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Nickel-based alloys, like Inconel 718, are widely used in industrial applications due to their high-temperature strength and
high toughness. However, machining such alloys is a challenging task because of high thermal loads at the cutting edge and
thus extensive tool wear is expected. Consequently, the development of new process strategies is needed. We will consider
the discontinuous drilling process with coolant. The main idea is to interrupt the drilling process in order to let the coolant to
flow around the cutting edge and to reduce thermal loads. Since measurements inside the borehole are (nearly) impossible,
simulations are a key tool to analyze and understand the proposed process.

In this paper, a 3D fluid flow simulation model with Q2P1 Finite Elements in combination with the Fictitious Boundary
Method is presented to simulate the coolant flow around the drill inside the borehole. The underlying equations are trans-
formed into a rotational frame of reference overcoming the challenges of mesh design for high rotational domains inside the
fluid domain. Special treatment of Coriolis forces is developed, that modifies the ‘Pressure Poisson’ Problem in the projec-
tion step improving the solver for high angular velocities. To further take high velocities into account, a two-scale artificial
diffusion technique is introduced to stabilize the simulation. Finally, Q1 Finite Elements are used to simulate the heating and
cooling processes in both the tool and the coolant during the complete discontinuous drilling process. The simulation is split
into a ‘contact’ and a ‘no contact’ phase and a coupling strategy between these phases is developed. FBM is utilized to switch
between the two configurations, thus only one unified grid for both configurations is needed. The results are used to gain
insight into the discontinuous drilling process and to optimize the process design.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

The Nickel based alloy Inconel 718 is a widely used material for high-temperature applications. Inconel 718 is characterized
by high temperature strength and low thermal conductivity which makes it a suitable alloy for turbine blades, exhaust gas
components, and turbochargers. However, because of these beneficial properties, machining of Inconel 718 is a challenging
task from an engineering standpoint. Due to the high temperature strength, excessive thermal loads on the tool are to be
expected leading to extensive tool wear or breakage. Consequently, the use of coolant is necessary. In this paper the focus lies
on machining with a twist-drill. Inside the drill are two coolant channels that supply the drilling process with cooling fluid,
so the drilling hole is constantly filled with the fluid in order to reduce thermal loads. To further improve the cooling process,
a novel drilling strategy is proposed, the discontinuous drilling. The central idea is to interrupt drilling during the process by
retracting the tool from the contact zone, so that the coolant can flow around the cutting edge to transport the heat away from
the contact zone, reducing thermal loads and tool wear. It is (nearly) impossible to reach the contact zone with measurement
tools during the drilling process. So simulations are needed to further understand the discontinuous drilling strategy and to
predict thermal loads for different sets of process parameters. The mathematical modeling of discontinuous drilling is non-
trivial as several mathematical and numerical challenges arise. Firstly, the computational domain, the drilling hole with the
tool, is highly rotational, an efficient and accurate description of the fluid domain is important. Secondly, the geometry of the
drill (and the deformed chip) is rather complex. The simulation model must capture the geometry and (thermal) fluid-structure
interaction (FSI) precisely. Finally, the whole discontinuous drilling process must be modeled, including the contact of the
tool and workpiece as well as the interruptions. These mathematical challenges present the outline of this paper: first the
fluid flow is modeled in a rotational domain. Next FSI is prescribed using the Fictitious Boundary Method (FBM). In the last
section the discontinuous drilling is modeled by separating the contact and interruption configurations.

2 Fluidflow in a rotational frame of reference

Let vvv be the fluid velocity, p the pressure, ϱ the density and ν the viscosity of the coolant in a fluid domain Ωf . The fluid flow
is modeled with the incompressible Navier-Stokes equations

ϱ∂vvv
∂t − ν∆vvv + (vvv · ∇)vvv +∇p = fff in Ωf × (0, T )

div vvv = 0 in Ωf × (0, T )
(1)

∗ Corresponding author: e-mail michael.fast@mathematik.tu-dortmund.de, phone +00 231 755 3177, fax +00 231 755 5933
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution
in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

PAMM · Proc. Appl. Math. Mech. 2022;22:1 e202200142. www.gamm-proceedings.com 1 of 6

https://doi.org/10.1002/pamm.202200142 © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fpamm.202200142&domain=pdf&date_stamp=2023-03-24


2 of 6 Section 22: Scientific computing

on a given time interval [0, T ] with initial data for t = 0 and body forces fff . For sake of simplicity let the drill rotate around
the z-axis with a constant velocityωωω := (0, 0, ω)⊤ with ω ∈ R. This means that the fluid domain is highly time dependent. To
circumvent this problem, the equations (1) are transformed into a rotating frame of reference with the radius vector rrr and the
transformed velocity uuu := vvv + (ωωω × rrr). Using the identity ωωω × (ωωω × rrr) = − 1

