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Abstract

Many real life applications lead to optimal control problems whose control is given
in form of a finite set of switches. These switches can be operated within a given
continuous time horizon and admit only a finite number of states. Examples include
gear-switches in automotive engineering or valves and compressors in gas networks.
Solving optimal control problems with discrete control variables is challenging, and
this thesis aims at developing a branch-and-bound algorithm to globally solve such
problems. We here focus on parabolic control problems with binary switches that
have only finitely many switching points and possibly need to satisfy further combi-
natorial constraints.

When no restrictions on the binary switches are considered, the straightforward
continuous relaxations of the binary problems are closely related to the original prob-
lems, since any relaxed control can be approximated arbitrarily well by a sequence of
binary switches using an increasing number of switchings. However, solving these re-
laxed problems and rounding the relaxed solution to produce a binary control, often
fails when considering natural combinatorial switching constraints, such as, e.g., a
minimum time span between two switchings of the same switch, or an upper bound on
the total number of switchings. These constraints are typically treated in a heuristic
postprocessing.

In contrast, the combinatorial switching constraints are at the heart of our pro-
posed branch-and-bound algorithm to globally solve the problems. The natural branch-
ing strategy, which fixes the value of the switches in finitely many points, combined
with the bounded variation of the switches, guarantees that the non-fixed part of the
switching pattern vanishes. Moreover, tight dual bounds are computed by completely
describing the convex hull of feasible controls in function space. This description is
built by cutting planes lifted from finite-dimensional projections of the set of feasible
switches. The convexified problems can be solved by means of outer approximation.
In this way, we compute safe dual bounds for the binary control problems, as long
as we do not take the discretization error into account.

To solve the problems in function space, we estimate the discretization error con-
tained in the bounds. An adaptive refinement strategy is then specified to handle
situations where the discretization-independent bound does not exclude that a so-
lution of desired quality might exist in the current branch. Our branch-and-bound
returns an ε-optimal solution in finite time for any given tolerance ε > 0.

Computational results illustrate the strength of our dual bounds and the potential
of the proposed branch-and-bound algorithm.
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Zusammenfassung

Viele Anwendungen im realen Leben führen zu Optimalsteuerungsproblemen, bei
denen die Steuerung in Form einer endlichen Menge von Schaltern gegeben ist. Diese
Schalter können innerhalb eines vorgegebenen kontinuierlichen Zeithorizontes betä-
tigt werden und lassen nur eine endliche Anzahl von Zuständen zu. Beispiele sind
das Schalten von Gängen in der Fahrzeugtechnik oder das Öffnen und Schließen von
Ventilen sowie das An- und Ausschalten von Kompressoren in Gasnetzwerken. Opti-
malsteuerungsprobleme mit diskreten Steuervariablen sind oft schwer zu lösen. Das
Ziel dieser Arbeit besteht daher darin, einen Branch-und-Bound Algorithmus zu ent-
wickeln, um solche Probleme global zu lösen. Wir konzentrieren uns hierbei auf den
Fall parabolischer Optimalsteuerungsprobleme mit binären Schaltern als Steuerva-
riablen, die nur endlich viele Schaltzeitpunkte haben und möglicherweise zusätzliche
kombinatorische Beschränkungen erfüllen müssen.

Solange keine Einschränkungen an die Schalter berücksichtigt werden müssen, sind
die stetigen Relaxierungen der Probleme eng mit den ursprünglichen binären Pro-
blemen verbunden, da sich jede relaxierte Lösung beliebig gut durch binäre Schalter
mit einer wachsenden Anzahl an Schaltungen approximieren lässt. Das Lösen dieser
relaxierten Probleme und das Runden der relaxierten Lösung zur Erzeugung einer
binären Steuerung scheitern jedoch oft, wenn natürliche kombinatorische Schaltbe-
schränkungen berücksichtigt werden, wie z.B. eine Mindestzeitspanne zwischen zwei
Schaltungen desselben Schalters oder eine Obergrenze für die Gesamtanzahl an Schal-
tungen. Diese Beschränkungen werden in der Regel in einem heuristischen Postpro-
cessing behandelt.

Im Gegensatz dazu bilden die kombinatorischen Schaltbeschränkungen den Kern
unseres Branch-und-Bound Algorithmus, um die Probleme global zu lösen. Die natür-
liche Verzweigungsstrategie, die den Zustand der Schalter an endlich vielen Punkten
festlegt, garantiert in Verbindung mit der begrenzten Variation der Schalter, dass
der nicht festgelegte Teil des Schaltmusters verschwindet. Darüber hinaus werden
starke duale Schranken berechnet, indem die konvexe Hülle der zulässigen Schalt-
muster im Funktionenraum vollständig beschrieben wird. Diese Beschreibung wird
durch Schnittebenen gebildet, die aus endlich-dimensionalen Projektionen der zuläs-
sigen Schaltmuster abgleitet werden. Die konvexifizierten Probleme lassen sich durch
einen äußeren Approximationsalgorithmus lösen. Auf diese Weise berechnen wir si-
chere duale Schranken für die binären Optimalsteuerungsprobleme, solange wir den
Diskretisierungsfehler nicht berücksichtigen.

Um die Probleme letztendlich im Funktionenraum zu lösen, schätzen wir den in
den Schranken enthaltenen Diskretisierungsfehler ab. Eine adaptive Verfeinerungs-
strategie wird dann festgelegt, um Situationen zu bewältigen, in denen die diskreti-
sierungsunabhängige Schranke nicht ausschließt, dass eine Lösung der gewünschten
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Qualität im aktuellen Zweig existieren könnte. Unser Branch-und-Bound Algorith-
mus liefert eine ε-optimale Lösung in endlicher Zeit für jede gegebene Toleranz ε > 0.

Numerische Ergebnisse veranschaulichen die Qualität unserer dualen Schranken
und das Potenzial des vorgeschlagenen Branch-und-Bound Algorithmus.
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Chapter 1

Introduction

In our everyday lives, we are confronted with situations where we have to make the
best possible decision to achieve a desired outcome, e.g., when we want to take the
fastest way to work or when we are scheduling our appointments. Mathematical
optimization deals with finding the best solution from a set of available decisions
while minimizing or maximizing a specific objective. Thus, optimization problems
arise in various fields of application, from biology and chemistry to engineering and
economics. It can be divided into numerous subfields according to the type of decision
variables, constraints and objective functions involved.

A widely studied class of problems are integer programming problems, where
only finitely many decisions are available, that can be modeled by discrete variables.
Frequently, both the objective function and the constraints are supposed to be linear.
The problem of finding the fastest way to work or scheduling appointments leads to
an integer programming problem. This kind of problems are challenging in practice,
mainly due to the integrality constraints on the variables that cause the non-convexity
of such problems.

Another important optimization discipline is the optimization of dynamic systems,
known as optimal control. Dynamic systems are systems that evolve over time and
are influenced by control inputs and the system’s dynamics. The future states of
the system are determined by an evolution rule. This evolution rule can often be
modeled mathematically by a system of ordinary differential equations (ODEs) or
partial differential equations (PDEs), and prescribes the system’s behavior dependent
on the current system states and the control inputs. For instance, the flow of gas
in a pipe can be modeled by a system of PDEs. The gas pressure and flow rate
is influenced, e.g., by the gravitation constant, the speed of sound in the pipe, as
well as the diameter of the pipe. The gas flow can be regulated by compressors to
increase the pressure of the gas by reducing its volume, or by valves to open, close
or partially obstruct passageways.
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Chapter 1. Introduction

The combination of the two aforementioned disciplines, where a dynamic system
governed by ODEs or PDEs can be run in a finite number of different operation
modes {v1, . . . , vn} ⊆ Z, known as mixed-integer control, became a hot research
topic in the last decade. The different system modes are usually expressed by a
finite set {u1, . . . , un} ⊆ L∞(0, T ) of binary switches which can be operated within a
given continuous time horizon. This reformulation of mixed-integer optimal control
problems (MIOCPs) is not unique, but there exist several possibilities, such as,
e.g., the partial outer convexification [Sag05] or the formulation with vanishing and
complementarity constraints [Ley06]. We refer to [Jun14] and the references therein to
get an overview of these methods. For example, the above problem of regularizing the
gas flow in a pipe by compressors or valves leads to a MIOCP and has been addressed,
e.g., in [FGMM09, Han20]. The variety of applications is enormous and ranges from
the shifting of gear-switches in automotive engineering [Ger05, KSBS10, SBFS13],
chemical engineering [BRB08, BCKP21] to renewable energy and heating [KH18,
BBH+20]. MIOCPs are intricate due to their combinatorial, nonlinear, and dynamic
complexity. Consequently, many numerical solution methods have been discussed in
the literature.

One natural approach is to discretize the control and, if desired the state in time
and space by means of multiple shooting [BP84] or collocation [Bet10], which typi-
cally leads to a large-scale mixed-integer nonlinear programming problem (MINLP)
that can be addressed by standard techniques; see e.g., [LL12] or [BKL+13] for sur-
veys on algorithms for MINLPs. For instance, [Ger05] and [vSG00] used this direct
method, based on the first-discretize-then-optimize paradigm. However, the main
drawback of the method is that the size of the arising MINLPs easily becomes too
large to solve them to proven optimality, especially for optimal control problems
governed by PDEs [GPRS22, SHL+21].

As a consequence, approximation methods have been developed to quickly com-
pute feasible solutions. The basic idea is to first replace the set of discrete control
values {v1, . . . , vn} by its convex hull, which is equivalent to relaxing the binarity
constraints of the switches u1, . . . , un, and then to round the relaxed solution of
the convexified MIOCP. The distance of the rounded control to the relaxed control
can be arbitrarily small, depending on the mesh-size of the discretization. Note
that the convexified MIOCP can be solved by direct methods. Prominent examples
are the Sum-Up Rounding strategy [SBD12, KLM20] and the Next Force Rounding
strategy [Jun14], which have been developed for MIOCPs governed by ODEs. Note
that the Sum-Up Rounding strategy was also generalized to PDE-constrained prob-
lems [HS13]. Nevertheless, combinatorial constraints may still be violated [Man19,
Sect. 5.4] and the methods may not perform well in practice [MKL17, Example 3.2].
Thus, the Combinatorial Integral Approximation (CIA) [Sag05] minimizes the inte-
grality error by tracking the average of the relaxed solution over a given rounding
grid by a piecewise constant integer-valued control and the corresponding problem
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can be solved by a tailored branch-and-bound algorithm [JRS15, SJK11]. Again,
the approach can be applied to PDE-constrained problems [HKM+19]. The (un-
desired) chattering behavior of the rounded control can either be reduced by re-
stricting the variation [SZ21] or by applying switching cost aware rounding algo-
rithms [BHKM20, BK20]. In addition, [VLM22, HLS23] considered descent al-
gorithms that produce integer-valued controls without solving convex relaxations,
which are however based on the same principle as CIA, as shown in [MHK+23].

Other approaches improve the optimal solution for a given discretization by pre-
serving the switching structure of the solution, but changing the exact switching
times by a continuous control function that scales the length of minor time inter-
vals [Ger06, ROBL17]. Instead of this implicit optimization of the switching times,
one may directly include the fixed number of transition times as decision variables
into the MIOCP and solving the corresponding finite-dimensional non-convex prob-
lems by gradient descent techniques [SOBG16, EWA06] or by second order meth-
ods [JM11, SOBG17]. PDE-constrained optimal control problems can be addressed
by the concept of switching time optimization as well [RH16]. A bilevel optimiza-
tion approach to optimize the transition times at an upper level has been proposed
by [DM19].

Penalization methods are widely-used for optimal control problems governed by
PDEs to impose switching constraints by additional penalty terms in the objective;
see e.g., [CIK16, CRKB16, CRK17] and the reference therein. By means of the
bi-conjugate associated with the penalty term, the usually non-convex penalized
problems are convexified. However, only under additional structural assumptions
on the unknown optimal solution of the convexified problem, the desired switching
structure can be guaranteed. Therefore, a multi-bang approach might be favorable
for the case of a switching between multiple constant control variables. It is well
known, see e.g., [Trö79, DH12, CWW18, TW18], that control problems subject to
box constraints may show a bang-bang behavior in the absence of a Tikhonov-type
regularization term. This bang-bang behavior is, however, not guaranteed in general,
but can be promoted by L0-penalty terms or suitable indicator functionals in the
objective, as done by [CK14, CIK16] and [CTW18]. The authors here employ the bi-
conjugate functional to convexify the resulting problems and to make them amenable
for algorithms. Again, the multi-bang structure of the optimal solutions of the
convexified problems can only be ensured under additional assumptions that cannot
be verified a priori. In [CKK18] the L0-penalty is enriched by the BV-seminorm and
L0-penalization techniques without regularization or convexification are theoretically
addressed in [CW20] and in [Wac19] from an algorithmic point of view. To the best
of our knowledge, additional combinatorial constraints on the switching structure
have not yet been tackled by the penalization methods.

In summary, the prevailing solution methods for MIOCPs cannot solve the prob-
lems to global optimality for different reasons. The switching time optimization as

3



Chapter 1. Introduction

well as the penalization approaches in general lead to non-convex problems with
potentially multiple local minima and a convexifcation of the arising problems may
destroy the switching structure of the optimal solution. In contrast, the CIA ap-
proach primarily focuses on the approximation of the relaxed solution by integer
values, which does not lead to the optimal solution of the given MIOCP in general.

Thesis aims and contribution. The main objective of this thesis is to design
an effective branch-and-bound algorithm to solve PDE-constrained optimal control
problems with dynamic switches and combinatorial switching constraints to global
optimality. For this purpose, we consider, as a prototypical problem, the following
parabolic binary optimal control problem with switching constraints:

(P)



min J(y, u) = 1
2 ‖y − yd‖

2
L2(Q) + α

2 ‖u−
1
2‖

2
L2(0,T ;Rn)

s.t. ∂ty(t, x)−∆y(t, x) =

n∑
j=1

uj(t)ψj(x) in Q := Ω× (0, T ) ,

y(t, x) = 0 on Γ := ∂Ω× (0, T ) ,

y(0, x) = y0(x) in Ω ,

and u ∈ D .

The precise assumptions on the problem data can be found in Section 4.1. The choice
of the Tikhonov regularization term in the objective is motivated by the following
reasoning: the parameter α ≥ 0 does not have any impact on the optimal solution
of (P), since we consider binary control variables u, which satisfy u ∈ {0, 1}n a.e.
in (0, T ), and thus, the Tikhonov term is a constant. The particular challenge of our
problem are the combinatorial switching constraints modeled by the set

D ⊂
{
u ∈ BV (0, T ;Rn) : u(t) ∈ {0, 1}n f.a.a. t ∈ (0, T )

}
of feasible switching patterns. Our aim is to cover a wide range of constraints. For
instance, it may be reasonable to bound the total number of switchings of the switches
from above or to bound the time interval between two switchings of the same switch
from below because of technical limitations. The latter kind of restriction is known
as dwell time constraints in the optimal control community. Moreover, it may be
conceivable that certain switches are not allowed to be used (or switched on) at the
same time.

To find tight convex relaxations for (P) is an important step within the design
of a branch-and-bound algorithm to globally solve the problem, as they provide
dual bounds on the objective value, or their solution can be used for heuristics to
construct good feasible solutions, i.e., to find good primal bounds. For instance, as
mentioned above, some methods for MIOCPs employ convexifications accompanied
by subsequent rounding strategies that approximate the relaxed solution by integer
values on the discretized time grid; see e.g., [Sag05, SBD12, HS13, Jun14, MKL17,
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Man19, KLM20, SZ21]. These methods mostly use the continuous relaxation of the
switching constraints D, which is obtained by replacing the integrality constraints on
the control variables. The continuous relaxation in general does not lead to the closed
convex hull of D in function space, i.e., does not provide the tightest dual bound
given by convex relaxation, as we will show in Counterexample 4.11. However, these
approaches use the continuous relaxation since the number of necessary half spaces
to describe the convex hull of the discretized control variables depends heavily on
the discretization, as shown by [SJK11]. A deeper investigation of the discretized
feasible points may not be beneficial for the approaches, as reported by [JRS15].

In contrast, the core of our algorithm will be the computation of tight dual bounds
for (P) based on a complete description of the convex hull of D in function space.
For that, we will show in general how certain convex constraints can be obtained
in function space by means of cutting planes derived from finite-dimensional projec-
tions; see Section 3.2.1. We will then later transfer the results to the convex hull
of D; see Section 4.3. Moreover, we will solve the convexified problems by an outer
approximation algorithm, so that in each iteration of the latter algorithm a valid dual
bound for (P) will be obtained. The iterates of the outer approximation algorithm
will converge to the global optimal solutions of the convex problems under certain
additional assumptions on the finite-dimensional projections; see Section 3.2.2.

The overall branch-and-bound algorithm will implicitly approximate the switching
structure of the optimal control without any predetermined discretization. This
means that in the limit the switching points of the solution will not be restricted
to the nodes associated with a given discretization of (P), in contrast e.g., to the
tailored branch-and-bound algorithms in [SJK11, JRS15] for the CIA problem. To
numerically compute dual and primal bounds, however, one needs to discretize the
problems generated by the branch-and-bound scheme. The main feature of our
approach will thus be to adaptively discretize the problems, as long as it is necessary,
and to start with a coarse discretization since no information about the switching
structure is previously known; see Section 4.5.

Outline. The next chapter contains basic notation, concepts, and results from func-
tional analysis and convex optimization in Banach spaces. Furthermore, prevailing
solution approaches for convex integer programming problems in finite dimension
are presented. In Chapter 3, we devise an outer description of convex sets in func-
tion space by means of cutting planes lifted from finite-dimensional projections and
develop an outer approximation algorithm to solve problems with convex control
constraints. The main contribution of the thesis is the design of a branch-and-bound
algorithm in Chapter 4 for globally solving parabolic optimal control problems with
binary switches that have bounded variation and possibly need to satisfy further
combinatorial constraints. Chapter 5 is dedicated to investigate the projection sets
of the convex hulls of practically relevant combinatorial switching constraints. Nu-
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Chapter 1. Introduction

merical results for the outer approximation and the branch-and-bound algorithm are
presented in Chapter 6. Chapter 7 concludes the thesis.

Partial Publications. Several parts of the research results presented in this thesis
have already been published in collaboration with Christoph Buchheim and Christian
Meyer in [BGM22a, BGM22b, BGM24]. Additional information is provided at the
beginning of each chapter.
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Chapter 2

Preliminaries

This thesis is concerned with the development of a global solution strategy for opti-
mal control problems, whose control is given by a finite set of binary switches and
needs to satisfy certain combinatorial constraints. We thus need some basic nota-
tion and function spaces from functional analysis, which we present in Section 2.1.
Additionally, we specify in Section 2.2 the precise space of binary controls used in
our problem (P). Section 2.3 presents some fundamental concepts and results for
optimization problems in Banach spaces. Finally, Section 2.4 is devoted to recapitu-
lating solution approaches for finite-dimensional convex integer programming prob-
lems, whose elementary ideas we will use to design global solvers for the problems
addressed in this thesis.

2.1 Basic notation and function spaces

In the following, we introduce some basic notation and recall the definitions of certain
function spaces from functional analysis which will be used throughout the whole
thesis. For a detailed introduction to the topics, we exemplarily refer to [Alt16,
Yos12, Bre11]. Further information about Sobolev spaces can be found in [AF03].

For a normed vector space V we denote its norm by ‖ · ‖V . We write vk → v

in V for k → ∞ if {vk}k∈N converges strongly to v in V , i.e., if ‖vk − v‖V → 0 for
k →∞ holds. The normed space V is a Banach space if every Cauchy sequence in V
converges. A Banach space V whose norm is induced by a scalar product (·, ·)V , i.e.,
‖ · ‖V =

√
(·, ·)V , is a Hilbert space. For normed spaces V and W , we denote the

space of all linear and continuous functions from V to W by L(V,W ). Note that a
linear function A : V →W is continuous if and only if it is bounded, i.e., if and only
if ‖Av‖W ≤ c ‖v‖V holds for some constant c > 0. If V is a subset of W , then V is
embedded in W , denoted by V ↪→ W , if the identity operator I : V 3 v 7→ v ∈ W is
continuous, i.e., I ∈ L(V,W ). We write V ↪→c W if the embedding is compact, i.e.,

7



Chapter 2. Preliminaries

for any bounded sequence {vk}k∈N in V we find a strongly converging subsequence
of {Ivk}k∈N in W .

The dual space of V is denoted by V ∗ := L(V,R) and equipped with the norm
‖v′‖V ∗ := supv∈V : ‖v‖V =1 v

′(v) it becomes a Banach space. For the dual pairing of
v′ ∈ V ∗ and v ∈ V , we use 〈v′, v〉V ∗,V := v′(v). For a linear operator A ∈ L(V,W ),
the adjoint operator A∗ : W ∗ → V ∗ is defined by 〈A∗w′, v〉V ∗,V = 〈w′, Av〉W ∗,W for
v ∈ V and w′ ∈ W ∗. Moreover, thanks to the dual space, we can introduce the
notion of weak convergence in V : {vk}k∈N converges weakly to v in V for k →∞ if
〈v′, vk − v〉V ∗,V = 0 for k → ∞ holds for all v′ ∈ V ∗. In this case, we write vk ⇀ v

in V for k → ∞. The bidual V ∗∗ is the dual of V ∗ and the canonical injection
J : V → V ∗∗, defined through 〈Jv, v′〉V ∗∗,V ∗ = 〈v′, v〉V ∗,V for all v ∈ V and v′ ∈ V ∗,
is linear and an isometry, i.e., ‖Jv‖V ∗∗ = ‖v‖V . Note that J is automatically injective
as a linear isometry, since for v1, v2 ∈ V with v1 6= v2 we have

‖Jv1 − Jv2‖V ∗∗ = ‖J(v1 − v2)‖V ∗∗ = ‖v1 − v2‖V > 0 ,

i.e., Jv1 6= Jv2. If J is surjective, i.e., J(V ) = V ∗∗, then for each v′′ ∈ V ∗∗ one finds
a v ∈ V such that v′′ = Jv holds. In this sense, we can identify V ∗∗ with V and say
that V is reflexive. A reflexive space is in particular a Banach space.

For a Hilbert space V with scalar product (·, ·)V its dual V ∗ can be identified
with V by the Riesz representation theorem. More precisely, for every continuous
linear functional v′ ∈ V ∗, there exists a unique vector w ∈ V , called the Riesz
representative of v′, such that 〈v′, v〉V ∗,V = (w, v)V for all v ∈ V and ‖v′‖V ∗ = ‖w‖V .
In this case, {vk}k∈N converges weakly to v ∈ V if and only if (w, vk − v)V → 0

for k → ∞ holds for all w ∈ V . Moreover, weak convergence vk ⇀ v and norm
convergence ‖vk‖V → ‖v‖V for k →∞ together imply strong convergence due to

(vk − v, vk − v)V = ‖vk‖2V − 2(vk, v)V + ‖v‖2V → 0 for k →∞ .

A functional f : V → R over a Banach space V is lower semi-continuous if for any
sequence {vk}k∈N ⊆ V with vk → v for k →∞ we have f(v) ≤ lim infk→∞ f(vk). In
addition, f is weakly lower semi-continuous if f(v) ≤ lim infk→∞ f(vk) holds for any
sequence {vk}k∈N ⊆ V with vk ⇀ v in V for k →∞. A weakly lower semi-continuous
functional is in particular lower semi-continuous.

A mapping f : V →W between two Banach spaces V and W is Fréchet differen-
tiable at v ∈ V if an operator A ∈ L(V,W ) exists such that

lim
‖h‖V→0

‖f(v + h)− f(v)−Ah‖W
‖h‖V

= 0 .

The linear and continuous operator A is unique and we write f ′(v) = A for the
Fréchet derivative of f at v ∈ V . In addition, f is continuously Fréchet differentiable
at v ∈ V if the Fréchet derivative of f exists in a neighborhood U of v and the
mapping f ′ : U → L(V,W ), v 7→ f ′(v) is continuous.
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A Lipschitz domain Ω ⊆ Rd, d ∈ N, is an open and connected subset with
Lipschitz boundary ∂Ω in the sense of [Gri85, Definition 1.2.2.1]. Essentially, it
means that the boundary ∂Ω can be locally thought of as the graph of a Lipschitz
continuous function and Ω lies locally on one side of the boundary. The Lebesgue
space Lp(Ω;Rn), p ∈ [1,∞) and n ∈ N, is the set of all Lebesgue measurable functions
f : Ω→ Rn, which are Lebesgue integrable to the p-th potency, and L∞(Ω;Rn) is the
space of all Lebesgue measurable and essentially bounded functions. For p ∈ [1,∞],
the space Lploc(Ω;Rn) consists of all functions f whose restrictions f |K to relatively
compact subsets K ⊆ Ω belong to Lp(K;Rn). We abbreviate Lp(Ω) := Lp(Ω;R)

and Lploc(Ω) := Lploc(Ω;R). The Lebesgue space L2(Ω;Rn) is a Hilbert space with
the scalar product

(v, w)L2(Ω;Rn) :=

n∑
j=1

∫
Ω
vj(x)wj(x) dx .

Notation. For Ω = (0, T ) with T > 0 and n ∈ N, we use E := E
L2(0,T ;Rn)

as shorthand notation for the closure of a set E ⊆ L2(0, T ;Rn) in L2(0, T ;Rn)

throughout this thesis.

Notation. For vector-valued functions v, w ∈ L1(Ω;Rn), we use the shorthand
notation ∫

Ω
v(x)w(x) dx :=

n∑
j=1

∫
Ω
vj(x)wj(x) dx .

The set of real-valued continuous functions on the domain Ω is denoted by C(Ω).
For k ∈ N ∪ {∞} , Ck(Ω) consists of real-valued functions that, together with their
partial derivative up to order k, are continuous in Ω. By Ckc (Ω) we denote the class
of k-times continuously differentiable functions with compact support in Ω.

In a bounded Lipschitz domain, we are allowed to generalize the classical deriva-
tion, based on partial integration, as follows: for f ∈ L1

loc(Ω) and α ∈ Nd
0 , we call

w ∈ L1
loc(Ω) weak derivative of f if∫

Ω
f(x)Dαv(x) dx = (−1)|α|

∫
Ω
w(x)v(x) dx for all v ∈ C∞c (Ω) ,

where |α| :=
∑d

i=1 αi and

Dα :=
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αd
d

.

The Sobolev space W k,p(Ω), k ∈ N and p ∈ [1,∞], consists now of all k-times
weakly differentiable functions whose weak derivatives belong to Lp(Ω). Moreover,
W k,p

0 (Ω) denotes the closure of C∞c (Ω) regarding the norm of W k,p(Ω). It forms

9
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a complete subspace of W k,p(Ω), whose functions and their weak derivatives up to
order k − 1 vanish at the boundary. Of special importance are the spaces W k,2(Ω)

and W k,2
0 (Ω), respectively, for k ∈ N, since they from a Hilbert space. We use

the standard notation Hk(Ω) := W k,2(Ω) and Hk
0 (Ω) := W k,2

0 (Ω). Moreover, we
set H−1(Ω) := H1

0 (Ω).

2.2 Functions of bounded variation

This section is devoted to the introduction of the control space of the parabolic binary
optimal control problems with switching constraints addressed in this thesis. For this
purpose, we introduce the space of functions with bounded variation BV (Ω;Rn) over
a general open set Ω ⊆ Rd in Section 2.2.1 and collect some elementary properties
of BV functions in Section 2.2.2. Since the controls in our problems are dynamic
switches that can only vary over time, we are especially interested in functions with
bounded variation over a given continuous time horizon (0, T ). We thus take a closer
look at BV functions of one variable in Section 2.2.3 and consider in Section 2.2.4
an alternative definition for functions of one variable with bounded variation, which
is often used in the literature. Finally, we specify in Section 2.2.5 how an initial
state of the dynamic switches at time zero can be incorporated in the definition of
the constraint set D occurring in (P). A more detailed description of the space of
functions with bounded variation can be found in [AFP00, ABM14].

2.2.1 The space BV

Let Ω ⊂ Rd, d ∈ N, be an open set.

Definition 2.1. Let B(Ω) denote the Borel-σ-algebra of the set Ω. A set function
µ : B(Ω) → R satisfying µ(∅) = 0 and µ(∪k∈NEk) =

∑
k∈N µ(Ek) for any pairwise

disjoint family {Ek}k∈N in B(Ω), i.e., µ is σ-additive, is called (real) Borel measure.
A Borel measure is regular if

|µ(B)| = sup{|µ(K)| : K ⊂ B, Kcompact} (inner regular)
= inf{|µ(U)| : B ⊂ U , U open} (outer regular)

for all B ∈ B(Ω). LetM(Ω) denote the set of all regular Borel measures. Further-
more, for m ∈ N, let M(Ω;Rm) denote the set of all vector-valued regular Borel
measures, i.e.,

M(Ω;Rm) := {µ : B(Ω)→ Rm : µi ∈M(Ω) for i = 1, . . . ,m}.

Then the variation of a (not necessarily regular) Borel measure is the set function
|µ| : B(Ω)→ [0,∞] with

|µ|(E) = sup

{
k∑
i=1

|µ(Ei)| : k ∈ N, Ei ∈ B(Ω) pairwise disjoint, E =

k⋃
i=1

Ei

}

10
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for E ∈ B(Ω). The total variation of the measure µ is defined by ‖µ‖var := |µ|(Ω).
For µ ∈ M(Ω;Rm) the total variation is finite and M(Ω;Rm) equipped with the
norm ‖µ‖var is a Banach space. The functions with a distributional derivative in
M(Ω;Rd) form an important vector space.

Definition 2.2. A function u : Ω → R is a function of bounded variation if and
only if u ∈ L1(Ω) and its distributional derivative is representable by a measure in
M(Ω;Rd), i.e., if∫

Ω
u ∂φ
∂xi

dx = −
∫

Ω
φ dDiu ∀φ ∈ C∞c (Ω), i = 1, . . . , d

holds for some measure Du ∈ M(Ω;Rd). We denote the space of all functions of
bounded variation by BV (Ω). Furthermore, BV (Ω;Rn) is the set of all vector-valued
functions of bounded variation, i.e.,

BV (Ω;Rn) := {u ∈ L1(Ω;Rn) : uj ∈ BV (Ω) for j = 1, . . . , n } .

The set of all functions whose restriction f |K belong to BV (K) or BV (K;Rn) for
every relatively compact subset K ⊆ Ω is denoted by BVloc(Ω) and BVloc(Ω;Rn),
respectively.

For instance, the Sobolev spaceW 1,1(Ω) is contained in BV (Ω), since for any func-
tion u ∈W 1,1(Ω) the distributional derivative ∇u · Ld|Ω belongs toM(Ω;Rd). This
inclusion is strict, e.g., the Heaviside function χ(0,∞), whose distributional derivative
is the Dirac measure δ0, belongs to BV (R), but not to W 1,1(R) since δ0 is not repre-
sentable by an integrable function in L1(R). Unlike Sobolev spaces, BV (Ω,Rn) also
includes piecewise smooth functions. Equipped with the norm

‖u‖BV (Ω;Rn) = ‖u‖L1(Ω;Rn) + ‖Du‖var ,

the space BV (Ω,Rn) is a Banach space. Note that |u|BV (Ω;Rn) := ‖Du‖var defines a
seminorm on BV (Ω,Rn) and |u|BV (Ω;Rn) =

∑n
j=1 |uj |BV (Ω). Thus, throughout the

thesis, we write the BV-norm in the form

‖u‖BV (Ω;Rn) = ‖u‖L1(Ω;Rn) +
n∑
j=1

|uj |BV (Ω) .

To provide another characterization of functions of bounded variation, we intro-
duce the variation V (u,Ω) for a function u ∈ L1

loc(Ω;Rn).

Definition 2.3. Let u ∈ L1
loc(Ω,Rn). The variation V (u,Ω) of u in Ω is defined by

V (u,Ω) := sup


n∑
j=1

∣∣∣∣∫
Ω
uj divφj dx

∣∣∣∣ : φ ∈ C1
c (Ω;Rn·d), ‖φ‖∞ ≤ 1

 ∈ [0,∞] ,

where we identify the space Rn·d with the space of (n×d)-matrices and the divergence
of φj is given by divφj =

∑d
i=1 φj,i for j = 1, . . . , n.

11
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Integration by parts proves that V (u,Ω) =
∫

Ω |∇u| dx if u is continuously differ-
entiable in Ω. Note that one can also define V (u,A) for any open set A ⊆ Ω, in this
case the test vector fields φ must be supported in A, and it can be proven that

Ṽ (u,B) = inf{V (u,A) : A ⊇ B, A open } for B ∈ B(Ω)

extends V (u, ·) to a Borel measure in Ω. This, in particular, implies the additivity
of V (u, ·). One now gets that u ∈ L1(Ω;Rn) is a function of bounded variation if
and only if V (u,Ω) <∞.

Proposition 2.4 ([AFP00]). Let u ∈ L1(Ω;Rn). Then u belongs to BV (Ω;Rn) if
and only if V (u,Ω) <∞. Moreover, we have V (u,Ω) = |u|BV (Ω;Rn).

2.2.2 Elementary properties of BV functions

The above introduction of the variation provides a useful method to show that some
u ∈ L1(Ω;Rn) belongs to BV (Ω;Rn): one only needs to approximate u in L1(Ω;Rn)

by functions {uk}k∈N whose variation are equibounded.

Lemma 2.5 ([ABM14]). Let {uk}k∈N be a sequence in BV (Ω;Rn) converging strongly
to some u in L1(Ω;Rn) and satisfying supk∈N |Duk|(Ω) < ∞, i.e., the variations of
uk are equibounded. Then u ∈ BV (Ω;Rn) and

(2.1) |u|BV (Ω;Rn) ≤ lim inf
k→∞

|uk|BV (Ω;Rn) .

