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Abstract 

Metabolomics is an expanding field of medical diagnostics due to metabolic 
reprogramming alteration caused through diseases. Additionally, studying 
metabolomics offers an insight into the molecular mechanisms of diseases. The 
dynamicity of biological cells causes alteration in the chemical and biochemical 
characteristics of structural profiles of biological fluids and tissues. Therefore, the 
role of metabolic profiling in discovering biological fingerprints of diseases, and 
their evolution, as well as the cellular pathway of different biological or chemical 
stimuli is most significant. 
Two-dimensional nuclear magnetic resonance (2D NMR) is one of the 
fundamental and strong analytical instruments for metabolic profiling. Though, 
total correlation spectroscopy (2D NMR 1H -1H TOCSY) can be used to improve 
spectral overlap of 1D NMR, strong peak shift, signal overlap, spectral crowding 
and matrix effects in complex biological mixtures are extremely challenging in 
2D NMR analysis. Thus, in this work, we introduce an automated metabolic 
deconvolution and assignment based on TOCSY of real breast cancer tissue and 
of adipose tissue-derived human Mesenchymal Stem cells. A major alternative 
to the common approaches in NMR based machine learning where images of the 
spectra are used as an input. In the new suggested approach, metabolic 
assignment is based only on the vertical and horizontal frequencies of the 
metabolites in the 1H-1H TOCSY.  
A set of 27 metabolites were deduced from the TOCSY of a breast cancer sample 
and the classifiers: Kernel Null Foley–Sammon Transform, support vector 
machines, and third- and fourth-degree polynomial classifiers have been 
customized and extended under the semi-supervised learning scheme. The 
classifiers’ performance was evaluated by comparing the conventional human-
based methodology and automatic assignments under different initial training 
sizes settings.  
Most metabolic profiling approaches focus only on identifying pre-known 
metabolites on 1H-1H TOCSY spectrum using configured parameters. However, 
there is a lack of research dealing with automating the detection of new 
metabolites that might appear during the dynamic evolution of biological cells. 
Novelty detection is a category of machine learning that is used to identify data 
that emerge during the test phase and were not considered during the training 
phase. We propose a novelty detection system for detecting novel metabolites in 
the 2D NMR 1H-1H TOCSY spectrum of a breast cancer-tissue sample. We build 
one- and multi-class recognition systems using different classifiers such as Kernel 
Null Foley-Sammon Transform, Kernel Density Estimation, and Support Vector 
Data Description. The training models were constructed based on different sizes 
of training data and are used in the novelty detection procedure. Multiple 
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evaluation measures were applied to test the performance of the novelty detection 
methods. The results of our novel metabolic profiling method demonstrate its 
suitability, robustness, and speed in automated metabolic research. 
Furthermore, machine learning is applied on real-time 2D 1H-1H TOCSY to 
monitor the dynamic evolution of adipose tissue-derived human Mesenchymal 
Stem cells (AT-derived hMSCs) cultivated in basal culture media or in the 
presence of adipogenic or osteogenic differentiation media for a duration of 
fourteen days. Multi-class classification in addition to novelty detection of 
metabolites were established based on the profile of control hMSCs sample at 
four days cultivation and successively detect the absence and the abundance of 
metabolites after fourteen days of cultivation, adiobocytes and osteocytes 
differentiation. Kernel Null Foley-Sammon Transform und Kernel Density 
Estimation were successfully able to reveal metabolic changes that accompany 
MSCs cellular evolution starting from the undifferentiated status to their 
prolonged cultivation and differentiation into adipocytes and osteocytes. The 
results show high performances of the proposed algorithms and are compatible 
with the proved scientific analysis in stem cells differentiation studies.  
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1.1. MOTIVATION 

Metabolomics is defined as the “the quantitative measurement of the multi-parametric 
metabolic response of living systems to pathophysiological stimuli or genetic 
modification” [1]. In organisms, metabolites are in dynamic interaction within body cells, 
tissues, and environment. As a result, any biological alteration in the regular cellular 
process in the body will be revealed in an alteration of biofluid composition. These 
alterations are considered as biomarkers or biological signature that could expose the 
characteristics of the biochemical status [1, 2]. Altered metabolism, sometimes called 
’metabolic reprogramming,’ caused by diseases offers an insight into the molecular 
mechanisms of diseases. This provides a sound basis for the identification of diagnostic 
and prognostic biomarkers, tracking diseases development and treatment outcomes as 
well as for rational drug design [3]. Even at initial stages, tumors have been found to 
modify the metabolic profiles of biofluids like e.g., blood and urine, as well as of tissues, 
resulting in fluctuations of the concentrations of already existing markers or in the 
generation of new ones. Consequently, metabolomics and metabolic profiling are 
considered a promising area that involve the detection and the identification of the 
biomarkers related to prognosis and diagnosis of biological abnormalities [4].  
There is a demanding necessity of developing distinctive bioinformatics methods for 
metabolic identification due to the following challenges in metabolomics. First, the 
diversity, dynamicity and the complexity of the metabolites that can be found in a living 
system introduces an extra complication in metabolic analysis. In addition, absorption, 
synthesis, degradation and interaction with the environment are continuous processes 
that cause instant changes of the metabolism [5, 6]. Consequently, a distinct 
metabolomics profile that reveals the state of disease and the essential organism 
characteristics can be recognized, enabling further improvements in the diagnostic and 
prognostic methods ,and the detections of abnormal metabolic connection [7]. Moreover, 
metabolomics studies different types of chemical pathways, such as acids or lipids which 
further complicates the analysis process [6, 8]. Furthermore, metabolites have strong 
correlations between variables and in NMR one metabolite can contribute to multiple 
signals and different metabolites are connected through physiological pathways which 
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adds to the complexity of metabolites identification [9]. Additionally, metabolomics 
concentrate on downstream outcomes of organisms [6]; thus, the metabolome reflects the 
true dynamic functional state of cells and acts as explicit signatures of biochemical 
interactions and responses to genetic or environmental changes [7, 10]. Therefore, it is 
vital to choose analytical methods for the purpose of identification of diagnostic 
biomarkers allowing for further processing and analysis of the biological samples. 
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for the 
identification of the components of complex mixtures of small molecules, e.g., 
metabolites. NMR has proven its vital and powerful role as an analytical technique in 
metabolomics. The non-destructiveness and the reproducibility of NMR results lead to 
enabling high-throughput identification and quantitative accuracy of the metabolic 
concentration in biological mixtures [3, 11]. However,  due to the low sensitivity and 
resolution in NMR, obtaining metabolic profiling data from NMR spectra is one of the 
main challenges in analyzing complex biological mixtures. Low sensitivity and resolution 
in NMR lead to signal overlapping in a 1H NMR spectrum and metabolites are effected 
by peak shift due to pH and ionic strength variations of the biological matrix of the 
measured samples [3, 12, 13]. Therefore, consistent metabolic identification in biological 
fluids such as blood and urine or tissue [11] from the 1D NMR spectra is one of the 
significant challenges since it requires deconvolution of the NMR spectrum to overcome 
the spectral superposition of several metabolites [13, 14]. In principle, metabolic 
identification might be achieved by separating the mixture components by physical 
means, followed by NMR measurements of each component. In this approach, the 
overall NMR spectrum is assumed to correspond to a weighted sum of individual 
metabolite spectra measured individually or taken from an available reference dataset. 
Accordingly, concurrent metabolic identification by accurately matching the measured 
metabolites in the sample with the peak positions of the reference spectra can be achieved 
[14]. This approach is performed manually and involves considerable experience in NMR 
spectroscopy, metabolic assignment, sample type and chemical structure and is prone to 
operator bias [13, 14]. Moreover, this procedure is not only time-consuming, labor-
intensive, and impractical but might also be invasive since some metabolites may lose 
their activity during separation [6]. Therefore, samples are measured without chemical 
separation into individual metabolites, and afterward, the deconvolution of the resulting 
NMR spectrum is performed based on specific approaches such as "targeted metabolite 
fitting” [14-16]. Fortunately, in many cases, peaks that overlap in 1D NMR spectra can 
be resolved in 2D NMR spectra due to their higher spectral dispersion [11, 17]. Therefore, 
1H-1H TOCSY (total correlation spectroscopy) is well suited for spectral dispersion. 
Consequently, metabolomics assignments can be achieved as the signals of each 
metabolite occur on a single line (1D cross-sections (row) in the TOCSY spectrum). This 
approach eases the task of assignment as well as computational analysis. Nevertheless, 
automatically analyzing metabolites contained in biological mixtures using TOCSY 
spectra is currently limited [11]. Although many existing methods can decompose the 
mixed-signal spectrum into the individual spectra of the constituent metabolites, they 
cannot cope with the presence of spectral components induced by chemical shifts and 
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overlapping of metabolites. Therefore, the above-mentioned issues faced during 
analyzing 1D NMR are valid for 2D NMR. Concisely, the manual analysis of biological 
applications is considered a major challenge for high-throughput experiments, due to 
complexity of the experimental results [18] and the shortage of experts [19]. NMR 
chemical shift automatic assignment boosted by the ability of detecting new unexpected 
metabolites will offer a comprehensive characterization of the dynamic changes of 
metabolites, and the functional relationship in the metabolic pathways [20]. Machine 
learning and pattern recognition have been recognized as an important method for 
automation the drug discovery [21], analysis of bio systems such as enzymes, pathways, 
and cells biology [22, 23], in addition to structural and system biology [24]. 

1.2. CONTRIBUTIONS 

Machine learning appears as a compelling development in NMR spectroscopic metabolic 
profiling. We establish automated metabolic assignment systems based on the spectral 
deconvolution of 2D TOCSY NMR by employing machine learning models. Multiple 
classifiers are built and optimized for automatic metabolite assignment of different 
biological samples under different training dataset sizes. Moreover, a database of 
metabolites was constructed through utilizing the horizontal and vertical frequencies of 
the TOCSY spectra. This metabolic database has been used in our system and can be 
further employed and updated for future metabolic assignment tasks. The results of the 
automated procedures are compared to manual analysis by experts. The contributions of 
this work are: 

1. Semi-Supervised Learning (SSL) in metabolomics employing 2D TOCSY Spectra: 
SSL is implemented to assign labels to the different peaks in the TOCSY spectrum. 
SSL is helpful in cases where shortage of already existing training labeled data is 
encountered. SSL uses a combination of the already labeled data and the unlabeled 
data to assign the peaks to specific metabolites. The quality of the automated 
labelling is tested using an independent data set. 

2. Novelty Detection (ND) in metabolomics employing 2D TOCSY Spectra: Due to 
the dynamic nature of biological cells and the variability and multifaceted 
corresponding biochemical responses, discovery of unexpected novel biomarker 
which may emerge due to an internal or external stimuli is substantial. 
Distinguishing these biomarkers is essential in drug design, personalized therapy 
and understanding the biological pathway and the biochemical mechanisms of 
recovery and degeneration. 

3. Automated monitoring of metabolic changes accompanying the differentiation of 
Adipose tissue-derived human mesenchymal stem cells (AT-derived hMSCs) 
employing 1H-1H TOCSY NMR: a real monitoring of the differentiation of AT-
derived hMSCs to identify the metabolic pathways through different types of 
differentiations and long cultivation is studied and compared to established studies 
related to stem cells differentiation. 

Most of the modern automated tools that are employed to analyze TOCSY spectra use 
images of the spectrum as an input to neural networks or use multivariate statistical 
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analysis, such as Principal Component Analysis (PCA) and least squares method for the 
purpose of classification [25]. On the other hand, a significant emphasize in the methods 
described in this work is incorporating the frequencies of the TOCSY spectra in the 
assignment process. The usage of frequencies instead of images has the following 
advantages. Frequencies are directly related to the chemical shift values (ppm) values. 
PPM is a representation of characteristic frequency of the NMR device with respect to 
standard reference point and is independent from the spectrometer frequency, therefore, 
they can be adapted according to the frequency of the NMR spectrometer. These values 
acts like  a fingerprint of a nuclei in biological components [26]. Moreover, ppm values 
are easily accessible, are standardized in unified databases, and are consistent and 
reproducible under predefined protocols [11, 27]. On the other hand, images of TOCSY 
spectra are inherently noisy as can be seen in Figure 1.1 [28] and are dependent on the 
measurement resolution and sensitivity.  Our Noise Suppression procedure is discussed 
in Chapter 5.  

 

Figure 1.1: A noisy 2D NMR spectrum. Especially for samples with low intensity, NMR signal is 
contaminated by noise which appears as random fluctuating streaks in 2D NM resulting in reduced 
spectrum quality [28]. 

1.3. THESIS OUTLINE     

The thesis is structured as follows. Consequent to the introduction, Chapter 2 introduces 
basic machine learning principles, important terms and concepts of semi-supervised 
learning and novelty detection are introduced, and a summary of different methods are 
given. In Chapter 3, the general foundation of nuclear magnetic resonance (NMR) 
spectroscopy and the principles of 1D and 2D NMR are presented. In Chapter 4 the 
significant role of NMR in metabolic studies in addition to the importance of automating 
the metabolic assignment in NMR analysis are discussed. Additionally, relevant 
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contributions and related work that employ machine learning and NMR are covered. In 
Chapter 5, NMR data acquisition, dataset construction and experimental setup are 
discussed. Semi-supervised learning techniques are implemented using 2D NMR TOCSY 
spectra of breast-cancer tissue samples in Chapter 6. While the assignment of known 
metabolites is the topic of Chapter 6, the detection of novel metabolites in 2D NMR 
TOCSY spectra is conducted in Chapter 7. An experiment that simulates the metabolic 
changes in metabolism of breast-cancer tissue sample was designed to test the 
performance of the classifiers. In Chapter 8, monitoring of metabolic pathways of 
Adipose tissue-derived human MSCs (AT-derived hMSCs) cultivated in basal culture 
media or in the presence of adipogenic or osteogenic differentiation media for a duration 
of fourteen days was conducted. Chapter 9 concludes the thesis and offers potential future 
research extension. Related data and results are presented in the Appendix.   
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Metabolic profiling of NMR spectra of biofluid samples and tissues are affected by 
extreme peaks shift and peaks overlap which lead to spectral crowding [13, 14]. Spectral 
crowding hardens the process of peak identification, multiplicity and J-couplings 
determination in addition to structural investigation [5]. Consequently, manual 
assignment of NMR spectra of complex mixtures is a tedious, time and labor-intensive 
task and depends extremely on expert knowledge [1, 29]. Developing an automatic 
system for peaks assignment of NMR spectra is of significant importance [11]. In this 
chapter, an overview of the machine learning methodologies used in this work is given.  

2.1. INTRODUCTION 

Machine learning has been defined by Tom Mitchell [30] as “A computer program is said 
to learn from experience E with respect to some class of tasks T and performance measure 
P, if its performance at tasks T, as measured by P, improves with experience E”. 
The vital principle of machine learning is that it concentrates on the utilizing of 
procedures that incorporates information related to training data (experience E) to  
automatically estimate the model parameters, generalize to new data and make 
predictions (tasks T) to increase accuracy of classification (performance measure P) [30]. 
Machine learning is offering innovative insights into our lives. Every day, individuals 
interact with machine learning centered systems. For instance, voice recognition systems 
in intelligent personal assistant like Alexa and Google Assistant; e-mail spam filtering; 
image and face recognition in smart phones, security applications and social networks; 
weather prediction; traffic and map applications and customer service in retail 
applications. Machine learning is an emerging technology in many fields due to its 
effectiveness and scalability across a suite of applications. Machine learning offers a 
competitive advantage due to the high computational power of modern technology which 
enables the use of high computational resources and the integrating, collecting and 
organizing of large amount of data [31, 32].  
In biology and medicine, machine learning is supporting scientists in prediction 
evaluation, uncertainty estimation and model interpretation methods of medical images, 
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including x-ray, MRI, and mammography images. Further applications in life science 
include disease and patients categorization using molecular biomarkers; enabling the 
utilizing of data from high-throughput 'omics' including genomics, proteomics, or 
metabolomics; recommendation of treatment, predicting treatment results and the 
development of new medications [33].  
In general, a machine learning system uses three types of datasets: First dataset is the 
training dataset which is the labeled training data used to build a generalization model. 
The second dataset is the learning dataset which is the unlabeled data that is to be learned. 
A third dataset, the validation dataset, is used to tune the parameters of the classifiers. 
Importantly, all datasets must belong to the same distribution, but, the learning dataset is 
still unknown to the classifier during the training phase [34, 35]. 
Murphy [35] has divided  machine learning into two main categories, supervised and 
unsupervised learning. These categories imply different amounts of supervision which is 
reflected in how much information is shared from the human expert side. Equally, the 
amount of information shared from the human expert side binds our choice of the chosen 
machine-learning category. Supervised learning corresponds to finding a mapping using 
the labeled training data for the purpose of assigning labels to unlabeled data. Usually, 
labeled training data are labeled by humans and is available before starting the learning 
procedure [35]. On the contrary, in unsupervised learning, classifiers receive a completely 
unlabeled dataset. The machine learning system is supposed to create clusters or groups 
based on similarities or a hidden structure in the training data [34, 36].  
Usually, experts assign labels manually; nevertheless, having a complete set of manually 
labeled training data is a challenging task. The manual labelling process is time-
consuming, depends extremely on expert’s knowledge and is inflexible in cases of many 
unlabeled data from high-throughput applications. In these situations, a third category of 
machine learning that combines the previously mentioned categories is incorporated. 
Semi-supervised learning uses few labeled and many unlabeled data to infer the learning 
behavior and increase the classification performance. The labeled training data acts as 
seeds to create an initial training model; then the training model and the unlabeled data 
are used to update the initial training model [37].  
Another emerging category is novelty detection. Novelty detection is defined as 
distinguishing test samples that differ from the training data [38]. Novelty detection is 
used when training data is incomplete or a particular class happens very rarely or in 
abnormal situations [39]. A brief introduction of these categories is introduced in the 
following sections. 

2.2. SUPERVISED LEARNING 

The goal of supervised learning is to learn the function that can predict the label of the 
unlabeled unseen instance. Formally, we have a training dataset 𝑇𝑇 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 where 
N is the number of training samples. Every input-output pair comprises a training input, 
𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 , where 𝑋𝑋 is a D-dimensional vector that represents the features or the attributes of 
the N training instance, together with its output label 𝑦𝑦𝑖𝑖. In cases of continuous or real-
scaled label values, the prediction task is known as regression. On the other hand, in cases 
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when the prediction output 𝑦𝑦 ∈ {1, … ,𝐶𝐶} is assumed to be categorical or belong to discrete 
classes 𝐶𝐶, the prediction task is termed as classification. Classification can be regarded as 
a binary classification problem if 𝐶𝐶 = 2 or as multi-class classification [35] if 𝐶𝐶 > 2 . 
Supervised learning can be formulated as a generative or discriminative model. The 
generative algorithms learn the joint probability distribution 𝑝𝑝(𝑥𝑥,𝑦𝑦) to model the class 
distributions. On the other hand, discriminative models learn the boundary between 
classes directly using the training data by estimating the posterior class probabilities 
𝑝𝑝(𝑦𝑦|𝑥𝑥)  without modelling the underlying class distribution [35, 40] . 
For metabolic assignment using supervised learning, a classifier must be trained over an 
interval of possible shifted frequencies and over intervals of possible pH values, 
concentrations, temperature, and any other effect that may affect the chemical shift. 
Unfortunately, supervised learning cannot be used efficiently in NMR experiments due 
to the inapplicability to capture all settings in the dynamic environment of metabolites. 

2.3. UNSUPERVISED LEARNING 

  In unsupervised learning, no labelling information is available for the classifier and only 
the unlabeled training data 𝑋𝑋 is used during the training process. Unsupervised learning 
is used to create clusters or groups of structures based on the similarities between data. In 
general, unsupervised learning is used to estimate the probability 𝑝𝑝(𝑥𝑥𝑖𝑖) under the 
assumption that 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 is independent and identically distributed [34].   
Unsupervised learning will not be studied in this thesis. 

2.4. SEMI-SUPERVISED LEARNING 

One of the main problems in supervised learning is the unavailability of labeled training 
data. The number of training data samples, which are sufficient to produce an acceptable 
classification results, is directly related to the complexity of the classification problem 
[41]. Conversely, manual labeling is an expensive and time-consuming process, which 
needs a considerable amount of human supervision. In addition, in some context; the 
output of labeling process varies depending on the experience of the expert and therefore 
prone to error [37].   
Semi-Supervised Learning (SSL) is a category that lies between supervised and 
unsupervised learning. Some paradigms view SSL as an extension of supervised learning 
with some extra information. This view is acceptable when the goal of the classification 
process is assigning labels. SSL can also be viewed as extended unsupervised learning 
with some constrains on the construction of clusters [41]. 
In SSL, a system is provided with a limited amount of labeled training data Xlabeled =
{𝑥𝑥 1, … , 𝑥𝑥 L} and the associated labels Ylabeled = {y1, … . yL} drawn from 𝑝𝑝(𝑥𝑥,𝑦𝑦) and 

unlabeled training data Xunlabeled = {𝑥𝑥L+1, … , 𝑥𝑥L+u} from the marginal distribution 𝑝𝑝(𝑥𝑥), 
where we have L labeled data and 𝑢𝑢 unlabeled data and 𝑢𝑢 ≫ 𝐿𝐿. SSL aims to use both 
Xunlabeled and Xlabeled to boost the performance of the supervised learning based only 
on Xlabeled  [37]. SSL is based on at least one of these assumptions [42, 43]: 

• Smoothness Assumption: in SSL, smoothness is related to density on the decision 
boundaries. Close instances in the input space are likely to belong to the same class, 
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constructing a high-density area. Accordingly, two instances of different classes are 
separated by low-density regions.  

• Cluster Assumption or low-density assumption: decision boundary lies in low 
density regions and encloses high-density areas.  

• Manifold Assumption: high dimensional data can be embedded in low dimensional 
area and can be handled in this low dimensional manifold. This assumption implies 
that the high dimensional input space can be represented through collection of low-
dimensional manifolds that contains data instances and every manifold represents 
similar classes [42, 43]. 
 

The smoothness and the cluster assumptions are closely related. Clusters are formed using 
similar data, these data are grouped together to create a high-density area. The boundaries 
between these clusters form low density regions, which distinguish or separate these 
clusters [42]. The manifold assumption is a vital assumption in the dimensionality 
reduction of high dimensional features. In real applications, finding a low dimensional 
representation, which preserve the non-linear high dimensional information of the data, 
is of interest [37, 44]. 
Most SSL algorithms are derived from one of the above-mentioned assumptions; in 
correspondence to the underlying assumption, SSL is organized as follows [37, 41, 44, 
45]:  

2.4.1. Graph-based methods 

In Graph-based SSL, labeled and unlabeled data form vertices, which are connected 
through weighted edges. The edges are generally undirected and represent a similarity 
measure between the two vertices. Labeled instances transmit information through the 
graph with the goal of labeling unlabeled data [42]. 
Graph-based methods are based on two important assumptions. The first is the manifold 
embedding of data into a lower dimensional space enabling the graph representation [42]. 
The second assumption considers the smoothness of the variation of the labels. Edges 
with high weights are considered to belong to the same label. Heuristic approaches to 
compute the weight is discussed in Zhu and Goldberg [41] as follows: 

• Fully connected graph: All vertices are connected through a weight-distance 
function. A function is the Euclidean distance�𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑗𝑗�. Weight and distance have 
a monotonic decreasing relation. 

