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Abstract 

Background: An important problem in toxicology in the context of gene expression 
data is the simultaneous inference of a large number of concentration–response rela-
tionships. The quality of the inference substantially depends on the choice of design 
of the experiments, in particular, on the set of different concentrations, at which 
observations are taken for the different genes under consideration. As this set has to be 
the same for all genes, the efficient planning of such experiments is very challeng-
ing. We address this problem by determining efficient designs for the simultaneous 
inference of a large number of concentration–response models. For that purpose, we 
both construct a D-optimality criterion for simultaneous inference and a K-means pro-
cedure which clusters the support points of the locally D-optimal designs of the indi-
vidual models.

Results: We show that a planning of experiments that addresses the simultaneous 
inference of a large number of concentration–response relationships yields a sub-
stantially more accurate statistical analysis. In particular, we compare the performance 
of the constructed designs to the ones of other commonly used designs in terms 
of D-efficiencies and in terms of the quality of the resulting model fits using a real data 
example dealing with valproic acid. For the quality comparison we perform an exten-
sive simulation study.

Conclusions: The design maximizing the D-optimality criterion for simultaneous 
inference improves the inference of the different concentration–response relationships 
substantially. The design based on the K-means procedure also performs well, whereas 
a log-equidistant design, which was also included in the analysis, performs poorly 
in terms of the quality of the simultaneous inference. Based on our findings, the D-opti-
mal design for simultaneous inference should be used for upcoming analyses dealing 
with high-dimensional gene expression data.

Keywords: Optimal design, Gene expression, Nonlinear regression, High-dimensional 
data

Introduction
An important problem in toxicology in the context of gene expression microarray 
data is the simultaneous inference of a large number of concentration–response rela-
tionships. While gene expression of each gene is observed individually within the 
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concentration–response experiments, the corresponding different experimental condi-
tions, i.e. the concentrations, have to be the same for all genes. Therefore, the crucial 
question is how the different conditions should be allocated in order to reduce the costs 
of the expensive gene expression experiments while achieving a high informativeness of 
the resulting data.

Concerning the statistical analysis based on these experiments, the concentration–
response relationships are typically modelled by nonlinear parametric curves to obtain 
certain parameters of interest for the individual genes, such as alert concentrations or 
the effect of a prespecified concentration on certain genes (see [1–3], among many oth-
ers). Moreover, in each of these cases, the quality of the described inference substantially 
depends on the choice of the set of different conditions, at which observations are taken 
simultaneously for all genes. Thus, this paper is devoted to the construction of efficient 
sets of experimental conditions, also called optimal designs, that can be used for the 
simultaneous inference of a large number of nonlinear concentration–response curves.

Although determining optimal experimental designs for parametric curves has found 
considerable interest in the literature for the individual analysis of concentration–
response relationships [4] and especially for the sigmoid Emax model [5–7], there is 
only a few literature on optimal design theory for multiple parametric curves. Dette and 
Schorning [8] constructed designs for the comparison of two different concentration–
response curves, whereas Feller et  al. [9] determine Determinant-optimal (D-optimal) 
designs for several concentration–response curves which share some parameters, but 
in both cases the resulting optimal designs are individually determined for each curve 
under consideration. Dror and Steinberg  [10] developed robust designs based on a 
K-means algorithm for multiple experiments, but in the context of multivariate general-
ized linear models, which cannot directly be adapted to the situation considered in this 
paper. In the setting of high-dimensional microarray data, Dong et al.  [11] introduced 
a procedure to obtain the maximally informative next experiment (MINE) for a high-
dimensional linear model, in which the number of model parameters exceeds the sam-
ple size significantly. Recently, MINE was further investigated and extended to nonlinear 
models by Bouffier et al. [12] as well as McGee and Buzzard [13], respectively. Neverthe-
less, the MINE procedure is not applicable to the setting of this paper, as neither sequen-
tial approaches nor high-dimensional model parameters are included.

Instead, the design criteria developed in this paper aim for non-sequential designs that 
are efficient for all parametric concentration–response curves in terms of D-optimality. 
Therefore, the resulting designs for simultaneous inference contain information both 
about the allocation of the concentrations and about the relative amount of observations 
that should be taken at each concentration, respectively. In particular, we construct a 
D-optimality criterion for simultaneous inference by adapting the approach of Bayesian 
optimality criteria introduced by Chaloner [14] in combination with D-efficiencies (see 
[15], among many others). Although the resulting criterion is similar to the ones used in 
the case of one concentration–response curve, where the uncertainty of the true param-
eter is incorporated, its target is different, as it addresses the precise simultaneous infer-
ence of a large number of different curves. In a second approach, we use the large set of 
locally D-optimal designs obtained by considering the different curves individually and 
construct a cluster design based on a K-means cluster algorithm. In contrast to [10] the 



Page 3 of 21Schürmeyer et al. BMC Bioinformatics          (2023) 24:393  

resulting algorithm is based on the approximate designs and directly applicable to the 
situation of concentration–response modelling.

Further, we demonstrate that the resulting optimal designs yield a substantially more 
accurate statistical analysis, using an application of our developed methods on a gene 
expression data set provided by Krug et  al.  [16]. In this study the expression level of 
54,675 genes exposed to valproic acid (short: VPA) is measured at eight different con-
centrations (including placebo), and we show that using the developed optimal designs 
results in significantly more precise model fits of the concentration–response curves 
than using the eight original concentrations. Moreover, we compare the optimal designs 
with commonly used designs in practice, in particular with the equidistant and log-equi-
distant design. Thereby, we illustrate that the log-equidistant design is clearly insufficient 
for such analyses, while the equidistant design performs well.

The criteria developed in this paper depend on prior knowledge on the genes, in par-
ticular on the distribution of the corresponding nonlinear parameters within the con-
centration–response modelling. Possible application scenarios are experiments where 
prior knowledge is available either from previous experiments or from results on similar 
experiments given in the literature. In the latter setting, our approach is especially useful 
when the aim of the planned experiment is the reproduction of a former experiment in 
another laboratory.

