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On-chip phonon-magnon reservoir for
neuromorphic computing

Dmytro D. Yaremkevich1, Alexey V. Scherbakov 1 , Luke De Clerk 2,3,
Serhii M. Kukhtaruk 4, Achim Nadzeyka 5, Richard Campion6,
Andrew W. Rushforth 6, Sergey Savel’ev 2, Alexander G. Balanov 2 &
Manfred Bayer 1

Reservoir computing is a concept involving mapping signals onto a high-
dimensional phase space of a dynamical system called “reservoir” for sub-
sequent recognition by an artificial neural network. We implement this con-
cept in a nanodevice consisting of a sandwich of a semiconductor phonon
waveguide and a patterned ferromagnetic layer. A pulsed write-laser encodes
input signals into propagating phonon wavepackets, interacting with ferro-
magnetic magnons. The second laser reads the output signal reflecting a
phase-sensitive mix of phonon and magnon modes, whose content is highly
sensitive to the write- and read-laser positions. The reservoir efficiently sepa-
rates the visual shapes drawn by the write-laser beam on the nanodevice sur-
face in an area with a size comparable to a single pixel of a modern digital
camera. Our finding suggests the phonon-magnon interaction as a promising
hardware basis for realizing on-chip reservoir computing in future neuro-
morphic architectures.

The flourishing idea of using artificial neural networks (ANNs) for the
solution of practical tasks shifts the computing paradigm towards
heavy usage of data insteadof creating lengthy instructions and logical
chains forming algorithms. Being inspired by biological neural sys-
tems, an ANN constitutes a set of many interconnected non-linear
functional units called ‘neurons’. To solve a task with the desired
accuracy, an ANN requires training by data processing to fit the
weights of the connections between neurons. Over the decades, ANNs
have demonstrated their high efficiency in a wide range of important
practical applications1 including voice, image, and pattern recognition,
data mining, prediction of complex dynamics, 3D reconstruction, and
medical diagnostics.

The more sophisticated the problem an ANN has to solve, the
larger is the network required to achieve the desirable accuracy of the
solution. Simulation of large networks using conventional digital
computers demands enormous CPU/GPU power, memory, and energy

supply2. A promising approach to resolve the hardware issues is neu-
romorphic computing, which implements ANNs in circuits3. Such
hardware architecture should dramatically improve the transfer of
data across the circuit duringdata processing, thus enhancingboth the
speed and energy efficiency of calculations.

Another common drawback of ANNs is the significant time
required for their training to optimize performance4. ANNs are most
efficient if the type of task (‘the goal’) is fixed, and there is enough data
for training. However, they experience significant difficulties if the
amount of data is limited, or the goal varies in time5. Smaller networks
would partly resolve this problem since fewer neurons and connec-
tions need less data and time for training, but this approach suffers
from poor accuracy. A promising way to resolve this problem is the
concept of ‘reservoir computing’ (RC). The ‘reservoir’ is a recurrent
ANN with non-linear dynamics and fixed connections, which typically
does not require any training, attached to a small readout ANN, which
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is trained to recognize predefined characteristics of the reservoir
output. In such an architecture, the reservoir serves to ‘highlight’
important features in data sets and suppress irrelevant ones, thereby
enormously improving the performance of computing.

As one of many natural prototypes of RC, one could consider the
humanvision schematically illustrated in Fig. 1a. The visual information
passed through the cornea and focused by the lens is converted by the
retinaphotoreceptors into electrical signals (theneural pulses) that are
transmitted by the optic nerve and mixed in a high-dimensional space
of the visual cortex for the subsequent recognition. The complex
photochemical transformation (phototransduction) by the 108 pho-
toreceptors allows our brain to recognize objects, distinguish tiny
differences between them, and detect thereby their motion. Such a
resemblance between biological sensory systems and reservoir ANNs
has invigorated research on RC-based artificial vision6, and other RC-
systems for detection and recognition5,7.

From the viewpoint of information theory, the reservoir maps
input signals into higher dimensional information spaces and can be
realized by continuous in space and/or in time nonlinear dynamical
systems with storage ability. Therefore, various physical systems have
been suggested for the reservoir5,8–10. One of the first realizations was
based on waves, namely gravity waves in a vessel with water to
recognize spoken numbers11. Nowadays, wave ‘reservoirs’ have been
implemented using different physical waves such as electromagnetic
waves (photons)12–18, elastic waves (phonons)19,20, and spin waves
(magnons)21–24. The key factors that make waves reliable for reservoir
architectures are the possibility to achieve wave packets with a vast
information density; weighted summation by interference;

nonlinearity resulting in wave mixing and generation of higher har-
monics; hybridization ofwaves of different types, e.g., the formationof
polarons. Recently, wave-based ‘reservoirs’ have demonstrated the
ability for deep learning25–27.

Despite rapid progress in the development of RC-systems, their
implementation in chips suitable for practical technological applica-
tions has remained an unsolved problem. Among themajor challenges
with existing neuromorphic platforms3 are power efficiency, minia-
turization, separability, and robustness5,8,10. On-chip wave-based
reservoirs have potential to address these challenges, since they allow
smaller devices, good scalability, great state numbers, and fine control
of interactingwavemodes. However, their development calls for novel
materials and designs allowing the generation of waves for the reser-
voir function.

