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FEM simulation of thixo-viscoplastic flow problems: Error analysis
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This note is concerned with the essential part of Finite Element Methods (FEM) approximation of error analysis for quasi-
Newtonian modelling of thixo-viscoplastic (TVP) flow problems. The developed FEM settings for thixotropic generalized
Navier-Stokes equations is based on a constrained monotonicity and continuity for the coupled system, which is a corner-
stone for an efficient monolithic Newton-multigrid solver. The manifested coarseness in the energy inequality by means of
proportional dependency of its constants on regularization, nonoptimal estimate for microstructure, and extra regularity re-
quirement for velocity, is due to the weak coercivity of microstructure operator on one hand and the modelling approach on
the other hand, which we dealt with stabilized higher order FEM. Furthermore, we show the importance of taking into consid-
eration the thixotropy inhabited in material by presenting the numerical solutions of TVP flow problems in a 4:1 contraction
configuration.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
1 Introduction

FEM approximation of thixo-viscoplastic flow problems using quasi-Newtonian modelling approach is a straightforward way
to generalize the FEM standard setting of Navier-Stokes equations, as a well standing tool for simulation of incompressible
flow problems [10]. In this context, the extended viscosity, µ(·, ·), is dependent on the internal material microstructure
parameter, λ, beside the shear rate, ||D||, for the generalized Navier-Stokes equations [12]. The well defined approximation
for the term ||D||−1, as for instance Papanastasiuo approximation [13], is used to deal with the singularity of the modelling,
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denotes the second invariant of the strain rate tensor, and k is the regularization parameter. Then, the
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and the full set of equations for thixo-viscoplastic problems reads
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in Ω, with external forces fu, and fλ. u, p, and λ denote velocity, pressure, and microstructure, respectively. The supple-
mented evolution equation for the microstructure to generalized Navier-Stokes equations in (3) induces the time-dependent
process of competition between the breakdown, G, and the buildup, F , inhabited in the material. A collection of thixotropic
models with various choices of plastic viscosity, η, yield stress, τ , buildup function, F , and breakdown function, G, is given
in Table 1. We briefly define the thixotropic model as

M := G − F . (4)

The paper is organized as follows. In section §2, we show the wellposedness of continuous problem followed by the
best approximation for the discrete one. Next in section §3, we present the numerical simulations of TVP flow problems
in a 4:1 curved contraction configuration showing the importance of not ignoring the thixotropy inhabited in material. In
summary section §4, we outline the effect of weak coercivity of microstructure operator and regularization parameter on
energy inequality, beside the importance of taking into account the thixotropy inhabited in material giving a way to a stabilized
higher order FEM and better understanding of TVP flow characteristics.
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Table 1: Thixotropic models

η τ F G
Worrall et al. [15] λ η0 τ0 Ma(1− λ) ||D|| Mbλ ||D||
Coussot et al. [5] λg η0 Ma Mbλ ||D||
Houška [7] (η0 + η∞λ) ||D||n−1

(τ0 + τ∞λ) Ma(1− λ) Mbλ
m ||D||

Mujumbar et al. [9] (η0 + η∞λ) ||D||n−1
λg+1G0Λc Ma(1− λ) Mbλ ||D||

Here η0 and τ0 are initial plastic viscosity and yield stress, respectively, in the absence of any thixotropic phenomena. η∞ and
τ∞ are thixotropic plastic viscosity and yield stress. Λc is the critical elastic strain, and G0 is the elastic modulus of unyielded
material. Ma and Mb are buildup and breakage constants, and g, p,m, n are rate indices.

2 Finite element approximations

For FEM approximations, we start by deriving the variational form for thixo-viscoplastic flow problems, followed by the
wellposedness results of continuous problem, then we show the best approximation for the discrete problem.

