The process is visualised for a stride of one and zero padding. For
each pixel position, the weight parameters𝑤𝑛𝑚 and the accompanying pixel values
𝑝𝑖𝑗 are multiplied, and the sum is calculated afterwards. An example is shown in the
rounded box for 𝑓00.

skips every second pixel, and zero or same padding places the centre of the kernel at the
origin of the image by extending the image with zeros or values of the image border. [32]

Resizing In deepneural networks, the extractionof image features is donewith several
levels of convolution operations and a reduction of the size of the resulting featuremaps.
For this, a pooling operation, which includes an emptywindowof size �̃�×�̃�, is applied in
the same way as a convolution, but following a specified rule. Max-pooling, for example,
selects the highest value of the feature map according to the window dimensions. The
size of the featuremap in the next level is affected by the stride and the padding. Contrary
to pooling, upsampling reverses the process to obtain feature maps of similar or the
same size from the beginning. This operation, for example, doubles the size of the feature
map and transfers each value in a 2 × 2 pattern to the feature map in the next level.

3.3 Image-matching metrics

A major challenge of multimodal approaches in DIR is the variation of the intensity
distributions associated with different types of tissue. Themetrics have to be chosen
with the intention of measuring the alignment of image pairs. Two types of metrics
are typically used for registration purposes: intensity-based metrics and feature-based
metrics. The former employ the intensity distributions of the images, while the latter
require additional information about image features, such as contours. [4]
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R I

Figure 3.3: Illustration of the computation of the normalised cross-correlation with
a reference template. The template, 𝑅, is overlaid with the image, 𝐼, for each co-
ordinate (𝑥, 𝑦) to calculate the metric. The𝑚NCC(𝑥, 𝑦) values indicate the best align-
ment between template and image for the pixel coordinate with the highest value
(green bordered).

3.3.1 Normalised cross-correlation
One option to assess the alignment of an image, 𝐼, with a reference template, 𝑅, is
the intensity-based computation of the normalised cross-correlation [33]. The 𝑛 ×𝑚
template is passed across the image to calculate the metric

𝑚NCC(𝑥, 𝑦) =
(∑𝑖

𝑟=−𝑖∑
𝑗
𝑠=−𝑗 𝐼

′(𝑥, 𝑦, 𝑟, 𝑠)𝑅′(𝑥, 𝑦, 𝑟, 𝑠))
2

𝜎𝐼(𝑥, 𝑦)𝜎𝑅(𝑥, 𝑦)
(3.5)

for each pixel coordinate (𝑥, 𝑦)with the functions

𝐹′(𝑥, 𝑦, 𝑟, 𝑠) = 𝐹(𝑥 + 𝑟, 𝑦 + 𝑠) − �̄� , (3.6)

𝜎𝐹(𝑥, 𝑦) =
𝑖
∑
𝑟=−𝑖

𝑗

∑
𝑠=−𝑗

(𝐹(𝑥 + 𝑟, 𝑦 + 𝑠) − �̄�)2 . (3.7)

The indices 𝑖 and 𝑗 in Equation (3.5) are the local coordinates in the 𝑛 ×𝑚 region for the
current position at (𝑥, 𝑦). The term 𝐹′ calculates the difference between the pixel value
at (𝑥 + 𝑟, 𝑦 + 𝑠) and the average value �̄� of the template or the corresponding 𝑛 × 𝑚
region in the image. The term 𝜎𝐹(𝑥, 𝑦) represents the variance. The𝑚NCC value ranges
between 0 and 1. It indicates better and worse alignment for values towards unity and
zero, respectively. Due to its normalisation, the metric is robust against differences in
the pixel values. [23] An example of a reference-matching procedure is presented in
Figure 3.3. Besides global templates, the metric in Equation (3.5) can also be used to
measure the alignment of two images, 𝐼 and 𝐽. Stationary 𝑛×𝑚 templates for each pixel
position are defined in both images to calculate𝑚NCC. Then, the mean value quantifies
the image alignment of 𝐼 and 𝐽.
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Figure 3.4: Probability distributions of the pixel values of two images for the com-
putation of their mutual information. The distribution 𝑝(𝑣) is shown (left) individually
for the images 𝐼 and 𝐽, corresponding to CT and MRI scans, respectively. The joint
distribution 𝑝𝐼𝐽(𝑖, 𝑗) of 𝐼 and 𝐽 is visualised (right) as a two-dimensional histogram.

3.3.2 Mutual information
Similar to𝑚NCC, the mutual-informationmetric is intensity based [4]. It is defined as an
entropy measure of the pixel values of two images, 𝐼 and 𝐽, according to the Kullback–
Leibler measure [31, 34]. Themetric,

𝑚MI(𝐼 , 𝐽 ) = ∑
𝑖∈𝐼
∑
𝑗∈𝐽
𝑝𝐼𝐽(𝑖, 𝑗) ln(

𝑝𝐼𝐽(𝑖, 𝑗)
𝑝𝐼(𝑖)𝑝𝐽(𝑗)

) , (3.8)

assesses the image similarity by exploiting the probability distributions of the pixel
values 𝑖 and 𝑗. The individual probability distributions, 𝑝𝐼(𝑖) and 𝑝𝐽(𝑗), are computed
as the number of pixels divided by the total number of pixels. The joint distribution,
𝑝𝐼𝐽(𝑖, 𝑗), results from the two-dimensional histogram of the pixel-value distributions
of 𝐼 and 𝐽. This technique provides a statistical measure, which is independent of the
absolute values [4]. Image similarity increases for higher values of𝑚MI [34]. Example
distributions are shown in Figure 3.4 for one image pair, consisting of CT andMRI scans.

3.3.3 Dice similarity coefficient
Another possibility to determine the alignment of two images, 𝐼 and 𝐽, is the Dice sim-
ilarity coefficient [35]

𝑚DSC(𝑆𝐼, 𝑆𝐽) =
1
𝑁𝑠

∑
𝑖

2 ||𝑆𝐼(𝑠𝑖) ∩ 𝑆𝐽(𝑠𝑖)||
||𝑆𝐼(𝑠𝑖)|| + ||𝑆𝐽(𝑠𝑖)||

. (3.9)

This feature-based metric requires the segmented versions, 𝑆𝐼 and 𝑆𝐽, of the images to
determine the overlap, ||𝑆𝐼(𝑠𝑖) ∩ 𝑆𝐽(𝑠𝑖)||, of the segments, 𝑠𝑖, relative to their individual
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SI SJ

s1
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s3
s1

s2

s3

|SI(s1)…SJ(s1)|U |SI(s3)…SJ(s3)|U

|SI(s2)…SJ(s2)|U

Figure 3.5: Illustration of the computation of the Dice similarity coefficient with seg-
mented images. The segmented images, 𝑆𝐼 and 𝑆𝐽, contain the segments 𝑠1, 𝑠2 and 𝑠3,
which are overlaid to determine the overlap fractions ||𝑆𝐼(𝑠𝑖) ∩ 𝑆𝐽(𝑠𝑖)||, required for the
calculation of𝑚DSC(𝑆𝐼, 𝑆𝐽).

volumes, 𝑆𝐼(𝑠𝑖) and 𝑆𝐽(𝑠𝑖). Themean value of all segments assesses the image alignment.
An example of the computation of𝑚DSC is presented in Figure 3.5. Consequently, the
meaningfulness of this metric is limited by the number of segments and their volume.
The larger the region of an image covered with segments, the larger the information
content of the metric. A segment pair, representing the same tissue with the same pixel
value, can be generated using contours or automated algorithms (see Section 4.2). An
increase in the overlap of the segments is measured for𝑚DSC values towards unity, while
the value𝑚DSC = 0means no overlap.
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4 Image preprocessing

This chapter portrays the evolution of the data from the acquired to the preprocessed
state bymeans of an unsupervised registrationworkflow. It is developed and constructed
on the given data sets to standardise a set of multimodal images in terms of the image
format and alignment with affine transformation and rigid registration. In Section 4.1,
the origin, the composition and the handling of the data sets are described in detail.
Afterwards, the main components, which are self-written algorithms for image seg-
mentation and adjustment, are introduced in Sections 4.2 and 4.3, complementing
the workflow. The outcome is presented with quantitative measures and qualitative
comparisons of the preprocessed data in Section 4.4. The preliminary step is a necessity
for DIR with a deep neural network, which is described in Chapter 5.

4.1 Data sets

The data are provided by theWest German Proton Therapy Centre Essen (WPE). The
clinic is specialised in proton therapy of static tumours in different regions, such as
the head, the spine or the pelvis. In contrast to photon therapy, the unique irradiation
properties of protons offer the advantage of high protection of organs at risk. Hence,
one focus of theWPE lies on the treatment of children. [36]
The data belong to the KiProReg register study (ID: DRKS00005363) from 14 October

2013, created at the German Clinical Trials Register. The purpose of this study is to
preserve the results of treatment planning and application for future evaluation of the
efficacy of proton therapy. The collection includes information on patients of all sexes
suffering from tumours. Further requirements for the admission are a maximum age
of 17 and the indication for radiotherapy. For the latter, the patients are treated at the
WPE with proton therapy instead of other approaches, e.g. photon therapy. Recorded
consent was issued by the parents and patients. Furthermore, the Ethics Committee
of the University Duisburg–Essen approved the realisation of the patient registration
(13-5544-BO, 10 September 2013). [37]
Within the scope of this thesis, two data sets are used to study multimodal image

registration and fusion. The number of patients differs between the data sets; therefore,
a smaller and a larger data set are present. Both contain CT andMRI scans of patients
with brain tumours. The CT scans are obtained with a Brilliance BigBore Scanner from
Philips GmbHHealth Systems. The scans are performed in the spiral mode with a peak
kilovoltage of 120 kV. A laser system from LAP GmbH supports patient positioning for
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Figure 4.1: Illustration of the existing image frames and aspect ratios for the 14-patient
data set. The frames of the CT scans as well as the 𝑇1- and 𝑇2-weighted MRI scans are
shown with the accompanying numbers of pixels.

both medical imaging and treatment. For the MRI scans, the Vantage TitanTM from
CanonMedical Systems is used to produce differently weighted scans. The open bore
machine is operated at 1.5T. The gradient-recalled scan sequence, which is combined
with the inversion-recovery sequence, and the spin-echo sequence are used for 𝑇1 and
𝑇2 weighting, respectively. All scans are stored in the DICOM format (see Section 3.1.2).

4.1.1 The 14-patient data set

TheKiAPT study [38] of theWPE is aimedat investigating theuse of synthetic CT scans for
adaptive proton therapy on children with brain tumours. The KiAPT study is connected
to the KiProReg study and was approved by the Ethics Committee of the University
Duisburg–Essen (18-8320-BO, 1 October 2018). Data of the study were provided for this
thesis to form the 14-patient data set. For each patient, scans of the different modalities
were performed on the same day before treatment application.
The CT and MRI scans of each patient have individual properties related to their

spatial extent. The head width of the pediatric patients varies approximately between
120mmand 146mm. Concerning the axial slices, the difference in pixel spacing offers a
variety of possible image sizes. The aspect ratio differs between the scans, but a ratio of
1∶1 is predominant. An illustration is shown in Figure 4.1. Furthermore, the number of
CT slices varies between 258 and 364, whereas the ranges of 156 to 250 and 67 to 108 are
observed for the 𝑇1- and 𝑇2-weighted MRI scans, respectively. Detailed information on
the characteristics is listed in Table A.1 in the appendix. The CT slices have a constant
thickness of 1mm, which is not the case for the 𝑇2-weighted MRI scans. There, the
slice thickness can be 2mm, like for all the 𝑇1-weighted MRI scans, or 3mm. A further
quantity is the slice distance, which is relevant for the image resolution. The distance is
equal to the slice thickness for all CT scans of the data set. Contrary to that, the majority
of the 𝑇1-weighted MRI scans include overlapping slices due to a spacing of 1mm. For
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4.1 Data sets

the 𝑇2-weighted scans, the anatomical coverage is incomplete because of distances
larger than the slice thickness. An overview of the slice properties is shown in Figure A.2.
Apart from the technical perspective, the comparison of the CT andMRI scans given

in Figure 4.2 provides a visual representation of the spatial differences, indicating the
benefits of each image type. The visibility of the anatomical structures is influenced
by the modality-dependent image contrast. Bones, for example, are clearly present in
the CT slices due to high pixel values (see Figure 4.2a). This is not the case for the MRI
scans in Figures 4.2b and 4.2c, where bones are expressed by low pixel values, resulting
dark in the images. The inverted effect appears for fluids in the CT and 𝑇2-weighted MRI
scans, which is the reason for bright eyes in the latter case. High contrast distinction
between healthy tissue and tumours is especially important for treatment planning in
radiotherapy. This effect is given by the 𝑇2-weighted MRI scans in Figure 4.2c, where
the quality of tumour distinction is higher compared to the CT and 𝑇1-weighted MRI
slices. Noise around the head is visible in the MRI slices, whereas the CT slices contain
fragments of the patient table or the headrest. Moreover, the images, in particular the
three-dimensional views, illustrate the position and the size of the patient related to the
image frame. A slight tilt of the head is present in theMRI scans, which can occur during
the acquisition without a fixing headrest. This complicates the search for corresponding
slices, but images with similar anatomical structures still can be found for different slice
numbers.
The14-patient data set is used for thedevelopment of data preprocessing algorithms to

eliminate the previously describeddisagreements between themodalities. Regarding the
image registration, the data set is first chosen for preliminary studies on the deep neural
network. Then, the images of this data set are defined as testing data for a comprehensive
study on DIR with deep learning.

4.1.2 The 25-patient data set

Additional data were provided by theWPE for the 25-patient data set. These patients are
part of the KiProReg study and fulfil the requirements of the register study. The CT and
MRI scans are used as the planning scans for proton therapy. The scans were usually
performed on the same day, but in exceptional cases, theMRI scan was acquired at most
30 days before the CT scan.
For this data set, the variation of the image frames is shown in Figure 4.3. An aspect

ratio of 1∶1 is mainly observed, and various image sizes are available for both MRI types.
The number of CT slices as well as their thickness and distance are comparable to the
14-patient data set, but the number of slices of the MRI scans is reduced. The number
ranges from 96 to 232 for 𝑇1-weighted and from 33 to 94 for 𝑇2-weighted MRI scans.
Further image properties are presented in Table A.2 and Figure A.2 in the appendix.
In general, the images of the data set are similar to the images in Figure 4.2. However,
differences appear especially for 𝑇2-weighted MRI scans because of the low number of
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a. 

b.

c.

Slice 15 Slice 25 Slice 35

Slice 105 Slice 126 Slice 150

Slice 70 Slice 90 Slice 110

Figure 4.2: Visualisation of similar anatomical structures for each scan of Patient 5 of
the 14-patient data set. The three-dimensional perspective (left) and three axial slices
(colour bordered) are shown for the CT scan (green) as well as the 𝑇1-weighted (light
orange) and𝑇2-weighted (orange)MRI scans. The lines in the three-dimensional images
represent the position of the corresponding axial slices. Subfigure a: The Slices 105,
126 and 150 show the image property of the CT scan in the axial plane. The depiction
of the bones (white) is enhanced, while the visibility of fluids (dark grey) is reduced.
Subfigure b: For the 𝑇1-weighted MRI scan, the Slices 70, 90 and 110 are presented,
showing higher contrast of soft tissue (grey). In addition, bones are displayed dark,
like fluids. Subfigure c: The 𝑇2-weighted MRI slices differ from those of the CT and
𝑇1-weighted scans in terms of image contrast. Fluids (white) in the brain appear bright,
such as the ventricles in Slice 15 and the eyes in Slice 35. The width of the three-
dimensional image containing 75 slices is doubled for visibility.
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Figure 4.3: Illustration of the existing image frames and aspect ratios for the 25-patient
data set. The frames of the CT scans as well as the 𝑇1- and 𝑇2-weighted MRI scans are
shown with the accompanying numbers of pixels.

Slice 128 Slice 98 Slice 25

Figure 4.4: Contours of the ventricular system for Patient 22 of the 25-patient data
set. Slices are shown for the CT (green), 𝑇1-weighted (light orange) and 𝑇2-weighted
(orange) MRI scans with their contours (magenta).

slices and their large distance. For these scans, the head region of the patient is partially
covered and the first slice starts abruptly in the brain. Usually, all scans were acquired
in supine position, but six CT scans are available in prone position. The average head
width of the patients is (123 ± 13)mm.
A special feature of the 25-patient data set is the availability of contours of the ventricu-

lar system (VS), which were outlined manually by a medical physicist and validated by a
clinician atWPE.Therefore, the VS contours are ideally suited for validation in image
processing. The contours are shown in Figure 4.4.
After the development of a preprocessing workflow with the smaller data set, the

25-patient data set is used to apply and test the workflow. Then, the preprocessed data
are part of a comprehensive study in terms of image registration with deep learning.
Afterwards, the registered image pairs of both data sets are merged with the fusion
method, studied in Chapter 6.

27



4 Image preprocessing

Slice 35Slice 150 Slice 110

Figure 4.5: Preliminary segments for Patient 5 of the 14-patient data set. The segments
(white) are generated with intensity-based threshold methods. Slices of the CT scan
(green) as well as of the 𝑇1-weighted (light orange) and 𝑇2-weighted (orange)MRI scans
are shown, including the eyes.

4.2 Segmentation

Theprocess of image segmentation follows the simple principle of separating a feature in
the image from the background, expressed by black pixels, 𝑖b = 0. This creates a binary
image (see Section 3.1.1) in which the pixels of the segment represent the foreground
with the same positive integer, 𝑖f. In scans of medical imaging, several anatomical
features are present with different intensities, e.g. eyes or fluids. This offers the option of
generating a number of segments with individual labels for each feature of the image.
In the following, an algorithm, whose basis was created in a master’s thesis [39] su-

pervised by the author, is introduced for the generation of eye segments. These segments
are produced automatically, in an unsupervised way, based on pixel values and their
distributions. The eyes provide the advantage that intensity-based segmentation is easily
possible due to their almost spherical shape and the sharp-edgedborder to neighbouring
tissue (see Figure 4.2). For the 25-patient data set, the conversion from aVS contour to
a segment is described afterwards. TheVS is placed in the middle of the head, which
increases the spatial coverage of the segment set.

4.2.1 Automated generation

The algorithm starts by performing plain segmentation on the three-dimensional image
to separate fluid-like structures from other tissue in the head. For the separation, two
thresholds for the pixel values are determined, which define the selected range. The
methods, depending on the modality, are discussed in detail afterwards. The thresholds
are applied to the image to produce a preliminary segment, which consists of several
non-contiguous fragments with the pixel value 𝑖f = 1. In Figure 4.5, the preliminary
segments of the CT and both MRI scans are shown for one patient.
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Figure 4.6:Distributions of the pixel values in logarithmic scale for Patient 5 of the
14-patient data set. The selected ranges are shown for the CT (left) and MRI (right)
distributions. The position of the ranges differs between 𝑇1-weighted (light orange)
and 𝑇2-weighted (orange) scans in the right plot.

CT scans The separation between fluids and other tissue is performed by means of
the Hounsfield scale. Therefore, the distribution of the pixel values is investigated, as
exemplified in Figure 4.6. The thresholds are determined in a specific search area, which
is set from−30HU to 40HU. In this area, the steep slope coming from an increase in the
number of pixels is the desirable range for the segmentation. The difference of adjacent
pixel values, 𝑖[𝑛 + 1] − 𝑖[𝑛], is calculated to determine sign changes, which indicate
the start and the end of the slope in the search area. Then, the thresholds, 𝑡1 and 𝑡2, are
detected by subtracting and adding 15HU from the centre of the slope, respectively. If
no thresholds are detected, the procedure is repeated with an extended search area until
the centre of the slope is detected and the thresholds are determined. The outcome of
such intensity-based segmentation is shown in Figure 4.5.