• kNN graph: A set of 𝑘𝑘 neighbors’ vertices are defined for each vertex using the 
Euclidean distance. For two vertices 𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗, if 𝑥𝑥𝑗𝑗 is part of the 𝑘𝑘 neighbours of 𝑥𝑥𝑖𝑖, the 
two vertices are connected through an edge with a constant (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 = 1) or the 
weight can be computed using a distance function. If the two vertices are 
unconnected, a constant (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 = 0) is assigned. 

• 𝜀𝜀NN graph: Two vertices 𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗 are connected to each other if �𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑗𝑗�<𝜀𝜀. The 
weight will be set to the Euclidean distance if the vertices are connected and will 
be set to zero if the vertices are unconnected. 

Graph based methods have been applied in hyperspectral image classification [46]  and 
natural language understanding [47].  
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2.4.2. Co-training method 

Co-training involves using multiple supervised classifiers [43]. Co-training is based on 
creating two disjoint subsets of a dataset, i.e., views, and using two classifiers for each 
view; classifiers contribute to the performance by exchanging their predictions. Two 
important conditions are assumed in co-training; first, the views are conditionally 
independent and the second is that each view contains sufficient labeled examples for 
training the classifiers. Let  𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 be an unlabeled dataset and   𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 be a finite 
labeled dataset  𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = [𝜒𝜒1𝑢𝑢 ,  𝜒𝜒2𝑢𝑢] where 𝜒𝜒1𝑢𝑢 and  𝜒𝜒2𝑢𝑢 are two independent views 

on   𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. Two classifiers Ϝ = [𝑓𝑓1,𝑓𝑓2] are employed separately on each view and each 
view is exposed only to one classifier, so 𝑓𝑓1 and 𝑓𝑓2are trained only on 𝜒𝜒1𝑢𝑢 and  𝜒𝜒2𝑢𝑢 
respectively. After creating the training models,   𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is classified using each 
classifier separately. The most confident label predictions of   𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  is exchanged by 
classifiers and are added to the training data to the other view [41, 45, 48]. 
Co-training can be used as a wrapper method, which means that any classifiers can be 
chosen under the Co-training framework. Co-training is used in many applications like e-
mail text classification [49], protein subcellular localization [50], classification of  images 
[51] and hyperspectral data from remote sensors [52]. 

2.4.3. Semi-supervised support vector machine 

Semi-supervised support vector machine (S3VM) has been proposed by Vapnik [53] and 
optimized by Bennett et al. [54]. S3VM was introduced, as an extension to the widely 
used SVM, to handle the problem of partially labeled data. In traditional SVM, decision 
boundaries are set to maximize the separation between 𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 whereas S3VM extends 
the setting to maximize the separation between  𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. S3VM is a non-convex np-
hard optimization problem that uses the cluster assumption to find the optimal separation 
employing both  𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and  𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 through using additional constrains in the 
optimization function of SVM[55]. Different ranges of implementation and optimization 
have been proposed to solve S3VM [56] in gene analysis [57], text classification [58], in 
addition, to spectral images analysis [59, 60]. 

2.4.4. Probabilistic generative models 

The idea of this approach is to construct a classifier based on likelihood maximization 
using both labeled and unlabeled instances. A probabilistic generative model assumes that 
data is generated from mixture models, which are divided into distinct classes. Both 
𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 are used to estimate the optimal parameters to maximize the 
probability of the model [61].  
If 𝐷𝐷 = {(𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,𝑌𝑌𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢),𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢} is the training dataset, the maximum log likelihood 
function log𝑝𝑝(𝐷𝐷|𝜃𝜃𝑚𝑚𝑚𝑚𝑢𝑢) is given by  

log𝑝𝑝(𝐷𝐷|𝜃𝜃𝑚𝑚𝑚𝑚𝑢𝑢) = � log𝑝𝑝 (𝑦𝑦𝑖𝑖|𝜃𝜃𝑚𝑚𝑚𝑚𝑢𝑢) 𝑝𝑝(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖 ,𝜃𝜃𝑚𝑚𝑚𝑚𝑢𝑢) + � log𝑝𝑝 (𝑥𝑥𝑖𝑖|𝜃𝜃𝑚𝑚𝑚𝑚𝑢𝑢)
𝑢𝑢+𝑢𝑢

𝑖𝑖=𝑢𝑢+1

 
𝑢𝑢

𝑖𝑖=1

 (2.1) 
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The sizes of  𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 are given by 𝑙𝑙 and 𝑢𝑢 respectively whereas the 
parameters of the generative model are given by 𝜃𝜃𝑚𝑚𝑚𝑚𝑢𝑢. 
 Eq. (2.1) can be divided into two terms. The first summation represents the log likelihood 
of supervised learning using 𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. The second term is related to SSL where 𝑝𝑝(𝑥𝑥|𝜃𝜃) is 
referred as the marginal probability. The marginal probability estimates the probability of 
getting 𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 regardless of the label [41].  
The problem of maximizing the log likelihood  log𝑝𝑝(𝐷𝐷|𝜃𝜃𝑚𝑚𝑚𝑚𝑢𝑢) using hidden data has been 
discussed by Dempster, et al.  [62] under the term ‘Expectation Maximization (EM)’ in 
1977. EM  optimization is an iterative method to optimize 𝜃𝜃𝑚𝑚𝑚𝑚𝑢𝑢 resulting in maximizing 
log𝑝𝑝(𝐷𝐷|𝜃𝜃𝑚𝑚𝑚𝑚𝑢𝑢)  and is carried in two steps [62]. The first step is the expectation step (e-
step) where the algorithm generates ‘soft labels’ of 𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 given the current model 
parameters 𝜃𝜃𝑚𝑚𝑚𝑚𝑢𝑢. The second step is the maximization step (m-step) in which, based on 
the e-step, the optimal parameters that maximize the log likelihood are found. EM 
assumes that the prior information, 𝑝𝑝(𝑥𝑥) and 𝑝𝑝(𝑥𝑥|𝑦𝑦), of the mixture models are accurate 
[41], nevertheless, since the labels are missing or limited, the correctness of the model 
parameters cannot be assessed correctly. To alleviate this weakness, generative models 
can be applied only for domain knowledge or specialized fields [41] tasks. Another way 
is to introduce a low weight variable that is associated with  𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, so the role of 
unlabeled data is de-emphasized [41]. 
Mixture models have been applied in various context like text [37, 63-65] and image 
classification [66, 67].    

2.4.5. Self-training method 

In self-training methods, a classifier uses its own prediction to update its training model. 
In the self-training scenario, the classifiers build a training model based on  Xlabeled using 
supervised learning. Later, on the learning phase, a new subset of instances 𝑆𝑆𝑖𝑖 ∈
 𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is selected to predict their labels, where 𝑤𝑤 ∈ 𝑛𝑛 is the number of subsets. Then 
the subset 𝑆𝑆 is removed from  𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and added together with their predicted labels to 
the training dataset 𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. Finally, the classifier is re-trained using 𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  and the 
labeled subset 𝑆𝑆𝑖𝑖.This process is repeated until the whole  𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is exhausted or no 
confident predictions can be further added to the training set.  
Usually, in the self-learning process, the subset 𝑆𝑆 contains a few numbers of unlabeled 
instances. However, the complete set of   𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and  𝑋𝑋𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 can also be used in the 
learning process, here the predicted labels might differ between iterations. Self-training is 
used as a wrapper method, so the prediction function is not restricted to specific classifiers 
and any classifier can be wrapped in the self-training scenario. On the other hand, self-
learning classifiers are sensitive to mislabeling; a wrong prediction can boost itself 
effecting the retrained model and the overall performance [41]. A vital element in the self-
training method is the confidence measure used to select which 𝑥𝑥𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 is to be added to 

the training set. Only the most confident label predictions are added to the training dataset 
and used to update the training model [37, 41]. 
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Among other applications, self-learning has been applied in human gestures recognition 
[68], traffic sign classifications [69, 70] and speech recognition [71]. In this thesis, semi-
supervised self-training method is used in all the proposed classifiers. 

2.5. CONFIDENCE BANDS 

Confidence bands are an uncertainty measure of an estimate obtained from limited data, 
and it defines the area where the true model lies with a pre-defined probability [72]. The 
certainty predictions in SSL can be employed by introducing confidence bands, which are 
used to reject possible outliers, i.e., do not lie in the confidence band threshold [73]. 
Therefore, samples that lie within the confidence threshold are added to the training set, 
and then, retraining of the classifier is performed using the added data [73]. Confidence 
bands can be calculated in several ways, for instance, using Monte Carlo [74] or 
bootstrapping [75]. The confidence band 𝜎𝜎𝑐𝑐𝑚𝑚𝑢𝑢𝑐𝑐(�⃗�𝑤) of the classifier output �⃗�𝑤 for a test 

sample 𝑥𝑥 is measured by 
 

𝜎𝜎𝑐𝑐𝑚𝑚𝑢𝑢𝑐𝑐(�⃗�𝑤) = 𝛽𝛽�𝑤𝑤𝑇𝑇(𝐽𝐽𝑇𝑇𝐽𝐽)−1𝑤𝑤 �  �𝑟𝑟𝑖𝑖2 𝑣𝑣⁄
𝑁𝑁

𝑖𝑖

 

 
(2.2) 

where 𝛽𝛽 = 𝑡𝑡𝑐𝑐𝑢𝑢𝑐𝑐−1 (1 − 𝛼𝛼
2� , 𝑣𝑣) is inverse cumulative t-student distribution, 𝛼𝛼 is the 

probability of the chosen confidence band, we use 𝛼𝛼 =0.05 for 95% confidence bands, and 
𝑣𝑣 is the number of degrees of freedom associated with the t-student distribution. The term 
(𝐽𝐽𝑇𝑇𝐽𝐽)−1 represents the covariance matrix computed by finding the weighted Jacobian 𝐽𝐽 =
𝐽𝐽𝑖𝑖𝑖𝑖
𝜎𝜎𝑖𝑖

  where 𝐽𝐽𝑖𝑖𝑗𝑗 = 𝜕𝜕𝑟𝑟𝑖𝑖
𝜕𝜕𝑃𝑃𝑖𝑖

 and 𝜎𝜎𝑖𝑖 are the associated uncertainty of the sample label that may result 

from a human or self-training.  The residual 𝑟𝑟 is the difference between the predicted 
value and the real value of sample 𝑤𝑤, and 𝑃𝑃𝑗𝑗 are the classifiers parameters to be optimized 

[76]. Confidence bands were used in the field of SSL to add certainty to the predictions 
in gesture recognition [68] and image classification [73]. In this work, we use the output 
of the proposed classifiers to compute the confidence bands following the procedure 
presented in [76-78]. 

2.6. NOVELTY DETECTION 

Novelty detection (ND) is a technique used to recognize new test samples, which are 
unknown to the training model. Depending on the domain of application, the terms one-
class classification, outlier or anomaly detection are interchangeably used to refer to 
novelty detection systems that try to distinguish normal or target samples from abnormal 
non-target samples. The concept normal/target and abnormal/non-target samples are 
used to differentiate the known categories or classes, on which the classification model is 
trained on, from uncommon new data that appears during the test phase. Due to the 
complexity of real-world systems, it is sometime inapplicable to define a list of all 
categories that might appear in the test phase. Consequently, conventional classification 
algorithms are inappropriate for this issue because they will assign a wrong label to the 
new data sample by employing the predefined categories [38, 79].  



 

2 Machine Learning 14 

 

Novelty detection is particularly beneficial when a class is extremely under-sampled or 
when a class is unavailable during the training time. In the first situation, the normal class 
has few examples to be added to the training dataset; for instance, a particular category 
happens rarely, so the classification system does not have enough instances to represent 
this category. In this case, it is better to consider the rare category as novel or abnormal 
and test it against the more frequently accruing classes. The second situation occurs when 
the training list is incomplete. Although enough instances are available to form a training 
model, it is expected that new classes will appear in the future or during the test phase 
[39].  Therefore, it is important to introduce ND algorithms that can be used to identify 
new classes which are not yet included in the training dataset.  
According to Moya and Hush [79], the one-class classifier is able to identify new training 
instances (target patterns) and distinguish them from non-target patterns. Obviously, the 
only available data to the classifier is the class of interest and ND has to distinguish them 
from all other non-target data [79, 80]. Consequently, a one-side novelty boundary is 
created based solely on the target class since no other classes are available. On the other 
hand, in multi-classes classification, data from multiple classes are accessible and the 
boundary is created depending on data instances from all classes [80].  
Following  Pimentel et al. (2014) [38], ND is categorized into the following five 
approaches[38]:  

2.6.1. Probabilistic methods  

Probabilistic methods are based on using the density estimation of the data to distinguish 
novel from non-novel instances. The training data set is used to estimate a generative 
probability density function (pdf) which resembles a model of normality. Using a 
threshold on the pdf, a test sample can be tested against novelty. This method is similar 
to the method in Section 2.4.4, where a novel sample is assumed to reside in low dense 
areas and a known sample is expected to belong to high dense areas [38]. Probabilistic 
methods can be further divided into: 

• Parametric approaches: It is presumed that the normal data is generated from pre-
known distributions with pre-calculated parameters. These parameters are finite 
based on the initial training data and used to fit the model. These distributions can 
be modeled as a simple Gaussian distribution, as mixture of Gaussian models or a 
mixture of different distributions, e.g. Poisson or gamma distributions [38, 81]. 
Common techniques in this category are mixture models [82, 83], extreme value 
theory [84-86] and state space model [87, 88]. 

• Non-parametric approaches: In non-parametric approaches, no statistical 
information about the distribution of the data is assumed. The density function is 
built using infinite parameters that can grow in size to adapt to the complexity and 
the form of the data distribution [81]. The main techniques of non-parametric 
approaches are the kernel-density estimation (KDE) [89, 90] and negative selection 
[91-93]. Parzen window estimator [94] is a common KDE approach in which the 
density function is calculated as  linear combination of the neighbor kernels at each 
point in the dataset. Parzen window estimator will be further discussed in Chapter 
7. 
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2.6.2. Distance-based methods  

Distance-based methods learn a distance metric to identify the similarity between 
different samples. They use the assumption that similar data are located near each other, 
while novel instances are located away from known data. A common technique is the 
nearest neighbor-based approaches, where the distance, typically the Euclidean distance, 
is estimated between a point x and the k-nearest neighbor. If the distance is above a 
threshold, point x is considered novel [95, 96]. Another technique is the cluster-based 
approach, where the distance between a cluster center and data points that belong to a 
cluster 𝑘𝑘 is estimated [84, 97]. A point belongs to the known classes, if the distance is 
within a specific threshold [85]. Though distance based-measures are flexible and do not 
rely on the distribution of data, these methods depends extremely on the chosen similarity 
measure, number of neighbors and cluster widths [38]. 

2.6.3. Domain-based methods  

Domain-based methods describe the boundaries enclose the training data. These methods 
ignore the class density or the sampling procedure and define a domain where the normal 
data resides [38]. One-class support vector machines (SVM) is one of the most known 
domain-based methods. A separating novelty boundary is defined as a hyperplane using 
the closest training points in a mapped space rather than the whole training set [98].  
Another variation of SVM is support vector data description (SVDD). SVDD defines a 
hypersphere with minimum volume that contains all the known training data. This 
hypersphere comprises the novelty boundary. A test sample is considered abnormal if it 
lies outside the hypersphere boundary [80, 99]. 

2.6.4. Information-theoretic techniques 

Information-theoretic techniques use uncertainty metrics to derive information contained 
in the dataset. These techniques presume that abnormal data changes the information 
related to the content of normal data. In general, metrics such as entropy and Kolmogorov 
complexity are applied on the whole dataset. If a subset of instances whose removal 
causes a significant difference in the metric, the subset is considered novel. Information-
theoretic techniques do not use the density or distribution of the data but depend 
extremely on the chosen information theoretic measure [38]. 

2.6.5. Reconstruction-based techniques  

Using the reconstruction-based techniques, test data instances are mapped using a model 
based on the training set. The objective is to find a mapping that minimizes the 
reconstruction error. The reconstruction error is defined as a novelty score which is 
created based on the distance between the test sample and the regression target. Data 
instances with large reconstruction error are considered novel samples [100]. 
Reconstruction-based techniques are divided [38] into: 

• Neural network-based approaches: Neural networks (NN) one of the most used 
approaches in ND [101]. NNs are flexible systems that are able to find the 
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association between the input and the output samples and also capable of detecting 
novel data [102]. In general, NNs are organized as a series of neurons grouped in 
layers. These neurons are connected through weighted links. Several architectures 
and applications of NN have been proposed. The main NN types are Multi-layer 
perceptron (MLP), Radial basis function (RBF), Auto-associative networks 
(AANN) and Self-organizing networks (SOM) [38] .  

• Subspace approaches: Subspace method use attributes that represent the variability 
of the data to find an embedding of the training data. This embedding is assumed 
to be able to map the data into a lower dimensional subspace where normal and 
abnormal data can be distinguished [103]. Subspace methods are also termed 
spectral methods. A common technique is Principal Component Analysis (PCA). 
PCA projects data into a lower dimensional subspace using orthogonal projection. 
The linear projection is tested for every data instance against the principal 
component. Instances belonging to known classes comply with the correlation 
structure of the training data and have a low projection value. On the other hand, 
instances belong to unknown classes do not satisfy the correlation structure of the 
training data will have a large projection value [38, 103]. Kernel PCA is an 
extension of PCA that employs nonlinear projection. Kernel PCA, uses the kernel 
methods to map the original features into a higher dimensional space and then use 
PCA to project into a lower dimensional space [104]. These methods are employed 
in hand-writing recognition [105], breast-cancer detection [106], network intrusion 
detection [107] and detection of abnormal events in spacecraft components [108, 
109]. 

2.7. THRESHOLD COMPUTATION 

A novelty threshold is essential in detecting novel data. Thresholds can be computed 
using the cross-validation method or using a separate validation dataset. In cross 
validation, the training dataset is divided into 𝐾𝐾 folds where a fold 𝑘𝑘 = {1 …𝐾𝐾}. The 
training model is built using 𝐾𝐾 − 1 folds and the 𝑘𝑘𝑡𝑡ℎ fold is hold out and used to validate 
the training model. This method is repeated until all folds are used as a validation [34]. 
Validation dataset is a separate labeled training dataset that is used to derive the optimal 
parameters of the training model. The novelty threshold for each classifier and each class 
is computed by finding the threshold with the minimum error on a validation dataset. 
ROC and AUC are used to find the optimal threshold. Brute-force search is applied on 
all possible values of thresholds per class [110]. The threshold with the minimum false 
positive and minimum false negative rate is selected as the optimal threshold. During the 
classification process, when classifying a data point, the threshold is compared to the 
output of the corresponding classifier. This output or novelty score takes the form of a 
score or a measure that determines the class membership of the test sample. Scores 
represent the degree of normality or novelty of a data sample. If the score does not comply 
the pre-computed threshold, the data sample will be classified as novel [111]. 
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3.1. NUCLEAR MAGNETIC RESONANCE (NMR)  

 NMR is an analytical technique used for qualitative and quantitative analyses in 
numerous applications. Due to NMR’s reproducibility, quantitative and non-destructive 
properties, NMR is considered one of the main instruments used in metabolic profiling. 
The analysis of metabolites allow a differentiated prediction of the health status and 
potential health risks of a patient [112].  
NMR is used in multi-component mixture analysis of biological fluids such as plasma, 
urine, and serum in addition to tissues. The primary goal of metabolic profiling using 
NMR is the prediction, diagnosis, monitoring and prognosis of diseases as well as 
optimizing medication efficacy [113]. In general, all metabolites have a known and 
reproducible NMR pattern. Using these patterns, NMR can be used to investigate the 
metabolic composition of complex biological samples. In this chapter an introduction to 
1D and 2D NMR is introduced. 

3.2. ONE-DIMENSIONAL NUCLEAR MAGNETIC RESONANCE   

NMR spectroscopy is based on the existence of the nuclear spin angular momentum 
inducing a magnetic atomic moment. Once an external magnetic field is applied on a 
nucleus a splitting into ground and an excited spin states is induced [114]. Radio 
frequency (RF) is used to promote energy transitions between these states. The. RF 
frequency required to induce energy transition depends on i) the nucleus type (e.g., 1H or 
13C), ii) the chemical environment of the nucleus and iii) when the field is not uniform, 
the typical nuclei location in the magnetic field [115]. In addition, the distribution of 
electrons in the chemical bonds effects the local magnetic field [116]. As illustrated in 
Figure 3.1, after applying a RF pulse, the nuclei transfer to the exited state. After the RF 
radiation ends, the external magnetic field B0 acts upon magnetization M of the atomic 
nuclei, which starts a precession around the z-axis of the external field with a 
characteristic frequency. The x and y components of the magnetization after the RF pulse 
is measured with a receiver coil and is called free induction decay (FID). The time domain 
signal is converted via a Fourier transformation to the frequency domain. Depending on 
the molecular structure and the chemical environment of the excited nuclei characteristic 
frequency are seen in the spectrum [116].  
 

https://www.sciencedirect.com/topics/engineering/external-magnetic-field
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Figure 3.1: One-Dimensional NMR spectroscopy pulse-acquisition and Fourier transform.  (a) Pulse-
acquisition 1D NMR experiment. The magnetization at equilibrium is aligned along the B0 direction 
(typically z-axis), ideally at the end of the relaxation delay. After 90° pulse (RF excitation pulse), 
magnetization is flipped in the x-y plane and then the precession of the flipped magnetization gives 
the FID which is detected with the NMR detector (typically inductance coil). FID  is a form of an 
NMR signal where the magnetization is flipped by 90° B0 (conventionally along z) using a 90° pulse   
leads to non-equilibrium magnetization [117]. (b) Time domain FID plotted data and its corresponding 
1D NMR spectrum by the Fourier transform (FT). The diagrams in (a) and (b) are customized from 
the literature [118, 119]. 

Tetramethylsilane (TMS) in organic solvents or sodium 2,2-dimethyl-2-silapentane-5-
sulfonate (DSS) in aqueous solutions, are recommended as universal primary frequency 
references. The methyl 1H signal chemical shift of TMS is equal to 0 ppm and therefore 
frequencies of chemicals shifts are calibrated according to the 1H or resonance of TMS 
[120]. Moreover, 3-(trimethylsilyl) propionic acid sodium salt (TSP) are commonly used 
for NMR studies is used as reliable internal chemical shift reference of compounds [121-
123]. The chemical shift ranges of 1H-NMR of organic compounds are illustrated in 
Figure 3.2, the range is customized from 0-11 ppm [124].  
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Figure 3.2: Schematic diagram of 1H chemical shift ranges for organic compounds . Adapted from 
[124]. 

3.3. TWO-DIMENSIONAL NMR SPECTROSCOPY (2D NMR) 

In the previous section, acquisition of 1D NMR has been described. Though 1D NMR 
can be obtained in a relatively short time, obtaining a good signal to noise ratio requires 
longer data acquisition times. In addition, due to the short chemical shift range and the 
limited spectral widths in 1D NMR, there is an increased probability of overlapping 
spectrum especially in complicated mixture of bioorganic molecules such as the example 
shown in Figure 3.3 [125]. Dense and overlapped 1D NMR spectra are hard to analyze 
and prone to wrong annotations. Therefore, introducing multi-dimensional NMR 
techniques can increase the spectral resolution and alleviate spectral crowding which can 
credibly detect and identify more metabolites than 1D NMR [11, 112]. 