Results
Hybrid nanostructure for phonon–magnon reservoir
Here, we propose and demonstrate experimentally a new type of wave
reservoir based on high-frequency acoustic and spin waves in a phy-
sical system that combines ultimate compactness, robustness, and
separability. For this aim, we fabricate a nanodevice with an archi-
tecture implemented with available nanotechnology. The device,
shown schematically in Fig. 1b, consists of a sandwich of GaAs/AlAs
semiconductor layers, which form a waveguide for high-frequency
acoustic waves, i.e., phonons28. The waveguide is capped by a nano-
grating patterned in a metal ferromagnetic Fe0.81Ga0.19 layer hosting
spin waves, i.e. magnons29. Figure 1c shows the scanning electron
microscopy image of the patterned surface. We examine the
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Fig. 1 | Nanodevice architecture and working principle. a Schematic of human
vision: an image focused by the lens onto the retina is transformed into electrical
pulses that are transferred by the optic nerve to the brain for the subsequent
recognition. b Design of the examined nanostructure. c Scanning electron micro-
scopy (SEM) images (top and bottom panels) of the nanodevice surface with the
nanograting (NG): completeNGwith a sizeof25 × 100 µm2 (toppanel), and its close-
up with the visible pattern (bottom panel). The inset in the right-top corner is a
microscopy image of the write (large spot) and read (small spot) laser spots on the

NG surface. The size of the framed area is 10 × 10 µm2. d Working principle of the
phonon reservoir with magnon readout. A multimode phonon wavepacket is
generated by ultrafast laser excitation of the patterned ferromagnetic nanolayer. It
propagates well protected from external perturbations beneath the surface in the
GaAs/AlAs phonon waveguide and its continuously transformed waveform is
imprinted in the magnon modes of the ferromagnetic layer. The superposition of
the magnon modes driven by the phonon wavepacket at a specific distance from
the write spot is detected using the read laser pulse.
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performance of this device by recognition of the “visual shapes” drawn
on the surface by a pulsed ‘write’ laser. The laser pulses are converted
by the nanograting to a coherent multimode phonon wavepacket,
which is guided along the surface and experiences continuous trans-
formation due to the interference of the phonon modes. Phonons
interact with magnons and this multimode magnon-phonon mixture
forms the reservoir multidimensional space. The reservoir output is
read through magnons by measuring the reflectivity of another ‘read’
laser beam. The output waveform is integrated over the drawn tra-
jectory corresponding to a specific “shape” for the following recogni-
tion by anANNprogrammed in apersonal computer.Wemaycompare
this procedure with handwriting and conceptualize the reservoir
operations as recognition of a handwritten character. Thus, in analogy
with the human vision (Fig. 1d), wemay consider the patterned surface
as the retina, which converts optical input to neural pulses (coherent
phonons), processed by a multidimensional reservoir space (phonon-
magnon mixture) to generate a readout recognized by the brain,
namely the ANN. The sub-µm wavelength of phonons and magnons
allows achieving a large number of “receptors” per area (‘’receptor”

density) andmake the readout sensitive to a tiny change of the optical
input. It enables recognition of the symbols drawn on the scale of just
several wavelengths of the ‘write’ laser.

The physical processes involved in the operation of the fabricated
nanodevice are demonstrated in Fig. 2. The 100-fs pulse of the write
laser, focused on the metallic ferromagnetic layer to a spot of 2-µm
diameter instantaneously induces thermal stress leading to the gen-
eration of the coherent acoustic wavepacket of hypersound (up to
~100GHz) frequencies30,31. Due to the periodic surface patterning and
the corresponding spatial modulation of the optically induced stress
along the x-axis, coherent phonons acquire the wavevectors: kx = n 2π/
d, where d =200 nm is the nanograting period and n = 1,2,3… is the
harmonic order32. Thephononwavepacket propagates along the x-axis
away from the optically excited area. There are two groups of propa-
gating phonon modes with alternative localizations. The surface
modes of two polarizations, so-called Rayleigh and Sezawawaves, with
the frequencies of 12.2 and 13.8 GHz (n = 1), respectively, are localized
in the near-surface region. Their propagation is suppressed due to the
scattering at the corrugated surface, and their amplitudes drastically
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Fig. 2 | Physical principle of the phonon-magnon reservoir. a Calculated
dependences of the frequencies of the nanograting magnon modes on magnetic
field. Blue solid lines show the 6 lowest modes (forming the S-band). The external
magnetic field, B, is applied in the layer plane at 45o angle relative to the NG edge.
The spectral range of the 1st order W-band is shown by the pink dashed rectangle.
The vertical dashed line shows the magnetic field strength at which the spectral
centres of the S- and W-bands coincide. b Calculated spatial profiles of the 22
W-modes (normalized absolute value of displacement vector, exaggerated for
clarity) and 6 lowest S-modes in the ferromagnetic layer (z-projection of the nor-
malizedmagnetization).cCoordinate systemand relative positionsof thewrite and
read spots in the experiments. d Noise-free readout signals measured for three