The inequality (2.1) implies that the mapping u 7→ |u|BV (Ω;Rn) is lower semi-
continuous with respect to the L1(Ω;Rn) topology. It is even lower semi-continuous
with respect to the L1

loc(Ω;Rn) topology, which follows from V (u,Ω) = |u|BV (Ω;Rn)

by Proposition 2.4 and the fact that u 7→ V (u,Ω) ∈ [0,∞] is lower semi-continuous
in the L1

loc(Ω;Rn) topology since

u 7→
∣∣∣∣∫

Ω
u divφ dx

∣∣∣∣
is continuous in the L1

loc(Ω;Rn) topology for any φ ∈ C1
c (Ω;Rn·d).

Another elementary property of the space BV (Ω;Rn) is that it compactly em-
beds into Lebesgue spaces. More precisely, for any bounded Lipschitz domain Ω ⊂
Rd with d ∈ N, the space BV (Ω;Rn) is continuously embedded in the Lebesgue
space Lp(Ω;Rn) for p ∈ [1, d

d−1 ] and the embedding is compact if p ∈ [1, d
d−1).

Theorem 2.6 ([ABM14]). Let Ω ⊂ Rd, d ∈ N, be a bounded Lipschitz domain.
Then, for all 1 ≤ p ≤ d

d−1 , we have BV (Ω;Rn) ↪→ Lp(Ω;Rn).

Theorem 2.7 ([ABM14]). Let Ω ⊂ Rd, d ∈ N, be a bounded Lipschitz domain.
Then, for all 1 ≤ p < d

d−1 , we have BV (Ω;Rn) ↪→c Lp(Ω;Rn).
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For Ω = (0, T ) ⊆ R, T > 0, the space BV (0, T ;Rn) is thus compactly embedded
in Lp(0, T ;Rn) for any p ∈ [1,∞), in particular in L2(0, T ;Rn). This means that
a bounded sequence in BV (0, T ;Rn) has a convergent subsequence in L2(0, T ;Rn),
which we will exploit in Section 4.1 to show the existence of global minima of the
parabolic optimal control problem (P).

2.2.3 BV functions of one variable

For BV functions of one variable over an interval, we aim to employ pointwise evalu-
ations. Indeed, one can show that in each equivalence class of a BV function over an
interval there exists a unique right continuous representative. To this end, we first
introduce the notion of pointwise variation of a function.

Definition 2.8. Let I ⊂ R be an interval. For a function v : I → Rn the pointwise
variation pV (v, I) of v in I is defined by

pV (v, I) = sup

{
k∑
i=1

|v(ti+1)− v(ti)| : k ∈ N, t1 < · · · < tk+1 in I

}
,

where | · | = ‖ · ‖1 denotes the 1-norm of a vector. For Ω ⊆ R open, the pointwise
variation pV (v,Ω) is defined by pV (v,Ω) :=

∑
I pV (v, I), where the sum runs over

all connected components I of Ω.

Note that in the above definition the restriction to open sets Ω ⊆ R is neces-
sary, since otherwise the sum may run over uncountably many connected compo-
nents and is thus not well-defined in general. The mapping v 7→ pV (v, I) is lower
semi-continuous with respect to the pointwise convergence in I as a supremum of
continuous functionals. By additivity, the same is true for v 7→ pV (v,Ω). Any func-
tion v with finite pointwise variation in an interval I = [a, b] ⊆ R is bounded by
definition of pV (v, I) because for any t ∈ I we have

|v(t)| ≤ |v(a)|+ |v(t)− v(a)| ≤ |v(a)|+ pV (v, I) .

In particular, any real valued bounded monotone function v : [a, b] → R has finite
pointwise variation, which equals the oscillation |v(b)− v(a)|.

However, we notice that the pointwise variation is very sensitive to modifica-
tions of the values of v. For instance, for the null function and the characteristic
function χQ of the rational numbers, we have pV (0,R) = 0 6= ∞ = pV (χQ,R)

although the functions only differ in countably many points. This suggests for func-
tions u ∈ L1

loc(Ω;Rn) the definition of the essential variation eV (u,Ω) as the minimal
pointwise variation of a function in the equivalence class.

Definition 2.9. For u ∈ L1
loc(Ω;Rn) the essential variation is defined by

(2.2) eV (u,Ω) := inf{ pV (v,Ω): u = v a.e. in Ω} .
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0

1

(a) Function u with |u|BV (0,T ) = 1

and pV (u, (0, T )) = 3.

0

1

(b) Representative û of u defined
in (a) with pV (û, (0, T )) = 1.

Figure 2.1: The total variation of the {0, 1}-valued function u in (a) is one,
while its pointwise variation is three. The total variation of u agrees with
the number of switchings of the good representative û in (b).

The infimum in (2.2) is attained and the variation V (u,Ω) in Definition 2.3 coin-
cides with the essential variation eV (u,Ω). We call any function v in the equivalence
class of u with eV (u,Ω) = pV (v,Ω) a good representative.

Theorem 2.10 ([AFP00]). For any function u ∈ L1
loc(Ω;Rn) the infimum in (2.2)

is attained and V (u,Ω) = eV (u,Ω).

For a {0, 1}n-valued function the total variation thus agrees with the minimal
number of switchings of any representative with values in {0, 1}n; see Figure 2.1.

In particular, for u ∈ BV (a, b;Rn) one can construct a good representative, which
is right continuous and unique, by its distributional derivative as follows:

Theorem 2.11 ([AFP00]). Let I = (a, b) ⊆ R, −∞ ≤ a < b ≤ ∞, be an interval
and u ∈ BV (I;Rn). Then there exists a unique c ∈ Rn such that

û(t) = c+Du((a, t]) t ∈ I

is a good representative of u, i.e., V (u,Ω) = pV (û, I), and û is right continuous on I.

Throughout this thesis, we always refer with u ∈ BV (a, b;Rn) to the good repre-
sentative of the corresponding equivalence class in BV (a, b;Rn), so that the pointwise
evaluation of u is well-defined.

2.2.4 Functions with pointwise bounded variation

In Definition 2.2, we introduced the space BV (Ω) of functions with bounded variation
as a subset of L1(Ω), so that we rather consider equivalence classes of functions than
the functions themselves. However, for functions of one variable we may also define
the space as a class of pointwise defined functions with the help of the pointwise
variation introduced in Definition 2.8. For this, let −∞ ≤ a < b ≤ ∞.

Definition 2.12. We define the space of functions with pointwise bounded variation
as

B̃V ([a, b],Rn) := {u : [a, b]→ R : pV (u, [a, b]) <∞} .
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The mapping u 7→ pV (u, [a, b]) is a seminorm on B̃V ([a, b],Rn) and equipped with
the norm

‖u‖
B̃V ([a,b],Rn)

:= |u(a)|+ pV (u, [a, b]) ,

the space is a Banach space.

For instance, we have seen that the characteristic function χQ lies in BV (R) as
its total variation is zero, but it does not belong to B̃V (R) since pV (χQ,R) = ∞.
Conversely, every function u ∈ B̃V ([a, b];Rn) is Lebesgue measurable and bounded
because it has a finite pointwise variation, so that u ∈ L∞(a, b;Rn) ↪→ L1(a, b;Rn).
Moreover, thanks to Theorem 2.10, we deduce V (u, (a, b)) ≤ pV (u, (a, b)) < ∞ and
obtain that u is a representative of a function in BV (a, b;Rn).

The above definition of B̃V ([a, b];Rn) has the advantage that the pointwise eval-
uation of u ∈ B̃V ([a, b];Rn) is well-defined, so that we do not need the detour via
a good representative, as in Theorem 2.11. Moreover, if we consider the set D of
feasible switching controls in the problem (P) as a subset of B̃V ([0, T ];Rn), i.e.,

D ⊆ {u ∈ B̃V ([0, T ];Rn) : u(t) ∈ {0, 1}n for all t ∈ [0, T ]} ,

we may also guarantee the existence of global minima for (P) under additional as-
sumptions; see Section 4.1. For this, we will exploit the following Helly’s selection
theorem, which was proven by [MO59].

Theorem 2.13 (Helly’s selection theorem). Let {uk}k∈N ⊆ B̃V ([a, b];Rn) be a se-
quence of functions with pV (uk, [a, b]) ≤ c for all k ∈ N and some constant c > 0.
Then there exists a subsequence which converges pointwise everywhere in [a, b] to a
function u ∈ B̃V ([a, b];Rn).

Even if all sequence members uk, k ∈ N, are good representatives of the cor-
responding equivalence class in BV (a, b;Rn), the limit given by Helly’s selection
theorem must not be a good representative.

Example 2.14. Let T > 0 and consider the sequence {uk}k∈N ⊆ B̃V ([0, T ]) with

uk(t) =

{
1, for t ∈ [(1− 1/k) 1/2T, (1 + 1/k) 1/2T )

0, otherwise .

The functions uk, k ∈ N, are good representatives of the corresponding equivalence
classes in BV (0, T ) due to V (uk, (0, T )) = pV (uk, (0, T )) = 2. However, the sequence
converges pointwise everywhere to

u(t) =

{
1, for t = 1/2T

0, otherwise ,

which is not a good representative as 0 = V (u, (0, T )) 6= pV (u, (0, T )) = 2.

In Section 4.1, we will explain in more detail why it is more convenient to con-
sider the feasible set D a subset of BV (0, T ;Rn) in connection with the parabolic
optimization problem (P).
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2.2.5 Binary switches with initial state

From an application perspective, it makes sense to assume that the switches u ∈ D
are off at the beginning. To incorporate this idea in the sets D ⊆ BV (0, T ; {0, 1}n)

we are going to study in this thesis, we may use two different approaches.
If we assume that the switch u ∈ BV (0, T ; {0, 1}n) starts with zero, then u can

be parameterized through the switching points of the switches u1, . . . , un. To this
end, we denote the essential jump set of each switch uj , 1 ≤ j ≤ n, by

Juj :=
{
t ∈ (0, T ) : lim

ω↗t
uj(ω) 6= lim

ω↘t
uj(ω)

}
.

As we assume that u starts with zero, we already count limω↘0 uj(ω) = 1 for some
j ∈ {1, . . . , n} as one switching up from zero to one and add t = 0 as a switching point
to Juj in this case. Let now σ ∈ N be given as an upper bound on the cardinality of
each jump set Juj for j = 1, . . . , n. Note that such an upper bound exists, since the
pointwise variation of u is finite due to pV (u; (0, T )) = |u|BV (0,T ;Rn) <∞ according
to Proposition 2.4 and our convention that u expresses the good representative stated
in Theorem 2.11.

Definition 2.15. For j = 1 . . . , n, let 0 ≤ t(j−1)σ+1 ≤ . . . ≤ tj σ < ∞ be given and
set

ηj≤ : R→ {0, . . . , σ}, ηj≤(t) := #{i ∈ {1, . . . , σ} : t(j−1)σ+i ≤ t} ,

where #{i ∈ {1, . . . , σ} : t(j−1)σ+i ≤ t} denotes the cardinality of the set with the
usual convention # ∅ = 0. Then we define the function ut1,...,tnσ by

(2.3)

ut1,...,tnσ : [0, T ]→ {0, 1}n,

(ut1,...,tnσ)j(t) :=

{
0, if ηj≤(t) is even

1, if ηj≤(t) is odd .

It is easy to verify that ut1,...,tnσ is a representative of u. Moreover, the function is
right continuous by construction, so that it agrees with the unique right continuous
representative. We can now define constraints D by choosing a subset of

{ut1,...,tnσ ∈ BV (0, T ;Rn) : σ ∈ N, 0 ≤ t(j−1)σ+1 ≤ . . . ≤ tj σ <∞ ∀1 ≤ j ≤ n}

Another possibility is to use

(2.4) BV0(0, T ;Rn) := {u ∈ BV (−1, T ;Rn) : u = 0 a.e. in (−1, 0)}

and to defineD as subset of {BV0(0, T ;Rn) : u ∈ {0, 1}n a.e. in (0, T )}. The elements
in BV (0, T ;Rn) and BV0(0, T ;Rn) correspond bijectively to each other, but the
total variation of a function u may be different, since it differs by ‖u(0)‖1. This
is essentially like counting additional switchings if some of the switches are directly
turned on at time zero.
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The latter approach is probably more intuitive, but we will use in Section 4.1
both, since the first approach is better suited to define constraints on the position of
the switching points, such as, e.g., a minimum time span between two consecutive
switchings of the same switch.

2.3 Optimization in Banach spaces

A general optimization problem in a Banach space V is given by

(Q)
min f(u)

s.t. u ∈ F

with the feasible region F ⊂ V , F 6= ∅ and the objective function f : V → R. In the
further course of this section, we investigate under which conditions (Q) admits a
global minimizer, following the ideas in [Sch07], and have a look at necessary optimal-
ity conditions to identify minima of (Q) based on [Lue69, BS00, Sch07]. In addition,
we briefly introduce the concept of Lagrange duality. For a detailed description of
duality for optimization problems in Banach spaces we refer to [Lue69, BS00]. Unless
stated otherwise, compactness and closedness always refer to the notion of sequential
compactness and sequential closedness, respectively, in the following.

2.3.1 Existence of optimal solutions

The classical Weierstrass Theorem that a continuous function f : F → R over a
compact set F attains a global minimizer on F also holds for infinite dimensional
optimization problems of the form (Q). Although the objective function of our pro-
totypical problem (P) only contains L2-norm terms which are continuous with re-
spect to strong convergence, Weierstrass’ Theorem is not applicable. The reason is,
first, that a minimizing sequence {uk}k∈N ⊆ F with limk→∞ f(uk) = infu∈F f(u)

of most infinite dimensional problems only has a weakly convergent subsequence,
and not a strongly convergent one. Second, bounded and closed sets in infinite di-
mensional spaces are not necessarily compact. For instance, the surface of the unit
ball {u ∈ V : ‖u‖V = 1} in a Hilbert space V is trivially bounded and closed,
however it is not compact. Thus, we need a generalization or an extension of the
results to non-continuous functions and non-compact sets. Let us start with a well-
known generalization of the Weierstrass Theorem to (weakly) lower semi-continuous
functions.

Proposition 2.16 ([Sch07]). Let F ⊂ V be a non-empty, (weakly) compact subset
of V and f : F → R be (weakly) lower semi-continuous. Then f attains a global
minimum on F .

To additionally overcome the compactness assumption on F , one needs to assume
that V is a reflexive Banach space, because then, by [Sch07, Thm. 1.6.7] each bounded
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and weakly closed set is weakly compact. Weak closedness can be guaranteed if the
set is convex and closed.

Theorem 2.17 ([Sch07]). Let V be a reflexive Banach space and the set F ⊂ V be
non-empty, convex, bounded and closed. In addition, let f : F → R be weakly lower
semi-continuous. Then there exists a global minimizer of the problem (Q).

Finally, to get rid of the boundedness of F , one can alternatively require an
additional assumption on f .

Definition 2.18. The functional f : F → R is coercive if lim supk→∞ f(uk) = ∞
holds for any sequence {uk}k∈N ⊆ F satisfying lim

k→∞
‖uk‖V →∞.

Theorem 2.19 ([Sch07]). Let V be a reflexive Banach space and the set F ⊂ V

be non-empty, convex and closed. In addition, let f : F → R be weakly lower
semi-continuous and coercive. Then there exists a global minimizer of (Q).

Indeed the coercivity of f is needed if F is unbounded, e.g., f(u) = exp(u), u ∈ R,
is not coercive due to lim

u→−∞
f(u) = 0 and has no minimizer over R.

2.3.2 Optimality conditions

In order to characterize minimizers of (Q) and to design effective optimization algo-
rithms, optimality conditions are important. While necessary conditions are satisfied
in each local minimizer, sufficient conditions even guarantee local optimality. In the
case that the feasible region of (Q) is convex, one can easily write down necessary
optimization conditions in form of a variational inequality.

Proposition 2.20 (Necessary optimality conditions, [Sch07]). Let F 6= ∅ be a convex
subset of V and ū ∈ F be a local minimizer of (Q). If f : V → R is directionally
differentiable in ū in all directions h ∈ {u−ū : u ∈ F}, then the variational inequality

(VI) f ′(ū, u− ū) ≥ 0 ∀u ∈ F

holds.

If, in addition, the objective function f : V → R is convex, then the variational
inequality (VI) is also sufficient for optimality.

Proposition 2.21 (Sufficient optimality conditions, [Sch07]). Let F 6= ∅ be a convex
subset of V and f : V → R be directionally differentiable and convex. Then the
following statements are equivalent:

(a) ū ∈ F is a local minimizer of (Q).
(b) ū ∈ F is a global minimizer of (Q).
(c) ū ∈ F satisfies the variational inequality (VI).
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However, to derive necessary optimality conditions in a qualified form, i.e., op-
timality conditions in form of a Karush-Kuhn-Tucker (KKT) system, we need to
consider the problem structure of (Q). For that, we restrict ourselves to problems of
the form

(NLP)
min f(u)

s.t. u ∈ C, G(u) ∈ −K ,

whose data are supposed to satisfy the following conditions:

Assumption 2.22. f : V → R is a continuously Fréchet differentiable function and
C ⊆ V is a non-empty, convex set. In addition, G : V →W is a continuously Fréchet
differentiable mapping from V to another Banach space W and K ⊆ W is a closed
convex cone in W , i.e., K is convex and for all α ≥ 0 and w ∈ K we have αw ∈ K.

As for finite-dimensional optimization problems, one needs additional assump-
tions on the constraints of (NLP), so-called constraint qualifications, that guarantee
that each local minimizer of (NLP) satisfies the KKT-system. The most prominent
example is the Robinson Constraint Qualification (RCQ).

Definition 2.23. Let ū ∈ C with G(ū) ∈ −K. Then the Robinson constraint
qualification holds at the feasible point ū of (NLP) if the condition

(RCQ) 0 ∈ int(G(ū) +G′(ū)(C − {ū}) +K)

is valid.

Theorem 2.24 (KKT-conditions, [BS00]). Let ū be a local minimizer of (NLP) and
let the (RCQ) condition be satisfied at ū. Then there exists a λ ∈ W ∗ such that the
following KKT-system is satisfied:

〈f ′(ū) +G′(ū)∗λ, u− ū〉V ∗,V ≥ 0 ∀u ∈ C(2.5a)

λ ∈ K∗, 〈λ,G(ū)〉W ∗,W = 0, G(ū) ∈ −K ,(2.5b)

where the dual cone of K is defined by

K∗ := {w′ ∈W ∗ : 〈w′, w〉W ∗,W ≥ 0 ∀w ∈ K}.

By setting µ := f ′(ū)+G′(ū)∗λ ∈ V ∗, we can rewrite condition (2.5a) in the form
〈µ, u− ū〉V ∗,V ≥ 0 for all u ∈ C. In addition, C ⊆ V is convex by assumption, which
means that cone(C) =

⋃
α≥0 αC holds and thus (2.5a) and (2.5b) are equivalent to

f ′(ū) +G′(ū)∗λ− µ = 0 in V ∗(2.6a)

ū ∈ C, µ ∈ cone(C − {ū})∗(2.6b)

λ ∈ K∗, 〈λ,G(ū)〉W ∗,W = 0, G(ū) ∈ −K .(2.6c)
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Example 2.25. For the special case W = Rn and K = {w ∈ Rn : w ≥ 0}, the
dual cone K∗ ⊆ W ∗ = Rn is given by K∗ = K, i.e., K is self-dual, such that (2.5b)
becomes

λ ≥ 0, λ>G(ū) = 0, G(ū) ≤ 0 ,

which is the classical complementary slackness condition known from nonlinear op-
timization.

Definition 2.26. A vector (ū, λ̄) ∈ V × W ∗ satisfying the KKT-system (2.5a)
and (2.5b) is called a KKT-point of (NLP).

If (NLP) is a convex problem, i.e., f : V → R is convex and the feasible region
{u ∈ V : u ∈ C, G(u) ∈ −K} is convex, then the KKT-conditions are also sufficient
for optimality. For {u ∈ V : u ∈ C, G(u) ∈ −K} to be convex, we need an additional
assumption on G.

Definition 2.27. The mapping G : V ⊇ C →W is convex (with respect to K) if for
all v1, v2 ∈ C and λ ∈ [0, 1] we have λG(v1)+(1−λ)G(v2)−G(λv1 +(1−λ)v2) ∈ K.

In the case V = W = R, C ⊆ R convex and K := {w ∈ R : w ≥ 0}, the
above definition coincides with the classical definition of convexity of a function
G : C → R, namely G(λv1 + (1 − λ)v2) ≤ λG(v1) + (1 − λ)G(v2) for all v1, v2 ∈ C
and λ ∈ [0, 1]. Moreover, if G is convex with respect to −K in this case, i.e.,
G(λv1 +(1−λ)v2) ≥ λG(v1)+(1−λ)G(v2) for all v1, v2 ∈ C and λ ∈ [0, 1], it means
that G is a concave function.

Theorem 2.28 (Sufficiency of KKT-conditions). Let the vector (ū, λ̄) ∈ V ×W ∗

be a KKT-point of (NLP) and, besides our general Assumption 2.22 on the data
occurring in (NLP), let f and G be convex. Then ū is a global minimizer of (NLP).

Note that for the sufficiency of the KKT-conditions for convex problems, we
have only supposed that there exists a KKT-point (ū, λ̄) ∈ V ×W ∗, i.e., we have
not required a constraint qualification. However, to numerically compute minima
of (NLP) with the help of the KKT-system (2.5a) and (2.5b), we need that the
KKT-conditions are also necessary for all minima, i.e., we need the (RCQ) condition
to be valid. For instance, if G is convex, then the Slater condition is frequently used
as constraint qualification instead of (RCQ).

Definition 2.29. Let G : V ⊇ C →W be a convex mapping. Then u0 ∈ C is called
Slater-point if G(u0) ∈ − int(K).

Lemma 2.30. If G : V ⊇ C → W is convex and there exists a Slater-point u0 ∈ V ,
then the (RCQ) condition is valid at any u ∈ C.
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2.3.3 Lagrange duality

In this section, we introduce the concept of Lagrange duality for the problem (NLP).
For this, let F := {u ∈ V : u ∈ C, G(u) ∈ −K} denote the feasible region of (NLP).

Definition 2.31. The Lagrangian of (NLP) is defined by L : V ×W ∗ → R with

L (u, λ) = f(u) + 〈λ,G(u)〉W ∗,W .

In addition, λ ∈W ∗ is a Lagrange multiplier corresponding to ū ∈ V if

ū = arg min
u∈C

L (u, λ)(2.7a)

λ ∈ K∗, 〈λ,G(ū)〉W ∗,W = 0, G(ū) ∈ −K .(2.7b)

With the Lagrangian L we can now associate the primal problem

inf
u∈C

sup
λ∈K∗

L (u, λ)

and the dual problem

(DLP) sup
λ∈K∗

inf
u∈C

L (u, λ) .

The primal problem is equivalent to (NLP) in the sense that each local minimizer
of (NLP) is a local minimizer of the primal problem with the same objective value,
and vice versa. By defining the function q : W ∗ → R, q(λ) = infu∈C L (u, λ), we
can write the dual problem (DLP) in the form supλ∈K∗ q(λ). We see that the dual
problem has simpler constraints than the primal, but the objective function is more
complicated and generally not differentiable.

Example 2.32. If we consider the case W = Rn and K = {w ∈ Rn : w ≥ 0}, as in
Example 2.25, then the feasible region of the dual is simply given by {λ ∈ Rn : λ ≥ 0}.

The set of optimal solutions of the dual problem corresponds to the set of Lagrange
multipliers, since for a Lagrange multiplier λ̄ ∈ W ∗ at ū ∈ C and every λ ∈ K∗ we
have

q(λ̄)
(2.7a)

= f(ū) + 〈λ̄, G(ū)〉W ∗,W
(2.7b)

= f(ū) ≥ inf
u∈C

f(u) ≥ inf
u∈C

L (u, λ) = q(λ) ,

where the last inequality is valid since infu∈C L (u, λ) = infu∈F L (u, λ) and for
all u ∈ F and λ ∈ K∗ we have G(u) ∈ −K . The dual problem can be useful in
order to compute lower bounds on the objective value of (NLP) since the objective
value of each feasible solution of the dual gives a lower bound on the optimal value
of (NLP). The lower bounds on the optimal value of (NLP) resulting from feasible
solutions of the dual problem are often called dual bounds.
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Proposition 2.33 (Weak duality, [BS00]). It holds sup (DLP) ≤ inf (NLP).

Dual bounds are especially important to measure the sub-optimality of feasible
solutions u ∈ F of (NLP), since

f(u)− inf (NLP) ≤ f(u)− sup (DLP) ≤ f(u)− q(λ)

holds by Proposition 2.33 for all dual solutions λ ∈ K∗. However, a duality gap
between (NLP) and (DLP) may occur, so that the dual bounds obtained by (DLP)
might be weak, i.e., might not be a good measure for the sub-optimality of certain
candidate solutions u ∈ F of (NLP). There is no duality gap if the Lagrangian L

has a saddle-point.

Definition 2.34. A vector (ū, λ̄) ∈ V ×W ∗ is a saddle-point of the Lagrangian L

if L (ū, λ) ≤ L (ū, λ̄) ≤ L (u, λ̄) for all (u, λ) ∈ V ×W ∗.

Theorem 2.35 (Strong duality, [BS00]). The function L has a saddle-point if and
only if sup (DLP) = inf (NLP). In addition, (ū, λ̄) ∈ V ×W ∗ is a saddle-point if and
only if ū ∈ V solves the primal problem (NLP) and λ̄ ∈W ∗ the dual problem (DLP).

The above theorem implies that the set of saddle-points is given by the Cartesian
product of optimal solutions of (NLP) and (DLP). Consequently, Lagrange multi-
pliers may only exist if there is no duality gap.

Every saddle-point is a KKT-point, since the KKT-condition (2.5a) is exactly
the necessary optimality condition for the minimization problem stated in (2.7a);
compare Proposition 2.20. If f and G are convex, then the Lagrangian L and the
feasible region F are convex such that (2.7a) is equivalent to (2.5a) by Proposi-
tion 2.21. Given a KKT-point (ū, λ̄) ∈ V ×W ∗, we thus know that λ̄ ∈ W ∗ is a
Lagrange multiplier, i.e., optimal for the dual problem (DLP), and ū ∈ V is a global
minimizer of the primal problem (NLP) by Theorem 2.28. So, every KKT-point of
a convex problem is a saddle-point; see Figure 2.2 for an overview of the relations
between saddle-points, KKT-points, optimality and duality. For convex problems,
the strong duality can alternatively be stated as follows:

Theorem 2.36 (Strong duality for convex problems). Let the function f and the
mapping G in (NLP) be convex. Suppose that the (RCQ) condition is satisfied at
every point u ∈ C. Then sup (DLP) = inf (NLP). Moreover, if the optimal value
of (NLP) is finite, then the dual problem (DLP) has an optimal solution.

Remark 2.37. In (NLP), we have only considered nonlinear inequality constraints
of the form G(u) ∈ −K, where K ⊆ W was supposed to be a convex cone. Since
equality constraints Hu = 0 with Hu = Au − b, where A ∈ L(V,Z) is a linear and
continuous operator from V to another Banach space Z and b ∈ Z, are equivalent to
the two constraints Hu ∈ {z ∈ Z : z ≤ 0} and Hu ∈ {z ∈ Z : z ≥ 0}, one may expect
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ū optimal for (NLP)

(ū, λ̄) KKT-point

(ū, λ̄) saddle-point

Strong duality

(RC
Q)

con
vex

convex

Figure 2.2: Overview of optimality conditions for optimization in Banach
spaces. In the figure “convex” means that the functions f and G occur-
ring in (NLP) are both convex. In addition, strong duality means that the
primal and dual problems are solvable and sup (DLP) = inf (NLP) holds;
compare Theorem 2.35. Arrows without labels are also valid in the case
of (NLP), i.e., without convexity assumptions.

that affine linear equality constraints can directly be included in the discussion of
KKT-conditions and existence of Lagrange multipliers. However, since e.g., there
does not exist u0 ∈ V such that Hu0 < 0 and Hu0 > 0, i.e., there does not exist a
Slater-point in this case, equality constraints must be treated slightly different. In
this thesis, only optimization problems in Banach spaces with inequality constraints
will occur, so we restricted our discussion here to this setting.

2.4 Convex integer programming problems

The section gives a brief overview over two widely used solution methods for convex
integer programming problems of the form

(CIP)
min f(u)

s.t. u ∈ U ∩ Zn ,

where the objective function f and the set U ⊆ Rn are assumed to be convex.
Note that the convexity of f ensures the global optimality of the computed solution.
Moreover, in practice, the set U is typically bounded.

2.4.1 Branch-and-bound

The branch-and-bound algorithm, originally proposed by [LD60], is a technique to
compute global optimizers of a mixed-integer programming problem (MIP) and is
implemented in state-of-the-art solvers for MIPs. However, it is applicable to quite
general problem classes whenever dual bounds on the optimal value of the problem
can be computed. One can find many publications concerning branch-and-bound
methods for MIPs, e.g., [Wol98, Sch98] in the context of integer linear programming,
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[GR85] for convex integer problems, and [Dak65, LL12, BKL+13] for mixed-integer
nonlinear problems.

The branch-and-bound algorithm is based on the idea to successively divide the
feasible region into two (or more) subsets to get a series of smaller subproblems that
are easier to solve. This procedure is called branching and recursive application of
the branching results in a tree structure, called branch-and-bound tree. Here, the
root node is given by the original problem (CIP) and the generated subproblems by
branching correspond to the child nodes of the root node. The approach is justified
by the following observation:

Observation 2.38 ([Wol98]). Consider (CIP) and set f? := minu∈U∩Zn f(u). Let
F1, . . . ,Fm ⊆ U ∩Zn be disjoint subsets of U ∩Zn such that U ∩Zn =

⋃m
i=1Fi holds

and set f?i := minu∈Fi f(u). Then f? = mini=1,...,m f
?
i .

Dual bounds on the optimal value of (CIP) and its subproblems, respectively, are
derived by solving convex relaxations of the form

(CRP)
min f(u)

s.t. u ∈ F̃ ,

where F̃ ⊇ U∩Zn is convex. The most common approach to get a convex relaxation is
to drop the integrality constraints on u, i.e., F̃ = U , known as continuous relaxation.
However, the tightest dual bound by convex relaxation is given by

min f(u)

s.t. u ∈ conv(U ∩ Zn) ,

since for every convex set F̃ ⊇ U ∩ Zn we have conv(U ∩ Zn) ⊆ F̃ . The continuous
relaxation often does not provide this tightest dual bound, as it can be seen in the
following example, but is most likely easy to solve.

Example 2.39. Consider the integer linear problem

min − u1 − u2

s.t. 4u1 − 3u2 ≤ 4

u2 ≤ 5
2

u1, u2 ≥ 0

u1, u2 ∈ Z

Then the optimal solution of the continuous relaxation is given by ū = (23
8 ,

5
2) with

the objective value −43
8 , whereas the optimal solution over the convex hull of the

feasible region is u? = (2, 2) with the objective value −4; compare Figure 2.3.
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u1

u2

1 2 3

1

2
ūu?

Figure 2.3: The feasible region of the continuous relaxation (blue hashed),
the integer feasible points (black dots) and the convex hull of the integer
feasible points (gray shaded) of the problem given in Example 2.39.

Upper bounds on the optimal value of (CIP) are obtained by finding feasible solu-
tions and are often called primal bounds. For instance, during branching, it becomes
more likely that the computed optimum solution of the convex relaxation (CRP)
is integer-valued (and belongs to U), i.e., is feasible for (CIP), so that the objec-
tive value of the optimal solution of (CRP) is then a primal bound for (CIP). On
the other hand, algorithms that aim to find (good) feasible solutions with relatively
small computational time, so called heuristics, can be used. We exemplarily refer
to [BKL+13] for an overview of heuristics in the context of convex integer program-
ming problems.

Thanks to the interplay of branching and bounding, we can identify parts of the
feasible region which cannot contain optimal solutions of (CIP) so that the number
of subproblems to be inspected is reduced. More specifically, as soon as the dual
bound of a node exceeds the best known primal bound of (CIP), it is not necessary
to continue the optimization process of the subproblem or to further branch the
subproblem, i.e., we can ignore the entire subtree rooted at this node in the search
for a globally optimal solution. The same holds true if the computed optimal solution
of the convex relaxation is feasible for (CIP), because then in every subsequent node,
originating from branching the current one, the objective function value will be non-
decreasing. Cutting off an entire subtree is called pruning.

The general branch-and-bound strategy is summarized in Algorithm 1. Some
remarks on Algorithm 1 are in order. A natural way to decompose the feasible region
of (CIP) in Step 11 is to take one of the variable with fractional value in the optimal
solution ū of the relaxation (CRP) and then to add the inequality uj ≤ būjc in the
first subproblem and uj ≥ dūje in the second one. For binary variables, the strategy
fixes the value of uj to zero and one, respectively. In the case that several variables
are fractional, there are different selection strategies, and the choice of the branching
variable has a huge impact on the solution process. Common choices are either to
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Algorithm 1 Branch-and-bound algorithm for (CIP)

1: Set L = {(CIP)} and PB =∞.
2: while L 6= ∅ do
3: Choose a subproblem Q ∈ L and set L := L \ {Q}
4: Solve a convex relaxation (CRP) of Q.
5: if (CRP) is infeasible then
6: Go to Step 2.
7: else if The optimum value of (CRP) exceeds PB then
8: Go to Step 2.
9: else if The optimum ū of (CRP) is feasible for Q and f(u?) ≤ PB then

10: Set PB := f(ū), u? := ū and go to Step 2.
11: Create k ≥ 2 new subproblems Q1, . . . , Qk by decomposing the feasible region

of Q and set L := L ∪ {Q1, . . . , Qk}.
12: if PB =∞ then
13: return (CIP) infeasible.
14: else
15: return u? is optimal with objective value PB.

choose the one with the most fractional value, or with the largest absolute objective
coefficient.