Let’s consider T := H1
Γ−(Ω),V := (H1

0 (Ω))
2,W := T×V, and Q := L2

0(Ω) spaces associated with corresponding norms
H1-norm ||·||1 and L2-norm ||·||0, respectively, [1]. We set ũ = (λ,u), ṽ = (ξ,v), and define on W×W

aũ(ũ)(ũ, ṽ) = aλ(ũ)(λ, ξ) + au(ũ)(u,v) ∀ (ũ, ṽ) ∈ W×W. (5)

The weak formulation for TVP flow problems (3) reads: Find (ũ, p) ∈ W×Q s. t.

aũ(ũ)(ũ, ṽ) + b(v, p)− b(u, q) = l(ṽ), ∀(ṽ, q) ∈ W×Q, (6)

where operators aλ(ũ)(·, ·), au(ũ)(·, ·), b(·, ·), and l(·) are given as follows

aλ(ũ)(λ, ξ) =

∫

Ω

(
−F(DII, λ) + G(DII, λ)

)
ξ dΩ+

∫

Ω

u · ∇λ ξ dΩ, (7)

au(ũ)(u,v) =

∫

Ω

2µ(DII, λ)D(u) : D(v) dΩ+

∫

Ω

u · ∇uv dΩ, (8)

b(v, q) =−
∫

Ω

∇ · v q dΩ, (9)

l(ṽ) =
(
fλ, ξ

)
+

(
fu,v

)
. (10)

The wellposedness results are stated in theorem 2.1 with the following conditions

η0CK − C1 |u|1 > 0, (11)

Ma − C2Mb |u|1,∞ > 0, (12)

where, C1 is the continuity constant of convective term of momentum equation in ((H1(Ω))d)3 due to the embedding of
((H1(Ω))d)3 in ((L4(Ω))d)3 for d ≤ 4 [8]. And C2 is the maximum constant of continuity constants of thixotropy buildup
tri-linear form and convective term of microstructure equation due to Hölder inequality (L∞, L2, L2).

Theorem 2.1 (Begum et. al 2022 [1]: Wellposedness) Let fu ∈ (L2(Ω))2 and fλ ∈ L2(Ω), and assume conditions (11)
and (12) are satisfied. Then, the thixo-viscoplastic problem (6) has a unique solution (ũ, p) = (λ,u, p) ∈ W × Q with the
following bounds of the solution on data

||u||1 ≤ 1

η0CK
||fu||0 (13)

||p||0 ≤ 1

β

(
1 +

2 (η∞ + kτ∞) + ||u||∞
η0CK

)
||fu||0 (14)

Ma ||λ||20 +
1

2
⟨λ⟩2 ≤ 1

Ma
||fλ||20 (15)

where CK denotes the Korn’s inequality constant, and β is the Ladyzhenskaya-Babuška-Brezzi (LBB) constant.

Remark 2.2 If the body force in the pressure bound (14) tends towards zero, the limit for pressure is not necessarily zero
due to regularization parameter, means that the pressure is underdetermined in rigid zones. Moreover, higher order derivatives
of microstructure are not controlled, i.e. it is only bounded with L2-norm and boundary norm (15).

The approximation of TVP problem, in its general abstract form using conforming framework, is to seek an approximated
solution (ũh, ph) ∈ Wh ×Qh s. t.

aũ(ũh)(ũh, ṽh) + b(vh, ph)− b(uh, qh) = l(ṽh), ∀(ṽh, qh) ∈ Wh ×Qh, (16)
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where, Th ⊂ T,Vh ⊂ V,Wh ⊂ W, and Qh ⊂ Q are finite dimensional subspaces with the subscript h being a parameter
dependent on the mesh spacing. The problems that we have to solve here are the existence and uniqueness of the solution
(ũh, ph) and the estimation ||λ− λh||0, and ||u− uh||0. We assume that the inf-sup condition for the pair (Vh,Qh) is satisfied
i.e.