values of B at 20-µm distance between the write and read spots. e Colour map
showing the field dependence of the spectral amplitude obtained by a fast Fourier
transform of the readout signals measured at X0 = 20 µm. The vertical dashed line
shows themagnetic field strength, at which themagnon readout demonstrates the
most complex waveform. The horizontal dashed lines indicate the calculated
spectral position of the guided phonon W-band. f, g Typical magnon noise-free
readouts measured at various horizontal (f) and vertical (g) relative shifts of the
write and read spots. Left panels show the transient signals, right panels the
respective fast Fourier transforms. Time t =0 corresponds to themomentwhen the
input laser pulse hits the ferromagnetic layer.
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decrease within the propagation distances of several microns. The
second group of modes, so-calledW-modes, are localized in the GaAs/
AlAs sandwich, which has a higher acoustic impedance than the
impedances of the substrate and the ferromagnetic cap. TheW-modes
are analogue to the Lamb modes in plates and behave as waveguide
modes, which can propagate on large distances protected from
scattering28,33. Detailed information about the spectrum of the opti-
cally generated coherent phonons is presented in Supplementary
Fig. 1. Here we focus on the W-modes, which are the main information
carriers in the proposed device. The number ofW-modes for a specific
wavevector is determined by its ratio to the total waveguide thickness.
Numerical modelling (Methods) shows that the first-order W-band
(n = 1) consists of 22 W-modes with frequencies between 16.5 and
18GHz as shown by the red dashed rectangle in Fig. 2a. The spectral
bands with higher order n (not shown) contain a continuously
increasing number of phonon modes.

Due to the magneto-elastic coupling the propagating phonon
wavepacket interacts withmagnons in the ferromagnetic layer34,35. The
magnon spectrum includes a number of spectrally close S-modes
formed by spin waves spatially modulated along the x-axis and quan-
tized along the normal to the layer plane (z-axis)29,36. The frequencies
of themagnonmodes dependon the strengthof the externalmagnetic
field, B, applied in our experiments in the layer plane at an angle of 45
degrees relative to the direction of the nanograting grooves. Figure 2a
shows the calculated frequencies of the magnon modes (blue and
dashed black lines) as a function of B. For any pair of phonon and
magnon modes, the efficiency of their interaction depends on their
spatial and spectral matching37,38. The spatial matching is determined
by the mode profiles set by the device structural design. Figure 2b
shows the calculated spatial profiles of the 22 first-orderW-modes and
the six lowest S- modes in the ferromagnetic layer. Their interaction
occurs through the uniaxial (xx) and shear (xz) strain components of
the W-modes37 and for any pair of the illustrated W- and S-modes the
overlap integral is nonzero. The spectralmatching is set by the external
magnetic field. The highest interaction efficiency takes place at the
resonance condition when the frequencies of the interacting modes
are equal. However, due to the finite spectral widths of the S- and W-
modes, their interaction is still quite efficient when the modes are
detuned. Moreover, magnon-phonon interaction is intrinsically non-
linear and is accompanied by the parametric effects, which result in
frequency mixing of the phonon modes39. As a result, the magnon
readout signal,M(t), is characterized by a complex waveform, which is
the phase-sensitive superposition of all S- and W-modes in the detec-
tion area, converted to an electric signal exploiting the polarmagneto-
optical Kerr effect (Methods).

The noise-freewaveforms (seeMethods) of themagnon readouts,
MðtÞ, measured at three values of B at the distanceX0 = 20 µmbetween
the write and read laser spots are shown in Fig. 2d. The most complex
readout is observed at B= 170 mT, which corresponds to the inter-
section of the W-band and the six lowest S-modes, which profiles are
shown in Fig. 2b. The readout complexity manifests in the maximal
broadening of its fast Fourier transform spectrum, the field depen-
dence of which is shown in Fig. 2e. The experimental results demon-
strated further correspond to these experimental conditions.

Figure 2f, g demonstrate how the magnon readout MðtÞ depends
on the position of the read point relative to the write point where the
phonon wavepacket is generated (for the scheme, see Fig. 2c). A tiny
change in the relative positions of the write and read points, separated
by a distance of more than 20 µm, results in a noticeable modification
of the readout waveform and its spectrum. We have checked that the
device is homogeneous, and the readout signalMðtÞ does not depend
on the position at the device surface when the relative position of the
input and output spots is preserved. A 125-nm step in the horizontal
direction is smaller than the nanograting period (the W- and S-modes’
wavelength), and much smaller than the write and read laser

wavelengths of 1050 and 780 nm as well as spots diameters of 2 and
0.6 µm, respectively. The readout waveform is sensitive to both hor-
izontal and vertical shifts, Δx and Δy. The strong sensitivity ofMðtÞ to
the relative position is governed by the properties of the propagating
phonon wavepacket. Each W-mode is characterized by its individual
spatial profile, frequency, velocity, and decay rate and excited by the
write laser pulse with individual initial amplitude and phase. As a result
of the modes’ interference, the phonon wavepacket experiences con-
tinuous transformation during its propagation along the x-axis as
illustrated in the Supplementary Video. Moreover, the superposition
of the phonon modes varies also along the wavefront (y -axis) due to
the finite sizes of the write and read laser spots. This spatial-temporal
transformation imprinted into themagnon S-modes results in a unique
spatial, temporal, and spectral variation of the readout. Notably, it is
reminiscent of the interaction of neural waves in the visual cortex,
which was recognized as one of the computation mechanisms in the
brain40.

