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Abstract
Besides the detection of astrophysical neutrinos, atmospheric neutri-
nos from cosmic-ray-induced air showers are detected at unprecedented
statistics with the IceCube Neutrino Observatory. The conventional
component of the atmospheric neutrino flux is produced in decays of
kaons and pions. Due to seasonal changes in the atmospheric tem-
perature, the neutrino flux undergoes a seasonal variation. When the
temperature increases, the atmosphere expands, and more neutrinos
are expected to be produced. Additionally, the seasonal variation in-
creases with energy, as parent particles interact at higher altitudes in
the atmosphere, where seasonal temperature variations are larger. The
interaction cross section increases with energy and the probability for
the parent meson to decay increases. The investigation of seasonal vari-
ations serves as an accurate background determination in the search for
astrophysical neutrinos and the study of hadronic interactions in atmo-
spheric particle cascades.
In this thesis, seasonal variations in the atmospheric neutrino flux are
measured energy-dependently for the first time based on 11.5 years
of IceCube data. The determination of the neutrino energy presents
an ill-conditioned inverse problem, requiring to infer the energy from
measured detector quantities. This challenge is addressed by the Dort-
mund Spectrum Estimation Algorithm (DSEA+), which utilizes ma-
chine learning methods to unfold the neutrino energy. The deter-
mined variation strength is compared to theoretical predictions from
MCEq, and in particular to the calculation with the atmospheric model
NRLMSISE-00.
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Kurzfassung
Neben dem Nachweis astrophysikalischer Neutrinos werden mit dem
IceCube-Neutrino-Observatorium viele Größenordnungen mehr atmo-
sphärische Neutrinos aus Luftschauern der kosmischen Strahlung ge-
messen. Die konventionelle Komponente des atmosphärischen Neutri-
noflusses entsteht durch Zerfälle von Kaonen und Pionen. Aufgrund
der jahreszeitlichen Änderung der atmosphärischen Temperatur unter-
liegt der Neutrinofluss einer jahreszeitlichen Schwankung. Wenn die
Temperatur steigt, expandiert die Atmosphäre und die Neutrinopro-
duktion steigt. Des Weiteren steigt die jahreszeitliche Schwankung des
Flusses mit der Energie an, da die Elternteilchen in größeren Höhen in
der Atmosphäre wechselwirken, wo die Temperaturschwankungen grö-
ßer sind. Gleichzeitig steigt auch der Wechselwirkungsquerschnitt mit
der Energie, und damit die Wahrscheinlichkeit, dass das Elternmeson
zerfällt. Die Untersuchung der jahreszeitlichen Schwankungen dient
als präzise Untergrundbestimmung bei der Suche nach astrophysika-
lischen Neutrinos und der Analyse hadronischer Wechselwirkungen in
atmosphärischen Teilchenkaskaden.
In dieser Dissertation wurden zum ersten Mal saisonale Schwankun-
gen des atmosphärischen Neutrinoflusses energieabhängig gemessen,
basierend auf 11,5 Jahren IceCube-Daten. Die Bestimmung der Neu-
trinoenergie stellt ein schlecht konditioniertes inverses Problem dar,
bei dem die Energie aus gemessenen Detektorgrößen abgeleitet werden
muss. Dies wird durch den Dortmund Spectrum Estimation Algorithm
(DSEA+) addressiert, welcher Methoden des maschinellen Lernens zur
Entfaltung der Neutrinoenergie nutzt. Die ermittelte saisonale Variati-
onsstärke wird mit theoretischen Vorhersagen von MCEq, insbesondere
mit der Berechnung des Atmosphärenmodell NRLMSISE-00 verglichen.
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1 Introduction
Neutrinos are one of the most obscure elementary particles. Many char-
acteristics remain unknown and violate the principles of the Standard
Model of particle physics. Neutrinos are predicted to be free of mass,
however, the observation of oscillations between their leptonic flavor
states implies that neutrinos must carry a small but non-zero mass.
Their electrical neutrality and small interaction cross section permit
the propagation on straight paths from the depths of the Universe to
Earth, making neutrinos excellent astrophysical messengers. Nonethe-
less, the detection of neutrinos poses significant challenges. Enormous
volumes in dense media, for instance, ice or water, are required to in-
directly detect high-energy neutrinos and to determine their origin.
Besides providing valuable insight into the processes of particle pro-
duction in the cosmos, neutrinos are essential for the understanding of
particle cascades and hadronic interactions in the atmosphere. Since
current accelerator experiments on Earth can only produce particles up
to a certain energy limit, our atmosphere serves as a unique particle
physics laboratory. A large number of neutrinos, exceeding those of as-
trophysical origin by several orders of magnitude, are produced in the
upper atmosphere within hadronic particle cascades. These cascades
are initiated by a charged nucleus originating from an astrophysical
object, referred to as cosmic ray (CR). Conventional muon neutrinos
from the decay of secondary particles, such as kaons and pions, are of
particular interest. Seasonal temperature variations in the atmosphere
impact the number of neutrinos produced in these particle cascades, in-
creasing the neutrino production as temperatures rise. In underground
experiments, the variation of the neutrino rates has been measured with
a significance larger than 10σ [1]. These variations are expected to in-
crease with the particle energy as the lifetime of the parent mesons is
Lorentz-boosted. High-energetic primaries interact at higher altitudes
in the atmosphere, where temperature variations are larger. However,
the energy dependence of the seasonal flux variation has not been mea-
sured in atmospheric neutrino experiments so far because of lacking
sufficient statistics.

1



Chapter 1. Introduction

100 101 102 103 104 105 106

E/GeV
0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

Ra
tio

 to
 y

ea
rly

 fl
ux

MCEq Predictions with: 
 H3a, Sibyll2.3c, NRLMSISE-00

Dec
Jan
Feb

Mar
Apr
May

Jun
Jul
Aug

Sep
Oct
Nov

Figure 1.1: Calculated ratio of the monthly muon neutrino flux to
annual average for the zenith range from 90◦ to 120◦ with MCEq
using the Gaisser-Hillas 3 approximation (H3a) [2] as primary CR
composition, Sibyll2.3c [3] as hadronic interaction model, and the
US Naval Research Laboratory Mass Spectrometer Incoherent Scat-
tering Extension 2000 (NRLMSISE-00) [4] as atmospheric model.
Dashed lines mark the investigated energy range in this dissertation.
The flux calculation includes neutrinos and antineutrinos for the con-
ventional and prompt atmospheric flux components.

The IceCube Neutrino Observatory is currently the largest neutrino
telescope with an instrumented volume of one cubic kilometer inside
the Antarctic ice [5]. Providing 11.5 years of neutrino data from com-
plete detector configuration to date, it is the only neutrino telescope
with sufficient statistics to measure seasonal variations in the neutrino
spectrum at percentage level.

This dissertation aims at the first measurement of seasonal variations
in the atmospheric neutrino energy spectrum between 125 GeV and
10 TeV. By utilizing machine learning techniques, the seasonal spec-
tra are determined by a novel approach to spectrum unfolding with
the Dortmund Spectrum Estimation Algorithm (DSEA+) [6]. The
strength of the variation is obtained by the ratio of the unfolded sea-
sonal to annual average flux. Fig. 1.1 shows the expected results for
the ratio of monthly to annual average flux calculated by the Matrix
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Cascade Equations (MCEq) [7] code. The energy range of interest in
this thesis is represented by dashed lines. The measurement of sea-
sonal variations serves as a way to investigate hadronic interactions in
particle showers in the atmosphere, besides the test of the increase of
seasonal variations with rising energy. Furthermore, exact modeling of
the atmospheric neutrino flux improves the background measurement
in astrophysical neutrino searches.

This thesis is structured into the subsequent parts:

Chapter 2 introduces the atmospheric neutrino production in cosmic-
ray-induced air showers, the seasonal dependence of conventional at-
mospheric neutrinos and the current research status.

Chapter 3 illustrates the IceCube Neutrino Observatory, its data ac-
quisition, and event reconstruction techniques.

Chapter 4 outlines selected machine learning algorithms and statistical
measures important in the scope of this thesis.

Chapter 5 describes the event selection for atmospheric muon neutrinos
and the zenith region to be studied. The concept of weighting simula-
tions to a flux model is explained, and a comparison between data and
simulations is presented.

Chapter 6 explains the concept of spectrum unfolding with the DSEA+
algorithm used in this analysis. The selection of estimator variables and
their definitions are provided, and internal parameters of the unfolding
algorithm are optimized.

Chapter 7 shows the unfolded seasonal energy spectra for the zenith
range from 90◦ to 120◦ and the determined monthly variation energy-
dependently. The statistical and systematic uncertainties that are as-
sociated with the unfolded spectra are discussed. The deviation of
the unfolded seasonal flux from the annual average flux is determined,
and the results are then compared to the theoretical predictions from
MCEq.

Chapter 8 discusses the temperature and neutrino rate variations in
dependence on the zenith angle. The measurement of seasonal varia-
tions in the restricted zenith range from 90◦ to 110◦ is determined and
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compared to MCEq.

Chapter 9 provides an overview of the seasonal variation measurements
and discusses future prospects.
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2 From Multimessenger
Astronomy to Atmospheric
Neutrinos

This chapter introduces the field of multimessenger astronomy. The fo-
cus is set on two particular messengers, cosmic rays and neutrinos. Ba-
sic properties of both messengers are explained, the production mecha-
nism of atmospheric neutrinos, and the seasonal dependence of the flux
are elaborated.

2.1 Multimessenger Astronomy

For centuries, optical astronomy was defined as the study of cosmic
objects with only visible light. Nowadays, light can be observed across
the entire electromagnetic spectrum, which is designated as multiwave-
length astronomy. In recent decades, a relatively new field has emerged
as a bridge between particle and astrophysics. Particles produced in
the cosmos can serve as messengers to study particle production pro-
cesses and extreme phenomena in the Universe. Gigantic environments,
such as Active Galactic Nuclei, can accelerate particles to energies of
more than one hundred EeV, creating an extraordinary particle physics
laboratory beyond the capacities available on Earth. In addition to ob-
serving photons across the entire spectrum, especially gamma rays,
charged nuclei (cosmic rays), neutrinos, and, gravitational waves pro-
vide insights into astrophysical sources and open up the field of Mul-
timessenger Astronomy, as illustrated in Fig. 2.1. While many sources
of gamma rays have been confirmed, the era of neutrino astronomy is
only now starting. The first high-energy neutrino source discovered
was the blazar TXS 0505+065 in 2017 [8], the second was the nearby
active galaxy NGC 1068 [9], and recently the Galactic Plane has been
revealed as a source of neutrinos [10]. Follow-up observations with dif-
ferent messengers provide detailed insight into the sources and particle
interactions in the sources.
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Figure 2.1: Sketch of cosmic messengers and their definition. Grav-
itational waves were not detected at the time. Figure taken from Ref.
[11].

2.2 Cosmic Rays

CRs consist of ionized nuclei: ∼ 90% protons, 9% helium nuclei, and
a small fraction of heavier nuclei [12]. They were first discovered more
than a century ago by ionization measurements of air in balloon flights
by Victor Hess in 1912 [13]. Contrary to what was expected at the
time, the radiation detected in the atmosphere increased with altitude,
suggesting an extraterrestrial origin of CRs. The arrival direction of
CRs is distorted by deflection in galactic and extragalactic magnetic
fields, making it extremely challenging to identify their exact origin.
Suspected sources are local sources in the Milky Way, such as super-
nova remnants, or extragalactic sources, such as Active Galactic Nuclei,
gamma-ray bursts, or starburst galaxies [12].

2.2.1 Energy Spectrum
The energy of CRs ranges over several orders of magnitude, from GeV
CRs from the Solar System, over galactic sources, to EeV CRs from

6
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Figure 2.2: All particle CR spectrum from different experiments
and the Global Spline Fit for each element group [17]. KG represents
measurements from KASCADE-Grande. Colors imply different indi-
vidual nucleus fluxes: protons (red), helium (yellow), oxygen (gray),
iron (blue). The bands around the fit are variations of one standard
deviation, and the error bars indicate statistical and systematic un-
certainties. The fluxes are corrected for the different energy scales
of the experiments.

extragalactic objects. The intensity decreases steeply with increas-
ing energy so that the energy spectrum of CRs can be described by
power laws of J(E) ∝ E−γ. Due to the steeply falling spectrum and
the need for large detectors, direct detection in space is only feasible
up to 100 TeV. Higher energetic CRs are measured indirectly on the
ground [12], for instance by the Pierre Auger Observatory (PAO) [14]
or the Telescope Array (TA) [15]. Changes in the distribution of source
types, production mechanisms, and propagation environments imprint
energy-related features on the CR spectrum [16]. The all-particle CR
spectrum and the spectra of the individual elements measured by dif-
ferent experiments are shown in Fig. 2.2. Direct measurements from
airborne experiments are depicted as filled, indirect measurements as
unfilled markers. All measurements are combined into a global fit of
the all-particle CR spectrum, denoted as the Global Spline Fit (GSF)
[17] CR composition model (refer to the next section).
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Figure 2.3: Energy spectrum measured by the Pierre Auger Ob-
servatory above 2.5 EeV showing the instep feature [21]. The fit of a
smoothed broken power law is depicted in red.

The CR spectrum has historically been divided into three parts based
on specific features attributed to spectral changes: the knee at ∼ 5 PeV
[18], and the ankle at ∼ 5 EeV [19, 20]. The CR spectrum up to the
knee can be described by the spectral index γ ≈ 2.7. Beyond the
knee, the spectrum steepens to γ ≥ 3.0 and hardens to γ ≈ 2.6 above
the ankle. Recent measurements have reported additional features in
the CR spectrum, defining a distinct separation between the knee and
ankle, the low energy ankle at ∼ 10 PeV and a second knee at ∼ 100 PeV
[16]. Both the PAO and the TA reported a new feature, the instep, at
≃ 10 EeV [21, 22], shown in Fig. 2.3. The presence of the features
and their exact structure is not yet completely understood except for
compositional changes, as underlined by Fig. 2.2. The increase of the
flux above the ankle is attributed to CRs from extragalactic sources.
Charged particles remain confined in an acceleration region of radius r
up to the Hillas energy

E = ZeBr. (2.1)
The nuclear charge is denoted by Ze, and the magnetic field strength
by B [23]. If a particle exceeds the Hillas energy, it can escape the accel-
eration environment, propagate through intergalactic magnetic fields,
and contribute to an increase in the extragalactic component of the
CR flux. The energy spectrum is expected to cut off beyond approx.
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60 EeV, which can either be due to sources reaching their maximum en-
ergy or the Greisen-Zatsepin-Kuzmin (GZK) effect [24, 25]. The GZK
effect describes the interaction of CR protons with photons (photopion
production) from the Cosmic Microwave Background (CMB), in which
a delta resonance ∆+ is produced. It decays into protons and neutral
pions, or neutrons and positively charged pions:

p + γCMB → ∆+ →

⎧⎨⎩p + π0

n + π+ (2.2)

Heavier nuclei interact by photodisintegration [26]. Suppression of the
CR flux has been observed by the PAO and the High Resolution Fly’s
Eye (HiRes) experiment [19, 20]. The energy at which the spectrum
cuts off is composition-dependent. Nuclei can be accelerated to the
maximum rigidity R = Z · Eproton so that the flux diminishes above the
respective maximum acceleration energy. The mass-dependent acceler-
ation and the related spectral cutoffs are referred to as Peters cycles,
explained in Ref. [27].

2.2.2 Mass Composition Models
The investigation of the relative abundances of CR nuclei provides con-
straints on their sources and acceleration mechanisms. The composi-
tion is investigated based on groups with equal mass in ln(A). Fig.
2.2 shows how different mass groups contribute to changes in the spec-
tral shape. The spectral evolution is modeled based on elemental mass
groups combined into a global fit for the all-particle CR spectrum. The
subsequent CR composition models will be discussed in the scope of
this thesis:

• The Gaisser-Hillas 3 approximation (H3a) [2] categorizes CRs
into five mass groups for different source populations in energy:
p, He, CNO, Mg-Si, Fe. The spectrum of nucleon i is expressed
by

Φi(E) =
3∑︂

j=1
Ni,jE

−γi,j · exp
(︄

E

ZieRc,j

)︄
. (2.3)

The fit is performed over j = 3 populations, which is why the
approximation was named after it. Each population represents
CRs from different origins, a galactic component from supernova
remnants, a second galactic component from other sources, and
a third component from extragalactic sources. Rc,j defines the

9
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rigidity-based cutoffs, which are fitted simultaneously with the
normalization Ni,j, and the spectral index γi,j for each elemental
group and population.

• The alternative Gaisser-Hillas 4 approximation (H4a) is based on
the same approach as in Equ. 2.3 with the exception that only
protons are present the third population of extragalactic CRs.

• The Gaisser-Stanev-Tilav (GST) [28] model follows the same ap-
proach as H3a (Equ. 2.3). Despite five mass groups, an additional
group for nuclei beyond iron is introduced. The fit parameters for
the individual mass groups are obtained by a fit to data from var-
ious experiments, which are shifted in normalization to account
for differences in energy calibration.

• The Global Spline Fit (GSF) [17] builds upon GST by a global fit
of data from various experiments. The model considers elemental
spectra instead of mass groups and does not correct the data from
each experiment according to the different energy scales because
the energy offsets between the experiments are fitted by the model
as well. The data is fitted by cubic B-splines [29] for four mass
groups, named after their leading element: p, He, O, Fe (see Fig.
2.2). The spectrum for each leading element is expressed by

ΦL(R) =
∑︂

j

Ni,j · Bj(ln(R/GV)) · (R/GV)−3. (2.4)

Elemental spectra can also be obtained with this model, following
the spectral shape of the respective mass group.

• Poly-gonato (PG) [30] is the oldest of the models presented here.
The knee is modeled by different species and the high-energy
region is interpolated from direct measurements.

2.3 Extensive Air Showers
When a CR enters the atmosphere, it produces an avalanche of subse-
quent secondary particles in nuclear interactions with air molecules, as
illustrated in Fig. 2.4. These initiated particle cascades are referred to
as extensive air showers, which can be detected by large ground-based
detectors such as the Pierre Auger Observatory, Telescope Array, or

10
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Figure 2.4: Illustration of a CR-induced extensive air shower and
the particle species initiated. The sketch displays the lepton produc-
tion only from pions decay for simplicity. The production via kaon
decay follows the same principle. The abbreviation EM indicates
the production of an electromagnetic shower. Image taken from Ref.
[35].

IceTop (refer to Chapter 3.1). Before state-of-the-art particle accelera-
tors could be built in the enormous sizes we know today, extensive air
showers opened up an important field for the discovery of new particles,
including the positron e+ [31], muon µ± [32], kaon K± [33], and pion
π±,0 [34].

2.3.1 Atmosphere

In the study of extensive air showers, the atmosphere has a significant
impact on the development of the air shower, acting as an interaction
target for CRs. The atmosphere consists of 78% N2, 21% O2, 1% Ar up
to an altitude of 100 km with an average mass number of A ∼ 14.5 [12].
The density of atoms in the atmosphere is an important quantity that
models the abundance of interaction targets. The atmospheric density
at a given altitude can be approximated by an isothermal gas,

ρ(H) = ρ0 · exp (−H/H0) , (2.5)

11
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with a vertical depth X0 = ρ0H0 = 1300 g cm−2 [36]. The scale height
is derived from the approximation of the chemical composition of the
atmosphere as an ideal gas with H0 = RT/Mg = 6.4 km. The atmo-
spheric depth X can be calculated by integrating the density profile
over the trajectory l of the primary particle from the zenith arrival
direction Θ [12]:

X(l, Θ) =
∫︂ ∞

l
ρ(H(l, Θ))dl. (2.6)

The atmospheric depth at sea level is 1000 hPa = 1000 g cm−2 and
decreases with altitude. It can be noted that isothermality is an ap-
proximation, and atmospheric density and temperature vary daily and
seasonally throughout the layered atmosphere (see Section 2.5).

2.3.2 Heitler-Matthews Model

Figure 2.5: Illustration of the (a) Heitler model for an electromag-
netic and (b) Heitler-Matthews model for a hadronic cascade. The
production of new particles in electromagnetic showers is realized by
either bremsstrahlung or pair production, while pions are produced
in the hadronic component. Neutral pions in the hadronic cascades
initiate further electromagnetic cascades by decaying into gamma
rays. Figure taken from Ref. [37].

Extensive air showers are categorized into electromagnetic and hadronic
cascades depending on the primary particle type which initiated the
shower. Electromagnetic showers are produced by a gamma ray, whereas
hadronic showers are produced by nuclear interactions. In the scope of
this thesis, only hadronic showers are of interest.
The physics and energy at each interaction step within extensive air
showers can be simplified by the Heitler-Matthews-Model [37], shown

12
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in Fig. 2.5b. It is a modification of the Heitler model [38] for electro-
magnetic cascades in which a gamma ray disintegrates into an electron
and positron in an interaction with an atmospheric nucleus: γ → e+e−

(Fig. 2.5a). When a proton interacts with air nuclei in the atmosphere
in a hadronic interaction, pions are created from which 2/3 of the initial
energy is transferred to the initiated hadronic cascade by the creation
of charged pions π±, and the remaining fraction is transferred to neu-
tral pions π0. These decay into gamma rays (π0 → γγ), initiating an
electromagnetic cascade. New particles, such as positrons e+ and elec-
trons e−, are produced by bremsstrahlung or pair production. In each
epoch, a substantial fraction of the extensive air shower induces an ad-
ditional electromagnetic cascade. The energy budgets in the hadronic
Ehadr and electromagnetic Eem components can be derived from the
initial energy E0 of a proton primary:

Ehadr =
(︃2

3

)︃n

· E0 and Eem =
[︃
1 −

(︃2
3

)︃n]︃
· E0. (2.7)

This scheme is repeated until the interaction length (Equ. 2.10) of the
parent pions becomes larger than the decay length (Equ. 2.11), and
the pions subsequently decay into muons and neutrinos, which can
reach ground level. For simplicity, only pions are considered in this
model, rather than a contribution from other hadrons to the extensive
air shower development. The Heitler-Matthews model describes only
showers initiated by a proton primary, as it is independent of the pri-
mary mass. A description for heavier primaries can be derived by a
superposition model, described in Ref. [39].

2.3.3 Cascade Equations
The longitudinal propagation of particles in extensive air showers through
the atmosphere can be described by the cascade equations, a set of cou-
pled differential equations. The development of the shower component
is given by:

dNi(Ei, X)
dX

= −Ni(Ei, X)
λi

− Ni(Ei, X)
di

+
J∑︂

j=i

∫︂ ∞

E

Fji(Ei, Ej)
Ei

Nj(Ej, X)
λj

dEj. (2.8)

(2.9)
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Ni(Ei, X)dEi denotes the flux of the particle species i. The first two
terms describe reinteraction and decay respectively, the last term de-
scribes the creation of new particles. λi is the interaction length in air,
di the decay length, both measured in g cm−2. The function Fji(Ei, Ej)
represents the particle yield of a particle of energy Ei produced by a
collision of a particle of energy Ej with an air nucleus [12]. The inter-
action length is given by

λi = liρ = ρ

nAσair
i

, (2.10)

with the number density of a given nuclear species nA and the cross
section for the interaction with air σair

i . The density of the atmosphere
cancels in Equ. 2.10, and the interaction length is independent of the
atmospheric density. In contrast, the decay length is defined as

di = ργcτi, (2.11)

with the Lorentz factor γ, the speed of light c, and the lifetime τi of the
particle. No explicit source term for the production of particles from
the decay of other particles exists in the cascade equations. Another
limitation is the neglect of ionization losses in the air.
Inclusive lepton fluxes can be calculated by solving the cascade equa-
tions for a respective particle species. The solutions of the set of coupled
equations can be approximated semi-analytically, as described in Ref.
[12]. Atmospheric lepton spectra can be derived from the solutions in
the subsequent form:

Φl(E) = ΦN(E)
1 − ZNN

∑︂
i=π,K,...

ZN,i,γZi→l,γ

1 + BiE cos(Θ)/ϵcrit,i
. (2.12)

ΦN(E) denotes the flux of the CR primary, and ϵcrit,i the critical energy
of parent meson of species i at which decay (Equ. 2.11) and interac-
tion length (Equ. 2.10) are equal. Z-factors are defined as weighted
moments towards the CR spectrum displaying interaction and decays
of the respective particles:

ZNi =
∫︂ 1

0
dxlabxγ−1

lab
dNN→i

dxlab
. (2.13)

The moments govern the hadronic interaction processes between the
individual particles, further elaborated in the subsequent section. The
parameters of Equ. 2.12 are explained in Section 2.4.3 in more detail.
The calculations can be found in Ref. [12, 40].
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The cascade equations can be expressed in a matrix representation
described in detail in Ref. [41]. The set of equations can be solved
numerically by the Python package MCEq [7]. Different hadronic, CR
composition and atmospheric models allow for the calculation of inclu-
sive lepton fluxes and for the determination of uncertainties associated
with the model selections.