∃β > 0 s.t. sup
vh∈Vh

b(vh, qh)

||vh||
≥ β ||qh||Q/ kerBT

h
∀qh ∈ Qh, (17)

where, β is independent of h, (Bhvh, qh) := b(vh, qh), and kerBh={vh ∈ Vh | b(vh, qh) = 0, ∀qh ∈ Qh}. Clearly, the
inclusion kerBh ⊂ kerB is not true in general. Nevertheless, results of theorem 2.1 concerning existence, uniqueness, and
boundedness of the solution with data are directly applied here. Indeed, the necessary properties of aũ(ũ)(·, ·) are satisfied in
whole space W. Similar to the continuous problem, we assume the following conditions

Ma − C2Mb |uh|1,∞ > 0 (18)

η0CK − C1 |uh|1 > 0 (19)

Now, we move to the essential part of FEM approximation of comparing the discrete solution (λh,uh, ph) of the approximated
TVP problem (16) to the exact solution (λ,u, p) of the continuous TVP problem (6). The straightforward way is to use
monotonicity combined with the continuity for the coupled operator aũ(·)(·, ·) which is not true in this case. So, we use a
constrained monotonicity Proposition (2.4) together with the continuity Proposition (2.3) to establish our results.

Proposition 2.3 (Continuity) For all ũ = (λ,u), ṽ = (ξ,v), η̃ = (ζ,η) ∈ W0, we have
au(ũ)(u,η)− au(ṽ)(v,η) ≤(2η∞ + 2τ∞k + C1 |u|1 + C1 |v|1) ||u− v||1 ||η||1 + 2(η∞ |v|1 + τ∞) ||λ− ξ||1 ||η||1 (20)

aλ(ũ)(λ, ζ)− aλ(ṽ)(ξ, ζ) ≤(Ma + (2C1 + C2Mb) |u|1) ||λ− ξ||0 ||ζ||1 + (2C1 + C2Mb) ||ξ||1 ||u− v||1 ||ζ||1 (21)

Proposition 2.4 (Constrained monotonicity) Let ũ be the solution of TVP problem, for all ũ = (λ,u), ṽ = (ξ,v) ∈ W0,
and set (ζ,η) = (λ− ξ,u− v). We have

au(ũ)(u,η)− au(v)(v,η) ≥ (η0CK − C1 |u|1) ||η||
2
1 − (τ∞ + 2η∞ |u|1) ||ζ||0 ||η||1 (22)

aλ(ũ)(λ, ζ)− aλ(ṽ)(ξ, ζ) ≥ (Ma − C2Mb |u|1,∞) ||ζ||20 +
1

2
⟨|u · n| ζ, ζ⟩ − (C2 |η|0,∞ + C2Mb |η|1,∞) ||ξ||0 ||ζ||1

− ⟨|u · n| ξ⟩+⟨|u · n| ζ⟩+ − ⟨|v · n| ξ⟩+⟨|v · n| ζ⟩+
(23)

P r o o f. By straightforward calculations (see [1]), inequalities in Proposition 2.3 and Proposition 2.4 hold.

Theorem 2.5 Let fu ∈ (L2(Ω))2 and fλ ∈ L2(Ω), assume in addition that the conditions (18) and (19) are satisfied.
Then, the approximate thixo-viscoplastic problem (16) has a unique solution (ũh, ph) = (λh,uh, ph) ∈ Wh × Qh with the
following best approximation

||λ− λh||20 ≤ (2 + 2C̃λ,λ) inf
ξh∈Th

||λ− ξh||21 + C̃λ,u inf
vh∈Vh

|u− vh|21,∞ (24)

|u− uh|21,∞ ≤ C̃u,λ inf
ξh∈Th

||λ− ξh||21 + (2 + 2C̃u,u) inf
vh∈Vh

|u− vh|21,∞ + Cu,p inf
qh∈Qh

||p− ph||20 (25)

where, C̃λ,λ, C̃λ,u, C̃u,u, and C̃u,λ are a constants depending only on Ma,Mb, η0, η∞, τ∞, k, β, CK , d, ||ξh||0, |u|1, |u|1,∞,
|u|0,∞, |uh|1,∞, and |vh|1,∞.

