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Abstract

The posterior statistical distributions of fatigue strength are determined

using Bayesian inferential statistics and the Metropolis Monte Carlo method.

This study explores how structural heterogeneity affects ultrahigh cycle

fatigue strength in additive manufacturing. Monte Carlo methods and proce-

dures may assist estimate fatigue strength posteriors and scatter. The accept-

able probability in Metropolis Monte Carlo relies on the Markov chain's

random microstructure state. In addition to commonly studied variables, the

proportion of chemical composition was demonstrated to substantially

impact fatigue strength if fatigue lifetime in crack propagation did not pre-

vail due to high threshold internal notches. The study utilizes an algorithm

typically used for quantum mechanics to solve the complicated multifactorial

fatigue problem. The inputs and outputs are modified by fitting the micro-

structural heterogeneities into the Metropolis Monte Carlo algorithm. The

main advantage here is applying a general-purpose nonphenomenological

model that can be applied to multiple influencing factors without high

numerical penalty.
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1 | INTRODUCTION

Machine learning (ML), deep learning, and artificial
intelligence are all fields that are quickly expanding in
importance. There is a possibility that these new technol-
ogies will have a transformative effect on materials, pro-
cesses, and structures engineering (MPSE). It is argued
that an immediate need exists to broaden the usage of
these new tools across MPSEs.1,2 This stems from the
advantage of this class of models which is the ability to
study complex relations without high numerical or

experimental efforts. Numerous statistical and ML tech-
niques can theoretically be used for prediction and
inference.

In comparison, ML focuses on prediction by
employing general-purpose learning algorithms to find
patterns in data that are often thick and difficult to
handle.3,4 For example, aircraft structural health moni-
toring (SHM) is a technique in which sensors evaluate
a structure's present condition of aging and degradation.
Aerospace industries utilize artificial intelligence as a
novel component of SHM and a knowledge discovery
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technique based on temporal dilation in real-time and
genetic programming. It highlights that engineers
attempting to use artificial intelligence for aircraft SHM
are challenged by various industry-specific problems.5,6

In this context, SHM analysis was performed using an
auto-associative neural network (AANN), and radial
basis function (RBF) network models were utilized to
analyze nonlinear neural networks.7 However, the
selection of features for this network was not straight-
forward, and thus, the outcome depended on how
clever the selection was. In contrast, the model pre-
sented here will treat all features equally with an arbi-
trary number from the beginning, and the algorithm
deduces the degree of relevance on its own.

1.1 | ML in materials processing and
engineering

Another field of application is additive manufacturing
(AM). Compared with traditional subtractive
manufacturing, additive AM garners growing interest
from academia and industry because of its distinct ben-
efits. Traditional numerical and analytical models are
difficult to establish a process-structure–property-
performance connection for AM. ML is a reliable
approach for pattern identification, especially when it
does not require constructing and solving physical
models.8,9 Therefore, the model presented in the next
section will focus on bypassing the complex physical
phenomena involved in the fatigue damage process for
numerical efficiency by focusing on a nonphysical
general-purpose algorithm and its formulation. In addi-
tion, the density functional theory (DFT) community
has been using ML to examine combinations of ele-
ments and crystal structures to discover new mate-
rials.10,11 However, in the approach used by Allam
et al.,11 the underlying relationships between inputs
and outputs had to be found first between inputs and
outputs using DFT and then the neural network was
only applied to assess the importance of each parame-
ter. In the Metropolis algorithm presented here, the
employment of the preparation phase by numerical
techniques will not be necessary. Only the marginal dis-
tributions of the considered features are needed to be
available at the beginning so the Bayesian part of the
algorithm can function properly. In the comprehensive
review of Johnson et al.,10 it was clear that there is an
overreliance on neural networks. It is mostly supervised
learning in AM with nearly no reinforcement learning
(RL) applied to this field. The authors would like to
then fill and exploit this knowledge for the interests of
the AM and fatigue communities.

1.2 | ML in fatigue

Some researchers also used ML to detect fatigue cracks.
Fatigue crack detection has garnered considerable atten-
tion due to its impact on everyday safety.12 It is difficult
to minutely test megastructures (such as bridges and
buildings) with vibration or ultrasonic sensors; therefore,
vision-based fatigue crack detection is recommended13 in
research. It suggests a method for detecting fatigue frac-
ture development based on ML that blends computer
vision. Computer vision is utilized to generate data in
model,14 while ML is used to predict fractures based on
historical precedents. The experimental findings demon-
strate the efficacy of the approach. However, owing to
the crack dataset's fragility, certain deviations occur.15

However, this work did not consider microstructural het-
erogeneities and scatter bands were confining experimen-
tal results strong enough. Therefore, these points will be
stressed in the presented model, especially in the very
high cycle fatigue regime.

Furthermore, investigating stages II and III of crack
development rate built a unique and unified ML-based
technique. Naturally, predicting the conditions of the
development of fatigue cracks is critical when estimating
the residual life of machine components or doing failure
analysis.16 Microstructural heterogeneity was not consid-
ered in the same context, and large datasets were needed
to achieve reasonable accuracy. However, we introduce
an indirect inference about fatigue strength and scatter
based on marginal distributions of microstructural
heterogeneities.

Mean stress is key in fatigue design, especially in high
cycle service.17 The issue arises from the Fourier transfor-
mation combining all cycle-by-cycle mean stress effects
into a single zero frequency content. Nonlinear generali-
zation was possible in artificial neural networks
(ANNs).18,19 Although good accuracy was reached in
these attempts, there was no consideration of microstruc-
tural heterogeneity, especially in the very high cycle
fatigue (VHCF) regime. A neuro-fuzzy-based ML
approach was used to estimate the high cycle fatigue
(HCF) life of laser powder bed fusion (L-PBF) stainless
steel 316 L by entering parameters for processing/
postprocessing and static tensile properties. However,
due to the heterogeneity of the provided data, straight
application of the model yielded a range of predictable
inaccuracies.20,21 Processing and postprocessing parame-
ters were considered in the latter model. However, the
model was not microstructure sensitive and did not con-
sider the VHCF regime. The total fretting fatigue life of
Al4%Cu alloy was predicted using contact size, peak pres-
sure, remote specimen tension, and tangential force ratio.
About 90% of the data was used to train and test an
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ANN.22 The neural network was extremely good at dis-
criminating between low-life and run-out outcomes. One
main outcome was that the Bayesian regularization train-
ing method outperformed the Levenberg–Marquardt
approach in terms of performance.23 The influence of
corrosion was studied, but there was no correlation
between fatigue strength and microstructural parameters.
This we aim to redeem with this contribution.

1.3 | Interdisciplinary application of ML

In another study, uncertainties arising from geometry,
material, and models were extensively quantified using
data from measurements and tests to estimate the life of
fatigue crack growth (FCG) on turbine discs. The Gauss-
ian process regression technique was introduced to
describe the accuracy and computational efficiency of
high model accuracy measurements.24 However, the pro-
cedure required finite element analysis as an input to the
Bayesian approach. A probabilistic fatigue S–N curve was
suggested to estimate a probabilistic physics-guided neu-
ral network (PPNN). The model addressed limitations
inherent in existing parametric regression and traditional
ML techniques for interpreting fatigue data. Compared
with explicit regression-type models, the PPNN was more
adaptable and did not impose constraints on function
types under various stress levels, mean stresses, or other
variables.25 For this approach, a correlation to micro-
structural heterogeneity was not established. In Zhan
and Li,26 the fatigue damage characteristics of AM aero-
space alloys were investigated using a novel technique
combining physical damage and artificial intelligence
models. The continuum damage mechanics (CDM) the-
ory was efficiently integrated with ML models. Theoreti-
cal CDM models with AM process-induced effects were
provided, followed by numerical computations of fatigue
lifetimes. Over 500 data sets were gathered and used to
train ML models. However, for an arbitrary parameter
selection, we would like to avoid here in the current
study a nontrivial CDM calculation that is required as an
input for that algorithm. The microstructural heterogene-
ity means that the domains of the microstructure are hav-
ing diversity in density and type of lattice defects,
crystallographic orientation and mesoscale defect types,
and morphology; thus, they give rise to localized plastic
deformation under relatively low fatigue loading levels
and cause ultimate failure with a significant scatter in the
expected strength.