 

Figure 3.3 : 1H NMR spectrum at 600.13 MHz of a HeLa cell extract showing metabolite annotated 
on the spectrum. Metabolites abbreviations: betaine, Bet; phosphocholine, ChoP; pyroglutamate, Glp; 
glutathione, GSH; N-acetyl 1, NACl; myoinositol, MI; phosphocreatine, PCr; pyruvate, Pyr; UDP-
galactose, UDP-Gal; UDP-glucose, UDP-Glc; UDP-N-acetyl-glucosamine, UDP-GlcNAc [125]. 

While 1D NMR provides a correlation between frequency and intensity, 2D NMR 
correlates two frequencies. The intensity is represented as third dimension and plotted as 
contour lines of the two frequencies. 2D-NMR spectroscopy is used to provide 
information about the correlation between nuclei through-bond (J-coupling) or through-
space (Nuclear Overhauser effect) to observe the molecular structure in detail. Usually, 
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in 2D NMR, the direct detection dimension is 1H while the indirect (transient) dimension 
could be 1H, 13C, 15N, 31P, or other nuclei. 2D NMR power lies in its capability to resolve 
overlapping peaks [11]. 
Figure 3.4 shows a simple two-dimensional NMR pulse-sequence. Like 1D, after 
applying an RF pulse to the nucleus, the system starts to relax back to equilibrium in the 
z axis, nevertheless, the generated FID is not recorded but is left to evolve for an evolution 
period t1 and a transfer of magnetization happens between coupled nuclei. A second RF 
pulse with a frequency resonating with the second nuclei is applied. The excitation of the 
coupled nuclei starts decaying and the resulting FID is acquired by the coil. The resulting 
FID contains information related to the coupled nuclei due to transfer of magnetization. 
Transfer of magnetization between the coupled nuclei is translated into cross peaks in 2D 
spectra. A 2D FT is applied on the two FIDs to transfer time domain signals into 
frequencies [126, 127].  
 

 

Figure 3.4: Two-Dimensional NMR spectroscopy pulse-acquisition. Adapted from [118] 

In 2D NMR spectra, each peak is determined by plotting the horizontal frequency (F2) 
versus the vertical frequency (F1) and contour lines are used to represent the intensity of 
the signal [128-130]. The following are some of the most common 2D NMR spectrum 
types. 

3.3.1.  Correlation spectroscopy (COSY) 

COSY is considered the simplest type of 2D NMR experiments. COSY is a homonuclear 
experiment which establishes the coupling between two close protons of two hydrogen 
nuclei (1H)  indicating  connectivities up to four bonds [131]. The diagonal of COSY 
spectra resemble the spectrum of the 1D NMR experiment, whereas the couplings 
between pairs of protons are indicated by cross- peaks on the off-diagonal [11, 26]. 
The COSY experiment is relatively fast and simple to analyze. Nevertheless, in complex 
mixtures, short bond range and spectral overlap increases the complexity of the COSY 
spectrum and harden the analysis process [11]. 
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3.3.2. Heteronuclear single quantum correlation spectroscopy (HSQC) 
1H–X HSQC is a heteronuclear 2D NMR spectrum which shows the correlation between 
two different chemical nuclei, for instance 1H and Carbon-13 (13C), Nitrogen-15 (15N) or 
Phosphorus-31 (31P) [132-134]. HSQC is used widely in protein NMR where the 
horizontal axis shows the chemical shifts of protons and its correlation with 13C, 15N or 
31P is shown on the vertical axis. HSQC spectrums provides less spectral overlapping and 
offers a more detailed fingerprints of molecules [134, 135]. Nevertheless, there are strong 
coupling effects that influence the HSQC experiment especially when the NMR magnetic 
field is weak [136, 137]. Furthermore, there is the disadvantage of missing spin system 
information, as all cross-peaks are independent of each other in HSQC [138, 139]. 
Though HSQC can experience strong peak deviations and loss of intensity, the sensitivity 
of HSQC is generally inadequate for metabolomics studies [140, 141] 

3.3.3.  Heteronuclear multiple-bond correlation spectroscopy (HMBC) 

HSQC shows the heteronuclear correlations only to directly bounded proton. Therefore, 
coupled nuclei which are not in direct one-bond relation are not detected. On the other 
hand, HMBC reveals long-range heteronuclear correlations between protons and a 
different chemical nucleus which are separated by chemical bonds which range between 
2 to 4 bonds. In HMBC, the direct one bond is eliminated through filtering only small j-
coupling constants by introducing a longer delay allowing evolution of the two or three-
bond. To analyze the whole spin system, a combination of HMBC and HSQC is 
recommended [11, 142]. 

3.3.4. Total Correlation Spectroscopy (TOCSY) 

Group of spins that are coupled are called a spin system. TOCSY shows the connectivity 
between pairs of spins and the total spin system [126]. TOCSY correlates between the 
coupled protons for continuous chains of protons and is not only restricted to three or four 
chemical bonds like COSY [11, 26]. Therefore, TOCSY reflects the chemical shift 
information of all members of the spin-system [143]. The efficiency of the TOCSY 
experiment is related to the magnitude of the J-coupling, the mixing time, and the distance 
between the coupled nucleuses. The closer the chemical shift distance, the larger the 
resonance of the spin system. TOCSY spectrum is a homonuclear 2D experiment, which 
is shown as a symmetrical 2D of two diagonally symmetrical contour plot where the 
diagonal represents the 1D spectrum, and the cross diagonal represents the correlation 
between the nuclei. The contours  shows the amplitude of a signal as a function of the F1 
and F2 frequency axes [126]. In TOCSY, diagonal peaks represents singlet patterns in 1D-
NMR experiment and do not indicate any coupling, while the off-diagonal cross peaks 
correspond to coupled nuclei [126]. Figure 3.5 displays a 2D 1H-1H TOCSY of a urine 
sample [143].  
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Figure 3.5: 2D 1H-1H TOCSY contour plot of a urine sample (left), the top right insert shows an 
expanded contour region between 7.5 ppm and 7.9 ppm of correlating protons. The downright inserts 
show the 1D projection of the corresponding ppm area. Coupled components can be seen in the same 
colors. Lecithin and pyridoxine are singlet signals and appear only diagonally. The MLEV pulse 
sequence is used to acquire TOCSY spectra and the MLEV mixing sequence is used to transfer 
magnetization along J-coupled bonding [143].  
 
The manual spectral deconvolution is dependent on user experience and is a severe 
bottleneck in the field [144, 145]. Additionally, it is an impractical and tedious process, 
especially for high-throughput applications and complex biological mixtures [146, 147]. 
Semi-automated approaches have been developed to decompose TOCSY spectra into 
individual components matching  an NMR databases for identification [148]. DemixC is 
a semi-automated technique that deduces 1D cross-sections (row) of a 2D TOCSY 
spectrum that does not exhibit many peak overlaps [148], and peak fitting is used to 
extract peak positions from a TOCSY spectrum [148]. Frequently, metabolomics samples 
are composed of hundreds of individual components, which may result in overlapping 
peaks and, consequently, problems of the DemixC method [148]. Therefore, the 
Demixing by Consensus Deconvolution and Clustering (DeCoDeC) is preferable to 
dealing with mixtures of higher complexity [149]. DeCoDeC identifies peaks apparent in 
specific pairs of TOCSY 1D cross-sections so that overlapping peaks associated with other 
metabolites are eliminated [148]. Significant limitations of both approaches arise because 
of the peak shifts due to matrix effects, which is the common case in metabolic profiling 
investigation of real-time evolution measurements [146].  
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Fundamentally, metabolites are the input and the output of any biological process, and 
their associated biomarkers are linked to a broad scope of disease, disorders, genetic 
reformation, and environmental settings. Therefore, metabolic studies are suitable 
approaches for research in epidemiology, cancer research, biotechnology, drug design 
and toxicology [13].  
The first NMR measurement was reported in 1938 by Isidor Rabi who has been awarded 
a Nobel Prize for his work. However, the potential capabilities of NMR to study living 
cells were not investigated until early 1980. Since 1985, NMR has been used to measure 
biological tissues and fluids [112]. NMR is established as one of the principal tools for 
metabolic studies and multi-component mixtures analysis for the following reasons: 
NMR offers detailed chemical information of metabolites in a short period of time [11, 
150]. Second, NMR is a non-destructive and a non-invasive technique, consequently, 
NMR can be used for living cells and real-time metabolic analysis of the same sample 
without damaging it [11, 150]. Third, the results of NMR are highly reproducible; if 
biological samples are stored below -80 °C, these samples can be recovered and repeatedly 
re-measured to give the same recurrent results. So, researchers test a sample using NMR 
for initial evaluation, store it, and then re-measure the same sample using NMR for 
further analysis [11]. Fourth, even for NMR measurements of highly complex biological 
mixtures, sample preparation in NMR requires minimal or no sample preparation before 
moving the sample to the NMR instrumentation [3, 11, 150, 151]. Moreover, NMR can 
be applied for in-vitro and in-vivo metabolic profiling. NMR analysis verifies the 
possibility of translating the finding of in-vitro experiments to in-vivo medical 
applications [11, 152]. Accordingly, NMR practices and evolutions have continued to 
emerge and to expand [153]. Figure 4.1 shows the growth of number of publications 
related to identifying metabolites in biological systems using NMR in the past years. 
Nevertheless, several limitations are associated with analyzing complex biofluids using 
NMR, such as low resolution and sensitivity [154]. 

4.1. 1D NMR METABOLITE SPECTRA  

Most NMR metabolic profiling studies employ statistical pattern recognition, such as 
partial least-squares discriminate analysis or PCA methods on 1D 1H NMR spectra. 
However, because of the large variability of molecular concentrations in living systems, 
statistical analysis of 1D NMR is biased toward distinguishing fluctuations in the low 
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concentration metabolites. These metabolites are usually hidden due to spectral crowding 
[155]. 

 

Figure 4.1:  A summary of the number of publications from years 2012 to 2021 on NMR in 
metabolomics. This figure is generated using topic search on Web of knowledge applying the 
keywords: 'NMR (AND) Metabolites', 'NMR (AND) Metabolomics' and 'NMR (AND) Metabolic 
profiling'. 

This issue is further complicated by small but critical  chemical shifts due to fluctuation 
in pH values, ionic strength and other factors summarized as matrix effect [13]. Matrix 
effect results from the variation between the responses of a component in a standard 
solution and its response in biological matrix. Matrix effects are hard to predict and are 
effected by interfering components such as lipids and protein [156]. Two dimensional 
NMR is used to overcome the limitation of 1D NMR, to increase spectral resolution and 
dispersion which helps in determining overlapping metabolites [11, 142, 157]. 

4.2. 2D NMR METABOLITE SPECTRA AND METABOLITE ASSIGNMENT  

Metabolite identifying using 2D NMR techniques can reveal more information about the 
studied mixture. All 2D NMR spectra use the principle of adding a second dimension by 
recording a sequence of 1D NMR spectra incorporating a series of time intervals. A 
Fourier transformation is applied to these time intervals to generate an orthogonal second 
frequency domain [158].  
2D NMR increases the signal dispersion and displays connectivity and chemical bond 
information. In addition, homonuclear NMR techniques such as 1H-1H COSY and 1H-
1H TOCSY and heteronuclear techniques such as 1H-13C/15N HSQC and 1H-13C/15N 
HMBC describe direct and indirect coupling and correlation between 1H-protons and a 
second nucleus such as 13C-carbon or 15N-nitrogen. Moreover, multiple techniques can be 
combined to reveal more information on biological mixtures. For instance, measuring 2D 
HSQC, TOCSY, and HSQC−TOCSY subsequently allows a comprehensive analysis of 
samples [153, 158-160].  
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Attempts to overcome signals overlapping in 1D NMR spectra of metabolites have 
included (i) skyline projection of 2D J-resolved spectroscopy to obtain a broadband 
proton-decoupled 1D spectrum [161], (ii) use of isotopically enriched metabolites [162] 
and (iii) sample fractionation [163]. 
A 2D 1H-1H TOCSY experiment with the zero-quantum filter technique developed by 
Thrippleton et al. [164] to obtain phase peaks can be used to obtain a metabolic profile of 
a biological sample and at the same time perform proper assignment for the metabolites 
in spite of crowding 1D spectra [164]. The experiment allowed more accurate 
quantitation of low-abundance metabolites. This approach applied on 1D proton and 2D 
TOCSY NMR was employed to analyze the metabolic profiles of urine obtained from 
wild-type and Abcc6-knockout mice. 

4.3. AUTOMATED METABOLITE IDENTIFICATION 

Metabolic profiling encompasses the investigation of metabolites concentrations, 
systematic metabolic variation that are caused by different drugs, dieting, microbiological 
causes, gene modulation or new stimuli for the purpose of the characterization of the 
effects these interactions [165]. Due to the nature of the biological fluids, cells and tissues, 
metabolites are changing to reach a dynamic equilibrium in the body. As a result, any 
abnormal biological  process, will cause a metabolic deviation in the body and biofluids 
which can be related to the diagnosis or prognosis of these abnormal biological processes 
[150, 166]. Detecting abnormal perturbations can reveal specific diseases or therapeutic 
status. NMR spectroscopy is one of the most powerful tools that are used in the 
multicomponent analysis of biofluids such as urine, blood plasma or tissue abstracts 
[166].   
Several NMR related limitations originate from its limited sensitivity and resolution 
[167]. Though major efforts to lessen these limitation, the complexity of biological 
mixtures demands further developments and enhancements for detection, identification, 
and quantitation of complex biological mixtures [3]. One of the major challenges of NMR 
spectroscopy is peaks overlapping. Peaks overlap and chemical shift is expected to occur 
not only between different molecules, but also within the same molecule in the case of 
complex multiplets overlap. Though the identification of metabolites in 2D NMR spectra 
is relatively simpler than 1D NMR [166], the straightforward identification of metabolites 
in 2D NMR is valid only to first orders systems with weak coupling. In 2D NMR, the 
identification of metabolites which appears on a relatively low intensity, or that have 
peaks which are partially or totally overlapped is a complicated task [166]. Consequently, 
in complex experimental measurements, new peak shifts, misaligned peaks as well as 
peaks with slight deviation of the expected peak shape make metabolic profiling of NMR 
measurements a challenging task [13, 167]. Therefore, even for experts and researchers, 
the manual analysis of NMR spectra is an elaborative, complicated and a time-consuming 
task. In addition, the manual analysis of 2D NMR spectra is prone to error and miss-
assignment in cases of complex mixtures with several overlapped metabolites and in high-
throughput applications [168]. In general, the classical manual analysis of 2D NMR 
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spectra can be a bottleneck in the research and experimental workflow in NMR 
spectroscopy.  
Consequently, automating the process of metabolic profiling in biological mixtures will 
support and speed the process of 2D NMR analysis significantly. Moreover, creating an 
automatic assignment system will enhance the process of knowledge transfer, so even 
nonexperience researchers will be able to analyze and assign the metabolites that appears 
in the 2D NMR spectra [168, 169]. NMR spectroscopy and Machine learning (ML) create 
a promising interdisciplinary research area that will achieve a notable progress in NMR 
spectroscopy leading to an advancement of the diagnostic and prognostic use of 
biomarkers in addition to drug design and discovery [170].  

4.4. RELATED WORK 

Introducing ML to serve as an analysis tool for NMR appears to be a reasonable effort. 
MetaboAnalyst 3.0 is an R-based tool for metabolomics studies (www.metaboanalyst.ca) 
in 1D NMR. MetaboAnalyst 3.0 [171] enables metabolomics analysis, visualization and 
interpretation [171] using the metabolome libraries HMDB [172], KEGG [173] and 
SMPDB [174]. In addition, MetaboAnalyst 3.0 has been enhanced by  a biomarker 
analysis module for biomarker identification and features ranking using PCA clustering, 
partial least squares - discriminant analysis PLS-DA classification, t-tests and ANOVA 
[171]. For raw spectral data processing, MetaboAnalyst 3.0 users have to use an external 
software for the simplification and processing of the spectrum before using the tool [171]. 
Another R-based tool for analyzing 1D spectra is BATMAN. 1D NMR spectroscopy is 
commonly used for estimating concentrations of chemical substances in solution. 
BATMAN metabolic spectral resonance patterns are derived from the metabolites library 
(HMDB) [172] by incorporating this information into a Bayesian model, which 
deconvolve NMR spectral resonance peaks to identify metabolites and to measure their 
concentrations. The reference spectra are stored in the form of chemical shifts, J-couplings 
and multiplet intensity ratios [13]. These properties are used in the sense of a prior 
probability in a Bayesian framework, allowing for slight deviations of the observed 
spectral parameters from those of the reference spectra due to pH and ionic strength [13].  
1D NMR spectroscopy is commonly used for estimating concentrations of chemical 
substances in solution [12]. However, in complex mixtures of chemical species such as in 
metabolomics, strong peak overlaps are encountered and then 2D NMR is an alternative 
approach since peaks superposition in 1D NMR spectra can often be separated in 2D 
NMR spectra [166].  
Several computer implementations have been proposed to enable NMR spectral 
processing and cross peaks identification of 2D NMR spectra. COLMARm  web server 
is an online available platform  that incorporates three 2D NMR spectra for the purpose 
of simultaneous analysis [175]. COLMARm operates in two stages; first, an HSQC 
spectrum is uploaded by the user, compared against a unified database from Biological 
Magnetic Resonance Data Bank (BMRB) [176] and The Human Metabolome Database 
(HMAB) [172] and a matched list of metabolites is created. On the next step, the matched 
list is validated against the correspondent TOCSY and/or HSQC-TOCSY spectrum. This 

http://www.metaboanalyst.ca/
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method uses pattern matching with referencing points. These referencing points could be 
standard referencing or commonly appearing metabolites. COLMARm needs human 
interventions in the validation step, so this method is not considered fully automatic.  
Another category of metabolite identification is structure elucidation and identification 
[177]. NMR is one the of the most established procedure in this category [151]. The term 
structure elucidation is defined as is the procedure of identifying the chemical structure 
of a molecule via the determination of the chemical elements numbers and types which 
constitute the molecule [178].  
Sheen et al. [179] describe a procedure for spectral outlier classification  in 2D NMR using 
protein chemical structure imported from the NISTmAb International Multilaboratory 
NMR experiment [180].This method incorporates symmetric Kullback-Leibler 
divergence as a similarity measure between spectra. A similarity score based on each 
spectrum and other similar spectrum is calculated. If the similarity score excessed a 
confidence limit, a spectrum is considered as outlier [179].  
A Bayesian framework has been used for the problem of the assignment of peaks in 2D 
NMR spectra in different formulations. In [181], 2D NMR spectra are modeled as a 
mixture of bivariate Gaussian densities. To estimate the positions of the peaks, the 
adaptive Markov chain Monte Carlo (MCMC) algorithm is used. A list of candidate 
peaks of the highest amplitude is created and the posterior probability of each candidate 
peak is calculated [181]. Another technique that use the Bayesian framework and 
Pictorial Structures is proposed in  [182]. It is assumed that metabolites can be represented 
as vectors of chemical shift 𝑧𝑧 ∈ 𝑀𝑀  and a spectrum can be represented as a set of spectral 
images Ι = {𝐼𝐼1 … 𝐼𝐼𝑘𝑘}. The assignment problem is modeled as calculating the maximum 
posteriori estimation (MAP) of 𝑧𝑧 by 𝑧𝑧𝑀𝑀𝑀𝑀𝑃𝑃 = arg max

𝑧𝑧
𝑝𝑝(𝑧𝑧|Ι). The spectral image likelihood 

𝑝𝑝(𝑧𝑧|Ι) can be estimated using Bayes’ theorem as 𝑝𝑝(𝑧𝑧|Ι) ∝ 𝑝𝑝(Ι|z)𝑝𝑝(z)  [182]. A more recent 
approach using NMR spectral line shape in 2D J-resolved NMR is presented in [183]. 
The NMR Lorentzian distribution and the associated parameters like B-spline tight 
wavelet frames and theoretical templates are incorporated into the Bayesian method. 
Online databases are used to create an estimate of prior distributions of NMR related 
parameters like J-coupling constants, peak shape parameter, multiplet chemical shift and 
global peak width. Markov Chain Monte Carlo estimate is used to perform the posterior 
inference based on the likelihood and prior functions. This approach is related to 1D 
NMR analysis through BATMAN tool mentioned previously [13, 184].  Another peak 
assignment approach [185] which incorporates the  shape of the peak on the 2D spectrum 
is introduced in [185]. After selecting peaks that are within a predefined threshold, a 
technique called the Histogram of Oriented Gradients (HOG) is used to extract the 
features of the peaks. HOG transfers the image of the peak from the 2D spectrum into a 
matrix of features through shape mapping. These features are trained and tested using 
SVM classifier [185].  
Neural networks have  been exploited in NMR for the reconstruction, denoising of 
spectra, chemical shift prediction and  automatic peak picking [145]. Mostly, these 
applications are implemented using mainstream libraries like Tensorflow [186] or Matlab 
Deep Learning Toolbox [187, 188]. For chemical shift prediction, multiple types of 
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features have been used as feature space for the training dataset. The first and most 
common is the structure of molecule where the relationship between the chemical shift 
and the environment and structure related information of the compound is estimated. In  
[189]  a peak list is created from different 2D spectra, such as 1H-15N HSQC, 1H-13C 
HSQC, HCCH-TOCSY, 15N-edited NOESY and  13C edited NOESY. These peaks are 
manually inspected by NMR analysis tool, KUJIRA [190] and converted to grayscale 2D 
and 3D images. The images are used to build a Cognitive Neural Network Tool Kit from 
Microsoft [191] for the purpose of automatic peak identification. These peaks are then 
provided to the tool with CYANA [192] for signal assignment and structure elucidation 
[189]. SMART and SMART 2.0 [193, 194] are based on training a deep convolutional 
neural network (CNN) of Siamese architecture [195] to asset the uniqueness of the 
compounds, in addition to the annotation of known compounds in biological mixture. 
SMART 2.0 is trained on 25434 HSQC spectra from the JEOL database [194]. This tool 
is designed to facilitate the structural elucidation of known compounds and discover new 
categories through using the CNN to create clusters by incorporating PCA and 
performing the annotation based on similarity metric [193, 194]. 
Several studies described the metabolism of MSCs and metabolic changes due to 
adipogenic [196], osteogenic [197, 198], and chondrogenic differentiation [199]. Stem cell 
osteogenic differentiation of hMSCs for 21 days based on 1D NMR has recently been 
studied [200, 201]. They mainly considered the lipidomic and amino acid 
characterization of osteogenic stem cells using PCA and partial least squares discriminant 
analysis. Human embryonic stem cells were studied to monitor the intracellular and 
extracellular metabolic dynamics through directed and non-directed differentiation using 
1D NMR. Similarly, PCA, least square analysis and ANOVA test were used to compare 
the differentiated and undifferentiated cells [202, 203].   
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5.1. NMR DATA ACQUISITION AND PROCESSING  

1H NMR measurements were performed using HR MAS 1H NMR probe head operated 
by a Bruker Avance III 600 spectrometer at 600.13 MHz for 1H at 276 K. HR MAS 
spinning frequency was set to 5 kHz, and the magic angle was adjusted typically 
according to the KBr measurement. The B0 magnetic field shimming was performed 
manually until the linewidth of the alanine signal at 1.46 ppm was adjusted to fall within 
the range of 1.20–1.83 Hz. Metabolites were deduced from the 1H NMR spectrum based 
on expert knowledge with the assist of 1H-1H TOCSY, 13C-1H HSQS and the Chenomx 
NMR Analysis Software from Chenomx Inc. Details are presented in [204-206] 
To avoid blurring of multiplet pattern, 1H-1H TOCSY was recorded with suppressed zero-
quantum coherences [164]. TOCSY were measured with a spectral range (SWH) of 7 kHz 
in both F2 and F1 dimensions. Mixing time and relaxation delay were set to 80 ms and 1 
s, respectively. Zero filling was performed to 16K and 128 data points in F2 and F1 
dimensions before 2D Fourier transformation [204-206]. The spectral widths in the F2 
and F1 dimensions can be adjusted or enlarged according to the area of interest in the 
TOCSY. The 1D NMR spectral projections on the F1 and F2 axes are external 
projections from extra 1D NMR measurement using the CPMG pulse sequence with 
embedded water suppression by excitation sculpting. CPMG was used to suppress 
protein, lipids and other macromolecules and it was recorded employing 400 echoes with 
1 ms echo time.  

