
https://4spepublications.onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3Acc9aa81d-083d-487c-aac9-5dc17af1afbb&url=https%3A%2F%2Fwww.jmp.com%2Fen_gb%2Fevents%2Flive-webinars%2Fnon-series%2Frelevance-of-measurement-systems-analysis-2dayswebinar-10oct2023.html%3Futm_source%3Dchemanager%26utm_medium%3Dadvertisement%26utm_campaign%3Dalw7015b0000058BLhAAM&pubDoi=10.1002/ceat.202200356&viewOrigin=offlinePdf


Categorization of Sprays by Image Analysis
with Convolutional Neuronal Networks

Spray characterization has been an issue for process and product characterization
for decades. Because of this, a convolutional neuronal network was developed to
determine the droplet size from spray images. The images were taken using a digi-
tal camera, a light source, and a dark room. These were subsequently employed to
design and train a convolutional neuronal network using open-source software
packages and a desktop computer. The accuracy of the network droplet size deter-
minations was checked with additional, independent images. The median drop
size was assessed with a high accuracy of more than 99.8 % as the mean spray per-
formance indicator. Additionally, the droplet size distribution measurements from
the neural network method deviated from those from the reference method (laser
diffraction) by less than 1.5 %. Convolutional neuronal networks can be applied to
determine the spray performance using spray cone images. This approach could
be useful for multiple applications.
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1 Introduction

The atomization of liquids is one of the basic operations in
process engineering. The spray produced by a given atomizer
depends essentially on its geometry, the operating conditions,
and the material properties of the atomized liquids. The spray
properties, such as drop size or spraying angle, must fulfil spe-
cific requirements for each unique application [1].

Medical spray pumps for pharmaceutical applications are
widely used to administer drugs into the lungs, the throat or
the nose. These nebulizers are employed to deliver drug solu-
tions to the mucosa, and their performance depends on the
droplet size and velocity [2]. In pulmonary (lung) applications
the goal is droplet sizes of about 3 mm with a low droplet veloc-
ity, since larger particles are deposited in the upper airways
while smaller particles are preferentially inhaled into the alveoli
[3, 4]. Single-phase swirl nozzles (hollow-cone or full-cone noz-
zles) are commonly used in medical nebulizers, and guidelines
from the regulatory authorities are in place, which specify the
aerodynamic droplet diameter as a critical quality attribute [5].

Therefore, the droplet size and the spray-cone geometry are
frequently measured for each unit as part of process control
during the production of pharmaceutical nebulizers. However,
conventional methods like laser diffraction and phase Doppler
anemometer analysis are insufficient to keep up with the high
production rates of spray pumps at this time. Due to this fact,
new technologies for spray characterization that are both reli-
able and fast are needed.

One rather new and promising approach for droplet charac-
terization is image analysis, which has been successfully applied
in fields such as diesel sprays, emulsions, simulated rain, and

thermal coatings [6, 7]. It has been proven that common issues
such as sample preparation, errors caused by dense sprays,
non-spherical drops, or high drop velocities can be avoided [8].
Algorithms allowing precise automatic particle size measure-
ment in real time have been developed, and the automatic
counting and measuring of particles in multiphase systems has
been introduced [9].

The issue with classical image analysis is the complexity of
the evaluation algorithms, as well as the time needed to analyze
the data. These problems can be overcome using machine
learning (ML) algorithms which are, additionally, highly adapt-
able for various other applications and tasks [10]. In the litera-
ture, complex multiphase flows have been characterized with
image analysis via machine learning algorithms. Unnikishnan
et al. [11] provide a system characterizing an emulsification
process by determining drop sizes done by an ML algorithm.

Neural networks (NNs) are a subcategory of machine learn-
ing. These consist of a stack of layers, each one having various
numbers of neurons connected with the other neurons in the
previous and subsequent layer, forming a so-called full
connected layer [12]. The connections are weighted, giving the
opportunity to train the neuronal net iteratively.
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Image analysis with convolutional neuronal networks
(CNNs) has been successfully applied in fields such as facial
recognition, autonomous driving, and cancer detection
[13–15]. Based on this, CNNs should be suitable for spray char-
acterization by images. However, regular images are rather large
with respect to data size and include information unnecessary
for spray characterization. A data pretreatment is required to
reduce the data size while highlighting relevant information
(features) of the images. Therefore, additional layers are imple-
mented in CNNs designed for image handling (Fig. 1).