A ML technique for direct analysis was used to esti-
mate the fatigue life of metallic materials with oblique
hyperbola and bilinear mode S–N curves. A Bayesian
optimization-based inverse analysis was used to evaluate

the fatigue limit of the materials (AISI 316, 4140, and
CA6NM series). Except in a few situations with consider-
able variations, the projected fatigue limits matched or
slightly undershot the actual values.27 In contrast, we
aim for enhanced accuracy and microstructural mapping
on fatigue strength. Experimental data and ML validated
a theoretical framework for the life prediction of AM
alloys under cyclic loadings.

Further work demonstrated a computational tech-
nique from two angles: numerical implementation and
random forest model building without being sensitive to
microstructure.28 A hybrid method combined data-driven
and model-based techniques for calculating bearings'
residual useful life (RUL). Relevance vector machines
(RVMs) were used to pick a small number of meaningful
basis functions, referred to as relevant vectors (RVs). The
RVM was used to identify the most important basic func-
tions on the smoothed data, which were then fitted to the
deterioration model and extrapolated to failure.29 Unlike
traditional empirical damage models, a model which
could automatically discover the optimal mapping rela-
tionship from training data used extensive experimental
data from nine materials to calibrate itself implicitly. In
predicting the remaining life, the proposed model outper-
formed conventional models.30 We observed a reliance
on extensive experimental data without a strong correla-
tion to microstructure.

1.4 | Comparative aspects of the current
study

The flaws sustained during L-PBF are responsible for the
manufactured metallic components' poor fatigue perfor-
mance and significant lifetime scatter.31 The support vec-
tor machine (SVM) model demonstrates a high capacity
for addressing these influences of effects outside micro-
structure and powder characteristics for Ti-6Al-4V.32

Miniature specimen tests, statistical methods, and ML
techniques were used to study Inconel 718 fatigue life
scattering and prediction. It was evident that the size
and/or the number of pores in the specimens degraded
the fatigue life33; therefore, we would like to extend the
capability of these models by using RL and including fur-
ther arbitrary features. In the same context, the research
looked at the elements influencing fatigue strength utiliz-
ing a hybrid approach combining XGBoost34 and
LightGBM.35 A grey wolf algorithm optimizes the model
hyperparameters.36 Shapley additive explanations
(SHAP) are developed to explain ML model predictions
of fatigue strength.37 According to the results, the SHAP
approach showed much potential for evaluating fatigue
strength indicators. Therefore, rationalized design parts,
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selecting materials, and formulating cold and heat resis-
tant materials were deemed possible using the tech-
nique.38 Micromechanical models accurately represented
material behavior and its relationship to thermal history
from the early stages of computational materials sci-
ence.39 However, when out-of-range data were used to
train ML models, projected grain sizes varied signifi-
cantly from reference values. Supervised learning
(SL) had a weaker capacity to generalize to previously
unknown data than random forest regression (RFR)
when it came to damage evolution prediction.40 In Zhan
and Li,41 a framework was created for data-driven analy-
sis of AM stainless steel (SS) 316L fatigue life prediction
using CDM. Three common ML models are effectively
trained using a CDM-generated database. Additional
comparisons between anticipated and published experi-
mental data were attempted to validate the suggested
platform. The microstructural influence was indirectly
included in the algorithm through the CDM approach,
which we would like to change here by directly consider-
ing these arbitrary parameters.

The structural information of a shackle used to effi-
ciently connect components to the hoist was gathered
using two strain sensors of a dual system. The signal was
processed and classified as normal or abnormal. The deci-
sion boundary was determined using logistic regression
ML. The results show that failure may be identified
before fracture appears and that maintenance could be
delayed.42 In Sysyn et al.,43 images of the frog rolling sur-
face and magnetic particle inspection data were used in
the ML investigation. The scans were preprocessed using
image processing algorithms to identify characteristics
similar to surface cracks. Surface fractures may not be
seen in raw images.44 These fracture properties and their
combinations properly depict surface fatigue.43 In prac-
tice, the time-consuming magnetic particle imaging
(MPI) inspection approach does not apply to low-
automation railway infrastructure.45 A state-of-the-art
object detector was introduced, capable of training
models from scratch. The models developed from sparse
data demonstrated a fair aptitude for identifying fatigue
fracture start locations.46 Increasing the amount of the
training dataset could enhance the model's accuracy.47

Increased epochs could result in an enhanced capacity to
identify subtle characteristics.46

A semi-empirical S–N fatigue model was developed
based on uniaxial and multiaxial fatigue investigations. It
accounted for both material anisotropy and complex
stress states and has an average inaccuracy of 20.70%. Six
ML models were used to estimate fatigue life, and the
deep neural network was found to be the most accurate,
with an average accuracy of 14.30%.48 However, the
model was applied for rubber and composites, and

metallic materials were not included. The collection of
bridge-specific traffic loading data via the weigh-in-
motion (WIM) system provided an opportunity to remedy
the issue of unexpected failures in highly congested brid-
ges.49 Daily fatigue damage may be calculated using traf-
fic loading data in conjunction with finite element
analysis. To establish regression models between daily
damage and collected traffic loading characteristics, a
SVM was used, which was validated by predicting the
fatigue life of a suspension bridge hanger.50 An approach
for forecasting fatigue damage patterns inside the steel
catenary risers was presented in addition to numerical
simulation and a random sampling technique. The sug-
gested technique could correctly and efficiently calculate
the fatigue life of a sample riser.51

1.5 | RL brought to the fatigue
community

This study applies a RL ML algorithm based on Bayesian
inferential statistics using the Metropolis Monte Carlo
algorithm to estimate the posterior distributions. The
case is on additively manufactured AlSi12 alloy to iden-
tify influence of microstructure, remnant porosity, chemi-
cal composition, and powder particle size. Barto and Duff
explain that RL is more efficient than other types of
learned techniques capable of obtaining the same out-
comes with link to Monte Carlo techniques.52 We have
found in the review in this section that RL has not been
used to address the fatigue problem. However, in quan-
tum mechanics, the phases of classical spin models were
classified using improved estimators by ML applied to
the quantum Monte Carlo simulation using the loop
algorithm.53 Monte Carlo or deep learning has been
claimed to be used to solve extremely high-dimensional
partial differential equations (PDEs), using concepts from
either nonlinear or linear algebra (multilevel). They are
potentially curse-free for various applications and be so
for several nonlinear Monte Carlo techniques for non-
linear parabolic PDEs.54 Foreman et al.55 generalized the
Hamiltonian Monte Carlo approach using a stack of deep
learning neural network layers and assessed its ability to
sample from various topologies in a two-dimensional lat-
tice gauge theory. Based on these previous precedents in
the literature, we would like to introduce a RL technique
based on the Metropolis Monte Carlo algorithm to study
the influence of structural heterogeneities on VHCF
strength in AM. We observe in the literature that RL and
the Metropolis Monte Carlo algorithm have been used to
solve complicated physical problems optimally. However,
the fatigue and AM communities did not utilize any of
the power of these algorithms until now. Moreover,
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microstructure-sensitive simulations have a very high
numerical penalty, and a limited set of heterogeneous
microstructural parameters can be included in the analy-
sis. Therefore, we introduce here a general-purpose non-
phenomenological RL algorithm that is applicable until
the high cycle fatigue regime can handle an arbitrary
number of microstructural parameters.

