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Growth of green wood based on a phase field model
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Tree engineering is a young discipline utilizing trees as structural elements, where the determination of limit loads in tree
trunks is of great importance. Simple numerical models underestimate the load-bearing capacity of green wood in contrast to
experimental bending tests. A well-known reason for this is the residual stress state of the living tree lowering compressive
stress towards the trunks surface. This results in an overall stress state, which increases the load capacity, since the tensile
strength of wood is commonly higher than its compressive strength. By determining the residual growth stress, a more
accurate evaluation of the load-bearing capacity of a living tree is possible. The residual stress state is a non-linear and time
dependent function in thickness direction of the trunk. In order to simulate growth and growth stress, a phase field model is
employed.

The morphology of a tree is the result of innumerable and often temporary environmental stimuli, which also change
and interact with the genetically predisposed growth tropisms. Therefore, we use image processing to capture the individual
tree morphology of an existing tree, which is based within the phase field model as predefined growth direction. This is the
basis for primary growth in the model. Additionally the model simulates the secondary growth, which corresponds to the
thickness of the trunk. Except in tropical areas, this growth is associated with growth rings, which we assign as an attribute
to the modelled material. While in the branch structure several tropisms (e.g. gravitropism) are responsible for the off-centre
accumulation of woody material, in the stem region we only follow the stress-induced growth. This mechanism can respond to
either the principal tensile stress or the principal compressive stress in our model, as this difference is observed in hardwoods
and softwoods.

Since the wood matrix represents an anisotropic material with a distinct fiber direction, we approach it in our model by a
transversely isotropic constitutive law, whose principal direction coincides with the growth direction.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

With regard to nature conservation and the saving of greenhouse gases, the Federal Government of Germany aims to reduce
new land consumption for settlements and transport to less than 30 hectares per day by 2030 and to zero by 2050 [3]. To
frame this: from 2010 to 2020, land consumption averaged about 60 hectares per day. It is therefore increasingly important to
find alternative concepts for roads and buildings. One solution is to move living space to areas that do not seal the ground. In
Germany there are already around fifty tree house hotels [12], where living trees are used as the main structural element for
foundation. Since this becomes more and more popular a safety concept for building in living trees is overdue.

As far as centric load is concerned, the reasonable load can be well estimated. The maximum centric load capacity is high
compared to the bending load capacity. In order to be able to assess the reasonable bending load well, we account for residual
stresses caused by maturation of wood cells. Thibaut et al. [13] as well as Niklas and Spatz [9] characterize these as growth
stresses acting against gravitation. Even if a short-term loads causes local damage to the wood matrix, this might not affect the
stability in the long term since living trees are capable of self-healing and the production of reaction wood by stress-induced
growth. The latter is related to phase field models for topology optimization based on stresses, see e.g. [8], [14].

2 A phase field model for the accumulation of residual stresses in trees

In the present work, the topology of the green wood is described by the phase field parameter φ. For voids it adapts the values
φ ≈ −1 and φ ≈ 1 in regions of material. The transition zone (diffuse interface) the model defines the cambium layer of the
tree by a lower threshold value φl and an upper threshold value φu of the phase field variable. The zone is essential in this
model, since the cambial layer generates the secondary growth in the thickness direction of trees. The maturation of cells in
the cambial layer leads to the accumulation of residual stresses. The topology in the model is based on an objective function
F1 in the direction dθ of primary growth (see Fig. 1)

F1 =

∫

B

− |dθ|φ dV =

∫

B

γ1(dθ)φ dV → min w.r.t. φ, (1)

representing the tips of the plant. A second objective function F2 accounts for stress-induced growth.
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Fig. 1: Visual explanation of the primary growth di-
rection dθ . The gradient of the phase field variable
Grad[φ] is corresponding to the stems surface.

Additionally, the inhomogeneity of stresses is measured by a stress
component

σθθ = dθ · (σ · dθ), (2)

in the direction of growth dθ. These stresses define a difference to
the arithmetic mean value

σθθ =

∫

B

σθθ

V
dV. (3)

Finally, we set

F2 =

∫

B

σθθ − σθθ(ε(u), φ)

σθθ
φ dV

=

∫

B

γ2(σθθ,u, φ)φ dV → min w.r.t. u, φ,

(4)

as second objective function to account for stress-induced growth. In [1] such a stress-induced formation of material is
called "reaction wood", which is distinguished between tension wood in angiosperms (hardwoods) and compression wood in
gymnosperms (softwoods).

