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Abstract

The work to be presented focuses on the convection-diffusion equation, especially in the regime
of small diffusion coefficients, which is solved using a time-simultaneous multigrid algorithm closely
related to multigrid waveform relaxation. For spatial discretization we use linear finite elements, while
the time integrator is given by e.g. the Crank-Nicolson scheme. Blocking all time steps into a global
linear system of equations and rearranging the degrees of freedom leads to a space-only problem with
vector-valued unknowns for each spatial node. Then, common iterative solution techniques, such as
the GMRES method with block Jacobi preconditioning, can be used for the numerical solution of the
(spatial) problem and allow a higher degree of parallelization in space. We consider a time-simultaneous
multigrid algorithm, which exploits space-only coarsening and the solution techniques mentioned above
for smoothing purposes. By treating more time steps simultaneously, the dimension of the system of
equations increases significantly and, hence, results in a larger number of degrees of freedom per spatial
unknown. This can be used to employ parallel processes more efficiently. In numerical studies, the
iterative multigrid solution of a problem with up to thousands of blocked time steps is analyzed in 1D.
For the special case of the heat equation, it is well known that the number of iterations is bounded
above independently of the number of blocked time steps, the time step size, and the spatial resolution.
Unfortunately, convergence issues arise for the multigrid solver in convection-dominated regimes. In the
context of the standard Galerkin method if the diffusion coefficient is small compared to the grid size
and the magnitude of the velocity field, stabilization techniques are typically used to remove artificial
oscillations in the solution. However, in our setting, special higher-order variational multiscale-type
stabilization methods are discussed, which simultaneously improve the convergence behavior of the
iterative solver as well as the smoothness of the numerical solution without significantly perturbing the
accuracy.

Keywords. Convection-diffusion equations; Multigrid waveform relaxation; Variational multiscale methods
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1 Introduction
The interest in massively parallel computing has grown rapidly due to the ever-increasing number of
processors, or cores, in modern hardware architectures. To fully exploit the potential of these computers
and actually reduce the run times of applications, it is essential to develop algorithms whose computational
tasks can be performed in parallel on the different processors. More than 50 years ago, first investigations
on parallel-in-time methods for the numerical solution of time-dependent partial differential equations
were published. While initial value problems are typically solved numerically using methods that operate
sequentially in time, the new algorithms solve the problem for all time steps simultaneously, providing
increased parallelization capabilities that are otherwise limited by the spatial resolution. A general
introduction and an overview of time parallel time integration methods can be found in [Gan15; OS20]. In
this context, the Multigrid Waveform Relaxation (WRMG) method developed by Lubich and Ostermann
[LO87] is a space-time multigrid method based on waveform relaxation and belongs to the iterative
approaches among the time-parallel methods. This solution strategy is characterized by the fact that it is
applied to the evolution equation before it is discretized in time. Recently, this approach was motivated in
a different way in [Dün+21a] and referred to as a time-simultaneous multigrid method. Starting from a
sequential problem already discretized in space and time, a global system of equations is set up in which
all time steps are blocked so that it can be interpreted as a space-only problem for vector-valued unknowns.
A geometric multigrid method with block Jacobi smoothing is applied to this linear system of equations
and is designed to be highly parallelizable. While all time steps are treated simultaneously, the iterative
multigrid solver allows parallelization in space. Some theoretical convergence results already exist for
the WRMG method. For example, Janssen and Vandewalle [JV96a] proved that the asymptotic rate of
convergence of the solver is the same as in the time-stepping approach if the problem is discretized in
time using linear multistep methods. In another theoretical investigation, bounds on the spectral norm
were derived using related circular matrices [Not22]. Furthermore, a Fourier analysis was exploited to
analyze the time-simultaneous two-grid algorithm using a damped Jacobi (waveform relaxation) smoother:
In case of the one-dimensional heat equation on a uniform grid, it was shown that the spectral norm of the
iteration matrix is uniformly bounded if the one-step theta scheme is used for time integration [LDT22].

The application of many parallel-in-time methods to convection-dominated transport problems presents
difficulties with respect to the parallel efficiency of the solver. Studies on higher-order hyperbolic problems
and corresponding limitations were published in [FC03] for time-decomposed parallel time-integrators
and for parareal, e.g., in [Bal05]. Recent studies on the multigrid reduction-in-time (MGRIT) algorithm
applied to constant-wave-speed linear advection problems with an alternative coarse grid operator show fast
solver convergence for various method-of-lines discretizations and a speed up compared to the sequential
time-stepping method [De +21; De +23]. Moreover, optimized transmission conditions for the Schwarz
waveform relaxation has been studied for the scope of convection-diffusion problems in, e.g., [GH07; DT22].

Considering these convection-dominated transport problems, it is additionally well known from dis-
cretization side that the Galerkin finite element solution is polluted by spurious artifacts. To reduce these
oscillations, various stabilization techniques are proposed in the literature, e.g., see [Qua13, Sec. 12.8].
These include strongly consistent methods (such as GLS, SUPG), the introduction of artificial diffusion, or
a decentralized discretization of the convection term based on a Petrov-Galerkin approach.

The stabilization to be considered in this work is a (fully implicit) variational multiscale (VMS) type
method, which was originally proposed by [Hug95] and is adapted in [JKL06] and [Lay02]. Modification of
the variational form of the underlying problem by adding a diffusive term and removing low frequency
diffusion within the VMS context can improve the accuracy of the numerical solution compared to the one
based on an artificial diffusion stabilization. In our context, however, the stabilization technique is used not
only for accuracy reasons, but also for the improvement of the time-simultaneous multigrid solver under
consideration. The main idea for its use is to perturb the system by higher order diffusion for preservation
of the high accuracy, but better convergence behavior.

In this paper, the mentioned time-simultaneous multigrid algorithm is first investigated for the d-
dimensional convection-diffusion equation in Sec. 2. In addition to the special case of the heat equation,
our numerical studies focus on convection-dominated problems in 1D. As a second part of this work, we
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introduce a higher-order VMS-type stabilization technique and numerically study this strategy in 1D in
combination with the introduced time-simultaneous method in Sec. 3. Finally, Sec. 4 summarizes the
results and offers considerations for future research.