2 | MATERIALS AND METHODS

2.1 | Training data

This study's ML technique uses a decision tree to guide
data via a network representing fatigue-related factors
such as the start of macroscopic failure and threshold
stress. Simultaneously, a family of extreme value gamma
distributions is employed to prevent undershooting or
overshooting the target values. The Weibull distribution
presented here is based on the gamma function56,57

Q N ,Δσð Þ¼ 1� exp � logN�Bð Þ g Δσð Þ�Cð Þ� λ

δ

� �β( )
ð1Þ

where N is the number of cycles, Δσ is the applied stress
range, β is the shape parameter, δ is the scale parameter,
λ is the location parameter, B is the fatigue lifetime
threshold, and C is the fatigue strength threshold. The
maximum likelihood method is used for initial parameter
estimation according to Walpole and co-workers in addi-
tion to Castilo and co-workers.57,58

2.1.1 | Manufacturing and initial
characterization

The laser beam melting system SLM 250HL was used to
fabricate all specimens in this investigation from AlSi12
powder. The device is equipped with a 400 W fiber laser
and can reach temperatures up to 200�C in the deposition
platform to reduce cooling rates. Argon was employed as
an inert gas in the construction chamber. Laser scanning
was performed using a technique known as checkerboard
scanning. The details of laser scanning energy density

can be found in previous studies.59–61 Mechanical testing
specimens were stress-relieved (SR) for 2 h at 240�C, fol-
lowed by cooling in the oven; see Table 1. Additionally,
batch B was platform-heated (PH) up to 200�C such that
the cooling rate was significantly reduced according to
Siddique et al.62 which led to a reduction in remnant
porosity and improvement of fatigue strength, especially
in the VHCF regime according to Siddique et al.60 The
influence of PH was less pronounced in AlSi10Mg,
according to Awd et al.63

2.1.2 | Microstructural heterogeneity

The microstructure of the tracks was investigated by
embedding cross-sections in the XY plane (parallel to the
building platform) and Z plane (perpendicular to the
building platform). Grit paper ranging from 320 to 4000
was used for grinding, which was lubricated with water.
Polishing was then performed down to a diamond sus-
pension of 1 μm, and the ultimate finish was achieved
using a chemical polishing solution, including oxide sus-
pension. A Tescan Mira XMU scanning electron micro-
scope (SEM) was utilized to get high-magnification
images of Si dendrites. In advance, specimens were
etched using a solution of 10% NaOH and 10% H2O2 in
distilled water at a temperature of 60�C. The chemical
composition was quantified using an energy dispersive X-
ray detector of type EDAX operating at a voltage of 20 kV
and beam intensity of 15 A. The chemical composition of
powder was characterized in the fresh and used states.
Figure 1 depicts the microstructural morphology of the
investigated batches based on the thermal history. Com-
paring the microstructures of batches A and B shows that
batch A has a very thin cellular dendritic microstructure
with a pronounced texture. That can be detected from
bottom to top in the building direction (Z-axis). The
reduced cooling rate facilitated Si particle segregation at
the grain boundary. Si accumulation at grain boundaries
led to the production of dendrites with a greater thick-
ness which was also asserted by Prashanth et al.64 From
LCF to the VHCF regime, this change has yet to have a
major influence on the link between quasi-static and
cyclic characteristics. The load-bearing Z-direction micro-
structure in batch B is almost equiaxed compared with
the microstructure in the Z-direction in batch A.

TABLE 1 Investigated material configurations based on the thermal history

Batch Alloy Platform heating (PH) Stress relief (SR)

A AlSi12 – 240�C

B AlSi12 200�C 240�C

AWD ET AL. 3271
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Numerous investigations have shown that selective
laser melted Al-Si alloys are prone to residual poros-
ity.62,65 Certain researchers investigated porosity using
two-dimensional metallographic methods.66,67 Others
used three-dimensional methods such as X-ray micro-
computed tomography (μ-CT) to determine flaws' shape,
size, and position in three-dimensional space.68–70 The
Varian® PaxScan 1313DX detector, based on amorphous
silicon, is equipped to capture the projected pictures.
The effective detector size is 13 � 13 cm2, with a pixel
count of 1024 � 1024 pixels and a pixel pitch of
127 μm. Nikon's X TH 160 system has a cesium iodide
(CsI) scintillator conversion screen with a 40–160 kV
energy range. Reconstruction of a two-dimensional pic-
ture stack may be used to create a three-dimensional
representation of the scanned specimen using VGStudio
Max 2.2. A fatigue specimen is coaxially fastened to the
table in this investigation, allowing X-rays to pass
through each projection of the specimen. The projected
two-dimensional gray value distribution exhibits flaws
and inhomogeneities distributions. Volumetric three-
dimensional distributions of defects can be found in.71

Figure 2 reports the shape parameter β and scale param-
eter δ for the probability distribution of the pore diameter
inside batches A and B, according to Maltamo et al.72

Table 1 reported the same statistical parameters for the
dendritic width in the XY plane and in the Z plane. The
powder parameters are the particle size and the weight

FIGURE 1 Influence of

thermal history of Table 1 on

microstructural morphology:

(A) batch A—XY plane;

(B) batch A—Z plane; (c) batch

B—XY plane, adapted from

Siddique et al.58; (D) batch B–Z
plane; loading direction

concerning the microstructure in

the Z plane in (B and D)

FIGURE 2 Probability distributions of defect characteristics as

detected by μ-CT for batches A (no PH) and B (PH): (A) pore

diameter; (B) projected area in the Z-direction—Input of the model

[Colour figure can be viewed at wileyonlinelibrary.com]

3272 AWD ET AL.
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percentage of the aluminum element in the new and
used powder.

2.1.3 | Influence of heterogeneities on cyclic
deformation behavior

The following fatigue tests were conducted during the
training and validation phases of the model application.
Tensile tests were performed on the specimens using an
extensometer with a gauge length of 10 mm on an
Instron 3369 machine equipped with a load cell of 50 kN.
The tensile testing results can be found in Awd et al.71

All specimens were subjected to two distinct kinds of
stress-controlled fatigue testing. The first is the load
increase test (LIT), which involves subjecting the speci-
men to an increasing stress amplitude as a function of
time through a constant ramp. Thus, the cyclic response
of a material to a broad range of stresses can be moni-
tored, and cyclic fully reversed critical fatigue stress
amplitudes may be determined. Following the material's
response to the stress ramp may be utilized to identify
crucial stress amplitudes at which new mechanisms of
fatigue damage become active in the transition from HCF
to low cycle fatigue (LCF). The second kind is a constant-
stress amplitude fatigue test performed at predetermined
levels following the damage response seen during the
LIT. The approach incorporating both types is utilized as
a high-throughput method for determining the fatigue
strength of materials and filtering out unsuitable load
applications. The LIT and constant amplitude tests (CAT)
were performed on a servohydraulic Instron 8872 system
equipped with a 10 kN load cell. The specimen geometry
can be found in Awd et al.71 In Figure 3, the total strain
amplitude evolution separates the LCF regime from the
HCF regime at 130 MPa of stress amplitude. Therefore,

constant amplitude testing will be done at the levels
above and below, focusing on the 120 and 140 MPa levels
for the low frequency (20 Hz) testing at the servohydrau-
lic systems. Meanwhile, the plastic mean strain curve has
an inflection point at 90 MPa, indicating the transition
value of stress amplitude at the late HCF and the begin-
ning of the VHCF regimes for which CAT will be con-
ducted at 20 kHz on the USF-2000A of Shimadzu.