Remark 2.6 The energy inequality for microstructure (24) states that the error for the approximation of microstructure in
L2-norm is bounded by the error of best approximation of the solution in H1-norm, which is not optimal. In contrast, the
energy inequality (25) states that the error estimate for velocity approximation in H1-norm is bounded by the best approxima-
tion of the solution in H1-norm as well which is optimal modulo the regularity requirement. These coarseness, i.e. the extra
regularity requirement for velocity on one hand and the non-optimality of the estimate for microstructure on the other hand, is
due to the weak coercivity of aλ(·)(·, ·) i.e. coercivity only in L2-norm and boundary norm.

P r o o f. To derive the error we subtract the approximated TVP (16) problem from the exact (6) TVP problem
aλ(ũ)(λ, ξh)− aλ(ũh)(λh, ξh) = 0, ∀ξh ∈ Th (26)

au(ũ)(u,vh)− au(ũh)(uh,vh) = b(vh, p− ph), ∀vh ∈ Vh (27)

Let ζh and ηh, ζh := ξh − λh (ζh ∈ Th), ηh := vh − uh (ηh ∈ Vh), be test functions and add respectively on both side of
(26) and (27) terms aλ(ṽh)(ξh, ζh)− au(ũ)(λ, ζh) and au(ṽh)(vh,ηh)− au(ũ)(u,ηh), we get

aλ(ṽh)(ξh, ζh)− aλ(ũh)(λh, ζh) = aλ(ṽh)(ξh, ζh)− aλ(ũ)(λ, ζh) (28)

au(ṽh)(vh,ηh)− au(ũh)(uh,ηh) = b(ηh, p− ph) + au(ṽh)(vh,ηh)− au(ũ)(u,ηh) (29)

We apply monotonicity and continuity of aλ(·)(·, ·) and au(·)(·, ·) on left hand side and right hand side of (28) and (29),
respectively, to have,

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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4 of 6 Section 18: Numerical methods of differential equations

(Ma − C2Mb |uh|1,∞) ||ζh||20 ≤ aλ(ṽh)(ξh, ζh)− aλ(ũh)(λh, ζh) + (2C1 + C2Mb) |uh − vh|1,∞ ||λh||0 ||ζh||1 (30)

(η0CK − C1 |uh|1) ||ηh||21 ≤ b(ηh, p− ph) + au(ṽh)(vh,ηh)−au(ũ)(u,ηh) + (τ∞+2η∞ |uh|1) ||λh−ξh||0 ||ηh||1 (31)

and
aλ(ṽh)(ξh, ζh)−aλ(ũ)(λ, ζh) ≤ (Ma+ (2C1+ C2Mb) |u|1) ||λ− ξh||0 ||ζh||1+(2C1+ C2Mb) |u− vh|1 ||ξh||0 ||ζh||1 (32)

au(ṽh)(vh,ηh)− au(ũ)(u,ηh) ≤ 2η∞ (|vh − u|1 + |u|1 ||λ− ξh||0) |ηh|1 + τ∞ (2k |vh − u|1 + ||λ− ξh||0) |ηh|1
+ (C1 |vh|1 + C1 |u|1) |vh − u|1 |ηh|1

(33)

beside the continuity of b(·, ·) on right hand side of (29)

b(ηh, p− ph) ≤
√
2d ||p− ph||0 |ηh|1 , (34)

to conclude
||ζh||20 ≤ Cλ,λ ||λ− ξh||20 + Cλ,u |u− vh|21,∞ + Cλ,u |uh − vh|21,∞ (35)

|ηh|21 ≤ Cu,u |u− vh|21 + Cu,λ |λ− ξh|21 + Cu,λ ||λh − ξh||20 + Cu,p ||p− ph||20 (36)

where Cλ,λ, Cλ,u, Cu,λ, and Cu,u are given as follows

Cλ,λ(Ma,Mb, |u|0,∞ , |u|1,∞ , |uh|0,∞) =
6(M2

a + (4C2
1 + C2

2M2
b) |u|

2
1,∞)

(Ma − C2Mb |uh|1,∞)2
(37)