During convolution, the image is treated as a two-dimen-
sional matrix (input feature map) and convoluted with a sec-
ond matrix (kernel), resulting in a third matrix (output feature
map). During this linear transformation, notation and ordering
of the contributions (relevant features) are preserved. The sub-
sequent pooling step reduces the data size of the output feature
map by summarizing sub-regions, such as the maximum value
(max. pooling), as used in this application. The purpose of the
fully connected layer is to interpret the features by categorizing
them into predefined labels, such as droplet size or spray angle.
The results are mapped to a target function by the output layer,
which is an integral part of each neuronal network.

NNs must be trained to specific applications using an itera-
tive algorithm. Therefore, multiple images with known labels
(droplet size) are subsequently presented to the CNN. During
the training, the connections between the individual neurons
are weighted, and the success of the weighting process is veri-
fied by a subsequent validation. These two steps are called an
epoch, while CNNs are trained over several epochs in an itera-
tion process. Finally, the CNN can apply the learned rules to
unlabeled images and categorize those with respect to labels,
based on the features of the images used in the training. Due to
the high CPU requirement, graphic cards are often used to
accelerate the training of the CNNs [16].

The aim of this work is to develop and implement an optical
quality control system, capable of characterizing sprays with a

predefined specification. Therefore, a measuring framework for
spray images should be developed and a CNN should be estab-
lished to determine the median drop diameter of the volume
distribution. These parameters were used as an indicator of the
performance of a specific unit during the production process.
A new neuronal training is necessary as soon as the nozzle type
or the operating parameter has changed. Therefore, a CNN can
only be applied for a nozzle and experimental setup used in the
training of the CNN.

2 Material and Methods

2.1 Spray Generation

Sprays with varying droplet size distributions were generated by
a hollow-cone nozzle from a commercial nasal spray applicator.
The volume flow of demineralized water was adjusted by a gear
pump (ISM 446, Ismatec SA, Zürich, Switzerland) leading to the
desired droplet size for the creation of the image data set.

2.2 Spray Characterization

The droplet size in the spray was analyzed using laser diffrac-
tion (Spraytec STP 5921, Malvern Instruments Ltd., United
Kingdom) using the Mie theory. A lens with a focal length of
300 mm was utilized, and the laser beam of the instrument
arranged at a distance of 11 cm from the nozzle tip. The mea-
surement was performed for 30 s, during which the average
droplet size distribution from 30 distributions was evaluated.
Each determination was conducted in triplicate.

2.3 Image Acquisition

For each flow rate (droplet size), 500 images of the spray were
taken by a digital camera (Nikon Z6, Nikon Corp., Chiyoda,
Japan). The spray was illuminated by two LED spotlights
(KL 1600 LED, Schott AG, Mainz, Germany) placed behind
the aerosol relative to the camera position (Fig. 2). Images were
taken with an exposure time of 1/3200 s at a distance of 17 cm
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Figure 1. Schematic structure of a neural network for image rec-
ognition consisting of convolutional and pooling layers followed
by the fully connected neurons with adjustable weights and the
output layer.

Figure 2. Experimental setup for creation of the image data-
base. (1) Nozzle, (2) LED spotlights, (3) light cone, (4) spray cone,
(5) illuminated area of the spray cone, (6) image area.
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from the spray axis. A darkened room was used to prevent dis-
turbance from ambient light. Hence, only the illuminated spray
cone was visible on the resultant images, covering an area of
about 15 ·10 cm (6048 ·4024 pixel). This illumination tech-
nique enabled short exposure times so that some single drops
were visible on the spray images. Changes in the image acquisi-
tion like the illumination, distance, or the resolution require a
new training of the CNN.

2.4 Image Evaluation

The images were converted to grayscale, and the image size
was reduced by a factor of 10 to diminish computing effort.
The CNN for spray categorization was trained to return the
median droplet size referenced by the laser diffraction mea-
surements. CNNs were built using the CPU version of Tensor-
Flow version 1.13.1 (Google LLC, Mountain View, CA) and
Keras version 2.2.4 on a desktop computer. The CNN designed
consisted of nine layers: three convolutional and three pooling
layers, two dense layers, and one output layer. The output layer
consisted of five neurons, each of which represented one drop-
let size fraction category. Each of those neurons returned a
probability based on a single image evaluation that the median
droplet size was in the size category corresponding to that neu-
ron. The category with the highest probability was defined as
median droplet size determined by image analysis via CNN.

