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Abstract: This thesis is concerned with the numerical simulations of thixoviscoplastic (TVP) flow problems. As

a nonlinear multifield two-way coupled problem, the analysis of thixoviscoplasticity in complex fluid processes

would present a great challenge. Numerical simulations are conceived as economic and credible tools to replicate

thixoviscoplastic phenomena in di↵erent flow circumstances. This thesis proceeds to provide e�cient numerical

methods and corresponding algorithmic tools to fulfill this goal.

To start with, we used a quasi-Newtonian modeling approach to integrate thixotropy in yield stress materials.

Substantially, this is done simply by introducing a microstructure-dependent extended viscosity function into the

rheological model for yield stress materials. Then, the generalized Stokes equations are supplemented with an

evolution equation for microstructure, which controls the interplay of shear rejuvenation and aging processes via

breakdown and buildup functions. We used the classical Bercovier-Engelmann’s and Papanastasiou’s regulariza-

tions to define the extended viscosity function.

Then, we generalized the standard FEM settings of Stokes equations, and proceeded with the well-posedness study

of the problem to set the foundation for the approximate problem, and for the e�cient solver. The well-posedness

of the microstructure and viscoplastic subproblems are treated simultaneously. For the viscoplastic subproblem,

we used the monotonicity property of the viscoplastic operator for di↵usion. For the microstructure subproblem,

for a given divergence-free velocity field, we used the weak coercivity and the continuity of the corresponding

bilinear form. Then, for the multifield coupled TVP problem, we used a nonlinear contraction property for a

mapping, a translation mapping of the corresponding thixoviscoplastic problem with a nonthixotropic one, acting

on the set of admissible solutions to show the existence and uniqueness of a Fixed point solution and deduce the

existence and uniqueness for coupled TVP problem.

In the context of solver, we advantageously use the delicate symbiosis aspects of the problem settings for FEM

approximations, and the algorithmic tools to develop a TVP solver. It is based on a monolithic Newton-multigrid

approach, where we treated the nonlinearity of the problem in a black box framework with an adaptive com-

bined discrete Newton’s method and a monolithic geometric multigrid solver. The linear systems inside the outer

nonlinear iterations are solved in a block Gauss-Seidel way, where the construction of the blocks is based on

incompressibility constraint. We e�ciently handled the problem coupling locally with our choice of discontinuous

linear pressure. Furthermore, due to the absence of pressure and microstructure coupling, we collocate the mi-

crostructure with the velocity in the quadratic FEM approximation to maintain the solver e�ciency. Moreover, we

deal with the weak coercivity of microstructure form with edge-oriented stabilization, to upgrade the coercivity

to match the space norm. It is consistent with FEM discretization, linear with respect to the problem, and in

addition, it enhances the e�ciency of the solver.

Most importantly, we used the numerical simulations of thixoviscoplastic flow problems as a useful tool to un-

derstand the complex phenomena of interplay between plasticity and thixotropy. We incorporated thixotropy in

well-established academical benchmarks, namely channel flow and lid-driven cavity flow. In the former, we devel-

oped a reduced one-dimensional TVP solver, then we generated reference solutions for higher-dimensional FEM

fully developed TVP flow problem. We used the one-dimensional reference solutions as a validation mechanism,

and as necessary Dirichlet boundary conditions at the inflow for microstructure, or as alternative Dirichlet bound-

ary conditions instead of “do-nothing” at the outflow. For the latter, we used lid-driven cavity case for the visual

validations of the solution’s domains, and to optimize the algorithmic tools. For both, channel, and lid-driven

cavity flows, we related the sharpness of interfaces between unyielded and yielded regions to microstructure via

evolution process, which occurs in the transitions at the boundary limit of the regions. In addition, we antici-

pated equations in cross engineering disciplines to model and replicate numerically and experimentally rheological

phenomena, namely shear localization and shear banding in Couette devices. In the end, we used thixotropy in

contraction configuration to generate breakdown layers at the vicinity of the downstream channel’s walls, that

keep the TVP material smoothly flowing along the downstream channel. Consequently, our findings highlight

the benefit of including the material microstructure, namely thixotropy, in material rheology. As an industrial

application, the optimal settings for restart pressure in waxy crude oil transportation.
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1

Introduction

In this thesis, we aim to investigate thixoviscoplasticity in fluid flow problems with the lens of numerical
simulations, as economic and credible tools to understand complex material rheology.

1.1 Thesis Overview

Thixoviscoplastic flow integrates the competitive process of Aging and Rejuvenation inhabited in the
material via plasticity and thixotropy interplay. The viscoplastic equations are supplemented with the
evolution microstructure equation, which incorporates buildup and breakdown functions responsible for
the process. It is a nonlinear multifield two-way coupled problem. Beside, the microstructure-velocity
coupling by means of microstructure dependent plastic-viscosity, and yield stress, thixoviscoplastic flow
possess the velocity-microstructure coupling due to not only the convection, but also to the shear rate
dependent buildup and breakdown functions. In addition, thixoviscoplastic flows incorporate di↵erent
types of nonlinearities, often with conflictual properties, which make the numerical simulations a true
challenge.

To generalize the standard finite element methods (FEM) settings of Navier-Stokes equations, we use a
FEM quasi-Newtonian modeling approach for thixoviscoplastic flow. This approach integrates the internal
material microstructure within extended viscosity defined on full simulations domain. We use the classical
Bercovier-Engelmann’s [13] and Papanastasiou’s [66] approximations for Frobenius norm of shear rate to
define the extended viscosity. The dependence of this approximation modeling approach on regularization
parameter raises challenges with respect to numerical solvers. In this regard, we develop a corresponding
monolithic Newton-multigrid solver to delicately handle the regularization issue. We use Local Pressure
Schur Complement (LPSC) techniques [76] to handle the linearized saddle point problems inside the
outer Newton sweeps, taking into consideration the advantageous aspect of discontinuous linear pressure
FEM approximation, and the collocation of velocity and microstructure in the same FEM quadratic
interpolation.

With the goal to incorporate thixotropy in complex flow processes, we anticipate the flow simulations in
wide range of circumstances. We provide thixoviscoplastic flow simulations in configurations of academic
background, modeling interest, and industrial applications. That is, channel flow as well as lid-driven
cavity as long-standing and well documented flow benchmarks, Couette flow as a simple enough for
modeling and experimental testing, and 4:1 contraction flow as a close enough to industrial applications.



1.2 Problem Settings of Thesis

Here, we give the settings of thixoviscoplatic (TVP) flow problem, for this thesis, based on FEM quasi-
Newtonian modeling approach. To do so, we approximate the Frobenius norm of deformation tensor,
involved in the thixoviscoplatic constitutive model, with Bercovier-Engelmann’s regularization [13],

1p
DII,r

:=
1p

DII
2 + k2

, (1.1)

or, with Papanastasiou’s regularization [66],

1p
DII,r

:=
1p
DII

⇣
1� e

�k
p
DII

⌘
, (1.2)

where k is a regularization parameter, and DII =
1
2

�
D(u) : D(u)

�
is the second invariant of deformation

tensor, D(u) = 1
2

�
ru+ (ru)T

�
. Then, we define the extended viscosity, µ(·, ·), dependent on shear rate,

DII,r, and microstructure, �,

µ(DII,r,�) = ⌘(DII,�) + ⌧(�)

p
2

2

1p
DII,r

, (1.3)

where, ⌘(·, ·), and ⌧(·) are microstructure dependent plastic-viscosity, and yield stress respectively.
And we rewrite the full set of TVP generalized Navier-Stokes equations
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>>>>><

>>>>>:

✓
@

@t
+ u ·r

◆
u�r ·

⇣
2µ(DII,r,�)D(u)

⌘
+rp = fu,

r · u = 0,
✓
@

@t
+ u ·r

◆
�+M(DII,r,�) = f�,

(1.4)

in ⌦. We denoted flow fields, microstructure, velocity, and pressure, by �, u, and p, respectively, and
source terms by f� and fu.

The microstructure equation for �, which supplements the generalized Stokes equations, in (2.18) is
responsible to integrate breakdown, G, and buildup, F , competition process. We concisely define TVP
model as

M := G � F . (1.5)

We summarize a collection of thixotropic models from the literature in Table 1.1.

Table 1.1: Models for thixotropic materials

⌘ ⌧ F G

Worrall et al. [82] � ⌘0 ⌧0 Ma(1� �) ||D|| Mb� ||D||
Coussot et al.[29] �g ⌘0 Ma Mb� ||D||
Hous̆ka [45] (⌘0 + ⌘1�) ||D||n�1 (⌧0 + ⌧1�) Ma(1� �) Mb�

m ||D||
Mujumbar et al. [59] (⌘0 + ⌘1�) ||D||n�1 �g+1G0⇤c Ma(1� �) Mb� ||D||
Dullaert et al. [33] �⌘0 �G0(� ||D||)⇤c (Ma1 +Ma2 ||D||)(1� �)tp Mb� ||D|| t�p
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The model parameters, buildup parameter,Ma, breakage parameter,Mb, nonthixotropic plastic viscosity,
⌘0, nonthixotropic yield stress, ⌧0, thixotropic plastic viscosity, ⌘1, thixotropic yield stress, ⌧1, critical
elastic strain, ⇤c, elastic modulus of unyielded material G0, and indices rate g, p,m, n, give rise to di↵erent
thixotropic models.

The thixotropic models in Table 1.1 include di↵erent nonlinearities, beside time dependency in equations
(1.4), make the Sobolev spaces for a general FEM settings very wide and di↵use the goal aligned for this
thesis. We content to limit the investigations for the time independent problems, and shear rate inde-
pendent plastic-viscosity. So, the well-posedness of the problem follows accordingly. Without restriction,
the thixotropic phenomena is replicated in the flow simulations, and the extension to include the other
models and time dependency from solver perspective, is straightforward.

1.3 Originality of Thesis

The originality of this work is not limited to one research area, rather it has multi-aspects which covers
the theoretical analysis, numerical method, implementation of e�cient algorithmic tools, and applications
for thixoviscoplastic flow problems.

To start with, we build the foundation for analysis of multifield dependent viscosity for complex flow
problems. We highlight the micro-macro structure connections in flow problems with well accepted thixo-
viscoplastic models. In this regard, in our first paper [63] we used quasi-Newtonian modeling to have mi-
crostructure dependent viscosity, and outlined the abstract framework settings for further FEM analysis.
We used simple thixoviscoplastic Hous̆ka to convey the micro-macro structure connections via unidirec-
tional flow simulations.

Then in chapter 2, we investigate the solvability of thixoviscoplastic flow problems in general context of
nonlinear multifield coupled problem facing all mathematical challenges with respect to di↵erent types of
nonlinearities. The chapter is based on our published work [9, 5]. We give the main technical ingredients,
that is spaces for FEM settings, important results from functional analysis, to establish the well-posedness
of Hous̆ka thixoviscoplastic flow problem. Furthermore, we provide Hous̆ka thixoviscoplastic flow simula-
tions in contraction configuration in [9], and upgrade the Bingham viscoplastic benchmark channel flow
to incorporate thixotropy in [5].

The important aspect concerning e�cient solver is addressed in Chapter 3, we use the FEM problem’s
settings, the well-posedness and error analysis results, published in Proc. Appl. Math. Mech. series [8, 12,
10], to develop numerical techniques for e�cient solver. The solver is monolithic, and based on Newton
and multigrid methods for multifield TVP problem. Furthermore, the solver’s algorithms are written in a
clear mathematical framework, which provide the foundation for further theoretical convergence analysis
investigations.

The core of the thesis is the numerical simulation aspect in Chapter 4, we incorporate thixotropy in
well established academical benchmarks, namely channel flow and lid-driven cavity flow, published in
[7, 5]. For the channel flow, we developed of a reduced one-dimensional TVP model to generate reference
solutions for higher-dimensional fully developed flows. The reduced one-dimensional solutions are used for
validations, or as necessary Dirichlet boundary conditions at the inflow boundary for microstructure, or
as alternative Dirichlet boundary conditions instead of “do-nothing” at the outflow. For lid-driven cavity
flow, we use it for the visual validations of the solution’s domains, and to optimize the algorithmic tools.
For both, channel flow, and lid-driven cavity flow, we relate the width of interfaces between unyielded
and yielded regions to microstructure via competition process, which take place in the transitions at
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the boundary limit of the regions. In addition, we anticipate equations in cross engineering disciplines
to model and replicate numerically and experimentally rheological phenomena, namely shear localization
and shear banding in Couette device. The discussion and the findings were published in [11]. Lastly, we
use thixotropy to generate breakdown layers at the vicinity of downstream of contraction flow, which keep
TVP material smoothly flowing along the downstream channel. The results are published in [6], which
recommend as well to take into consideration the microstructure of the material in industrial applications
by bringing into focus the start-up in waxy crude oil transportation.

1.4 Guideline for Readers

The thesis is composed of five chapters covering the problem from modeling, FEM analysis, numerical
methods, algorithmic tools, and simulations perspectives. Each chapter is made optimally self-content
with necessary subsections, a brief opening introductive guidance, and interim concluding remarks. The
reader can navigate freely between the chapters without the numbering order’s restriction.

1.5 Thesis Organization

Chapter 2 is concerned with the well-posedness of TVP flow problems in FEM context. We start by
introducing the variational principle and functional spaces in the context of shear rate independent plastic
viscosity. Then, we express the continuous TVP problems in a classical abstract setting of saddle point
problems based on the incompressibility constraint, and the approximated one in conforming framework.
We treat the existence and uniqueness of the microstructure and viscoplastic subproblems in parallel
manner. For the viscoplastic subproblem, we use monotonicity property of viscoplastic operator for the
di↵usion. For microstructure subproblem, for a given divergence-free velocity, we use the weak coercivity
and continuity of the corresponding bilinear form. Then, for the multifield coupled TVP problem we
use the nonlinear contraction property for the mapping, translation mapping of the corresponding TVP
problem with a nonthixotropic one, acting on the set of admissible solutions to show the existence of a
fixed point solution to deduce the existence results for the coupled TVP problem.

Then, in Chapter 3, we develop FEM-TVP solver based on monolithic Newton-multigrid method to tackle
TVP generalized Stokes equations. In our approach, we treat the nonlinearity of the problem in black
box framework using an adaptive combined discrete Newton’s and monolithic geometric multigrid solver.
The linear systems inside the outer nonlinear iterations are solved in a block Gauss-Seidel way, where
the construction of the blocks is based on incompressibility constraint. Furthermore, with our choice of
discontinuous linear pressure approximation P

disc
1 , we e�ciently handle the problem coupling locally. To

maintain the solver e�ciency with the fact of noncoupling of pressure and microstructure, we collocate
the microstructure and the velocity components in the same quadratic FEM approximations Q2. We
overcome the lack of strong coercivity of microstructure form with stabilization, that is edge-oriented
jump of the gradient to upgrade the coercivity to match the space norm. It is consistent with FEM
discretization, linear with respect to the problem, and in addition it enhances the solver e�ciency.

In Chapter 4, we extensively analyze thixoviscoplastic flows in di↵erent flow configurations of academic
background, modeling interest, and industrial applications. Firstly, we elevate the viscoplastic channel
flow benchmark to incorporate microstructure. We took the reduced one-dimensional solutions profiles to
provide the necessary boundary conditions (inflow boundary conditions), alternative boundary conditions

4



at the outflow (Dirichlet instead of “do-nothing”), beside that as a solution’s validation mechanism at
each x-axis cross section along the channel. Followed by the well documented and long standing lid-driven
cavity benchmark, to validate thixoviscoplastic solutions point-wisely, and to analyze the performance of
monolithic Newton-multigrid solver for TVP as an example of coupled multifield problems. Secondly we
revisit the powder Couette flow, on hand to validate and calibrate our numerical method for an optimal
settings with experimental data that we lack for thixoviscoplastic material, on other hand to highlight
the issue of the types of transitions between fluid-like and solid-like zones. Then, we use buildup and
breakdown within the microstructure to categorize the type of transitions into shear localization and
shear banding. Lastly, we use contraction configuration as a close enough for industrial and engineering
applications, to analyze the thixotropic phenomena, namely the competition process of Shear Aging and
Shear Rejuvenation.

In the concluding Chapter 5, we highlight the multi-aspects of our research results, including the newly
developed numerical methods and algorithmic tools, that we use for the numerical simulations. We provide
the substantial extensions of this work in the direction of time-dependent problems, and also in models
with constitutive laws toward thixotropic elasto-viscoplastic (TEVP) flows [41, 72, 73].

1.6 Publications and Presentations Parallel to Thesis

During the course of this PhD journey, side-by research challenges were elevated and the findings were
made publicly available. Here is the list of publications and presentations parallel to Thesis.

1.6.1 Publications

1. Ouazzi, A., Begum, N., Turek, S., Newton-Multigrid FEM solver for the simulation of quasi-
Newtonian modeling of thixotropic flows, 700, Numerical Methods and Algorithms in Science and
Engineering, 2021, [63].

2. Begum, N., Ouazzi, A., Turek, S., Finite element methods for the simulation for the simulation of
thixotropic flow, 9th edition of the International Conference on Computational Methods for Coupled
Problems in Science and Engineering, DOI: 10.23967/coupled.2021.028, 2021, [6].

3. Begum, N., Ouazzi, A., Turek, S., Monolithic finite element method for the simulation of thixo-
viscoplastic flows, Book of Extended Abstracts of the 6th Eccomas Young Investigators Conference,
https://doi.org/10.4995/YIC2021.2021.12250, 2021, [7].

4. Begum, N., Ouazzi, A., Turek, S., Monolithic Newton-multigrid FEM for the simulation of thixotropic
flow problems, 21, Proc. Appl. Math. Mech., 10.1002/pamm.202100019, 2021, [8].

5. Begum, N., Ouazzi, A., Turek, S., FEM analysis and monolithic Newton-multigrid solver for thixo-
viscoplastic flow problems, ECCOMAS Congress 2022 - 8th European Congress on Computational
Methods in Applied Sciences and Engineering, doi.org/10.23967/eccomas.2022.119, 2022, [9].

6. Begum, N., Ouazzi, A., Turek, S., FEM simulations of thixoviscoplastic flow problems: Error analysis,
23, 1, Proc. Appl. Math. Mech., 10.1002/pamm.202200294, 2023, [12].

7. Begum, N., Ouazzi, A., Turek, S., FEM modeling and simulation of thixoviscoplastic flow problems,
AIP Conference Proceedings, in press, 2023, [11].

8. Begum, N., Ouazzi, A., Turek, S., E�cient Newton-multigrid FEM solver for multifield nonlinear
coupled problems applied to thixoviscoplastic flows, Proc. Appl. Math. Mech., 2023, [10].

9. Begum, N., Ouazzi, A., Turek, S., FEM simulation for nonlinear multifield coupled problems: Appli-
cation to thixoviscoplastic flow, X edition of the International Conference on Computational Methods
for Coupled Problems in Science and Engineering, 2023, [5].
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1.6.2 Pro-seminar Talks

1. Begum, N., Ouazzi, A., Turek, S., Monolithic Newton-multigrid FEM for the simulation of thixotropic
flow problems, Oberseminar Series, Winter Term 2020/21, Chair of Applied Mathematics and Nu-
merics LSIII, TU Dortmund, Germany, 16th March 2021.

2. Begum, N., Ouazzi, A., Turek, S., Monolithic Finite Element Methods for the simulation of thixovis-
coplastic flows, Oberseminar Series, Summer Term 2021, Chair of Applied Mathematics and Numerics
LSIII, TU Dortmund, Germany, 6th July 2021.

3. Begum, N., Ouazzi, A., Turek, S., FEM modeling and simulation of thixoviscoplastic flow problems,
Oberseminar Series, Winter Term 2022, Chair of Applied Mathematics and Numerics LSIII, TU
Dortmund, Germany, 2nd March 2022.

1.6.3 Presentations in Conferences

1. Ouazzi, A., Begum, N., Turek, S., Newton-multigrid FEM solver for the simulation of quasi-newtonian
modeling of thixotropic flows,WCCM-ECCOMAS 2021, 14th World Congress on Computational Me-
chanics WCCM, Virtual Congress, 11-15 January 2021.

2. Begum, N., Ouazzi, A., Turek, S., Monolithic Newton-multigrid FEM for the simulation of thixotropic
flow problems, GAMM 2020-21, 91st Annual Meeting of the International Association of Applied
Mathematics and Mechanics, 15-19 March 2021, Kassel, Germany.

3. Begum, N., Ouazzi, A., Turek, S. Monolithic Finite Element Methods for the simulation of thixotropic
flows, COUPLED2021, IX International Conference on Computational Methods for Coupled Problems
in Science and Engineering, 13-16 June 2021, Chia Laguna, Sardinia,Italy.

4. Begum, N., Ouazzi, A., Turek, S., Monolithic Finite Element Methods for the simulation of thixo-
viscoplastic flows, YIC2021, 6th ECCOMAS Young Investigators Conference, 7-9 July 2021, Valencia
Spain.

5. Begum, N., Ouazzi, A., Turek, S.,Newton-multigrid FEM solver for the simulation of thixoviscoplastic
flow problems, PragureSum 2021, Summer School and Workshop ”Fluids under Control” , 23-27
August 2021, Prague, Czech Republic.

6. Begum, N., Ouazzi, A., FEM analysis and monolithic Newton-multigrid solver for thixoviscoplas-
tic flow problems, ECCOMAS2022, 8th European Congress on Computational Methods in Applied
Sciences and Engineering, 5-9 June 2022, Oslo, Norway.

7. Begum, N., Ouazzi, A., Turek, S., FEM simulations of thixoviscoplastic flow problems, GAMM2022,
92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, 15-19
August 2022, Aachen, Germany.

8. Begum, N., Ouazzi, A., Turek, S., FEM analysis and monolithic Newton-multigrid solver for thixo-
viscoplastic flow problems, 9th GACM Colloquium on Computational Mechanics for Young Scientists
from Academia and Industry, 21- 23 September 2022, Essen, Germany.

9. Begum, N., Ouazzi, A., Turek, S., FEM modeling and simulation of thixoviscoplastic flow problems,
ICMSAO’23, 9th International Conference on Modeling, Simulation and Applied Optimization, 26-28
April 2023, Marrakech, Morocco.

10. Begum, N., Ouazzi, A., Turek, S., An e�cient Newton-multigrid FEM solver for multifield nonlinear
problems applied to thixoviscoplastic flows, GAMM2023, 93rd Annual Meeting of the International
Association of Applied Mathematics and Mechanics, 30 May -2 June 2023, Dresden, Germany.

11. Begum, N., Ouazzi, A., Turek, S., Monolithic Newton-Multigrid FEM solver for nonlinear multifield
coupled problems: Application to thixotropic flow, COUPLED2023, X International Conference on
Computational Methods for Coupled Problems in Science and Engineering, 4-7 June 2023, Chania,
Crete, Greece.

In the following chapter, we address the solvability of thixoviscoplastic flow problems in FEM settings.
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2

Finite Element Method for Thixoviscoplastic Flow Problems

This chapter is concerned with the well-posedness of thixoviscoplastic (TVP) flow problems in finite
element method (FEM) context. To set the foundation for an e�cient monolithic TVP solver, we restrict
our study to a quasi-Newtonian modeling approach. We analyze the microstructure and viscoplastic
subproblems in parallel manner, then we present the well-posedness of the mutifield coupled TVP problem.

2.1 Introduction

In this chapter, we present the well-posedness of quasi-Newtonian modeling approach of TVP flow prob-
lems in FEM context.
Thixoviscoplastic flows are multifield nonlinear coupled problems. Beside the integrated nonlinearity
within generalized Navier-Stokes and microstructure equations, thixoviscoplastic problems induce a two
way coupling. Such problems are often lacking unified FEM analysis due to the presence of di↵erent non-
linearities. Thus, we treat auxiliary microstructure and viscoplastic subproblems with the corresponding
suitable analysis tools to guarantee existence and uniqueness of solutions. Then, we proceed with the
well-posedness of multifield coupled TVP problem.

In Section §2.2, we introduce Sobolev spaces for the FEM settings for thixoviscoplastic flow problems in
context of shear rate independent plastic viscosity, which corresponds to TVP Hous̆ka model. That is,
the plastic viscosity is exclusively dependent on microstructure. Moreover, we define the necessary inner
products and associated norms.

We proceed with the thixoviscoplastic FEM problem settings in Section §2.3. The continuous weak for-
mulation of the TVP problem is presented in general saddle point abstract from. We take the spaces
(H1

0 (⌦))d, d = 2, for velocity, L2
0(⌦) for pressure, as a natural choice to derive the weak formulation for

Navier-Stokes equations, and H
1(⌦) space for microstructure field for this thesis. We first derive the weak

forms for microstructure and velocity fields, then we demonstrate the derivation of the weak formulation
for the coupled field ũ = (u,�), and present the problem in a general saddle point context. The weak
formulation is derived for general domains with di↵erent type of boundary conditions, including inflow
conditions for microstructure.



Section §2.4 is devoted to the question of existence and uniqueness of the solution of the weak formulation
of TVP problem. We start with the well-posedness of microstructure and viscoplastic subproblems, and
proceed with the well-posedness of the coupled one. Firstly for viscoplastic subproblem, for a given
microstructure field, we use the Lemma plastic monotonicity in Rd⇥ d to demonstrate the monotonicity
property. Secondly, the microstructure subproblem for a given divergence-free velocity is a bilinear form
with respect to microstructure field. In this regard, we use the weak coercivity and the continuity for
the existence and uniqueness of the solution of the microstructure subproblem. As far as the multifield
coupled TVP problem is concerned, we proceed by constructing a mapping which acts on the set of
admissible solutions and show the existence of the fixed point solution. The main ingredient to show the
existence of the solution is the nonlinear contraction property of an auxiliary mapping, which is related
to the translation of thixoviscoplastic problem with a nonthixotropic one.

Section §2.5 is concerned with the FEM TVP approximations. We introduce the approximate TVP
problem in conforming framework with stable pair for velocity and pressure. And we proceed with the
well-posedness of the approximate problem similar to the continuous one, providing strong divergence
free assumptions to not overload the new challenges with extra technicalities. We provide boundedness
of the solutions with the data. On one hand, the pressure is underdetermined in rigid zones as its bound
shows that if the source term tends towards zero, the limit for pressure is not necessarily zero in the limit
of regularization parameter. On the other hand, microstructure bound exhibits that the higher order
derivatives of microstructure are not controlled, that is the microstructure is only bounded with L

2-norm
and boundary norm.

The summarising Section §2.6, highlights conclusions and main results of the chapter. Firstly, we introduce
Sobolev spaces for the FEM settings for thixoviscoplastic flow problems. Then, we proceed with the
thixoviscoplastic FEM problem settings in general saddle point abstract form. Secondly, we investigate the
well-posedness of the continuous TVP problem via the well-posedness of microstructure and viscoplastic
subproblems. Lastly, we present the approximate TVP problem in conforming FEM context, show the
well-posedness of the problem, and provide the boundedness of the solutions for flow fields with data. To
conclude, FEM quasi-Newtonian thixoviscoplastic flow has a solution with respect to data. Furthermore,
the pressure is underdetermined in rigid zones and higher order derivatives of microstructure are not
controlled.

2.2 Notations and Terminology

For FEM discretization of thixoviscoplastic flow problems, we use Sobolev spaces which are introduced,
here, in context of shear rate independent plastic viscosity. In other words, the plastic viscosity is de-
pendent on microstructure exclusively. As a consequence, we introduce Sobolev spaces with an integer
power. Moreover, we define the corresponding inner products and associated norms (for details, we refer
to [22], [42], and [75]).

A zero order Sobolev space is the space of all square integrable real functions defined in ⌦,

H
0(⌦) =

⇢
v |

Z

⌦
|v|2 d⌦ < 1

�
. (2.1)

This is the usual real Hilbert space denoted as L2(⌦).
The first order Sobolev space, H1(⌦), is the space of real functions whose first spatial derivatives are in
H

0(⌦), defined as
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H
1(⌦) =

⇢
v 2 L

2(⌦)| rv 2 L
2(⌦)

�
. (2.2)

In general for an integer m, the space of real functions whose generalized m spatial derivatives are in
L
2(⌦) defined as

H
m(⌦) =

⇢
v 2 L

2(⌦)| D↵
v :=

@
|↵|

v

@↵1x1 · · · @↵nxn
2 L

2(⌦), 8 |↵|  m, |↵|=↵1+↵2+· · ·+↵n

�
. (2.3)

For practicality, we introduce the space of all square integrable real functions with zero mean value in ⌦

L
2
0(⌦) =

⇢
v 2 L

2(⌦) |
Z

⌦
v d⌦ = 0

�
(2.4)

which we use as representative of L2(⌦)/R.
For the trace of functions, we set @⌦ be a Lipschitz boundary of ⌦ and � ⇢ @⌦ be any section of @⌦.
The space of H1(⌦) functions with zero trace at the boundary @⌦ is denoted by

H
1
0 (⌦) =

�
v 2 H

1(⌦) | v|@⌦ = 0
 
, (2.5)

while the space of H1(⌦) functions with zero trace at � is denoted by

H
1
� (⌦) =

�
v 2 H

1(⌦) | v|� = 0,� ⇢ @⌦
 
. (2.6)

Furthermore, we set n be the outward unit normal vector to � , and define two additional boundary
sections [43], inflow boundary, ��,

�
� = {x 2 � ⇢ @⌦ | u · n < 0} , (2.7)

and outflow boundary [43], �+,

�
+ = {x 2 � ⇢ @⌦ | u · n > 0} . (2.8)

On theses spaces, we define inner products and corresponding norms (for steady state problems).

We limit the definition of inner product to L
2(⌦) space, since it is the base of inner products and norms

on higher order spaces and to not overload the text with unnecessary symbols.
For all v, w 2 L

2(⌦), we define the inner product on L
2(⌦) as

(v, w) =

Z

⌦
vw d⌦, (2.9)

and the corresponding norm, which we term zero norm/L2-norm, as

||v||0 =(v, v)
1
2 . (2.10)

For the one order space H
1(⌦), the associated one norm/H1-norm is defined for all v 2 H

1(⌦) as

||v||1 = [(v, v) + (r v,r v)]
1
2 . (2.11)

It is worth to mention that we often use the semi norm |·|1 which we define as

|v|1 = [(r v,r v)]
1
2 . (2.12)
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Furthermore, for a given vector-valued function, u 2 (H1(⌦))d; d = 2, we introduce the boundary inner
product

< v,w >±=

Z

�±
|u · n| vwds, (2.13)

as well as the associated boundary norm (semi-norm)

< v >±=< v, v >

1
2
± . (2.14)

In what follows, the inner product symbols (·, ·), and h·, ·i are used alternatively with their exact defi-
nitions. We are also interested in space of bounded function in ⌦, which is the Lebesgue space, defined
as

L
1(⌦) := {v : ⌦ ! R measureable and |v(x)| < +1 almost everywhere in ⌦} , (2.15)

with the norm

||v||1 =ess.supx2⌦ |v(x)|. (2.16)

We will often use zero-infinity notation |·|0,1 to refer to ||·||1.
Moreover, for functions with bounded derivatives i.e. v 2 H

1(⌦) such that r v 2 L
1(⌦), we define

one-infinity norm |·|1,1 as

|v|1,1 = ||r v||1 . (2.17)

Now, we are ready to go forward to derive the weak formulation of TVP problem. In this regard, we
derive the weak form using H

1(⌦) space for velocity and microstructure. As a consequence, the FEM
analysis of the TVP problem follows this specific choice. Using, the exact space for microstructure leads
to di↵erent FEM analysis, which goes beyond the interest of the thesis.