2 Time-simultaneous multigrid method
The algorithm to be presented in this chapter is a geometric multigrid method in space and aims to be a
highly parallelizable solution strategy to numerically solve the unsteady convection-diffusion equation. For
this purpose, all time steps are considered simultaneously for each spatial grid point, allowing parallelization
in space in a straightforward manner. We first introduce the spatial discretization of the d-dimensional
problem under consideration and then formulate the linear system of equations to be solved by the
time-simultaneous method. Afterwards, the time-simultaneous multigrid algorithm, which is highly related
to the multigrid waveform relaxation [LO87; JV96a], is introduced. In numerical studies, the performance
of the solver is analyzed in one spatial dimension to quickly obtain representative results.

2.1 Discretization
We consider the d-dimensional convection-diffusion problem: Find u : Ω × (0, T ) → R such that

∂tu(x, t) − ε∆u(x, t) + v(x, t) · ∇u(x, t) = f(x, t) (x, t) ∈ Ω × (0, T )
u(x, t) = gD(x, t) (x, t) ∈ ΓD × (0, T )
u(x, 0) = u0(x) x ∈ Ω

(1)

where T > 0 denotes the final time and Ω ⊂ Rd, d ∈ {1, 2, 3}, is the spatial domain on whose boundary ∂Ω
homogeneous Dirichlet boundary values (i.e. gD = 0) are imposed for simplicity. The velocity field and
the right hand side are given by v : Ω × (0, T ) → Rd and f : Ω × (0, T ) → R, while ε ≥ 0 is a constant
diffusion coefficient.

Let (·, ·) denote the L2(Ω)-inner product. The solution u : (0, T ) → V of the variational formulation for
(1) satisfies the initial condition u(0,x) = u0(x) ∈ V = H1(Ω) and

(∂tu, φ) + ε(∇u, ∇φ) + (v · ∇u, φ) = (f, φ) ∀φ ∈ V. (2)

Problem (2) is discretized using the subspace Vh ⊂ V of linear finite elements (FE) defined on the
triangulation Th. Then uh : (0, T ) → Vh satisfies

(∂tuh, φh) + ε(∇uh, ∇φh) + (v · ∇uh, φh) = (f, φh) ∀φh ∈ Vh, (3)

leading to the semi-discrete formulation in matrix form

Mh∂tuh(t) + εLhuh(t) +Khuh(t) = fh(t), (4)

where Mh,Lh,Kh ∈ RN×N are the mass, diffusion, and convection matrices, respectively. The discretized
right hand side is given by fh ∈ RN for N ∈ N spatial degrees of freedom. All occurring integrals are
approximated using the Trapezoidal rule. This leads to a diagonal mass matrix Mh and problem (4)
is equivalent to the well known second order finite difference (FD) discretization of (1) in case of an
equidistant triangulation in one dimension and a constant velocity field.

Discretization in time using the Crank-Nicolson (CN) scheme results in the discrete sequential form

AIu
m
h +AEu

m−1
h = fm, m = 1, ..., K

for AI := Mh + 1
2δt(εLh +Kh), AE := −Mh + 1

2δt(εLh +Kh), fm := 1
2δt

(
fm

h + fm−1
h

)
,

(5)
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where u0
h ∈ RN is a suitable approximation of u0, δt is the time step size and K ∈ N denotes the number

of time steps. The solution technique described below can be applied similarly to non-equidistant grids
and to other time stepping methods like the implicit Euler method or Runge-Kutta methods.

So far, common discretization techniques have been presented. We now use algebraic transformations
to obtain a global system matrix with a specific structure and construct the time-simultaneous multigrid
method. Considering equation (5), using um as a shorthand notation for um

h and blocking all K time steps
in a global linear system of equations results in

AI

AE AI

. . . . . .
AE AI


︸ ︷︷ ︸

∈RNK×NK


u1

u2

...
uK


︸ ︷︷ ︸

∈RNK

=


f1 −AEu

0

f2

...
fK


︸ ︷︷ ︸

∈RNK

,

Here, all degrees of freedom are sorted in a time-major ordering. The degrees of freedom are then rearranged
so that all unknowns associated with one spatial node can be blocked into a macro degree of freedom as
follows:

(u1
1, u1

2, . . . u1
N , u2

1, u2
2, . . . , u2

N , . . . , uK
1 , uK

2 , . . . , uK
N )⊤ time-major ordering

↓
u := (u1

1, u2
1 . . . , uK

1 , u1
2, u2

2, . . . , uK
2 , . . . , u1

N , u2
N , . . . , uK

N )⊤ space-major ordering

By doing the same for the system matrix as well as for the right-hand side, we obtain the following
space-only problem with vector-valued unknowns for each spatial node:

□ □

□ □
. . .

. . . . . . □
□ □


︸ ︷︷ ︸

=:S∈RNK×NK

u = f with block matrix entries

∗
∗ ∗

. . . . . .
∗ ∗

∈ RK×K (6)

The tridiagonal block structure of S stems from the sparsity pattern of matrices AI and AE of the
one-dimensional problem considered here for simplicity, while each block entry is a lower bidiagonal matrix
due to the use of the Crank-Nicolson time integrator. Obviously, this new system matrix has still the same
dimension as the system matrix before. In what follows, we present a time-simultaneous solution algorithm
for Su = f , which highly exploits the special structure of the system matrix.

2.2 Solution strategy
In this section, we apply a geometric multigrid method in space to the constructed system (6), which
is designed to be highly parallelizable on modern hardware architectures. The iterative solver allows
parallelization in space while all time steps are treated simultaneously for each spatial grid point.

In general, a multigrid solver is based on a hierarchy of mesh levels, which are used to reduce different
modes of the error. More precisely, the idea of a two-grid algorithm is to start with a fine grid, where
a smoother performs a number of smoothing steps to dampen highly oscillating error components. The
remaining smooth part of the error is then approximated on a coarser grid and used to update the solution
on the fine mesh. Performing this procedure iteratively results in a very efficient solution strategy, if the
coarse grid problem is recursively approximated using the same technique [Bra07, Sec. 5.1].

The time-simultaneous multigrid algorithm to be presented makes use of the same multigrid components,
i.e., smoothing and coarse-grid correction, but is now applied to the space-only system (6) with vector-valued
unknowns. For a more detailed description, the following sketch of the algorithm gives a brief overview of
the i-th iteration of the two-grid case, which can be extended to the multigrid case.

4



Time-simultaneous two-grid algorithm (i-th iteration).
Let x(i) ∈ RNK be a given initial guess.