2∇(ωωω × rrr)2 the centrifugal forces ωωω × (ωωω × rrr)

can be included into the pressure with P = p− 1
2 (ωωω × rrr)2 and the Navier-Stokes equations in a rotational frame of reference

become

ϱ∂uuu
∂t − ν∆uuu+ (uuu · ∇)uuu+ 2ωωω × uuu+∇P = fff in Ωf × (0, T )

div uuu = 0 in Ωf × (0, T )
(2)

with Coriolis forces 2ωωω×uuu. Details concerning the derivation and the analysis of equations (2) can be found in the literature [1].

2.1 Finite Element Discretization

The Navier-Stokes equations (2) in a rotational frame of reference are discretized in space with the Q2P1 Finite Elements and
in time with the θ-scheme. Let the superscript {·}n denote the quantity at timestep tn with a timestep size ∆t := tn+1 − tn.
The discrete equations than read

ϱuuun+1−uuun

∆t + θ
(
(uuu∗ · ∇)uuun+1 − ν∆uuun+1 + 2ωωω × uuun+1

)
+∇Pn+1 = rhsrhsrhsn+1 in Ωf × (0, T )

div uuun+1 = 0 in Ωf × (0, T )
(3)

with right-hand side

rhsrhsrhsn+1 = θfffn+1 + (1− θ)fffn − (1− θ)
(
(uuu∗ · ∇)uuun − ν∆uuun + 2ωωω × uuun

)

with a suitable approximation uuu∗ of uuun+1. Defining N(uuu) and L as the discrete counterpart to the continuous operators uuu · ∇
and ∆, respectively, the discrete gradient B and the mass matrix M , we get the discrete coupled equation of (3)




A −2∆tθωM 0 ∆tB1

2∆tθωM A 0 ∆tB2

0 0 A ∆tB3

B⊤
1 B⊤

2 B⊤
3 0







uuu1

uuu2

uuu3

ppp


 =




rhsrhsrhsn+1
1

rhsrhsrhsn+1
2

rhsrhsrhsn+1
3

000


 (4)

with A = M+θ∆t(N(uuu)+νL). For the sake of simplicity we set B⊤ = (B⊤
1 B⊤

2 B⊤
3 ), rhsrhsrhs⊤ = (rhsrhsrhsn+1

1

⊤
rhsrhsrhsn+1

2

⊤
rhsrhsrhsn+1

3

⊤
)

and

S :=




A −2∆tθωM 0
2∆tθωM A 0

0 0 A


 (5)

and hence we obtain the saddlepoint problem
(

S B
B⊤ 0

)(
uuu
ppp

)
=

(
rhsrhsrhs
000

)
. (6)

The numerical method to solve the systems of equations (6) and modifications to take the Coriolis forces into account will be
discussed in the following section.

2.2 Discrete Projection Method

The discrete saddlepoint problem (6) is solved with the Discrete Projection Method (DPM) which consists of three steps for
each timestep as depicted in algorithm 1. To get an initial prediction for the velocity, the viscous Burgers equation for an
intermediate velocity ūuu is solved in the first step. In the second step the Pressure Poisson (PP) problem is solved with the
PP matrix B⊤C−1B and the discrete divergence of ūuu as right-hand side. The matrix C is an appropriate preconditioner to S
and should be a good approximation and its inverse must be computationally cheap. In a final step the velocity and pressure
are corrected for the next timestep or fixpoint iteration. The resulting systems of equations is each solved with a geometric
multigrid solver [3]. Further details concerning DPM can be found in [2]. The choice of C is crucial for the efficiency of
algorithm 1. For small timesteps sizes, C = Ml is a good approximation for S, as it is the case for the drilling application.
However, Coriolis forces are not taken into account, so they are added to get

Mcoriolis :=




Ml −2ω∆tθMl 0
2ω∆tθMl Ml 0

0 0 Ml


 . (7)
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Algorithm 1 Discrete Projection Method (DPM)
1. Solve the viscous Burgers equation for the intermediate solution ūuu

S(uuun)ūuu = rhsrhsrhs− θ∆tBpppn

2. Solve the Pressure Poisson problem for the intermediate solution qqq

B⊤C−1Bqqq =
1

∆t
B⊤ūuu

3. Correction of the pressure and velocity

pppn+1 = pppn + qqq + αM−1
ppp B⊤ūuu

uuun+1 = ūuu−∆tC−1Bqqq

Due to the block diagonal structure of (7) its inverse is explicitly given by

M−1
coriolis :=

1

(1 + [2ω∆tθ]2)