Furthermore, a huge advantage of our approach is its flexibility. If a different substance 
with different characteristics is of interest, our method is directly adjustable to the new 
setting. Besides there is no restriction on the prior knowledge used for the developed 
criteria. For example, if only specific previously known gene groups are of interest this 
can be incorporated in the prior distribution in order to construct a design for simulta-
neous inference for these specific gene groups.

The remaining paper is structured as follows. First we introduce the situation under 
consideration and present two new methods for constructing optimal designs for simul-
taneous inference in the section  “Methods”. Then we evaluate the performance of the 
developed methods on a real data example (VPA data set, see [16]). While the sec-
tion “Designs for simultaneous inference of VPA-data” provides a detailed explanation 
of the construction of optimal designs based on this data set, in the section “Comparison 
of the designs” the performance of these new designs is compared to the original design 
and to commonly used designs in practice, in particular the equidistant and log-equi-
distant design. Here, we both analyse the theoretical efficiencies of the different designs 
under consideration and the results of an extensive simulation study. Finally, some con-
clusions and an outlook are given.

Methods
Classical optimal design theory

We assume that the same parametric model can be used to fit a curve describing the 
concentration–response relationship of each gene. More precisely, we assume that the 
data of each gene can be described by a nonlinear regression model

(1)Yij = η(xi, θ)+ εij j = 1, . . . , ri; i = 1, . . . , n,
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where εij are independent centered normally distributed random variables, that is, 
εij ∼ N (0, σ 2) . This means that observations are taken at n concentrations x1, . . . , xn 
which vary in the design space X = [0, xmax] ⊂ R and ri observations Yi1, . . . ,Yiri are 
taken at each concentration xj ( j = 1, ..., n ). Moreover, let N =

∑n
i=1 ri denote the total 

sample size. In general, a regression model η(·, θ) with a p-dimensional parameter vector 
θ ∈ � ⊂ R

p is used to describe the dependence between the concentration (of a toxic 
compound) and the response.

Following Kiefer  [17], we define an approximate design ξ as probability measure with 
mass wi at the different support points xi ∈ X  , which we denote by

If an approximate design is given and N observations can be taken, a rounding proce-
dure [18] is applied to obtain integers ri ( i = 1, . . . , n ) from the not necessarily integer 
values quantities wiN  , respectively. Then, under common assumptions of regularity 
and the assumption limN→∞

ri
N = wi ( i = 1, . . . , n ) the maximum likelihood estimator 

θ̂ = (θ̂1, . . . , θ̂p)
T satisfies

as N → ∞ , where the symbol D−→ denotes weak convergence. The matrix M(ξ , θ) is 
called information matrix of the design ξ and is defined by

where ∂
∂θ
η(x, θ) is the gradient of the regression function η(x, θ) with respect to the 

parameter θ ∈ R
p . Note that the gradient ∂

∂θ
η(x, θ) depends on the unknown but true 

parameter vector, if the considered model η(x, θ) is nonlinear. The information matrix 
M(ξ , θ) is a measure of the information gained if the design ξ is used. Consequently, 
designs that result in a large information matrix M(ξ , θ) in some sense, are appropriate. 
In practice, several criteria are measuring the quality of a design regarding the resulting 
information matrix and one of the most popular ones is the D-optimality criterion (see 
[17]). To be precise, a design ξ∗θ  is called locally D-optimal, as it is proposed by Cher-
noff [19], for estimating the parameter θ when it maximizes the concave functional

among all designs ξ on the design space X  , indicating the dependence of the D-optimal 
design on the parameter θ . One key advantage of working with approximate designs and 
concave criteria is that convex optimization theory can be applied. As a consequence, 
a general equivalence theorem is available to verify whether a design is locally optimal 
among all designs. In particular, the locally D-optimality of a design ξ∗θ  can be validated 
by checking whether the inequality

ξ = x1 . . . xn
w1 . . . wn

.

√
N (θ̂ − θ)

D−→ N (0, σ 2M−1(ξ , θ))

M(ξ , θ) =
∫

X

∂

∂θ
η(x, θ)

(

∂

∂θ
η(x, θ)

)T

dξ(x),

(2)ψD(ξ , θ) = det(M(ξ , θ))1/p

(3)d(x, ξ∗θ , θ) =
∂

∂θ
ηT (x, θ)M−1(ξ∗θ , θ)

∂

∂θ
η(x, θ)− p ≤ 0
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is satisfied for all x ∈ X  (see [20]).
In order to investigate the quality of a (non-D-optimal) design ξ , we consider its D-effi-

ciency which is defined by

(see [21], among many others), and whose value is within the interval [0, 1] by defini-
tion. The better the design ξ in terms of the D-optimality criterion ψD is, the greater is its 
D-efficiency. Note that the D-efficiency also depends on the unknown parameter θ , if the 
model in (1) is nonlinear.

Optimal designs for simultaneous inference

In the situation of the paper, let G ∈ N be the number of different genes considered in the 
experiment. Then G corresponding different concentration–response curves (with dif-
ferent true parameter vectors) of the form (1) have to be fitted simultaneously using the 
same design ξ . Due to the dependence of the locally D-optimal designs on the unknown 
parameters, there is no locally D-optimal design which is appropriate for the simultane-
ous estimation of the G different curves. In particular, let θ(1)  = θ(2) be two parameter 
vectors of two different curves. Then the D-efficiency of the locally D-optimal design ξ∗

θ(1)
 

might be low if used for estimating the curve where θ(2) is the actual true parameter vec-
tor and vice versa.