MRI scans The arbitrary scale of pixel values disturbs the separation of fluid-like
structureswith fixedpixel values, like for CT scans. However, the distributions of the pixel
values are similar for every patient. Therefore, threshold computation with algorithms
implemented in the filtersmodule of the scikit-image Python package [40] is used to
determine the rangeof pixel values for the segmentation. Thedistributions for the𝑇1- and
𝑇2-weighted scans as well as the selected regions are shown in Figure 4.6 for one patient.
The lower threshold, 𝑡1, for 𝑇1-weighted scans is determined with the threshold_li()
function, whereas the threshold_isodata() function is used to compute the upper
threshold, 𝑡2. Additionally, a median filter, which smooths the image, is applied to the
preliminary segment. For 𝑇2-weighted scans, the threshold_yen() function is applied
to the images to get 𝑡1 based on the distribution. For all 𝑇2-weighted scans, 𝑡2 is set at
7500. The results of the algorithm-based segmentation is shown in Figure 4.5.
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After the plain segmentation, image processing tools from the OpenCV library [41]
are used to separate the fragments of the preliminary segment, which is shown in Fig-
ure 4.7. This supports the identification of the eyes in the further process. Undesirable
connections between the fragments can appear due to the loose intensity-based seg-
mentation. For this, an opening operation (see Section 3.2.2) is applied to each slice
of the segmented image with the morphologyEx() function. The kernel of this mor-
phological function is generated with the getStructuringElement() function as a
square of 5 × 5 pixels. The effect is presented in Figure 4.7a, where the noise around the
eyes is reduced compared to the preliminary segments in Figure 4.5.
Subsequently, a selection is performed to reduce the amount of fragments and to

obtain possible eye segments. The pixel spacing and the slice thickness are used to
determine the volume of a single pixel. Then, the volumes of two spheres,

𝑉min =
4𝜋𝑟3min

3
𝑓 and 𝑉max =

4𝜋𝑟3max

3
𝑓 , (4.1)

with the radii 𝑟min = 7.5mmand 𝑟max = 12.5mmare calculated to take different sizes of
the eyes into account. If the slice distance of the image is not equal to 1mm, the shape
of the eyes is rather elliptical than spherical due to the compression or dilation of the
slices. The slice thickness is divided by the slice distance of the image to calculate the
correction factor, 𝑓, which is used to scale both spheres along the 𝑧 axis. The volumes are
divided by the volume of a single pixel to define a range for the number of pixels. Then,
the fragments are labelled with the multidimensional label() function from the SciPy
package [42] to calculate the number of pixels of each fragment (see Figure 4.7b). The
selection of possible eye segments is performed by sorting the fragments according to
the number of pixels. A fragment is removed if the number is outside the defined range.
The algorithm continues with the identification of the eye segments. A spherical

or elliptical template, depending on the slice properties, is generated for each of the
remaining fragments. The template imitates the fragment for the case of a spherical
or elliptical shape with the same volume. Then, the centres of mass of the fragment
and the template aredeterminedwith thendimage.measurements.center_of_mass()
function from SciPy. The positions are used to overlay the template with the fragment.
This enables the calculation of 𝑚DSC, measuring the resulting overlap between the
fragment and the template. In Figure 4.7c, the overlap of one eye segment and the
corresponding template shows a high level of agreement. The overlap between a random
fragment and its template is illustrated in Figure 4.7d, indicating less agreement. Besides
the calculation of 𝑚DSC, another identification criterion is provided by the location
of the fragments. Both eyes have similar 𝑦 and 𝑧 coordinates, but they are located in
different areas of the images regarding the 𝑥 axis. After all fragments are overlaid with
their template, the two fragments that are located in opposite areas and achieve the
highest𝑚DSC values are identified as eye segments. The labels 𝑙LE = 10 and 𝑙RE = 20 are
assigned to the left and right eyes, respectively.
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Figure 4.7: Visualisation of the algorithm steps for the eye segmentation of Patient 5
from the 14-patient data set. Slices are presented for the CT scan (green) as well as
for the 𝑇1-weighted (light orange) and 𝑇2-weighted (orange) MRI scans. Subfigure a:
The processing of the preliminary segment using the opening operation shows the
separation of the eye segments from surrounding noise. Subfigure b: The amount
of fragments is reduced by a size comparison, and the remnants are labelled (grey
to white). Subfigure c: The comparison between an eye segment and its spherical or
elliptical template showsmany overlapping areas. Subfigure d: Theoverlap is decreased
for a random fragment, which is not shaped like an eye. Subfigures e and f: The cleaning
of the left (e) and right (f) eye segments is necessary to correct uncertainties on the
surface. After adding the preliminary segment and the template, pixels with the values
𝑖 = {2, 10, 12} (e) and 𝑖 = {2, 20, 22} (f) are selected to be part of the eye segments.
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Slice 35Slice 150 Slice 110

Figure 4.8: Eye segments for Patient 5 of the 14-patient data set. Both eye segments
(white and grey) are generated automatically. The segmented slices of the CT scan
(green) as well as the 𝑇1-weighted (light orange) and 𝑇2-weighted (orange) MRI scans
are superimposed with the preliminary segments (dark grey) from Figure 4.5.

The last step is performed to clean the eye segments, especially the surface of the
eyes. In some cases, the outermost pixels are removed during the process, e.g. after the
opening operation. For this, the preliminary segment from the beginning is added to
the identified eye segments, which again include the unintentionally removed pixels
belonging to the eyes (see Figures 4.7e and 4.7f). Thus, the segmented image contains
the pixel values 𝑖 = {1, 10, 11, 20, 21}. Furthermore, two spheres with the diameters of
the eye segments are generated with Equation (4.1) and added to the image. Besides the
labels of both eye segments, the pixel values 𝑖 = {2, 12, 22} are required to be part of the
eye segments with the labels 𝑙LE and 𝑙RE.
Ultimately, gaps in the eye segments are filled with the fillPoly() function from

OpenCV, which requires contour points. These are computed with the findContours()
function. The CHAIN_APPROX_NONEmethod is used in the RETR_FLOODFILLmode. This
ensures that all points are included in the contour detection, while the detected contour
is filled with the same value through the flooding algorithm. The segmented slices of the
CT and both MRI scans are shown in Figure 4.8 for one patient.

4.2.2 Converted contours

The elaborate and time-consuming process of manual image contouring of anatomical
features provides their spatial locations. The contours are superior to automatically
generated segments. For the 25-patient data set, clinicians outlined the VS in the CT
andMRI scans of each patient. The information on the contours is stored in separate
DICOM files. Each file contains the location of theVS contours in Cartesian coordinates.
The contour information is retrieved from the file by searching under the specified

keyword. The extracted data containing all indexed contours are stored in a list, which
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Figure 4.9: Visualisation of the contour conversion for the same slices as in Figure 4.4.
The slices of the CT scan (green) as well as of the 𝑇1-weighted (light orange) and 𝑇2-
weighted (orange) MRI scans are enlarged for visibility. TheVS segments are indicated
by the bright area (white), surrounded by the contours (magenta).

facilitates the access to the coordinates. Thus, the following algorithm, which is based
on the dicom-contour [43] library, is applied successively to all contours. First, the
(𝑥, 𝑦, 𝑧) coordinates of the point, 𝑛, are used to calculate the distance,

𝑑 = √(𝑥𝑛+1 − 𝑥𝑛)2 + (𝑦𝑛+1 − 𝑦𝑛)2 + (𝑧𝑛+1 − 𝑧𝑛)2 , (4.2)

to the nearest point, 𝑛 + 1. If the condition 𝑑 ≥ 2mm is fulfilled, additional points are
added to reduce gaps after the conversion from Cartesian to pixel coordinates. These
points are computed by subdividing the space between adjacent points into pieces of at
most 1mm length. Next, the DICOM file of the respective slice is used to access slice
properties, such as the pixel spacing, 𝑥spacing and 𝑦spacing, and the origin of the image,
𝑥origin and 𝑦origin. For the conversion to pixel coordinates, the information is included to
calculate the pixel coordinates,

𝑝 = ((𝑥 − 𝑥origin)/𝑥spacing (𝑦 − 𝑦origin)/𝑦spacing)
⊤
. (4.3)

Due to the rounding of the pixel coordinates, the possibility of producing a non-con-
tiguous contour exists. Therefore, the closing operation (see Section 3.2.2) is applied to
the contour. For this, the morphologyEx() function is used with a square element of
3 × 3 pixels, generated with the getStructuringElement() function. Lastly, the con-
tour is filled with the label 𝑙VS = 30, representing the ventricular system as a segment.
The outcome is shown in Figure 4.9.

4.3 Adjustments
Themain part of the preprocessing is the equalisation of the images of the data sets.
The images must fulfil requirements to be provided for deep neural networks. These
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requirements refer to the image formats and the image alignment. The former are
equalised to a specific aspect ratiowithfixedpixel dimensions,while the latter is obtained
with affine transformations and rigid registrations. Algorithms contributing to achieve
the desired state of the data are introduced in the following.

4.3.1 Affine transformation
The acquired scans of a patient differ between the modalities, which is visualised in
Figure 4.2. The number of slices and their distances as well as the pixel spacing produce
different representations in terms of the size. Therefore, the dissimilarity is corrected
by standardising the slice and pixel properties with affine transformations including
scaling.
The aim of the scaling is to set the pixel and slice properties, such as the pixel spacing,

the slice thickness and the slice distance, to 1mm for all scans. For this, the linear
transformation,

𝐴affine =
⎛
⎜⎜
⎝

𝑠𝑥 0 0 𝑡𝑥
0 𝑠𝑦 0 𝑡𝑦
0 0 𝑠𝑧 0
0 0 0 1

⎞
⎟⎟
⎠

, (4.4)

contains the scaling, 𝑠, and translation, 𝑡, parameters for the 𝑥, 𝑦 and 𝑧 coordinates. The
scaling factors, 𝑠𝑥 and 𝑠𝑦, are provided by the pixel spacing of the image (see Figure A.1).
To relocate the centre of the scaled image to the original position in the 𝑥–𝑦 plane, the
translation parameters are defined as 𝑡𝑥 = 𝑁𝑥(1 − 𝑠𝑥)/2 and 𝑡𝑦 = 𝑁𝑦(1 − 𝑠𝑦)/2 with
the numbers of pixels,𝑁𝑥 and𝑁𝑦. The transformation also contains the scaling factor
𝑠𝑧, which is defined as the inverse of the slice distance, 𝑑s, of the respective scan (see
Figure A.2). There is no translation along the 𝑧 axis.
The operation is performed with the transform module of scikit-image. The warp()

function is applied to the image with the inverted map, 𝐴−1
affine, of the transformation in

Equation (4.4). The output shape of the scaled image is defined as (𝑥, 𝑦, 𝑑s𝑧) to increase
the number of slices especially for 𝑇2-weightedMRI scans. Moreover, the constantmode,
which fills the pixels outside the image with zero, is used. The pixel values of the scaled
image are interpolated with the bi-cubic method. For the segmented image, the nearest-
neighbour method is preferred to avoid polluting the image with values besides 𝑙LE,
𝑙RE and 𝑙VS. In Figure 4.10, the effect of the affine transformation on the slice and pixel
properties is shown for the 𝑇2-weighted MRI scan. The number of slices increases (see
Figure 4.10a), while the size in the axial plane (see Figure 4.10b) is reduced.

4.3.2 Format equalisation
Thenext algorithm relates to the image format, which varies a lot between themodalities
as well as within the samemodality. The dimensions are listed in Tables A.1 and A.2. To
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a. b.

Slice 35 Slice 77

Figure 4.10: Visualisation of the affine transformation for the 𝑇2-weighted MRI scan of
Patient 5 from the 14-patient data set. Subfigure a: The perspective of the 𝑦–𝑧 plane is
shown for𝑥 = 288. The scaling of the slice distance from 2.2mm(left) to 1mm(middle)
increases the number of slices. In addition, the adjustment of the pixel spacing scales
down the image (right). Subfigure b: Axial slices are shown before (left) and after (right)
the application of the transformation. The slice position is changed from 35 to 77.

eliminate this inequality, the image is cut to a specific aspect ratio with fixed dimensions.
The procedure includes the positioning of the images within the new frame.
First, the slices are limited to the head region. The CT andMRI scans contain many

slices without anatomical information, which are placed above the head of the patient.
Therefore, the number of non-zero pixels is counted for each slice. This allows the con-
dition to be set that theminimumnumber of non-zero pixels is 0.2% of the total number
of pixels. For example, slices with 512 × 512 pixels need at least 525 pixels with values
greater than zero. Thefirst slice fulfilling the condition is used as the initial slice, while the
slices above are removed. In addition, the lower part of the three-dimensional image of-
ten contains the shoulder of the patient. To preserve memory for further computations,
this body part is also removed. For this, each slice of an image is scanned to detect
the patient outlines from left to right and posterior to anterior. Such distributions are
shown in Figure 4.11. If broad shoulders appear in the slices, the occurring intersection
between both outlines is used as identification criterion for slice reduction.
Then, the images are cut to an aspect ratio of 3∶4with 192×256pixels since this format

perfectly suits the shape and the size of the head regarding pixel and slice properties
of 1mm. The process is illustrated in Figure 4.12. Temporary segmented images are
created by applying threshold segmentation to the images. The bone window and the
threshold_mean() function from scikit-image are used for the CT and MRI scans,
respectively. Themedian filter is additionally applied to reduce noise and to smooth the
temporary image (see Figure 4.12a). In the next step, each temporary image is scanned
to determine the rough proportion and location of the patient’s head concerning the
slice positions𝑁𝑥/2 and𝑁𝑦/2. The first and last non-zero pixels along the respective axis
represent the outermost points to frame the patient’s head. The position of the frame is
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Figure 4.11: Distributions of the profile from two perspectives for Patient 5 of the
14-patient data set. The profiles are shown for the CT (left) and 𝑇1-weightedMRI (right)
scans. Features, like the ear or the nose, are visible, especially in the right plot. The grey
areas represent the slices that are removed.
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Figure 4.12: Effect of the adjustment of the image format on the scans of Patient 5
from the 14-patient data set. The results are presented for the CT scans (green) as well
as the 𝑇1-weighted (light orange) and 𝑇2-weighted (orange) MRI scans. Subfigure a:
The perspectives of the 𝑦–𝑧 (top) and 𝑥–𝑧 (bottom) planes are shown, including lines
(magenta) to represent the largest distances of the outermost points. Subfigure b: The
adjusted images of the scans have an aspect ratio of 3 ∶4with 192 × 256 pixels in the
axial plane.
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transferred to the image, which helps to adjust the format to the 3∶4 shape. The outcome
of this adjustment is presented in Figure 4.12b.
After the application of the rigid registration, described in the next section, the image

format is further equalised by limiting the number of slices to 64. The slices are chosen
to cover most of the head region. Therefore, the slice that contains the centre of mass
of the eye segment with the label 𝑙LE is determined to be the middle slice of the fully
preprocessed image. The remaining slices are filled with 32 and 31 slices above and
beneath the determined slice, respectively.

4.3.3 Rigid registration
The dissimilarity between the scans is mainly reduced due to the affine transformation
and the format equalisation. However, the position and the slices still disagree between
the scans. Rigid registration is additionally applied to increase the structural alignment
between the source, 𝑆, and target,𝑇, images. For this, translation and rotation operations
are used as geometric transformations. These operations require coordinates of both 𝑆
and 𝑇 to calculate the displacements and angles. Thus, the centres of mass,

�⃗�LE = (𝑥LE 𝑦LE 𝑧LE)
⊤

and �⃗�RE = (𝑥RE 𝑦RE 𝑧RE)
⊤
, (4.5)

of the eye segments are determined for both 𝑆 and 𝑇. The segmented images with their
labels 𝑙LE and 𝑙RE are used to obtain the respective pixel coordinates. These two points
are sufficient to calculate the parameters of the translation operation. In contrast, at
least three points are necessary to apply three-dimensional rotations to 𝑆. Therefore,
the algorithm of the rigid registration is subdivided into two parts.
In the first part, the translation of the three-dimensional source image is performed

with the linear transformation

𝐴translation =
⎛
⎜⎜
⎝

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

⎞
⎟⎟
⎠

(4.6)

containing the translation parameters, 𝑡𝑖, for each direction. They form the vector
⃗𝑡 = �⃗�LE(𝑇 ) − �⃗�LE(𝑆). The implementation uses the warp() function from the scikit-
image transform module. The interpolation methods are the same as for the affine
transformation, described in Section 4.3.1. Since the translation along the 𝑧 axis can
move the source image out of the frame, the reshape mode is activated. This increases
or decreases the number of slices depending on the direction of 𝑡𝑧 in order to preserve
the information. Afterwards, the differences in the number of slices between the target
and source images are eliminated by adding zero-element slices to the image with the
fewest slices. The outcome of such translation operation is shown in Figure 4.13 for the
𝑇2-to-CT registration of one patient.
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a. b.

Figure 4.13: Effect of the translation on the 𝑇2-weighted MRI scan of Patient 5 from
the 14-patient data set. The overlay of the MRI (orange colours with transparency of
50%) and CT (greyscale) scans is shown for two perspectives. Subfigure a: A slice of
the 𝑦–𝑧 plane is presented to illustrate the translation with 𝑡𝑧 = 33mm and 𝑡𝑦 = 0mm.
Subfigure b: The translation in the 𝑥 direction is 𝑡𝑥 = 1.5mm, which is slightly visible
in the 𝑥–𝑧 plane.

The second part includes the rotation of the images to increase image alignment. The
centres of mass defined in Equation (4.5) are updated after the translation part. Then,
the angles

𝜃𝑥𝑦 = tan−1(
𝑦RE − 𝑦LE
𝑥RE − 𝑥LE

) and 𝜃𝑥𝑧 = tan−1(
𝑧RE − 𝑧LE
𝑥RE − 𝑥LE

) (4.7)

are calculated to individually straighten out the source and target images based on the
eyes. The operation is performed with the ndimage.rotate() function from SciPy. The
common interpolation methods are used depending on the image type. Furthermore,
the three-dimensional rotation is fixed to the centre �⃗�LE. Consequently, the positions of
the eyes are identical in the source and target images.
The acquisition of the MRI scans was often performed without a headrest, which

decreases patient immobilisation. This leads to high discrepancies between the CT
andMRI scans of up to 15° in the 𝑦–𝑧 plane. Due to the aforementioned lack of a third
point for the calculation of 𝜃𝑦𝑧, an iterative process of several rotations in the 𝑦–𝑧 plane
is developed to correct these discrepancies. For this, the Dice similarity coefficient,
𝑚DSC, of the segments of 𝑆 and 𝑇 is used to determine the overlap after each rotation.
For the scans of the 25-patient data set, the VS segments are used for the calculation
of 𝑚DSC besides the eye segments. Regarding the 14-patient data set, where no VS
segments are available, a temporary segment of the entire head is generated with the
threshold_mean() function from scikit-image. Rotations are applied to the source
image in steps of 1°, ranging from−6° to 6°. If the highest𝑚DSC value is achieved for one
of the boundary angles, the range of rotations is extended by six angles until the rotation
angle with the highest𝑚DSC value is found. That angle is then applied to the source
image, which finishes the rigid registration. In Figure 4.14, the steps that contribute to
the rotational part of the rigid registration are presented.
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a.

b.

c.

Trigid

Trigid

Trigid

Trigid

Figure 4.14: Effect of the rotation for the 𝑇2-to-CT registration of Patient 5 from the
14-patient data set. The rectangles (blue) and the circles (white) are added to the
images for comparison of non-rotated and rotated images. Subfigure a: The axial slices
indicate the results of the rotation with 𝜃𝑥𝑦(CT) = 3.6° (left) and 𝜃𝑥𝑦(𝑇2) = 4.9° (right).
Subfigure b: The perspectives of the 𝑥–𝑧 plane are presented to illustrate the rotation
with 𝜃𝑥𝑧(CT) = −1.8° (left) and 𝜃𝑥𝑧(𝑇2) = −1.3° (right). Subfigure c: Images of the 𝑦–𝑧
plane are shown for the rotation 𝜃𝑦𝑧 = 2°. The overlap of the CT (greyscale) andMRI
(orange colours with transparency of 50%) slices shows that the image agreement
between the non-rotated (left) and rotated (right) images increases, which is indicated
by the white circles in the enlarged areas.
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4 Image preprocessing

4.4 Results

The algorithms presented in Sections 4.2 and 4.3 are developed for the preprocessing
of head CT andMRI scans. The process of standardising the data is aimed at fast and
unsupervised application. Therefore, the algorithms are concatenated to form an effi-
cient workflow. In the following, this workflow and its results of preprocessed data are
evaluated in terms of image quality and image-similarity measures.