2.1 Morphological definition of the tip direction within the model

The tree morphology is influenced by its tropisms (phototropism, heliotropism, gravitropism, chemotropism e.g.), i.e. the
ability of trees to adjust the growth direction of tips and roots as well as the curvatures of their branches in response to
environmental stimuli such as changes in light intensity, movement of the sun, gravity or nutrient supply [11]. These are
influences, which interact [4] and might also change over time shaping the topology of a tree almost inimitably. Therefore, the
model works with the actual state of a tree structure mapping all tropisms with a predefined geometry. Based on Bresenham’s
line algorithm [2] growth directions are set for the rectangular elements in the regular finite element mesh common for phase
field models. The slope of a function g defines the unit growth direction vector dθ

dθ =




1√
(g′)2 + 1
g′√

(g′)2 + 1


 with |dθ| = 1. (5)
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Fig. 2 Function g1(x) capturing ele-
ments in the regular rectangular finite el-
ement mesh with the line algorithm. For
these elements a predefined growth direc-
tion is set. The thickness of the tip is set
with a parameter in the algorithm.

Grad[φ]

dθ

Fig. 3: Sample growth direction vectors
dθ for new green wood nodes (φ > φu)
based on the gradient of the phase field
variable Grad[φ], which is always di-
rected at right angles to the surface of the
topology.

Example 2.1 A function 1 is given by g1(x) = tan(1.7x) with x ∈ R and its derivative by g1
′(x) = 1.7 sec2(1.7x), then

the line algorithm captures elements of the regular rectangular finite element mesh as shown in Fig.2.
Furthermore, for all other nodes without an initial growth direction (|dθ| = 0) that become wood material (φ > φu) through

the evolution process in the transition zone, the phase field gradient is used to assign a fiber direction as shown in Fig.3. Since
Grad[φ] is always directed perpendicular to the stems surface, it is rotated by β = ±π to ensure an upward growth direction

|dθ| = 0, φn < φu, φn+1 > φu : dθ =

(
0 − sin(β)

sin(β) 0

)
Grad[φ]

|Grad[φ]| . (6)
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The growth direction vectors are set via additionally generated elements. In the finite element program, the values are then
transferred to the Gauss points of the elements that actually belong to the system. To pass the Gauss point values for the fiber
angle vector to the nodes, the error square method is used [16].

2.2 The phase field model

The phase field variable φ ∈ R describes the density distribution within the domain B, defining the continuous function

f(φ) =
eb(φ−1)

eb(φ−1) + 1
ρ = f(φ) ρ0, (7)

controlling the stiffness of green wood. This connects the displacement field and phase field variable in such a way that
densities 0 ≤ ρ

ρ0
≤ 1 are created. Parameter b determines the slope of the function in the transition zone. We consider the

strain energy density for linear elasticity

Ψmech(ε, φ) =
1

2
ε(u)f(φ)Cε(u). (8)

At φ = 1 the function f(φ) sets a limit for the stiffness of the material C and at φ = 1 a stiffness of almost 0 is conserved,
which avoids singularities in the equation system. We use the double well potential

Ψwell = φ6 − φ4 − φ2 + 1, (9)

with minima at the preferred values of φ = −1 and φ = 1 to achieve a sharper resolution of material and voids. Furthermore
we use the gradient energy density

ΨGrad =
1

2
pd||Gradφ||2, (10)

governing the size of the transition zone, where the interface matrix

pd = Lc 1+ ps diag(dθ) (11)

shapes the diffuse interface into the direction of growth. Parameter Lc, denoted as the interface parameter, accounts for a
constant part, whereas ps penalizes the vector dθ responsible for the growth direction based approach. The here introduced
energy densities add up to the Ginzburg-Landau free energy density

Ψint(ε, φ,Grad[φ]) = Ψmech(ε, φ) + Ψwell(φ) + Ψgrad(Grad[φ]). (12)

To give the model the urge to add densities in regions of predefined growth directions and in domains to compensate the
normal stresses we incorporate the objective functions γ1 and γ2 into the total energy