2.1.4 | Influence of heterogeneity on fatigue
strength

In the USF-2000A, the actuator generates a 20 kHz longi-
tudinal oscillation (from a piezoelectric element). The
booster and horn then amplify the actuation to impart a
force on a specimen. Since 20 kHz longitudinal oscilla-
tion uses resonance, precise adjustment is essential to
ensure that the whole oscillation system (booster, horn,
specimen, etc.) is resonating at 20 kHz. Because the
booster and horn are pretuned, just making a specimen
that resonates at 20 kHz causes the whole oscillation sys-
tem to resonate at that frequency. Metals' longitudinal
vibration causes resonating longitudinal waves as an
Eigen natural frequency value. In other terms, it implies
that metals are subjected to repetitive stress-loading dur-
ing this test. The specimen's side amplitude displacement
determines the stress value because this system tests
inside the elastic limit, where macroscopic displacement
(strain) is directly proportional to stress according to
Hooke's law. Therefore, in theory, test force cannot be
directly measured with a typical load cell. The specimen's
side displacement value is determined using linear inter-
polation from the vibrational calibration procedure. The
specimen gets heated repeatedly when subjected to high-
frequency loading. As a result, forced air conditioning
and interrupted driving help cool it down as close as pos-
sible to the starting temperature of the test. Interrupted
driving is a cycle in which ultrasonic waves are produced
for a brief period and then stopped for a period. The test-
ing setup can be found in detail in previous studies.73,74

Figure 4 depicts the S–N curves of batches A and B for
both high- and low-frequency tests. We can attend a
reciprocation of fatigue strength at the end of the HCF
range. Batch A had a greater fatigue strength in the early
HCF range than batch B. In Figure 1, batch A had a
much finer microstructure than batch B. Due to the
increased density of grains in a given specific volume, a
saturation of single grains with strain occurs more rap-
idly. The load is redistributed when the load axis in
columnar grains is perpendicular to the grain axes. Under
conditions of increasing stress amplitude, the net stress
from each grain is partly or completely canceled off by

FIGURE 3 Total strain amplitude build-up and mean plastic

strain accumulation in the load increase test indicating critical

loading amplitudes in batch A (no PH) [Colour figure can be

viewed at wileyonlinelibrary.com]
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the net stress in nearby grains.71,75 Hybrid construction
of additively manufactured and wrought aluminum
alloys could achieve similar VHCF strength to batch B.76

Testing at 20 kHz leads to an extremely high local strain
rate, significantly affecting the grains' critical resolved
shear stress. Since the early phases of fatigue damage rely
on dislocation slip, the testing at a high strain rate influ-
ences the number of cycles to failure. Such complicated
physical damage mechanisms require high penalty phe-
nomenological modeling to account for and study the

corresponding effect. Therefore, the model introduced
here is a data-driven approach that handles data irrespec-
tive of the phenomenological evolution. The advantage is
the additional handling of heterogenous fatigue data pro-
duced at extremely different frequencies.

Figure 5 shows a specimen heavily infested with
defects tested at 120 MPa of stress amplitude. Although
the specimen had this significant number of defects, the
failure did not start from the defect with the largest size
or asymmetric morphology, as shown in Figure 5A.
Bending stresses can increase the stress field's intensity
near the specimen's surface. They were accounted for by
using a self-aligning jig before the beginning of the test at
20 Hz. In the 20 kHz tests, the specimens were designed
to have an eigenfrequency mode in the uniaxial direction
only. Thus, bending stresses were also avoided at USF-
2000A. However, a cluster of pores in the immediate sub-
surface of the specimen initiated the failure, a phenome-
non repeatedly found in the literature for Al-Si alloys.62,77

Figure 5B shows a short crack propagation zone with
small-scale yielding and relatively smooth crack surfaces.
In (D), (E) zone 1, and (F), secondary failure initiating
zones were observed; however, they were retarded by the
microstructure and were not activated until the final frac-
ture of the specimen. In (C) and (E) zone 2, we observed
the disintegration of melt pool boundaries due to local
spherodization of the microstructure and strain localiza-
tion. This results from excessive defects in the melt pool
overlap zones.

FIGURE 5 Failure initiation defects morphology in batch A (no PH) at stress amplitude of 120 MPa at 20 Hz of frequency: (A) overview

of fracture surface; (B) overview of failure responsible defect; (C) highlights of specific melt pool morphologies; (D) clustering of defects at

the surface and inside the volume; (F) secondary crack initiation [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Experimental S-N data of batches A (no PH) and B

(PH) at frequencies of 20 Hz and 20 kHz according to previous

studies60,61,73 [Colour figure can be viewed at wileyonlinelibrary.

com]
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2.2 | Theory and calculation

Monte Carlo algorithms and procedures can contribute
to the development of posterior estimation of the
fatigue conjugate f N ,Δσð Þ which is a simulation-based
inference.78 In a purely statistical setting, computational
problems arise at the level of probabilistic modeling of
the fatigue strength inferred rather than at the statistical
inference from fatigue-related influences.79 As an exam-
ple, in a specific scenario of a fatigue problem, a compre-
hensive description of the causes leading to a certain
fatigue damage scenario might result in a complicated
formulation that is too complex to be represented by a
parametric representation and impractical to solve with
available numerical tools.57 A prohibitive numerical
example that can be recalled here is solving a representa-
tive volume element (RVE) under laboratory fatigue con-
ditions. It contains a typical defect morphology of AM
processes using the crystal plasticity finite element
method (CPFEM) until the number of cycles to failure is
reached. This is the technical problem we would like
to circumvent here by presenting this data-driven
approach.

2.2.1 | Monte Carlo approximation

Formulation of procedure based on microstructure
Our parameter of interest is the fatigue conjugate
f N ,Δσð Þ, and we let N ,Δσð Þ1,…, N ,Δσð Þn be the numeri-
cal conjugates of a sample from a distribution of stress-
life conjugates p N ,Δσð Þ1,…, N ,Δσð Þn jM

�
) based on

experimental data, for instance, given a certain state of
microstructural sample M. Suppose we are to sample
some number S of independent, random microstructures
M-values from the posterior distribution of the micro-
structure given conjugates of corresponding fatigue
strength and stress ranges p Mj N ,Δσð Þ1,…, N ,Δσð Þn

� �
such that78,80

M 1ð Þ,…,M Sð Þ � i:i:d p Mj N ,Δσð Þ1,…, N ,Δσð Þn
� � ð2Þ

i:i:d: stands for independent and ideally distributed ran-
dom variable. Then the empirical (based on laboratory
findings) distribution of the microstructural samples
M 1ð Þ,…,M Sð Þ� �

would approximate conditional probabili-
ties given the stress-life conjugates
p Mj N ,Δσð Þ1,…, N ,Δσð Þn
� �

, with the approximation
improving with increasing the sample size S. The empiri-
cal distribution, when large enough, of microstructural
samples M 1ð Þ,…,M Sð Þ� �

is known as a Monte Carlo
approximation to p Mj N ,Δσð Þ1,…, N ,Δσð Þn

� �
. In this

study, this procedure will be programmed on Matlab
after being detailed in the next lines. Additionally, let
g θð Þ be the marginal distribution of the microstructure
which means the probability distribution of the sample
subset. The law of large numbers says that if M 1ð Þ,…,M Sð Þ

are i:i:d: samples from the microstructure given the
stress-life conjugates p Mj N ,Δσð Þ1,…, N ,Δσð Þn

� �
,

then80,81

1
S

XS

s¼1
g M sð Þ
� 	

!E g Mð Þj N ,Δσð Þ1,…, N ,Δσð Þn

 �

¼
Z

g Mð Þp Mj N ,Δσð Þ1,…, N ,Δσð Þn
� �

dM as S!∞

ð3Þ

This suggests that as the sample gets larger, preferably
and theoretically approaching infinity S!∞

• The mean value of the microstructural sample is
M¼ 1

S �
PS

s¼1M
sð Þ !E Mj N ,Δσð Þ1,…, N ,Δσð Þn


 �
, where

E stands for the estimate.
• Correspondingly, the estimate of variance from the

stress-life conjugates would be

1
S�1ð Þ �

XS

s¼1
M sð Þ �M

� 	2
!Var Mj N ,Δσð Þ1,…, N ,Δσð Þ2


 �
:

Such that the probability that our sample is less than an
actual value c can be estimated by the stress-life
conjugate

#
M sð Þ≤m

S
!P M ≤mj N ,Δσð Þ1,…, N ,Δσð Þn

� �
:

This is given that laboratory data enable us to estimate
the empirical distribution of microstructure using the
stress-life conjugate

M 1ð Þ,…,M Sð Þ
n o

! p Mj N ,Δσð Þ1,…, N ,Δσð Þn
� �

:

The median value56 of the microstructural sample is
M 1ð Þ,…,M Sð Þ� �!M1=2.
The nth� percentile of M 1ð Þ,…,M Sð Þ� �!Mn.