Further investigation dealt with the determination of the
droplet size distribution. Therefore, the output layer of the
CNN was changed by replacing the five individual output neu-
rons with five parallel output layers consisting of five neurons
each. This led to five independent probability distributions for
each individual category. The probabilities represented the
weight fraction of the droplets in each size class (category). A
new neuronal training is necessary as soon as the nozzle type
or the operating parameter has changed. Therefore, a CNN can
only be applied for a nozzle and experimental setup used in the
training of the CNN.

3 Results and Discussion

3.1 Determination of Median Droplet Diameter

Initial investigations dealt with the categorization of the
volume-based median droplet diameter (d50,3)1), based on spray
images using CNNs. Therefore, five
different sprays were generated by
varying the volume flow while uti-
lizing the same hollow-cone nozzle
(Tab. 1). The flow rate was tuned
such that a 20-mm difference in
median droplet size was observed
in the laser diffraction measure-
ment of the previous spray. The
droplet size distribution was mea-

sured via laser diffraction for each obtained spray, and the
median droplet diameter (d50,3) was determined (Tab. 1).
Simultaneously, images of the spray cones were acquired using
a digital camera, so data sets of 2500 images (500 repetitions of
five different spray conditions) were generated. Each image was
labeled with a corresponding category depending on a given
d50,3 value, as determined by laser diffraction.

Three representative raw images are given in Fig. 3, corre-
sponding to a small (left), intermediate (center), and large
(right) droplet size. The hollow-cone nozzle is positioned on
the right-hand side of each image, while the spray direction is
towards the left. Visual differences in the spray pattern can be
recognized, and additionally, the spray angle is changing from
the left to the right. These differences are used by the CNN for
spray categorization.

This data set was split into an 80 % training set used to adjust
the CNN to the measuring task and 20 % test set used for per-
formance evaluation (Fig. 4). Furthermore, the training set was
divided into data used for weighting the neurons (70 %) and
validating the training success (30 %).

During the training of a CNN, the weights of the individual
neurons are adjusted iteratively by a software algorithm until
the predicted value (droplet size from CNN) and the reference
value or ‘‘label’’ (droplet size from laser diffraction) converge.
The deviation between the expected outcome and the outcome
predicted by the CNN was quantified by the loss function, with
yi as the expected outcome, and ŷi representing the predicted
value for class i out of n classes. yi and ŷi are vectors of predic-
tions containing probabilities for each class. They need to sum
up to 1.
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Table 1. Parameters of spray generation: desired median drop-
let diameter (d50,3 desired), volume flow rate ( _V ) used to adjust
the spray properties, and measured median droplet diameter
(d50,3 measured).

d50,3 desired [mm] _V [mL min–1] d50,3 measured [mm]

80–100 34 85.8 ± 1.2

100–120 21 105.1 ± 1.8

120–140 18 132.0 ± 6.3

140–160 17 148.0 ± 6.3

160–180 14 167.0 ± 5.1

a) b) c)

Figure 3. Representative raw images of small (d50,3 = 86mm (a)), intermediate (d50,3 = 132mm (b)),
and large droplet size (d50,3 = 167mm (c)).

–
1) List of symbols at the end of the paper.
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Different loss functions for various applications are com-
monly used and the most appropriate for image classification
tasks is the so-called cross entropy (CE) loss function [17]. For
the calculation of the cross-entropy, the label vectors yi were
multiplied with the logarithm of the outcome ŷi produced by
the model for each of the classes and summed up. Given that n
is the number of classes, the formula for the calculation of the
loss for one predicted value is as follows:

CE lossð Þ ¼ �
Xn

i¼1

yi ln ŷi

� �
(1)

After the weight adjustment, each training includes a valida-
tion. This gives some insight into how the CNN handles new da-
ta, but is also used to terminate training iterations. Based on this,
overfitting of the CNN is avoided, leading to time-saving and
higher predictive power [17]. The epochs (training iterations) of
adjusting the weights and validating the success are repeated sev-
eral times while training a CNN to a particular measuring task.
Besides the loss value, the CNN process of learning is character-
ized by its accuracy. The accuracy (Eq. (2)) is determined from
the validation data set, data that has not been used for weighting.
The images were employed to evaluate the categorization accu-
racy (AC), defined as the number of the correctly predicted
values Ncorrect over the total number of predictions made Ntotal.