2.3 Thixoviscoplastic Problem Settings

In this section, we present the continuous weak formulation of generalized Stokes TVP problem. That is,
8
>>>>><

>>>>>:

@u

@t
�r ·

⇣
2µ(DII,r,�)D(u)

⌘
+rp = fu,

r · u = 0,
✓
@

@t
+ u ·r

◆
�+M(DII,r,�) = f�,

(2.18)

in ⌦. Along this thesis, the function M(·, ·) corresponds to Hous̆ka TVP model with the power m = n = 1
from Table 1.1. We write in the saddle point abstract from based on incompressibility constraint the
problem (2.18) in the framework of [22, 42]. To do so, we take the spaces (H1

0 (⌦))d, d = 2, for velocity,
L
2
0(⌦) for pressure, as a natural choice for the weak formulation of Stokes equations, and H

1(⌦) for
microstructure, for geometry with inflow.

We set V := (H1
0 (⌦))2,T := H

1(⌦), and W := V⇥T be the product space of velocity and microstructure
spaces V and T, respectively. We denote by Q := L

2
0(⌦) the pressure space. To write the problem in the

operator form, we introduce the dual spaces V0, T0, W0 := V0 ⇥ T0, and Q0 of spaces V, T, W := V ⇥ T,
10



and Q, respectively. The product space W and the pressure space Q are associated with H
1-norm ||·||1

and L
2-norm ||·||0, respectively.

Let ũ = (u,�) be coupled field, for velocity and microstructure, and ṽ = (v, ⇠) be its associated test
coupled field. We introduce the TVP form for the coupled field defined on W⇥W⇥W as

aũ(ũ)(ũ, ṽ) = au(ũ)(u,v) + a�(ũ)(�, ⇠) 8 (ũ, ṽ) 2 W⇥W, (2.19)

which is the sum of velocity form au(·)(·, ·) defined on W ⇥ V ⇥ V and microstructure form a�(·)(·, ·)
defined on W⇥ T⇥ T.
We denote by b(·, ·), the bilinear form defined on V⇥Q related to incompressibility constraint.
We also introduce the linear coupled field lũ defined in W0 as

lũ(ṽ) = lu(v) + l�(⇠) 8 ṽ 2 W. (2.20)

The weak formulation for thixoviscoplastic flow problems (2.18) reads:

Find (ũ, p) 2 W⇥Q such that

aũ(ũ)(ũ, ṽ) + b(v, p)� b(u, q) = lũ(ṽ), 8 (ṽ, q) 2 W⇥Q, (2.21)

which is often written equivalently as

Find (ũ, p) 2 W⇥Q such that
(
aũ(ũ)(ũ, ṽ) + b(v, p) = lũ(ṽ) 8 ṽ 2 W,

b(u, q) = 0 8 q 2 Q.
(2.22)

For convenience, we also write the strong continuous TVP problem in the following operator form

Find (ũ, p) 2 W⇥Q such that
(
Aũ(ũ)ũ+ BT

p = fũ in W0
,

Bu = 0 in Q0
.

(2.23)

The coupled operator Aũ(·)(·) is defined in W0 as

Aũ(ũ)ũ = Au(ũ)u+A�(ũ)�. (2.24)

The operator Aũ(·)(·) is the sum of velocity operator Au(ũ)(·) defined in V0

hAu(ũ)u,vi = au(ũ)(u,v) 8 v 2 V, (2.25)

and microstructure operator A�(ũ)(·) defined in T0

hA�(ũ)�, ⇠i = a�(ũ)(�, ⇠) 8 ⇠ 2 T. (2.26)

While, the operators B, and BT are defined as

hBv, qi = hv,BT
qi = b(v, q) 8 v 2 V, q 2 Q. (2.27)

Now, we turn to detail expressions of previously introduced forms and operators. For all ũ = (u,�) 2 W,
the velocity weak form au(·)(·, ·) is given as

au(ũ)(u,v) =
⇣
2µ(DII,r(u),�)D(u),D(v)

⌘
8 v 2 V, (2.28)

11



The coupling of velocity weak form and operator with the microstructure is only through the e↵ective
viscosity µ(·, ·). On other hand, the coupling of the microstructure weak form and operator defined as

a�(ũ)(�, ⇠) =
⇣
Ma �, ⇠

⌘
+
⇣
Mb

q
DII,r(u) �, ⇠

⌘
�
⇣
�,u ·r⇠

⌘
+ h�, ⇠i+ 8 ⇠ 2 T, (2.29)

is due to the breakdown contribution, second term, convection of microstructure with velocity, third term,
and outflow boundary inner product (2.13), fourth term, in (2.29). The weak form and operator for the
incompressibility constraint are defined with the negative divergence as

b(v, q) = �
⇣
r · v, q

⌘
8 q 2 Q, (2.30)

in order to have BT as the gradient operator. The linear forms due to source terms are defined, respectively,
for momentum equation as

lu(v) =
⇣
fu,v

⌘
8 v 2 V, (2.31)

and for microstructure equation as

l�(⇠) =
⇣
f�, ⇠

⌘
8 ⇠ 2 T,

l�(⇠) =
⇣
f�, ⇠

⌘
+ h�in, ⇠i� 8 ⇠ 2 T.

(2.32a)

(2.32b)

The linear microstructure form (2.32a) corresponds to a strongly imposed inflow boundary conditions.
While, for a weakly imposed inflow boundary conditions, the microstructure space is set to T := H

1
� (⌦)

and the microstructure linear form is set to (2.32b).

We demonstrate the derivation of the weak form (2.19) through its two components, the velocity weak
form (2.28) and the microstructure weak form (2.29).
Let us start with velocity weak form (2.28), we multiply the steady momentum equation (2.18) with a
test function v 2 V

�
Z

⌦
r ·

⇣
2µ(DII,r,�)D(u)

⌘
v d⌦ +

Z

⌦
rp v d⌦ =

Z

⌦
fuv d⌦ 8 v 2 V, (2.33)

and integrate by parts, the first and the second terms of (2.33), over a domain ⌦ with boundary @⌦

Z

⌦
2µ(DII,r,�)D(u) : D(v) d⌦ �

Z

@⌦

⇣
2µ(DII,r,�)D(u)� pI

⌘
· n v d�

�
Z

⌦
p r · v d⌦ =

Z

⌦
fuv d⌦ 8 v 2 V,

(2.34)

for a general geometry with boundary @⌦ = � [��[�+, we use homogeneity of test function on � [��,
and do-nothing boundary condition on �+ to cancel the boundary term. We assign the addition of first
and second terms of (2.34) to velocity weak form (2.28), and third term of (2.34) to weak divergence
form (2.30), and fourth term of (2.34) to linear form (2.31), to conclude expressions of weak forms (2.28),
(2.30), and (2.31).

For microstructure weak form, we multiply the steady microstructure equation (2.18) with a test function
⇠ 2 T Z

⌦
u ·r� ⇠ d⌦ +

Z

⌦
M(DII,r,�)⇠ d⌦ =

Z

⌦
f� ⇠ d⌦ 8 ⇠ 2 T, (2.35)
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and integrate by parts, the first term of (2.35), over a domain ⌦ with boundary @⌦ = � [ �� [ �+.
Then, we use the homogeneity of test function on � and the value of microstructure at inflow boundary
�

� to obtain

�
Z

⌦
� u ·r⇠ d⌦ +

Z

�+

|u · n|� ⇠ d� +

Z

⌦
M(DII,r,�)⇠ d⌦ =

Z

⌦
f� ⇠ d⌦ +

Z

��
|u · n|�in ⇠ d� 8 ⇠ 2 T.

(2.36a)

(2.36b)

In case of strongly imposed inflow boundary conditions for �, the boundary term of (2.36b) vanishes to
have the linear form version (2.32a) from (2.36b). While, in the case of weakly imposed inflow boundary
conditions for �, the full term of (2.36b) is assigned to the linear form version (2.36b).

We introduced a coupled field ũ = (u,�) for the TVP problem, and presented the problem in a general
saddle point context based on incompressibility. The coupled field is set in H

1, which reduces the ad-
missible solution for microstructure. We derived weak forms on a general domain with di↵erent type of
boundary conditions, and allowed the problem to satisfy inflow conditions for microstructure in strong as
well as in weak sense. Setting microstructure in H

1 gives rise to a challenge that the energy microstruc-
ture norm is not a norm in H

1. In what follows, we proceed with the FEM analysis of this choice of space
setting. Next section is devoted to well-posedness of TVP problem.

2.4 Well-posedness of Thixoviscoplastic Problem

In the previous section, we presented the TVP problem in general saddle point abstract framework based
on incompressibility constraint using a coupled field of velocity and microstructure. We proceed, here,
with the question of existence and uniqueness of the solution of weak form of TVP problem.

Theorem 1 (Well-posedness). Let fu 2 (L2(⌦))2 and f� 2 L
2(⌦), then the thixoviscoplastic problem

(2.21) has a solution (ũ, p) = (u,�, p) 2 W⇥Q.

For the proof of the Theorem 1, we use two intermediate propositions related to viscoplastic subproblem
and microstructure subproblem.
Firstly, we introduce the subspace V0 ⇢ V of divergence-free functions

V0 = {v 2 V | r · v = 0} , (2.37)

The viscoplastic subproblem: For a given � 2 T,
Find (u, p) 2 V⇥Q such that

(
au(ũ)(u,v) + b(v, p) = lu(v) 8v 2 V,
b(u, q) = 0 8q 2 Q,

(2.38)

The microstructure subproblem: For a given u 2 V0

Find � 2 T such that
a�(ũ)(�, ⇠) = l�(⇠), 8⇠ 2 T. (2.39)

The well-posedness results for viscoplastic subproblem are stated in Proposition 1.
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Proposition 1 (Viscoplastic subproblem). For fu 2 (L2(⌦))2, and ⇣ 2 T solution of the microstruc-
ture subproblem (2.39), there exists a unique solution u = u(⇣) to the viscoplastic subproblem (2.38), and
it satisfies the estimate

||u||1  1

⌘0Ck
||fu||0 , (2.40)

||p||0  1

�

⇣
1 +

2 (⌘1 + k⌧1)

⌘0Ck

⌘
||fu||0 , (2.41)

where CK denotes the Korn’s inequality constant [61], and � is the Ladyzhenskaya-Babuška-Brezzi (LBB)
constant [22].

The well-posedness results for microstructure subproblem are stated in Proposition 2.

Proposition 2 (Microstructure subproblem). For f� 2 L
2(⌦), and u 2 V0 solution of viscoplastic

subproblem (2.38), there exists a unique solution � = �(u) to the microstructure subproblem (2.39), and
it satisfies the estimate

||�||0  1

Ma
||f�||0 , (2.42)

Ma ||�||20 +
1

2
h�i2  1

Ma
||f�||20 . (2.43)

2.4.1 Well-posedness of Viscoplastic Subproblem

We proceed with the investigation of well-posedness of viscoplastic subproblem, similar investigation can
be found in [1, 67]. We demonstrate the monotonicity and the continuity of the corresponding viscoplastic
nonlinear operator [23, 24, 57, 58]. Here, we introduce two lemmas related to monotonicity and continuity
of viscous plasticity in Rd⇥ d.

2.4.2 Lemma Plastic Monotonicity in Rd⇥d

Lemma 1. (Monotonicity) For all X, Y2 Rd⇥d, ⇣ 2 [0, 1], and ⌧(·) is a mapping defined as
⌧(⇣) : [0, 1] ! [0,R+], we have

⇣
⌧(⇣)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,X� Y
⌘
� 0, (2.44)

where, |·|F,r denotes an approximation of the Frobenius norm |·|F , such that

|X|F  |X|F,r 8 X2 Rd⇥d
, (2.45)

���|X|F,r � |Y|F,r

���  |X� Y|F 8 X, Y2 Rd⇥d
. (2.46)

Proof. (lemma 1) We show the monotonicity property of the mapping X! X
|X|F,r

in Rd⇥d which is a key

to demonstrate the monotonicity of weak form au(·)(·, ·).

Let X, Y2 Rd⇥d and ⇣ 2 [0, 1], we evaluate the right hand side of (2.44), add and subtract ⌧(⇣)
Y

|X|F,r

,

and segregate terms as
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⇣
⌧(⇣)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,X� Y
⌘
=
⇣
⌧(⇣)

X

|X|F,r

� ⌧(⇣)
Y

|X|F,r

,X� Y
⌘

(2.47)

�
⇣
⌧(⇣)

Y

|Y|F,r

� ⌧(⇣)
Y

|X|F,r

,X� Y
⌘
. (2.48)

Then, we manage a common denominator, and rearrange terms for (2.48)

⇣
⌧(⇣)

Y

|Y|F,r

� ⌧(⇣)
Y

|X|F,r

,X� Y
⌘
=
⇣
⌧(⇣)

|X|F,r Y

|Y|F,r |X|F,r

� ⌧(⇣)
|Y|F,r Y

|Y|F,r |X|F,r

,X� Y
⌘

(2.49)

=
⇣
⌧(⇣)

|X|F,r

⇣
|X|F,r � |Y|F,r

⌘ Y

|Y|F,r

,X� Y
⌘
. (2.50)

Now, we apply conditions (2.45) for the term
Y

|Y|F,r

, and (2.46) for the term |X|F,r � |Y|F,r, on the

approximated norm in (2.50), we get

⇣
⌧(⇣)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,X� Y
⌘
�
⇣
⌧(⇣)

|X|F,r

X� Y,X� Y
⌘

(2.51)

�
⇣
⌧(⇣)

|X|F,r

|X� Y|F ,X� Y
⌘

(2.52)

which concludes the proof

⇣
⌧(⇣)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,X� Y
⌘
� 0. (2.53)

2.4.3 Lemma Plastic Continuity in Rd⇥d

Lemma 2. (Continuity) For all X, Y,Z2 Rd⇥d, ⇣ 2 [0, 1], and ⌧(·) is a mapping defined as
⌧(⇣) : [0, 1] ! [0,R+], we have

�����

⇣
⌧(⇣)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,Z
⌘�����  2⌧1k |X� Y|F |Z|F , (2.54)

where, |·|F,r is an approximation of the Frobenius norm |·|F , such that

1

|X|F,r

 k 8 X2 Rd⇥d
, (2.55)

where, k � 0 is a regularization parameter.

Proof. (Lemma 2) Let X, Y,Z2 Rd⇥d and ⇣ 2 [0, 1], we evaluate the right hand side of (2.54), add and

subtract the term ⌧(⇣)
Y

|X|F,r

, segregate terms as

⇣
⌧(⇣)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,Z
⌘
=
⇣
⌧(⇣)

X

|X|F,r

� ⌧(⇣)
Y

|X|F,r

,Z
�

(2.56)

�
�
⌧(⇣)

Y

|Y|F,r

� ⌧(⇣)
Y

|X|F,r

,Z
⌘
. (2.57)
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Then, we manage a common denominator, and rearrange terms, for (2.57)

⇣
⌧(⇣)

Y

|Y|F,r

� ⌧(⇣)
Y

|X|F,r

,Z
⌘
=
⇣
⌧(⇣)

|X|F,r Y

|Y|F,r |X|F,r

� ⌧(⇣)
|Y|F,r Y

|Y|F,r |X|F,r

,Z
⌘

(2.58)

=
⇣
⌧(⇣)

|X|F,r

⇣
|X|F,r � |Y|F,r

⌘ Y

|Y|F,r

,Z
⌘
. (2.59)

Now, we apply the condition (2.45) and (2.46) on the approximated norm for (2.59), to obtain

�����

⇣
⌧(⇣)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,Z
⌘����� 

⇣
⌧(⇣)

|X|F,r

|X� Y|F ,Z
⌘

(2.60)

+
⇣
⌧(⇣)

|X|F,r

|X� Y|F ,Z
⌘
, (2.61)

then, we take the upper bound for ⌧(·) and use the condition (2.55) for the term
1

|X|F,r

on the approxi-

mated norm, to obtain
�����

⇣
⌧(⇣)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,X� Y
⌘�����  2⌧1k |X� Y|F |Z|F , (2.62)

which concludes the proof.

Now, we proceed with the proof of Proposition 1.

Proof of Proposition 1

Proof. (Proposition 1) For a given ⇣ 2 T, we apply Browder-Minty Theorem of monotone operator to
au(·)(·, ·) on V0 ⇥ V0 to show existence and uniqueness of the solution u = u(⇣) 2 V0. That is, we show
that the operator au(·)(·, ·) is coercive, continuous, and monotone on V0⇥V0, and that the operator lu(·)
is bounded.
We start with the coerciveness property,

Coerciveness of au(·)(·, ·): For all v 2 V0, ṽ := (v, ⇣), we evaluate au(ṽ)(v,v),

au(ṽ)(v,v) =
⇣
2µ(DII,r, ⇣)D(v),D(v)

⌘
8 v 2 V0, (2.63)

then, we take into consideration the positivity of the plastic contribution, to deduce

au(ṽ)(v,v) � 2
⇣
⌘(⇣)D(v),D(v)

⌘
8 v 2 V0. (2.64)

We take the lower value of ⌘(·), and use the Korn’s first inequality [61], to conclude the coerciveness of
au(·)(·, ·)

au(ṽ)(v,v) � ⌘0CK ||v||21 8 v 2 V0, (2.65)

where, CK denotes the Korn’s inequality constant.

We proceed with the important property of continuity.
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Continuity of au(·)(·, ·): For all u,v,⌘ 2 V0, ũ := (u, ⇣), and ṽ := (v, ⇣), we evaluate the di↵erence
au(ũ)(u,⌘)� au(ṽ)(v,⌘),

au(ũ)(u,⌘)� au(ṽ)(v,⌘) =
⇣
2µ(DII,r(u), ⇣)D(u),D(⌘)

⌘
�
⇣
2µ(DII,r(v), ⇣)D(v),D(⌘)

⌘
, (2.66)

then, segregate the viscous term, and the plastic term. With the linearity of symmetric gradient D(·), we
get

au(ũ)(u,⌘)� au(ṽ)(v,⌘) =
⇣
2⌘(⇣)D(u� v),D(⌘)

⌘
(2.67)

+
⇣
⌧(⇣)

p
2p

DII,r(u)
D(u),D(⌘)

⌘
�
⇣
⌧(⇣)

p
2p

DII,r(v)
D(v),D(⌘)

⌘
(2.68)

We take the upper bound of plastic viscosity ⌘(·), and use the Hölder inequality for the viscous term (2.67).
Moreover, we use the continuity of the plastic term (2.68), using Lemma 2, to conclude the continuity of
au(·)(·, ·)

|au(ũ)(u,⌘)� au(ṽ)(v,⌘)| 
⇣
2⌘1 + 2⌧1k

⌘
||u� v||1 ||⌘||1 8u,v,⌘ 2 V0, (2.69)

The coercivity and continuity properties are not su�cient for the existence and uniqueness of the solution.
Now, we check the monotonicity property of of au(·)(·, ·).

Monotonicity of au(·)(·, ·): Let u,v 2 V0, and set ⌘ = u� v.
We evaluate the di↵erence au(ũ)(u,u�v)� au(ṽ)(v,u�v), segregate the viscous term, and the plastic
term, then we use the linearity of symmetric gradient D(·), to obtain

au(ũ)(u,⌘)� au(ṽ)(v,⌘) =
⇣
2⌘(⇣)D(⌘),D(⌘)

⌘
(2.70)

+
⇣
⌧(⇣)

p
2p

DII,r(u)
D(u),D(⌘)

⌘
�
⇣
⌧(⇣)

p
2p

DII,r(v)
D(v),D(⌘)

⌘
(2.71)

We take the lower bound of plastic viscosity ⌘(·), and use the Korn’s first inequality [61] for the viscous
term (2.70). Moreover, we use the monotonicity of the plastic term (2.71), using Lemma 1, to obtain

au(ũ)(u,⌘)� au(ṽ)(v,⌘) � ⌘0CK ||⌘||21 , 8u,v 2 V0 (2.72)

to conclude the proof of monotonicity property.

Furthermore, the linear operator lu(·) is bounded. Since, we have

lu(v) =
⇣
fu,v

⌘
 ||fu||0 ||v||1 8v 2 V0. (2.73)

Then, with the definition of the norm for linear operators

||lu||V0
0
= sup

v2V0

|lu(v)|
||v||1

8v 2 V0, (2.74)

we obtain

||lu||V0
0
 ||fu||0 8v 2 V0, (2.75)

and conclude the boundedness of the linear operator lu(·) in V0.

17



Now, we use the monotonicity and the continuity of aũ(·)(·, ·) in V0⇥V0, and the continuity of the linear
operator lu(·) to conclude the existence and uniqueness of a solution u = u(⇣) 2 V0 to the viscoplastic
subproblem. Moreover, we use the coercivity of aũ(·)(·, ·) in V0 ⇥ V0 and the continuity of the linear
operator lu(·), to deduce that the solution is bounded with respect to data. Indeed, from the coerciveness
of au(·)(·, ·) (2.65), we get

⌘0CK ||u||21  aũ(ũ)(u,u) = lu(u), (2.76)

and from the continuity of the linear operator lu(·) (2.75), we obtain

⌘0CK ||u||21  ||fu||0 ||u||1 . (2.77)

Thus, the boundedness of the solution with data

||u||1  1

⌘0CK
||fu||0 . (2.78)

Let us introduce the space of bounded solution that we denote by BSVP .

Definition 1. For ru 2 R+ such that ru =
||fu||0
⌘0CK

, we define the space of bounded solution, BSVP , as

BSVP = {v 2 V0 | ||v||1  ru} . (2.79)

The existence of the pressure is due to Lagrange multiplier argument. Indeed, let us consider the problem

LMu(v) = hfu,vi � au(ũ)(u,v), 8v 2 V. (2.80)

Thus, LMu(v) = 0 on V0 = kerB, which imply that LMu 2 ImB. That is, there exist a p 2 Q such that

LMu(v) = b(v, p), 8v 2 V. (2.81)

Then, using the LBB condition, we have

||p||Q/ kerBT  1

�
sup
v2V

b(v, p)

||v||V
, (2.82)

where, � is the Ladyzhenskaya-Babuška-Brezzi (LBB) constant. With the surjectivity of B (2.81), we get

||p||Q/ kerBT  1

�
||LMu||V0 . (2.83)

From the Lagrange multiplier definition (2.80), and the boundedness of velocity u, we have the estimate

||LMu||V0 
⇣
1 +

||au||
⌘0CK

⌘
||fu||0 , (2.84)

where ||au|| denote the upper bound of the operator au(·)(·, ·), that is

||au||  2 (⌘1 + k⌧1) . (2.85)

Then,

||p||0  1

�

⇣
1 +

2 (⌘1 + k⌧1)

⌘0CK

⌘
||fu||0 , (2.86)

This concludes the proof of proposition 1.
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2.4.4 Well-posedness of Microstructure Subproblem

In connection with our TVP problem, we adopt the formulation of microstructure subproblem with
respect to H

1 space similar to [55]. For alternative formulation we refer to [2, 52, 43]. The microstructure
subproblem for a given divergence-free velocity is a bilinear form with respect to microstructure field.
For the existence and uniqueness of solution of microstructure subproblem (2.39), we demonstrate that
the bilinear form a�(ũ)(·, ·) is positive bounded below and continuous, and the linear operator l�(·) is
continuous.

Proof of Proposition 2

Proof. (Proposition 2) For every u 2 V0, ⇠ 2 T, and ũ := (u, ⇠), firstly, we demonstrate that the bilinear
form a�(ũ)(·, ·) is positive bounded weakly from below. That is, the bilinear form a�(ũ)(·, ·) can not be
bounded from below with the complete norm of the space T. We refer to this property as “coercivity” in
a weak norm.

Coerciveness in weak norm of a�(ũ)(·, ·): Let ⇠ 2 T, we have

a�(ũ)(⇠, ⇠) =
⇣
M(DII,r, ⇠), ⇠

⌘
�
⇣
⇠,u ·r⇠

⌘
+ h⇠, ⇠i+ 8 ⇠ 2 T. (2.87)

Then, we integrate by part of the convective term, to have

a�(ũ)(⇠, ⇠) =
⇣
M(DII,r, ⇠), ⇠

⌘
+
⇣
⇠,u ·r⇠

⌘
� h⇠, ⇠i+ + h⇠, ⇠i� + h⇠, ⇠i+ 8 ⇠ 2 T. (2.88)

From (2.87) and (2.88), by summing up (2.87) and (2.88), we deduce

a�(ũ)(⇠, ⇠) =
⇣
M(DII,r, ⇠), ⇠

⌘
+

1

2

�
< ⇠ >

2
� + < ⇠ >

2
+

 
8 ⇠ 2 T. (2.89)

We use the definition of thixotropy model M(·, ·) to split the breakdown and the buildup contribution
in the bilinear form as

a�(ũ)(⇠, ⇠) =
⇣
Ma ⇠, ⇠

⌘
+
⇣
Mb

q
DII,r(u) ⇠, ⇠

⌘
+

1

2

�
< ⇠ >

2
� + < ⇠ >

2
+

 
8 ⇠ 2 T. (2.90)

Since the breakdown contribution is positive, we obtain the below bound

a�(ũ)(⇠, ⇠) � Ma ||⇠||20 +
1

2

�
< ⇠ >

2
� + < ⇠ >

2
+

 
8 ⇠ 2 T, (2.91)

using the positivity of buildup parameter Ma. With the positivity of the boundary norm, we obtain

a�(ũ)(⇠, ⇠) � Ma ||⇠||20 8 ⇠ 2 T. (2.92)

Hence, with the assumption on the buildup, Ma > 0, the bilinear form is positive and bounded from
below.

Remark 1. For the case that the buildup parameter vanishes, that is Ma = 0, we can use the lower
bound with the boundary norm to proof instead the positive definiteness of a�(ũ)(·, ·), for specified
physical systems.

We continue our proof steps to investigate the continuity. As the operator a�(ũ)(·, ·) is a bilinear form,
for a given u 2 V0, the continuity and the boundedness are equivalent.
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Continuity of a�(ũ)(·, ·): Let �, ⇠ 2 T, we evaluate |a�(ũ)(·, ·)| to obtain

|a�(ũ)(�, ⇠)| 
���
⇣
Ma�, ⇠

⌘���+
����
⇣
Mb

q
DII,r(u)�, ⇠

⌘����+
���
⇣
�,u ·r⇠

⌘���+
���h�, ⇠i+

��� 8⇠ 2 T. (2.93)

We use (L1
, L

2
, L

2) Hölder’s inequality for the second and third terms in (2.93), we get

|a�(ũ)(�, ⇠)|  Ma ||�||0 ||⇠||0 +Mb |D(u)|1 ||�||0 ||⇠||0 + |u|1 ||�||0 ||⇠||1 + < � >

1
2
+< ⇠ >

1
2
+ (2.94)

Then, with the boundedness of zero norm and boundary norm with the one norm, we obtain

|a�(ũ)(�, ⇠)| 
⇣
1 +Ma +Mb |u|1,1 + |u|1

⌘
||�||1 ||⇠||1 , (2.95)

which concludes the continuity of a�(ũ)(·, ·) in the complete norm of the space T.

Remark 2. The lower norm bound for a�(ũ)(·, ·) related to ”coercivity” and upper norm bound for
a�(ũ)(·, ·) related to continuity do not match.

Now, we proceed with the boundedness of l�(·).

Continuity of l�(·): Let �, ⇠ 2 T, we evaluate l�(⇠), use Hölder’s inequality, to have the estimate

l�(⇠) =
⇣
f�, ⇠

⌘
 ||f�||0 ||⇠||0  ||f�||0 ||⇠||1 8⇠ 2 T. (2.96)

Thus, the boundedness of l�(·).

The conditions for existence and uniqueness are satisfied, that is, a�(ũ)(·, ·) is positive bounded below
(coerciveness in a weak norm), the bilinear a�(ũ)(·, ·) is continuous (bounded above with the complete
norm), and the linear l�(·) is bounded. Then, there exists a unique solution �(u) 2 T of the microstrucutre
subproblem (2.39). Moreover, the solution is bounded with data. We use the coercivity of a�(ũ)(·, ·) (2.91),
to have

Ma ||�||20 +
1

2
h�i2  a�(ũ)(�,�). (2.97)

With the continuity of l�(·) (2.96), we get

a�(ũ)(�,�) = l�(�)  ||f�||0 ||�||0 . (2.98)

We use the positivity of the boundary norm and the strict positivity of Ma , on one hand, to have the
estimate

||�||0  1

Ma
||f�||0 . (2.99)

On other hand, we keep the general estimate

Ma ||�||20 +
1

2
h�i2  1

Ma
||f�||20 . (2.100)

Both estimates (2.99) and (2.100) express the continuous behavior of the microstructure solution on the
data.

Remark 3. The boundedness of a�(ũ)(·, ·) from below by the L2-norm and the boundary norms is a con-
siderably weaker condition with respect to ||·||1-norm which is the norm considered for the microstructure
space T.
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Now, we introduce the space of bounded solutions of microstructure subproblem (2.39), which we denote
by BST .

Definition 2. For r� 2 R+ such that r� =
||f�||20
Ma

, we define the space of bounded microstructure solutions,

BST , as

BST =

⇢
⇠ 2 T | Ma ||⇠||20 +

1

2
h⇠i2  r�

�
. (2.101)

We proceed with the investigation of the well-posedness of the coupled thixoviscoplastic problem.

2.4.5 Well-posedness of the Coupled Thixoviscoplastic Problem

The coupled thixoviscoplastic problem is multifield coupling. A straightforward way to demonstrate the
well-posedness of multifield coupling is to construct a mapping acting on a set of admissible solutions
and show the applicability of fixed point solution. We proceed in this context, to check the existence of
fixed point solution.
Firstly, we introduce the convex set for the coupled field of bounded solutions, denoted by BSTVP , a cross
product set of bounded solution for viscoplastic subproblem, BSVP , for a given microstructure (2.38), and
bounded solution for microstructure subproblem, BST , for a given velocity (2.39), defined as

BSTVP = BSVP ⇥ BST , (2.102)

that is,

BSTVP =

⇢
⌘̃ = (w, ⇣) 2 W0 = V0 ⇥ T | ||w||1  ru, Ma ||⇣||20 +

1

2
h⇣i2  r�

�
. (2.103)

Secondly, we consider the mapping TVP from BSTVP to BSTVP , defined as,

ũ = TVP(⌘̃) 8 ⌘̃ 2 BSTVP . (2.104)

We show that TVP admits a fixed point solution

ũ = TVP(ũ). (2.105)

We relate the mapping TVP to the coupled operator Aũ, as follows

TVP = Aũ �A0. (2.106)

A0 is the operator of the decoupled part of the thixotropic and viscoplastic equations which is completely
continuous. Indeed, A0 is a self mapping in the closed bounded convex set BSTVP . And the operator TVP
is the coupled part of the thixotropic and viscoplastic equations (full thixotropic TVP) which is nonlinear
contraction. In the following Corollary 1, we state that the operator TVP(·) is a nonlinear contraction
[17, 60].