Consequently, a design is required that provides high D-efficiencies for all G param-
eter vectors and we introduce an optimality criterion that addresses this need. More 
precisely, let π be a discrete distribution on the set �G which contains the different 
parameter vectors of the G different considered curves. Then a design ξ∗�G

 is called 
D-optimal for the simultaneous inference (short version: simultaneous D-optimal) if

is maximized by ξ∗�G
 among all designs ξ on the design space X  . Moreover, it can be 

checked if a given design ξ is simultaneous D-optimal by checking whether the inequality

is satisfied for all x ∈ X  , where the function d(x, ξ , θ) is defined in (3). A Proof of this 
statement is given in the Additional file 1. Note that criteria that are of similar form as 
(5) were first introduced by Pronzato and Walter [22], Chaloner [14] as well as Chaloner 
and Larntz [23] and are also known as Bayesian or robust optimality criteria. These cri-
teria are classically used if there is less knowledge about the unknown parameter value 
of one parametric curve which should be estimated. In this case a prior distribution, π , 
on the parameter space � is used to average the locally D-optimality criterion given in 
(2) with respect to different parameter values (see [24, 25], among others). Although the 
criteria are similar to the one defined in (5), we emphasize that the target of the latter 
mentioned is the finding of a design that results in good efficiencies for the G different 
parametric curves. In particular, the simultaneous D-optimality criterion prevents being 

(4)EffD(ξ , θ) =
ψD(ξ , θ)

ψD(ξ
∗
θ , θ)

(5)�(ξ ,π) =
∑

θ∈�G

π(θ)EffD(ξ , θ),

(6)s(x, ξ ,π) =
∑

θ∈�G

π(θ)EffD(ξ , θ)d(x, ξ , θ) ≤ 0
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affected by different sizes of the G different information matrices by standardizing via 
the D-efficiencies.

Also, the simultaneous D-optimality criterion becomes more complex, the more com-
plex the set �G and the corresponding distribution π are. This might result in numerical 
problems when the corresponding simultaneous D-optimal design has to be calculated 
for a great number G of different parametric curves. One approach is the reduction of 
the support of the distribution π to a smaller set �̃ ⊂ �G that represents the complete 
set �G appropriately.

Another approach for the construction of an appropriate design in the situation of 
simultaneous inference is motivated by a K-means cluster algorithm originally pro-
posed by Hartigan and Wong [26]. More precisely, denote the support of a design ξ by 
supp (ξ) and let supp (ξ∗g ) be the support of the locally D-optimal design for estimat-
ing the parameter θ g , θ g ∈ �G . Moreover, denote the intersection of all supports by 
C0 = ∩G

g=1 supp (ξ∗g ) and the union of all supports by C = ∪G
g=1 supp (ξ∗g ) . Fixing the 

number of different experimental conditions to L ∈ N
≥p , the K-means design with L dif-

ferent experimental conditions is determined in four consecutive steps: 

1. Determine L̃ ≤ L different elements c1, . . . , cL̃ in C0 and set K = L− L̃.
2. Divide the set C \ C0 into K disjoint sets C1, . . . ,CK  that satisfy ∪K

k=1Ck = C \ C0 , 
using the K-means algorithm with Euclidean distance. Moreover, calculate the center 
of the set Ck by 

 for k = 1, . . . ,K  , respectively, where #A denotes the number of different elements in 
a discrete set A.

3. Repeat the second step J times. In the j-th step, sort the resulting cluster centers and 
denote them by c̄j (1) < · · · < c̄j (K ) . Calculate the mean of the k-th ordered center by 

 for all k = 1, . . . ,K .
4. The K-means design with L different experimental conditions is given by the proba-

bility measure with equal masses 1L at the different experimental conditions c1, . . . , cL̃ 
(see 1. step) and c̃1, . . . , c̃K  (see 3. step). It is denoted by 

Equal weights are used for the K-means design with L experimental conditions ξL for 
simplicity, other weights that incorporate the distribution of the different parameter val-
ues of the G different parametric curves can also be used. The third step of the algo-
rithm is included to obtain robustness with respect to the resulting clusters. Moreover, 
the algorithm can be further improved by using methods provided by Apon et al.  [27] 
among many others.

c̄k = 1

#Ck

∑

ck∈Ck

ck ,

c̃k = 1

J

J
∑

i=1

c̄i (k)

ξL =
(

c1 · · · cL̃ c̃1 · · · c̃K
1
L · · · 1

L
1
L · · · 1

L

)

.
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Note that Dror and Steinberg [10] proposed a similar heuristic approach for construct-
ing robust exact optimal designs based on a K-means algorithm for multivariate gener-
alized linear models. While [10] use a rough grid over the parameter space and exact 
designs, all considered model parameters are included in our approach. Moreover, our 
approach is based on the corresponding locally D-optimal approximate designs. While 
the number of clusters K is variable in the algorithm of [10], we fix the number of clus-
ters in advance to a fixed K.

Although the K-means design is based on locally D-optimal designs, and therefore on 
convex design criteria, it is not possible to derive sufficient and necessary conditions of 
the form (6) to check the optimality of the K-means design.

The sigmoid Emax model

In the context of gene expression data, the concentration–response relationship often 
shows a sigmoidal course. Therefore, the regression model in (1) is frequently used with 
the sigmoid Emax function as regression function η(·, θ) (see  [28]). For a concentra-
tion x ∈ X = [0, xmax] and a parameter vector θ = (E0, Emax, EC50, h) ∈ R

4 , the sigmoid 
Emax function is defined by

where the parameter E0 describes the effect at the placebo concentration, x = 0 , and 
the parameter Emax specifies the maximal effect associated with the considered com-
pound. Moreover, the parameter EC50 denotes the mean effective concentration, which 
describes the concentration at which 50% of the maximal effect associated with the com-
pound is attained and the hill parameter h quantifies the slope of the regression function 
[28].

The sigmoid Emax function in (7) is nonlinear in the parameters EC50 and h such that 
its information matrix M(ξ , θ) and the locally D-optimal design ξ∗ depend on these 
parameters. Due to the complexity of the sigmoid Emax function, the locally D-opti-
mal designs maximizing the criterion in (2) cannot be determined analytically. However, 
results are available about the structure of the locally D-optimal design: In particular, 
Wang and Yang  [7] proved that the locally D-optimal design consists of four different 
support points, while Li and Majumdar  [6] derived that two of these support points 
equal the boundary points of the design space X = [0, xmax] . Using Lemma 5.1.3. stated 
in [29] the locally D-optimal design ξ∗ for the sigmoid Emax model is of the form

where x2, x3 ∈ X  have to be calculated numerically in dependence on θ.

