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Switching the Magnetization in Quantum Antiferromagnets
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The orientation of the order parameter of quantum magnets can be used to store information in a dense
and efficient way. Switching this order parameter corresponds to writing data. To understand how this
can be done, we study a precessional reorientation of the sublattice magnetization in an (an)isotropic
quantum antiferromagnet induced by an applied magnetic field. For this intriguing nonequilibrium issue,
we introduce a description including the leading quantum and thermal fluctuations, namely time-dependent
Schwinger boson mean-field theory, because this theory allows us to describe both ordered phases and the
phases in between them, as is crucial for switching. An activation energy has to be overcome, requiring
a minimum applied field ht that is given essentially by the spin gap. It can be reduced significantly for
temperatures approaching the Néel temperature, facilitating switching. The time required for switching
diverges when the field approaches ht, which is the signature of an inertia in the magnetization dynamics.
The temporal evolution of the magnetization and of the energy reveals signs of dephasing. The switched
state has lost a part of its coherence because the magnetic modes do not evolve in phase.
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I. INTRODUCTION

Spintronics aims at exploiting the additional degree of
freedom represented by the electron spin. In the early days
of this very active field quantum antiferromagnets did not
play a big role, seemingly corroborating Néel’s famous
quote “They are extremely interesting from the theoreti-
cal viewpoint, but do not seem to have any applications.”
[1]. Indeed, ferromagnets have an advantage in their ease
of measurement and manipulation [2].

Contrary, however, to Néel’s view, the focus of spin-
tronic research in experiment and theory shifted towards
antiferromagnets in the last years, as they have many
advantages over ferromagnets [3]. Ferromagnetic domains,
for instance, exhibit stray fields, which affect neighboring
domains. This is detrimental for data storage and switch-
ing because adjacent bits influence one another. Since the
stray-field interactions become the stronger the closer the
bits are packed, the maximum density of bits is limited.
But the era of big data and digitalization requires more
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and more storage capacity in smaller and smaller physi-
cal space [4,5]. Loth et al. [6] demonstrated in 2012 that
it is possible to substantially reduce the distance between
antiferromagnetic bits compared to ferromagnetic bits due
to the absence of stray fields.

Another significant advantage of antiferromagnets is
that their eigenfrequencies are in the terahertz range while
the ferromagnetic ones lie in the gigahertz range [7,8].
Thus one may expect that the typical times for manipula-
tions are also shorter by a factor 1000 than in ferromagnets.
These and other advantageous properties are the reason
why measurement and control of antiferromagnets have
become one of the most important fields of research in
spintronics over the past decade [9].

There are various methods to read out the direction
of the Néel vector of an antiferromagnet, even though it
has no macroscopic magnetization. One way is by elec-
trical measurements of the magnetoresistance [10,11], but
there are also approaches based on optical means [12]. The
manipulation of antiferromagnetic order has also been real-
ized by various techniques [13–15]. In 2016, for instance,
based on the theoretical predictions of Železný et al. [16],
Wadley et al. [17] succeeded in switching the Néel vec-
tor of the antiferromagnet CuMnAs using current-induced
internal fields.

In this work, we present a microscopic description of a
two-dimensional anisotropic quantum antiferromagnet in
and out of equilibrium based on spin-wave theory that
captures the leading quantum and thermal fluctuations.
Comparing the results with the numbers provided by more
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elaborate methods we estimate that they are correct within
30%. Thus, they provide a means to corroborate qualitative
expectations by quantitative calculations although they are
not yet highly precise.

Our main goal is to describe precessional switching of
the sublattice magnetization by external magnetic fields.
In our approach not only the magnetization at the zero and
at the staggering wave vector is tracked, but all magnonic
modes at all wave vectors. This includes the effects of
dephasing, i.e., the fact that the modes evolve with dif-
ferent frequencies. This allows us to describe interference
effects faithfully. Moreover, a description based on the ele-
mentary magnons also allows us to capture the influence
of finite temperature, at least on the mean-field level. We
emphasize that, to our knowledge, so far the theoretical
approaches were based on the two vectors of the average
magnetizations on the two sublattices; see the references
above. Thus, our work reports conceptional and method-
ological progress apt to improve our understanding of the
switching dynamics in quantum antiferromagnets.

Of course, spin-wave theory is a standard tool [18]. But
the most common representations proposed by Holstein
and Primakoff [19] or by Dyson and Maleev [20,21] start
from a particular ordered state. The magnons describe only
small deviations from one of the Néel states. In view of
the goal to capture switching the magnetization from up-
down on the two sublattices to down-up or vice versa, this
is insufficient because the switching process includes the
two antagonal Néel states. Starting from one of them and
reaching its antipole implies far more than a small devia-
tion. Hence, a suitable bosonic representation is required
for which we use Schwinger bosons [18,22–25].

This representation does not use long-range order in
a Néel state as the reference state, so it can describe
even the disordered state. This also holds in ferromag-
nets [18,23,26,27]. Thus, even on the mean-field level,
Schwinger bosons can capture large deviations from one
of the ground states. We are aware that Schwinger boson
mean-field theory may display pathologies in the form of
spurious first-order transitions. But these are not likely
in unfrustrated low-dimensional systems [28]. We use
Schwinger bosons to describe the isotropic and anisotropic
systems at equilibrium initially. Then, we demonstrate how
this representation can be used to simulate the switching
of the sublattice magnetization by means of an external
magnetic field. We analyze how the system changes after
the rotation and how the anisotropy and finite-temperature
influence the switching. Thereby our study provides a basis
for further theoretical investigations regarding the full con-
trol of quantum antiferromagnets, which in turn is expected
to guide further experimental investigations.

The article is set up as follows. Section II introduces the
model and its bosonic representation by Schwinger bosons.
Then, Sec. III briefly recalls the corresponding mean-field
theory in equilibrium for the isotropic and the anisotropic

Heisenberg antiferromagnets. Subsequently, we derive the
equations of motion describing the dynamics in applied
magnetic fields that induce precessional motion in Sec. IV.
Finally, we summarize our results in Sec. V.

II. HEISENBERG MODEL AND ITS SCHWINGER
BOSON REPRESENTATION

A. Heisenberg model and its Hamilton operator

We consider here the (an)isotropic Heisenberg model
on a square lattice for a quantum antiferromagnet with
localized spins S = 1/2. Its Hamilton operator reads

H =
∑

〈i, j 〉
{Jxy(Sx

i Sx
j + Sy

i Sy
j ) + JzSz

i Sz
j }, (1)

where i and j label sites of the underlying lattice, the sum
runs over pairs of nearest neighbors counting each pair
only once. Operators Sα

i are the usual operators of the spin
component α at site i; couplings Jz and Jxy are both anti-
ferromagnetic, i.e., positive. We focus here on S = 1/2
because this case implies the largest quantum fluctuations.
In order to have an ordered phase at finite temperature, we
consider the easy-axis model, taking Jz = J as the energy
unit and defining the ratio χ = Jxy/Jz ∈ [0, 1] so that the
Hamiltonian can be rewritten as

H = J
∑

〈i, j 〉
χ(Sx

i Sx
j + Sy

i Sy
j ) + Sz

i Sz
j

= J
∑

〈i, j 〉

{χ

2
(S+

i S−
j + S−

i S+
j ) + Sz

i Sz
j

}
, (2)

where the spin ladder operators are used in the last step.
We stress that the approach advocated below allows us to
deal with larger spins and any form of spin anisotropy, for
instance single-ion anisotropy as well.

For finite anisotropy χ < 1, the magnons display a finite
energy gap �(χ) > 0. In turn, the spin-spin correlation
length ξ becomes finite following the estimate

ξ(χ) = v

�(χ)
, (3)

where v is the spin-wave velocity. Below, we perform
a calculation for finite clusters with linear dimension L.
These will reflect the thermodynamic, infinite-size results
whenever L � ξ holds.

A uniform magnetic field can be included by adding the
term

Huni = −h ·
∑

i

Si, (4)
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while an alternating (staggered) magnetic field is
accounted for by adding

Halt = −halt ·
∑

i

(−1)iSi. (5)

The length of vector h is given as usual by gμBB. In this
article, the alternating field is applied along the z axis and
the uniform field along the y axis.