2.2.2 | Identification of unique statistical
fatigue parameters

Just about any statistical feature of the posterior distribu-
tion of a fatigue-related influence, we may be interested

AWD ET AL. 3275
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and can be approximated arbitrarily exactly with a large
enough Monte Carlo sample of the parameter of interest.
In this study, we would like to utilize this concept in the
fatigue problem since it is not used before and use it to
investigate fatigue and structure correlations which are
rarely discussed in the literature according to the intro-
duction of this article. Hence, the predictive distribution
of a random microstructural M Sð Þ is the probability dis-
tribution of M such that80

• known parameters have been conditioned on. In differ-
ent words, the study is designed such that the parame-
ter of interest becomes dependent on the observed
parameter. The parameters of thermal history are
based on, for example, platform heating; see Table 1 or
in situ thermal treatment such as in previous
studies.82,83

• unknown parameters have been integrated out, such
as stress and fatigue lifetime conjugates f N ,Δσð Þ;
Figure 4. It means that there is enough data in the S–N
curve to define the relationship between loading and
the number of cycles to failure such that the statistical
dependency of a lifetime on applied load is ruled out.

We let eN be the fatigue lifetime sampled from a batch
manufactured with specific thermal history and powder
parameters. If we knew the true mean failure rate θ of
this specimen, we might describe our uncertainty abouteN with a gamma eNf

� 	
distribution57,72

Sampling distributionP eN ¼ eNf θj
� 	

¼ p eNf θj
� 	

¼ θ � exp � eNf � λ
� 	

=δ
� 	β

� �

where the failure rate θ is defined as θ¼

β=δ eNf �λ
� 	

=δ
� 	 β�1ð Þ:

where eNf is an approximation of

the number of cycles to failure. β is the shape parameter,
δ is the scale parameter, and λ is the location parameter.
It is not possible to make predictions from this model,
however, because we do not know θ yet. If we did not
have any fatigue data from the population, our predictive
distribution would be obtained by integrating out θ to
estimate the predictive distribution:

P eN ¼ eNf

� 	
¼ R

p eNf jθ
� 	

p θð Þdθ. Such a distribution can

be useful in evaluating if the failure rate prior

distribution for θ represents prior beliefs (empirical

fatigue data) for observable fatigue lifetime data eN in the
laboratory; after we have observed a sample N1,…,Nn

from the batch population, the relevant fatigue lifetime
predictive distribution for a yet to infer or estimate stress-
lifetime conjugates f N ,Δσð Þ conjugate reads

P eN ¼ eNf jN1 ¼Nf 1,…,Nn ¼Nfn

� 	
¼
Z

p eNf jθ,Nf 1,…,Nfn

� 	
p θjNf 1,…,Nfn
� �

dθ

¼
Z

p eNf jθ
� 	

p θjNf 1,…,Nfn
� �

dθ ð4Þ

This is called a posterior predictive (estimated) distribu-
tion of stress-fatigue lifetime conjugates f N ,Δσð Þ because
it conditions the fatigue failure-related influence dataset
on the failure rate induced by certain parameters of inter-
est such as microstructure. In many fatigue lifetime pre-
diction situations, we will be able to extract a sample

from p θjNf 1,…,Nfn
� �

and p Nf jθ
� �

, but p eNf jNf 1,…,Nfn

� 	
will not be practical to sample from directly since a large
enough amount of fatigue tests is economically prohibi-
tive. We can indirectly sample from the posterior predic-
tive distribution using a Monte Carlo procedure in this

situation. Since p eNf jNf 1,…,Nfn

� 	
¼ R

p eNf jθ
� 	

p θjNf 1,
�

…,NfnÞdθ, we see that p eNf jNf 1,…,Nf n
� 	

is the posterior

expectation of p eNf jθ
� 	

:84,85 To obtain the posterior pre-

dictive probability that eN is equal to some specific valueeNf , we could just apply the Monte Carlo method: Sample

θ 1ð Þ,…, θ Sð Þ � i:i:d: p θjNf 1,…,Nfn
� �

and then approximate

p eNf jθ,Nf 1,…,Nfn

� 	
with

PS
s¼1p eNf jθ sð Þ

� 	
=S. This proce-

dure will work well if p Nf jθ
� �

is discrete, and we are
interested in quantities that are easily computed from
p Nf jθ
� �

. However, it will generally be useful to have a set

of samples of eN from its posterior predictive distribution.
Obtaining these samples is a simple process that may be
accomplished by considering the failure rate: θ≈ the
microstructure: M (for generalization to arbitrary param-
eters), as follows:

sample θ 1ð Þ � p θjNf1,…, Nfnð Þ, sample eNf
1ð Þ � p eNf jθ 1ð Þ

� 	

3276 AWD ET AL.
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sample θ 2ð Þ � p θjNf1,…, Nfnð Þ, sample eNf
2ð Þ � p eNf jθ 2ð Þ

� 	
…

sample θ Sð Þ � p θjNf1,…, Nfnð Þ, sample eNf
Sð Þ � p eNf jθ Sð Þ

� 	

In other words, the sample represents several experimen-
tal fatigue tests corresponding to a microstructural condi-

tion. The sequence θ, eNf

� 	 1ð Þ
,…, θ, eNf

� 	 Sð Þ� 
constitutes S independent samples based on microstruc-

ture from the joint posterior distribution of θ, eNf

� 	
, and

the sequence eNf
1ð Þ
,…, eNf

Sð Þn o
constitutes S independent

samples from the marginal posterior distribution of eN ,
which is the posterior predictive distribution.

2.2.3 | Markov chains of microstructural
heterogeneities

Let us suppose we have a random transition of fatigue
damage states Ψnð Þn≥ 0 in a Bernoulli-like random walk
(fatigue damage state progression) that initializes Ψ 0 ¼ 0
assuming a damage-free fatigue specimen at the start of a
fatigue test86

Ψn ¼
Xn
k¼1

ψk ¼ψ1þ�� �þψn, n≥ 1, ð5Þ

where the random unknown damage increments ψkð Þk≥ 1

as a fatigue test progresses, critical damage shifts in a
nondeterministic physical manner 0,þ1f g� fatigue indi-
cator parameter, where 0 is a damage-free state, and 1 is
a completely damaged state. This resembles a discrete-
lifetime stochastic process Νnð Þnϵℕ in the space of ℕ,Δσð Þ
which satisfies Equation (4). The ℕ,Δσð Þ-valued process
Νnð Þnϵℕ is said to be Markov or having the Markov prop-
erty when n≥ 1, the probability distribution of Nnþ1 is
determined by the state Nn of the process at time n and
does not depend on the previous values of Nk for k¼
0, 1,…,n�1: Thus, when the sequence of fatigue damage
states has no memory according to the Markov property.
From a different perspective for all n≥ 1 (after the start
of the fatigue damage process) and all i0, i1,…, in, j�ℕ,
we have the transition probabilities between damage
states presented as follows:

P Nnþ1 ¼ j jNn ¼ in,Nn�1 ¼ in�1,…,N0 ¼ i0ð Þ
¼ P Nnþ1 ¼ jjNn ¼ inð Þ ð6Þ

especially the satisfaction of the Markov property that
there is no memory of the sequence