Designs for simultaneous inference of VPA‑data
In the following sections, the construction of designs for simultaneous inference is illus-
trated by an application on a gene expression data set, called VPA-data [16]. In the sec-
tion “Data”, the VPA-data set is described, whereas the section “Data preprocessing and 

(7)η(x, θ) = E0 +
xh · Emax

xh + ECh
50

,

ξ∗ =
(

0 x2 x3 xmax

0.25 0.25 0.25 0.25

)

,
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analysis” provides a description of the initial data preprocessing and analysis steps. In 
the section “Construction of K-means and D-optimal design for simultaneous inference”, 
we construct both the K-Means design and the simultaneous D-optimal design aiming 
for a precise inference of the concentration–response relationships of the VPA-data. All 
analyses were performed using the statistical software R, version 4.2.2 [30].

Data

In a study proposed by Krug et al. [16] human embryonic stem cells were exposed to val-
proic acid (short: VPA). Originally the neurotoxicity was evaluated by conducting exper-
iments with Affymetrix Human Genome U133 Plus 2.0 gene chips. The gene expression 
values for 54,675 probe sets were evaluated in a crude form. For the sake of clarity, the 
probe sets are simply considered as genes in the following. The design space X  of poten-
tial concentrations is given by X = [0, 1000] and the responses were measured at the 
concentrations 25, 150, 350, 450, 550, 800, and 1000 µ M conducted three times with 
different experiments. Additionally, the placebo concentration 0 was executed six times. 
Thus, 27 measurements at 8 different concentrations are available for each gene. The 
corresponding approximate design denoted as original design ξorig is given by

Data preprocessing and analysis

First, the data of the 54,675 genes are examined with respect to their biological activ-
ity. More precisely, we use the multiple contrast test of the multiple contrast procedure 
method (MCP-Mod) introduced by Bretz et al.  [31] to detect genes whose concentra-
tion–response relationship follows a sigmoid Emax model defined by (7) to ensure 
a convenient model fit. Although we are reducing the data set we are not interested 
in a dimensionality reduction of the data set or identifying specific gene sets. Such 
approaches have been proposed by Azadifar et al.  [32] and Rostami et al.  [33], but are 
not considered in this paper. The MCP-Mod procedure requires specifications for the 
nonlinear parameter values of the used model, which are the EC50 and h parameter in 
case of the sigmoid Emax model. Following Duda et al. [34], we fix these parameters to 
EC50 = 450 and h = 5.118 . Note that no adjustment for multiple testing was conducted. 
In contrast to multiple testing procedures, which aim at controlling the type I error, our 
goal is to develop and analyse methods on a huge number of genes. In doing so we want 
to identify all genes with a sensible sigmoidal model course. Thus we set the significance 
level to α = 0.01 . According to the MCP-Mod procedure 33,884 genes are not signifi-
cant, which implies these cannot be modelled properly by the sigmoid Emax model and 
biological activity cannot be assumed for these genes. For 20,791 genes, the sigmoid 
Emax model is significant, which indicates that biological activity and a convenient sig-
moid Emax model fit can be assumed.

We now concentrate on the analysis of the remaining 20,791 genes and the correspond-
ing concentration–response relationships. In particular, we fit a regression model of the 
form (1) with the sigmoid Emax function (7) to the data of each gene using maximum-
likelihood estimation. The estimation is provided by the function fitMod contained in 

ξorig =
(

0 25 150 350 450 550 800 1000
2
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

)

.
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the R-package DoseFinding [35] with corresponding predefined parameter restric-
tions for the nonlinear parameters EC50 ∈ [0, 1500] and h ∈ [0.05, 10] . In the case of a 
fitted EC50 > 1000 , the concentration at which 50% of the maximal effect is attained lies 
outside the design space X = [0, 1000] . From the point of view of experimental design, 
the constellation of an EC50-value outside the design space is not reasonable and will 
result in an insufficient model fit independent from the design. In particular, the model 
fits will nevertheless aim for an estimate of EC50 inside the design space. Thus, we restrict 
ourselves to the analysis of the concentration–response curves whose estimated param-
eter θ̂ is contained in the parameter space � = R× R× [0, 1000] × [0.05, 10] ⊂ R

4. Fur-
thermore, we removed data of other 85 genes, as their parameter combinations lead to 
numerical instabilities in the further analysis. Summarizing, the data set is reduced to 
G = 15,233 genes and we store the corresponding parameter estimates of the data set in 
a reduced parameter space �G , defined by

We now focus on the distribution of the nonlinear parts of the parameter estimations, 
that is (EC50, h)

T and analyse the distribution of the values contained in the two-dimen-
sional set

on �̃ = [0, 1000] × [0.05, 10] . Figure 1 illustrates the distribution of the steepness h and 
the EC50 of every fitted sigmoid Emax model on �̃ displaying a (5× 5)-grid classification 
on �̃ of the parameter estimates contained in �̃G.

Due to the contrast levels an accumulation for genes with high steepness parameters 
independent of the EC50-value is clearly visible through the darker areas. In particular, 
for 31.7% of all genes the estimated steepness parameter is given by ĥ = 10 , which is the 
upper bound for h within the parameter space � . For 56.2% of the considered genes it 
holds ĥ ∈ (2, 10) . Concentrating on the EC50-values (independent from h), 84.5 % of the 
estimates take values in the interval (200, 800). Both small values i.e. ˆEC50 ≤ 200 , and 
high values, i.e. ˆEC50 > 800 , are rarely present (7.7% and 7.8%).

(8)�G = {θ g = (Ê0, Êmax, ÊC50, ĥ)
T |∃g ∈ {1, . . . , 15233} : θ g ∈ �}.