Corollary 1. The mapping ⌘̃ ! TVP(⌘̃) is a nonlinear contraction in BSTVP . That is,

||TVP(ũ)� TVP(ṽ)||1  �(||ũ� ṽ||1) 8 ũ, ṽ 2 BSTVP , (2.107)

where � is positive real-valued continuous function, such that

�(r) < r for r > 0. (2.108)
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Proof (Corollary 1).
Using the continuity expression of the operator Aũ from Proposition 3, we deduce that TVP(·) is a
nonlinear contraction on BSTVP . The condition (2.108) on � is obtained with the appropriate choice on
data, which conclude the proof.

Remark 4. Here, in order to give the reader a better understanding by means of a close explicit ”equiva-
lent” expression of �, we expand the boundaries term for the microstructure operator in Proposition 3

|a�(ũ)(�, ⇣)� a�(ũ)(⇠, ⇣)| 
⇣
Ma + (Mb + 1) |u|1,1

⌘
||�� ⇠||0 ||⇣||1 + h|u · n|�� ⇠i+ ||⇣||1 (2.109)

+
⇣
Mb + 1

⌘
||⇠||0 ||u� v||1,1 ||⇣||1 + h|(u� v) · n| ⇠i+ ||⇣||1 . (2.110)

For the boundary term in (2.109) and (2.110), we use the Hölder’s inequality, then trace inequality for
velocity and microstructure alike for the term in (2.109), and trace inequality for velocity term only for
the term in (2.110), to obtain

|a�(ũ)(�, ⇣)� a�(ũ)(⇠, ⇣)| 
⇣
Ma + (Mb + 1) |u|1,1

⌘
||�� ⇠||0 ||⇣||1 + Ctri ||u||0,1 ||�� ⇠||1 ||⇣||1 (2.111)

+
⇣
Mb + 1

⌘
||⇠||0 ||u� v||1,1 ||⇣||1 + Ctri ||u� v||1,1 h⇠i+ ||⇣||1 (2.112)

Then, we get an explicit expression as

�(r) = C(|u|1,1 , |v|1,1 , ||⇠||0,1 , h⇠i+, ||�||0,1)r, (2.113)

where C is given as follows

C =
⇣
(2⌘1 ||�||0,1) + (⌧1(||�||0,1+ ||⇠||0,1)k

�2

+
⇣
2⌘1 |v|1,1 + ⌧1k |v|1,1

⌘2
+
⇣
Mb + 1

⌘
|u|1,1 + Ctri ||u||0,1

⌘2

+
⇣
(Mb + 1) ||⇠||0 + Ctrih⇠i+

⌘2
.

(2.114)

Clearly, the condition (2.108) on � is satisfied with the appropriate choice on data.

We proceed with checking the continuity of aũ(·)(·, ·), which we state in Proposition 3.

Proposition 3 (Continuity). For all ũ = (u,�), ṽ = (v, ⇠), ⌘̃ = (⌘, ⇣) 2 W0, we have

|au(ũ)(u,⌘)� au(ṽ)(v,⌘)| 
⇣
(2⌘0 + 2⌘1 ||�||0,1) + (2⌧0 + ⌧1(||�||0,1+ ||⇠||0,1)k

�
||u� v||1 ||⌘||1

+
⇣
2⌘1 |v|1,1 + ⌧1k |v|1,1

⌘
||�� ⇠||0 ||⌘||1 .

(2.115)

|a�(ũ)(�, ⇣)� a�(ũ)(⇠, ⇣)| 
⇣
Ma + (Mb + 1) |u|1,1

⌘
||�� ⇠||0 ||⇣||1 + h|u · n|�� ⇠i+ ||⇣||1

+
⇣
Mb + 1

⌘
||⇠||0 ||u� v||1,1 ||⇣||1 + h|(u� v) · n| ⇠i+ ||⇣||1 .

(2.116)

For a detailed proof, we first introduce a lemma related the continuity of the coupled thixoviscoplastic
problem in Rd⇥ d.
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2.4.6 Lemma Multifield Function Continuity in R ⇥ Rd⇥d

Lemma 3. (Continuity) For all X, Y 2 B(0, ru) ⇢ Rd⇥d, Z 2 Rd⇥ d, ⇠, ⇣,� 2 [0, 1], and ⌧(·) is a
mapping defined as ⌧ : [0, 1] ! [0,R+], we have

���
⇣
⌘(⇠)X� ⌘(⇣)Y,Z

⌘��� 
⇣
(⌘0 + ⌘1 |⇠|) |X� Y|F + ⌘1 |Y|F |⇠ � ⇣|

⌘
|Z|F , (2.117)

�����

⇣
⌧(⇠)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,Z
⌘����� 

⇣
(2⌧0 + ⌧1(|⇠|+ |⇣|))k |X� Y|F + ⌧1k |⇠ � ⇣| |Y|F

⌘
|Z|F , (2.118)

���
⇣
⇠ |X|F � ⇣ |Y|F ,�

⌘��� 
⇣
|⇠| |X� Y|F + |⇠ � ⇣| |Y|F

⌘
|�| . (2.119)

Proof. (Lemma 3) let X, Y2 B(0, ru) ⇢ Rd⇥d, Z2 Rd⇥ d, and ⇠, ⇣ 2 [0, 1],

Microstructure-viscous term We evaluate the left hand side of (2.117), and add and subtract the term
⌘(⇠)Y, to obtain

⇣
⌘(⇠)X� ⌘(⇣)Y,Z

⌘
=
⇣
⌘(⇠) (X� Y) ,Z

⌘
+
⇣
(⌘(⇠)� ⌘(⇣)) Y,Z

⌘
. (2.120)

Then, we use Hölder’s inequality, take an upper bound of ⌘(·) for the first term of right hand side of
equality (2.120), and simply we use the definition of ⌘(·) for the second term of right hand side of equality
(2.120), to obtain

���
⇣
⌘(⇠)X� ⌘(⇣)Y,Z

⌘��� 
⇣
(⌘0 + ⌘1 |⇠|) |X� Y|F + ⌘1 |Y|F |⇠ � ⇣|

⌘
|Z|F . (2.121)

This conclude the auxiliary result of continuity of multifield microstructure-viscous function.

Microstructure-plastic term We evaluate the left hand side of (2.118), add and subtract the term

⌧(⇠)
Y

|X|F,r

, segregate terms as

⇣
⌧(⇠)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,Z
⌘
=
⇣
⌧(⇠)

X

|X|F,r

� ⌧(⇠)
Y

|X|F,r

,Z
�

(2.122)

+
�
⌧(⇠)

Y

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,Z
⌘
. (2.123)

We manage a common denominator for the term (2.123), and rearrange terms as

⇣
⌧(⇠)

Y

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,Z
⌘
=
⇣
⌧(⇠)

|Y|F,r Y

|Y|F,r |X|F,r

� ⌧(⇣)
|X|F,r Y

|Y|F,r |X|F,r

,Z
⌘

(2.124)

=
⇣ 1

|X|F,r

⇣
⌧(⇠) |Y|F,r � ⌧(⇣) |X|F,r

⌘ Y

|Y|F,r

,Z
⌘
, (2.125)

then, add and subtract the term ⌧(⇣) |Y|F,r for the term ⌧(⇠) |Y|F,r � ⌧(⇣) |X|F,r, in (2.125) as

⌧(⇠) |Y|F,r � ⌧(⇣) |X|F,r = (⌧(⇠)� ⌧(⇣)) |Y|F,r � ⌧(⇣)(|X|F,r � |Y|F,r), (2.126)

to obtain
⇣
⌧(⇠)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,Z
⌘
=
⇣
⌧(⇠)

|X|F,r

X� Y,Z
⌘
�
⇣
⌧(⇣)

|X|F,r

⇣
|X|F,r � |Y|F,r

⌘ Y

|Y|F,r

,Z
⌘

(2.127)

+
⇣
⌧(⇠)� ⌧(⇣)

|X|F,r

Y,Z
⌘

(2.128)
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Now, we apply the conditions on the approximation norm, (2.45) for the term
Y

|Y|F,r

, (2.46) for the term

|X|F,r � |Y|F,r, in (2.127), and (2.55) for the term
1

|X|F,r

in (2.127) and (2.128), and we take an upper

bound of ⌧(·) in (2.127), to obtain
�����

⇣
⌧(⇠)

X

|X|F,r

� ⌧(⇣)
Y

|Y|F,r

,X� Y
⌘�����  (2⌧0 + ⌧1(|⇠|+ |⇣|))k |X� Y|F |Z|F

+ ⌧1k |Y|F |⇠ � ⇣| |Z|F ,

(2.129)

which conclude the continuity of multifield microstructure-plastic function (2.118).

Microstructure-breakdown term We evaluate the left hand side of (2.117), add and subtract the term
⇠ |Y|F , to obtain

⇣
⇠ |X|F � ⇣ |Y|F ,�

⌘
=
⇣
⇠(|X|F � |Y|F ),�

⌘
+
⇣
(⇠ � ⇣) |Y|F ,�

⌘
. (2.130)

We use Hölder’s inequality, and the inverse inequality on the norm |·|F , to obtain
���
⇣
⇠ |X|F � ⇣ |Y|F ,Z

⌘��� =
⇣
|⇠| |X� Y|F + |⇠ � ⇣| |Y|F

⌘
|�| . (2.131)

After concluding the auxiliary results of the continuity of multivalued functions in R⇥Rd⇥ d, microstructure-
viscosity, microstructure-plastic, and microstructure-buildup, we proceed with the continuity of the op-
erator aũ(·)(·, ·).

We proceed with the investigation of the mapping TVP(·) via the property of continuity of the coupled
operator aũ(·)(·, ·).

Proof of Continuity Proposition 3

The coupled form aũ(·)(·, ·) is an additive form of au(·)(·, ·) and a�(·)(·, ·). Thus, the continuity of aũ(·)(·, ·)
is due to continuity of the forms au(·)(·, ·) and a�(·)(·, ·).

Proof. We start with the continuity of au(·)(·, ·).
Continuity of au(·)(·, ·): For all u,v,⌘ 2 V0, �, ⇠ 2 T, we evaluate the di↵erence au(ũ)(u,⌘)�au(ṽ)(v,⌘),

au(ũ)(u,⌘)� au(ṽ)(v,⌘) =
⇣
2µ(DII,r(u),�)D(u),D(⌘)

⌘
�
⇣
2µ(DII,r(v), ⇠)D(v),D(⌘)

⌘
, (2.132)

then, segregate the viscous term, and the plastic term, as follows

au(ũ)(u,⌘)� au(ṽ)(v,⌘) =
⇣
2⌘(�)D(u),D(⌘)

⌘
�
⇣
2⌘(⇠)D(v),D(⌘)

⌘
(2.133)

+
⇣
⌧(�)

p
2p

DII,r(u)
D(u),D(⌘)

⌘
�
⇣
⌧(⇠)

p
2p

DII,r(v)
D(v),D(⌘)

⌘
(2.134)

We use microstructure-viscous multifield continuity (2.117) for the term (2.133) and microstructure-
plastic continuity (2.118) for the term (2.134) (lemma 3)

|au(ũ)(u,⌘) � au(ṽ)(v,⌘)| 
⇣
(2⌘0 + 2⌘1 ||�||0,1) ||u� v||1 + 2⌘1 |v|1,1 ||�� ⇠||0

⌘
||⌘||1

+
⇣
(2⌧0+⌧1(||�||0,1+ ||⇠||0,1)k ||u� v||1 + ⌧1k ||�� ⇠||0 |v|1,1

⌘
||⌘||1 .

(2.135)
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We rearrange the terms as follows

|au(ũ)(u,⌘)� au(ṽ)(v,⌘)| 
⇣
(2⌘0 + 2⌘1 ||�||0,1) + (2⌧0 + ⌧1(||�||0,1+ ||⇠||0,1)k

�
||u� v||1 ||⌘||1

+
⇣
2⌘1 |v|1,1 + ⌧1k |v|1,1

⌘
||�� ⇠||0 ||⌘||1

(2.136)
which concludes the proof of continuity of aũ(·)(·, ·).

Now, we proceed with the continuity of the form a�(·)(·, ·)

Continuity of a�(·)(·, ·): For all u,v,⌘ 2 V0, �, ⇠, ⇣ 2 T, we evaluate the di↵erence
a�(ũ)(�, ⇣)� a�(ṽ)(⇠, ⇣),

a�(ũ)(�, ⇣)� a�(ũ)(⇠, ⇣) =
⇣
M(DII,r(u),�), ⇣

⌘
�
⇣
�,u ·r⇣

⌘
+ h|u · n|�, ⇣i+ (2.137)

�
⇣
M(DII,r(v), ⇠), ⇣

⌘
+
⇣
⇠,v ·r⇣

⌘
� h|v · n| ⇠, ⇣i+ (2.138)

We use the definition of thixotropic model, rearrange the convective terms and the boundary terms as

a�(ũ)(�, ⇣)� a�(ṽ)(⇠, ⇣) =
⇣
(Ma +MbDII,r(u)) �, ⇣

⌘
�
⇣
(Ma +MbDII,r(v)) ⇠, ⇣

⌘
(2.139)

�
⇣
(�� ⇠),u ·r⇣

⌘
�
⇣
⇠, (u� v) ·r⇣

⌘
(2.140)

+ h|u · n| (�� ⇠), ⇣i+ + h(|u · n| ⇠, ⇣i+ � h|v · n|)⇠, ⇣i+ (2.141)

We use microstructure-buildup multifield continuity (2.119) for the term (2.139), followed with L
2�L1�L2

Hölder’s inequality for the tri-linear buildup, L2�L1�L2 Hölder’s inequality for the tri-linear convective
terms (2.140), and Hölder’s inequality for the boundary terms (2.141) and boundedness from above of
the boundary norm with one norm to obtain

|a�(ũ)(�, ⇣)� a�(ũ)(⇠, ⇣)| 
⇣
Ma + (Mb + 1) |u|1,1

⌘
||�� ⇠||0 ||⇣||1 +Mb ||⇠||0 |u� v|1,1 ||⇣||1 (2.142)

+ ||�� ⇠||0 ||u||1 ||⇣||1 + ||⇠||0 ||u� v||1 ||⇣||1 (2.143)

+ h|u · n|�� ⇠i+ ||⇣||1 + h|(u� v) · n| ⇠i+ ||⇣||1 . (2.144)

We rearrange the terms as follows

|a�(ũ)(�, ⇣)� a�(ũ)(⇠, ⇣)| 
⇣
Ma + (Mb + 1) |u|1,1

⌘
||�� ⇠||0 ||⇣||1 + h|u · n|�� ⇠i+ ||⇣||1

+
⇣
Mb + 1

⌘
||⇠||0 ||u� v||1,1 ||⇣||1 + h|(u� v) · n| ⇠i+ ||⇣||1 .

(2.145)

Remark 5. To remain within the set of bounded solutions, we used L
2�L1�L2 Hölder’s inequality for the

tri-linear forms involving the microstructure, instead of using the argument of the continuous embedding
of H1(⌦) in L

4(⌦). As consequence, we require extra regularity for velocity.
The theorem used for the well-posedness of the coupled TVP problem guarantee only the existence of
the solution, while the uniqueness remains an open question.
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2.5 Approximation of Thixoviscoplastic problem

We set the approximate thixoviscoplastic problem in a general abstract conforming framework, then we
proceed with the well-posedness question.

2.5.1 Abstract Setting

We start by introducing the finite dimensional subspaces Th ⇢ T,Vh ⇢ V,Qh ⇢ Q, and Wh := Vh⇥Th ⇢
W, with the superscript h being a parameter dependent on the mesh spacing.

We set ũh = (uh,�h), ṽh = (vh, ⇠h). The approximated TVP problem is to seek an approximated solution
(ũh, ph) 2 Wh ⇥Qh such that

aũ(ũh)(ũh, ṽh) + b(vh, ph)� b(uh, qh) = l(ṽh) 8(ṽh, qh) 2 Wh ⇥Qh, (2.146)

equivalenty, (
aũ(ũh)(ũh, ṽh) + b(vh, ph) = l(ṽh) 8 ṽh 2 Wh,

b(uh, qh) = 0 8 qh 2 Qh,
(2.147)

and in operator form, assuming BVh ⇢ Q0
h,

(
Aũ(ũh)ũh + BT

ph =fũ on W0
h,

Buh =0 on Q0
h,

(2.148)

Now, we proceed with the well-posedness of the approximate TVP problem.

2.5.2 Well-posedeness of the Approximate TVP Problem

The approximation of TVP problem, in its general abstract form using conforming framework, is to seek
an approximated solution (ũh, ph) 2 Wh ⇥Qh, such that

aũ(ũh)(ũh, ṽh) + b(vh, ph)� b(uh, qh) = l(ṽh) 8(ṽh, qh) 2 Wh ⇥Qh, (2.149)

The problem that we have to solve here is the existence and uniqueness of the solution (ũh, ph). We
assume that the inf � sup condition for the pair (Vh,Qh) is satisfied, that is

9� > 0 s.t. sup
vh2Vh

b(vh, qh)

||vh||
� � ||qh||Q/ kerBT 8qh 2 Qh, (2.150)

where � is independent of h. The results concerning existence, uniqueness, and boundedness of the solution
with the data of the approximate problem are stated in the following theorem.

Theorem 2 (Well-posedness: Approximate problem). Let fu 2 (L2(⌦))2 and f� 2 L
2(⌦), then

the thixoviscoplastic problem (2.21) has a solution (ũh, ph) = (�h,uh, ph) 2 Wh⇥Qh. And it satisfies the
estimate

||uh||1  1

⌘0CK
||fu||0 , (2.151)

||ph||0  1

�

⇣
1 +

2 (⌘1 + k⌧1)

⌘0CK

⌘
||fu||0 , (2.152)

||�h||0  1

Ma
||f�||0 , (2.153)

Ma ||�h||20 +
1

2
h�hi2  1

Ma
||f�||20 . (2.154)
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where CK denotes the Korn’s inequality constant, and � is the Ladyzhenskaya-Babuška-Brezzi (LBB)
constant.

Proof. For the proof, we follow the same steps as for the proof of Theorem 1 including assumptions.

2.6 Concluding Remarks

We presented, in this chapter, the FEM well-posedness of thixoviscoplastic flow problems.

We started by introducing the variational principle and functional spaces in the context of shear rate
independent plastic viscosity, that is the plastic viscosity is exclusively dependent on microstructure
⌘ = ⌘(�), and microstructure space as velocity space. Then, we expressed the continuous TVP problems
in a classical abstract setting of saddle point problems based on the incompressibility constraint, and the
approximated one in conforming framework.

The existence and uniqueness of the microstructure and viscoplastic subproblems are treated in parallel
manner. For the viscoplastic subproblem, we used the Lemma plastic monotonicity in Rd⇥ d to demon-
strate the monotonicity property for the nonlinear di↵usion operator. For the microstructure subproblem,
for a given divergence-free velocity, we used the weak coercivity and the continuity of the microstructure
bilinear form. Then, for the multifield coupled TVP problem, we rewrite the coupled multifield operator
as a sum of completely continuous, and a nonlinear contraction operators, then used fixed point Theorem.
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3

Monolithic Newton-Multigrid Thixoviscoplastic Solver

We are concerned, in this chapter, with the development of a finite element method (FEM) thixovis-
coplastic (TVP) solver based on monolithic Newton-multigrid method to tackle TVP generalized Stokes
equations. In our approach, we treat the nonlinearity of the problem in black box framework using an
adaptive combined discrete Newton’s method and monolithic geometric multigrid (MG) solver. The linear
systems inside the outer nonlinear iterations are solved in a block Gauss-Seidel way, where the construc-
tion of the blocks is based on incompressibility constraint. Furthermore, with our choice of discontinuous
linear pressure, we e�ciently handle the problem coupling locally. And to maintain the solver e�ciency
with the fact of noncoupling of pressure and microstructure, we collocate the microstructure with the
velocity in the quadratic interpolation.

3.1 Introduction

In this chapter, we intend to develop a Newton-multigrid FEM solver for thixoviscoplastic flows. As we
use the FEM quasi-Newtonian modeling approach [63], which requires a robust solver with respect to
regularization parameter to obtain accurate numerical solutions, we opt for a strategy with combined
adaptive discrete Newton’s method and a monolithic geometric multigrid solver to delicately handle the
regularization issue. The adaptivity related to discrete Newton’s method is due to the adaptive step-size
in finite di↵erence for the approximation of Jacobian, while accuracy or convergence of linear multigrid
solver is made dependently on the accuracy or convergence of the nonlinear solver. Furthermore, we use
local pressure Schur complement (LPSC) to handle linearized saddle point problems inside the outer
Newton sweeps [32, 76, 79]. The resulting algorithm is a block Gauss-Seidel iteration’s process, where we
base the construction of the blocks on incompressibility constraint. On one hand, we opt for discontinuous
linear pressure FEM approximation P

disc
1 for its advantageous coincides of degree of freedoms with the

choices of the blocks for Gauss-Seidel for an e�cient treatment of the problem coupling locally. On the
other hand, due to noncoupling of pressure and microstructure, we collocate velocity and microstructure
with the same FEM quadratic interpolation Q2.

The remainder of the chapter is structured as follows, we devote Section §2 to FEM discretization.
We use the stable Stokes pair (Q2, P

disc
1 ) for velocity and pressure approximations as a long-standing

robust choice in numerical simulations for incompressible flow problems [30, 31, 42, 64]. Furthermore, to



maintain the solver e�ciency for generalized TVP Stokes problems, we choose the same Q2 interpolation
for microstructure as for velocity, which impose some theoretical challenges for the approximations of
the microstructure equation of nonmatching of the coercivity with the space’s norm. We overcome these
challenges with stabilization, that is edge-oriented jump of the gradient to upgrade the coercivity to
match the space norm. It is consistent with FEM discretization, linear with respect to the problem, and
in addition, it enhances the solver’s e�ciency [62, 77].

Then, in Section §3, we treat the discrete system with an adaptive combined discrete Newton’s method
and a monolithic geometric multigrid solver. The solver has two folds with respect to adaptivity: the one
related to discrete Newton’s method via the step-size in finite di↵erence for the Jacobian approximation,
while the other is related to a linear multigrid solver via the dependency of its accuracy or convergence on
the accuracy or the convergence of nonlinear solver. We start by giving the inspiring idea for the adaptivity
in Jacobian approximation from adaptive operator-splitting of the Jacobian [54, 56], that is, an adaptivity
with respect to the choice of directions in finite di↵erence, followed by adaptive strategy, that we use in
this work, via the step-length control parameter in finite di↵erence for the Jacobian approximation. The
algorithm is solely dependent on the actual rate of nonlinear residual convergence. Therefore, the accuracy
requirement for the convergence of the linear solver is made optimal accordingly. As a consequence, we
avoid unnecessary iterations feeding singularities far away from a higher convergence rate, or lack of
iterations for the completeness of nonlinear convergence in the radius of Newton’s quadratic convergence.

In Section §3.1, we concretize the monolithic geometric multigrid solver on our FEM discretization choice.
We give the multigrid components, that is two level algorithm, grid transfer operators, and smoothers.
Subsection §3.5.1 is devoted to two level algorithm as a base for the di↵erent multigrid cycles, namely
V-cycle, W-cycle, and F-cycle [20]. Then, in Subsection §3.5.2 we present the inter grid transfer operators,
namely restrictions and prolongations, in geometric context and its corresponding algebraic counterpart.
The smoothers are explained in Subsection §3.5.3, they are local pressure Schur complement schemes,
which are generalization of Vanka-type smoothers for our TVP coupled systems with the typical saddle
point character [31, 68, 76, 79]. They are simple iterative relaxation methods that solve directly on
element level, one element or a patch of elements, and perform an outer block Gauss-Seidel iteration.
In other words, the choices of the blocks for the linearized TVP systems are based on the pressure
degrees of freedom equivalently on the incompressibility constraint. The local character of this procedure,
together with a global defect-correction mechanism on one hand, and the choice of discontinuous FE
approximations for pressure on the other hand, results in an e�cient solver for the TVP problem.

The summarizing Section §3.4, highlights the conclusions and main results of the chapter. Firstly, we
chose the most e�cient and practical FEM discretization for incompressible Stokes equations, and we
integrate the remaining field for thixoviscoplastic flow problems to maintain the choice’s practicality. As
a consequence, the coupled field of velocity and microstructure is treated as a unified ’upgraded velocity’
field in the classical context of Stokes equations. Secondly, we present a black box nonlinear solver based
on adaptive discrete Newton’s method, where its adaptivity is solely dependent on the actual rate of the
nonlinear residual convergence. Beside that, the linear solver is made to achieve the optimal convergence
accordingly, which results in a singularity-free convergence process and a robust solver with respect to the
starting guess. Thirdly, we present the geometric multigrid ingredient. Then, we introduce the smoother
based on the local pressure Schur complement which leads to block Gauss-Seidel iteration’s process. The
local handling of the problem coupling with the choice of discontinuous FE approximations for pressure
gives rise to an e�cient TVP solver.
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3.2 Finite Element Discretization

We devote this Section §2 to FEM discretization. We use the stable Stokes pair (Q2, P
disc
1 ) for velocity

and pressure approximations as a long-standing robust choice in numerical simulations for incompressible
flow problems [3, 15, 42]. Furthermore, to maintain the solver e�ciency for the generalized TVP Stokes
problems, we choose the same Q2 interpolation for the microstructure as for velocity, which impose some
theoretical challenges for microstructure equation of nonmatching of the coercivity with the space’s norm
[26, 27]. We overcome these challenges with stabilization, that is gradient’s inter-element jumps, named
concisely edge-oriented stabilization, to upgrade the microstructure form in a manner that the coercivity
matches the space norm and stabilize convections. Furthermore, it is consistent with FEM discretization,
linear with respect to the problem, and in addition, it enhances the solver’s e�ciency [62, 77].

Let the domain ⌦ be partitioned by a grid Th which are assumed to be quadrilaterals. For an element
K 2 Th, we denote by E(K) the set of all 1-dimensional edges of K, and by Ei the set of all interior
element edges of the grid Th

Ei :=
[

k2Th

{E 2 E(K) | E \ @⌦ = ;} . (3.1)

We define the conforming finite element spaces Vh ⇢ V, and Qh ⇢ Q as follows:

Vh =
�
vh 2 V,vh|K 2 (Qr(K))2 8 K 2 Th, vh = 0 on @⌦h

 
, (3.2)

Th =
n
⇠h 2 T, ⇠h|K 2 Qr(K) 8 K 2 Th

o
, (3.3)

Qh =
n
qh 2 Q, qh|K 2 P

disc
r�1(K) 8 K 2 Th

o
, (3.4)

where Qr and Pr are polynomials with maximum power in each coordinate less or equal r, and total
power less or equal r, respectively. In what follows, the polynomial power r is set to equal 2. Figure 3.1
exposes the distribution of degrees of freedom for the flow fields.

u � p

Fig. 3.1: FEM pair for thixoviscoplastic flow problem: Higher order FEM pair Q2/Q2/P
disc
1 .

Remark 6. Higher order FEM choice for velocity counterbalances the regularization impact, while mi-
crostructure is collocated with velocity degrees of freedom for e�ciency reason due to noncoupling of
microstructure and pressure.

We set Wh := Th⇥Vh, ũh = (�h,uh), ṽh = (⇠h,vh), and define the coupled velocity-microstructure form
on Wh ⇥Wh as follows

aũ(ũh)(ũh, ṽh) = au(ũh)(uh,vh) + a�(ũh)(�h, ⇠h) 8 (ũh, ṽh) 2 Wh ⇥Wh. (3.5)



The stabilized approximated TVP problem reads: Find (ũh, ph) 2 Wh ⇥Qh, such that

aũ(ũh)(ũh, ṽh) + jũ(ũh)(ũh, ṽh) + b(vh, ph)� b(uh, qh) = 0, 8 (ṽh, qh) 2 Wh ⇥Qh. (3.6)

The stabilization term jũ(·)(·, ·) is a bilinear form for the coupled field

jũ(ũh)(ũh, ṽh) := ju(ũh)(uh,vh) + j�(ũh)(�h, ⇠h). (3.7)

The stabilization (3.7) consists of the penalization of the inter-element gradient’s jumps which we term
edge-oriented stabilization. The bilinear velocity edge-oriented stabilization ju(·, ·) is defined as follows
[65, 77]

ju(ũh)(uh,vh) =
X

E2Ei

�u|E|2
Z

E
[ruh] : [rvh] d� 8 uh,vh 2 Vh, (3.8)

and similarly we define the microstructure edge-oriented stabilization j�(·, ·)

j�(ũh)(�h, ⇠h) =
X

E2Ei

��|E|2
Z

E
[r�h] [r⇠h] d� 8 �h, ⇠h 2 Th. (3.9)

Where �u and �� are user-given parameters with problem dependent optimal choice.

The stabilization term (3.7) is consistent, linear with respect to the flow field, and enhances the solver
e�ciency. The bilinear velocity edge-oriented stabilization term (3.8) is typically used for convection
dominated flow problems to stabilize high Reynolds number flows. And, the bilinear microstructure edge-
oriented stabilization term (3.9) is used here mainly to cover the coercivity of microstructure in the strong
norm.

On the one hand, higher order choice for velocity counterbalances the regularization impact, and stabi-
lization, on the other hand enhances the coercivity to match the complete norm of the microstructure
space T equivalently as one-norm. That is the triple norm defined on the microstructure space

|||⇠h|||2 = ||⇠h||20 + j�(⇠h, ⇠h) 8 ⇠h 2 Th. (3.10)

Furthermore, the stabilization (3.9) term is expected to recover the optimal order of convergence for
microstructure with respect to the triple norm (3.10) [19, 9, 12]. The detailed corresponding analysis goes
beyond the goal of this thesis.

The FEM discretization of the thixoviscoplastic problem is done to take care mainly of saddle point
character related to incompressibility only, while microstructure is collocated with velocity degrees of
freedom for solver e�ciency due to noncoupling of microstructure and pressure fields. In order to deal with
the dependency of solutions on regularization parameter, we opt for higher order Q2 choice for velocity to
counterbalance the regularization impact. The discontinuous choice for the pressure discretization P

disc
1 is

consistent with its natural regularity requirement and practical with respect to our choice for a monolithic
solution approach. The edge-oriented stabilization, as a penalization of inter-element gradient jumps, is
mainly driven by the lack of coercivity of a�(·)(·, ·) in a strong norm.