Signal encoding and recognition
The sensitivity of the wave packet characteristics to the write position
and the resulting high selectivity of the readout infer great efficiency of
the proposed device as a neuromorphic reservoir, which processes the
incoming signals that are encoded in the spatial-temporal distribution
of the write laser intensity. We illustrate the reservoir function by
recognizing “visual shapes” drawn by the write laser on the patterned
surface. Symbols are drawn by sequential step-like changing of the
relative position of the write laser spot along a selected trajectory
formed from the set of the discrete positions as shown in Fig. 3. The
resulting single waveform for a specific shape is integrated over the
whole trajectory (Methods). For our system, we have arbitrarily
selected the following six symbols for recognition: ‘L’, ‘−’, ‘O’, ‘+’, ‘T’ and
‘Z’. The correspondingwrite laser trajectories and the idealized images
of the symbols formed by the write laser spot are shown in Fig. 3b. Ten
sets of symbols were drawn using this procedure. Figure 3c shows the
exemplary readout waveforms.

In order to demonstrate the efficiency of our reservoir we mini-
mize the number of characteristics used for recognition by the readout
ANN. To attribute the information and statistical properties of the
readout signals, we utilize only three characteristics: the Shannon
entropy, h, the variance, σ2, and the skewness, μ (see Methods). Fig-
ure 3d presents the distributions of the chosen parameters in the
three-dimensional parameter space (h, σ2, μ). Each write laser trajec-
tory is shown by a different colour. The plot reveals the formation of
clouds corresponding to the specific symbols. The distribution of the
parameterswithin eachcloud is due to the uncertainty of the read laser
spot position, which is of ±200 nm along all the axes and exceeds the
spatial sensitivity of the readout (Fig. 2). As a result, each symbol shape
is randomly distorted (see Supplementary Fig. 2 for details) and, thus,
some clouds partially overlap (e.g. for the symbols ‘T’ and ‘Z’). Never-
theless, the clear distinction of the parameters’ clouds confirms the
reservoir efficiency infiltering and sorting the encoded “visual shapes”.

To produce a large set of randomly distorted “visual shapes” for
the follow training of the ANN, we use the technique of data aug-
mentation (mixing)41. We have assembled the corresponding “visual
shapes” from randomly selected “pieces” (i.e., the waveforms of the
respective discrete positions of the corresponding trajectories) from
the ten pre-measured sets (Methods). 2000 readout waveforms for
each symbol have been produced. The distributions of the chosen
statistical parameters for the augmented symbols are shown in Sup-
plementary Fig. 3. The randomized “visual shapes” form larger clouds
with more significant overlap, but remain well separated. To exclude
the artificial character of the parameters’ distinction, we have checked
that the waveforms, which do not correspond to the selected trajec-
tories but consist of the same number of discrete positions, do not
form separate clouds (see Supplementary Fig. 4).
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Since the reservoir demonstrates high selectivity in filtering
symbols, that are well separated in the parameter space, various
algorithms for the symbol classification can be realized. We have
chosen the conventional physical reservoir approach5,10 with training
the readouts. To accelerate the training process, we use a simple ANN
forming a feedforward Multi-Layered Perceptron with a back-
propagation algorithm42. The readout ANN, which is schematically
shown in the inset of Fig. 4a, consisted of only 11 nodes in three layers,
and the single output layer. As output, the ANN returns an encoded
integer to identify the letter present: 1 = ’L’, 2 = ’-’, 3 = ’O’, 4 = ’+’, 5 = ’T’,
and 6 = ’Z’. Before recognition, the ANN was trained with all six letters
during, in total, 2000 epochs with a learning rate of 0.001. The ANN
learning rate is the largest magnitude the parameters of the network
can change within one epoch. It and the other ANN hyperparameters
(the number of epochs, the early stopping patience, the random seed,
the number of learning layers, and the number of nodes in each of
those layers)were adjusted using a grid searchapproach to achieve the
fastest training, but their absolute values can be varied without
affecting the recognition. The evolution of the training and validation
errors during training epochs are shown in Fig. 4a by blue and red
colour, respectively. After ~400 epochs both training and validation
errors saturate at values around 0.003, implying an accuracy of 99.7%.
The recognitions of the individual symbols are summarized in the
confusion matrix in Fig. 4b. The matrix shows that the symbols ’L’,’-’,
and ’O’ are recognised with 100% accuracy. The symbol ‘+’ is recog-
nised in 84.5% cases, in 13.7% cases it is confused with the symbol ‘T’,
and with a probability 1.8% is recognised as the symbol ‘Z’. The symbol
‘T’ is recognized with a probability 83.6%, although in 4.2% of cases it
could be confused with the symbol ‘+’ and in 12.2% cases with the