(9)�̃G = {(ÊC50, ĥ)
T | ∃g ∈ {1, . . . , 15233} : θ g ∈ �}.
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Fig. 1 Heatmap of steepness h and EC50 of �̃G , encircled areas correspond to frequencies higher 5%
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Note that each of the seven areas in Fig. 1, which are encircled in black, indicates 
a frequency of more than 5% and the union of these seven areas constitutes 61% of 
the parameter estimates contained in �G . Therefore, we concentrate on the analy-
sis of these areas, which are listed with corresponding representative estimates in 
Table  1. Note that the representative parameter estimates were drawn randomly 
from each of the seven areas, respectively, and that we denote the set of these vec-
tors by �7 = {θ1, . . . , θ7}.

In Fig.  2 the resulting estimated sigmoid Emax curves of the seven representa-
tive parameter estimates are shown, where the E0 and Emax values are set to 1 and 
−1 , respectively, for the sake of comparability. We observe that the representative 
parameter estimates result in both curves that are saturated within the design space 
X = [0, 1000] (i.e. representatives 4 and 6) and in curves that are still significantly 
decreasing at the upper bound of the design space X  (see representative 1,  2,  3). 
Thus, the determination of a design that is suitable for the joint estimation of these 
different curves is demanding and we concentrate on that task in the following 
section.

Table 1 Representative parameter vectors θ i of parameter set �7 and corresponding weight 
distribution π7 for the representated areas with frequencies higher than 5%

Representated Area �7 EC50 h π7(θ
g)

(200, 400] × (2, 4] θ1 298.81 2.53 0.1192

(400, 600] × (2, 4] θ2 575.00 3.77 0.1633

(600, 800] × (2, 4] θ3 758.84 2.72 0.0897

(400, 600] × (4, 6] θ4 469.36 4.00 0.1225

(200, 400] × (8, 10] θ5 310.60 10.00 0.2009

(400, 600] × (8, 10] θ6 501.97 10.00 0.2172

(600, 800] × (8, 10] θ7 747.88 10.00 0.0872
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Repr. 5 (EC50,h)T= (311,10)T

Repr. 6 (EC50,h)T= (502,10)T

Repr. 7 (EC50,h)T= (748,10)T

Fig. 2 Sigmoid Emax model fits to the representative parameter vectors given in Table 1 where the linear 
parameters are fixed to E0 = 1 and Emax = −1 , respectively
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Construction of K‑means and D‑optimal design for simultaneous inference

For the construction of the K-means design and the simultaneous D-optimal design, the 
locally D-optimal designs based on the G = 15,233 different parameter estimations in �G 
are necessary. Moreover, the locally D-optimal designs for these parameters are needed 
for the calculation of the D-efficiencies defined by (4). Consequently, we first determined 
the locally D-optimal designs using the results of its principle structure stated in the sec-
tion “The sigmoid Emax model”. In particular, in the present situation the locally D-opti-
mal design ξ gDopt for a particular parameter θ g = (Ê0, Êmax, Ê50, ĥ)

T ∈ �G is of the form

The additional support points x2, x3 were calculated numerically in dependence of θ g 
using the particle swam optimization-algorithm (PSO), which is a heuristic optimization 
algorithm (see [36] for details). To check the D-optimality of the designs obtained by 
PSO, the inequality of the corresponding Equivalence Theorem given in (3) was checked, 

respectively. Note again that it holds ξ gDopt  = ξ
g ′

Dopt for θ g  = θ g
′ , in general and a design 

that is D-optimal for θ g might not be appropriate for the parameter θ g ′ (see the sec-
tion “Optimal designs for simultaneous inference” and “The sigmoid Emax model” for 
details).

For the construction of an equally weighted K-means design, we follow the procedure 
described in the section  “Optimal designs for simultaneous inference”. Imitating the 
property of the original design given in Table  2, which has 8 support points with the 
placebo concentration weighted twice, the total number of different support points for 
the K-means design is fixed to L = 9 . Due to the structure of the 15,233 different locally 
D-optimal designs the intersection of all supports is given by C0 = {0, 1000} , such that 
L̃ = 2 . Thus, the clustering is done for K = 9− 2 = 7 clusters on the set C \ C0 which 
contains the support points of the different locally D-optimal designs without the con-
centrations 0 and 1000. The resulting equally weighted K-means design with 9 support 
points (short: K-means design) can be found in Table  2 where the support points are 
rounded to integers for the sake of readability.

ξ
g
Dopt =

(

0 x2 x3 1000
0.25 0.25 0.25 0.25

)

.

Table 2 Considered designs with information of used concentrations and corresponding weights

Design Notation Concentrations and corresponding weights

Original ξorig 0 25 150 350 450 550 800 1000
2
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Equidistant ξequi 0 125 250 375 500 625 750 875 1000
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Log-equidistant ξlog 0 1 3 7 19 52 139 373 1000
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

K-means ξkmeans 0 89 209 326 428 536 652 798 1000
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

Simultaneous D-optimal ξ�7
0 145 280 345 457 575 656 781 1000

0.17 0.05 0.12 0.12 0.11 0.14 0.03 0.06 0.20
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For the determination of the simultaneous D-optimal design in (5), a discrete distri-
bution π on �G is necessary. The choice of the uniform distribution on the parameter 
set �G given by (8) is not appropriate in the case under consideration, as the number of 
different parameter estimates contained in this set is huge ( G = 15,233 ) and the corre-
sponding D-optimality criterion for simultaneous inference becomes numerically insta-
ble. Therefore, we recall the seven areas and the corresponding representative parameter 
estimates presented in Table 1 instead. We set the support of the considered distribution 
π to the set �7 = {θ1, . . . , θ7} , which are the representative parameter estimates of the 
seven significant parameter areas (see Table 1). For θ ∈ �7 , the probability π(θ) = π7(θ) 
is set to the readjusted relative frequency of the corresponding area, which is listed in 
the last column of Table 1. For θ ∈ �G \�7 , it then follows π7(θ) = 0.

Using PSO based on the distribution π7 , we obtain the simultaneous D-optimal design 
given in Table 2 where the support points are again rounded to integers for the sake of 
readability. Note that the optimality of the design ξ�7 can be checked by plotting the 
function s(x, ξ�7 ,π7) given in (6) (see Additional file 1: Figure S1).