B. Schwinger boson representation

Introduced by Schwinger in 1952 [22], this represen-
tation uses two boson flavors a(†)

i and b(†)

i at site i to
transform the spin operators as

S+
i = a†

i bi, (6a)

S−
i = b†

i ai, (6b)

Sz
i = 1

2 (a†
i ai − b†

i bi), (6c)

so that the spin commutation relations are reproduced. In
contrast to the Holstein-Primakoff [19] and Dyson-Maleev
bosons [20,21], both flavors of Schwinger bosons act on
any lattice site and are not restricted to one sublattice. The
physical meaning of the bosons can be explained best by
taking a closer look at the expectation value

〈Sz
i 〉 = 1

2 (〈a†
i ai〉 − 〈b†

i bi〉). (7)

This corresponds to the difference between the mean occu-
pation of the a bosons and b bosons at lattice site i. The
expectation value 〈Sz

i 〉 is maximized if there are only a
bosons at that lattice site and it is minimized if there are
only b bosons. Expectation values lying between these two
extremes are obtained by a mixture or a superposition of
the two boson flavors. Given the finite value of the spin
length S, it is obvious that the number of bosons per lat-
tice site cannot be arbitrary since the expectation value of
a spin along one axis can never be larger than S: |〈Sz

i 〉| ≤ S.
To guarantee that only the physical subspace is considered,
S2

i = S(S + 1) must hold. This condition is equivalent to a
local constraint on the number of bosons per lattice site,
namely,

a†
i ai + b†

i bi = 2S for all i ∈ N ≤ N . (8)

In the mean-field approach, we refrain from fulfilling this
constraint at each site. Instead, we include the constraint
in the Hamiltonian as a Lagrange multiplier to ensure Eq.
(8) on average. By creating a boson of one flavor and anni-
hilating a boson of the other flavor, the ladder operators
S± in Eqs. (6a) and (6b) realize transitions between the
eigenstates of different magnetic quantum numbers.

Using the Schwinger representation (6), the anisotropic
antiferromagnetic Hamiltonian (2) reads

H = J
∑

〈i, j 〉

{
χ

2
(a†

i bib
†
j aj + a†

j bj b†
i ai)

+ 1
4
(a†

i ai − b†
i bi)(a

†
j aj − b†

j bj )

}

= J
∑

〈i, j 〉

{
χ

2
(a†

i bib
†
j aj + a†

j bj b†
i ai)

+ 1
4
(a†

i aia
†
j aj − a†

i aib
†
j bj − b†

i bia
†
j aj + b†

i bib
†
j bj )

}
.

(9)

The model can be extended to M flavors of the Schwinger
bosons allowing for an SU(M ) symmetry [18,29,30]. In
this work, however, we stick to two boson flavors a
and b since we deal with spin Hamiltonians with SU(2)
symmetry.

III. MEAN-FIELD THEORY OF THE
EQUILIBRIUM

Here we briefly review the equilibrium solutions for
the isotropic and the anisotropic cases for two reasons:
(i) to introduce the notation and (ii) to provide the initial
conditions for the magnetization switching considered in
the following section. Some noticeable subtleties of the
Schwinger boson description are given in the appendices.

A. Spin isotropic case

By setting χ = 1, the isotropic Schwinger Hamiltonian
is obtained from Eq. (9):

H =
∑

〈i, j 〉

{
1
2
(a†

i bib
†
j aj + a†

j bj b†
i ai)

+ 1
4
(a†

i aia
†
j aj − a†

i aib
†
j bj − b†

i bia
†
j aj + b†

i bib
†
j bj )

}
.

(10)

We use the coupling constant J as the energy unit so
that we can set it to unity. Defining the antiferromagnetic
bond operator Aij := aibj − biaj , the Hamiltonian can be
rewritten as

H = −1
2

∑

〈i, j 〉
(A†

ij Aij − 2S2), (11)

where constraint (8) was used. It is useful to rotate one
sublattice by 180◦ about the y axis to obtain a uniform
description of all lattice sites with full translational invari-
ance. Note that this trick makes the Hamiltonian and the
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antiferromagnetic phases translational invariant, facilitat-
ing their theoretical treatment. The precessional rotation
studies below will be induced by an external magnetic
field along the y axis that does not destroy the transla-
tion symmetry either. When rotating around the Sy axis,
the x and z components of the spin operators change their
signs. Consequently, in terms of Schwinger bosons, the
substitution

aj → −bj , bj → aj (12)

is applied to one sublattice. The bond operator now reads

Aij = aiaj + bibj , (13)

while the representation of Hamiltonian (11) remains unal-
tered. Defining the expectation value

A := 〈Aij 〉 = 〈A†
ij 〉 (14)

and replacing the quadrilinear terms by the terms with one
or two contractions according to Wick’s theorem, Hamil-
tonian (11) is converted to the mean-field Hamiltonian

H = EMF + λ
∑

i

(a†
i ai + b†

i bi)

− 1
2

A
∑

〈i, j 〉
(aiaj + bibj + H.c.) (15)

with the mean-field energy EMF := N (A2 + 2S2). Further-
more, to ensure that constraint (8) is always fulfilled on
average, an additional sum with the Lagrange multiplier λ

is added. The self-consistent diagonalization of this mean-
field Hamiltonian is recalled in Appendix A in some detail
for the sake of completeness.

B. Spin anisotropic case

This case is more involved since the equations are less
symmetric, which requires accounting for additional mean
fields; see, for instance, Ref. [31]. Conceptually, how-
ever, there is an explicit difference in the anisotropic case
between the two bosons so that no infinitesimal fields are
needed to capture the long-range order.

By using constraint (8), the anisotropic Hamiltonian of
the antiferromagnetic spin lattice (9) can be written as

H = −1
4

∑

〈i, j 〉
{(1 + χ)A†

ij Aij + (1 − χ)B†
ij Bij − 4S2}

(16)

with bond operators Aij := aiaj + bibj and Bij := aiaj −
bibj . As before, one sublattice has been rotated by 180◦
using substitution (12) so that all spins point in the same

direction in the ordered phase, achieving a fully transla-
tional invariant description. The mean-field Hamiltonian is
obtained by applying Wick’s theorem, neglecting quadri-
linear normal-ordered terms:

H = EMF + λ
∑

i

(a†
i ai + b†

i bi)

− 1
4

∑

〈i, j 〉
{A(1 + χ)(aiaj + bibj + H.c.)

+ B(1 − χ)(aiaj − bibj + H.c.)} (17)

with EMF := 1
2 N {A2(1 + χ) + B2(1 − χ) + 4S2} and the

expectation values A := 〈Aij 〉 = 〈A†
ij 〉 and B := 〈Bij 〉 =

〈B†
ij 〉. For later use, we introduce the combinations

C± := (A(1 + χ) ∓ B(1 − χ)). (18)

Furthermore, a boson number term with the Lagrange mul-
tiplier λ is added to ensure that constraint (8) is also
satisfied in the anisotropic case on average. With vanishing
anisotropy χ → 1, this Hamiltonian corresponds to that of
the isotropic system (15).

Figure 1 depicts the spin gap and compares it with
recently published data obtained by a different advanced
semianalytical approach using continuous similarity trans-
formations (CSTs) [32]. The latter can be considered to
be exact within line width. Good agreement is obtained
if the CST data are rescaled by the factor 1.3. In view of
the simplicity of the mean-field approach, this agreement
is quite good. In particular, mean-field and CST results
are consistent with a square root behavior, � ∝ (1 − χ2)μ,
even though fitting indicates slightly larger exponents, μ ≈
0.54. This finding supports evidence that the mean-field
approximation provides quantitative results within 30%.

In order to determine the magnetization, we rewrite Eq.
(7) in terms of the α and β particles and explicitly obtain

m0 = λ

4N

∑

k

[
coth(βω−

k /2)

ω−
k

− coth(βω+
k /2)

ω+
k

]
. (19)

Its evaluation at T = 0 is given in Appendix A 2, yielding

m0 = S + 1
2

− 1
8π2

∫

BZ
dk2 C−√

C2− − C2+γ 2
k

. (20)

The resulting data are also given in Appendix A 2.

C. Finite temperature

Here we turn to the effect of finite temperature. We
are not interested in the phase without order occurring
at high temperatures above the Néel temperature TN . In
the ordered phase, a difference between the dispersion of
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Δ
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ln(1 − χ2)
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0

ln
(Δ

/J
)

Δ
Δfit,1

Δfit,2

CST

FIG. 1. The spin gap � plotted as a function of the anisotropy
χ . The red solid curve shows the Schwinger boson mean-field
data while the dashed curves are fits: �fit,i = ci(1 − χ2)

μ
i with

c1 = (2.04 ± 0.06)J , μ1 = 0.54 ± 0.02 (blue curve) and with
c2 = (1.88 ± 0.06)J , μ2 = 1/2 (orange curve). The black sym-
bols represent gap values obtained by CST [32] rescaled by the
factor 1.3.

the α boson and the β boson persists. In contrast, how-
ever, to zero temperature no condensation of either boson
occurs. Both bosons become gapped at finite temperature.
Note that this does not imply that there is no longer a
finite sublattice magnetization m0 because the anisotropy
ensures that m0 �= 0 is also possible up to some finite Néel
temperature.

For simplicity and for later use, we consider a finite
mesh of the Brillouin zone on which we evaluate the
expectation values required to determine A, B, and the
Lagrange parameter λ self-consistently; see also Sec. IV.
This is done for systems with linear extension up to
L = 200 at finite temperature and up to L = 500 at zero
temperature so that finite-size effects are very small and
negligible. In order to find the self-consistent solution of
the ordered phase in practical implementations, one must
start from initial guesses for the parameters that allow for
a difference between the α and the β bosons. This means
that one has to start with some finite B > 0.