2.3.4 Hadronic Interactions
As explained in the previous section, the primary CR and the initiated
hadrons undergo hadronic interactions within extensive air showers.
Hadrons define a subclass of particles, such as mesons and baryons,
composed of quarks [42]. They are bound together by the strong force,
opening up the field of quantum chromodynamics. Hadronic interac-
tions describe the interaction of quarks within the interacting hadrons
by the exchange of gluons, the mediators of the strong force. The par-
ticle production at high energies is subject to large uncertainties and
cannot be accurately calculated. Therefore, hadronic interactions are
modeled by different approaches and approximated at the highest en-
ergies. The following four models are used in this dissertation. The
numbers indicate the model versions:

• Sibyll2.3c [3] is a model optimized for the simulation of exten-
sive air showers, and yields the most commonly used model for
lepton flux calculations and simulations in the atmosphere. It is
based on the Dual-Parton-Model (DPM) [43]. The here presented
version includes interactions of charm quarks within shower cas-
cades, allowing for the calculation of prompt leptons (see Section
2.4.3). One caveat is that heavy ion collisions in colliders cannot
be described by this model.

• EPOS-LHC [44] addresses the described lack of description of
heavy ion collisions and is only developed from accelerator data
from the Large Hadron Collider (LHC). The model is mostly used
in particle physics.

• QGSJet-II-04 [45] is developed from the Quark-Gluon-String Model
(QGS) [46], an analogous approach to the DPM. Jet refers to the
description of collimated particle beams and the description of
the resulting particles in the final state. The model is tuned to
describe the development of extensive air showers, but and has
only a few tuning parameters.
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• DPMJet-III-3.0.6 [47] is based on Dual-Parton-Model, similar to
Sibyll, and the Quark-Gluon-String Model. It is often used in the
context of accelerator data.

2.4 Neutrinos

Neutrinos were first postulated by Wolfgang Pauli in 1930 to account for
the missing fraction of energy in beta decay. Three decades later, neu-
trinos were detected in inverse beta decay experiments [48]. Presently,
neutrinos are important messengers in particle and astroparticle physics,
as certain characteristics violate the principles of the Standard Model
and they propagate on a straight path from their source. This section
illustrates the main properties of the neutrino, discusses the energy
spectrum, implications of possible sources, and their production mech-
anisms.

2.4.1 Characteristics

Neutrinos are massless elementary particles in the Standard Model. As
they do not carry an electric charge, they can propagate over cosmic
distances through the Universe, without being deflected by intergalac-
tic magnetic fields. This attribute makes them excellent messengers
for the study of cosmic objects. Their small cross section for interac-
tion with matter allows them to escape the dense source environments.
Consequently, huge detectors are required to detect them. Neutrinos
appear in three flavors, defined by their leptonic counterparts: the
muon neutrino νµ, the electron neutrino νe, and the tau neutrino ντ .
Neutrinos are produced in astrophysical objects within hadronic pro-
cesses (see Section 2.3.4). Inelastic collisions of high-energetic protons
with matter produce charged and neutral pions at equal probabilities,
for instance:

p + p → p + p + π0

p + p → p + n + π+

p + p → p + p + π+ + π−.
(2.14)
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All three types of pions immediately decay via the following processes
with a branching ratio of ≥ 98.8% [49]:

π0 → γ + γ

π+ → µ+ + νµ and µ+ → e+ + ν̄µ + νe

π− → µ− + ν̄µ and µ− → e− + νµ + ν̄e.
(2.15)

The decay of neutral pions creates gamma rays which can be simulta-
neously detected with neutrinos from the same source. Equ. 2.15 in-
dicates that the flavor composition at an astrophysical source becomes
νe : νµ : ντ ≈ 1 : 2 : 0. However, a flavor ratio of νe : νµ : ντ ≈ 1 : 1 : 1
is measured at Earth [50]. The difference in flavor compositions indi-
cates that neutrinos oscillate between flavor states from an astrophys-
ical source toward Earth. The ability to oscillate between different
flavor states implies that the neutrino carries a small non-zero mass.
Current measurements from the KArlsruhe TRItium Neutrino (KA-
TRIN) experiment constrain the neutrino mass to < 0.9 eV [51]. Up to
now, only an upper limit for the mass can be determined, but not the
measurement of individual masses.

2.4.2 Energy Spectrum

The neutrino energy spectrum spans over 24 orders of magnitude in
energy and originates from several different types of sources. Fig. 2.6
shows different proposed and estimated source classes with respect to
energy. The low energy tail from µeV to meV is expected to be domi-
nated by cosmological neutrinos, the neutrino counterpart of the CMB
at 1.9 K [53], which has not been observed yet. At higher energies
above keV, the neutrino spectrum is dominated by neutrinos from elec-
tron capture and other processes within stars and supernova remnants,
for instance from the Sun [54] and from the supernova SN1987A [55].
The energy range accessible to neutrino telescopes includes atmospheric
neutrinos produced in extensive air showers, astrophysical neutrinos
from sources such as Active Galactic Nuclei, and cosmogenic neutri-
nos from proton interactions with the CMB [56]. However, the latter
component has not yet been observed due to the enormous detection
volumes required for the detection of ultra-high-energy neutrinos.
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Figure 2.6: Expected neutrino flux for different source categories,
taken from Ref. [52].

2.4.3 Atmospheric Component

The majority of neutrinos detected by the IceCube Neutrino Observa-
tory (see Chapter 3) are produced in extensive air showers (see Section
2.3). Since only muon neutrinos will be regarded in this work, the
atmospheric electron neutrino spectrum will not be discussed in the
scope of this thesis.
The atmospheric neutrino spectrum in Fig. 2.8 calculated by MCEq
shows the contribution of different hadrons to the total muon neutrino
flux. The spectrum can be separated into two components by a change
in spectral index. The low energy tail of the spectrum below ∼ 100 TeV
is dominated by the conventional component, composed of neutrinos
from decays of kaons and pions:

π± → µ± + νµ / ν̄µ

K± → µ± + νµ / ν̄µ.
(2.16)

Both parent mesons are produced in the interaction of a CR primary
(see Section 2.3). Almost the entire conventional component is domi-
nated by kaon decay, whereas pion decay has only a small contribution
to the total flux below 100 GeV.

18



2.4. Neutrinos

The analytic approximate solution for the differential conventional neu-
trino flux of the cascade equation (Equ. 2.9) is given by integrating over
the neutrino production yield P (Eν , Θ⋆, X) from a given CR primary
flux ΦN of nucleon N , derived from Equ. 2.12 [12]:

Φν(Eν , Θ⋆) = ΦN(Eν)

×
Xground∫︂

0

⎛⎝ Aπ→ν(X)
1 + Bπ→ν(X) · Eν cos(Θ⋆)

ϵπ(T (X))

+ AK→ν(X)
1 + BK→ν(X) · Eν cos(Θ⋆)

ϵK(T (X))

⎞⎠ dX.

(2.17)
The numerators Ai→ν contain the production yields and branching ra-
tios of the respective decay of parent meson i, the factors Bi→ν in the
denominator represent the cross section for the interaction of the par-
ent mesons and nucleons. Θ⋆ denotes the zenith angle at the point
of neutrino production as a function of the observed zenith angle Θ.
Both angles can be converted into one another by simple geometry, as
illustrated in Fig. 2.7:

RE

sin (Θ⋆) = RE + Hint

sin (Θ) . (2.18)

Figure 2.7: Relation of the
zenith angle Θ⋆ at production
to zenith angle Θ in IceCube
coordinates. Figure taken
from Ref. [57].

The critical energies ϵi for each respec-
tive parent meson denote the energy at
which the decay length (Equ. 2.11) is
approx. equal to the interaction length
(Equ. 2.10):

ϵi = T (X) · Rc

Mg

mi

τi

. (2.19)

The ideal gas constant is denoted as R,
M is the molar mass, g the gravita-
tional acceleration constant, c the speed
of light, and mi the mass and τi lifetime
of the parent particle. The denomina-
tor in Equ. 2.17 describes the competi-
tion between decay and reinteraction of
the parent meson governed by both de-
cay and interaction length. The neutrino
flux is dominated by the direct decay of the parent mesons below
Eν ·cos(Θ⋆) < ϵi, where the neutrino flux follows the same power law as
the primary CRs. Beyond the critical energy reinteractions dominate.
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Figure 2.8: Atmospheric muon neutrino flux and the contribution
of parent particles to the total flux, calculated by MCEq [7] with
Sibyll2.3c as the hadronic interaction model, H3a as the parameter-
ization of CR composition, and the US Standard Atmosphere [58]
for the modulation of the atmospheric depth profiles. Figure taken
from Ref. [7].

Low energy cascades can be initiated in this interaction, or the par-
ent mesons can decay into neutrinos and muons, and the neutrino flux
becomes approximately one power steeper than the primary CR flux.
This characteristic is derived by solving the cascade equations (Equ.
2.9) with a different spectral index for the low and high energy regime.
Since the critical energy is dependent on atmospheric temperature, the
spectral change can be shifted towards lower and higher energy con-
cerning temperature changes in the atmosphere, making the spectral
change season-dependent.

The high energy tail above ∼ 100 TeV is dominated by the prompt
component. The prompt component consists of neutrinos from decays
short-lived particles, for instance, D-mesons. These parent particles
cannot interact and immediately decay since the decay length is large
compared to the interaction length (refer to Equ. 2.11 and 2.10). As
the decay of the parent particle dominates, the spectrum of prompt
neutrinos is expected to follow approximately the spectrum of the CR
primary [12]. The shift in the spectral index according to a change
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in the major contribution of parent particles to the total atmospheric
neutrino flux is mirrored in the solutions of the cascade equations. The
second term in the denominator in Equ. 2.12 diminishes and the spec-
trum of dominated by the shape of the primary flux. Prompt neutrinos
have not yet been observed, which is on the one hand due to their low
abundance. The branching ratios to produce their parent particles are
small, as are the branching ratios for them to decay into neutrinos
[59]. On the other hand, it is extremely difficult to distinguish prompt
neutrinos from a neutrinos of astrophysical with similar energies. Neu-
trinos of the same flavor induce the same signature in the detector so
that the differentiation between the origin is based on the direction and
veto techniques (see Chapter 3.3 and 5).

2.5 Seasonal Variations
The critical energy at which the reinteraction and decay probability of
the parent meson are equal is linearly proportional to the atmospheric
temperature, as discussed in the previous section. Therefore, the crit-
ical energy becomes inversely proportional to the atmospheric density
under the assumption that the atmosphere is an ideal gas. The tem-
perature in the stratosphere remains mostly constant per altitude ex-
cept for Sudden Stratospheric Warming (SSW) at high latitudes [60],
in which the temperature increases rapidly. Day-to-day temperature
variations are negligible. However, seasonal temperature changes lead
to a seasonal variation in the critical energy (Equ. 2.19) and a corre-
sponding variation in the neutrino flux compared to the annual average.
This dependence was first proposed in Ref. [61]. When the tempera-
ture increases, the atmosphere expands, which causes a decrease in its
density. Simultaneously, the parent decay probability increases and the
reinteraction probability decreases, leading to an enhanced production
of neutrinos and muons. Conversely, during winter, the temperature
falls and the reinteraction probability dominates in the cold and dense
atmosphere.

2.5.1 Muons
The seasonal variation for muons was first measured in 1954 in Ref. [62],
among many other experiments, such as Ref. [63, 64, 65, 66]. Previous
studies by IceCube and its predecessor, theAntarctic Muon And Neu-
trino Detector Array (AMANDA), among others, have demonstrated
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the correlation between muon rate variation and the variation of the
effective atmospheric temperature Teff at first order [67, 68, 69] by a
linear correlation coefficient α:

R(t) − ⟨R⟩
⟨R⟩

= αT · Teff(t) − ⟨Teff⟩
⟨Teff⟩

. (2.20)

The latest IceCube measurement found a correlation coefficient of αT =
0.7500 ± 0.0027 [70], as displayed in Fig. 2.9.

Figure 2.9: (a) Measured, and (b) calculated correlation coefficient
between muon rate and effective temperature. Figure taken from
Ref. [70].

2.5.2 Neutrinos
The correlation coefficient between the variation in neutrino rate and
temperature was measured by AMANDA [71] and IceCube, with sig-
nificance of more than 10σ [72, 1]. The latest measurement obtained
a correlation coefficient of α = 0.347 ± 0.029 (see Equ. 2.20), which
is incompatible with model predictions [1]. While the neutrino rate
varies, the seasonal variations are expected to increase with the energy
of the particle.
Fig. 2.10 displays the predicted seasonal variation at the South Pole
between the austral summer from December to February and the win-
ter from June to August for muon and electron (anti-)neutrinos from
a zenith region from 90◦ to 120◦ [74]. The calculation is based on the
empirical atmospheric model NRLMSISE-00 [4], described in detail in
Appendix D. The deviation of seasonal flux from the annual mean ex-
ponentially increases above 100 GeV in muon neutrinos, reaching an
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Figure 2.10: Ratio of the cal-
culated neutrino flux for austral
summer and winter to the an-
nual average at the South Pole
for zenith angles between 90◦ to
120◦ compared to the yearly av-
erage. Figure taken from Ref.
[73].

amplitude of ±5% at 10 TeV. This increase in variation strength can
be attributed to the increase in interaction height and cross section.
Higher energy neutrinos are produced by CR primaries of higher en-
ergy that interact at higher altitudes in the atmosphere, where the
temperature variations are larger (see Fig. 8.1). Besides that, higher
energetic mesons have a longer decay length and therefore, the pro-
duced neutrinos show a larger seasonal variation.

The seasonal variation in the atmospheric neutrino flux is expected to
occur only in the conventional component. This is because prompt neu-
trinos arise from parent mesons with a short lifetime. The experiments
measure the total neutrino flux, which is a combination of atmospheric
and sub-dominant astrophysical neutrino flux components in the en-
ergy range of interest in this dissertation between 125 GeV to 10 TeV.
Fig. 2.11 shows the expected seasonal flux deviations to the annual
average for austral summer and winter by MCEq. H3a is used as the
primary composition, Sibyll2.3c as the hadronic interaction model, and
NRLMSISE-00 as the atmospheric modulation. The solid lines indicate
the prediction for the conventional atmospheric flux, and the dashed
lines indicate the total flux including the prompt component. Despite
the infinitesimal deviation between the total (conventional and prompt)
and conventional seasonal flux ratios, the ratio of the conventional and
prompt flux decreases above approximately 20 TeV. The ratio of sea-
sonal to annual average flux is maximal around 50 TeV for the total
flux and decreases with energy as the contribution of the prompt com-
ponent increases (see Fig. 2.8). The seasonal to annual average flux
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Figure 2.11: Ratio of seasonal muon neutrino flux to the annual
average calculated with MCEq (H3a as primary CR composition,
Sibyll2.3c as hadronic interaction model and NRLMSISE-00 as at-
mospheric model) for austral summer and winter. Dashed lines de-
pict the total flux including the prompt component, solid lines depict
the conventional atmospheric flux component only.

ratio for the conventional component reaches its maximum variation
strength only at 100 TeV.
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3 The IceCube Neutrino
Observatory

Enormous volumes are required for the detection of astrophysical and
atmospheric neutrinos due to their low probability of interaction with
matter. State-of-the-art neutrino telescopes use transparent media such
as water or ice as detection volume. These telescopes utilize the photo-
electric detection of Cherenkov radiation, which is emitted by charged
particles from neutrino interactions with matter during propagation
through the detector [52]. The IceCube Neutrino Observatory is the
largest neutrino detector with an instrumented volume of 1 km3 within
the antarctic ice shield, the successor of AMANDA[75].

3.1 Detector Design

The entire detection array consists of 86 cable strings, each of them
equipped with Digital Optical Modules (DOM) at depths between 1450 m
to 2450 m in a 17 m vertical spacing [76]. 78 strings of the main ar-
ray are arranged on a hexagonal grid with a horizontal distance of
125 m. The DeepCore component [77] comprises of eight innermost
strings deployed at a lower distance, forming an infill array at a dis-
tance of only 75 m. This configuration features DOMs with higher
quantum efficiency, allowing for a lower energy threshold of 10 GeV in
combination with the reduced string spacing compared to 100 GeV for
the main array. The DOMs of the infill array are positioned between
1750 m to 1850 m and 2100 m to 2450 m in ice with highly transpar-
ent optical properties. The ice layer in between is referred to as the
dust layer, where the presence of dust grains enhances scattering ef-
fects within the ice. The lower energy threshold enables DeepCore
to explore neutrino oscillations and low-energy phenomena, such as
the search for new particle signatures beyond the Standard Model.
At an altitude of 2835 m, an additional detector component, known
as IceTop, is located on the ice surface. The IceTop array is com-
posed of 81 surface stations arranged in the same grid as the in-ice
detector. Each station contains two tanks spaced 10 m apart, each
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Figure 3.1: Illustration of the IceCube Neutrino Observatory
and its detector components including an incoming neutrino event.
Each colored sphere represents a DOM which detected the emitted
Cherenkov light. The size correlates with the charge deposit. The
color represents the timing information. Red corresponds to early
hit DOMs, blue to late. Figure taken from Ref. [11].
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housing two DOMs. The primary objective is to simultaneously de-
tect air showers, which allows for the detection of coincident events
with the in-ice detector. IceTop is often used as a veto to detect the
air shower counterpart of an atmospheric neutrino of an in-ice event.
Another goal is to examine air shower parameters to determine the
mass composition of cosmic rays and their energy spectrum. The alti-
tude is distinctive in comparison to other experiments and facilitates a
measurement near the maximum shower development. An illustrated
overview of the individual detector components is provided in Fig. 3.1.

PMT	Base	
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High	Voltage
Control	Board

PMT	
Collar

Flasher	
Board

Main	
Board

Delay	
Board

Mu-Metal
GridPMT

Figure 3.2: Illustration of an optical module
and its components. Figure taken from Ref.
[5].

Each optical module en-
closes a downward-facing
photomultiplier tube (PMT)
of 25 cm diameter inside a
spherical glass sphere for
protection against increas-
ing pressure with increas-
ing ice-depth [78], as de-
picted in Fig. 3.2. The sig-
nal from the PMT is dig-
itized and amplified on a
main board before trans-
mission via cable strings
to the IceCube Lab (ICL)
at the surface. For pulse
calibration, every DOM
includes an LED. The de-
tector deployment was fin-
ished in 2010. However,
data acquisition began in May of the subsequent year incorporating
the newly installed strings into the data acquisition system.
An extension towards the next-generation neutrino telescope IceCube-
Gen2 [79] is currently in planning stages. This extension will in-
crease the detection volume to 10 km3 by incorporating additional in-ice
strings, enhancing the IceTop array using scintillation detectors, and
introducing an in-ice radio array to exploit the detection ability of very-
high-energy neutrinos beyond PeV energies, where the Earth is opaque
to neutrinos.
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3.2 Detection Principle
As neutrinos cannot be detected directly, neutrino telescopes utilize
an indirect method of detecting them via Cherenkov emission of sec-
ondary particles. If the velocity of charged high-energy particles travel-
ing through an optically transparent dielectric medium is greater than
the speed of light in the medium, they emit Cherenkov light along their
path. When a neutrino interacts in the ice or near the bedrock, energy
is deposited in the detector, and secondary charged particles are pro-
duced. Cherenkov radiation is emitted by the secondaries in a conical
shape with an opening angle of

ΘC = arccos
(︄

1
βn

)︄
(3.1)

at first order with the particle velocity β = v/c in units of the speed of
light and the refractive index n [80]. The emitted photon spectrum is
wavelength-dependent with λ−2 [81], and peaks in the blue spectrum of
visible light. The emitted Cherenkov photons are detectable through
single photon hits within the DOMs. The accumulation of coincident
local photon hits and timing information is used to reconstruct the
energy and direction of the neutrino as described in Section 3.6. Fig.
3.3 shows an illustration of the different event signatures in IceCube and
the emission of Cerenkov light, further explained in the next section.

cascademuon

PMTs

cθ

spherical Cherenkov frontCherenkov cone

Figure 3.3: Illustration of a particle traversing the detector initiat-
ing Cherenkov light. The left side shows a track-like signature of an
incoming muon, which emits Cherenkov light in a cone-like shape.
The right side depicts a cascade event, in which Cherenkov light is
emitted in a spherical cone. Figure taken from Ref. [52].
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3.3 From Neutrino Interaction to Event
Signatures

Neutrinos with energies above 10 GeV interact with the detection medium
by deep inelastic scattering at the quarks inside the nucleon via the
weak force [82]. This interaction can take place in two distinct pro-
cesses. In the case of a Charged-Current (CC) interaction [83], the
neutrino transforms into a lepton by exchanging a Z boson, and the en-
ergy is transferred to the nucleus. Consequently, a hadronic cascade X
is generated at the interaction vertex: νl +N → l+X. Neutral-Current
(NC) interactions arise from the exchange of a neutral Z0 boson, re-
sulting in energy deposition within a hadronic cascade: νl+N → νl+X.

(a) (b)

Figure 3.4: Illustration of two events from Ref. [84]: (a) track
signature, (b) hadronic cascade. The size of the DOMs represents
the detected charge. Red denotes early, green late hits.

The main event signatures in IceCube consist of hit patterns that are
track- or cascade-like. When muons, either from atmospheric air show-
ers or from CC νµ interactions, propagate through the ice, Cherenkov
radiation is emitted in a mostly linear trajectory. The related hit tra-
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jectory along the modules in the detector is designated as a track event,
illustrated in Fig. 3.4(a). Track signatures starting within the detector
are a result of neutrino interactions within the detection volume while
stopping tracks are expected to originate from low-energy muons. A
stopping track represents a muon that lost suddenly the most energy
so that the muon has a lower energy than the detection threshold of
IceCube. Sudden large energy losses are often attributed to atmo-
spheric muons, whereas the probability of these sudden losses is low for
a neutrino-induced muon [85]. Cascade events are identified as spher-
ical emissions of Cherenkov light initiated by a hadronic cascade from
CC νe and NC interactions of all flavors [52], as illustrated in Fig.
3.4(b). A unique signature originates from the CC interaction of ντ .
The production of two cascades, referred to as double cascades, arises
from the τ production by ντ and from the subsequent τ decay into a
hadronic or electromagnetic cascade [86].

3.4 Data Acquisition and Processing

An IceCube event is defined as the occurrence of multiple simultaneous
hits within the detector [87]. A hit refers to a measured charge above a
trigger threshold of 0.25 photoelectron (PE) at a PMT [78]. The wave-
form, quantified as the pulse shape initiated by the photons, is digitized
in the DOM mainboard by either the Analog Transient Waveform Dig-
itizer (ATWD) or the fast Analog to Digital Converter (fADC). Each
DOM has two converters to account for another hit being recorded dur-
ing signal conversion. Multiple concurrent hits are required to qualify
as an IceCube event within a specified time frame. This condition is
referred to as a trigger. The Simple Multiplicity Trigger (SMT) [5] is
the most fundamental trigger, triggered when a minimum of N strings
are hit by Hit Local Coincidence (HLC). HLC are hits with neighbor-
ing or the second nearest DOMs within a few µs. In the scope of this
thesis, an event is saved when the SMT-8 trigger is fulfilled.

The collected data is reduced to 100 GB per day to be transferred to the
data storage in the Northern Hemisphere, where event reconstruction
algorithms are performed offline. The remaining data tapes are trans-
ported from the Pole once per year [5]. The processing sequence from
raw data to high-level attributes is categorized into five steps, referred
to as processing Level. Level 0 signifies the processing of waveforms
into an event via detector triggers. Level 1 is a preprocessing stage
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for pulse cleaning and reduction of background noise. It includes the
preliminary fit of the track through the detector, such as LineFit [88]
and Likelihood Fit (LLHFit) [89]. All processing stages up to Level
2 are performed directly at the Pole. Level 2 comprises the basic re-
construction pipeline explained in Section 3.6. Finally, Level 3 is an
offline processing running working group-specific reconstructions and
cleaning filters. Levels 4 and 5 focus on the selection of a specific event
hypothesis and background reduction for a particular analysis. These
two steps generate the necessary high-level features for the analysis at
hand.

3.5 Simulation Chain

The IceCube simulation chain consists of simulations of the atmospheric
muon background produced by air showers, the neutrino interactions
in the ice, and the propagation of their leptonic counterparts through
the detector, the propagation of Cherenkov photons through the ice, as
well as simulations of the recorded signal and the detector electronics.

Neutrino events in IceCube need to be generated with Monte Carlo
Simulation (MC) methods. The interactions of neutrinos and the prop-
agation of the induced lepton are probabilistic. The nondeterministic
processes can be described by random sampling from one interaction
to another by MC simulations. The software Neutrino Generator (Nu-
Gen) is employed for this purpose, described in Ref. [90]. This frame-
work has been adapted from the All Neutrino Interaction Simulation
(ANIS), as reported in Ref. [91]. The neutrino energy at the surface is
sampled from a predefined distribution, forcing the neutrino to interact
in the vicinity of the detector. The simulation framework models the
propagation of neutrinos to the detector and their interactions within
the ice [90]. The latest version of NuGen serves as a successor to the
C++ Neutrino Simulation (NuSim) [92] and has been integrated into
the IceCube software IceTray [93].
The simulation framework COsmic Ray SImulations for KAscade (COR-
SIKA) [94] is used to simulate the muon background from atmospheric
air showers. CORSIKA generates the interactions of various primary
nuclei in the atmosphere and propagates the initiated particle interac-
tions throughout the atmosphere to accurately describe extensive air
showers.
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The generated leptons, regardless of their origin, are propagated through
the detector by the PRopagator with Optimal Precision and Optimized
Speed for All Leptons (PROPOSAL) [95, 96]. This tool simulates en-
ergy losses, decay, and scattering of charged leptons in a medium. The
initiated Cherenkov photons are simulated by clsim [97], which prop-
agates the photons through the inhomogeneous South Pole ice.