The enumeration strategy determines the order of the selected subproblems in Step 3.
The depth first strategy selects the most recently added subproblem at the back of
the list, while the breadth first strategy chooses the first added subproblem at the
beginning of the list. A depth first search more likely leads to a quick initial pri-
mal bound, as the probability of finding a feasible solution in deeper nodes of the
enumeration tree is higher, but the dual bound improves only slowly, so that the
strategy may result in the enumeration of many nodes if no good primal bound is
known. The effect of slowly improving dual bounds can be avoided by the best first
strategy which selects the subproblem whose parent node has the current best dual
bound. However, the best first strategy might result in a breadth first investigation
of the branch-and-bound tree which causes a high memory consumption.

The running time of the branch-and-bound algorithm strongly depends on how
many problems we need to inspect which in turn is related to the quality of the
primal and dual bounds. Indeed, the algorithm only terminates if primal and dual
bounds coincide, or if the infeasibility of (CIP) is detected. Hence, a reasonable
branching procedure must ensure that the dual bounds, more precisely the worse of
the two (or more) dual bounds of the child nodes, is better than the dual bound
of the parent node. In the case that U is bounded, it is clear that in the feasible
region U ∩ Zn of (CIP) the n variables can only take a finite number of values. Let
c ∈ N be an upper bound for all these finite numbers of values. In the worst case,
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u1
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Figure 2.4: The feasible region of the continuous relaxation (blue hashed),
the integer feasible points (black dots) and the convex hull of the integer
feasible points (gray shaded) of the problem given in Example 2.39. The
vector ū is the optimal solution of the continuous relaxation and the in-
equality 3/2u1 + u2 ≤ 11/2 (red line) is a cutting plane for ū.

the branch-and-bound algorithm then enumerates all the O(cn) possible solutions,
but the algorithm definitely stops after a finite number of iterations. In general,
however, the number of generated subproblems is exponential in the number n of
variables, since MIPs are known to be NP-hard [KM78]. NP-hardness is a concept to
classify problems that are at least as hard to solve like other problems in NP and can
probably not be solved in polynomial time. For a formal definition, we exemplarily
refer to [KV18].

To derive tighter dual bounds, so-called cutting planes can be used to strengthen
the convex relaxations of the subproblems; see the next subsection.

2.4.2 Cutting planes

Given the feasible set U ∩Zn and a convex set F̃ ⊇ U ∩Zn, a cutting plane is a linear
inequality that is satisfied by all vectors in conv(U ∩Zn), but not by all vectors in F̃ .
If we assume to have an optimal solution ū ∈ F̃ of the convex relaxation (CRP)
that satisfies ū /∈ conv(U ∩ Zn), then the idea of the cutting plane algorithm is to
find a valid inequality for conv(U ∩ Zn) that is violated by ū; see Figure 2.4. By
adding this inequality to F̃ , we make sure that ū becomes infeasible for the convex
relaxation (CRP) and that the dual bound of the new convex relaxation is at least
as good as the old one. Note that, if ū /∈ conv(U ∩ Zn) holds, then the separat-
ing hyperplane theorem, see, e.g., [BV04, Sect.2.5.1], guarantees the existence of a
cutting plane. [Gom58] first proposed the cutting plane algorithm for mixed-integer
linear problems. For publications on cutting planes in the context of convex inte-
ger optimization, we exemplarily refer to [KJ60, DG86, FL94]. Their cutting plane
procedures are based on the idea to build up a mixed-integer linear problems that is
equivalent to (CIP) by linearizing the convex objective function as well as the convex
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constraints at certain points. While [KJ60] chooses to linearize the most violated
constraint and the objective function at the current solution of the mixed-integer
linear problem, [Dak65] and [FL94] linearize all the constraints and the objective at
a point obtained by solving a convex relaxation of (CIP). Note that the approach
of [FL94] is an extension of the one of [Dak65] to general convex mixed-integer prob-
lems. Both are known in the literature as outer approximation algorithms, since they
approximate the convex feasible region from the outside by collecting supporting
half spaces. The latter also holds true for the approach of [KJ60], and can thus
be seen as an outer approximation method as well. Hence, whenever the feasible
region of a convex problem is approximated from the outside, we will call it outer
approximation.

The combination of the branch-and-bound algorithm and a cutting plane algo-
rithm for each node of the branch-and-bound tree is called branch-and-cut algorithm.
In theory, conv(U∩Zn) is a polyhedron if U is bounded, i.e., can be described through
finitely many linear inequality constraints, so that the cutting plane-algorithm for
a node stops after a finite number of iterations. In practice, however, the cutting
planes quickly become weaker, i.e., the region we cut of from F̃ gets smaller. This
suggest to perform a limited number of cutting plane iterations in each node of the
branch-and-bound tree before resorting to branching.
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Convex optimal control

Our main objective in this chapter is to describe a class of convex controls inBV (0, T ;Rn)

by linear inequalities in function space. We will derive such a description by means
of cutting planes lifted from finite-dimensional projections. Initially, each projection
provides only an outer description of the convex sets, but we will see that projec-
tions can be designed in such a way that one obtains a complete description of these
sets. By combining the separation algorithms for the projection sets, we will then
get a separation algorithm for the convex sets in function space. Based on this
separation algorithm, we will design an outer approximation algorithm to globally
solve convex optimal control problems. More specifically, we will obtain an outer
approximation algorithm whose iterates converge strongly to global minimizers of
the problems. Note that outer approximation algorithms are well-established for the
solution for convex mixed-integer problems, see the classical references [DG86, FL94]
and Section 2.4.2, and have also proven to work for combinatorial optimal control
problems with static discrete control variables [BKM18]. The advantage of outer
approximation is that each iteration provides a dual bound on the objective value
of the problems. In the next chapter, we will transfer the results to the convex hull
of combinatorial switching constraints D, as occurring in the binary control prob-
lem (P); see Section 4.3. By embedding the outer approximation algorithm into a
branch-and-bound scheme, we will then obtain a global solver for the non-convex
parabolic control problem (P).

The remainder of this chapter is organized as follows: in Section 3.1, we specify
the class of convex control problems under consideration. In Section 3.2.1, we first in-
vestigate the feasible region of the problems and show that it can be fully described
by cutting planes lifted from finite-dimensional projections. Next we analyze the
convergence behavior of the outer approximation algorithm in Section 3.2.2. In each
iteration of the outer approximation algorithm, a linear-quadratic optimal control
problem subject to additional inequality constraints is solved. Its necessary optimal-
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ity conditions are stated in Section 3.3.1 and the semi-smooth Newton method to
solve the optimality system is presented in Section 3.3.2.

The results presented in Section 3.2.1 have already appeared in [BGM22a] in a
slightly different setting. In [BGM22a], the outer description by cutting-planes lifted
from finite-dimensional projections has been devised for the convex hull of combina-
torial switchings constraints D, as appearing in (P). Here, we will transfer the results
to a more general class of convex constraints. The outer approximation algorithm
in Section 3.2.2 and the solution method for the linear-quadratic control problems
occurring in the latter in Section 3.3 together have been investigated in [BGM22b].

3.1 Optimal control problem

We consider convex optimal control problems with control constraints of the form

(Q)



min J(y, u) = 1
2 ‖y − yd‖

2
L2(Q) + α

2 ‖u−
1
2‖

2
L2(0,T ;Rn)

s.t. ∂ty(t, x)−∆y(t, x) =
n∑
j=1

uj(t)ψj(x) in Q = Ω× (0, T ) ,

y(t, x) = 0 on Γ = ∂Ω× (0, T ) ,

y(0, x) = y0(x) in Ω ,

and u ∈ C ,

where C ⊆ {u ∈ BV (0, T ;Rn) : ua ≤ u ≤ ub a.e. in (0, T )} is a convex set for some
arbitrary functions ua, ub ∈ L∞(0, T ;Rn) with ua(t) ≤ ub(t) f.a.a. t ∈ (0, T ). Note
that C may not be given in a closed form in general and thus the first challenge is
to implicitly describe C in function space. Our approach is based on the idea to
reduce this problem to a purely combinatorial task by projecting the set C to finite
dimension and then to find descriptions of the resulting finite-dimensional projec-
tion sets, which allow for the efficient computation of cutting planes and together
lead to a complete description of C. Following this procedure, we can separate an
infeasible control from C whenever we are able to construct a projection, such that
the corresponding projection vector of the control can be separated from the projec-
tion set; see Section 3.2.1 for more details. Once we obtain a separation algorithm
for C in function space in this way, we can solve the problem (Q) by means of outer
approximation; see Section 3.2.2. To this end, let us first specify the problem data
in (Q).

3.1.1 Problem data

Let T > 0 be a given final time and Ω ⊆ Rd, d ∈ N, a bounded Lipschitz-domain.
Moreover, let yd ∈ L2(Q) be a given desired state and α ≥ 0 a Tikhonov parameter
weighting the mean deviation from 1/2. Let the form functions ψj ∈ H−1(Ω) for
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j = 1, . . . , n, as well as the initial state y0 ∈ H1
0 (Ω) be given. Finally, let C be an

arbitrary subset of {u ∈ BV (0, T ;Rn) : ua ≤ u ≤ ub a.e. in (0, T )} satisfying the
two following assumptions:

C is convex,(C1)

C is closed in L2(0, T ;Rn).(C2)

Here, BV (0, T ;Rn) denotes the set of all vector-valued functions with bounded vari-
ation equipped with the norm ‖u‖BV (0,T ;Rn) := ‖u‖L1(0,T ;Rn) +

∑n
j=1 |uj |BV (0,T ); see,

e.g., Section 2.2. A possible example for such a set is

(3.1)
Cmax :=

{
u ∈ BV (0, T ;Rn) : u(t) ∈ [0, 1]n f.a.a. t ∈ (0, T ),

|uj |BV (0,T ) ≤ σ ∀ j = 1, . . . , n
}

with ua ≡ 0 ∈ L∞(0, T ;Rn) and ub ≡ 1 ∈ L∞(0, T ;Rn) in this case, where σ > 0 is
a given number.

Lemma 3.1. Cmax satisfies Assumptions (C1) and (C2).

Proof. Cmax obviously meets Assumption (C1) since |·|BV (0,T ) is a seminorm and [0, 1]n

is convex. Also Assumption (C2) is easy to verify, using Lemma 2.5, which guarantees
for any sequence {uk}k∈N ⊆ Cmax converging to some function u in L2(0, T ;Rn) ↪→
L1(0, T ;Rn) that

|uj |BV (0,T ) ≤ lim inf
k→∞

|ukj |BV (0,T ) ≤ σ

for j ∈ {1, . . . , n} because of supk∈N |ukj |BV (0,T ) ≤ σ. In addition, the strong con-
vergence of {uk}k∈N in L2(0, T ;Rn) to u implies that a subsequence of {uk}k∈N con-
verges pointwise almost everywhere to u, so that the limit also satisfies u(t) ∈ [0, 1]n

f.a.a. t ∈ (0, T ). It follows that Cmax is closed in L2(0, T ;Rn).

The box constraints ua ≤ u ≤ ub a.e. in (0, T ) allow us in principle to weaken
Assumption (C2) and to require that C is closed in any Lp(0, T ;Rn) with p ∈ [2,∞),
because then (C2) is automatically satisfied: let {uk}k∈N ⊆ C be a sequence which
converges strongly to some u in L2(0, T ;Rn). Then {uk}k∈N has a convergent subse-
quence, denoted by the same symbol, which converges pointwise almost everywhere
to u. Due to

uk(t)→ u(t) for k →∞ and
|uk(t)|p ≤ max{|ua(t)|p, |ub(t)|p} f.a.a. t ∈ (0, T ), k ∈ N

for any p ∈ [2,∞), Lebesgue’s dominated convergence theorem, see, e.g., [Alt16,
Lemma 3.25], implies that {uk}k∈N converges strongly to u in Lp(0, T ;Rn). The
closedness of C in Lp(0, T ;Rn) gives u ∈ C. This implies that C is also closed
in L2(0, T ;Rn) and hence (C2) is satisfied. Consequently, all subsequent results
hold if C is closed in any Lp(0, T ;Rn) for p ∈ [1,∞); since in the case 1 ≤ p < 2
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Assumption (C2) is even tightened. For the sake of simplicity we stick to p = 2 as
in (C2).

The existence of a global minimizer of the convex control problem (Q) can now
easily be verified by standard methods of calculus of variations, as introduced in Sec-
tion 2.3.1. For this purpose, we write (Q) as a problem only in terms of the control
variables in the next subsection.

3.1.2 Existence of global minimizer

Our previous assumptions guarantee that the PDE appearing in (Q) admits a unique
weak solution y ∈ W (0, T ) := H1(0, T ;H−1(Ω)) ∩ L2(0, T ;H1

0 (Ω)) for every control
function u ∈ C ⊆ L2(0, T ;Rn); see [Trö10, Chapter 3]. To specify the associated
solution operator S : L2(0, T ;Rn) 3 u 7→ y ∈ W (0, T ), we introduce the linear and
continuous (and thus Fréchet differentiable) operator

Ψ: L2(0, T ;Rn)→ L2(0, T ;H−1(Ω)), (Ψu)(t) =

n∑
j=1

uj(t)ψj ,

as well as the solution operator Σ: L2(0, T ;H−1(Ω)) → W (0, T ) of the heat equa-
tion with homogeneous initial condition, i.e., given some w ∈ L2(0, T ;H−1(Ω)), the
state y = Σ(w) solves

∂ty −∆y = w in L2(0, T ;H−1(Ω)), y(0) = 0 in L2(Ω) .

Moreover, we introduce the function ζ ∈W (0, T ) as solution for

∂tζ −∆ζ = 0 in L2(0, T ;H−1(Ω)), ζ(0) = y0 in L2(Ω) .

Then the solution mapping S : u 7→ y is given by S = Σ ◦ Ψ + ζ. In particular, it
is affine and continuous. Using this solution operator S, the problem (Q) can be
written as

(Q’)

{
min f(u) := J(Su, u)

s.t. u ∈ C .

Note that the objective function f : L2(0, T ;Rn)→ R is weakly lower semi-continuous
because both u 7→ ‖Su − yd‖2L2(Q) and u 7→ ‖u − 1

2‖
2
L2(0,T ;Rn) are convex and lower

semi-continuous, thus weakly lower semi-continuous, and the operator S is affine
and continuous, thus weakly continuous. Consequently, by standard methods of
calculus of variations, the existence of global minimizers of (Q’), and hence of (Q), is
guaranteed if C 6= ∅. More specifically, C ⊆ BV (0, T ;Rn) ↪→ L2(0, T ;Rn) is convex
and closed in L2(0, T ;Rn) by Assumption (C1) and (C2). Moreover, it is bounded
in L2(0, T ;Rn) thanks to the box constraints ua ≤ u ≤ ub a.e. in (0, T ). Thus, the
feasible region C of (Q’) is a convex, bounded and closed subset of L2(0, T ;Rn) and
the objective f is weakly lower semi-continuous. All prerequisites of Theorem 2.17
are satisfied and we obtain
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3.2. Outer approximation

Theorem 3.2. Let C 6= ∅. Then problem (Q) admits a global minimizer.

3.2 Outer approximation

The core of our solution approach for our problem (P) in Chapter 4 will be the com-
putation of strong dual bounds by solving convexified problems of the form (Q) in
function space. Since we expect that the convexified problems will have a rather in-
volved structure, implicitly modeled by the sets C, and cannot be solved by standard
methods for optimal control problems, our next plan is to design an outer approxima-
tion algorithm. Therefore, we show in Section 3.2.1 how the convex feasible region C
in (Q) can be fully described in function space by cutting planes lifted from finite-
dimensional projections and then design in Section 3.2.2 an outer approximation
algorithm to solve the convex control problem (Q).

3.2.1 Outer description

A straightforward way to reduce the investigation of the convex sets C to finite
dimension is to discretize the control functions. However, this approach restricts the
feasible region of (Q), so that we would just obtain an inner description of C. In
particular, the description depends on the discretization and does not provide valid
cutting planes for C in function space.

We thus project the set C to a finite-dimensional space RM by means of M ∈ N
linear and continuous functionals Φi ∈ L2(0, T ;Rn)∗, i = 1, . . . ,M . The resulting
projection then reads

(3.2) Π: BV (0, T ;Rn) 3 u 7→
(
〈Φi, u〉L2(0,T ;Rn)∗,L2(0,T ;Rn)

)M
i=1
∈ RM ,

which is a linear mapping. For instance, for a control u ∈ Cmax, as defined in (3.1),
an intuitive approach would be to choose some time points t1, . . . , tM ∈ (0, T ),
and see if any switch uj with j ∈ {1, . . . , n} changes more than σ by counting all
differences |uj(ti)− uj(ti−1)| for i = 2, . . . ,M . In this case, the projection Π would
be defined through pointwise evaluations, i.e., the operators Φi would correspond
to Dirac distributions δti at the time points ti for i = 1, . . . ,M . These operators,
however, are not allowed, since δti(v) for v ∈ L2(0, T ;Rn) is not well-defined, i.e.,
δti /∈ L2(0, T ;Rn)∗. A simple modification of the approach is to look at the local
averages of the controls uj , 1 ≤ j ≤ n, over small intervals in order to approximately
detect the variation by the changes in the projection vector. In the following, we
therefore often restrict ourselves to local averaging operators of the form

(3.3) 〈Φ(j−1)N+i, u〉L2(0,T ;Rn)∗,L2(0,T ;Rn) := 1
λ(Ii)

∫
Ii

uj dt

for j = 1, . . . , n with suitably chosen subintervals Ii ⊆ (0, T ), i = 1, . . . , N , and
M := nN , where λ(Ii) denotes the Lebesgue measure of Ii.
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Some of the following results hold for general projections as in (3.2), while others
depend on the specific choice (3.3) of the operators. The central result underlying
our approach is that, for increasing N , projections ΠN can be designed such that

(3.4) C =
⋂
N∈N
{v ∈ L2(0, T ;Rn) : ΠN (v) ∈ ΠN (C)} ,

where Π(C) := {Π(u) : u ∈ C} ⊆ RM . In other words, a complete description of
all finite-dimensional sets Π(C) also leads to a complete description of the convex
set C in function space. We first observe that our general Assumptions (C1) and (C2)
guarantee the closedness of the finite-dimensional set Π(C) in RM .

Lemma 3.3. For any Π as in (3.2), the set Π(C) is closed in RM .

Proof. Let {Π(uk)}k∈N ⊆ RM be a convergent sequence in Π(C), resulting from the
projection of controls uk ∈ C, k ∈ N, with Π(uk) → ω in RM for k → ∞. Thanks
to the box constraints, the sequence {uk}k∈N is bounded in L∞(0, T ;Rn), so that
there exists a weakly-∗ converging subsequence, again denoted by {uk}k∈N, such
that uk ⇀∗ u in L∞(0, T ;Rn) for k → ∞. Since the weak-∗ convergence implies
weak convergence in L2(0, T ;Rn) and Π is weakly continuous in L2(0, T ;Rn), we
get Π(uk) → Π(u) for k → ∞. Since C is convex and closed in L2(0, T ;Rn) by
Assumption (C1) and (C2), hence weakly closed, we also deduce u ∈ C. We thus
have ω = limk→∞Π(uk) = Π(u), so that ω lies in Π(C). Hence, the set Π(C) is
closed in RM .

As a consequence, we obtain that the subset of L2(0, T ;Rn) corresponding to the
finite-dimensional projection Π is convex and closed in L2(0, T ;Rn).

Lemma 3.4. For any Π as in (3.2), the set

V := {v ∈ L2(0, T ;Rn) : Π(v) ∈ Π(C)}

is convex and closed in L2(0, T ;Rn).

Proof. The convexity assertion follows from the convexity of C together with the lin-
earity of Π. Closedness follows from Lemma 3.3 and the continuity of Π in L2(0, T ;Rn).

Moreover, each projection Π gives rise to an outer description of the convex set C
in L2(0, T ;Rn), since every u ∈ C satisfies Π(u) ∈ Π(C) by definition.

Lemma 3.5. For any Π as in (3.2), we have C ⊆ V.

Since Π(C) is closed by Lemma 3.3 and convex due to the convexity of C and the
linearity of Π, it can be fully described by its supporting half spaces. Consequently,
we can also write the sets V in Lemma 3.5 as

V = {v ∈ L2(0, T ;Rn) : a>Π(v) ≤ b for all valid inequalities

(a, b) ∈ RM+1 for Π(C)} .
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The sets V can thus be used to derive outer approximations of C by linear inequali-
ties. Note that the closedness of Π(C) in RM is crucial to outer describe C by linear
inequalities in function space. However, we further need for our approach that C can
be fully described with the help of appropriate sets V and that the linear inequalities
appearing in V can be computed efficiently.

Let us first show that C can be fully described with the help of finite-dimensional
sets Π(C) if the chosen projections Π are defined through appropriate local averaging
operators of the form (3.3).

Theorem 3.6. For each k ∈ N, let Ik1 , . . . , IkNk , Nk ∈ N, be disjoint open intervals
in (0, T ) such that

(i)
⋃Nk
i=1 I

k
i = [0, T ] for all k ∈ N and

(ii) maxi=1,...,Nk λ(Iki )→ 0 for k →∞.

Set Mk := nNk and define projections Πk : BV (0, T ;Rn)→ RMk , for k ∈ N, by

(3.5) 〈Φk
(j−1)Nk+i, u〉L2(0,T ;Rn)∗,L2(0,T ;Rn) := 1

λ(Iki )

∫
Iki

uj(t) dt

for j = 1, . . . , n and i = 1, . . . , Nk. Moreover, set

Vk := {v ∈ L2(0, T ;Rn) : Πk(v) ∈ Πk(C)} .

Then

(3.6) C =
⋂
k∈N

Vk .

Proof. The inclusion “⊆” in (3.6) follows directly from Lemma 3.5, it thus remains
to show “⊇”. For this, let

u ∈
⋂
k∈N

Vk .

By definition of u, we have Πk(u) ∈ Πk(C) for every k ∈ N. Hence, there exist
controls uk ∈ C with Πk(u) = Πk(u

k) , i.e.,

(3.7)
∫
Iki

(uk − u) dt = 0 ∀ i = 1, . . . , Nk, k ∈ N .

Let k ∈ N be fixed. Thanks to condition (i), we conclude that

(3.8) λ
(
I`i \

⋃
Ikr⊆I`i

Ikr

)
≤ 2 max

r=1,...,Nk
λ(Ikr ) .

for every ` ∈ N and i ∈ {1, . . . , N`}. Set E`i :=
⋃
Ikr⊆I`i

Ikr . Then (3.7) implies∫
I`i

(uk − u) dt =

∫
I`i \E`i

(uk − u) dt+

∫
E`i

(uk − u) dt

=

∫
I`i \E`i

(uk − u) dt
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and ua ≤ u ≤ ub a.e. in (0, T ) since every uk ∈ C, k ∈ N, satisfies the box constraints.
Together with (3.8), we thus obtain

(3.9)

∣∣∣ ∫
I`i

(uk− u) dt
∣∣∣ ≤ ∫

I`i \E`i
|uk − u| dt

≤ λ(I`i \ E`i ) ‖ub − ua‖L∞(0,T ;Rn)

≤ 2 max
r=1,...,Nk

λ(Ikr ) ‖ub − ua‖L∞(0,T ;Rn) ∀i = 1, . . . , N`, ` ∈ N .

The box constraints ua ≤ uk ≤ ub a.e. in (0, T ) for every uk ∈ C, k ∈ N, now im-
ply that there exists a weakly convergent subsequence, which we again denote by the
same symbol for simplicity, with uk ⇀ ũ in L2(0, T ;Rn). Together with maxr=1,...,Nk λ(Ikr )→
0 for k →∞ by condition (ii) and (3.9), the weak convergence of {uk}k∈N to ũ im-
plies

(3.10)
∫
I`i

(ũ− u) dt = 0 ∀ i = 1, . . . , N`, ` ∈ N .

It is well known that the span of the characteristic functions χI`i , for i = 1, . . . , N` and
` ∈ N, is dense in L2(0, T ), so that (3.10) immediately yields u = ũ in L2(0, T ;Rn).

We thus obtain uk ⇀ u in L2(0, T ;Rn). The set C is convex and closed in L2(0, T ;Rn)

by Assumption (C1) and (C2), thus weakly closed, so that we deduce u ∈ C.

For general sequences of intervals satisfying conditions (i) and (ii) of Theorem 3.6,
there is no subset relation between the sets Vk and, in particular, it is not clear how
the intersection

⋂
k∈N Vk is given. However, if the sequence of intervals satisfies that

the intervals Ik+1
1 , . . . , Ik+1

Nk+1
are a subdivision of Ik1 , . . . , IkNk , k ∈ N, then one can

show Vk ⊇ Vk+1.

Corollary 3.7. For each k ∈ N, let Ik1 , . . . , IkNk , Nk ∈ N, be disjoint open intervals
in (0, T ) such that

(i)
⋃Nk
i=1 I

k
i = [0, T ] for all k ∈ N,

(ii) maxi=1,...,Nk λ(Iki )→ 0 for k →∞, and
(iii) for each index r ∈ {1, . . . , Nk+1} there exists an index i ∈ {1, . . . , Nk} such

that Ik+1
r ⊆ Iki , i.e., the intervals form a nested sequence.

Let projections Πk : BV (0, T ;Rn)→ RMk be given as in (3.5) and let again

Vk = {v ∈ L2(0, T ;Rn) : Πk(v) ∈ Πk(C)} .

Then Vk ⊇ Vk+1 for all k ∈ N and

(3.11) C =
⋂
k∈N

Vk .
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Proof. The second assertion (3.11) has already been proven in Theorem 3.6. More-
over, Vk ⊇ Vk+1 for all k ∈ N can be easily shown, considering that each entry
of Πk is a convex combination of entries of Πk+1 thanks to condition (iii). More
precisely, condition (iii) states that the intervals defining Πk+1 form a subdivision
of the intervals defining Πk, such that each entry of Πk is indeed a convex combina-
tion of entries in Πk+1. For v ∈ Vk+1, we know that there exists u ∈ C such that
Πk+1(v) = Πk+1(u). This, together with the fact that Πk is a convex combination of
entries of Πk+1, directly yields Πk(v) = Πk(u) ∈ Πk(C) and we obtain v ∈ Vk.

Our aim is to exploit (3.6) in order to separate infeasible controls from the convex
set C in function space with the help of the separation algorithms of the finite-
dimensional projection sets Π(C). This approach is particularly appealing in case
the separation problem for Π(C) is tractable. This property cannot be guaranteed in
general. In fact, the Example 3.8 below shows that every closed and bounded convex
set K can arise as Π(C) for some convex set C. E.g., K may be the 0/1 knapsack
polytope whose separation problem is NP-hard, since the knapsack problem is known
to be NP-hard [KAR72]. Even more, the example implies that Π(C) is not necessarily
a polyhedron in RM , i.e., cannot be described by finitely many linear inequalities.

Example 3.8. LetK ⊆ RM be a closed and bounded convex set. Moreover, let−∞ <

ua ≤ ub <∞ be given such that K ⊆ [ua, ub]
M . Define the set

CK :=
{
u ∈ BV (0, T ) : u(t) ∈ [ua, ub] f.a.a. t ∈ (0, T ),

|u|BV (0,T ) ≤M(ub − ua), (
∫ i
i−1 u dt)

M
i=1 ∈ K

}
and set T := M . The set CK is convex and thus satisfies Assumption (C1). Also
Assumption (C2) is easy to verify, using the closedness of K and Lemma 2.5,
which guarantees, for any sequence {uk}k∈N ⊆ CK converging strongly to some u
in L2(0, T ) ↪→ L1(0, T ), that |u|BV (0,T ) ≤ lim infk→∞ |uk|BV (0,T ) ≤ M . Defining Π

by local averaging over the intervals (i− 1, i), i = 1, . . . ,M , we obtain Π(CK) = K.

Example 3.9. Let us consider the set Cmax defined in (3.1) and a fixed projection Π

defined by local averaging operators over disjoint intervals Ii = (ai, bi) ⊆ (0, T )

for i = 1, . . . ,M . Moreover, for the sake of exposition, let n = 1, i.e., we restrict our-
selves to a single switch. Note, however, that the following results for the projection
set Π(Cmax) can easily transferred to case of multiple switches, since the constraints
in Cmax are defined switch-wise.

The projection set Π(Cmax) is given by

(3.12) Π(Cmax) =

{
v ∈ [0, 1]M :

M∑
i=2

|vi − vi−1| ≤ σ

}
.

For the inclusion “⊇”, let v ∈ [0, 1]M satisfy
∑M

i=2 |vi − vi−1| ≤ σ. By setting u
constantly vi on Ii and copying the value from any of the neighboring intervals
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for points in (0, T ) not covered by any interval, we obtain a control u ∈ Cmax

with Π(u) = v.
For the reverse inclusion “⊆”, let u ∈ Cmax be the good representative of the

corresponding equivalence class in Cmax; compare Theorem 2.11. Due to u(t) ∈ [0, 1]

f.a.a. t ∈ (0, T ), we directly get Π(u) ∈ [0, 1]M . Moreover, we can rewrite the local
average of u over Ii = (ai, bi), i ∈ {1, . . . ,M}, as

Π(u)i = 1
bi−ai

∫ bi

ai

u(s) ds =

∫ 1

0
u(ai + t (bi − ai)) dt ,

so that we get

M∑
i=2

|Π(u)i −Π(u)i−1| =
M∑
i=2

∣∣∣∣∫ 1

0
[u(ai + t (bi − ai))− u(ai−1 + t (bi−1 − ai−1))] dt

∣∣∣∣
≤
∫ 1

0

M∑
i=2

|u(ai + t (bi − ai))− u(ai−1 + t (bi−1 − ai−1))| dt .

For each t, the sum in the above integral is less or equal than pV (u, (0, T )) by
definition and thus, we get

∑M
i=2 |Π(u)i−Π(u)i−1| ≤ pV (u, (0, T )) = |u|BV (0,T ) ≤ σ,

where pV (u, (0, T )) = |u|BV (0,T ) holds due to Theorem 2.10. Due to (3.12), it easy
to see that Π(Cmax) can be completely described by the constraints 0 ≤ vi ≤ 1 for
i = 1, . . . ,M and

∑M
i=2(−1)%(i)(vi−1 − vi) ≤ σ for all % : {2, . . . ,M} → {0, 1}. The

most violated constraint for v̄ /∈ Π(Cmax) can thus be computed in linear time in M
by setting %(i) = 1 if and only if v̄i−1 ≤ v̄i.

3.2.2 Outer approximation algorithm

We now design an outer approximation algorithm to solve the convex optimal control
problem (Q). To this end, we use the formulation (Q’) and first solve (Q’) without
the constraints u ∈ C, but keeping the box constraints ua ≤ u ≤ ub a.e. in (0, T )

on the controls. We next use the outer descriptions of the projection sets Π(C)

appearing in (3.4) to cut off the resulting control u ∈ L2(0, T ;Rn) if some of
the conditions Π(u) ∈ Π(C) are violated. More formally, we fix a projection op-
erator Π: BV (0, T ;Rn) 3 u 7→

(
〈Φi, u〉L2(0,T ;Rn)∗,L2(0,T ;Rn)

)M
i=1
∈ RM such that

Π(u) /∈ Π(C) holds. Since the set Π(C) is convex and closed in RM , it is the in-
tersection of its supporting half spaces and can be described by linear inequality
constraints. Let us define the set of all valid linear inequalities for Π(C) as

HC,Π = {(a, b) ∈ [−1, 1]M × R : a>w ≤ b ∀w ∈ Π(C)} ,

where a ∈ [−1, 1]M can be assumed without loss of generality by scaling. To cut
off the infeasible control u, we choose for Π(u) ∈ RM a violated linear inequality
constraint induced by (a, b) ∈ HC,Π and add the constraint a>Π(u) ≤ b to the
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3.2. Outer approximation

problem. Afterwards, we again solve the resulting parabolic control problem. By
repeatedly applying this procedure, the outer approximation for (Q) read as follows:

Algorithm 2 Outer approximation algorithm for (Q)

1: Set k = 0, T0 = ∅, I0
1 = (0, T ) and N0 = 1.

2: Solve

(Qk)


min f(u)

s.t. ua ≤ u ≤ ub a.e. in (0, T ) ,

a>Π(u) ≤ b ∀ (Π, a, b) ∈ Tk .

Let uk be the optimal solution.
3: if uk ∈ C then
4: return uk as optimal solution.
5: else
6: Determine intervals Ik+1

i , 1 ≤ i ≤ Nk+1, such that Πk+1(uk) /∈ Πk+1(C).
7: Find an optimizer (ak+1, bk+1) ∈ arg max(a,b)∈HC,Πk+1

(a>Πk+1(uk)− b).
8: Set Tk+1 = Tk ∪ {(Πk+1, ak+1, bk+1)}, k = k + 1 and go to Step 2.

For the rest of this section, we assume that the local averaging operators satisfy
condition (i) and (ii) of Theorem 3.6. Some remarks on Algorithm 2 are in order.
First note that, by the standard direct method of calculus of variations, the existence
of a global minimizer for (Qk) and its uniqueness is guaranteed if the Tikhonov
parameter α is positive. More specifically, the set

{u ∈ L2(0, T ;Rn) : ua ≤ u ≤ ub a.e. in (0, T )}

is convex, bounded and closed in L2(0, T ;Rn). As the operators Π are linear and
continuous in L2(0, T ;Rn), we deduce that the feasible region of (Qk) is a convex,
bounded and closed subset of the reflexive Banach space L2(0, T ;Rn). In addition,
it is not empty if C 6= ∅ and the objective f is weakly lower semi-continuous. Thus,
all prerequisites of Theorem 2.17 are satisfied and there exists a global minimizer
of (Qk). If α > 0, then f is strongly convex, so that the global minimizer is unique.