Figure 19 in Appendix A 2 illustrates the resulting dis-
persions ω−

k of the α boson and ω+
k of the β boson. As

stated before, both are gapped. But, for positive m0, the
dispersion ω−

k is still lower than the dispersion ω+
k so that

more a bosons are present than b bosons. We define the
gaps

�± := ω±
k=0, (21a)

� := �+−�−. (21b)

0.0

0.3

0.6

0.9

1.2

Δ
± /

J

(a)

TN

χ = 0.8
χ = 0.85

χ = 0.9
χ = 0.95

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
T/J

0.0

0.3

0.6

0.9

1.2

Δ
/J

(b)

χ = 0.8
χ = 0.85

χ = 0.9
χ = 0.95

FIG. 2. (a) Auxiliary gaps �± as a function of temperature for
various anisotropies χ . Gap �+ shown with solid lines refers to
β bosons; gap �− shown with dashed lines refers to α bosons.
The two gaps merge at the Néel temperature TN indicated by
short vertical black lines. (b) Effective physical gap � according
to Eq. (21b).

The gaps �± are auxiliary quantities without direct phys-
ical meaning because the physical spin excitations always
imply an action on two bosons. In particular, the annihila-
tion of an α boson and the creation of a β boson represents
a spin flip down for S = 1/2 or generally a lowering of the
sublattice magnetization by the creation of one magnon.
Thus, the above quantity � represents the physical spin
gap. Figure 2 displays the auxiliary gaps �± in panel (a)
and the physical gap � in panel (b). In a rigorous treat-
ment, the spin gap is a property at T = 0 referring to the
minimum energy between the ground state and the first
excited state(s). In this view, no “temperature-dependent”
spin gap makes sense. The spin gap in a mean-field the-
ory must be seen as an effective spin gap that reflects the
gap of the bilinear mean-field Hamiltonian that describes
the physics of the underlying interacting model best at a
given temperature. In computations of the dynamical struc-
ture factor care must be taken to ensure that no leftovers of
single Schwinger boson excitations remain. This issue has
been resolved only very recently [33].

Once we know all the expectation values in reciprocal
space we also know all expectation values in real space.
Thus, the sublattice magnetization can also be computed
and it is displayed as a function of temperature in Fig. 3 up
to the respective Néel temperatures. The power law close
to the Néel temperatures is expected to be a square root law
as is generic for mean-field theories and our data are fully
consistent with this assumption. The analogous square root
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
T/J

0.0

0.1

0.2

0.3

0.4
m

0

χ = 0.8
χ = 0.85
χ = 0.9
χ = 0.95

FIG. 3. Sublattice magnetization m0 as defined in Eq. (7) for
various anisotropies χ as a function of temperature. The solid
line is a guide to the eye. It vanishes at the Néel tempera-
ture, where the ordered phase ceases to exist, with a square root
behavior.

law is consistent with our findings for the effective spin gap
� in Fig. 2(b).

Finally, Fig. 4 depicts the Néel temperature as a function
of the anisotropy according to the Schwinger boson mean-
field theory. As pointed out before, this mean-field theory
complies with the rigorous Mermin-Wagner theorem [34]
so that limχ→1 TN (χ) = 0 holds. But the downturn upon
approaching the isotropic case is extremely steep. From the
integrals in the derivation of the Mermin-Wagner theorem
for two dimensions, a logarithmic dependence according
to TN /J ≈ c1/(| ln(1 − χ)| + c2) appears plausible; see
the caption. To estimate the accuracy of our results, we
can compare them at χ = 0 with the rigorous result of
Onsager [35] for the two-dimensional Ising model yield-
ing TN = 0.5673 J . As for the gap, the results agree if the
mean-field results are scaled down by a factor of 1.3. We
emphasize that this result provides an estimate of the accu-
racy of the mean-field Schwinger approach even far away
from the ground state. Hence, even for a significant occu-
pation of both flavors, the mean-field treatment of their
interaction leads to good results within 30% of the cor-
rect values. This also justifies the use of this approach for
switching processes that take the system far away from
their ground states as well.

The results presented in this section provide an overview
of the essential properties of the system in equilibrium. It
is crucial to know them quantitatively because they define
the initial conditions for the subsequent time-dependent
solutions that describe the switching process.

IV. SWITCHING THE SUBLATTICE
MAGNETIZATION

The aim is to invert the sublattice magnetization m0 →
−m0. We denote the time-dependent sublattice magnetiza-
tion during the switching process by m(t). One can think of
this process as switching a bit from its 1 state to its 0 state.

0.0 0.2 0.4 0.6 0.8 1.0
χ

0.0

0.2

0.4

0.6

0.8

T
N

/J

FIG. 4. Néel temperature as a function of the anisotropy. In
accord with the Mermin-Wagner theorem, the Néel temperature
vanishes in the isotropic case, i.e., for χ → 1. The vanishing of
TN close to the isotropic point can be fitted according to TN /J ≈
c1/(| ln(1 − χ)| + c2) with c1 = 4.1 ± 0.08 and c2 = 3.5 ± 0.02
in the interval χ ∈ [0.88, 1] (orange dashed line) and with c1 =
3.5 ± 0.05 and c2 = 2.3 ± 0.06 in the interval χ ∈ [0.95, 1] (red
dashed line).

Hence, the considered process is highly relevant in data
storage with the advantages exposed in the Introduction.

We have a precessional rotation in mind. Thus we add a
static magnetic field along the Sy axis in form of a Zeeman
term from time t = 0 onwards:

H = H0 − hy

∑

i

Sy
i

= H0 − hy

2i

∑

i

(S+
i −S−

i )

= H0 − hy

2i

∑

i

(a†
i bi − b†

i ai) (22)

with H0 the unperturbed Hamiltonian (15).
For the isotropic case, the Zeeman term does not change

under the Bogoliubov transformation, yielding

H = EMF − Nλ +
∑

k

ωiso
k (α

†
kαk + β

†
kβk + 1)

− hy

2i

∑

k

(α
†
kβk − β

†
kαk). (23)

Because of the spin isotropy, the Zeeman term commutes
with the Hamiltonian so that any ground state of H0
remains a ground state under the action of the Zeeman
term. The Zeeman term induces a collective rotation about
Sy at all sites simultaneously. The rotation of each spin can
be treated as if the spin were isolated. Hence, the sublat-
tice magnetization is rotated in the Sz-Sx plane. A rotation
about the angle ϕ is achieved within the time interval

tϕ = ϕ

hy
. (24)
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This can be verified in terms of the spin operators or in
terms of the Schwinger bosons. The tilt m0 → −m0 is
achieved for tπ = π/hy . No minimum magnetic field is
required to achieve the rotation if one can create long
enough pulses of constant magnetic fields. Yet, this case
is not promising for application because the absence of
any anisotropy also implies that the system does not
have any rigidity of the sublattice magnetization against
perturbations.

For this reason, we turn to the anisotropic case where
the situation is more subtle because the Zeeman term does
not commute with the Hamiltonian. We have to compute
the time evolution under the full mean-field Hamiltonian

H = EMF − 1
2

∑

k

γk(C−a†
ka†

−k+C+b†
kb†

−k

+ C∗
−aka−k + C∗

+bkb−k)

+ λ
∑

k

(a†
kak + b†

kbk) − hy

2i

∑

k

(a†
kbk − b†

kak).

(25)

We stress that the prefactors C± defined in Eq. (18) depend
on expectation values that themselves acquire a temporal
dependence upon switching. Hence, the above Hamilto-
nian itself is time dependent. We refrain from expressing
Hamiltonian (25) in terms of Bogoliubov particles αk and
βk because no useful simplification can be reached due
to the time dependence of the C±. It would be required
to adjust the Bogoliubov transformation at each instant of
time in order to keep diagonality. The ensuing numerics
would be unnecessarily tedious and would eventually yield
the same results. So no additional insight or advantage
would be reached.

Hamiltonian (25) is fully sufficient to compute the time
dependence of the expectation values by means of Heisen-
berg’s equations of motion. This amounts to the density-
matrix formalism. The set of differential equations reads

∂t〈a†
kak〉 = 2γk�(C∗

−〈aka−k〉) + hy

2
(〈a†

kbk〉 + 〈b†
kak〉),

(26a)

∂t〈b†
kbk〉 = 2γk�(C∗

+〈bkb−k〉) − hy

2
(〈a†

kbk〉 + 〈b†
kak〉),

(26b)

∂t〈a†
kbk〉 = −iγk(C∗

−〈akb−k〉 − C+〈a†
kb†

−k〉)

+ hy

2
(〈b†

kbk〉 − 〈a†
kak〉), (26c)

∂t〈aka−k〉 = iγk[C−(2〈a†
kak〉 + 1)]

− 2λi〈aka−k〉 + hy〈akb−k〉, (26d)

∂t〈bkb−k〉 = iγk[C+(2〈b†
kbk〉 + 1)]

− 2λi〈bkb−k〉 − hy〈akb−k〉, (26e)

∂t〈akb−k〉 = iγk(C−〈a†
kbk〉 + C+〈a†

kbk〉∗) − 2λi〈akb−k〉

− hy

2
(〈aka−k〉 − 〈bkb−k〉). (26f)

These equations are ordinary first-order differential equa-
tions in time. Their main complexity results from the
nonlinearity embodied in the dependence of coefficients
C± on the expectation values; see below. The equations
are solved by the Runge-Kutta algorithm of fourth order as
implemented in the Boost Odeint library.