M−1
l 2ω∆tθM−1

l 0
−2ω∆tθM−1

l M−1
l 0

0 0 (1 + [2ω∆tθ]2)M−1
l


 . (8)

The resulting PP matrix B⊤M−1
coriolisB is asymmetrical for Q2P1 Finite Elements. In order to overcome this problem, the

symmetric part M−1
sym := 1

2

(
M−1

coriolis +M−⊤
coriolis

)
of M−1

coriolis is considered. This preconditioner reproduces the property
(∇ ·M−1

coriolis∇)asymmetric ≡ 0 with the continuous Coriolis mass matrix Mcoriolis, so M−1
sym is a good approximation to

the continuous operators.

3 Geometrical modeling of the drilling process

The transformation into a rotating frame of reference as described in section 2 enables the modeling of the drill as a static
obstacle embedded in the fluid domain. Consequently only one computational grid for all timesteps has to be constructed so
the geometry of the tool can be captured accurately. This will be done with a combination of the Fictitious Boundary Method
(FBM) and a mesh deformation technique, which will be the focus in this section.

3.1 Fictitious Boundary Method

FBM is a filtering technique to decompose the computational domain into its solid part Ωs and fluid part Ωf respectively.
Based on a surface representation of the tool, a signed distance function d with d(xxx) > 0 for xxx ∈ Ωf and d(xxx) < 0 for xxx ∈ Ωs

is calculated. The solid-fluid interface is given by d(xxx) = 0. With this distance function an indicator function

α(xxx) :=

{
1, xxx ∈ Ωs

0, xxx ∈ Ωf

(9)

can be defined. Internal boundary conditions as well as material parameters are set according to the values of α. The major
advantage of FBM is that only one mesh for Ωs and Ωf is constructed and the interactions between the solid and the fluid are
modeled implicitly with the internal boundary conditions. Details concerning FBM can be found in [4]. For this the mesh
must capture the fluid-solid interface accurately, which will be achieved with mesh deformation.

3.2 Mesh Deformation

Starting from a structured mesh, the goal is to determine a mesh size distribution without changing the connectivity of the
underlining grid. With a user defined monitor function M weights wi are calculated that control the mesh size density. For an
precise representation of the tool surface the signed distance function as described in section 3.1 is a straightforward choice.
With Algorithm 2 the mesh nodes are moved according to the calculated weights wi in an iterative fashion with a relaxation
parameter τ . An exemplary depiction of the the deformed mesh based on the signed distance function corresponding to a
surface representation of the tool can be found in figure 1. Algorithm 2 is purely algebraic, so no further partial differential
equations have to be solved.

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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Algorithm 2 Algebraic mesh deformation
For given weights wi, edges eij and node coordinates xxxi calculate the new coordinates

for i = 1, . . . , n do

xxxnew
i = (1− τ)xxxold

i + τ

(
if ∃eij∑
j=1,n

wjxxx
old
j

)(
if ∃eij∑
j=1,n

wj

)−1

end do

with a relaxation parameter τ ∈ (0, 1].

a) b)

Fig. 1: Mesh deformation (a) based on calculated signed distance function (b)

4 Discontinuous drilling simulation model

In order to model the discontinuous drilling process, the simulation is decomposed into a ’No Contact’ (NC) and a ’Contact’
(C) configuration. Both configurations are simulated separately and coupling makes use of FBM. One grid is constructed
for both settings and simply by switching the α values corresponding to the workpiece at the borehole ground. So first a
simulation model for each configuration has to established before the discontinuous drilling model is constructed. For the
following numerical examples in this section the process and material parameters as depicted in table 1 are used.

Processparameters Coolant Workpiece Tool
Q̇ : 3.3 l/min ϱ : 0.85 g/cm3 ϱ : 8.19 g/cm3 ϱ : 14.45 g/cm3

U : 995min−1 cp : 2.02 J/(g ·K) cp : 0.45 J/(g ·K) cp : 0.2 J/(g ·K)
h : 70 kW λ : 0.00139W/(cm·K) λ : 0.095 W/(cm ·K) λ : 0.86W/(cm ·K)

ν : 0.02 Pa · s
Table 1: Process and material parameters of coolant, Inconel 718 and tool

4.1 Simulation model for ’No Contact’ and ’Contact’ configuration

The simulation algorithm for the ’No Contact’ and ’Contact’ configuration decouples the Navier-Stokes equations for the fluid
flow and the heat equation. After a preprocessing step a fully developed velocity field is calculated as a representative for the
fluid flow for a set of process and geometry data. This velocity field is then used for the simulation of the cooling process.
With FBM the heat equation is solved in Ω = Ωs ∪ Ωf on a unified mesh for the solid and fluid domain. The outline for the
model is summarized in algorithm 3.