5.2. TOCSY CROSSPEAK PICKING AND DE-NOISING  

The cross-peaks entries in F2 and F1 dimensions in ppm and Hz are deduced from the 
2D contour lines of the experimental 2D TOCSY NMR spectrum by employing the 
automatic peak picking function (pp2d) in TopSpin 3.6 provided by Bruker for acquisition 
and processing. Before applying automatic peak picking, the contour projection 
magnitude threshold was adjusted for every ppm range in F2 dimension according to the 
amplitude of the 1D NMR spectrum internal projection on F2 axis to avoid picking 
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artifacts and noise cross  peaks. Afterward, the collected peaks were listed and transferred 
as text file for data de-noising and artifact cross-peak elimination. in TOCSY spectrum, 
every real cross-peak appeared in the upper diagonal (F2, F1) due to the J-coupling should 
have a mirror (transpose) cross-peak in the lower diagonal (F1, F2) within tolerance 
threshold of ∼30 Hz, based on that we could exclude cross-peaks that do not fulfill this 
criterion. Moreover, most cross  peaks in vicinity of water and solvent signals are 
associated with T1-noise [28]. Fortunately, T1-noise appears in TOCSY spectrum as 
random or semi-random spurious streaks along the indirect F1 dimension of a 2D NMR 
spectrum and they have no transpose (mirror) in the lower diagonal entries (F1, F2). 
Typically, no metabolite signals in vicinity are taken for assignment, since other 
characteristic peaks in different F2 and F1 ranges can be considered. It is worth 
mentioning that metabolites that have no coupled protons will show singlet signals in 1D 
NMR and therefore, no cross-peaks in TOCSY. Such signals will only have contour 
projections in the diagonal. Typically, 2D TOCSY spectra provide information about 
correlated protons of the same spin system. However, peaks in the diagonal can be used 
as a part of the data to solve the issue of metabolites with no intrinsic coupling if they are 
not severely overlapping. A spectroscopic more favorable approach would be correlation 
measurements between 1H-13C HSQC [207, 208]. The term ‘targeted metabolic profiling’ 
is used for the analysis of certain molecules or functional groups rather than the whole 
spectrum, on the other hand, in this work, non-targeted metabolic profiling of the whole 
spectrum is used. Non-targeted metabolic profiling is an all- inclusive and comprehensive 
analysis of the whole spectrum and all peaks above a predefined intensity threshold are 
selected and analyzed. Automating non-targeted metabolic profiling has unlimited 
perspective in overcoming the inherent obstacles in non-targeted 2D NMR analysis [209, 
210]. 

5.3. BREAST CANCER TISSUE CELLS 

Breast cancer is considered one of the most frequent tumors and the leading cause of 
cancer death among women [211, 212]. Although, in its early stages, breast cancer has a 
curability rate of 70-80%, progressed breast cancer can be mortal [213]. Recent studies 
target to detect the potential and common metabolic signature for the purpose of early 
diagnosis, prognosis evaluation and to improve the realization of the metabolic 
pathobiology of breast cancer. 
The breast cancer tissue data used in this work has been previously analyzed and 
published [204]. The work was part of a comprehensive study focusing on the 
heterogeneity of cancer tumor tissues. Breast tumor tissue samples from 18 patients were 
analyzed. After surgery, a specimen for pathological diagnosis was immediately procured 
and the remaining tissue was snap frozen and stored at –80°C within 10 minutes. Six 
cores each taken from a different patient were analyzed blindly by HR MAS 1H-NMR 
[204, 206].  
A 1D NMR spectrum of the sample was measured, analyzed, and assigned based on 
expert knowledge with the help of the Chenomx NMR Analysis Software. A number of 
27 metabolites were assigned in the measured real breast cancer tissue sample as 
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following, namely: ’Valine’, ’Isoleucine’, ’Leucine’, ’Lysine’, ’Glutamate’, ’Alanine’, 
’Glutamine’, ’Aspartate’, Sn-Glycero-3-phosphocholine (GPC), ’Serine’, ’O-
Phosphoethanolamine’, ’Ascorbate’, ’Myo-Inositole’, ’Lactate’, ’Proline’, ’3-
Hydroxybutyrate’, ’O-Phosphocholine’, ’Threonine’, ’Glutathione’, ’Inosine’, ’Beta-
Glucose’, ’Alfa-Glucose’, ’Tyrosine’, ’Phenylalanine’, ’Uracil’, ‘Taurine’ and  
’Methionine’. Figure 5.1 shows the 1H-1H TOCSY spectrum of a breast cancer tissue 
sample studied in this work at 600.13 MHz with mixing times (τm) of 80 ms. The 2D 
TOCSY spectra were recorded using a pulse sequence that suppresses zero-quantum 
coherences [164] to avoid blurring the multiplet patterns with a relaxation delay of 1 s. In 
this way, the resulting multiplets exhibit the same structure as in 1D NMR spectra, which 
facilitates classification. Measurements with a high indirect frequency resolution can only 
be obtained by a subdivision into many time increments, resulting in long measurement 
cycles. The spectral range was set to 7 kHz in both dimensions, 16K and 128 data points 
acquired in the horizontal and the vertical dimension (F2, F1), respectively. Before 2D 
Fourier Transform, zero fillings were performed to 32K and 1K data points in the 
horizontal and vertical dimensions, respectively. The spectral widths in the two 
dimensions were acquired on spectral range of 12.00 ppm to cover all possible metabolites 
chemical shifts. The spectral ranges up to ∼ 9.0 ppm (5600 Hz) in F2 and F1 dimensions 
was considered since the cross-peaks of the metabolites in the TOCSY spectrum were 
appeared only in these spectral ranges. The NMR experiment has been acquired at 279 
K. The peak (F2, F1 in Hz) entries are deduced from the experimental 2D TOCSY NMR 
spectrum of the real breast cancer tissue from the 2D contour lines using the automatic 
peak picking function (pp2d) in Bruker TopSpin 3.6. The peak picking level was adjusted 
based on the contour projection magnitude threshold to avoid picking artifacts and noise 
peaks. Peaks are annotated in the TOCSY spectrum using the red square symbol 
associated with peak number, as illustrated in Figure 5.1.  

 

Figure 5.1 : (a) The 1H-1H TOCSY spectrum of a breast cancer tissue sampleat 600.13 MHz with 
τm of 80 ms. and relaxation time of 1 s, 16K and 128 data points acquired in the horizontal and the 
vertical dimension (F2, F1), resp. The NMR projections on F1 and F2 axes are an extra 1D NMR 
spectrum acquired by using the CPMG pulse sequence with excitation sculpting water suppression. 
(b) Peaks deduced from the experimental 2D TOCSY NMR spectrum. 
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5.3.1. Metabolites comprising the training dataset of breast cancer tissue, their 
frequencies and ppm in 2D NMR spectra. 

Table 5.1 contains the chemical shift of horizontal and vertical frequencies and the 
corresponding metabolites in the breast cancer breast tissue. The dataset is available in 
https://doi.org/10.5281/zenodo.5724057. 

Table 5.1: Breast cancer-tissue sample metabolites.  

Metabolite Metabolite 
[#] 

F2 
[Hz] 

F1 
[Hz] 

F2 
[ppm] 

F1 
[ppm] 

3-Hydroxybutyrate 1 2496 1388.4 4.16 2.31 

3-Hydroxybutyrate 1 2496 1448.4 4.16 2.41 
3-Hydroxybutyrate 1 2496 722.4 4.16 1.20 

Alanine 2 2256 876 3.76 1.46 
Alfa-Glucose 3 3130.3 2112 5.22 3.52 
Alfa-Glucose 3 3130.3 2224.7 5.22 3.71 
Alfa-Glucose 3 3132 2568.5 5.22 4.28 

Ascorbate 4 2405.3 2241.5 4.01 3.74 
Ascorbate 4 2240.9 2064.4 3.73 3.44 
Aspartate 5 2332.1 1590.9 3.89 2.65 
Aspartate 5 2332.1 1681.6 3.89 2.80 

Beta-Glucose 6 2778.6 1938.4 4.63 3.23 
Beta-Glucose 6 2778.6 2084.3 4.63 3.47 
Beta-Glucose 6 2778.6 2081.9 4.63 3.47 

Glutamate 7 2248.2 1403.4 3.75 2.34 
Glutamine 8 2258.4 1468.2 3.76 2.45 
Glutamine 8 2258.4 1278 3.76 2.13 

Glutathione 9 1529 1295 2.55 2.16 
Glutathione 9 2262.5 1295 3.77 2.16 

Inosine 10 3640.4 2567.4 6.07 4.28 
Inosine 10 3640.4 2664 6.07 4.44 

Isoleucine 11 2194.2 1181.4 3.66 1.97 
Lactate 12 2462.9 790.4 4.10 1.32 
Leucine 13 2231.4 1020.6 3.72 1.70 
Lysine 14 1806 1032 3.01 1.72 
Lysine 14 2250 1032 3.75 1.72 
Lysine 14 2250 1137 3.75 1.89 

Methionine 15 1578.3 1308.3 2.63 2.18 
Methionine 15 2310.5 1308.3 3.85 2.18 

Myo-Inositole 16 2112.5 1959.4 3.52 3.26 
Myo-Inositole 16 2167.1 1959.4 3.61 3.26 
Myo-Inositole 16 2429.9 2112.5 4.05 3.52 

O-Phosphocholine 17 2571.6 2186.9 4.29 3.64 
O-

phosphoethanolamine 
18 2408.9 1944.4 4.01 3.24 

Phenylalanine 19 2390.3 1970.1 3.98 3.28 
Phenylalanine 19 4453 4394.3 7.42 7.32 
Phenylalanine 19 4453 4422.5 7.42 7.37 

Proline 20 2471.9 1213.2 4.12 2.02 
Proline 20 2471.9 1402.2 4.12 2.34 
Serine 21 2375.3 2300 3.96 3.83 

sn-glycero-3-
phosphocholine (GPC) 

22 2342.3 2163.5 3.90 3.61 
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Metabolite Metabolite 
[#] 

F2 
[Hz] 

F1 
[Hz] 

F2 
[ppm] 

F1 
[ppm] 

sn-glycero-3-
phosphocholine (GPC) 

22 2587.8 2195.8 4.31 3.66 

Taurine 23 2049.9 1949.7 3.42 3.25 
Threonine 24 2545.2 2144.3 4.24 3.57 
Threonine 24 2545.2 791 4.24 1.32 
Tyrosine 25 4316.1 4139.7 7.19 6.90 
Tyrosine 25 2362.1 1920.4 3.94 3.20 

Uracil 26 4513 3474.8 7.52 5.79 
Valine 27 2160.6 617.4 3.60 1.03 

5.4. ADIPOSE TISSUE-DERIVED HUMAN MESENCHYMAL STEM CELLS  

Adipose tissue-derived human Mesenchymal Stem cells (AT-derived hMSCs) were 
obtained from the Cell Therapy Center (CTC)/The University of Jordan. The sample 
belongs to consented healthy females in the age range of 35-43, donor’s recruitment and 
sample collection were approved by the Institutional Review board University of Jordan 
(IRB: CTC/1-2020/04 and approved on 10.03.2020).  
Details of sample preparation can be found in the Appendix. 

5.4.1. High resolution 1D and 2D NMR experiments 

The NMR measurements were performed at Leibniz Institute for Analytical Sciences – 
ISAS, Dortmund, Germany. For 1H NMR profiling, 600 μL of deuterium oxide (D2O) 
(sigma Aldrich) was added to the lyophilized metabolite, in addition to an appropriate 
concentration of 3-(trimethylsilyl) propionate-2,2,3,3-d4 (TSP) as an internal reference 
and mixed thoroughly. Later, samples were transferred into high resolution 5 mm 
borosilicate glass NMR tubes (Boro-600-4-8) (Deutero GmbH) NMR tube. The high 
resolution 1H NMR spectra of the intracellular extracted samples in addition to two 
reference samples were acquired using broadband high resolution 600.13 MHz (B0 = 14.1 
T) NMR Bruker spectrometer (Avance III 600) and the room temperature NMR probe 
(BBO model-Bruker) at 279 K. Acquisition and processing of NMR spectra were achieved 
by using the software Bruker TopSpin 3.6. The 1D NMR spectra were acquired using the 
90° single-pulse experiment (Bruker pulse sequence zg) with embedded excitation 
sculpting for water suppression. 1H-1H TOCSY was acquired employing the phase-
sensitive TOCSY experiment, using z-axis decoupling in the presence of scalar 
interactions (DIPSI)-2 spin-lock implemented in the Bruker pulse sequence dipsi2esgpph. 
The spectral range was set to 7 kHz in both dimensions, 16K and 128 data points acquired 
in the horizontal and the vertical dimension (F2, F1), respectively. Before 2D Fourier 
Transform, zero filling was performed to 32K and 1K data points in the horizontal and 
the vertical dimension, respectively. The spectral widths in the two dimensions were 
12.00 ppm. 

5.4.2. Metabolic Profiling Assignment 

Metabolic assignment was accomplished using BMRB [176], HMAB [172] and Chenomx 
NMR Analysis Software. As a result, 32 metabolites were identified and annotated in the 
1D spectra as shown in Figure 5.2.The spectra were referenced to the 2D contour of TSP, 
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base levels were equalized to eliminate background noise. Later, automated peak picking 
at a proper threshold was performed by applying the automatic method using the pp2 
function in TopSpin 3.6, and then the obtained F2 and F1 frequencies were deduced.  
In agreement with the 1D spectra, a total of 32 metabolites were assigned from the 2D 
NMR spectra as listed in  Table 5.2. It can be observed that some metabolites appear and 
disappear during the cultivation and differentiation of the cells. NP in Table 5.2 exposes 
the disappearance of metabolites during the dynamic evolution of the cells. Looking at 
the obtained metabolic 1D and 2D NMR spectra, metabolic changes occurred in MSCs 
in response to prolonged cultivation. Differentiation is noticeable and   mainly found in 
their lipid profiles. Multiple peaks are usually related to fatty acids that are normally 
produced by adipocytes that are predominant in the 1D and 2D NMR spectra of 
prolonged cultivated cells. MSCs differentiation is related to remodeling of lipidomic 
metabolism because different functional phenotypes are correlated with changes of the 
cellular membrane. [197, 214-216]. Beside fatty acids, myo-inositol (MI), taurine (Tau) 
and 1-methylnicotinamide (1-MNA) were not observed early in MSCs, however they 
were observed later in all MSCs groups by both 1D and 2D NMR spectra. Due to the 
variation in concentration of intracellular metabolites, the contour intensities of all 
TOCSY spectra were equalized (normalized to specific minimum threshold intensity) 
which was led to the disappearance of shallow peaks (the signal to noise ratio (SNR) < 3) 
as shown in Figure 5.2. 

5.4.3. Intracellular metabolites detected in AT-derived hMSCs.  

The chemical shift and the horizontal and vertical frequencies of metabolites in AT-
derived hMSCs cultivated and differentiated under different conditions described in 
Chapter 8 are listed in Table 5.2. The dataset is available in 
https://doi.org/10.5281/zenodo.7276518. 

5.5. DATA REPRESENTATION 

In our datasets, each metabolite is represented by two main characteristic features of the 
2D TOCSY spectra: the chemical shift frequencies on the horizontal and vertical axes. 
Since sufficient data samples is a vital element for classification, data augmentation is 
implemented to overcome the small datasets due to limited NMR data [217, 218].  Data 
augmentation is implemented to extend the number of data samples by simulating 
anticipated deviation on the original samples [219]. Thus, data augmentation results in 
duplicates of the samples, and the classifiers will deal with the same sample in different 
versions [220]. Data augmentation has been applied in spectrum classification in NMR 
[221], Raman spectra [219], and infrared spectra [222]. 
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Figure 5.2: Representative high resolution 1H NMR spectra of intracellular metabolite extracts 
obtained from AT-derived hMSC samples collected at day 14 of differentiation into adipocytes and 
osteocytes, and their control samples represented in AT-derived hMSC collected at day 4 and 14 of 
cultivation in BCM. (a) 0.4–5 ppm region; (b) 5–10 ppm region. Peak assignment: Ile: Isoleucine; 
Leu: Leucine; Val: Valine; Thr: Threonine; Lac: Lactate; Ala: Alanine; Glu: Glutamine; Gln: 
Glutamate; Pro: Proline; Met: Methionine; Lys: Lysine; Arg: Arginine; GPC: 
Glycerophosphorylcholine; α-Glc: Alfa-Glucose; β-Glc: Beta-Glucose; MI: myo-inositol; ChoP: 
O-Phosphocholine; pEtN: Phosphorylethanolamine; GroPEtn: Glycerophosphorylethanolamine; 
ATP: Adenosine triphosphate; ADP: Adenosine diphosphate; Tyr: Tyrosine; Phe: Phenylalanine; 
NAD+: Nicotinamide adenine dinucleotide; Tau: Taurine; Asp: Asparagine; 1-MNA: 1-
methylnicotinamide; AcO-: Acetate; DMA; Dimethylamine. In addition to the fatty acids signals; 
namely FAT 1, FAT 2, FAT 3, FAT 4, and FAT 5, representing methyl group -CH3, Acyl chains-
(CH2) n-, methylene group -CH2-CH=CH, vinyl hydrogen -CH=CH, and diallyl methylene group 
=CH-CH2-CH=, respectively. The presence of ETOH (ethanol) and MeOH (methanol) was observed 
to represent residues from the cleaning and extraction procedures. 
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Table 5.2: Intracellular metabolites detected in AT-derived hMSCs at to control group at 4 days 
cultivation (Ct d4), 14 days of cultivation (Ct d14), 14 days of differentiation into adiobocytes (AT d14) 
and osteocytes (OS d14) and the standard frequencies from online libraries.  

Metabolite 
Ct d4 Ct d14  AT d14 OS d14 Standard  

F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 
Leu 752 494 762 484 762 489 772 494 720 540 
Leu 950 590 930 584 930 589 934 560 900 600 
Leu 900 720 914 720 913 750 910 760 900 720 
Leu 1040 610 1073 631 1060 638 1046 608 1080 600 
Leu 1040 695 1073 705 1060 709 1046 749 1080 720 
Leu 1040 893 1073 923 1060 912 1046 922 1080 900 
Leu 2229 611 2210 608 2212 610 2198 620 2220 600 
Leu 2170 737 2171 750 2171 752 2163 749 2220 720 
Leu 2163 943 2168 943 2157 908 2175 921 2220 900 
Ile 1020 540 1020 540 1020 540 1020 540 1020 540 
Ile 1023 408 1009 403 1047 417 1045 417 1020 600 
Ile 2180 570 2170 580 2178 578 2220 540 2220 540 
Ile 2160 1032 2165 1042 2195 1052 2210 1003 2220 1020 
Tyr 1920 1778 1920 1787 1920 1782 1920 1790 1920 1830 
Tyr 2396 1788 2253 1784 2355 1786 2358 1780 2340 1830 
Tyr 2304 1877 2253 1848 2356 1836 2356 1848 2362 1920 
Tyr 4073 4067 4090 3946 4094 3961 4095 3952 4316 4139 
Phe 2340 1853 2354 1906 2261 1778 2360 1848 2390 1868 
Phe 2340 1934 2254 1960 2254 1926 2260 1913 2390 1970 
Phe 4362 4193 4362 4193 4368 4193 4370 4197 4453 4422 
Phe 4362 4273 4362 4275 4368 4273 4370 4286 4453 4394 
Glu 1373 1102 1354 1106 1354 1106 1349 1106 1470 1260 
Glu 2337 1043 2337 1057 2344 1048 2333 1062 2258 1278 
Glu 2341 1278 2344 1269 2341 1288 2333 1278 2258 1468 
Gln 1295 1100 1281 1100 1284 1071 1288 1100 1260 1200 
Gln 1378 1220 1384 1200 1389 1210 1370 1230 1380 1200 
Gln 2190 1269 2186 1288 2191 1288 2194 1288 2220 1200 
Gln 2225 1370 2227 1367 2210 1380 2208 1369 2220 1380 
Lys 1740 809 NP NP 1736 783 NP NP 1800 840 
Lys 1844 893 NP NP 1836 898 NP NP 1800 900 
Lys 1836 1062 NP NP 1836 1058 NP NP 1806 1032 
Lys 2295 962 NP NP 2290 962 NP NP 2220 900 
Lys 2282 1057 NP NP 2278 1044 NP NP 2250 1032 
Lys 2282 1118 NP NP 2286 1119 NP NP 2250 1137 

FAT 1 NP NP 616 405 600 420 NP NP 600 420 
FAT 2 NP NP 789 545 789 531 789 545 785 535 
FAT 3 NP NP 1230 614 1245 620 NP NP 1260 600 
FAT 3 NP NP 1240 1080 1260 1080 NP NP 1260 1050 
FAT 4 NP NP 1715 772 1705 778 NP NP 1792 766 
FAT 5 NP NP 3139 607 3150 607 NP NP 3180 540 
FAT 5 NP NP 3138 1052 3150 1052 NP NP 3180 1080 
FAT 5 NP NP 3140 1217 3150 1219 NP NP 3180 1260 

Lac 2499 715 2494 709 2494 715 2494 720 2463 790 
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Metabolite 
Ct d4 Ct d14  AT d14 OS d14 Standard  

F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 
Thr 2160 789 2160 790 2160 720 2160 720 2160 780 
Thr 2578 789 2537 790 2582 720 2573 720 2580 780 
Pro 1879 1238 1869 1230 1873 1238 NP NP 1980 1200 
Pro 2408 1246 2408 1234 2408 1238 NP NP 2472 1213 
Pro 2408 1438 2435 1448 2405 1439 NP NP 2472 1402 
Ala 2270 723 2295 696 2295 705 2291 701 2256 876 
Val 1350 632 1383 619 1394 619 1383 619 1380 617 
Val 1875 1237 1890 1259 1880 1244 1870 1240 2160 617 
Met 1518 1187 1523 1197 1518 1177 NP NP 1560 1260 
Met 2338 1270 2342 1274 2351 1277 NP NP 2340 1260 
Met 2338 1370 2342 1367 2351 1380 NP NP 2340 1320 

pEtN 2317 1852 2305 1848 2331 1865 2307 1849 2430 1950 
GroPEtn 2300 1791 2291 1781 2293 1791 2292 1791 2300 1791 

ChoP 2454 1950 2455 1953 2458 1954 2454 1947 2572 2187 
GPC 2127 1943 2121 1943 2124 1939 2123 1939 2160 1980 
GPC 2552 2333 2535 2338 2544 2359 2533 2348 2580 2340 
Arg 1144 1000 1140 975 1143 984 1146 980 1120 920 
Arg 1910 960 1920 960 1944 988 1928 988 1920 960 
Arg 1974 1134 1978 1134 1986 1115 1969 1130 1920 1140 
MI NP NP 2039 1880 2044 1869 2036 1869 2040 1800 
MI NP NP 2088 1882 2093 1872 2087 1866 2112 1959 
MI NP NP 2154 1970 2159 1977 2152 1972 2167 1959 
MI NP NP 2460 2156 2452 2140 2452 2149 2423 2113 

Asp 2390 1574 NP NP 2398 1578 NP NP 2400 1800 
Asp 1870 1750 NP NP 1876 1768 NP NP 1800 1740 
Tau NP NP 2064 1809 2065 1812 2063 1812 2040 1980 
α-Glc 3135 2119 3125 2139 3137 2132 3140 2112 3130 2112 
α-Glc 3135 2238 3125 2254 3137 2263 3140 2280 3130 2224 
α-Glc 3135 2573 3125 2558 3132 2562 3140 2565 3130 2568 
β-Glc 2760 1937 2774 1928 2765 1931 2759 1936 2778 1938 
β-Glc 2717 2055 2714 2065 2717 2063 2717 2068 2778 2084 
β-Glc 2717 2008 2714 2000 2712 2002 2714 2089 2778 2081 
ATP 3620 2587 3640 2581 NP NP NP NP 3620 2587 
ATP 3620 2680 3640 2628 NP NP NP NP 3620 2680 
ADP 3569 2496 3566 2503 3566 2501 3570 2498 3569 2496 
ADP 3569 2700 3566 2706 3569 2708 3569 2690 3569 2700 
ADP 3569 2762 3566 2759 3569 2769 3569 2765 3569 2760 
ADP 3569 2882 3566 2885 3569 2870 3569 2868 3569 2880 

NAD+ 5310 5110 NP NP 5302 5106 NP NP 5200 5110 
1-MNA NP NP 5218 4718 5218 4725 NP NP 5341 4921 
1-MNA NP NP 5412 4718 5412 4725 NP NP 5581 4921 
1-MNA NP NP 5520 5328 5512 5321 NP NP 5581 5341 

 
An example of the data augmentation procedure for tyrosine is shown in Table 5.3. In 
SSL, before starting the classification process, data augmentation is used to create four 
disjoint datasets, training validation, learning, and testing sets. Each dataset will have 
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1200 data instances. In the training dataset, white Gaussian noise is added to the original 
frequencies with a different random signal-to-noise ratio. In the learning set, random 
noise is added to each instance of the original dataset. The validation and testing datasets 
are created by shifting the horizontal and the vertical frequency by a random value under 
a predetermined chemical shift constraint, within 30 Hz, 0.049 ppm, which is sufficient 
to simulate chemical shift fluctuations due to the NMR environmental matrix change 
[223].  