4.4.1 Preprocessing workflow

Theworkflow starts with the initial phase, i.e. collecting the data from the DICOM files
of the scan. Since each slice of a scan is individually stored, all files provide access to
the entire data. Information from the scan is used to generate a three-dimensional
array representing the acquired image. The images do not necessarily have the same
orientation, e.g. patients in supine or prone positions. Therefore, the slices are arranged
to obtain uniformly orientated images. Besides the pixel values, slice properties—like
the thickness, distance and location—and the pixel spacing are used for the image
segmentation and adjustment. In the next step, the pixel values are manipulated to
reduce the noise and to enhance the clarity in the images. The threshold of 0HU is
applied to the images of the CT scan, which means that pixels with lower values are
added to the background. The threshold is chosen because of the position of the brain
and bone window (see Section 2.1.3). An arbitrary pixel value of 600 is found to be best
for the MRI scans of both data sets since they were acquired with the same scanner.
These manipulated images are used for the deep-learning training process only.
Prior to the application of geometric transformations, theworkflow continueswith the

segmentation phase. Segmented images containing eye segments with the labels 𝑙LE and
𝑙RE are generated for each scan. The algorithm described in Section 4.2.1 is applicable
to any CT, 𝑇1-weighted or 𝑇2-weighted scan of the head as the automated generation is
intensity based. It is performed on both data sets. The workflow also takes into account
manually outlined anatomical features, which are then converted into segments with
the algorithm introduced in Section 4.2.2. Besides the ventricular system, contours
of other features can be used to generate segments and to extend this set. The reason
to include image segmentation in the workflow is the possibility of measuring𝑚DSC,
which quantifies the image alignment between two images. The segmented images,
including either the eyes and the ventricular system or the eyes only, are essential for
the image adjustments (see Section 4.3) in the further processes of the workflow. All
transformations are applied to both the non-segmented and the segmented images.
The adjustment of the images includes the successive execution of the algorithms

presented in Sections 4.3.1 and 4.3.2. Both algorithms are individually applied to each
scan, while the rigid registration introduced in Section 4.3.3 requires an image pair with
source and target images as input. Within the scope of the author’s thesis, two mul-
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Table 4.1: Run times of the first four workflow phases. The durations of the initial,
segmentation, scaling and format phases are provided for the CT and both MRI scans
of the 14-patient and 25-patient data sets.

Data set Phase CT 𝑇1 weighting 𝑇2 weighting

14-patient

Initial (25.68 ± 2.52) s (7.30 ± 0.89) s (17.10 ± 2.47) s
Segmentation (49.05 ± 11.88) s (40.84 ± 13.05) s (13.91 ± 4.87) s
Scaling (37.18 ± 5.86) s (23.90 ± 5.61) s (26.87 ± 6.85) s
Format (10.40 ± 1.14) s (9.53 ± 3.87) s (7.63 ± 1.59) s

25-patient

Initial (37.43 ± 7.20) s (15.74 ± 5.75) s (10.47 ± 5.30) s
Segmentation (56.99 ± 9.87) s (40.51 ± 12.59) s (15.03 ± 5.61) s
Scaling (37.73 ± 6.15) s (21.09 ± 2.42) s (22.51 ± 6.91) s
Format (11.85 ± 1.95) s (8.21 ± 0.95) s (6.91 ± 2.11) s

timodal registrations, 𝑇2-to-CT and 𝑇1-to-CT, and one unimodal registration, 𝑇1-to-𝑇2,
are investigated. At the end of the rigid-registration phase, the image type is changed to 8-
bit integers with 256 greyscale values to improve similarity between the scans. This data
type is found to be optimal for the deep neural network (see Section 5.2.1). The image
adjustment is themain part of the workflow, which prepares an unimodal ormultimodal
image pair for the deep-learning-based DIR by scaling, rotating and positioning.

4.4.2 Quantitative evaluation

In the following, the average run time of each step of the preprocessing workflow is
investigated for both data sets. Afterwards, the accuracy of the rigid registration, which is
calculated with𝑚DSC (see Section 3.3.3), is presented tomeasure the alignment between
source and target images.
The computation of the preprocessed data is performed with AMD EPYC 7742 CPUs.

The initial, segmentation, scaling and format phases of the workflow are applied sim-
ultaneously to the CT, 𝑇1- and 𝑇2-weightedMRI scans. The duration of these phases is
listed in Table 4.1. The run times of the 14- and 25-patient data sets are similar. The
longest processing is required by the CT scans of the 25-patient data set with in total
144 s. In contrast, the 𝑇2-weightedMRI scans of the same data set need the shortest time,
55 s on average.
The run times of the rigid-registration phase are provided in Table 4.2. For this phase,

three different variants of source-to-target registrations are possible. Themultimodal
applications take longer than the unimodal rigid registration because the rotation in
the 𝑦–𝑧 plane, described in Section 4.3.3, is skipped for the 𝑇1-to-𝑇2 registration. The
average run time for multimodal rigid registration is 81 s, while the unimodal variant
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Table 4.2: Run times of the last workflow phase. This phase handles rigid registrations
and requires a source-to-target image pair. Twomultimodal combinations, 𝑇2-to-CT
and 𝑇1-to-CT, and one unimodal combination, 𝑇1-to-𝑇2, are investigated. The durations
of each registration direction are given for both data sets.

Data set Phase 𝑇2-to-CT 𝑇1-to-CT 𝑇1-to-𝑇2
14-patient Rigid (88.02 ± 13.03) s (83.80 ± 11.21) s (56.83 ± 12.12) s
25-patient Rigid (73.86 ± 7.24) s (78.56 ± 7.43) s (51.87 ± 6.47) s

takes 54 s. Consequently, preprocessed images of one patient are produced in less than
four minutes, including image segmentation and adjustment of three different image
types.
The accuracy of the preprocessing is measured with the help of segmented images,

which are generated in the workflow. For each segment, the overlap between two images
is calculated with𝑚DSC. As the same image format is required for the computation, the
value of𝑚DSC is calculated before the application of the rigid registration (pre-rigid)
and afterwards (post-rigid). The results for both data sets are presented in Figure 4.15.
An increase in image alignment is directly apparent for the preprocessed images due
to the mean values, which are closer to unity in the post-rigid case. The post-rigid
values are either higher than or equal to the pre-rigid values. This results from the
construction of the rigid-registration phase, which aims at improving image agreement.
The application of the translation or rotation transformations depends on the𝑚DSC
values. The respective operation is not applied to the image if lower values are achieved
compared to the previous numbers. The third patient of the 14-patient data set, for
example, has the same pre-rigid and post-rigid values. A difference between both data
sets is present since the improvement of image agreement is higher for the 25-patient
data set. For the 𝑇2-to-CT registration, the mean values for the 14- and 25-patient
data sets increase from 0.24 to 0.81 and from 0.12 to 0.82, respectively. Furthermore,
the results of the unimodal registration indicate that the agreement between 𝑇1- and
𝑇2-weighted MRI scans is already high before the rigid registration, especially for the
14-patient data set with𝑚DSC(pre-rigid) = 0.51. Ultimately, the proposed workflow
produces preprocessed CT and MRI scans of the patients with the same format and
similar alignment. The overlap is improved by 52% on average.

4.4.3 Qualitative evaluation

In contrast to quantitative evaluation, the quality of the preprocessed images is in-
vestigated by image overlay displays [4], which facilitates the comparison of the image
features. For this, the registered image is overlaid with the target image using the ImageJ
programme [26]. The image overlay displays of one patient are shown in Figure 4.16.
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Figure 4.15: Accuracy measurement with𝑚DSC for the 14-patient (left) and 25-patient
(right) data sets. The calculation is performed on the segmented images before (blue)
and after (green) the application of the rigid registration. The results are depicted for
the 𝑇2-to-CT (top), 𝑇1-to-CT (middle) and 𝑇1-to-𝑇2 (bottom) registrations. In addition,
the mean values (solid lines) and their uncertainties (bands) are shown.
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Slice 32 Slice 32 Slice 32

a. b. c.

Figure4.16: Imageoverlaydisplays of preprocessed imagesof Patient 5of the 14-patient
data set. The target (greyscale) and registered source (colours with transparency of
50%) images are shown. Subfigure a: The result of the𝑇2-to-CT registration is presented
with the 𝑇2-weighted MRI slice in an orange-red colour scale. Subfigure b: For the 𝑇1-
weighted MRI slice, a yellow-orange colour scale is used to indicate the impact of the
𝑇1-to-CT registration. Subfigure c: The unimodal registration of 𝑇1-weightedMRI scans
(yellow-orange colours) is shown with the 𝑇2-weighted MRI scan as the target image.

In Figure 4.16a, the image overlay represents the result of the𝑇2-to-CT registration. The
MRI features are illustrated in an orange-red colour scale, providing visual distinctness
to the CT features in greyscale. The visibility of bones is restricted for MRI, but the soft
tissue indicates the image agreement with the high contrast of bones, represented in the
CT scan. The improved alignment between both images is especially apparent for the
eyes. The image overlay display for the 𝑇1-to-CT registration is shown in Figure 4.16b. A
yellow-orange colour scale is used for the preprocessed 𝑇1-weighted MRI scan. Similar
to the 𝑇2 weighting, soft tissue indicates the increase in image agreement with the CT
scan. The unimodal registration of the 𝑇1-weightedMRI scan is presented in Figure 4.16c
with the same colour scale. The acquisition of the twoMRI weightings was performed
successively on the same scanner, which implies high image agreement before the
application of rigid registrations. However, an increase is still achievable, as quantified
in Figure 4.15.
In general, the image overlays visualise the extent of the preprocessing, which ad-

justs the images to match in size and position. High improvement is obtained for all
registration combinations, but small non-rigid displacements are not taken into ac-
count. Corrections of such effects are studied with DIR using deep learning in Chapter 5.
Since simple image overlays provide low variability for visual evaluation, image fusion is
investigated in detail in Chapter 6.
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Image preprocessing is specifically designed for image-format equalisation and image
positioning by using rigid registration. This type of registration disregards the mobility
of organs or the distortion of images. The former is more distinctive for images of
the lung than for the brain, but shrinking tumours from radiotherapy still influence
the brain morphology. Distortion effects, which are supposed to originate from the
magnetic fields [1, 4], appear in particular for the MRI scans. These challenges require
individual displacements of each pixel in addition to the rigid registration. In this
chapter, deformable image registration is investigated with a deep neural network.
In Section 5.1, the algorithm and the implementation of the network are introduced.
Several studies, described in Section 5.2, are performed to optimise the setting of the
network formultimodalDIR,which includes input configurations andparameter tuning.
Finally, a multimodal model generated with data augmentation for the optimal network
setting is presented in Section 5.3.

5.1 Deep neural network

In general, deep-learningmodels are perceptrons withmultiple connected layers, which
consist of nodes. These imitate neurons in the brain by carrying information to sub-
sequent layers [6]. This type of neural network, illustrated in Figure 5.1, is an extension of
machine learning, andmethods for image deformation or recognition regardingmedical
image analysis have evolved in recent years [7].
Themodels are constructed from input, inner and output layers. The input, expressed

by images, vectors or distributions, depends on the application, e.g. speech recognition
or image processing [44]. Supervised methods require additional ground truth data to
generate the output. For the case that ground truth data, e.g. simulated samples, are
not available, unsupervised training is performed with the input only. [32] The main
computation takes place in the inner layers, 𝑙, where the input is processed to obtain
features, ⃗𝑓(𝑙), with mathematical operations. The depth of the network is given by
the number of inner layers, 𝑛𝑙, and their individual features, 𝑓𝑖. The calculation of the
features is performed with a linear operation, containing a linear transformationmatrix,
𝑊(𝑙), and a displacement vector, �⃗�(𝑙). The matrix includes weight parameters,𝑊𝑖𝑗, and
the vector comprises bias components, 𝑏𝑖𝑗. The tail end of the network is represented
by the output layer. The output vector, �⃗�, which is obtained by a final linear operation
with the transformation𝑊𝑜 and the displacement �⃗�𝑜, contains the predictions to solve
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Figure 5.1: Illustration of the general structure of a deep neural network. The inputs
(orange) are processed through the inner layers (blue), whichpredict the output (green).
The processing of the input vector, ⃗𝚤, is performed with linear transformations,𝑊(𝑙),
and bias displacements, �⃗�(𝑙), in each layer, 𝑙, to extract the features, ⃗𝑓(𝑙). The depth is
defined by the number of layers, 𝑛𝑙, and the number of features (𝑏, 𝑐 and 𝑑). A final
operation with𝑊𝑜 and �⃗�𝑜 concludes the network for the prediction of the output, �⃗�.

the particular task. The first layer, 𝑙 = 1, serves as an example for the calculation of the
features, ⃗𝑓(1). Let the layer consist of 𝑏 features, which result from the input vector, ⃗𝚤,
with 𝑎 samples. Then, the operation is

⃗𝑓(1) = 𝑊(1) ⋅ ⃗𝚤 + �⃗�(1) ⇔
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The features of subsequent layers are generated likewise to connect all nodes. Con-
sequently, all features contribute to the prediction of the network output vector,

�⃗� = 𝑊(𝑜) ⋅ [𝑊 (𝑙) ⋅ ⋯ ⋅ (𝑊 (2) ⋅ [𝑊 (1) ⋅ ⃗𝚤 + �⃗�(1)] + �⃗�(2)) + ⋯ + �⃗�(𝑛𝑙)] + �⃗�(𝑜) , (5.2)

which is determined by concatenating all linear mappings.
Since a neural network based on linear operations is not able to solve complex tasks,

activation functions, e.g. hyperbolic functions or rectified linear functions [45], are
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additionally applied at each node to break the linearity of Equation (5.1). This suppresses
irrelevant information, while important features responding to the activation contribute
more to the output. The networks can be constructed with many layers and features,
which increases the number of parameters in𝑊(𝑙) and �⃗�(𝑙). The general task of the
network is to adapt these parameters in the training processwith the stochastic-gradient-
descent method, which aims at minimising an objective function,ℒ. Backpropagation
is used to determine the partial derivatives ∂ℒ/∂𝑊 and ∂ℒ/∂𝑏 consecutively for each
layer in the output-to-input direction. Deep neural networks with such a structure are
capable of optimising their parameters to solve a particular non-linear problem after
many iterations. [32]
In this thesis, a CNN is employed to solve the task of image registration of two im-

ages. This class of deep neural networks uses a series of convolution operations (see
Section 3.2.3) in each layer to extract image features, responding to the respective con-
volution kernel [6]. The method allows image deformations to be computed on the
basis of the features and their positions in the images. Several types of CNNs were
developed for image detection, segmentation or registration purposes [46]. One popular
way to construct a CNN is U-Net [16] because of its unique architecture of contraction
and expansion paths [6]. These characteristics are efficient for small data sets [16].
Consequently, a U-shaped CNN is investigated and optimised to be included in the
application-related registration workflow.

5.1.1 Algorithm
The CNN formed according to U-Net breaks with the conventional arrangement of
the inner layers to reach the output layer. The U-shape splits the network into two
symmetric paths for encoding and decoding. Both paths are subdivided into several
layers, containing various operations to contribute to the goal of the respective path. Its
general structure is presented in Figure 5.2a.

Input At least one pair of normalised images is required for the operation of the CNN.
As the task of the network is the alignment of both images, these have to be classified
before entering the inner layers. Therefore, one image is determined as the source image,
𝑆, while the other is set as the target image, 𝑇. The network is not restricted to a specific
dimension and can perform two-dimensional or three-dimensional image registration.
Furthermore, the input can be divided into batches if it contains several image pairs. The
images within a batch are then concatenated to form a group with a specific batch size,
𝑏, which runs jointly through the network. This increases the possibility to generalise
the model [32].

Inner layers The encoder path is especially designed to extract image features of
both 𝑆 and 𝑇 by applying convolutions (see Section 3.2.3) in each layer. The basis of
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Figure 5.2: Illustration of the CNN algorithmwith theU-Net structure. Subfigure a: The
input with the shape (𝑏, 𝑧, 𝑦, 𝑥, 2) consists of source, 𝑆, and target, 𝑇, images, which
are concatenated in the last axis. For the batch configuration, 𝑏 image pairs are stored
in the first axis of the input. The first four inner layers, 𝑙 = 1 to 𝑙 = 4, are part of the
encoder path, where convolution and pooling operations are applied successively.
The convolutions including an activation function produce the feature maps ⃗𝑓(1) to
⃗𝑓(4), while the pooling manipulates their shape afterwards. The decoder path, built of
seven layers, 𝑙 = 5 to 𝑙 = 11, restores the shape of the feature maps ⃗𝑓(5) to ⃗𝑓(11) after
the application of the convolution. Finally, the last convolution operation generates
the network output in the form of displacement vector fields, 𝜙𝑖. Subfigure b: The
number of resulting featuremaps, 𝑓1 to 𝑓𝑖, has to be set before the training for each layer.
Subfigure c: The pooling operation halves the size of the feature maps. Subfigure d:
The concatenation method applied to the feature maps of the encoder and decoder
paths is visualised.
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the convolutions is the kernel weights, which are initially passed across the input im-
ages in the first level to produce feature maps. Then, these feature maps are further
convoluted in the subsequent levels. The transition between two layers of the encoder
path is occupied by the max-pooling operation (see Section 3.2.3) to reduce the size
of the feature maps. Traversing the encoder path yields the features from the input
images, but the information on their location is lost. The decoder path is constructed
to regain the information on the location of the image features. For this, the original
size of the feature maps from the first level has to be restored, which is performed in
each level with the upsampling method (see Section 3.2.3). Furthermore, a connection
between the enlarged feature maps and the feature maps of the respective encoder
level is made through concatenation. Convolutions are then applied to combine the
concatenated information into feature maps. After each convolution, the leaky rectified
linear function [45] is applied to activate units of the feature maps below zero with a
small gradient.

Output Eventually, the output is generated with final convolutions of the last feature
map ⃗𝑓(11)with three kernels. This network is designed to generate deformation vector
fields, 𝜙𝑖, predicting the spatial transformation of 𝑆. Each pixel of the two-dimensional
or three-dimensional source image gets a unique displacement for each direction. The
application of the deformation vector fields (see Section 3.2.1) is performed with target-
to-source mapping to generate the deformed image,𝐷. The linear interpolation is used
to compute the values of𝐷 for each pixel. In addition, the respective segmented image
is deformed with the same displacements, but the nearest-neighbour method is applied
to maintain the labels of the segments .