Π =

∫

B

Ψint(ε, φ,Grad[φ]) dV +

∫

B

γφdV −
∫

B

f(φ)ρ0 b · udV −
∫

∂B

(t · u+ y φ) dA, (13)

united in one variable γ = cγ,1γ1 + cγ,2γ2 and penalized with the so called "nucleation densities" cγ,1 and cγ,2. The term
γ φ is identified as the external driving force shaping the topology. Then the Euler-Lagrange equations result in the balance of
linear momentum and the balance of the phase field

Div[σ] + f(φ)ρ0 b = 0, (14)

η −Div[Grad[φ] · pd]− f(φ)ρ0 b · u+ γ = 0 η :=
∂Ψint

∂φ
, (15)

with the partial derivative of the inner energy with respect to the phase field variable η. In order to ensure the initial equilibrium
state and to force an immediate change in the phase field the balance equation is extended by the rate of phase field variable φ

η −Div[Grad[φ] · pd]− f(φ)ρ0 b · u+ γ = −ωφ̇, (16)

penalized with the kinetic coefficient ω accounting for the speed of the evolution process. Applying the Galerkin method on
Eq.(14) and Eq.(15) yields

δΠ =

∫

B

[
f(φ)ε(u)Cε(δu) + ηδφ+Grad[φ] · pd ·Grad[δφ]

]
dV +

∫

B

(γ + ωφ̇− f ′(φ)ρ0 b · u)δφ dV

−
∫

B

f(φ)ρ0 b · δudV −
∫

∂Bu
N

t · δu dA−
∫

∂Bφ
N

y δφ dA
!
= 0 u = u on ∂Bu

D φ = φ on ∂Bφ
D.

(17)
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4 of 6 Section 4: Structural mechanics

Due to the non-linearity of phase field parameter φ, the equation is solved with a Newton Algorithm containing an implicit
Euler time integration scheme. The rate of φ is defined by the summation of time increments ∆t within a Newton step
following

φtn+1 = φ∆tn+1 + φtn = φ̇tn+1∆t+ φtn ⇒ φ̇tn+1 =
1

∆t
(φtn+1 − φtn). (18)

2.3 Accumulation of residual stresses

The maturation of the cambium cells (tissue layer between bark and sapwood) into xylem cells (wood cells) leads to a hard-
ening of the material in a rather short time and to a natural tendency to shrink in the longitudinal direction and to expand in
the transverse direction [13]. Due to the bond between the new maturing cambium layer and the already stiff sapwood cells,
the maturation elongation is limited. This leads to tensile growth stresses in longitudinal direction.

Fig. 4 Illustration of a maturing cambium cell. Maturation forces the cell to expand in transverse direction and
to shrink in longitudinal direction, which is called "maturation strain". Due to the adhesion of the new layer to
the already matured sapwood, longitudinal tension and transverse compression is accumulated, which is called
"maturation stress". In radial direction however, the strain is nearly completely released.

The maturation strains are genetically predisposed and vary from species to species. In the model it is an input parameter.
It is therefore important to determine the genetically predisposed maturation strain for the tree in advance. As Gril, J., Jullien,
D., Bardet, S. et al. [6] show, this can be achieved with a strain gauge. By carving the trees surface strains are released
and measured. This should only be done representatively, as it is an intervention in the tree’s protective mechanism against
moisture penetration and thus rot and fungi [15].

The local strain state in the cambial layer is manifested as a local reference state

φu > φ > φl ε
(t)
h = ε0 +∆ε(t), (19)

with the genetically predisposed maturation strain ε0 in the cambial layer and the change in the integral strain state ∆ε(t) at
time t. The strain state of all xylem layers (φ > φu) are defined by the strain history and the change in the integral strain state
within this layer

φ > φu ε
(t)
h = ε

(t−1)
h +∆ε(t). (20)

2.4 Transverse isotropic wood material

Due to the anisotropic cell walls wood material in general has a microstructure with a preferred orientation. For this reason,
we use transverse isotropy for the material in the model. Two isotropic transverse directions identify five independent material
parameters.