Table 5.3: A subset of the training dataset showing the output of the data augmentation procedure 
for tyrosine.From one standard chemical shift for a metabolite, multiple versions of the same 
metabolite can be created. 

Metabolite Standard 
From J-coupling 

Experimental 
TOCSY 

Augmented 
Generated 

 F2 
[Hz] 

F1 
[Hz] 

F2 
[Hz] 

F1 
[Hz] 

F2 
[Hz] 

F1 
[Hz] 

Tyrosine 
2353.3  1914.4 2362.1 1920.4 4317.1 4138.5 
4302.9 4138.3 4305.9 4139.3 4305.9 4139.0 

     4315.3 4140.3 
     2363.3 1921.7 
     2361.4 1920.9 
     2362.9 1919.1 
     …... …... 

In ND scenarios, the training, validation, and testing datasets are used. Figure 5.3 shows 
the feature space of the metabolites in the breast cancer tissue sample. It can be observed 
that the frequencies overlap in the horizontal and vertical axes and cannot be linearly 
separated training dataset and adding random Gaussian noise to create the validation 
dataset [205, 219]. Data augmentation is applied on “control group at 4 days cultivation 
(Ct d4)” to create the training dataset. The training data set is of size 4000𝑥𝑥2, where 4000 
is the number of independent samples from all existing metabolites on “Ct d4” and 2 is 
the dimension of the data, representing the horizontal and vertical frequencies. Due to 
the different number of multiples per metabolite, an uneven distribution of classes in the 
training dataset is observed and a class imbalance problem can arise. To overcome this 
issue, under-sampling of metabolites with more than two multiples has been applied 
during the data augmentation procedure. Figure 5.4 shows the feature space of the 
metabolites in Ct d4, Ct d14 (control group at 14 days of cultivation), AT d14 (after 14 
days of adiobocytes differentiation) and OS d14 (after 14 days of osteocytes 
differentiation). It can be observed that peaks overlap on the horizontal and vertical axes 
and cannot be linearly separated. Similarly, in AT-derived hMSCs samples, multiple 
versions of the same metabolite are created by shifting the experimental chemical shift 
right and left up to 50 Hz to create the peaks overlap on the horizontal and vertical axes 
and cannot be linearly separated. 
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Figure 5.3: The feature space of the 27 metabolites deduced from the TOCSY spectrum of a breast 
cancer tissue. The magnifications are selected enlargements of peaks that overlap in (F1, F2) 
dimensions. 

 

Figure 5.4: Feature space of the cross peaks of the metabolites contained in the samples (a) Ct d4, 
(b) Ct d14, (c) AT d14 and (d) OS d14.  Abbreviations: Ile. Isoleucine, Leu. Leucine, Val. Valine, 
Thr. Thrionine, Lac. Lactate, Ala. Alanine, Glu. Glutamine, Gln. Glutamate, Pro. Proline, Met. 
Methionine, Lys. Lysine, Arg. Arginine, GPC. Glycerophosphorylcholine, α-Glu. Alfa-Glucose, β-
Glc. Beta-Glucose, MI. myo-Inositol, ChoP. O-Phosphocholine, pEtN. Phosphorylethanolamine, 
GroPEtn. Glycerophosphorylethanolamine, ATP. Adenosine triphosphate, ADP. Adenosine 
diphosphate, Tyr. Tyrosine, Phe. Phenylalanine, NAD+. Nicotinamide adenine dinucleotide, 
Tau.Taurine, Asp.Aspargine and 1-MNA. 1-methylnicotinamide. In addition to FAT 1 to FAT 5. 
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Extreme peak shift and peak overlap are the main difficulties in metabolic profiling of 
NMR spectra of biofluid samples and tissues. Peak shifting aggravate the process of peak 
assignment of the same metabolites across various samples [13].  
 Using supervised learning, a classifier must be trained over the interval of possible 
chemical shifts for each metabolite, together with its multiplets all different pH values, 
concentrations, and temperature to reach an acceptable recognition rate. In cases where 
there is a shortage in the availability of training data, in addition to possible variations in 
data volume, supervised learning cannot be used efficiently. This situation is valid in 
NMR experiments due to the inapplicability to capture all settings in the dynamic 
environment of metabolites. In SSL, a training model is created based on a small, labeled 
amount of data which has been labeled by an expert or through supervised-learning 
scenarios. Later, the classifier is updated using the trained model together with the 
machine-labeled data [41]. SSL decreases the effort of capturing and adapting to all 
possible variations of different metabolites and can be a replacement for the manual 
assignment of metabolites in 2D NMR spectra. In this chapter, Polynomial Classifier 
(PC), Support Vector Machines (SVM) and Kernel Null Foley–Sammon Transform 
(KNFST) are introduced under the semi-supervised learning scenario. These classifiers 
are non-linear, which means that they map the original features of the dataset into a 
higher space, which might help in producing acceptable separability.  
As discussed in Section 2.4.5, self-learning [224] is a subclass of the SSL methodology 
and can be used as a wrapper for different types of classification algorithms [41]. In self-
training methods, the classifier itself is used to iteratively label or reject samples which 
belong to a larger unlabeled dataset. If not rejected, a sample together with its label, is 
added to the labeled dataset. Adding mislabeled data to the training dataset will have an 
undesirable effect on the classifier performance, therefore, adding only informative and 
certain predictions to the training set is an essential factor. These informative and certain 
predictions can be employed by introducing confidence bands, which are used to reject 
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possible outliers, i.e., do not lie in the confidence band threshold. Samples that do not 
exceed this threshold will be added to the training set and the classifier is retrained using 
the accepted data. The integration of SSL and confidence bands was used in field of traffic 
signs, handwritten digits [69, 73, 76], lunar elemental abundances [225] and gesture 
recognition [68]. Other confidence measures such as the mutual agreement and majority 
voting between multiple classifiers [226], uncertainty sampling [227] or conditional 
random fields [228, 229] were discussed in [45, 230]. The stopping conditions of the self-
training technique are defined through one of the following measures: the maximum 
number of iteration is reached by the classifiers, the whole unlabeled set, is added to the 
labeled set or when there are no more confident predictions which can be added to the 
labeled set [45]. This chapter has been adapted and/or adopted from [205]. 

6.1. SEMI-SUPERVISED POLYNOMIAL CLASSIFIER 

The Polynomial Classifier (PC) is a parameterized non-linear interpolation which 
transforms a sequence of input vectors to a higher dimension. PC has the form of an 
algebraic polynomial of order 𝑛𝑛. Let 𝑁𝑁 =  {1 …𝑘𝑘} be the number of training samples X, 
where X =  {𝑥𝑥1, … , 𝑥𝑥𝑘𝑘} of C different classes and class labels 𝑦𝑦 = {𝑦𝑦1, … ,𝑦𝑦𝑘𝑘}. The 
polynomial discriminant function takes the form [72]    

 g(𝑥𝑥) = 𝐴𝐴𝑃𝑃𝑃𝑃𝑇𝑇φ(𝑥𝑥) (6.1) 

where 𝜑𝜑(𝑥𝑥) is the polynomial structure that represents all the possible multiplicative 
combination of the original feature X depending on the order of the polynomial 𝑛𝑛 and on 

the dimension of the input vector [72]. The coefficient/weight matrix 𝐴𝐴𝑃𝑃𝑃𝑃𝑇𝑇 is obtained 
during the training phase and is employed during the learning process to obtain the 
probability that a given feature belongs to class 𝑐𝑐. The polynomial discriminant function 
g(𝑥𝑥) creates a mapping from the feature space to a decision dimensional space that 
produces an output of posterior probability estimate to determine the class membership 
[72]. The solution of the model can be found using least squares optimization through 

minimizing the residual ‖𝐴𝐴𝑃𝑃𝑃𝑃𝑇𝑇𝜑𝜑(𝑥𝑥) − g∗(𝑥𝑥)‖2, where g∗(𝑥𝑥)  is the optimal classification 
function [72]. 

 Moore-Penrose pseudo-inverse approximation 𝜑𝜑(𝑥𝑥)+ = �𝜑𝜑(𝑥𝑥)𝑇𝑇𝜑𝜑(𝑥𝑥)�−1𝜑𝜑(𝑥𝑥)𝑇𝑇 is used to  

estimate the model parameters 𝐴𝐴𝑃𝑃𝑃𝑃𝑇𝑇 = 𝜑𝜑(𝑥𝑥)+ g(𝑥𝑥) during the training phase [34]. 

In the learning phase, the estimated weight matrix 𝐴𝐴𝑃𝑃𝑃𝑃𝑇𝑇 is used to find the label of the 
new sample [34, 72, 76]. The number of free parameters 𝑁𝑁𝑝𝑝𝑐𝑐   in the confidence bands 

calculation is computed according to 𝑁𝑁𝑝𝑝𝑐𝑐 = (𝐿𝐿 − 1)𝑀𝑀, where L and M are the number of 

classes and the number of terms in the polynomial function [76]. In this work, we 
implemented third and fourth-order polynomial classifiers [72].  

6.2. SEMI-SUPERVISED SUPPORT VECTOR MACHINES 

The goal of Support Vector Machines (SVM) is to find a function with a maximum 
deviation from a target value 𝑓𝑓𝑆𝑆𝑆𝑆𝑀𝑀 from the training data [231]. The original features are 
mapped into a higher dimensional space using a mapping function to find a hyperplane 
that separates the features. The support vectors are training samples which act as decision 
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boundaries to determine an optimal hyperplane that has the maximal distance to the 
nearest support vectors [34]. Let N be the number of training samples, X =  {𝑥𝑥1, … , 𝑥𝑥𝑘𝑘} are 
the features of the training samples with the labels 𝑌𝑌 = {𝑦𝑦1, … , 𝑦𝑦𝑘𝑘}, ∈ {−1, +1} . SVM 
finds a hyperplane that separates these classes by solving. 
 𝑓𝑓𝑆𝑆𝑆𝑆𝑀𝑀(𝑥𝑥) → 𝜔𝜔𝑆𝑆𝑆𝑆𝑀𝑀𝑇𝑇 𝜑𝜑(𝑥𝑥) + 𝑏𝑏  (6.2) 

where 𝜑𝜑 is high-dimensional non-linear mapping of the features X, 𝜔𝜔 is the coefficient 
matrix and b is the bias vector. The hyperplane is optimized during the training phase by 
finding 𝜔𝜔 and b which maximize the distance between the support vectors and the 
hyperplanes [34].  In the learning phase, only Eq. (6.2) must be computed for every new 
instance. The implicit features mapping 𝜑𝜑(�⃗�𝑥):ℜ𝑢𝑢 → 𝐹𝐹, where 𝐹𝐹 is a high dimensional 

inner-product space, can be used to define kernel function 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 𝜑𝜑(𝑥𝑥𝑖𝑖)𝑇𝑇𝜑𝜑�𝑥𝑥𝑗𝑗� [34].  

There is a wide range of kernels that can be used, Bishop [34] presents different kernels 
and discusses different conditions for constructing kernel functions. Throughout this 

work, the Gaussian kernel, or the radial basis function (RBF): 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 𝑤𝑤−γ�𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖�
2
 is 

used, where γ controls the bandwidth of the kernel function[232]. 
SVM is a binary classifier, i.e., a classifier tries to distinguish between two classes and the 
class membership is assigned according to the sign of label 𝑦𝑦. To solve the multi-class 
problem, SVM has to be reformulated to multiple binary problems and solved by 
combining these multiple binary classifiers. One approach is to use ‘one-𝑣𝑣𝑣𝑣-all’ 
classification. In this method, a multi-class problem is treated as multiple binary-
classifiers in which a model is created using one class against all other classes. Suppose 
we have 𝑛𝑛 classes 𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2, . . . 𝑐𝑐𝑢𝑢−1, 𝑐𝑐𝑢𝑢}  for class 𝑐𝑐1, we consider 𝑐𝑐1 as one class and all 
other classes 𝑐𝑐2. . 𝑐𝑐𝑢𝑢 are considered as another class. We build SVM model for class  𝑐𝑐1. 
This procedure is repeated 𝑛𝑛 times resulting in n models for n classes. The 𝑛𝑛 multiple 
binary classifiers are then combined to create a multi-class classification problem. The 
label assignment for a new sample employs all n SVM models and assigning the label for 
the model with the highest output value [34, 233]. Another strategy is ‘one-𝑣𝑣𝑣𝑣-one’ in 
which 𝑐𝑐(𝑐𝑐 − 1)/2 training models are built. An instance is classified according to a voting 
system [35]. On this work, the binary classification is extended into a multi-class approach 
by using one-𝑣𝑣𝑣𝑣-all classification. 
Originally, SVM was designed as a classification problem where the label y is a discrete 
rather than a probability value. For comparing the degree of certainty of the prediction, 
obtaining a posterior class probability is useful. Several methods have been introduced to 
modify SVM to calibrate distance values into probabilities [53, 232, 234-236]. Platt [236, 
237] fits the output of the SVM classification 𝑃𝑃(𝑦𝑦 = 1|𝑓𝑓𝑆𝑆𝑆𝑆𝑀𝑀) using a sigmoid function 
with parameters 𝐴𝐴 and 𝐵𝐵 :  
 𝑃𝑃(𝑦𝑦 = 1|𝑓𝑓𝑆𝑆𝑆𝑆𝑀𝑀) ≈ 𝑃𝑃𝑀𝑀,𝐵𝐵(𝑓𝑓𝑆𝑆𝑆𝑆𝑀𝑀) =

1
1 + 𝑤𝑤𝑥𝑥𝑝𝑝 (𝐴𝐴𝑓𝑓𝑆𝑆𝑆𝑆𝑀𝑀 + 𝐵𝐵)

 
(6.3) 

 Platt defines a training set �𝑓𝑓𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖 , 𝑡𝑡𝑖𝑖� where  𝑓𝑓𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖 and 𝑡𝑡𝑖𝑖  are the output of the SVM 

classification and the target probability for training sample 𝑤𝑤 respectively. The parameters 
𝑧𝑧∗ = (𝐴𝐴∗,𝐵𝐵∗) are the optimal parameters to solve the maximum likelihood problem. The 
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number of positive samples  𝑁𝑁+ and the number of negative samples 𝑁𝑁−  are used to 
describe the targets probability:  
 

𝑡𝑡𝑖𝑖 =  �

𝑁𝑁++1  
𝑁𝑁++2

         if  𝑦𝑦𝑖𝑖= + 1
𝑁𝑁−+1  
𝑁𝑁−+2

          if  𝑦𝑦𝑖𝑖= − 1
         , 𝑤𝑤 = 1 … . . 𝑙𝑙 

 (6.4) 

In the sigmoid fit, instead of [0,1], the target probability 𝑡𝑡𝑖𝑖 will be used and the sigmoid 
parameters are learned and estimated through minimizing the negative log likelihood of 
the training set with cross-entropy error [236, 237]: 
 min

𝑀𝑀,𝐵𝐵
f(z) = −�𝑡𝑡𝑖𝑖 𝑙𝑙𝑙𝑙𝑤𝑤(𝑝𝑝𝑖𝑖)

𝑖𝑖

+ (1 − 𝑡𝑡𝑖𝑖) 𝑙𝑙𝑙𝑙𝑤𝑤(1 − 𝑝𝑝𝑖𝑖) 

                          subject to  𝑝𝑝𝑖𝑖=𝑃𝑃𝑀𝑀,𝐵𝐵�𝑓𝑓𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖� 

(6.5) 

In this work, the tool box LIBSVM [232] is used. LIBSVM implements the extension of 
Platt and multi-class classification. Moreover, the confidence bands are calculated using 
Eq. (2.2), the degree of freedom 𝑣𝑣 is defined as the difference between the total number 
of training samples and the number of support vectors [76] .   

6.3.  SEMI-SUPERVISED KERNEL NULL FOLEY–SAMMON TRANSFORM  

Following [200, 201], let  Xc denote the 𝑐𝑐th class sample and Nc is the number of samples 
that belong to class c, then X is an n-dimensional sample with elements N belonging to 𝑐𝑐 
classes. 
The within-scatter matrix Sw , the between-class scatter matrix Sb and the total scatter 
matrix St are defined [238] as  

 
Sb = �Ni(μi − μ)(μi − μ)T

𝑃𝑃

𝑖𝑖=1

 
(6.6) 

 
Sw = ��(xi

j
Ni

j=1

− μi)(xi
j − μi)T

C

i=1

 
 

 
St = ��(xi

j
Ni

j=1

− μ)(xi
j − μ)T

C

i=1

 
 

Where xi
jis the 𝑗𝑗th sample that belongs to class 𝑤𝑤, μ = 1

𝑁𝑁
∑ ∑ xi

j Ni
𝑗𝑗=1  𝑐𝑐

𝑖𝑖=1 is the sample mean, 

μi = 1
Ni
∑ xi

jNi
𝑗𝑗=1    is the mean of the samples that belong to class 𝑤𝑤.  

The Fisher Linear Discriminate criterion (FLD) finds the projection direction ω that best 
separates the data in terms of classification. FLD helps to find the linear transformation 
that yields a minimal within-class scatter and a maximal between-class scatter. 
Consequently, a sample is projected as close as possible to samples that belong to the 
same class and as far as possible to samples which belong to a different class. In terms of 
Sw and Sb, FLD is defined [239] as: 

 
J(ω) =

 ωTSb ω
ωTSw ω

 
(6.7) 
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Optimizing expression Eq.(6.7) using the generalized eigenvalue problem [238, 240], we 
get  

 Sb ω = λSwω (6.8) 

By the definition of the generalized eigenvalue problem, Sw is non-singular and ω and λ 
are the generalized eigenvectors and corresponding eigenvalues of Sb andSw . The 
eigenvalues are ordered such that  λ1 ≥ ⋯ ≥ λk ≥ 0 and the eigenvectors are orthonormal 

such that ω𝑖𝑖
𝑡𝑡ω𝑗𝑗 = 0 where i ≠ j. Normalizing the eigenvectors such that �ω𝑗𝑗�

2 = 

ω𝑗𝑗𝑇𝑇ω𝑗𝑗 = 1 and collecting them in a matrix φ= ω(1), … . ,ω(k), we can calculate the 

discriminate vectors of FST by  y = φTx  [200]. 
The Null-Foley–Sammon Transform (NFST) suggests that we can find some null 
projection direction enforcing the conditions  ωTSw ω = 0 and  ωTSb ω > 0  in Eq.(6.7), 
so we get   J(ω) = ∞, such ω is called the Null Projection Direction (NPD) [201]. The 
best separability is ensured because all samples that belong to a given class are projected 
into one single point such that the within-class scatter is zero and at the same time, 
different classes are projected far from the rest of classes [201]. The idea of NFST is 
illustrated in Figure 6.1.  
 

Figure 6.1: Geometrical visualization of NFST. Every class is represented by a single point in the 
mapped space. Test samples are mapped nearer to the class representation they belong to and far 
away from different classes.  

The optimization problem for NFST [240] turns into :
                                       J(ω) = max

ω
| ωTSb ω| subject to | ωTSw ω| = 0

 

   (6.9) 

To solve Eq.(6.9), we find ω
yields
�⎯⎯� (ωTSw ω = 0 ∧   ωTSb ω > 0). It has been shown in 

[241, 242], that we can find the orthonormal basis B using Gram-Schmidt 
orthogonalization, and then we can write 
 ω = β1b1 + ⋯+ βmbm = Bβ 

                                        for each ω ∈ Zt⊥ 

   (6.10) 

Where Zt⊥is the orthogonal complement of the null space of St. Then the solution β is 
computed through replacing ω by Bβ in ωTSw ω = 0, and we can write [241, 242] : 

  (BTSw B)β = 0 (6.11) 
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Solution β from Eq.(6.11) is used to compute the null projection direction ω using Eq.    
(6.10) to calculate the discriminant function NFST [241]. 