P Nnþ1 ¼ j jNn ¼ in,Nn�1 ¼ in�1ð Þ¼P Nnþ1 ¼ jjNn ¼ inð Þ
ð7Þ

For example, the second damage state following the
damage-free state and the first state would be

P N2 ¼ j jN1 ¼ i1,N0 ¼ i0ð Þ¼P N2 ¼ jjN1 ¼ i1ð Þ ð8Þ

Correspondingly, the physically indeterminate progres-
sion of a Markov chain is generally based on

Pi,j ≔ P N1 ¼ jjN0 ¼ ið Þ, i, j�ℕ ð9Þ

which corresponds with the probability
P Nnþ1 ¼ jjNn ¼ ið Þ which is independent of the location
of the current state within the sequence n�ℕ. In this
case, the Markov Chain Znð Þn � N is a time homogenous
chain since the transition probabilities of fatigue damage
states do not depend on time. The data can be compre-
hensively represented in a transition matrix of the
Markov chain87

Pi,j

 �

i,j � ℕ ¼ P N1 ¼ jjN0 ¼ ið Þ½ �i,j � ℕ ð10Þ

The transition matrix contains the entries of a fatigue
parameter indicator states that is the most relevant
fatigue damage criterion to be sampled from in the
Monte Carlo process.

Numerical handling
The treatment starts with sampling from a large transi-
tion matrix of fatigue damage parameters, for example, a
transition matrix based on microstructure. The entries of
the transition matrix must be normalized. A prior distri-
bution is obtained from the structural measurement of
the specimens, see Table 2. A local maximum has then to
be found to optimize the belief function of fatigue
strength. The process is repeated n times to satisfy
equation (3). It generates a discrete-time, finite-state,
homogeneous Markov chain from a given state transition
matrix using discrete-fatigue lifetime, finite-state fatigue
damage transitions, and homogeneous Markov chains. It
also can associate the states with the various fatigue

AWD ET AL. 3277
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damage states within the same matrix. After establishing
a dtmc (discrete-time Markov chain) object, we may use
the object functions to study the structure and evolution
of the Markov chain. Concerning the parameters of inter-
est, as well as to display the Markov chain in various
ways, as shown in Section 3.

2.2.4 | RL: The Metropolis–Hastings Monte
Carlo algorithm

Formulation
Let us consider a stress-life conjugate f N ,Δσð Þ where we
have a sampling model on a fatigue indicator parameter
N � p N jθð Þ and a prior distribution p θð Þ. θ stands for a
fatigue-related influence and can be replaced by pore
diameter dp or microstructure M or another arbitrary
parameter. Although in most fatigue failure cases p Njθð Þ
and p θð Þ can be calculated for any set of values of N and
θ, p θjNð Þ¼ p θð Þp N jθð Þ=R p θ0ð Þp Njθ0ð Þdθ0 is often not
trivial to calculate due to the integral in the denominator,
which represents an accurate knowledge of the depen-
dence between the fatigue indicator parameter θ and the
fatigue lifetime N which is numerically or empirically
prohibitive to determine. If we were able to sample from
the conditional distribution of the fatigue indicator
parameter p θjNð Þ, then we could generate θ 1ð Þ,…, θ Sð Þ �
i:i:d: p θjNð Þ and obtain Monte Carlo approximations to
posterior fatigue strength, such that as discussed at the
beginning of Section 2.280,84

E g θð ÞjN½ �≈ 1
S

XS

s¼1
g θ sð Þ
� 	

ð11Þ

However, there will be some cases when we cannot sam-
ple directly from the conditional fatigue indicator param-
eter for the distribution p θjNð Þ. In terms of
approximating the fatigue indicator posterior

distribution, the critical issue is not that we have i:i:d:
samples from p θjNð Þ but alternatively that we can com-
pose a large withdrawal of fatigue-related damage
θ-values such as microstructure or porosity,
θ 1ð Þ,…, θ Sð Þ� �

, whose empirical distribution approximates
p θjNð Þ. Roughly speaking, for any two different arbitrary
fatigue damage cases θa and θb, the following relation
can be established:

# θ sð Þ’s in the random experiment=withdrawal¼ θa
� �

# θ sð Þ’s in the random experiment=withdrawal¼ θb
� �

≈ p
θa Nj Þ
p θbjNð Þ

�
ð12Þ

When we think efficiently about how we compose such a
pool of fatigue indicator values, suppose we have the fol-
lowing pool of fatigue indicator parameters θ 1ð Þ,…, θ sð Þ� �
to which we would like to update it with a recent damage
value θ sþ1ð Þ from the transition matrix. Let us suppose we
update with a value θ� which is nearby θ sð Þ. Should we
include θ� in the pool or not? If its distribution
p θ�jNð Þ> p θ sð ÞjN� �

which is conditional on the current
value, then we want values nearby to θ�'s in the pool
than θ sð Þ's. Since θ sð Þ is already in the pool, then it seems
we should include θ� as well. On the other hand, if
p θ�jNð Þ< p θ sð ÞjN� �

, then it seems it should not necessar-
ily include θ� because we are getting further away from
the solution; the essence of the reinforced learning algo-
rithm is random sampling and measuring how close we
are getting to the solution (Is the current probability
higher than the previous probability?). If we get closer to
the solution, the sample is accepted; otherwise, rejected;
therefore, we reinforce an update on the algorithm if it
gets us closer to the solution. So perhaps our decision to
include θ� or not should be based on the relative relation
of p θ�jNð Þ to p θ sð ÞjN� �

. Luckily, this comparison can be

TABLE 2 Statistical parameters of

the fatigue-related influences for the

factors of dendritic width and powder

chemical composition and particle

size—input of the model

Statistical parameter

Dendritic width XY plane Dendritic width Z plane

Batch A Batch B Batch A Batch B

Shape β 3.26 3.27 2.40 2.27

Scale δ (μm) 0.31 0.41 0.61 0.69

Al wt.% Fresh powder Used powder

Shape β 27.01 21.53

Scale δ (wt.%) 88.55 90.85

Particle diameter Fresh powder Used powder

Shape β 4.51 2.59

Scale δ (μm) 25.29 28.97

3278 AWD ET AL.
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made even if we cannot compute the conditional fatigue
indicator parameter p θjNð Þ

r¼ p θ�jNð Þ
p θ sð ÞjN� � ¼ p Njθ�ð Þp θ�ð Þ

p Nð Þ � p Nð Þ
p Njθ sð Þ� �

p θ sð Þ� �
¼ p Njθ�ð Þp θ�ð Þ
p N jθ sð Þ� �

p θ sð Þ� � ð13Þ

where r is the acceptance ratio. When we compute r, the
following criterion is possible to apply:

• If r>1: since the current damage rate θ sð Þ is already
accounted for, it meets conventional wisdom to incor-
porate θ� which has a higher probability in the pool of
fatigue indicator parameters.

If r<1: the current pool already has a higher damage
rate probability and for every damage rate, θ sð Þ there
should be a fraction of θ�.