3.6 Event Reconstruction

Various reconstruction techniques are employed in the IceCube process-
ing chain to determine the direction of the neutrino and to estimate its
initial energy from the measured pulses in the detector. These algo-
rithms require a series of clean pulses, ideally free of any background
noise. The standard reconstruction pipeline includes the following fits
to the pulses from each DOM for reconstructing the neutrino-induced
muon track: LineFit, LLHFit, SPEFit, MPEFit, and SplineMPE [98].
The previous fit is always used as a seed for the consecutive one to en-
hance the directional prediction in each sequence. Except for LineFit,
all reconstructions rely on likelihood methods. Recent advancements
in this field involve deep neural networks [99], with the advantage of
combining several reconstruction steps into one. Since the latest meth-
ods were not accessible for the data selection utilized during the de-
velopment phase of this dissertation, the reconstructed variables for
the energy estimation in Chapter 6.3 rely on the track reconstruction
SplineMPE.

SPEFit and MPEFit

The directional reconstruction of the induced muon is based on a max-
imum likelihood approach with the likelihood L(x⃗|a⃗) as an objective
function. The likelihood is minimized to obtain the optimal parame-
ters a⃗ of a given track hypothesis for the measured data x⃗. Since the
measured data are statistically independent, the likelihood can be ex-
pressed as the product of the probability density function (PDF) p of
each event:

L(x⃗|a⃗) =
∏︂

i

p(xi|a⃗). (3.2)

The path through the detector is approximated as an infinite line, along
which the muon travels with the speed of light. The Cherenkov photons
emitted scatter in the ice, causing a delay in their arrival time tobserved
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in comparison to the direct line of sight between the track and DOM
texpected. The time difference between the two is defined as the time
residual [100], as illustrated in Fig. 3.5:

tresidual = tobserved − texpected. (3.3)
The PDF from Equ. 3.2 can be expressed as the observed time residual
as
p(tresidual,i|a⃗) given by the Pandel function [101]. This function is an
attempt to describe the propagation of Cherenkov photons in the ice
analytically. Two different approaches are used for calculating the con-
ditional probabilities for each DOM, which define two distinct recon-
struction algorithms.
The Single-Photoelectron (SPE) reconstruction calculates the PDF by
taking into account only the first Cherenkov photon for each DOM.
The first photon is usually the least scattered out of all arriving pho-
tons.
The Multi-Photoelectron (MPE) reconstruction considers the total num-
ber of hits ni detected at each DOM in addition to the first hits [98]:

LMPE(x⃗|Θ⃗) =
∏︂

i

LDOM

=
1st hits∏︂

i

ni · p(tresidual,i|a⃗) ·
(︃

1 −
∫︂ tresidual

−∞
p(texpected|a⃗)dt

)︃ni−1
.

(3.4)

The likelihood describes the probability that the first of all hits at
a DOM arrives within the defined time residual accumulated in the
whole detector. Both methods show similar performance at energies
below 10 TeV since they are equivalent if only one photon is detected
per DOM. This scenario is realistic for low-energy events, which only
have a few hits within the detector.

SplineMPE

The previous MPE-Fit reconstruction cannot account for the depth-
dependent absorption and scattering in the ice due to the selected PDF.
To address this, the successor SplineMPE employs a PDF based on B-
splines [29] into Equ. 3.4, in which the probability of detecting photons
from a muon track in different time windows is parameterized. Splines
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Figure 3.5: Illustration of
the time residual defined for
muon track reconstruction
(Equ. 3.3). The muon emits
a Cherenkov photon under
the angle ΘC, propagating to
the nearest DOM at position
ri⃗. The photon is expected to
arrive at time ti = texpected.
Figure taken from Ref. [52].

(ri ,ti )

µ, β =1

p

(r0,t0)

γ, β =1/n

θc

d

ri − r0

are piecewise polynomial functions that can interpolate the propagation
between different depths from photon tables. Further details can be
found in Ref. [98]. However, SplineMPE has yet to account for the
azimuthal anisotropy and tilt of the layers (see Chapter 7.2).
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4 Selected Concepts of
Machine Learning and
Statistical Measures

Machine learning, a branch of artificial intelligence, is the development
of algorithms and models that allow computers to learn from data to
make predictions or decisions about new, unobserved data [102]. The
data analysis process based on machine learning consists of four stages:
data collection, training and optimization of an algorithm or model, val-
idation of the model performance, and the application and evaluation
of the model to unknown data. Machine learning can be supervised
(where the model is trained on labeled data), unsupervised (using pat-
tern recognition), or reinforcement learning (learning by experiment
and experience). The classification algorithms that are used in this
thesis fall into the category of supervised machine learning.
Predicting the class category of new data based on particular features
of the dataset at hand is a common target addressed by this subcate-
gory of learning algorithms. The quality of the classification is usually
measured by a probabilistic quantity or loss function [103].

4.1 Tree-based Algorithms
Many machine learning classifiers rely on the concept of a Decision Tree
(DT). Decision Trees are tree-like models that recursively divide the
data into subsets based on the most important attributes or features
for the classification. Fig. 4.1 shows the principle of a DT. At each
data split, a decision node is created where an event is classified into
one of the categories. This process is applied at each branch until the
final classification has been made. The number of classes matches the
number of leaf nodes. DTs are widely used algorithms, as they provide a
trackable and human-readable decision-making path. The classification
quality is determined by selecting the best suitable features (known
as attributes) that are then used to construct the decision path at
each node. The selection criterion for the classification is generally
established by a measure of impurity [104]. This may include metrics
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data

condition 1 condition 2

bin 1 bin 2 bin 3 bin 4

True False True False

Figure 4.1: Illustration of a DT. The data is sorted into n = 4
categories (leaf nodes) along various decision paths.

such as the misclassification count, or entropy. The Gini-Index i(N)
[105, 106] is utilized as a measure in all algorithms presented in this
thesis:

i(N) =
∑︂
i ̸=j

P (wi)P (wj) = 1
2

⎡⎣1 −
∑︂

j

P 2(wj)
⎤⎦ . (4.1)

P denotes the fraction of category wi and wj, respectively. N signifies
the node where the decision occurs. Trees that use the Gini index are
known as Classification And Regression Tree (CART) algorithms [107].
The maximum number of branches along a decision path determines
the depth of the tree. Although DTs are a commonly used algorithm,
their output can be biased towards the training dataset, and the ac-
curacy of predictions may suffer if the training and test data originate
from slightly different distributions. This phenomenon is known as
overfitting to the training set. The use of multiple trees in modified
versions of the decision tree method results in improved performance
and independence from the training dataset [108].

4.1.1 Random Forest
A Random Forest (RF) is an ensemble technique that utilizes multiple
decision trees [104]. To create different DTs, the technique constructs
several random subsets using bootstrapping [108]. New sub-samples
are generated by sampling with replacement. The ultimate probability
of the origin of each event from a specific leaf node is calculated by
averaging over all trees [109]. Table 4.1 provides default parameters
and their respective descriptions.
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Parameter Value Explanation
n_estimators 100 number of trees
max_features

√
Nfeatures observables for best split

criterion Gini-index quality measure for split
max_depth unlimited maximum tree depth
min_samples_split 2 minimum number of samples

to perform split
min_samples_leaf 1 minimum samples

to create a leaf node
min_weight_fraction_leaf 0 required sum of weights

to create a leaf node
max_leaf_nodes unlimited maximum number of leaf nodes
bootstrap True different random sub-set

for each tree
min_impurity_decrease 0 decrease of Gini-Index

to create a split

Table 4.1: Definition and default settings of the parameters in the
Random Forest classifier [109].

4.1.2 Extremely Randomized Trees

Closely related to RF, the Extremely Randomized Trees (ERT) con-
cept [110] is an ensemble technique that adds more randomness to DT.
ERT generate multiple trees similar to the RF, but a random subset
of features is used to determine the best split at each node, instead of
all features. Additionally, the ERT classifier selects feature splits from
a random threshold within a predefined range.

4.1.3 Boosted Decision Trees

The integration of boosting into DTs creates ensemble methods with
more stable and faster predictions than those composed of a single tree.
The algorithms commence with a basic DT that undergoes progressive
improvement through the generation of multiple, more complex trees.
Misclassified events are associated with higher weights to impose sanc-
tions on these nodes, while accurately classified events are assigned
lower weights. The aim is to minimize the weighted error of the newly
constructed tree during each iteration. This process continues until a
predetermined stopping point is reached, generally a predefined number
of iterations. The learning rate tracks the contribution of each tree to

37



Chapter 4. Selected Concepts of Machine Learning and Statistical
Measures

the final classification [108]. In this work, two frequently used methods
are employed, which differ substantially in the definition of weighting.

AdaBoost

The Adaptive Boosting (AdaBoost) [111] algorithm assigns weights to
data points in the training sample sequentially, updating them accord-
ing to misclassifications in each iteration of the algorithm [112]. The
method penalizes incorrectly classified events as outliers, making it sen-
sitive to noisy data.

Gradient Boosting

The Gradient Boosting (GB) [113] algorithm aims to minimize the
overall loss function instead of penalizing single misclassified events.
Multiple trees are built independently in parallel, allowing GB to func-
tion as a fast and robust classifier.

4.2 Naive Bayes

Naive Bayes (NB) is a simple probabilistic machine learning classifier
to estimate the class category with Bayes’ theorem [114]:

P (y | x1, ..., xN) = P (y)∏︁N
i=1 P (xn | y)

P (x1, ..., xN) . (4.2)

The conditional probability calculates the probability of a class cate-
gory yi based on a particular event xn. An important aspect of this
algorithm is its naive assumption that the features are conditionally
independent, for instance, the absence of one feature does not affect
the prediction based on the other features [115]. During the training
phase, the frequencies of each class are used to calculate the prior prob-
abilities P (y) and the likelihoods of each feature within a given class.
To classify new data, the posterior probability is calculated. The NB
classifier has various variants determined by the assumptions about the
feature distributions. The probability is represented by a Gaussian dis-
tribution, the Gaussian NB classifier [109], in this dissertation which
can be expressed as

P (xn | y) = 1√︂
2πσ2

y

· exp
(︄

−(xn − µy)2

2σ2
y

)︄
. (4.3)
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The mean of the population is given by µ ∈ R, and the standard
deviation by σ ∈ R.

4.3 Crossvalidation
k-fold cross-validation (CV) [108] serves as a performance measure of
a machine learning model. Its primary purpose is the identification of
optimal model settings without biased selection of training data. The
training set is partitioned into k equal-sized subsets. The model is
trained on k − 1 of these, and the remaining subset is used for evalua-
tion. The training subsets are then shifted iteratively to enable the use
of all possible combinations as training data. The outcome is calculated
as the mean of all classifications from the k sets. CV has the benefit
of accounting for all available data efficiently by repeatedly employing
different sections of the dataset for training and testing, thereby reduc-
ing bias towards selecting a particular training set. The typical number
of divisions is often k = 5 or k = 10.

4.4 Wasserstein Distance
The Wasserstein Distance (WD), commonly known as the Earth Mover’s
Distance, quantifies the cost of transforming one distribution to an-
other. The WD in this thesis is defined by the implementation found
in Ref. [109, 116]:

l1(u, v) = inf
π∈Γ(u,v)

∫︂
R×R

|x − y|dπ(x, y). (4.4)

Γ(u, v) in R × R is the set of all PDF over which the infimum is cal-
culated for the distance between the two random variables x and y. π
denotes the set of joint probabilities.

4.5 χ2-Test
The χ2-test is a statistical hypothesis test used to determine whether
there is a statistically significant difference between the observed (mea-
sured) mi and expected ei number of frequencies:

χ2 =
∑︂

i

(mi − ei)2

σ2
i

. (4.5)
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σi denotes the respective uncertainties of the measured data. The test
assesses two hypotheses: The first is the null hypothesis or the expected
result that is chosen as the opposite of what is being examined. It
assumes no association between two quantities. The second hypothesis
is the alternative hypothesis or the observed result, which suggests an
association between two variables. A hypothesis is rejected at a specific
level of significance 1 − p, specified by the corresponding p-value. The
p-value measures the extremity or exceptionality of the observed data
under the assumption that the null hypothesis is valid. It is calculated
on a test statistic by computing the probability of observing a test
statistic as or more extreme than the observed value. Generally, a
predetermined level of significance is selected to decide when to reject
the null hypothesis. If the p-value is less than the designated threshold,
the null hypothesis can be rejected with a corresponding percentage
[117].
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5 Event Selection
Developing an event selection for atmospheric muon neutrinos is chal-
lenging due to the dominant background of atmospheric muons. The
search for buried neutrino signatures can be compared to finding a nee-
dle in a haystack. The selection of events used in this work consists of
muon neutrinos from track signatures in the detector, as introduced in
Chapter 3.3. Besides distinguishing between atmospheric muons and
neutrinos, the sample has to be cleaned from electron neutrino-induced
cascades. The same event selection is utilized as in the seasonal varia-
tion analysis in Ref. [1] to ensure comparability.

5.1 The Diffuse Muon Neutrino Track
Sample

The event selection is based on the diffuse muon neutrino sample de-
veloped by the IceCube group in Aachen. The sample is a standard
event selection in IceCube for the extraction of muon neutrino-induced
track events with a purity of 99.85%, where the remaining 0.15% is due
to contamination by atmospheric muons [118]. The sample does not
distinguish between muon neutrinos of atmospheric or astrophysical
origin. A detailed overview of all selection steps is given in Ref. [119,
120]. This section describes the main aspects of the event selection in
each processing step.

5.1.1 Variable Definitions
This section provides an overview of the variables utilized as cuts in
the event selection.

• Qtot: Total detected charge in PE in the detector.

• dQavg: Average distance from DOM to track weighted by charge
qi of each DOM:

dQavg = 1
Qtot

∑︂
i∈DOMs

qi∥xi⃗ − p⃗∥min. (5.1)
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• ndir & ldir: Both variables are defined based on direct hits, which
signify unscattered photons detected in the time residual from
Equ. 3.3 (see Fig. 3.5). The time residual is defined in five dif-
ferent intervals indicated by capital letters A through E. In the
following event selection, hits are counted in the time interval
from [−15 ns, 250 ns]. The number of identified hits during this
time window is denoted as ndir, and ldir is the calculated track
length in the detector derived from these hits.

• sdir: Smoothness of the reconstructed track from direct hits can
be quantified as in Ref. [121]:

sdir = max
j

j − 1
N − 1 − lj

lN
. (5.2)

The projected distance from the track to the j-th closest DOM is
denoted as lj, the and the number of direct hits N . The smooth-
ness measures the consistency of the observed hit pattern with
constant Cherenkov light emission by a muon by performing a
Kolmogorov-Smirnov consistency test. A track with equally dis-
tributed hits corresponds to S ∼ 0. Events with clustering of hits
at the beginning or end of a track reach a smoothness close to
S ± 1.

• −−−→COG — Center of gravity of an event:

−−−→COG =
∑︁nDOMs

i=0 qix⃗i∑︁nDOMs
i=0 qi

, (5.3)

with the total charge qi and the position x⃗i of each DOM in cylin-
drical coordinates. COGρ denotes the radial and COGz indicates
the z-component.

• lsep: Distance between the center of gravity of the first and last
quarter of hit DOMs within a radius of 150 m around the recon-
structed path.

• lempty: Minimum distance between hit DOM positions projected
onto the track. A small value indicates a smooth track signature.

• σparaboloid: Angular uncertainty, calculated as the quadratic mean
of the error ellipse.

42



5.1. The Diffuse Muon Neutrino Track Sample

• ∆LLHBayes: Measure of misreconstruction as the difference in
likelihood between up-going and down-going tracks with a Bayesian
prior ϕ(Θ) for down-going atmospheric muons:

∆LLHBayes = log
(︂
L(Hû)

)︂
− log

(︂
L(Hd

˜ )ϕ(Θ̃)
)︂

. (5.4)

The definition of up-going and down-going tracks is further elaborated
in the next section.

5.1.2 Muon Level 3

The primary objective of Level 3 reconstruction and processing is to
decrease the contamination of atmospheric muons in the sample, whilst
simultaneously retaining as many neutrino events as possible. The sky
observed by IceCube is divided into the North (0◦ ≤ Θ ≤ 85◦) and
South (86◦ ≤ Θ ≤ 180◦), based on the arrival direction in zenith of the
incoming particle. Particles from the North are defined as down-going
since they hit the detector from the top surface. Consequently, particles
from the South are classified as up-going. Down-going events are dom-
inated by atmospheric muons because of their large abundance in at-
mospheric air showers compared to atmospheric neutrinos. In contrast,
up-going track signatures primarily originate from muon neutrinos due
to the limited distance that muons can travel in ice. The maximum
distance that muons can penetrate the Earth is approximately 13 kmwe
[57] so that they are mostly unable to reach the detector.

The Muon Level 3 processing step is divided into preselection, sepa-
ration into individual events, quality cuts, and directional and energy
reconstruction. The preselection stage minimizes misreconstructed low
energy events by retaining those with a total charge exceeding Qtot ≥
100 PE and dQavg ≤ 90 m. The second selection eliminates inaccu-
rately reconstructed events whose reconstructed track is distant from
the DOMs, which poses greater difficulties in reconstruction. Further-
more, the zenith-dependent muon filter is applied using the likelihood
of angular reconstruction L from the MPE reconstruction:
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log(L)
nDOMs − 3 ≤ 8.9 if − 1.0 ≤ cos(Θ) < 0.2

Qtot > 3.0 cos(Θ) + 0.65 if + 0.2 ≤ cos(Θ) < 0.5 (5.5)
Qtot > 0.6 cos(Θ) + 2.3 if + 0.5 ≤ cos(Θ) < 1.0.

Afterward, the HiveSplitter [122] divides coincident events in the de-
tector into individual ones by analyzing the causality of light propa-
gation through the ice. All reconstruction algorithms except LineFit
(see Chapter 3.6) assume a single primary particle and cannot cope
with multiple simultaneous events. However, the splitter might fail
in distinguishing between vertically through-going, low energy events.
The module CoincSuite is applied as a secondary splitting module that
searches for causal connections among sub-events.

The final step of the Level 3 selection is passen when

((ldir/180 m)2 + (ndir/10)2) > 2 and ndir > 6

or Lreduced

ndof < 9 (5.6)

or L̂reduced · ndof < 7.5.

The parameters in the selection are obtained from the first successful
reconstruction, either by SPEFit or MPEFit (see description in Chapter
3.6). Despite the rate being lowered from 34 Hz to 3 Hz, the number of
atmospheric muons in the sample exceeds that of atmospheric neutrinos
by over three orders of magnitude.

5.1.3 Background Removal with Boosted Decision
Trees

The event sample is purified by two BDTs (see description in Chap-
ter 4.1.3) by the Level 4 and Level 5 processing stages. AdaBoost is
selected as the boosting method, implemented in the python library
scikit-learn [109]. The Southern Hemisphere is targeted for further
selection due to the difficulty in distinguishing muons and neutrinos in
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the North. One possibility to keep down-going events is the search for a
hit signature starting in the detector, referred to as starting events. An
atmospheric muon must originate from outside of the detector, whereas
a neutrino-induced muon can be initiated outside or inside of the de-
tector in the ice or nearby bedrock.

Before background events are removed by the BDTs, a cut on the
MPEFit reconstruction quality is applied and each events must pass
the following conditions:

nDOMs > 12 and ndir > 6 and ldir > 200 m
and lempty < 400 m and cos

(︂
Θ2

geo

)︂
< 0.2.

The challenge here is to find an acceptable directional reconstruction
since a misreconstructed direction could show the same event signa-
ture as an up-going neutrino-induced muon. Furthermore, events with
more than 330 malfunctioning DOMs or four excluded non-DeepCore
strings are removed from the sample. Both BDTs were trained on the
subsequent variables: COGz, COGρ, cos(Θ), lsep, ldir, ndir, σparaboloid,
∆LLHBayes, nDOMs, L/ndof.

Level 4: Separation of muons and neutrinos

The first BDT is trained on MC simulations of CC muon neutrino
events with a resolution of less than 5◦ from NuGen and muon back-
ground from CORSIKA (refer to Section 5.3 for a detailed descrip-
tion). The classifier is optimized in a 10-fold CV method (see Chapter
4.3). The final optimization is assessed by the comparison of signal effi-
ciency and background contamination in dependence of the BDT score.
Fig. 5.1(a) presents the event rate for the individual event populations
based on the selected score cut. The number of atmospheric muons
decreases logarithmically with increasing score values. The rate of at-
mospheric and astrophysical neutrinos remains generally stable with
scores ranging from 0.2 to 0.6 but increases incrementally beyond this
range. Implementing a score cut of 0.9 efficiently reduces the amount
of atmospheric neutrinos while enhancing the signal. A small number
of cascade events from electron neutrinos remains in the sample, which
are to be removed in the next step.
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(a)

(b)

Figure 5.1: Event rate of individual particle populations in de-
pendence of BDT score for the separation of muon neutrino-induced
tracks from (a) atmospheric muons and (b) cascade signatures. Fig-
ure taken from Ref. [119].
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Level 5: Separation of tracks and cascades

The cascades in the sample can usually be identified by a degraded
performance of the track reconstruction algorithms. The second BDT
diminishes the impact of cascades in the sample. The signal definition
remains the same as for the first BDT. Cascade events from electron
neutrinos are classified as background. No further BDT parameter
optimizations are carried out since the signal category is unaltered.
The event rate for the individual populations is depicted in Fig. 5.1(b).
The event rate gain exhibits similar patterns as shown in Fig. 5.1(a), as
anticipated due to the unchanged signal definition. A cascade score cut
above 0.5 can exclude most cascades, leaving only a negligible amount
in the sample. Nevertheless, the sample will inevitably have a small
contribution from atmospheric muons, as noted in the introduction to
this section.

5.2 Selection of Arrival Directions

Figure 5.2: Illustration of the se-
lected zenith region and an incom-
ing atmospheric neutrino from a CR-
induced shower. The zenith angle is
defined with respect to the rotation
axis at 0◦. The atmosphere is scaled
for better visibility.

The event selection presented in
the previous section includes up-
going events in the entire zenith
range between 86◦ to 180◦. In
order to study the seasonal vari-
ation of the atmospheric neu-
trino flux, the selected sample of
events requires temperature vari-
ations throughout the year at the
altitude where neutrinos are pro-
duced. The temperature remains
relatively constant in the zenith
directions between the Tropic of
Cancer and the Tropic of Capri-
corn, and thus, due to the lack
of seasonal variations, it should
be excluded from this analysis.
The progenitor analysis from Ref.
[72] examined the correlation be-
tween temperature variations in
the stratosphere and the mea-
sured neutrino rate, selecting the zenith region because of its present
temperature changes throughout the year. This selection is based on
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the quantity Teff , which represents the stratospheric effective temper-
ature. The temperature is calculated by the integration of the atmo-
spheric temperature profiles at various depths, convoluted with the
corresponding energy-dependent neutrino production yields. The tem-
perature profiles were taken from the Atmospheric Infrared Sounder
(AIRS) [123], using one year of data from May 2012 to April 2013.
A detailed description of the device is given in Appendix D.1.3. Fig.
5.3 presents the computed effective temperature corresponding to the
zenith angle.

Figure 5.3: Calculated effective temperature from one year of AIRS
data versus zenith angle. Figure taken from Ref. [72].

The zenith angle is defined such that Θ = 90◦ corresponds to the
IceCube detector, and Θ = 135◦ to the Equator. The effective temper-
ature variation peaks at Θ = 90◦ and gradually decreases, remaining
relatively constant between zenith angles from 120◦ to 150◦. The lack
of variation in this range can be attributed to the tropical atmosphere,
where the temperature remains constant throughout the year. The
Northern Hemisphere beyond Θ > 150◦ shows increasing temperature
variations with the zenith angle. However, the temperature amplitude
remains lower in comparison to the Southern Hemisphere. Since the
number of neutrinos declines with increasing zenith angle, only events
between zenith angles from 90◦ to 120◦ are selected for this analy-
sis, as illustrated in Fig. 5.2. The same zenith range was investigated
in Ref. [72]. The sample is cut on the reconstructed zenith angle from
SplineMPE (see description in Chapter 3.6). The selection of the zenith
region holds up to Chapter 8, where the zenith region is restricted from
90◦ to 110◦ based on detailed evaluation of temperature and rate vari-
ation.
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5.3 Simulation

The NuGen simulation set 21002 is used to train and optimize the
unfolding algorithm, as described in Chapter 6.2. The sample com-
prises muon neutrino and antineutrino events in the energy range of
1 × 102 GeV to 1 × 108 GeV, processed to the event selection presented
in Section 5.1.