Let Xw be the matrix consisting of the vectors xi
j − μi and Xt be the matrix consisting of 

the vectors xi − μ,  we can define Sw = 1
N

Xw𝑋𝑋𝑤𝑤𝑇𝑇    and  St = 1
N

Xt 𝑋𝑋𝑡𝑡𝑇𝑇 [241], so Eq. (6.11) can 

be expressed as  
 HHT β = 0    where H = 𝐵𝐵𝑇𝑇Xw              (6.12) 

The above Equation suggests that the eigenvalue problem solving the Null Space 
Discriminative direction is summed up to an inner product problem which proposes to 
extend the algorithm using kernels. Although NFST turns out to be a successful classifier 
[240], but due to its linear approach, it is inadequate to classify real- world example. 
Therefore, it is extended to perform classification in non-linear models using kernels. By 
incorporating kernels, Eq. (6.6) are rewritten as  

 
𝑆𝑆𝑢𝑢
𝜑𝜑 = �Ni(μiφ − μφ)(μiφ − μφ)T

𝑃𝑃

𝑖𝑖=1

 (6.13) 

 
𝑆𝑆𝑤𝑤
𝜑𝜑 = ��(φ(xi

j)
Ni

j=1

− μiφ)(φ(xi
j) − μiφ)T

C

i=1

 
 

 
𝑆𝑆𝑡𝑡
𝜑𝜑 = ��(φ(xi

j)
Ni

j=1

− μφ)(φ(xi
j) − μφ)T

C

i=1

  

Where μφand μiφ are the mean of all samples in the higher space and the mean of class 
𝑤𝑤 respectively. The fisher criteria in the higher space can be defined [240] as  

 
Jφ(ω) =

 ωT𝑆𝑆𝑢𝑢
𝜑𝜑ω

ωT𝑆𝑆𝑤𝑤
𝜑𝜑ω

                                      (6.14) 

The optimization problem can be written [240] as  

 Jφ(ω) = max
ω
�  ωT𝑆𝑆𝑢𝑢

𝜑𝜑ω� subject to �ωT𝑆𝑆𝑤𝑤
𝜑𝜑ω� = 0 

       (6.15) 

The orthonormal set in the mapped space can be found using kernel PCA [241, 243].The 

kernel PCA algorithm [241] uses the centralized kernel  K = (I − 1N)K(I − 1N), where K 
is the kernel matrix of the mapped training data, I is the N × N identity matrix and  1N is 

a N × N matrix with all elements equal to 
1
N

. Applying the eigenvalue decomposition of   

K = VEVT = ∑ λiviviTn
i=1 , where V is the  N × N  matrix whose columns contain the 

eigenvectors vi of K and E is a diagonal matrix containing the corresponding 

eigenvalues λ, where λ1 > ⋯ > λn. With K being guaranteed to be positive-definite [34] 
and V be an orthonormal matrix, we can define a factor matrix of the form V� = VE1/2, 
which defines a scaled eigenvector that contains the coefficient for the normalized 
orthonormal basis that is to be replaced [241, 244] in Eq. (6.11). The orthonormal basis 

Bnew can be expressed by the centralized data in kernel space φ(x) and coefficient vector 
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[241] V� as  Bnew = φ(x)V�. Let the matrix H𝐾𝐾 = �(I − 1N)V��
T

K(1 − L), where L a block 

diagonal matrix with block sizes equal to the class-specific number of samples Nc and the 
value 1 Nc⁄  of each non-zero element. The factor (I − 1N) is a normalization of the basis 
vector coefficient due to zero-mean mapping resulting from kernel centralization [241, 
242]. Replacing H by H𝐾𝐾 in (6.11), we obtain β1 … βc−1 solutions and we can calculate c −
1 projection directions ωj using the coefficient vector V�,  ωj = �(I − 1N)V�� βj      ∀ j =

1, … , c − 1. To find the null space projection for point 𝑧𝑧 on  ω, we calculate ω𝑇𝑇𝐾𝐾(𝑧𝑧) =

 βj 𝑇𝑇 �(I − 1N)V��
𝑇𝑇
𝐾𝐾(𝑧𝑧) [241, 244]. 

The test point z is mapped to (𝐾𝐾(𝑧𝑧)𝑇𝑇ω1, …𝐾𝐾(𝑧𝑧)𝑇𝑇ωc−1)T, with  𝐾𝐾(𝑧𝑧) as the kernel function 
of sample z [240-242].  
KNFST was used an outlier detection in previous work [241, 245, 246], nevertheless, in 
this work we have extended the functionality of KNFST to be employed in the SSL 
scenario as following: During the training phase, the projection direction ω, the class-
wise projections of training data into the null space 𝐷𝐷 [241], in addition to the confidence 
band for each sample is computed using the training data.  During the learning process, 
for each sample zunlabeld ∈ Xunlabeled, the projection 𝑧𝑧∗ using ω is computed. The class 
membership is computed according to  
 𝐶𝐶𝑙𝑙𝐶𝐶𝑣𝑣𝑣𝑣(𝑧𝑧∗) = min

1≤𝑖𝑖≤𝑃𝑃
 𝑑𝑑𝑤𝑤𝑣𝑣𝑡𝑡(𝑧𝑧∗,𝐷𝐷) (6.16) 

In Eq. (6.16), the class membership 𝐶𝐶𝑙𝑙𝐶𝐶𝑣𝑣𝑣𝑣(𝑧𝑧∗) is computed by calculating the Euclidean 
distance between the projected sample 𝑧𝑧∗ and the projection of all classes in the mapped 
null space. The instance 𝑧𝑧∗ is assigned to the nearest class as depicted in Figure 6.2. Next, 
the confidence band for  𝑧𝑧∗ is computed according to Eq. (2.2).The degree of freedom for 
the t-student distribution is the difference between the size of the feature space and the 
size of projected dimension [247].   

 

Figure 6.2: Class membership in KNFSTis determined according to the distance between the 
projected class and the new red sample. The blue, yellow and green classes are mapped into one 
point for each class in the mapped class. The assignment of the new red sample is determined 
according to the distance between its projection and the projection of the other classes (d1, d2, d3). 
Distance d2 is the shortest distance to the red class, therefore, it is more probable that the red sample 
belongs to the yellow class. 

 Initially, confidence bands are computed from the training data and their values are the 
main criterion to decide whether a sample is used to update the training set. A relative 
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deviation of the confidence value of training data is allowed, i.e., an unlabeled sample 
can be added to the training set once it is corresponding confidence value falls within this 
deviation. Once the sample is accepted, it is added to the training set together with its 
label as well as its confidence value. At last, the classifier is retrained after a maximum of 
t samples has been added to the training dataset. For the sample 𝑧𝑧∗, we construct a two-
sided normalized confidence band (𝜎𝜎𝑚𝑚𝑖𝑖𝑢𝑢,𝜎𝜎𝑚𝑚𝑢𝑢𝑥𝑥) such that 𝑝𝑝𝑟𝑟𝑙𝑙𝑏𝑏𝐶𝐶𝑏𝑏𝑤𝑤𝑙𝑙𝑤𝑤𝑡𝑡𝑦𝑦((σmin ,σmax) ∋
σz) = 1 − α, where σz is the computed confidence band for sample z. The values of σmin 
and σmax are calculated as σmin = 𝑞𝑞𝑢𝑢𝐶𝐶𝑛𝑛𝑡𝑡𝑤𝑤𝑙𝑙𝑤𝑤(σTrain, ℓmin) and σmax =
𝑞𝑞𝑢𝑢𝐶𝐶𝑛𝑛𝑡𝑡𝑤𝑤𝑙𝑙𝑤𝑤(σTrain, ℓmax), where ℓmax and ℓmin are experiment-dependent and σtrain is the 
confidence band vector of the training data. Generally, all possible combinations values 
0 < ℓmax ≤ 1 and 0 < ℓmin ≤ 1   could be examined [248]. In our settings, if multiple 
combinations of ℓ𝑚𝑚𝑢𝑢𝑥𝑥 and ℓ𝑚𝑚𝑖𝑖𝑢𝑢 achieve a similar accuracy and misclassification rate, then 
we choose the configuration with the narrowest confidence band. Figure 6.3 and Figure 
6.4 summarize the steps in the training as well as in the learning phases of KNFST, 
respectively. 

6.4. EXPERIMENTS 

In the scenario of semi-supervised learning, a third (PC3) and fourth order (PC4) 
polynomial classifier, KNFST, and SVM classifiers are tested. The performance of the 
classifiers related to an increased size of the initial training set was investigated and 
plotted in Figure 6.5 to Figure 6.6. The learning procedure is repeated for different initial 
amounts of training data to examine the role of the size of the initial dataset on the 
learning process and to observe the minimum ratio of the initial training set, which is 
sufficient to produce an acceptable performance. The labeled dataset is partitioned into 
ten portions of training data. The system uses random initial training samples, starting 
from 10%, 20%, 30%, until reaching 100% of the training data. This random division and 
permutation of the training dataset will lead to a different number of samples per 
metabolite; this is important to monitor how classifiers will handle unbalanced datasets 
in diverse experimental situations. Therefore, it is essential to repeat the experiment 
multiple times and enforce the classifiers to deal with random permutation and partition 
to obtain accuracy expectations independent of the partition of the training dataset. The 
labeled dataset is partitioned into ten portions of training data. The system starts by using 
random initial training samples, starting from 10%, 20%, 30%, until reaching 100% of the 
training data size. For each portion of the initial training dataset, ten runs are performed. 
Thus, the classifiers will perform the experiments ten times for each of the ten partitions 
of the training dataset. A testing dataset, of size 1200 × 2, which is created using data 
augmentation is used to test the performance of the SSL scenario. 
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Figure 6.3: The training phase in semi-supervised KNFST algorithm. The aim of the training phase 
is to generate a training model based on training dataset. The training models consists of the 
optimized projection matrix, confidence bands values and the class-wise projections of training data 
into the null space.  
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Figure 6.4: The learning phase in Semi-supervised KNFST algorithm.  The learning process starts 
by using the pre-generated training model. SSL iteratively selects a sample from the unlabeled data. 
The classifier predicts a label for the sample where new labels are accepted if the confidence band 
value is within a range   𝜎𝜎𝑚𝑚𝑖𝑖𝑢𝑢 ≤ 𝜎𝜎 ≤ 𝜎𝜎𝑚𝑚𝑢𝑢𝑥𝑥. Those accepted samples are added to the initial training 
set together with their predicted labels after 𝑡𝑡 accepted samples, where 𝑡𝑡 is a re-train flag used to 
check the number of accepted samples before retraining the classifier. The classifier is retrained on 
those 𝑡𝑡 samples, creating a new training model that will be used to predict the labels for the rest of 
the unlabeled data and new confidence bands are calculated. This procedure is repeated until no 
unlabeled data matches the confidence band conditions, if there is no qualified example left, the 
algorithm terminates.   
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 The assessment of the results is based on the accuracy of the classification:  

• Accuracy =  Number of correctly classified samples
Total number of samples 

    

• Mislabeling rate = Number of wrongly classified samples added to the training set 
Total number of learned examples added to the training set

 

6.5. RESULTS AND DISCUSSION 

The accuracy and the mislabeling of the classifiers versus the size of initial training data 
are displayed as boxplots of median and standard deviation for ten different processing 
runs. Figure 6.5a shows the classification accuracy of KNFST, SVM, PC3, and PC4 
classifiers. From the plot, the accuracy of KNFST and SVM increases with an increasing 
initial amount of labeled data until reaching around 100% at the size of 20% of the initial 
training dataset, where it is corresponding at this point to only eight samples per 
metabolite. 

 

Figure 6.5: The accuracy and mislabeling versus different sizes of initial training data. 

Conversely, PC3 and PC4 showed a lower accuracy in comparison and no improvement 
in the performance with the increasing size of the training dataset. The most probable 
explanation is the high mislabeling rate, shown in Figure 6.5b, where PC3 and PC4 have 
mislabeling rates of around 60% and 45%, respectively, overall sizes of the training 
dataset. Noticeably, both PC3 and PC4 were unable to learn any samples until using 30% 
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and 40% initial labeled training data. Remarkably, the mislabeling (misclassification) of 
KNFST and SVM starts with a rate of less than 5% (considered significantly low), and it 
decreases with increasing training set size reaching nearly 0%. 
 Analyzing the performance of the classifiers in the presence of an extremely small 
amount of initial training data, as low as one or two labeled samples per metabolite, is 
also noteworthy for this work since an NMR dataset is always kept as small as possible 
to save measuring time and to avoid sample alteration with time, leading to data scarcity.  

 

Figure 6.6: The accuracy and mislabeling versus different sizes of initial training data dataset for 
small initial amounts of labeled training data (≤9% of the entire dataset). 

Figure 6.6a shows the accuracy of the classifiers in these cases with only 1% of the training 
dataset, ensuring one sample per metabolite per multiplet was the starting of the 
classification. Interestingly, the accuracy of SVM and KNFST kept increasing steadily 
despite the extremely small size of the initial training dataset. Additionally, the accuracies 
of both KNFST and SVM reached 90% at an initial training data set the size of 9%. The 
mislabeling rate of the SVM is around 40% at 1% of the initial training dataset of size, as 
shown in Figure 6.6b. No mislabeling rates appear for KNFST because it was not able to 
learn any sample. Later, the values of mislabeling of KNFST and SVM were around 15% 
and 25%, respectively. These values of mislabeling were decreasing with increasing initial 
training data set size. Within the low training data set size settings, KNFST showed a 
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higher performance than SVM, while both showed better accuracy than PC3 and PC4 at 
extremely low size settings. The mislabeling rates of PC3 and PC4 for extremely low sizes 
of the initial training data could not be defined (see Figure 6.6 ). This is typical for 
polynomial classifiers since they commonly require a relatively large amount of training 
data in order to be able to generalize [76]. It is essential that when a classifier is unable to 
learn any data samples and hence does not appear on the figures, the whole classification 
process turns into a supervised learning procedure rather than semi-supervised learning. 
This happens because no new data samples will be added to the initial training data set 
when the classifier does not learn any sample. Therefore, the test dataset will be tested 
against the un-updated original training data set. This explains the accuracies that appear 
in Figure 6.6a despite the absence of mislabeling in Figure 6.6b.  

6.6. VALIDATION 

The metabolite assignments of the breast cancer sample were validated based on the 
matching between the metabolites standard chemical shift from 1D NMR and 2D 
TOCSY with the experimental 2D TOCSY on the same sample (breast cancer tissue). 
Every metabolite 2D TOCSY standard chemical shift was deduced from the standard 
chemical shift 1D NMR from the Batman [13], BMRB [176], and HMDB [172] databases 
as well as relevant literature [249, 250].  
Standard (F2, F1) cross-peak entries of 1H-1H TOCSY of the metabolites that appeared 
in the studied breast cancer tissue are listed in Table 6.1. Standard entries (indicated in 
the table) were deduced from the coupled peaks that appeared in standard 1D NMR 
spectra from affirmed databases as well as standard 2D TOCSY [3, 13, 172, 176, 249, 
250]. Experimental cross-peaks are deduced from the measured TOCSY of the sample. 
Characteristic (F2, F1) cross-peak entries of every metabolite that has been used for the 
assignment are listed. These peaks are labeled with P1 until P48, and they are annotated 
in Figure 5.1b. 
After the chemical shift verification of the cross-peak entries, the chemical shifts were 
assigned to metabolites. The results were verified and confirmed according to the 
published work on the same sample of the same scientific group [204, 251].  
The demonstrated assignment in Figure 6.7 was done considering the results of the 
KNFST classifier only because it has shown the highest accuracy. The metabolite 
assignment was perfect (100%) without an occurrence of mismatching of the entries. 
Interestingly, the KNFST classifier matched all metabolites, although, for some 
metabolites, the chemical shift deviation was around 30 Hz (0.049 ppm), corresponding 
to a severe deviation that may cause substantial uncertainty in the metabolic assignment.  
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Figure 6.7:  The metabolite assignment based on (a) the experimental 2D TOCSY NMR spectrum 
of breast cancer tissue after considering (b) the results of the KNFST classifier., which provides the 
highest accuracy. Acronyms of the metabolites are Val: Valine; Ile: Isoleucine; Leu: Leucine; Lys: 
Lysine; Glu: Glutamate; Ala: Alanine; Gln: Glutamine; Asp: Aspartate; GPC: sn‐glycero‐3-
phosphocholine; Ser: serine; PE: O-phosphoethanolamine; Asc: ascorbate; mIno: myo-Inositole; 
Lac: Lactate; Pro: Proline; HB: 3-Hydroxybutyrate; PCho: O-Phosphocholine; Thr: Threonine; 
GSH: Glutathione; β-Glucose; α-Glucose; Ino: Inosine; Tyr: Tyrosine; Phe, phenylalanine; Tau: 
Taurine; Ura: Uracil; Met: methionine. 
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Table 6.1: Standard and experimental (F2, F1) Hz cross-peak entries of 1H-1H TOCSY of the 
metabolites appeared in the studied real breast cancer tissue.. Standard entries (indicated in the table) 
were deduced from the coupled peaks that appeared in standard 1D NMR spectra from affirmed 
databases [13, 172, 176, 249, 250]. Experimental (F2, F1) Hz cross-peaks are deduced from the 
experimental TOCSY measurement of the sample. Only characteristic (F2, F1) Hz cross-peak entries 
of every metabolite are listed, and they are labelled with P1 to P48 and annotated in Figure 5.1b. 
 

  1D 
Spectra 
Peak 
Position 

Peak 
Standard Experimental 

  From 
1D NMR coupling 

From 
2D TOCSY 

# Metabolite [PPM] 
Posit-
ion F2 [Hz] 

F1 
[HZ] 

F2 
[Hz] 

F1 
[HZ] 

1 Valine 
0.976, 
1.029, 
3.601 

P1 2160.6 617.4 2159.4 615.4 

2 Isoleucine 

1.249, 
1.458, 
1.249, 
1.969, 
3.657, 
0.927, 
0.998 

P2 2194.2 1181.4 2190.4 1182.2 

3 Leucine 
0.94, 0.95  
3.719, 
1.701 

P3 2231.4 1020.6 2238.4 1020.2 

4 Lysine  
1.72, 3.01, 
3.75 
1.895 

P4, P5 

1806.0 1032.0 1812.3 1026.2 

2250.0 1032.0 2244.4 1026.2 

2250.0 1137.0 2244.4 1140.2 

5 Glutamate 
3.747, 
2.078, 
2.339 

P6 2248.2 1403.4 2259.2 1404.3 

6 Alanine 1.46, 3.76 P7 2256.0 876.0 2262.4 882.2 

7 Glutamine  
3.764, 
2.13, 2.447 

P8, P9 
2258.4 1278.0 2262.4 1278.2 

2258.4 1468.2 2262.4 1464.3 

8 Aspartate 
3.886, 
2.802, 
2.651 

P10, 
P11 

2332.1 1590.9 2323.2 1602.2 

2332.1 1681.6 2323.4 1685.1 

9 
sn‐glycero‐3-
phosphocholine 
(GPC)  

3.605, 
3.672,3.90
3, 
3.871.3.94
6, 
4.312,3.65
9, 3.212 

P12, 
P13 

2587.8 2195.8 2587.9 2210.5 

2342.3 2163.5 2367.8 2117.7 

10 Serine 
3.833, 
3.958 

P14 2375.3 2300.0 2390.2 2294.6 

11 
O-
phosphoethanolamine 

3.240, 
4.014 

P15 2408.9 1944.4 2390.4 1941.1 

12 Ascorbate  2240.9 2064.4 2217.1 2090.0 
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4.857, 
4.771, 
3.734, 
3.440 

P16, 
P17 

2405.3 2241.5 2435.0 2204.1 

13 Myo-Inositole 

3.518, 
4.049, 
3.611, 
3.265 

P18, 
P19, 
P20 

2112.5 1959.4 2076.8 1958.9 

2167.1 1959.4 2170.2 1958.9 

2429.9 2112.5 2432.1 2109.0 

14 Lactate 
4.104, 
1.317 

P21 2462.9 790.4 2468.2 787.5 

15 Proline 

4.119, 
3.407, 
3.323, 
2.002, 
2.080, 
2.336, 
2.022 

P22, 
P23 

2471.9 1213.2 2468.2 1217.7 

2471.9 1402.2 2468.2 1389.7 

16 3-Hydroxybutyrate  

4.160, 
2.414, 
2.314, 
1.204 

P24, 
P25, 
P26 

2496.0 722.4 2506.6 718.4 

2496.0 1388.4 2506.6 1376.6 

2496.0 1448.4 2506.6 1438.7 

17 O-Phosphocholine  
4.285, 
3.644 

P27 2571.6 2186.9 2550.5 2161.1 

18 Threonine  
4.241, 
1.318, 
3.573 

P28, 
P29 

2545.2 791.0 2543.6 787.7 

2545.2 2144.3 2543.6 2143.4 

19 Glutathione  

4.557, 
2.97, 2.943 
3.766, 
2.548, 
2.158 

P30, 
P31 

1529.0 1295.0 1572.0 1277.7 

2262.5 1295.0 2260.7 1277.7 

20 Beta-Glucose  

4.630, 
3.230, 
3.473, 
3.387, 
3.450, 
3.882, 
3.707  

P32, 
P33, 
P34 

2778.6 1938.4 2788.3 1944.4 

2778.6 2084.3 2788.3 2083.8 

2778.6 2081.9 2788.3 2080.3 

21 Inosine 

8.189, 
8.310, 
6.066, 
4.752, 
4.439, 
4.278, 
3.882 

P35, 
P36 

3640.4 2567.4 3543.4 2501.8 

3640.4 2664.0 2868.5 2603.0 

22 Alfa-Glucose 

5.216, 
4.630, 
3.519, 
3.698, 
3.822, 
3.826, 
3.749 

P37, 
P38, 
P39 

3130.3 2112.0 3131.9 2115.7 

3130.3 2224.7 3140.2 2248.9 

3132.0 2568.5 3127.7 2464.9 

23 Tyrosine 
7.192, 
6.898, 
3.200, 

P40, 
P41 

23621 1920.4 2374.5 1920.4 

4316.1 4139.7 4307.3 4124.8 
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3.055, 
3.936  
 

24 Phenylalanine 

3.283, 
3.113, 
3.983, 
7.322, 
7.420, 
7.369 

P42, 
P43 
P44 

4453.0 4394.3 4443.9 4387.0 

4453.0 4422.5 4443.9 4425.9 

2390.3 1970.1 2384.4 1954.8 

25 Taurine 
3.246, 
3.410 

P45 2049.9 1949.7 2078.7 1951.2 

26 Uracil 5.79, 7.52  P46 4513.0 3474.8 4513.3 3471.7 

27 Methionine 

3.850, 
2.183, 
2.122, 
2.629 

P47, 
P48 

2310.5 1308.3 2316.6 1285.1 

1578.3 1308.3 1571.4 1286.3 

6.7. CONCLUSION   

This work enabled the automatic and accurate spectral assignment of metabolites based 
on deconvolution of 2D-TOCSY NMR spectra by employing a semi-supervised machine 
learning approach. We have customized and extended four semi-supervised learning 
classifiers to test the automatic assignment under different initial training set sizes. The 
correctness of the metabolic assignments by our approach in applying 2D TOCSY spectra 
was based on comparing the results deduced from 1D-NMR spectra by human specialists 
on the same samples. The KNFST and SVM classifiers show high performance and low 
mislabeling rates for small and large sizes of the initially labeled training data set. To 
accept or reject the classification results of the classifiers, the concept of confidence bands 
was implemented. Under the same settings, both polynomial classifiers show a much 
weaker performance. For an extremely small size (≤9% of the entire dataset) of the initial 
training data set, PC3 and PC4 polynomial fail to provide satisfactory performance 
compared to KNFST and SVM classifiers, while the latter provided satisfactory 
performance as well as a low mislabeling rate. Hence, KNFST and SVM show superior 
performance over the other tested classifiers at every size of the initial training dataset. 
Our study demonstrates that machine learning in metabolite assignments based on the 
2D TOCSY NMR spectra approach can be considered accurate and robust. 
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Classification of metabolites require the assignment of metabolites in NMR spectrum by 
experts or automatically using SSL, nevertheless, a more challenging situation is the 
detection of metabolites for which limited, or no spectral information is available in the 
training dataset. There is an emerging need for ND (novelty detection) when a class or 
classes are missing, poorly sampled or defined [80]. Basically, supervised, or semi-
supervised training models enable only the prediction of metabolites which exist in the 
training dataset, whereas new or unexpected metabolites will be misclassified as an 
existing known metabolite. Applying ND is essential in metabolic profiling due to the 
complex nature of biological fluids and tissues. Metabolic variations in fluids and tissues     
can occur with any new stimuli and will cause alteration in the NMR spectra and new 
metabolites can appear in the NMR measurement. Therefore, using supervised or semi-
supervised approaches might be insufficient in complex and   high-throughput NMR 
experiments. ND approaches are used to detect well-known and trivial components and 
discriminate potential new metabolites. These new metabolites are returned as candidates 
of new metabolites to the expert to manually assign them. Normally, ND is required in 
two situations. The first is when there are few examples to represent a known class within 
the training dataset; for instance, a particular category happens rarely, so the classification 
system does not have enough instances to represent this category. In this case, it is better 
to consider the rare category as novel or abnormal and test it against the model of 
normality. The second situation occurs when the training list is incomplete. Although 
enough instances are available to form a training model, it is expected that new classes 
will appear in the future [39]. In this chapter, we introduce the concept of ND of 
metabolites in 2D NMR TOCSY spectra where new metabolites are detected and 
assigned in a crowded spectrum using only the horizontal and vertical frequencies of the 
2D TOCSY spectra. 
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Figure 7.1 summarizes the ND protocol: automatic peak picking is performed on the first 
2D TOCSY spectra, two characteristic frequencies (F2, F1) are assigned to form the 
training dataset. The training models will be created based on the KNFST, SVDD and 
KDE classifiers with different training data volumes, observing the classifier performance 
and the corresponding execution time. The training model will be used in the testing 
phase to detect novel classes, i.e., novel metabolites in this case. Subsequently, the 
automatically derived peak picking parameters from the training phase are applied to the 
second TOCSY. The characteristic frequencies (F2, F1) are studied using the classifiers 
to identify novel peaks (i.e., metabolites) compared to the reference training models from 
the previous step. During the testing phase, training models are deployed to assess the 
novelty of particular metabolites and the success of the learning paradigm [252].This 
chapter has been adapted and/or adopted from [252]. 