In the section  “Comparison of the designs”, the K-means design, the simultaneous 
D-optimal design and the original design are compared concerning different measures of 
performance. Furthermore, we include an equidistant and a log-equidistant design with 
nine support points on the design space X = [0, 1000] in the analysis, since such designs 
are commonly used in the context of gene expression data (see [37, 38], among many 
others). While Pinheiro and Bornkamp  [39] argued that the log-equidistant design is 
superior to the equidistant design if used for the analysis of one concentration–response 
curve, we investigate whether this also holds true in the context of the simultaneous 
analysis of gene expression data.

All designs under consideration are shown in Table 2, an illustration of them is con-
tained in the Additional file 1: Figure S2.

Comparison of the designs
In the following sections, the performances of the different designs depicted in Table 2 
are investigated when they are used for the estimation of the 15,233 concentration–
response curves. In the section “Comparison with respect to the D-efficiencies”, the 
designs are compared with respect to their D-efficiencies, whereas in the section 
“Comparison using a simulation study” the designs are used to simulate new concen-
tration–response data for each of the 15,233 genes. Based on this data, new concentra-
tion–response curves are estimated and compared to the curves obtained by the original 
VPA-data.

Comparison with respect to the D‑efficiencies

As stated in the section “Optimal designs for simultaneous inference”, the performance 
of a given design ξ can be measured using the D-efficiency EffD(ξ , θ) defined in  (4), 
where θ ∈ � is the assumed true parameter vector. The greater the D-efficiency is, the 
better the corresponding design performs.

We analyse the D-efficiencies of the designs depicted in Table 2 for all parameter vec-
tors contained in �G , i.e. the parameter set containing the G = 15,233 significant param-
eter vectors for the corresponding genes (see Eq. (8) and the section “Data preprocessing 
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and analysis” for details). In Fig. 3, the resulting D-efficiencies are presented as box plots 
for each considered design, respectively. Whereas Table  3 depicts the corresponding 
benchmark D-efficiencies. i.e. their minima, maxima, quantiles, medians and means. 
Based on the D-efficiencies the log-equidistant design performs worst, whereas the 
simultaneous D-optimal design performs best.

More precise, the log-equidistant design ξlog has a D-efficiency smaller than 0.5 for 
more than 75% of the parameter vectors contained in the parameter set �G and a median 
D-efficiency of 0.09, which indicates a bad performance with respect to the D-optimality 
criterion for most of the considered parameter vectors.

In contrast 75% of the D-efficiencies of the simultaneous D-optimal design are greater 
than 0.72 and its median efficiency is equal to 0.80. In particular, the maximal D-efficien-
cies of the equidistant, original and K-means design are smaller than the 75%-quantile 
of the simultaneous D-optimal design, respectively. Thus, for 25% of all genes the simul-
taneous D-optimal design provides higher D-efficiencies than the maximal D-efficiency 
of the other designs, respectively. Nevertheless, the K-means design also results in high 
D-efficiencies, 75% of the D-efficiencies are greater than 0.72 and its median is given by 
0.79. The D-efficiencies of the equidistant design are similar to the D-efficiencies of the 

0.00

0.25

0.50

0.75

ξΘ7 ξequi ξkmeans ξlog ξorig

D
−e

ffi
ci
en

cy

Fig. 3 D-efficiencies of the different designs under consideration assuming the different parameter vectors 
θ ∈ �G

Table 3 Descriptive parameters of the D-efficiencies regarding each design, minimum, 0.25%- and 
0.75%-quantiles, median, mean and maximum

Design Min 0.25% Median Mean 0.75% Max

Simultaneous D-optimal 0.000 0.721 0.801 0.745 0.879 0.933

Equidistant 0.000 0.701 0.777 0.716 0.824 0.852

K-means 0.000 0.721 0.789 0.732 0.836 0.861

Log-equidistant 0.000 0.019 0.091 0.228 0.415 0.843

Original 0.000 0.624 0.778 0.682 0.812 0.852
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K-means design, which can be explained by the similar structure of these designs. Note 
that both designs are equally weighted and their support points are similarly distributed 
over the design space X = [0, 1000] (cf. Table  2 and Figure  S2, see Additional file  1). 
Considering the original design, 75% of its D-efficiencies are greater than 0.62.

Note that there are several outliers for all designs under consideration. We investi-
gated that parameter vectors that lead to very small D-efficiencies of the original design 
result in significantly small D-efficiencies of the other designs and almost vice versa. In 
particular, parameter combinations with EC50 ≤ 200 and large steepness h > 8 lead to 
small D-efficiencies independent from the design.

Although the simultaneous D-optimal design performs best, when the D-efficiencies 
are compared without restrictions, a worse performance could be possible for parameter 
vectors θ , that are not part of the seven areas included in the distribution π7 . Therefore, 
we also investigate the D-efficiencies of the different designs grouped by the nonlinear 
parameters of the sigmoid Emax model, i.e. EC50 and h. Analogously to the overall analy-
sis the simultaneous D-optimal design shows the highest D-efficiencies for most of the 
groups: Only for a few parameter constellations, that were not considered in the con-
struction of the design, lower D-efficiencies occurred. Regarding the remaining consid-
ered designs, the structure of their D-efficiencies was similar to the one in the overall 
analysis, respectively. A detailed description and additional figures of the grouped analy-
sis can be found in the Additional file 1.

Summarizing the simultaneous D-optimal design performs best with respect to the 
D-efficiencies, whereas the log-equidistant design performs worst. The K-means and 
the equidistant design perform well, resulting in similar D-efficiencies for the consid-
ered cases. The original design results in D-efficiencies which are in principle allocated 
between the ones of the log-equidistant and the equidistant design.

Comparison using a simulation study

In this section, we report the results of a simulation to investigate the performance 
of the different designs in Table  2 in scenarios that imitate concentration–response 
experiments for the 15,233 significant genes contained in the VPA-data set. In the sec-
tion “Simulation study setup”, we introduce the design of the simulation study, including 
its assumptions and scenarios. Further, we describe the normalized root mean square 
error (NRMSE) which is used to evaluate the performance of the different designs within 
the study. In the section “Simulation results”, we summarize the results of the simulation 
study with respect to the NRMSE.