5.3.1 Weighting
Simulations in astroparticle physics often involve sampling from a sim-
ple power law distribution of either E−1 or E−2 to efficiently simulate
high-energy events. Initiating simulations with a realistic flux model
would be computationally costly, particularly for high-energy events
featuring steep power laws. Simulated events are weighted to a realis-
tic flux model for the respective analysis.

As the simulation is created from an energy distribution of E−2, the
simulated events are weighted using a realistic representation of the
expected neutrino flux. This procedure is crucial to train the unfold-
ing algorithm and to make comparisons between data and simulation
for each variable utilized in the unfolding process. The atmospheric
flux from νµ and νµ̄, both the conventional and prompt component, is
modeled by MCEq. Throughout the entire thesis, Sibyll 2.3c is set as
the hadronic interaction model, H3a as the primary CR composition
model, and NRLMSISE-00 as the empirical model for the atmosphere.
A detailed description of the models is given in Chapter 2.3.4 and 2.2.2,
and in Appendix D.
In addition, the impact of the astrophysical flux needs to be considered
as well, which can be approximated by

Φνµ+νµ̄ ≈ 1.44 × 10−18 ·
(︃

E

100 TeV

)︃−2.37
. (5.7)

This estimation provides a realistic scenario of the flux at energies be-
yond 10 TeV [118]. The astrophysical component might only be relevant
for the added overflow bin in the optimization (see Chapter 6.4). Since
the event selection does not differentiate between neutrinos of atmo-
spheric or astrophysical origin, the astrophysical component is added
for the complete modulation of the neutrino flux.
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Chapter 5. Event Selection

Each simulated event is weighted by the simulation quantity OneWeight
[91], which accounts for the complete flux modulation. OneWeight is
a measure of a time-independent inverse flux, expressed in units of
GeV cm2 sr per unit area and energy:

OneWeighti = pint · Agen ·
∫︁

Ω
∫︁ E2

E1
Φgen(Ei)dEdΩ
Φgen(Ei)

. (5.8)

The probability of forced interaction near the detector pint can be ex-
pressed as d2N

dEdΩ , where N represents the number of detected neutrinos.
In this scenario, Agen is the generation surface, while Φgen defines the
injected flux of neutrinos [124]. The event weight wi is computed based
on OneWeight, the number of generated events Ngen, and the flux Φi

to which the event is weighted:

wi = OneWeighti

Ngen
· Φi. (5.9)

The total weight of the event is given by the sum of the atmospheric and
astrophysical weight. The weighting accounts for the number of neu-
trinos and antineutrinos in the simulation, whereas neutrino telescopes
cannot distinguish between particle and antiparticle. It is corrected for
by adding the contribution from neutrinos and antineutrinos for each
respective flux representation.

The unfolding algorithm described in Chapter 6.2 cannot incorporate
weights as an additional input to the training set or sample to be
unfolded. Hence, simulated events are resampled based on their flux
weights to create a realistic training sample with the module
multinomial_resampling from the Python library
filterpy.monte_carlo [125]. Three sampling methods from the same
package were compared in the progenitor work in Ref. [126], in which
the multinomial re-sampling method produced the best results. The
sampling methods were compared again on the simulation set at hand.

5.3.2 Effective Area

To obtain a universally independent differential flux dΦ/dE from an event
spectrum Ni, correcting the event spectrum is necessary. This can be
achieved by incorporating the livetime T of the dataset, the effective
detection area Aeff , the width of the energy bin ∆E and the solid angle
∆Ω = 2π · cos(Θmin) − cos(Θmax):
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dΦi

dEdΩ = Ni

T · Aeff · ∆E∆Ω . (5.10)

The effective area refers to the hypothetical area of a fully efficient
detector [52]. It describes the efficiency of the event selection and is
analysis-specific. The effective area per energy bin and solid angle is
calculated by dividing the number of events that survive the event
selection by the total number of generated events [124]:

Aeff(∆E, ∆Ω) = Agen · N̂ events(∆E, ∆Ω)
N̂gen(∆E, ∆Ω)

. (5.11)

Agen represents the generated detection area in the simulation, while
N̂ events denotes the expected number of events after the selection pro-
cess. Equ. 5.11 is an approximation for the discrete representation of
the effective area. The number of events that successfully pass through
the event selection can be determined by

N̂ events(∆E, ∆Ω) =
Ngen∑︂
i=1

wi · pi,int =
∑︂

(i|Ei∈∆E,Ωi∈∆Ω)
pint,i, (5.12)

with the probability of forced interaction in the vicinity of the detector
pint,i. The effective area can be expressed in a OneWeight-formalism:
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Aeff(∆E, ∆Ω) ≈ 1
Ngen∆Ω∆E

·
∑︂

(i|Ei∈∆E,Ωi∈∆Ω)
OneWeighti. (5.13)

A detailed derivation can be found in Ref. [126].

The effective area for the analysis at hand is calculated in four equidis-
tant zenith bins in cos(Θ), as displayed in Fig. 5.4. The selected energy
binning is discussed in Chapter 6.4. The effective area decreases slightly
at energies below 1 TeV in the zenith band close to the horizon, as these
events are more difficult to detect in IceCube.

5.4 Data
The dataset is processed to the event selection explained in Section 5.1.
Only years with a complete detector configuration are selected to en-
sure consistency in the reconstructed variables. Despite the completion
of detector construction in December 2010, the strings deployed dur-
ing this construction season were integrated into the data acquisition
chain only on May 7, 2011, with the start of the new run configura-
tion. Data in IceCube is stored in detector runs of approximately eight
hours each. Runs marked as good are added to the Goodrunlist, from
which datasets are constructed. A run is deemed good when a suffi-
cient number of DOMs and strings are declared as active, depending
on the specific event selection (refer to Section 5.1). Currently, data is
available through December 2022, resulting in the detection of 523 736
neutrino events within an effective detector livetime of 11.3 years.
Regarding the data processing stream, the charge distribution of indi-
vidual photoelectrons was shifted by 4% in a recalibration campaign in
2016. As a result, data predating 2016 has undergone reprocessing to
align with the updated DOM calibration, which is referred to as Pass2-
processing [128]. Only the calibration has been changed, which was
reimplemented in all previous simulation samples and data processing.

The zenith distribution of the dataset is depicted in Fig. 5.5. Most
of the events originate from close to the horizon, while the number of
events decreases as the zenith angle increases. Furthermore, Fig. 5.6
shows the average monthly neutrino rate from May 2011 to December
2022, with statistical uncertainties included. The observed rate varia-
tions throughout the year are not entirely symmetrical. The maximum
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rate differs from year to year and is often reached in October or shows a
broader maximum from October to January. The minimum rate occurs
more sharply in June or July.

5.5 Data-MC Agreement

The algorithm used for unfolding is optimized and trained on simu-
lated events, which requires close agreement between simulation and
data for the unfolding of the energy spectrum. Fig. 5.7 shows the event
distribution of each of the variables employed in the unfolding process
(see Chapter 6.3 and 6.5). The ratio of simulated to data events is
nearly constant, with a surplus of roughly 20% in the data, illustrated
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Figure 5.7: Comparison of data and MC simulated events in both
unfolding variables. The error bars depict the statistical uncertainty
in data. Dashed lines indicate a ratio of ±20%.

by the dashed lines. This can be attributed to uncertainties in atmo-
spheric fluxes. Simulation of muons and neutrinos commonly predict
fewer events than being observed, i.e. discussed in Ref. [129, 130]. The
diffuse neutrino flux measurements fit the atmospheric normalization
to approximately 19%, such as in Ref. [131]. Only two bins in both
variables show no excess of data. A constant offset in the agreement
between data and MC is acceptable because the sampling procedure
normalizes the weights. The crucial part is the agreement in shape
between the simulation and data variables.
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6 Solving Inverse Problems:
Determination of the
Energy Spectrum

Inverse problems are a frequent obstacle in experimental physics. When
a physical quantity cannot be accessed directly through experiments,
such as neutrino energy, it must be derived from correlated quantities
that can be measured instead. To obtain the neutrino energy spec-
trum, this chapter introduces the unfolding concept, in particular the
Dortmund Spectrum Estimation Algorithm (DSEA+). The subsequent
section explains the estimator variables and algorithm optimization.

6.1 Unfolding in a Nutshell

6.1.1 Definition
An inverse problem is the determination of the distribution of a phys-
ical quantity x, from a set of measurements. However, this process is
constrained by measurement uncertainties and inaccuracies, including
limited acceptance and limited measurement accuracy, in addition to
the difficulty of determining the related quantity. As a consequence,
the related quantity y is measured instead of x, and the probability
density g(y) is obtained. The relationship between the true distribu-
tion f(x) and the observed distribution g(y) is made by a convolution
integral, referred to as the Fredholm integral equation of the first kind
[132]:

g(y) =
∫︂ b

a
A(x, y)f(x)dx + b(y) + ϵ(y). (6.1)

Because the relationship between the variables may not be fully known,
the equation is not necessarily deterministic. The conversion of one
quantity to another has a finite resolution due to the experimental
setup. Background contamination b(y) and deviations attributed to
statistical errors ϵ(y) and other imperfections present in the measure-
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ment process restrict the ability to solve Equ. 6.1. Since the number of
observations is finite, the inverse problem is discretized into histograms:

g⃗(y) = A(x, y)f⃗(x) + b⃗(y) + ϵ⃗(y). (6.2)

MC simulations are often utilized to approximate A(x, y), while sta-
tistical uncertainties and noisy background pose additional challenges.
The process of determining the folding matrix A to reconstruct f⃗(x) is
known as unfolding. The division of the target quantity into a binned
distribution introduces uncertainties and biases, which are further en-
hanced by the limited measurement accuracy [133]. The conversion into
the true target distribution is statistically an ill-conditioned problem.
Oscillating solutions in bins with insufficient statistics are characteris-
tic for inverse problems. Various regularization techniques can suppress
these oscillations to establish limitations for achieving a smoother so-
lution, displayed in Ref. [134]. A common method is a smooth second
derivative, as in Ref. [135].

6.1.2 Application to Neutrinoastronomy

In neutrino astronomy, the reconstruction of the true neutrino en-
ergy distribution f(x) is a challenging task as it is dominated by a
distribution of background events from atmospheric muons. Chapter
5.1.3 discusses event selection techniques that limit the background to
sub-percent levels, so that the inverse problem becomes approximately
background-free and the term b(y) can be eliminated from Equ. 6.2.
However, the neutrino energy needs to be inferred from the muon in-
duced in the interaction of the neutrino in the ice or nearby bedrock
[5]. The rate of observed neutrino-induced muons is determined by the
integration over the convolution of the neutrino spectrum dNν/dEν and
the probability that the neutrino induces a muon in the energy range
detectable for IceCube [136]:

dNµ

dEµ

=
∫︂ ∞

Eµ

dEµ

(︄
dNν

dEν

)︄(︄
dP (Eν)

dEµ

)︄
. (6.3)

The energy resolution of the muon is smeared due to energy loss dE/dx

during the propagation through a medium, which is defined as

dE

dx
= −a(E) − b(E)E. (6.4)
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Two distinct processes characterize the energy loss in this scenario.
The first process involves continuous energy losses through ionization,
represented by the term a(E) ≈ 0.24 GeV m−1. The second process,
described by the term b(E) ≈ 3.3 × 10−4 m−1, represents stochastic
radiative energy losses via bremsstrahlung, pair production, or photon
scattering [137]. Continuous losses are dominant at low energies, but
stochastic losses become dominant above Eµ > 1 TeV. Stochastic losses
increase linearly with energy, resulting in even larger energy reconstruc-
tion uncertainties. In-ice energy deposits from secondary particles can
initiate electromagnetic cascades, which expose an even larger num-
ber of secondary particles to energy loss processes. Consequently, the
energy reconstruction becomes more difficult.

6.2 DSEA+

Common unfolding methods, such as iterative Bayesian unfolding [138],
which is based on the conditional probability in Bayes’ theorem, or
regularized unfolding with a maximum likelihood approach [134, 139],
return a discrete probability distribution, but lose information about
each event. A novel approach to unfolding a spectrum is the Dortmund
Spectrum Estimation Algorithm (DSEA+) [6, 140, 141]. It presents
unfolding as a multinomial classification task, similar to supervised
machine learning. The algorithm categorizes each event into predefined
energy bins, which are treated as separate and independent categories.
One of the advantages compared to other unfolding techniques is the
retention of data for each event after unfolding.

6.2.1 Workflow

DSEA+ iteratively rescales a predicted PDF based on a regularization
function to estimate the energy bin (class category) through a classi-
fier from preselected energy proxies. The input classifier can be any
machine learning classifier, e.g. from the scikit-learn [109] Python
library, as long as it estimates conditional probabilities (confidences)
for each input event xn to have a corresponding neutrino energy to
energy bin i. These discrete PDFs are denoted as cM(i | xn). The con-
fidences for each event are accumulated and normalized, and DSEA+
returns a discrete PDF [142], which represents the total probability of
a particle having a specific energy, in each iteration k:
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fî

(k) = 1
N

Nevents∑︂
n=1

cM(i | xn) ∀ 1 ≤ i ≤ I. (6.5)

The current estimate is regularized by scaling it to specific functions,
as described in the following section. The scaled estimate acts as a
prior guess to which the output of the classifier is weighted in the
subsequent iteration of the algorithm. This method is repeated until
adequate precision is attained. A uniform prior is assumed as the initial
guess for the first iteration. The process is illustrated in Fig. 6.1.

Figure 6.1: Iterative workflow of DSEA+. The current estimate
f̂

(k)
i is scaleable by various regularization functions.

6.2.2 Regularization
The estimated PDF can be adjusted by three-step size decay functions,
which smooth the spectrum and control the convergence speed of the
algorithm. Each iteration updates the current estimate f̂

(k−1) towards
the next iteration k by

f̂
(k),+ = f̂

(k−1) + α(k) · p(k), (6.6)

with the step size α(k) ≥ 0 and the search direction p(k) = f̂
(k)

− f̂
(k−1)

[142]. The step size can remain constant in each iteration, as it is for
multiplicative (slow) and exponential (fast) decay, or it can be modified
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6.2. DSEA+

iteratively based on the previous estimation. The step sizes are defined
as

αmultiplicative = kξ−1, (6.7)
αexponential = s · ξk−1, (6.8)

αadaptive = arg min
α(k)≥0

l̂
(k)
r (f̂ (k−1) + α(k)). (6.9)

ξ > 0 denotes the decay rate, and s the initial scaling of the step size.
Step size decay can speed up the convergence to the optimal estimate
of DSEA+ compared to the unregularized algorithm by requiring fewer
iterations. However, selecting the ideal step size is challenging, given
that a smaller step size may hinder the convergence of the algorithm.
Adaptive step sizes (Equ. 6.9) circumvent this caveat by adjusting the
step size in each iteration. While other methods may not be able to find
the optimal solution if the step size is too large, the adaptive approach
allows the step size to shrink when the optimal solution is close. αadaptive
is adjusted based on the current estimate through maximum likelihood
optimization in the search direction. This process is similar to a line
search [143] in the context of numerical optimization. The loss function
l(k)
r̂ (f̂) to be minimized in the adaptive step size decay is defined by

the Regularized UNfolding (RUN) algorithm [134, 139]:

l̂
(k)
r (f̂) = l̂

(k)(f) + r(f), (6.10)

with the objective function

l̂
(k)(f) = 1

2fTHf − fT(Hf̂
(k)

− ∇l(f (k)ˆ )), (6.11)

and the Tikhonov regularization [135] term

r(f) = τ

2 ·
ℓ−1∑︂
i=2

(−fi−1 + 2 · fi − fi+1)2 = τ

2 · fT Cf . (6.12)

H denotes the Hessian of the current estimate. To obtain a smoother
solution, the estimate is constrained by the Tikhonov regularization
[135] instead of solely optimizing the objective function. The maxi-
mum likelihood optimization is realized by dimension reduction of the
observable space to ℓ degrees of freedom. The dimensional reduction is
realized by the CART algorithm (introduced in Chapter 4.1). Within
this algorithm, clusters represent the degrees of freedom in classifica-
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tion, equivalent to the number of leaves in the tree. The impurity
of each node is measured by the Gini-index (see Equ. 4.1), indicating
the the probability of an incorrect classification of a random event.The
step size can be regularized by the regularization strength τ ≥ 0 (Equ.
6.12). The Tikhonov term is regulated solely by the flattening of the
second derivative of the loss function when τ = 0 (Equ. 6.11). If α = 1,
no regularization is applied.

6.3 Description of Energy Proxies
The selection of suitable energy proxies for unfolding is based on pro-
genitor work in Ref. [144, 145, 146, 126]. Several reconstruction al-
gorithms use charge measurements to reconstruct a neutrino track
through the detector and to determine the arrival direction and en-
ergy, as discussed in Chapter 3.6. The progenitor study in Ref. [126]
on old simulations (discussed in Chapter 5.3) tested a combination of
five variables, three of which were ultimately chosen as the optimal
combination. It is crucial to limit the number of unfolding variables
since correlated variables have a negative impact on convergence speed.
The parameter optimization in Section 6.4 is performed on the same
variables, and their combinations are tested in Section 6.5:

• Number of Channels (L5_nch): Number of DOMs exceeding
the charge threshold of 0.25 PE [100]. The prefix L5 denotes the
highest level of processing, where potential background hits are
removed and the overall quantity is calculated.

• Direct Hits (L5_ndir_c): The number of direct photons rep-
resents the number of photons detected in a given time residual
without scattering by ice impurities [100], as defined in Chapter
5.1.1. The number relies on the reconstructed track and counts
the photons along the respective track hypothesis. The variable
is computed by utilizing the SplineMPE reconstruction (refer to
Chapter 3.6) and the measured hits within the time window C
from −15 ns < t < 75 ns.

• Truncated Energy (Etrun): Truncated neutrino energy is a
standard energy reconstruction in IceCube [147] that can be ap-
plied to a reconstructed track, such as e. g. SplineMPE. The
algorithm calculates the differential energy loss using the ratio of
observed to expected photoelectrons as if induced by muons with
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a fixed energy loss of 1 GeV m−1. The energy loss can be deter-
mined in two ways – by calculating the losses at each hit DOM
(referred to as the suffix DOMs) or along the track by projecting
the hit DOMs onto the reconstructed track (referred to as the
suffix BINs). The algorithm estimates the energy by truncating
the largest energy losses. Both approaches produce comparable
outcomes [126], and the first method is selected for this work.
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Figure 6.2: Correlation between the final selection of energy proxies
and simulated neutrino energy Emc.

6.4 Parameter Optimization for DSEA+
The energy spectrum is unfolded into ten bins equidistant in logarith-
mic space from 125 GeV to 10 TeV from the energy proxies introduced
in the previous section: L5_nch, L5_ndir_c, and Etrun. The exact bin
edges are depicted in Table B.2 and C.2 in the Appendix. The maxi-
mum energy is set to 10 TeV because of the limited statistics at higher
energies. An important factor for the low-energy limit to consider is
that events below 100 GeV are not simulated, as it is the threshold en-
ergy for neutrino detection in IceCube. This aspect is covered by adding
under- and overflow bins as two additional bins below and above the
defined range. These bins are essential when an event in the dataset has
an unfolded energy that exceeds the predefined energy range, such spe-
cific values of the proxy variables are outside of the simulation range.
Another aspect is the correct determination of bin-to-bin migrations.
The combination of the three energy proxies was determined to be op-
timal in progenitor studies using MC simulations with different DOM
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calibrations Ref. [126]. For a detailed account of changes, see Ref. [128]
and Chapter 5.4. The selected parameters will be further examined in
Section 6.5 after the optimization of DSEA+ and its parameters. An
initial selection of proxy variables is required for the optimization pro-
cess. The choice of parameters is strongly dependent on the variables
at hand. Parts of the optimization process have been discussed in Ref.
[148].

The search for optimal parameters of DSEA+, is performed through a
10-fold CV on 500 000 simulated events, as discussed in Appendix 4.3.
The choice of this number balances accurate unfolding with acceptable
optimization runtime. The quality of the resulting spectrum is evalu-
ated using the Wasserstein Distance (WD) [116] (defined in Chapter
4.4).

6.4.1 General Aspects

The selection of the most appropriate machine learning classifier is
investigated by testing six classifiers from scikit-learn:Naive Bayes
(NB) [114], Adaptive Boosting (AdaBoost), Gradient Boosting (GB)
[149], Decision Tree (DT) [107], Extremely Randomized Trees (ERT)
[110], and Random Forest (RF) [104]. For comparison, the classifiers
are used with their default settings. After optimizing the classifier that
yields the smallest WD over the entire energy range including under-
and overflow bin, the internal parameters of the classifier are further
optimized. The regularization parameters, in particular the parame-
ters of the step size decay functions, are optimized in the last step.
Since a grid search over all parameters in parallel is computationally
expensive, three values for each parameter are tested and the vicinity
of the best-performing one is investigated in more detail. This pro-
cess, developed in Ref. [126], is utilized in this thesis for new IceCube
simulations after a recalibration of the modules [128]. The number of
iterations in DSEA+ is standardized to four to ensure that all predic-
tions converge (see Appendix B.3). To provide a realistic scenario, the
E−2-distributed MC is resampled using neutrino flux weights, which
include conventional, prompt, and astrophysical weights (described in
Chapter 5.3). The description of the classifiers can be found in Chapter
4.
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6.4.2 Selection and Optimization of the Classifier

Fig. 6.3 shows the results of the grid search for optimal classifier set-
tings. Additionally, Fig. 6.3(a) and Fig. 6.3(b) exhibit the unfolded
spectra with various classifiers using default settings. An in-depth anal-
ysis reveals that Adaptive Boosting performs the worst, as it unfolds a
flat spectrum. It is the effect of the initial uniform prior that dominates
the output spectrum. The Gaussian Naive Bayes and Gradient Boost-
ing classifiers exhibit comparable performances with WD ≈ 0.01000 at
first glance. Nonetheless, the unfolded spectra vary substantially in
shape. The unfolded spectrum obtained with the Gradient Boosting
Classifier deviates less than 10% from the true spectrum in bins 2 to
8. However, it differs significantly in the underflow bin, leading to an
increase in the overall WD. The unfolded spectrum with the Gaussian
NB is steeper and leads to large discrepancies in the energy range of
interest.
The tree-based classifiers presented in Fig. 6.3(b) perform similarly,
and the unfolded spectrum only deviates at a percentage level from the
MC truth. The most accurate prediction is obtained with the RF with
WD ≈ 0.00122. Under- and overflow bins are also estimated precisely
at percentage level.
Fig. 6.3(c) to Fig. 6.3(f) display the subsequent grid search for selected
parameters of the RF classifier. The RF has an unlimited default tree
depth, as shown in Table 4.1. Increasing the tree depth enhances the
classifier’s complexity and classification time. However, a tree depth
of 10 is insufficient as the unfolded spectrum is too flat with WD
≈ 0.00994. Above a maximum depth of 20, the unfolded spectrum
remains unchanged with WD ≈ 0.00100, comparable to the unfolded
spectrum with default RF settings. The default number of estimators,
the number of trees in the forest, is 100. For the grid search, a lower
number of trees is used to reduce the runtime of the classification (Fig.
6.3(d)). The obtained WDs are slightly lower than for the default RF,
but comparable with WD ≈ 0.00160 for 50 estimators. The maximum
number of features determines the number of observables for the best
split at a tree node and establishes the importance of each variable for
accurate classification. A maximum number of features of 1 or 2 yields
results comparable to the standard classification with WD ≈ 0.01200
(Fig. 6.3(e)). However, there is a discrepancy of approximately 2% in
the underflow and the last two bins when considering a maximum of
three features in the unfolded spectrum. The increase of the WD with
increasing number of features indicates that potentially redundant fea-
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Figure 6.3: Top panel: Unfolded normalized event spectra compared to
the true distribution in black for different classifier settings. Under- and
overflow bins are denoted by shaded bins. Lower panel: Ratio of unfolded
spectra to the true distribution. (a) and (b) depict the spectrum obtained
with classifiers at default settings, (c) to (f) the optimization of the RF.
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tures are selected for the classification. Thus, the selection of variables
is further investigated in Section 6.5. The maximum number of leaf
nodes at every decision vertex is determined by the maximum number
of leaf nodes parameter and is, by default, unrestricted (see Table 4.1).
The adjustment of this parameter alone, without changing any others,
does not enhance the accuracy of the unfolded spectrum. The spec-
trum becomes flatter and exhibits significant deviations exceeding 20%
in most energy bins.

In conclusion, the grid search for the parameters of the RF classifier
does not improve the accuracy of the unfolded spectrum. Therefore,
the default RF classifier settings, as shown in Table 4.1, are utilized
throughout this thesis.