symbol ‘Z’. Finally, the symbol ‘Z’ is recognised with 86.1% accuracy,
while it could be confused with the symbol ‘T’ with probability 13.6%,
and in one case this symbol was unclassified (reflected as symbol ‘Null’
in Fig. 4b). The main reason for confusion relates to the similarity in
coding of the symbols, seeMethods, and could apparently be resolved
by changing the coding protocol, i.e., the way in which the laser
“writes” a symbol on the device surface. For example, if we exclude
symbol ‘Z’ from the set of symbols, the ANN recognizes the remaining
symbols with 100% accuracy (see Supplementary Fig. 5). The random
waveforms, i.e. those not corresponding to the six selected “visual
shapes”, are randomly attributed to one of the shapes or not
recognized.

To verify the key role of the phonon-magnon interaction in the
reservoir functionality, we apply the above recognition procedure to
the readout signals passed through different band-stop filters (see
Supplemental Fig. 5). If the stopband of the filter was set to
15–20GHz, which excludes the signal components within the fre-
quency range corresponding to the firstW-band, the ANNwas unable
to reliably distinguish the symbols from the set. The recognition
becomes completely impossible if the stop band of the filter is
0–20GHz, which also suppresses the contribution of bulk and sur-
face phononmodes. However, cutting the frequencies above 20GHz
with preserving the main information-capable range (0–20GHz)
significantly reduces the recognition accuracy. It indicates the role of
high-frequency components of the readout waveforms such as the
high-order W-band harmonics, parametrically mixed first-order W-
modes and broadband noise, which could play a constructive role by
promoting mode mixing and enhance nonlinearity effects43. The
separation and visualization of the specific high-frequency
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variance, obtained from unfiltered magnon readouts for ten drawn trajectories for
each symbol.
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contributions and noise, however, are out of the scope of the pre-
sent study.

Discussion
Robustness, miniaturization, and energy costs
Despite the simplified sequential encoding procedure, the reservoir
demonstrates all the main properties required for efficient reservoir
computing. The high sensitivity of the information and statistical
characteristics of the generated readout to the relative position of the
write and read laser spots allows us to realize RCwithout an input ANN.
The high selectivity of the reservoir with respect to the superposition
of phonon wavepackets generated at different ‘write’ laser positions
allows recognition and classification of distorted and noisy “visual
shapes”. Despite unavoidable errors in the positions of the laser spots
(up to 5% of the largest linear size of the symbol) and in the mea-
surements performed on different days, the readout signals generated
by the reservoir are reliably recognized by an ANN, which evidences its
high robustness. The weak temperature dependences of the elastic
and magnetic parameters of the used materials around room
temperature44–46 makes the reservoir functionality also resistant to the
unavoidable temperature variations due to background heating.

Thedemonstrated reservoir functionality relies on the volatility of
the phonon wavepacket provided by the interference of guided pho-
non modes. The working principle resembles the prototype concept
with water waves in a bucket11 but is realized at much higher carrier
frequencies of ~10GHz and on a drastically reduced spatial scale. The
total area of theNG is 25 × 100 µm2, ofwhichonly 10 × 30 µm2 are used.
The area used for the symbol encoding is 3.5 × 6 µm2, which is com-
parable in size with that of a single pixel in the CMOS-sensor of a
modern digital camera. The readout spot diameter is below 1 µm and
the confirmed spatial resolution is ~100 nm. Such compactness is
achieved in a nanodevice fabricated by state-of-the-art technology,
whichenables the implementation of the proposed reservoir on a chip.
Moreover, the compactness is combined with large operational dis-
tances. In ambient conditions at room temperature, the information
encoded into a multimode phonon wavepacket can be delivered on
distances of tens of microns with protection from scattering at the
surface and dephasing28. This facilitates a complex chip architecture
and multithread reservoir computing with high information density.

The demonstrated magnon-phonon information processing also
has very low energy costs. The phonon wavepackets are generated by
the ‘write’ laser with 50mWaveraged power at 80MHz repetition rate.
The transmission of optical excitation to coherent phonons guided

along the surface has low energy efficiency, because a vast amount of
the absorbed optical energy is converted to non-coherent phonons
and bulk phonon modes escaping to the substrate. Each optical pulse
with an energy of 6 × 10−10 J is converted to a phonon wavepacket
carrying only ~10−16 J (see Methods for the details of estimations). This
value is 5-orders of magnitude smaller than a single neural spike in the
human brain, which estimated energy is ~10 pJ8. The averaged acoustic
power involved into the signal processing is just about 10 nW. Due to
these extremely lownumbers, the signals are averaged over 1010 ‘write’
pulses/phonon wavepackets at every discrete point of the selected
trajectory to achieve reasonable signal-to-noise ratio. It takes about
2min for every step of the “visual shape” drawing and, thus, limits the
operational speed. However, the total energy costs remain extremely
low: the single symbol drawing costs about 5 µJ and the total acoustic
energy, which would be spent for the drawing and processing of the
symbols in the whole training process, is less than 5mJ. For compar-
ison, it is two-order of magnitude less than the acoustics energy
transmitted by a RF acoustic filter during 1-s operation of a modern
wireless communication device47. This estimated value does not
include the energy costs of the reservoir peripherals, which, in our
experiments, is based on non-optimized research laboratory
equipment.