1. Pre-Smoothing: x(i,1) = smoother(x(i),D, ν1)
– ν1 iterations
– preconditioner D

2. Coarse-Grid Correction:
– compute residual d = f − Sx(i,1)

– restrict residual f = Rd

– solve coarse grid problem Sx(i) = f

– solution update x(i,2) = x(i,1) + Px(i)

3. Post-Smoothing: x(i+1) = smoother(x(i,2),D, ν2)
– ν2 iterations
– preconditioner D

On the fine grid with N spatial unknowns in each time step, a smoother is applied to a given initial guess
to smooth high-frequency error components in the first place. Then the coarse grid correction is performed.
It consists of computing the residual on the fine grid, which is transferred to the coarse grid using the
restriction operator R. With N spatial nodes on this coarse level, the system matrix S ∈ RNK×NK is
discretized in the same way as S was constructed before. The coarse grid solution x(i) ∈ RNK is then
computed exactly. By prolongating this solution to the fine grid using the prolongation operator P , the
pre-smoothed solution can be corrected. Finally, some post-smoothing can be performed on the fine mesh
to again dampen highly oscillating error components. The preconditioner D involved in the definition of
the smoother should be designed to be efficiently applicable and will be discussed in what follows.

Smoothing We consider the iterative (damped) block Jacobi method

x 7→ x+ ωD−1(f − Sx)

applied to the linear system of equations (6) using a damping parameter ω ∈ (0, 1], where the block Jacobi
preconditioner is the block diagonal of the system matrix S

D :=

 □
. . .

□

 with block matrix entries

∗
∗ ∗

. . . . . .
∗ ∗︸ ︷︷ ︸

∈RK×K

.

This lower triangular matrix is invertible because the diagonal entries of this preconditioner correspond to
the ones of the matrix defined by the following Kronecker product

AI ⊗ IK = (Mh + 1
2 δt(εLh +Kh)) ⊗ IK

and do not vanish, since the diagonal entries of Mh,Lh and Kh are positive. The individual blocks of D
provide a high degree of parallelization, because they can be considered independently of each other and
only couple the (temporal) degrees of freedom associated with a single spatial node. Its lower bidiagonal
structure makes it easy to solve the resulting linear systems of equations by other appropriate direct or
iterative approaches.
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For the construction of an efficient solution strategy, the block Jacobi method is not used as a standalone
solver. Instead, it can be embedded into the multigrid algorithm as a smoother to attenuate high-frequency
error components. In combination with the benefits of a Krylov subspace method, the smoother is finally
given by the GMRES method as introduced in [SS86] exploiting the preconditioner D. Using this scheme,
ν1 and ν2 ≥ 0 pre- and post-smoothing steps are performed by the smoother.

Transfer between space-time grids Intergrid transfer operators are necessary to exploit the coarse grid
correction in the multigrid method. The idea is to use common coarsening techniques in space while the
temporal mesh stays fixed throughout the whole algorithm. The two-grid case is considered again, where h
and H = 2h are the mesh sizes of the fine level and the coarse level, respectively. To restrict the residual
from the fine grid Th to the coarse grid TH , the restriction operator

R := RH
h ⊗ IK =


1
2 1 1

2
1
2 1 1

2
. . . . . . . . .

1
2 1 1

2

 ⊗ IK

has to be applied, which is defined as the Kronecker product of the canonical restriction operator
RH

h ∈ RN×N of the FE space and the identity matrix IK ∈ RK×K . Similarly, the prolongation op-
erator P = R⊤ projects an FE solution from the coarse grid to the fine grid, by means of an interpolation
for piecewise linear functions [Bra07, Sec. 5.1].

In general, the two-grid algorithm described above can be easily transferred to a multigrid method by
recursively applying the two-grid idea to approximately solve the coarse grid problem. In this case, only
the discrete problem on the coarsest mesh has to be solved exactly. In the numerical multigrid examples
below, we mostly focus on the well known V- and F-cycle as described in [Bra07, Sec. 5.1, Sec. 5.4].

Overall, the presented time-simultaneous multigrid algorithm can be interpreted as a variant of multigrid
waveform relaxation (WRMG) as introduced in [LO87] when using the Jacobi smoother and the same
time-stepping method. This interpretation has already been discussed in [Dün+21b]. In this context, we
therefore refer to existing literature on convergence analysis of the WRMG method in [VH95; JV96b;
Not22; LDT22].

2.3 Numerical studies
We now numerically investigate the solution behavior of the time-simultaneous multigrid algorithm for the
convection-diffusion equation (1) in 1D as a representative of similar results in higher dimensions. For this
purpose, various combinations of the velocity field and the diffusion coefficient are considered, including
the special case of the heat equation for v = 0 and convection-dominated transport problems for v = 1 and
small ε. Unless otherwise specified, we consider the manufactured solution

u(x, t) = exp
(
−η( 1

2 − x + 1
4 sin( π

2 t))2)
sin(πx), (x, t) ∈ (0, 1) × (0, T ), (7)

where the parameter η = 100 characterizes the steepness of u and is chosen to keep the spatial and temporal
error in balance. The peak of the function oscillates periodically in time and follows the shape of a sine
curve, as shown for certain time instances in Fig. 1. This exact solution satisfies homogenous Dirichlet
boundary conditions while the initial data is given by

u(x, 0) = exp(−η( 1
2 − x)2) sin(πx)

coinciding with u(x, t) for t = 0, 2, 4, .... As mentioned in Section 2.1, we discretize the problem in space
using an equidistant mesh and linear finite elements with quadrature-based mass lumping, while the
Crank-Nicolson scheme with a fixed time step size δt is employed for time integration. This results in
second order accuracy in space and time. In addition, a first-order upwind discretization is considered to

6



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

u
(x

,t
)

t = 0, 2, 4, ...
t = 1, 5, ...
t = 3, 7...

Figure 1: Smooth solution (7) on Ω = (0, 1) for certain time steps.

further illustrate the impact of the findings. This discretization technique is a special Petrov-Galerkin
method and can be interpreted in the FE context as the Galerkin method supplemented by first-order
artificial diffusion [QV94, Sec. 8.2.2].

In the following studies, parameters like the number of blocked time steps K, the time increment δt
as well as the mesh size h are varied. In the context of the multigrid algorithm, the mesh size h = 2−l

describes the resolution on the fine level l. In addition to the multigrid case (MG), where the coarse level
is always chosen to be level 1, we also investigate the two-grid case (TG), using the coarse level l − 1. In
this work, the smoother is always given by the GMRES method with block Jacobi preconditioning and
performs ν1 = ν2 = 4 pre- and post-smoothing steps. We summarize the total number of iterations which
are required to reduce the norm of the residual for the initial guess x(0) = 0 by a factor of 10−8, while the
maximum number of iterations is set to 100.