6.4.3 Optimization of Regularization Parameters

The search for optimal regularization parameters in DSEA+ using the
default RF classifier is shown in Fig. 6.4. Figures 6.4(a) and 6.4(b) show
that variation of the parameter ξ in the multiplicative step size decay
(Equ. 6.7) yields on average comparable accuracy with WD ≈ 0.00190
for ξ = 0.25 compared to no regularization. However, ξ > 1.5 reg-
ularizes too strongly, and the true spectrum cannot be determined.
Compared to multiplicative stepsize decay, the exponential stepsize de-
cay (Equ. 6.8) shows a significant dependence on ξ to obtain an accu-
rately unfolded spectrum (Fig. 6.4(c) and 6.4(d)) for a start size s = 2.
ξ = 0.5 results in a spectrum similar to the default one without regu-
larization, with WD ≈ 0.00120. The starting size for the exponential
step size decay is investigated for ξ = 0.5. The unfolded spectrum is
similar across s = 0.5, s = 1, and s = 2. The resulting WDs do not
differ significantly from that of unregularized DSEA+.
The regularization strength is adjusted by varying the parameters for
adaptive step size decay (Equ. 6.9) while keeping the others constant.
To bin the observable space, the number of leaves is set to l = 10. The
results are consistent for τ ≤ 20, with WD ≈ 0.00293 (Fig. 6.4(e)). The
effect of the number of clusters is examined by setting the regulariza-
tion strength to τ = 0 so that the second term in Equ. 6.12 vanishes. A
decrease in the number of leaves to l ≤ 10 results in worse results com-
pared to the other regularization functions (Fig. 6.4(f)). To achieve an
accurate spectrum, a larger number of clusters would be needed, which
would increase the runtime of the algorithm tremendously.
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Figure 6.4: Top panel: Unfolded normalized event spectra compared
to the true distribution in black for different regularization parameters.
Under- and overflow bins are denoted by shaded bins. Lower panel: Ratio
of unfolded spectra to the true distribution.
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6.4.4 Conclusion
The grid search results for the parameters are summarized in Table
6.1. The default RF remains as the optimal classifier. Accuracy is
improved only minimally through regularization, despite multiplicative
and exponential step size decay. For this thesis, the parameters are
selected as follows: exponential step size decay with ξ = 0.5 and s = 1.
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Parameter Value Wasserstein Distance
Random Forest default 0.00122
Decision Tree default 0.00208
Extremely Randomized Trees default 0.00148
Adaptive Boosting default 0.03453
Gradient Boosting default 0.00976
Gaussian Naive Bayes default 0.00969
Random Forest: maximum_depth 10 0.00994
Random Forest: maximum_depth 20 0.00110
Random Forest: maximum_depth 50 0.00121
Random Forest: maximum_features 1 0.00122
Random Forest: maximum_features 2 0.00120
Random Forest: maximum_features 3 0.00156
Random Forest: n_estimators 10 0.00123
Random Forest: n_estimators 50 0.00116
Random Forest: n_estimators 120 0.00117
Random Forest: max_leaf_nodes 5 0.01980
Random Forest: max_leaf_nodes 10 0.01641
Random Forest: max_leaf_nodes 20 0.01422
multiplicative decay ξ = 0.25 0.00119
multiplicative decay ξ = 0.5 0.00120
multiplicative decay ξ = 0.75 0.00120
exp step size decay ξ = 0.5, s = 0.5 0.01104
exp step size decay ξ = 0.5, s = 1.0 0.00119
exp step size decay ξ = 0.5, s = 1.5 0.00258
exp step size decay ξ = 0.5, s = 2.0 0.00120
exp step size decay ξ = 0.25, s = 2.0 0.01726
exp step size decay ξ = 0.75, s = 2.0 0.01843
adaptive step size decay l = 4, τ = 0 0.01496
adaptive step size decay l = 8, τ = 0 0.00255
adaptive step size decay l = 10, τ = 0 0.00293
adaptive step size decay l = 10, τ = 0.2 0.00293
adaptive step size decay l = 10, τ = 0.5 0.00293
adaptive step size decay l = 10, τ = 1.0 0.00293

Table 6.1: Overview of DSEA+ parameter optimization. The high-
lighted settings will be used within this dissertation.
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6.5 Variable Selection
The selection of unfolding variables can be justified through coverage
and bias tests, which examine the stability of DSEA+ to statistical
fluctuations. A subsample of 100 000 simulated, resampled atmospheric
events is randomly divided into two-thirds for algorithm training and
one-third for testing (unfolding). This process is repeated over 2000
trials. A suitable variable selection should result in coverage within one
standard deviation and minimal bias. The feature importance for the
RF are : 8% for L5_nch, 3% for L5_ndir_c, and 89% for Etrun. Fig.
6.3(e) indicates that the performance slightly worsens for a node split
that utilizes three variables. Subsequent sections will explore whether
the variable L5_ndir_c is substantial for the unfolding.

6.5.1 Coverage Test
The coverage test assesses the containment of the unfolded result within
statistical uncertainties to identify if the uncertainties are overesti-
mated or underestimated. The coverage is defined as

ci = coveragei = fest,i − ftrue,i

σi

, (6.13)

with the unfolded number of events fest,i per energy bin i, the true
number of events ftrue,i, and the standard deviation

σi =
(︄∑︂

n

√︂
cM(i | xn)

)︄2

(6.14)

under the assumption of Poisson statistics. The discrepancy between
the unfolded number of events and the MC truth per bin should not
exceed one standard deviation. In this scenario, the variable selection
would add further uncertainties to the outcome. In case the devi-
ation is well-contained within one standard deviation, the statistical
uncertainty is underestimated, as it is a relatively conservative mea-
sure. The confidences cM of the classifier outputs can be determined
with DSEA+, which is one advantage compared to other unfolding
algorithms.
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Figure 6.5: Coverage test of the unfolding variables with and with-
out L5_ndir_c. The mean and the corresponding standard deviation
are calculated for each bin. Bin 0 and 11 denote underflow and over-
flow bins, respectively.
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6.5.2 Bias
The bias test examines if the chosen variables introduce additional bias
into the unfolded event spectrum, measuring the deviation from the MC
truth:

bi = biasi = fest,i − ftrue,i

ftrue,i

. (6.15)
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Figure 6.6: Bias test of the unfolding variables with and without
L5_ndir_c. The mean and the corresponding standard deviation are
calculated for each bin. Bin 0 and 11 denote underflow and overflow
bins, respectively.
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6.5.3 Final Remarks
Both variable combinations yield similar results in both tests, as pre-
sented in Table 6.2. Bias and Coverage are slightly improved excluding
the third variable L5_ndir_c, with a mean absolute coverage of 0.20
and bias of 0.0043, disregarding statistical uncertainties. The redun-
dancy of the direct hits variable was previously indicated in the feature
importance at each node in the RF classifier, as depicted in Fig. 6.3(e).
Therefore, in this dissertation only two variables will be used in this
dissertation: L5_nch and Etrun. The comparison of both variables to
data is shown in Fig. 5.7.

Bin Coverage Test Bias Test

L5_nch L5_nch L5_nch L5_nch
Etrun Etrun Etrun Etrun

L5_ndir_c L5_ndir_c

1 −0.3 ± 1.8 −0.2 ± 1.8 −0.006 ± 0.038 −0.004 ± 0.039
2 −0.0 ± 1.8 −0.0 ± 1.8 +0.000 ± 0.025 +0.000 ± 0.026
3 −0.3 ± 1.8 −0.2 ± 1.7 +0.004 ± 0.020 −0.002 ± 0.021
4 −0.1 ± 1.8 −0.3 ± 1.8 −0.000 ± 0.019 −0.003 ± 0.020
5 −0.2 ± 1.8 −0.0 ± 1.7 −0.001 ± 0.019 −0.000 ± 0.019
6 −0.1 ± 1.9 +0.2 ± 1.8 −0.000 ± 0.020 +0.003 ± 0.021
7 +0.1 ± 1.9 +0.3 ± 1.8 +0.002 ± 0.022 +0.004 ± 0.022
8 +0.3 ± 2.0 +0.1 ± 1.9 +0.004 ± 0.025 +0.002 ± 0.025
9 −0.0 ± 2.0 −0.0 ± 1.9 +0.001 ± 0.029 +0.001 ± 0.030

10 +0.4 ± 2.0 +0.4 ± 1.9 +0.007 ± 0.035 +0.008 ± 0.037
0 −0.5 ± 2.1 −0.5 ± 2.0 −0.019 ± 0.107 −0.020 ± 0.109

11 −0.6 ± 1.7 −0.2 ± 1.6 −0.009 ± 0.029 −0.004 ± 0.031
Abs.

mean 0.24 0.20 0.0044 0.0043

Table 6.2: Coverage and bias test results for each energy bin. The
final selection is determined by comparison of the mean value aver-
ages.
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7 Seasonal Variations in the
Zenith Range from 90◦ to
120◦

This chapter presents the main findings of this thesis, the unfolded
seasonal spectra of atmospheric muon neutrinos, and the resulting sea-
sonal variation of the flux in the zenith range from 90◦ to 120◦. The
estimation of statistical and systematic uncertainties is described in the
first two sections. Afterwards, the analysis chain is presented and the
expected results from simulation studies are shown. The last section
discusses the determined seasonal variations monthly and compares the
obtained results to the theoretical predictions from MCEq.

Parts of this chapter are contained in conference proceedings of the
author, in particular, Ref. [150, 127].

7.1 Estimation of Statistical Uncertainties
DSEA+ does not contain a measure of statistical uncertainties of the
unfolded spectrum. This can be solved with an estimation of statistical
uncertainties with a bootstrap method (refer to Chapter 4.1). The gen-
erated sub-samples from sampling with replacement are divided into
monthly and seasonal datasets based on the timing information and
then unfolded. The number of events per energy bin is determined af-
terward by scaling the obtained PDF to the total number of events in
a specific season. The bootstrap approach is repeated over 2000 pulls.
A detailed description of the analysis chain can be found in Section 7.3.

Fig. 7.1 and 7.2 display the distribution of the bootstrap pulls in each
energy bin exemplary for the season from June to August. The dis-
tributions are analogous for all seasons but with different numbers of
events per energy bin. The distribution of the obtained number of
events in each bin can be approximated by a Gaussian fit, depicted
in red. The standard deviation and mean are calculated for each pull
distribution and compared to the fit. Since both are compatible, the
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Figure 7.1: Distribution of the bootstrap pulls for the season from
June to August per energy bin. A Gaussian is fitted to the pull
distribution. The mean and standard deviation are compared to the
calculated values from the distribution.
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Figure 7.2: Distribution of the bootstrap pulls for the season from
June to August per energy bin. A Gaussian is fitted to the pull
distribution. The mean and standard deviation are compared to the
calculated values from the distribution.

standard deviation of the pull distribution is used as an approximation
of the statistical uncertainty for the unfolded number of events per en-
ergy bin. Correspondingly, the unfolded number of events per season
per energy bin is determined by the mean of the pull distributions.

7.2 Systematic Uncertainties
The unfolded spectrum is subject to systematic uncertainties resulting
from the detector setup, event reconstruction, or the robustness of the
unfolding algorithm DSEA+. The impact of each source of uncertainty
is accessible by unfolding pseudo samples, which are generated from a
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maximum variation of a systematic parameter. The difference between
the unfolded pseudo spectra and the reference sample is defined as
the upper/lower uncertainty of the unfolded spectrum attributed to a
respective parameter. The same approach for the estimation of sys-
tematic uncertainties is employed in the neutrino spectrum unfolding
with IceCube [151, 152], and its counterpart the Astronomy with a
Neutrino Telescope and Abyss environmental RESearch (ANTARES)
[153] experiment in the Mediterranean Sea. The utilized method tends
to overestimate individual uncertainties because the respective uncer-
tainties are solely determined based on the maximum increase/decrease
of the parameter. Correlations between different uncertainties are not
taken into account. At the developmental stage of this thesis, only
discrete simulation sets, consisting of maximum, mean, and minimum
fixed values of a systematic parameter, were available. Recently, a new
approach for the treatment of uncertainties explained in Ref. [154] has
been developed, where each event is simulated from a different combi-
nation of systematic parameters. However, these simulations were not
available in the development stage of this dissertation.

Unfolding a pseudo sample, which is simulated from varied systematic
parameters, yields a different spectrum for the unfolded one from the
reference sample. It shows not only the impact of the systematic pa-
rameter on the unfolded spectrum but also the robustness of DSEA+
in unfolding a spectrum that deviates from the sample the algorithm
was trained with. The final systematic uncertainty is determined by
the addition of each systematic uncertainty in quadrature:

σsys =
√︂

σ2
DOM + σ2

abs + σ2
scat + σ2

holeice + σ2
flux. (7.1)

σDOM describes the uncertainties attributed to the quantum efficiency
of the optical modules, σabs and σscat denote the uncertainty of the re-
construction due to absorption and scattering in ice, σholeice depicts the
reconstruction uncertainty from the re-frozen ice around the strings,
and σflux the impact on uncertainties from hadronic interaction and
primary cosmic ray composition on the neutrino flux. Equ. 7.1 is eval-
uated separately for both the upper and lower limits of each respective
source of uncertainty. The presented determination of uncertainties
is independent of the size of the dataset because the uncertainty is
defined as a ratio to the reference simulation. In the Appendix, the
impact of each source of uncertainty on the unfolded event spectrum of
the pseudo sample is summarized in Fig. B.6. The simulation sets with
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varied systematic parameters are shown in Table A.1. Each determined
systematic parameter is outlined in the subsequent paragraphs.

7.2.1 Optical Modules
The uncertainty attributed to the optical modules σDOM is determined
by the detection efficiency of the DOMs. The main source of uncer-
tainty is the PMT inside the DOM, among others the wavelength-
dependent PMT response, discriminator threshold effects, and photo-
cathode non-uniformity. The PMT quantum efficiency is measured in
a laboratory environment using a single photoelectron laser at 337 nm.
These measurements are combined into a model of DOM uncertainties
with measurements of Cherenkov photons induced by muons in ice. It
accounts for cable shadowing effects, the refreezing process around the
DOMs, optical absorption in the DOM glass and gel, and the angular
dependence of the detection efficiency [5]. The final DOM efficiency
ϵDOM is normalized to ϵDOM = 1.0 as the reference value, the total
uncertainty of the DOM efficiency is set to ±10%. This measurement
is conservative, and recent simulations have decreased the uncertainty
to ±5%. A higher quantum efficiency leads to a more sensitive detec-
tion threshold, for which more PMTs would be triggered by the same
Cherenkov light yield of an induced muon. On the contrary, a reduced
efficiency results in less triggered DOMs for an event of the same energy.

7.2.2 Detection Medium
A significant source of uncertainty in event reconstruction stems from
the understanding of glacial ice as a detection medium. While ice
has good absorption properties, the comprehension of scattering effects
within the ice and the resulting delay in hit measurements is essential
for any analysis. The understanding of the impact of photon propaga-
tion through ice is accumulated in ice models. The bulk ice behavior
is influenced by the depth-dependent concentration of impurities, such
as dust and volcanic ash. It is determined via measurements obtained
from flasher LEDs on the DOMs, as depicted in Fig. 3.2. The simu-
lations used in this thesis are created with the SPIceMie model [155],
which accounts for absorption and scattering effects by Mie scattering.
A newer model, SPIceLea [156], extends the previous version to an
anisotropic absorption and scattering component in the xy-plane. The
impact of the ice tilt, which makes the IceCube detector move down-
ward at a rate of 10 m year−1, has not yet been incorporated into any

79



Chapter 7. Seasonal Variations in the Zenith Range from 90◦ to 120◦

ice model [157]. The simulation set is available for different absorption,
scattering, and hole ice parameters individually.

Absorption

The absorption coefficient is given by

α(λ) = αdust(400 nm)·
(︄

λ

400 nm

)︄−κ

+A exp{−B/λ}·(1+0.01δτ), (7.2)

with the absorption due to dust αdust and the temperature-dependent
light absorption in ice δτ [157]. Coefficients are defined in Ref. [158].
The uncertainty of the absorption coefficient is estimated to be ±5%
in the simulation at hand.

Scattering

Light scattering is a significant phenomenon in ice, as it causes a delay
in detecting incoming photon hits due to ice impurities (see Equ. 3.3).
The scattering coefficient is defined as in Ref. [157]:

s(λ) = s(400 nm) ·
(︄

λ

400 nm

)︄−α

. (7.3)

The coefficients are specified in Ref. [158]. The uncertainty of the
scattering coefficient is set to ±5% in the simulation.

Hole-ice

The IceCube strings were embedded into the ice in drilled holes of 60 cm
diameter with a hot water drill. The refrozen ice around the strings
has different optical properties than the surrounding glacial ice. The
Swedish camera monitors the ice at a depth of 2450 m and recorded
the refreezing process. Bubbles are more abundant in the ice inside the
drilled holes compared to the surrounding bulk ice. As a consequence,
the scattering and absorption around the strings must be modeled dif-
ferently. Furthermore, the DOMs are positioned on the perimeter of
the borehole, covering 2/3 of its diameter, adding further complexity to
the ice model [157].
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7.2.3 Flux Model
Another source of systematic uncertainties arises from model assump-
tions for the weighting of the simulation sample. The choice of the flux
models imprints uncertainties on both, the training sample for DSEA+,
and the generation of pseudo samples for the uncertainty estimation of
all parameters introduced above. As the weights are composed of an
atmospheric flux prediction from MCEq and an assumption on the as-
trophysical flux, the impact of the model choices and their uncertainties
on the weighting needs to be propagated. The uncertainty attributed to
the atmospheric flux calculation from MCEq is governed by uncertain-
ties in CR composition and hadronic interaction model uncertainties,
and how they propagate onto lepton fluxes. In addition, uncertain-
ties in the atmospheric flux model would need to be accounted for as
well. However, NRLMSISE-00 is currently the only atmospheric model
in MCEq that accounts for monthly temperature variations (see Ap-
pendix D), and the corresponding uncertainty cannot be investigated
yet. The uncertainty of the astrophysical flux is negligible in the en-
ergy range of interest, as this component only becomes a significant
contribution to the total flux at higher energies.

Energy / GeV Lower Limit / % Upper Limit / %
100 GeV −23 32

1 TeV −22 42
10 TeV −30 47

Table 7.1: Uncertainties from the variation of CR composition and
hadronic interaction models on the neutrino flux calculation, as de-
termined in Ref. [159]. These reference values are used for the inter-
polation of the flux weight uncertainty of each simulated event.

Since the total flux uncertainty is not attributed to the detector or
reconstruction, a simulation with varied parameters is not available.
Therefore, two pseudo samples are generated from the reference simu-
lation by weighting to the uncertainties of the neutrino flux rising from
uncertainties in CR composition and hadronic interaction models. The
propagation of these uncertainties on the neutrino flux can be deter-
mined by the variation of models in the calculation, which has been
calculated in Ref. [159] for three respective energies, depicted in Table
7.1, and interpolated in between. The uncertainty of individual events
in the simulation is calculated by log-linear interpolation between the
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reference values. The simulated events are sampled according to the
upper and lower uncertainties added into the calculated neutrino flux
from MCEq to create an upper and lower limit on the flux per event
in the simulation.

7.2.4 Summary

The obtained uncertainties reflect their effect on the unfolded spec-
trum rather than those of the parameter itself. In Fig. 7.3, the system-
atic uncertainties are displayed by energy bin per source. As the in-
crease/decrease of a systematic parameter does not affect each bin uni-
formly, the uncertainties are asymmetric. The uncertainties are larger
in bins with fewer statistics, the first two and the last two bins. These
bins have substantially lower statistics than the other bins, as can be
seen in Fig. 7.1 and 7.2. The deviation of the unfolded pseudo sample
from varied systematic parameters to the reference sample is shown in
detail in Fig. B.6 in the Appendix. The DOM efficiency significantly
affects the systematic uncertainties, along with the ice model param-
eters. The uncertainties from the flux model applied to the weighting
have a minor impact on the unfolded spectrum.
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Figure 7.3: Overview of each source of systematic uncertainty per
energy bin. The obtained systematic uncertainties remain constant
for all seasons because of the relative uncertainty estimation.
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7.3 Analysis Chain
All determined seasonal spectra in this thesis are deconvolved with
DSEA+ with optimized settings discussed in Chapter 6.4. The al-
gorithm is trained on 100 000 randomly selected events from the MC
sample weighted to a realistic flux scenario, as explained in Chapter
5.3.1. The given number of events is considered sufficient for training
once the parameters are fixed. The accuracy of the unfolded spectrum
was found to not improve by an increase in the training sample size, as
explained in Appendix B.2.

The seasonal variation measurement is conducted as follows: The en-
tire dataset is bootstrapped, sorted into seasonal sets, and unfolded,
as explained in Section 7.1. The individual unfolded number of events
per energy bin is saved for each of the 2000 pulls. Reproducibility of
the unfolding process is ensured by the selection of the same random
seed for each season in each respective bootstrap iteration.

In this dissertation, the obtained seasonal variations are displayed in
two ways. Firstly, the differential seasonal fluxes are by E3 to make
changes in the seasonal spectra observable. The unfolded spectra are
shown in comparison to the MCEq predictions (with H3a as primary
composition, Sibyll2.3c as hadronic interaction model, and NRLMSISE-
00 as the atmospheric model) for the respective seasons and the annual
average. Secondly, the ratio of the seasonal fluxes to the annual aver-
age flux, referred to as seasonal variation strength, is calculated. The
ratio is only affected by statistical uncertainties because systematic
uncertainties are independent of the season (see Section 7.2). Conse-
quently, the intensity of the seasonal variation in each energy bin can
be evaluated on a percentage level, which is the main objective of this
dissertation.

7.4 Expected Results
Before the unfolding of the actual datasets, the expected results are
determined by the unfolding of pseudo samples. These pseudo samples
are constructed from simulated events weighted to the seasonal and
monthly predictions from MCEq. The number of events is set to the
expected number of neutrinos from the event selection in Chapter 5.1
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in 11.5 years of data. This test ensures that the spectrum unfolding
and the determination of the seasonal variation strength are feasible
with the dataset at hand. Fixing the number of events in the pseudo
samples to the expected number of events in the data allows to estimate
statistical and systematic uncertainties and to determine the measure-
ment accuracy.

7.4.1 Unfolding of Pseudo Samples
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Figure 7.4: Expected results for the seasonal unfolding of June to
August and December to February for 11.5 years of data from the
unfolding of pseudo samples. Error bars depict statistical uncertain-
ties while colored bands depict systematic ones. The predicted flux
from MCEq is scaled up by a fitted normalization constant for the un-
folded spectrum. The lower panel displays the ratio of the seasonal to
annual average flux for the unfolded data and the MCEq-calculated
theory fluxes. Black dashed lines illustrate ±5% deviation from the
annual average flux. Since the systematic uncertainties remain the
same for each season and cancel out in the ratio, the statistical un-
certainties are the only uncertainties in the ratio.

Fig. 7.4 depicts the unfolded pseudo samples for austral summer from
December to February, and austral winter from June to August, for
the same seasons as shown in Fig. 2.10. Statistical uncertainties are
indicated by error bars, while systematic uncertainties are presented as
shaded bands. The unfolded seasonal spectra are consistent with the
expectation computed with MCEq. The determined ratio of seasonal to
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annual mean flux indicates the variation strength, which is consistent
with the prediction. This study demonstrates the feasibility of seasonal
unfolding using 11.5 years of IceCube data. However, further investi-
gation in the next section will quantify the agreement of the predicted
ratio of seasonal to annual average flux with the prediction.

7.4.2 χ2-Test
A χ2- test (see definition in Chapter 4.5) is performed to investigate
how accurately the strength of the seasonal variation, the ratio of the
flux of a given season to the annual mean, can be unfolded. Pseudo
Samples are generated with the expected number of events from 2011
to 2022. The pseudo samples are weighted to the seasonal MCEq pre-
dictions and unfolded. To determine whether the unfolded flux ratios
of the pseudo samples are consistent with the predicted ratios from
MCEq, the quotient of the two is calculated. The quotient equals one
when the predicted and unfolded ratios of the seasonal to annual av-
erage flux are the same concerning uncertainties. The null hypothesis
to be rejected in the test is defined as a quotient of one. The rejection
threshold is set at 3σ, equivalent to p-values ≤ 0.003.

The test results for austral summer and winter are depicted in Fig.
7.5. The ratio of the unfolded seasonal variation strength to the MCEq
prediction is depicted for each energy bin. The quotient between the
unfolded to the predicted ratio is fitted by a linear function with re-
spect to statistical uncertainties to display the slope of the deviations.
The quotient is consistent with one, indicating that the null hypothesis
cannot be rejected. Therefore, it can be concluded that the MC truth,
the seasonal flux ratio, can be determined from the unfolding. Further-
more, the robustness of the unfolding of a spectrum that deviates in the
spectral index from the training spectrum is investigated in Appendix
B.5.2.
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Figure 7.5: χ2-test to determine the accuracy of the unfolded sea-
sonal to annual average in zenith range from 90◦ to 120◦. The target
of the test is the quotient of the unfolded seasonal flux ratio to the
prediction for each energy bin. The null hypothesis that should be
rejected is defined as a quotient of one. This implies that the un-
folded ratio is in agreement with the prediction. The linear fit de-
termines the slope of the ratio between unfolded ratio from pseudo
data to MCEq. The unfolded ratio from the pseudo sample should
be compatible with the prediction to ensure the feasibility of seasonal
unfolding. The null hypothesis cannot be rejected for both seasons,
which indicates that the unfolded ratio is in agreement with the pre-
diction.