The resulting nonlinear discrete system based on this FEM discretization choice is then linearized in
Section §3.3 in a black box manner using discrete adaptive Newton’s method.
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3.3 Discrete Adaptive Newton’s Method

This section is concerned with the treatment of the discrete nonlinear TVP system with an adaptive
combined discrete Newton’s method and monolithic geometric multigrid solver. The adaptivity for discrete
Newton’s method is done via the step-size in finite di↵erence for the Jacobian approximation. Moreover, it
is symbiotically connected to linear multigrid solver through the dependency of its accuracy or convergence
on the accuracy or the convergence of nonlinear solver.

Let {'i, i = 1, 2, . . . ,dimWh} and { i, i = 1, . . . ,dimQh} denote the basis of the spaces Wh and Qh,
respectively.
The nonlinear discrete residuals for the system (3.6) is denoted by R(U) 2 RdimWh+dimQh and is given as
follows:

R(U) = (Ru(u,�, p),R�(u,�),Rp(u, p)) , (3.11)

rewritten in a more compact form as:

R(U) = (Rũ(ũ, p),Rp(ũ, p)) , (3.12)

with the vector U = (u,�, p) = (ũ, p) 2 Wh ⇥Qh, which is expressed concisely as:

U =
dimWhX

i=1

ũi'i +
dimQhX

i=1

pi i, ũi, pi 2 R. (3.13)

The nonlinear iteration is updated with the correction �U , U l+1 = U l+�U . Then, the Newton linearization
gives the following approximation for the residuals:

R(U l+1) = R(U l + �U) ' R(U l) +

✓
@R(U l)

@U

◆
�U . (3.14)

The Newton’s method iterations, assuming invertible Jacobians, are given as follows:

U l+1 = U l � !l

✓
@R(U l)

@U

◆�1

R(U l). (3.15)

The damping parameter !l 2 (0, 1] is chosen such that

����R(U l+1)
���� 

����R(U l)
���� . (3.16)

The damping parameter is not su�cient for the convergence of this type of highly nonlinear problem,
either due to the presence of Jacobian’s singularities related to the problem or simply by being out of the
domain of Newton convergence [54, 62]. We use a generalized Newton’s method, which consists of using
an approximation of Jacobians far away from the range of the quadratic convergence of the Newton’s
method or close to singularities and an accurate approximation of Jacobian in the quadratic region of
convergence in an adaptive manner with respect to residual convergence.

In next Subsection §3.3.1, we present the adaptive strategy by operator-splitting of Jacobian, followed by
the adaptive strategy throughout the adaptive step-size control parameter for Jacobian approximation in
Subsection §3.3.2.



3.3.1 Adaptive Newton via Operator-adaptive Splitting

Based on a priori analysis of the Jacobian’s property, the Jacobian is splitted into a direct sum of
corresponding operators with di↵erent properties; for details we refer to the work [53, 54], as follows:
Firstly, by splitting the Jacobian as a sum of two operators and perform a Jacobian approximation for
each as follows: ✓

@R(U l)

@ U

◆
=

 
@R̃(U l)

@U

!
+ �l

 
@R̂(U l)

@U

!
. (3.17)

Secondly, by selecting a specific field or part of it U = (Ũ , Û) and just perform the Jacobian calculation
with such a specific field or part of it, as follows:

✓
@R(U l)

@ U

◆
=

✓
@R(U l)

@Ũ

◆
+ �l

✓
@R(U l)

@Û

◆
. (3.18)

Increasing the contribution from the second operator on the right side of the equation (3.17, 3.18) improves
the convergence behavior, but this contribution needs to remain under control. Furthermore, the relative
changes of the residual give precious information about the singularity of the Jacobian. The larger the
relative changes in the residual with the first operator on the right side of equation (3.17, 3.18) the smaller
the relative changes of �l should be, and vice versa. The operator’s damping parameter �l 2 (0, 1] is solely
dependent on the rate of actual residual convergence

rl :=

����R(U l)
����

||R(U l�1)|| ,
(3.19)

with the following nonlinear increment’s update function ia(·) for the operator’s damping parameter

�l+1

�l
= ia(rl), (3.20)

where the numerical simulations, see [54], give raise to an analytic expression for the nonlinear increment’s
update function as follows

ia(rl) = 0.2 +
4

0.7 + exp(1.5rl)
. (3.21)

It is worth mentioning that the operator-related damped Jacobian method is originally developed for
the continuous Newton’s method [62]. This method is successfully applied for di↵erent complex flow
problems [56]. In the context of discrete Newton, it can also be used with directional di↵erencing, where
the direction is chosen appropriately to provide the splitting as in (3.18), or simply by splitting the
nonlinear residual as in (3.17) . In this work, we rather go for the adaptive strategy in the discrete
Newton based on step-length control in the finite di↵erence approximation of the Jacobian, subsection
§3.3.2.

3.3.2 Adaptive Newton via Adaptive Step-length Control Parameter

The adaptive discrete Newton method used in the current work is based on adaptive step-length control in
finite di↵erence of discrete residual, for details we refer to the work [35, 36]. The method does not require

any a priori analysis of the Jacobian, it is a pure black box method. The Jacobian matrix
⇣

@R(Ul)
@U

⌘
is

approximated using the finite di↵erences along the unit coordinate directions as
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✓
@R(U l)

@U

◆

ij

⇡ Ri(U l + "lej)�Ri(U l � "lej)

2"l
, (3.22)

where ej is the vector with unit j-th component and zero otherwise. The parameter "l is updated according
to the rate of the actual residual convergence rl

"l+1

"l
= ja(rl). (3.23)

The Jacobian given by finite di↵erence formula (3.22) is di↵erent from the Jacobian given by operator-
adapted splitting formulas (3.17, 3.18). Nevertheless, the feedback for the singularity is similar and it is
given by the rate of the actual residual convergence (3.19). As consequence, we opt for the inversely pro-
portional nolinear increment’s update function; In the former, it allows for a bigger step-length parameter
" to remove numerical instabilities, while in the latter it reduces the contribution part responsible for
such instabilities.

We briefly present the main steps for the solver in Algorithm 1.

Algorithm 1: Discrete adaptive Newton via step-length control parameter

Result: U l+1 = U l � !l�U l
, !l 2 (0, 1]

r0 =
����R(U0)

����, "±0 ;
while rl � rc;
do

(i) Calculate convergence rate rl =
||R(Ul)||

||R(Ul�1)|| ;

(ii) Step-length size update "
±
l+1 = ja(rl)"

±
l ;

(iii) Calculate FD Jacobian
⇥
J (U l)

⇤
ij

⇡ (Ri(Ul+"+l ej)�Ri(Ul�"�l ej))
"+l +"�l

;

(iv) Solve via MG J (U l)�U l = R(U l);

end

Remark 7. The damping parameter !l is set to unity, since it is not enough for convergence of the
Algorithm 1. The feedback singularity is given by the rate of the actual residual convergence rl in (i).
Thus, the increment’s update function ja(rl) in (ii) is chosen in a way to allow for bigger step-length
parameter "± to remove numerical instabilities and a smaller one in the region of quadratic convergence,
it turns out that it is su�cient to take ja = 1/ia, numerical tests supporting this choice can be found
in [36]. The finite di↵erence scheme in (iii) is made to switch flexibly between backward finite di↵erence
("+l = 0), forward finite di↵erence ("�l = 0), and central finite di↵erence ("�l = "

+
l 6= 0). To solve the

linear system (iv), we use monolithic adaptive geometric multigrid methods, where the convergence of the
linear solver is made flexible to match the optimal accuracy of the nonlinear solver by means of the rate
of the actual residual convergence [62]. The analysis of the global convergence property of the algorithm
and the smoothing property of multigrid goes beyond the interest of this thesis.

An integral part of the e�ciency of Algorithm 1 is its symbiotic connection to the linear solver. In the
following Section §3.4, we concretize the application for monolithic geometric multigrid for the linearized
thixoviscoplastic system on our FEM discretization choice.
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3.4 Monolithic Multigrid Linear Solver

Multigrid methods (MG) e↵ectively damp both high- and low-frequency components of errors, using
e↵ectively the complementary processes of relaxation/smoothing and coarse-grid correction [76]. In this
thesis, we intend to take the maximum advantage of this property in the context of linearized TVP Stokes
equations. As the TVP flow problem is highly nonlinear coupled for velocity and microstructure flow fields
on one hand, and incompressible on the other hand, we favor, in this work, the coupling treatment of
the flow fields. That is, we intend to apply a monolithic multigrid algorithm for the linearized TVP
problem in the context of our FEM discretization choice. In this regard, we opt for the geometric variant
of monolithic multigrid, as ready-to-use in FEM context [76].

A close look to the linearized TVP problem (3.25), shows a typical saddle-point type structure of the
following form: 0

BB@

@Rũ(ũ)

@ũ

@Rũ(ũ)

@p

@Rp(ũ)

@ũ
0

1

CCA . (3.24)

Indeed, the linearized systems to be solved at each nonlinear sweep with a symbolic Jacobian calculation
are given as follows:

✓
@R(U)
@U

◆
�U =

0

BB@

@Rũ(ũ)

@ũ

@Rũ(ũ)

@p

@Rp(ũ)

@ũ
0

1

CCA

0

B@
�ũ

�p

1

CA = �

0

B@
Rũ

Rp

1

CA . (3.25)

The main focus of this section is to adapt monolithic geometric multigrid methods for linearized TVP
Stokes equations on our FEM discretization choice, that is, the pair (Q2, P

disc
1 ) for (ũ, p).

The following subsections are dedicated to the multigrid components, that is two-level algorithm, inter
grid transfer operators, and smoothers. In Subsection §3.4.1, we start by two-level algorithm as a base
for di↵erent multigrid cycles, V-cycle, W-cycle, and F-cycle.

3.4.1 Two-Level Algorithm

We consider the linear saddle-point problem (3.25) which we rewrite in the following manner:

J �U = R. (3.26)

Let {Thk} be a family of hierarchy multilevel triangulations associated with mesh size hk, that is, each
element triangulation Thk�1 on level k� 1 is split into 2d (d = 2) new elements to get triangulations Thk

on level k, which are denoted by �i(K), i = 1, . . . , 2d, see Figure 3.2.

We set Wk := RdimWhk , Qk := RdimQhk , Vk := Wk ⇥Qk and let Ik�1
k and Ik

k�1 denote the grid transfer
operators, Ik�1

k : Vk �! Vk�1 and Ik
k�1 : Vk�1 �! Vk. The parameters ⌫1, ⌫2 � 0 denote the number

of pre- and post-smoothing steps, respectively.



Fig. 3.2: Multilevel refinement: Refinement of element K into sub-elements �i(K), i = 1, . . . , 2d, [48].

The k
th level iteration MG(k, �U0,R) of the multigrid algorithm with an initial guess �U0 yields an

approximation to �Uk, the solution of
Jk�U = R (3.27)

One step can be described concisely throughout the multi-level algorithm in Figure 3.3.

Fig. 3.3: Monolithic Geometric MG solver: Multigrid algorithm on a mesh-slice of 4:1 contraction
configuration.

We present the details of the algorithm for di↵erent multigrid cycles as follows (for details we refer to the
work [21]):
For k = 1 on the coarsest level, the direct solver is used

MG(1, �U0,R) = J�1
1 R. (3.28)

For k > 1, there are three steps.
Pre-smoothing step. Let �U l 2 Vk be defined by
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�U l = �U l�1 + C�1
k (R� Jk�U l�1), 1  l  ⌫1. (3.29)

where ⇢(C�1
k Jk)  ⇢(Jk), and ⇢ denotes the spectral radius.

Correction step. Let R̃ = Ik�1
k (R� Jk�U⌫1) and Zi 2 Vk�1, 0  i  p, p = 1 or p = 2, be defined as

Z0 = 0,

For V-cycle
Z1 =MGV (k � 1,Z0, R̃), (3.30)

For W-cycle
Z1 =MGW (k � 1,Z0, R̃),

Z2 =MGW (k � 1,Z1, R̃),
(3.31)

which is the result of applying in the coarse grid correction step the (k � 1)th level algorithm twice.

For F-cycle
Z1 =MGF (k � 1,Z0, R̃),

Z2 =MGV (k � 1,Z1, R̃),
(3.32)

which results of applying in the coarse grid correction step the (k � 1)th level F-cycle algorithm once,

and then the (k � 1)th level V-cycle algorithm once.

Final output:
MG(k, �U0,R) = �U⌫1 + Ik

k�1Zp, (p = 1 or p = 2). (3.33)

Post-smoothing step. Let �U l 2 Vk be defined by

�U l = �U l�1 + C�1
k (R� Jk�U l�1), 1  l  ⌫2. (3.34)

Remark 8. For p = 1 we get the standard V(⌫1, ⌫2)-cycle, while for p = 2 we get W(⌫1, ⌫2)-cycle, resp.
F(⌫1, ⌫2)-cycle, by applying in the coarse grid correction step the (k � 1)th level algorithm twice, resp.
the (k � 1)th level F-cycle algorithm once, and then the (k � 1)th level V-cycle algorithm once [20, 21].

We proceed now, in Subsection §3.5.2, with intergrid transfer operators concretized to our FEM dis-
cretization choice, Q2 and P

disc
1 . We present the operators, restrictions and prolongations, in a geometric

context with a clear mathematical formulation for further analysis of multigrid properties, which goes
beyond the interest of the current thesis.

3.4.2 Grid Transfer Operators

Multigrid method requires intergrid transfer operators mapping data between the grid hierarchy Thk and
Thk�1 . We are using geometric transfer between FE spaces [70, 71]. The coarse-to-fine grid (prolongation)
operator Ik

k�1 maps functions defined on the coarser grid level k � 1 into a functions defined on a finer
grid level k, while the fine-to-coarse grid (restriction) operator Ik�1

k maps functions defined on the finer
grid level k into functions defined on a coarser grid level k � 1.

Ik�1
k =(Iũ

k,k�1, I
p
k,k�1) (3.35)

Ik
k�1 =(Iũ

k�1,k, I
p
k�1,k) (3.36)
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where
Iũ
k,k�1 : Whk �! Whk�1 , Iũ

k�1,k : Whk�1 �! Whk ,

Ip
k,k�1 : Qhk �! Qhk�1 , Ip

k�1,k : Qhk�1 �! Qhk .
(3.37)

The prolongation operator, Iũ
k�1,k : Whk�1 �! Whk , is the coarse-to-fine grid mapping for velocity and

microstructure.

Velocity and microstructure fields. Since we approximate velocity and microstructure with conform-
ing quadratic finite element, the finite element space on a coarser level is a subspace of the finite element
space on a finer level Whk�1 ⇢ Whk (k � 1). Therefore, Iũ

k�1,k is the natural embedding of Whk�1 into
Whk in L

2(⌦). Furthermore, any coarse grid function ũk�1 2 Wk�1 can be expressed in terms of fine
grid basis functions

ũk�1 =

dimWhk�1X

j=1

ũj,k�1'
k�1
j =

dimWhkX

j=1

ũj,k'
k
j . (3.38)

Using the dual basis, {N k
i , i = 1, . . . ,dimWhk}, associated with the basis {'k

i , i = 1, . . . ,dimWhk} of FE
space Whk , that is

N k
j ('

k
i ) = �ij , 8 i, j = 1, . . . ,dimWhk

where �ij is the Kronecker delta function, we get

ũi,k =

dimWhk�1X

j=1

ũj,k�1N k
j ('

k�1
i ). (3.39)

The entries of its matrix representation Iũ
k�1,k 2 Wk⇥Wk�1 are, the coarse grid shape functions evaluated

at the fine-grid vertices, h
Iũ

k�1,k

i

ij
= N k

j ('
k�1
i ). (3.40)

The restriction operator, Iũ
k,k�1 : Whk �! Whk�1 , is the fine-to-coarse grid mapping for microstruc-

ture and velocity. We use the L
2-projection. Its matrix representation, Ik,k�1 with respect to the basis

{'k�1
i , i = 1, . . . ,dimWhk�1} and {'k

i , i = 1, . . . ,dimWhk} is obtained using the embedding Ik
k�1 as

follows:
Iũ

k,k�1 = M�1
k�1(Iũ

k�1,k)
TMk (3.41)

where Mk�1 and Mk are mass matrices at level k � 1 and k, respectively. Therefore, The transpose of
the prolongation matrix is indeed the restriction matrix

Rk�1 =(Iũ
k�1,k)

TRk. (3.42)

Pressure field. The pressure is approximated by a discontinuous linear finite element, P disc
1 . Therefore,

the multilevel FE approximation spaces for the pressure are nested, Qhk�1 ⇢ Qhk . The prolongation
operator for the pressure, Ip

k�1,k : Qhk�1 �! Qhk , is defined in terms of the local L2-inner product
projection operator; for all q 2 P

disc
1 (K) there holds q 2 P

disc
1 (�l(K)), l = 1, · · · , 2d). Then,

2dX

l=1

Z

�l(K)
Ip
k�1,kpk�1q d⌦ =

Z

K
pk�1q d⌦, 8K 2 Thk�1 .

(3.43)

Its matrix representation is given in terms of the mass matrices with respect to the basis of Qhk and
Qhk�1 as follows:
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Ip
k�1,k = M�1

k Mk�1. (3.44)

Indeed, let a coarse grid function pk�1 2 Qk�1, be expanded in terms of fine grid basis functions

pk�1 =

dimQhk�1X

j=1

pj,k�1 
k�1
j =

dimQhkX

j=1

pj,k 
k
j . (3.45)

For each element K 2 Thk�1 and each basis function  k�1
i of P disc

1 (K), we have

Z

�l(K)
pk�1 

k�1
i d⌦ =

dimPdisc
1X

j=1

pj,k�1

Z

�l(K)
 
k�1
j  

k�1
i d⌦, 8l = 1, · · · , 2d

=

dimPdisc
1X

j=1

pj,k

Z

�l(K)
 
k
j  

k�1
i d⌦, 8l = 1, · · · , 2d.

(3.46)

Summing-up over the sub-elements, �l(K)(l = 1, · · · , 2d), there holds

dimPdisc
1X

j=1

pj,k�1

Z

K
 
k�1
j  

k�1
i d⌦ =

2dX

l=1

dimPdisc
1X

j=1

pj,k

Z

�l(K)
 
k
j  

k�1
i d⌦. (3.47)

Hence,

Mk�1pk�1|K =
2dX

l=1

Mkpk|�l(K). (3.48)

We get the fine mesh coe�cient vector, pk, via the local mass matrices.

The restriction operator for the pressure, Ip
k,k�1 : Qhk �! Qhk�1 , is the transpose counterpart of the

prolongation w.r.t. L2; for all K 2 Thk�1 and q 2 P
disc
1 (K)

Z

K
Ip
k,k�1pkq d⌦ =

2dX

l=1

Z

�l(K)
pk Ip

k�1,kq d⌦. (3.49)

Its matrix representation is given in terms of the mass matrices with respect to the bases of Qhk and
Qhk�1 as follows:

Ip
k,k�1 = M�1

k�1Mk. (3.50)

Remark 9. For velocity and microstructure fields, there is no need for the evaluation of neither the mass
matrix Mk�1 nor its inversion. In addition, the coarse grid matrix can be expressed in terms of the fine
grid matrix as follows:

J ũ
k�1 =(Iũ

k�1,k)
TJ ũ

k Iũ
k�1,k. (3.51)

The pressure is cross-element wise disconnected. Thus, only the local mass matrices are in play.

Lastly, we continue with the presentation of the smoother steps in multigrid in Subsection §3.5.3. As we
are bounded with the strong nonlinear coupling of the TVP problem, we are using Local pressure Schur
complement approach to e�ciently tackle flow fields coupling locally.
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3.4.3 Local Pressure Schur Complement Approach

Local Pressure Schur complement (LPSC) schemes are generalizations of Vanka-type smoothers for cou-
pled systems of typical saddle point type, which we encounter so far in TVP flow problems [76, 79]. They
are simple iterative relaxation methods that solve directly on the element level, one element or a patch of
elements, and perform an outer block Gauss-Seidel iteration. The choice of the blocks for such systems is
based on the incompressibility constraint, or equivalently, on the pressure degrees of freedom. As a con-
sequence, an e�cient solver for the TVP problem is obtained due to the local character of the algorithm
beside the global defect-correction mechanism on the one hand, and due to our choice for discontinuous
FE discretization for the pressure on the other hand.

Here, we content to explain mathematically the mechanism of the LPSC approach for solving TVP
problems [76, 79]. Since the choices of the blocks are based on the incompressibility constraint and due to
noncoupling between the pressure and microstructure, we collocate the microstructure and velocity flow
fields and rewrite the Jacobian, omitting the grid level indices, due to the level grid hierarchy independence
of the smoothing steps, as follows:

✓
@R(U)
@U

◆
=

0

BB@

@Rũ(ũ)

@ũ

@Rũ(ũ)

@p

@Rp(ũ)

@ũ
0

1

CCA . (3.52)

In order to set the local subproblems, we introduce prolongation operators, indexed by element K, for
coupled velocity and microstructure field, denoted by P ũ

K ,

P ũ
K : Wh(K) �! Wh, 8 K 2 Th, (3.53)

and for the pressure field, denoted by Pp
K ,

Pp
K : Qh(K) �! Qh, 8 K 2 Th. (3.54)

For the prolongation pair PK = (P ũ
K ,Pp

K) for coupled, velocity and microstructure fields, and the pressure

field, we introduce the corresponding restriction operator pair PT
K = (P ũ

K
T
,Pp

K
T
) defined for the global

solutions as
PT
K : Wh ⇥Qh �! Wh(K)⇥Qh(K), 8 K 2 Th. (3.55)

Firstly, since velocity and microstructure flow fields are approximated with conforming Q2 FE discretiza-
tion, they are laying on the same degree of freedom. Furthermore, using conforming FE approximations
on the one hand, and the jump stabilization on the other, we are in the situation of an overlapping of
corresponding spaces of degrees of freedom Wh(K) 8K 2 Th, that is

8
>>><

>>>:

Wh(K) ⇢ Wh,Wh = [
K2Th

Wh(K),

8 K 2 Th, 9K̃ 6= K | Wh(K) \
K 6=K̃

Wh(K̃) 6= ;.
(3.56)

Secondly, using discontinuous FE discretization for the pressure leads to nonoverlapping of spaces of
degrees of freedom of Qh(K) 8K 2 Th, that is

8
>>><

>>>:

Qh(K) ⇢ Qh,Qh = [
K2Th

Qh(K),

Qh(K) \
K 6=K̃

Qh(K̃) = ; 8 K 2 Th.
(3.57)

41



Let P ũ
K , Pp

K , and PK denote matrix representations, that is, the algebraic counterparts of prolongations
P ũ
K , Pp

K , and PK , defined on spaces of variables values WK := RdimWK , QK := RdimQK , and VK :=
WK ⇥QK , respectively. Thus, the values for the local solutions in terms of local restriction matrices are
given as follows (for details see [69]):

UK = (ũK , pK) := PT
KU = (P ũ

K
T
ũ,Pp

K
T
p). (3.58)

Similarly, the values for the global solution are assembled using the local prolongation matrices as

U = (ũ, p) =
X

K2Th

PKUK =
X

K2Th

(P ũ
Kũ,Pp

Kp). (3.59)

The overlapped solutions, in the assembling process (3.59), are updated in a Gauss-Seidel manner [69].
Then, the smoothing steps in a monolithic geometric multigrid are simple block Gauss-Seidel iteration.
In compact form, it reads:

U l+1 = U l � !l

X

K2Th

PK

 ✓
PT

K

✓
@R(U l)

@U

◆
PK

◆�1

PT
KR(U l)

!
. (3.60)

In practice, the local residuum is calculated, using restriction (3.58),

RK(U l) = PT
KR(U l). (3.61)

Then, we obtain the linear local matrices

✓
@R(U l)

@U

◆

K

= PT
K

✓
@R(U l)

@U

◆
PK , (3.62)

to solve for the local updates by means of solving the local subproblems

✓
@R(U l)

@U

◆

K

�U l
K = RK(U l). (3.63)

We obtain the global update, using the prolongation (3.59),

�U l =
X

K2Th

PK�U l
K , (3.64)

and, finally we update the solutions with a certain damping parameter !l

U l+1 = U l � !l�U l
. (3.65)

Remark 10. Note that the local subproblem is of the saddle point type. Furthermore, due to the jump
stabilization contributions, the local matrices for velocity and microstructure are deduced from a patch
of elements, that is, the designated element by pressure and all its neighbors. In order to keep the size of
the local subproblem of a small size, one might only include the jump contributions within the designated
element by pressure [62, 77].
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3.5 Concluding Remarks

In this chapter, we presented a monolithic Newton-multigrid FEM solver for the quasi-Newtonian mod-
eling approach for thixoviscoplastic flows.

Based on a two-fields Stokes solver, we used higher order stable Q2/P
disc
1 FE discretization for velocity

and pressure. Then, we approximated the microstructure field similar as the velocity field, using the
higher order Q2 FE approximation, with an appropriate stabilization term to enhance the coercivity for
the microstructure weak formulation. The bilinear stabilization term consists of edge-oriented jump of
the gradient to upgrade the coercivity to match the space norm. Additionally, it is consistent with FEM
discretization, linear with respect to the problem, and improves the solver’s e�ciency.

The FEM quasi-Newtonian model for thixoviscoplastic flows is a highly nonlinear multifield coupled
problem. The extended viscosity for generalized TVP Stokes equations is dependent on flow fields, by
means of shear rate and microstructure, and the regularization parameter. And the thixotropic model is
dependent on the shear rate. As a consequence, the FEM quasi-Newtonian modeling approach requires
a robust solver to obtain accurate numerical solutions.

Firstly, we used a combined adaptive discrete Newton and monolithic geometric multigrid solver to
delicately handle the regularization and to treat the nonlinearity multifield coupled issues alike. The
solver has two folds with respect to adaptivity; the one related to discrete Newton’s method is done
via the step-size in finite di↵erence approximation of the Jacobian, while the one related to the linear
multigrid solver is achieved by requiring the optimal convergence according to the nonlinear one. The
resultant solver is a black box solely dependent on the actual rate of the nonlinear residual convergence,
singularity-free, and robust with respect to the starting guess.

Secondly, we advantageously concretized the monolithic geometric multigrid solver on FEM discretization
choice used so far. It is based on the local pressure Schur complement (LPSC) approach to handle the
coupled linearized TVP saddle point problems locally. That is, to solve exactly on the element level,
one element or a patch of elements, and perform an outer block Gauss-Seidel iteration. The choice of
the blocks for block Gauss-Seidel iteration is based on the pressure degrees of freedom P

disc
1 . The local

character of this procedure together with the global defect-correction mechanism on the one hand, and
the choice of discontinuous FE approximations for the pressure on the other, results in an e�cient linear
solver.

Summarising, we developed a solver for TVP generalized Stokes equations. The developed solver is black
box, and based on the monolithic Newton-multigrid method. It uses an adaptive strategy for the step-
size control in divided di↵erence for the Jacobian approximation. The size of step length follows the
convergence process via the actual residual convergence rate. Accordingly, the multigrid convergence is
made optimal to achieve the nonlinear convergence. To conclude, the combination of pair Q2/P

disc
1 FEM

discretization together with an adaptive Newton-multigrid solver results in a highly numerically accurate,
robust, and e�cient solution scheme.





4

Numerical Simulations of Thixoviscoplastic Flows

This chapter is concerned with numerical simulations of thixoviscoplastic flow problems as a useful tool to
understand the complex phenomena of the interplay between plasticity and thixotropy. Thixoviscoplastic
flow is a multifield coupled nonlinear problem, beside the integrated nonlinearity within the momentum
equation and microstructure equation, it induces two-way coupling, by means of microstructure depen-
dent plastic-viscosity and yield stress as well as shear rate dependent buildup and breakdown functions,
and microstructure convection. We have selected, for our numerical simulations, flow configurations of
academic background, modeling interest, and industrial applications, that extend the CFD simulations
(as for instance [34, 37, 39]) to include TVP flow problems.

4.1 Introduction

Incorporating thixotropy in complex flow processes necessitates flow simulations in a wide range of cir-
cumstances. In this regard, we provide thixoviscoplastic flow simulations in di↵erent flow configurations.
Firstly, we start with a channel flow as a means to validate our numerical solutions and algorithmic tools.
We use the unidirectional flow assumptions for fully developed flow to generate data from a reduced
one-dimensional corresponding Hous̆ka TVP model, to be used as necessary boundary conditions (inflow
boundary conditions), alternative boundary conditions at the outflow (Dirichlet instead of “do-nothing”),
and a solution’s validation mechanism at each x-axis cross section.
Secondly, we move to lid-driven cavity flow as an important benchmark for several computational fluid
dynamics codes in academia. We investigate di↵erent flow regimes. We start with the analysis of Newto-
nian case for a wide range of Reynolds number to track the nonuniformities of the flow in the absence of
any regularization e↵ects. Then, we use the viscoplastic model to optimize the settings for mesh refine-
ment and regularization parameter for model accuracy. With these optimized settings, we investigate the
accurate growth and location of unyielded regions, and the role played by the microstructure equation
throughout the analysis of the types of transitions between yielded and unyielded regions. We provide
the corresponding analysis of Newton-multigrid solver convergence.
Thirdly, we present thixotropic flow in a simple enough geometry for laboratory experiments and for
numerical simulation validation, Couette device. We study the types of transitions from a quasi-static
flow regime to an intermediate flow regime and vice versa, with respect to the changes in the intensity of
breakdown parameter.
Lastly, we choose the contraction domain as a close enough configuration for industrial and engineer-
ing applications, and its utility in applied mathematics and simulation communities to develop e�cient
numerical methods and practical algorithms. We use this flow configuration to analyze the thixotropic
phenomena, namely the competition processes of Aging and Shear Rejuvenation.



4.2 Thixoviscoplastic Channel Flow

In this section, we are concerned with thixoviscoplastic channel flow as a means to validate our numerical
solutions and algorithmic tools. Unidirectional flow is an inevitable assumption to generate exact solutions
for many nonlinear flow problems in certain circumstances.

As far as the numerical simulations of thixoviscoplastic flow problems are concerned, the inflow boundary
conditions are required for the microstructure equation on the one hand, and a validation mechanism for
the numerical solutions and algorithmic tools on the other. Manufacturing analytic solution for thixovis-
coplastic flow is beyond our interest. Indeed, thixoviscoplastic flow problems are multifield coupled non-
linear problems, beside the integrated nonlinearity within the momentum equation and microstructure
equation, thixoviscoplastic problems induce a two-way coupling, by means of microstructure dependent
plastic-viscosity and yield stress as well as shear rate dependent breakdown functions and microstructure
convection. Thus, we opt for the fully developed solutions as boundary data for our finite element simu-
lations due to the nonavailability of Hous̆ka thixoviscoplastic analytical solution.
To calculate the fully developed solutions, we assume a x-axis unidirectional flow. From these assump-
tions, we rewrite a reduced one-dimensional generalized Stokes Hous̆ka thixoviscoplastic model to generate
fully developed discrete data solutions. The fully developed discrete data solutions of the reduced one-
dimensional generalized Stokes Hous̆ka TVP model are used to provide necessary boundary conditions
(inflow boundary conditions), alternative boundary conditions at the outflow (Dirichlet instead of “do-
nothing” [44] or any version of it from [4, 16, 14, 18, 40, 38, 74] ), and a solution’s validation mechanism
at each x-axis cross section of the channel domain.