Network training In general, a neural networkwith the aimof solving a particular task
must be trained to learn and improve its parameters. This means that several iterations
are required for the optimisation process, which uses an objective function to control
the quality of the output after each iteration [32]. Here, the loss function

ℒ(𝑇 ,𝐷, 𝜙) = ℒsim(𝑇 , 𝐷) + 𝜆ℒreg(𝜙) (5.3)

is set as the objective function to be minimised. The loss function is subdivided into
a similarity term,ℒsim(𝑇 , 𝐷), and a regularisation term,ℒreg(𝜙). The former consists
of a metric that quantifies the degree of similarity between 𝑇 and𝐷. The latter, which
is regulated with the parameter 𝜆, quantifies the smoothness of 𝜙 by calculating the
differences of the displacements of adjacent pixels. During the network training, the
minimisation ofℒ is achieved with the stochastic-gradient-descent method, which is
implemented with a specific learning strategy, including a customisable learning rate, 𝛼.
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5 Deformable image registration

5.1.2 Implementation
The algorithm described in Section 5.1.1 is based on VoxelMorph [17, 47], which was
developed for fast DIR of brain MRI scans. In this thesis, the deep neural network is
employed to investigate the advantages, like fast and direct application, for multimodal
use of three-dimensional head CT andMRI scans. Thus, the input of the CNN is a pair of
three-dimensional images, equalisedwith thepreprocessingworkflow (see Section 4.4.1).
The operations are performed with the TensorFlow [48] machine-learning platform
(tf), which is supported by the Keras [49] deep-learning interface.
Regarding the computations in the inner layers of the CNN, operations are imple-

mented with the tf.keras.layers module. The convolutions are applied with the
Conv3D() function using a kernel size of 3 × 3 × 3 pixels with a regular stride of one
and the same option for padding. The number of resulting feature maps has to be
specified (see Figure 5.2b). In addition, the he_normal method [50] is set for the weight
initialisation of the kernels. As activation, the LeakyReLU() function [45] is usedwith the
gradient 0.2. The MaxPool3D() function contributes to the contraction in the encoder
path by halving the size of the feature maps with a window size of 2 × 2× 2 pixels and no
padding (see Figure 5.2c). A window of the same size is chosen for the UpSampling3D()
function in the decoder path to expand the shape of the feature maps from (𝑏, 𝑧, 𝑦, 𝑥, 𝑛)
to (𝑏, 2𝑧, 2𝑦, 2𝑥, 𝑛). The doubling is followed by the application of the Concatenate()
function, which, for example, connects ⃗𝑓(5)with ⃗𝑓(4) in their last axis to obtain a feature
map with the shape (𝑏, 𝑧, 𝑦, 𝑥, 𝑛�⃗�(5) + 𝑛�⃗�(4)) (see Figure 5.2d). The final convolution
operation for 𝑙 = 11uses theRandomNormalmethod [51] for the kernel-initialiser option,
generating normal-distributed kernels with the mean 0 and the standard deviation 10−5.
That step produces the output with the shape (𝑏, 𝑧, 𝑦, 𝑥, 3). The number of layers and
their resulting feature maps are customisable. The default configuration of the encoder
path includes four levels, which produces 16, 32, 32 and 32 nodes. The number of layers
in the decoder path is seven by default. The resulting feature maps ⃗𝑓(5) to ⃗𝑓(11) contain
32, 32, 32, 32, 32, 16 and 16 nodes. Hence, this setting contains 327 331 trainable weight
and bias parameters. Exemplary feature maps generated in the encoder and decoder
paths are presented in Figure 5.3.
The output of the CNN is further processed with the source image to compute 𝐷

with the map_fn() function, which performs pixel-by-pixel displacements of 𝑆with the
mapping from 𝜙. Afterwards, the loss function in Equation (5.3) is calculated. Here,
the normalised cross-correlation described in Section 3.3 is chosen to be part of the
similarity term

ℒsim(𝑇 , 𝐷) = (1 −𝑚NCC(𝑇 , 𝐷)) . (5.4)

As the metric quantifies high image similarity for values near unity, the subtraction is
necessary to meet the target of minimising the loss function. The implementation of
𝑚NCC(𝑇 , 𝐷) is done with the tf.nnmodule, which contains primitive neural-network
operations, like the conv3d() function. This function is used to calculate the metric

50



5.1 Deep neural network

f(l)

l=1 l=2

l=3

l=4 l=5

l=6

l=7 l=8 l=9 l=10 l=11

f(l)

f(l)

f(l) f(l)

f(l)

f(l) f(l) f(l) f(l) f(l)

Figure 5.3: Exemplary slices of the feature maps for the layers 𝑙 = 1 to 𝑙 = 11 of the
CNN, which is shown in Figure 5.2. The operations for convolution (grey triangle),
pooling (red triangle) and upsampling (pink triangle) affect the appearance and the
size of the feature maps ⃗𝑓(𝑙).

for 𝑇 and𝐷with a 9 × 9 × 9 filter in which all elements are unity. The stride number is
one, while the same option is used for the padding. The L2 norm [32] is implemented as
regularisation by computing the gradients of 𝜙, which are approximated through the
differences of the displacements [47]. The regularisation term is defined as

ℒreg(𝜙) =
1
3 ∑
𝑖∈{𝑥,𝑦,𝑧}

1
𝑛𝑝

∑
𝑝
(𝜙𝑖(𝑝𝑖 + 1) − 𝜙𝑖(𝑝𝑖))2 . (5.5)

Thedifferences are determined for𝑝−1pixels, startingwith the second components. The
means over all pixels and spatial directions yield the penalty value, which is multiplied
with 𝜆. The result is added toℒ(𝑇 ,𝐷, 𝜙).
For the optimisation process during the network training, a learning strategy from the

tf.keras.optimizers module can be implemented in the CNN.The Adam() function
based on the Adam algorithm [52] is set by default. This algorithm takes previous steps of
the optimisation into account and determines the direction for the trainable parameters
in the next iteration [32]. In addition, the algorithm includes adaptive learning rates
during the optimisation. The default configuration of the CNN is 𝛼 = 10−4.
When the training of a registration model is finished after the specified number of

iterations, the model with the lowest value of the loss function is set as the best run. This
model can be applied to any preprocessed image that is similar to the source image.
For the generation of the deformed image, the same implementation is used as for the
network training.
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5 Deformable image registration

5.2 Parameter tuning

Themain task of dealing with deep neural networks is to find the optimal configuration
of the parameters. As described in Section 5.1, the CNN contains a customisable ar-
chitecture as well as variable functions, e.g. the loss and optimiser functions. These are
viable options for the parameter tuning, which is split into two studies. In Section 5.2.1,
effects on the CNN performance are investigated regarding the image type of the inputs.
In addition, different optimiser functions are tested, and the impact of a dropout rate
is examined. An extensive study with variants of the CNN architecture is presented in
Section 5.2.2. Within the scope of this thesis, the parameter tuning is performed on
multimodal data sets with CT and 𝑇2-weightedMRI scans. The 𝑇2 weighting is chosen
as the source image because of its higher soft-tissue distinctness compared to the 𝑇1
weighting. Results of unimodal DIR with 𝑇1- and 𝑇2-weighted MRI scans are presented
later in this chapter (see Section 5.3.2).

5.2.1 Preliminary studies

Theminor investigations are carried out on the 14-patient data set with a division into
training and validation data of approximately 80% to 20%. Thismeans that eleven image
pairs are used for the network training. The trained models are additionally applied to
the remaining three image pairs to validate the results. The assignment of the patients
to the data subsets is done randomly and results in Patient 4, 12 and 13 as the validation
data. The number of iterations is set to 200 for the network training of each registration
model in the following investigations.
The training performance and the registration accuracy are two aspects that are

checked in the evaluation process. The former is determined by comparing the loss-
function distributions. Since the aim of the network training is the minimisation of
Equation (5.3), the distribution with the lowest values indicates an improved train-
ing performance. The latter aspect quantifies the image similarity by calculating the
mutual-informationmetric (see Section 3.3.2) between the target and deformed images,
𝑚MI(𝑇 , 𝐷), as well as between the target and source images, 𝑚MI(𝑇 , 𝑆). The relative
deviation

∆𝑚MI(𝑇 , 𝐷, 𝑆) =
𝑚MI(𝑇 , 𝐷) − 𝑚MI(𝑇 , 𝑆)

𝑚MI(𝑇 , 𝑆)
(5.6)

represents the increase or decrease in image similarity for positive or negative values,
respectively.
The mutual-information metric is not chosen asℒsim(𝑇 , 𝐷) due to fluctuating dis-

tributions of the loss function during the training. The distributions ofℒ(𝑇 ,𝐷, 𝜙) for
the normalised cross-correlation and the mutual information are shown in Figure A.3 in
the appendix.
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Figure 5.4: Registration results regarding CT-scanmanipulation with the 14-patient
data set. Thedistributions of the loss function (left plot) are shown for the network train-
ing of two input variations. The input contains either original (blue) or manipulated
(green) CT scans. The approach for the manipulation is discussed in detail in the main
text. Lower values ofℒ(𝑇 ,𝐷, 𝜙) indicate an improved registration performance. The
difference in the mutual-information metric (right plot) after and before DIR is cal-
culated for both variants of CT scans (blue circles and green squares). Higher values of
∆𝑚MI(𝑇 , 𝐷, 𝑆) express an increase in image similarity.

CT-scan manipulation Multimodal image registration is challenged by defining
accurate image-similarity measures [6] for ℒsim(𝑇 , 𝐷) in Equation (5.3). This issue
is caused by the different distributions of the pixel values (see Figure 4.6). The largest
discrepancybetweenCTandMRI scans is theopposite portrayal of bones (see Figure 4.2),
which complicates the choice of an appropriate metric. However, the normalised cross-
correlation (see Section 3.3.1) is used in this thesis due to its robustness with respect
to fluctuations of pixel values in the target and source images [33]. To investigate the
effect of the bone discrepancy, two registration models are trained with the default
configuration of the CNN.These settings are listed in Table A.3. The input of one model,
consisting of preprocessed CT and MRI scans, is unchanged, while the other model
contains manipulated preprocessed CT scans. Themanipulation is done by subtracting
300 from the pixel values higher than 300HU. This maintains the morphology, but
softens the high difference in the pixel values between CT andMRI coming from bone
tissue. As shown in Figure 5.4, the distribution of the loss function for the model with
manipulated CT scans is slightly shifted towards lower values. In addition, the CT
manipulation causes an improvement in image similarity for all patients after DIR.This
effect is measured for the training and validation data, where an average increase of 1%
and 1.2%, respectively, is determined. Therefore, further investigations in Section 5.2
are performed with manipulated CT scans as part of the input during network training.
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Figure 5.5: Registration results for different data types of the input images with the 14-
patient data set. The loss-function distributions (left plot) are shown for each variant of
the data type. The distribution of the referencemodel (blue) is the same as in Figure 5.4
for manipulated CT scans. The loss values of themodels trained with the floating-point
(orange) and 8-bit (green) data types are depicted as well. An improved registration
performance is obtained for lower values ofℒ(𝑇 ,𝐷, 𝜙). The evaluationof the deformed
MRI scans (right plot)with themutual-informationmetric,∆𝑚MI(𝑇 , 𝐷, 𝑆), is calculated
for each patient. Higher values of the metric indicate an increase in image similarity.

Input type Thedata type of images defines the range of pixel values, which depends on
themodality. For the data sets in this thesis, the data type is different for the CT andMRI
scans (see Section 3.1.2). In the preprocessing, the normalisation of the images should
include the choice of a unifieddata type. Therefore, the effect onDIRof changing thedata
type of the input is investigated. The registration model trained with manipulated CT
scans in the previous study is the reference for the evaluation. This model contained the
CT andMRI scans with their initial data types as input. For the variation, floating-point
numbers and 8-bit unsigned integers are taken into consideration. The former defines
the range of pixel values between zero and unity. The latter expresses the pixel values in
256 greyscale values. The network training is conducted with the default configuration
of the CNN (see Table A.3). In Figure 5.5, the outcome regarding loss function and image
similarity is presented for the three registration models. The comparison of the loss-
function distributions indicates that the registration model with 8-bit unsigned integers
surpasses the reference model, whereas the performance of the training decreases with
floating-point numbers. Moreover, the evaluation of the deformed MRI scans shows
an improvement in image similarity for the 8-bit data type. For the training data, an
average increase of 5.9% is measured with ∆𝑚MI(𝑇 , 𝐷, 𝑆) of the reference and 8-bit
settings. The results of the validation data are similar to those of the training data and
achieve an improvement of 5.2% on average. Consequently, 8-bit-integer images are
used as input for the network training in further studies. Therefore, the conversion of
the CT andMRI scans to that data type is subsequently implemented at the end of the
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Figure 5.6: Impact of the dropout method on the performance of the CNN using the
14-patient data set. The loss-function distributions (left plot) are shown for each setting
of the dropout rate, 𝑟d. Lower values ofℒ(𝑇 ,𝐷, 𝜙) indicate an improved registration
performance. The mutual-information metric (right plot) indicates the change in
image similarity for the images of each patient, depending on 𝑟d. The distributions
are presented as the mean values and the uncertainty of training and validation data.
Higher values of ∆𝑚MI(𝑇 , 𝐷, 𝑆) express an increase in image similarity.

image-preprocessing workflow, as mentioned in Section 4.4.1.

Dropout layer The construction of the CNN connects the feature maps of previous
and subsequent layers. An approach aiming at increasing the network performance
is the regularisation of the feature maps with dropout layers [32]. This method sets a
specific fraction of feature maps to zero, which is defined by the dropout rate, 𝑟d. The
rate, typically varied between 0.2 and 0.5, is only active during network training [32].
In addition, the remaining feature maps are scaled up with a factor of 1/(1 − 𝑟d) to
compensate missing connections. The implementation is done with the Dropout()
function from the tf.keras.layersmodule. These layers are applied after each con-
volution operation in the encoder and decoder paths of the CNN. The dropout rates
𝑟d ∈ {0.1, 0.2, 0.3, 0.4, 0.5} are selected to check for improvements in the performance.
For this, the registration models with different dropout rates are trained and compared
to the reference model (𝑟d = 0) with manipulated CT scans and 8-bit data type. The
distributions of the loss function and the evaluation of the deformedMRI scans with the
mutual-informationmetric are shown in Figure 5.6. Interestingly, the effect of a dropout
layer on the CNN performance differs from the expectations. The increase of 𝑟d leads to
a deterioration in the CNN performance since the task of minimisingℒ(𝑇 ,𝐷, 𝜙) is best
accomplished by the reference model. Thus, dropout layers are disadvantageous for the
image-registration techniques used in this thesis. Further investigations with the CNN
disregard dropout layers during network training.
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Figure 5.7: Registration results for different optimiser functions of the CNN with
the 14-patient data set. The loss-function distributions (left plot) are shown for the
Adagrad (blue), RMSprop (orange) and Adam (green) optimisers. An improvement
in registration performance is obtained for lower values ofℒ(𝑇 ,𝐷, 𝜙). The mutual-
information metric, ∆𝑚MI(𝑇 , 𝐷, 𝑆), is calculated for each patient to assess the image
similarity (right plot) between the CT and deformedMRI scans. Higher values of the
metric indicate an increase in image similarity.

Optimiser function The optimisation of the weights in the convolution kernels
depends on the implemented function. As described in Section 5.1.2, the Adam al-
gorithm [52] is the standard function in this thesis. Since the goal of the parameter
tuning is to find an appropriate configuration of the network, two other optimiser al-
gorithms, Adagrad [53] and RMSprop [54], are tested. Similar to the Adam optimiser,
the Adagrad and RMSprop algorithms include continuously reduced adaptive learn-
ing rates during network training [32]. To investigate the impact of these algorithms,
three registration models are trained for 200 iterations with the initial learning rate
𝛼 = 10−4. In Figure 5.7, the trained models are evaluated in terms of the loss func-
tion and the similarity between the CT and deformedMRI scans. The distributions of
the loss function indicate that the RMSprop algorithm achieves similar results to the
Adam algorithm. Moreover, the performance of the registration model including the
Adagrad optimiser decreases, which is quantified with the mutual-information metric.
Compared to the model with the Adam optimiser, average deteriorations of 4.9% and
2.8% are determined for the training and validation data, respectively. In addition,
the loss-function distribution of the RMSpropmodel is slightly shifted towards higher
values ofℒ(𝑇 ,𝐷, 𝜙) compared to that of the Adammodel. By calculating the difference
of ∆𝑚MI(𝑇 , 𝐷, 𝑆) between the RMSprop and the Adam algorithms, a decrease of 2.0%
for the training data and 1.1% for the validation data is found. This confirms that the
standard optimiser is superior to the Adagrad and RMSprop optimisers and represents
the most appropriate setting for the CNN.
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Conclusion The preliminary studies aim at finding appropriate settings related to
the input images and to two CNN parameters. The challenge for multimodal image re-
gistration is the difference in the distributions of the pixel values. Therefore, adjustments
of the input images are investigated, which improve the image alignment after the de-
formable registration. Consequently, the input images should include manipulated CT
scans and the 8-bit data type. Furthermore, two approaches for optimising the CNN
performance are examined by varying optimiser functions and using various dropout
rates. The results indicate that other variations besides the default setting decrease the
performance. Since no improvements are determined regarding these CNN parameters,
other parameters of the network are taken into consideration in the extensive study in
Section 5.2.2.

5.2.2 Extensive study
Parameter tuning is performed to find optimal settings of the CNN parameters. The
results of the preliminary studies have provided useful information on the construction
of the input images for the network training, whereas the variation of optimiser functions
and the addition of dropout layers have remained ineffective. However, unconsidered
CNN parameters could still lead to an improvement in the registration performance,
which is sought by a more detailed parameter tuning. Therefore, extensive tests are car-
ried out on both data sets to train and evaluate several registration models. Each model
is trained with 80% of the CT andMRI scans from the 25-patient data set, representing
the training data. The remaining five image pairs are used for validation by applying the
trained models to these images. The fivefold cross-validation technique assures that the
images of each patient are at least once assigned to the training and validation data. The
concept is visualised in Figure 5.8a. To assess the impact of the parameter tuning, the
network training is performed with 200 iterations and the same convolution weights
for the initial run. The configuration with the parameter settings that are found to be
suitable for more precise DIR is set for the training of a registrationmodel with the entire
25-patient data set. This model is then applied to the testing data, consisting of the CT
andMRI scans of the 14-patient data set. The evaluation focuses on quantitative and
qualitative comparison of the registered images. First, the registration accuracy and
performance are determined to quantify the quality of the outcome, where the results of
all five folds are combined within one configuration. Then, image overlay displays of the
registered images are generated for visual assessment.

Variations The parameter tuning aims at investigating the effect of different CNN
configurations, which are controlled by four parameters: batch size, regularisation para-
meter, learning rate and architecture. Besides the default setting of the batch size (see
Table A.3), another value of 𝑏 is chosen to analyse the generalisation of the registration
models. As the training data consist of 20 image pairs, one possibility is to train models
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Figure 5.8: Illustration of the cross-validation technique and the parameter tuning of
the extensive study. Subfigure a: The fivefold cross-validation requires five registration
models to be trained with the same configuration, but with different data. The 25-
patient data set is subdivided into the training and validation data with 20 and 5 im-
age pairs, respectively. Subfigure b: The parameter tuning includes the variation of
the batch size (𝑏), the learning rate (𝛼), the architecture (𝑛𝑓) and the regularisation
parameter (𝜆). Regarding 𝑛𝑓, the number of feature maps in the respective layers is
described in the main text.

Table 5.1: Variations of the CNN architecture regarding the number of feature maps.
The numbers are given for the feature maps of each layer.