7.5 Measurement of Seasonal Variations

This section discusses the seasonal unfolded spectra and variation strengths
for the zenith range from 90◦ to 120◦. The deviation of the seasonal
unfolded flux to the annual average is quantified in a χ2-test. Further-
more, the compatibility of the unfolded ratio to the MCEq predictions
is investigated in a second χ2-test.

7.5.1 Summer-Winter Split
Fig. 7.6 depicts the unfolded spectra for austral summer (December to
February) and winter (June to August), as discussed in the previous
section. The MCEq-calculated fluxes show a lower normalization than
the unfolded spectra. The normalization is scaled up by 25%. This
scaling factor is determined by fitting the MCEq normalization to the
unfolded spectrum. The fit is obtained with respect to statistical and
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Figure 7.6: Unfolded seasonal muon neutrino spectra for austral
summer and winter [127]. Error bars depict statistical uncertainties
while colored bands depict systematic ones. The predicted flux from
MCEq is scaled up by a fitted normalization constant for the unfolded
spectrum. The lower panel displays the ratio of the seasonal to an-
nual average flux for the unfolded data and the MCEq-calculated
theory fluxes. Black dashed lines illustrate ±5% deviation from the
annual average flux. Since the systematic uncertainties remain the
same for each season and cancel out in the ratio, the statistical un-
certainties are the only uncertainties in the ratio.

systematic uncertainties in an asymmetric loss function, minimized by
the Nelder-Mead algorithm [160]. As discussed in Chapter 5.5, the
measurement of approx. 20% more data is a common observation in
other measurements of atmospheric muon and neutrino fluxes. The
fitted normalization of the predicted fluxes allows a comparison of the
shapes of the unfolded and the predicted spectrum. The scaled nor-
malization of the MCEq prediction cancels in the calculation of the
ratio of seasonal to annual average flux so that is does not impact the
calculated variation strength.

The unfolded seasonal spectra are in agreement with the calculated
fluxes from MCEq. The observed spectrum is mostly flat when scaled
with E3 below 500 GeV due to threshold effects, and the flux decreases
with energy. The amplitude of the seasonal variation strength increases
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with energy up to 4 TeV with (−3.8±0.8)% for the season from June to
August, yielding a reduction in the neutrino flux, as expected by MCEq.
The variation strength for the season from December to February in-
creases from (0.0±1.2)% at 125 GeV to (+3.3±0.8)% at 4 TeV. Seasonal
variations are expected to increase with energy as the probability of
reinteraction of the parent mesons increases compared to direct decays
due to the temperature-dependent critical energy of the specific parent
meson (see explanation in Chapter 2.5). On the contrary, neutrinos
with higher energies are produced in showers of high-energy primary
CRs, which interact at higher altitudes in the atmosphere, where the
amplitude of temperature variations is larger (see Fig. 8.1). However,
the strength of the variation decreases for both seasons above 4 TeV
to a variation strength of (−3.4 ± 1.1)% for the season from June to
August and a variation strength compatible with the annual average
with (+1.0 ± 1.2)% for the season from December to February from
7 TeV to 10 TeV. The unfolded seasonal spectrum deviates from the
annual average at 10.4σ for the season from June to August, and 12.3σ
for December to February.

7.5.2 Half-year Split
As a consistency check, the dataset is divided into half-year subsets
from January to June and July to December. Assuming symmetric tem-
perature modulations throughout the year, such as the NRLMSISE-00
atmospheric model, both splits are expected to be consistent with the
annual average. Fig. 7.7 illustrates that the unfolded spectra and ra-
tios are consistent with the scaled predictions from MCEq. No seasonal
variations are observable with respect to statistical uncertainties. The
observed deviation is not significant, with 0.3σ for the first half from
January to June, and 0.2σ for the second half from July to December.
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Figure 7.7: Unfolded seasonal muon neutrino spectra for the half-
year splits. Error bars depict statistical uncertainties while colored
bands depict systematic ones. The predicted flux from MCEq is
scaled up by a fitted normalization constant for the unfolded spec-
trum. The lower panel displays the ratio of the seasonal to annual
average flux for the unfolded data and the MCEq-calculated theory
fluxes. Black dashed lines illustrate ±5% deviation from the annual
average flux. Since the systematic uncertainties remain the same for
each season and cancel out in the ratio, the statistical uncertainties
are the only uncertainties in the ratio.
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7.5.3 Monthly Variations
As indicated in the feasibility study on simulated events in Fig. B.7
to B.8 in the Appendix, the data sample contains sufficient statistics
to perform monthly spectrum unfolding. The ratios of monthly to an-
nual average flux are illustrated in Fig. 7.8 and 7.9 compared to the
MCEq predictions in dashed lines. The unfolded monthly spectra are
not shown in this section as the spectra themselves cannot be distin-
guished within the systematic uncertainties of the unfolded spectrum
(see Fig. 7.6 and 7.7).

The strength of the variation in January is largely consistent with the
MCEq prediction but tends to be lower in a few energy bins. In con-
trast, the predicted variations for February exceed the observed values,
and the unfolded ratio decreases above 4 TeV. The seasonal variations
for March and April are consistent with the annual average flux and
fluctuate around a ratio of 1, which is in agreement with MCEq. The
unfolded ratios for May and June are similar and decrease with energy,
but a decrease of the variation strength is observed for June above
4 TeV. This decrease is not expected by MCEq. The unfolded ratio for
July shows a consistent decreasing ratio with increasing energy over
the entire energy range, as expected by MCEq. Despite the predic-
tion, the unfolded ratio for August remains constant over the whole
energy range. The unfolded flux ratio for September aligns with the
annual average, contrary to the MCEq prediction. The seasonal varia-
tion strength is mostly constant for October at approx. (+2.0 ± 1.0)%,
where no variations are predicted by MCEq. The unfolded ratio for
November is approximately the same, except for a sudden increase to
(+7.1±1.9)% between 7 TeV to 10 TeV. The unfolded ratio for Decem-
ber is in agreement with the MCEq prediction and shows an increasing
variation strength up to 4 TeV, above which the ratio decreases.
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Figure 7.8: Ratio of the unfolded monthly to the average annual
flux. The corresponding MCEq predictions are depicted in dashed
lines. The error bars denote the statistical uncertainty of the ratio.
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Figure 7.9: Ratio of the unfolded monthly to the average annual
flux. The corresponding MCEq predictions are depicted in dashed
lines. The error bars denote the statistical uncertainty of the ratio.
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7.5.4 Agreement to MCEq Predictions

As discussed in the previous part, the observed seasonal variation pat-
tern differs from the MCEq predictions for several months. To quan-
tify the deviation from the predicted seasonal to annual average flux
by MCEq, a χ2-test is conducted. The deviation from the prediction
is measured by the quotient of the unfolded ratio of seasonal to annual
average flux, similar to the previously discussed test in Section 7.4.2.
The null hypothesis is defined as a quotient of one, which is equivalent
to the agreement between the unfolded and predicted seasonal flux ra-
tio. The rejection threshold is set at 3σ, corresponding to p-values
≤ 0.003.
The presented test investigates the deviation of the unfolded seasonal
flux ratio to the calculated prediction from MCEq, which is given for a
particular selection of hadronic interaction and CR composition model.
The investigation on the comparison of the calculated flux ratios (refer
to Appendix B.4.2) based on different model combinations shows that
the ratio is approx. the same for the iteration of models in the energy
range from 125 GeV to 10 TeV. Thus, the test investigates the deviation
to the predicted flux, which is attributed to the selected atmospheric
model NRLMSISE-00.
The tests for austral summer and winter are displayed in Fig. 7.10. The
quotient of the unfolded seasonal variation strength to the prediction
from MCEq is depicted for each energy bin. A ratio of 1 implies that
the unfolded variation strength is in agreement with the calculation.
The determined seasonal variations strength for austral winter from
June to August is still compatible with the MCEq prediction, as the
null hypothesis cannot be rejected with p = 4.39 × 10−2. However,
the variation strength is smaller for austral summer from December
to February than expected, and the MCEq hypothesis is rejected with
p = 7.12 × 10−6. The test results for all months and seasons are de-
picted in Appendix B.5.3 (see Fig. B.13 to B.15). An overview of the
calculated p-values is given in Table 7.2 and the main findings are sum-
marized in the next paragraph.

Referring to the half-year splits in Fig. 7.7, the null hypothesis is re-
jected for January to June with p = 2.38 × 10−3. The null hypothesis
cannot be rejected for July to December with p = 4.00 × 10−3. As
observable in Fig. 7.11 and 7.12 the unfolded ratios for each the max-
imum and minimum are in agreement with the MCEq prediction, and
the mismatches occur in the spring and fall seasons. Therefore, an off-
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Figure 7.10: χ2-test to determine the deviation of the unfolded
seasonal flux ratios to the prediction from MCEq. The error bars
depict statistical uncertainties in the ratio from the unfolding. The
null hypothesis that should be rejected is defined as a quotient of
the seasonal flux ratio to the prediction of one, implying that the
unfolded ratio is in agreement with the prediction. The p-value for
each season is given in the caption. The ratio of the unfolded results
to the MCEq prediction is fitted by a linear function to show poten-
tial offsets to the prediction.

set to the annual average flux is observed in the ratio of the half-year
splits to the annual average. The variations predicted for February
are larger than the observation, which cannot be described by MCEq.
The null hypothesis is rejected with p = 1.76 × 10−6. The consecutive
seasons are in agreement with the MCEq prediction. However, the un-
folded ratio for September and October do not match the prediction
and the MCEq flux can be rejected with p = 3.14×10−6 for September
and p = 1.41 × 10−3 for October, respectively.

7.5.5 Seasonal Variation per Energy Bin
The monthly variation pattern is also investigated per energy bin. Fig.
7.11 and 7.12 show the unfolded ratio per month in each energy bin and
the corresponding predictions from MCEq. A clear variation pattern
is observed from bin 3 onwards, corresponding to a neutrino energy
above 302 GeV. However, the observed variation pattern differs from
the symmetric variation amplitudes predicted by MCEq. Fig. 7.8 and
7.9 show that the unfolded ratios for February, September, October,
and partly March do not agree with the expectation of MCEq. This
is underlined by the χ2-test, in which the hypothesis rejection of the
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7.5. Measurement of Seasonal Variations

quotient of the seasonal flux ratio to the prediction was discussed (re-
fer to Appendix B.5.3). A pattern of a gradually decreasing variation
strength from January to July is apparent, followed by a rapid increase
in strength between August and October, ultimately reaching a con-
stant maximum strength. This pattern is consistently observed up to
bin 8, corresponding to an energies below 2 TeV. Due to lower statistics
at higher energies, bins 9 and 10 exhibit larger statistical uncertainties.
There is no distinct pattern in bin 10 for energies between 7 TeV to
10 TeV, as the ratio varies from month to month.

In summary, the expected variations from MCEq follow a symmet-
ric pattern in each energy bin, governed by the atmospheric model
NRLMSISE-00. However, an asymmetric increase/decrease in the monthly
fluxes is observed in the unfolding.
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Figure 7.11: Ratio of the monthly unfolded flux to the yearly av-
erage for each energy bin. The unfolded ratios are shown with error
bars, and the MCEq predictions are shown in blue.
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Figure 7.12: Ratio of the monthly unfolded flux to the yearly av-
erage for each energy bin. The unfolded ratios are shown with error
bars, and the MCEq predictions are shown in blue.
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7.5.6 Seasonal Change in Spectral Index
The shift in the spectral index of the seasonal flux is determined with
respect to the annual average. The ratio of the seasonal flux to the
annual average flux is expected to be one if no seasonal variations are
observed. The ratio is fitted by the following power law,

f(γ) =
(︃

E

1 TeV

)︃∆γ

. (7.4)

∆γ denotes the shift of the spectral index with respect to the annual
mean. The fit accounts for the statistical uncertainties of the unfolded
ratio. The resulting parameters are summarized in Table 7.2.

Season p-value ∆γ Variation
comp. MCEq Significance / σ

January 1.49 × 10−1 0.0039 4.6
February 1.75 × 10−6 0.0053 0.7
March 1.08 × 10−2 0.0086 0.8
April 8.83 × 10−1 −0.0023 0.2
May 8.78 × 10−1 −0.0045 5.3
June 3.75 × 10−1 −0.0048 5.7
July 8.77 × 10−1 −0.0080 8.5
August 2.04 × 10−2 0.0006 2.4
September 3.14 × 10−6 −0.0026 0.4
October 1.41 × 10−3 −0.0000 3.7
November 4.38 × 10−1 0.0032 4.4
December 2.48 × 10−1 0.0030 5.6
June-August 4.39 × 10−2 −0.0040 10.4
May-August 1.47 × 10−21 0.0099 15.9
October-January 1.73 × 10−10 0.0155 12.3
December-February 7.12 × 10−6 0.0041 7.0
January-June 2.38 × 10−3 0.0010 0.3
July-December 4.00 × 10−3 −0.0008 0.2

Table 7.2: Summary of seasonal variations analysis showing the
significance of the deviation of the unfolded seasonal spectrum to
the annual average, the seasonal change in the spectral index. The
p-values summarize the hypothesis test for the agreement of the un-
folded seasonal flux with the MCEq prediction. The null hypothesis
is rejected at a 3σ level for p-values below 0.003.
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7.5. Measurement of Seasonal Variations

7.5.7 Summary
The investigation of the seasonal variations shows an asymmetric vari-
ation pattern compared to the predicted variations from MCEq. The
calculated significance of the seasonal flux deviation to the annual aver-
age underlines an increase in the monthly flux from October to January,
and a decreased flux from May to July/August with respect to the an-
nual average. In particular, a similar ratio of the seasonal to annual
mean flux is observed from October to January (cf. Fig. 7.11 and 7.12).
In contrast, the decrease of the seasonal flux relative to the annual
mean is maximal in July with 8.5σ. The deviation of the unfolded
flux from the annual mean decreases continuously for the subsequent
months. The monthly observed fluxes deviate from the annual mean
flux by 5.7σ for June and 2.4σ for August. The χ2-test shows that
the unfolded ratio of seasonal to annual average flux is not compatible
with the MCEq prediction for February, September, October, and the
seasons December-February, January-June, May-August, and October-
January. The mismatches between the prediction and the unfolded
ratios underline the asymmetric seasonal variations. The analysis of
monthly variations per energy bin shows a smooth decrease from Jan-
uary to July and a rapid increase from August to October. Therefore,
the seasons are redefined as austral winter from May to August and
austral summer from October to January based on the combination of
months with a similar deviation to the annual average flux. The un-
folded seasonal spectra are depicted in Fig. B.16 in the Appendix. In
particular, the decrease in the variation strength for austral summer
and winter above 4 TeV (refer to Fig. 7.6) is investigated further with
respect to the zenith region in the next section.
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Energy Bin
Season 1 2 3 4 5 6 7 8 9 10
January 0.7 1.0 3.0 2.5 1.8 2.5 3.3 4.2 0.7 4.4
± 2.0 1.4 1.1 1.0 1.0 1.1 1.2 1.4 1.5 1.9
February −1.2 −0.5 0.4 0.8 −1.1 0.8 1.8 2.6 1.7 −1.4
± 2.0 1.4 1.2 1.1 1.1 1.1 1.2 1.4 1.6 1.9
March 0.9 −1.8 −0.1 −1.8 0.4 1.5 0.3 0.3 1.9 3.0
± 2.0 1.3 1.1 1.0 1.0 1.1 1.2 1.3 1.5 1.9
April 1.6 2.1 −0.3 −0.2 −1.5 −0.7 −0.2 −0.1 0.7 0.4
± 2.0 1.3 1.1 1.0 1.0 1.1 1.2 1.3 1.5 1.9
May −1.4 −1.8 −3.1 −2.9 −1.3 −2.8 −3.0 −2.7 −3.8 −4.3
± 2.0 1.3 1.1 1.0 1.0 1.1 1.2 1.3 1.5 1.9
June −3.8 −1.3 −1.6 −2.3 −2.2 −3.0 −4.4 −4.1 −1.1 −3.3
± 1.9 1.2 1.1 1.0 1.0 1.0 1.1 1.2 1.5 1.7
July −3.4 −2.7 −1.9 −3.8 −3.9 −2.0 −4.3 −5.6 −4.4 −5.9
± 1.8 1.3 1.0 1.0 1.0 1.0 1.1 1.2 1.5 1.7
August −3.2 −2.1 −0.8 −0.9 −2.6 −1.8 −1.3 −1.7 −2.1 −0.9
± 1.9 1.3 1.1 1.0 1.0 1.0 1.1 1.2 1.5 1.7
September 2.7 0.9 0.3 1.1 1.4 0.0 0.2 1.7 0.9 −1.0
± 1.9 1.3 1.1 1.0 1.0 1.0 1.1 1.2 1.5 1.8
October 4.4 1.6 1.7 2.3 2.4 2.0 2.3 1.8 2.1 2.9
± 1.9 1.2 1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.8
November 3.1 1.9 0.8 2.1 3.6 1.2 1.5 1.9 1.5 7.1
± 2.0 1.3 1.1 1.0 1.0 1.0 1.1 1.3 1.5 1.9
December 0.3 2.4 1.7 3.2 2.9 2.9 4.7 3.1 2.6 0.0
± 1.9 1.3 1.1 1.0 1.0 1.0 1.1 1.3 1.5 1.8
Jun-Aug −3.5 −2.0 −1.5 −2.3 −2.9 −2.2 −3.3 −3.8 −2.5 −3.4
± 1.1 0.8 0.6 0.6 0.6 0.6 0.6 0.8 0.9 1.1
Dec-Feb 0.0 1.1 1.7 2.2 1.3 2.1 3.4 3.3 1.7 1.0
± 1.2 0.8 0.7 0.6 0.6 0.7 0.7 0.8 1.0 1.2
May-Aug −3.4 −3.3 −2.4 −6.0 −3.1 −3.1 −3.1 −1.0 −1.6 1.9
± 1.0 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.8 1.0
Oct-Jan 1.4 0.8 1.1 −1.3 1.8 3.3 1.3 4.7 5.7 6.7
± 1.1 0.7 0.6 0.5 0.5 0.6 0.6 0.7 0.9 1.1

Table 7.3: Unfolded seasonal variation strength per energy bin in
percent.
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8 Seasonal Variations in the
Zenith Range from 90◦ to
110◦

The disagreement between the ratio of the unfolded seasonal flux to
the annual average and the MCEq predictions above 4 TeV is investi-
gated further for the selected zenith region. The successive analysis
of Ref. [1] of the correlation between temperature and seasonal rate
variations from Ref. [72] restricted the maximum zenith angle to 110◦

because of only minimal temperature variations at higher zenith angles.
Motivated by this adaptation, the seasonal temperature modulation is
studied with respect to the zenith angle in the first section. The second
section presents the determined seasonal variation strength in the re-
stricted zenith range from 90◦ to 110◦. The zenith angle was restricted
after conducting the analysis results presented in the previous chap-
ter. The investigation on rate and temperature variation with respect
to the zenith angle was conducted as post-unblinding checks after ap-
proval of the analysis. The blinding policy and unblinding procedures
are explained in Appendix B.4

Parts of this chapter are contained in conference proceedings of the
author, in particular, Ref. [150, 127].

8.1 Zenith-dependence of Seasonal Varia-
tions

Seasonal variations of atmospheric lepton fluxes depend on the tem-
perature variations, which differ with respect to the zenith angle. This
effect is investigated firstly by temperature variations in different zenith
bands. Secondly, the expected neutrino rate variation is calculated and
compared to the measured data.
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8.1.1 Temperature Variations
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Figure 8.1: Phase comparison of selected ECMWF temperature
profiles at different pressure levels relevant for neutrino production
and measured monthly average neutrino rate in the zenith region
from 90◦ to 120◦ by IceCube. Gray bands indicate the rate uncer-
tainty determined by Gaussian errors. The averaged temperature
profiles at stratospheric pressure levels between the minimum and
maximum latitude of the respective band for a given longitude (30◦E)
are depicted as dashed lines. The temperature profiles are in phase
with the corresponding neutrino rate up to a zenith angle of 110◦.
At higher zenith angles from 110◦ to 120◦, the temperature profiles
at 30 hPa to 50 hPa are in phase with the neutrino rate for all zenith
bands, but an opposite phase is observed at 70 hPa to 100 hPa. The
temperature profiles and neutrino rates are mostly flat and show no
systematic variation.

The temperature modulation with respect to the zenith angle is inves-
tigated by stratospheric temperature data from the ERA-5 reanalysis
dataset of the European Center for Medium-Range Weather Forecasts
(ECMWF) [161] (see description in the Appendix D.1.4) from 2011
to 2022. Five exemplary temperature profiles at pressure levels from
30 hPa to 200 hPa relevant for neutrino production (cf. Ref. [67]) are
overlaid with the average monthly measured neutrino rate for three
zenith bands from 90◦ to 120◦ with equal width in zenith, shown in
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8.1. Zenith-dependence of Seasonal Variations

Fig. 8.1. Lower atmospheric pressures correspond to higher altitudes
and vice versa. The Gaussian uncertainty of the neutrino rate is de-
picted as gray bands. It can be observed that the temperature varia-
tions are larger at higher altitudes, where the pressure levels are lower.
Higher energetic primaries interact at a higher altitude in the atmo-
sphere so that the higher seasonal temperature modulation imprints a
higher variation in the resulting lepton fluxes. Considering the varia-
tions from year to year, the temperature modulation at a given altitude
remains constant throughout the years of interest.
The neutrino rate correlates well and the modulation is in phase with
the temperature profiles at the displayed atmospheric pressure levels
for zenith angles between 90◦ to 100◦. The correlation decreases for the
second zenith band between 100◦ to 110◦, and the neutrino rate shows
a smaller rate variation. No correlation between the modulation of
the temperature profiles and the neutrino rate is observable for zenith
angles from 110◦ to 120◦. This indicates that the analyzed neutrino
sample contains arrival directions from a stratospheric region that has
no significant temperature change throughout the year. These events
could affect the unfolded result as presented in Section 7.5, and poten-
tially cause the variation strength to decrease at energies above 4 TeV
due to the lack of sufficient temperature variation.

8.1.2 Relative Monthly Rate Variation
The predicted seasonal variation pattern is mainly attributed to the se-
lected atmospheric model NRLMSISE-00 since the ratio of seasonal to
annual average flux is not impacted by the primary composition or the
hadronic interaction model in the energy range of interest (see Fig. B.4
and B.5). The current version of MCEq does not include temperature
data as an input instead of an atmospheric model yet for the calcula-
tion of the spectrum. The other atmospheric models, such as the US
Standard Atmosphere (see Appendix D.1.2), in MCEq do not consider
seasonal variations monthly. Therefore, the predictions of seasonal en-
ergy spectra can currently only be calculated with the NRLMSISE-00
atmosphere.
However, a modified version of MCEq incorporating temperature data
for the prediction of daily neutrino rates was developed in Ref. [1].
The observed seasonal variation in the neutrino rate is compared to
the MCEq predictions using the NRLMSISE-00 atmosphere and the
data-based approaches. A detailed description of the temperature data
and atmospheric models in MCEq is given in Appendix D.1. Only the
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Figure 8.2: Relative average monthly neutrino rate modulation
with respect to the annual average for the zenith ranges between 90◦

to 100◦, 100◦ to 110◦, 110◦ to 120◦, and 90◦ to 110◦, with statisti-
cal uncertainties. Dashed lines show the predicted variations from
MCEq with the NRLMSISE-00 atmospheric model and temperature-
based approaches using five years of temperature data from April
2012 to April 2017 from the AIRS instrument and one year of data
from April 2012 to April 2013 from ECMWF.

expected rate, and not the resulting energy spectrum, can be calculated
in the current modification of MCEq so far. As can be seen in Fig. 8.1,
the temperature variation at a given altitude is mostly constant over
the investigated years so that the calculated rates from Ref. [1] are us-
able for this investigation.