With respect to the quasi-Newtonian modeling approach, regularization is a common issue for both vis-
coplastic and thixoviscoplastic flow problems. Indeed, the impact of regularization of viscoplastic subprob-
lems is replicated in thixoviscoplastic flow problems. In addition, manufacturing an analytical solution
for unidirectional viscoplastic is achievable. Thus, we use the simplified viscoplastic unidirectional flow
as a base for mechanism for accurate solutions with respect to regularization. In the next subsection, we
investigate the regularization impact on viscoplastic flow with the help of an analytical solution.

4.2.1 Bingham Viscoplastic Channel Flow

This subsection is devoted to viscoplastic channel flow. It is considered here as a benchmark for a quasi-
Newtonian modeling approach. Owning an exact solution, viscoplastic channel flow plays a key role, in
the context of this work, as a validation tool for the quasi-Newtonian approach for thixoviscoplastic flow.

Quasi-Newtonian modeling approach for yield stress materials uses an approximated norm of shear rate
with a regularization parameter, which may cause the solutions to be regularization dependent. In this
subsection §4.2.1, we investigate the accuracy of the FEM regularized viscoplastic channel flow solution
against the exact viscoplastic solution, to come up with optimal settings for the regularization parameter.
We select two classical regularizations, namely Bercovier-Engelmann regularization, and Papanastasiou
regularization, for the investigations of accuracy via calculation of the L

2-norm of the error for di↵erent
yield stress parameter. Furthermore, for both regularizations, we analyze the solver behavior with respect
to mesh refinement and regularization parameter.



We consider a unit channel configuration, with boundary @⌦ with inflow section, denoted ��, outflow
boundary section �

+, and upper and lower walls � . Exact Bingham viscoplastic solution for velocity
uex = (u, 0)T in a unit channel is given as follows;

u =

8
>>>>><

>>>>>:

1

8

⇣
(1� 2⌧0)

2 � (1� 2⌧0 � 2y)2
⌘

if y 2 [0,
1

2
� ⌧0)

1

8
(1� 2⌧0)

2 if y 2 [
1

2
� ⌧0,

1

2
+ ⌧0]

1

8

⇣
(1� 2⌧0)

2 � (2y � 2⌧0 � 1)2
⌘

if y 2 (
1

2
+ ⌧0, 1]

(4.1)

The analytical solution corresponds to the unyieded region in the center of the channel y 2 [ 12 � ⌧0,
1
2 + ⌧0],

which increases with the increase of the yield stress parameter ⌧0. Two yielded regions, which decrease
with the increase of yield stress parameter ⌧0, separate the unyielded region from the channel’s walls. The
plastic-viscosity ⌘0 is set equal to unity, and the range of yield stress parameter values lies between zero
and one-half. For the highest value of yield stress ⌧0 set equal to one-half, the unyielded region occupies
the full domain, while on the other extremity, the yielded region occupies the full domain. The shear
stress on the unyielded region belongs to a ball centred at the origin with a radius value of yield stress
parameter ⌧0, while the pressure on the yielded regions obeys the Poiseuille law, that is r p = (�1, 0)T.

The first numerical simulation aims to test the response of the regularized FEM solution with respect
to the yield stress parameter over a wide spectrum of values within its admissible range. We plot, in
Figure 4.1, the velocity magnitude at the vertical centerline for a set of yield stress parameter values.
The simulations are done with Papanastasiou’s regularized viscosity function, where the regularization
parameter k is set equal to 103.

Fig. 4.1: Viscoplastic channel flow: Impact of yield-stress parameter ⌧0 on velocity profiles across
the line, y = 0.5, via Papanastasiou regularization at k = 103, where ⌘0 = 1.0 and grid refinement size
h = 0.03125.

Clearly, for a vanishing yield stress parameter, the flow is Newtonian-like and shows the perfect parabolic
profile. As we increase the yield stress parameter, the peak of the parabolic profile gets flattened respec-
tively in the unyielded region. Now, we proceed with our settled goal for this benchmark problem to
analyze the impact of the regularization parameter on the accuracy of solutions.

For our regularized FEM solutions, we take the exact Bingham viscoplastic solution (4.1) as Dirichlet
boundary conditions on @⌦, with a homogeneous source term. The smoothed constitutive equation defined
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with the help of the extended viscosity on one hand, and the exact solution (4.1) as Dirichlet boundary
conditions on @⌦, and a homogeneous source term on the other hand, yields the constant pressure solution
in the unyielded region. Thus, a linear pressure on the yielded regions and a constant pressure in the
unyielded region, increase the benchmark challenges with respect to pressure FEM approximation, and
resolving interfaces with respect to mesh. This is a classical issue within multiphase problems [28, 46, 78,
83]. Alternatively, one might go for a solution with linear pressure on all regions for this benchmark. To
achieve this goal, one may either monitor the source term with exact Bingham solution (4.1) as Dirichlet
boundary conditions on @⌦, or apply a pressure drop as boundary conditions between the inflow boundary
section �� and the outflow boundary section �+ and homogeneous Dirichlet boundary conditions on the
boundary section � .

The numerical FEM simulations yield a flow distribution of the flow field and calculated quantities. We
display the solutions (velocity, pressure, and shear rate) for di↵erent boundary conditions. In Figure 4.2
(TOP), we show the solutions obtained with the analytical Bingham viscoplastic solution (4.1) as Dirichlet
boundary conditions on @⌦, with homogeneous source term. Furthermore, with pressure drop as boundary
conditions, the solutions are displayed in Figure 4.2 (BOTTOM).
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Fig. 4.2:Bingham viscoplastic channel flow: Bingham viscoplastic flow solutions, where ⌘0 = 1.0,⌧0 =
0.25, k = 104.

The pressure solution for a regularized viscoplastic problem with analytical Bingham viscoplastic solution
(4.1) as Dirichlet boundary conditions on @⌦, and the homogeneous source term, shows discontinuity
between regions, and jumps at the intersections of boundary sections �� and �+ with the interfaces. In
contrast, the pressure driven flow shows a perfect linear pressure solution. It is worth mentioning that
the well-known artifacts related to the ‘do-nothing’ boundary condition associated with pressure drop are
removed simply by setting the y-velocity to zero at the boundary to remain with the unidirectional flow
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assumptions, for details about this issue and possible remedies, we refer to [18, 44]. For both problems,
the unyielded region is moving at a constant velocity, and is separated from the wall’s channel by yielded
regions. The shear rate follows the regions accordingly, particularly the zero-shear rate for the unyielded
region at the center of the channel.

Before proceeding quantitatively with the investigation of the impact of regularization within the vis-
coplastic quasi-Newtonian modeling approach, we show qualitatively the regularization e↵ect on velocity,
pressure, and shear rate solutions in Figure 4.3. The simulation corresponds to Bingham’s analytical so-
lution (4.1) as Dirichlet boundary conditions on @⌦, with a homogeneous source term. From Figure 4.3,
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Fig. 4.3: Viscoplastic channel flow: Impact of Papanastasiou’s regularization on flow solutions, for
⌧0 = 0.25 and ⌘0 = 1.0. The simulations are done for k = 101, 102, 103, 104 (LEFT to RIGHT), at grid
refinement size h = 0.03125.

as the regularization parameter increases, the prescribed boundary conditions (which correspond to Bing-
ham’s analytical solution) are preserved along the channel to perfectly match the prescribed exact solution
in full domain for the higher values of the regularization parameter. Next, we check quantitatively, via
error analysis, the impact of regularization on the accuracy of solutions.
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We proceed with the investigation of impact of the regularization on the accuracy of the solutions. To
remain aligned with our goal fixed for this flow benchmark, we choose the yield stress parameter for our
simulations with care to avoid that the interface crosses an element, that is, an aligned interface with
the quadrilateral mesh. For the completeness of the exposure, we also provide simulations with a yield
stress parameter which leads to an interface crossing element, that is, a nonaligned interface with the
quadrilateral mesh.

We carry out the simulations with both Bercovier-Engelmann and Papanastasiou regularizations, and
provide the corresponding velocity errors in Table 4.1 for two yield stress parameter values, which provide
a solution with mesh-aligned interfaces between unyielded and yield regions.

Table 4.1: L2-error of velocity ku � uexk2: Velocity errors in the L
2-norm for Bingham viscoplastic

flow for di↵erent values of the yield stress parameter.

k\L 2 3 4 5 6

⌧0 = 0.25

Bercovier-Engelmann Regularization

10�1 2.978095⇥ 10�3 2.951861⇥ 10�3 2.950375⇥ 10�3 2.950330⇥ 10�3 2.950331⇥ 10�3

10�2 6.901916⇥ 10�4 6.913878⇥ 10�4 6.802920⇥ 10�4 6.793066⇥ 10�4 6.793291⇥ 10�4

10�3 7.445251⇥ 10�5 7.472293⇥ 10�5 7.681642⇥ 10�5 7.669420⇥ 10�5 7.624363⇥ 10�5

10�4 7.682888⇥ 10�6 7.497608⇥ 10�6 7.471700⇥ 10�6 7.553686⇥ 10�6 7.652252⇥ 10�6

10�5 7.712732⇥ 10�7 7.513904⇥ 10�7 7.461318⇥ 10�7 7.475360⇥ 10�7 7.511636⇥ 10�7

10�6 7.715786⇥ 10�8 7.515695⇥ 10�8 7.461032⇥ 10�8 7.470957⇥ 10�8 7.470612⇥ 10�8

Papanastasiou Regularization

101 3.007423⇥ 10�3 2.986835⇥ 10�3 2.985134⇥ 10�3 2.985008⇥ 10�3 2.985049⇥ 10�3

102 8.070790⇥ 10�4 7.910534⇥ 10�4 7.771159⇥ 10�4 7.766747⇥ 10�4 7.766779⇥ 10�4

103 8.854564⇥ 10�5 8.713851⇥ 10�5 8.999407⇥ 10�5 8.962862⇥ 10�5 8.876830⇥ 10�5

104 9.265935⇥ 10�6 8.958942⇥ 10�6 8.871151⇥ 10�6 8.863787⇥ 10�6 8.919511⇥ 10�6

105 9.311507⇥ 10�7 8.991498⇥ 10�7 8.892617⇥ 10�7 8.868517⇥ 10�7 8.860986⇥ 10�7

106 9.316114⇥ 10�8 8.994771⇥ 10�8 8.894896⇥ 10�8 8.869936⇥ 10�8 8.863445⇥ 10�8

⌧0 = 0.375

Bercovier-Engelmann Regularization

10�1 1.623909⇥ 10�3 1.582885⇥ 10�3 1.581855⇥ 10�3 1.581779⇥ 10�3 1.581769⇥ 10�3

10�2 1.085270⇥ 10�3 7.053111⇥ 10�4 6.960561⇥ 10�4 6.952442⇥ 10�4 6.952255⇥ 10�4

10�3 8.821427⇥ 10�4 8.278289⇥ 10�5 8.758886⇥ 10�5 8.704881⇥ 10�5 8.638644⇥ 10�5

10�4 8.887202⇥ 10�4 8.519315⇥ 10�6 8.501405⇥ 10�6 8.694866⇥ 10�6 8.845921⇥ 10�6

10�5 8.893644⇥ 10�4 8.569292⇥ 10�7 8.509577⇥ 10�7 8.570079⇥ 10�7 8.649968⇥ 10�7

10�6 8.893644⇥ 10�4 8.574575⇥ 10�8 8.511668⇥ 10�8 8.566827⇥ 10�8 8.560124⇥ 10�8

Papanastasiou Regularization

101 1.598519⇥ 10�3 1.553552⇥ 10�3 1.552506⇥ 10�3 1.552413⇥ 10�3 1.552401⇥ 10�3

102 1.138180⇥ 10�3 8.094995⇥ 10�4 7.961622⇥ 10�4 7.961382⇥ 10�4 7.961298⇥ 10�4

103 8.799405⇥ 10�4 9.477742⇥ 10�5 1.009830⇥ 10�4 9.963894⇥ 10�5 9.836866⇥ 10�5

104 8.887246⇥ 10�4 9.998811⇥ 10�6 9.857640⇥ 10�6 9.893807⇥ 10�6 1.004589⇥ 10�5

105 8.893694⇥ 10�4 1.007135⇥ 10�6 9.912362⇥ 10�7 9.901165⇥ 10�7 9.913865⇥ 10�7

106 8.893644⇥ 10�4 1.007866⇥ 10�7 9.918013⇥ 10�8 9.906410⇥ 10�8 9.910985⇥ 10�8

In Table 4.1, we compare the FEM regularized solution of velocity u with the analytical one uex, and
display the error with respect to the L

2-norm. The results are presented in two main blocks for two

50



di↵erent values of the yield-stress parameter, which are carefully chosen to have an aligned interface
between unyielded and yielded regions with respect to the mesh refinement, ⌧0 = 0.25 and ⌧0 = 0.375.
The simulations are carried out with both, Bercovier-Engelmann and Papanastasiou regularizations,
where k denotes the regularization parameter. It is worth mentioning that the configuration is discretized
with structured quadrilateral elements, and at each refinement level, each element is subdivided into
four sub-elements. Thus, to have aligned interfaces on successive mesh refinement levels is possible only
from certain finer levels. Here, for the yield stress parameter ⌧0 set equal to 0.25, the alignment of the
interfaces is possible from the mesh refinement level 2, and at mesh refinement level 3 for the yield stress
parameter ⌧0 set equal to 0.375. Thus, the odd behavior of the stagnation of the error at level 2 for the
case ⌧0 = 0.375 needs to be interpreted with nonaligned interfaces case Table 4.3.

The accuracy of the solutions improves with a very small regularization parameter k for Bercovier-
Engelmann regularization, while a very large regularization parameter provides accurate solutions for
Papanastasiou regularization. For Bercovier-Engelmann regularization, as we decrease the regularization
parameter from the range of values 10�1 to 10�6, the corresponding L

2-norm of the error is proportionally
decreasing with respect to regularization parameter. In contrast, the L2-error shows no improvement with
respect to mesh refinement, and the accuracy of the solutions is of the regularization order. Similarly,
for Papanastasiou regularization, the L

2-error is proportionally decreasing with respect to increasing the
regularization parameter from the range of values 101 to 106, and shows no improvement with respect
to mesh refinement. For both choices of yield stress parameter values, both regularizations have similar
performance in terms of improving the accuracy of solutions.

Concerning the Newton solver, we list in Table 4.2 the number of nonlinear iterations for successive mesh
level refinements with respect to regularization parameter. Furthermore, the linear subproblems inside
each nonlinear Newton’s sweep are solved with the direct linear solver, UMFPACK.

Table 4.2: Newton Iterations: Number of nonlinear iterations with respect to regularization parameter
k and refinement level L for Bingham viscoplastic flow for di↵erent values of yield stress parameter ⌧0.

k\L 2 3 4 5 6 2 3 4 5 6

⌧0 = 0.25 ⌧0 = 0.375

Bercovier-Engelmann Regularization

10�1 3 3 4 4 4 3 3 3 3 3

10�2 18 16 15 14 14 12 11 13 13 13

10�3 21 22 19 19 18 15 21 19 19 18

10�4 25 24 24 22 22 18 24 24 22 22

10�5 27 25 25 24 24 11 25 28 26 25

10�6 83 22 29 41 51 6 27 30 43 54

Papanastasiou regularization

101 3 3 4 3 4 3 3 3 3 3

102 15 15 14 12 12 11 11 11 11 11

103 16 17 18 16 16 13 17 17 16 19

104 22 22 24 24 25 15 23 25 26 26

105 28 22 27 29 32 11 25 29 32 35

106 34 22 30 50 52 9 25 32 51 53
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We used the continuation strategy with respect to the regularization parameter for Newton’s starting
solutions. That is, as we decrease the amount of regularization introduced in the problem, the correspond-
ing solutions are computed by using solutions with a higher amount of regularization as a start-solutions.
The nonlinearity of the viscoplastic problem is increased either by increasing the yield stress parameter,
or by decreasing the amount of regularization introduced in the problem. The amount of regularization is
proportionally decreased, by decreasing the regularization parameter k for Bercovier-Engelmann regular-
ization or by increasing the regularization parameter k for Papanastasiou regularization. Clearly, this is
directly reflected on number of nonlinear iterations displayed in Table 4.2. Despite the complexity of the
combination of regularization parameter and mesh refinement, the solver preserves the same nonlinear
convergence rate at each refinement level.
In Table 4.3, we display the L

2-error for velocity solution with the exact one for the case of nonaligned
interfaces of unyielded and yielded regions with the mesh.

Table 4.3: L2-error of velocity ku � uexk2: Velocity errors in the L
2-norm for Bingham viscoplastic

flow for di↵erent values of the yield stress parameter.

k\L 2 3 4 5 6

⌧0 = 0.253125

Bercovier-Engelmann Regularization

10�1 2.970230⇥ 10�3 2.943989⇥ 10�3 2.942496⇥ 10�3 2.942447⇥ 10�3 2.942446⇥ 10�3

10�2 7.017845⇥ 10�4 6.968269⇥ 10�4 6.828571⇥ 10�4 6.818404⇥ 10�4 6.818447⇥ 10�4

10�3 7.288438⇥ 10�5 7.536287⇥ 10�5 7.894642⇥ 10�5 7.730505⇥ 10�5 7.647529⇥ 10�5

10�4 7.196318⇥ 10�6 7.201308⇥ 10�6 7.330351⇥ 10�6 8.585453⇥ 10�6 8.013995⇥ 10�6

10�5 1.214840⇥ 10�6 1.177080⇥ 10�6 1.118774⇥ 10�6 1.905528⇥ 10�6 1.596786⇥ 10�6

10�6 1.235439⇥ 10�6 1.078582⇥ 10�6 9.709680⇥ 10�7 1.446487⇥ 10�6 1.223437⇥ 10�6

Papanastasiou Regularization

101 2.994777⇥ 10�3 2.974349⇥ 10�3 2.972587⇥ 10�3 2.972478⇥ 10�3 2.972516⇥ 10�3

102 8.203538⇥ 10�4 7.958385⇥ 10�4 7.801462⇥ 10�4 7.797193⇥ 10�4 7.797139⇥ 10�4

103 8.640441⇥ 10�5 8.797258⇥ 10�5 9.262107⇥ 10�5 9.013183⇥ 10�5 8.892082⇥ 10�5

104 8.723038⇥ 10�6 8.628136⇥ 10�6 8.633317⇥ 10�6 9.796810⇥ 10�6 9.306870⇥ 10�6

105 1.260804⇥ 10�6 1.244867⇥ 10�6 1.214936⇥ 10�6 1.932024⇥ 10�6 1.659530⇥ 10�6

106 1.230502⇥ 10�6 1.076311⇥ 10�6 9.707930⇥ 10�7 1.444387⇥ 10�6 1.333276⇥ 10�6

⌧0 = 0.3333333

Bercovier-Engelmann Regularization

10�1 2.289944⇥ 10�3 2.251774⇥ 10�3 2.251031⇥ 10�3 2.250828⇥ 10�3 2.250848⇥ 10�3

10�2 1.186941⇥ 10�3 7.169343⇥ 10�4 7.183205⇥ 10�4 7.173794⇥ 10�4 7.174272⇥ 10�4

10�3 9.088943⇥ 10�4 1.212913⇥ 10�4 9.535640⇥ 10�5 8.306562⇥ 10�5 8.328602⇥ 10�5

10�4 8.992746⇥ 10�4 8.895081⇥ 10�5 3.782218⇥ 10�5 8.606960⇥ 10�6 8.722071⇥ 10�6

10�5 8.988972⇥ 10�4 8.916449⇥ 10�5 3.580582⇥ 10�5 3.887651⇥ 10�6 1.875271⇥ 10�6

10�6 8.988921⇥ 10�4 8.924030⇥ 10�5 3.555589⇥ 10�5 3.669765⇥ 10�6 3.223283⇥ 10�6

Papanastasiou Regularization

101 2.250569⇥ 10�3 2.210720⇥ 10�3 2.209799⇥ 10�3 2.209523⇥ 10�3 2.209524⇥ 10�3

102 1.247860⇥ 10�3 8.229736⇥ 10�4 8.232711⇥ 10�4 8.224887⇥ 10�4 8.225101⇥ 10�4

103 9.091701⇥ 10�4 1.268233⇥ 10�4 1.075757⇥ 10�4 9.523797⇥ 10�5 9.547306⇥ 10�5

104 8.994667⇥ 10�4 8.897055⇥ 10�5 3.838476⇥ 10�5 9.941859⇥ 10�6 9.968182⇥ 10�6

105 8.988920⇥ 10�4 8.915357⇥ 10�5 3.584173⇥ 10�5 3.941740⇥ 10�6 1.947580⇥ 10�6

106 8.988920⇥ 10�4 8.923839⇥ 10�5 3.555196⇥ 10�5 3.667045⇥ 10�6 3.333523⇥ 10�6
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To complete the exposure with circumstances that occur for interfaces in general flow simulations, in
addition to the exposed results for the yield stress parameters leading to aligned interfaces in Table 4.1,
we provided results for simulations with a yield stress parameter for nonaligned interfaces in Table 4.3.

Table 4.3 displays the velocity L
2-error with the exact solution for the nonaligned interface case. We shift

the interface a little bit to cross the element with a small perturbation of the yield stress parameter values
of the previous simulation. We made this choice to not introduce any error related to mesh disturbance.
The simulations are carried out for two yield stress value parameter ⌧0 set equal to 0.253125, and 0.3333333
with both regularizations, Bercovier-Engelmann and Papanastasiou regularizations, and the results are
displayed block wise. Each block presents the velocity L

2-error with respect to mesh refinement and
regularization parameter.

Once again, with respect to mesh refinement, the L2-error shows no clear reduction. Moreover, the error is
only decreasing up to a certain stagnating value with respect to the decrease in amount of regularization.
For Bercovier-Engelmann regularization, the parameter k is decreased in the range of 10�1 to 10�6, and
error shows a stagnating behavior when k takes values less than or equal to 10�4. For Papanastasiou
regularization, the parameter k is increased in the range of 101 to 106, and error shows a stagnating
behavior when k takes values greater than or equal to 104. For both choices of yield stress parameter
values, the regularizations have the same behavior towards L2-error.

A comparative analysis of the errors of aligned and nonaligned cases in Table 4.1 and Table 4.3 shows that,
for the former case, the error keeps decreasing with respect to decreasing the amount of regularization,
while for the latter, it stops decreasing and stagnates at a certain limit with respect to the decreases in
the amount of regularization. Thus, the L2-error is not only regularization parameter dependent, but also
prone to the interface’s alignment with the mesh. For both cases, the error reaches an acceptable limit,
and the regularized FEM viscoplastic solutions are admissible for aligned and nonaligned interfaces.

We list the nonlinear iteration for the Newton solver for the nonaligned case in Table 4.4.

Table 4.4: Newton Iterations: Number of nonlinear iterations with respect to regularization parameter
k and refinement level L for Bingham viscoplastic flow for di↵erent values of yield stress parameter ⌧0.

k\L 2 3 4 5 6 2 3 4 5 6

⌧0 = 0.253125 ⌧0 = 0.333333

Bercovier-Engelmann Regularization

10�1 3 3 4 4 4 3 3 3 4 4

10�2 16 16 14 14 15 15 15 15 14 14

10�3 20 21 20 18 18 19 18 20 19 18

10�4 25 23 23 22 22 16 18 23 22 22

10�5 31 24 25 24 24 9 19 23 23 25

10�6 33 25 29 41 51 7 27 27 49 57

Papanastasiou regularization

101 4 4 3 3 4 3 3 3 3 3

102 15 13 14 11 12 12 13 11 11 11

103 18 17 18 16 16 16 17 17 16 16

104 21 24 25 25 25 18 18 24 25 25

105 40 25 25 33 31 10 19 25 25 35

106 47 25 31 39 53 44 24 28 46 59
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The results are presented in a block wise manner, where the blocks correspond to the yield stress param-
eter ⌧0 set equal to 0.253125 and 0.333333, for both regularizations. For each block, we list the nonlinear
sweeps for successive mesh refinement levels and regularization parameter. The Newton’s starting solu-
tions follow the continuation strategy with respect to regularization parameter. And the linear systems
at each nonlinear iteration are solved using a direct solver.

The nonlinear solver for the nonaligned interface case, Table 4.4, shows similar behavior as for the aligned
interface case, Table 4.2. The nonlinearity of the problem, remains unchangeable with respect to mesh
refinement, while it is increased either by increasing the yield stress parameter, or by decreasing the
amount of regularization introduced in the problem.

We proceed with the highlight of the similar performance for both regularizations, Bercovier-Engelmann
regularization and Papanastasiou regularization, and provide the velocity at the vertical centerline with
respect to regularization parameters for both regularizations.

In Figure 4.4, we display the velocity solutions at vertical centerlines for both Bercovier-Engelmann
regularization and Papanastasiou regularization, with respect to the amount of regularization.

Fig. 4.4: Viscoplastic channel flow: Impact of regularization parameter on velocity solution profiles
for yield stress parameter ⌧0 = 0.25, where µ0 = 1.0 and grid refinement size h = 0.03125. The velocity
profile corresponds to optimal k is plotted together with Bingham analytical velocity in Eq. (4.1).

Along the investigations of viscoplastic channel flow, both Bercovier-Engelmann regularization and Pa-
panastasiou regularization show similar behavior, either with regard to nonlinear solver or the accuracy
aspect. Clearly, there is no fond preference, and we content to use Papanastasiou regularization in what
follows.

In regard to the study of aligned and nonaligned interfaces, the accuracy of the solutions is prone to
regularization and the alignment of interfaces with the mesh. For both cases, accepted solutions with
respect to accuracy are possible with a moderately smaller amount of regularization introduced to the
problem.
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In Figure 4.5, we display the velocity at the vertical centerline for two yield stress values, which correspond
to aligned and nonaligned interfaces.

Fig. 4.5: Viscoplastic channel flow: Impact of regularization parameter on velocity solution profiles
for yield stress parameter ⌧0 = 0.25, where µ0 = 1.0 and grid refinement size h = 0.03125. The velocity
profile that corresponds to optimal k is plotted together with Bingham’s analytical velocity in Eq. (4.1).

Clearly, Figure 4.5 depicts that for both cases, aligned interfaces with mesh case and nonaligned interfaces
with mesh case, the exact solution can be obtained with a regularized FEM viscoplastic model.

We proceed with our investigations with Papanastasiou regularization for the rest of this work. Next
subsection is devoted to thixoviscoplastic channel flow.

4.2.2 Hous̆ka Thixoviscoplastic Channel Flow

This subsection is concerned with thixoviscoplastic channel flow. The microstructure equation raises
additional challenges to the ones related to the viscoplastic subproblem, which need to be addressed.
That is, the regularization of the breakdown function (nonsmoothness with respect to shear rate), and
the boundary conditions for the microstructure equation. We upgrade the quasi-Newtonian viscoplastic
channel flow benchmark to incorporate the microstructure equation’s challenges and provide validation
tools for the numerical solutions. We tackle the extended challenges of thixoviscoplastic channel flow
with the accepted convergence of quasi-Newtonian viscoplastic solutions to exact Bingham solution with
respect to regularization in section §4.2.1. So, we advantageously use the unidirectional flow assumption to
overcome the lack of an analytic exact solution for thixoviscoplastic channel flow. As the flow is exclusively
in the x-axis direction, we implement the reduced one-dimensional thixoviscoplastic model, and use the
solutions as boundary conditions, as well as validation tools for solutions of FEM thixoviscoplastic channel
flow (for additional implementation information, we refer to [81]).

For our problem, we set the material parameter values as follows: the nonthixotropic and thixotropic
plastic viscosities ⌘0, and ⌘1, respectively, with a value unity. We form the unyielded region with the
same contributions of nonthixotropic yield stress ⌧0 and thixotropic yield stress ⌧1 parameters, with a
value set equal to 0.25. The ratio of breakdown and buildup parameters in the microstructure equation
is set to unity, where both breakdown parameter Mb , and buildup parameter Ma are set to take 0.01
value.
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We plot in Figure 4.6, the one-dimensional reduced thixoviscoplastic flow velocity solution against the
two-dimensional FEM thixoviscoplastic developed velocity solution.

Fig. 4.6: Thixoviscoplastic channel flow: Comparison of velocity solutions of 1D and fully developed
2D models for thixoviscoplastic flows in a unit channel.

Figure 4.6 shows that the velocity solution of the two-dimensional FEM thixoviscoplastic developed
channel flow matches with the velocity solution of the reduced one-dimensional thixoviscoplastic problem.

Similarly, for microstructure solutions, Figure 4.7 depicts the matchable superposition of two microstruc-
ture solutions.

Fig. 4.7: Thixoviscoplastic channel flow: Comparison of microstructure solutions of 1D and fully
developed 2D models for thixoviscoplastic flows in a unit channel.

The usefulness of reduced one-dimensional thixoviscoplastic solutions lies in the validation of FEM thixo-
viscoplastic flow solutions, as well as to provide the necessary or alternative boundary conditions. Firstly,
with respect to the momentum equation, as the flow reaches the developed state, both solutions should
coincide. Or, if it is imposed as Dirichlet boundary conditions at the inflow boundary section �

�, it
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should remain unchanged along the channel. Furthermore, we use it as Dirichlet boundary conditions
at outflow boundary section �+ to overcome the need to use ‘do-nothing’ or any modified version of it.
Secondly, with respect to the microstructure equation, beside from its validation aspect, it provides the
necessary inflow boundary conditions at the inflow boundary section ��.

In Figure 4.8, we present the velocity and the microstructure solutions of two-dimensional FEM
thixotropic channel flow with Dirichlet boundary conditions at both, inflow boundary section �

�, and
the outflow boundary section �+.

Velocity Microstructure

Fig. 4.8: Thixoviscoplastic channel flow: The FEM Hous̆ka thixoviscoplastic flow solutions, velocity
magnitude (LEFT) and microstructure (RIGHT), with solutions of the one-dimensional reduced Hous̆ka
thixoviscoplastic problem as Dirichlet boundary conditions at inflow and outflow boundary sections.

Figure 4.8 shows a thixovicoplastic channel flow solution, which fulfills the x-axis unidirectional flow
assumptions along the channel (including the outflow boundary sections).

With the reduced one-dimensional thixoviscoplastic model mechanism as a validation tool for the two-
dimensional FEM numerical solutions, we proceed with the analysis of regularization impact on the
accuracy of the quasi-Newtonian modeling approach for thixoviscoplastic channel flow. We select a set of
increased regularization parameter values in a wide range to allow for a clear change in the profile.

In Figure 4.9, we plot the velocity profiles of fully developed two-dimensional FEM regularized thixovis-
coplastic channel flow with respect to regularization parameter values.

Figure 4.9 depicts that, for smaller regularization parameter value, the velocity flow profile shows a
perfect parabolic profile, which is connected to a Newtonian-like flow profile, expressing that the flow
is driven by almost constant viscosity dominated by the regularization parameter value. As we increase
the regularization parameter values, the peak of the parabolic profile smoothly gets flattened in the
unyielded region, to fully flattened shape for the unyielded region and converges to the final profile for
a larger regularization parameter value. This is so far the same observation for the viscoplastic channel
flow benchmark.