Decision: The updated fatigue damage rate θ sþ1ð Þ is
equal to the damage rate θ� or θ sð Þ with a frequency of r
or 1� r, respectively.80

The Metropolis algorithm progresses by surveying a
proposed fatigue damage value θ� nearby the current
value of the damage θ� using symmetric proposition dis-
tribution J θ�jθ sð Þ� �

, for example, a Gaussian distribution
(J designates a symmetric probability distribution). Sym-
metric here implies that J θbjθa� �¼ J θajθb� �

, that is, the
probability of suggesting an updated damage rate θ� ¼ θb

given that θ sð Þ ¼ θa is equal to the probability of suggest-
ing θ� ¼ θa given that θ sð Þ ¼ θb. Usually, J θ�jθ sð Þ� �

is very
straightforward, with samples from J θ�jθ sð Þ� �

being near
the sampled damage rates θ sð Þ with high probability such
that85

J θ�jθ sð Þ
� 	

¼ uniform θ sð Þ �σ, θ sð Þ þσ
� 	

J θ�jθ sð Þ
� 	

¼normal θ sð Þ, σ2
� 	

The amount of standard deviation σ is typically
selected to make the estimation algorithm run quickly
and effectively; therefore, it is a user-defined parameter.
Having obtained a suggested fatigue damage rate θ�, we
add either it or a copy of θ sð Þ to the pool of fatigue dam-
age rates, depending on the ratio r¼ p θ�jNð Þ=p θ sð ÞjN� �

:

Specifically, given θ sð Þ, the Metropolis algorithm for pro-
ducing an updated fatigue damage rate θ sþ1ð Þ embraces

Sample θ� � J θjθ sð Þ� �
• Calculate the acceptance ratio

r¼ p θ�jNð Þ
p θ sð ÞjN� �¼ p Njθ�ð Þp θ�ð Þ

p Njθ sð Þ� �
p θ sð Þ� �

• Respecting

θ sþ1ð Þ ¼ θ�

θ sð Þ

�
with probability min r, 1ð Þ
with probability 1�min r, 1ð Þ

min r, 1ð Þ stems from the fact that probability can be a
maximum of 1. The last point can be achieved by survey-
ing u�uniform 0, 1ð Þ and setting θ sþ1ð Þ ¼ θ� if u< r and
setting θ sþ1ð Þ ¼ θ sð Þ alternatively.

Numerical handling
The implementation of the Metropolis algorithm is very
similar to the implementation of the general Monte Carlo
algorithm. Therefore, here only the part related to the cal-
culation of the acceptance ratio in Equation (13) should
be implemented in the program. Additionally, the standard
deviation for J θ�jθ sð Þ� �

has to be properly conditioned.

2.2.5 | Estimation of error

In Bayesian analysis, the posterior distribution of a
fatigue-related influence can be calculated. When a loss
of accuracy occurs, the posterior distribution and a loss
function may also be used to construct Bayes estimates.
A loss function measures the costs of making a certain
statistical decision compared with the target fatigue life-
time. The fatigue lifetime squared-error loss function
based on the microstructure is

L M,Na
f

� 	
¼ M�Na

f

� 	2
ð14Þ

where M is the microstructure and Na
f and expected

fatigue lifetime. The Bayesian inference analysis aims to
minimize the error loss function for the fatigue lifetime.
The mean of the posterior distribution of microstructure

given a fatigue-related lifetime π MjNa
f

� 	
, denoted by M�,

is the Bayes estimate of microstructure M under the
squared-error loss function of fatigue lifetime. Further-
more, the absolute error can also give a linear deviation
from target fatigue lifetime values. The absolute-error
loss function of fatigue lifetime is defined as

L M,Na
f

� 	
¼jM�Na

f j ð15Þ
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where M is the microstructure and Na
f and expected

fatigue lifetime. The median of the posterior distribution
of microstructure given a fatigue-related lifetime
π MjNa

f

� 	
, denoted by M�, is the Bayes estimate of micro-

structure M under the absolute-error loss function of
fatigue lifetime.

3 | RESULTS AND DISCUSSION

3.1 | Transition probabilities

Figure 6 represents the discrete-time, finite-state, time-
homogeneous Markov chain from the state transition
matrix, based on sampling from the probability distribu-
tion of the dendritic width in the Z plane in batch A. We
will focus here on this parameter since it was hardly
investigated in the literature according to the introduc-
tion in this article. It is shown that an immensely high
number of transition states is possible within this fatigue
damage process with a uniformly distributed transition
probability. The property of the Markov chain is unique
since it handles the next fatigue damage scenario only
based on the present state without memory preservation
for historical precedents from the past. In our RL, the
training data refresh the algorithm's memory in every cal-
culation iteration. The use of the Markov chain thus pre-
vents any overfitting of the algorithm by the training data
since it has no memory from past sequences. Therefore,
the Markov property enhances the algorithm's predictive
power while avoiding overfitting simultaneously. The
transition matrix lists all possible states of the dendrite

that may be responsible for fatigue damage initiation.
The probability of a specific pass of the trajectory of den-
drites during the fatigue damage process will be equal to
the product of the initial transition probability and all fol-
lowing single-step transition probabilities. Similar forms
of transition probability Markov chains were constructed
for porosity, chemical composition, and powder particles.
All indicated nonlazy Markov chains without any transi-
tion step with a probability higher than 50%.

3.2 | Spectral gaps and the convergence
rates

The pink disc represents the spectral gap in Figure 7,
which is the difference between the two largest eigen-
value moduli.88 The spectral gap of the eigenvalues of the
transition matrix of the Markov chain of dendritic width
in the Z plane in batch A is shown in Figure 7. The spec-
tral gap controls the Markov chain's mixing time. Large
gaps imply a higher rate of mixing of possible microstruc-
tural failure trajectories during fatigue damage, while
small gaps suggest a lesser rate of mixing, according to89

tmix ϵð Þ¼ min
d tð Þ≤ ϵ

t ð16Þ

where t is the mixing time. We experience a nonlazy
Markov chain of microstructure here since there is no

FIGURE 6 Directed graph of the Markov chain with the

transition probability for batch A (no PH) based on dendritic width

in the Z plane associated with microstructure distribution [Colour

figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Plot of the spectral gap of the eigenvalues of the

transition matrix of the Markov chain for batch A (no PH) based on

dendritic width in the Z plane associated with microstructure

distribution [Colour figure can be viewed at wileyonlinelibrary.

com]
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probability for any given transition state higher than
50%, according to Figures 6 and 8. Since not all the eigen-
values are positive, the Markov chain is irreversible. The
missing time of the Markov chain is naturally occurring
here since the spectral gap is unbounded, which means
there are no restrictions on the fatigue damage scenarios
that can form from all possible trajectories in the sampled
microstructure. Therefore, we can sample from the prob-
ability distribution of porosity, microstructure, chemical
composition, or powder particle size without calculating
the normalizing constant by focusing only on the proba-
bility ratios of surrounding configurations as in
Equation (13).

Figure 8 represents the equilibrium probabilities of
the distribution of states of the Markov chain of dendritic

damage in the Z plane of batch A according to Grass-
mann et al.90 Through this diagram, the finite states of
the trajectories of the steps are shown, with state
18 experiencing the highest transitional probability. Since
the microstructural fatigue damage process exhibits sig-
nificant branching, it is necessary to consider the proba-
bility of a quasi-finite state only after a significant
number of steps where the accepted probability stabi-
lizes.91 Chikina et al92 highlighted the uncertainty when
the chain would reach a microstructural damage state
and a stationary statistical parameter quickly without
enough mixing. Therefore, the chain must run for a suffi-
ciently long time. Therefore, we circumvent this here by
using the concept developed by Brion et al.,93 which sim-
ply relies on the iterative evaluation of the steady states,
resulting in significantly faster accurate conversion with
0.1% accuracy.