2.3.1 Heat equation

First, we take a brief look at some time-simultaneous multigrid results for the special case of the one-
dimensional heat equation, which is equivalent to the partial differential equation (1) with the fixed velocity
field v = 0. As known from theory for the time-simultaneous two-grid algorithm with a damped block Jacobi
smoother, the spectral norm of the iteration matrix is uniformly bounded above by a value smaller than 1,
which is independently of the mesh size, the time step size and the number of time steps [LDT22]. In Fig.
2, we investigate the V-cycle with the preconditioned GMRES smoother, where the number of iterations
are plotted for different values of K. For a fixed ratio between the spatial and temporal resolutions, the
number of iterations is indeed bounded above for the different numbers of time steps and does not depend
on the fine mesh size. The upper bound is even independent of the time step size δt for sufficiently large
K. In this special case, the number of iterations is bounded above by a value of 5.

Therefore, we can block many time steps simultaneously without increasing the number of iterations.
The resulting linear system of equations can then be solved efficiently in parallel, due to the fact that the
application of the preconditioner provides a decomposition into N independent local systems, which are
each large enough to be solved on a single processor.

2.3.2 Convection-dominated transport problems

In what follows, we focus on the convection-diffusion equation by setting the velocity field to v = 1 and,
thus, use the Galerkin discretization for the convective part as well. Due to the one-dimensional space and
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Figure 2: Number of iterations for multigrid method using V-cycle in case of the smooth solution, v = 0,
and ε = 10−2.

the use of mass lumping, the discretized convective term corresponds to the second order central difference
operator for the first derivative in the context of finite differences. Furthermore, we also consider a lower
order discretization at this point: The following tests are additionally investigated for the convection term
discretized by the first-order upwinding technique as mentioned in [QV94, Sec. 8.2.2].
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(a) Upwind discretization of convective term.
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(b) Galerkin discretization of convective term.

Figure 3: Number of iterations for multigrid method using V-cycle in case of the smooth solution, v = 1,
and fixed h = δt = 1

128 .

Fig. 3 summarizes the multigrid results for a fixed fine level and time step size while different values
of the diffusion coefficient are investigated. For the upwind approach and ε = 10−2, it can be observed
that the number of iterations stays bounded above even for a large time interval under consideration.
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Since we study the convection-dominated case in particular, smaller values of ε are also examined. In
this case, we still find similar upper bounds for the number of iterations. Overall, these observations
show a similar behavior to the studies of the heat equation, see Section 2.3.1. However, the number of
iterations immediately reaches its maximum of 100 if we decrease the value of ε and treat more time steps
simultaneously for the Galerkin discretization of the convective term as presented in Fig. 3b.

More precisely, the time-simultaneous multigrid algorithm converges fast if the diffusion coefficient is
chosen sufficiently large. This also holds true for convection-dominated problems using ε = 10−3, 10−6

and a maximum number of blocked time steps of 16. However, in this convection-dominated regime, the
number of iterations required to solve the global linear system of equations increases significantly when
more time steps K are blocked. The same results can be observed for simultaneous two-grid approaches.

Next, we highlight the quality of the solution by focusing on the Heaviside step function as the exact
solution with periodic boundary conditions, velocity field v = 1, and diffusion coefficient ε = 0. Fig. 4
compares the exact solution at final time T = 1 with the numerical solutions obtained using either the
upwind scheme or the Galerkin discretization for the convective term. While strong oscillations can be
observed in the solution of the second order approach, the upwind scheme provides a highly diffusive
approximation.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

exact
upwind
Galerkin

Figure 4: Heaviside step function at final time T = 1 in the case of h = δt = 1
128 and corresponding

numerical solutions.

The instabilities and oscillations, which occur in case of unstabilized Galerkin finite elements, are well
known and can obviously be avoided using the upwind scheme. However, this approach is very diffusive
and only leads to first-order accuracy O(h) [JS08; QV94, Sec. 8.3]. To preserve the higher order of the
Galerkin discretization and especially improve the convergence of the solver even if a large number of
time steps is blocked, we next introduce some stabilization based on the variational multiscale method.
While accelerating the convergence of the solver is the main focus of this modification, we will observe that
oscillations in the numerical solution are also damped as a positive side effect in this work.

3 Variational multiscale stabilization
When using the Galerkin approximation of the convection-diffusion equation (1), the numerical solution
might be inaccurate and polluted by unphysical oscillations, if the diffusion coefficient ε is small compared to
the mesh size h and the magnitude of the velocity field v [QV94, Sec. 8.3]. This problem was also observed
in the numerical examples above and calls for some stabilization that attempts to reduce instabilities and
artifacts in the numerical solution. In this paper we focus on the variational multiscale (VMS) method,
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first introduced for this purpose in [Hug95], and in particular presented as a projection-based extension in
[Lay02] and [JKL06]. The stabilization technique is presented below based on the d-dimensional problem
under consideration. This is followed by an interpretation in the context of finite differences and numerical
examples to discuss the influence of the method on the accuracy of the solution and the performance of the
multigrid solver in 1D.

3.1 Definition
We again consider the d-dimensional convection-diffusion equation as presented in (1), where the velocity
field v(x, t) = v ∈ Rd and the diffusion coefficient ε > 0 are given. The VMS method under investigation
introduces an additional diffusive term and removes low frequency diffusion by means of the divergence
of a recovered gradient approximation to the variational form introduced in (3). Let (Vh)d denote a
d-dimensional vector-valued finite element subspace of (L2(Ω))d and αadd ≥ 0 be the constant stabilization
parameter to be defined later. Then the solution (uh, gh) is sought so that

(∂tuh, φh) + ε(∇uh, ∇φh) + (v · ∇uh, φh) + αadd(∇uh, ∇φh) − αadd(gh, ∇φh) = (f, φh) ∀φh ∈ Vh,

(gh − ∇uh,ψh) = 0 ∀ψh ∈ (Vh)d

is satisfied, where gh : (0, T ) → (Vh)d corresponds to the projected gradient of uh and ensures that the
introduced stabilization term vanishes in the continuous problem. In contrast to the projection-based VMS
stabilization technique as published in [Lay02] and [JKL06], the gradient is approximated using the same
FE space defined on the triangulation Th. This procedure is also considered in [Loh+17, Sec. 5].