Fig. 8.2 depicts the monthly average rate variation with respect to the
annual average for three distinct zenith bands in ∆Θ = 10◦ width. The
rate is overlaid with the calculated rate from MCEq with NRLMSISE-
00, and temperature profiles as atmospheric model input from five years
of AIRS data from April 2012 to April 2017 and one year of ECMWF
data from April 2012 to April 2013. The relative monthly rate variation
to the annual flux is averaged over the 11.5 years of data-taking. Sta-
tistical uncertainties are shown as error bars. The MCEq predictions
from the different atmospheric assumptions are illustrated as dashed
lines. Seasonal variations are observed in the upper panel for zenith
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8.1. Zenith-dependence of Seasonal Variations

angles between 90◦ to 100◦. The maximum rate variation is observed
in December with (+5 ± 2)%. The minimum is reached in July with
a rate decrease of (+6 ± 2)%. The predicted rate variation differs
between the calculation with NRLMSISE-00 and the data-based ap-
proaches. All predictions are in agreement between June/July and
December/January, but the predicted rate with NRLMSISE-00 is ap-
prox. 1% to 2% larger in its amplitude. The variation strength increases
rapidly from August to October, which is in agreement with the MCEq
calculation based on AIRS and ECMWF data. The relative monthly
variation strength decreases in the second panel for the zenith range
of 100◦ to 110◦ with a maximum relative variation strength of approx.
(+2.5 ± 2.5)% in December and a minimum of (−4 ± 2.5)% in July.
The relative rate variation remains similar from September to March
and decreases from April to August. The third panel shows the zenith
region from 110◦ to 120◦. No variation is measured or predicted in
this range, as the monthly relative rate variation fluctuates around 0%.
Therefore, the zenith range is reduced to angles from 90◦ to 110◦. The
observed and predicted variations for the adapted region are depicted
in the lowest panel.

In summary, the comparison of the neutrino rate calculations from dif-
ferent atmospheric assumptions shows a deviation of the data-based
calculations to NRLMSISE-00. The minimum and maximum variation
strength and time of year are the same for all approaches. NRLMSISE-
00 predicts a symmetric modulation throughout the year, while the
data shows an asymmetric pattern. The decrease in variation strength
from January to July is smooth and linear every month, which is why
the predictions differ during this period, as discussed in Chapter 7.
The discrepancy even increases between August and October due to
the rapid increase in variation strength caused by sunrise in the South-
ern Hemisphere. The calculated average rate variation is similar for
the calculation with AIRS and ECMWF data. The deviation of both
calculations from NRLMSISE-00 is shown in the Appendix in Fig. D.1.

8.1.3 Comparison of the Zenith Regions

The seasonal variations are further analyzed on the modified zenith
range between 90◦ to 110◦, excluding zenith angles larger than 110◦.
The two zenith bands and the corresponding average seasonal rate vari-
ation per month are displayed in Fig. 8.3. The relative monthly rate
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Figure 8.3: Relative average neutrino rate per month for the zenith
ranges from 90◦ to 120◦ and 90◦ to 110◦. The bands denote statistical
uncertainties of the measured rate.

variations are approx. 1% to 2% larger for the restricted zenith range
from 90◦ to 110◦.
The seasons for the second analyzed dataset for zenith angles between
90◦ to 110◦ are constructed based on months with similar observed
average neutrino rates. The relative rate comparison shows a max-
imum rate variation from October to January and a minimum from
May to August. Restricting the zenith range to a maximum angle of
110◦ results in a loss of only about 26% of the events (refer to Fig.
5.5). However, the loss is compensated by defining austral summer
and winter as a combination of four months instead of three.

8.2 Expected Results

Before the unfolded seasonal spectra can be investigated for the re-
stricted zenith range from 90◦ to 110◦, it needs to be ensured that
DSEA+ can unfold the restricted dataset without being retrained to
the adapted range. Pseudo samples are generated for the restricted
energy range and weighted to the seasonal MCEq predictions and un-
folded, as it was done in Section 7.4.1. The size of the samples is set to
match the expected number of events within the restricted zenith range
for each season in the dataset. However, systematic uncertainties need
to the recalculated for the restricted range, as explained in Section 7.2.
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The impact of each source of uncertainty on the unfolded spectrum is
depicted in the Appendix in Fig. C.1.

8.2.1 Unfolding of Pseudo Samples
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Figure 8.4: Unfolded seasonal spectra and unfolded ratio of sea-
sonal to annual average flux from pseudo samples weighted to the
seasonal MCEq predictions for 11.5 years of data-taking. Error bars
depict statistical uncertainties while colored bands depict systematic
ones. The predicted flux from MCEq is scaled up by a fitted normal-
ization constant for the unfolded spectrum. The lower panel displays
the ratio of the seasonal to annual average flux for the unfolded data
and the MCEq-calculated theory fluxes. Black dashed lines illustrate
±5% deviation from the annual average flux. Since the systematic
uncertainties remain the same for each season and cancel out in the
ratio, the statistical uncertainties are the only uncertainties in the
ratio.

The unfolded spectra for both pseudo samples from May to August
and October to January are depicted in the upper panel in Fig. 8.4
in comparison to the MCEq predictions. The unfolded spectra are
consistent with the predicted fluxes from MCEq concerning the corre-
sponding uncertainties. The lower panel shows the unfolded ratio of
the seasonal to annual average flux with respect to the statistical un-
certainty. Prediction and unfolded pseudo-data are in agreement for
both seasons. Whether DSEA+ needs to be retrained on the restricted
range is investigated in the next section.
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8.2.2 χ2-Test
The same χ2-test is performed as in Chapter 7.4.2 to investigate the
compatibility of the unfolded ratio of seasonal to annual average flux
to the MC truth. As discussed previously, the test calculates the quo-
tient of the unfolded ratio and the prediction. The null hypothesis is
defined as a quotient of 1 when both the unfolding and the prediction
are compatible with respect to statistical uncertainties in the unfolded
ratio. The hypothesis is rejected for p-values ≤ 0.003.
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Figure 8.5: χ2-test to determine the accuracy of the unfolded sea-
sonal to annual average in zenith range from 90◦ to 110◦. The target
of the test is the quotient of the unfolded seasonal flux ratio to the
prediction for each energy bin. The null hypothesis that should be re-
jected is defined as a quotient of one. This implies that the unfolded
ratio is in agreement with the prediction, ensuring the feasibility of
seasonal unfolding. The null hypothesis cannot be rejected for both
seasons, which indicates that the unfolded ratio is in agreement with
the prediction.

Fig. 8.7 depicts the test results for austral summer and winter. The
null hypothesis cannot be rejected with p = 0.740 from May to August
and p = 0.981 from October to January. To conclude, no retraining of
DSEA+ is required since the ratio can be determined at the required
precision. The robustness against changes in spectral index is tested in
Appendix C.2.1.

108



8.3. Measurement of Seasonal Variations

8.3 Measurement of Seasonal Variations
This section discusses the unfolded seasonal spectra and variation
strengths for the zenith range from 90◦ to 110◦. The deviation of the
seasonal unfolded flux to the annual average is quantified in a χ2-test,
and the compatibility of the unfolded ratio to the MCEq predictions is
investigated in a second χ2-test, as in Chapter 7.5.

8.3.1 Summer-Winter Split
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Figure 8.6: Unfolded seasonal muon neutrino spectra for austral
summer and winter for the zenith range from 90◦ to 110◦. Error bars
depict statistical uncertainties while colored bands depict systematic
ones. The predicted flux from MCEq is scaled up by a fitted normal-
ization constant for the unfolded spectrum. The lower panel displays
the ratio of the seasonal to annual average flux for the unfolded data
and the MCEq-calculated theory fluxes. Black dashed lines illustrate
±5% deviation from the annual average flux. Since the systematic
uncertainties remain the same for each season and cancel out in the
ratio, the statistical uncertainties are the only uncertainties in the
ratio.

The unfolded seasonal spectra for the restricted zenith region are shown
in Fig. 8.6 for austral summer, defined as October to January, and
austral winter, defined as May to August. The unfolded spectra are
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consistent with the scaled MCEq fluxes with the same fitted normal-
ization factor as in Fig. 7.6. Except for threshold effects in the first
bin, the unfolded ratios of the seasonal to annual mean flux increase
with energy from (+2.3 ± 0.9)% at 194 GeV to (+3.9 ± 1.2)% above
7 TeV for October to January, and decrease up to (−4.6 ± 1.1)% for
May to August. The unfolded seasonal fluxes that deviate from the
annual average are obtained by 10.6σ in austral summer from October
to January, and 13.2σ for austral winter from May to August. The
determined variation strength is depicted in Table 8.1.

8.3.2 Agreement to MCEq
As for the entire zenith range, the agreement between the ratio of the
unfolded seasonal to annual average flux and the MCEq predictions
is examined in a χ2-test (as explained in Chapter 7.5.4). The test
investigates the quotient of the unfolded seasonal to annual average
flux and the prediction from MCEq. The null hypothesis is defined as
a quotient of 1 with a rejection at 3σ significance level, corresponding
to a p-value < 0.003. With p-values of p = 5.31 × 10−1 for the May-
August season and p = 1.73 × 10−1 for the October-January season,
the null hypothesis cannot be rejected for either season. The quotient
is compatible with one with respect to the uncertainties, as depicted
in Fig. 8.7. The results, as well as the fit of spectral index change (see
Chapter 7.5.6) are summarized in Table 8.2.
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Figure 8.7: χ2-test to determine the deviation of the unfolded sea-
sonal flux ratios to the predicted ratio by MCEq. The error bars
depict statistical uncertainties in the ratio from the unfolding. The
null hypothesis that should be rejected is defined as a quotient of
the seasonal flux ratio to the prediction of one. This implies that
the unfolded ratio is in agreement with the prediction. The p-value
for each season is given in the caption. The ratio of the unfolded
results to the MCEq prediction is fitted by a linear function to show
potential offsets to the prediction.

Energy Bin
Season 1 2 3 4 5 6 7 8 9 10
May-Aug −4.1 −3.3 −2.4 −2.7 −3.8 −3.5 −3.0 −3.5 −4.6 −4.6
± 1.2 0.8 0.7 0.6 0.6 0.6 0.7 0.8 0.9 1.1
Oct-Jan 4.1 2.3 2.8 3.0 3.1 3.6 1.7 3.4 2.7 3.9
± 1.3 0.9 0.7 0.6 0.6 0.7 0.7 0.8 1.0 1.2

Table 8.1: Unfolded seasonal variation strength per energy bin in
percent for the restricted zenith range from 90◦ to 110◦.
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Season p-value ∆γ Variation
Significance / σ

May-August 5.31 × 10−1 -0.0034 13.2
October-January 1.73 × 10−1 0.0001 10.6

Table 8.2: Summary of the seasonal variation analysis including
the significance of the deviation of the unfolded seasonal spectrum
to the annual average, and the seasonal change in spectral index.
The p-values summarize the hypothesis test of the agreement of the
unfolded ratio of seasonal to annual average flux. The null hypothesis
is rejected for at a 3σ level for p-values below 0.003.
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9 Conclusion
In the subsequent sections, the main findings of this dissertation are
summarized and an outlook on future prospects is presented.

Summary

The study of seasonal variations of neutrinos from atmospheric parti-
cle cascades provides insights into hadronic particle interactions and
atmospheric temperature modulation. Atmospheric neutrinos form a
dominant background in the search for astrophysical neutrinos, and un-
derstanding the seasonal modulation of the atmospheric neutrino flux
is crucial for accurate modeling of the detector background.

For the first time, seasonal energy spectra for atmospheric muon neu-
trinos were determined for the energy range from 125 GeV to 10 TeV.
One of the main goals of this dissertation project was the development
of an analysis pipeline for the energy-dependent measurement of sea-
sonal variations. The second target was the hypothesis test of whether
the seasonal variation strength increases with energy, which could not
be measured previously due to insufficient statistics from neutrino tele-
scopes at hand. In summary, the collected up-going muon neutrino
events in IceCube from May 2011 to December 2022 were grouped into
seasons, and energy spectra were unfolded with the Dortmund Spec-
trum Estimation Algorithm (DSEA+). In this dissertation, DSEA+
was applied for the first time in a complete data analysis pipeline in
astroparticle physics. This work exploited the seasonal independence
of systematic uncertainties on the unfolded spectra, which enabled a
measurement of the seasonal variation strength at percentage precision.
The variation strength was defined as the ratio of seasonal to annual
average flux so that systematic uncertainties cancel in the ratio and it
is only affected by statistical uncertainties. The variation strength was
analyzed within two zenith ranges from 90◦ to 120◦ and 90◦ to 110◦

motivated by the deeper investigation of temperature modulation and
neutrino rate dependent on the zenith direction.
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Zenith Range from 90◦ to 120◦

• The unfolding of the austral summer and winter shows a deviation
of the seasonal to the annual average flux with a significance of
7.0σ for December to February and 10.4σ from June to August.

• The analysis of the monthly variation shows an asymmetric vari-
ation pattern across the months. The maximum amplitude of the
seasonal variation strength to the annual mean is observed in July
with 8.5σ, while the significance is lower with 5.3σ in May and
5.7σ in June. The significance of the increased flux is maximal in
December with 5.6σ. The neutrino flux decreases smoothly from
January to July, then increases rapidly until October, when the
maximum flux is reached.

• The compatibility of the measured variation strength and the pre-
diction from MCEq based on the atmospheric model NRLMSISE-
00 was investigated in a χ2-test. The hypothesis that the unfolded
variations are compatible with the MCEq predictions was re-
jected at the 3σ level for the months of February, September, and
October, and for the seasons of May-August, October-January,
December-February, and January-June. Despite the expectation,
the variation strength decreases above 4 TeV for the seasons June-
August and December-February.

• The redefinition of the seasons based on months with similar rate
and temperature variations reflects the asymmetric variation and
results in an increase of the significance for the deviation from
the annual average neutrino flux to 12.3σ for October to January
but decreases to 15.9σ for May to August.

Reinvestigation of the Zenith Range from 90◦ to 110◦

• The lack of sufficient temperature and measured rate variation
for neutrinos from zenith angles between 110◦ to 120◦ motivated
to reanalyze the seasonal variations only in the range of 90◦ to
110◦. The new event selection includes 26% fewer events, but
the redefinition of austral summer and winter ensures the same
measurement accuracy for the entire zenith range.

• Seasonal deviations from the annual average were measured at
10.6σ for the season from October to January, and 13.2σ from
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May to August. Monthly unfolding was not feasible with the
available statistics.

• The unfolded seasonal variation strength is compatible with the
MCEq prediction over the entire energy range from 125 GeV to
10 TeV and the null hypothesis could not be rejected.

Future Prospects
The analysis at hand presented an unfolding method to determine sea-
sonal variations in the neutrino energy spectrum at a percentage level.
So far, the variations can only be studied up to a maximum energy
of 10 TeV due to the limited statistics in the event samples of atmo-
spheric neutrinos in IceCube. The neutrino rate falls steeply according
to a power law, and it is extremely difficult to distinguish between
neutrinos of atmospheric and astrophysical origin in the TeV regime.
The energy range beyond 10 TeV opens an interesting region, because
the uncertainty of the atmospheric neutrino flux is largely due to the
different hadronic interaction models. Thus, seasonal variations pro-
vide a unique way to test hadronic interactions in atmospheric particle
cascades. Extending the analysis to energies around 100 TeV could con-
strain hadronic interaction models on energy scales beyond the reach
of particle accelerators.
Furthermore, the measurement of seasonal variations could provide an
indicator for the existence of a prompt component in the atmospheric
neutrino flux. Prompt neutrinos are not expected to show seasonal flux
variations due to the short lifetime of their parent particles. A decrease
in the variation strength with respect to the predicted variations of the
conventional component only could constrain the existence of prompt
neutrinos.

In this thesis, the obtained seasonal variations for each season were
compared with the MCEq prediction from the atmospheric model
NRLMSISE-00. Although a good agreement is found for the zenith re-
gion from 90◦ to 110◦, the predictions could be compared with the flux
calculated from temperature data. MCEq would have to be modified
to read temperature data instead of an atmospheric model.

Another follow-up analysis could be the measurement of the K/π-ratio
in atmospheric air showers. The production of neutrinos and muons is
governed by these two parent mesons, and their contribution to the rate
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variation can be counted and compared with the determined correlation
coefficient between rate variation and temperature. The K/π-ratio has
large uncertainties in previous measurements from colliders, and sea-
sonal variations mark a way to obtain this quantity, as explained in
Ref. [68, 162].

The analysis developed in this thesis can also be applied to atmospheric
muons. The majority of detected particles are atmospheric muons from
air showers, orders of magnitude more than atmospheric neutrinos.
These muons represent an immense background for the search for astro-
physical neutrinos in the down-going region. An accurate measurement
of the seasonal variations would improve the background modeling.
Moreover, the combination of seasonal variations of muons and neutri-
nos could further constrain hadronic interaction models, since muons
do not come from cosmic objects, so they are purely atmospheric in
origin.

116



A Simulation Sets

Number Energy Range / GeV Spectral Index γ Syst. Parameter
21002 102 to 108 −2.0 ref. abs. and
21047 102 to 108 −2.0 ref. hole ice & DOM eff.
21003 102 to 108 −2.0 scat +5%
21004 102 to 108 −2.0 scat −5%
21005 102 to 108 −2.0 abs +5%
21006 102 to 108 −2.0 abs −5%
21047 102 to 108 −2.0 ϵDOM + 10%
21047 102 to 108 −2.0 ϵDOM + 10%
21047 102 to 108 −2.0 p0 + 1
21047 102 to 108 −2.0 p0 − 1

Table A.1: Simulation sets and corresponding systematic parame-
ter variation.
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B Unfolding of the Zenith Range
from 90◦ to 120◦

B.1 Dataset

Season Number of Events Livetime / days
January 41815 322.8
February 37809 297.2
March 41939 330.8
April 40605 320.3
May 42927 348.4
June 43796 355.7
July 44681 366.3
August 45782 368.3
September 45727 358.3
October 47670 368.6
November 44938 347.1
December 46027 353.8
June-August 134259 1090.2
December-February 125651 973.8
full year 523736 4137.5

Table B.1: Number of events and livetime per season within the
zenith range from 90◦ to 120◦ from May 2011 to December 2022.

B.2 Size of the Training Sample
As described in Chapter 7.3, the size of the training sample is set to
100 000 events. This number is found to be sufficient to obtain an accu-
rate unfolded spectrum with the event selection at hand. The impact
of the size of the training sample is investigated by unfolding the same
pseudo sample with DSEA+ trained on the same sample with varied
sizes. The pseudo sample to be unfolded is generated by weighting
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100 000 events of the MC sample to the annual average atmospheric
and astrophysical flux (see description in Chapter 5.3.1). DSEA+ is
then trained on events weighted by the same models, but the size of the
training sample is varied between 100 000, 200 000, and 1 000 000 (re-
ferred to as extended training sample). The unfolded spectra obtained
with DSEA+ trained on an event sample of different sizes are shown in
Fig. B.1. The upper panel depicts the unfolded normalized number of
events, which is the target quantity returned by DSEA+ averaged over
2000 bootstrap pulls. The statistical uncertainties in the shaded bands
are too small to be visible in this representation. The lower panel de-
picts the ratio of the estimated normalized number of events to the true
distribution. The dashed lines indicate a ±5% deviation from the MC
truth. The unfolded spectrum from DSEA+ trained on 100 000 events
is consistent with the true distribution. When the size of the training
sample is further increased, the deviations from the truth increase.
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Figure B.1: Unfolded pseudo sample of the annual average at-
mospheric and astrophysical flux by DSEA+ trained on MC with
varied training sample size. The blue distribution is obtained by
DSEA+ trained on 100 000 events, green by DSEA+ trained on
200 000 events, and orange by DSEA+ trained on 1 000 000 events.
Under- and overflow bins are marked as the shaded areas.
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B.3 Robustness of DSEA+ to a Prior

The subsequent test examines the robustness of DSEA+ to a fixed prior
(see description in Chapter 6.2). The unfolding algorithm is given a
uniform prior as an argument. This is an assumption which DSEA+
makes as default for the first iteration. The chosen prior is far from the
target distribution and the algorithm should ideally be independent of
the selected input prior. The impact of the prior is investigated by the
WD, which is calculated between the true and the estimated event spec-
trum in each iteration of DSEA+. A pseudo sample of 100 000 events
weighted by the annual average of the atmospheric flux prediction from
MCEq and astrophysical flux (see description in Chapter 5.3.1), which
is the same weighting as for the training sample, is unfolded in 2000
bootstrap pulls. The WD distributions for iterations 1 to 6 are de-
picted in Fig. B.2. The WD of the first iteration is strongly influenced
by the uniform prior because the RF predictions are weighted to the
prior. Starting from the second iteration, the influence of the prior dis-
appears because the prior is updated by the previous estimate of the
first iteration of DSEA+. The WD remains unchanged for subsequent
iterations as the algorithm converges. This test validates that four it-
erations are sufficient to unfold the neutrino spectrum from the event
selection at hand.
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Figure B.2: Impact of uniform prior on the convergence of DSEA+.
The WD distributions are shown for 2000 bootstrap pulls in depen-
dence of DSEA+ iterations.
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B.4 Burnsample Tests
Data analyses in IceCube are subject to blind analysis policies. The
analysis pipeline in this dissertation has been exclusively developed us-
ing simulated data weighted by the respective expected physical flux
model of the data. Before accessing the entire dataset, proof-of-concept
tests are usually performed on a small dataset referred to as burnsam-
ple. During the development stage of this analysis, the burnsample was
defined as 10% of the available data under full detector configuration.
The purpose of a burnsample is to impartially evaluate the analysis
without influencing potential outcomes. For this particular analysis,
the burnsample consists of 10% of data collected between 2011 and
2020, corresponding to approximately one year of effective livetime.
Constructing a burnsample from 10% of all available data from 2011
to 2022 (all detector runs ending with 0) would violate the purpose of
a burnsample since it would comprise more than one year of effective
lifetime. The sample is only generated to test the analysis pipeline
and should not resolve any physical results. The entire dataset can be
utilized after a collaboration-internal review process.

B.4.1 Unfolding of Seasonal Spectra
The unfolded burnsample sets for austral summer (December to Febru-
ary) and austral winter (June to August) are depicted in Fig. B.3. The
upper panel displays the unfolded seasonal spectra, indicating system-
atic uncertainties through shaded areas. Statistical uncertainties are
represented by error bars, which are greater than those for the entire
dataset. The unfolded spectrum has a higher normalization compared
to the calculated spectrum from MCEq, which is consistent with other
measurements [131]. Chapter 5.5 discusses the difference in normal-
ization between theory and measurement. The unfolded spectra agree
in shape with the MCEq prediction. As described in Chapter 7.3,
the lower panel depicts the ratio of seasonal to annual average flux,
which is independent of systematic uncertainties on the spectrum un-
folding. The statistical uncertainties on the ratio are relatively large
due to the small statistics in the burnsample. The obtained flux ra-
tios are largely consistent with MCEq and show increasing seasonal
variations with energy, except for the second and last energy bin for
the December-February season. The ratio in both bins aligns with the
annual average.
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Figure B.3: Seasonal unfolding of the burnsample comprised 10%
of the measured data between 2011 to 2020. Error bars depict statis-
tical uncertainties while colored bands depict systematic ones. The
predicted flux from MCEq is scaled up by a fitted normalization con-
stant for the unfolded spectrum. The lower panel displays the ratio
of the seasonal to annual average flux for the unfolded data and the
MCEq-calculated theory fluxes. Black dashed lines illustrate ±5%
deviation from the annual average flux. Since the systematic uncer-
tainties remain the same for each season and cancel out in the ratio,
the statistical uncertainties are the only uncertainties in the ratio.

B.4.2 Impact of Selected Models in MCEq

The impact of the selection of the primary CR composition and the
hadronic interaction model in MCEq is studied for the seasonal burn-
sample unfolding from December to February. To investigate the im-
pact of one specific model assumption, one of either the composition
or hadronic interaction model is held constant, whereas the remaining
ones are iterated over four different models. Fig. B.4 and B.5 show the
unfolded and calculated (dashed lines) spectra for the austral summer
in the upper panel, and the ratio to the annual mean in the lower panel.
As can be seen in Fig. B.4, the spectral shape is largely determined
by the primary composition model. The calculation shows different
primary models show a change in normalization, and the deviations
between the calculated spectra increases with energy. The calculated
spectra with H3a and H4a show a slower decline with increasing energy
than those with GST and PG. PG yields a lower normalization, as it is
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Figure B.4: Top: Unfolded seasonal burnsample for 10% of the
data from December to February from 2011-2020 in comparison to
the MCEq predictions with a variation of the primary CR composi-
tion model. Bottom: Ratio of seasonal to annual average flux.

derived from CR-data around the knee region only. Other primary en-
ergies are interpolated and PG might not accurately describe the spec-
trum outside of the knee region. As shown in Fig. B.5, the selection of
the hadronic interaction model determines the slope of the calculated
spectra, but all have the same normalization at 125 GeV. The devia-
tions between the models increase with energy. Although the selection
of the respective models leads to large differences in normalization and
spectral index, the ratio of seasonal to annual average flux shows no
visible changes in the energy range of interest. Therefore, comparing
the unfolded ratio to the MCEq prediction of one specific model combi-
nation is sufficient. This test indicates that the predicted seasonal vari-
ation pattern in the energy range between 125 GeV to 10 TeV depends
on the atmospheric model in MCEq. However, it is not possible to test
changes in the atmosphere since NRLMSISE-00 is the only model that
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Figure B.5: Top: Unfolded seasonal burnsample for 10% of the
data from December to February from 2011-2020 in comparison to
the MCEq predictions with variation of the hadronic interaction
model. Bottom: Ratio of seasonal to annual average flux.

considers monthly temperature variations (refer to Appendix D.1 for
descriptions).