Figure 9 establishes the heatmap of the proportion of
simulations of specific states reached by the chain in spe-
cific simulation steps. The stationary state of the Markov
chain can be used to estimate the transition of the fatigue
damage state, as shown by Benasciutti and Tovo.94 They
estimated the transition-cycles rain-flow matrix by the
Markov chain. The expected transition from one den-
dritic width to the other during the fatigue damage or
crack propagation process can be stabilized using the
Markov chain probability, as Spencer and Tang.95

3.3 | Convergence of the acceptance
probability

However, as shown earlier, we do not involve a determin-
istic finite element model here. On the contrary, we are

FIGURE 8 Plot of Markov chain distributions for batch A

(no PH) based on dendritic width in the Z plane associated with

microstructure distribution [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 9 Heatmap of the dendritic width

of batch A (no PH) in the Z-direction associated

with microstructure distribution with random

walks through a sequence of damage states in a

discrete-time Markov chain [Colour figure can

be viewed at wileyonlinelibrary.com]
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interested in purely the stationary distribution of the
damaged state of the microstructure. A more statistically
reliant model on Bayesian statistics was similarly pre-
sented by Rastogi et al.,96 which handled FCG in nuclear
piping by aiming to evaluate the posterior distribution
using the Markov process. The evolution of state proba-
bility and accepted probability is shown in Figure 10. The
calculation of accepted probability is based on the accep-
tance ratio in Equation (13). The concept of accepted
probability negates the instability of state probability
across withdrawals because of the random sampling in
the Monte Carlo process. The accepted probability in the
Metropolis Monte Carlo depends exclusively on the ran-
dom state of the microstructure that is transient in the
Markov Chain, according to Creutz.97 Miller et al.98

highlighted the importance of achieving a 50% fraction
acceptance in the Metropolis process for enough accu-
racy, although a lower percentage can still be more effi-
cient. Figure 10 achieved a 93% acceptance fraction since,
in 93% of the cases, the acceptance ratio of Equation (13)
did not update the damage state. In quantum Monte
Carlo simulations, Ceperley99 had to modify step incre-
ment to achieve a fraction of acceptance higher than
90%, which is achieved here without adjustment of the
steps because of the use of sufficiently dense prior
distributions.

Approximately 70% of the available fatigue data was
used to train the Monte Carlo (MC) model, while the
remaining was used for testing. The grouping was done
based on the minimum training data to produce an
acceptable accuracy against the testing data. Figure 11
compares the predicted percentiles of the fatigue data
and the number of cycles to failure resulting from the
fatigue tests. A good agreement between the predicted

curve and experimental points across the whole range
can be found. Even when the model is handling a physi-
cally and fundamentally different mix of data points from
the point of view of testing frequency and strain rate, the
precision of the model is quite acceptable. This is an
inherent advantage of data-driven models, which are
nonphenomenological models but could be coupled with
mechanistic models to further increase predictive
power.100,101 In a future study, the developed data-driven
model here will be coupled with a mechanistic fatigue
damage model to elevate the model utility. Worth men-
tioning that the model presented here has a good charac-
ter of handling fatigue scatter in the data points even
when this scatter is extremely higher in batch A com-
pared with batch B. The scatter in batch B is significantly
lower, yet the model shows enough flexibility and adap-
tive handling for each material condition. This model
may be a viable solution for the dispersion problem of
testing data in the VHCF regime, which was handled by
consideration of heat dissipation.102 However, using the
Metropolis model without extensive experimental data
showed good scatter prediction outcomes without

FIGURE 10 Comparison between state probability and

accepted probability for 100 withdrawals of the dendritic width of

batch A (no PH) in the Z-direction associated with microstructure

distribution [Colour figure can be viewed at wileyonlinelibrary.

com]

FIGURE 11 Comparison between outcomes of the Monte

Carlo (MC) algorithm and the experimental data: (A) Batch A

(no PH); (B) Batch B (PH) [Colour figure can be viewed at

wileyonlinelibrary.com]
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underestimation of scattering; as shown earlier, a simpler
Monte Carlo was used.103 In this study, the Metropolis
Monte Carlo algorithm in a Bayesian setting, along with
the character of the RL algorithm, promoted the tradi-
tional Monte Carlo algorithm to a ML character with suf-
ficient predictive power. It is planned to enhance this
power in the future by coupling it with phenomenologi-
cal modeling and continuum damage theories.40,41

3.4 | Predicted influence of
heterogeneity on fatigue strength

The strength of the influence of the studied factors on
fatigue strength is given in Figure 12. For batch A, the
fraction of Al wt.% has the greatest influence on fatigue
strength at 120 MPa of stress amplitude, and the
dendritic width in the Z plane had the lowest influence.
The second least influential factor at 120 MPa for batch
A was powder particle size. The defect projected area in
the Z-direction (load-bearing axis) and the dendritic
width in the XY plane have closely similar effects. For
batch A at 140 MPa, the dendritic width in the XY plane

is the most influential, while other parameters were simi-
larly less significant. At 120 MPa of stress amplitude,
batch B was heavily influenced by powder particle
size and dendritic width in the XY plane microstructure.
Projection of defects in the Z-direction, Al wt.%, and
Z microstructure similarly played a less important
role. The combination of Al wt.%, Z microstructure, XY
microstructure, and defect projection in the Z-direction
was similarly influential for batch B at 140 MPa, while
powder particle size played the least significant
influence.

Siddique asserted the microstructure's influence on
this alloy's fatigue strength in this range of loading.61

Beretta placed a great emphasis on the projected area
and its role in fatigue scatter.104 We found this particu-
larly true here in Figure 12A. However, second to the
influence of chemical composition and microstructure,
which does not contradict Berretta104 or even much ear-
lier statements by Murakami and Endo,105 who did not
discuss these influences in isolation but as secondary
influences interacting with the projected area. Schön-
bauer and Mayer106 asserted that Murakami and Endo105

are true if the crack propagation phase highly influences
the fatigue strength in sharply notched defects. Biswal
et al.68 confirmed this by stating that below a certain
defect size and beyond a certain morphology, retarded
short crack behavior undermines the influence of defects
on fatigue strength in favor of other factors.

4 | SUMMARY

A reinforcement ML technique is applied to an additively
built AlSi12 alloy using Bayesian inferential statistics and
the Metropolis Monte Carlo algorithm. The aim was to
determine the posterior distributions of fatigue strength.
This research aims to determine the effect of structural
heterogeneity on extremely HCF strength in AM. To pro-
duce specimens from AlSi12 powder, a laser beam melt-
ing system was employed. The device was equipped with
a 400 W fiber laser capable of deposition platform tem-
peratures up to 200�C. A cluster of pores precipitated the
failure in the specimen's immediate subsurface. The fail-
ure did not begin with the biggest or most asymmetrical
flaw. Monte Carlo techniques and processes may help
build a posterior estimate of fatigue strength using a
simulation-based inference technique. The Markov prop-
erty of the Markov chain is unique in that it determines
the next scenario of fatigue damage only based on the
current state. The heatmap showed the equilibrium prob-
ability of the distribution of states of the Markov chain of
dendritic. Large gaps suggest a faster mixing of micro-
structural failure paths during fatigue damage. The

FIGURE 12 Squared-error loss function of the predicted

fatigue strength: (A) Batch A (no PH); (B) Batch B (PH) [Colour

figure can be viewed at wileyonlinelibrary.com]
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acceptable probability in Metropolis Monte Carlo is
entirely dependent on the random state of the micro-
structure that is transitory in the Markov chain. A 93%
fraction acceptance achieved sufficient precision without
tunning. The model offered a potential solution to the
dispersion issue associated with testing data in the VHCF
regime. The fraction of chemical composition was shown
to significantly influence fatigue strength in addition to
traditionally discussed influences such as projected area,
which is of higher significance if fatigue lifetime in crack
propagation is dominant.
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NOMENCLATURE

N Number of cycles
Δσ Stress range
β Shape parameter
δ Scale parameter
B Fatigue lifetime threshold
C Fatigue strength threshold
Pz Projected area in the Z-direction
dp Pore diameter
σa Stress amplitude
Nf Number of cycles to failure
f N ,Δσð Þ Lifetime and stress range conjugates
N
~

Sampled number of cycles
N
~

f
Sampled fatigue lifetime

θ True mean failure rate
S Sample
Ψn Random fatigue damage state
r Acceptance ratio
σ Deviation
M Microstructure sample
Na

f Expected fatigue lifetime

π MjNa
f

� 	
Posterior distribution of microstructure
given a fatigue-related lifetime

t Mixing time in the Markov chain
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