First the simulated flow field is validated for the ’No Contact’ configuration for a different set of distances of the tool to
the workpiece and inflow velocities. The calculated velocities are compared with the corresponding experimental setup using
the Particle Tracking Velocimetry (PTV). The results that can be seen in [5] show good agreement of the simulation to the
experiments.
Next the heating during the ’Contact’ configuration is simulated with algorithm 3 using a fictional heat source at the cutting
edge, where the tool geometry intersects the workpiece geometry, and an initial calculated velocity field. For now the geometry
of the deformed chip is neglected. The result that will act as comparison to the discontinuous setup is depicted in figure 2.
As can be seen in figure 2, the temperature increases continuously until some saturation is reached as expected. Also the
temperature distribution on the tool surface is depicted. In the following section this result will be compared to the results of
the discontinuous drilling simulation.

4.2 Coupling of ’No Contact’ and ’Contact’ configuration

The central idea of the discontinuous drilling simulation model is to calculate the ’No Contact’ and ’Contact’ configurations
on the same grid using again the possibilities of FBM. Coupling of both configuration is done by switching the properties of

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Algorithm 3 Simulation model for ’No Contact’ and ’Contact’ configuration
1. Preprocessing (FBM, Material assignment, Boundary Conditions, ...)

2. while not (Fluid flow fully developed) do

Solve Navier-Stokes equations in Ωf

end while

3. while (t ≤ T ) do

Solve heat equation in Ωf and Ωs

end while

4. Postprocessing

Fig. 2: Conceptional simulation of heating process during conventional drilling with coolant flow

the elements that correspond to the workpiece. This enables the simulation to change the configuration during the retraction
of the tool flexibly and no remeshing or data transfer is needed. The outline for this model is presented in algorithm 4. For the
sake of simplicity, the retraction movement of the tool between these configurations is neglected. The influence of this part
of the process, and the possible suction that might occur, has to be investigated in future work. A representative flow field is

Algorithm 4 Discontinuous drilling simulation model
1. Preprocessing for (C) and (NC) on the same grid

2. while not (Fluid flow fully developed) do

Solve Navier-Stokes equations for (C) and (NC) in Ωf

end while

3. for all cycles do

Get velocity field from current configuration

4. while t ≤ Tcycle do

Solve heat equation in Ωf and Ωs

end while

5. Transfer temperature field to next configuration

6. Postprocessing

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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6 of 6 Section 22: Scientific computing

calculated for both configurations. Alternating between the configurations and setting the heat source on or off in accordance
with the configuration, starting with the ’Contact’ configuration, the corresponding velocity field is set and the temperature
equation is solved until some time Tcycle. The temperature field at Tcycle is set as initial temperature for the next configuration.
The resulting temperatures for the same setup as in section 4.1 and with equally distributed interruptions over time are depicted
in figure 3. In figure 3 it can be seen that the temperature has a seesaw shape, as expected, so the temperature increases during

Fig. 3: Conceptional simulation of heating process during the discontinuous drilling with coolant flow and comparison to continuous drilling

the ’Contact’ time intervals and again decreases in the ’No Contact’ intervals. In comparison to the continuous drilling setup
the overall temperatures decrease significantly which indicates that tool wear can be reduced with the discontinuous drilling
strategy. This can also be observed in the temperature distribution on the cutting edges. The coolant successfully transports
the heat out of the contact zone during the retractions of the tool reducing the thermal loads on the cutting edge.

5 Outlook

Further improvements to the presented simulation model of the discontinuous drilling strategy will focus on the accuracy
of the model concerning the fluid, thermal loads, and the geometry. For now the fluid is treated as Newtonian albeit initial
investigations show that the viscosity is temperature dependent so modifications to the Navier-Stokes solver has to be made to
take non-Newtonian fluids into account. DEFORM [6] simulations will be used to get accurate initial temperature data, heat
sources due to chip formation and initial temperature field for the CFD simulation. Additionally the resulting chip geometry
calculated with DEFORM will be included in the CFD simulation. With an accurate and flexible simulation model at hand
the sensitivity of the process with respect to different process parameters can be analyzed in order to find an optimal set of
process parameters.
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