In terms of the initial Schwinger bosons without any
Bogoliubov transformations, the relations defining A, B,
and the constraint read

A = 〈aiaj 〉 + 〈bibj 〉 = 1
N

∑

k

γk(〈aka−k〉 + 〈bkb−k〉),

(27a)

B = 〈aiaj 〉 − 〈bibj 〉 = 1
N

∑

k

γk(〈aka−k〉 − 〈bkb−k〉),

(27b)

2S = 〈a†
i ai〉 + 〈b†

i bi〉 = 1
N

∑

k

(〈a†
kak〉 + 〈b†

kbk〉), (27c)

where i, j are adjacent sites. This completes a closed set
of differential equations. Constraint (27c) is not needed for
the temporal equation. But we checked that it is always
fulfilled in the course of time if it is fulfilled initially, as is
ensured by starting from a valid equilibrium solution.

A. Switching at zero temperature

Figure 5 displays the dynamics of the occupations of the
Schwinger bosons and the resulting sublattice magnetiza-
tion m(t) given by

m(t) = 1
2
(〈a†

i ai〉 − 〈b†
i bi〉) = 1

2N

∑

k

(〈a†
kak〉 − 〈b†

kbk〉)

(28)

for various values of the anisotropy parameter χ . Panel (a)
shows the result for the isotropic case. The external field
applied perpendicular to the sublattice magnetization m0
nicely rotates it following a cosine curve to −m0 at time
tπ predicted by Eq. (24). Since the switching field persists,
the magnetization is switched back to the initial value at
t = 2tπ . No reduction of m due to dephasing is discernible;
the rotation is fully coherent.

Figure 5(b) reveals differences to the isotropic case.
First, the initial magnetization is larger in agreement
with the results shown in Fig. 18 in Appendix A 2. The
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t/J−1
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0.0
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1.0

χ = 0.9(c)
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t/J−1

χ = 0.8(d)

〈a†
iai〉 〈b†

ibi〉 m

FIG. 5. Dynamics of the occupation of the Schwinger bosons
〈a†

i ai〉 and 〈b†
i bi〉, as well as the resulting magnetization m in

the time interval t ∈ [0 J −1, 8 J −1] for exemplary values of the
anisotropy: panel (a) for χ = 1, panel (b) for χ = 0.95, panel
(c) for χ = 0.9, and panel (d) for χ = 0.8. The strength of the
applied field is h = 1 J so that in the isotropic case [panel (a),
χ = 1], the switching duration of t = πJ −1 for the π pulse
results in accord with Eq. (24). The calculations were performed
for a system size of L = 500, implying that N = 250 000.

switching to negative values of m succeeds, but it takes
longer than in the isotropic case. We attribute this to the
anisotropy that hinders the rotation taking place although
the state with sublattice magnetization −m0 is also a valid
ground state. But the states in between are neither ground
states nor eigenstates of the system. This leads to dephas-
ing of the modes at different wave vectors and implies that
|m(t)| does not reach the initial value m0 anymore. This
appears physically plausible and was to be expected on the
basis of the symmetries of the model. But we emphasize
that this behavior cannot be found in the so far mostly used
classical two-vector model; to our knowledge, the time-
dependent Schwinger approach advocated here is the first
that captures this important physical feature.

Increasing the anisotropy by lowering χ we see an even
longer switching process in Fig. 5(c). Surprisingly, only
one switching appears to be possible since the switch-
ing back to the original sign of m does not take place.
We investigated the long-time behavior up to t = 100/J
and the magnetization continued to fluctuate weakly in
the vicinity m0 ≈ −0.4. Thus, the switched modes appear
to be out of phase, i.e., dephasing has been quite detri-
mental. We reemphasize that such effects are not captured
by the description of the sublattice magnetization by a
classical vector. Finally, panel (d) displays an example
where no switching occurs at all. The sublattice magne-
tization oscillates only a little below its initial value m0.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
t/J−1

−0.4

−0.2

0.0

0.2

0.4

m

7 8 9

0.0

0.860 0.862 0.864 0.866 0.868 0.870
hy/J

FIG. 6. Time evolution of the magnetization m for various
external fields hy ∈ [0.86 J , 0.87 J ] at the anisotropy χ = 0.9.
The color bar on top indicates the external field. Clearly, qual-
itatively distinct temporal behaviors occur depending on the
strength of the applied magnetic field. There is a threshold
value ht above which switching is possible and below which no
switching is possible.

These observations show that a minimum magnetic field is
required in order to change the sign of m. The anisotropy
generates a degree of robustness that needs to be overcome
by the external magnetic field.

In order to further investigate the conditions for suc-
cessful switching, we scan m(t) for a range of applied
magnetic fields in Fig. 6. We observe a distinct difference
in the behavior for lower fields compared to the behav-
ior for larger ones. Large ones enable switching and low
ones do not. There is a well-defined value ht separating the
two regimes. We define a criterion to distinguish whether
switching is possible or not. The occurrence of a negative
value of m(t) is not the perfect high-precision criterion.
The inset of Fig. 6 shows that it can occur that m(t) takes
slightly negative values, but turns back to positive values.
Instead, we choose the occurrence of an inflection point
before the first extremal value at t > 0 as a criterion. If
such an inflection point exists, m(t) continues to turn down,
reaching a substantial negative value. Otherwise, it appears
that no switching is possible. But we stress that the differ-
ence between the criterion based on the inflection and that
based on the sign change is minor.

Next, we quantify how long the switching takes. Dura-
tion t is the instant in time when the negative minimum is
reached. If no switching is possible, we define the instant
in time when the positive maximum is reached as the dura-
tion of the failed switching attempt. These durations are
plotted in Fig. 7 together with suitable logarithmic fits

tfit(hy) = c1 + c2 ln |(hy − ht)/J |. (29)
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0.75 0.80 0.85 0.90 0.95 1.00
hy/J
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15
t/

J
−1

tmax

tmin

tmax
fit

tmin
fit

FIG. 7. Times (symbols) at which m(t) reaches the relevant
minimum or maximum, depending on whether switching is pos-
sible (orange) or not (cyan) plotted against the external field hy

for χ = 0.9. The position of the singularity defines the threshold
field ht. More data points were computed around the singularity
to obtain a higher accuracy for fitting the function given in Eq.
(29).

The fits describe the data remarkably well below and above
the threshold with very similar parameters for the minima
(succeeded switching)

cmin
1 = (2.04 ± 0.06)J −1, (30a)

cmin
2 = (−1.36 ± 0.01)J −1, (30b)

hmin
t = (0.8634 ± 5 × 10−6)J , (30c)

and for the maxima (failed switching)

cmax
1 = (2.73 ± 0.08)J −1, (31a)

cmax
2 = (−1.25 ± 0.01)J −1, (31b)

hmax
t = (0.8634 ± 6 × 10−7)J . (31c)

Clearly, the resulting threshold value for χ = 0.9 is
(0.8634 ± 5 × 10−6)J , which is quite substantial and
fairly close to the value of the spin gap �. The question
suggests itself why such a logarithmic divergence occurs.
We argue that this kind of divergence is a clear signature
that the magnetic order in antiferromagnets has a certain
inertia in its dynamics. This was observed in experiment
and supported by a calculation based on classical equa-
tions of motion for the antiferromagnetic vector describing
the size and direction of the sublattice magnetization [13].
The fact that the microscopic spin-wave description repro-
duces this behavior corroborates the idea of an inertia of
the antiferromagnetic order convincingly. In Appendix B
we show that a classical motion of a massive particle over
an activation barrier reproduces the logarithmic singularity
that we observed. This supports the above interpretation.

We determine these threshold values of a range of
anisotropies by bisection with high accuracy. The result-
ing data are shown in Fig. 8 by the symbols. We compare

0.80 0.85 0.90 0.95 1.00
χ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

h
t/

J

−5.0 −2.5

ln(1 − χ2)

−2

−1

0

ln
(h

t/
J
)

Δ
ht

FIG. 8. Threshold magnetic field ht depicted by the blue sym-
bols versus anisotropy χ . The data are obtained for a system size
L = 500. The red solid curve reproduces the spin gap from Fig. 1
to illustrate that the threshold magnetic fields are essentially
determined by the size of the spin gap.

them with the values of the spin gap shown above in Fig. 1.
They are very close to each other for the shown range of
anisotropies. Thus, we conclude that it is the size of the
spin gap that determines the typical field strength required
for switching. This is in line with the idea that the spin gap
measures the robustness of the system against any kind of
perturbation.