Name Encoder Decoder

Small [8 − 16 − 16 − 16] [16 − 16 − 16 − 16 − 16 − 8 − 8]
Large [24 − 48 − 48 − 48] [48 − 48 − 48 − 48 − 48 − 24 − 24]

with 𝑏 = 4, splitting the input into five groups of four image pairs each. The scaling
factor 𝜆, included in the loss function in Equation (5.3), regulates the smoothness of
the displacements. The settings 𝜆 ∈ {0.01, 0.05, 0.1, 1, 2} are chosen to investigate the
impact of 𝜆 values around unity. The investigation of three optimiser algorithms in
the previous section included the fixed learning rate 𝛼 = 10−4 for the optimisers. In
this study, two other values, 𝛼 = 10−5 and 𝛼 = 10−3, are taken into account for the
Adam optimiser. Moreover, the size of the network architecture is varied bymeans of the
number of resulting feature maps in the levels of the encoder and decoder paths. The
medium-architecture model corresponds to the default setting (see Table A.3), whereas
a small-architecture model and a large-architecture model, listed in Table 5.1, are tested
with fewer and more feature maps, respectively. The parameter tuning leads to 90 CNN
configurations, which is visualised in Figure 5.8b. Due to the application of fivefold
cross-validation, 450 models are trained in total.
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Quantitative evaluation: Accuracy The training and validation data are used to
calculate the value of𝑚DSC(𝑇 , 𝐷) as defined in Equation (3.9) between the segmented
images in their target and deformed states. The change in accuracy is then determined
by calculating the difference

∆𝑚DSC(𝑇 , 𝐷, 𝑆) = 𝑚DSC(𝑇 , 𝐷) − 𝑚DSC(𝑇 , 𝑆) (5.7)

with the value of𝑚DSC(𝑇 , 𝑆), representing the overlap after the preprocessing workflow.
The segments that contribute to the computation of themetric are the left and right eyes
as well as the ventricular system with the labels 𝑙LE, 𝑙RE and 𝑙VS. While positive values
of ∆𝑚DSC(𝑇 , 𝐷, 𝑆) imply an increase in the overlap of the segments, a deterioration is
observed for negative values. The accuracy of registration models with the batch size
𝑏 = 1 is shown in Figure 5.9, separated into training and validation. The distributions
of the configurations with 𝑏 = 4, which are presented in Figure A.4, indicate similar
tendencies. In general, a decreasing trend of the accuracy is visible for lower values of
the regularisation parameter. These models reach large negative values, which means
that the image alignment is degraded by up to 20% for configurations like the large-
architecture model with the settings 𝑏 = 1, 𝜆 = 0.01 and 𝛼 = 10−4. Contrary to that,
models yield better accuracy if the factor of the regularisation in the loss function is
𝜆 = 1 or 𝜆 = 2. The small-architecture model with the settings 𝑏 = 1, 𝜆 = 2 and
𝛼 = 10−3, for example, can improve the image alignment by up to 3.5%. The variation of
the learning rate shows that models with 𝛼 = 10−3 mostly achieve lower accuracy than
models with 𝛼 = 10−4 or 𝛼 = 10−5. For some models with 𝛼 = 10−3, the distribution
of the loss function is unstable because of an increase in the loss value after many
epochs. Furthermore, the comparison between the results of the training and validation
data illustrates the same tendencies, e.g. low values of 𝜆 lead to a decrease in accuracy.
When all results are combined, an average value of ∆𝑚DSC(𝑇 , 𝐷, 𝑆) greater than zero is
determined for four CNN configurations:

1. Small-architecture model with 𝑏 = 1, 𝜆 = 2 and 𝛼 = 10−4

2. Small-architecture model with 𝑏 = 4, 𝜆 = 2 and 𝛼 = 10−3

3. Large-architecture model with 𝑏 = 1, 𝜆 = 2 and 𝛼 = 10−5

4. Large-architecture model with 𝑏 = 4, 𝜆 = 2 and 𝛼 = 10−4

The qualitative evaluation with image overlay displays (see Figure 5.13) will show that
the largest deformations take place in the back of the head. The segmented images do
not cover this region of the head; therefore, these deformations are not considered in
the computation of ∆𝑚DSC(𝑇 , 𝐷, 𝑆). To obtain a stronger statement on the registration
accuracy, the mutual-information metric from Equation (5.6) is calculated for each
deformation. The results, listed in Tables A.4 and A.5, indicate the same tendencies
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Figure 5.9: Registration accuracy based on the Dice similarity coefficient for models
with the batch size 𝑏 = 1 using the 25-patient data set. The value of ∆𝑚DSC(𝑇 , 𝐷, 𝑆) is
measured as the change in the overlap of segments before, 𝑆, and after,𝐷, deformation
with regard to the target image, 𝑇. The results are shown for the training (left) and
validation (right) data as well as for the small-architecture (top), medium-architecture
(middle) and large-architecture (bottom) models. Each plot contains the variations
of 𝜆 and 𝛼, regulating the smoothness of the deformations and the step size of the
optimiser, respectively. The white lines inside the boxes represent the median values.
The dashed lines indicate the border for the increase (positive values) or decrease
(negative values) in image alignment.

60
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as ∆𝑚DSC(𝑇 , 𝐷, 𝑆), but the measurement is more accurate. An improvement in image
similarity is present for positive values of ∆𝑚MI(𝑇 , 𝐷, 𝑆), which is the case for higher
values of 𝜆, achieving up to 12% on average.

Quantitative evaluation: Performance Two checks recommended by the AAPM
Task Group No. 32 [4] are performed on the deformation vector fields to assess the re-
gistration performance. The inverse-consistency methodmeasures the independence
of the registration direction. This means that the CT-to-MRI registration should achieve
results similar to the training direction, the MRI-to-CT registration. For this, a trained
MRI-to-CTmodel is applied to the image pair consisting of a CT andMRI scan as source
and target images, respectively. The addition of the deformation vector fields of both
the MRI-to-CT and the CT-to-MRI directions determines the uncertainty for each pixel,
which is expected to vary around zero. The outcome of the parameter tuning for the
registration models with 𝑏 = 1 is depicted in Figure 5.10. The application of the trained
models has the same effects on the validation data, which is evident from the similar
distributions. Furthermore, there is a trend towards larger uncertainties for lower val-
ues of 𝜆 in all architectures, and the distributions are, in addition, similar between
the three learning rates. Regarding the small-architecture models, the mean values
decrease towards zero from low to high 𝜆 values, which indicates an improvement in re-
gistration performance. All parameter settings of this architecture are consistent within
the uncertainties. In contrast, the mean values of the medium architecture and the large
architecture neither increase nor decrease in a significant way when varying the 𝜆 para-
meter. Also, the low uncertainties with respect to the parameter settings𝜆 = 1 and𝜆 = 2
do not fulfil the inverse consistency, which means that the registration performance
of these architecture models is lower than that of the small-architecture models. The
distributions of the configurations with 𝑏 = 4 are shown in Figure A.5, presenting the
same tendencies. Another check quantifies the change in the pixel volume by calculating
the Jacobian determinant,𝑚JD(𝜙). For each pixel of the deformation vector field, the
gradients, which are necessary to compute the determinant, are approximated as the
difference in the displacements in 𝑥, 𝑦 and 𝑧 directions. A determinant below unity
indicates volume reduction, while a determinant above unity implies the opposite. For
the assessment of the registration performance, the mean value is computed, which
is expected to vary by unity. Stronger uncertainties of unity indicate inauthentic de-
formations, resulting from a decreased registration performance. The distributions of
the Jacobian determinant for the configurations with 𝑏 = 1 are shown in Figure 5.11.
The uncertainties are larger for low-𝜆models, which hints at unstable registration per-
formance. Thedeterminants of the small-architecturemodelwith𝛼 = 10−3, for example,
range from 0.5 to 1.5, which is inauthentic for deformations in the brain. For 𝜆 = 1 and
𝜆 = 2, the mean values are close to unity with small uncertainties, which is expected
for scans of the same cohort. Comparable conclusions are made for the models trained
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Figure 5.10: Registration performance based on the inverse-consistency method for
models with the batch size 𝑏 = 1 using the 25-patient data set. The sum of the MRI-to-
CT and theCT-to-MRI deformation vector fields leads to individual values for eachpixel,
which explains the large error bars. The results are shown for the small-architecture
(top), medium-architecture (middle) and large-architecture (bottom) models. The
mean values and uncertainties of the respective five-fold data are presented for the
variation of the regularisation parameter 𝜆 and the learning rate 𝛼, separated into
training (left) and validation (right). The dashed lines indicate the expected value.
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Figure 5.11: Registration performance based on the Jacobian determinant for mod-
els with the batch size 𝑏 = 1 using the 25-patient data set. The determinant is cal-
culated individually for each pixel with the corresponding displacements from the de-
formation vector field. The results are shown for the small-architecture (top), medium-
architecture (middle) and large-architecture (bottom) models. Themean values and
uncertainties of the respective five-fold data are presented for the variation of the
regularisation parameter 𝜆 and the learning rate 𝛼, separated into training (left) and
validation (right). The dashed lines indicate the expected value.
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Figure 5.12:Registration performance of amodel with the CNN configuration formore
precise DIR using the 14-patient data set. The inverse-consistency method (left) and
the Jacobian determinant (right) are used to evaluate the performance of the small-
architecture model with the batch size 𝑏 = 1, the regularisation parameter 𝜆 = 2 and
the learning rate 𝛼 = 10−4 for each patient. The dashed lines indicate the expected
values.

with the batch size 𝑏 = 4 (see Figure A.6). In summary, the evaluation indicates that
an appropriate CNN configuration should include the requirement 𝜆 ≥ 1 for improved
registration performance. With respect to the results on the registration accuracy, the
small-architecture model with the parameter settings 𝑏 = 1, 𝜆 = 2 and 𝛼 = 10−4 is the
most suitable CNN configuration for more precise DIR.

Quantitative evaluation: Testing The CNN configuration that is found to be op-
timal on the 25-patient data set is used to train a registration model with the scans
of the 14-patient data set. The network is constructed with the small architecture
and the settings 𝑏 = 1, 𝜆 = 2 and 𝛼 = 10−4. The registration performance is eval-
uated with the inverse-consistency method and the calculation of the Jacobian de-
terminant, shown in Figure 5.12. Regarding the former check, the results meet the
expectations because of the equal behaviour compared to the training data. The values
of the inverse-consistency method are consistent with zero, evidenced by the average
value of �̄�IC = (0.57 ± 1.00)mm. For the second check, determinants close to unity are
measured for all patients, with small uncertainties, similar to the results of the training
data. The average of the mean values is determined to �̄�JD = 1.00 ± 0.07.

Qualitative evaluation Similar to the qualitative evaluation of the preprocessed im-
ages in Section 4.4.3, image overlay displays are used to asses the visual impact of DIR on
the training and testing data. The overlay is generated with the ImageJ programme [26]
by merging the bone tissue of the preprocessed CT scans with the MRI scans. In Fig-
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Figure 5.13: Image overlay displays of MRI (greyscale) slices and the bone structures
of CT (green colours with transparency of 50%) slices. The ellipses indicate the regions
with large displacements after DIR (blue) compared to the preprocessing (orange).
Subfigure a: The overlay of preprocessed images (1) is shown for Patient 24 of the
25-patient data set. A medium-architecture model (2), a small-architecture model
(3) and a large-architecture model (4) illustrate the effect of DIR with different CNN
configurations. Subfigure b: The effect of DIR on the testing data is shown with the
small-architecture model. The preprocessed overlaid slices (1, 3) of Patient 3 of the
14-patient data set are presented for comparison with the deformedMRI slices (2, 4).
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ure 5.13a, the outcome of three CNN configurations, which is compared to the overlay
of the corresponding preprocessed CT andMRI scans, is presented for one Patient of
the training data. The largest discrepancy between the preprocessed CT andMRI scans
appears in the back of the head, where the positions of the tissue in the MRI slice differ
from the skull in the CT slice. Furthermore, the structures in the front region of the
head agree more for the preprocessed images. These effects are related to the patient
positioning and the preprocessing. The former aspect can be attributed to the fact that
the organs are placed differently for the acquisition in prone position or supine position.
The latter uses the centres of the eye segments as coordinates for the calculation of the
transformation parameters of rigid registrations. However, the difference in size occurs
despite the fact that the pixel spacing of both the MRI and CT scan is set to 1mm. This
indicates distortion effects of MRI with radial degradation towards the outer regions
of the body [55–58], which should be corrected with DIR. One overlay in Figure 5.13a
shows the result of the medium-architecture model with the parameter settings 𝑏 = 1,
𝜆 = 0.01 and 𝛼 = 10−3. The deformations of the low-𝜆model are spiky and distorted,
deteriorating theMRI scans after DIR. In contrast, the increase in the value of 𝜆 smooths
the deformations, which is visible for two overlays with a regularisation parameter of
2 in Figure 5.13a. The small-architecture model with 𝑏 = 1 and 𝛼 = 10−4 and the
large-architecture model with 𝑏 = 1 and 𝛼 = 10−5 quantitatively achieve the largest
improvements in image alignment. While the small-architecture model perfectly aligns
the scalp of the MRI scan with the bone of the CT scan in the back of the head, the
large-architecture model with 𝑏 = 1 and 𝛼 = 10−5 does not achieve an appropriate
agreement with the CT scan. Consequently, the quantitative evaluation stating that the
quality of the deformations decreases with lower values of the regularisation parameter
and that the small-architecture model with 𝑏 = 1, 𝜆 = 2 and 𝛼 = 10−4 performs the
most precise DIR is confirmed. In addition, the overlays of this model applied to the
images of one Patient of the testing data are presented in Figure 5.13b. The same effects,
which means that most deformations happen in the back of the head, are apparent for
Slices 30 and 50. The application of the registration model for DIR leads to a significant
improvement in image alignment.

Conclusion The extensive study includes the variations of four parameters of the
CNN with different settings, which leads to 90 configurations. An increase in the batch
size is expected to generalise the registration model. The results show no significant im-
provements compared to the setting 𝑏 = 1, whichmight be caused by the low amount of
training data. Similar to that, the variation of the learning rate yields no clear differences.
While a value of 10−3 achieves lower accuracy in most cases, the results of the settings
𝛼 = 10−5 and 𝛼 = 10−4 often dominate. In contrast, the regularisation parameter has
the largest impact on the quality of the deformed images. Both the quantitative and the
qualitative evaluation indicate an improvement in image alignment for the setting 𝜆 ≥ 1.
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These registration models are able to precisely deform the MRI scans, whereas low-𝜆
models generate strongly distorted MRI scans. Regarding the CNN architecture, three
variants consisting of different numbers of feature maps in the encoder and decoder
paths are tested. The increase in the number of feature maps slightly deteriorates the
registration accuracy of the low-𝜆models, but that effect is less prominent for models
with𝜆 ≥ 1. In summary, the small-architecturemodel with the parameter settings 𝑏 = 1,
𝜆 = 2 and𝛼 = 10−4 is found to be the configurationwith themost preciseDIR, achieving
similar results on the testing data.

5.3 Results

Deformable image registration is performed with the CNN described in Section 5.1. The
investigations in this thesis focus on the application to multimodal images, including
parameter tuning of the CNN by varying the input composition as well as various model
parameters. The result (see Section 5.2) is the determination of one CNN configuration
that is used to train a registration model with data augmentation in Section 5.3.1. The
research is completed by unimodal registrations, presented in Section 5.3.2.

5.3.1 Multimodal registration

The parameter tuning includes both data sets, providing 39 CT and MRI scans of the
head. As the run time of the 200-iteration training with 20 image pairs amounts to
approximately two hours on an NVIDIA A40 GPU, the parameter tuning would be time-
consuming for a larger data set. Therefore, DIR with an extended training data set
using data augmentation is investigated in the following with the most suitable CNN
configuration.
Data augmentation is a commonmethod to strengthen the trainingof aneural network

by extending the available data set. The individual images are usedmultiple times during
the training process, but each image differs slightly from the original image. [32] Here,
two transformation operations are performed to obtain three differently extended data
sets with 156, 468 and 780 image pairs, each resulting from the 39 original scans. First,
the images are mirrored horizontally, vertically and diagonally for an augmentation
factor, 𝑓A, of four, which includes the original images. Then, each image is additionally
rotated two times by the angles ±20°, which forms the extended data set with 468 image
pairs (𝑓A = 12). For the largest extension with 𝑓A = 20, rotations by the angles ±10° and
±20° are applied.
Besides the extended data sets, a registrationmodel with the 39 original scans (𝑓A = 1)

is trained for comparison. The data sets are randomly shuffled to achieve an even
distribution of original and artificially generated images. The number of iterations is set
to 200 for the network training, which runs for approximately five hours on 39 image
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Figure 5.14: Quantitative evaluation of the registration with different data-aug-
mentation factors. Left plot: Themutual-informationmetric is measured as the change
in the metric before (𝑆) and after (𝐷) deformation with regard to the target image
(𝑇). The white lines inside the boxes represent the median values. Right plot: The
Jacobian determinant (blue) and the inverse-consistency measure (green), which are
determined individually for each pixel with the deformation vector field (𝜙), are presen-
ted as mean values and their uncertainties. The dashed lines indicate the expected
values.

pairs. The run time of the training increases roughly linearly with 𝑓A.

Quantitative evaluation Similar techniques as in Section 5.2 are used to evaluate the
results of the registration models. The Dice similarity coefficient is avoided since the
evaluation in Section 5.2.2 points out that the largest deformations happen in the back
of the head, where segments are unavailable. Therefore, the image similarity ismeasured
with the mutual-information metric defined in Equation (3.8). The results are shown
in Figure 5.14 for the registration models with different augmentation factors. A slight
increase in ∆𝑚MI is observed for higher 𝑓A values, which means that data augmentation
with 𝑓A = 20 achieves the largest improvement in image alignment. Themean value over
all image pairs rises from∆�̄�MI = 0.12 for 𝑓A = 1 to∆�̄�MI = 0.14 for 𝑓A = 20. Moreover,
the performance of the registration models is quantified with the Jacobian determinant
and the inverse-consistency measure, visualised in Figure 5.14. The determinants, yield-
ing unity as the average value, indicate an equal distribution of volume changes through
the deformations. Furthermore, an improved inverse consistency is obtained for the
registration model with 𝑓A = 20 compared to the other factors. The obtained mean
value �̄�IC = 0.50 ± 1.19 is comparable to the result of the testing data in Figure 5.12. In
summary, the measurements agree with the results of the quantitative evaluation in Sec-
tion 5.2.2, implying adequate registration performance without excessive deformations.
Data augmentation leads to a slight improvement in deep-learning-based DIR, but the
run time also increases with the augmentation factor.
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Figure 5.15: Image overlay displays of MRI (greyscale) and the bone structures of CT
(green colours with transparency of 50%) slices for data augmentation. The overlays
of preprocessed (left) and registered (right) images are shown in the subfigures with
ellipses and arrows, indicating the regions with large displacements after DIR (blue)
compared to the preprocessing (orange). The images of Patient 8 (Subfigure a) and the
diagonally mirrored images of Patient 3 (Subfigure b) are presented for the 14-patient
data set. For the 25-patient data set, the horizontally mirrored images with 20° rotation
of Patient 19 (Subfigure c) and the images rotated by −10° of Patient 24 (Subfigure d)
are illustrated.

Qualitative evaluation Image overlay displays are generated with the ImageJ pro-
gramme to overlay green-coloured bone tissue of the CT scans and the MRI scans in
greyscale. The preprocessed images are compared with deformably registered images
for different data-augmentation factors. In Figure 5.15a, the overlays of Patient 8 of the
14-patient data set are shown for Slice 32. The results of the training, which includes
39 images pairs (𝑓A = 1), indicate larger deformations at the back of the head, while
smaller displacements are applied in the front part. The overlays in Figure 5.15b illustrate
the impact of data augmentation by a factor of four with a mirrored image of Patient
3 of the 14-patient data set. The comparison of the diagonally mirrored images points
out that large deformations are performed independent of prone or supine positions.
Furthermore, the effect of adding rotated images (𝑓A = 12) to the training data is visu-
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alised in Figure 5.15c for Patient 19 of the 25-patient data set. The horizontally mirrored
image, including a rotation of 20°, is part of the training data with 468 image pairs. The
overlap of bone tissue from the CT scan and soft tissue from the MRI scan, indicated
by arrows, is reduced after DIR. Exemplary overlays for the largest augmentation factor
𝑓A = 20 are presented in Figure 5.15d for Patient 24 of the 25-patient data set. There,
the images, rotated by an angle of −10° without any reflection operation, are part of
the training data with 780 image pairs. Besides the corrections at the back of the head,
the registration also includes larger deformations of other regions, like the eyes and the
temporal lobe. Ultimately, data augmentation, improving the registration of multimodal
images, covers different patient positions, which can support small-sized data sets with
regard to deep-learning techniques.

5.3.2 Unimodal registration
As explained inChapter 1, a variety of publications dealwith unimodal image registration
formedical use, which is the reasonwhy the focus of this thesis lies on themultimodal ap-
plication. The CNN described in Section 5.1 is based on theVoxelMorph framework [17],
which was applied to 𝑇1-weightedMRI scans only. Therefore, unimodal registration of
𝑇1- and 𝑇2-weighted MRI scans is investigated in the following.
The training of the registration model is performed with the 14-patient data set,

which is subdivided into training and testing data with eleven and three image pairs,
respectively. Patients 2, 6 and 11 are randomly assigned to form the testing data. The
𝑇2-weighted MRI scans are set as the target images, while the 𝑇1-weighted MRI scans
are the source images, which are deformed. The network training runs 200 iterations
with a small CNN architecture (see Table 5.1) and the parameter settings 𝑏 = 1 and
𝛼 = 10−4. Since the regularisation of the loss function has the largest impact in the 𝑇2-to-
CT registration, three models with different values of 𝜆 are trained and compared. The
variations are 𝜆 ∈ {0.1, 1, 2}. In addition, the normalised cross-correlation is included as
the similarity term, defined in Equation (5.4), in the loss function.