Perspectives
The reservoir functionality in our experiment has been demonstrated
by recognition of pseudo-visual information, but the proposed reser-
voir can process any type of signals converted to guided multimode
phonon wavepackets. Thus, further development of the phonon-
magnon reservoir shouldexploit anadvancement of thewrite and read
methods. One prospective direction here would be to implement the
optical input as a two-dimensional, spatially distributed profile of laser
intensity, enabling “instantaneous imprinting” of the information on
the surface. This approach requires larger operational area than the
sub-wavelength “drawing” used in our study but can be combinedwith
parallel spatially distributed reading, which will improve the opera-
tional speed. Semiconductor mode-locked lasers whose efficiency in
generation of coherent hypersonic phonon wavepackets has been
recently proven48 can provide the required miniaturisation to such an
approach.

Another direction is real-time operation with changing informa-
tion patterns. Nowadays reservoir computing is considered as one of
the bestmachine learning frameworks for temporal or sequential data
processing49. The ability of the presented device to operate in the GHz
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frequency range promises high speed of neuromorphic operations. It
requires, however, input methods with significantly higher energy
efficiency. We consider a piezoelectric technique of generation of
acoustic waves to be the most prospective in this context. Modern RF
acoustic filters, which operate in billions of wireless communication
devices, possess high (up to 90%) efficiency of electric to acoustic
signal conversion47. The carrier frequency is currently limited by sev-
eral GHz but has to be extended due to the requirements of the next
(6 G) communication standards. Prototype devices already demon-
strate an energy conversion efficiency of several per cent at fre-
quencies above 10GHz50,51. It will allow real-time operations using the
proposed reservoir architecture keeping the total energy costs very
low. Moreover, a two-order of magnitude increase of the strain
amplitudes will drastically enhance the contribution of magnon-
phononnonlinearity39, which ismanifestedonly indirectly in our study.

Recent proposals indicate that wave phenomena in the brain
could constitute alternative information processing, complementary
to the commonly accepted mechanism of learning via developing
connections between neurons52. For example, it has been shown that
the brain can achieve selectivity function as well as stimulus detection
via interference of neural waves, even if the tissue is fixed and does not
accumulate information via learning40. In this case, the brain tissue
operates as wave reservoir supporting the interaction of waves with
two components—excitatory and inhibitory, reminiscent of the inter-
acting phonons and magnons in our reservoir. With this mechanism,
information processing in the visual cortex is realised via excitatory-
inhibitory wave interference or mixing, even further deepening the
analogy with the proposed on-chip phonon-magnon reservoir. More
generally, cognitive functions could be understood in terms of spatio-
temporal pattern formation53. Therefore, the role of standing and
travelling waves in brain activities attracts significant attention54. The
understanding of neuromorphic functions in terms of waves interac-
tion become increasingly more important with development of
quantum AI and quantum reservoir computing55–58, where waves phe-
nomena play the prime role. All this indicates potential and possibility
for a new type of neuromorphic technology—wavetronics— where
elements utilise travelling and standing waves for realisation of neu-
romorphic functions. Our results contribute to the development of
this novel technology.

Summary
We have designed and fabricated a hybrid semiconductor–
ferromagnetic nanodevice for reservoir computing. The reservoir has
optical input and output and encodes the input signals intomultimode
phonon wavepackets propagating in a semiconductor phonon wave-
guide. The neuromorphic function is realised through the interaction
of the multimode input-sensitive phonon wavepackets with multiple
magnon modes, which provides a high separability of the reservoir.
The efficiency of the reservoir is demonstrated by reliable recognition
of symbols “drawn”by the laser on the nanodevice surface in an area of
several square microns, which is comparable with the size of the write
laser spot. Our work paves the way for developing novel ultra-compact
wave-based neuromorphic architectures on chips.

Methods
Device production
The examined nanodevice was epitaxially grown on a commercial
GaAs substrate [(100)-semi-insulating GaAs]. First, the phonon wave-
guide consisting of 10 pairs of AlAs/GaAs layers of 51-nm and 72-nm
thickness, respectively, was fabricated by molecular beam epitaxy.
Then, the ferromagnetic Fe0.81Ga0.19 layer was deposited by magne-
tron sputtering. The nanogratings were fabricated through focused
ion beammilling (Raith VELION) with 100-nmwide grooves and ridges
over an area of 25 µm× 100 µm. To ensure high beamresolution during
the patterning of the gratings a low Ga+ beam current of 22 pA was

applied at 35 keV beamenergy. Themilling dosewas set to 0.3 nC/µm2,
resulting in the groove depth of 25 nm.