AC ¼ Ncorrect

Ntotal
(2)

The CNN was trained over ten epochs using randomly cho-
sen initial weights [18] for five times under various start condi-
tions, and similar results were obtained. The individual train-
ings are summarized in terms of the loss and accuracy function
values of the epoch (Fig. 5). The loss characterizes the differ-

ence between the predicted value of the CNN and the value of
the reference method. Low loss values indicate a good level of
agreement between both categorization methods. Therefore,
the loss value decreases with increasing number of epochs. The
accuracy, on the other hand, is the fraction of the correctly pre-
dicted values of the CNN with respect to the reference method.
Values of 1 are desired, and a value of 1 is approached by
increasing the number of epochs.

Considering loss and accuracy, Fig. 5 can be used to identify
the required number of training steps (epochs) to reach a given
predictive power. However, too many epochs might lead to
overfitting, making the CNN less flexible for interpreting new
data. In this particular case of spray characterization, two to
three epochs for five individual training runs with random ini-
tialization led to reasonable results (accuracy of the validation
set > 0.998 ± 0.000, n = 5) and were performed in 3 h on a desk-
top computer.

Even though the loss and the accuracy indicated adequate
performance of the CNN, further investigations were per-
formed to identify the regions in the spray that contributed
most to the spray categorization. This plausibility check is
necessary to identify systematic artefacts, such as illumination
issues. Therefore, for each image in the validation set, heat
maps were created based on the algorithm of Selvaraju et al.
[19]. The heat maps indicate the relevance of certain parts of
the spray image for correlation with the mean droplet diameter
(Fig. 6). The heat map was super-imposed on the spray image
(Fig. 3) for easy interpretation.

Chem. Eng. Technol. 2023, 46, No. 2, 264–269 ª 2022 The Authors. Chemical Engineering & Technology published by Wiley-VCH GmbH www.cet-journal.com

Figure 4. Division of the data set (unity of all images) into var-
ious subpopulations for weighting, validation, and evaluation
(test set) purposes.

Figure 5. Performance evolution of the CNN with respect to
epochs (training iterations) for categorizing the different med-
ian droplet size categories. This is a representative graph of five
independent trainings.

1 cm1 cm 1 cma) b) c)

Figure 6. Representative heat map for first CNN of small (d50,3 = 86 mm (a)), intermediate (d50,3 = 132mm (b)), and large droplet size
(d50,3 = 167 mm (c)). Red indicates relevant and blue less relevant regions in the image for CNN training.
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In the heat map, some relevant areas are close to the nozzle
orifice, which might be related to the deviation in the spray
angle. Moreover, there is also a relevant region on the left-hand
side of the image, about 100–150 mm from the orifice (Fig. 6,
red box). In this region distinctive droplet clusters can be iden-
tified visually, which are reasonably believed to affect the cate-
gorization with respect to size.

Based on the evaluation of the heat maps, the region in the
red square seems to be most relevant for the determination of
the median droplet size. Therefore, a second CNN was trained
to this subsection of the images using the original dataset.

Comparing the training results between the CNN from the
entire picture (Fig. 5) and the subsections, much higher loss
values (0.0392 ± 0.053, n = 5) and much lower accuracies
(0.987 ± 0.017 s, n = 5) were found when using the subsections
for training. These parameters also converge within six epochs,
but the quality of the prediction is remarkably less. This might
be related to the much lower quantity of information within
the subsections. However, the second CNN may be advanta-
geous in applications such as spray drying and spray coating
processes where obtaining images in the vicinity of the nozzle
is not feasible. In terms of nebulizer characterization, the use of
the image subsections had limitations, because the predictive
power of the CNNs based on the smaller subsets was less
robust. Therefore, the first CNN was used subsequently.

The ultimate challenge for each NN is the interpretation of
foreign data (test set, Fig. 4) that has not been used for training
(weighting and validation). Therefore, 500 images were catego-
rized by the first CNN and the results were compared to the
image labels obtained by laser diffraction. All images were cate-
gorized correctly in accordance with the label, giving an accu-
racy of more than 99.8 %. This test was performed five times
using different trainings, and all images were categorized cor-
rectly.