7.1. KERNEL NULL FOLEY-SAMMON TRANSFORM 

The Kernel Null Foley-Sammon transform (KNFST) was introduced under the SSL 
scenario using the confidence bands as an uncertainty measure in Section 6.3. In this 
section, KNFST is tested under the ND scenario. Similar to SSL, based on Eq.  (6.14) and 
Eq. (6.15), ND KNFST tries to find the null projection direction matrix ω through 
minimizing the within-class scatter and maximizing the between-class scatter [241, 253]. 
KNFST is a joint multi-class model, which can achieve classification of all classes at once. 
The output of KNFST is used as a novelty score, where the larger the novelty score, the 
more novel is the test sample. A threshold is set to detect novelty borders. KNFST has 
been used in image classification [241, 253], gesture recognition [254], abnormal event 
detection in object tracking [255], authentication on mobile devices [256] and fault 
detection in machinery [257]. In this work, the KNFST code implementation in [241] has 
been customized.  

7.2. SUPPORT VECTOR DATA DESCRIPTION 

Support Vector Data Description (SVDD) is a domain-based method, which employs a 
hyperplane to represent a boundary based on the training data. This hyperplane tries to 
maximize the separation between different classes. SVDD was developed by [99] as a 
one-class classifier that distinguishes a positive (normal) class from all other classes in the 
dataset and builds its model based on the single positive class [80]. This approach creates 
a minimum-volume spherically shaped region that encompasses all or most of the training 
data of a chosen class. The hypersphere acts as a descriptor of normality, and a sample is 
considered an outlier if it falls outside the sphere [80, 258]. The problem of SVDD is an 
optimization problem that finds the center 𝐶𝐶 with minimum radius 𝑅𝑅 of the hypersphere 
that encloses most of the training data. SVDD enables the existence of outliers outside of 
the hypersphere, but a larger distance from the hypersphere is penalized in  

 
min

𝑅𝑅∈ℝ,𝜉𝜉∈ℝ+ 
𝑅𝑅2 + 𝐶𝐶�𝜉𝜉𝑖𝑖

𝑢𝑢

𝑖𝑖=1

 

                           subject to ‖𝜑𝜑(xi) − 𝐶𝐶‖ ≤ 𝑅𝑅2 + 𝜉𝜉𝑖𝑖 

(7.1) 
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𝜉𝜉𝑖𝑖 is a slack variable that permits the existence of outliers, 𝐶𝐶 is a parameter that controls 
the trade-off between the volume of the radius and the number of outliers (set to 1% in 
the thesis),  and 𝜑𝜑(xi) is the high dimensional mapping of 𝑥𝑥𝑖𝑖  [99]. 
 

 

Figure 7.1: Schematic illustration of the ND procedure in metabolic profiling in a biological sample 
based on 2D TOCSY NMR spectra. 

In this work, the binary classification implemented in the Novelty Detection Toolbox 
(NDtool) [38, 259] is extended to a multi-class approach using one-𝑣𝑣𝑣𝑣-all classification. 
SVDD has several applications in image and gesture classification [260-264], biomarker 
detection in HSQC NMR spectroscopy [265], and fault detection [266, 267].The novelty 
threshold of SVDD is defined as the radius of the hypersphere according to [99]. 
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7.3. KERNEL DENSITY ESTIMATION 

Kernel density estimation (KDE) is a probability-based method which computes the 
probability at each point in the data space within a localized neighborhood area of that 
point. KDE is a non-parametric approach that tries to estimate the probability of 
unknown distributions. The main assumption of density estimation is that samples reside 
in low-density areas indicate a low probability of being a known class. Accordingly, this 
area tends to contain novel data; whereas areas of high probability means the existence 
of known samples [38]. The probability density function is approximated by estimating 
the probability density through locating kernels at each point of the dataset, i.e., a kernel 
is centered at each data point, and then these kernels are summed up. A typical kernel 
density estimation is the Parzen Window estimator [34]. The Parzen estimator defines a 
fixed-width region ℜ centered at the sample point x and counts the number of neighboring 
sample points which falls in this region. Parzen estimators can be defined as: 

 
𝑝𝑝(𝑥𝑥𝑖𝑖) =

1
𝑁𝑁
�𝑘𝑘ℎ

𝑁𝑁

𝑖𝑖=1

(𝑘𝑘𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖) (7.2) 

where 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 = {𝑥𝑥1. . . . 𝑥𝑥𝑢𝑢}, 𝑁𝑁 is the number of data samples and 𝑘𝑘𝑥𝑥𝑗𝑗 are the region centers 

which are sampled from X. The density of 𝑥𝑥𝑖𝑖 is calculated based upon the distance 
between 𝑘𝑘𝑥𝑥𝑗𝑗 and 𝑥𝑥𝑖𝑖 and then representing it as a linear combination of the neighboring 

kernel centers. 𝑘𝑘ℎ is a kernel function centered at 𝑘𝑘𝑥𝑥𝑗𝑗 and has an associated parameter ℎ 

related to the bandwidth parameter of region ℜ [268]. The parameter ℎ is the Parzen 
window width. The Parzen width parameter is defined as the mean value of the distances 
between each 𝑘𝑘𝑥𝑥𝑗𝑗 and its 𝑘𝑘 nearest neighbours. Since the probability must sum up to 1, 

we normalize the density by 
1
𝑁𝑁𝑐𝑐

 where 𝑁𝑁𝑐𝑐 is the number of data points that belong to class 

𝑐𝑐 [34, 85]. KDE has been employed in tissue segmentation [269, 270], Alzheimer's disease 
detection in MRI [271, 272] and  CT images [273, 274]. In this work, the binary 
classification implementation in NDtool [38, 84] has been extended to a multi-class 
approach using one-𝑣𝑣𝑣𝑣-all classification. 

7.4. THRESHOLD SETTING AND NOVELTY DETECTION  

Classifiers are designed to assign already known classes and, consequently, match the 
novel data sample to one of the known classes. ND tries to learn a model of normality, 
which is described by a novelty boundary. Normal instances are expected to be included 
in the normality model and reside within the novelty boundary, whereas unknown 
instances are expected to lie outside these boundaries [275]. A validation dataset is used 
to compute the novelty threshold for each known class in advance by finding the threshold 
with the minimum error on a validation dataset using grid search. During the testing 
phase, when classifying a data point, the threshold is compared to the output of the 
corresponding classifier. If the output does not comply with the pre-computed threshold, 
the data sample will be classified as novel. KNFST is a distance-based approach, which 
uses the assumption that similar data are located near each other, while novel instances 
are located away from known data. Thus, if the distance between the tested samples 𝑑𝑑(𝑧𝑧) 
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is larger than the novelty threshold 𝒯𝒯 of the class, the test sample is classified as novel, 
i.e., 𝑑𝑑(𝑧𝑧) > 𝒯𝒯 → 𝑛𝑛𝑙𝑙𝑣𝑣𝑤𝑤𝑙𝑙. This is also valid for SVDD, where the radius of the hypersphere 
indicates the threshold. For KDE, if the posterior probability 𝑝𝑝(𝑥𝑥) is below the 
threshold  𝒯𝒯, the more probable the test sample is a novel instance, i. e.𝑝𝑝(𝑥𝑥) < 𝒯𝒯 → 𝑛𝑛𝑙𝑙𝑣𝑣𝑤𝑤𝑙𝑙 
[275, 276]. 

7.5. NOVELTY DETECTION OF METABOLITES USING BREAST CANCER 
TISSUE  

The classifiers KNFST, SVDD and KDE are customized and tested for novelty detection 
of a breast cancer sample. The training data is partitioned into eight portions. These 
portions are used to test the system using different percentages of training data to observe 
the relation between the performance and the availability of training data and to examine 
the minimum size of the training set sufficient to yield a satisfactory performance. The 
portion of labeled training samples is increased every 50 cycles until all training samples 
are used in the classification process. In each cycle, different random permutations of 
training data are applied. The introduction of multiple cycles is vital; this is due to the 
random selection of the training data before starting the recognition process, which leads 
to different results for each chosen training dataset. Training portions of sizes 2.5%, 5%, 
7.5%, 10%, 25%, 50%, 75% and 100% of the total training dataset size were used. In this 
experiment, a TOCSY spectrum of a breast cancer tissue sample, which comprises the 
metabolites in Section 5.3 is used. 
To test ND on the TOCSY spectrum of breast cancer tissue, two scenarios are applied. 
The first scenario handles the one-class ND case. This experiment is built by excluding 
one of the metabolites from the training dataset, and afterwards a training model is built 
based on the remaining 26 metabolites. The testing dataset includes all 27 metabolites, 
which are the known 26 metabolites plus the excluded metabolite. On the second 
experiment, multi-class ND is employed by excluding multiple metabolites from the 
training set, and a training model is built based on the remaining metabolites. 
Subsequently, during the test phase the novelty scenario is tested based on the known and 
the excluded metabolites. In both scenarios, the classifiers are expected to detect the 
excluded metabolites and regard them as novel metabolites. The procedure is illustrated 
in Figure 7.2. 

The assessment of the results is based on the ND metrics used in [277]. Let N be the 
total number of metabolites in the test dataset and 𝑁𝑁𝑐𝑐 the number of novel metabolites 
in the test dataset. 
•  𝑀𝑀𝑢𝑢𝑢𝑢𝑤𝑤 = (100 ∗ 𝐹𝐹𝑢𝑢)/𝑁𝑁𝑐𝑐. The percentage of novel metabolites misclassified as 

known. 𝐹𝐹𝑢𝑢 stands for the number of novel metabolites misclassified as known (i.e., 
false negatives).  

•  𝐹𝐹𝑢𝑢𝑢𝑢𝑤𝑤 = (100 ∗ 𝐹𝐹𝑝𝑝)/(𝑁𝑁 − 𝑁𝑁𝑐𝑐). The percentage of existing instances falsely 

misclassified as novel. 𝐹𝐹𝑝𝑝 stands for the number of known metabolites misclassified 

as novel (i.e., false positives). 
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• 𝐸𝐸𝑟𝑟𝑟𝑟 = 100 ∗ (𝐹𝐹𝑢𝑢 + 𝐹𝐹𝑝𝑝 + 𝐹𝐹𝑢𝑢)/𝑁𝑁. The percentage of total error 𝐸𝐸𝑟𝑟𝑟𝑟 where 𝐹𝐹𝑢𝑢 denotes 

the misclassifications within known metabolites. It can be seen the Err includes 
also  𝑀𝑀𝑢𝑢𝑢𝑢𝑤𝑤 and  𝐹𝐹𝑢𝑢𝑢𝑢𝑤𝑤. 

 
Figure 7.2: ND procedure by excluding one- and multi-metabolites from the pre-assigned 27 
metabolites of the breast cancer tissue cell. 
 

7.6. ONE-CLASS NOVELTY DETECTION 

In the scenario of one-class novelty detection, the metabolite entry (tyrosine) is considered 
novel by excluding it from the list of 27 metabolites. Consequently, the training dataset 
consists of the remaining metabolites whereas the testing dataset includes the excluded 
novel metabolite tyrosine in addition to the known training data. Excluding a metabolite 
during the training process simulates the novelty of the excluded metabolite and 
ascertains that the training model is only aware of all metabolites excluding the exempted 
tyrosine. In breast cancer, tyrosine is the most frequent reported metabolic biomarker 
[278]. Figure 7.3(a-c) show the results of the ND procedure of the classifiers using the 
above assessment matrices for the metabolite tyrosine. Figure 7.3a shows that KNFST 
has a zero Mnew rate regardless of the size of the training dataset, which means that 
tyrosine was correctly identified as novel. However, when using 2.5% of training data, in 
addition to misclassifying some known classes as novel classes, misclassification between 
known classes has a median error of 4%. On the other hand, using 2.5% of the training 
dataset, KDE and SVDD (Figure 7.3b and 4c) have a Mnew value of around 4% and 50%, 
respectively, with a relatively high standard deviation. Both classifiers show zero 
Mnew values after using only 5% of the training dataset. In general, for all classifiers the 
values of Fnew and Err decrease when increasing the size of training samples. All 
classifiers achieve zero or near-zero values for Mnew , Fnew and Err when using 5% of the 
complete training dataset. 
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To test the overall performance of the system for all possible threshold settings, we use 
Receiver Operating Characteristic (ROC) curve analysis to show the tradeoff between 
false positives and true positives. ROC curves and Area under Curve (AUC) provide an 
assessment of the classification performance without indicating a decision threshold 
[110]. Figure 7.4 shows ROC curves which are generated using the one-𝑣𝑣𝑣𝑣-all approach 
for one run. This involves training one class per classifier, considering samples that belong 
to this particular class as normal samples and all other samples as novel [279]. 
As mentioned earlier, training portions of sizes 2.5%, 5%, 7.5%, 10%, 25%, 50%, 75% 
and 100% of the total training dataset size were used, nevertheless, for clarity only 
portions of sizes 2.5%, 10%, 100% are shown in the ROC curves, novelty scores and 
thresholds figures. These percentages give an indication of performance using relatively 
small, medium, and large amounts of training data. In general, it can be seen in Figure 
7.4(a-c) that the classifiers’ capability to distinguish novel metabolites from known 
metabolites increases by increasing the size of the training dataset. This can also be 
observed by the increasing values of the AUC, which implies a high diagnostic accuracy 
for large training data set sizes. Furthermore, it can be deduced that using 2.5% of the 
training data results in an inaccurate threshold, and consequently in a low recognition 
rate. By using 10% of the total training samples, the AUC of ROC curve of the metabolite 
tyrosine was over 97% for all classifiers. The AUC of the ROC curves are close to 100% 
for the three classifiers when using 100% of the training data. 
Figure 7.5 shows the corresponding difference in novelty scores between known and 
unknown metabolites related to Figure 7.4. The red, green, and blue crosses resemble the 
unknown test data, known test data and known training data, respectively. The separation 
between the known and the unknown instances becomes more representative by 
increasing the training data size. In ideal cases, scores of known classes in the training 
dataset and testing dataset are similar. On the other hand, scores of novel instances must 
be relatively different.  
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Figure 7.3: The Mnew, Fnew and Err values of breast cancer-tissue sample for the classifiers (a) 
KNFST, (b) KDE and (c) SVDD by applying one-class novelty detection. 
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Figure 7.4: ROC curves and AUC values showing the accuracy of the novelty threshold for different 
sizes of training data for the metabolite tyrosine.  From left to right, the ROC curve obtained using (a) 
2.5%, (b) 10% (b) and (c) 100% of the total training dataset is shown. 

 

Figure 7.5: Novelty scores and threshold values of KNFST, KDE and SVDD classifiers using 
different training dataset sizes in the one-class novelty detection.  The red, green, and blue crosses 
resemble the unknown test data, known test data and known training data, respectively. Subfigures (a) 
to (c) correspond to the variations of the output of the classifiers when using (a) 2.5%, (b) 10% and 
(c) 100% of the training dataset. 
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7.7. MULTI-CLASS NOVELTY DETECTION 

According to [278], metabolites (leucine, tyrosine, proline and serine) are a subset of the 
clinically most frequently reported metabolic biomarkers related to breast cancer. 
Therefore, in the multi-class ND the above-mentioned metabolites were chosen to be 
excluded for novelty testing under different conditions. Accordingly, the classifiers were 
trained on 23 metabolites only. During the test phase, all assigned 27 metabolites of the 
breast cancer sample were included in the test dataset, likewise the one-class novelty 
detection. 

 

Figure 7.6: Mnew, Fnew and Err values of breast cancer tissue sample for the classifiers (a) KNFST, 
(b) KDE and (c) SVDD by applying multi-class novelty detection. 

Figure 7.6 shows the Mnew, Fnew and Err values in multi-class ND scenario. When using 
2.5% of the training data, KNFST and SVDD have similar Mnew median values around 
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16%. The SVDD Mnew distribution shows a negative skewness, which means most 
Mnew values are low. Although KDE has a median of zero Mnew, KDE and the other 
classifiers have a high standard deviation. This means a low discrimination capability at 
extremely low training dataset size. Similarly, the values of  Fnew and Err showed 
unstable standard deviations and median values in all classifiers. Starting from 5% 
training data size, KNFST showed a negative skewness in Mnew values, which implies a 
progressing discrimination of novel metabolites. On the other hand, KDE and SVDD 
have zero for Mnew and approximately zero value for  Fnew and Err. Starting from 50% of 
the training data size, a median of zero Mnew values were reached for KNFST. Using 
only 25% of the training data, all the classifiers have reached less than 3% median values 
for Mnew, Fnew and Err values. In addition, already when using only 5% of the training 
data, all classifiers reached near-zero median values of Fnew and Err, indicating that the 
classifiers are able to correctly classify known metabolites and detect novel instances. 
 
Figure 7.7 (a-c) shows novelty scores of the KNFST, KDE and SVDD classifiers using 
2.5%, 10%, and 100% training dataset size by applying the multi-class novelty detection. 
The red crosses correspond to the six-pattern related to tyrosine, proline, leucine, and 
serine. Comparable to one-class novelty detection, the novelty threshold becomes more 
accurate and the separation between normal and abnormal instances becomes more 
distinct when increasing the training dataset size. Remarkably, an acceptable threshold 
could be calculated even when only 10% of the training data were considered. 
Unlike one-class classification, generating ROC curves for multi-class classification tasks 
is not a straightforward solvable problem. A typical solution is to generate individual 
ROC curves for each class separately using the one-vs-all method [110]. Figure 7.8 shows 
the mean and standard deviation of the total classification processing time of 50 runs in 
the one- and multi-class novelty detection. The experiments were run on Windows 10 
using an Intel Xeon E5 machine with 16 GB memory and 2.8 GHz Quad Core CPU. The 
computational complexity for KDE is 𝑂𝑂(𝑁𝑁2) [280], and 𝑂𝑂(𝑁𝑁3) for  KNFST [241] and 
SVDD [281]. The execution time for KNFST and SVDD grows when increasing the 
amount of training data. In one-class novelty detection, the execution time for KNFST 
increases steadily until it exceeds the SVDD execution time. However, rather than 
increasing, the execution time for one- and multi-class novelty in KDE remains almost 
constant when increasing the size of the training dataset. This might be due to the fixed 
Parzen window width of the kernel used by KDE. The estimation of the optimal Parzen 
window width is the most effecting computational factor [280]. As stated earlier, the 
Parzen width parameter is defined as the mean distance between the 𝑘𝑘-nearest neighbors 
and the instances in the training dataset. The number 𝑘𝑘 of neighbors in our experiments 
was two [282]. In SVDD, computational cost is related to tuning the parameters of the 
kernel, and there is a direct relation between the size of the training dataset and the 
execution time [283]. This can be seen SVDD time consumption on multi-class ND 
where, in comparison to the one-class scenario, more novel samples are encountered. The 
main computational cost in KNFST comes from computing a  joint kernel feature space 
for all known classes and the eigenvalue decomposition of the kernel matrix [241, 284]. 
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Figure 7.7: Novelty scores and threshold values of KNFST, KDE and SVDD classifiers for different 
training data size for multi-class novelty detection.The red, green, and blue crosses resemble the 
unknown test data, known test data and known training data, respectively. The output of the 
classifiers is shown for (a) 2.5%, (b) 10% and (c) 100% of the training dataset.  

 

 
Figure 7.8: Total time from training to classification for (a) one-class and (b) multi-class novelty 
detection. 
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The confusion matrices of one- and multi-class novelty, in addition to the ROC curves 
for the multi-class ND algorithm, are presented in the appendix A.  