Optical writing and reading
The schemeof signal encoding and read-out exploits twomode-locked
Erbium-doped ring fibre laser oscillators (TOPTICA FemtoFiber Ultra
1050 and FemtoFiber Ultra 780). The lasers generate pulses of 150-fs
duration with a repetition rate of 80MHz at wavelengths of 1050nm
(write) and 780nm (read). The write beam was focused by a micro-
scope objective (×20 magnification; N.A. = 0.4) to the backside of the
ferromagnetic layer, through the GaAs substrate and GaAs/AlAs pho-
non waveguide, which are transparent at the wavelength of 1050nm.
The focused pump spot had a Gaussian intensity distribution
~exp � r2

2R2

� �
, where r is the distance from the centre of the spot and

R = 1 µm is the spot radius at the 1=
ffiffiffi
e

p
level. The maximal used pulsed

excitation density was 2mJ/cm2. The linearly polarized readout beam
was focused by another microscope objective (100× magnification;
N.A. = 0.8) to the front side of the nanodevice. The focused readout
spot also had a Gaussian distribution with R =0.3 µm and an energy
density of 1mJ/cm2.Measurement of the read-out signals was based on
the polar magneto-optical Kerr effect, i.e., the rotation of the readout
pulse polarizationplaneby an angle proportional to thenormal (z-axis)
projection of the net magnetization. The oscillations in the Kerr rota-
tion signal reflect the precession of the magnetization59, which is a
coherent superposition of the magnon modes driven by the phonon
wavepacket60. The polarization rotation was detected in a differential
scheme by a balanced photoreceiver with a 10-MHz bandwidth. Time
resolution was achieved employing an asynchronous optical sampling
(ASOPS) technique61. The write and read oscillators were locked with a
frequency offset of 1600Hz, which changed gradually the delay
between the write and read pulses. In combination with the 80-MHz
repetition rate and 10-MHz photoreceiver bandwidth, it allows mea-
suring time-resolved signals in a time window of 12.5 ns with a time
resolution of ~1 ps. The relative position of the write and read spots is
controlled by two independent piezo-translators with a precision of
0.05μm. The distance X0 ≥ 20 µm between the write and read spots
was chosen to minimize the contribution of the first-order surface
phonon modes, which are intensively scattered by the patterned
surface28. For visualization of the laser spots and control of their
relative positions and focusing, a magnified (×75) image of the nano-
device surface was focused on crossed micrometre slits mounted at
the intermediate focal plane between the nanodevice and a photo-
receiver, where it was captured by a microscope (×6.5 magnification)
with CMOS camera. To show more explicitly the volatility of the
readout waveform, the readout signals presented in Figs. 2d, f, g, and
3c were passed through a 15–20GHz band pass filter, which eliminates
the broadband noise.

Sequential drawing of the visual shapes
We used sequential “drawing” of visual shapes by step-by-step change
of the relative position of the write and read laser spots in accordance
with the selected trajectory as illustrated in Fig. 3. In the XY coordinate
frame centred at the apex of the readout spot as shown in Fig. 2, the
relative position of the write spot form a 3×3 coordinate matrix as
shown in Fig. 3a. The positioning of the write and read spots for each
point of the selected trajectory was automatized with the following
algorithm: (i) randomized positioning of the read spot on the device
surface (ii) adjusting the focusing of the read beam, (iii) adjusting the
focusingof thewrite beamand the spatial overlapof thewrite and read
spots, (iv) shift of the read spot to the required position. The experi-
mentally estimated error of the automized positioning was 0.2 µm for
all three-coordinate axis. The signal in every point of every trajectory
was averaged over 10,000 measurements. Each trajectory was mea-
sured 20 times with averaging of the resulting waveform. 10 sets with
six selected trajectories in each were measured.
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Drawing of randomized visual shapes
For augmentation of the selected visual shapes with randomized dis-
tortion for the following recognition we measured 10 sets with nine
signals in each set. Each of the nine signals corresponds to the specific
relative positions of the centres of the write and read spots as descri-
bed above. The algorithm of the automated positioning of the write
and read spots was the same as for the sequential drawing with the
same positioning errors. The waveform for each point was averaged
over 200,000 measurements. The 10 sets were measured on three
experimental days (4 sets in the first day, and 3 sets each on the second
and third days) with a complete restart of the experimental setup. The
waveforms for recognition were obtained by random summation of
the corresponding signals fromall 10 sets. The recognized shapeswere
obtained by the following normalized summations:

00L00 = ðM1,1 +M2,1 +M3,1 +M3,2 +M3,3Þ=5;
00 �00 = ðM2,1 +M2,2 +M2,3Þ=3
00O00 = ðM1,1 +M1,2 +M1,3 +M2,1 +M2,3 +M3,1 +M3,2 +M3,3Þ=8;
00 + 00 = ðM1,2 +M2,1 +M2,2 +M2,3 +M3,2Þ=5;
00T00 = ðM1,1 +M1,2 +M1,3 +M2,2 +M3,2Þ=5;
00Z00 = ðM1,1 +M1,2 +M1,3 +M2,2 +M3,1 +M3,2 +M3,3Þ=7:

ð1Þ

2000waveforms for each symbolwere randomly generated (the
randomized set for “-”, which consists of only 1000 unique wave-
forms, included 1000 additional randomly repeated waveforms).
Only the integrated waveforms were processed. The separate
waveforms Mi,jðtÞ measured in the corresponding positions of the
write laser beam were neither processed nor used to support
the following recognition.