3.2 Determination of Droplet Size Distribution

Since the investigations discussed in Sect. 3.1 demonstrated
that sprays can be categorized to a median droplet size from
images using CNNs, further investigations were conducted to
determine droplet size distributions using CNNs. Therefore,
the network architecture was changed from one to five output

layers, with each layer indicating an independent size fraction.
For the CNN training procedure, droplet size distributions
obtained by laser diffraction were utilized for image labeling. In
contrast to previous investigations, the size distribution was
used, rather than the median value only.

A new CNN was trained to the previous data set using the
five different flow rates for the different spray characteristics
given in Tab. 1. However, the categories in the output layer
were adjusted to account for the width of the droplet size distri-
bution. The bin sizes are shown on the abscissas in Fig. 7. The
net was trained to five different sprays. However, only the
smallest, intermediate, and largest median droplet diameters
are depicted. The error bars are the standard deviations of the
measurement repetitions for laser diffraction (n = 20) and
CNN determination (n = 100).

The measurements of the reference method (laser diffrac-
tion) indicate a reliable spray formation and spray determina-
tion since the standard deviation of repeated measurements is
low. The droplet size distribution categorized by CNN is com-
parable to those of the reference measurement since no rele-
vant differences were seen between the methods. It was also
observed that the droplet size produced by the nebulizer corre-
sponded to the volume flow. A small droplet size corresponded
to a high volume flow, and a large droplet size corresponded to
a low volume flow. This observation is consistent with the liter-
ature [20, 21].

When comparing both techniques, laser diffraction can be
seen as the gold standard in droplet size evaluation. However,
the measuring equipment is delicate, expensive, and usually
meant for a lab environment rather than for harsh production
conditions. Appropriate sample preparation is the key for a
meaningful measurement. Image analysis using CNN is a new
technique that is rapidly emerging in many applications in our
daily life, ranging from traffic signs to face detection. The
equipment is cheap, i.e., single-board computers such as the
Raspberry Pi and Jetson nano can be obtained for less than
€100 including the digital camera. However, there is more
effort required to establish a new measuring task for these
systems, because the CNNs must be created. Slight changes in
data acquisition can alter the quality of the results. Therefore,
constant validation is needed, but no sample preparation is
required. Additionally, the cameras can be implemented into
many manufacturing processes such as spray drying and spray

Chem. Eng. Technol. 2023, 46, No. 2, 264–269 ª 2022 The Authors. Chemical Engineering & Technology published by Wiley-VCH GmbH www.cet-journal.com

a) b) c)

Figure 7. Representative droplet size distributions obtained by laser diffraction measurements (reference, av±s, n = 20) and CNN deter-
mination (av± s, n = 100) corresponding to small (d50,3 = 86mm (a)), intermediate (d50,3 = 132mm (b)), and large (d50,3 = 167mm (c)) med-
ian droplet size.
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coating. Real time data can also be acquired, enabling feed
forward and feed backward control strategies based on high
sampling rates.

Overall, image analysis by CNN is a versatile and powerful
technique and comparable to laser diffraction with respect to
the results. However, it is more suited for an in-line production
environment for process or product control applications, rather
than as lab equipment for droplet size categorization of differ-
ent samples.

4 Conclusion

A method of spray categorization from images using CNNs
was introduced. Open-source software and a desktop computer
were utilized. Laser light diffraction served as the reference
method while different sprays were formed using various flow
rates and a commercial hollow-cone nozzle.

Initial experiments dealt with the determination of the me-
dian droplet size. Therefore, an automated iterative training
was performed using 2000 spray images and corresponding
laser diffraction data, which took several hours. The trained
CNN was then applied to categorize the median droplet size in
500 images that had not been used for training, and all images
were predicted correctly.

Further investigation dealt with the determination of the
droplet size distribution, which required a new CNN architec-
ture as well as an additional screening. The droplet size distri-
butions of 100 images were also categorized correctly, while no
relevant differences to the reference measurement were found.

Image analysis using CNNs is a promising approach for
spray characterization, as it requires no sample preparation, is
fast, and has in-line capabilities.
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