Step 7 of the algorithm is well-defined since a>Πk+1(uk) is bounded from above
with a ∈ [−1, 1]M and Πk+1(uk) bounded due to the box constraints. In addition, b
is bounded from below due to Πk+1(C) 6= ∅. Note that the number of necessary half
spaces inHC,Π to describe Π(C) can be infinite in general and the separation problem
for Π(C) in Step 7 may be NP-hard, as seen in Example 3.8. However, in Chapter 5,
we show that, for the convex hull of prominent examples of switching constraints D
in our problem (P), the separation problem for Π(conv(D)) is tractable and that the
projection sets Π(conv(D)) are polyhedra in these cases.
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Next, we note that Step 6 is well-defined thanks to

C =
⋂
k∈N
{v ∈ L2(0, T ;Rn) : Πk(v) ∈ Πk(C)}

by Theorem 3.6. Consequently, an important subproblem in the outer approxima-
tion algorithm consists in determining appropriate intervals Ii of the local averaging
operators, so that for a given uk we have Π(uk) /∈ Π(C). In view of Theorem 3.6,
the desired property Π(uk) /∈ Π(C) follows as soon as Π is defined by a large
enough number of small enough intervals, and remains valid for all further refine-
ments of the intervals by Corollary 3.7. Note, however, that Step 6 does not exclude
to set Πk+1 = Πk if this suffices to cut off uk.

From a practical point of view, we obtain uk by solving the parabolic optimal
control problem (Qk), so that we know uk only subject to a given discretization
of (0, T ); see Section 3.3.2 for more details on the numerical solution for (Qk). One
could thus argue that the best possible approach is to choose the intervals Ii exactly
as given by this discretization. This may be a feasible approach provided that the
finite-dimensional separation algorithm for Π(C), needed in Step 7, is fast enough
to deal with problems of large dimension M , as it is the case for Cmax, as shown
in Example 3.9, or for the convex hull of binary switches with an upper bound on
the total number of swichtings; see Section 5.1.2. However, one cannot expect such
a fast separation algorithm for general convex control constraints C, so that it may
be necessary to choose a smaller number of projection intervals, e.g., by considering
unions of intervals of the current discretization. But our approach allows us to choose
the projection intervals independent from the current discretization of the problem.
Given a control u and a convex control constraint set C, the question whether a
fixed (small) number of intervals is enough to construct Π such that Π(u) /∈ Π(C)

holds may not be efficiently decidable.
Finally, we emphasize that the stopping criterion in Step 3 is rather symbolic; in

general, it can be verified only by showing that no further violated cutting planes
exist, for any projection.

We now investigate the convergence behavior of Algorithm 2. It turns out that
choosing the most violated inequality in Step 7 is crucial to guarantee convergence;
this is also a common choice in semi-infinite programming [GK73] to guarantee con-
vergence of outer approximation algorithms. Moreover, we have to require addi-
tional assumptions on the partitions of (0, T ) used for the construction of the local
averaging operators: besides the conditions (i) and (ii) from Theorem 3.6, we need
condition (iii) from Corollary 3.7 and that the partitions are quasi-uniform. For this
purpose, we introduce

δ−k := min
1≤i≤Nk

λ(Iki ) and δ+
k := max

1≤i≤Nk
λ(Iki ) ,

and require
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3.2. Outer approximation

Assumption 3.10. There exists κ > 0 such that δ+
k ≤ κ δ

−
k for every k ∈ N.

Condition (iii) from Corollary 3.7 is in particular needed to transform the linear
expression a>Π`(u) − b, (a, b) ∈ RM` × R, in Π`(u) into a linear one in Πk(u) for
k ≥ `, i.e., a>Π`(u)− b = ā>Πk(u)− b̄ for some ā ∈ RMk and b̄ ∈ R. This is possible
since each entry of Π` is a convex combination of entries of Πk; compare the proof
of Corollary 3.7 and (3.15) in the proof of Theorem 3.11 below. By additionally ex-
ploiting that we have always added the most violated inequality for Πk(C) in Step 7,
we can prove the convergence of the outer approximation algorithm as follows:

Theorem 3.11. Assume that Algorithm 2 does not stop after a finite number of iter-
ations and that the sequence Ik1 , . . . , I

k
Nk

resulting from Step 6 is constructed such that
it meets the conditions (i)–(iii) from Corollary 3.7 and Assumption 3.10. Suppose
in addition that the Tikhonov parameter α is positive. Then the sequence {uk}k∈N
converges strongly in L2(0, T ;Rn) to the unique global minimizer of (Q).

Proof. Thanks to the box constraints ua ≤ u ≤ ub a.e in (0, T ) in (Qk), the se-
quence {uk}k∈N is bounded in L∞(0, T ;Rn), so that there exists a weakly-∗ converg-
ing subsequence, denoted by {ukm}m∈N, with ukm ⇀∗ u? in L∞(0, T ;Rn) form→∞.
Since the weak-∗ convergence implies weak convergence in L2(0, T ;Rn) and the local
averaging operators are clearly weakly continuous, we thus get Π(ukm)→ Π(u?) for
m→∞ and any projection Π occurring in Algorithm 2. Additionally, the set

{u ∈ L2(0, T ;Rn) : ua ≤ u ≤ ub a.e. in (0, T )}

is convex and closed, hence weakly closed, and therefore ua ≤ u? ≤ ub a.e. in (0, T ).
Consequently, u? is feasible for all problems (Qk), k ∈ N. The optimality of ukm

for (Qkm) now implies f(ukm) ≤ f(u?) and the weak lower semi-continuity of f thus
gives

(3.13) f(u?) ≤ lim inf
m→∞

f(ukm) ≤ lim sup
m→∞

f(ukm) ≤ f(u?) ,

i.e., f(ukm)→ f(u?) form→∞. Since u 7→ ‖Su−yd‖2L2(Q) and u 7→ ‖u−
1
2‖

2
L2(0,T ;Rn)

are both convex and lower semi-continuous, hence weakly lower semi-continuous, the
convergence of the objective and the assumption α > 0 imply

‖ukm − 1
2‖

2
L2(0,T ;Rn) → ‖u

? − 1
2‖

2
L2(0,T ;Rn) .

Since weak and norm convergence in Hilbert spaces imply strong convergence, this
gives the strong convergence of {ukm}m∈N to u? in L2(0, T ;Rn). We next prove

(3.14) u? ∈ V` = {v ∈ L2(0, T ;Rn) : Π`(v) ∈ Π`(C)} ∀` ∈ N .

To this end, let ` ∈ N be arbitrary, but fixed, and choose

(ā, b̄) ∈ argmax(a,b)∈HC,Π`
(a>Π`(u

?)− b) .
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Then we obtain for every k ≥ ` and every u ∈ L2(0, T ;Rn) that

(3.15)

ā>Π`(u) =
n∑
j=1

N∑̀
i=1

ā(j−1)N`+i
1

λ(I`i )

∫
I`i

uj(t) dt

=

n∑
j=1

N∑̀
i=1

ā(j−1)N`+i
1

λ(I`i )

∑
Ikr⊆I`i

∫
Ikr

uj(t) dt

=

n∑
j=1

N∑̀
i=1

∑
Ikr⊆I`i

ā(j−1)N`+i
λ(Ikr )

λ(I`i )︸ ︷︷ ︸
=: (ãk)(j−1)Nk+r

1
λ(Ikr )

∫
Ikr

uj(t) dt = ã>k Πk(u) .

Note that the vector ãk = ((ãk)1, . . . , (ãk)Mk
) ∈ RMk , Mk = nNk, is well-defined,

since the intervals are nested by condition (iii) in Corollary 3.7. Thus, the strong
convergence of ukm to u? yields

(3.16)

ā>Π`(u
?)− b̄ = lim

m→∞
ā>Π`(u

km)− b̄

= lim
m→∞

ã>km+1Πkm+1(ukm)− b̄

= lim
m→∞

δ+
km+1

δ−`

[
δ−`

δ+
km+1

(
ã>km+1Πkm+1(ukm)− b̄

)]
.

Moreover, for every u ∈ C and every k ≥ `, we deduce from (3.15) and (ā, b̄) ∈ HC,Π`

that ã>k Πk(u) = ā>Π`(u) ≤ b̄, such that (ãk, b̄) induces a valid inequality for Πk(C).

Hence, for k sufficiently large, δ
−
`

δ+
k

(ãk, b̄) induces a valid inequality as well, where the
coefficients satisfy

δ−`
δ+
k

|(ãk)(j−1)Nk+r| =
δ−`
λ(I`i )

λ(Ikr )

δ+
k

|ā(j−1)N`+i| ≤ |ā(j−1)N`+i| ≤ 1

for all j = 1, . . . , n and all r = 1, . . . , Nk. Thus, δ−`
δ+
km+1

(ãkm+1, b̄) ∈ HC,Πkm+1
,

provided that m is sufficiently large, which in turn gives

δ−`
δ+
km+1

(
ã>km+1Πkm+1(ukm)− b̄

)
≤ a>km+1Πkm+1(ukm)− bkm+1 ,

because the most violated cutting plane is chosen in Step 7 of Algorithm 2. Together
with (3.16), the latter yields

(3.17) ā>Π`(u
?)− b̄ ≤ 1

δ−`
lim inf
m→∞

δ+
km+1(a>km+1Πkm+1(ukm)− bkm+1) .

Since u? is feasible for all (Qk) as seen above, we obtain for the right-hand side

δ+
km+1 (a>km+1Πkm+1(ukm)− bkm+1)

= δ+
km+1 (a>km+1Πkm+1(u?)− bkm+1) + δ+

km+1 a
>
km+1Πkm+1(ukm − u?)

≤ δ+
km+1 a

>
km+1Πkm+1(ukm − u?)
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and, since akm+1 ∈ [−1, 1]Mkm+1 , we can further estimate

(3.18)

|δ+
km+1 a

>
km+1Πkm+1(ukm − u?)|

≤ δ+
km+1

n∑
j=1

Nkm+1∑
i=1

1

λ(Ikm+1
i )

∫
Ikm+1
i

|ukmj − u
?
j | dt

≤ δ+
km+1

δ−km+1

n∑
j=1

Nkm+1∑
i=1

∫
Ikm+1
i

|ukmj − u
?
j | dt

≤ κ
n∑
j=1

‖ukmj − u
?
j‖L1(0,T ) → 0, as m→∞ ,

where we used Assumption 3.10 and the strong convergence of ukm to u?. From (3.17)
we now obtain ā>Π`(u

?) − b̄ ≤ 0 and thus a>Π`(u
?) − b ≤ 0 for all (a, b) ∈ HC,Π`

due to the choice (ā, b̄) ∈ arg max(a,b)∈HC,Π`
(a>Π`(u

?) − b). This gives u? ∈ V`, as
claimed.

Since ` ∈ N was arbitrary, we finally arrive at

u? ∈
⋂
`∈N

V` = C ,

where the equality was shown in Theorem 3.6 and Corollary 3.7, respectively, i.e., the
control u? is feasible for problem (Q). To show its optimality, consider any feasible
control u ∈ L2(0, T ;Rn) for (Q). Then u is also feasible for (Qkm) for every m ∈ N,
and the optimality of ukm implies f(ukm) ≤ f(u). Due to f(ukm)→ f(u?) by (3.13),
we thus have the optimality of u?.

Now, since α > 0 by assumption, (Q) is a strictly convex problem such that u? is
the unique global minimizer of (Q). A well-known argument by contradiction then
shows the strong convergence of the whole sequence {uk}k∈N in L2(0, T ;Rn).

Remark 3.12. An inspection of the above proof allows the following modification of
the quasi-uniformity condition in Assumption 3.10: since the subsequence {ukm}m∈N
is bounded in L∞(0, T ;Rn), Lebesgue’s dominated convergence theorem, see, e.g., [Alt16,
Lemma 3.25], implies that ukm converges strongly to u? in Lq(0, T ;Rn) for every
q <∞. With an estimate analogous to (3.18) and Hölder’s inequality, one then sees
that the condition

(3.19)
Nk∑
i=1

(δ+
k )q

′
λ(Iki )1−q′ ≤ c <∞ for all k ∈ N

is sufficient for the convergence result in (3.18). Herein, q′ is the conjugate exponent
and can thus be chosen arbitrarily close to 1. It is easily seen that Assumption 3.10
implies (3.19). Nevertheless, we decided to require the stronger Assumption 3.10,
since it is more natural and certainly more relevant from a practical point of view.
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3.3 Solution of OCP relaxations

It remains to explain how we solve the optimal control problems (Qk) appearing in
the outer approximation algorithm numerically. For this purpose, we state the first
order optimality systems of the problems and then show that they can be addressed
by a semi-smooth Newton algorithm, which is the state-of-the art solution approach
for convex control problems.

3.3.1 Optimality conditions

Let us first set down the KKT-conditions for (Qk). For this, we need the existence
of Lagrange multipliers for box constraints and finitely many linear inequalities con-
straints, as appearing in the relaxation (Qk). The result can be found in [Wac22],
even in a slightly more general setting than (Qk). With

Ψ: L2(0, T ;Rn)→ L2(0, T ;H−1(Ω)), (Ψu)(t) =
n∑
j=1

uj(t)ψj ,

the solution operator Σ: L2(0, T ;H−1(Ω)) → W (0, T ) of the heat equation with
homogeneous initial condition, as well as the function ζ ∈W (0, T ) as solution for

∂tζ −∆ζ = 0 in L2(0, T ;H−1(Ω)), ζ(0) = y0 in L2(Ω) ,

defined in Section 3.1.2, the reduced objective in (Qk) reads

f(u) = 1
2 ‖ΣΨu+ ζ − yd‖2L2(Q) + α

2 ‖u−
1
2‖

2
L2(0,T ;Rn) .

By the chain rule, its Fréchet derivative at u ∈ L2(0, T ;Rn) is given by

(3.20) f ′(u) = Ψ∗Σ∗(ΣΨu+ ζ − yd) + α(u− 1
2) ∈ L2(0, T ;Rn) ,

where we identified L2(0, T ;Rn) with its dual using the Riesz representation theorem.
By standard methods, see, e.g., [Trö10, Sect. 3.6], one shows that π = Σ∗g, for given
g ∈ L2(0, T ;H−1(Ω)) ↪→W (0, T )∗, is the solution for the backward-in-time problem

(3.21) −∂tπ −∆π = g in L2(0, T ;H−1(Ω)), π(T ) = 0 in L2(Ω)

and is therefore an element of W (0, T ), i.e., Σ∗ : L2(0, T ;H−1(Ω))→W (0, T ) is the
solution operator of (3.21). Furthermore, the adjoint of Ψ is given by

Ψ∗ : L2(0, T ;H1
0 (Ω))→ L2(0, T ;Rn),

(Ψ∗w)(t) =
(
〈ψj , w(t)〉H−1(Ω),H1

0 (Ω)

)n
j=1

f.a.a. t ∈ (0, T ) .

Now we have everything at hand to obtain the following KKT-conditions. Note that
we here consider S = Σ ◦Ψ + ζ, Σ, and Ψ with different domains and ranges. But,
with a little abuse of notation, we always use the same symbols.
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Proposition 3.13. Denote the inequality constraints associated with the cutting
planes in (Qk) by Gu ≤ b with G : L2(0, T ;Rn)→ Rk and b ∈ Rk. Assume moreover
that a function û ∈ L∞(0, T ;Rn) exist such that

ua(t) < ûj(t) < ub(t) for all j = 1, . . . , n and f.a.a. t ∈ (0, T ) ,(3.22a)

Gû ≤ b .(3.22b)

Then a function ū ∈ L∞(0, T ;Rn) with associated state ȳ = S(ū) ∈ W (0, T ) is
optimal for (Qk) if and only if Lagrange multipliers µa, µb ∈ L2(0, T ;Rn) and λ ∈ Rk

and an adjoint state p ∈ W (0, T ) exist such that the following optimality system is
satisfied

−∂tp−∆p = ȳ − yd in L2(0, T ;H−1(Ω)), p(T ) = 0 in L2(Ω) ,(3.23a)

Ψ∗p+ α (ū− 1
2) + µb − µa +G∗λ = 0 a.e. in (0, T ) ,(3.23b)

µa ≥ 0, µa(ū− ua) = 0, ū ≥ ua a.e. in (0, T ) ,(3.23c)

µb ≥ 0, µb(ū− ub) = 0 , ū ≤ ub a.e. in (0, T ) ,(3.23d)

λ ≥ 0, λ>(Gū− b) = 0, Gū ≤ b .(3.23e)

Proof. In view of (3.20) and (3.21), the necessity of (3.23a)–(3.23e) immediately
follows from [Wac22, Thm. 3.3]. Due to the convexity of the optimal control prob-
lem (Qk), these conditions are also sufficient for (global) optimality thanks to The-
orem 2.28.

Note that the existence of a Slater-point û in Proposition 3.13 is in general neces-
sary for the existence of Lagrange multipliers for (Qk), as shown in [Wac22]. Such a
Slater-point is usually easy to find for a given set C. E.g., for Cmax defined in (3.1)
the control u ≡ 1/2 ∈ Cmax satisfies the Slater conditions (3.22a) and (3.22b).

3.3.2 Semi-smooth Newton method

The semi-smooth Newton method is one of the prevailing solution approaches for
optimization problems that involve non-smooth, non-convex functions with inequal-
ity constraints. In particular, the method can effectively handle pointwise respec-
tively componentwise complementarity constraints, as appearing in the optimality
system (3.23a)–(3.23e). For this, nonlinear complementary functions such as, e.g.,
the max- or min-function, are used to equivalently rewrite (3.23b)–(3.23e) in the
form

Ψ∗p+ α(ū− 1
2) +G∗λ

+ min
(
−Ψ∗p−G∗λ+ α (1

2 − ua), 0
)

+ max
(
−Ψ∗p−G∗λ+ α (1

2 − ub), 0
)

= 0 a.e. in (0, T ) ,

νλ+ max(0, Gū+ νλ− b) = 0 ,
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where ν > 0 can be chosen arbitrarily. Herein, we use the same symbol for the
componentwise mapping Rk 3 v 7→ (max(vi, 0))ki=1 ∈ Rk and the max-operator in
function space. In view of p = Σ∗(ΣΨū + ζ − yd) the optimality system is thus
equivalent to F (ū, λ) = 0 with F : L2(0, T ;Rn)×Rk → L2(0, T ;Rn)×Rk defined by

(3.24a)

F1(u, λ) := Ψ∗Σ∗(ΣΨu+ ζ − yd) + α(u− 1
2) +G∗λ

+ min
(
−Ψ∗Σ∗(ΣΨu+ ζ − yd)−G∗λ+ α (1

2 − ua), 0
)

+ max
(
−Ψ∗Σ∗(ΣΨu+ ζ − yd)−G∗λ+ α (1

2 − ub), 0
)

and

(3.24b) F2(u, λ) := −νλ+ max(0, Gu+ νλ− b) .

We now use the concept of semi-smoothness as developed in [CNQ00], see also the
work of [HIK02], to solve the above optimality system by means of a semi-smooth
Newton method. For this purpose, we need the following:

Assumption 3.14. In addition to our standing assumptions, there are exponents
q > 2 and 0 < s < 2/q such that the form functions satisfy ψj ∈ Hs

0(Ω)∗, j = 1, . . . , n,
and the linear functionals from (3.2) satisfy Φi ∈ Lq

′
(0, T,Rn)∗, i = 1, . . . ,M ,

where q′ is the conjugate exponent, i.e., 1/q + 1/q′ = 1.

Note that this mild additional regularity assumption on the functionals Φi is
satisfied by the local averaging operators (3.3) considered throughout this thesis.
Furthermore, the stronger assumption on the form functions is, for instance, satisfied
by ψj ∈ L2(Ω) for j = 1, . . . , n; see Remark 3.17 below.

Lemma 3.15. Under Assumption 3.14, the function F given by (3.24a) and (3.24b)
is Newton differentiable.

Proof. The proof is standard, but for convenience of the reader, we sketch the argu-
ments. The operator Π is linear and continuous with respect to u such that

L2(0, T ;Rn)× Rk 3 (u, λ) 7→ Gu+ νλ− b ∈ Rk

is continuously Fréchet differentiable. The chain rule [IK08, Lemma 8.15] and the
Newton differentiability of Rk 3 w 7→ max(0, w) ∈ Rk [HIK02, Lemma 3.1] yield
that the second component F2 is Newton differentiable.

Furthermore, according to [HIK02, Prop. 4.1(ii)], the mapping v 7→ max(0, v) is
Newton differentiable from Lp(0, T ;Rn) to Lr(0, T ;Rn) for 1 ≤ r < p ≤ ∞. We
obtain the required norm gap with p = q and r = 2 by utilizing the smoothing
properties of the PDE solution operators Σ and Σ∗, respectively. For all Θ satisfying
0 < Θ− 1/2 < 1/q < 1, there holds

W (0, T ) ↪→ Lq(0, T ; (H−1(Ω), H1
0 (Ω))Θ,1) ,
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where (H−1(Ω), H1
0 (Ω))Θ,1 denotes the real interpolation space, see, e.g., [Ama01,

Thm. 3]. For the latter, Theorem 4.7.1 and Theorem 6.4.5(5) in [BL76] together
yield

(H−1(Ω), H1
0 (Ω))Θ,1 ↪→ [H−1(Ω), H1

0 (Ω)]Θ = H2Θ−1
0 (Ω) ,

where [H−1(Ω), H1
0 (Ω)]Θ denotes the complex interpolation space. Consequently, if

we now choose Θ = 1/2(s + 1), which satisfies 0 < Θ − 1/2 = 1/2 s < 1/q due to our
assumptions on s, then Σ and Σ∗ map L2(0, T ;H−1(Ω)) linearly and continuously
into Lq(0, T ;Hs

0(Ω)).
According to Assumption 3.14, Ψ: v 7→

∑n
j=1 vjψj maps Lq′(0, T ;Rn) linearly

and continuously to Lq′(0, T ;Hs
0(Ω)∗). Thus, the Radon-Nikodým property ofHs

0(Ω)

implies
Ψ∗ : Lq(0, T ;Hs

0(Ω)) =
(
Lq
′
(0, T ;Hs

0(Ω)∗)
)∗ → Lq(0, T ;Rn) ,

and therefore

L2(0, T ;Rn) 3 u 7→ Ψ∗Σ∗(ΣΨu+ ζ − yd) ∈ Lq(0, T ;Rn)

is affine and continuous and hence continuously Fréchet differentiable. Moreover,
if we identify Φ`

i ∈ Lq
′
(0, T ;Rn)∗, i = 1, . . . ,M`, for a projection Π` occurring

in (Qk) with its Riesz representative, denoted by the same symbol, then its adjoint
operator Π∗` is given by RM` 3 v 7→

∑M`
i=1 viΦ

`
i ∈ Lq

′
(0, T ;Rn)∗, such that G∗λ is

given as

G∗λ =
k∑
`=1

M∑̀
i=1

λ` a
`
iΦ

`
i ∈ Lq

′
(0, T ;Rn)∗ ∼= Lq(0, T ;Rn)

and
Rk 3 λ 7→ G∗λ ∈ Lq(0, T ;Rn)

is linear and continuous, too. We get in summary that

L2(0, T ;Rn)× Rk 3 (u, λ) 7→ −Ψ∗Σ∗(ΣΨu+ ζ − yd)−G∗λ ∈ Lq(0, T ;Rn)

is continuously Fréchet differentiable. Hence, owing to the Newton differentiability of
max from Lq(0, T ;Rn) to L2(0, T ;Rn) [HIK02, Lemma 3.1] and the chain rule [IK08,
Lemma 8.15], F1 is also Newton differentiable.

Remark 3.16. In the proof of Lemma 3.15, we exploited some classical results
from interpolation theory to show that the operator Σ and its adjoint Σ∗ both
map L2(0, T ;H−1(Ω)) linearly and continuously into Lq(0, T ;Hs

0(Ω)) under Assump-
tion 3.14. However, knowledge of interpolation theory is not required to understand
the thesis, so we do not discuss it in detail. We refer to [BL76, Tri78] for an intro-
duction to the topic.
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Remark 3.17. In Section 2.1, we mentioned Sobolev spaces W k,p(Ω) and W k,p
0 (Ω),

respectively, for k ∈ N. We thus only defined Hk
0 (Ω) = W k,2

0 (Ω) for k ∈ N. In As-
sumption 3.10, we however require that the form functions ψj lie in Hs

0(Ω)∗ for a
non-integer s with 0 < s < 1. For an extension of the notion of standard Sobolev
spaces W k,p(Ω), k ∈ N, to spaces where k need not to be an integer by means of
complex interpolation between the Lebesgue space Lp(Ω) and Sobolev spaces, we
refer to [AF03]. Note that, for instance, the additional regularity assumptions of
the form functions are satisfied if ψj ∈ L2(Ω) for j = 1, . . . , n, due to the embed-
ding L2(Ω) ↪→ Hs

0(Ω)∗.

Now, as F is Newton differentiable, we choose

(3.25) Hm(δu, δλ) :=

(
RImΨ∗Σ∗ΣΨδu+ α δu+RImG∗δλ

−νRNmδλ+RBmGδu

)

as a generalized derivative of F at a given iterate zm := (um, λm) with the active and
inactive sets for the box constraints defined (up to sets of zero Lebesgue measure)
by

A+
m,j :=

{
t ∈ (0, T ) : − (Ψ∗pm +G∗λm + αub)(t)j + α

2 > 0
}
,

A−m,j :=
{
t ∈ (0, T ) : − (Ψ∗pm +G∗λm + αua)(t)j + α

2 < 0
}
,

Im,j := (0, T ) \ {A+
m ∪ A−m}

for j = 1, . . . , n, where pm := Σ∗(ΣΨum+ζ−yd), and the active and inactive cutting
planes

Bm := {i ∈ {1, . . . , k} : (Gum) i + νλmi > bi} ,
Nm := {1, . . . , k} \ Bm .

Moreover, by RIm,j ,RA±m,j : L2(0, T ) → L2(0, T ) and RNm ,RBm : Rk → Rk, we

denote the respective restriction operators, and RIm :=
(
RIm,j

)
1≤j≤n.

To compute the next iterate, we solve the semi-smooth Newton equation

(3.26) Hm(zm+1 − zm) = −F (zm) .

With the generalized derivative in (3.25) at hand, we have a closer look at the
equation. For the sake of simplicity, we omit here the index m at the inactive and
active sets. By definition of the active sets, the restriction of the first block in (3.26)
to A+

j and A−j , respectively, yields

um+1
j = (ub)j a.e. in A+

j and um+1
j = (ua)j a.e. in A−j

for j = 1, . . . , n and the second block of (3.26) restricted to N implies λm+1
|N = 0.

Therefore, we can restrict the semi-smooth Newton equation (3.26) to the active
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multipliers λm+1
|B and the inactive part um+1

|I :=
(
(um+1
j )|Ij

)
1≤j≤n of the control

variables only, which leads to

(3.27a)
(αI + Ψ∗Σ∗ΣΨR∗I)um+1

|I +G∗R∗Bλm+1
|B

= Ψ∗Σ∗
(
yd − ΣΨ(R∗A+ u

m+1
|A+ +R∗A− u

m+1
|A−)− ζ

)
+
α

2
a.e. in (0, T )

and

(3.27b)
(
GR∗Ium+1

|I
)
B = bB −

(
G(R∗A+ u

m+1
|A+ +R∗A− u

m+1
|A−)

)
B ,

where R∗A± := (R∗A±j
)1≤j≤n, um+1

|A± := ((um+1
j )|A±j )1≤j≤n and (Gu)B denotes the

restriction to indices in B. Note that the system (3.27a) and (3.27b) is linear in λm+1
|B

and um+1
|I . The semi-smooth Newton algorithm is now given as follows:

Algorithm 3 Semi-smooth Newton method for (Qk)

1: Choose (u0, λ0) ∈ L2(0, T ;Rn)×Rk, set A+
j = A−j = B = ∅ for j = 1, . . . , n and

m = 0.
2: Update the active and inactive sets Im,j , A+

m,j and A
−
m,j for j = 1, . . . , n, as well

as Bm and Nm.
3: if A+

m,j = A+
j ∧ A

−
m,j = A−j for j = 1, . . . , n and Bm = B ∧ m > 0 then

4: return (um, λm).
5: else
6: For j = 1, . . . , n, set um+1

j (t) = (ub)j(t) for t ∈ A+
m,j and um+1

j (t) = (ua)j(t)

for t ∈ A−m,j . Moreover, set λm+1
|Nm = 0 and compute (um+1

|Im , λ
m+1
|Bm) by solving

the system (3.27a) and (3.27b).
7: Set A+

j = A+
m,j and A−j = A−m,j for j = 1, . . . , n, as well as B = Bm and

m = m+ 1. Return to Step 2.

It is well-known, see, e.g., [IK08, Chap. 8], that the algorithm converges locally
superlinearly if all generalized derivatives appearing in the iteration are continuously
invertible and their inverses admit a common uniform bound. In our case, however,
it is very likely that G becomes rank deficient if the number k of cutting planes is
large or the implicit restrictions in C on the controls are strong; see Examples 4.9
and 4.10 in the context of the branch-and-bound algorithm in the next chapter.
The system (3.27a)–(3.27b) is then no longer uniquely solvable. Moreover, in the
case that α > 0 is small, one can only expect local superlinear convergence of the
algorithm and no longer global convergence, so that a globalization would be needed
for such instances.

After each iteration of the outer approximation algorithm presented in Section 3.2,
one has to solve a parabolic control problem (Qk) with only one additional cutting
plane by Algorithm 3. Due to this iterative structure, it is possible (and crucial) to
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speed up the algorithm by reoptimization. More precisely, the solution for the prior
outer approximation iteration can be exploited to initialize the active and inactive
sets in Algorithm 3; ; see Section 6.2.1 for the impact of reoptimization on the run
time of the outer approximation algorithm.

The convex control problem (Q) can only be solved to optimality in function space
by outer approximation if no further violated cutting plane can be found. Otherwise,
(Q) can only be solved approximately in finite time. In each outer approximation
iteration we obtain a safe dual bound for (Q) when Algorithm 3 stops, since an
optimal solution for (Qk) is then returned. The objective value of this solution thus
provides us a dual bound on the objective value of (Q).
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Mixed-integer optimal control

In this chapter, we want to determine globally optimal solutions for the non-convex
problem (P) by means of branch-and-bound. First, a branch-and-bound scheme
computes dual bounds for the original problem (P), corresponding to the root node
of the branch-and-bound tree. Often, this is done by solving a convex relaxation of
the problem. In our case, the convexification of (P) will be based on the description
of the convex hull of switching constraintsD through cutting planes lifted from finite-
dimensional projections, as studied in Section 3.2.1. Moreover, the dual bounds will
be computed by means of outer approximation, as discussed in Section 3.2.2. In
the case the optimal solution for the convexified problems is infeasible for (P), a
branching is next applied. This means that the set of feasible solutions is subdivided
into two (or more) subsets, corresponding to the child nodes of the root node. The
branching is then recursively applied to the child nodes. At the same time, primal
bounds on the optimal value of (P) are computed in a branch-and-bound scheme to
reduce the number of nodes in the branch-and-bound tree. For this, feasible solutions
for (P) are needed. We will here benefit from linear optimization algorithms over
the finite-dimensional projection sets; see Section 4.4.2 for more details. If the dual
bound of some branch-and-bound node is larger than the best known primal bound,
the node cannot contain any optimal solution, so that the entire subtree rooted at
this node can be ignored, i.e., the subproblem can be pruned. For more details on
standard branch-and-bound see Section 2.4.1.

Our branch-and-bound algorithm will differ significantly from the prevailing ap-
proaches for optimal control problems described in the introduction. First, we will
not limit the switching points to nodes associated with a predetermined discretiza-
tion of the PDE in (P), in contrast, e.g., to the tailored branch-and-bound algorithms
in [SJK11, JRS15] for the CIA problem. Instead, we will first start with a coarse
discretization, as branching has yet to fix larger parts of the switching structure, and
in the course of the algorithm, we will refine the discretization of the problems. Thus,
the algorithm will approximate the switching points of the optimal solution during

51



Chapter 4. Mixed-integer optimal control

run time. Secondly, we aim at a branch-and-bound algorithm that computes globally
optimal solutions (at least in the limit) since we will continue to refine the subprob-
lems in the branch-and-bound tree as long as we cannot exclude that a solution of
desired quality might lie in the current branch considering a finer discretization. To
this end, we need primal and dual bounds independent from the discretization. To
numerically compute such bounds, we will exploit the dual weighted residual meth-
ods, originating from Becker and Ranacher [BR98, BR01], to estimate the a posteriori
error of the discretization with respect to the cost functional; see Section 4.5.

To obtain a full branch-and-bound algorithm that achieves the above goals, we
have to overcome several obstacles. First, the branch-and-bound algorithm only
terminates if primal and dual bounds coincide. In the case of a finite-dimensional
convex problem with n binary variables, it is clear that the primal and dual bounds
are identical after all n variables are fixed so that the algorithm stops after a finite
number of iterations. However, the controls in the optimal control problem (P)
represent binary switches which can be operated over a given continuous time horizon
so that fixing the value of the switch in finitely many points has no effect, or is not
even well-defined in general. We thus have to take the switching constraints D into
account in order to obtain implicit restrictions on the set of feasible controls in the
nodes of the branch-and-bound tree. For this purpose, we first specify in Section 4.1
the precise assumptions on D. Next, we see in Section 4.2 how the effectiveness of
the fixings and the convergence of primal and dual bounds can be guaranteed.