After discretization in space, the problem in matrix form reads

Mh∂tuh(t) + εLhuh(t) +Khuh(t) + αaddLhuh(t) − αaddB
⊤
h gh(t) = fh(t),

Nhgh(t) −Bhuh(t) = 0,

where Bh ∈ RN×N is the discrete counterpart of the gradient and Nh is the mass matrix corresponding to
the vector-valued finite element space (Vh)d. We eliminate the second equation by substituting gh(t) into
the first equation. This results in the system to be solved

Mh∂tuh(t) + εLhuh(t) +Khuh(t) + αaddW huh(t) = fh(t), (8)

where the stabilization matrix W h := Lh −B⊤
hN

−1
h Bh can be explicitly determined for a diagonal mass

matrix Nh. As before, the Crank-Nicolson scheme is used as the time integrator. Then the discrete
counterpart of (8) is given by

AIu
m
h +AEu

m−1
h + δt

2 αaddW hu
m
h + δt

2 αaddW hu
m−1
h = fm, m = 1, ..., K (9)

as a straightforward extension of (5). Generally, the sparsity pattern of the stabilization matrix W h is
more dense than the one of AI and AE due to the fact that the multiplication of FE matrices is involved
in the definition of W h. Thus, stabilizing the system comes at the expense of a more complex iterative
solution strategy. We will come back to this observation when discussing the matrix structures in more
detail. Finally, in this work we treat the stabilization fully implicitly to reduce the computational effort.
This results in the final formulation of the stabilized FE discretization to (1)

AIu
m
h +AEu

m−1
h + δtαaddW hu

m
h = fm, m = 1, ..., K. (10)

In the next section, we will argue that this fully implicit treatment is reasonable and actually does not reduce
the accuracy of the numerical solution. We will then discuss the level-dependent choice of the stabilization
parameter αadd in the context of the multigrid approach and study the stabilization numerically.

3.2 Interpretation using finite differences in 1D
To explore the fully implicit treatment of W h in more detail, we first consider the time discretization of
the stabilization.

10



Time discretization In Section 2.1, we introduced the Crank-Nicolson scheme for time integration of the
original semi-discrete formulation. Since the stabilization term is treated fully implicitly, we now investigate
its effect on the order of accuracy starting from the discrete form (10), where W h is added to the unknown
of the m-th time step with time step size δt. For this purpose, we algebraically transform the problem at
hand into the following form:

AIu
m
h +AEu

m−1
h + δtαaddW hu

m
h = fm

⇔ ÂIu
m
h + ÂEu

m−1
h = fm (11)

where the matrices ÂI and ÂE are given by

ÂI := (Mh + αadd
δt
2 W h) + δt

2 (εLh +Kh + αaddW h),
ÂE := −(Mh + αadd

δt
2 W h) + δt

2 (εLh +Kh + αaddW h).

Obviously, this is nothing else than the Crank-Nicolson discretization of

(Mh + αadd
δt
2 W h)∂tuh(t) + (εLh +Kh + αaddW h)uh(t) = fh(t)

⇔ Mh∂tuh(t) + (εLh +Kh)uh(t) + αaddW h( δt
2 ∂tuh(t) + uh(t)) = fh(t), (12)

and therefore guarantees that the order of convergence of the numerical approximation is not reduced if
the semi-discrete solution to (12) converges to the exact solution of (1) with second order in space. This
derivation motivates the more general variational formulation of the VMS stabilization in the d-dimensional
case

(∂tuh, φh) + ε(∇uh, ∇φh) + (v · ∇uh, φh)
+ αadd[(∇[uh + δt

2 ∂tuh], ∇φh) − (gh, ∇φh)] = (f, φh) ∀φh ∈ Vh, (13)

(gh − ∇[uh + δt
2 ∂tuh],ψh) = 0 ∀ψh ∈ (Vh)d.

Discretization in time using the Crank-Nicolson scheme results in a fully implicit stabilization term and,
hence, reduces the numerical complexity compared to problem (9). Next, we focus on the spatial accuracy
of (12) and, for this, consider an FD interpretation of the stabilization matrix under investigation.

Space discretization Using one-dimensional linear finite elements, a uniform grid and quadrature-based
mass lumping, both mass matrices Mh and Nh correspond to a scaled identity matrix. More precisely,
the matrices under consideration are given by

Nh = Mh =


. . . . . . . . .

0 h 0
. . . . . . . . .

 , Bh = 1
2


. . . . . . . . .

−1 0 1
. . . . . . . . .


neglecting the boundary conditions, so that the second part of the stabilization matrix is given by

L̃h := B⊤
hN

−1
h Bh = − 1

4h


. . . . . . . . . . . . . . .

1 0 −2 0 1
. . . . . . . . . . . . . . .

 .

Using the definition of the tridiagonal matrix Lh as the negative of the discrete Laplacian and already
known from the diffusive part, we conclude that the stabilization matrix W h reads

W h := Lh − L̃h = − 1
h


. . . . . . . . .

1 −2 1
. . . . . . . . .

 + 1
4h


. . . . . . . . . . . . . . .

1 0 −2 0 1
. . . . . . . . . . . . . . .

 .

11



To interpret this matrix in the context of finite differences, we multiply equation (12) by M−1
h = h−1I.

This results in the FD matrices L∗
h := M−1

h Lh and L̃∗
h := M−1

h L̃h, which are equivalent to discrete
diffusion operators applied to two different mesh sizes h and 2h. In summary, the FD stabilization matrix
is pentadiagonal and represented by

W ∗
h := M−1

h W h = L∗
h − L̃∗

h = 1
(2h)2


. . . . . . . . . . . . . . .

1 −4 6 −4 1
. . . . . . . . . . . . . . .

 ∈ RN×N .

Adding this stabilization to the original problem leads to a larger bandwidth of the system matrix and
therefore increases the cost of the iterative solution strategy. The fully implicit treatment of the stabilization,
as introduced at the beginning of this section, minimizes this additional effort.