Cλ,u(Ma,Mb, ||ξh||0 , |uh|0,∞) =
6C2

2M2
b ||ξh||

2
0

(Ma − C2Mb |uh|1,∞)2
(38)

Cu,u(η0, η∞, τ∞k, CK , |u|1) =
4(2η∞ + 2τ∞k + C1 |vh|1 + C1 |u|1)2

(η0CK − C1 |uh|1)2
(39)

Cu,λ(η0, η∞, τ∞, CK , |u|1) =
4(2η∞ |u|1 + τ∞)2

(η0CK − C1 |uh|1)2
(40)

Cu,p(d, η0, CK) =
4(
√
2d)2

(η0CK − C1 |uh|1)2
(41)

Then,
||ξh − λh||20 ≤ C̃λ,λ ||λ− ξh||21 + C̃λ,u |u− vh|21,∞ (42)

|vh − uh|21,∞ ≤ C̃u,λ ||λ− ξh||21 + C̃u,u |u− vh|21,∞ + Cu,p ||p− ph||20 (43)

where C̃λ,λ, C̃λ,u, C̃u,λ, and C̃u,u are dependent on Cλ,λ, Cλ,u, Cu,λ, and Cu,u. Thus, using triangular inequalities
||λ− λh||0 ≤ ||λ− ξh||0 + ||ξh − λh||0 , (44)

|u− uh|1,∞ ≤ |u− vh|1,∞ + |vh − uh|1,∞ , (45)

we conclude the proof.

The FEM approximations of problem (6) have to take care of its saddle point character, due to the bilinear form (9), the
weak coercivity of aλ(·)(·, ·), and the dependency of solution on regularization parameter k. We opt for higher order stable
FEM pair biquadratic for velocity and piecewise linear discontinuous for pressure, Q2/P

disc
1 , and higher order quadratic for

microstructure, Q2, with an appropriate stabilization terms [12,14]. On one hand, higher order choice for velocity counterbal-
ances the regularization impact and stabilization on the other hand enhances the coercivity to match the complete norm of the
microstructure space T equivalently as H1-norm i.e.

|||ξh|||2 = ||ξh||20 + jλ(ξh, ξh) (46)

where, jλ(ξh, ξh) is bilinear form supplementing the microstructure equation. Indeed, let the domain Ω be partitioned by a
grid with K ∈ Th which are assumed to be quadrilaterals such that Ω =

(⋃
k∈Th

K
)
. For an element K ∈ Th, we denote by

E(K) the set of all 1-dimensional edges of K. Let Ei :=
{⋃

k∈Th
E(K)

}
\∂Ω be set of all interior element edges of the grid

Th. We define the conforming finite element spaces Th ⊂ T, Vh ⊂ V, Wh := Th × Vh, and Qh ⊂ Q such that:

Wh×Qh=
{
ṽh=(ξh,vh)∈W, qh∈Qh | ṽh|K ∈(Qr(K))3 , qh|K ∈P disc

r−1(K); r ≥ 2,∀ K ∈ Th, vh = 0 on ∂Ωh

}
, (47)

where Qr and Pr are polynomials with maximum power in each coordinate less or equal r, and total power less or equal r,
respectively.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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The stabilized approximate problem reads: Find (ũh, ph) ∈ Wh ×Qh s. t.

aũ(ũh, ṽh) + jũ(ũh, ṽh) + b(vh, ph)− b(uh, qh) = 0, ∀ (ṽh, qh) ∈ Wh ×Qh. (48)

The stabilization term jũ(·, ·) is given as follows [11, 14]
jũ(ũh, ṽh) := jλ(λh, ξh) + ju(uh,vh),

ju(uh,vh) =
∑

E∈Ei

γu|E|2
∫

E

[∇uh] [∇vh] dσ, and jλ(λh, ξh) =
∑

E∈Ei

γλ|E|2
∫

E

[∇λh] [∇ξh] dσ.
(49)

The stabilization (49) is consistent and it is expected to recover the optimal order of convergence. The detailed corresponding
analysis goes beyond the goal of this note and will be reported in a separate work.