The fixing of the switch at certain points in time leads now to a non-closed set of
feasible controls in the nodes. Section 4.3 is dedicated to describe the closed convex
hulls of these sets by generating linear cutting planes through finite-dimensional pro-
jections, following the ideas from Section 3.2.1. This enables us to obtain dual bounds
on the node relaxations with the help of the outer approximation algorithm developed
in Section 3.2.2. Unfortunately, the semi-smooth Newton method from Section 3.3.2
to solve the linear-quadratic parabolic control problems in each outer approximation
iteration became less stable with an increasing number of fixings. We thus propose
now in Section 4.4 to solve the problems by the alternating method of multipliers.
In addition, we develop in this section some heuristics to obtain primal bounds on
the optimal value of (P).

Finally, to obtain globally optimal solutions, all dual bounds computed in the
nodes of the branch-and-bound tree, as well as primal bounds must take discretiza-
tion errors into account in order to be independent from the current discretization.
In case the discretization-independent dual bound is too weak to cut off a node, we
may either have to branch or to refine the discretization, depending on the relation
between the current primal bound and the discretization-dependent dual bound. The
sophisticated interplay between branching, error analysis, and adaptive refinement
is at the core of our proposed approach, it is discussed in Section 4.5.
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This chapter is mainly based on [BGM24]. More specifically, most parts of Sec-
tion 4.2, Section 4.4 and Section 4.5 can be found in [BGM24] for the case of a single
switch, i.e., n = 1, while Section 4.1 builds on [BGM22a]. Moreover, Counterexam-
ple 4.11 in Section 4.3 is a slight modification of [BGM22a, Counterexample 3.1].

4.1 Problem specification

The main object of interest in this thesis is the set

D ⊆
{
u ∈ BV (0, T ;Rn) : u(t) ∈ {0, 1}n f.a.a. t ∈ (0, T )

}
of feasible switching controls. It is supposed to satisfy the two following assumptions:

D is a bounded set in BV (0, T ;Rn),(D1)

D is closed in L2(0, T ;Rn).(D2)

Note that, in this case, the BV-seminorm |uj |BV (0,T ) agrees with the minimal number
of switchings of any representative of uj with values in {0, 1}; compare Theorem 2.10
and Figure 2.1. Consequently, Assumption (D1) states that there exists an upper
bound on the total number of switchings over all (equivalence classes of) feasible
controls. This assumption is crucial for the existence of an optimal solution; see
Theorem 2.17 below. Without this condition, it would be possible to approximate
any control u with u(t) ∈ [0, 1]n arbitrarily well by binary switches which have
an infinite number of switchings in the limit, e.g., using the Sum-Up Rounding
approach [SBD12, KLM20]. Moreover, conv(D) then also satisfies Assumptions (D1)
and (D2), so that it can be fully described by linear inequalities in function space
by Theorem 3.6; see Section 4.3 for more details.

All the other data in the problem (P) are given as in Section 3.1.1. By using the
affine and continuous solution operator S = Σ ◦ Ψ + ζ, as defined in Section 3.1.2,
we can thus write (P) as

(P’)

{
min f(u) = J(Su, u)

s.t. u ∈ D .

The existence of a global minimizer of (P) can now be shown as follows:

Theorem 4.1. Let D 6= ∅. Then problem (P) admits a global minimizer.

Proof. Since D 6= ∅, we have f? := infu∈D f(u) ∈ R ∪ {−∞}. Let {uk}k∈N in D be
an infimal sequence with

lim
k→∞

f(uk) = f? .

We know that {uk}k∈N is a bounded sequence in BV (0, T ;Rn), since D is a bounded
set in BV (0, T ;Rn) by Assumption (D1), i.e.,

sup
k∈N
‖uk‖BV (0,T ;Rn) = sup

k∈N

(
‖uk‖L1(0,T ;Rn) +

∑n
j=1 |ukj |BV (0,T )

)
<∞ .
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By Theorem 2.7, BV (0, T ;Rn) is compactly embedded in L2(0, T ;Rn), and hence
there exists a strongly convergent subsequence, which we again denote by {uk}k∈N,
such that uk → u? in L2(0, T ;Rn) for k → ∞. Since D is closed in L2(0, T ;Rn) by
Assumption (D2), we deduce that u? ∈ D. The weak lower semi-continuity of the
objective function f leads to

f(u?) ≤ lim inf
k→∞

f(uk) = f? .

This implies f? > −∞ as well as the optimality of u? for (P’) and (P), respectively.

Instead of defining the set D of feasible controls as subset of BV (0, T ;Rn), we
may consider D a subset of functions with pointwise bounded variation, i.e.,

D ⊆ {u ∈ B̃V ([0, T ];Rn) : u(t) ∈ {0, 1}n for all t ∈ [0, T ]} ,

and require the following assumption instead of (D1):

(D̃1) D is a bounded set in B̃V ([0, T ];Rn) .

In this case, we would count every variation of the switches, even the deviation
in a single point, and the existence of a global minimizer of (P) would still be
guaranteed, as we will show in the following. Nevertheless, we will next see why
its more convenient to consider D a subset of BV (0, T ;Rn) in the context of our
parabolic optimal control problem (P).

The PDE in the problem (P) still admits a unique weak solution for any func-
tion u ∈ B̃V ([0, T ];Rn), since u is Lebesgue measurable and essentially bounded, i.e.,
u ∈ L∞(0, T ;Rn) ↪→ L2(0, T ;Rn); compare Section 2.2.4. In addition, the existence
of a global minimizer of (P) can be seen as follows:

Theorem 4.2. Let

(4.1) D ⊆ {u ∈ B̃V ([0, T ];Rn) : u(t) ∈ {0, 1}n for all t ∈ [0, T ]}

be non-empty and satisfy (D̃1) and (D2). Then problem (P) admits a global mini-
mizer.

Proof. Since D 6= ∅, we have f? := infu∈D f(u) ∈ R ∪ {−∞}. Let {uk}k∈N in D be
an infimal sequence with

lim
k→∞

f(uk) = f? .

We know that {uk}k∈N is a bounded sequence in B̃V ([0, T ];Rn), sinceD is a bounded
set in B̃V ([0, T ];Rn) by Assumption (D̃1), i.e., there exists some constant c > 0 such
that for all k ∈ N we have that

‖uk‖
B̃V ([0,T ];Rn)

= |uk(0)|+ pV (uk, [0, T ]) ≤ c .
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In particular, we know pV (uk, [0, T ]) ≤ c for all k ∈ N. Thus, by Helly’s selection the-
orem (c.f. Theorem 2.13), we find a subsequence, which we again denote by {uk}k∈N,
that converges pointwise everywhere to u? ∈ B̃V ([0, T ];Rn). By Lebesgue’s domi-
nated convergence theorem, see, e.g., [Alt16, Lemma 3.25], we now get that {uk}k∈N
converges strongly to u? in L2(0, T ;Rn). Since D is closed in L2(0, T ;Rn) by As-
sumption (D2), we deduce u? ∈ D. The weak lower semi-continuity of the objective
function f leads to

f(u?) ≤ lim inf
k→∞

f(uk) = f? .

This implies f? > −∞ as well as the optimality of u? for (P’) and (P), respectively.

An optimal control problem over D as defined in (4.1) is however not really
meaningful from an application point of view. To see this assume that the minimizing
sequence of (P) is given by

uk(t) =

{
1, for t ∈ [(1− 1/k) 1/2T, (1 + 1/k) 1/2T )

0, otherwise .

Then, as in Example 2.14, Helly’s selection theorem implies that the global minimizer
of (P) is

u?(t) =

{
1, for t = 1/2T

0, otherwise .

In real-world applications this switching pattern is not realizable and, with regard to
the PDE, the resulting state y? = Su? can also be attained if the switch is never on,
i.e., if u? = 0. This control is exactly the right continuous, good representative stated
in Theorem 2.11 of the corresponding equivalent class in L1(0, T ;Rn). Throughout
the thesis, we will thus consider D a subset of BV (0, T ;Rn).

In the upcoming subsections, we introduce two highly relevant classes of con-
straints D, from which special cases have already been considered in the context of
optimal control problems. From an application point of view, it here makes sense
to assume that the switches are off at the beginning of the time horizon. Based
on the consideration in Section 2.2.5, we will incorporate this requirement in the
constraints D we are going to study. The first class includes limiting the total
number of switchings to be smaller than a given value σ ∈ N. The second class
includes the minimum dwell time constraints, in which the time between consec-
utive switchings of the same switch is bounded from below. Both kind of con-
straints have already been considered in the context of optimal control problems;
see, e.g., [SJK11, JRS15, ZRS20, SZ21].
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4.1.1 Pointwise combinatorial constraints

By Assumption (D1), the total number of switchings of all switches is bounded
by some σ ∈ N. A relevant class of constraints arises when the switches must
additionally satisfy certain combinatorial conditions at any point in time. As an
example, it might be required that two specific switches are never used at the same
time, or that some switch can only be used when another switch is also used, e.g.,
because they are connected in series. More formally, we assume that a set U ⊆ {0, 1}n

is given and consider the constraints

(4.2)

DΣ
max(U) :=

{
u ∈ BV0(0, T ;Rn) : u(t) ∈ U f.a.a. t ∈ (0, T ),

|u|BV (−1,T ;Rn) =

n∑
j=1

|uj |BV (−1,T ) ≤ σ
}
,

where BV0(0, T ;Rn), as defined in (2.4), is used to account that the switches are off
at the beginning. As we extend the time horizon of the controls to (−1, T ), hidden
in the definition of BV0(0, T ;Rn), we have to modify Assumptions (D1) and (D2)
accordingly to

D is a bounded set in BV (−1, T ;Rn),(D1’)

D is closed in L2(−1, T ;Rn).(D2’)

We emphasize that the existence result of an optimal solution in Theorem 4.1 still
holds if the time horizon (0, T ) of the controls is adjusted to (−1, T ) and that the
time horizon of the PDE in (P) is not changed by the extended time horizon of the
controls.

Lemma 4.3. The set DΣ
max(U) satisfies Assumptions (D1’) and (D2’).

Proof. DΣ
max(U) obviously satisfies (D1’). Moreover, for any {uk}k∈N ⊆ DΣ

max(U)

that converges strongly to some u in L2(−1, T ;Rn) ↪→ L1(−1, T ;Rn), Lemma 2.5
guarantees that

|u|BV (−1,T ;Rn) ≤ lim inf
k→∞

|uk|BV (−1,T ;Rn) ≤ σ ,

because of supk∈N |uk|BV (−1,T ;Rn) ≤ σ. In addition, the strong convergence of
{uk}k∈N in L2(−1, T ;Rn) to u implies that a subsequence of {uk}k∈N converges point-
wise almost everywhere to u, so that the limit also satisfies u(t) ∈ U f.a.a. t ∈ (0, T )

and u(t) = 0 f.a.a. t ∈ (−1, 0). It follows that DΣ
max(U) is closed in L2(−1, T ;Rn)

and thus satisfies (D2’).

When the switches are independent, i.e., U = {0, 1}n, an alternative approach
could be to restrict the total number of switchings of each switch individually, i.e.,
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to consider

(4.3)
Dmax :=

{
u ∈ BV0(0, T ;Rn) : u(t) ∈ {0, 1}n f.a.a. t ∈ (0, T ),

|uj |BV (−1,T ) ≤ σ ∀ j = 1, . . . , n
}
.

However, as the constraint setDmax is defined by switch-wise constraints, each switch
can be treated individually and Dmax reduces to DΣ

max({0, 1}). More precisely,
Dmax = DΣ

max({0, 1})n so that by Lemma 4.3 it is clear that Dmax satisfies (D1’)
and (D2’). In addition, all the results we will obtain for the general class DΣ

max(U)

in Section 5.1 will be directly transferable to Dmax; compare Remark 5.2.

Remark 4.4. The fact that all switches are off at the beginning is not needed to
prove that DΣ

max(U) and Dmax both satisfy the general assumptions on the set of
feasible switching patterns.

4.1.2 Switching point constraints

Rather than considering pointwise combinatorial constraints on the switches, one
may impose restrictions on the position of the finitely many switching points of the
control u. For this, we use the parametrization of the control through its switching
points, given in Definition 2.15, and define the set of switching point constraint by

(4.4)
D(P ) := {ut1,...,tnσ ∈ BV (0, T ; {0, 1}n) : 0 ≤ t(j−1)σ+1 ≤ . . . ≤ tj σ <∞

∀1 ≤ j ≤ n s.t. (t1, . . . , tnσ) ∈ P} ,

where σ ∈ N is an upper bound on the total number of switchings of each switch
and P ⊆ Rnσ≥0.

Lemma 4.5. For P ⊆ Rnσ≥0 compact, the set D(P ) satisfies the assumptions in (D1)
and (D2).

Proof. Since u ∈ {0, 1}n a.e. in (0, T ) and |Juj | ≤ σ, 1 ≤ j ≤ n, hold for u ∈ D(P ) by
construction, every u ∈ D(P ) satisfies |u|BV (0,T ;Rn) ≤ nσ such that (D1) is satisfied.

To verify (D2), consider a sequence {uk}k∈N ⊆ D(P ) with uk = utk1 ,...,tknσ
→ u

in L2(0, T ;Rn) for k → ∞, where tk := (tk1, . . . , t
k
nσ) ∈ P for k ∈ N. From (D1)

and Lemma 2.5, we deduce u ∈ BV (0, T ;Rn). Moreover, there is a subsequence
that converges pointwise almost everywhere in (0, T ) to u. This yields u ∈ {0, 1}n

a.e. in (0, T ). Furthermore, as P is compact by assumption, there is yet another
subsequence, denoted by the same symbol for simplicity, such that tk → t̄ ∈ Rnσ

for k → ∞ with 0 ≤ t̄(j−1)σ+1 ≤ . . . ≤ t̄j σ < ∞ for j = 1, . . . , n and t̄ ∈ P . The
mapping

P 3 (t1, . . . , tnσ) 7→ ut1....,tnσ ∈ L2(0, T ;Rn)

is continuous, as can be seen as follows: if {(tk1, . . . , tknσ)}k∈N ⊆ P converges to
some t̄ ∈ Rnσ, then for every t ∈ (0, T ) \ {t̄1, . . . , t̄nσ} and j ∈ {1, . . . , n} it is clear
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that

#{i ∈ {1, . . . , σ} : tk(j−1)σ+i ≤ t} = #{i ∈ {1, . . . , σ} : t̄(j−1)σ+i ≤ t}

holds for k sufficiently large, so that utk1 ,...,tknσ(t) → ut̄1,...,t̄nσ(t) for k → ∞ follows
by Definition 2.15. Consequently, {utk1 ,...,tknσ}k∈N converges pointwise almost every-
where to ut̄1,...,t̄nσ in (0, T ). By Lebesgue’s dominated convergence theorem, see,
e.g., [Alt16, Lemma 3.25], {utk1 ,...,tknσ}k∈N then also converges strongly to ut̄1,...,t̄nσ
in L2(0, T ;Rn). Thus, we have

u = lim
k→∞

uk = lim
k→∞

utk1 ,...,tknσ
= ut̄1,...,t̄nσ in L2(0, T ;Rn) ,

which gives u ∈ D(P ).

Of particular importance is the case of affine linear constraints on the switching
points, i.e., the case where P is a polytope. For instance, the switch-wise minimum
dwell time constraints are of this type. For a given time s > 0, it is required
that the time elapsed between two switchings of each switch is at least s. This
implies, in particular, that the number of such switchings for each switch is bounded
by σ := dT/se. Since each switch can be considered individually, we can restrict
ourselves to a single switch, i.e., n = 1. Thus, we get the special case

(4.5)
D(s) :=

{
ut1,...,tσ ∈ BV (0, T ; {0, 1}) : t1, . . . , tσ ≥ 0 s.t.

ti − ti−1 ≥ s ∀ i = 2, . . . , σ
}
.

This kind of constraint can even be generalized to a situation where the mini-
mum dwell time after switching up is different from the minimum dwell time after
switching down. Such a setting is mostly considered in the literature in the context of
finite-dimensional optimization, see, e.g., [LLM04, BFR18], but also in the context
of optimal control with dynamic switches [BZH+20]. So, more generally, we may
consider any s̄ ∈ Rσ>0 and define

(4.6)
D(s̄) :=

{
ut1,...,tσ ∈ BV (0, T ; {0, 1}) : t1, . . . , tσ ≥ 0 s.t. t1 ≥ s̄1,

ti − ti−1 ≥ s̄i ∀ i = 2, . . . , σ
}
.

Remark 4.6. To model the situation in which the minimum dwell time after switch-
ing up from zero to one is different from the one after switching down from one to
zero, it is necessary to fix the start value of the switches. However, if we do not
assume that the switches are off at the beginning, we may write the corresponding
setD(P ) as disjoint union of two sets with 0 and 1, respectively, as start values. If the
switches are on at the beginning, we then need to adjust the representative ut1,...,tnσ
in Definition 2.15 to

ut1,...,tnσ : [0, T ]→ {0, 1}n, (ut1,...,tnσ)j(t) :=

{
1, if ηj≤(t) is even

0, if ηj≤(t) is odd .
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4.2 Branch-and-bound

The branching strategy is critical for enforcing the binarity of the switches and to
determine (or approximate) the optimal switching structure of the problem (P). The
most natural branching strategy for finite-dimensional binary problems consists of
picking a binary variable having a fractional value in the optimal solution for the
convex relaxation and then fixing this variable to zero in the first child node and
to one in the other; see [SJK11] for a similar approach in the context of optimal
control. However, in the infinite dimensional setting considered here, the situation
is more complicated: we need to deal with infinite dimensional variables, suggesting
that an infinite number of function values has to be fixed to uniquely determine
a solution for (P), and fixing a pointwise value of u has no effect in the function
space L2(0, T ;Rn). At this point, we can exploit Assumption (D1), which yields a
finite bound on the total number of switching points. The resulting restrictions in a
given node of the branch-and-bound tree are now a joint consequence of the finitely
many fixing decisions taken so far and of the constraint u ∈ D.

4.2.1 Pointwise fixings

Assume that our branching strategy always picks appropriate time points τ ∈ (0, T ),
as well as a switches j ∈ {1, . . . , n}, and fixes uj(τ) = 0 in the first subproblem
and uj(τ) = 1 in the second. For τ ∈ (0, T ), this is well-defined by the reasoning
in Section 2.2.3. For τ = 0, we use the same notation uj(0) = c, c ∈ {0, 1}, as
shorthand for limt↘0 uj(t) = c. Then, all our subproblems, corresponding to the
nodes in the branch-and-bound tree, are problems in BV (0, T,Rn) of the form

(SP)


inf f(u) = J(Su, u)

s.t. u ∈ D
ujκ(τκ) = cκ ∀κ = 1, . . . , L

with (τκ, jκ, cκ) ∈ [0, T ) × {1, . . . , n} × {0, 1} for 1 ≤ κ ≤ L. In the following, we
denote the feasible set of (SP) by

DSP := {u ∈ D : ujκ(τκ) = cκ ∀κ = 1, . . . , L} .

Note that the set DSP is not closed in general, and hence the subproblem (SP) does
not necessarily admit a global minimizer. However, this is no problem since we are
only interested in the optimal value of (SP) in our branch-and-bound framework.
In fact, our approach will produce a series of dual bounds by convexifying (SP) and
these covexifications will provide the same (primal) optimal value of (SP) in the limit;
see Theorem 4.7 below. For the convexification of (SP), we consider the closure of
the convex hull conv(DSP), since then conv(DSP) is obviously closed in L2(0, T ;Rn).
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Consequently, conv(DSP) meets the assumptions in (C1) and (C2) from Section 3.1
and all results from Chapter 3 are applicable to the convexification

(SPC)

{
inf f(u) = J(Su, u)

s.t. u ∈ conv(DSP) ⊆ BV (0, T ; [0, 1]n)

of the suproblem (SP) in L2(0, T ;Rn). More specifically, thanks to Theorem 3.2
and Theorem 3.6, respectively, (SPC) admits a global minimizer and its feasible
region can be fully described through cutting planes lifted from finite-dimensional
projections. Therefore, the convexified problem can be solved by means of outer ap-
proximation, as in Section 3.2, and each iteration of the latter algorithm will provide
us a dual bound for (SP) within our branch-and-bound scheme; see Section 4.4.1.

In a reasonable branching strategy, one may expect that an increasing number of
fixing decisions, taken along a path in the branch-and-bound tree starting at the root
node, leads to a unique solution in the limit (if the subproblems along the path are
not infeasible). In particular, the optimal values of (SP) and (SPC) should converge
to each other. The next result shows that both properties are guaranteed in our
infinite dimensional setting if the fixing positions for all n switches are sufficiently
well-distributed.

Theorem 4.7. For L ∈ N and κ ∈ {1, . . . , L}, let fixings τLκ ∈ [0, T ), jLκ ∈ {1, . . . , n}
and cLκ ∈ {0, 1} be given. Moreover, let

{τL1 (j), . . . , τLLj (j)} := {τLκ : κ = 1, . . . , L with jLκ = j}

be the set of all time points for which the j-th switch was fixed to some value, and let
{cL1 (j), . . . , cLLj (j)} be the corresponding values, 1 ≤ j ≤ n, where we always assume
0 ≤ τL1 (j) < · · · < τLLj (j) < T . Define

∆τL := max
j=1,...,n

max
κ=1,...,Lj+1

|τLκ (j)− τLκ−1(j)|

with τL0 (j) := 0 and τLLj+1(j) := T . If ∆τL → 0 for L→∞, then

(i) the diameters of the feasible sets of (SPC) and (SP) in L2(0, T ;Rn) vanish
and

(ii) the optimal values of (SPC) and (SP) converge to each other.

Proof. Let DL
SP := {u ∈ D : ujLκ (τLκ ) = cLκ ∀κ = 1, . . . , L} denote the feasible region

of (SP). Without loss of generality, we may assume DL
SP 6= ∅ for L ∈ N, since

otherwise the feasible set of (SPC) is also empty, so that both optimal values agree
in this case. We first claim that two controls u, v ∈ DL

SP can only differ in their
j-th component in at most σ intervals (τLκ−1(j), τLκ (j)) for 2 ≤ κ ≤ Lj , where σ
denotes the upper bound on the total number of switchings for feasible controls,
whose existence is guaranteed by Assumption (D1). Indeed, assume that uj and vj
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differ between τLκ−1(j) and τLκ (j) for some j ∈ {1, . . . , n}. Since the values of the
components uj and vj agree at τLκ−1(j) and τLκ (j), either one of the two controls has
to switch at least twice in (τLκ−1(j), τLκ (j)) if cLκ−1(j) = cLκ (j), or both functions have
to switch at least once, if cLκ−1(j) 6= cLκ (j). Hence, for each interval where uj and vj
differ, both switches together have at least two switchings, but the total number of
their switchings is bounded by 2σ by Assumption (D1).

Taking into account also the intervals (0, τ1
κ(j)) and (τLLj (j), T ) and uj , vj ∈ [0, 1]

a.e. in (0, T ), we thus obtain

sup
u,v∈DLSP

‖uj − vj‖2L2(0,T ) ≤ (σ + 2)∆τL

for every j ∈ {1, . . . , n} and consequently,

sup
u,v∈DLSP

‖u− v‖2L2(0,T ;Rn) ≤ n(σ + 2)∆τL .

For L→∞, we then get

(4.7)
sup

u,v∈conv(DLSP)

‖u− v‖L2(0,T ;Rn) = sup
u,v∈DLSP

‖u− v‖L2(0,T ;Rn)

≤
√
n(σ + 2)∆τL → 0 ,

which shows assertion (i).
We now show that the difference |J(Su1, u1)−J(Su2, u2)| in the objective function

vanishes if the difference of the control vanishes. For this, we have a closer look at
the solution mapping S : u 7→ y in (SP). Using, as in Section 3.1.2, the linear and
continuous (and thus Fréchet differentiable) operator

Ψ: L2(0, T ;Rn)→ L2(0, T ;H−1(Ω)), (Ψu)(t) =
n∑
j=1

uj(t)ψj ,

as well as the solution operator Σ: L2(0, T ;H−1(Ω))→W (0, T ) of the heat equation
with homogeneous initial condition, i.e., given w ∈ L2(0, T ;H−1(Ω)), y = Σw solves

∂ty −∆y = w in L2(0, T ;H−1(Ω)), y(0) = 0 in L2(Ω) ,

the solution mapping S : u 7→ y in (SP) is given as S = Σ◦Ψ+ ζ, where ζ ∈W (0, T )

is the solution for

∂tζ −∆ζ = 0 in L2(0, T ;H−1(Ω)), ζ(0) = y0 in L2(Ω) .

It is well known, see, e.g., [Eva10], that the solution y = Σw satisfies

max
t∈(0,T )

‖y(t)‖L2(Ω) + ‖y‖L2(0,T ;H1
0 (Ω)) + ‖∂ty‖L2(0,T ;H−1(Ω)) ≤ C1‖w‖L2(0,T ;H−1(Ω))
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with a constant C1 > 0. For u, v ∈ L2(0, T,Rn) we thus obtain
(4.8)
‖Su− Sv‖L2(Q) = ‖ΣΨ(u− v)‖L2(0,T ;H1

0 (Ω)) ≤ C1‖Ψ(u− v)‖L2(0,T ;H−1(Ω))

≤ C1

( n∑
j=1

‖ψj‖H−1(Ω)

)
‖u− v‖L2(0,T ;Rn) .

For all feasible controls u1, u2 ∈ L2(0, T ;Rn) in (SPC), we know that u1, u2 ∈ [0, 1]n

a.e. in (0, T ) holds and thus there exists a Lipschitz constant L1 > 0 such that∣∣∣‖u1 − 1
2‖

2
L2(0,T ;Rn) − ‖u2 − 1

2‖
2
L2(0,T )

∣∣∣ ≤ L1

∣∣‖u1 − 1
2‖L2(0,T ;Rn) − ‖u2 − 1

2‖L2(0,T ;Rn)

∣∣
≤ L1‖u1 − u2‖L2(0,T ;Rn) ,

where the last inequality follows with the reverse triangle inequality. Analogously,
since the S is affine and continuous, there exists a Lipschitz constant L2 > 0 such
that ∣∣∣‖Su1 − yd‖2L2(Q) − ‖Su2 − 1

2‖
2
L2(Q)

∣∣∣ ≤ L2‖Su1 − Su2‖L2(Q) .

Together with (4.8), we now get

|J(Su1, u1)− J(Su2, u2)|

= 1
2

∣∣∣‖Su1 − yd‖2L2(Q) − ‖Su2 − yd‖2L2(Q) + α ‖u1 − 1
2‖

2
L2(0,T ) − α ‖u2 − 1

2‖
2
L2(0,T )

∣∣∣
≤ 1

2

(
L2‖Su1 − Su2‖L2(Q) + αL1‖u1 − u2‖L2(0,T )

)
≤ C2 ‖u1 − u2‖2L2(0,T )

for some constant C2 > 0. Together with (4.7), this implies that the maximal
difference of all objective values of feasible controls in (SPC) vanishes for L → ∞.
Since (SPC) is a relaxation of (SP), we obtain (ii).

When we determine the fixings according to an optimal solution of (P), then The-
orem 4.7 and its proof together yield the following:

Corollary 4.8. For each tolerance ε > 0 there exists a constant L ∈ N and fix-
ings (τκ, jκ, cκ) ∈ [0, T )×{1, . . . , n}×{0, 1}, κ = 1, . . . , L, such that the optimal value
of (SPC) differs by at most ε from the optimal value of the original problem (P).

In other words, up to an arbitrary precision, the optimal solution of (P) can be
approximated by (SPC) using a finite number of fixings. This is crucial for the
branch-and-bound algorithm. Clearly, the number of necessary fixings depends on ε.

The choice of a good time point τ (and a switch uj) to branch at is crucial for the
practical performance of the algorithm and the implicit effect of pointwise fixings;
compare Examples 4.9 and 4.10 below. It is natural to take the last computed
optimal control of the convex relaxation of (SP) into account, which we know from
a practical point of view only subject to a discretization of (0, T ); see Section 4.5.1.
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A possible choice is then to take a point of the time grid, as well as a switch j,
where the control has the highest deviation from 0/1 over all its components, i.e.,
where the distance to 0/1 multiplied by the length of the corresponding grid cell
is maximal. This approach correspond to the choice of the variable with the most
fractional value in finite-dimensional integer optimization; compare Section 2.4.1. In
general, the common branching strategies for finite-dimensional integer programming
problems can be transferred to the infinite dimensional setting by considering the
current discretization of the controls.

The above branching strategy works well in practice; compare Chapter 6. How-
ever, the strategy does not necessarily ensure that the fixing points of the switches are
well-distributed, as required in Theorem 4.7. To guarantee the latter, the choice of
fixing points must be restricted such that the ratio between the maximum and min-
imum distance of two fixing points τκ−1(j) and τκ(j) for the j-th switch is bounded
for all j = 1, . . . , n.

4.2.2 Implicit constraints

The fixings may determine significant parts of the switching pattern in such a way
that a certain switch uj must be constant on some intervals [τκ−1(j), τκ(j)), i.e.,
uj |[τκ−1(j),τκ(j)) ≡ cκ−1(j) for all controls u ∈ DSP. Indeed, as shown by the proof
of Theorem 4.7, the non-fixed part of the time horizon vanishes under the assump-
tions of Theorem 4.7 when L→∞. In our branch-and-bound algorithm, it is much
more efficient to deal with these constraints explicitly, instead of modeling them
implicitly by appropriate cutting planes; as suggested in Section 4.3.

It is also possible that the fixings are inconsistent with the constraint D, i.e.,
that the feasible set of (SP) is empty, which is easy to detect for most choices of D.
In this case, the subproblem is infeasible and the corresponding branch-and-bound
node can be pruned.

Example 4.9. Consider the setDΣ
max({0, 1}) of switching constraints defined in (4.2).

Let L′ = #{κ ∈ {2, . . . , L} : cκ−1 6= cκ}. If L′ > σ, we have DΣ
max({0, 1})SP = ∅,

since even the number of switchings enforced by the fixings is too large for a feasible
solution. The subproblem can thus be pruned. If σ − 1 ≤ L′ ≤ σ, we can fix all
intervals [τκ−1, τκ) with cκ−1 = cκ to the value cκ−1, since any other value in this
interval would increase the number of switchings by two. Moreover, if c1 = 0, we can
analogously fix the value to 0 in [0, τ1) as the controls in DΣ

max({0, 1}) are off at the
beginning. If σ− 1 ≤ L′ ≤ σ and cκ−1 6= cκ, then no value of u in (τκ−1, τκ) is fixed,
but u has to be monotone in [τκ−1, τκ], which is modeled implicitly by appropriate
cutting planes; see Section 4.3.

Example 4.10. For the dwell time constraints set D(s), as defined in (4.5), we
can fix intervals [τκ−1, τκ) with cκ−1 = cκ to cκ−1 if and only if τκ − τκ−1 ≤ s.
Otherwise, no direct fixing is possible, but the number of allowed switchings in the
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interval [τκ−1, τκ] reduces to d(τκ−τκ−1)/se. An infeasible subproblem arises when-
ever u is fixed to the same value at two time points having a distance of at most s,
but fixed to the other value at some point in between.

Since we have at most σ switchings in each switch by Assumption (D1), a related
branching strategy would be to produce σ + 1 subproblems in any branching by
selecting an interval and limiting the number of switchings to θ in the first half of
the interval and to σ − θ in the second half, for θ ∈ {0, . . . , σ}. This branching
strategy explicitly reduces the bounds on the number of switchings on subintervals
rather than implicitly. However, it does not guarantee the convergence of the primal
and dual bounds for every selection of intervals, as it can already be seen with the
set DΣ

max({0, 1}). The switch u ≡ 1 or u ≡ 0 is feasible for the subproblem (SP)
when the branching decisions do not enforce the switch to be zero in t = 0. In this
case, u ≡ 1/2 is feasible for any convex relaxation of (SP) and consequently, the dual
bound might remain strictly below the value of (SP).

4.3 Convex hull of switching constraints

A common approach to convexify the problem (SP) in a branch-and-bound scheme
is just replacing {0, 1}n with [0, 1]n in the definition of DSP, i.e., to consider the
continuous relaxations of the problems. However, we want to compute tighter dual
bounds within our branch-and-bound scheme by solving the convex relaxation (SPC).
For this, we need to understand the convex hull conv(DSP). Unfortunately, the naive
approach to replace the binarity constraints does not lead to the convex hull of DSP

in L2(0, T ;Rn). This is true even in the easiest special case of DΣ
max(U) without

fixings, namely just one switch starting in zero that can be changed at most once on
the entire time horizon. More formally, the feasible switching control is required to
belong to

(4.9) D = {u ∈ BV0(0, T ) : u(t) ∈ {0, 1} f.a.a. t ∈ (0, T ), |u|BV (−1,T ) ≤ 1} .

Essentially, the naive approach does not express the monotonicity of the above
switches in D, as all (equivalence classes of) functions in D are given by χ[ω,T )

for ω ∈ (0, T ).

Counterexample 4.11. Let D be defined as in (4.9) and consider the function

u(t) :=

{
1
2 , if t ∈ [1/3T, 2/3T ]

0, otherwise .

Obviously, we have u ∈ BV0(0, T ) with u ∈ [0, 1] a.e. in (0, T ) and |u|BV (−1,T ) = 1.
All switches in D are non-decreasing functions of the form χ[ω,T ) for ω ∈ (0, T ).
Thus, all convex combinations of controls inD are non-decreasing functions so that in
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conv(D) all controls are also monotonous. The control u, however, is not monotonous
and consequently, u does not belong to conv(D).