Quantitative evaluation The models are compared in terms of the loss-function
distribution and the image alignment, quantified by the mutual-information metric,
given in Equation (5.6). In Figure 5.16, the distributions of the loss function indicate an
improved performance for low-𝜆models since the minimisation of the loss function
performs more successful for 𝜆 = 0.1. In addition, the same conclusions can be drawn
with the assessment of ∆𝑚MI(𝑇 , 𝐷, 𝑆) for each image pair, visualised in Figure 5.16.
Regarding the training data, the results of the model with the setting 𝜆 = 0.1 surpass
those of higher-𝜆models. The application to the testing data shows slight differences in
the𝜆 variation, which could be triggered by the small amount of training data. The image
alignment improves by 17.5% on average. Lastly, these results are contrary to the results
of the multimodal registration regarding the 𝜆 values, but also here, improvements in
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Figure 5.16: Results of the unimodal registration for the 14-patient data set. The
distributions of the loss function (left plot) are shown for the network training with
three different regularisation parameters, 𝜆. Lower values ofℒ(𝑇 ,𝐷, 𝜙) indicate an
improved registration performance. The difference in the mutual-information metric
(right plot) after and before DIR is determined for each patient and variation. Higher
values of ∆𝑚MI express an increase in image similarity.

image alignment are achieved with deep-learning-based DIR. Data augmentation can
further increase the data set with duplicates of the original images, but the scaling factor
needs to be chosen appropriately.

Qualitative evaluation Checkerboard displays are used to assess the impact of un-
imodal registrations of 𝑇1- and 𝑇2-weighted MRI scans in Figure 5.17. The display is gen-
erated in a grid pattern with alternating parts of both images. For visual comparison, the
𝑇1- and 𝑇2-weighted MRI scans are depicted in magenta and blue colours, respectively.
Figure 5.17a includes the displays for Slice 32 of Patient 1 of the training data. The dis-
play with the preprocessed images shows the largest differences in image alignment.
The scalp differs most between source and target images. This discrepancy is reduced
with the lowest-𝜆 model, while higher-𝜆 models are unable to perform appropriate
deformations. In Figure 5.17b, Slice 32 of Patient 11 represents the result of the testing
data. There, similar issues occur in the displaywith preprocessed images, but none of the
registration models is capable of registering the scalp of the 𝑇1-weighted MRI scan com-
pletely. These findings reflect the quantitative evaluation with the mutual-information
metric regarding the testing data. Consequently, unimodal DIR of MRI scans is feasible
and clearly improves image similarity compared to the preprocessed images.
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5 Deformable image registration
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Figure 5.17: Checkerboard displays of 𝑇2-weighted (blue colours) and 𝑇1-weighted
(magenta colours) MRI slices. The circles serve the comparison of the displacements
after DIR (blue) compared to the preprocessing (orange). Subfigure a: The display is
shown for Patient 1 of the 14-patient data set. The preprocessed images (1) as well as
the corresponding images with DIR (2–4) illustrate the effect of DIR on the training
data. Subfigure b: The display is shown for Patient 11 of the 14-patient data set. The
preprocessed images (1) as well as the corresponding images with DIR (2–4) illustrate
the effect of DIR on the testing data.
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6 Image fusion

Themain task of rigid and deformable image registration is the improvement in image
alignment of a set of complementary individual images. Image fusion is able to merge
these images, increasing the amount of information in one image. Fused images can
visually facilitate clinical processes, e.g. treatment planning in radiotherapy. In this
chapter, medical image fusion is investigated for the generation of unimodal and mul-
timodal fused images. First, the methodology of merging a set of images is described in
Section 6.1. Then, the application of the image-fusionmethod is presented in Section 6.2,
including the results with regard to quantitative and qualitative evaluations.

6.1 Methodology

In general, the fusion of images requires a specific rule for the pixel values of the im-
ages. This rule determines the value of each pixel in the fused image. Furthermore, the
application of image fusion necessitates the choice of an appropriate method, which de-
pends on the domain of the images. One class of image-fusionmethods uses the images
in their spatial domain. There, the pixel values are directly included in the generation
of the fused images. This procedure entails disadvantages, like distortion effects and
low variability. Other methods are part of the transform-domain class, where a specific
transformation is applied to the images for image decomposition, which accesses an-
other domain of the images. The fusion rule is applied in that domain. Afterwards, the
inverse transformation generates the fused image. The transform-domain technique
offers the advantage of merging the images in the respective domain, leading to a higher
variability. [59]
A variety of implementations of image-fusion techniques were developed for vari-

ous applications [59–63]. The transform-domain technique, converting the images
into the frequency domain, became a widely used method, which provides a more dis-
tinct representation of information [64]. The Fourier-transformmethod, for example,
uses a discrete transformation function to compute the coefficients for the frequency-
domain image [62]. During the merging process, the signals of different features can be
differentiated to emphasise desired features [62]. In medical image fusion, the wavelet-
transformmethod is often used due to the complexity of the images [59, 61]. The ap-
plication of the discrete wavelet transformprovides localisation in the frequency domain
with higher resolution [64]. Therefore, the wavelet-transformmethod is employed in
this thesis for image fusion of the registered images.
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6.1.1 Wavelet transform
The discrete wavelet transform applied to images with discrete pixel positions originates
from the continuous transformation

𝑊𝑓(𝑠, 𝑥) = ∫
∞

−∞
𝜓𝑠, 𝑥(𝑡)𝑓(𝑡)d𝑡 (6.1)

of a function 𝑓(𝑡)with the continuous wavelet transform

𝜓𝑠, 𝑥(𝑡) =
1
√𝑠

𝜓(
𝑡 − 𝑥
𝑠

) , (6.2)

consisting of the scaling, 𝑠 ∈ ℝ+, and the translation, 𝑥 ∈ ℝ, of a basis function,𝜓(𝑡). The
impractical implementation of Equation (6.1) is caused by the continuity of the para-
meters 𝑠 and 𝑥. Therefore, both parameters are converted into the discrete parameters
𝑠 = 2𝑚 and 𝑥 = 𝑛2𝑚 with𝑚,𝑛 ∈ ℤ. Consequently, the discrete wavelet transform

𝜓𝑚,𝑛(𝑡) =
1

√2𝑚
𝜓(2−𝑚𝑡 − 𝑛) (6.3)

includes a set of scaled and shifted basis functions due to theparameter substitution. [65]
The basis functions used in this thesis are described in Section 6.1.2.
The implementation of the discrete wavelet transform corresponds to the sub-band

coding with low-pass (𝐿) and high-pass (𝐻) filters, separating the signal into approxi-
mation and detail coefficients [64]. The number of coefficients is usually reduced af-
terwards, and the two-band coding additionally offers the possibility formulti-resolution
decomposition by the iteration of the filters [64, 65]. The inverse transformation reverses
the process by upsampling the coefficients. Both filters are then applied to the coeffi-
cients, and the addition of the results yields the approximated coefficients of the higher
level. [64] Regarding the discrete wavelet transform, the wavelet function,𝜓(𝑡), and a
scaling function,𝜙(𝑡), imitate the effect of thehigh-pass and low-passfilters, respectively.
The scaling function extracts the essential information, while the wavelet function gen-
erates a representation with the details of the signal, 𝑓(𝑡). Due to the recursive property,
the composition of the signal in level𝑚 is the superposition

𝑓𝑚(𝑡) = ∑
𝑛
𝑐𝑚+1, 𝑛𝜙𝑚+1, 𝑛(𝑡) +∑

𝑛
𝑑𝑚+1, 𝑛𝜓𝑚+1, 𝑛(𝑡) (6.4)

of the decomposed signals from the level𝑚 + 1. The approximation, 𝑐𝑚+1, 𝑛, and the
detail, 𝑑𝑚+1, 𝑛, coefficients are multiplied with the respective filter function for each
discrete position 𝑛. [64, 65]
The application to an image, 𝐼, is performed in an alternate procedure along the 𝑥

and 𝑦 axes, visualised in Figure 6.1. First, the pixel values are decomposed line by line
with scaled and shifted versions of 𝜙(𝑡) and𝜓(𝑡), which produces the approximated,
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Figure 6.1:Effect of the discrete wavelet transform on an exemplary image with a white
frame. The procedure includes two levels of decomposition of the image 𝐼. The scaling,
𝜙𝑚,𝑛, and wavelet, 𝜓𝑚,𝑛, functions corresponding to low-pass, 𝐿, and high-pass, 𝐻,
filters are applied to each image of the levels𝑚 = 1 and𝑚 = 2. The decomposition in
the first level is performedon each line (blue frame) of the𝑥 axis by iterating through the
pixel positions 𝑛. In the second level, the same technique is applied for each column
(green frame) of the 𝑦 axis.

𝐼(𝐿), and detailed, 𝐼(𝐻), images. Then, a column-by-column decomposition takes place
for both images 𝐼(𝐿) and 𝐼(𝐻), creating one approximated image, 𝐼(𝐿, 𝐿), and three
detailed images, 𝐼(𝐿,𝐻), 𝐼(𝐻, 𝐿) and 𝐼(𝐻,𝐻), in the second level. Themain information
is collected in the image 𝐼(𝐿, 𝐿), whereas the vertical, horizontal and diagonal details
are located in the images 𝐼(𝐿,𝐻), 𝐼(𝐻, 𝐿) and 𝐼(𝐻,𝐻), respectively.
In this thesis, the dwt2() and idwt2() functions from the PyWavelets library [66]

are used for image decomposition and reconstruction. The former function applies
the discrete wavelet transform according to Figure 6.1. A two-dimensional image is
decomposed by computing the coefficients of the approximated and detailed images. To
reverse the process, the inverse discrete wavelet transform is performed with the latter
function, including the fused coefficients of the decomposed images. Both functions
require a specific wavelet function for operation.

6.1.2 Wavelet groups

The decomposition of the images depends on the scaling and wavelet functions, which
form a wavelet group [65]. An important condition is that those functions including the
scaled and shifted versions are orthonormal and defined on a finite interval. In general,
the scaling function has to meet the functional equation

𝜙(𝑡) = √2∑
𝑛
ℎ0(𝑛)𝜙(2𝑡 − 𝑛) (6.5)
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with the sequence ℎ0(𝑛), representing the coefficients of a discrete low-pass filter. The
corresponding wavelet function

𝜓(𝑡) = √2∑
𝑛
ℎ1(𝑛)𝜙(2𝑡 − 𝑛) (6.6)

results from the coefficients ℎ1(𝑛) of a discrete high-pass filter and 𝜙(𝑡). [65]The impact
of the functionsof sixwavelet groups,whicharedescribed in the following, is investigated
within the scope of the image-fusion study in Section 6.1.3.

Haar The simplest wavelet is the Haar function [67], which is the basis of most other
wavelet groups. The scaling function

𝜙Haar(𝑡) =
⎧
⎨
⎩

1, 0 ≤ 𝑡 < 1
0, otherwise

(6.7)

fulfils Equation (6.5) with the coefficients ℎ0(0) = 1/√2 and ℎ0(1) = 1/√2 [65]. There-
fore, the wavelet function

𝜓Haar(𝑡) =
⎧⎪
⎨
⎪
⎩

1, 0 ≤ 𝑡 < 0.5
−1, 0.5 ≤ 𝑡 < 1
0, otherwise

(6.8)

is determined through Equation (6.6) with the high-pass filter coefficients ℎ1(0) = 1/√2
and ℎ1(1) = −1/√2 [65].

Daubechies The group of Daubechies (db) wavelets [68] consists of twenty db𝑁
functions, which are orthogonal and asymmetric. The degree of differentiability of these
functions increases with the order 𝑁 = 𝐻/2, resulting in smoother functions with
𝐻 = {2, 4,… , 40} coefficients. The db1 function is equivalent to the non-smooth Haar
wavelet, while the db2 to db20 functions have oscillating distributions. [65, 69]

Coiflet Orthogonality and near symmetry are the properties of the Coiflet (coif) wave-
lets [70]. The number of coefficients,𝐻 = {6, 12, 18, 24, 30}, for the order𝑁 = 𝐻/6 leads
to five coif𝑁 functions. The distribution of the functions is smoother for higher values of
𝑁. [65, 69]

Symlet The Symlet (sym) group [69] contains 19 orthogonal functions with near-
symmetric distributions. The sym𝑁 functions with the order 𝑁 = {2, 3,… , 20} are
versions of the db𝑁 functions with increased symmetry. [69]
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Table 6.1:Configurations of the biorthogonal wavelet functions.

bior1.1 bior1.3 bior1.5 bior2.2 bior2.4
bior2.6 bior2.8 bior3.1 bior3.3 bior3.5
bior3.7 bior3.9 bior4.4 bior5.5 bior6.8

Biorthogonal Thecomputation of biorthogonal (bior) wavelet functions is performed
with two scaling and two wavelet functions with the coefficients (ℎ0, ℎ̃0) and (ℎ1, ℎ̃1),
respectively. This allows symmetric functions to be generated, depending on the number
of coefficients of both scaling functions. Thus, 15 variations, listed in Table 6.1, are
possible, in which the bior1.1 function is the Haar function. [71]

Reverse biorthogonal The reverse biorthogonal (rbior) wavelet group is computed
similarly to the bior functions. The same configurations of the number of coefficients
(see Table 6.1) are possible and the rbior functions are also symmetric. The rbior1.1
function corresponds to the Haar function. [71]

6.1.3 Fusion

The actual fusion of two images, 𝐼 and 𝐽, is performed with the coefficients of their
decomposed images, e.g. 𝐼(𝐿, 𝐿) is merged with 𝐽(𝐿, 𝐿). The determination of the new
coefficients is restricted to the given fusion rule. Three operations [59] are used in the
study:

• Theminimum (min) rule selects the smallest coefficient of two pixels.

• The average (avg) rule computes the mean of two coefficients.

• Themaximum (max) rule selects the largest coefficient of two pixels.

The image-fusion process is shown in Figure 6.2. Since the detailed images 𝑋(𝐿,𝐻),
𝑋(𝐻, 𝐿) and𝑋(𝐻,𝐻) contain less information than the approximated image𝑋(𝐿, 𝐿), the
same fusion rule is applied to these images. Hence, the notation ruleA–ruleD specifies
in the following which fusion rule is used for the approximated (ruleA) and detailed
(ruleD) images.

6.1.4 Evaluation

Statistical approaches for quantitative metrics, like the signal-to-noise ratio, measure
the fraction of noise in one image with regard to a reference image. However, a reference
as ground truth is unavailable for the fusion of two images, 𝐼 and 𝐽, generating the
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Figure 6.2: Illustration of the image-fusionmethod with the discrete wavelet transform
using the Haar wavelet and the avg–avg rule. The images, 𝐼 and 𝐽, are individually
decomposed into approximated (𝑋(𝐿, 𝐿)) and detailed (𝑋(𝐿,𝐻), 𝑋(𝐻, 𝐿), 𝑋(𝐻,𝐻))
images, which are then merged. The inverse discrete wavelet transform generates the
fused image, 𝐹(𝐼 , 𝐽).

fused image 𝐹(𝐼 , 𝐽). Therefore, the quality of the fused images is assessed with the
mutual-information metric,𝑚MI, from Equation (3.8), which determines the amount of
information in 𝐹(𝐼 , 𝐽) from 𝐼 or 𝐽. [72]
Twomeasures containing𝑚MI are used for the quantitative evaluation. The fusion-

factor metric

𝑚FF(𝐼 , 𝐽 , 𝐹) = 𝑚MI(𝐼 , 𝐹) + 𝑚MI(𝐽 , 𝐹) (6.9)

is computed by adding the individual measures. The definition of the mutual-infor-
mation metric implies that the information content of the fused image improves for
higher values of𝑚FF(𝐼 , 𝐽 , 𝐹). In addition, the fusion-symmetry metric

𝑚FS(𝐼 , 𝐽 , 𝐹) =
||||

𝑚MI(𝐼 , 𝐹)
𝑚MI(𝐼 , 𝐹) + 𝑚MI(𝐽 , 𝐹)

− 0.5
||||

(6.10)

is designed to determine the fraction of information from 𝐼 and 𝐽 in 𝐹(𝐼 , 𝐽), indicating
the symmetry. Contrary to Equation (6.9), the quality of the fusion increases for values
towards zero. [73]
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6.2 Results

Image fusion aiming at merging information frommultiple images is performed with
the discrete wavelet transform on the registered images of the 14- and 25-patient data
sets from Section 5.3. The variety of wavelet functions and the resulting decomposed
images as well as the fusion rules offer a high degree of variability. Therefore, the wavelet
groups are investigated in Section 6.2.1 by comparing the decomposed images of various
wavelet functions. After the selection of three functions producing the most distinctive
decomposition, the results of multimodal and unimodal image fusion are presented in
Sections 6.2.2 and 6.2.3, respectively. First studies on the application of image-fusion
methods were carried out in a bachelor’s thesis [74], which was supervised by the author.

6.2.1 Selection of wavelet functions

The investigation of the wavelet functions is done on the CT scan as well as the 𝑇1- and
𝑇2-weightedMRI scans of Patient 9 from the 14-patient data set. This patient is randomly
selected. The db1, bior1.1 and rbior1.3 functions are omitted as these functions are
equivalent to the Haar function. The remaining functions from the wavelet groups
described in Section 6.1.2 are compared to select the most appropriate wavelets.
In Figure 6.3, the decomposed images of the CT scan are shown for the Haar, db2,

coif1, sym2, bior1.3 and rbior1.3 functions. The approximated images, which contain
most information, are very similar to each other, and differences are hardly noticeable.
In contrast, the detailed images significantly differ between the wavelet functions, where
the images of theHaar andbior1.3 functions clearly standout. Thevertical andhorizontal
details contain steeper gradients, which results in a stronger representation of edges.
This effect is even more visible for the diagonal details. In addition, similar detailed
images are generated with the db2 and sym2 functions, differing in their symmetry.
The coif2 and rbior1.3 functions qualitatively provide the weakest decomposition of the
CT scan. The images decomposed with higher-order wavelet functions of the db, coif,
sym, bior and rbior groups are presented in Figure A.7. The distributions from lower to
higher orders indicate a decrease in strength of image decomposition, especially for the
detailed images. Consequently, the Haar, bior1.3 and db2 functions are selected for the
image fusion including the CT scan, which is described in the following section.
Thedecomposed images of the𝑇1- and𝑇2-weightedMRI scans are shown inFigures A.8

and A.9, respectively. The former provide the same results as the CT scan. For the 𝑇2-
weighted MRI scan, the decomposition with the Haar and bior1.3 functions performs
best according to the detailed images, while the rbior1.3 function produces images in
which edge details are not well pronounced. The db2, coif1 and sym2 functions are
similar, and the function with the clearest decomposition cannot be visually detected.
Therefore, the same wavelet functions as those selected for the CT scan are used for
image fusion with MRI scans.
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Haar db2 coif1 sym2 bior1.3 rbior1.3

Figure 6.3: Image decomposition with the discrete wavelet transform for the pre-
processed CT scan of Patient 9 of the 14-patient data set. The approximated images
(top row) as well as the detailed images containing vertical (second row), horizontal
(third row) and diagonal (bottom row) information are presented for six wavelet func-
tions.
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6.2.2 Multimodal image fusion

The deformably registered CT scans and 𝑇2-weighted MRI scans are used to investigate
the fusion of multimodal images. The 𝑇1-weighted MRI scans are not considered for the
fusion with CT scans because of the similar representation of fluids (see Figure 4.2). The
𝑇2 weighting, however, facilitates the visual delineation of risk structures and tumours.
The fused images are generated for the entire data, which include the 14 and 25 patients
of both data sets. Furthermore, the fusion is performed with the Haar, bior1.3 and db2
functions for the nine combinations of the fusion rules. The evaluation is done with the
twomeasures from Equations (6.9) and (6.10), based on themutual-informationmetric.
In addition, a visual comparison of the fused images is presented to assess the quality
and utility.