B.4.3 Investigation of Systematic Parameters
This section provides a thorough analysis of the individual systematic
parameters and their influence on the unfolded spectrum relative to
the unfolded reference pseudo sample. The parameters are described
in detail in Chapter 7.2. This test was conducted as a part of the
blindness tests on the burnsample as well, before the analysis chain
was applied to the complete dataset. The pseudo sample is weighted
by the seasonal MCEq flux prediction for austral winter from June to
August. The statistics in this seasonal test sample are comparable to
one month of data within the entire data-taking period. The deter-
mined systematic uncertainties remain the same for all seasons, while
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Figure B.6: Unfolded event spectra for the systematic and the ref-
erence pseudo samples. The number of events is set to 10% of the
expected events for June to August between 2011 to 2020, as a burn-
sample test. The statistical uncertainties in the ratio are illustrated
as shaded bands.
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B.5. χ2-Tests

the number of events in the pseudo sample is adjusted to provide a real-
istic statistical uncertainty. The unfolded event spectra obtained from
a variation of a systematic parameter to the reference are depicted in
the upper panel in Fig. B.6. The deviation of the event spectra to the
unfolding of the baseline pseudo sample is shown in the lower panel con-
cerning statistical uncertainties highlighted by shaded bands. Whereas
scattering in ice and flux model uncertainties on the weighting have a
similar impact over the entire energy range, changes in the DOM effi-
ciency and absorption in ice are energy-dependent. In particular, the
unfolded number of events differs up to approx. 18% to the unfolded
reference pseudo sample in bins with lower statistics at the edges of the
displayed energy range. The decrease of the hole ice parameter p0 has
almost no impact on the spectrum unfolding. However, the increase
yields an energy dependence.

B.5 χ2-Tests

χ2-tests are used in this dissertation to quantify various objectives. The
feasibility of seasonal unfolding on pseudo samples is examined in the
first section. The second part tests for the ability of seasonal unfolding
concerning a change in the spectral index compared to the seasonal
predictions from MCEq. The third test investigates the compatibility
of the unfolded seasonal variation strength from data with the MCEq
prediction.

B.5.1 Feasibility of Seasonal Unfolding

A χ2-test is performed to investigate how precisely the seasonal vari-
ation strength defined the flux ratio of a specific season to the annual
average can be unfolded, as described in Chapter 7.4.2. The deviation
is defined by the quotient of the ratio of the unfolded seasonal to an-
nual average flux to the prediction from MCEq. The null hypothesis
is defined as a quotient of 1, which indicates that the prediction and
unfolded ratios are in agreement. The hypothesis is to be rejected at a
3σ-level the p-values smaller than ≤ 0.003.
The test results are depicted for every season in Fig. B.7 to B.10. The
error bars represent the quotient of the unfolded ratio to the MCEq
prediction in terms of statistical uncertainties. The corresponding p-
values and linear fits are shown for each season. The ratio obtained
fluctuates around 1, and the null hypothesis cannot be rejected for any
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season. This study indicates that it is feasible to unfold the monthly
data from 11.5 years of data.
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Figure B.7: χ2-test to determine the accuracy of the unfolded
seasonal to annual average in zenith range from 90◦ to 120◦. The
null hypothesis to be rejected is defined as the quotient of the ratio
of unfolded seasonal to annual average flux to the prediction being
compatible with 1. The linear fit determines the slope of the ratio be-
tween unfolded ratio from pseudo data to MCEq. The unfolded ratio
from the pseudo sample should be compatible with the prediction to
ensure the feasibility of seasonal unfolding. The null hypothesis can-
not be rejected for both seasons, which indicates that the unfolded
ratio is in agreement with the prediction.
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Figure B.8: χ2-test to determine the accuracy of the unfolded
seasonal to annual average in zenith range from 90◦ to 120◦. The
null hypothesis to be rejected is defined as the quotient of the ratio
of unfolded seasonal to annual average flux to the prediction being
compatible with 1. The linear fit determines the slope of the ratio be-
tween unfolded ratio from pseudo data to MCEq. The unfolded ratio
from the pseudo sample should be compatible with the prediction to
ensure the feasibility of seasonal unfolding. The null hypothesis can-
not be rejected for both seasons, which indicates that the unfolded
ratio is in agreement with the prediction.

129



Appendix B. Unfolding of the Zenith Range from 90◦ to 120◦

103 104

E/GeV
0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

Ra
tio

 se
as

on
-y

ea
r/M

CE
q 

flu
x 

pr
ed

. Pseudo Data Unfolding Sep
(0.01828± 0.00789)E +(0.944±0.024)
 p-value = 0.275

(a)

103 104

E/GeV
0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

Ra
tio

 se
as

on
-y

ea
r/M

CE
q 

flu
x 

pr
ed

. Pseudo Data Unfolding Oct
(0.00443± 0.00618)E +(0.988±0.019)
 p-value = 0.951

(b)

103 104

E/GeV
0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

Ra
tio

 se
as

on
-y

ea
r/M

CE
q 

flu
x 

pr
ed

. Pseudo Data Unfolding Nov
(-0.02402± 0.00692)E +(1.072±0.021)
 p-value = 0.173

(c)

103 104

E/GeV
0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

Ra
tio

 se
as

on
-y

ea
r/M

CE
q 

flu
x 

pr
ed

. Pseudo Data Unfolding Dec
(0.00345± 0.01078)E +(0.989±0.033)
 p-value = 0.211

(d)

Figure B.9: χ2-test to determine the accuracy of the unfolded
seasonal to annual average in zenith range from 90◦ to 120◦. The
null hypothesis to be rejected is defined as the quotient of the ratio
of unfolded seasonal to annual average flux to the prediction being
compatible with 1. The linear fit determines the slope of the ratio be-
tween unfolded ratio from pseudo data to MCEq. The unfolded ratio
from the pseudo sample should be compatible with the prediction to
ensure the feasibility of seasonal unfolding. The null hypothesis can-
not be rejected for both seasons, which indicates that the unfolded
ratio is in agreement with the prediction.
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Figure B.10: χ2-test to determine the accuracy of the unfolded
seasonal to annual average in zenith range from 90◦ to 120◦. The
null hypothesis to be rejected is defined as the quotient of the ratio
of unfolded seasonal to annual average flux to the prediction being
compatible with 1. The linear fit determines the slope of the ratio be-
tween unfolded ratio from pseudo data to MCEq. The unfolded ratio
from the pseudo sample should be compatible with the prediction to
ensure the feasibility of seasonal unfolding. The null hypothesis can-
not be rejected for both seasons, which indicates that the unfolded
ratio is in agreement with the prediction.
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B.5.2 Robustness Against Changes in Spectral Shape
A χ2-test can be utilized to evaluate the robustness of the unfolding
to possible changes of the spectral index in measured data compared
to the flux model assumption for the algorithm training. The feasibil-
ity of seasonal unfolding is investigated on a pseudo sample weighted
by seasonal predictions from MCEq (see Chapter 7.4.1). However, the
spectrum of the data might be distributed differently. To test the feasi-
bility of seasonal unfolding, the pseudo samples for June and December
are re-weighted to a shift ∆γ in the spectral index:

ϕ ·
(︃

E

1 TeV

)︃∆γ

. (B.1)

The pseudo samples are unfolded for four different spectral index scal-
ing factors, and the ratio of monthly to annual average flux is calcu-
lated. The resulting ratios are then compared to the expected values
from the rescaled MCEq predictions, defined as a quotient. The null
hypothesis to be rejected is defined as a quotient of 1, similar to the
previous section. As introduced previously, the rejection threshold is
set at the 3σ-level for p-values ≤ 0.003.
The test results are depicted in Fig. B.11 for June and in Fig. B.12 for
December. The null hypothesis cannot be rejected for both seasons up
to ∆γ ± 0.1.
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Figure B.11: χ2-test to determine if the ratio can be accurately
unfolded with a shifted spectral index of ∆γ in comparison to the
training spectrum for the month of June. The pseudo data is sampled
based on MCEq flux weights and the flux undergoes a spectral index
shift. The fitting process calculates the slope of the ratio between
the unfolded ratios derived from pseudo data and MCEq. The ratio
of the unfolded seasonal flux ratio to the prediction is defined as
the quotient, depicted for each energy bin. If the unfolded ratios are
compatible with the prediction, then the quotient is 1, defined as the
null hypothesis. In this scenario, the flux ratio can be unfolded, even
if the spectral index changes with respect to the training spectrum.
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Figure B.12: χ2-test to determine if the ratio can be accurately
unfolded with a shifted spectral index of ∆γ in comparison to the
training spectrum for the month of December. The pseudo data is
sampled based on MCEq flux weights and the flux undergoes a spec-
tral index shift. The fitting process calculates the slope of the ratio
between the unfolded ratios derived from pseudo data and MCEq.
The ratio of the unfolded seasonal flux ratio to the prediction is de-
fined as the quotient, depicted for each energy bin. If the unfolded
ratios are compatible with the prediction, then the quotient is 1,
defined as the null hypothesis. In this scenario, the flux ratio can
be unfolded, even if the spectral index changes with respect to the
training spectrum.
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B.5.3 Compatibility of the unfolded Seasonal Vari-
ation Strength with MCEq

To determine whether the unfolded ratio of seasonal to annual mean
flux is consistent with the seasonal prediction from MCEq, another χ2-
test is performed. The quotient of the ratio of the unfolded seasonal to
annual average flux to the MCEq prediction is the target quantity to de-
scribe the deviation from the prediction. The null hypothesis assumes
that the predictions of the seasonal flux ratio are in agreement with
MCEq, equivalent to a quotient of 1. If the obtained ratio is in agree-
ment with MCEq, the variation pattern would follow the prediction of
the atmospheric model NRLMSISE-00. As illustrated in Section B.4.2,
the ratio of the predicted seasonal to annual average flux remains the
same even if primary CR composition and hadronic interaction model
are exchanged in the calculation of the seasonal flux ratio. The null
hypothesis is rejected at a significance level of 3σ or p-values ≤ 0.003,
as in the previous tests. The test results for all seasons are depicted in
Fig. B.13 to B.15, and summarized in Table 7.2. The null hypothesis is
rejected for February, September, October, and the seasons December-
February, January-June, May-August, and October-January.
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Figure B.13: χ2-test to determine the compatibility of unfolded
seasonal flux ratios with the predicted ratio by MCEq. The error
bars depict statistical uncertainties in the ratio from the unfolding.
The p-value for each season is given in the caption. The ratio of the
unfolded results to the MCEq prediction is fitted by a linear function
to show potential offsets to the prediction.
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Figure B.14: χ2-test to determine the compatibility of unfolded
seasonal flux ratios with the predicted ratio by MCEq. The error
bars depict statistical uncertainties in the ratio from the unfolding.
The p-value for each season is given in the caption. The ratio of the
unfolded results to the MCEq prediction is fitted by a linear function
to show potential offsets to the prediction.
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Figure B.15: χ2-test to determine the compatibility of unfolded
seasonal flux ratios with the predicted ratio by MCEq. The error
bars depict statistical uncertainties in the ratio from the unfolding.
The p-value for each season is given in the caption. The ratio of the
unfolded results to the MCEq prediction is fitted by a linear function
to show potential offsets to the prediction.
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B.6 Redefining the Seasons
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Figure B.16: Unfolded seasonal muon neutrino spectra for rede-
fined austral summer from October to January and austral winter
from May to August. Error bars depict statistical uncertainties while
colored bands depict systematic ones. The predicted flux from MCEq
is scaled up by a fitted normalization constant for the unfolded spec-
trum. The lower panel displays the ratio of the seasonal to annual
average flux for the unfolded data and the MCEq-calculated theory
fluxes. Black dashed lines illustrate ±5% deviation from the annual
average flux. Since the systematic uncertainties remain the same for
each season and cancel out in the ratio, the statistical uncertainties
are the only uncertainties in the ratio.

As can be concluded from the discussions in Chapter 7.5, the observed
seasonal variations are not distributed symmetrically throughout the
year. The seasons are redefined by months with a similar significance
of deviations from the annual average flux. The unfolded spectra for
the austral summer from October to January, and austral winter from
May to August are depicted in Fig. B.16. The fitted normalization
factor of the predicted MCEq flux remains the same as in the previ-
ously shown figures. The unfolded spectra overlap for both seasons
due to the systematic uncertainties and are shape-wise in agreement
with the MCEq flux prediction. The amplitude of the unfolded ratio
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Appendix B. Unfolding of the Zenith Range from 90◦ to 120◦

of seasonal to annual average remains constant around +1% to +2%
with increasing energy, except between approx. 500 GeV to 700 GeV
where the seasonal variations strength decreases to (−1.3 ± 0.5)% for
austral summer. The unfolded ratio increases at energies above 3 TeV
with a strength of (+4.7 ± 0.7)% to (+6.7 ± 1.1)%. The unfolded flux
ratio for May to August remains approx. constant around −1% to −2%
compared to the annual average, but decreases to (−6.0 ± 0.5)% be-
tween 500 GeV to 700 GeV. The ratio also increases at energies above
3 TeV to a maximum variation strength of (+1.9 ± 1.0)% above 7 TeV.
The unfolded ratios are not in agreement with the MCEq predictions
because of a sudden decrease in variation strength between 500 GeV
to 700 GeV and the sudden increase in the ratio from May to August,
which is supported by the χ2-tests displayed in Fig. B.15.
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B.7. Unfolded Annual Average Flux

B.7 Unfolded Annual Average Flux

Bin Energy / Mean E3 dE
dϕ

/ Stat. Error / Syst. +
Energy / / Stat. Error /

GeV GeV GeV2 cm−2 s−1 sr−1 % %
1 125 160 6.84 × 10−2 ±0.5 +17.1

– 195 −21.1
2 195 248 7.30 × 10−2 ±0.3 +12.1

– 302 −13.4
3 302 385 7.37 × 10−2 ±0.3 +5.2

– 468 −11.6
4 468 596 7.37 × 10−2 ±0.3 +3.2

– 724 −3.3
5 724 923 7.03 × 10−2 ±0.3 +2.9

– 1122 −2.7
6 1122 1430 6.64 × 10−2 ±0.3 +4.0

– 1738 −5.5
7 1738 2215 6.18 × 10−2 ±0.3 +14.9

– 2692 −2.3
8 2692 3430 5.60 × 10−2 ±0.3 +9.9

– 4169 −9.0
9 4169 5313 4.90 × 10−2 ±0.4 +15.4

– 6457 −10.7
10 6457 8228 4.24 × 10−2 ±0.5 +13.6

– 1 × 104 −11.0

Table B.2: Unfolded average yearly atmospheric muon neutrino
flux in the zenith range from 90◦ to 120◦.
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C Unfolding of the Zenith Range
from 90◦ to 110◦

C.1 Dataset

Season Number of Events Livetime / days
May-August 129753 1438.5
October-January 133950 1392.3
full year 386542 4137.5

Table C.1: Number of events and livetime per season within the
zenith range from 90◦ to 110◦ from May 2011 to December 2022.

C.2 Reevaluation of Systematic
Uncertainties

Due to the change in the dataset towards a restriction of the zenith
range in Chapter 8, systematic uncertainties need to be estimated for
the restricted range. Pseudo samples are generated from simulated
events with varied systematic parameters, as described in Chapter 7.2.
The determined uncertainties for each origin are depicted in Fig. C.1.
Compared to the uncertainties obtained for the entire zenith region
from 90◦ to 120◦ (Fig. 7.3), the scattering and hole ice parameters
have the largest impact on the total systematic uncertainty and are
larger than the respective uncertainties due to DOM efficiency and ab-
sorption at higher energies. To summarize, the uncertainties for the
limited range of zenith angles differ from the calculated uncertainties
for the zenith range between 90◦ to 120◦. This is due to the behav-
ior of DSEA+ when another spectrum is unfolded, thereby resulting
in a slight difference between the spectrum for the restricted zenith
range and the training spectrum. The uncertainties reflect this effect,
which could be attributed to the unchanged training sample governing
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the entire zenith range. DOM efficiency and absorption have a mi-
nor impact compared to Fig. 7.3. The choice of the CR composition
model/hadronic interaction model on the weighting is negligible. The
deviation of the number of events per energy bin for a given systematic
parameter is illustrated in Fig. C.2.
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Figure C.1: Overview of each source of systematic uncertainty per
energy bin. Due to the relative uncertainty estimation, the system-
atic uncertainties remain constant for all seasons.
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Figure C.2: Unfolded event spectra for the systematic and reference
pseudo samples, exemplary for the season from October to January.
The statistical uncertainties in the ratio are illustrated as shaded
bands.
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C.2.1 Robustness Against Changes in Spectral
Shape

As explained in Appendix B.5.2, a χ2-test can be performed for the
evaluation of the robustness of the unfolding to possible changes of
the spectral index of measured data. The pseudo samples for austral
summer and winter are reweighted to a shift ∆γ in the spectral index
according to Equ. B.1. The pseudo samples are unfolded for four dif-
ferent spectral index scaling factors, and the ratio of monthly to annual
average flux is calculated. The resulting ratios are then compared to
the expected values from the rescaled MCEq predictions, defined as a
quotient. The null hypothesis to be rejected is defined as a quotient of
1, similar to the previous section. As introduced previously, the rejec-
tion threshold is set at the 3σ-level for p-values ≤ 0.003.
The test results are depicted in Fig. C.3 for austral winter from May to
August and in Fig. C.4 for austral summer from October to January.
The null hypothesis cannot be rejected for both seasons up to ∆γ ±0.1.
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Figure C.3: χ2-test to determine if the ratio can be accurately
unfolded with a shifted spectral index of ∆γ in comparison to the
training spectrum for austral winter. The pseudo data is sampled
based on MCEq flux weights and the flux undergoes a spectral index
shift. The fitting process calculates the slope of the ratio between
the unfolded ratios derived from pseudo data and MCEq. The ratio
of the unfolded seasonal flux ratio to the prediction is defined as
the quotient, depicted for each energy bin. If the unfolded ratios are
compatible with the prediction, then the quotient is 1, defined as the
null hypothesis. In this scenario, the flux ratio can be unfolded, even
if the spectral index changes with respect to the training spectrum.
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Figure C.4: χ2-test to determine if the ratio can be accurately
unfolded with a shifted spectral index of ∆γ in comparison to the
training spectrum for austral summer. The pseudo data is sampled
based on MCEq flux weights and the flux undergoes a spectral index
shift. The fitting process calculates the slope of the ratio between
the unfolded ratios derived from pseudo data and MCEq. The ratio
of the unfolded seasonal flux ratio to the prediction is defined as
the quotient, depicted for each energy bin. If the unfolded ratios are
compatible with the prediction, then the quotient is 1, defined as the
null hypothesis. In this scenario, the flux ratio can be unfolded, even
if the spectral index changes with respect to the training spectrum.
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C.3. Unfolded Annual Average Flux

C.3 Unfolded Annual Average Flux

Bin Energy / Mean E3 dE
dϕ

/ Stat. Error / Syst. +
Energy / / Stat. Error /

GeV GeV GeV2 cm−2 s−1 sr−1 % %
1 125 160 7.47 × 10−2 ±0.6 +16.0

– 195 −29.4
2 195 248 7.95 × 10−2 ±0.4 +11.1

– 302 −20.9
3 302 385 8.12 × 10−2 ±0.3 +5.1

– 468 −12.3
4 468 596 8.23 × 10−2 ±0.3 +2.4

– 724 −5.1
5 724 923 7.88 × 10−2 ±0.3 +1.3

– 1122 −2.4
6 1122 1430 7.51 × 10−2 ±0.3 +9.4

– 1738 −2.6
7 1738 2215 6.98 × 10−2 ±0.3 +11.6

– 2692 −4.8
8 2692 3430 6.32 × 10−2 ±0.3 +15.2

– 4169 −6.8
9 4169 5313 5.50 × 10−2 ±0.4 +17.9

– 6457 −8, 1
10 6457 8228 4.77 × 10−2 ±0.6 +19.4

– 1 × 104 −11.0

Table C.2: Unfolded average yearly atmospheric muon neutrino
flux from May 2011 to 2022 in the zenith range from 90◦ to 110◦.
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D Atmospheric Models in
MCEq

This section introduces atmospheric parameterizations in MCEq. The
density profiles can be provided by a numerical model or by mea-
sured/interpolated data. The description of the atmospheric density
is crucial for the calculation of the lepton fluxes. The consideration of
temperature variations on a monthly or daily basis allows the predic-
tion of seasonal lepton flux variations. The first section introduces the
atmospheric parameterization utilized in this dissertation, the second
section compares the models/data-based approaches to one another.

D.1 Description of Models and Databases

D.1.1 NRLMSISE-00

MSIS models describe the composition, density, and temperature of
the atmosphere at selected altitudes. These models combine data from
mass spectrometers and incoherent scattering radar observations with
theoretical predictions of atmospheric observables. The first model
MSIS-86 [163] was developed primarily to describe the thermosphere
and has been extended to include additional layers of the atmosphere.
The extension US Naval Research Laboratory Mass Spectrometer In-
coherent Scattering Extension 2000 (NRLMSISE-00) [4] incorporated
data from the US Naval Research Laboratory and expanded the previ-
ous model from the ground to the exosphere in 2000.
Various quantities such as temperature and altitude, but also element
abundance densities can be obtained from the model from the follow-
ing inputs: day, time of day, geodetic altitude from 0 km to 1000 km,
geodetic latitude-longitude, local apparent solar time, 81-day average
of F10.7, solar flux, daily F10.7 solar flux for the previous day, and
daily magnetic index. However, changes from year to year cannot be
taken into account.
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Appendix D. Atmospheric Models in MCEq

D.1.2 US Standard Atmosphere
The US Standard Atmosphere is used as a parametrization [58] of the
atmospheric density in CORSIKA [164]. The slant depth of the atmo-
sphere is approximated in five different layers depending on the height.
The first four layers below 100 km are approximated by:

X(h) = ai + bi exp
(︄

− h

ci

)︄
. (D.1)

The fifth layer is represented by a linear relation:

X(h) = ai − bih

ci

. (D.2)

The exact parameters can be found in Ref. [164]. Depending on position
and season, different parameters can be selected.

D.1.3 AIRS
The Atmospheric Infrared Sounder (AIRS) [123] is an instrument on
NASA’s Aqua satellite. The device is designed to measure infrared
radiation emitted in the atmosphere with the central goal of providing
vertical profiles of temperature and humidity. It is particularly sensitive
to the lower stratosphere and troposphere. Temperature profiles are
obtained at least twice daily at pressure levels ranging from 0.1 hPa to
1000 hPa with an angular resolution of 1◦ × 1◦. The obtained profiles
from April 2012 to April 2017 are fed into the modified version of MCEq
used in Ref. [1]. Heights above 50 km are interpolated by NRLMSISE-
00 [7].

D.1.4 ECMWF
The ERA reanalysis datasets provided by the European Center for
Medium-Range Weather Forecasts (ECMWF) [161] are numerical weather
prediction models that were developed using a variety of observational
data. The latest version available, which is used in this thesis, is the
ERA-5 version. It includes a collection of satellite measurements and
weather stations from 1979 to the present. The combination of many
measurements forms a continuous dataset, which has a larger coverage
compared to AIRS. The current version of ERA-5 has a high spatial
resolution and provides data on an hourly basis. The vertical tem-
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perature profiles between April 2012 and April 2013 are fed into the
modified version of MCEq by Ref. [1].

D.2 Comparison of Atmospheres

The predicted rate from MCEq is investigated in comparison to the
observed neutrino rate in IceCube for different zenith bands in Chapter
8.1. The impact of the atmospheric model in MCEq on the predicted
average monthly neutrino rate is depicted in Fig. D.1 in three distinct
zenith bands of 10◦ width and the final range from 90◦ to 110◦.
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Figure D.1: Ratio of the monthly average muon neutrino fluxes cal-
culated with MCEq with temperature data from AIRS and ECMWF
to the empirical model NRLMSISE-00 as atmospheric input for dif-
ferent zenith bands. The MCEq flux is calculated using H3a as
the primary CR composition and Sibyll2.3c as the hadronic interac-
tion model. The prediction from temperature data differs from the
NRLMSISE-00 prediction by up to 2% in spring and fall, especially
in October. Small deviations between the AIRS and ECMWF pre-
dictions occur from August to December in the zenith range of 90◦

to 100◦.

Dashed lines show the ratio of the calculated monthly average neutrino
rate based on AIRS and ECMWF compared to NRLMSISE-00. The
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ratios obtained from AIRS and ECMWF are similar except for sub-
percent level deviation between August and November in the zenith
ranges from 90◦ to 110◦. The data-based approaches are in agreement
with NRLMSISE-00 in June/July and in December, as discussed in
Chapter 7. Deviations of up to 2% are observable in October. A
general overestimation using NRLMSISE-00 occurs from January to
June and an underestimation from July to December. The deviation are
largest close to the Pole in October, which could be attributed to SSW
in the South Pole atmosphere, which is not modeled in NRLMSISE-
00. To accurately compare the unfolded seasonal variation strength
with theory predictions, data-based temperature profiles need to be
implemented in the flux calculation from MCEq.
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