This counterexample shows that we cannot expect to obtain a tight description
of conv(DSP) without a closer investigation of the specific switching constraint under
consideration.

4.3.1 Outer description

Our aim is to fully describe the convex hull of feasible switching patterns, i.e., the
feasible set of (SPC), by cutting planes derived from finite-dimensional projections,
using the approach from Section 3.2.1. For this, recall that conv(DSP) meets Assump-
tions (C1) and (C2). Thus, by projecting the set conv(DSP) to the finite-dimensional
space RM , by means of local averaging

Π: BV (0, T ;Rn)→ RM ,Π(u) =
(

1
λ(Ii)

∫
Ii

uj(t) dt
)

1≤j≤n, 1≤i≤N
,

where Ii ⊆ (0, T ) for i = 1, . . . , N are suitably chosen subintervals and M = nN , we
obtain a relaxation

conv(DSP) ⊆ {v ∈ L2(0, T,Rn) : Π(v) ∈ Π(conv(DSP))}

of the feasible region by Lemma 3.5. By a suitable construction of projections Πk,
with increasing dimensionMk, a complete outer description of the finite-dimensional
projection sets Π(conv(DSP)) also yields a complete outer description of conv(DSP)

in function space by Theorem 3.6, i.e.,

conv(DSP) =
⋂
k∈N
{v ∈ L2(0, T ;Rn) : Πk(v) ∈ Πk(conv(DSP))} .

In order to solve now the problem (SPC) by means of the outer approximation
algorithm presented in Section 3.2.2, we thus need to understand the projection
sets CDSP,Π := Π(conv(DSP)). Of course, at first glance it seems to be difficult to
determine cutting planes for CDSP,Π if one does not really know conv(DSP), so that
it might already be unclear how the projection of this set is given in finite dimension.
However, it is actually sufficient to understand the projection Π(DSP) of the set DSP

and its convex hull, since the following holds true:

Lemma 4.12. Π(conv(DSP)) = conv(Π(DSP)).

Proof. To show the assertion, we first prove that for any bounded setE inBV (0, T ;Rn)

we have

(4.10) Π(E) = Π(E) .
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For the inclusion “⊆” in (4.10), let v ∈ Π(E). Hence, there exists a sequence
{vk}k∈N ⊆ RM with vk → v in RM and for each k ∈ N, there exists uk ∈ E

such that vk = Π(uk). Now {uk}k∈N ⊆ E is a bounded sequence in BV (0, T ;Rn).
Due the compact embedding BV (0, T ;Rn) ↪→c L2(0, T ;Rn) by Theorem 2.7, there
is thus a strongly convergent subsequence, denoted by the same symbol, such that
uk → u ∈ E in L2(0, T ;Rn) for k → ∞. By the continuity of Π, we then have
v = limk→∞Π(uk) = Π(u), i.e., v ∈ Π(E).

We next show the reverse inclusion “⊇” in (4.10). For this, let v ∈ Π(E). Then
we have v = Π(u) for some u ∈ E and u = limk→∞ u

k for a sequence {uk}k∈N ⊆ E.
Again, by the continuity of Π, we get v = limk→∞Π(uk) ∈ Π(E).

Second, we note that conv(DSP) = conv(DSP). Together with (4.10) for conv(DSP),
we thus obtain

Π(conv(DSP)) = Π(conv(DSP)) = conv(Π(DSP)) ,

where the last equation holds due the linearity of Π. Thanks to (4.10), we further
know that Π(DSP) is closed in RM . It is also bounded, since it is a subset of [0, 1]M ,
and thus compact. Hence conv(Π(DSP)) is closed as the convex hull of a compact
set in RM , such that the claim follows.

The above result will be exploited in Chapter 5 to investigate the sets CDSP,Π for
the prominent examples of constraints D introduced in Sections 4.1.1 and 4.1.2.

4.3.2 Separation

To cut off an infeasible control u /∈ conv(DSP), we need to find a projection Π

such that Π(u) /∈ CDSP,Π holds and then to generate a linear cutting plane of the
form a>Π(u) ≤ b, where a>w ≤ b, a ∈ RM and b ∈ R, represents a valid inequality
for CDSP,Π. For the latter task, it is desirable that the sets CDSP,Π are polyhedra for
which the separation problem is tractable. Even in the case that the latter is true
for the sets CD,Π, i.e., when no fixings are considered, the fixings may destroy this
property in general, as shown by the following counterexample.

Counterexample 4.13. We consider a specific example of switching point con-
straint D(P ) as introduced in Section 4.1.2, namely the case n = 1 and

P :={(t1, t2, t3) ∈ [0, 4]3 : 0 ≤ t2 ≤ 1, t3 ≥ t22 + 2}
∪{(t1, t2, t3) ∈ [0, 4]3 : t2 > 1, t3 ≥ max{t2, 3}} .

The set P of feasible switching times is compact such that D(P ) satisfies the general
assumptions in (D1) and (D2) by Lemma 4.5. If Π is given by local averaging
operators over I1 = (0, 1) and I2 = (2, 3), i.e.,

Π(u)1 =

∫ 1

0
u(t) dt and Π(u)2 =

∫ 3

2
u(t) dt ,
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then the control

u(t) =

{
1, t ∈ [t1, t2)

0, otherwise

for arbitrary t1 ∈ (0, 1) and t2 ∈ (2, 3) is in D(P ) (in this case t3 = 4), such that
Π(D(P )) = [0, 1]2 and consequently, CD(P ),Π = [0, 1]2 with D(P ) ⊆ conv(D(P )). In
particular, CD(P ),Π is a polytope. This no longer holds true if we fix the value of
functions in D(P ) to be c1 = 1 at τ1 = 0 and c2 = 0 at τ2 = 1, i.e.,

D(P )SP = {u ∈ D(P ) : u(0) = 1, u(1) = 0} .

No control u ∈ D(P )SP starts with zero, so that we have t1 = 0. Additionally,
u ∈ D(P )SP must have a second switching point t2 ∈ (0, 1] from 1 to 0 due to the
fixings and thus, the third switching point t3 must satisfy t3 ≥ t22 + 2. Consequently,
for u ∈ D(P )SP we may conclude Π(u)1 = t2 and Π(u)2 ∈ [0, 1− t22]. Note that

Π(D(P )SP) = {(w1, w2) ∈ [0, 1]2 : w1 > 0, w2 ≤ 1− w2
1}

is not even closed. If u ∈ D(P )SP does not satisfy the first fixing, i.e., u(0) = 0, then
the sequence {vk}k∈N ⊆ D(P )SP with vk → u in L2(0, T ) always has tk1 = 0 as first
switching point for k ∈ N and then switches in tk2 ∈ (0, 1] from 1 to 0 with tk2 → 0

in R for k → ∞. So, every vk ∈ D(P )SP can switch to 1 in (tk2)2 + 2 at the earliest
and we obtain

Π(vk)1 = tk2 → 0 and Π(vk)2 ∈ [0, 1− (tk2)2]→ [0, 1]

for k → ∞, i.e., Π(u)1 = 0 and Π(u)2 ∈ [0, 1]. On contrary, every u ∈ D(P )SP

satisfies u(1) = 0, because otherwise the switching points of {vk}k∈N ⊆ D(P )SP with
vk → u in L2(0, T ) would have to satisfy tk1 = 0, tk2 ∈ (0, 1] with tk2 ↗ 1 for k → ∞
and tk3 ≥ (tk2)2 + 2 with tk3 ↘ 1 for k →∞. In total, we get

Π(D(P )SP) = {(w1, w2) ∈ [0, 1]2 : w2 ≤ 1− w2
1} .

Since the latter set is convex, we obtain together with Lemma 4.12 that the projection
set CD(P )SP,Π = Π(D(P )SP) of conv(D(P )SP) is not a polytope.

In the above counterexample, the nonlinear relation between the switching points
in P is only noticeable in the projection of D(P ) when fixings enforce the second
switching point to belong to [0, 1].

In Chapter 5, we will show that for prominent examplesD of switching constraints
introduced in Section 4.1.1 and Section 4.1.2, the separation for CDSP,Π is tractable
for arbitrary fixings.
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4.4 Computations of primal and dual bounds

The main task in every branch-and-bound algorithm is the fast computation of pri-
mal and dual bounds. While primal bounds are often obtained by applying rather
straightforward heuristics to the original problem (P), see Section 4.4.2, the compu-
tation of dual bounds is a more complex task, see Section 4.4.1.

4.4.1 Dual bounds

Our goal is to obtain strong dual bounds by solving the convexified subproblems (SPC);
see Section 4.2. To this end, we can use the outer approximation algorithm developed
in Section 3.2. This approach is applicable whenever we have a separation algorithm
for conv(DSP) at hand; see Section 4.3. Within the outer approximation algorithm,
we thus need to repeatedly solve problems of the form

(SPCk)


min f(u)

s.t. u ∈ [0, 1]n a.e. in (0, T ),

Gu ≤ b ,

where G : L2(0, T ;Rn) → Rk with (Gu)` = a>` Π`(u) for ` = 1, . . . , k. The latter
constraints represent cutting planes for the sets CDSP,Π` that have been generated
so far.

As discussed in Section 4.2, our branching strategy will implicitly fix some switches uj ,
j ∈ {1, . . . , n}, on certain subintervals of the time horizon [0, T ]; see Examples 4.9
and 4.10. Let Aj ⊆ (0, T ) be the union of all parts where the switching pat-
tern for the j-th switch is determined by the fixings and Ij := (0, T ) \ Aj for
j = 1, . . . , n. Denote by RAj : L2(0, T ) → L2(Aj) and RIj : L2(0, T ) → L2(Ij)
the restriction operators to Aj and Ij , respectively, and by R∗Aj and R∗Ij the re-
spective extension-by-zero operators mapping from L2(Aj) and L2(Ij) to L2(0, T ),
respectively. Set u|I := (uj |Ij )1≤j≤n, R∗I := (R∗Ij )1≤j≤n, u|A := (uj |Aj )1≤j≤n and
R∗A := (R∗Aj )1≤j≤n. Then we can restrict (SPCk) to the unfixed control variables u|I ,
which leads to

(SPC′k)


min f(u|I)
s.t. u|I ∈ [0, 1]n a.e. in (0, T )

G(R∗Iu|I) ≤ b−G(R∗Au|A) =: b̄ ,

where u|A is fixed and implicitly given through the fixings. As a first attempt to solve
this problem, we applied the semi-smooth Newton method described in Section 3.3.2,
but, as the branching implicitly fixed larger parts of the switching structure, i.e., Aj
for j = 1, . . . , n got larger, the semi-smooth Newton method matrix became sin-
gular. To overcome these numerical issues, we decided to replace the semi-smooth
Newton method by the alternating direction method of multipliers (ADMM), which
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was first mentioned by [GM75] for nonlinear elliptic problems and is widely ap-
plied to elliptic control problems [AS08, Ber93, KW18]. Its convergence for convex
optimization problems is well-studied; see, e.g., [FG83, GM76, GLT89, GOSB14].
Recently, [GSY20] also addressed linear parabolic problems with state constraints
by the ADMM method and proved its convergence without any assumptions on
the existence and regularity of the Lagrange multiplier. Note, however, that the
existence of Lagrange multipliers for (SPCk) can be shown with the same argu-
ments as in Section 3.3.1. More precisely, the existence of Lagrange multipliers
for (SPC′k), i.e., for (SPCk) restricted to the unfixed control variables, directly fol-
lows with Proposition 3.13 if there exists a Slater-point û ∈ L2(I) := (L2(Ij))1≤j≤n
satisfying 0 < û < 1 a.e. in (0, T ) and Gû ≤ b̄. For instance, for DΣ

max({0, 1})
it is easy to see with the observations in Example 4.9 that the following controls
u are feasible: u|A is always determined by the fixings and there exists only one
κ̂ ∈ {κ ∈ {2, . . . , L+ 1} : [τκ−1, τκ) ⊆ I} such that u differs in [τκ̂−1, τκ̂) from cκ̂−1,
where τL+1 := T . Any convex combination of these controls (with positive coeffi-
cients only) is thus a Slater-point for (SPC′k).

To write down the ADMM algorithm, we first need to rewrite problem (SPC′k) in
the form 

min f(u|I) + I(−∞,b̄](v) + I[0,1]n(w)

s.t. u|I − w = 0 a.e. in (0, T ),

G(R∗Iu|I)− v = 0 ,

where

I(−∞,b̄](v) =

{
0, v ≤ b̄
∞, otherwise

and I[0,1]n(w) =

{
0, w ∈ [0, 1]n a.e. in (0, T )

∞, otherwise .

Note that (SPC′k) is still a convex optimization problem, but no longer strictly con-
vex. The first-order algorithm ADMM is now an alternating minimization scheme
for computing a saddle point of the augmented Lagrangian

Lρ,β(u|I , v, w, λ, µ) = f(u|I) + I(−∞,b̄](v) + I[0,1]n(w)

+ λ>(G(R∗Iu|I +R∗Au|A)− v) + 〈µ, u|I − w〉L2(I)

+ ρ
2 ‖G(R∗Iu|I)− v‖22 + β

2 ‖u|I − w‖
2
L2(I) ,

which differs from the Lagrangian by the penalty terms β/2 ‖u|I−w‖2L2(I) for the box
constraints and ρ/2 ‖G(R∗Iu|I)− v‖22 for the cutting planes, but has the same saddle
points as the Lagrangian [FG83]. First, the augmented Lagrangian is minimized
with respect to the unfixed control variables

u|I = arg min
u|I

Lρ,β(u|I , v, w, λ, µ) ,
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then with respect to v and w, i.e.,

w = arg min
w

Lρ,β(u|I , v, w, λ, µ) ,

v = arg min
v

Lρ,β(u|I , v, w, λ, µ) ,

and finally, the dual variables λ and µ are updated by a gradient step as follows:

λ = λ+ γρ ρ ∂λLρ,β(u|I , v, w, λ, µ) ,

µ = µ+ γβ β ∂µLρ,β(u|I , v, w, λ, µ) .

With the solution mapping S = Σ◦Φ+ ζ, as defined in Section 3.1.2, the reduced
objective term f(u|I) reads

f(u|I) =1
2 ‖ΣΨ(R∗Iu|I +R∗Au|A) + ζ − yd‖2L2(Q)

+ α
2 ‖R

∗
Iu|I +R∗Au|A − 1

2‖
2
L2(0,T,Rn) ,

so that, by the chain rule, its Fréchet derivative at u|I ∈ L2(I) is given by

f ′(u|I) = RIΨ∗Σ∗(ΣΨ(R∗Iu|I +R∗Au|A) + ζ − yd) + α
(
u|I − 1

2

)
∈ L2(I) ,

where we identified L2(Ij), j = 1, . . . , n, with its dual using the Riesz representation
theorem and RI = (RIj )1≤j≤n is the adjoint of R∗I . For the penalty term associated
with the cutting planes, the Fréchet derivative at u|I ∈ L2(I) is

ρRIG∗
(
G(R∗Iu|I)− v

)
.

With the above Fréchet derivatives at hand, we are able to write down the ADMM
method for (SPCk) as follows:

Algorithm 4 ADMM method for (SPCk)

1: Choose v0, λ0 ∈ R` , w0, µ0 ∈ L2(I) and set m = 0.
2: repeat
3: Solve the equation

(Ψ∗Σ∗ΣΨ + (α+ β)I + ρG∗G)R∗Ium+1
|I

= Ψ∗Σ∗
(
yd − ζ − ΣΨR∗Au|A

)
− µm + β wm

−G∗
(
λm − ρ vm

)
+ α

2 a.e. in (0, T ) .

4: vm+1 = min{G(R∗Iu
m+1
|I ) + λm

ρ , b−G(R∗Au|A)}.
5: wm+1 = max{min{um+1

|I + µm

β , 1}, 0}.
6: λm+1 = λm + γρ ρ

(
G(R∗Iu

m+1
|I )− vm+1

)
.

7: µm+1 = µm + γβ β
(
um+1
|I − w

m+1
)
.

8: m = m+ 1.
9: until stopping criterion satisfied.
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For γρ, γβ ∈ (0, 1+
√

5
2 ), the convergence of ADMM is guaranteed [Glo84], but these

parameters and the penalty parameters influence the convergence performance and
numerical stability of the algorithm. E.g., the penalty parameter β should be chosen
close to α in order to balance the Tikhonov term α

2 ‖R
∗
Iu|I +R∗Au|A−

1
2‖

2
L2(0,T ) and

the penalty term for the box constraints in the augmented Lagrangian. Moreover, the
best choice for γρ and γβ generally seems to be one [Glo84]. We thus use γρ = γβ = 1

throughout the remainder of this thesis.
The value of the Tikhonov parameter α is also crucial for the performance of

numerical methods for (SPCk). This concerns discretization error estimates (as
in Section 4.5) as well as convergence of optimization algorithms, and condition-
ing of linear systems of equations arising in the latter. As already mentioned in the
introduction, the choice of α has no impact on the set of minimizers for (SP), as
u ∈ {0, 1}n a.e. in (0, T ) and hence the Tikhonov term is a constant. However, the
convex relaxations (SPCk) as well their optimal values are influenced by α. Thus,
in order to improve the performance of Algorithm 4, a large value of α is generally
favorable, but we expect that the quality of the dual bounds will become worse for
larger values of α. Moreover, the choice of the penalty parameter β for the box con-
straints is affected by α. Therefore, we will investigate in Section 6.1.2 the influence
of α and β on the overall branch-and-bound algorithm.

Even if Algorithm 4 terminates in Step 9 before the optimum of (SPC′k) has been
found, we need to deduce a safe dual bound for (SP) in our branch-and-bound algo-
rithm. To bound the sub-optimality of the calculated solution, i.e., f(um|I)− f(u?),
[BPC+11] has shown that one can use the primal and dual residuals

rmP =

(
G(R∗Ium|I)− v

m

um|I − w
m

)
, rmD = ρRIG∗(vm−1 − vm) + β(wm−1 − wm)

of the optimality conditions for (SPCk). More precisely, [BPC+11] derived sub-
optimality estimates for problems in Rn based on their primal and dual residuals,
but the arguments readily carry over to our setting. We thus have

f(um|I)− f(u?) ≤ −(rmP )>

(
λm

µm

)
+ (um|I − u

?
|I , r

m
D )L2(I) ,

so that we can estimate

(4.11) f(um|I)− f(u?) ≤ −(rmP )>

(
λm

µm

)
+
√
T ‖rmD‖L2(I) =: em,

since um|I , u
?
|I ∈ {0, 1}

n a.e. in (0, T ). When the algorithm stops, we get f(um|I)−e
m

as a safe dual bound for the subproblem (SP).
As a reasonable stopping criterion in Step 9, we now choose that the primal

and dual residual must be small, as well as the primal objective sub-optimality. As
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tolerances for the residuals, we may use an absolute and relative criterion, such as

‖rmP ‖ ≤ (
√
k + 1)εabs + εrel max{‖G(R∗Ium|I)‖2 + ‖u |Im‖L2(I), ‖vm‖2 + ‖wm‖L2(I)} ,

‖rmD‖ ≤ εabs + εrel‖RIG?λm + µm‖L2(I) ,

where εabs > 0 is an absolute tolerance, whose scale depends on the scale of the
variable values, and εrel > 0 is a relative tolerance, which might be εrel = 10−3 or
εrel = 10−4. The factor

√
k accounts for the fact that (SPCk) contains k cutting

plane constraints. In addition, the absolute error em in the primal objective should
be less than a chosen tolerance εpr > 0.

When the algorithm stops, we can either proceed by calling the separation al-
gorithm again, in order to generate another violated cutting plane, if possible, or
by stopping the outer approximation algorithm. When proceeding with the cutting
plane algorithm, one has to solve another parabolic optimal control problem of the
form (SPCk) with an additional cutting plane k + 1 by Algorithm 4. The perfor-
mance of the algorithm can be improved by choosing the prior solution (u, v, λ, w, µ)

as initialization in Step 1, and setting the auxiliary variable to vk+1 = b−G(R∗Au|A)

as well as the dual variable to λk+1 = 0 for the new cutting plane, since the latter is
violated by u for sure.

4.4.2 Primal bounds

Another crucial ingredient in the branch-and-bound framework are primal heuristics,
i.e., algorithms for computing good feasible solutions for the original problem (P),
which hopefully yield tight primal bounds. It is common to apply such primal heuris-
tics in each subproblem, where the heuristic is often guided by the optimal solution of
the convexified problem being solved in this subproblem for obtaining a dual bound.
In our case, we can apply problem-specific rounding strategies from the literature to
the solution for (SPC′k) found by the ADMM method, e.g., the Dwell time Sum-up
Rounding and Dwell time Next Force Rounding algorithms in [ZRS20] for the case
of dwell time constraints D(s), defined in (4.5), and the Adaptive Maximum Dwell
Rounding strategy in [SZ21] for the case of bounded variation constraints Dmax,
defined in(4.3).

Moreover, it is often possible to efficiently optimize a linear objective function
over the set CD,Π, as we will see in Sections 5.1.2 and 5.2.2. Indeed, the linear
optimization problem over CD,Π is tractable if and only if the separation problem
for CD,Π is tractable; se e.g., [GLS81]. The latter property is desirable for our
approach, as already discussed. We can benefit from this as follows: first, we define
an appropriate objective function based on the solution u of (SPC′k). Second, we use
the resulting minimizer v? ∈ CD,Π and construct a control u′ ∈ D with Π(u′) = v?.
Such a control u′ ∈ D exists if we always choose an extreme point v? of CD,Π as
minimizer, since, thanks to Lemma 4.12, the extreme points of CD,Π correspond to
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points from the projection set Π(D). The construction, however, may be hard, since
v? must not be integer in general, so that u′j cannot simply be set constantly to
v?(j−1)N+i over the projection intervals Ii, 1 ≤ i ≤ N , defining the local averaging
operators (3.3) for j = 1, . . . , n. On the other hand, the intervals I1, . . . , IN does
not necessarily cover the whole time horizon (0, T ), so that it may be unclear how u′

is given on the uncovered part of (0, T ). In Examples 4.14 and 4.15 below, we will
specify the construction for the constraint sets DΣ

max({0, 1}) and D(s).
To define the objective coefficients, one can consider the distance of u to 1/2 over

the intervals Ii and define the (j − 1)N + i-th objective coefficient as

(4.12)
∫
Ii

(1
2 − uj) dt = λ(Ii)(

1
2 −Π(u)(j−1)N+i) .

The intuition in this definition is that a bigger objective coefficient, i.e., a smaller
average value of uj on Ii, will promote a smaller entry v?(j−1)N+i in the minimizer v?,
and vice versa. The minimizer v? will thus have a tendency to agree with Π(u) as
much as possible while guaranteeing v? ∈ CD,Π. In fact, if CD,Π is a 0/1-polytope,
then the minimization problem

(4.13) min
v∈CD,Π

N∑
i=1

n∑
j=1

λ(Ii) |v(j−1)N+i −Π(u)(j−1)N+i|

can be reformulated as a linear optimization problem over CD,Π, which is equiv-
alent to the one with the objective coefficients given in (4.12). Moreover, if the
projection intervals I1 . . . , IN agree with the given discretization, then the minimiza-
tion problem (4.13) is equivalent to the CIA problem addressed in [SJK11, JRS15],
which tracks the average of the relaxed solution over the given temporal grid of
the discretization while respecting the considered switching constraints. We refer
to [BZH+20] an the references therein to get an overview of the switching constraints
that have already been studied in the context of the CIA problem.

Example 4.14. For DΣ
max({0, 1}), the set CDΣ

max({0,1}),Π is a 0/1-polytope by Theo-
rem 5.1, and any linear objective function can be optimized in linear time over CDΣ

max({0,1}),Π [BH23];
see Theorem 5.6. The minimizer v? can thus be guaranteed to be binary and it can
be computed very efficiently, which even allows to choose as intervals I1, . . . , IN ex-
actly the ones given by the currently used discretization in time. In this case, the
minimizer v? solves the CIA problem over DΣ

max({0, 1}) and it is trivial to find a
control u′ with Π(u′) = v?: on each interval Ii, we can simply set u′ constantly to v?i .

Example 4.15. The set CD(s),Π of the minimum dwell time constraints is not nec-
essarily a 0/1-polytope, but one can optimize over CD(s),Π in O(Mσ) time, where
M (= N) is the dimension of the projection vector and σ = dT/se an upper bound
for the total number of switchings; see Corollary 5.21. By backtracking, one can
also reconstruct the corresponding solution u′ ∈ D(s) in O(Mσ) time. Here, the
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backtracking always determines u′ over the whole time horizon (0, T ), even if (0, T )

is not fully covered by the projection intervals I1, . . . , IN .

The implicit fixations of the control in a subproblem of the branch-and-bound
algorithm can also be considered explicitly in the optimization over CD,Π by setting
the corresponding objective coefficients in (4.12) to ∞ and −∞, respectively. More
precisely, one may use sufficiently large/small objective coefficients in this case.

In the above examples, a feasible control u ∈ D can be computed quickly. Nev-
ertheless, in order to obtain the corresponding primal bound, one needs to first
calculate the resulting state y = S(u) and then to evaluate the objective function.

4.5 Discretization error and adaptive refinement

The dual bounds computed by the outer approximation algorithm described in the
previous section are safe bounds for (SPCk), as long as we do not take discretization
errors into account. However, our objective is to solve (P) in function space. This
implies that we need to (a) estimate the discretization error contained in these bounds
and (b) devise a method to deal with situations where the discretization-dependent
dual bound allows to prune a subproblem but the discretization-independent dual
bound does not, i.e., where the current primal bound lies between the two dual
bounds. In the latter case, the only way out is the refinement of the discretization.

In order to address the first task, we will estimate the a posteriori error of
the discretization with respect to the cost functional. We use the dual weighted
residual (DWR) method, which has already achieved good results in practice, and
combine the results from [MV07] and [VW08] to obtain an error analysis for the
suproblem (SPCk) arising in our branch-and-bound tree. First, we describe the fi-
nite element discretization of the control problems arising in the branch-and-bound
algorithm in Section 4.5.1. Then we discuss how to compute safe dual bounds in Sec-
tion 4.5.2 as well as safe primal bounds in Section 4.5.3. Finally, Section 4.5.4 de-
scribes our adaptive refinement strategy.

4.5.1 Finite element discretization

To solve problems of the form (SPCk) in practice, we need to discretize the the PDE
constraint given as

(4.14)
〈∂ty, ϕ〉+ (∇y,∇ϕ)L2(0,T,L2(Ω)) + (y(0), ϕ(0))L2(Ω)

= (Ψ(u), ϕ)L2(0,T,L2(Ω)) + (y0, ϕ(0))L2(Ω) ∀ϕ ∈W (0, T )

in its weak formulation, where 〈·, ·〉 := 〈·, ·〉L2(0,T ;H−1(Ω)),L2(0,T ;H1
0 (Ω)), as well as the

control functions, so that we implicitly discretize the Lagrange function L : W (0, T )×
L2(0, T ;Rn)×W (0, T )× L2(0, T ;Rn)× L2(0, T ;Rn)×Rk corresponding to (SPCk)
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given as

L (y, u, p, µ+, µ−, λ) = J(y, u)− 〈∂ty, p〉 − (∇y,∇p)L2(0,T,L2(Ω))

− (y(0)− y0, p(0))L2(Ω) + (Ψ(u), p)L2(0,T,L2(Ω))

+ (µ+, u− 1)L2(0,T ;Rn) − (µ−, u)L2(0,T ;Rn) + λ>(Gu− b) .

By calculating the derivative of L w.r.t. y in arbitrary direction ϕ ∈W (0, T ), as well
as applying interval-wise integration by parts to the equation in W (0, T ) [GGZ74],
we get the adjoint equation

(4.15)
−〈∂tp, ϕ〉+ (∇ϕ,∇p)L2(0,T,L2(Ω)) + (ϕ(T ), p(T ))L2(Ω)

= (ϕ, y − yd)L2(0,T,L2(Ω)) ∀ϕ ∈W (0, T ) .

We use a discontinuous Galerkin element method for the time discretization of
the PDE constraint with piecewise constant functions. Let

J̄ = {0} ∪ J1 ∪ · · · ∪ JK−1 ∪ JK

be a partition of [0, T ] with time points 0 = t0 < t1 < · · · < tK−1 < tK = T and
half-open subintervals Ji = (ti−1, ti] of size si := ti−ti−1 for i = 1, . . . ,K. Denote by
s := maxi=1,...,K si the maximal length of a subinterval. The spatial discretization
of the state equation uses a standard Galerkin method with piecewise linear and
continuous functions, where the domain Ω is partitioned into disjoint subsets Tr
of diameter hr := maxp,q∈Tr ‖p − q‖2 for r = 1, . . . , R, i.e., Ω = ∪Rr=1Tr. For the
one-dimensional domain Ω used in our experiments in Chapter 6, this means that
we subdivide Ω into R disjoint intervals of length hr. Set h := maxr=1,...,R hr and
Th := T1 ∪ · · · ∪ TR. We define the finite element space

Vh := {v ∈ C(Ω̄) ∩H1
0 (Ω): v|T ∈ P1(T ), T ∈ Th}

and associate with each time point ti a partition T ih of Ω and a corresponding finite
element space V i

h ⊆ H1
0 (Ω) which is used as spatial trial and test space in the time

interval Ji. Denote by P0(Ji, V
i
h) the space of constant functions on Ji with values

in V i
h . Then we use as a trial and test space for the state equation in (P) the space

Xs,h = {vsh ∈ L2(J, L2(Ω)) : vsh|Ji ∈ P0(Ji, V
i
h), i = 1, . . . ,K} .

By introducing the notation

y+
sh,i = lim

t↘0
ysh(ti + t) ,

y−sh,i = lim
t↘0

ysh(ti − t) = ysh(ti) ,

[ysh]i := y+
sh,i − y

−
sh,i
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for the discontinuities of functions ysh ∈ Xs,h in time, we obtain the following fully
discretized state equation: find for ush ∈ L2(0, T ;Rn) a state ysh ∈ Xs,h such that

(4.16)

K∑
i=1

〈∂tysh, ϕ〉Ji +

K∑
i=1

(∇ysh,∇ϕ)Ji +

K−1∑
i=1

([ysh]i, ϕ
+
i ) + (y+

sh,0, ϕ
+
0 )

=
K∑
i=1

(Ψ(ush), ϕ)Ji + (y0, ϕ
+
0 ) ∀ϕ ∈ Xs,h ,

where we use 〈·, ·〉Ji := 〈·, ·〉L2(Ji;H−1(Ω)),L2(Ji;H1
0 (Ω)), (·, ·)Ji := (·, ·)L2(Ji;Ω), and

(·, ·) := (·, ·)L2(Ω). Note that, for piecewise constant states ysh ∈ Xs,h, the term 〈∂tysh, ϕ〉Ji
in (4.16) is zero for all i = 1, . . . ,K. We denote the discrete solution operator by
Ssh : L2(0, T )→ Xs,h, i.e., ysh = Ssh(ush) satisfies the discrete state equation (4.16)
for ush ∈ L2(0, T ;Rn). Finally, since the binary switches u ∈ D only have finitely
many switching points, the feasible controls for (SP) and (P), respectively, are piece-
wise constant, so that a reasonable temporal discretization of these controls consists
of piecewise constant functions. We thus use piecewise constant functions for the
temporal discretization of feasible controls for (SPCk) as well. By using the same
temporal grid as for the state equation, we then obtain the space

Qρ = {w ∈ L2(0, T ;Rn) : w|Ji = wi for all i = 1, . . . ,K} .

Altogether, the discretization of (SPCk) is given as

(SPCkρ)



min J(yρ, uρ)

s.t.
K∑
i=1

〈∂tyρ,ϕ〉Ji +

K∑
i=1

(∇yρ,∇ϕ)Ji +

K−1∑
i=1

([yρ]i, ϕ
+
i )

=
K∑
i=1

(Ψ(uρ), ϕ)Ji + (y0 − y+
ρ,0, ϕ

+
0 ) ∀ϕ ∈ Xs,h ,

0 ≤ uρ|Ji ≤ 1 a.e. in Ji for all i = 1, . . . ,K ,

Guρ ≤ b .

Moreover, the Lagrangian L̃ : Xs,h × Qρ × Xs,h × Qρ × Qρ × Rk → R associated
with (SPCkρ) results as

L̃ (yρ, uρ, pρ, µ
+
ρ , µ

−
ρ , λρ) = J(yρ, uρ)−

K∑
i=1

〈∂tyρ, pρ〉Ji −
K∑
i=1

(∇yρ,∇pρ)Ji

−
K−1∑
i=1

([yρ]i, p
+
ρ,i)− (y+

ρ,0 − y0, p
+
ρ,0) +

K∑
i=1

(Ψ(uρ), pρ)Ji

+
K∑
i=1

λ(Ji)(µ
+
ρ |Ji)>(uρ|Ji − 1)−

K∑
i=1

λ(Ji)(µ
−
ρ |Ji)>uρ|Ji + λ>ρ (Guρ − b) .
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Based on this, we will devise a posteriori error estimates for both primal and dual
bounds in the next subsections.