A brief look at the Taylor expansion of the two central difference quotients

L∗
huh ∼ 1

h2 ( h2uxx + Ch4uxxxx + O(h6))

L̃
∗
huh ∼ 1

4h2 (4h2uxx + 24Ch4uxxxx + O(h6))

⇒ W ∗
h := (L∗

h − L̃∗
h)uh ∼ C̃h2uxxxx + O(h4),

(14)

where C̃ := −3C, illustrates that the stabilization matrix W ∗
h corresponds to a scaled FD discretization of

uxxxx, while the factor h2 guarantees second order of accuracy in space.
The d-dimensional stabilization problem was already given at the beginning of this section in (13) where

the time discretization was considered. This problem corresponds in one dimension to the continuous case
of the modified convection-diffusion equation

∂tu − εuxx + vux + αaddC̃h2[u + δt
2 ∂tu]xxxx = f. (15)

Therefore, the stabilization is a perturbation of the continuous problem of order h2 and the solution of
(11) converges to the exact solution of (1) with second order. Although (15) is continuous in space, the
fixed factor h2 corresponds to the grid used to discretize the problem at hand. This is the main difference
to the d-dimensional form, which is not derived from an FD point of view, and is a crucial aspect in the
next section, where the choice of the stabilization parameter is discussed.

3.3 Choice of stabilization parameter
At this point, we motivate our level-dependent choice of the stabilization parameter αadd for the time-
simultaneous multigrid approach. For this purpose, we consider the situation of the multigrid algorithm,
where the mesh sizes of a fine level and some coarser level are given by h and H, respectively. The time
step size δt stays constant for all levels since coarsening is applied only in space. According to the FD
interpretation mentioned above, the stabilized one-dimensional problem corresponding to the coarse level
then reads

∂tu − εuxx + vux + αaddC̃H2[u + δt
2 ∂tu]xxxx = f (16)

and, hence, differs from the problem of the fine level given in (15), where the scaling of the stabilization
term still depends on the mesh size h of the fine level. However, the aim is to solve the same continuous
problem on each level within the multigrid algorithm, i.e., the fine grid problem (15). By the choice of
αadd = α

(
h
H

)2 in (16), this requirement is satisfied due to the fact that

∂tu − εuxx + vux + α

(
h

H

)2
C̃H2[u + δt

2 ∂tu]xxxx = f

⇔ ∂tu − εuxx + vux + αC̃h2[u + δt
2 ∂tu]xxxx = f.

(17)

12



In the special case of the fine level with mesh size h, this parameter simplifies to αadd = α, so that the
continuous problem resulting from the coarse level (16) and the fine level (15) coincide. Using some
parameters α ≥ 0, γ ≥ 0, we introduce a more general definition of the level-dependent stabilization
parameter

αadd := α

(
h

H

)γ

,

which is exploited to scale the stabilization term on the coarser level with mesh size H. While a reasonable
value for α will be evaluated in the numerical studies, one possible choice of γ was already motivated
above: According to (17) the same continuous problem is solved on each level for γ = 2. In this case,
the value of αadd decreases for a larger mesh size H so that less stabilization is added on coarser levels.
Corresponding effects can also be observed in the following numerical studies of the time-simultaneous
multigrid method. Another obvious choice resulting from the d-dimensional stabilized problem (13) without
the FD interpretation is given by γ = 0, which results in a level-independent value of αadd. The intermediate
state γ = 1 of both derivations does not guarantee to solve the same problem in the continuous, but keeps
the stabilization parameter larger on the coarser levels than with γ = 2. In the following section, we study
the stabilization technique and the choice of different stabilization parameters numerically.

3.4 Numerical studies
This section focuses on the qualitative and quantitative effects on the solution behavior of the stabilization
technique introduced above. For this purpose, the influence on the accuracy of the solution as well as the
performance of the time-simultaneous multigrid solver are investigated. As before, we again use linear finite
elements for discretization in space in 1D, while the time integrator is given by the Crank-Nicolson scheme.

3.4.1 Accuracy of the solution

Our study on the quality of the solution computed by the stabilized method consists of two parts, which
differ mainly by the smoothness of the considered exact solution. The choice of the parameter γ can be
neglected at this point because we are only interested in the fine grid solution, which is not effected by γ
due to the definition of αadd.

Heaviside step function By considering the Heaviside step function and the coefficients v = 1 as well
as ε = 0, we focus on the quality of the numerical solution as already discussed in Section 2.3.2. We
observed oscillations for the Galerkin and hence unstabilized discretization of the convective term, while
the first-order upwind scheme provided a highly diffusive result. Since the higher-order stabilization is
studied in combination with the Galerkin discretization, the corresponding solution of the unstabilized case,
polluted by artificial oscillations, is shown again in Fig. 5. Furthermore, this figure shows the numerical
approximation of the stabilized configuration at the final time T = 1. In this case, the artifacts of the
unstabilized solution are smoothed by the stabilization using α = 0.1, which seems to be an appropriate
choice, as we will see below.

Order of convergence We now come back to the smooth solution (7) introduced in the numerical studies
of the time-simultaneous algorithm in Section 2.3 and focus on the order of convergence, which was
an important aspect for the choice of the stabilization technique. In the following investigations the
convection-dominated region with ε = 10−3 and velocity field v = 1 is considered. In Table 1, we summarize
the error for the final time T = 2 in the discrete L2-norm for different values of the stabilization parameter
α. The error is reduced by a factor of 4 when the mesh size and the time step size are both halved, no
matter how the stabilization parameter is chosen. Since we consider linear finite elements in space and the
Crank-Nicolson scheme in time, this confirms the theoretical expectations with and without stabilizing the
problem.
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Figure 5: Heaviside step function at final time T = 1 in the case of h = δt = 1
128 and corresponding

numerical solution compared to stabilized discretization.

Table 1: Discrete L2-error at final time T = 2 in the case of the smooth solution, v = 1, and ε = 10−3.

h = δt α = 0 10−2 10−1 100 101

1/64 1.8 · 10−3 1.9 · 10−3 6.4 · 10−3 4.9 · 10−2 1.6 · 10−1

1/128 4.6 · 10−4 4.8 · 10−4 1.7 · 10−3 1.5 · 10−2 8.8 · 10−2

1/256 1.1 · 10−4 1.2 · 10−4 4.2 · 10−4 4.0 · 10−3 3.5 · 10−2

1/512 2.9 · 10−5 3.0 · 10−5 1.0 · 10−4 1.0 · 10−3 9.9 · 10−3

1/1024 7.2 · 10−6 7.6 · 10−6 2.6 · 10−5 2.5 · 10−4 2.5 · 10−3

So far, we did not argue how to choose the stabilization parameter. This can be now done by considering
Table 1 more precisely: First of all, we notice that the accuracy of the solution deteriorates as α increases.
For example, for α = 10−1, the numerical solution is approximately as accurate as in the case of α = 0
for two times larger time increments and mesh sizes, i.e., we lose one level of mesh refinement, which we
assume to be acceptable. Therefore, as a first observation, choosing α not too large is reasonable from
the point of view of accuracy. We will come back to this when discussing the convergence behavior of the
multigrid solver below, due to the fact that an accurate solution is an important aspect of the stabilization
method.