We emphasize that a key aspect of the description of
the switching dynamics in terms of spin waves is that the
contribution of each mode is captured individually. The
whole process is not one single collective motion, but it
consists of the contributions of a thermodynamically large
number of modes. Hence, the coherence is not preserved in
the course of the switching process except in the isotropic
case. This could already be inferred from the decrease of
the maximum values of |m(t)| in Fig. 5, i.e., |m(t)| < m0
except for t = 0. To underline this aspect further, Fig. 9
displays the energy in the course of the switching measured
by the expectation value of H0,

E(t) = N {2Sλ + 2S2 − 〈aiaj 〉〈a†
i a†

j 〉 − 〈bibj 〉〈b†
i b†

j 〉
− χ(〈bibj 〉〈a†

i a†
j 〉 + 〈b†

i b†
j 〉〈aiaj 〉)}. (32)

The dynamics of the energy relative to the energy of
the initial state E0(t) := E(t) − E(0) is depicted in Fig. 9
in the time interval t ∈ [0, π/J ] for various degrees of
anisotropy χ ∈ [0.8, 0.99]. The magnetic field was chosen
relatively high at h = 2 J so that a rotation is possible for
all anisotropies in the studied range.
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χ

FIG. 9. In the upper panel, the temporal evolution of the
energy E0 per lattice site is shown for an external field h = 2 J
and various anisotropies χ ∈ [0.8, 0.99]. The color bar indicates
the value of the anisotropy. The energy minima �E0 show the
energy after switching the magnetization by 180◦; they are not
zero but indicate an energy increase because the switching does
not lead to the degenerate ground state with magnetization −m0.
The energy increase after switching as well as the switching dura-
tion tπ are plotted against the anisotropy in the lower panel. The
solid line results from a parabolic fit of the energy increase.

As expected, there is an energy minimum after switch-
ing since at this instant of time the switched state is
closest to the other ground state with magnetization −m0.
In the isotropic case χ = 1, the first minimum is reached
at time t = π/(2J ) according to Eq. (24). However, as
already seen in Fig. 5, the switching duration increases
and the minimum shifts to larger times upon increasing
anisotropy (lowering of χ ). It is obvious that the energy
of the initial state is not reached again so that the overall
energy is higher after switching the sublattice magneti-
zation for χ < 1. This underlines the effect of the many
contributing spin modes that dephase and thereby depart
from the initial coherent ground state. While this find-
ing is physically plausible, we stress that we are not
aware of other approaches displaying this feature prior to
the time-dependent Schwinger boson approach advocated
here.

The lower plot in Fig. 9 shows the increase in energy
�E0 after switching and the time tπ at which the energy
minimum is reached as a function of χ . The data points for
�E0 can be approximated to high accuracy by a parabola

−0.5

0.0

0.5

1.0

T = 0.0(a) T = 0.2J(b) T = 0.4J(c)

0 2π 4π
t/J−1

−0.5

0.0

0.5

1.0

T = 0.6J(d)
0 2π 4π

t/J−1

T = 0.65J(e)
0 2π 4π

t/J−1

T = 0.7J(f)

〈a†
iai〉 〈b†

ibi〉 m

FIG. 10. Same as Fig. 5, but at various temperatures [panel (a)
at T = 0, panel (b) at T = 0.2 J , panel (c) at T = 0.4 J , panel
(d) at T = 0.6 J , panel (e) at T = 0.65 J , and panel (f) at T =
0.7 J ] below the Néel temperature TN = 0.704 J for χ = 0.9,
h = 0.86 J , and L = 200.

�E0(χ) = c0(1 − χ2)m with parameters

c0 = (0.230 ± 0.002)J , m = 2.04 ± 0.05. (33)

The switching times also increase steadily with growing
anisotropy, but they do not evolve completely smoothly
in our simulation, especially for χ → 1. This is to be
attributed to the finite discretization used in the numerical
computations.

B. Switching at finite temperature

So far, we have studied the conditions for switching
the magnetization at zero temperature. But the effect of
finite temperature is highly relevant for two reasons. First,
having applications in mind, a finite temperature must
be accounted for because no setup will be operated at
zero temperature. Second, temperature is a parameter that
reduces the effective spin gap and makes the ordered sys-
tem less robust and thus easier to switch. For this reason, a
study of finite temperatures is in order.

Figure 10 shows the effect of finite temperature for an
exemplary set of parameters. Clearly, no switching is pos-
sible at zero and at low temperatures. But, for intermediate
temperatures T � 0.4 J , at least one swap m0 → −m0
is possible. Approaching the Néel temperature switch-
ing becomes possible even multiple times. Of course, the
switched sublattice magnetization is reduced in its absolute
value upon approaching TN . But it can still be manipulated.

This is indeed a very promising observation because
it suggests that temporary heating of the system up to
the vicinity of the critical temperature, while still staying
below it, facilitates the writing process of information into
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FIG. 11. Time evolution of the magnetization m for various
external fields hy ∈ [0.6 J , 0.8 J ] at anisotropy χ = 0.9 and tem-
perature T = 0.65 J below TN . The color bar at the top indicates
the external field. We determine the threshold value ht from the
magnetic field at which the first minimum of m(t) touches m = 0.

a long-range ordered magnetic system. For long-time stor-
age, the temperature can be lowered again after the writing
process. Of course, heating the total system is not practical
because it takes very long and the information content of
adjacent domains risks getting lost. But one can envision
that a short and focused laser pulse heats up the nanoscale
region that one intends to switch. On the nanoscale, ther-
mal diffusion will cool the manipulated domain quickly
after the switching.

Hence, we investigate the finite-temperature case fur-
ther. Figure 11 displays the temporal evolution of m(t)
for various applied magnetic fields for a generic set of
anisotropy and temperature. The phenomenology is sim-
ilar, but not identical to that at zero temperature; cf. Fig. 6.
At zero temperature, the switched curves appear to be mir-
ror images of the nonswitched curves flipped around m =
0. At finite temperature, it is mostly the first minimum of
m(t) that decreases further and further upon increasing the
control field hy . No clear point of inflection occurs except
at very low temperatures (not shown). Hence, we here take
the occurrence of a negative value of m(t) as a signature
of switching, i.e., the threshold field ht is determined from
the field at which the first minimum touches the m = 0 line.
We point out that the threshold field determined in such a
way can depend on the considered time interval (see also
below), in particular if the instant in time at which the mag-
netization switches sign jumps as a function of the applied
field. We analyzed the time interval t ∈ [0, 15/hy ], i.e, for
low values of the field, we scanned large intervals. Study-
ing even larger intervals can only lower the values for ht
so that our values are at least rigorous upper bounds.

Next, it is important to track the threshold fields for var-
ious temperatures to learn how far they can be reduced
by increasing the temperature up to TN . Since the great-
est effects occur close to the Néel temperatures, we do not

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Δ/J

0.0

0.2

0.4

0.6

0.8

1.0

1.2

h
t/

J

χ = 0.8
χ = 0.85
χ = 0.9
χ = 0.95

FIG. 12. Threshold magnetic field ht versus the effective spin
gap � for various anisotropies. Note that � vanishes as T →
TN ; cf. Fig. 2(b). The data are obtained for a system size L =
200. The jump occurs for χ = 0.95 at T = 0.6215 J with TN =
0.652 J , for χ = 0.9 at T = 0.6775 J with TN = 0.704 J , for χ =
0.85 at T = 0.7065 J with TN = 0.725 J , and for χ = 0.8 at T =
0.7225 J with TN = 0.732 J .

plot the threshold fields as a function of T, but as a function
of the effective spin gap � in Fig. 12. We stress that there is
a monotonic one-to-one mapping between the temperature
and �; see Fig. 2(b). Clearly, the data support the finding
that the threshold field ht decreases, reducing the effective
spin gap by increasing the temperature to the Néel temper-
ature. But the almost quantitative agreement between the
threshold field and spin gap we found at zero temperature
(see Fig. 8) does not hold anymore. It would have meant
that Fig. 12 displayed two straight lines through the ori-
gin with identical slopes of one. But the intriguing feature
lies in the vanishing of the threshold field for T → TN . For
application purposes, we conclude that increasing the tem-
perature close to TN can help significantly to switch the
magnetization. Hence, one may envision that writing mag-
netic data is done at elevated temperatures realized by a
short and locally focused laser pulse, while the long-time
storage is done at low temperatures where the sublattice
magnetization is considerably more robust.

A truly unexpected feature is the discontinuous jump
at an intermediate value of the spin gap. It appears to be
generic since it occurs for all anisotropies studied. Below
the jump only fairly small fields are required to switch the
magnetization. In view of this discontinuity, the imminent
next question concerns its origin. To this end, we show in
Fig. 13 the full temporal evolution of m(t) for two temper-
atures: one is just below the jump, i.e., with an effective
spin gap � slightly larger than the value at the jump, and
the other temperature just above the jump, i.e., with an
effective spin gap slightly smaller than the jump value.
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FIG. 13. Both panels show the full temporal evolution m(t) for
χ = 0.9 for two very close values of the temperature of which
one is just below [panel (a)] the temperature where the jump of
ht occurs and the other just above [panel (b)]. There is a sign
change in m(t) in panel (a) at around t ≈ 6 J −1 for larger fields.
But note the additional change of sign in m(t) in panel (b) at a
larger time t ≈ 17 J −1 for lower fields. This is responsible for a
sudden change in the threshold field.