7.8. CONCLUSIONS 

In this work, ND was established based on 2D NMR TOCSY spectra for metabolic 
profiling associated to dynamics changes in biological systems, where metabolites of 
breast cancer tissue samples were extracted from the TOCSY spectrum. The one- and 
multi-class ND tests were designed to consider peak assignments appearing in the 
TOCSY spectrum as a reference database. Subsequently, one and four metabolites were 
excluded from the reference TOCSY to simulate their novelty. The KNFST, KDE and 
SVDD classifiers were tested to detect the excluded metabolites. The classifiers achieved 
explicit labelling to metabolites that appear in the TOCSY and additionally detected new 
metabolites which are unknown to the training model. Despite the observed overlapping 
in the training dataset resulting from chemical shifts, the implemented methods in this 
work achieved 0% false positive rates at 100% true positive rate. The resulting 
classification performance increases with increasing training dataset size. Generally, the 
execution time also increases when increasing the training dataset size for all classifiers, 
nevertheless, the execution time is noticeably short. The results are supported by 
confusion matrices and ROC curves in addition to plotting the novelty outputs. The 
presented machine learning based ND techniques provide promising perspectives for 
automated assignment of metabolites that evolve in dynamic biological environments and 
trigger the metabolic pathways.  
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Mesenchymal stem cells (MSCs) are multipotent stem cells with high capacity to 
proliferate and differentiate, while exhibiting low immunogenicity and providing 
immunosuppressive properties [285]. These potentials put MSCs in the lead as a 
promising candidate for several innovative strategies of cellular therapy and tissue 
engineering. MSCs are obtained from several body tissues, and their potential to 
reproduction and developmental is highly dependent on their source of origin [286]. 
Adipose tissue is considered a highly valued source to isolate MSCs being a byproduct 
that generate a high yield of primary cells, with high potential to proliferate and 
differentiate; therefore, adipose tissue-derived MSCs are applied highly in tissue 
engineering and regenerative medicine [287]. Metabolic adaptation of MSCs is highly 
dependent on their surrounding environment; MSCs cultivated under hypoxic condition 
show limited proliferation rate and high production of glycolytic enzymes, while in 
normoxic conditions they show high proliferation rate and an additional reliance on 
oxidation phosphorylation aside with glycolysis, in what its named by Warburg effect 
[288]. In addition, the differentiation of MSC into adipocytes and osteocytes was shown 
to be accompanied by a high level of oxidative phosphorylation, in fact, studies have 
shown that the differentiation of MSCs into osteocytes is negatively affected under 
normoxic conditions [289]. The switch between the glycolytic and oxidative 
phosphorylation pathway shows the flexibility of MSCs in adapting a metabolism that 
enable them to fulfil their role at the site of their residency [290]. New approaches are 
required to reveal novel biomarkers and information in the metabolism of MSCs and to 
track the metabolism states in response to stimuli, and metabolic adaptation associated 
with several biological processes, including differentiation [197, 291]. This information 
may unveil their behavior to be controlled and guided toward successful therapies 
providing the proper culture conditions and handling [292]. 
In this chapter, machine learning is applied to automate the monitoring of the MSCs 
differentiation and to resolve the convolution of the associated NMR spectra using the 
approaches introduced on Chapter 7. Furthermore, through automating non-targeted 
metabolic profiling, the dynamic evolution of biological samples will have an unlimited 
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perspective and will overcome the inherent obstacles in non-targeted 2D NMR analysis. 
Figure 8.1 demonstrates the experimental settings followed in this chapter. AT-derived 
hMSCs are cultivated in a basal culture media and measured after four days using NMR. 
Non-targeted metabolic profiling of 2D NMR TOCSY is generated based on the four 
days cultivation where all collected peaks are manually assigned by the expert. AT-MSCs 
were subdivided into three experiments. On the first one, the MSCs were maintained in 
basal MSCs culture for prolonged cultivation. On the second and third experiments, AT-
MSCs were induced to differentiate into adipocytes or osteocytes respectively. After 
fourteen days, the adipogenic and osteogenic differentiation of the AT-derived hMSCs in 
addition to their control group were measured using 2D NMR TOCSY. Similarly, peak-
picking is applied, and the cross peaks are assigned by an expert. To evaluate the 
performance of our methodology, the manual assignments are compared by the 
automated method. This work was adopted/adapted from [293]. 

8.1. MACHINE LEARNING  

To monitor the dynamic evolution of adipose tissue-derived human MSCs (AT-derived 
hMSCs) using 2D NMR TOCSY spectra, KNFST and KDE were used. 

8.2. METABOLIC EVOLUTION OF AT-DERIVED HMSCS  

To observe the dynamic evolution of the AT-derived hMSCs at after 14 days of cultivation 
(Ct d14) and 14 days of adiobocytes (AT d14) and osteocytes (OS d14) differentiation, 
the training dataset created from (Ct d4) is used to create the main training model 𝜃𝜃𝑃𝑃𝑇𝑇 𝑢𝑢4 
using KNFST and KDE.  Three independent testing datasets are constructed using Ct 
d14, AT d14 and OS d14 using the corresponding frequencies in Table 5.2, and are 
introduced to the classifiers and tested against 𝜃𝜃𝑃𝑃𝑇𝑇 𝑢𝑢4 The results are reported as multi-
class confusion matrices that compare the human-based metabolic profiling described in 
Section 5.4.2 with the predicted assignments of the frequencies of the TOCSY spectra. In 
addition, Figure 8.5 shows the novelty scores produced by the classifiers to show the 
separation ability of the classifier in terms of projection distance for KNFST and 
probability estimation for KDE.  The scores are color-coded to distinguish the scores of 
the different representations of classifier outputs as follows: the scores of known instances 
in the training set in blue, the scores of known instances in the testing dataset in green, 
the scores of missed novel instances in pink, the scores of correctly classified novel classes 
in red and the scores of misclassified known instances in the testing dataset in black. In 
ideal cases, the scores of known classes in the training dataset and testing dataset are 
similar. On the other hand, the scores of novel instances must be relatively different to 
those known classes. Novelty thresholds are created based on the validating dataset 
choosing the thresholds with a minimum validation error. 
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Figure 8.1: Schematic diagram of the experimental setting to observe the metabolic evolution of AT-
derived hMSCs.using 2D TOCSY of intracellular extracts of MSCs cultivated in basal culture media 
at 4 and 14 days and MSCs cultivated for a duration of 14 days in an adipogenic and osteogenic 
differentiation media.  

Ct d14: Figure 8.2  shows the confusion matrices for the output of the classifiers KNFST 
and KDE for Ct d14 sample. Both classifiers were able to detect all the sixteen novel 
frequencies which belong the fatty acids, 1-methylnicotinamide, myo-inositol, and 
taurine in the sample. No misclassification was encountered in KDE as observed on 
Figure 8.5b. Nevertheless, KNFST had two misclassifications within known classes, 
where the two instances of valine were misclassified as proline. This can be seen in Figure 
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8.5a, where two instances were plotted in pink, indicating the misclassification within 
known classes. 

 

Figure 8.2: Confusion matrices of the output of classifiers KNFST and KDE for the spectrum after 
14 days cultivation. 

AT d14: It can be seen on Figure 8.3 that both classifiers predicted all the sixteen novel 
metabolites which belong to the fatty acids, 1-methylnicotinamide, myo-inositol, and 
taurine in the sample. Nevertheless, both classifiers had misclassification within already 
known classes. KNFST and KDE misclassified methionine as glutamine. In addition, 
KNFST misclassified one of the instances of valine and proline as well as misclassified 
one instance of leucine as threonine. This can also be seen on Figure 8.5c,d where 
misclassifications of known classes were plotted in pink. 
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Figure 8.3: Confusion matrices of the output of classifiers KNFST and KDE for the spectrum of 14 
days adiobocytes differentiation. 
 

OS d14: Figure 8.4  shows the confusion matrices for the output of the classifier KNFST 
and KDE for the OS d14 sample. Both classifiers were able to detect all six novel instances 
in the sample, such as myo-inositol, Fat2 and taurine. However, it can be observed that 
valine was misclassified as proline in KDE. This may be due to the overlap in the vertical 
and horizontal frequencies between these metabolites, which can be seen in Table 5.2 
and Figure 5.4d. Except for this single misclassification, no misclassification was 
encountered in both classifiers. This can be also observed in Figure 8.5e, f. 
Depending on the test sample, the number and type of novel metabolites differ. For 
instance, there are 16 identical novel (but shifted in frequency) metabolites in Ct d14 and 
AT d14 in comparison to Ct d4. Nevertheless, the disappearance of metabolites in both 
samples is also different. In sample OS d14, six metabolites were found in comparison to 
Ct d4, and more metabolites disappeared during the differentiation. For both classifiers 
and all samples, the disappearance of metabolites during the biological pathway did not 
affect the classification performance. For instance, though the main training 
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model 𝜃𝜃𝑃𝑃𝑇𝑇 𝑢𝑢4. was created on specific metabolites that disappeared in the spectra of Ct 
d14, AT d14 and OS d14, both classifiers proved their classification flexibility in observing 
metabolites presence and absence. Hence, the classifiers were able to detect both the 
presence and the absence of individual metabolites in accordance with 𝜃𝜃𝑃𝑃𝑇𝑇 𝑢𝑢4. 

 
Figure 8.4: Confusion matrices of the output of classifiers KNFST and KDE for the spectrum of 14 
days osteocytes differentiation. 

Following the novelty detection metrics used in Section 7.5, Table 8.1 summaries the 
performance of the classifiers subject to the sample type.  
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Table 8.1: A summary of the performance of KDE and KNFST classifiers for Ct d14, AT d14 and OS 
d14.  

 
Ct d14 AT d14 OS d14  

KNFST KDE KNFST KDE KNFST KDE 
False negative rate 0% 0% 0% 0% 0% 0% 
False positive rate 0% 0% 0% 0% 0% 0% 

Total error 2.6% 0%     3.6%     1.2% 0% 1.7% 
 

 

Figure 8.5: Novelty scores and threshold values of KNFST and KDE classifiers for Ct d14 (a, b), AT 
d14(c, d) and OS d14(e, f). 
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8.3. CONCLUSION  

In this chapter, we demonstrate using machine learning to perform an automatic analysis 
of 1H-1H TOCSY spectra acquired on cultivated and differentiated adipose-tissue-derived 
human MSCs (AT-derived hMSCs). Multi-class classification in addition to the novelty 
detection of metabolites were established based on four different 2D NMR TOCSY 
spectra. The primary training model was built using TOCSY spectrum of AT-derived 
hMSCs at four days of cultivation. Subsequently, the metabolic changes of AT-derived 
hMSCs control sample were monitored under three different biological settings 
employing the classifiers KDE and KNFST. Despite the severe overlapping in the 
frequencies in TOCSY spectra, the classification outputs proved the efficiency of the used 
method. KDE and KNFST achieved a total classification error between 0% and 3.6% and 
false positive and false negative rates of 0%. The investigation in this work confirms the 
common metabolic pathways associated with stem cell biology. In the future, further 
features can be added to the dataset to produce a higher discriminative ability. 
Furthermore, chemical structure information or integrating other 2D NMR spectra can 
be included in the classification process. This work provides methodological approaches 
to track information of MSCs metabolism and their biological pathways, including 
detecting novel metabolites related to diverse stimuli in terms of prolonged cultivation 
and varied differentiation. This work can be extended to monitor further kinds of MSCs 
proliferation and recognize spectral signatures of pathways and processes. 
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9. Summary and Conclusions 

Machine learning based methods are promising tools that can extract concealed 
knowledge from biological data. This information can be used to relate the data to 
dynamic modeling of biological systems to get an evident and improved comprehension 
of data and diseases. Recently, various methods that are related to automatic metabolic 
assignment in NMR have been proposed. The metabolic profiling concept of these 
methods is based on using deep learning to analyze contours images of the TOCSY 
spectrum or uses multivariate analysis techniques. In contrast to these approaches, the 
methods developed in this thesis are based on employing the frequencies of the TOCSY 
spectra in the analysis process. In NMR, frequencies operate as a metabolic fingerprint of 
potential biomarkers. The use of the horizontal and vertical frequencies is beneficial 
because frequencies are related to the standard ppm values of the chemical shifts of 
metabolites. Depending on the NMR spectrometer frequency, chemical shifts given in 
ppm and frequencies are easily exchangeable. Moreover, chemical shift frequencies are 
considered the most informative variable in NMR [145] and they can be consistently 
reproduced under pre-established protocols. 
In this thesis, multiple machine learning methods have been proposed to enable 
automatic and accurate spectral assignment of metabolites based on deconvolution of 2D-
TOCSY NMR spectra. Semi-supervised learning and ND techniques based on third- and 
fourth-degree polynomial classifiers, Kernel Null Foley-Sammon transform, Support 
Vector machines and Kernel Density Estimation are presented.  
In Chapters 6 and 7, metabolic profiling associated to dynamic changes in biological 
systems were studied. One these Chapters, 27 metabolites from breast-cancer tissue 
samples were extracted from the 2D NMR TOCSY spectrum to be used in used in the 
automatic metabolic profiling experiments. Semi-supervised learning of 2D NMR is 
essential due to the spectral components induced by chemical shifts, overlapping of 
metabolites, noise, and biological matrix effects, which aggravate the metabolic 
annotation process even for experts. In addition, manual labeling is expensive in terms of 
time and effort and particularly dependent on the expert’s experience. Confidence bands 
were used to accept or reject the classification results of semi-supervised learning. Based 
on our results, SSL can be used as a strong and confident replacement for the manual 
assignment of metabolites in 2D NMR spectra. Novelty detection is vital in metabolism 
due to the nature of biological systems where new metabolites can emerge because of 
dynamic interactions within cells or different stimuli that trigger change. In Chapter 7, 
one- and multi-class novelty detection experiments were employed. Subsequently, one 
and four metabolites were excluded from the reference TOCSY to simulate the novelty 
of the extracted metabolites. The performance of the algorithms has been evaluated 
according to different training data sizes through matching the results deduced by human 
specialists with the output of the novelty detection. The results have shown that despite 
the obvious overlapping, the implemented methods in this work achieved high 
performance and low mislabeling rates. 
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In Chapter 8, multi-class classification in addition to novelty detection of metabolites was 
established based on four different 2D NMR TOCSY spectra. The analysis is based on 
comparing the intracellular metabolites of the control cultivation on a basal culture media 
at four days and the successive metabolic evolutional on the same cell at fourteen days of 
cultivation in addition to their adipogenic or osteogenic differentiation for a duration of 
fourteen days. The classifiers Kernel Null Foley-Sammon Transform and Kernel Density 
Estimation achieved a total classification error between 0% and 3.6% and false positive 
and false negative rates of 0%. This approach was successfully able to automatically 
reveal metabolic changes that accompanied MSC cellular evolution starting from their 
undifferentiated status to their prolonged cultivation and differentiation into adipocytes 
and osteocytes using machine learning. The investigation in Chapter 8 strengthens the 
conclusion derived from Chapter 7, because it is consistent with the real metabolic 
pathways that are observable in stem cells research [197, 291, 292]. While in Chapter 7 a 
simulated novelty system has been tested, the study in Chapter 8 investigated a real and 
confirmed metabolic pathway that has been initiated through different biological triggers.   
Future work 
For future strategies, creating a more comprehensive and standardized metabolic 
database using ppm, horizontal and vertical frequencies designed for different NMR 
resolution frequency is essential to stimulate an uncomplicated access to diverse NMR 
data. This perspective is critical due to the heterogeneity of metabolites and the associated 
variables and implications. Furthermore, a new feature, which is related to spin–spin 
couplings, can be added to the two already existing features to increase the discriminative 
strength. Moreover, additional 2D NMR methods such as HMBC or HSQC can be 
employed and integrated in the automatic prediction. The output of the classification 
using different techniques might then be combined as ensemble classification to generate 
more accurate results in more complex mixtures. Quantification of the NMR signal is a 
planned goal for future developments. The introduction of the quantitative 
characterization in the classification process will result in a comprehensive and 
quantitative analysis of 2D NMR TOCSY. 
The proposed methodologies are aimed to accelerate and facilitate the metabolic profiling 
of 2D NMR. This development is a big step forward in automated spectral assignment 
and a backbone for future enhancement and development in this area. 
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10. Appendix 

A. Novelty detection related results 

i) Confusion matrices and ROC curves 

An important statement is the following: For programming indexing purposes, the 
metabolites are reordered considering the novel metabolites. This does not affect the 
frequencies and only serves as a programming maneuver. The novel metabolites are 
renamed and shifted to the last index, which explains the variations on the labels of the 
novel metabolites in Figure Supp. 1 to Figure Supp. 5 in comparison to the labels in 
Table 5.1. Example for one class-novelty: All classes: a, b, c, and d. The novel class: b. 
Reordering: 

 Index 1 2 3 4 

Classes a b c d 

Reorder/Rename a c d b 

Therefore, class b is shifted to the end index. Example for multi-class novelty: 
All classes: a, b, c, and d. The novel classes: a and b  
Reordering: 

 Index 1 2 3 4 
Classes a b c d 
Reorder/Rename c d b a 

The confusion matrix is utilized to describe the performance of the classification 
algorithm in terms of true positive, true negative, false positive and false negative values. 
Figure Supp. 1 to Figure Supp. 3 show the confusion matrices of one single run using 
different training dataset sizes for one-class novelty detection by excluding the 
metabolite tyrosine from the training dataset. It can be observed that, despite the 
variation in the training data size and the error in identifying known classes, the 
classifiers were always able to detect the novel metabolite, which is indicated as 
metabolite 27. A red flag on these figures indicates which class is novel. A row summary 
is included on each figure in cases where a severe misclassification is present. The results 
of Figure Supp. 1 to Figure Supp. 3 are consistent with the performance measures, 
Figure Supp. 4 to Figure Supp. 6 show the confusion matrices of one-run using different 
training dataset sizes for multi-class novelty detection by excluding metabolites leucine, 
tyrosine, proline, and serine from the training dataset. In comparison to the one-class 
novelty case, it can be observed that the classifiers were unable to detect all novel classes, 
indicated as metabolites 24, 25, 26, 27, using a small size of the training dataset. The 
detection of novel classes is improved for larger sizes of the training dataset. A red flag 
on these figures indicates the novel classes. The results of Figure Supp. 4 to Figure Supp. 
6 are consistent with the performance measures and novelty scores figures in the main 
manuscript and the ROC curves in the supplemental material.  
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Figure Supp. 1: Confusion matrices for one-class novelty detection using KNFST, KDE and 
SVDD using 2.5% of the training data.  The red field represents the novel class. 
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Figure Supp. 2:  Confusion matrices for one-class novelty detection using KNFST, KDE and 
SVDD using 10% of the training data. The red field represents the novel class. 
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Figure Supp. 3: Confusion matrices for one-class novelty detection using KNFST, KDE and 
SVDD using 100% of the training data.  The red field represents the novel class. 
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Figure Supp. 4: Confusion matrices for multi-class novelty detection using KNFST, KDE and 
SVDD using 2.5% of the training data. The red fields represent the novel classes. 
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Figure Supp. 5: Confusion matrices for multi-class novelty detection using KNFST, KDE and 
SVDD using 10% of the training data. The red fields represent the novel classes. 
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Figure Supp. 6: Confusion matrices for multi-class novelty detection using KNFST, KDE and 
SVDD using 100% of the training data.The red fields represent the novel classes. 
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The ROC curves and AUC values for metabolites proline, serine and leucine are shown 
in Figure Supp. 7 for the metabolites proline, serine, and leucine. 

 

Figure Supp. 7: ROC curves and AUC values showing the accuracy of the novelty threshold for 
different sizes of training data for the metabolites proline, serine, and leucine.  For each metabolite 
from left to right, the ROC curve using (a) 2.5%, (b) 10% and (c) 100% of the total size of the 
training dataset is shown for KNFST, (b) KDE and (c) SVDD as indicated in the subfigure’s 
legends. 

B. AT-derived hMSCs Sample preparation  

i) Cultivation of AT-derived hMSCs 

MSCs were maintained in basal MSCs culture media composed of alpha MEM medium 
with Earle's Salts (Gibco) supplemented with 5% human platelet lysate (hPL), at a 
concentration of 3 I.U Heparin-Sodium 5000 I.U/mL, 1% penicillin streptomycin, and 
2 mM L-glutamine [294]. The cells were cultured in an adherent plate at a seeding 
density of 4000 cells/cm2, and subculture was performed every time the cells reached a 
confluence of 80% until reaching cell division in passage number 4 (P4). The passage 
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number indicates the number of times that cells have been collected and re-cultured into 
new cell culture flasks [295]. 

ii) Adipogenic and osteogenic differentiation of AT-derived hMSCs 

AT-MSCs were induced to differentiate into adipocytes or osteocytes using StemPro 
Adipogenesis, Osteogenesis Differentiation Kit (Gibco), respectively as described by the 
manufacturer. In brief, MSCs at P4 were cultivated in MSCs basal culture media (BCM) 
at a seeding density of 4000 cells/cm2. When cells reached 70% confluence basal culture 
media was aspirated and cells were washed twice with PBS, before the addition of 
complete adipogenic (ADM) or osteogenic differentiation media (ODM). Cells were 
maintained in standard culture conditions (37 °C, 5% CO2) in humidified incubator for 
14 days, while refeeding the cells every 3-4 days with complete fresh media. Through 
the differentiation duration, morphological changes in MSCs were monitored using 
inverted microscopy. To confirm the differentiation of MSCs into adipocytes and 
osteocytes at the end of the differentiation duration, the generated monolayer of 
adipogenic or osteogenic induced MSCs went through a staining procedure using oil red 
O for adipocytes, or Alizarin red staining for osteocytes [296] . Oil red staining illustrates 
the internal neutral lipids generated in adipocytes [297, 298], whereas alizarin red 
staining illustrate mineral deposits ,like calcium, generated by osteocytes [299]. BCM is 
supposed to maintain the stemness of MSCs without triggering their differentiation, this 
was confirmed by the lack of coloration in AT-Derived MSCs after 4 days of cultivation 
as seen on Figure Supp. 8a. Figure Supp. 8b shows AT-derived hMSCs that were 
cultured in basal cell culture media for 14 days, this media is supposed to maintain only 
their growth and stemness without triggering their differentiation. However, prolonged 
culture duration triggers the formation of lipid droplets (yellow to orange droplets). 
These cells were stained with both alizarin red and oil red stains, and the following was 
obtained: negative alizarin red staining, faded staining of oil red shown as yellow to 
orange droplets. It can be depicted on Figure Supp. 8c that MSCs cultivated in ADM 
for 14 days showed a clear alteration in their morphology due to the formation of large 
oil droplet in their cytoplasm as presented by the intense Oil red. Figure Supp. 8d shows 
osteogenic differentiation.  MSCs cultivated in ODM exhibited an intense deposition of 
minerals, calcium, represented by the intense alizarin red staining.  

iii) Intracellular metabolites extraction  

At the end of the different periods, intracellular metabolites from the adipogenic and 
osteogenic differentiated AT-derived hMSCs plus their control group at 4 and 14 days 
of cultivation were extracted using methanol extraction method [300]. Briefly, 
differentiation media were aspirated, and the cultured cells were washed three times with 
phosphate-buffered saline (PBS). Immediately after washing, absolute methanol stored 
at −20 °C and water ice were added to the cells in a ratio of 2 parts:0.8 parts MeOH:H2O 
to quench metabolism. Culture plates were stored at −80 °C for 10 min, then, the cells 
were scraped off the cell culture plate, and the obtained cells/methanol mixture were 
centrifuged at a speed of 14,000 rpm for 10 min. To obtain the intracellular metabolite 
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in powder form, the samples were lyophilized, and the obtained powder from each 
sample was stored at −80 °C until further use [296]. 

(a) Day 4 in BCM (b) Day 14 in BCM (c) Day 14 in ADM (d) Day 14 in ODM 

    Figure Supp. 8: Light microscopy images of AT-derived hMSCs. (a) AT-derived hMSCs after 
4 days, and (b) 14 days of cultivation in basal culture media (BCM). (c) Oil red staining 
illustrating adipogenic differentiation of AT-derived hMSCs after 14 days of cultivation in 
adipogenic differentiation media (ADM) [297]. (d) Alizarin red staining illustrating osteogenic 
differentiation of AT-derived hMSCs after 14 days of cultivation in osteogenic differentiation 
media (ODM) [299].  
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