With the consistency “convergence” of velocity solutions of quasi-Newtonian modeling of thixoviscoplas-
tic channel flow and viscoplastic channel flow benchmark with respect to the regularization parameter,
we proceed with our investigations for the microstructure equation.
Firstly, we analyze the impact of regularization on the indicator prospects of microstructure for the re-
gions. Indeed, the admissible range for the microstructure field lies in the close interval [0, 1], for the
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Fig. 4.9: Thixoviscoplastic channel flow: Impact of regularization parameter on velocity magnitude
u for regularized Houska’s model , where ⌧0 = ⌧1 = 0.125, ⌘0 = 1.0, and ⌘1 = 0.0, Ma = 0.01, and
Mb = 0.01.

unyielded region, the microstructure takes values approaching unity, otherwise, it indicates the yielded
region. Thus, we analyze the “domain” of microstructure with respect to its admissible range for regu-
larization parameter.
Secondly, we investigate the processes of buildup and breakdown within the microstructure equation.
We study the boundary limit with respect to variations in rate of buildup parameter or breakdown
parameters.

For the same set of regularized parameter values, we plot the microstructure solution profile of the
developed thixoviscoplastic channel flow in Figure 4.10. Figure 4.10 shows that, for a smaller regularized

Fig. 4.10: Thixoviscoplastic channel flow: Impact of regularization parameter on microstructure � for
regularized Hous̆ka’s thixoviscoplastic model where ⌧0 = ⌧1 = 0.125, ⌘0 = 1.0, and ⌘1 = 0.0, Ma = 0.01,
and Mb = 0.01.

parameter value, the microstructure domain indicates the unyielded region is reduced to the centerline
of the channel, and sigmoidally changes with the increase of the regularization parameter. The unyielded
region indicated by microstructure matches perfectly with the unyielded region indicated by velocity.
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The unidirectional x-axis flow assumptions are satisfied along the channel, and irrespective of the regu-
larization parameter, as depicted in Figure 4.11.
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Fig. 4.11: Thixoviscoplastic channel flow: Velocity magnitude (TOP) and microstructure (BOTTOM)
for increased regularization parameter values k = 101, 102, 103, 104 (LEFT-to-RIGHT), where ⌧0 = ⌧1 =
0.125, ⌘0 = 1.0, and ⌘1 = 0.0, Ma = 0.01, and Mb = 0.01.

We proceed with the analysis of the competition process of buildup and breakdown incorporated in the
microstructure equation. Since the ratio of the breakdown Mb and buildup parameter Ma is important in
this process, we content to vary only the breakdown parameter Mb, and keep the buildup parameter Ma

fixed. In Figure 4.12, we plot the microstructure solution profiles for di↵erent values of the breakdown
parameter.

Fig. 4.12: Thixoviscoplastic channel flow: Impact of breakdown parameter Mb on microstructure
solutions, where ⌧0 = 0.0, ⌧1 = 0.25, ⌘1 = 0.0, ⌘0 = 1.0, and k = 104.

59



It is depicted in Figure 4.12 that, at vanishing breakdown parameter, the process of breakdown take over
the full channel. For the nonvanishing breakdown parameter, the striking remark is on the transition be-
tween the regions. As the breakdown parameter increases, the transitions between regions get sharpened,
which is clearly seen in the increase of the jump of the gradient of microstructure at interfaces.

In this section, we investigated thixoviscoplastic channel flow to incorporate the microstructure challenges
within the viscoplastic channel flow benchmark.

Firstly, we analyzed the regularization impact within the quasi-Newtonian modeling approach for vis-
coplastic channel flow. Owing an exact solution, viscoplastic channel flow benchmark is meant for pro-
viding optimal parameter settings with respect to the modeling of the thixoviscoplastic flow problem. We
started by showing that the regularized FEM solution perfectly follows the changes in the yield stress
parameter. For a vanishing yield stress parameter, the flow is Newtonian-like and showed the perfect
parabolic profile. And as we increased the yield stress parameter, the peak of the parabolic profile got
flattened respectively in the unyielded region. We used the exact Bingham solution as boundary condi-
tions for the FEM regularized viscoplastic problem in conjunction with a homogeneous source term as a
standard way in FEM simulations. This leads to a discontinuous pressure solution between regions, which
increased the benchmark challenges with respect to pressure approximations. Beside that, big jumps at
the intersections of boundary sections �� and �+ with the interfaces. We also provided a solution avoid-
ing the discontinuity of the pressure along the interfaces using pressure drop boundary conditions. For the
quantitative analysis with respect to regularization (Bercovier-Engelmann and Papanastasiou regulariza-
tions), we proceeded with the former one to provide error with respect to the analytic exact solution. We
carried out simulations for yield stress parameter values yielding aligned interfaces (one element belongs
either to an unyielded region or a yielded region) as well as nonaligned interfaces (unyielded and yielded
regions coexist in the same element). For both cases, we showed a continuation of an increase in accuracy
for the aligned interfaces and up to a certain acceptable limit for the nonaligned ones, with decreasing
the amount of regularization introduced in the problem. Both, Bercovier-Engelmann and Papanastasiou
regularizations, showed one-to-one similitude along the investigations, either with respect to accuracy or
for the nonlinear solver behavior. In regard to accuracy, the solutions showed a clear improvement in
accuracy with very a small amount of regularization. And with respect to nonlinear solver behavior (for
both regularizations), the Newton showed mesh refinement independency, while the nonlinear iterations
are increased either by the increase of the yield stress parameter values, or by the decrease of the amount
of regularization introduced in the problem.

Secondly, we used the unidirectional flow assumptions to overcome the lack of an analytic solution for
thixoviscoplastic channel flow. We implemented the reduced one-dimensional thixoviscoplastic model, and
used the solutions as boundary conditions, as well as validation tools for solutions of FEM thixoviscoplastic
channel flow. On the one hand, the fully developed FEM thixoviscoplastic flow solutions and the reduced
one-dimensional thixoviscoplastic solutions match. On the other hand, we used reduced one-dimensional
thixoviscoplastic solutions as Dirichlet boundary conditions at outflow boundary section �

+ instead
of ‘do-nothing’ boundary conditions, and as inflow boundary conditions for microstructure. Then, we
analyzed the impact of regularization on the indicator prospect of microstructure for the regions, and the
competition process of buildup and breakdown incorporated in the microstructure equation by monitoring
the ratio of the breakdown parameter Mb and buildup parameter Ma. It is conceived that the unyielded
region indicated by microstructure matches perfectly with the unyielded region indicated by velocity.
Furthermore, the transitions between unyielded and yielded regions got sharpened for larger breakdown
parameter values. We proceed with another well established academic benchmark in the next section,
which is the lid-driven cavity flow benchmark.
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4.3 Thixoviscoplastic Lid-driven Cavity Flow

This section is devoted to thixoviscoplastic (TVP) lid-driven cavity flow, as an important benchmark for
computational fluid dynamics codes in academia. Lid-driven cavity is accepted as a test configuration
to check point-wise mesh convergences despite the lack of regularity due to the pressure singularity
in the corners of upper-lid. The schematic of the classical lid-driven cavity configuration is presented
in Figure 4.13. We present the corresponding results for Newtonian, viscoplastic, and thixoviscoplastic
lid-driven flows [7].

Fig. 4.13: Schematic representation of lid-driven cavity.

Firstly, we start with the Newtonian lid-driven cavity flow benchmark. It introduces nonuniform recir-
culating flows with well-studied vortices with respect to Reynolds number. Beside being the benchmark
for global quantities, for instance kinetic energy and enstophy, it also provides a point-wise benchmark,
namely the location of vortices and x-axis cutline solutions. We investigate the global quantity benchmark
using the kinetic energy, and the point-wise benchmark with the help of the velocity magnitude at the
vertical centerline and the locations of the primary and the lower left secondary vortices for the partic-
ular Reynolds numbers set to 1000, 5000, and 10 000, respectively. We also present the corresponding
Newton-multigrid solver behavior.

Secondly, we analyze the viscoplastic lid-driven cavity flow benchmark. The quasi-Newtonian modeling
approach for yield stress materials introduces a regularization parameter to get a well-defined extended
viscosity function in the whole computational domain. We investigate the accurate growth and location
of unyielded regions with respect to the optimal settings of regularization and mesh refinement, for in-
creased values of the yield stress parameter. Moreover, we analyze the corresponding Newton-multigrid
solver convergence with respect to all parameters, namely the yield stress parameter, and the regulariza-
tion parameter on successive mesh refinement levels. Meanwhile, we check the optimal strategy for fast
convergence for the nonlinear solver.

Lastly, we present thixoviscoplastic lid-driven cavity flow. Thixoviscoplastic flow equations are an upgrade
of generalized viscoplastic Navier-Stokes equations in two aspects. On the one hand, the extended viscosity
function integrates the microstructure via thixotopic plastic viscosity and thixotropic yield stress. On the
other hand, the set of equations is supplemented with a microstructure evolution equation. This equation



reflects the competition process of Aging and Rejuvenation, which occurs via the interaction of buildup
and breakdown functions dependent on two additional model parameters, namely buildup and breakdown
parameters. Here, we also investigate the accurate growth and location of unyielded regions with respect
to the optimal settings of regularization and mesh refinement, for increased values of the thixotropic yield
stress parameter. We analyze the corresponding Newton-multigrid solver convergence with respect to the
thixotropic yield stress parameter, and regularization parameter on successive mesh refinement levels.
Moreover, we investigate the role played by the microstructure equation throughout the analysis of the
types of transitions between yielded and unyielded regions.

We consider the classical lid-driven cavity settings on unity square for our study of Newtonian, viscoplas-
tic, and thixoviscoplastic flows. In what follows, the flow is generated with the moving upper lid with
x-velocity set to unity, which comes into contact with the stationary walls. That is, the flow problem is
subject to nonhomogeneous Dirichlet boundary conditions for x-velocity at the upper boundary wall, and
homogeneous Dirichlet boundary conditions at the other walls. Next subsection is devoted to Newtonian
lid-driven cavity flow.

4.3.1 Newtonian Lid-driven Cavity Flow

In this subsection, we present Newtonian lid-driven cavity flow. It is used in the context of this work
to provide a foundation for validation, mainly point-wise, for our numerical method and simulation
algorithm. Indeed, Newtonian lid-driven cavity flow is not only the benchmark for global quantities, it
also provides point-wise benchmark quantities, for instance, cutline solutions, and the location of vortices.
Moreover, the Newtonian flow is free from regularization e↵ects, which occur with our choice of a quasi-
Newtonian modeling approach for viscoplastic and thixoviscoplastic flows. Thus, it provides a reference
base for a mesh refinement for FEM solutions point-wisely, mainly in this work, the accurate track of the
interface between yielded and unyielded zones with respect to mesh refinement.

We use the classical lid-driven cavity configuration presented in Figure 4.13, with the upper lid moving
with speed U set to unity. For a particular set of Reynolds numbers, Re set equal to 1000, 5000, and
10 000, we validate our FEM code on two folds, namely accuracy and e�ciency. Firstly, with respect
to accuracy, we provide the global quantity benchmark of kinetic energy, and the point-wise quantities
benchmark of velocity magnitude at vertical centerline beside the location of the primary and the lower
left secondary vortices. Secondly, with respect to e�ciency, we study the Newton-multigrid solver in terms
of the quotient of the number of nonlinear sweeps and the average number of linear multigrid sweeps
with respect to mesh refinement levels.

In Table 4.5, we list the kinetic energy, half of the power two of the L2-norm of the approximated velocity,
and Newton-multigrid iterations,in terms of the quotient (N/M) of the number of nonlinear sweeps and
the average number of linear multgrid sweeps, with respect to mesh refinement.
For the starting solutions in Table 4.5, we use the continuation strategy, which constitutes of the inter-
polated solutions on the one-level coarser. The kinetic energy results displayed in table 4.5 show a clear
mesh convergence, and are in agreement with the di↵erent FEM discretizations from literature [30, 78].
Moreover, the Newton-multigrid solver shows a mesh refinement independent behavior. The quotient
N/M is almost constant independently with respect to mesh refinement, without confusion, the addi-
tional nonlinear iterations at the coarser levels are simply due to the higher interpolation error for the
starting solutions at coarser levels.

We proceed with the progressive increases in Reynolds number and present a relative comparison of
kinetic energy, and Newton-multigrid solver results in Table 4.6.
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Table 4.5: Newtonian lid-driven cavity flow: Comparison of energy norm results with references [30]
and [78] for Reynolds number Re = 1000.

Re = 1000 KineticEnergy = 1/2

✓Z

⌦

||uh||2 dx
◆

Level cells Present N/M Ref. [30] Ref. [78]

5 1024 4.541506⇥ 10�2 5/1 4.5418⇥ 10�2 4.8095⇥ 10�2

6 4096 4.458877⇥ 10�2 5/1 4.4590⇥ 10�2 4.5828⇥ 10�2

7 16384 4.452357⇥ 10�2 3/1 4.4524⇥ 10�2 4.4843⇥ 10�2

8 65536 4.451904⇥ 10�2 3/1 4.4519⇥ 10�2 4.4592⇥ 10�2

9 262144 4.451846⇥ 10�2 3/1 4.4518⇥ 10�2 4.4535⇥ 10�2

The numerical solution corresponding to Reynolds number Re set equal to 1000, and 5000, is obtained
without stabilization. While for the simulation case of Reynolds number Re set equal to 10 000, the
numerical solution necessitates the use of stabilization, the solution is obtained with the help of edge-
oriented stabilization method.

Table 4.6: Newtonian lid-driven cavity flow: The kinetic energy and the number of Newton-multigrid
iterations, nonlinear number of iterations and the average number of multigrid iterations (N/M), for
di↵erent mesh refinement levels for Reynolds numbers Re = 1000, Re = 5000, and Re = 10 000.

Re 1000 5000 10 000

Level cells Energy N/M Energy N/M Energy N/M

4 256 5.245101⇥ 10�2 6/1 0.106888⇥ 10�2 7/1 0.208089⇥ 10�2 8/1

5 1024 4.541506⇥ 10�2 5/1 6.082524⇥ 10�2 6/1 7.940472⇥ 10�2 7/1

6 4096 4.458877⇥ 10�2 5/1 4.955858⇥ 10�2 5/1 5.369527⇥ 10�2 6/1

7 16384 4.452357⇥ 10�2 3/1 4.768669⇥ 10�2 4/1 4.868399⇥ 10�2 5/1

8 65536 4.451904⇥ 10�2 3/1 4.744815⇥ 10�2 3/2 4.783917⇥ 10�2 4/2

9 262144 4.451846⇥ 10�2 3/1 4.742921⇥ 10�2 3/1 4.773500⇥ 10�2 3/2

10 1048576 4.451834⇥ 10�2 2/1 4.742815⇥ 10�2 3/1 4.772692⇥ 10�2 3/1

Ref. values ⇡ 4.45⇥ 10�2 4.74⇥ 10�2 4.77⇥ 10�2

Table 4.6 displays ostentatiously the mesh convergence of the kinetic energy in clear accordance with
the amount of convection. It is progressively higher with respect to the successive decreases in Reynolds
numbers. Moreover, for Reynolds number Re set equal to 10 000, the mesh convergence of the kinetic
energy is a simple confirmation result of the consistency of edge-oriented stabilization. In regard to the
Newton-multigrid solver, taking in consideration on the one hand the higher interpolation error for the
starting solutions at the coarser levels, and the flexibility of the linear solver to match optimally the
requirements of the optimal accuracy of the nonlinear solver in the combined adaptive nonlinear-linear
solver on the other hand, the average ratio reflects the mesh and Reynolds number independent solver
behavior.
The e�ciency and robustness of the solver to provide accurate, and mesh independent solutions for global
quantity for problems with di↵erent complexity, nonlinear convection and nonstandard edge-oriented sta-
bilization stencils, do not overwhelm us to not go forward with the solution’s point-wise mesh convergence
investigation. The solution’s point-wise mesh convergence study is to raise the awareness when dealing
with visualization benchmark quantities and provide a base mesh requirement on well-documented clas-
sical Newtonian problems.
Next, we proceed to track the locations of the generated vortices for the di↵erent Reynolds numbers.
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The interest in Newtonian flows exceeds the solver’s examinations; the solver has to deal with di↵erent
complexity, to provide well documented visual benchmark quantities studies, as for instance the locations
of the generated vortices with respect to a particular Reynolds number.

In Figure 4.14, we display the formation of vortices for Newtonian flow with respect to the particular
Reynolds numbers Re = 1000, Re = 5000, and Re = 10 000 a graded cavity. Also, we provide the
corresponding streamline functions.

Fig. 4.14: Newtonian lid-driven cavity flow: The stream-function’s contours (TOP) and vorticity
(BOTTOM) computed for Reynolds numbers Re = 1000, Re = 5000, and Re = 10 000 respectively
(LEFT-to-RIGHT), at mesh refinement level 9.

At a relatively lower Reynolds number, Re set equal to 1000, three vortices are generated. The main
vortex is in the middle of the cavity, the bottom left corner vortices are near the bottom left corner of
the cavity, and the bottom right vortex is near the bottom right corner of the cavity. As the Reynolds
number increases, for Reynolds number Re set equal to 5000, a fourth top left vortex is generated, and
for Reynolds number Re set equal to 10 000 a fifth secondary bottom right vortex is generated near
the bottom right corner, increasing the bottom’s left vortices to a primary bottom right and secondary
bottom right vortices. Furthermore, the common vortices for all Reynolds numbers, that is, the main,
the bottom’s left and the primary bottom’s right vortices, change in shapes and locations with respect
to the particular Reynolds number.

64



We restrict our vortices’s location track to the common ones for all Reynolds numbers, Re set equal to
1000, 5000, and 10 000, that is, the main and bottom’s left vortices.

In Table 4.7, we list  max and  min of the main and bottom’s left vortices, with respect to mesh refinement
for Reynolds numbers Re set equal to 1000, 5000, and 10 000.

Table 4.7: Newtonian lid-driven cavity flow: The primary vortex and the lower left secondary vortex
for Reynolds numbers Re = 1000, Re = 5000, and Re = 10 000, with respect to mesh refinements.

Re 1000 5 000 10 000

level  max  min  max  min  max  min

6 0.1190073 �1.72813⇥ 10�3 0.1249471 �3.145666⇥ 10�3 0.1586626 �5.753575⇥ 10�3

7 0.1189360 �1.72649⇥ 10�3 0.1225439 �3.077555⇥ 10�3 0.1236127 �3.207018⇥ 10�3

8 0.1189361 �1.72851⇥ 10�3 0.1222499 �3.072411⇥ 10�3 0.1225210 �3.183135⇥ 10�3

9 0.1189362 �1.72963⇥ 10�3 0.1222269 �3.073524⇥ 10�3 0.1224097 �3.191010⇥ 10�3

10 0.1189366 �1.72965⇥ 10�3 0.1222259 �3.073589⇥ 10�3 0.1223892 �3.179739⇥ 10�3

ref. 0.1189 [25] �1.729⇥ 10�3 [25] 0.1221 [49] �3.070⇥ 10�3 [25]

Table 4.7 shows quantitatively the point-wise mesh convergence, once again, in accordance with progres-
sive induces of convection with respect to the increases of Reynolds numbers.

The convergence of the point-wise quantity Table 4.7 is on the same path as the convergence of the global
quantity in Table 4.6 with respect to Reynolds numbers. Consequently, the least mesh refinement for
a visually accurate solution is designated quantitatively for moderately complex shapes. We go forward
with a additional check and use, this time, the visual cutline of velocity solution magnitude at the vertical
centerline for di↵erent mesh refinements.

We plot, in Figure 4.15, the visual cutline of the velocity magnitude solutions with the successive mesh
refinement at the vertical centerline for the same set of Reynolds numbers, Re is set equal to 1000, 5000,
and 10 000.

(a) Re = 1000 (b) Re = 5000 (c) Re = 10 000

Fig. 4.15: Newtonian lid-driven cavity flow: The solutions of velocity magnitude at vertical centerline
with respect to mesh refinement computed for di↵erent values of Reynolds numbers Re.
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Once more, the velocity magnitude cutlines solutions, in Figure 4.15, show mesh refinement convergence
in accordance with convection dominations connected to each particular Reynolds number. Most impor-
tant conclusion is the confirmation of the designated least mesh refinement level to accept the solution
irrespective of the complexity of the problem providing mesh converged solutions.

After raising awareness on the minimum mesh refinement for obtaining accurate solutions for problems
having mesh refinement convergence in the global sense or point-wise, we proceed similarly with problems
that might lack such property for artificial reasons, for instance due to regularization issue in quasi-
Newtonian modeling of yield stress fluids.

Quasi-Newtonian modeling approach for yield stress materials uses an approximated norm of shear rate
with an artificial regularization parameter, which may cause the solutions to be regularization dependent.
In next Subsection §4.3.2, we investigate the accuracy of viscoplastic lid-driven cavity flow solutions
with respect to the optimal settings of the pair regularization parameter and mesh refinement, and the
corresponding Newton-multigrid solver behavior.

4.3.2 Bingham Viscoplastic Lid-driven Cavity Flow

This subsection is devoted to the viscoplastic lid-driven cavity flow benchmark. The quasi-Newtonian
modeling approach for viscoplastic materials introduces a regularization parameter to get a well-defined
extended viscosity function in the whole computational domain. We investigate the accurate growth and
location of unyielded regions with respect to the optimal settings of regularization and mesh refinement,
for increased values of the yield stress parameter. Moreover, we analyze the corresponding Newton-
multigrid solver convergence with respect to yield stress and regularization parameters. Meanwhile, we
check the optimal strategy for fast convergence of the nonlinear solver.

In Figure 4.16, we plot the interface between unyielded and yielded regions in terms of shear rate for
moderately increased values of the yield stress parameter.

(a) ⌧0 = 1.0 (b) ⌧0 = 2.0 (c) ⌧0 = 5.0

Fig. 4.16: Viscoplastic lid-driven cavity flow: Impact of the regularization parameter on the accurate
track of the interface between unyielded and yielded regions for di↵erent yield stress parameter values,
while ⌘0 = 1.0, and the regularization parameter is set to k = 102 (blue), k = 103 (red) and k = 104

(black). The solutions are calculated at mesh-refinement level 7.
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Viscoplastic materials inhabit the coexistence of yielded and unyielded regions, modeled in a quasi-
Newtonian approach with a unified extended viscosity function defined for both regions. The extended
viscosity function leads to flow problems with regularization parameter dependent solutions, which have
a direct impact on the accurate track of the interfaces between unyielded and yielded regions. In the
context of this work, we use the Papanastasiou approximation, which requires a very large regulariza-
tion parameter to get accurate solutions. This is clearly manifested in Figure 4.16, for a wide range of
regularization parameter, the plotted interfaces show convergence with respect to an increase in the regu-
larization parameter for di↵erent values of the yield stress parameter, that is, no further changes beyond
the regularization parameter 1000.

Viscoplastic cavity flows benchmark presents a modeling challenge in two folds: on the one hand the
proper track of the interface between unyielded and yielded regions, and on the other the exact location
and shape of the formed unyielded regions with respect to yield stress parameters.

In Figure 4.17, we present the location and shape of the formed unyielded (red) and yielded (blue)
regions in the full cavity, and in relative position to the stream function contours. Meanwhile, we plot
the convergence of the interfaces with respect to the regularization parameter.

Fig. 4.17: Viscoplastic lid-driven cavity flow: Impact of regularization parameter on the accurate
track of the interface between unyielded and yielded regions with a relative view of unyielded and un-
yielded regions, for two di↵erent yield stress parameter values ⌧0 = 5.0 (LEFT) and ⌧0 = 50.0 (RIGHT),
while ⌘0 = 1.0. The solutions are calculated at mesh-refinement level 7.

Figure 4.17 depicts the formation of two unyielded regions, one resting at the bottom of the cavity and
separated from the yielded region with a circular interface, and the other located near the lid of a lip-like
shape surrounded by the yielded region. For the two prototype increased yield stress parameter ⌧0 values,
set equal to 5.0 and 50.0, respectively, both unyielded regions expand and occupy the shrinking yielded
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region. Moreover, as the yield stress parameter increases, the intensity of the main vortex decreases and
moves toward the lid. Furthermore, as the regularization parameter increases, the interfaces between
unyielded and yielded regions converge, that is, no further changes beyond the regularization parameter
1000. We are in good agreement with the ones reported in [1].

For a systematic analysis of the accuracy and solver e�ciency with respect to modeling parameters, we
select a large set of increased yield stress parameter {1.0, 2.0, 5.0, 10.0, 20.0, 50.0}. On the one hand,
we plot the location and shape of the formed unyielded regions, and the convergence of the interfaces
between unyielded and yielded regions with respect to regularization parameter, and on the other hand
we present the corresponding Newton-multigrid behavior on successively refined mesh levels.

In regard to accuracy, we plot in Figure 4.18 on the mesh refinement level 7, the least designated refinement
level for obtaining an accurate solution, the location and shape of the formed unyielded regions relatively
to the contours of stream function solution on the one hand, and the convergence of the corresponding
interfaces with respect to regularization parameter on the other hand.

(a) ⌧0 = 1.0 (b) ⌧0 = 2.0 (c) ⌧0 = 5.0

(d) ⌧0 = 10.0 (e) ⌧0 = 20.0 (f) ⌧0 = 50.0

Fig. 4.18: Viscoplastic lid-driven cavity flow: The relative position of the unyielded and yielded zones
to stream function contours for increased yield stress parameter ⌧0 values. The other parameters are set
to ⌘0 = 1.0, and k = 104. The solutions are calculated at mesh-refinement level 7.

Firstly, concerning the location and shape of the formed unyielded regions relative to the contours of the
stream function solution, Figure 4.18 shows the formation of three unyielded regions for a very small yield
stress parameter, the case of the prototype value of yield stress ⌧0 set equal to 1, on the bottom left and

68



on bottom right corners of the cavity, and the third one of lips-like shape inside the cavity surrounded
with yielded region. As the yield stress parameter increases, the two bottom corners unyielded regions
expand and submerge to form one unyielded region resting at the bottom of the cavity, which reduces the
total sum of unyielded regions to two, one resting at the bottom of the cavity separated from the yielded
region with a circular interface, and the other located near the lid of a lip-like shape surrounded by the
yielded region. For the prototype set of increased yield stress parameter {1.0, 2.0, 5.0, 10.0, 20.0, 50.0},
all unyielded regions expand and occupy the shrinking yielded region. Moreover, as the yield stress
parameter increases, the intensity of the main vortex decreases and moves toward the lid.

Secondly, with regard to convergence of interfaces, Figure 4.18 shows that the interfaces between unyielded
and yielded regions converge with respect to increases in the regularization parameter, that is, no further
changes beyond the regularization parameter 1000.

Concerning the Newton-multigrid solver, we list in Table 4.8 the statistics of number of nonlinear and lin-
ear sweeps for successive mesh level refinements with respect to the progressive increases in regularization
parameter.

Table 4.8: Viscoplastic lid-driven cavity flow: The number of Newton-multigrid iterations, nonlinear
number of iterations and the average number of multigrid iterations (N/M), with respect to regularization
parameter k for di↵erent values of yield stress parameter ⌧0, for successive mesh refinement levels L.

k\L 5 6 7 5 6 7 5 6 7

⌧0 = 1.0 ⌧0 = 2.0 ⌧0 = 5.0

1⇥ 101 3/1 3/1 3/1 3/1 3/1 3/1 4/1 4/1 4/1

5⇥ 101 2/1 2/1 2/1 2/1 2/1 2/1 3/1 3/1 3/1

1⇥ 102 3/1 3/1 3/1 3/1 3/1 3/1 4/1 4/1 4/1

5⇥ 102 3/1 2/1 2/1 3/1 2/1 3/1 3/2 3/2 3/1

1⇥ 103 2/2 3/2 3/1 3/1 3/1 4/1 4/1 5/2 5/2

5⇥ 103 2/1 2/1 4/1 3/1 3/2 6/2 4/1 8/2 6/1

1⇥ 104 2/1 2/2 5/1 3/1 3/1 6/1 4/1 5/4 6/3

⌧0 = 10.0 ⌧0 = 20.0 ⌧0 = 50.0

1⇥ 101 5/1 5/1 5/1 6/1 6/1 6/1 5/1 7/1 7/1

5⇥ 101 4/1 3/1 3/1 4/1 4/1 3/2 5/4 4/2 4/2

1⇥ 102 5/2 4/1 4/1 5/2 5/2 5/1 6/5 5/4 5/1

5⇥ 102 5/3 3/2 3/1 4/4 3/4 4/3 5/4 4/2 4/3

1⇥ 103 5/2 7/4 9/1 5/5 7/2 8/1 5/5 9/2 9/2

5⇥ 103 5/1 7/3 8/2 6/3 6/4 6/4 6/4 7/2 8/2

1⇥ 104 6/1 7/2 8/3 6/3 5/5 7/3 6/3 7/3 8/2

The statistics of the Newton-multigrid solver is presented in Table 4.8, in a block-wise manner. Each
block corresponds to a particular yield stress parameter value, and displays the Newton-multigrid results
with respect to increases in regularization parameter for successive mesh refinement levels. We used the
continuation process with respect to regularization to obtain the listed results of Newton-multigrid solver
statistics. As we increase the regularization parameter, the corresponding solutions are computed by using
a lower value regularized solutions as a start-solutions. It is worth mentioning that for two successive
regularization parameter values listed in the table, our continuation strategy uses a non-uniform step-size
to increase the regularization parameter values. The blocks correspond to the set of increased yield stress
parameter {1.0, 2.0, 5.0, 10.0, 20.0, 50.0}.

69



From Table 4.8, with respect to the linear solver, multigrid shows mesh independent behavior for all
blocks of the yield stress parameter. Clearly, the nonlinearity of the problem is increased by either
increasing the yield stress parameter or by increasing the regularization parameter. That is, the number
of nonlinear iterations is increased moderately with respect to either increasing the yield stress parameter
or increasing the regularization parameter. The worth noting remark is that multigrid sweeps increased in
perfect accordance. This is quite an interesting result of the combined adaptive nonlinear-linear solvers,
where the accuracy of the linear solver is made to match optimally the requirements of the accuracy of
the nonlinear solver.

Viscoplastic lid-driven cavity flow investigation provided us with the optimal setting of mesh refinement
and regularization parameter for accuracy and the continuation strategy with respect to regularization
parameter for e�ciency. Now, we are ready to go forward with the investigations of thixoviscoplastic
driven cavity flow.

Next, we proceed with the investigations of thixoviscoplastic flow in a lid-driven cavity configuration.

4.3.3 Hous̆ka Thixoviscoplastic Lid-driven Cavity Flow

In this subsection, we present thixoviscoplastic lid-driven cavity flow. Thixoviscoplastic flow equations, in
contrast to viscoplastic flow equations, induce a two-way coupling, which increase the numerical simulation
challenges on two folds. On the one hand, the extended viscosity function integrates the microstructure
via thixotropic plastic viscosity and thixotropic yield stress. On the other hand, the set of equations
is supplemented with a microstructure evolution equation. This equation integrates the competition
processes of aging and rejuvenation, which occur via the interaction of buildup and breakdown functions
dependent on two additional model parameters, namely buildup and breakdown parameters.