3 Numerical simulations

We investigate numerical solutions of Houška’s [7] thixo-viscoplastic material in a 4:1 curved contraction configuration. The
fully-developed flow conditions according to Houška thixotropic model are imposed at entry, Γ− , together with no-slip on
walls of reservoir, Γ.

The numerical solutions are obtained using a monolithic Newton-multigrid FEM solver. On one hand, we are using an
adaptive discrete Newton method to linearize the discrete nonlinear TVP problem, where the adaptive discrete Newton method
is based on step-length in divided difference for the Jacobian calculation. The adaptive strategy is exclusively due to the current
convergence rate of residual (for numerical tests see [6]). On other hand, the linearized systems inside outer Newton loops are
solved using a monolithic geometrical multigrid solver based on local pressure Schur complement schemes, which are simple
iterative relaxation methods solving directly on element level and performing an outer block Gauss-Seidel iteration. The local
character of this procedure together with a global defect-correction mechanism on one hand, and the choice of discontinuous
FE approximations for pressure (P disc

1 ) on the other hand, results in an efficient solver for TVP problems. For details, we refer
to [2–4].

Our emphasis is to revisit flow characteristics by not ignoring thixotropy inhabited in a material in pipelines, which is a
typical industrial application in transportation of waxy crude oils. Figure 1 illustrates the impact of breakdown parameter Mb

on the flow in the vicinity of walls. By a simple increase in breakdown parameter, we induce more breakdown layers close to
walls of downstream section.

Fig. 1: Thixo-viscoplastic flows in contractions: The structuring level of material λ for thixotropic flows in 4:1 contractions w.r.t. break-
down parameters, b, for two different values Mb = 1.0 (TOP) and Mb = 2.0 (BOTTOM), while the other parameters are set to constants
η0 = η1 = 1.0, τ0 = 0.0, Ma = 1.0,τ1 = 2.0, and k = 104.

Clearly, more breakdown layers prevent the material from resting along pipelines, which circumvent the need for extra
lubrication and highlight the restart pressure to an optimal settings.

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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6 of 6 Section 18: Numerical methods of differential equations

4 Summary

We investigated the essential part of error analysis of FEM approximations for the quasi-Newtonian modelling approach of
thixo-viscoplastic flow problems. In this regard, the standard FEM settings of Navier-Stokes equations are adapted to deal
with the new thixo-viscoplastic generalized Navier-Stokes equations. The wellposedness results beside the boundedness of the
solutions with the data are used to set a constrained monotonicity of the coupled problem, which serves beside the continuity
to elegantly elaborate the energy inequality of the best approximation.

On one hand, the energy inequality for the microstructure shows that the estimation of the error for the approximation
of microstructure in zero norm is bounded by the error of best approximation of the solution in one norm, causing the loss
of one order of convergence. On other hand, the energy inequality for velocity shows that the error estimate for velocity
approximation in one norm is bounded by the error estimate of the best approximation of the solution in one norm modulo an
extra regularity requirement which is a clear manifestation of the weak coercivity of microstructure operator in zero norm and
boundary norm only. Moreover, constants in energy inequalities are proportionally dependent on the regularization parameter.
We dealt with these coarseness, the proportional dependency of constants on the regularization parameter and the weak coer-
civity of microstructure operator, by opting for stabilized higher order FEM. The higher order FEM choice counterbalances
the regularization effect, while the stabilization enhances the coercivity to an equivalent one norm.

We analysed numerically solutions of Houška’s [7] thixo-viscoplastic material in a 4:1 curved contraction configuration
using monolithic Newton-multigrid FEM solver. We investigated the impact of thixotropy breakdown parameter Mb on
material microstructuring level λ. In fact, increasing the breakdown parameter induces more breakdown layers in vicinity
of walls of downstream channel preventing the material from rest along pipelines, which circumvents the need for extra
lubrication and puts forward the restart pressure settings issue.
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