4.5.2 A posteriori discretization error of dual bounds

Following the ideas of [MV07, VW08], we now derive an a posteriori estimation for
the error term J(y, u)−J(yρ, uρ), where (y, u) ∈W (0, T )×L2(0, T ;Rn) denotes the
optimizer of (SPCk) and (yρ, uρ) ∈ Xs,h × Qρ the one of (SPCkρ). For this, let us
write down the first-order optimality conditions of (SPCk) and (SPCkρ) by means of
the Lagrangian L and L̃ , respectively. If (y, u) ∈W (0, T )×L2(0, T ;Rn) is optimal
for (SPCk), then there exists p ∈W (0, T ), µ+ ∈ L2(0, T ;Rn), µ− ∈ L2(0, T ;Rn) and
λ ∈ Rk such that for χ := (y, u, p, µ+, µ−, λ) we have

L ′(χ)(δy, δu, δp) = 0 ∀(δy, δu, δp) ∈W (0, T )× L2(0, T ;Rn)×W (0, T ) ,(4.17a)

µ+ ≥ 0, µ+(u− 1) = 0, u ≤ 1 a.e. in (0, T ) ,(4.17b)

µ− ≥ 0, µ−u = 0, u ≥ 0 a.e. in (0, T ) ,(4.17c)

λ ≥ 0, λ>(Gu− b) = 0, Gu ≤ b .(4.17d)

Analogously, if (yρ, uρ) ∈ Xs,h×Qρ is optimal for (SPCkρ), then there exist pρ ∈ Xs,h,
µ+
ρ ∈ Qρ, µ−ρ ∈ Qρ and λρ ∈ Rk such that for χρ := (yρ, uρ, pρ, µ

+
ρ , µ

−
ρ , λρ) we have

L̃ ′(χρ)(δy, δu, δp) = 0 ∀(δy, δu, δp) ∈ Xs,h ×Qρ ×Xs,h ,(4.18a)

µ+
ρ |Ji ≥ 0, µ+

ρ |Ji(uρ|Ji − 1) = 0, uρ|Ji ≤ 1 ∀i = 1, . . . ,K ,(4.18b)

µ−ρ |Ji ≥ 0, µ−ρ |Ji uρ|Ji = 0, uρ|Ji ≥ 0 ∀i = 1, . . . ,K ,(4.18c)

λρ ≥ 0, λ>ρ (Guρ − b) = 0, Guρ ≤ b .(4.18d)

Using the shorthand notation

Y := W (0, T )× L2(0, T ;Rn)×W (0, T )× L2(0, T ;Rn)× L2(0, T ;Rn)× Rk and

Yρ := Xs,h ×Qρ ×Xs,h ×Qρ ×Qρ × Rk ,

we have everything at hand to combine the results from [MV07] and [VW08] to
obtain the following a posteriori discretization error estimation:

Theorem 4.16. Let χ = (y, u, p, µ+, µ−, λ) ∈ Y satisfy the first-order optimality
conditions (4.17a)–(4.17d) for (SPCk) and χρ = (yρ, uρ, pρ, µ

+
ρ , µ

−
ρ , λρ) ∈ Yρ the

first-order optimality conditions (4.18a)–(4.18d) for the discretized problem (SPCkρ).
Then

J(y, u)− J(yρ, uρ) = 1
2 L̃
′(χ)(χ− χρ) + 1

2 L̃
′(χρ)(χ− χρ)

= 1
2

(
L̃′y(χρ)(y − yρ) + L̃′p(χρ)(p− pρ) + L̃′u(χρ)(u− uρ)

+ L̃′µ+(χ)(µ+ − µ+
ρ ) + L̃′µ−(χ)(µ− − µ−ρ ) + L̃′λ(χ)(λ− λρ)

+ L̃′µ+(χρ)(µ
+ − µ+

ρ ) + L̃′µ−(χρ)(µ
− − µ−ρ ) + L̃′λ(χρ)(λ− λρ)

)
.
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Proof. The main arguments of the following proof are taken from the proofs of
[MV07, Thm. 4.1] and [VW08, Thm. 4.2]. From the first-order optimality sys-
tem (4.17a)–(4.17d) of χ ∈ Y for (SPCk) we obtain J(y, u) = L (χ). Analo-
gously, the first-order conditions (4.18a)–(4.18d) of χρ ∈ Yρ for (SPCkρ) lead to
J(yρ, uρ) = L̃ (χρ). Moreover, we have that L (χ) = L̃ (χ) since the continuous
embedding W (0, T ) ↪→ C([0, T ], L2(Ω)) [Zei90, Prop. 23.23] guarantees y ∈W (0, T )

to be continuous in time such that the additional jump terms in L̃ compared to L

vanish. We thus obtain

J(y, u)− J(yρ, uρ) = L̃ (χ)− L̃ (χρ) =

∫ 1

0
L̃ ′(χρ + s(χ− χρ))(χ− χρ) ds .

Evaluation of the integral by the trapezoidal rule leads to

(4.19) L̃ (χ)− L̃ (χρ) = 1
2L̃ ′(χ)(χ− χρ) + 1

2L̃ ′(χρ)(χ− χρ) +R

with the residual

R = 1
2

∫ 1

0
L̃ ′′′(χ+ ζ(χ− χρ))(χ− χρ, χ− χρ, χ− χρ)ζ(ζ − 1) dζ .

Since the PDE contained in (SPCk) as well as the control constraints in u are linear,
and the objective is quadratic in y and u, respectively, we have R = 0.

We now have a closer look at the different error terms arising in (4.19). First, we
have

L̃ ′(χ)(χ− χρ) = L̃ ′
µ+(χ)(µ+ − µ+

ρ ) + L̃ ′
µ−(χ)(µ− − µ−ρ ) + L̃ ′

λ(χ)(λ− λρ) ,

because the other terms are zero thanks to the condition (4.17a), which can be seen as
follows: since y ∈ W (0, T ) is continuous in time due to W (0, T ) ↪→ C([0, T ], L2(Ω))

by [Zei90, Prop. 23.23], the additional terms in L̃ ′
y compared to L ′

y and L̃ ′
p compared

to L ′
p, respectively, vanish, so that (4.17a) immediately yields L̃ ′

y(χ)(y) = 0 and
L̃ ′
p(χ)(p) = 0. Moreover, the continuity of y in time implies that L̃ ′

p(χ)(pρ) = 0 can
equivalently be expressed as

K∑
i=1

〈∂ty, pρ〉Ji +

K∑
i=1

(∇y,∇pρ)Ji + (y+
0 , p

+
ρ,0) =

K∑
i=1

(Ψ(u), pρ)Ji + (y0, p
+
ρ,0) .

For the continuous state y, the state equation (4.14) implies that (ϕ, y(0)) = (ϕ, y0)

holds for all ϕ ∈ L2(Ω), so that the term (y+
0 , p

+
ρ,0) containing y(0) = y+

0 cancels out
with (y0, p

+
ρ,0), and it remains to ensure

〈∂ty, pρ〉L2(0,T ;H−1(Ω)),L2(0,T ;H1
0 (Ω)) + (∇y,∇pρ)L2(0,T,L2(Ω)) = (Ψ(u), pρ)L2(0,T,L2(Ω)) .

Again from the continuous state equation (4.14), together with the density ofW (0, T )

in L2(0, T ;H1
0 (Ω)), the latter equation is satisfied for pρ ∈ L2(0, T ;H1

0 (Ω)) such that
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we obtain L̃ ′
p(χ)(pρ) = 0, as desired. It remains to prove L̃ ′

y(χ)(yρ) = 0. The func-
tion p ∈W (0, T ) is continuous with respect to time by [Zei90, Prop. 23.23], so that we
can rewrite L̃ ′

y(χ)(yρ) = 0 after interval-wise integration by parts inW (0, T ) [GGZ74]
as

−
K∑
i=1

〈∂tp, yρ〉Ji +
K∑
i=1

(∇yρ,∇p)Ji + (y−ρ,K , p
−
K) =

K∑
i=1

(yρ, y − yd)Ji .

Using p−K = p(T ) = 0 for the adjoint p ∈W (0, T ), the above equation becomes

−
K∑
i=1

〈∂tp, yρ〉Ji +

K∑
i=1

(∇yρ,∇p)Ji =

K∑
i=1

(yρ, y − yd)Ji .

By the adjoint equation (4.15) and the density of W (0, T ) in L2(0, T ;H1
0 (Ω)), the

equation is satisfied for yρ ∈ L2(0, T ;H1
0 (Ω)). We thus get L̃ ′

y(χ)(yρ) = 0. Fi-
nally, (4.17a) directly yields L̃ ′

u(χ)(u− uρ) = 0 because of (u − uρ) ∈ L2(0, T ;Rn).
The second term in (4.19) is given as

L̃ ′(χρ)(χ− χρ) = L̃ ′
y(χρ)(y − yρ) + L̃ ′

p(χs)(p− pρ) + L̃ ′
u(χρ)(u− uρ)

+ L̃ ′
µ+(χρ)(µ

+ − µ+
ρ ) + L̃ ′

µ−(χρ)(µ
− − µ−ρ ) + L̃ ′

λ(χρ)(λ− λρ) ,

which completes the proof.

We need to further specify the estimation of the a posteriori error given in The-
orem 4.16, since it contains the unknown solution χ ∈ Y. A common approach in
the context of the DWR method is to use higher-order approximations which work
satisfactorily in practice; see, e.g., [BR01]. Since our control function can only vary
over time and the novelty of our approach lies primarily in the determination of the
finitely many switching points, we assume that there is no error caused by the spatial
discretization of the state equation. Thus, we only use a higher-order interpolation in
time. For this, we introduce the piecewise linear interpolation operator I(1)

s in time
and map the computed solutions to the approximations of the interpolation errors

y − yρ ≈ I(1)
s yρ − yρ and p− pρ ≈ I(1)

s pρ − pρ.

Then we obtain the approximations

L̃ ′
y(χρ)(y − yρ) ≈ L̃ ′

y(χρ)(I
(1)
s yρ − yρ) and

L̃ ′
p(χρ)(p− pρ) ≈ L̃ ′

p(χρ)(I
(1)
s pρ − pρ) .

Since the space of the Lagrange multiplier λ of the cutting planes is finite-dimensional
and thus not implicitly discretized by the discretization of the control space, we may
choose λρ as higher-order interpolating and consequently neglect the error terms in λ,
i.e.,

L̃ ′
λ(χ)(λ− λρ) + L̃ ′

λ(χρ)(λ− λρ) ≈ 0 .
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Finally, as mentioned in [VW08], the control u typically does not possess sufficient
smoothness, due to the box and cutting plane constraints. We thus suggest, as
in [VW08], based on the gradient equation

L ′
u(χ) = α(u− 1

2) + Ψ?p+ µ+ − µ− +G?λ = 0

and the resulting projection formula

u = min{max{− 1
α(Ψ?p+G?λ) + 1

2 , 0}, 1} ,

the choice of
ũ = min{max{− 1

α(Ψ?I(1)
s pρ +G?λρ) + 1

2 , 0}, 1}

and
µ̃ = −α(ũ− 1

2)−Ψ?I(1)
s pρ −G?λρ =: µ̃+ − µ̃−

with µ̃+, µ̃− ≥ 0 a.e. on (0, T ). The computable error estimate is thus given as

(Eη)

η := J(y, u)− J(yρ, uρ)

≈ 1
2

[
L̃ ′
y(χρ)(I

(1)
s yρ − yρ) + L̃ ′

p(χρ)(I
(1)
s pρ − pρ) + L̃ ′

u(χρ)(ũ− uρ)

+ L̃ ′
µ+(χ̃)(µ̃+ − µ+

ρ ) + L̃ ′
µ−(χ̃)(µ̃− − µ−ρ )

+ L̃ ′
µ+(χρ)(µ̃

+ − µ+
ρ ) + L̃ ′

µ−(χρ)(µ̃
− − µ−ρ )

]
with χ̃ := (I

(1)
s yρ, ũ, I

(1)
s pρ, µ̃

+, µ̃−, λρ).

Remark 4.17. As in [MV07], one could split the error J(y, u) − J(yρ, uρ) into (a)
the error caused by the semi-discretization of the state equation in time, (b) the error
caused by the additional spatial discretization of the state equation, which we would
consider as zero again, and (c) the error caused by the control space discretization.
This would allow to choose different time grids for the state equation and the control
space, where the former has to be at least as fine as the latter [MV07]. Since we
are mostly interested in the combinatorial switching constraints, so that our focus
is on the controls, we decided not to split the error and thus not to consider a finer
temporal grid for the state.

As discussed in Section 4.2, the given fixings may determine parts of the switch-
ing pattern of u in (SPCk). In this case, we need to calculate the a posteriori
error (Eη) only on the unfixed control variables u|I , as well as on the Lagrange
multipliers µ+, µ− ∈ L2(I) corresponding to the box constraints, since we explicitly
eliminated the fixed control variables from the problem (SPCk). Then, it is clear that
the terms L̃ ′

u(χρ)(ũ−uρ), L̃ ′
µ+(χ̃)(µ̃+−µ+

ρ ), L̃ ′
µ−(χ̃)(µ̃−−µ−ρ ), L̃ ′

µ+(χρ)(µ̃
+−µ+

ρ ),
and L̃ ′

µ−(χρ)(µ̃
− − µ−ρ ) in the error estimator (Eη) tends to zero for an increasing

number of fixings satisfying the assumptions of Theorem 4.7, since the non-fixed
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part of the time horizon vanishes in this case. On the other hand, the error terms
L̃ ′
y(χρ)(I

(1)
s yρ − yρ) and L̃ ′

p(χρ)(I
(1)
s pρ − pρ) reflect the error J(Suρ, uρ)− J(yρ, uρ)

in the cost functional caused by calculating the discretized state yρ = Ssh(uρ) rather
than S(uρ). This error is also taken into account in the primal bounds throughout
our branch-and-bound scheme; see Section 4.5.3 below.

In summary, in order to numerically compute a safe dual bound for the subprob-
lem (SP), we first calculate a solution uρ of the fully discretized problem (SPCkρ)
with objective value J(yρ, uρ) by means of the ADMM method, as described in Sec-
tion 4.4.1. Second, we use J(yρ, uρ) − e + η as a dual bound, where e denotes the
absolute error in the primal objective caused by the ADMM algorithm, see (4.11),
and η the a posteriori error of the discretization of (SPCk); compare (Eη).

4.5.3 A posteriori discretization error of primal bounds

Every feasible solution u ∈ D, e.g., obtained by applying primal heuristics as de-
scribed in Section 4.4.2, leads to a primal bound J(Su, u) for the original problem (P).
However, this bound is again subject to discretization errors. To estimate the latter,
we first need to solve the fully discretized equation (4.16) to get a state ysh = Ssh(u)

and then to estimate the a posteriori error ξ := J(Su, u) − J(Sshu, u) in the cost
functional. For the latter, we can again use the DWR method, which was originally
invented to estimate the error in the cost function caused by the discretization of
the state equation, see, e.g., [BR01]. We may directly apply [BR01, Prop. 2.4] to
get the approximation

ξ ≈ py(ysh, u, psh)(p− psh) :=−
K∑
i=1

(∇ysh, p− psh)Ji −
K−1∑
i=1

([ysh]i, p
+
i − p

+
sh,i)

− (y+
sh,0 − y0, p

+
0 − p

+
sh,0) +

K∑
i=1

(Ψ(u), p− psh)Ji

with 〈∂tysh, psh〉Ji = 0 for i = 1, . . . ,K, where p = S∗(y) and psh = S∗sh(ysh) denotes
the adjoint corresponding to the state y = S(u) and ysh = Ssh(u), respectively.
Assuming again that there is no error caused by the spatial discretization, we may
use the piecewise linear interpolation I(1)

s psh of psh in time to obtain the computable
a posteriori error

ξ ≈ py(ysh, u, psh)(I(1)
s psh − psh) .

Then J(Sshu, u) + ξ is a safe primal bound.

4.5.4 Adaptive refinement strategy

The central feature of our branch-and-bound algorithm is the approximate computa-
tion of an optimal solution for (P) in function space. In the limit, this solution does
not depend on any predetermined discretization of the time horizon. However, in
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practice, we need to discretize our subproblem (SP) in order to numerically compute
dual bounds, as described in Section 4.5.2. The main idea of our approach is to use a
coarse temporal grid at the beginning, when the branchings have not yet determined
a significant part of the switching structure, and then to refine the subintervals (only)
if necessary.

More specifically, as long as the time-mesh dependent dual bound J(yρ, uρ) − e
for (SP) is below the best known primal bound, we proceed with the given discretiza-
tion. Otherwise, we cannot find a better solution for (SP) for the given discretization.
We then must decide whether better solutions for (SP) may potentially exist when
using a finer temporal grid. This is the case if and only if the time-mesh independent
bound J(yρ, uρ)− e+ η is still below the primal bound PB. We thus have to refine
the grid whenever

J(yρ, uρ)− e+ η ≤ PB < J(yρ, uρ)− e .

If even J(yρ, uρ) − e + η exceeds the primal bound, we can prune the subproblem.
Indeed, in this case we cannot find better solutions for (SP) even in function space.

The adaptive refinement of the temporal grid is guided by the a posteriori error
estimation of the discretization proposed in Section 4.5.2. The error estimator (Eη)
can be easily split into its contribution on each subinterval Ji, i.e.,

η =
K∑
i=1

ηi,

with the local error contributions ηi on Ji for i = 1, . . . ,K. Note that this splitting
is directly possible since we assumed that there is no error caused by the spatial
discretization of the state equation, and thus no further localization on each spatial
mesh is needed. A popular strategy for mesh adaption is to order the subintervals
according to the absolute values of their error indicators in descending order, i.e.,
to find a permutation % of {1, . . . ,K} such that |η%(1)| ≥ · · · ≥ |η%(K)| , and then
to refine the subintervals which make up a certain percentage γ > 0 of the total
absolute error, i.e., the subintervals J%(1), . . . , J%(Kγ) with

Kγ := min

{
j ∈ {1, . . . ,K} :

j∑
i=1

|η%(i)| > γ
K∑
i=1

|ηi|

}
.

The resulting subproblem (SPCkρ) with respect to the refined discretization again
has to be solved by Algorithm 4. As a reoptimization strategy, the values of the
prior discretized solution (uρ, vρ, λρ, wρ, µρ) returned by Algorithm 4 can be used to
initialize the variables in Step 1. More precisely, the values of (uρ, wρ, µρ) can be
duplicated according to the refinement of the subintervals and (vρ, λρ) can be kept
unchanged. In this way, we produce a primal feasible solution (uρ, vρ, wρ) for the
new subproblem (SPCkρ), but note that (λρ, µρ) is not feasible for the corresponding
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dual problem. The latter is no problem because Algorithm 4 does not have to be
started with a feasible solution for none of the two problems, neither for the primal
nor for the dual problem.

An extensive experimental evaluation of the entire branch-and-bound approach
presented in this chapter and an illustration of the interplay between branching and
adaptive refinement can be found in Chapter 6.
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Chapter 5

Finite-dimensional projection sets

In Chapter 4, we developed a branch-and-bound algorithm for the mixed-integer
optimal control problem (P), in which we compute dual bounds of the form{

inf f(u) = J(Su, u)

s.t. u ∈ conv(DSP) ,

where DSP = {u ∈ D : ujκ(τκ) = cκ ∀κ = 1, . . . , L} is a subset of feasible controls
for (P), which satisfy certain pointwise fixings (τκ, jκ, cκ) ∈ [0, T )×{1, . . . , n}×{0, 1}
for 1 ≤ κ ≤ L; see Section 4.2 for more details. To compute these bounds, a complete
description of conv(DSP) in function space is needed.

As mentioned in the introduction, in the literature either non-smooth penalty
techniques are used to impose switching constraints in optimal control problems
governed by PDEs or the methods aim at optimizing the switching times. Both
strategies in general lead to non-convex problems with potentially local minima,
whose convexification may destroy the switching structure of the optimal solution. A
deeper understanding of the given switching constraints is thus not really worthwhile
for these methods. As a result, there is a lack of research addressing conv(DSP) in
function space.

Nevertheless, we derived in Section 4.3 a scheme to completely describe conv(DSP)

in function space through cutting planes lifted from finite-dimensional projections Π

of the form

(5.1) Π: BV (0, T ;RN )→ RM ,Π(u)(j−1)N+i = 1
λ(Ii)

∫
Ii

uj dt

for j = 1, . . . , n with suitably chosen subintervals Ii ⊆ (0, T ), 1 ≤ i ≤ N , and
M = nN . The advantage of our approach is that we can compute the dual bounds
by means of outer approximation, so that each iteration of the algorithm provides a
dual bound on the objective value of (P); compare Sections 4.4.1 and 4.5.2 for the
numerical computation of these dual bounds. Moreover, we reduce the task to find
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cutting planes for conv(DSP) in function space within the outer approximation algo-
rithm to a purely combinatorial task in finite dimension by first projecting conv(DSP)

with the help of Π to RM and then computing cutting planes for the projection set
CDSP,Π = Π(conv(DSP)). According to Lemma 4.12, we have

(5.2) CDSP,Π = conv(Π(DSP)) ,

so that we actually need to find a description of the convex hull of the projection
set Π(DSP) in finite dimension to derive cutting planes for conv(DSP) in function
space. For the tractability of our approach, it is necessary that the separation prob-
lems for the convex hulls of the projected switching constraints can be solved effi-
ciently. For the latter, it is desirable that the sets are polyhedra.

To the best of our knowledge, there is no unified theory or combinatorial investi-
gation of switching constraints in finite dimension. However, there exist some poly-
hedral results for different kind of constraints on the scheduling of a set of generating
units over a discrete time horizon. This kind of problem is known as unit commit-
ment problem and has been studied intensively; see, e.g., [Pad04] and [MS14] for a
survey on that problem. In the case of a single unit and a bound from below on the
minimum time span that the unit has to stay on (off) after being switched on (off),
[LLM04] presents a full characterization of the polytope of feasible switches by lin-
ear inequalities and a linear-time separation algorithm. Note that these constraints
are dwell time constraints over a discrete time horizon (compare Section 4.1.2) and
are called min-up/min-down constraints in the unit commitment community. For
multiple units subject to min-up/min-down constraints, valid inequalities are given
in [BFR18]. More recently, [BH23] considers a single binary switch starting in zero
whose overall number of changes is bounded from above. The authors specify a
complete description of the polytope by linear inequalities, as well as a linear-time
separation algorithm. This kind of constraint arises in particular when the control
functions in Dmax, as defined in (4.3), are discretized by piecewise constant functions
in time. We will see in Section 5.1.2 and Section 5.2.2 that we can benefit from these
results to separate infeasible controls from the projection sets of the convex hull of
bounded variation constraints and dwell time constraints, respectively.

This chapter is dedicated to investigate the sets CDSP,Π for the two classes of
switching constraints introduced in Sections 4.1.1 and 4.1.2. For both, we show in
Section 5.1.1 and Section 5.2.1, respectively, that the sets are polyhedra for arbitrary
fixings, based on the observation (5.2). In Sections 5.1.2 and 5.2.2, we concentrate
on special cases D and prove the tractability of the separation problems for CDSP,Π.

Most results presented in this chapter have already been published in [BGM24]
for the case of a single switch, i.e., n = 1.

For the remainder of this chapter, let us consider a fixed projection Π of the
form (5.1) and assume that the intervals Ii = (ai, bi), 1 ≤ i ≤ N , are pair-
wise disjoint. Moreover, without loss of generality, we may assume that the fixing
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points 0 ≤ τ1 < · · · < τL < T satisfy τκ /∈ Ii for all κ = 1, . . . , L and i = 1, . . . , N ,
since otherwise one may refine the projection intervals and thus generate stronger
cutting planes according to Corollary 3.7.

5.1 Pointwise combinatorial constraints

In this section, we investigate the projection sets of pointwise combinatorial con-
straints

DΣ
max(U) =

{
u ∈ BV0(0, T ;Rn) : u(t) ∈ U f.a.a. t ∈ (0, T ), |u|BV (−1,T ;Rn) ≤ σ

}
for some set U ⊆ {0, 1}n and given σ ∈ N, as defined in (4.2). For the setDΣ

max(U), we
extended the time horizon from (0, T ) to (−1, T ), hidden in the definition ofBV0(0, T ;Rn) =

{u ∈ BV (−1, T ;Rn) : u = 0 a.e. in (−1, 0)}, to count it as additional switchings if
some switches are directly turned on at time zero. To see this in the fixed projection
Π, we can simply add the local average of the controls over (−1, 0) to Π. More
precisely, in the remainder of this section Π is given by

Π(u)(j−1)(N+1)+i+1 = 1
λ(Ii)

∫
Ii

uj(t) dt

with I0 := (−1, 0) and the disjoint intervals Ii = (ai, bi) for i = 1, . . . , N . Note
that M = n(N + 1) in this case and for u ∈ DΣ

max(U) we have Π(u)(j−1)(N+1)+1 = 0

for all j = 1, . . . , n.

5.1.1 Polyhedricity

For the case of pointwise combinatorial constraints DΣ
max(U) on the switches, we can

show that the projection sets are 0/1-polytopes as follows:

Theorem 5.1. The set CDΣ
max(U)SP,Π is a 0/1-polytope.

Proof. We claim that CDΣ
max(U)SP,Π equals the convex hull of all projection vectors

resulting from feasible controls that are almost everywhere piecewise constant on the
projection intervals I0, . . . , IN , i.e.,

(5.3) CDΣ
max(U)SP,Π

= conv(K) ,

where

K := {Π(u) : u ∈ DΣ
max(U)SP and for i = 1, . . . , N there exists wi ∈ U

with u(t) ≡ wi f.a.a. t ∈ Ii} .

Note that the controls in DΣ
max(U)SP are already constantly zero a.e. on I0 = (−1, 0)

by definition of DΣ
max(U) and the fact that the fixings τ1, . . . , τL only belong to [0, T ).
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Chapter 5. Finite-dimensional projection sets

Therefore it suffices to show the assertion for I1, . . . , IN . From this, the result follows
directly, as K ⊆ {0, 1}M .

Since K is a subset of Π(DΣ
max(U)SP), the direction “⊇” in (5.3) follows directly

with (5.2). It thus remains to show “⊆” in (5.3). For this, let u ∈ DΣ
max(U)SP. We

prove that Π(u) can be written as a convex combination of vectors in K since every
vector in conv(Π(DΣ

max(U)SP)) is then as well a convex combination of vectors in K,
so that CDΣ

max(U)SP,Π
⊆ conv(K) follows thanks to (5.2). Let l ∈ {0, . . . , N} denote

the number of intervals in which the switch u is switched at least once. We prove the
assertion by means of complete induction over the number l. For l = 0, we clearly
have Π(u) ∈ K ⊆ conv(K). So let the number of intervals in which the switch is
switched at least once be l+1. Additionally, let ` ∈ {1, . . . , N} be an index of such an
interval I`. Since we have the upper bound σ on the total number of switchings, only
finitely many switchings can be in the interval I`. Hence, I` can be divided into r
disjoint subintervals I1

` , . . . , I
r
` such that I` = ∪m=1,...,rIm` and there exist wm ∈ U

with u(t) = wm f.a.a. t ∈ Im` , 1 ≤ m ≤ r. Define um for m = 1, . . . , r as follows:

um(t) :=

{
wm, if t ∈ I`
u(t), otherwise .

Then, by construction, we have

1
λ(I`)

∫
I`

u(t) dt = 1
λ(I`)

r∑
m=1

∫
Im`

wm dt =
r∑

m=1

λ(Im` )

λ(I`)
wm

with λ(Im` )/λ(I`) ≥ 0 for every m ∈ {1, . . . , r} and
∑r

m=1
λ(Im` )/λ(I`) = 1. Since the

control is unchanged on the other intervals Ii for i 6= ` (and in particular for i = 0),
we conclude Π(u) =

∑r
m=1

λ(Im` )/λ(I`)Π(um).
We next show that the controls um are in DΣ

max(U)SP for each m = 1, . . . , r. So
let m ∈ {1, . . . , r} be arbitrary, but fixed. Due to u ∈ DΣ

max(U)SP, there exists a
sequence {vk}k∈N ∈ DΣ

max(U)SP such that vk → u in L2(−1, T ;Rn) for k → ∞.
In particular, there exists a subsequence, which we denote by the same symbol for
simplicity, with vk(t)→ u(t) f.a.a. t ∈ (−1, T ) for k →∞. Since u switches at least
once in the interval I` and vk converges pointwise almost everywhere to u, there
exists k0 ∈ N such that for all k ≥ k0 the control vk also switches at least once
in I`. When constructing a sequence in DΣ

max(U)SP converging strongly to um with
the help of {vk}k∈N, we need to consider that fixing points τκ may coincide with the
interval limits of I`, so that we are only able to change the values in the inner of I`.
We thus define

wkm(t) =


wm, t ∈ [a` + λ(I`)

2k , b` − λ(I`)
2k )

vk(a`), t ∈ [a`, a` + λ(I`)
2k )

vk(b`), t ∈ [b` − λ(I`)
2k , b`)

vk(t), otherwise .
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5.1. Pointwise combinatorial constraints

Due to vk ∈ U a.e. in (0, T ) and wm ∈ U , wkm(t) ∈ U holds f.a.a. t ∈ (0, T ). Besides,
we have wkm = vk = 0 a.e. in (−1, 0) and (wkm)jκ(τκ) = vkjκ(τκ) = cκ since τκ /∈ (a`, b`)

for any κ = 1, . . . , L. Finally, for k ≥ k0, wkm has at most as many switchings as vk

in total and we thus obtain wkm ∈ DΣ
max(U)SP for k ≥ k0. It is easy to see that

wkm → um in L2(−1, T ;Rn) for k →∞, so that we get um ∈ DΣ
max(U)SP, as claimed.

By the induction hypothesis, the vectors Π(um) can thus be written as convex
combinations of vectors in K and consequently, also Π(u) is a convex combination
of vectors in K.

Remark 5.2. It is easy to see that Theorem 5.1 also extends to the constraint Dmax

defined in (4.3), which bounds the total number of switching points of each switch
separately from above. Indeed, whenever the constraint D is defined by switch-wise
constraints as in Dmax, polyhedricity and integrality can be verified for each switch
individually.

Remark 5.3. The polyhedricity of the projection sets Π(conv(DΣ
max(U))SP) in The-

orem 5.1 would even hold without the requirement that the switches are off at the
beginning; following the same reasoning as in the proof of Theorem 5.1.

The fact that CDΣ
max(U)SP,Π is a polytope allows, in principle, to describe it by

finitely many linear inequalities. However, the number of its facets may be ex-
ponential in n or M , so that a separation algorithm will be needed for the outer
approximation algorithm presented in Section 3.2. It depends on the set U whether
this separation problem is tractable. E.g., if U models arbitrary conflicts between
switches that may not be used simultaneously, the separation problem turns out to
be NP-hard, since U can model the independent set problem in this case. Whether
the separation problem for CDΣ

max(U)SP,Π is tractable in the case that the separation
problem for U is tractable, is an interesting question for further research. Even for
the special case n = 1 and U = {0, 1}, the specification of a separation algorithm
for CDΣ

max({0,1})SP,Π is non-trivial, as we will see in the next subsection.

5.1.2 Separation of bounded variation constraints

We investigate here the separation problem for CDΣ
max({0,1})SP,Π, i.e., we consider the

case of a single switch with an upper bound σ on the total number of its switchings.
Even in the case without fixings, i.e., when DΣ

max({0, 1})SP = DΣ
max({0, 1}), the

complete description of CDΣ
max({0,1}),Π and its separation problem is non-trivial. In

this case, the set K defined in in the proof of Theorem 5.1 consists of all binary
sequences v1, . . . , vM ∈ {0, 1} such that v1 = 0 and vi−1 6= vi occurs for at most σ
indices i ∈ {2, . . . ,M}, i.e., K agrees with

(5.4)

{
v ∈ {0, 1}M : v1 = 0,

M∑
i=2

|vi − vi−1| ≤ σ

}
.
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It is shown in [BH23] that the separation problem for conv(K) and hence for CDΣ
max({0,1}),Π

can be solved in polynomial time. More precisely, a complete linear description
of CDΣ

max({0,1}),Π is given by v ∈ [0, 1]M , v1 = 0, and inequalities of the form

(5.5)
m∑
j=1

(−1)j+1vij ≤
⌊σ

2

⌋
,

in which i1, . . . , im ∈ {2, . . . ,M} is an increasing sequence of indices with m > σ

and m−σ odd. For given v̄ ∈ [0, 1]M , a most violated inequality of the form (5.5) is
obtained by choosing {i1, i3, . . . } as the local maxima of v̄ and {i2, i4, . . . } as the local
minima of v̄ (excluding 1); such an inequality can thus be computed in O(M) time.

Example 5.4. Consider the control

u(t) =

{
1
2 , if t ∈ [1/3T, 2/3T ]

0, otherwise

from Counterexample 4.11. We have already proven u /∈ conv(DΣ
max({0, 1})) for

σ = 1 in Counterexample 4.11. In view of the results in Section 4.3, there must
exist a projection Π such that Π(u) /∈ CDΣ

max({0,1}),Π holds. For instance, we may
choose I1 = (1/3T, 2/3T ) and I2 = (2/3T, T ). Then we have Π(u) = (0, 1/2, 0)>, and
by choosing i1 = 2 and i2 = 3 we obtain

Π(u)2 −Π(u)3 = 1
2 > 0 = b1

2c ,

i.e., v2− v3 ≤ 0 represents the most violated cutting plane for Π(u) /∈ CDΣ
max({0,1}),Π.

This inequality expresses that, for feasible controls in conv(DΣ
max({0, 1})), the local

average over (1/3T, 2/3T ) is always less or equal than the local average over (2/3T, T ).
In fact, all valid inequalities of the form (5.5) for CDΣ

max({0,1}),Π imply that the controls
in conv(DΣ

max({0, 1})) are non-decreasing.