Here, we also investigate the accurate growth and location of unyielded regions with respect to the
optimal settings of regularization and mesh refinement, for increased values of the thixotropic yield
stress parameter. We analyze the corresponding Newton-multigrid solver convergence with respect to
thixotropic yield stress parameter, and regularization parameter on successive mesh refinement levels.
Moreover, we investigate the role played by the microstructure equation throughout the analysis of the
types of transitions between unyielded and yielded regions.

After gaining experience with the optimal data settings for accuracy and continuation strategy with
respect to the regularization parameter for e�ciency for a viscoplastic flow benchmark, we are now ready
to investigate thixoviscoplastic lid-driven cavity flow. Indeed, on the one hand we obtained the point-
wise convergence of interfaces between unyielded and yielded regions with respect to the regularization
parameter k. Furthermore, for the pair mesh refinement level, and regularization parameter k set equal
to 7, and 104 respectively, we reached the best resolution, and no further clear improvement by either
increasing the mesh refinement level or regularization parameter is expected. On the other hand, lower
regularization parameter’s solutions are used as a start for higher regularization parameter’s solution
with nonuniform increases in the continuation process.

The thixoviscoplastic lid-driven cavity flow investigations concern the track of the location and shape
of the formed unyielded regions with respect to thixotropic yield stress, the performance of Newton-
multigrid solver with respect to thixotropic yield stress, regularization parameter, mesh refinement level,
and the role of the microstructure equation in defining transitions between regions.
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Figure 4.19 sets out the relative position of the rigid zones (shaded area), in terms of shear rate, to stream
function contours for a set of increased thixotropic yield stress parameter ⌧1, {0.5, 1.0, 2.0, 5.0, 10.0, 20.0}.
The solutions are calculated with the resolution threshold pair mesh refinement level, and regularization
parameter k set equal to 7, and 104, respectively.

(a) ⌧1 = 0.5 (b) ⌧1 = 1.0 (c) ⌧1 = 2.0

(d) ⌧1 = 5.0 (e) ⌧1 = 10.0 (f) ⌧1 = 20.0

Fig. 4.19: Thixoviscoplastic lid-driven cavity flow: The relative position of the unyielded and yielded
zones to stream function contours for an increased thixotropic yield stress parameter ⌧1. The other
parameters are set to ⌘0 = 1.0, ⌘1 = 0.0, ⌧0 = 1.0, k = 104, Ma = 1.0, and Mb = 0.1. The solutions are
calculated at mesh-refinement level 7.

Figure 4.19 depicts the formation of two unyielded regions, one resting at the bottom of the cavity and
separated from the yielded region with a circular interface, and the other located near the lid of a lip-
like shape surrounded by the yielded region. For the set of increased thixotropic yield stress parameter
values {0.5, 1.0, 5.0, 10.0, 20.0}, both unyielded regions expand and occupy the shrinking yielded region.
Moreover, as the thixotropic yield stress parameter increases, the intensity of the main vortex decreases
and moves toward the lid.

The unyielded regions for the set of increased thixotropic yield stress parameter values {0.5, 1.0, 5.0, 10.0,
20.0}, are built on the unyielded regions, which correspond to nonthixotropic yield stress value ⌧0 set
equal to 1.0. This is concretized in the corresponding larger unyielded regions compared to viscoplastic
unyielded regions, which make thixotropic lid-driven cavity flow more challenging for Newton-multigrid
solver, due to the additional dependency of the extended viscosity function on microstructure.
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Beside the additional numerical challenges within the microstructure equation, the dependency of the
extended viscosity function on microstructure increases the numerical challenges of the Newton-multigrid
solver for thixoviscoplastic lid-driven cavity flow. Next, we analyze the Newton-multigrid solver behavior
for the set of increased thixotropic yield stress parameter values {0.5, 1.0, 5.0, 10.0, 20.0} with respect
to regularization parameter and mesh refinement level. We use a lower range of values for the set of
thixotropic yield stress parameter in comparison to the range for values for the set of yield stress pa-
rameter in Table 4.8, to maintain the numerical complexity related to plasticity of the same order (see
Figure 4.19 and Figure 4.18.) Consequently, the focus is on the analysis of the impact of the upgrade
of the thixoviscoplastic flow system with microstructure’s equation numerical challenges, namely weak
coercivity, extra nonlinearities, and additional degrees of freedom.

In Table 4.9, we summarize the number of Newton-multigrid iterations with respect to di↵erent values of
the regularization parameter, k, and mesh refinement levels L to obtain the numerical thixoviscoplastic
lid-driven cavity flow solutions. The listed results correspond to the set of increased thixotropic yield
stress parameter values {0.5, 1.0, 5.0, 10.0, 20.0}. The solutions are calculated using the continuation
process with respect to the regularization parameter k. That is, solutions corresponding to higher values
of regularization parameter are computed using a lower value regularized solutions as starting solutions.
And for two successive regularization parameter values listed in the table, our continuation strategy uses
non-uniform multiple steps to increase the regularization parameter values.

Table 4.9: Thixoviscoplastic lid-driven cavity flow: The number of Newton-multigrid iterations,
nonlinear number of iterations and the average number of multigrid iterations (N/M), with respect to
regularization parameter k for di↵erent values of yield stress parameter ⌧1, for successive mesh refinement
levels L.

k\L 5 6 7 5 6 7 5 6 7

⌧1 = 0.5 ⌧1 = 1.0 ⌧1 = 2.0

1⇥ 101 5/2 5/3 6/2 5/2 5/2 9/1 5/2 5/2 9/1

5⇥ 101 4/2 4/2 4/2 3/2 3/3 7/1 3/2 3/3 8/1

1⇥ 102 4/1 4/2 5/1 4/1 4/2 7/1 4/2 4/2 8/1

5⇥ 102 4/1 4/1 5/1 3/1 4/1 6/1 4/2 4/2 8/1

1⇥ 103 4/1 4/1 4/1 4/2 4/2 8/1 4/4 6/1 7/1

5⇥ 103 4/1 4/1 3/2 7/1 9/1 5/1 6/1 9/1 8/1

1⇥ 104 4/1 4/2 4/2 5/1 7/1 4/1 7/1 10/1 8/2

⌧1 = 5.0 ⌧1 = 10.0 ⌧1 = 20.0

1⇥ 101 6/2 6/2 10/1 11/1 8/2 11/1 10/1 9/2 11/1

5⇥ 101 4/2 3/2 11/1 11/1 4/2 7/1 12/1 5/3 9/1

1⇥ 102 4/2 5/2 11/1 10/1 5/3 8/1 12/1 6/3 10/1

5⇥ 102 5/2 4/2 10/1 9/1 5/3 5/1 8/1 5/5 11/1

1⇥ 103 5/2 9/1 10/1 10/1 9/1 7/1 8/2 9/1 9/2

5⇥ 103 5/1 5/1 5/1 8/1 8/2 6/1 8/1 7/1 11/1

1⇥ 104 5/1 5/2 5/1 8/3 7/1 5/1 8/2 7/1 9/1

The Newton-multigrid solver’s statistics results are listed in Table 4.9, in a block-wise manner. Each block
corresponds to a particular thixotropic yield stress parameter value, and displays the Newton-multigrid
results with respect to increases in regularization parameter for successive mesh refinement levels. The
blocks correspond to the set of increased yield stress parameter {0.5, 1.0, 2.0, 5.0, 10.0, 20.0}.
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From Table 4.9, similar to the viscoplastic case, the nonlinearity of the problem is increased either by
increasing the plasticity in terms of the thixotropic yield stress parameter or by increasing the regu-
larization parameter. The additional numerical complexity related to microstructure equation, namely
extra nonlinearities, increased little bit the nonlinear sweeps. With respect to the linear solver, multigrid
shows mesh independent behavior for all blocks of the thixotropic yield stress parameter, which confirms
the e�cient performance of coupled geometric multigrid for multifield problems (additional degrees of
freedom) on the one hand, and edge-oriented stabilization for weak coercivity on the other hand.

Numerical simulations provide the flow distribution of thixoviscoplastic material for the main fields,
velocity, microstructure, and pressure, as well as numerical quantities, as for instance shear rate. So far,
the location and shape of zones have been analyzed by means of shear rate. With the interplay role of
shear rate and microstructure in defining the zones, we content to show the flow distributions of the
microstructure field only, for the investigation of types of transitions between zones.

We proceed with our investigation to analyze the role played by the microstructure equation in defining
the types of transitions between unyielded and yielded regions. The microstructure evolution equation
integrates the competition processes of Aging (buildup) and Rejuvenation (breakdown) inhabited in
thixotropic material. This process occurs via interaction of buildup and breakdown functions dependent
on two additional model parameters, namely buildup and breakdown parameters. We restrict our analysis
with respect to breakdown parameter, as such types of transitions are due to the ratio of breakdown
parameter and buildup parameter.

In Figure 4.20, we display the micostructure solutions for di↵erent values of the breakdown parameter.

(a) Mb = 0.5 (b) Mb = 1.0 (c) Mb = 2.0

Fig. 4.20: Thixoviscoplastic lid-driven cavity flow: Impact of breakdown parameter Mb on mi-
costructure, while ⌘0 = 1.0, ⌘1 = 0.0, ⌧0 = ⌧1 = 2.0, k = 104, and Ma = 1.0. The solutions are
calculated at mesh-refinement level 7.

The microstructure solutions lie between zero and unity, and it take values close to unity for indicating
unyielded zones in Figure 4.20. Moreover, a clear smooth transition occurs between zones, termed as shear
localization, for relatively small values of breakdown parameter. As the breakdown parameter increases,
the transitions get sharper and reveal the shear band phenomenon.
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In this Section §4.3, we analyzed thixoviscoplastic lid-driven cavity flow. Lid-driven cavity flow is a well
accepted benchmark in academia. In the context of this work it is used mainly, on the one hand to validate
point-wise mesh convergence of solutions, and to analyze the performance of the Newton-multigrid solver
for coupled multifield problems on the other hand.

In Subsection §4.3.1, we presented a Newtonian lid-driven cavity flow benchmark to validate our numerical
method and simulation algorithm. It provided us with a point-wise benchmark, in terms of cutline solu-
tions, and well-studied vortices, with respect to Reynolds number. We got mesh convergence for both,
global quantity (in terms of kinetic energy), and point-wisely (in terms of vertical centerline velocity
magnitude cutlines and the locations of vortices). Moreover, we achieved mesh refinement independent
behavior for Newton-multigrid solver for a wide range of Reynolds number. Furthermore, since the New-
tonian flow is free from regularization e↵ects, which occur for our choice of quasi-Newtonian modeling
approach for viscoplastic and thixoviscoplastic flows, we have a reference base for a mesh refinement for
FEM solutions point-wisely.

In Subsection §4.3.2, we analyzed the viscoplastic lid-driven cavity flow benchmark. We used the quasi-
Newtonian modeling approach for yield stress materials, which introduces a regularization parameter to
get a well-defined extended viscosity function in whole computational domain. We investigated the ac-
curate growth and location of unyielded regions. Our findings are the optimal data settings for accuracy
and continuation strategy with respect to regularization parameter for e�ciency for a viscoplastic flow
benchmark. On the one hand, we obtained the point-wise convergence of interfaces between unyielded
and yielded regions with respect to regularization parameter k. Furthermore, for the pair mesh refinement
level, and regularization parameter k set equal to 7, and 104 respectively, we reached the best resolution
beyond which no further clear improvement by either increasing the mesh refinement level or regulariza-
tion parameter is expected. On the other hand, lower-regularization parameter’s solutions are used as a
start for higher-regularization parameter’s solutions with nonuniform increases in continuation process.
With respect to the Newton-multigrid solver, we got a mesh independent behavior of linear multigrid
solver, and the number of multigrid sweeps increased in perfect accordance with the nonlinear solver’s
sweeps. That is, the accuracy of the linear solver matches optimally the requirements for the accuracy of
the nonlinear solver.

In Subsection §4.3.3, we presented the thixoviscoplastic lid-driven cavity flow. Thixoviscoplastic flow
equations are an upgrade of generalized viscoplastic Stokes equations in two aspects. On the one hand, the
extended viscosity function integrates the microstructure via thixotropic plastic viscosity and thixotropic
yield stress. On other hand, the set of equations is supplemented with a microstructure evolution equation.
This equation reflects the competition process of Aging and Rejuvenation, which occurs via the interaction
of buildup and breakdown functions dependent on two additional model parameters, namely buildup and
breakdown parameters. We maintained the numerical complexity related to plasticity of the same order
as viscoplastic problem to analyze the impact of the upgrade of the thixoviscoplastic flow system with
microstructure numerical challenges, namely weak coercivity, extra nonlinearities, and additional degrees
of freedom. The multigrid linear solver showed mesh refinement independent behavior, which confirms the
e�cient performance of coupled geometric multigrid for multifield problems. Moreover, we analyzed the
types of transitions between yielded and unyielded regions by monitoring the microstructure equation.

With the extensive study of lid-driven cavity flow as well documented flow configuration in academia,
in what follows, we proceed with thixoviscoplastic flow simulations in a simple enough configuration for
modeling, the Couette device, and a close enough configuration for industrial and engineering applications,
the contraction configuration.
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4.4 Thixoviscoplastic Couette flow

In this section, we present thixotropic flow behavior in a simple enough geometry for laboratory experi-
ments and for validation of numerical simulations, Couette device. We study the types of transitions from
the quasi-static flow regime to the intermediate flow regime and vice versa with respect to the changes
in the intensity of the breakdown parameter.

We start by recalling the FEM modeling study of the frictional and collisional powder material sheared
in the Couette device [51]. The aim of this recall is to validate our newly developed numerical tools with
a well established study both in modeling and simulation on the one hand, and on the other hand to go
forward with the ongoing research of analyzing the related types of transitions by including thixotropy.

In Couette flow, the material is sheared in two concentric cylinders with an inner and an outer radii rin
and rout defined as follows:

rin = ⇣/(1� ⇣), (4.2)

rout = 1/(1� ⇣), (4.3)

where ⇣ denotes the radii ratio. The inner cylinder is made under rotation speed

u = u(rin) e✓, (4.4)

where u(rin) is the speed given in revolutions per minute unit RPM, and e✓ denotes the unit tangent
vector. The outer cylinder is kept static, rout = 0 RPM [51].

In Figure 4.21 (LEFT), we show the Couette device used in the laboratory experiment for the modeling
study of a unified constitutive equation for frictional and collisional powder flows. For detailed measure
of material characteristics in Couette device namely torque and normal stress measurements, we refer
to [51, 50]. For our numerical simulations, we are using a two-dimensional (r, ✓) cut-plane, and a simple
schematic representation of it is sketched in Figure 4.21 (RIGHT).

Fig. 4.21: Thixoviscoplastic Couette flow: Couette device and its schematic representation.

The numerical method defined so far, in this thesis, yields the pressure distribution, microstructure, and
velocity fields as first solutions in the gap between two concentric cylinders. From the velocity results,



we calculate the velocity gradients, then express the stresses in the constitutive law for the respective
materials, namely the total stress tensor

Tij = �pI+ �ij . (4.5)

The torque force, denoted by F , exerted on the inner cylinder as a function of its rotational speed is then
computed as follows:

F = �
I

S
(x� x0) · T · n dS, (4.6)

where S is the inner-cylinder surface, x0 is the center of the concentric Couette device, and n the
directional unit vector.

In Figure 4.22, we present the comparison of numerical solutions with experimental data of the ratio of
average shear, calculated from the torque, to normal stresses measurement on the rotating cylinder versus
the shear rate. Here, it should be made clear that the experimental data itself is used as an input in the
model with the simple aim to validate our developed numerical tools.

Fig. 4.22: Thixoviscoplastic Couette flow: Comparison of numerical solutions, of the ratio of average
shear to normal stresses vs. shear rate, to experiments [51].

Clearly, the newly developed numerical methods do not introduce errors to experimental data. Further-
more, we can see the two regions, solid-like and fluid-like and an intermediate one, which we intend to
investigate. That is, how the flow changes its behavior in the intermediate region referred as the type of
transitions study.

In order to calibrate the code parameter for the optimal settings, we continue with the validation of our
numerical method on standard models, namely Newtonian fluid and Bingham viscoplastic with the well
conducted study for Couette flow in [51].

The FEM modeling study of Couette flow [51] is based on a stabilized low order nonconforming rotated
bilinear FEM approximation for velocity on a quadrilateral in conjunction with piece-wise constant for
the pressure approximation on the one hand. On the other hand, with respect to the solver aspect, it uses
the monolithic Newton-multigrid method based on a combined adaptive continuous Newton’s method
based on the operator-splitting approach for the Jacobian calculation and geometric multigrid.
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In Figure 4.23, we validate our code against the one used in [51] for the numerical calculation of torque
on the inner rotating cylinder as a function of the rotational speed of the inner cylinder (in RPM) for
Newtonian liquid and Bingham plastic. This is a multi-aspect validation, that is approximations aspect
as well as solver aspect. In other words, accuracy and e�ciency aspects for the optimal code’s parameter
settings of the new developed numerical method.

The parameters concerned with the calibration, for the optimal parameter settings for the code developed
in this study, are mainly user defined and problem dependent parameters, as for instance user-defined
edge-oriented free-parameter as well as the regularization parameter. The torque for the simulation

Fig. 4.23: Thixoviscoplastic Couette flow: The torque on the inner rotating cylinder as a function
of the rotational speed of the inner cylinder (in RPM). Validation with respect to literature [51] for
Newtonian fluids, and for Bingham viscoplastic materials.

depicted in Figure 4.23 is calculated on the inner rotating cylinder. The flow parameter used for the
simulations, namely nonthixotropic viscosity ⌘0 is set to unity for Newtonian as well as for Bingham
material, and the nonthixotropic yield stress for Bingham material ⌧0 is set to 0.48 similar to [51].

After getting the optimal parameter settings for these two simple nonthixotropic models, we go forward
to include thixotropy phenomenon for this configuration. To keep the new thixotropic phenomenon under
control, we simply use a linear combination of Newtonian and Bingham flows with a microstructure, as
expressed via Hous̆ka’s model.
Our choice of Hous̆ka’s thixotropic material is purely theoretical driven. Firstly, for its simplicity, as a
linear combination of Newtonian and Bingham flows with a microstructure, providing extra parameter
which made it possible to analyze the type of transitions. Secondly, for the unavailability of thixotropy’s
experimental data with corresponding models.

Next, we supplement the simulation results of the two nonthixotropic models, the Newtonian and Bingham
models Figure 4.23, with an additional thixotropic model.
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Thixoviscoplastic stress in Hous̆ka’s model is a simple modification of viscoplastic stress by taking into
consideration the internal material microstructure using an additional field, named as microstructure.
That is, the nonthixotropic plastic viscosity as well as the nonthixotropic yield stress are upgraded to be
microstructure dependent.

In Figure 4.24, we present a simple calculation with the numerical method for the torque on the inner
rotating cylinder as a function of the rotational speed of the inner cylinder (in RPM). We show the three
continua Newtonian liquid, Bingham plastic, Hous̆ka’s thixotropic.

Fig. 4.24: Thixoviscoplastic Couette flow: The torque on the inner rotating cylinder as a function
of the rotational speed of the inner cylinder (in RPM). The full spectrum of the numerical solution of
thixoviscoplastic flows (a) Newtonian fluid, (b) Bingham plastic, (c) Hous̆ka’s thixotropic.

As planned for this simulation, to proceed with the same range of optimal parameter settings, the
thixotropic flow is encompassed between the two extremities, Newtonian liquid and Bingham plastic,
which is a direct response of the model as a linear combination with a microstructure. We can see the
changes in the flow characteristics in terms of force for all materials with respect to rotational speed. That
is, the typical yield stress material phenomenon, for Bingham, and thixotropic materials, and Newtonian
phenomenon, for Newtonian fluid. Furthermore, the way the flow is changing its characteristics is not
reflected in Figure 4.24.
In general, the deformation mechanism study of flow characteristics is a long-standing research area for
the modeling and simulation community alike. It allows to predict the material structure, failure as for
instance, and helps to intervene in many engineering and natural fields.

In upcoming numerical simulations, we investigate the deformation mechanism of shear band and shear
localization via the investigation the types of transitions in flow characteristics for thixoviscoplastic ma-
terial.
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Houska’s thixotropic model is a straightforward extension of the viscoplastic constitutive equation as
a linear combination of shear rate independent and shear rate dependent stress with microstructure,
coupled to the microstructure evolution equation. The microstructure evolution equation induces the time-
dependent process of competition between the destruction (breakdown) and the construction (buildup)
processes inhabited in the material, which provides extra parameters to investigate the type of transitions,
namely breakdown parameter and buildup parameter.

We dismiss the average quantity in favor of local quantity to investigate the types of transitions between
solid-like and fluid-like regions. We show in Figure 4.25 the radial solution profiles for microstructure
with respect to breakdown parameter, similar as in [11, 47].

Fig. 4.25: Thixoviscoplastic Couette flow: The radial solution profiles of microstructure for di↵erent
values of the breakdown parameter Mb. The other parameters are set as ⌘0 = ⌘1 = 1.0, ⌧0 = 2.0,
⌧1 = 1.0, Ma = 1.0, and k = 104.

As expected, the results in Figure 4.25 depict two di↵erent regions for the microstructure, a fluid like
region and a solid like region, for di↵erent breakdown parameter, Mb, ranges. However, each range of
breakdown parameter induces a di↵erent transition.
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Here, the lower value of breakdown parameter, Mb, set equal to 0.5, as prototype of one range, leads to
a smooth transition which refer as shear localization transition, instead the higher value of breakdown
parameter Mb set equal to 2.0, as prototype of other counterpart range, induce a sharp transition which
referred as shear band transition.

For better relative comparison, we present both radial solutions of microstructure, which correspond to
shear localization and shear band transitions in Figure 4.26.

Fig. 4.26: Thixoviscoplastic Couette flow:The radial solution profiles of microstructure for di↵erent
values of breakdown parameter Mb. The other parameters are set as ⌘0 = ⌘1 = 1.0, ⌧0 = 2.0, ⌧1 = 1.0,
Ma = 1.0, and k = 104.

Beside the di↵erent shear localization and shear band transitions, Figure 4.26 shows the shift of the
boundary of the rigid zone towards the center of the Couette device for higher breakdown parameter
values. Furthermore, the microstructure field is compressed to lower values. Thus, the thixoviscoplastic
material undergoes a sharp transition from fluid-like to solid-like zones. Furthermore, for lower values of
the breakdown parameter, the fluid zone has a wider spread in the Couette device with smooth transit
between the zones.

The deformation mechanism of shear localization and shear band for thixotropic material in terms of
microstructure field is clear. Sure, the TVP flow is nonlinear two-way coupled problem, that is the
microstructure is impacted by the velocity, and vice versa. We now proceed with the other counterpart of
the coupling to analyze the deformation mechanism of shear localization and shear band for thixotropic
material in terms of the velocity field.

As a feedback response of microsturcure, we present the radial solution profiles for velocity in Figure 4.27.
The velocity solutions are related to the same simulations as in Figure 4.26 with the di↵erent breakdown
parameter Mb, which corresponds to the shear localization and shear band phenomena.
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The flow of thixoviscoplastic material in the gap of the Couette device is a direct response of the rotating
inner cylinder with a user defined uniform speed, set to unity, for both simulations.

For both simulations, with di↵erent breakdown parameter values, the velocities are the same at the
vicinity of the inner cylinder and take the value of the prescribed rotational speed, which is simply
the Dirichlet boundary conditions. As the flow evolves inside the gap, it reflects the material inhabited
characteristics. It should be clear that the width of the gap is made to be large enough to cover all types
of behavior so that the flow evolve freely. That is, both zones, rigid-like zone and fluid-like zone, coexist
simultaneously in order to analyze the deformation mechanism of the flow characteristics.

Fig. 4.27: Thixoviscoplastic Couette flow: The radial solution profiles of velocity for di↵erent break-
down parameter values. The other parameters are set as ⌘0 = ⌘1 = 1.0, ⌧0 = 2.0, ⌧1 = 1.0, Ma = 1.0,
and k = 104.

The radial velocity profile for the lower value of the breakdown parameter, as a prototype for the range
of shear localization, is smooth which is clearly noticed on the boundary limit of the adjacent zones. On
the contrary, the radial velocity profile for the higher value of breakdown parameter, as a prototype for
the range of shear band, is nonsmooth on the boundary limit of the adjacent zones. Here, the concept of
smooth and sharp transitions is much more manifested on velocity solution.

The boundary limits for the adjacent zones, expressed in terms of the velocity solution profiles, are shifted
towards the rotating cylinder for higher value of breakdown parameter. Furthermore, the boundary limits
for the adjacent zones in terms of velocity solutions in Figure 4.27 coincide with the adjacent zones in
terms of microstructure in Figure 4.26. This is a direct result of the optimality of our parameter settings,
that is mainly in this context the mesh refinement and regularization parameter, are optimal for the
solution’s accuracy.

Thixoviscoplastic problem, in this thesis, in the primitive variables yields the pressure, microstructure,
and velocity solutions. Now, we continue our investigation in terms of shear rate, which we calculate from
the velocity solution. This investigation is delicate due to the loss of one order of accuracy for the shear
rate calculation.
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In thixoviscoplastic quasi-Newtonian modeling approach, the extended viscosity function is dependent on
microstructure and shear rate. Moreover, the viscosity function is inversely proportional to the shear rate.
To overcome the undefined viscosity function with respect to the shear rate, as the rigid zone corresponds
to the vanishing shear rate, regularization is used, which a↵ects directly the shear rate at each quadrature
point in the flow domain.

From the velocity solutions, we calculate the velocity gradient and get the shear rate which leads to one
order loss of accuracy in contrast to microstructure and velocity FEM approximations. In Figure 4.28, we
plot the radial profiles of the shear rate calculation for the shear localization and shear band phenomena.

Fig. 4.28: Thixoviscoplastic Couette flow: The radial solution profiles of shear rate for di↵erent
breakdown parameter values. The other parameters are set as ⌘0 = ⌘1 = 1.0, ⌧0 = 2.0, ⌧1 = 1.0,
Ma = 1.0, and k = 104.

Similarly two zones, a fluid-like zone and a solid-like zone, are depicted for the two prototype values of
breakdown parameter Mb inducing shear localization and shear band phenomena. For the lower break-
down parameter, the shear rate is higher at the vicinity of the rotating cylinder and decreases for a larger
fluid-like zone, before vanishing for the solid-like zone. In contrast, for higher breakdown parameter, the
shear rate is lower at the vicinity of the rotating cylinder and slowly decreases to cross the shear rate
profile of the lower breakdown value and continue in higher values on a shorter fluid-like zone, before
reaching a larger solid-like zone. That is the explanation of the non-monotone behavior of the shear rate
curve with respect to breakdown parameter, which leads to shear band phenomena.

The di↵erent types of transitions are also observed in terms of shear rate in Figure 4.28. For the shear
localization case, shear rate decreases in a relatively larger liquid-like region with increasing distance from
the rotating cylinder and vanishes continuously at the boundary limit zone and in a relatively shorter
solid-like region. For the shear band case, shear rate decreases in a relatively shorter liquid-like region
with increasing distance from the rotating cylinder and vanishes discontinuously at the boundary limit
and in a relatively larger solid-like zone.

The boundary limit zones in terms of shear rate match exactly with the ones expressed in terms of
microstructure in Figure 4.26 or in terms of velocity in Figure 4.27. This confirms, once again, the
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parameter optimal settings, mesh refinement and regularization, and approves the higher order FEM
discretization choice.

For numerical simulations, it is possible to see the flow distribution of thixoviscoplastic material for
the main fields, velocity, microstructure, and pressure, on the whole domain as well as all numerically
calculated quantities, as for instance shear rate, torque, shear stress , or shear wall stress.

In Figure 4.29, we content to show only the flow distributions of the microstructure field on the whole two-
dimensional simulation domain and its corresponding extrusion in three-dimensions for a representative
increasing breakdown parameter.

(a) Mb = 0.5 (b) Mb = 1.0 (c) Mb = 2.0

Fig. 4.29: Thixoviscoplastic Couette flow: Impact of breakdown parameter Mb on microstructure,
while ⌘0 = 1.0, ⌘1 = 0.0, ⌧0 = 2.0, ⌧1 = 1.0, Ma = 1.0, and k = 104. The solutions are calculated at
mesh-refinement level 4, and through the integration of constant rotating speed at the inner cylinder of
Couette device.

It is clear from Figure 4.29 that the flow is homogeneously distributed in the radial directions confirming
the correctness of taking one radial solution for our analysis of the flow characteristics. Furthermore,
the Aging phenomenon (buildup) corresponds to high microstructure value in the range of the unity,
decreasing on relatively shorter intermediate region with an increased breakdown parameter to approach
the trivial value for Rejuvenation phenomenon (breakdown). As far as the transitions are concerned, the
“indicator function” like-behavior of the microstructure fields is manifested clearly for higher breakdown
parameter. While for the lower breakdown parameter, the competition region of Aging and Rejuvenation
phenomena is wider allowing for smooth transitions.
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So far our investigations to analyze the deformation mechanism of shear localization and shear band
phenomena are done for thixotropic model via the breakdown parameter. In Figure 4.30, we present the
simulation results of our investigations of the impact of thixotropic plastic viscosity and thixotropic yield
stress on the flow characteristics.

Fig. 4.30: Thixoviscoplastic Couette flow: The radial solution profiles with respect to thixotropic
viscosity and thixotropic yield stress parameter (⌘1, ⌧1). While the other parameters are set to constants
⌘0 = 1.0, ⌧0 = 2.0, Ma = Mb = 1.0, and k = 104.
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Figure 4.30 shows that the deformation mechanisms of shear localization and shear band phenomena are
replicable simply by monitoring the viscosity function via thixotropic plastic viscosity and thixotropic
yield stress.

Our analysis of the deformation mechanism of flow characteristics via breakdown parameter, in Fig-
ure 4.26 - Figure 4.29, is done with the aim to highlight the competition of breakdown and buildup
processes inhabited in the material via the microstructure evolution equation. This does not necessar-
ily means, that the shear localization and shear band phenomena are exclusively due to the breakdown
parameter. Indeed, it is clear that similar phenomenon can be replicated using buildup parameter, as
such phenomenon is due to the ratio of breakdown parameter and buildup parameter. It was, however,
less clear that we could get the same behavior simply by monitoring the viscosity function, which is now
clarified with the additional simulations shown in Figure 4.30.

In this section §4.4, we presented the thixoviscoplastic Couette flow. The Couette device is an interesting
configuration, it is simple enough for both numerical simulations and laboratory tests. As far as we are
concerned with the numerical simulations, the Couette device reduces the complexity of the boundary
conditions to consider only the Dirichlet ones.