Simulation study setup

Imitating the original data set of Krug et  al.  [16], we investigate the performance of 
the five different designs if used for the simultaneous estimation of the concentration–
response relationships corresponding to the 15,233 significant genes of the data set. We 
consider simulation parameters denoted in Table 4.

More precisely, we consider six different sample sizes N = 18, 27, 36, 45, 63, 90 for 
each design given in Table 2. For the equidistant, log-equidistant and K-means design 
varying the sample size N leads to equal repetitions at every concentration, as these 
designs are equally weighted, whereas for the original design, there are twice as much 
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repetitions at placebo ( x = 0 ) as at the remaining non-placebo concentrations. In case 
of unequal repetitions as attained for the simultaneous D-optimal design the procedure 
of efficient rounding according to Pukelsheim and Rieder [18] is used to obtain integer 
numbers of repetitions.

Further, we assume that the concentration–response relationship of each significant 
gene g is described by the nonlinear regression model (1), where the regression function 
is given by the sigmoid Emax model in (7) with the corresponding true parameter given 
by the estimate θ g ∈ �G given by (8). The errors in model (1) are assumed to be normally 
distributed with standard deviation σ = 0.2 · |Eg

max| , where Eg
max is the maximal effect 

of gene g, respectively. This results in S = 5 · 6 = 30 different scenarios in total, and for 
each scenario, we obtain data from 15,233 concentration–response relationships.

We used Nsim = 500 simulation runs for each scenario and in each simulation step, the 
sigmoid Emax model is fitted to the data of each gene separately.

We use the Root Mean Squared Error (RMSE) to evaluate the performance of the dif-
ferent designs. For a given scenario S (out of the S = 30 scenarios), let η(·, θ̂ gjS) denote the 
estimated sigmoid Emax model with corresponding estimated model parameter θ̂ gjS for 
the data generated for gene g in simulation j ( g = 1, . . . , 15233 , j = 1, . . . , 500 ). Moreo-
ver, let η(·, θ g ) denote the data generating sigmoid Emax model of the g-th significant 
gene. Following Cheema [40], the RMSE (of the S-th scenario for the g-th gene) is then 
given by

where x0, . . . , x1000 are given by the sequence 0, 1, . . . , 1000 ∈ X  . There is high variability 
in the ranges of the expression values across genes, which is not accounted for by the 
RMSE. For example, if we consider two genes with the same RMSE value of 2, but with 
different response ranges, e.g. 4 and 10, the RMSE value for the gene with larger range 
shows a higher model precision compared to the gene with a smaller range, although 
this is not reflected directly by the RMSE. In order to obtain comparability between the 
curves associated to the different genes, it is useful to standardize the RMSE. This is 
achieved by dividing the RMSE by Egmax , which is the maximal range of the curve corre-
sponding to gene g. Thus, it holds:

RMSE(g , S) = 1

Nsim

Nsim
∑

j=1

√

√

√

√

1

1001

1000
∑

i=0

(

η(xi, θ̂
g
jS)− η(xi, θ g )

)2
,

Table 4 Simulation parameters

Parameter Variation/Value

Sample size N ∈ {18, 27, 36, 45, 63, 90}
Design ξorig , ξequi , ξlogequi , ξkmeans , ξ�7

Gene g ∈ {1, . . . , 15233}
Model parameter θg ∈ �G =

{

θ1, . . . , θ15,233
}

Simulation step j ∈ {1, . . . , 500}
σ 0.2 · |Egmax|
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Note that the smaller the NRMSE is, the closer the fitted model is to the true concentra-
tion–response relationship.

Simulation results

In the section  “Results of the different designs with fixed sample size”, we present the 
results for the different designs contained in Table 2, where the sample size is fixed to the 
sample size N = 27 , which coincides with the sample size of the original data set (see the 
section “Data” for details). In the section “Variation of sample size”, we analyse the influ-
ence of the sample size on the performance of the different designs.

(10)NRMSE(g , S) = RMSE(g ,S)

E
g
max

.
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Fig. 4 A NRMSEs for each gene with respect to the different designs. B NRMSEs for each gene with respect 
to the different designs, where the values of the log-equidistant designs and the outliers are removed

Table 5 Descriptive parameters of the D-efficiencies regarding each design, minimum, 0.25%- and 
0.75%-quantiles, median, mean and maximum

Design Min 0.25% Median Mean 0.75% Max

Simultaneous D-optimal 0.060 0.067 0.069 0.071 0.071 0.209

Equidistant 0.053 0.068 0.070 0.070 0.072 0.198

K-means 0.056 0.067 0.069 0.070 0.071 0.174

Log-equidistant 0.042 0.116 0.135 0.161 0.194 0.355

Original 0.059 0.072 0.075 0.076 0.078 0.151

Locally D-optimal 0.053 0.065 0.067 0.067 0.069 0.147
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Results of the different designs with fixed sample size

In the left part of Fig. 4, we display the NRMSE defined by (10) for the 15,233 curves with 
box plots grouped by the different designs under consideration. Also Table 5 depicts cor-
responding benchmark values of the NRMSEs like minima, maxima, quantiles, medians 
and means.

It is clearly visible that the NRMSEs corresponding to the log-equidistant designs are 
greater than the NRMSEs of the other designs. In particular, almost 50% of the considered 
genes have an NRMSE, that is almost twice as large as for the other designs. Moreover, the 
NRMSEs obtained with the log-equidistant design, are extremely varying compared to the 
others. Thus, it follows that using the log-equidistant design is not reasonable for the data 
at hand and we restrict ourselves to the analysis of the NRMSEs obtained for the original, 
the equidistant, the K-means, and the simultaneous D-optimal design, respectively. For that 
purpose, we also remove the outliers, as no structure of these could be detected in depend-
ence of the design choice. Further analyses resulted in observations similar to the ones for 
the D-efficiencies: In particular, outliers occur mostly for extreme parameter combinations 
such as EC50 ≤ 2 and h > 8.