Quantitative evaluation The distributions of the fusion-factor and fusion-symmetry
metrics are shown in Figure 6.4, depending on the wavelet function and fusion rule.
The metrics are calculated for each of the 39 fused images, and the mean values and
their uncertainties are then determined. In general, both𝑚FF(𝐼 , 𝐽 , 𝐹) and𝑚FS(𝐼 , 𝐽 , 𝐹)
indicate the same results in terms of the fusion rule. As the fusion-factormetricmeasures
the amount of information from the CT and 𝑇2-weighted MRI scans in the fused images,
the fusion improves for the avg–avg rule. This rule ensures a high information content
for all three wavelet functions. The Haar function in combination with the avg–avg rule,
for example, yields𝑚FF(𝐼 , 𝐽 , 𝐹) = 2.41 ± 0.19, which is almost identical to the values of
the bior1.3 and db2 functions. In contrast, the combination of the approximated images
with the minimum rule (min–min, min–avg, min–max) leads to the lowest𝑚FF(𝐼 , 𝐽 , 𝐹)
values. These rules by definition select the smallest coefficient of two pixels. Therefore,
the fused images are expected to contain mostly the information from the CT scans
without bone structures. A similar case is obtained for the max–min, max–mean and
max–max rules, transferring most information from the 𝑇2-weightedMRI scans to the
fused images. The𝑚FF(𝐼 , 𝐽 , 𝐹) values are slightly higher than those of the minimum
rules, increasing the information content by including the bone structures from the CT
scans. The results of the fusion-symmetrymetric, which assesses howmuch information
from the CT and 𝑇2-weighted MRI scans is included in the fused image, indicate that
the average rule (avg–min, avg–avg, avg–max) with regard to the approximated images
provides the most symmetric distribution of information. For the Haar function, a value
of𝑚FS(𝐼 , 𝐽 , 𝐹) = 0.028 ± 0.025 is measured with the avg–avg rule. The values of the
other fusion rules are higher due to the increased asymmetry, which is related to the
uneven distribution of information content using theminimumormaximum rule for the
approximated images. In summary, fused images with the highest information content
and symmetry are generated with the avg–avg rule, while no significant impact of the
wavelet function is observed.
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Figure 6.4: Fusion quality of the fused CT and 𝑇2-weighted MRI scans for the patients
of the 14- and 25-patient data sets. The fusion-factor (left column) and the fusion-
symmetry (right column) metrics are shown for the Haar (top row), bior1.3 (middle
row) and db2 (bottom row) functions. Themetrics are determined as the mean values
and their uncertainties of all patients.
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Figure6.5:Fusionofmultimodal images in theRGBcolourmodelwith theHaarwavelet
function for three fusion rules. The information from the CT scans is depicted in a
green colour scale, while red-coloured 𝑇2-weighted MRI scans are used to indicate the
impact. Subfigure a: The fused images are shown for Patient 5 of the 14-patient data
set. Subfigure b: From the 25-patient data set, the images of Patient 11 are merged.
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Qualitative evaluation Fused images generated with the min–avg, avg–avg andmax–
avg rules are shown in Figure 6.5 for Patients 5 and 11 of the 14- and 25-patient data sets,
respectively. To obtain a visual distinctness, the CT scans are converted from greyscale to
a green colour scale, while red-coloured 𝑇2-weighted MRI scans are used for the fusion.
Thequality of the fused images that are based on theminimum rule for the approximated
images is decreased compared to the average and maximum rules. The fused images
with the minimum rule exclude the bone structures and contain green noise. High
contrast is obtained with the max–avg rule. In these fused images, the bone structures
of the CT scans stick out, but suppress information from the 𝑇2-weighted MRI scans for
these coordinates. The selection of the largest values triggers low transparency, which
can be increased with the avg–avg rule. These fused images have the highest symmetry
according to the fraction of information of both input images, as indicated by the fusion-
symmetry metric. Thus, the avg–avg rule improves the possibility to compare structures
at the same coordinates due to a higher transparency, enabling its use in treatment
planning. Ultimately, multimodal image fusion with the discrete wavelet transform
enables the images to be split into different parts, which are individually combined with
specific fusion rules. The avg–avg rule produces fused images with highly symmetric
information content, as quantitatively and qualitatively evaluated.

6.2.3 Unimodal image fusion
Image fusion is applied to the registered 𝑇1- and 𝑇2-weighted MRI scans from Sec-
tion 5.3.2, which includes the images of the 14-patient data set only. The 14 image
pairs, which result from the CNN configuration with the small architecture and the
parameter settings 𝑏 = 1, 𝜆 = 0.1 and 𝛼 = 10−4, are merged with the Haar, bior1.3 or
db2 functions. All nine combinations of the fusion rules are investigated with the same
evaluation techniques as for the multimodal image fusion in Section 6.2.2.

Quantitative evaluation The fusion-factor and fusion-symmetry metrics are de-
termined for the fused images of the 14 patients. The distribution of themean values and
their uncertainties, depending on the wavelet function and the fusion rule, are presen-
ted in Figure 6.6. Interestingly, the highest information content in the fused images is
obtained for maximum rules according to the fusion-factor metric. The largest value is
determined for the db2 function and the max–avg rule with𝑚FF(𝐼 , 𝐽 , 𝐼𝐹) = 2.37 ± 0.15.
This could be caused by the similar pixel-value distributions (see Figure 4.6) between
both MRI scans. The choice of the largest coefficient has a smaller effect if the pixel
values are very similar. Therefore, the information content is slightly decreased for the
average rules. However, the fusion-symmetry metric indicates the most symmetric
distribution of information for the average rules, like in the multimodal case. The values
of𝑚FS(𝐼 , 𝐽 , 𝐼𝐹) are similar for the wavelet functions, e.g.𝑚FS(𝐼 , 𝐽 , 𝐼𝐹) = 0.021 ± 0.020 is
yielded for the bior1.3 function with the avg–max rule.
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Figure 6.6: Fusion quality of the fused 𝑇1- and 𝑇2-weighted MRI scans for the patients
of the 14-patient data set. The fusion-factor (left column) and the fusion-symmetry
(right column) metrics are shown for the Haar (top row), bior1.3 (middle row) and
db2 (bottom row) functions. Themetrics are determined as the mean values and their
uncertainties of all patients.
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Slice 32
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Figure 6.7: Fusion of unimodal images in the RGB colour model with the Haar wavelet
function for three fusion rules. The green-coloured 𝑇2-weightedMRI scan is merged
with the 𝑇1-weightedMRI scan in a red colour scale. The fused images are shown for
Patient 2 of the 14-patient data set.

Qualitative evaluation The fused images of Patient 2 of the 14-patient data set are
depicted in Figure 6.7 for the min–avg, avg–avg andmax–avg rules. The Haar function
is used for image decomposition with the discrete wavelet transform, and the 𝑇1- and
𝑇2-weighted MRI scans are converted to red and green colour scales, respectively. Visual
effects similar to the multimodal fused images are noticeable (see Figure 6.5). The noisy
image of the min–avg rule mostly contains the information from the 𝑇2-weighted MRI
scan, while high contrast is apparent for the max–avg rule. Furthermore, the avg–avg
rule produces a fused image with a higher transparency, which increases the possibility
to distinguish between both MRI scans. Ultimately, the choice of the fusion rule for
image fusion of 𝑇1- and 𝑇2-weighted MRI scans depends on the user and the application
of the images.
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7 Potential for clinical integration

The research presented in this thesis is subdivided into three parts, which can be com-
bined to form a single workflow. The outcome of this workflow, operating fast and
unsupervised, has the potential to enhance precision radiotherapy. The application of
this workflow allows radiotherapy planning to be facilitated withmore precise registered
images or medical diagnostics with fused images. The multimodal investigations are
particularly interesting since research on this topic is barely present. Therefore, this
chapter deals with the potential integration of the workflow in clinics. In Section 7.1, the
individual subworkflows are recapitulated with regard to the operation and optimisation
possibilities. Then, radiotherapy and treatment-planning systems that are commonly
used in practice are described in Section 7.2. Lastly, suggestions for the integration of
the workflow in the clinical setting are presented in Section 7.3.

7.1 Operation of the workflow
Within the scope of this thesis, several aspects of image registration and fusion are
investigated for head CT andMRI scans. The focus lies on multimodal image pairs, but
unimodal registration and fusion of 𝑇1- and 𝑇2-weighted MRI scans are also evaluated.
The result is a two-part image-registration workflow, which seeks to improve image
alignment with rigid and deep-learning-based deformable registrations. In addition,
the workflow can be extended by image fusion, providing a single image with combined
information from two separate images. The advantage of this all-in-one procedure
is the direct and unsupervised operation without external markers or atlas images.
Moreover, the workflow realised with the Snakemake [75] tool takes between three and
four minutes to produce the desired images, starting from the initial DICOM files.

Preprocessing Themain task of the preprocessing is the rigid registration of source
and target images. Thepreprocessingworkflow (see Section 4.4.1) is designed to allow the
operator the choice of the source and target images, e.g.𝑇2-to-CT or𝑇1-to-𝑇2 registration.
Prior to that, the images passed as input are individually modified to equalise pixel and
slice properties within an image pair. A slice thickness and a pixel spacing of 1mm are
set as default, but these values can be varied by the operator. Moreover, automatic image
segmentation is part of the subworkflow, supporting the rigid registration. One algorithm
is implemented to generate segments of the eyes; another is developed to convert
manually outlined structures into segments. In this thesis, contours of the ventricular
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system (see Section 4.2.2) are available, but any other contour is applicable. As the
process of manually creating contours is elaborate, segments generated automatically
with deep learning should be considered in future work, especially for multimodal
applications. There exists usable software, like FreeSurfer [76], whose advantages are
restricted to the preprocessing and segmentation of MRI scans only. This requires
more detailed research on the proposed preprocessing subworkflow in terms of image-
alignment precision and run time. For the improvement in image alignment, the rigid
registration can be optimised by adding more segments for the determination of the
image overlap between source and target images. Furthermore, the execution on a GPU
instead of on a CPU is expected to drastically decrease the run time.

Deformable registration The focus of the all-in-one workflow is the deep-learning-
based deformable registration of source and target images. The pure application of
a trained model for deformable registration takes approximately 40 s, including the
computation of the quantitative measures. The use of deep-learning-based techniques
is challenged by the number of images for the training of an appropriate registration
model. This model should be able to register images that are not included in the training
process, but are of the same type. In this thesis, a small-sized data set of CT andMRI
scans of 39 pediatric patients with brain tumours is used. After the parameter tuning
of the CNN is performed for DIR of the CT andMRI scans, data augmentation, which
improves the registration accuracy (see Section 5.3.1), is investigated with the optimal
parameter settings. Therefore, the potential of fast and direct multimodal DIR should
be exploited in the future by increasing the amount of real data. This is crucial because
the physical growth or changes in the brain morphology require image-registration
methods that are adaptable. Deep neural networks, for example, are beneficial for
facilitating treatment planning in image-guided radiotherapy or adaptive radiotherapy.
Furthermore, the CNN used in this thesis reflects only one type of deep neural networks.
A variety of algorithms, developed and evaluated on unimodal image pairs, provide the
potential for further studies of multimodal DIR.

Fusion The last step of the workflow generates fused images from the registered im-
ages, which are obtained in the deep-learning workflow. For the fusion, the wavelet
transform is applied to separate vertical, horizontal anddiagonal details from the images.
This increases the variability of fusion combinations, which means that the operator is
able to set specific wavelet function and fusion rules. The quality of the fused images
and the balance of information from the input images depend on the setting. Since the
run time of this subworkflow is approximately 16 s on average, several variants can be
generated for comparison. The application of the fused images in clinical practice is
more likely the visual support by comparing information from CT andMRI at once. This
can simplify the assessment of risk structures, organs and healthy tissue.
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7.2 Radiotherapy

7.2 Radiotherapy

The treatment technique related to high-energy irradiation of tumour tissue is one
branch of cancer treatment besides surgery and chemotherapy. Radiotherapy used
individually or in combination with the other techniques manages to treat various types
of cancer. Improvements in computing power have produced a variety of radiotherapy
methods that deliver treatments with high precision. One requirement for radiotherapy
is amapping of the patient’s body, which is performedwithmedical imaging techniques,
to plan the treatment with appropriate dose calculation. [1]

Medical imaging For the treatment with radiation, medical imaging is an essential
instrument regarding the planning, the delivery and themonitoring of radiotherapy. Ima-
gingmodalities like CT,MRI and PET are employed for the acquisition of high-resolution
images. These are used to precisely delineate tumour and surrounding healthy tissues, al-
lowing radiation oncologists to design patient-specific treatment plans. The information
obtained from the images helps to determine the target volume, which has to be ir-
radiated, and to define critical structures to be spared. Target localisation is performed
to ensure the precise delivery of radiation. Cone-beam CT andMRI are typically used to
verify and adjust patient positioning before the treatment session. These images enable
the comparison of the current anatomy with the planning images, ensuring accurate
alignment with the radiation beams. Real-time imagingmodalities during treatment are
useful to guide radiation delivery. Fluoroscopy, for example, can assist in image-guided
radiotherapy, where continuous X-ray imaging is employed to track tumour motion and
to adjust the treatment beams accordingly. Adaptive radiotherapy involves modified
treatment plans, needed since the anatomy of the patient changes in between treat-
ment sessions. This technique relies on CT or MRI scans that are regularly acquired at
specific points in time during the entire treatment to monitor and assess anatomical
changes of both tumour and healthy tissues. Furthermore, images of the anatomical
structures support the evaluation of the treatment response after radiotherapy. Several
imaging modalities can provide valuable information on tumour regression and po-
tential treatment-related side effects, which helps to evaluate the treatment efficacy and
to assess possible adjustments. [18]

Treatment planning The requirement for radiotherapy is to deliver sufficient dose of
radiation to the tumour, while sparing healthy tissue. This goal is realised by customised
treatment plans, which take the specific anatomy of the patient into account. Treatment
planning consists ofmultiple steps, includingmedical imaging, segmentation and target-
volume definition, choice of irradiation technique, dose calculation, evaluation and
optimisation. The necessary information on the attenuation of radiation in the human
body can be accessed from the CT to simulate the dose distribution. For this, several
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algorithms exist to model the setup in detail and to reproduce physical interactions of
radiation with the patient. To select an algorithm, the balance between computation
time and accuracy must be considered. Dose calculation requires target-volume defin-
ition by delineating relevant structures based on the planning images. This includes
not only the actual target volume, but also healthy tissue and structures placed near
the target volume, which can be harmed by irradiation. As the therapy with photons,
electrons or particles like protons is based on distinct physical processes, the choice
of the irradiation technique impacts the planning procedure. In general, treatment
planning has become increasingly computerised due to advancements in hardware
and software. [18] Treatment-planning systems like RayStation [77] from RaySearch
Laboratories [78] allows images to be registered, target volumes to be defined and dose
calculations to be performed. In clinical practice, the images of different modalities
are typically superimposed with rigid registrations to outline the volumes [4]. How-
ever, the displacement of organs due to the immobilisation of the patient or tumour
change during treatment is not considered by this registration type. In the case of pe-
diatric patients, physical growth and a prolonged course of disease are further challenges
for treatment planning. Therefore, DIR is expected to improve multimodal treatment-
planning processes. RayStation, for example, is able to performDIRwith its anatomically
constrained deformation algorithm [79], but multimodal DIR is barely supported. The
method implemented in RayStation solves the registration problem with a non-linear
optimisation procedure using contoured information [79]. The creation of contours is
elaborate and requires human intervention. The unsupervised workflow presented in
this thesis operates without external information, which can facilitate clinical processes
with the methods described in the following section.

7.3 Integration

Quality assurance and quality control of image-registration software is of great im-
portance for treatment planning and delivery in radiotherapy since registered and fused
images are used as input in delineation processes. Therefore, the uncertainties caused
by this software should be easily accessible for medical applications. However, doc-
umentation from commercial systems is not always available, which makes it difficult
to validate the performance of the image-registration software. The clinical integration
of such software should be conveniently achievable through clear instructions for the
clinicians. [4]

Quality assessment The uncertainties arising from the image-registration software
are associated with the input images and the present algorithms. The former aspect
relates to possible distortions in the images, e.g. distortion effects of MRI [55–58] with
radial degradation towards the outer regions of the body. The latter aspect refers to
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limitations of the algorithms and incorrect selection of their parameters. Thus, accurate
assessment of registration uncertainties depends on the software-integrated tools and
the operator interaction. The image-registration accuracy can be determined with sev-
eral quantitative measures, e.g. marker or contour comparisons, Jacobian determinant
or inverse-consistency check. [4]The Jacobian determinant and the inverse-consistency
check (see Section 5.2.2) are already implemented in the developed workflow presen-
ted in this thesis to assess the performance of the registration. Furthermore, contour
comparisons are realised through the overlap of segments, which is determined with
the Dice similarity coefficient, defined in Equation (3.9). The procedure of calculating
𝑚DSC can be extended to any segment that the operator would like to outline during
treatment planning. These quantitative metrics are easily accessible and can contribute
to the assessment of the workflow performance. In addition, qualitative evaluation
should provide visual assessment of the registration results by combining the registered
images [4]. Several methods, like split screen, checkerboard or image overlay displays,
support the verification of the registration accuracy [4]. While image overlay displays
are employed in this thesis, a more complex image-fusion method is investigated (see
Chapter 6), providing high variability. This adaptability is advantageous as the fused
image can be generated to satisfy the requirements of the operator.

Commissioning Before the clinical use of the software, the image quality resulting
from the registration processes needs to be validated. The related checks should cover
various aspects, such as accuracy of image deformation and the system functionality.
Quality assurance aims at accurate registration of the images that are used in the course
of radiotherapy by taking uncertainties into account and avoiding spatial distortions. It
should also ensure consistency and accuracy in propagating patient treatment-planning
data across all image data sets used for plan creation. Although quality assurance,
whose architecture depends on the individual goal of the software, is not always feasible
on all systems, specific methods are recommended for commissioning. One aspect is
that the registration techniques are reproducible before the clinical integration. The
recommendations for commissioning include three methods, dealing with physical-
phantom, digital-phantom and clinical-data tests to assess the registration results. A
comprehensive commissioning process should include all three methods. Physical-
phantom tests ensure accurate data representation and integrity verification across
imaging and radiotherapy systems. Digital phantoms allow controlled testing of re-
gistration accuracy, and clinical data tests provide final validation using examples of
images expected in clinical use. [4] To substantiate the registration results achieved in
this thesis, images of both physical and digital phantomsmust be used for a justified
commissioning of the workflow.
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Application Image registration is characterised by the fact that amapping of an image
pair is generated, allowing various applications, such as target-volume delineation and
image fusion. By registering a source image tomatch a target image, the geometric trans-
formations in the form of deformation vector fields create a link between these images.
Structure mapping is one approach for the clinical application in treatment planning
since the information is accessible and clearly defined. This method is performed by
delineating tumours and healthy tissue, for example onMRI scans, which can be easily
transferred to the CT scan. Thus, treatment planning can directly profit from the high
soft-tissue distinctness. Another suggestion for the use of registered images is related
to the dose-calculation procedure during the planning. The clinician can compute the
dose distributions on the CT scan, which are thenmapped and displayed onto the re-
gistered MRI scan. The visualisation of dose information on different modalities can
indicate errors, providing evidence for possible adjustments on the dose calculation.
Furthermore, the spatial integrity of registered images allows the information from both
images to be combined. Several procedures for image fusion exist, like image overlay
or checkerboard displays. [4] The wavelet-based fusion evaluated in this thesis is an
additional method for clinical application, which benefits from various adjustment
options regarding the fusion rules. In summary, the output of the proposed workflow is
able to facilitate the treatment planning in clinical processes. Although the proposed
workflow is an unsupervisedmethod, its application still requires supervision by trained
clinicians, especially for quality assessment.
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8 Conclusion

Medical imaging modalities provide different types of anatomical information due to
their physical concepts and contrast characteristics. CT is commonly used for treatment
planning in radiotherapy due to its bone contrast and dose-calculation capabilities,
whereas MRI offers high soft-tissue distinctness. Combining the benefits of both mod-
alities can improve the accuracy of treatment plans by precisely delineating target
volumes, like tumours and healthy tissue. [1] Rigid registration is a common practice
to superimpose images from different modalities, but it does not take deformations
between treatment sessions or distortion effects into account [1, 4]. DIR with deep-
learning techniques can enhance multimodal treatment planning, but there is a lack of
direct unsupervisedmultimodal methods for deep-learning-based DIR.This thesis faces
the challenges of multimodal registration problems and provides a complete workflow
for image registration and fusion of head CT andMRI scans. The data that are used to
develop the workflow consist of the scans of 39 pediatric patients with tumours in the
head.
The preprocessing is the first step of the workflow, generating rigidly aligned images.