Firstly, we revisited the powder Couette flow mainly to validate and calibrate our numerical method for
optimal settings with experimental data that we lack for thixoviscoplastic material, and to take forward
the investigations of transitions in yield stress flow problems using thixotropy. We used the torque quantity
as the means for comparison, as the measured experimental data is available, and the yield stress flow
behavior, that is, the coexistence of shear rate independent and shear rate dependent shear stress, is
clearly manifested.

Secondly, we dismissed the global quantity, torque, in favor of the local one, point-wise flow field solu-
tions, to investigate the deformation mechanism of shear localization and shear band, that is the type of
transitions between fluid-like and solid-like regions. Our investigations of flow characteristics by means of
thixoviscoplastic model are extensively done via the breakdown parameter to manifest the competitive
processes of Aging, “higher breakdown parameter values” , and Rejuvenation,“lower breakdown parame-
ter values” , of thixoviscoplastic material. For lower values of breakdown parameter, the flow fields evolved
on a relatively larger fluid-like region to stop at the boundary limit of the relatively shorter solid-like re-
gion. In contrast, for higher values of breakdown parameter, the flow fields evolved on a relatively shorter
fluid-like region to stop at the boundary limit of a relatively larger solid-like region. In addition, we
presented the flow distributions of microstructure field on the whole two-dimensional simulation domain
and its corresponding extrusion in three-dimensions with respect to breakdown parameter values, which
highlight the accurate representation of the flow field profiles.

Thirdly, we replicated the deformation mechanism of shear localization and shear band phenomena by
monitoring the viscosity function via thixotropic plastic viscosity and thixotropic yield stress to complete
the analysis with respect to all thixoviscoplastic model’s parameter.

The boundary limit between the fluid-like and solid-like regions matches for all flow field profiles regard-
less of the thixotropic model’s parameter, which confirms the accuracy of the quasi-Newtonian modeling
approach modulo the solver’s optimal parameter settings. To conclude, the FEM quasi-Newtonian mod-
eling approach and Couette flows are powerful modeling and simulation tools for complex materials,
particularly thixoviscoplastic materials.
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4.5 Thixoviscoplatic Contraction flow

In this section, we consider a close enough configuration for industrial and engineering applications, the
contraction configuration, to analyze the thixotropic phenomena, that is, the competition process of Aging
and Shear Rejuvenation.

Beside the importance of contraction flows in industrial and engineering applications, they are used within
the applied mathematics and numerical simulation communities to develop e�cient numerical methods
and practical algorithms for its challenging flow characteristics. The particularity of this configuration
is its reentrant corner, which leads to the generation of recirculating flows. Furthermore, di↵erent flow
characteristics can be observed, as for instance elongational shear stresses, non-uniqueness, non-regularity,
transition and turbulence, where the aspect ratio of contraction can play a role.

Thixotropic contraction flows are far from being classical and have not yet been extensively investigated.
Firstly, how the competition processes of aging and shear rejuvenation inhabited in thixotropic material
are a↵ected by the contraction. Secondly, if this competition process takes place, how the transitions
between fluid-like and solid-like regions are a↵ected by the thixotropic model parameters. In what follows,
we content to investigate thixotropic contraction flow. To keep the problem simple and to focus on the
flows characteristics at the vicinity of channel’s wall, we remove the sharp reentrant corner challenges and
consider instead a smoothed one. This simplification do not degrade the importance of our investigation,
as the major thixotropic industrial application in our mind is crude oil transportation [80].

We display in Figure 4.31 the curved contraction domain, that is a contraction configuration with a
smooth reentrant corner [6, 8].

Fig. 4.31: Thixoviscoplastic contraction flow: 4:1 Contraction configuration.

The boundary, @⌦ = �
�[� [�+, is composed of three sections, inflow entrance section denoted by ��,

upper and lower channel’s walls denoted by � , and the outflow exit section denoted by �+. The length
of the channel is set equal to L. The aspect ratio of contraction is the ratio of the height of the upstream
channel, Hu, and the height of the downstream channel, Hd. We use a 4:1 ratio for the current study.

The nonuniform shape of the curved contraction configuration, displayed in Figure 4.31, raises challenges
with respect to mesh discretization. Beside the 4:1 aspect ratio of the contraction, the mesh generation
has to deal with the circularity of the corners.



We subdivide the computational domain into three patches. Inflow’s entrance patch, a two-third of the
upstream channel, and outflow’s exit patch, a seven-eighth of the downstream channel, both are discretized
with structured quadrilaterals. The transit’s zone patch, is discretized with mixed condensed structured
and unstructured quadrilaterals.

Figure 4.32 presents the computational coarse gird mesh, where we show the di↵erent zones, inflow’s
entrance zone, transit’s zone, and outflow’s exit zone, with the corresponding quadrilateral composition.

Fig. 4.32: Thixoviscoplastic contraction flows: Coarse grid mesh.

To investigate carefully the flow characteristics, we allow the flow to develop constraint-free after the
entrance on the one hand, and to avoid any non-physical behavior due to outflow boundary conditions
on the other hand, a relatively larger length of the outflow’s exit zone is used.

At the inflow boundary, ��, we prescribe the fully-developed flow according to the Hous̆ka thixoviscoplas-
tic model for velocity and microstructure. The homogeneous Dirichlet boundary conditions are imposed
for velocity at the channel’s walls, � . In order to avoid the well known nonphysical do-nothing boundary
conditions e↵ects, that is, the reentrance of the flow at the outflow boundary, we prescribe instead the
Dirichelet boundary conditions which correspond to the fully-developed flow solutions. These imposed
Dirichlet boundary conditions do not remove the challenges that the material has to develop inside the
channel with respect to the model description to match, at each section point-wisely, with the prescribed
conditions. This is challenge in itself, as the comparison of finite element solutions and fully developed
prescribed solutions is not trivial.

We opt for the fully developed solutions as boundary data for our finite element simulations due to the
nonavailability of Hous̆ka thixoviscoplastic exact solution on the one hand, and to avoid the unnecessary
extra time to reach the developed flow solutions in the upstream zone on the other hand.

To calculate the fully developed solutions, we assume a x-axis unidirectional flow. With these assumptions,
we rewrite a one-dimensional generalized Stokes Hous̆ka thixoviscoplastic model to generate the fully
developed generalized Stokes Hous̆ka TVP discrete data solutions.

The fully developed discrete data solutions of the one-dimensional generalized Stokes Hous̆ka thixo-
viscoplastic model are advantageously used for our developed numerical methods. It is providing less
restriction on the mesh refinement. As a consequence, reproducing such solution for two-dimensional
FEM generalized Stokes Hous̆ka TVP model on very large geometry is “enough as a benchmark” to go
forward with the obtained numerical solutions.
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Far from the contraction zone, the flow material should develop with respect to the x-axis unidirectional
assumptions considered so far. Consequently, the usefulness of the fully developed solutions exceeds the
necessary need for boundary conditions, to provide a powerful validation tool and also a parameter
calibration tool for optimal settings for our complex thixoviscoplastic model.

In Figure 4.33, we show the comparison of the two-dimensional FEM numerical solution of generalized
Stokes Hous̆ka TVP model in the downstream channel, that is, x-velocity with respect to the y-axis,
and the reduced one-dimensional velocity solution counterpart. The same behavior occurs for the inflow
boundary section ��, which is not shown here to not overload the text with unnecessary plots.

Fig. 4.33: Thixoviscoplastic contraction flows: Comparison of the two-dimensional FEM numerical
velocity solution of the generalized Stokes Hous̆ka TVP model and the velocity solution of the fully
developed reduced one-dimensional generalized Stokes Hous̆ka TVP model.

It is clear from the comparison presented in Figure 4.33, that the fully developed two-dimensional FEM
numerical velocity solution of generalized Stokes Hous̆ka TVP model matches perfectly with the velocity
solution of reduced one-dimensional generalized Stokes Hous̆ka TVP model. Furthermore, the solid-like
zone is located at the channel’s center, and separated from the channel’s walls by fluid-like zones. The
fluid-like and solid-like zones are indicated by a parabolic-like function for velocity solutions, with flattened
curve to an exact constant value for solid-like zone.

The reduced one-dimensional generalized Stokes Hous̆ka TVP model has two unknown scalar quantities,
and is defined on a one-dimensional domain. Beside the e�ciency and accuracy of the computed nu-
merical solution counterpart, since the analytical exact solution is not available, when used as boundary
conditions or validations for the fully developed FEM two-dimensional solution, it does not introduce the
interpolation error. Furthermore, it is used to calibrate the two-dimensional FEM code of thixoviscoplastic
contraction flow to optimal parameter settings with respect to the velocity field.

To complete the investigations of the generalized Stokes Hous̆ka TVP model, we proceed with the analysis
of microstructure solutions.
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The microstructure equation, in the generalized Stokes Hous̆ka thixoviscoplastic model, necessitates the
description of inflow boundary conditions. Similarly, we proceed with the assumptions of the fully devel-
oped flow and deduce the boundary conditions for the microstructure from the reduced one-dimensional
generalized Stokes Hous̆ka TVP model.

We show, in Figure 4.34, the comparison of microstructure solutions of the two-dimensional FEM general-
ized Stokes Hous̆ka TVP model in the downstream channel, and the reduced one-dimensional counterpart.
The same behavior occurs at the inflow boundary section ��, this is not shown here for brevity reason.
Moreover, we used moderate values of generalized Stokes Hous̆ka TVP model parameters to focus exclu-
sively on the boundary conditions and validation issues.

Fig. 4.34: Thixoviscoplastic contraction flows: Comparison of the two-dimensional FEM numerical
microstructure solution of the generalized Stokes Hous̆ka TVP model and the microstructure solution of
the fully developed reduced one-dimensional generalized Stokes Hous̆ka TVP model.

The microstructure solutions corresponding to the fully developed FEM two-dimensional and the reduced
one-dimensional generalized Stokes Hous̆ka TVP model match exactly, as depicted in Figure 4.34. The
microstructure is an indicator of fluid-like and solid-like zones. Indeed, the values of the microstructure
solution lie in the interval [0, 1], and it takes values close to unity for the solid-like zone, and relatively
smaller values for the fluid-like zone.

The approximated microstructure solutions of the reduced one-dimensional generalized Stokes Hous̆ka
TVP model are the perfect choice as boundary conditions for FEM two-dimensional simulations. Also, it
is used as a validation of the two-dimensional FEM solutions. Beside, its highly accurate calculation, since
it is only a one-dimensional computed solution, it does not introduce interpolation error. Furthermore,
it is useful to calibrate the two-dimensional FEM code of thixoviscoplastic contraction flow to optimal
parameter settings with respect to microstructure field.

The fully developed FEM two-dimensional generalized Stokes Hous̆ka solutions are accepted after valida-
tion with the unidirectional reduced model ones. Next, we visualize the two-dimensional FEM solutions
on the full simulation domain.
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The generalized Stokes Hous̆ka’s thixoviscoplastic model in primitive variables yields the solutions for
velocity, microstructure, and pressure fields. In our simulation, the FEM two-dimensional generalized
Stokes Hous̆ka model is simulated using discrete data boundary conditions of fully developed flow, cal-
culated from the reduced one-dimensional model. On one hand, at the inflow boundary, ��, we take the
fully developed flow data to reduce the computational time for flow to reach the fully developed state in
the upstream channel. On the other hand, at the outflow boundary, �+, we use the fully developed flow
data for velocity to avoid the well-known e↵ect of do-nothing boundary conditions, that is, the reentrance
of velocity at the outflow.

In Figure 4.35, we display the FEM generalized Stokes Hous̆ka thixoviscoplastic flow solutions, for velocity,
micostructure, and pressure, in 4:1 contraction configuration.
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Fig. 4.35: Thixoviscoplastic contraction flows: The FEM solutions of generalized Stokes Hous̆ka’s
thixoviscoplastic flow in 4:1 contraction configuration. The parameters are set to constants ⌘0 = ⌘1 = 1.0,
⌧0 = 0.0, ⌧1 = 0.25, Ma = Mb = 1.0, and k = 104.

For velocity and microstructure solutions, we clearly observe two di↵erent behavior. A fully developed flow
at the upstream channel and at the downstream channel far from the contraction zone. In the contraction
zone, the solid-like zone breaks apart at the entrance of the contraction. The pressure solution is linear
along the length of the entire contraction domain.

Along the downstream channel, as the flow is free from the contraction e↵ect, and it satisfies without
exception the fully developed flow conditions for velocity and microstructure fields alike. With the x-axis
cutlines at each prototype section validation done so far, for velocity in Figure 4.33 and for microstructure
in Figure 4.34, and from the visualization of the solutions in 4.35, we can conclude the accuracy of our
thixoviscoplastic contraction flow solutions.
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As the FEM thixoviscoplastic contraction flow is calibrated to optimal parameter settings with respect
to all fields. And with the certitude of replicating the fully developed thixoviscoplastic flow solutions free
from reversed flow at the outflow, we proceed with further investigations of thixoviscoplastic phenomena
in 4:1 contraction. Firstly, we investigate the thixoviscoplastic phenomena by means of monitoring the
viscosity function. We intend to study the e↵ect of thixotropic yield stress parameter on the formation of
zones, fluid-like and solid-like, within the contraction domain. Moreover, we check the accurate response
of microstructure field to the thixotropic yield stress parameter as an indicator for zones. Secondly, we
analyze the competition between aging and rejuvenation, inhabited in thixotropic material with respect
to breakdown parameter.

The thixotropic behavior is integrated into the flow through thixotropic plastic viscosity and thixotropic
yield stress parameters in the extended viscosity function. Here, we limit our investigation to thixotropic
yield stress parameter to focus on the formation and pattern of fluid-like and solid-like zones.

In Figure 4.36, we show the formation of solid-like zones in terms of shear rate. We increase the thixotropic
yield stress parameter values, which are set equal to 0.125, 0.25, and 2.0, to analyze the pattern and the
increase of solid-like zones. The solid-like zones are di↵erentiated from the fluid-like zone by shading.

Fig. 4.36: Thixoviscoplastic contraction flow: The progressive growth of unyielded regions as a func-
tion of thixotropic yield stress parameter ⌧1 for thixoviscoplastic flow in 4:1 contraction. While the other
parameters are set to constants ⌘0 = ⌘1 = 1.0, ⌧0 = 0.0, Ma = Mb = 1.0, and k = 104.

Figure 4.36 depicts the progressive increase of solid-like zones in contraction configuration with respect to
increases in thixotropic yield-stress parameter values. Three di↵erent types of solid-like zones, separated
by a single fluid-like zone, are developed in the contraction. Firstly,a solid-like zone of envelope shape
close to the inlet is separated from the upstream channel’s walls by a fluid-like zone. Secondly, a solid-like
zone along the downstream channel is separated by fluid-like zone from the downstream channel’s walls
and the contraction zone. Thirdly, a solid-like zone attached to the corners.
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The solid-like zones are escalating with respect to the increase of thixotropic plasticity, and take over
the shrinking single fluid-like zone. Moreover, the patterns of solid-like and fluid-like zones are relatively
independent of thixotropic yield-stress parameter values.

The microstructure usually indicates the solid-like and fluid like zones, with the permissible range between
zero and unity. It points out the solid-like zones with values close to unity, while it takes values close
to zero for fluid-like zones. Next, we check the indicator aspect of microstructure for the zones with
respect to thixotropic plasticity. In other words, we analyze the feedback response of microstructure to
thixotropic yield-stress parameter values.

We proceed with the same simulations where the zones are depicted in terms of shear rate , in Fig-
ure 4.36, and present the corresponding microstructure field distributions in Figure 4.37 following the
same arrangement order with respect to the chosen parameter values of thixotropic plasticity.

Fig. 4.37: Thixoviscoplastic contraction flow: The FEM solutions of microstructure as a function
of thixotropic yield stress parameter ⌧1 in 4:1 contraction flow. While the other parameters are set to
constants ⌘0 = ⌘1 = 1.0, ⌧0 = 0.0, Ma = Mb = 1.0, and k = 104.

As expected, the microstructure field takes values close to unity for the solid-like regions indicated by
shear rate. Furthermore, Figure 4.37 shows the progressive increase of solid-like zones in contraction con-
figuration with respect to the increase in thixotropic yield-stress parameter values, by means of relatively
higher microstructure values close to unity. Relatively to each thixotropoic yield stress parameter value,
the solid-like zones pattern is the same for shear rate and microstructure indicator.

After the analysis of the impact of thixotropic plasticity on thixoviscoplastic contraction flow charac-
teristics, we proceed with the played role of the microstructure equation via breakdown parameter, on
flow characteristics. The microstructure evolution equation integrates the competition processes of aging
(buildup) and rejuvenation (breakdown) inhabited in thixotropic material.
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The competition process of aging and rejuvenation occurs via the interaction of buildup and break-
down functions dependent on two additional model parameters, namely buildup and breakdown param-
eters. Keeping in mind the analysis of types of transitions between the solid-like and fluid-like zones for
thixotropic Couette flow, we aim to investigate its manifestation for thixoviscoplastic contraction flow.
We restrict our analysis with respect to breakdown parameter, as such types of transitions are due to the
ratio of breakdown parameter and buildup parameter. Since the microstructure field perfectly indicates
the flow zones, we continue our investigation of the types of transitions only with the microstructure field.

In Figure 4.38, we show the impact of the breakdown parameter on the microstructure field. Two di↵erent
breakdown parameter values are chosen for our investigation. For visualization clarity, we present the
contraction and a zoom of a section of the downstream channel.

(i) Upstream channel & Entrance zone (ii) Downstream channel

Fig. 4.38: Thixoviscoplastic contraction flow: Impact of breakdown parameterMb on microstructure,
for two di↵erent values Mb = 1.0 (TOP) and Mb = 2.0 (BOTTOM). The other parameters are set to
constants Ma = 1.0, ⌘0 = ⌘1 = 1.0, ⌧0 = 0.0, ⌧1 = 2.0, and k = 104.

In Figure 4.38, the solid-like zones remain relatively unchanged on corners, the downstream channel,
and the upstream channel closer to the entrance. But more noticeable changes occur for the fluid-like
zone. The higher breakdown parameter induces extra rejuvenation layers thickness at the vicinity of
downstream channel’s walls, and expands the fluid-like zone to take over a part of the shrinking solid-like
zone at the contraction.

We used in this simulation the contraction configuration with a very large downstream channel, Fig-
ure 4.31, to give the flow a larger length to fully develop, and to have enough distance from the outflow
boundary section to avoid any possible artifacts of outflow boundary conditions.

To have a close overview, we present again, for the same two-dimensional simulation, a corresponding
extrusion in tree-dimension of the contraction with the full downstream channel length and the zoom
of downstream channel’s section. The simulation is only two-dimensional and the zoomed section of the
downstream channel includes the outflow boundary.
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In Figure 4.39, we present a three-dimensional extrusion of the contraction and a zoom on a section of
the downstream channel, which includes the outflow boundary section. The investigation of the role of
microstructure evolution equation on the flow characteristics is done with simple variations of breakdown
parameter, while the buildup parameter is kept constant. Two prototype breakdown parameter values
are chosen for our investigation. A relatively higher value of Mb set equal to 2.0, and smaller value of
Mb set equal to unity. We present the two visualizations with same scale of the color map.

Fig. 4.39: Thixoviscoplastic contraction flow: Impact of breakdown parameterMb on microstructure,
for two di↵erent values Mb = 1.0 (TOP) and Mb = 2.0 (BOTTOM), while the other parameters are set
to constants ⌘0 = ⌘1 = 1.0, ⌧0 = 0.0, Ma = 1.0,⌧1 = 2.0, and k = 104.

At a glance of two simulations in Figure 4.38 and in Figure 4.39, the prominent information concerns the
types of transitions between fluid-like and solid-like zones. Clearly, the three solid-like zones for thixovis-
coplastic contraction flow are formed, close to the inlet with an envelope shape, along the downstream
channel, and at the corners, separated with the fluid-like zone. Two types of transitions are di↵erentiated
with respect to the prototype values of breakdown parameter. For all transitions between zones, smooth
ones correspond to the smaller breakdown parameter values, and sharp ones correspond to the relatively
higher breakdown parameter values. The former is named as shear localization, and the latter is named
shear band, for thixoviscoplastic flows.

The additional rejuvenation layers, which are induced for higher breakdown parameter values, are to
go with the remarks for thixotropic material. Consequently, thixotropic material remains flowing and
not resting along the channel. In contrast, for smaller breakdown parameter values, a relatively higher
buildup behavior occurs at the vicinity of the wall restricting the smooth flow of the material. This remark
highlights the importance of taking into account the thixotropic rheology of the material in industrial
and engineering applications. As for instance in crude oil transportation, the restart pressure settings can
be optimized in accordance.
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Thixoviscoplastic contraction flow was the focus of Section §4.5. The contraction configuration is an
interesting configuration, as it is simple enough for industrial and engineering applications, to analyze
the competition process of Aging and Shear Rejuvenation of thixotropic phenomena.

Firstly, we displayed the computational contraction domain with smooth reentrant corners, and the
corresponding coarse mesh in Figure 4.31, and Figure 4.32. The aspect ratio of the contraction is set
equal to 4:1, and the length of the downstream channel is kept relatively large for two reasons. On one
hand, to give the flow a larger length to fully develop, and to have enough distance from the outflow
boundary section to avoid any possible artifacts of outflow boundary conditions on other hand.

Secondly, we rewrite a one-dimensional reduced generalized Stokes Hous̆ka thixoviscoplastic model to
generate the fully developed generalized Stokes Hous̆ka TVP discrete data solutions, which we used as
boundary conditions and validation tools. Due to the nonavailability of Hous̆ka thixoviscoplastic exact
solution, the reduced one-dimensional solutions are a well accepted mechanism to validate the fully
developed flows, and provide boundary conditions for the FEM two-dimensional simulations. Moreover,
we used the one-dimensional reduced solutions as outflow boundary conditions to get rid of the well-
known nonphysical reentrance flow due to the classical “do-nothing” boundary conditions. We displayed
the comparison of the reduced one-dimensional and the FEM two-dimensional fully developed solutions
for velocity in Figure 4.33, and microstructure in Figure 4.34. Moreover, the FEM two-dimensional
generalized Stokes Hous̆ka’s thixoviscoplastic model in primitive variables yields the solutions for velocity,
microstructure, and pressure fields. We displayed, in Figure 4.35, two-dimensional solutions, which confirm
the fully developed flow free from any artifacts of the outflow boundary.

Thirdly, we investigated the thixoviscoplastic phenomena by means of monitoring the viscosity function,
in terms of thixotropic plasticity. To focus on the formation and pattern of fluid-like and solid-like zones,
beside the feedback response of microstructure, we limit our investigation with respect to the variation
in thixotropic plasticity. With respect to the increase of thixotropic plasticity, the solid-like zones showed
progressive growth and occupied the most part of the simulation domain. Moreover, the microstructure
solutions followed the same behavior path, and its values close to unity indicates the solid-like zones.
The formation and patterns of solid-like zones are displayed in terms of shear rate and microstructure
in Figure 4.36 and Figure 4.37, respectively. The displayed solutions showed a one-to-one accordance
behavior of progressive growth of the solid-like zones for a successive increase in thixotropic plasticity,
and depicted the response of the microstructure field to thixotropic plasticity as an indicator for zones.

Lastly, we investigated the role played by the microstructure equation to complete the full spectrum
of Hous̆ka thixoviscoplastic flow in contractions. The microstructure evolution equation integrates the
competition processes of aging (buildup) and rejuvenation (breakdown) inhabited in thixotropic material,
which allow di↵erent types of transitions between the zones via material model parameters. We used the
breakdown parameter, to replicate the manifestation of shear localization and shear band in thixotropic
contraction flow. For relatively higher prototype value of breakdown shear band occurs, that is, sharp
transitions between zones. While for relatively smaller prototype value of breakdown parameter shear
localization appears, that is smooth transitions between zones. In addition, extra rejuvenation layers are
induced for higher breakdown parameter values, in Figure 4.38 and Figure 4.39, which allows the material
to flow smoothly, mainly at the vicinity of the channel’s walls. This particularity of thixoviscoplastic flows
highlights the need to take into account the inhabited thixotropic material’s rheology. A simple take-away
from thixoviscoplastic flow in this simple enough configuration for industrial and engineering applications
might be the revisit of the optimal restart pressure settings in waxy crude oil transportation.
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4.6 Concluding Remarks

In this chapter, we numerically analyzed thixoviscoplastic flows. As a complex upgraded phenomenon of
plasticity with thixotropy, numerical simulations are the tools to analyze the mechanism of their interplay.
To obtain credible numerical solutions, we extensively analyzed thixoviscoplastic flows for di↵erent flow
configurations, not only to overcome the modeling constraint, but also to provide e�cient numerical
methods and algorithmic tools.

With thixoviscoplastic channel flow, we upgraded the viscoplastic channel flow benchmark to incorporate
microstructure. We took the reduced one-dimensional solution profiles to provide the necessary boundary
conditions (inflow boundary conditions), alternative boundary conditions at the outflow (Dirichlet instead
of “do-nothing”), beside as a solution’s validation mechanism at each x-axis cross section along the
channel.

Then, we moved to thixoviscoplastic lid-driven cavity flow as a long-standing flow benchmark for CFD in
academia. We used it to validate thixoviscoplastic point-wise solutions, and to analyze the performance of
the Newton-multigrid solver for this coupled multifield problem. The solver had to deal with few additional
numerical challenges. The Newton-multigrid solver showed mesh refinement independent behavior.

In order to validate and calibrate our numerical method for an optimal settings with experimental data
that we lack for thixoviscoplastic material, we revisited the powder Couette flow. We highlighted the
issue of the types of transitions between fluid-like and solid-like zone. Then, we proceeded with the help
of microstructure to categorize the types of transitions, shear localization and shear banding.

Lastly, we considered the contraction configuration as simple enough for industrial and engineering ap-
plications. We analyzed the competition processes of Aging and Shear Rejuvenation of thixotropic phe-
nomena inhabited in thixoviscoplastic material. At higher breakdown parameter values, thixoviscoplastic
contraction flow induced additional rejuvenation layers at the vicinity of the channel’s walls, which might
allow the material to flow smoothly. This particularity of thixoviscoplastic flows highlights the need to
take into account the inhabited thixotropic material’s rheology. As for instance, the revisit of the optimal
restart pressure settings in waxy crude oil transportation.



5

Summary and outlook

In this thesis, we investigated thixoviscoplasticity in fluid flow problems with the lens of numerical
simulations. We addressed the challenges with respect to theoretical analysis, numerical method, and
the implementation of e�cient algorithms. Our multi-aspect research results in the development of new
numerical methods and algorithmic tools, which we used to provide extensive numerical simulations
of thixoviscoplastic flow problems for academical benchmarks, as well as for modeling and industrial
communities.

To start with, we highlighted the micro-macro structure connections of TVP flow problems. We selected
the classical Hous̆ka’s TVP model. Then, we formulated the problem in a generalized FEM settings of
Stokes equations. To do so, we used quasi-Newtonian modeling approach, which is based on extended
viscosity function defined on the full computational domain. We used the classical Bercovier-Engelmann’s,
and Papanastasiou’s regularizations [13, 66].

After that, we analyzed the full set of equations, and exposed the nonlinear multifield two-way coupling
aspect of the problem. We tackled the theoretical challenges with respect to di↵erent types of nonlinearities
in an integrated way, as the nonlinear multifield coupled TVP problem is sensitive to coupling. Thus,
we treated auxiliary subproblems with di↵erent analysis tools, and proceeded to guarantee existence
of solutions for the multifield coupled TVP problem. We provided the well-posedness results for the
TVP problem in FEM settings. Our well-posedness study is not an intellectual exercise, rather it is the
foundation for the development of the e�cient solver. In this regard, we advantageously used the delicate
symbiosis aspects of the problem settings for FEM approximations, and the algorithmic tools to develop
a monolithic Newton-multigrid TVP solver.

Our developed FEM-TVP solver is based on the monolithic Newton-multigrid method. The solver tackled
the TVP generalized Stokes equations, and treats the nonlinearity and coupling of the problem in black
box framework. The linear systems inside the outer nonlinear iterations of Newton’s method are solved in
a block Gauss-Seidel way, where the construction of the blocks is based on incompressibility constraint.
Substantially, we handled the problem coupling e�ciently with the choice of discontinuous linear approx-
imation P

disc
1 for pressure. We maintained the e�ciency of the solver, due to the noncoupling of pressure

and microstructure, with the collocation of microstructure and velocity components in the same quadratic
FEM approximations Q2. Furthermore, we dealt with the weak coercivity of microstructure form with
edge-oriented stabilization, to upgrade the coercivity to match the space norm. It is consistent with FEM
discretization, linear with respect to the problem, and in addition it enhanced the e�ciency of the solver.

In the context of numerical simulations, we incorporated thixotropy in well-established academical bench-
marks, namely channel flow and lid-driven cavity flow. In the former, we developed a reduced one-



dimensional TVP solver, then we generated reference solutions for higher-dimensional FEM fully de-
veloped TVP flow problem. We used the reduced one-dimensional solutions as a validation mechanism,
and as necessary Dirichlet boundary conditions at inflow for microstructure, or as alternative Dirichlet
boundary conditions instead of “do-nothing” at the outflow. For the lid-driven cavity, we used this case
for the visual validations of the solution’s domains, and to optimize the algorithmic tools. For both, chan-
nel flow, and lid-driven cavity flow, we related the sharpness of interfaces between unyielded and yielded
regions to microstructure via evolution process, which occurs in the transitions at the boundary limit of
the regions. In addition, we anticipated equations in cross engineering disciplines to model and replicate
numerically the rheological phenomena, namely shear localization and shear banding in Couette device.
In the end, we used thixotropy in contraction configuration to generate breakdown layers at the vicin-
ity of downstream channel’s walls, that keep the TVP material smoothly flowing along the downstream
channel. Consequently, our findings highlight the benefit of including the material microstructure, namely
thixotropy, in material rheology. As an industrial application, the optimal settings for restart pressure in
waxy crude oil transportation.

Without restriction, we treated TVP problems in a steady state framework. The monolithic aspect of
developed TVP solver enables it to straightforwardly handle time-dependent TVP problems. It is worth
mentioning that this is an additional reason behind our favoured choice of monolithic approach at current
stage of TVP investigations. Next immediate investigations would be in the direction to analyze thixotropy
in time-dependent problems from theoretical perspective as well as for applications. With reliable reference
results obtained so-far from the monolithic approach, proceeding with an operator-splitting approach
might start to attract attention as well. In addition, the extension for models with shear rate dependent
plastic-viscosity is straightforward, and the established theoretical results are adaptable for corresponding
proper Sobolev spaces.

Furthermore, in our current settings of employed TVP model, the rheological manifestation of thixotropy
is limited to viscoplastic materials. For future investigations (see Figure 5.1), we anchor modifications in
constitutive laws toward thixotropic elasto-viscoplastic (TEVP) models (for instance [41, 72, 73]), that
could accommodate both elastic and plastic characteristics of material in a single backbone.

Fig. 5.1: Thesis outlook: Flow simulations of TVP model a gateway toward general thixotropic elasto-
viscoplastic (TEVP) flow simulations.
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