The right part of Fig. 4 shows the NRMSEs without outliers grouped by all designs apart 
from the log-equidistant design. Additionally, the NRMSE of the locally D-optimal design 
of each gene g is provided, respectively. Note that the locally D-optimal designs, in general 
called ξopt , lead to the smallest NRMSEs and constitute the best choice for evaluating each 
gene separately. Nevertheless, these designs are not applicable in the experiment under 
consideration, which is done simultaneously for all genes. Consequently, the box plot of the 
NRMSEs based on the locally D-optimal designs has to be interpreted as benchmark.

Apart from the locally optimal designs, the best results with respect to the NRMSE are 
achieved by the simultaneous D-optimal design and the K-means, followed by the NRMSEs 
of the equidistant design. For instance, the median is 0.069 for both ξ�7 and ξkmeans and 
0.070 for the equidistant design. These designs result in NRMSEs that are close to the ones 
of the locally D-optimal designs, which indicates a good performance with respect to the 
NRMSE. Finally, the original design results in larger NRMSEs than the other designs. In 
particular, the lower quartile of NRMSEs is given by 0.072, which is even greater than the 
upper quartiles of the equidistant, K-means, and simultaneous D-optimal design.

Similarly to the theoretical analysis of the D-efficiencies in the section “Comparison with 
respect to the D-efficiencies”, we investigated the NRMSEs grouped by the parameters EC50 
and h. Summarizing, the comparison of the RMSEs of the designs (stratified to different 
parameter constellations) leads to similar results as within the total analysis. A detailed 
description and corresponding figures can be found in the Additional file 1.

Summarizing, the designs constructed in the section  “Construction of K-means and 
D-optimal design for simultaneous inference” outperform the original design with respect 
to the NRMSEs. Moreover, the equidistant design, which has support points similar to the 
ones of the K-means design, results in appropriate NRMSEs, whereas for the log-equidis-
tant design NRMSEs are substantially higher in comparison to all other designs. Both the 
simultaneous D-optimal design and the K-means result in the best NRMSEs and therefore 
in the best simultaneous inference of the 15,233 concentration–response relationships.
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Variation of sample size

We consider the NRMSEs of the different designs when the sample size N is varied, that 
is N = 18, 27, 36, 45, 63, 90 . In Fig. 5, we display the NRMSEs grouped by design and the 
total sample sizes.

For all considered designs the NRMSEs are decreasing with increasing sample size, 
which implies an increase in the precision of the corresponding model fits. In particu-
lar, the median NRMSEs of all designs are located within 0.084 and 0.092 for N = 18 
measurements and decrease to values between 0.038 and 0.042 for N = 90 . Thus, the 
NRMSEs are almost reduced to half of the values by increasing the sample size, if the 
sample size is multiplied by 4. This effect is well explained by the convergence rate of the 
maximum likelihood estimator, which is 

√
N  . It follows, that the absolute reduction of 

the NRMSEs is higher for smaller sample size, in particular, if N = 27 observations are 
used instead of N = 18 . Thus, in the situation under consideration, it is reasonable to 
consider at least N = 27 observations.

Comparing the NRMSEs of the original design to the NRMSEs of the simultaneous 
D-optimal design (or the equidistant and K-means design, respectively), the follow-
ing can be observed: The NRMSEs of the original design for N = 36 are similar to the 
NRMSEs of the simultaneous D-optimal design for N = 27 . Similar observations are 
possible if the sample sizes are increased step wisely. That means that at least 9 more 
observations are necessary, if the original design is used, in order to achieve the preci-
sion of the simultaneous D-optimal design.
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Fig. 5 NRMSE values for each gene regarding different designs with varying number of measurements
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Conclusion and outlook
This paper introduced two ways to construct designs that address the problem of the 
simultaneous inference of a large number of concentration–response relationships: 
the K-means design which is based on locally D-optimal designs of individual concen-
tration–response curves and the D-optimal design for simultaneous inference which 
incorporates the distribution of the nonlinear parameters of the different concentra-
tion–response curves. In order to investigate the performance of these designs, we 
used the VPA-data set by Krug et al. [16] and constructed the corresponding designs 
for the relevant concentration–response relationships contained in this data set. Then 
the designs were compared to the design that was originally used for generating the 
VPA-data set and to an appropriate log-equidistant and an equidistant design. The 
comparison was done in terms of D-efficiencies and in terms of the performance for 
the simultaneous estimation of 15,233 concentration–response curves in a simulation 
study (imitating the original VPA-data).

In terms of D-efficiency and terms of the simulation study, we observed similar 
results: the simultaneous D-optimal design results in the most precise model fits for 
the different curves under consideration, the model fits obtained if the K-means and 
the equidistant design used are also appropriate. The log-equidistant design performs 
worse and the corresponding precision of the model fits is the lowest. Consequently, 
it is not recommendable to use the log-equidistant design if a large number of differ-
ent concentration–response relationships (with considerably different shapes) should 
be estimated.

In general, it follows that the simultaneous D-optimal design improves the infer-
ence substantially. While the K-means design also performs well in the situation 
under consideration, it might be less feasible due to its construction. The construc-
tion of the simultaneous D-optimal design is straightforward by including a rough 
distribution of the nonlinear parameter values. Note that the equidistant design also 
performs well with respect to the considered measures in the situation under con-
sideration, but it might perform worse in others. The advantage of the simultaneous 
D-optimal design is its flexibility: it can easily be adapted to the situation at hand, 
based on a distribution which can be predefined by the user.

The paper is based on the assumption that all concentration–response relationships 
are modelled appropriately by the same nonlinear regression function (with varying 
parameters). Different parametric regression functions could be assumed and the 
distribution of the occurrence of these curves could be included in the D-optimality 
criterion for simultaneous inference. Moreover, we restrict ourselves to the D-opti-
mality criterion, other criteria could also be used to construct a design for simul-
taneous inference, e.g. addressing the precise estimation of the EC50 values or the 
prediction of responses at predefined concentrations. We leave the extension of these 
approaches to future research.
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