Both panels show successful switching for some magnetic
fields. But, for the lower temperature (larger �), the mag-
netization only switches for large fields at times t ≈ 6 J −1.
For the larger temperature (smaller �), the magnetization
also switches for low fields at times t ≈ 17 J −1. At these
times, the lower temperature does not yet allow for a sign
change of the magnetization. Thus, the jump in the instant
in time, at which switching can be detected, explains in
turn the jump in the threshold fields.

V. CONCLUSIONS

Controlling the magnetization of long-range ordered
quantum magnets is a key element in data storage in
nanoscale domains. The magnetization orientation in such
a domain serves as a bit. So far, it is realized and employed
for ferromagnets. But it is established that quantum anti-
ferromagnets display important advantages. They do not
have stray fields that oppose close packing of the domains
of magnetization, i.e., the bits. In addition, the generic time
scales are shorter by 3 orders of magnitude in comparison
to generic ferromagnets.

For these reasons, we investigated the switching
of the antiferromagnetic sublattice magnetization in an
anisotropic easy-axis Heisenberg antiferromagnet. We

aimed at the development of a suitable microscopic quan-
tum approach to describe this phenomenon. For simplicity,
we studied the model on a square lattice. The aim was to
go beyond the description of the magnetizations on the
two sublattices by two classical vectors (vector model).
We intended to base our approach on a quantum model
that captures all leading quantum and thermal effects. Such
a model has to comprise all the magnetic modes, i.e., a
spin-wave description was required. Addressing all modes
allows one to deal with dephasing of the modes in the
course of switching as well as with finite-temperature
effects. These important effects are missed otherwise.

But the showstopper of conventional spin-wave theories
is that they only capture the fluctuations around one of the
degenerate ground states. Yet, for the purpose of switching
from one ground state (up-down on sublattices A–B) to
the other (down-up), this is obviously not sufficient. Hence
we resorted to the Schwinger boson description that cap-
tures all degenerate ordered states as well as the disordered
ones. We use the established mean-field description that
reproduces the result of the usual self-consistent spin-wave
theories in equilibrium based on the Holstein-Primakoff
or the Dyson-Maleev representations. We stress that the
Schwinger mean-field approach reaches about 30% accu-
racy even far away from the ground states, as can be
estimated from the agreement of the Néel temperature in
the Ising limit with the rigorous Onsager result [35].

Furthermore, we computed the spin gap within the
Schwinger mean-field theory [18] and found results that
agree with the reliable results from other techniques if the
mean-field gap is scaled down by a factor of approximately
1.3. This is a very satisfying result in view of the simplicity
of the mean-field approach and the low dimensionality of
the system.

Using the equilibrium expectation values as starting val-
ues, we computed solutions of the Heisenberg equations of
motions for the expectation values. In particular, we cal-
culated the temporal evolution m(t) upon application of
a uniform transverse magnetic field that induces a Lar-
mor precession. The magnetization in the isotropic model
is rotated without loss of coherence and for arbitrarily
weak fields. In the anisotropic case, however, an activa-
tion energy needs to be overcome. For weak magnetic
fields h, no switching is possible; only weak oscillations
below the equilibrium magnetization are induced. Above
a threshold value ht switching is possible, but the coher-
ence of all the involved magnetic modes is deteriorating.
Thus, for fields just above the threshold, only a single
switching is possible, while for large control fields, sev-
eral swaps m0 ↔ −m0 can be realized. The threshold fields
ht at zero temperature agree almost quantitatively with the
spin gap. The larger the spin gap, the more robust the mag-
netic order. We stress that the necessity of a minimum field
to overcome anisotropic energy barriers was known from
classical two-vector descriptions. Our results confirm it in
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an approach including the leading thermal and quantum
fluctuations. But the dephasing of the momentum-resolved
magnetic modes represents a feature that may have been
expected on the basis of qualitative arguments, but only the
Schwinger boson approach puts it on a quantitative basis.

Analyzing the time tπ needed to perform (or to fail) a
swap displays a logarithmic divergence at the threshold
value, both from above and from below. This behavior
coincides precisely with the time needed for a massive
particle to overcome an energy barrier. This means that
the antiferromagnetic magnetization disposes of an iner-
tia in its dynamics, as was observed both experimentally
and theoretically in a classical vector model before [13].

Upon increasing the temperature, the equilibrium mag-
netization and the effective spin gap decrease towards the
Néel temperature where both vanish. Thus, it is not surpris-
ing that the threshold magnetic field required for switching
decreases upon increasing temperature and also vanishes at
TN . Our model including the leading quantum and thermal
effects confirms this expectation beyond qualitative argu-
ments in a quantitative calculation. The relation between
temperature or, equivalently, the effective spin gap and the
threshold field is monotonic. Unexpectedly, however, we
found a discontinuity in the threshold fields. At an inter-
mediate value of the effective spin gap �, the required
minimum field suddenly decreases by a finite amount.
Because of the square root laws � ∝ √

TN − T, this spin-
gap value corresponds to temperatures that are close to the
transition temperature TN . We could trace the origin of the
jump to the full temporal evolution of the magnetization
m(t) during the switching. The instant of time where m(t)
changes sign jumps as well to longer times for lower fields.

What is the implication for experiment? As pointed out
above, many parameters need to be taken into account.
If we assume that J = 10 meV and a small anisotropy
χ ≈ 0.99 and/or a temperature rather close to the Néel
temperature, the threshold field corresponds roughly to
0.05 J = 0.5 meV, which corresponds for g = 2 to about
5 T. Note that the spin gaps and thus the threshold fields
are likely to be 30% lower than the mean-field approach
predicts. This is still a large field, but it is certainly real-
izable in a laboratory. Hence, we think that our results
provide an interesting and quantitative guideline for future
experiments. According to our findings, the temperature
dependence of the switching merits close inspection in
particular. In real material, we expect that there are fur-
ther interactions to be included, for instance spin-phonon
couplings. We expect that these additional interactions
will enhance the dephasing in the course of the switch-
ing because the lattice degrees of freedom will also be
involved and become excited.

The theoretical outlook comprises a large scope
of promising extensions. Ferromagnets with nonrela-
tivistic, parabolic magnon dispersion [18,23,26,27] can
be addressed. Furthermore, the present calculation for

antiferromagnets can be extended to three dimensions and
also to many other lattices. Certainly, other bipartite lat-
tices can be treated in the very same fashion, but also
frustrated lattices displaying long-range order such as the
triangular lattice [36] can be tackled. One can also apply
the approach to models with anisotropies such as single-
ion anisotropies or anisotropies beyond easy axis, for
instance with a fourfold rotation symmetry of the magne-
tizations. Furthermore, time-dependent control fields can
be considered as well so that a plethora of fundamentally
interesting as well as practically relevant issues, such as
the influence of nanostructured confinement, are open for
further investigation using the approach advocated here.
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APPENDIX A: SOLVING THE SCHWINGER
BOSON MEAN-FIELD HAMILTONIAN IN

EQUILIBRIUM

Here we provide the steps towards solving the
Schwinger boson mean-field problem at equilibrium in the
isotropic and the anisotropic cases. We address the case
at zero temperature mainly, but also provide exemplary
dispersions at finite temperature.

1. Isotropic case

Calculating the Fourier transformation of the Hamilto-
nian is the first step towards diagonalization:

H = EMF +
∑

k

{λ(a†
kak + b†

kbk)

− Aγk(aka−k + bkb−k + H.c.)}. (A1)

Here γk := 1
2 (cos(kx) + cos(ky)), where we set the lattice

constant to unity. The sum refers to the entire Brillouin
zone since the Schwinger bosons are not restricted to one
sublattice. Next, standard Bogoliubov transformations for
both the a and b bosons,

a†
k = cosh(θk)α

†
k+ sinh(θk)α−k, (A2a)

b†
k = cosh(θk)β

†
k+ sinh(θk)β−k, (A2b)
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and the corresponding Hermitian conjugate relations lead
to the diagonalized Hamiltonian

H = EMF − Nλ +
∑

k

ωiso
k (α

†
kαk + β

†
kβk + 1), (A3)

where we have chosen λ tanh(2θk) = 2Aγk. The resulting
dispersion reads

ωiso
k =

√
λ2 − (2Aγk)2. (A4)

The value λ results from the condition that Eq. (8) holds
on average, i.e., for the expectation values of the particle
numbers. The expectation value A is defined in Eq. (14),
yielding

A = 1
N

∑

k

2Aγ 2
k

ωiso
k

coth(βωiso
k /2), (A5a)

2S + 1 = 1
N

∑

k

λ

ωiso
k

coth(βωiso
k /2). (A5b)

Here, β is the inverse temperature up to Boltzmann’s
constant. Solving these equations requires finding a non-
linear zero depending on two variables. For finite sys-
tems N < ∞ or for finite temperature, it can be tack-
led by direct numerics. No finite sublattice magnetiza-
tion occurs because no finite system displays long-range
antiferromagnetic order. The same holds for the infinite
two-dimensional isotropic system at finite temperature
according to the Mermin-Wagner theorem [34].