E1, E2 = E3, ν12 = ν13 = ν, G12 = G13, G23. (21)

These parameters are inserted into the stress-strain relation for linear elasticity reduced to the plane strain situation



σ11

σ22

σ12


 =



C11 2ν12(ζ +G23) 0

ζ + 2G23 0
G12





ε11
ε22
2ε12


 , (22)

with parameters

C11 =
1− ν23

1− ν23 − 2ν12ν21
E1 ζ =

ν12ν21 + ν23
(1− ν23 − 2ν12ν21)(1 + ν23)

E2. (23)

The introduction of a fiber angle for the 2D case tan θ = dθ(2)
dθ(1)

corresponding to the growth direction is essential for the
transversely isotropic material model, as the fiber angles are contained in a transformation tensor T(θ) aligning the material
matrix in Voigt’s notation CV with the preferred direction

C
V
= T(θ)TCV T(θ). (24)
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3 Growth of a branch with a delayed loading

parameter .sym value unit
density ρ 833 kg

m3

Young’s modulus L E1 1.00× 104 MPa
Poisson’s ratio ν 0.30 [−]
interface exponent b 5 [-]
nucleation density 1 cγ1

200 MPa
nucleation density 2 cγ2

0 MPa
interface parameter 1 Lc 3.00× 10−2 [-]
interface parameter 2 ps 0.10 [-]
Young’s modulus R E2 1000 MPa
shear modulus LR G12 1000 MPa
shear modulus RC G23 300 MPa
gen. pred. strain ε0 5.00× 10−3 [-]

Table 1: Material parameters of Fagus sylvatica (common
beach) in green condition [9], [7], [5], [10]

Our numerical example considers a neutral topology
initialized with voids φ0 = −1 except a small domain
representing the beech sprout, where the phase field
variable is set to φ0 = 1 for a part of the growth dis-
tance, shown in Fig.5. For the material a common beach
wood is used with the parameters of Tab.1. Due to the
anisotropic fibers the Young’s modulus in L-direction is
10 times higher than in the transverse R-direction. The
finite element mesh uses 20253 rectangular elements
with quadratic Ansatz functions.

Fig.6 shows the topology evolution over time in
months. The objective functions result in the shape of
a branch fork. At time step t = 500, the stress distribu-
tion of the component σθθ in dθ direction in section ξ
(cf. Fig.5b) is given by Fig.7a.
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y
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(a) (b) L = 2m
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=

6
m

design
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φ0 = −1

φ0 = 1

F (t = 500) = 3MN

30◦

ξ

Fig. 5: (a) Discretization of the domain with morphological definition
input via three functions. (b) Design space with symmetric boundary con-
dition at x = −1.

A residual stress curve develops with tensile stress at the stems surface and compressive stress near the pith as shown in Fig.7a.
Due to the soft transitions from material to void there is also a drop in the magnitude of the stresses towards the surface. After
t = 500 an external force shown in Fig.5b is added to the system and the evolution continues. Immediately after the load is
applied, the stresses in the defined section changes as shown in Fig.7a. A tension and a compression side is obtained. At time
t = 800 the stem cross-section shows the stress distribution Fig.7b. We observe that newly maturing layers still put the stems
surface under tensile stresses, which helps to stabilize the fibrous structure of the stem and protects the stems surface from
compressive stresses. After t = 800 the external force is lifted, which results in the stress distribution shown in Fig.7c. A new
cambial layer manifests itself in a stress state influenced by the external force. Thus, the unloading no longer has a significant
influence on the stress curve.

t = 25 t = 100 t = 200 t = 300 t = 400 t = 500 t = 525 t = 600 t = 700 t = 800

−1 −0.5 0 0.5 1 1.5 2
φ

Fig. 6: Evolution of the phase field variable φ. The most convenient unit for pseudo time t is months. The objective functions shape the
topology. At time t=500 an external force is added to the structure. Thin white lines indicate the direction of the growth vectors dθ .
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Fig. 7: Stress component σθθ at different time steps

4 Conclusion

The introduction of a genetically predisposed maturation strain and the use of a strain history field leads to an accumulation of
residual stresses as desired. Using the method presented in Section 2.3, the maturation strain can be adapted to individual trees.
The interface matrix controls the ratio of primary and secondary growth and can also be individually adjusted to individual tree
geometries. Defining a growth direction by the specification of a morphology line enables the model to simulate total stress
situations of arbitrary topologies including branch forks. In combination with an experimental and probabilistic approach,
this prepares the basis for an improved safety concept in tree engineering. As an outlook, the model will benefit from using a
viscoelastic material behaviour with the mapping of the relaxation process, providing improved stress curves.
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