Waveform characterization
For characterisation of the readout signals we use the following
quantities: the Shannon entropy, h, the variance, σ2, and the skewness,
μ. The signals were processed as measured, without filtering and
subtracting the dc-background of the photoreceiver. To calculate h,
we split the interval between the minimal and maximal voltage of the
readout signals (−4.02mV and −3.05mV, respectively) into J = 105 bins,
and then apply the formula

h= �
XJ

j = 1

pjlnpj, ð2Þ

where pj is the probability that the readout voltage has a value within
the jth bin. For calculating the statistical characteristics, we utilised the
formulas below:

σ2 =
1
N

XN

i = 1

ðVi � �V Þ2, ð3Þ

�V =
1
N

XN

i= 1

Vi, ð4Þ

μ=
1

Nσ3

XN

i= 1

ðVi � �V Þ3, ð5Þ

whereVi is the value of the discretised in time readout voltage at the ith

time step, and N is the total number of time steps.

Artificial neural network
For processing the properties of the signals to classify the letters from
the device, we employ a simple Artificial Neural Network (ANN), illu-
strated in the inset of Fig. 4a. The network is made of the input layer

(where the properties are fed into the network) with 3 nodes (one for
each property of the signal), then we have the first learning layermade
up of 3 nodes, the second learning layer with 5 nodes, and the final
learning layer of 3 nodes, with one final output layer. The output layer
gives the classification of the input signal. Each of our layers is con-
nected with the Rectified Linear Unit (ReLU) activation function, apart
from the final learning layer connected to the output layer, which is a
linear activation function. The network is coded within the Python
module PyTorch62. We use the Adam optimiser63 to train the network,
with aRootMeanSquared Error (RMSE) loss. Thenetwork optimises its
weights and biases by backpropagating the error through its connec-
tions and adjusting the values of the network’s parameters. The
adjustments are made on the order of the learning rate, here taken to
be 0.001. We allow the network to train for 2000 epochs. However,
employing an early stopping procedure, we stop the network from
overfitting the training dataset. This is further achieved by splitting the
dataset of letters into non-overlapping training, validating, and testing
sets, with a standard 60, 20, 20% split64.

Numerical modelling
The S- and W-modes’ profiles and the excitation and propagation of
phonon wavepackets were modelled using COMSOL Multiphysics®
software. The spatial profiles and dispersions of the S-modes were
obtained by solution of the Landau-Lifshitz and Maxwell equations in
the frequency domain36. The following parameters of Fe0.81Ga0.19 were
used for the calculations: saturation magnetization, μ0Ms = 1.76 T,
exchange stiffness, D = 210−17 T m2, cubic and uniaxial anisotropy
coefficients of 23mTand 11mT, respectively. For the calculation of the
W-modes spatial profiles and spatial-temporal evolution28, we used the
following stiffness tensor components,Ckl , and themass density,ρ: for
Fe0.81Ga0.19 C11 = 209 GPa, C12 = 156 GPa, C44 = 122 GPa, ρ= 7800 kg/m3;
for GaAs C11 = 119 GPa, C12 = 53:8 GPa, C44 = 59:5 GPa, ρ = 5316 kg/m3;
for AlAs C11 = 119:9 GPa, C12 = 57:5 GPa, C44 = 56:6 GPa, ρ=3760 kg/m3.
We used a model nanograting structure with 150 periods (i.e. 30 µm
long in x direction). The structurewas limited in z direction by the size
of 1.9 µm (500nm below the phonon waveguide), and the low-
reflecting boundary condition was applied to the bottom boundary
to minimize unwanted reflections. Free boundary conditions were
applied to the top and side boundaries of the structure. The structure
was considered uniform in y direction. The excitation of the structure
by the optical pulse creates thermal stresswhichwas simulated using a
two-temperature model for the lattice temperatures of the ferromag-
netic cap and phononwaveguide65. Then, the calculated thermal stress
was used as the input data for the acoustic modelling. The calculations
were carried out in the time domain up to 6 ns. The results of the
simulation are presented in the Supplemental Video and in Fig. 2. The
energy of a single W-mode wavepacket was estimated as
U = 1

2 v c11
� �

η2
� �

≈5 � 10�17 J, where v =πR2h is the total volume of the
wavepacket (R= 1 µm is the write laser spot radius and h = 1:3 µm is the
phonon waveguide thickness, c11

� �
= 119:5GPa is the averaged stiffness

constant of the GaAs/AlAs waveguide and η2
� �

≈2× 10�10 is the aver-
aged square of the strain amplitude.

Data availability
The raw and processed experimental data generated in this study have
been deposited in the Zenodo database under https://doi.org/10.5281/
zenodo.8411702.

Code availability
The code used for the ANN training is available in the Zenododatabase
under https://doi.org/10.5281/zenodo.10080655.
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