Spontaneous long-range order in the infinite system
at zero temperature appears as Bose-Einstein condensa-
tion [18,23,24]. The Goldstone theorem [18] tells us that
the spectrum must be gapless; thus, λ = A holds. Then
we encounter singularities at k = 0 and k = (π , π) for
finite N . In the thermodynamic limit N → ∞, the sums
in Eqs. (A5) do not converge uniformly to integrals. For
any finite N , the spectrum is not gapless, but displays
a small finite-size gap �N . Although this gap vanishes
for N → ∞, a contribution from the points k = 0 and
k = (π , π) remains. Concretely, we set λ2 = (2A)2(1 +
κ2) with κ = f /N , implying that ωiso

k = 2A
√

1 + κ2 − γ 2
k .

Then the limit N → ∞ is performed for Eqs. (A5) and we
obtain

A = 1
4π2

∫

BZ
dk2 γ 2

k√
1 − γ 2

k

+ 2
f

, (A6a)

2S + 1 = 1
4π2

∫

BZ
dk2 1√

1 − γ 2
k

+ 2
f

. (A6b)

This contribution from single points in the Brillouin zone
stands for the macroscopic contribution of a few modes

[here precisely four modes, αk, βk at k = 0 and (π , π)],
representing a Bose-Einstein condensation. The sublattice
magnetization per site m0 = |〈Sz

i 〉| in the ordered phase is
given by [18]

m0 = 1/f

= S + 1
2

− 1
8π2

∫

BZ
dk2 1√

1 − γ 2
k

. (A7)

Subtracting Eq. (A6a) from Eq. (A6b) yields

2S + 1 − A = 1
4π2

∫

BZ
dk2

√
1 − γ 2

k =: 2δ + 1 (A8a)

⇐⇒ A = 2(S − δ), (A8b)

2δ = −0.157 95, (A8c)

ωiso
k = 4(S − δ)

√
1 − γ 2

k , (A8d)

where 2δ is computed numerically.
In Fig. 14, we show the resulting dispersion in the ther-

modynamic limit (black line) and for an arbitrary finite
κ = 0.2 J (blue dashed line) for illustration. Note that the
black line shows the dispersion of both the α and the β

bosons because they are degenerate. Since the spin opera-
tors consist of bilinear bosonic expressions [see Eqs. (6)],
a physical excitation, i.e., the magnon, will not consist of
a single α or β particle. Given, however, the macroscopic
occupations at k = 0 and (π , π), it is justified to replace
the bosonic operators at these wave vectors according to

αk → 〈αk〉 =
√

Nm0/4, (A9a)

βk → 〈βk〉 =
√

Nm0/4, (A9b)

if no spontaneous symmetry breaking is accounted for.
In the ordered phase, only one of the bosons displays
the macroscopic occupation, so that either αk → √

Nm0/2
or βk → √

Nm0/2 holds at k = 0 and (π , π); see Ref.
[18]. With these substitutions, the creation of a magnon
is described by

√
Nm0/2β

†
k if the α bosons condense and

by
√

Nm0/2α
†
k if the β bosons condense. The dispersion

from the Schwinger boson mean-field theory is identical to
the self-consistent spin-wave theory resulting from a 1/S
expansion in the Holstein-Primakoff and Dyson-Maleev
representations up to and including order 1/S.

Later we compute solutions for the self-consistency con-
ditions numerically for finite clusters with N < ∞ because
we need them as initial conditions for switching pro-
cesses. Rigorously, no spontaneous symmetry breaking
takes place due to the finiteness of the sample size and
thus no finite sublattice magnetization can be determined.
As a remedy to approximate the thermodynamic, infinite
lattice, we include a tiny symmetry-breaking alternating
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FIG. 14. The black line depicts the degenerate dispersion of
the two Schwinger bosons in the long-range ordered isotropic
case in the thermodynamic limit. The blue dashed line illustrates
the dispersion, assuming a finite κ = 0.2 J .

field hz
alt ∝ 1/N that reproduces the analytically known

sublattice magnetization m0 = S − 0.196 60.
In order to determine a suitable value of the mag-

netic field, the initial magnetization m(hz
alt) of the isotropic

system for various system sizes and spin S = 1/2 is plotted
against the scaled field hz

alt in Fig. 15. All curves demon-
strate that a small field scaling ∝ 1/N is already sufficient
to generate the magnetic order. The larger the system,
the more the magnetization curve converges to the dis-
continuous curve of an infinitely large system, where the
magnetization persists even for hz

alt → 0+. The inset shows
that the sublattice magnetization m(hz

alt) corresponds to the
desired value m0,iso = 0.3034 for hz

alt = 1.329 JN−1. We
find it remarkable and reassuring that in the close vicin-
ity of this value, the curves for various L almost intersect.
They do not intersect precisely in one point, but in a very
narrow region. Still, this corroborates the advocated way
to approximate the thermodynamic limit by finite clusters.

2. Anisotropic case

For diagonalization, we proceed as in the isotropic case.
After Fourier transformation, the Hamiltonian is given by

H = EMF + λ
∑

k

(a†
kak + b†

kbk)

− 1
2

∑

k

γk{A(1 + χ)(aka−k + bkb−k + H.c.)

+ B(1 − χ)(aka−k − bkb−k + H.c.)}. (A10)

Since the nondiagonal Bogoliubov terms of the two
Schwinger bosons flavors have different prefactors, it is no
longer possible to use the same Bogoliubov angles in the

0.00 0.25 0.50 0.75 1.00 1.25 1.50
hz

alt/ JN−1
)

0.0

0.1

0.2

0.3

m

1.2 1.4

0.3030

0.3035

0.3040

L = 100
L = 200
L = 500

m0

m(hz) = m0

FIG. 15. The initial magnetization m of the isotropic system,
i.e., χ = 1, as a function of a small field hz

alt for different system
sizes. Magnetic order is already obtained for small fields; recall
that N = L2. The desired initial magnetization m0,iso = 0.3034
is reached for hz

alt = 1.329 J N−1, as shown in the inset. Around
this value, the curves for the various system sizes intersect.

transformations. Instead, we use

a†
k = cosh(θa

k)α
†
k+ sinh(θa

k)α−k, (A11a)

b†
k = cosh(θb

k)β
†
k+ sinh(θb

k)β−k, (A11b)

and the Hermitian conjugate operators using the condition

γk = λ

C−
tanh(2θa

k) = λ

C+
tanh(2θb

k) (A12)

with C± defined in Eq. (18). In this way, we obtain the
diagonal form

H = EMF − Nλ +
∑

k

{
ω−

k

(
α

†
kαk + 1

2

)

+ ω+
k

(
β

†
kβk + 1

2

)}
. (A13)

Concomitantly, there are two different spin-wave disper-
sions

ω±
k =

√
λ2 − C2±γ 2

k . (A14)

For χ = 1, the two dispersions coincide and reproduce the
isotropic dispersion (A4).

Physically, a spin gap is expected to result from the
anisotropy reducing the continuous symmetry to a discrete
Z2 symmetry. Therefore, spontaneous symmetry breaking
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due to the magnetic order no longer breaks a continu-
ous symmetry and no massless Goldstone bosons need to
occur. Still, the Schwinger boson description of the ordered
phase requires a condensation of one Schwinger boson fla-
vor at zero temperature. Let us assume that the α bosons
condense so that their dispersion is gapless in the thermo-
dynamic limit at T = 0. We stress that this does not imply
that the physical excitations are gapless because they imply
the annihilation of an α boson combined with the creation
of a β boson.

We need to derive the conditions for the parameters A, B,
and λ to make any quantitative statements. The constraint
and the expectation values A and B yield

2S = λ

2N

∑

k

[
coth(βω−

k /2)

ω−
k

+ coth(βω+
k /2)

ω+
k

]
− 1,

(A15a)

A = 1
2N

∑

k

γ 2
k

[
C− coth(βω−

k /2)

ω−
k

+ C+ coth(βω+
k /2)

ω+
k

]
,

(A15b)

B = 1
2N

∑

k

γ 2
k

[
C− coth(βω−

k /2)

ω−
k

− C+ coth(βω+
k /2)

ω+
k

]
.

(A15c)

These equations allow us to determine the dispersion at
zero and at finite temperature. The case of zero temperature
is again a bit subtle; the relevant treatment of the equa-
tions at T = 0 is described below. The resulting dispersion
is displayed in Fig. 16. Clearly, the spin gap in the physical
dispersion appears and grows for larger anisotropy.

The behavior of the spin gap � as a function of
the anisotropy parameter χ is of particular interest. The
required input parameter is the product AB; we point out
how we compute it.