3.4.2 Performance of the solver

In the previous studies on the time-simultaneous method, a slow iterative convergence behavior was
observed for the convection-dominated case when the diffusion coefficient was at most ε = 10−3, the velocity
field was set to 1, and 64 or more time steps were treated simultaneously. Therefore, we now focus on
the effect of the stabilization method for this parameter setting and, especially, discuss the influence of
the stabilization parameter α. In addition to the convergence behavior of the iterative solver, which is
illustrated by the number of iterations necessary for the time-simultaneous method to solve the problem at
hand, the behavior of the error is also considered for accuracy reasons. Furthermore, we are interested in
finding criterions how to choose the stabilization parameter α: While the number of required iterations
should not grow arbitrarily for different numbers of blocked time steps K, the error is intended to be as
close as possible to the one of the Galerkin approximation for smooth solutions.
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We first focus on the two-grid solution algorithm and then discuss the influence of its multigrid extension
on the choice of the stabilization parameter.

Two-grid algorithm To illustrate how to read the subsequent figures, we explain the context of Fig.
6a in detail: The number of iterations for the two-grid algorithm for three different numbers of blocked
time steps K are shown in blue lines while the stabilization parameter α varies between 10−3 and 101.
The results for the smallest value of α = 10−3 are in good agreement with the unstabilized ones, since
the convergence behavior is very similar in both cases. This means in this case that the solver does not
converge within the maximum number of iterations. However, the solver converges significantly faster
when more stabilization is incorporated into the system. For stabilization with α = 10−1, the lines for the
different values of K meet, i.e., the algorithm converges independently of the number of time steps treated
simultaneously and requires only a few iterations (< 24) to solve the problem at hand. At the same time,
and for this α = 10−1, the errors are about (“only”) four times larger than those without stabilization,
corresponding to a loss of accuracy of one mesh level. This can be observed in the same figure, where the
discrete L2-error normalized with respect to the error for α = 10−3 is plotted in red. Again, the errors
for α = 10−3 are very close to the ones corresponding to α = 0, which do not exploit any stabilization at
all. Overall, the results presented in Fig. 6a illustrate the desired effect of stabilization with α = 10−1 on
the two-grid solver. The associated loss of accuracy seems to be acceptable if the algorithm recovers the
original quality of the solution on a finer resolution while requiring significantly less iterations.

Next, the results for a finer time step size are summarized in Fig. 6b. In this case, the convergence
behavior improves slightly for smaller values of K and without stabilization (on the left of the x-axis).
However, the remaining convergence issues can be further reduced by the stabilization, so that the choice
of α = 10−1 might still be beneficial.
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(c) h = 1
512 , δt = 1

128 .

Figure 6: Number of iterations and normalized error for two-grid method in case of the smooth solution,
v = 1, ε = 10−3, and stabilization parameter γ = 2.

Finally, the case of a finer spatial mesh is presented in Fig. 6c. We observe that a finer level improves
the convergence behavior even without stabilization. Although stabilization would not be necessary for
this configuration, the figure illustrates that stabilization does not worsen the convergence behavior.

In summary, the stabilization parameter α should not be chosen too large to achieve accurate solutions,
while small values of α might not sufficiently improve the performance of the iterative solver. In this
trade-off situation, the choice of α1 := 10−1 as an upper bound for α seems to be a good compromise, as
illustrated in Fig. 6.
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The previous results were computed using quadrature-based mass lumping, which allowed us to exploit
an FD interpretation for the analysis of the stabilization. Furthermore, the employed preconditioner D
becomes exact as δt → 0, which is not satisfied anymore when all integrals are computed exactly. In Fig. 7,
the behavior of the stabilization is shown for the discretization with the consistent mass matrix M c

h in
front of the time derivate, i.e., M c

h∂tuh(t), while mass lumping is still exploited for the computation of
Nh in (8). The number of iterations is compared for the lumped and consistent mass matrices Mh and
M c

h in Fig. 7a and Fig. 7b illustrates the corresponding discrete L2-errors. A vertical line marks the value
of α1 = 10−1, which was derived in previous investigations as an appropriate balance between accuracy
and convergence behavior in case of the lumped mass matrix. Especially, the number of iterations stayed
bounded above independently of the number of blocked time steps K. However, the replacement of the
lumped mass matrix by the consistent one further reduces the numerical effort to solve the system at hand
by a factor of 2. In this case, the number of iterations already stays bounded independently of K for a
smaller value of α. The new upper bound α2 is marked by another vertical line in the figure and indicates
that the number of iterations is still lower than the ones using the lumped mass matrix for the stabilization
parameter α1. On the other hand, the errors are approximately the same for α1 and both choices of the
mass matrix. In case of M c

h, even smaller values of α are acceptable resulting in an improved accuracy
of the numerical approximation. As a conclusion, by using the consistent mass matrix we can achieve a
similar error for α1, but with less numerical effort. On the other hand, there is the possibility to choose α
even smaller for more accurate solutions while still achieving iteration numbers that are independent of the
number of blocked time steps. Due to this observation, the following investigations are performed using
the consistent mass matrix and especially focusing on α = 10−1.
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Figure 7: Number of iterations and discrete L2-error for two-grid method in case of the smooth solution,
v = 1, ε = 10−3, stabilization parameter γ = 2, and h = δt = 1

32 . Vertical lines mark α1 = 0.1
and α2 = 0.03.

Multigrid algorithm Time-simultaneous multigrid results are shown in Fig. 8 and illustrate the number
of iterations and the normalized error behavior in the same way as in the two-grid analysis above. However,
the behavior of the discrete L2-error is slightly different, due to the use of the consistent mass matrix
instead of its lumped counterpart. The discrepancies have already been discussed in the previous section,
and remain valid here, since we are still solving the same problem (on the finest level) in both the TG
and MG approaches. Therefore, we focus mainly on the convergence behavior of the iterative solver in the
following investigations. In Figs 8a and 8c, the fine mesh size and the time step size δt coincide again. We
first focus on the MG results for γ = 2 presented in Fig. 8c, where finer resolutions are considered. From
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the TG findings, we concluded that the choice of α = 10−1 results in a good balance between accuracy
of the solution and performance of the solver. Looking at the MG results stabilized with this value of α,
we notice that the number of iterations for different values of K can still be improved compared to the
unstabilized case, but increases when more time steps are treated simultaneously. The reason for this might
be that the stabilization on a coarse grid seems not to be sufficient for uniform convergence behavior. Thus,
the stabilization parameter α has to be chosen much larger in these cases leading to a loss of accuracy
again. In Section 3.3, we already mentioned that the parameter γ = 2 implies less stabilization on coarser
levels, which occur especially in the MG case where level 1 corresponds to the coarsest mesh. To keep the
stabilization parameter αadd := α