At the beginning, the DICOM files are used to collect the required information of each
scan. This includes the image intensities for the creation of a three-dimensional ar-
ray, representing stacked axial slices. Moreover, slice properties like the thickness and
the distance as well as the pixel spacing of the axial slices are necessary in the image-
adjustment process. Before the images are adjusted, the subworkflow performs image
segmentation with an automated algorithm to produce segments of both eyes. These
two eye segments are required for the translation and rotation operations during the
rigid registration. Another algorithm for segmentation is applied if manually outlined
structures are available. This algorithm converts the contours to segments, which can be
added to the segmented image with eye segments. Each scan of the data is individually
acquired to obtain high-quality images, but this causes a difference in image properties.
The pixel spacing and the slice thickness are used to scale the images, providing similar
representations of the object regarding the size. Afterwards, the rigid registration is
performed to align the images with translation and rotation by considering large overlap
of the segments, determined with the Dice similarity coefficient as the image-similarity
metric. Data normalisation is required for deep-learning techniques. Therefore, the
rigidly aligned images, produced by the preprocessing workflow, are prepared for DIR.
The workflow continues with the deformable registration of target and source im-

ages. The preprocessed images can be directly passed to the deep neural network to
produce deformably aligned images within seconds. Although it sounds simple, there
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are many challenges to obtain an appropriate configuration of the deep neural network.
In this thesis, a CNN [17, 47] with U-Net [16] architecture is employed to solve the mul-
timodal registrationproblemwith diffeomorphic transformations. TheCNN is a complex
construct containing several parameters and operations, which can be varied and op-
timised. Therefore, themain part of investigations regarding deep-learning-based DIR is
the parameter tuning. Modified input images and typical deep-learning techniques, like
the inclusion of dropout layers or the variation of the optimiser function, are checked.
The architecture of the CNN as well as parameters regarding the loss function and the
weight optimisation are varied in an extensive study, where many registration models
are trained. The parameter tuning provides the configuration of the CNN that produces
the most precise deformations according to quantitative and qualitative measures. Fur-
thermore, the aspect of the amount of data is important for deep neural networks. By
increasing the number of input images, the quality of the model improves due to more
precise prediction of the deformations. This thesis investigates the impact of larger data
sets in the network training by using data augmentation. Factors of up to 20 generate
780 image pairs, originating from the 39 original scans. The results indicate a slight
improvement in the registration accuracy with higher augmentation factors. Besides
the multimodal application, unimodal registration is investigated with the CNN. Lower
values of the regularisation parameter achieve more precise deformations.
The last part of the workflow deals with the image fusion of the registered images.

Typical fusion methods, like image overlay or checkerboard displays, are used in this
thesis for qualitative evaluation. In addition, the wavelet-based method is investigated
to check for differences compared to the simple applications. The wavelet transform
has the ability to decompose the images into several components, which can represent
vertical, horizontal or diagonal details of the images. The fusion takes place in that
domain by combining the pixel values with a specific fusion rule, e.g. minimum, av-
erage or maximum. The average rule yields quantitatively and qualitatively the most
homogeneous fused images, while other combinations of the fusion rules provide an
asymmetric distribution of information. The results obtained from these investigations
are similar for CT–𝑇2 and 𝑇2–𝑇1 fused images.
In this thesis, the data sets contain scans of patients under the age of 18, which leads

to differences in the head shape. The variation is useful for DIR with deep learning. As
the shape and morphology of the head vary from age to age, especially for children,
scans of each age group provide more information, such as anatomical structures and
intensity distributions, for the deep neural network. Future work should deal with the
training of a registrationmodel based on a larger training sample, consisting of more
individual data. This should lead to a further generalisation of the applicability of the
model, as shown with data augmentation. Multimodal DIR has the potential to support
treatment planning, but more investigations have to be performed in the future. One
option is to vary the similarity part of the loss function by using other metrics, e.g. the
Dice similarity coefficient. The latter metric requires segmented images, which should
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contain numerous segments to cover the majority of anatomical features. Ultimately,
the significance of this thesis is highlighted by the lack of application-related research
in the field of multimodal DIR. Many previous studies dealt with image processing
using onemodality, while the feasibility of direct multimodal DIR with deep learning
is pointed out in this thesis. The proposed workflow combines rigid and deformable
registrations as well as image fusion for fast and direct application. The results presented
here enhance image alignment and pave the way for further studies on the training of a
robust registration model with an extension to other locations and adult patients. The
registration improvements made by deep-learning-based DIR are a benefit for more
precise delineation of tumours and healthy tissue in radiotherapy treatment planning.
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A Additional information

A.1 Details of the data sets
Information on the CT scans and the 𝑇1- and 𝑇2-weightedMRI scans from the 14- and
25-patient data sets is presented. The formats of the three-dimensional images are listed
in Tables A.1 and A.2. The pixel spacing of each scan is shown in Figure A.1. In addition,
the slice thickness and the slice distance of each scan are visualised in Figure A.2.

Table A.1: Image format of the CT scans and the 𝑇1- and 𝑇2-weighted MRI scans of the
14-patient data set. The number of slices,𝑁𝑧, and the number of pixels,𝑁𝑥 and𝑁𝑦, in
the axial image, 𝑥–𝑦 plane, are listed for each scan.

Patient number Dimensions (𝑁𝑧 × 𝑁𝑦 × 𝑁𝑥) of the scans
CT 𝑇1 weighting 𝑇2 weighting

1 364 × 600 × 600 156 × 584 × 928 95 × 292 × 256
2 292 × 512 × 512 250 × 576 × 576 108 × 576 × 576
3 266 × 512 × 512 186 × 544 × 544 82 × 576 × 576
4 330 × 512 × 512 236 × 544 × 544 95 × 600 × 512
5 260 × 512 × 512 192 × 576 × 576 75 × 576 × 576
6 262 × 512 × 512 202 × 576 × 576 101 × 576 × 576
7 338 × 512 × 512 170 × 584 × 928 95 × 292 × 256
8 268 × 512 × 512 191 × 576 × 576 71 × 576 × 576
9 294 × 512 × 512 218 × 576 × 576 80 × 576 × 576
10 258 × 512 × 512 192 × 576 × 576 90 × 576 × 576
11 307 × 512 × 512 198 × 420 × 420 75 × 448 × 448
12 274 × 512 × 512 194 × 544 × 544 75 × 600 × 512
13 304 × 512 × 512 192 × 576 × 576 68 × 576 × 576
14 327 × 512 × 512 156 × 544 × 544 67 × 600 × 512
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Table A.2: Image format of the CT scans and the 𝑇1- and 𝑇2-weighted MRI scans of the
25-patient data set. The number of slices,𝑁𝑧, and the number of pixels,𝑁𝑥 and𝑁𝑦, in
the axial image, 𝑥–𝑦 plane, are listed for each scan.

Patient number Dimensions (𝑁𝑧 × 𝑁𝑦 × 𝑁𝑥) of the scans
CT 𝑇1 weighting 𝑇2 weighting

1 333 × 512 × 512 192 × 512 × 512 74 × 512 × 512
2 363 × 512 × 512 232 × 512 × 512 44 × 512 × 512
3 329 × 512 × 512 212 × 552 × 444 73 × 512 × 512
4 279 × 512 × 512 176 × 512 × 512 52 × 576 × 576
5 285 × 512 × 512 98 × 524 × 436 50 × 256 × 230
6 245 × 512 × 512 96 × 480 × 480 64 × 448 × 448
7 323 × 512 × 512 192 × 480 × 480 33 × 512 × 512
8 301 × 512 × 512 168 × 480 × 480 33 × 512 × 512
9 301 × 512 × 512 204 × 576 × 576 82 × 576 × 576
10 303 × 512 × 512 192 × 480 × 480 47 × 512 × 512
11 369 × 512 × 512 198 × 480 × 480 56 × 512 × 512
12 303 × 512 × 512 160 × 512 × 512 39 × 512 × 512
13 301 × 512 × 512 194 × 544 × 544 73 × 600 × 512
14 279 × 512 × 512 152 × 512 × 512 33 × 512 × 512
15 303 × 512 × 512 192 × 480 × 480 60 × 576 × 576
16 303 × 512 × 512 194 × 544 × 544 50 × 600 × 512
17 359 × 512 × 512 192 × 576 × 576 66 × 576 × 576
18 279 × 512 × 512 182 × 576 × 576 66 × 576 × 576
19 363 × 512 × 512 198 × 544 × 544 74 × 600 × 512
20 303 × 512 × 512 194 × 544 × 544 78 × 600 × 512
21 265 × 512 × 512 196 × 576 × 576 60 × 576 × 576
22 333 × 512 × 512 194 × 544 × 544 73 × 600 × 512
23 305 × 512 × 512 218 × 544 × 544 94 × 600 × 512
24 279 × 512 × 512 178 × 576 × 576 60 × 576 × 576
25 325 × 512 × 512 178 × 544 × 544 73 × 600 × 512
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Figure A.1: Pixel spacing of the CT and MRI scans of each patient. The values of
𝑥spacing and 𝑦spacing, shown for the 14-patient (left) and 25-patient (right) data sets, are
equivalent.
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FigureA.2:Slice properties of theCT andMRI scans of each patient. The slice thickness,
ℎs, and the slice distance, 𝑑s, are shown for the 14-patient (left) and 25-patient (right)
data sets.
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A.2 Default configuration of the neural network
The default configuration of the CNN from Section 5.1 is used as reference for the para-
meter tuning in Section 5.2. The settings are given in Table A.3.

Table A.3:Default configuration of the CNN regarding architecture and network para-
meters.

Parameter Variable Setting

CNN architecture
Number of feature maps 𝑛𝑓(enc) [16 − 32 − 32 − 32]
Number of feature maps 𝑛𝑓(dec) [32 − 32 − 32 − 32 − 32 − 16 − 16]

Network training
Optimiser function — Adam algorithm
Learning rate 𝛼 10−4

Batch size 𝑏 1
Regularisation parameter 𝜆 1

Network operations
Convolution kernel — 3 × 3 × 3
Pooling grid — 2 × 2 × 2
Upsampling grid — 2 × 2 × 2

A.3 Comparison of loss functions
The normalised cross-correlation and the mutual information, which are tested as
ℒsim(𝑇 , 𝐷), are compared in Figure A.3.
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Figure A.3:Distributions of the loss function for two different metrics. The results of
the normalised cross-correlation (left) and the mutual information (right) are shown.
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A.4 Further results of the extensive parameter tuning
The evaluation results regarding registration accuracy and performance are shown in
Figures A.4, A.5 and A.6. In addition, the values of the mutual-informationmetric are
listed in Tables A.4 and A.5.

Table A.4:Mutual-information metric for parameter settings of the extensive study
with the batch size 𝑏 = 1.

𝛼 𝜆 = 0.01 𝜆 = 0.05 𝜆 = 0.1 𝜆 = 1 𝜆 = 2

Training with small-architecture model
10−5 −0.09 ± 0.02 −0.05 ± 0.01 −0.01 ± 0.03 0.06 ± 0.04 0.08 ± 0.05
10−4 −0.12 ± 0.02 −0.05 ± 0.02 0.01 ± 0.03 0.09 ± 0.04 0.12 ± 0.05
10−3 −0.08 ± 0.02 −0.05 ± 0.02 −0.03 ± 0.02 0.03 ± 0.02 0.04 ± 0.02

Training with medium-architecture model
10−5 −0.08 ± 0.02 −0.05 ± 0.01 −0.02 ± 0.02 0.04 ± 0.03 0.05 ± 0.03
10−4 −0.10 ± 0.02 −0.04 ± 0.02 0.00 ± 0.03 0.06 ± 0.04 0.07 ± 0.05
10−3 −0.10 ± 0.02 −0.05 ± 0.02 −0.04 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

Training with large-architecture model
10−5 −0.09 ± 0.02 −0.05 ± 0.02 −0.02 ± 0.03 0.05 ± 0.04 0.07 ± 0.04
10−4 −0.11 ± 0.02 −0.05 ± 0.02 −0.04 ± 0.03 0.09 ± 0.04 0.11 ± 0.05
10−3 −0.09 ± 0.02 −0.06 ± 0.02 −0.04 ± 0.02 0.03 ± 0.02 0.04 ± 0.02

Validation with small-architecture model
10−5 −0.09 ± 0.02 −0.05 ± 0.01 −0.01 ± 0.02 0.06 ± 0.03 0.07 ± 0.03
10−4 −0.10 ± 0.02 −0.05 ± 0.01 −0.01 ± 0.02 0.07 ± 0.03 0.10 ± 0.04
10−3 −0.08 ± 0.02 −0.06 ± 0.01 −0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.02

Validation with medium-architecture model
10−5 −0.08 ± 0.02 −0.05 ± 0.20 −0.02 ± 0.02 0.04 ± 0.02 0.04 ± 0.02
10−4 −0.09 ± 0.02 −0.04 ± 0.01 −0.01 ± 0.02 0.05 ± 0.02 0.06 ± 0.03
10−3 −0.09 ± 0.02 −0.05 ± 0.02 −0.04 ± 0.01 0.01 ± 0.01 0.02 ± 0.01

Validation with large-architecture model
10−5 −0.09 ± 0.02 −0.05 ± 0.01 −0.02 ± 0.02 0.05 ± 0.03 0.06 ± 0.03
10−4 −0.10 ± 0.02 −0.05 ± 0.02 0.00 ± 0.02 0.08 ± 0.03 0.09 ± 0.03
10−3 −0.08 ± 0.02 −0.06 ± 0.02 −0.04 ± 0.01 0.03 ± 0.02 0.03 ± 0.02

101



A Additional information

Table A.5:Mutual-information metric for parameter settings of the extensive study
with the batch size 𝑏 = 4.

𝛼 𝜆 = 0.01 𝜆 = 0.05 𝜆 = 0.1 𝜆 = 1 𝜆 = 2

Training with small-architecture model
10−5 −0.09 ± 0.02 −0.05 ± 0.01 −0.01 ± 0.03 0.04 ± 0.04 0.06 ± 0.04
10−4 −0.11 ± 0.02 −0.05 ± 0.02 0.02 ± 0.03 0.08 ± 0.04 0.11 ± 0.04
10−3 −0.08 ± 0.02 −0.02 ± 0.02 0.01 ± 0.03 0.03 ± 0.02 0.04 ± 0.02

Training with medium-architecture model
10−5 −0.08 ± 0.02 −0.05 ± 0.02 −0.03 ± 0.02 0.03 ± 0.02 0.04 ± 0.02
10−4 −0.09 ± 0.02 −0.04 ± 0.02 0.00 ± 0.03 0.05 ± 0.04 0.05 ± 0.04
10−3 −0.60 ± 0.02 −0.05 ± 0.02 −0.04 ± 0.01 0.01 ± 0.01 0.02 ± 0.01

Training with large-architecture model
10−5 −0.09 ± 0.02 −0.06 ± 0.01 −0.03 ± 0.03 0.04 ± 0.03 0.06 ± 0.03
10−4 −0.11 ± 0.02 −0.05 ± 0.01 0.00 ± 0.04 0.06 ± 0.04 0.07 ± 0.05
10−3 −0.11 ± 0.03 −0.06 ± 0.01 −0.04 ± 0.01 0.02 ± 0.02 0.02 ± 0.02

Validation with small-architecture model
10−5 −0.09 ± 0.02 −0.05 ± 0.01 −0.03 ± 0.02 0.04 ± 0.03 0.06 ± 0.03
10−4 −0.09 ± 0.02 −0.06 ± 0.01 0.00 ± 0.02 0.07 ± 0.03 0.08 ± 0.04
10−3 −0.08 ± 0.02 −0.05 ± 0.02 −0.02 ± 0.02 0.02 ± 0.02 0.03 ± 0.02

Validation with medium-architecture model
10−5 −0.08 ± 0.02 −0.05 ± 0.02 −0.03 ± 0.02 0.02 ± 0.02 0.03 ± 0.02
10−4 −0.09 ± 0.02 −0.05 ± 0.01 −0.02 ± 0.02 0.04 ± 0.03 0.04 ± 0.03
10−3 −0.09 ± 0.02 −0.05 ± 0.02 −0.04 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

Validation with large-architecture model
10−5 −0.09 ± 0.02 −0.06 ± 0.01 −0.03 ± 0.02 0.04 ± 0.02 0.05 ± 0.02
10−4 −0.09 ± 0.02 −0.05 ± 0.01 −0.01 ± 0.03 0.06 ± 0.03 0.06 ± 0.04
10−3 −0.10 ± 0.02 −0.06 ± 0.02 −0.05 ± 0.01 0.02 ± 0.01 0.02 ± 0.02
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Figure A.4: Registration accuracy based on the Dice similarity coefficient for models
with the batch size 𝑏 = 4 using the 25-patient data set. The value of ∆𝑚DSC(𝑇 , 𝐷, 𝑆) is
measured as the change in the overlap of segments before, 𝑆, and after,𝐷, deformation
with regard to the target image, 𝑇. The results are shown for the training (left) and
validation (right) data as well as for the small-architecture (top), medium-architecture
(middle) and large-architecture (bottom) models. Each plot contains the variations
of 𝜆 and 𝛼, regulating the smoothness of the deformations and the step size of the
optimiser, respectively. The white lines inside the boxes represent the median values.
The dashed lines indicate the border for the increase (positive values) or decrease
(negative values) in image alignment.
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Figure A.5: Registration performance based on the inverse-consistency method for
models with the batch size 𝑏 = 4 using the 25-patient data set. The sum of the MRI-to-
CT and theCT-to-MRI deformation vector fields leads to individual values for eachpixel,
which explains the large error bars. The results are shown for the small-architecture
(top), medium-architecture (middle) and large-architecture (bottom) models. The
mean values and uncertainties of the respective five-fold data are presented for the
variation of the regularisation parameter 𝜆 and the learning rate 𝛼, separated into
training (left) and validation (right). The dashed lines indicate the expected value.
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Figure A.6: Registration performance based on the Jacobian determinant for mod-
els with the batch size 𝑏 = 4 using the 25-patient data set. The determinant is cal-
culated individually for each pixel with the corresponding displacements from the de-
formation vector field. The results are shown for the small-architecture (top), medium-
architecture (middle) and large-architecture (bottom) models. Themean values and
uncertainties of the respective five-fold data are presented for the variation of the
regularisation parameter 𝜆 and the learning rate 𝛼, separated into training (left) and
validation (right). The dashed lines indicate the expected value.
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A.5 Impact of wavelet functions

The decomposed images of several wavelet functions are shown in Figures A.7, A.8 and
A.9.

db3 function db38 function

coif2 function coif5 function

sym3 function sym20 function

bior1.5 function bior6.8 function

rbior6.8 functionrbior1.5 function

Figure A.7: Image decomposition with the discrete wavelet transform for the pre-
processed CT scan of Patient 9 of the 14-patient data set for higher orders of wavelet
functions. The approximated images (first and fifth column) as well as the detailed
images containing vertical (second and sixth column), horizontal (third and seventh
column) and diagonal (fourth and eighth column) information are presented for five
wavelet groups.
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Haar db2 coif1 sym2 bior1.3 rbior1.3

Figure A.8: Image decomposition with the discrete wavelet transform for the pre-
processed 𝑇1-weighted MRI scan of Patient 9 of the 14-patient data set. The ap-
proximated images (top row) as well as the detailed images containing vertical (second
row), horizontal (third row) and diagonal (bottom row) information are presented for
six wavelet functions.
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Haar db2 coif1 sym2 bior1.3 rbior1.3

Figure A.9: Image decomposition with the discrete wavelet transform for the pre-
processed 𝑇2-weighted MRI scan of Patient 9 of the 14-patient data set. The ap-
proximated images (top row) as well as the detailed images containing vertical (second
row), horizontal (third row) and diagonal (bottom row) information are presented for
six wavelet functions.
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