For the condensation of the α bosons, the dispersion
ω− should become gapless for an infinitely large system
at zero temperature, which is why

λ2 = C2
−(1 + κ2) (A16)

is chosen with κ = f̃ /N . We use f̃ because only one of the
two boson flavors is to condense. As before, this yields the
dispersions

ω−
k = C−

√
1 + κ2 − γ 2

k , (A17a)

ω+
k =

√
C2−(1 + κ2) − C2+γ 2

k . (A17b)

It is important to note that only ω+
k describes the true

spin-wave spectrum for T = 0 because the operator of the
condensed boson can be replaced, α

(†)

k → √
Nm0/2. In the

thermodynamic limit N → ∞, the sums in Eqs. (A15)
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FIG. 16. Dispersions ω±
k in an antiferromagnetic spin-1/2

square lattice at zero temperature, plotted exemplarily for the
two anisotropies χ = 0.9 and χ = 0.99. For the same χ , the
maxima of the dispersions ω+

k and ω−
k coincide, while ω−

k is gap-
less and ω+

k displays the physical energy gap at k = (0, 0) and
k = (π , π). Note that ω−

k does not describe observable modes.
As expected, the energy gap � = 2

√
AB(1 − χ2) increases with

increasing anisotropy, i.e., increasing deviation of χ from 1.

become integrals as before plus the contributions from
k = (0, 0) and (π , π):

2S = 1
8π2

∫

BZ
dk2

[
1√

1 − γ 2
k

+ C−√
C2− − C2+γ 2

k

]
+ 1

f̃
− 1,

(A18a)

A = 1
8π2

∫

BZ
dk2γ 2

k

[
1√

1 − γ 2
k

+ C+√
C2− − C2+γ 2

k

]
+ 1

f̃
,

(A18b)

B = 1
8π2

∫

BZ
dk2γ 2

k

[
1√

1 − γ 2
k

− C+√
C2− − C2+γ 2

k

]
+ 1

f̃
.

(A18c)

Finally, Eqs. (A18b) and (A18c) are each subtracted from
Eq. (A18a), yielding the two equations

2S + 1 − A = 1
8π2

∫

BZ
dk2

[
1 − γ 2

k√
1 − γ 2

k

+ C−−C+γ 2
k√

C2− − C2+γ 2
k

]
,

(A19a)
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FIG. 17. Expectation values A and B and their product in equi-
librium plotted as a function of the anisotropy χ . These values
enter in the determination of the spin gap in Fig. 1 and of the
magnetization in Fig. 18.

2S + 1 − B = 1
8π2

∫

BZ
dk2

[
1 − γ 2

k√
1 − γ 2

k

+ C−+C+γ 2
k√

C2− − C2+γ 2
k

]
.

(A19b)

These equations allow us to determine A and B and thus
AB. The results are shown in Fig. 17. The expectation value
A appears to be smooth, while B and thus the product AB
display a singular behavior at χ = 1. The Lagrange multi-
plier λ is implicitly fixed by the condition that the α bosons
condense and their dispersion is massless.

To determine the sublattice magnetization from Eq. (19),
we consider its thermodynamic limit N → ∞:

m0 = 1
16π2

∫

BZ
dk2

[
1√

1 − γ 2
k

− C−√
C2− − C2+γ 2

k

]
+ 1

2f̃
.

(A21)

Subtracting this equation from half the Eq. (A18a) yields

S + 1
2

− m0 = 1
8π2

∫

BZ
dk2 C−√

C2− − C2+γ 2
k

, (A22)

eliminating the condensate contribution ∝ 1/f̃ . Solving
the last equation for m0 yields Eq. (20). The explicit results
are displayed in Fig. 18 as a function of χ for S = 1/2.
As expected, the magnetization approaches its maximum
value S for χ → 0 where the model becomes the Ising
model.

For the anisotropic system, the ordered phase also per-
sists at finite temperature. No Bose condensation occurs,
but both flavors of Schwinger bosons are occupied and
both their dispersions display gaps, as illustrated in Fig. 19.
The effective physical gap � is given by the difference
�+ − �−; see the main text.

0.80 0.85 0.90 0.95 1.00
χ

0.300

0.325
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0.425

m
0

m0

m0,fit,1

m0,fit,2

FIG. 18. The magnetization at zero temperature is shown as a
function of the anisotropy parameter χ according to Eq. (20) as a
solid red line. The fit functions are m0,fit,i = m0,iso + ci(1 − χ2)

μ
i

with c1 = (0.223 ± 0.004) J , μ1 = 1/2 for the orange curve and
c2 = (0.215 ± 0.005) J , μ2 = 0.49 ± 0.01 for the blue curve.

APPENDIX B: OVERCOMING A POTENTIAL
BARRIER

Here we motivate by a classical example why a loga-
rithmic singularity is to be expected in Fig. 7 and why
this is an indication of inertia. For this purpose, a poten-
tial V(x) = − 1

2γ 2x2 is considered, as shown in Fig. 20. We
want to know how long it takes a mass to move over this
potential barrier. For the sake of simplicity, the mass is set
to m = 1. The Hamilton function of the system reads

H = p2

2
− 1

2
γ 2x2. (B1)

We highlight that the existence of the kinetic energy
reflects the existence of inertia. The resulting equation of
motion reads

ẍ − γ 2x = 0, (B2)

and has the general solution

x(t) = F cosh(γ t) + G sinh(γ t). (B3)

The initial conditions are x(0) = x0 > 0 and ẋ(0) =
−v0 < 0. Thus, we find that F = x0 and G = −v0/γ . The
total energy of the system takes the value

2E = v2
0 − γ 2x2

0 = (γ G)2 − (γ F)2. (B4)

The marginal case is given for E = 0 because in this
case the kinetic energy disappears exactly when the poten-
tial maximum is reached. This corresponds to F = −G,
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FIG. 19. Dispersions ω±
k in an antiferromagnetic spin-1/2

square lattice at finite temperature, plotted exemplarily for χ =
0.9 at T = 0.65 J .

implying that

x(t) = x0(cosh(τ ) − sinh(τ )) = x0e−τ (B5)

with τ := γ t. Note that the solution F = G is discarded
because of the restrictions F > 0 and G < 0. The maxi-
mum at x = 0 is thus reached exponentially slowly. Next,
we consider a small deviation G = −x0(1 + 2δ) from the
marginal case. For δ > 0, the total energy is positive, and
therefore the potential barrier can be passed. We calculate
the necessary time when point −x0 is reached

−x0 = x0e−τ − δx0(eτ − e−τ ) (B6a)

⇐⇒ 0 = δ(y2 − 1) − y − 1 with y := eτ (B6b)

⇐⇒ y = 1
2δ

+
√

1
4δ2 + 1 + δ

δ

= 1 + 1
δ

+ O(δ2). (B6c)

The other solution of the quadratic equation is negative
and therefore not a physical solution. The position −x0 is
reached at time

γ t = τ = − ln |δ| + δ + O(δ2). (B7)

For δ < 0, the total energy is negative, and therefore the
potential barrier cannot be passed; the passage fails. In this

FIG. 20. The considered potential barrier V(x) = − 1
2γ 2x2.

The points ±x0 are used to indicate whether the barrier has been
overcome or not.

case, we calculate the time it takes to get back to point x0:

x0 = x0e−τ + |δ|x0(eτ − e−τ ) (B8a)

⇐⇒ 0 = y − 1 − |δ|(y2 − 1) (B8b)

⇐⇒ y = 1
2|δ| +

√
1

4|δ|2 − 1 − |δ|
δ

= 1
|δ| − 1 + O(δ2). (B8c)

Again, the other solution of the quadratic equation is not
physically significant. So the time for reaching x0 again is

γ t = τ = − ln |δ| + δ + O(δ2). (B9)

Remarkably, the same result ensues for succeeding to pass
the barrier as for failing to pass it. In both cases, a loga-
rithmic divergence of the time occurs, just as we observed
for switching the sublattice magnetization in Figs. 6 and
7. Note that the fitted prefactors in Eqs. (30) and (31) are
very close to each other, as one expects from the classi-
cal calculation presented above. Note that this symmetry
is perfectly reflected by the curves in Fig. 6 for magnetic
fields just above and just below the threshold value that
are mirror images of one another in the vicinity of the first
extremum for t > 0.

In addition, we observe in solution (B5) as well as in
the curves in Fig. 6 for the cases in the vicinity of the
threshold that most of the time is spent around the energy
maximum x ≈ 0 or m ≈ 0, respectively. This underlines
the conclusion that we are dealing with a process governed
by inertia: what matters is the maximum energy that the
switching term can provide. In contrast, a process with-
out inertia, governed by friction, would spend most of
the time close to the point where the maximum force is
required. This is certainly not the case for m ≈ 0, but rather
would be around m ≈ ±m0/2. Thus, the curves in Fig. 6
underline the conclusion that the magnetization dynamics
in quantum antiferromagnets is governed by inertia.
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