(
h
H

)γ larger on the coarser levels while still using the same value on the
fine level, γ = 1 is additionally considered and shown in dark blue in the same figure. For this setup, there
is indeed an improvement, due to the fact that the number of iterations is again bounded for different
values of K and the stabilization parameter α = 10−1. This behavior can also be observed in Figs 8a and
8b, where a coarser mesh size and time step sizes are investigated. In summary, the stabilized MG results
are comparable to those of the two-grid algorithm, but the numbers of iterations are slightly higher.
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(c) h = δt = 1
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Figure 8: Number of iterations and normalized error for multigrid method using F-cycle in case of the
smooth solution, v = 1, ε = 10−3, and the consistent mass matrix.

These observations can also be confirmed with the help of Table 2b, which additionally contains results
for the stabilization parameter α = 10−1 and, in particular, γ = 0. In certain multigrid configurations,
especially for significantly larger values of K, the choice of γ = 0 provides convergence rates that are
uniformly bounded above, while the solver does not converge within the maximum number of iterations
for γ = 1 and γ = 2. In contrast to that, the two-grid solver provides the lowest numbers of iterations
bounded above for γ = 2. Corresponding results can be found in Table 2a.

Finally, we highlight two further scenarios. The first setup in Fig. 9a deals with difficulties that occur
when the fine mesh size is much smaller than the time step size δt. In this case, neither the choice of γ = 2
nor γ = 1 will give the desired K-independent convergence behavior for α = 10−1. Choosing a slightly
larger α would satisfy this criterion for γ = 1. However, the number of iterations are still quite large,
while the error is relatively small. Since the choice of a time step size larger than the mesh resolution is
not necessarily physically reasonable for convection-dominated problems, the practical relevance of this
consideration remains questionable. Even in the multigrid approach, the case where the spatial mesh size
is much smaller than the time step size does not arise, since coarsening is only performed in space, but
could occur for other coarsening strategies (in time). The second setup considered in Fig. 9b fixes the
final time T = 2, but increases the number of time steps K for smaller and smaller time step sizes δt. In
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Table 2: Number of iterations in case of the smooth solution, v = 1, ε = 10−6, the consistent mass matrix,
and stabilization parameter α = 10−1. A dash “-” indicates that the solver did not converge
within the maximum number of 100 iterations.

(a) Two-grid

γ = 0 γ = 1 γ = 2
K ⧹h = δt 1/32 1/128 1/512 1/32 1/128 1/512 1/32 1/128 1/512

1 4 2 2 4 2 2 3 1 2
4 6 5 4 5 4 4 4 3 3

16 10 10 6 8 7 4 5 3 3
64 20 21 8 13 11 6 6 5 3

256 28 29 21 14 13 11 6 5 4
1024 28 28 24 14 12 12 6 5 5
4096 28 26 23 14 12 12 6 5 5

16384 28 25 21 14 11 11 6 5 4

(b) Multigrid (F-cycle)

γ = 0 γ = 1 γ = 2
K ⧹h = δt 1/32 1/128 1/512 1/32 1/128 1/512 1/32 1/128 1/512

1 1 2 2 3 1 1 2 1 2
4 6 5 6 5 4 4 4 3 3

16 10 10 14 8 7 9 5 3 3
64 20 20 19 13 11 8 9 5 4

256 28 34 33 15 15 12 19 12 8
1024 28 36 45 16 15 18 32 26 23
4096 29 35 48 29 21 19 - 51 42

16384 29 34 46 - - 28 - - 55

this case, the convergence behavior for both values of γ can be improved in the same way for the different
numbers of blocked time steps. For α = 10−1, we observe the desired effect of the stabilization even in the
case of the MG algorithm, while the solver does not converge within the maximum number of iterations in
most unstabilized cases.

4 Conclusion and Outlook
The time-simultaneous multigrid algorithm and its application to the one-dimensional heat equation was
presented in the first part of this work. This investigation, as well as the performance of the solver
for the convection-diffusion equation when the diffusion parameter is sufficiently large, illustrated that
the rate of convergence is uniformly bounded above independently of the number of blocked time steps.
Since convergence issues arise for the iterative solution strategy and convection-dominated problems, we
introduced a variational multiscale-type stabilization technique of higher order, which intends to improve
the convergence behavior of the multigrid solver. The convergence behavior of the time-simultaneous
two-grid algorithm could be extremely improved when using the stabilized system. In most cases, even the
number of iterations of the multigrid algorithm are bounded above, while still leading to second order of
accuracy in space and time. To obtain those findings, the choice of the stabilization parameter is a crucial
question. An FD interpretation of the stabilization was used to derive a level-dependent parameter for
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(a) Fixed grid sizes δt > h.
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(b) Fixed final time T = 2.

Figure 10: Number of iterations for multigrid method using F-cycle in case of further setups with the
smooth solution, v = 1, ε = 10−3, and the consistent mass matrix.

which the number of iterations in the two-grid studies was small and bounded above. A similar behavior
has been found in the numerical studies of the multigrid case when more stabilization is added on the
coarser grids, which is accompanied by a neglect of the consistency of the coarse grid problem. Finally, as a
side effect, it was observed that artifacts occurring in the solutions for the standard Galerkin discretization
of convection-dominated problems can be smoothed by the stabilization.

Future investigations on the described stabilization technique and its application to the presented
multigrid algorithm include extensions to 2D and 3D problems as well as studies on the computational
efficiency of the time-simultaneous approach. To exploit even more parallelism, this time-simultaneous
multigrid algorithm could be combined with other approaches, such as parareal, MGRIT, or another
multigrid version of parareal [WT22], which would extend the method by working parallel in time. As
a forthcoming stabilization technique, it is convenient to apply the stabilization in time rather than in
space, since all time steps are treated simultaneously in a global system in this method. Overall, it is
reasonable to explore especially the multigrid case for convection-dominated problems in more detail, since
less stabilization on coarser levels does not always show the desired effect; for example, adaptive control
of the stabilization parameter or level-dependent numbers of smoothing steps might offer potential for
improvement.
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