We now show that the separation problem for CDΣ
max({0,1})SP,Π with arbitrary

fixings can be solved in polynomial time by reducing its separation problem to the
separation problem for CDΣ

max({0,1}),Π. To this end, we extend the vector v by the
fixing values c1, . . . , cL. More precisely, for all κ ∈ {1, . . . , L}, let iκ ∈ {1, . . . , N}
be the index such that biκ−1 ≤ τκ ≤ aiκ holds, where b0 = 0 with I0 = (−1, 0). In
addition, define the mapping E : RM → RM+L by

(5.6) Ev := (v1, . . . , vi1 , c1, vi1+1, . . . , vi2 , c2, vi2+1, . . . , viL , cL, viL+1, . . . , vM )>.

The desired reduction is based on the following:

Lemma 5.5. A vector v ∈ RM belongs to K ⊆ {0, 1}M if and only if Ev belongs to

C :=
{
w ∈ {0, 1}M+L : w1 = 0,

M+L∑
l=2

|wl − wl−1| ≤ σ
}
.
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( )
Ii τκ

) ( )
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vi+3

cκ+3
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(a) Construction scheme for the functions uk, k ∈ N.
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Ii τκ
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Ii+1 τκ+1 τκ+2 τκ+3
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Ii+2

( )
Ii+3

vi+1

cκ vi+2

cκ+1

cκ+2

vi+3 vi+4

(b) Scheme for the limit u of the constructed sequence {uk}k∈N in (a).

Figure 5.1: Illustration of the second part of the proof of Lemma 5.5.

Proof. For the first direction, let v = Π(u) ∈ K for some u ∈ DΣ
max({0, 1})SP that

is constant almost everywhere on all projection intervals. Then there exists a se-
quence {uk}k∈N ⊆ DΣ

max({0, 1})SP with uk → u in L2(−1, T ) for k → ∞. For
every k ∈ N, the control uk has at most σ switchings and satisfies uk(τκ) = cκ for
κ = 1, . . . , L, so that we have

M+L∑
l=2

|EΠ(uk)l − EΠ(uk)l−1| ≤ σ .

The continuity of Π in L2(−1, T ) yields v = Π(u) = limk→∞Π(uk) and hence

M+L∑
l=2

|Evl − Evl−1| ≤ lim
k→∞

M+L∑
l=2

|EΠ(uk)l − EΠ(uk)l−1| ≤ σ ,

i.e., we have Ev ∈ C as desired.
We next show the opposite direction. So let Ev ∈ C for some vector v ∈ RM .

In addition, let 0 = z0 < z1 < · · · < zr = T include all endpoints of the inter-
vals I1 . . . , IN and the fixings τ1, . . . , τL. Construct controls uk for k ∈ N such that

uk(t) = v1 = 0 for t ∈ (−1, 0) ,

uk(t) = vi+1 for t ∈ [ai + λ(Ii)
2k , bi − λ(Ii)

2k ) and i = 1, . . . , N ,

uk(t) = cκ for t ∈ [τκ, τκ + εκ
2k ) and κ = 1, . . . , L ,

where εκ = min{zi − τκ : i ∈ {1, . . . , r}, zi > τκ} > 0. For points in (0, T ) not
covered by the above intervals, one can copy the value of the left neighboring interval.
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The construction is illustrated in Figure 5.1a. We have uk(τκ) = cκ for all k ∈ N
and κ = 1, . . . , L, hence all fixings are respected. Moreover, Ev ∈ C guarantees that
uk switches at most σ times, i.e., we get uk ∈ DΣ

max({0, 1})SP. By copying always
the value of the left neighboring interval, we guarantee that the controls uk converge
strongly in L2(−1, T ) to some u; see Figure 5.1b. Moreover, by construction, u
is v1, . . . , vM almost everywhere on the projection intervals I0, . . . , IN , respectively,
and, due to {uk}k∈N ⊆ DΣ

max({0, 1})SP, we have u ∈ DΣ
max({0, 1})SP. In summary,

we obtain v = Π(u) ∈ K.

Theorem 5.6. The separation problem for CDΣ
max({0,1})SP,Π can be solved in O(M+L)

time.

Proof. By the proof of Theorem 5.1, we have CDΣ
max({0,1})SP,Π

= conv(K). Us-
ing Lemma 5.5, we obtain that v ∈ CDΣ

max({0,1})SP,Π
if and only if Ev ∈ conv(C).

The separation problem for CDΣ
max({0,1})SP,Π thus reduces to the separation problem

for conv(C), which has the same form as (5.4). By [BH23], the separation problem
can thus be solved in O(M + L) time.

The separation algorithm used in the outer approximation approach devised
in Section 3.2 even needs to compute the most violated cutting plane. The same
can be done when considering fixings: our aim is to find the most violated cutting
plane in the set

HDΣ
max({0,1})SP,Π := {(a, b) ∈ [−1, 1]M × R : a>w ≤ b ∀w ∈ CDΣ

max({0,1})SP,Π}

of all valid inequalities. This can be achieved by first computing the most violated
cutting plane for the extended vector in

HC := {(a, b) ∈ [−1, 1]M+L × R : a>w ≤ b ∀w ∈ conv(C)}

and then replacing the (ij + j)th variable by the constant cj for all j = 1, . . . .N .
More specifically, the following holds true:

Lemma 5.7. Let v /∈ CDΣ
max({0,1})SP,Π

and (ā, b̄) ∈ arg max(a,b)∈HC(a
>Ev − b) be

the inequality in HC most violated by Ev, so that ā>Ev − b̄ > 0. By deleting all
entries in ā with indices in {ij + j : j = 1, . . . , L} (the resulting vector is denoted
by a) and setting b := b̄ −

∑L
j=1 āij+j cj, we get a valid inequality a>w ≤ b for

w ∈ CDΣ
max({0,1})SP,Π

and the latter represents a most violated cutting plane for v
in HDΣ

max({0,1})SP,Π.

Proof. We first show (a, b) ∈ HDΣ
max({0,1})SP,Π. Due to ā ∈ [−1, 1]M+L, we directly

have a ∈ [−1, 1]M . Moreover, for every w ∈ CDΣ
max({0,1})SP,Π we have by construction

a>w − b = ā>Ew − b̄ ≤ 0 ,

92



5.2. Switching point constraints

where the last inequality results from Ew ∈ conv(C), thanks to the proof of The-
orem 5.6. So a>w ≤ b is valid for all w ∈ CDΣ

max({0,1})SP,Π
, but the inequality is

violated by the vector v since a>v − b = ā>Ev − b̄ > 0 holds by assumption.
It is left to show that (a, b) ∈ RM+L+1 induces a most violated cutting plane. For

each (q, r) ∈ HDΣ
max({0,1})SP,Π, we can extend the coefficient vector q with zeros, in-

stead of the values c1, . . . , cL, as in (5.6) to get a vector q̄. The vector (q̄, r) ∈ RM+L+1

then induces a valid inequality for conv(C), again thanks to the proof of Theorem 5.6.
In addition, the choice of (ā, b̄) ∈ arg max(a,b)∈HC(a

>Ev − b) guarantees

q>v − r = q̄>Ev − r ≤ ā>Ev = a>v − b ,

which completes the proof.

The result of the above lemma and the separation algorithm for CDΣ
max({0,1}),Π

together are used in our numerical experiments in Chapter 6.
Finally, note that, since Dmax = DΣ

max({0, 1})n holds, we can also separate vectors
from CDmax,Π efficiently by calling the separation algorithm for CDΣ

max({0,1}),Π for the
projection of each switch individually.

5.2 Switching point constraints

In this section, we consider the set

D(P ) = {ut1,...,tnσ ∈ BV (0, T ; {0, 1}n) : 0 ≤ t(j−1)σ+1 ≤ . . . ≤ tj σ <∞
∀1 ≤ j ≤ n s.t. (t1, . . . , tnσ) ∈ P}

of switching point constraint for some polytope P ⊆ Rnσ≥0, as defined in (4.4). Here,
the fact that the switches are off at the beginning is modeled by the representa-
tive ut1,...,tnσ instead of using BV0(0, T ;Rn) as for DΣ

max(U) in the previous section.
Moreover, we limit ourselves directly to polytopes P , i.e., to affine linear switching
point constraints, since for compact sets even the projection sets CD(P )SP,Π must not
be describable through finitely many linear inequalities in general; see Counterexam-
ple 4.13. Even more, the counterexample indicates that arbitrary nonlinearities of
switching points could be transferred to the projection sets, so that the separation
problem for CD(P )SP,Π is not tractable in general. Also in the case that CD(P )SP,Π is
a polytope, the separation problem is not necessarily tractable and thus we will also
specify for special examples of the polytope P a polynomial separation algorithm
for CD(P )SP,Π.

5.2.1 Polyhedricity

We will first show in this subsection that the sets conv(Π(D(P )SP)) are not polyhe-
dra in general, but can be described through finitely many linear and strict linear
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inequalities; see Theorem 5.9. Based on this result, we will then easily derive that
the projection sets CD(P )SP,Π are polyhedra; see Theorem 5.11.

The proof is based on the idea to assign the switching points to the projection
intervals I1, . . . , IN or the spaces in between, because once such an assignment is
fixed, the projection vector Π(ut1,...,tnσ) is linear in the switching points t1, . . . , tnσ;
compare the proof of Theorem 5.9. However, in the presence of fixings, we need to
pay attention that we only consider assignments such that the fixings are respected.

For the latter, let 0 ≤ τ1(j) < . . . < τLj (j) < T denote all time points of τ1, . . . , τL
where the j-th switch was fixed and let c1(j), . . . , cLj (j) be the corresponding values
for j = 1, . . . , n. Moreover, let −1 = z0 < z1 < · · · zr−1 < zr = ∞ include all end
points of the intervals I1, . . . , IN defining Π and the fixing points τ1, . . . , τL. Now
let Z be the set of all those maps ϕ : {1, . . . , nσ} → {1, . . . , r} that, for j = 1, . . . , n

and κ = 1, . . . , Lj , assign an even number of t(j−1)σ+i’s to intervals (τκ−1(j), τκ(j)]

if cκ−1(j) = cκ(j) and an odd number otherwise, with τ0(j) := −1 and c0(j) := 0 as
the switches are supposed to be off at the beginning. We now define

Zϕ(j) := {i ∈ {1, . . . , σ} : ∃κ ∈ {1, . . . , Lj} s.t. zϕ((j−1)σ+i)−1 = τκ(j)}

for j = 1, . . . , n and

Qϕ := {(t1, . . . , tnσ) ∈ P : t(j−1)σ+1 ≤ . . . ≤ tjσ ∀1 ≤ j ≤ n ,
zϕ(i)−1 ≤ ti ≤ zϕ(i) ∀1 ≤ i ≤ nσ ,

zϕ((j−1)σ+i)−1 < t(j−1)σ+i ∀i ∈ Zϕ(j)}

for all ϕ ∈ Z. Then the following holds true:

Lemma 5.8.
D(P )SP =

⋃
ϕ∈Z

D(Qϕ) .

Proof. The proof mainly consists in showing that we can restrict ourselves to maps
ϕ ∈ Z such that the fixings (τκ, jκ, cκ) ∈ [0, T ) × {1, . . . , n} × {0, 1} for κ =

1, . . . , L are satisfied. For the first direction, let ut1,...,tnσ ∈ D(P )SP with switch-
ing points (t1, . . . , tnσ) ∈ P . Define ϕ̄ : {1, . . . , nσ} → {1, . . . , r} such that zϕ̄(i)−1 <

ti ≤ zϕ̄(i) holds for i = 1, . . . , nσ. Then we directly have (t1, . . . , tnσ) ∈ Qϕ̄. It is
left to show ϕ̄ ∈ Z. To this end, let j ∈ {1, . . . , n} be arbitrary, but fixed. Since
(ut1,...,tnσ)j(τ1(j)) = c1(j), the other fixings (ut1,...,tnσ)j(τκ(j)) = cκ(j), κ = 2, . . . , Lj ,
can only be satisfied if the number of switching points in the interval (τκ−1(j), τκ(j)] is
even in the case cκ−1(j) = cκ(j) and odd, otherwise. If c1(j) = 0, then (ut1,...,tnσ)j(τ1(j)) =

0 only holds when an even number of switching points is less or equal to τ1(j), and in
the other case c1(j) = 1, this number must be odd. Consequently, we obtain ϕ̄ ∈ Z
and ut1,...,tnσ ∈ D(Qϕ̄).

For the reverse inclusion, let u ∈ D(Qϕ) for some ϕ ∈ Z. Then there exists
(t1, . . . , tnσ) ∈ Qϕ such that u = ut1,...,tnσ a.e. in (0, T ). With Qϕ ⊆ P , it directly

94



5.2. Switching point constraints

follows that u ∈ D(P ). Since ϕ ∈ Z we know that the correct number of switching
points is assigned to the interval (τκ−1(j), τκ(j)] in order to respect the given fixings
in D(P )SP. Moreover, the last requirement in the definition of Qϕ ensures that no
switching point assigned to the right neighbor interval of τκ(j) is equal to τκ(j), so
the given fixings (ut1,...,tnσ)j(τκ(j)) = cκ(j) are indeed satisfied for all j ∈ {1, . . . , n},
which completes the proof.

With the help of the above lemma, we can easily show that Π(D(Qϕ)) is not a
polyhedron for ϕ ∈ Z (see Example 5.14 below), but can be described by finitely
many linear and strict linear inequalities. In the following, we will call a bounded
set P ⊂ RM a half-open polytope if it is the intersection of finitely many open and
closed half spaces.

Theorem 5.9. Π(D(P )SP) is a finite union of half-open polytopes and its convex
hull conv(Π(D(P )SP)) is a half-open polytope.

Proof. We first note that the mapping

Qϕ 3 (t1, . . . , tnσ) 7→ Π(ut1,...,tnσ) ∈ RM

is linear, since we have

Π(ut1,...,tnσ)(j−1)N+i = 1
λ(Ii)

∫
Ii

(ut1,...,tnσ)j(t) dt

= 1
λ(Ii)

∑
l∈{2,...,σ+1}

even

∫
Ii

χ[t̄l−1,t̄l] dt

for j = 1, . . . , n and i = 1 . . . , N , where we set t̄l := t(j−1)σ+l for l = 1, . . . , σ

and t̄σ+1 := ∞. In addition,
∫
Ii
χ[t̄l−1,t̄l] dt is linear in t̄l and t̄l−1 for a fixed assign-

ment ϕ, so that Π(ut1,...,tnσ)(j−1)N+i is linear in all points t(j−1)σ+1, . . . , tj σ, for a
fixed assignment ϕ.

Since P ⊆ RM is a polytope, Qϕ ⊆ P is a half-open polytope. The linearity of the
mapping Qϕ 3 (t1, . . . , tnσ) 7→ Π(ut1,...,tnσ) ∈ RM now implies that Π(D(Qϕ)) is also
a half-open polytope. Together with Π(D(P )SP) =

⋃
ϕ∈Z Π(D(Qϕ)) by Lemma 5.8,

it thus follows that Π(D(P )SP) is a finite union of half-open polytopes. Following
the same reasoning that the convex hull of a finite union of polytopes is a polytope
again, it is easy to see that the convex hull of a finite union of half open-polytopes is
also a half-open polytope. Consequently, conv(Π(D(P )SP)) is a half-open polytope,
which completes the proof.

Note that Z in Lemma 5.8 is finite, so that D(P )SP =
⋃
ϕ∈Z D(Qϕ). Moreover,

it can be easily seen that the closure of each set D(Qϕ) in L2(0, T ;Rn) is given as
follows:

Lemma 5.10. D(Qϕ) = {ut1,...,tnσ ∈ BV (0, T ; {0, 1}n) : (t1, . . . , tnσ) ∈ Qϕ} .
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Proof. Let u belong to D(Qϕ) and consider a sequence {uk}k∈N ⊆ D(Qϕ) with
uk = utk1 ,...,tknσ

→ u in L2(0, T ;Rn) for k → ∞, where tk = (tk1, . . . , t
k
nσ) ∈ Qϕ

for k ∈ N. The strong convergence in L2(0, T ;Rn) implies that there is a subsequence
which converges pointwise almost everywhere in (0, T ) to u, so that u ∈ {0, 1} a.e.
in (0, T ) follows. Furthermore, as a polytope, P is bounded by definition, so that
the set Qϕ is bounded as well and thus, there is yet another subsequence, denoted
by the same symbol for simplicity, such that tk → t̄ ∈ Qϕ for k → ∞. As in the
second part of the proof of Lemma 4.5, we obtain that ut̄1,...,t̄nσ is a representative
of u and, thanks to t̄ ∈ Qϕ, this finishes the proof of the first inclusion.

For the reverse inclusion “⊇”, let ut1,...,tnσ ∈ BV (0, T ; {0, 1}n) be a control with
switching points t = (t1, . . . , tnσ) ∈ Qϕ. Due to t ∈ Qϕ, there exists a sequence {tk}k∈N ⊆
Qϕ with tk → t ∈ Rnσ≥0 for k → ∞. Again, thanks to the continuity of the map-
ping Rnσ≥0 3 (t1, . . . , tnσ) 7→ ut1,...,tnσ ∈ L2(0, T ;Rn) by the proof of Lemma 4.5, the
sequence {utk1 ,...,tknσ}k∈N ⊆ D(Qϕ) converges strongly to ut1,...,tnσ in L2(0, T ;Rn), so
that the latter belongs to D(Qϕ).

All previous results now yield that Π(D(P )SP) is a finite union of polytopes and
together with (5.2) we get the following:

Theorem 5.11. CD(P )SP,Π is a polytope.

Proof. We have Π(D(P )SP) =
⋃
ϕ∈Z Π(D(Qϕ)) due to Lemma 5.8 and the fact that Z

is finite. Thanks to Lemma 5.10, we obtain Π(D(Qϕ)) = Π(D(Qϕ)) and, as in the
proof of Theorem 5.9, the linearity of Qϕ 3 (t1, . . . , tnσ) 7→ Π(ut1,...,tnσ) ∈ RM

implies that Π(D(Qϕ)) is a polytope. In summary, we obtain that Π(D(P )SP) is a
finite union of polytopes and thus (5.2) yield that CD(P )SP,Π is a polytope as the
convex hull of a finite union of polytopes.

Remark 5.12. The polyhedricity of CD(P )SP,Π also holds if the switches are not sup-
posed to be off at the beginning. More specifically, D(P ) can be written as the dis-
joint union D(P ) = D0(P ) ∪̇D1(P ) in this case, where Di(P ) consists of all switches
inD(P ) with start value i, i = 1, 2; compare Remark 4.6. We then have Π(D(P )SP) =

Π(D0(P )SP) ∪̇Π(D1(P )SP). Following the same reasoning as above, one shows that
Π(D1(P )SP) is a finite union of polytopes and thus Π(D0(P )SP) ∪̇Π(D1(P )SP) is also
a finite union of polytopes. Consequently, (5.2) again yields that CD(P )SP,Π is a
polytope.

If no fixings are present, i.e., when D(P )SP = D(P ), then the sets Qϕ are al-
ready polytopes due to Zϕ(j) = ∅ and consequently, Π(D(Qϕ)) is a polytope in this
case. Moreover, all maps ϕ assigning the switching points to intervals I1, . . . , IN or
spaces in between can be considered such that Lemma 5.8 trivially holds. Even if
fixings do not determine parts of the switching pattern (see Section 4.2.2), they may
significantly truncate the projection sets, as shown in the following examples.
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Example 5.13. Consider n = 1, σ = 2, the intervals Ii = (i− 1, i) for each i = 1, 2

and the polytope P = {t ∈ [0, 3]2 : t2 ≥ t1 + 1/2}. Then we simply need to assign
the two switching points to the projection intervals (0, 1) and (1, 2) or the spaces in
between, i.e., in this case to (2,∞). For this purpose, let z0 = 0, z1 = 1 z2 = 2 and
z3 =∞ and label the 9 different mappings ϕ : {1, 2} → {1, 2, 3} as follows:

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9

1 1 1 1 2 2 2 3 3 3
2 1 2 3 1 2 3 1 2 3

The resulting (non-empty) sets Qϕ are given in Figure 5.2a. For instance, we have
Π(ut1,t2) = (1− t1, t2−1) for t ∈ Qϕ2 , which is linear in the switching points. Due to
t2 ≥ t1 + 1/2 for t ∈ Qϕ2 , we get Π(D(Qϕ2)) = {w ∈ [0, 1]2 : w2 ≥ 1/2− w1}. For the
other ϕ leading to non-empty polytopes Qϕ, we obtain Π(D(Qϕ1)) = [1/2, 1] × {0},
Π(D(Qϕ3)) = [0, 1]×{1}, Π(D(Qϕ5)) = {0}× [1/2, 1], Π(D(Qϕ6)) = {0}× [0, 1], and
Π(D(Qϕ9)) = {0} × {0}. In Figure 5.2b, the set Π(D(P )) as the union of all the
previous projection sets is illustrated. Π(D(P )) is not a polytope, but its convex
hull CD(P ),Π = [0, 1]2 is a polytope.

Example 5.14. Let us consider Example 5.13 in the presence of fixings. This
means, let n = 1, σ = 2, the intervals Ii = (i − 1, i) for each i = 1, 2 and the
polytope P = {t ∈ [0, 3]2 : t2 ≥ t1 + 1/2} be given. Moreover, consider the fixing
u(1/2) = 0, i.e., τ1 = 1/2 and c1 = 0. When we now assign the switching points to the
projection intervals or the spaces in between, only assignments ϕ are allowed such
that the fixing u(1/2) = 0 is respected. This means, e.g., it is not possible to simply
assign t1 to the first projection interval (0, 1) and t2 to the second (1, 2), because
in the case t1 < 1/2 the corresponding control ut1,t2 does not satisfy the fixing. To
this end, we set z0 = 0, z1 = 1/2, z2 = 1, z3 = 2 and z4 = ∞. According to our
observations at the beginning of the section, only maps ϕ : {1, 2} → {1, 2, 3, 4} are
relevant that assign an even number of time points to the interval [0, τ1] as c1 = 0.
So either both switching points are assigned to [0, 1/2], i.e., ϕ(1) = ϕ(2) = 1, or
no switching points are assigned to [0, 1/2]. The relevant assignments ϕ leading to
non-empty sets Qϕ are thus given as

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

1 2 2 3 3 4
2 3 4 3 4 4

The resulting sets Qϕ are illustrated in Figure 5.3a. For instance, for switching
points (t1, t2) ∈ Qϕ1 , we get Π(ut1,t2) = (1 − t1, t2 − 1). Hence, the corresponding
projection set is given as Π(D(Qϕ1)) = {w ∈ [0, 1]2 : 0 ≤ w1 < 1/2, w2 ≥ 1/2 − w1}
due to t1 ∈ (1/2, 1] and t2 ≥ t1 + 1/2 for (t1, t2) ∈ Qϕ1 . The other projection sets
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(a) Non-empty sets Qϕ for the polytope
P = {t ∈ [0, 3]2 : t2 ≥ t1 + 1/2}.
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(b) Projection set Π(D(P )) for
P = {t ∈ [0, 3]2 : t2 ≥ t1 + 1/2}.

Figure 5.2: In (a), the polytope P of Example 5.13 is decomposed into
different regions resulting from assigning the two possible switching points
to the different intervals (i − 1, i) for each i = 1, 2, 3. The projection set
Π(D(P )) by considering the local averages over I1 = (0, 1) and I2 = (1, 2)

is given in (b).
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(a) Non-empty sets Qϕ for the polytope
P = {t ∈ [0, 3]2 : t2 ≥ t1 + 1/2} and
the fixing u(1/2) = 0.

Π(u)1

Π(u)2

11
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1
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Qϕ1

Qϕ4

Qϕ3

Qϕ2

Qϕ5

(b) Projection set Π(D(P )SP) for
P = {t ∈ [0, 3]2 : t2 ≥ t1 + 1/2}
and the fixing u(1/2) = 0.

Figure 5.3: In (a), the sets Qϕ for the polytope P and the fixing u(1/2) = 0

of Example 5.14 are illustrated for mappings ϕ that assign an even number
of switching points to [0, 1/2] and lead to non-empty sets Qϕ. In (b), the
projection set Π(D(P )SP) by considering the local averages over I1 = (0, 1)

and I2 = (1, 2) is given. Dashed lines indicate that the values do not belong
to sets Qϕ in (a) and Π(D(P )SP) in (b), respectively.
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are then given as follows: Π(D(Qϕ2)) = [0, 1/2) × {1}, Π(D(Qϕ3)) = {0} × [1/2, 1],
Π(D(Qϕ4)) = {0} × [0, 1], and Π(D(Qϕ5)) = {0} × {0}. The set Π(D(P )SP) is
given in Figure 5.3b. Its convex hull conv(Π(D(P )SP)) = [0, 1/2) × [0, 1] is a half-
open polytope. In summary, we get CD(P )SP,Π = [0, 1/2]× [0, 1]. Note that, without
fixings, we have seen CD(P ),Π = [0, 1]2 in Example 5.13.

5.2.2 Separation of dwell time constraints

Let us now focus on the special class of dwell time constraints, as defined in (4.6),
in the presence of fixings, i.e., we consider the set

D(s̄)SP =
{
ut1,...,tσ ∈ BV (0, T ; {0,1}) : t1, . . . , tσ ≥ 0 s.t. t1 ≥ s̄1, ti − ti−1 ≥ s̄i

∀ i = 2, . . . , σ , ut1,...,tσ(τκ) = cκ ∀κ = 1, . . . , L
}
.

Since D(s̄) is a special case of D(P ), the set CD(s̄)SP,Π is a polytope in RM by The-
orem 5.11. However, it is not a 0/1-polytope in general. In fact, it is not even
a 0/1-polytope without fixings, i.e., if D(s̄)SP = D(s̄). As an example, consider
the time horizon [0, 3] with projection intervals Ii := (i − 1, i) for i = 1, 2, 3, and
let s̄1 = 1, s̄2 = 3

2 and σ = 2. Then it is easy to verify that CD(s̄),Π has several
fractional vertices, e.g., the vector (0, 1, 1

2)>, being the unique optimal solution when
minimizing (1,−1, 1

2)>w over w ∈ CD(s̄),Π; see Example 5.19 below.
Still, the separation problem for CD(s̄)SP,Π is tractable for arbitrary fixings. More

specifically, we claim that there exists a separation algorithm with polynomial time
in the dimension M of the projection, the number σ of switchings and the number L
of fixings. In order to show this, we first argue that it is enough to consider as
switching points the finitely many points in the set

S := [0, T ] ∩
(
{0} ∪

{
±
∑`2

l=`1
s̄l : 1 ≤ `1 ≤ `2 ≤ σ

}
+
(
{0, T} ∪ {ai, bi : i = 1, . . . , N} ∪ {τκ : κ = 1, . . . , L}

))
,

The set S thus contains all end points of the intervals I1, . . . , IN and [0, T ] shifted
by arbitrary partial sums of s̄1, . . . , s̄σ, as long as they are included in [0, T ]. In
addition, we need to consider all fixing points τ1, . . . , τL and their corresponding
shiftings. Clearly, we can compute S in O((M +L)σ2) time withM = N , since only
a single switch is considered here.

Lemma 5.15. Let v be a vertex of CD(s̄)SP,Π. Then there exists u ∈ D(s̄)SP with Π(u) =

v such that u switches only in S.

Proof. Choose coefficients c ∈ RM such that the vector v is the unique minimizer
of c>v with v ∈ CD(s̄)SP,Π. We note that, by (5.2), the vertices of CD(s̄)SP,Π are given
by projection vectors of controls in D(s̄)SP. Thus, there exists a control u ∈ D(s̄)SP

with Π(u) = v. Due to u ∈ D(s̄)SP, there exists a sequence {uk}k∈N ⊆ D(s̄)SP such
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that uk → u in L2(0, T ) for k →∞. Let tk = (tk1, . . . , t
k
σ) be the switching points of uk

for k ∈ N, i.e., let 0 ≤ tk1 ≤ · · · ≤ tkσ <∞ such that uk = utk1 ,...,tkσ
a.e. in (0, T ). Then

there exists a subsequence, again denoted by the same symbol, such that tk → t ∈ Rσ

for k → ∞ with 0 ≤ t1 ≤ · · · ≤ tσ < ∞ and, analogous to the proof of Lemma 4.5,
one shows that ut1,...,tσ is a representative of u. For the following, for m = 1, . . . , σ

and k ∈ N ∪ {∞}, we define

Skm :=
{
tk` : ` ∈ {1, . . . ,m− 1}, tk` = tkm −

∑`2
`=l1

s̄l for some 1 ≤ `1, `2 ≤ σ
}

∪
{
tk` : ` ∈ {m+ 1, . . . , σ}, tk` = tkm +

∑`2
`=l1

s̄l for some 1 ≤ `1, `2 ≤ σ
}
,

where we set t∞ := t. The set Skm thus contains all switching points in tk that have
the minimal possible distance to tkm.

Assume first that tm ∈ (ai, bi) \ S for some i ∈ {1, . . . , N} and m ∈ {1, . . . , σ}.
Due to tk → t in Rσ, we deduce for k sufficiently large that tkm ∈ (tm − ε, tm + ε),
where ε > 0 is given by ε := minq∈S |tm − q| > 0. Then tkm /∈ S and Skm ∩ S = ∅
by definition of S. Now all points in Skm can be shifted by some 0 < δ < ε, in
both directions, maintaining feasibility with respect to D(s̄)SP, since none of these
points is shifted to one of the fixing points τ1, . . . , τL. Consequently, all points in
S∞m can be slightly shifted simultaneously in both directions, maintaining feasibility
with respect to D(s̄)SP and without any of these points leaving or entering any of
the intervals I1, . . . , IN or [0, T ]. This shifting thus changes the value of c>Π(u)

linearly, since Π(u) changes linearly, as seen in the proof of Theorem 5.9. The latter
contradicts the unique optimality of v.

We have thus shown that all switching points of u are either in S or outside of any
interval Ii. Let tm 6∈ S be any switching point of u not belonging to any interval Ii.
Then, for sufficiently large k, we have tkm /∈ S and tkm /∈ Ii for any i ∈ {1, . . . , N}.
The idea is now to shift the switching points tkm /∈ S, k ∈ N, to the next point on
the left in S, to shift the limit point tm /∈ S to this point. However, if the next point
in S belongs to

[0, T ] ∩
(
{0} ∪

{
±
∑`2

l=`1
s̄l : 1 ≤ `1 ≤ `2 ≤ σ

}
+
(
{τκ : κ = 1, . . . , L}

))
,

we can only shift the switching points arbitrarily close to the latter point in order to
maintain feasibility in D(s̄)SP. For small enough δ > 0, we thus shift all switching
points in Skm simultaneously to the left until

(5.7) dist(Skm, S) := min
p∈Skm, q∈S

|p− q| = δ,

taking into account that the set Skm may increase when tkm decreases. Consequently,
for all δ , we obtain another sequence {ukδ}k∈N. By construction, no switching point is
moved beyond the next point in S to the left of its original position and no switching
point is moved on the fixing points τ1, . . . , τL, so that we conclude ukδ (τκ) = cκ for
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κ = 1, . . . , L and thus ukδ ∈ D(s̄)SP. In particular, none of the switching points being
moved enters any of the intervals Ii, i = 1, . . . , N , so that we derive

(5.8) Π(ukδ ) = Π(uk)→ Π(u) = v for k →∞

by continuity of the projections Π. We know that the sequence {ukδ}k∈N is bounded
in BV (0, T ) and hence by Theorem 2.7 there exists a strongly convergent subse-
quence, which we again denote by {ukδ}k∈N, such that ukδ → uδ ∈ D(s̄)SP in L2(0, T )

for k → ∞. By (5.8) and the continuity of Π, we obtain Π(uδ) = v for δ > 0.
Now {uδ : δ > 0} ⊂ D(s)SP is bounded in BV (0, T ) as well, so that it contains an
accumulation point u′ ∈ D(s)SP and, again by the continuity of the projections, we
have Π(u′) = v. Thanks to (5.7), u′ has then at least one switching point more in S
than u but still satisfies Π(u′) = v. By repeatedly applying the same modification,
we eventually obtain a function projecting to v with switching points only in S.

We next develop a dynamic programming approach to efficiently optimize a linear
function over the polytope CD(s̄)SP,Π. We here need to keep track on the number of
switchings used so far. The theoretical equivalence that there exists a polynomial
time algorithm for the separation problem if and only there exists a polynomial
time algorithm for the linear optimization problem [GLS81] then yields that one can
efficiently separate a vector from CD(s̄)SP,Π. Let ω1 . . . , ω|S| be the elements of S
sorted in ascending order.

Theorem 5.16. One can optimize over CD(s̄)SP,Π (and hence also separate from the
set CD(s̄)SP,Π) in time polynomial in M , σ and L.

Proof. By Lemma 5.15, it suffices to optimize over the projections of all u ∈ D(s̄)SP

with switchings only in S. This can be done by a dynamic programming approach,
in which we have to pay particular attention to the fixings: given c ∈ RM , we can
compute the optimal value

c∗(t, b, i) := min c>Π(u · χ[0,t])

s.t. u ∈ D(s̄)SP, |u · χ[0,t] + b · χ(t,T ]|BV (0,T ) = i ,

u(t) = b if t < T

for b ∈ {0, 1} and i ∈ {0, . . . , σ} recursively for all t ∈ S̄ as follows: we initially set

c∗(ωk, b, 0) =

{
0, if b = 0

∞, if b = 1

for all k = 1, . . . , |S̄| if (τ1, c1) 6= (0, 1) and c∗(ωk, b, 0) = ∞, otherwise. Moreover,
we set c∗(ω1, b, i) =∞ for i = 1, . . . , σ and b ∈ {0, 1} due to s̄1 > 0 and ω1 = 0. By
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defining τ(b) := {τκ : cκ = b, κ = 1, . . . , L}, we then obtain the recursion formula

c∗(ωk, b, i) = min


c∗(ωk−1, b, i) + c>Π(bχ[ωk−1,ωk])

c∗(ωk − s̄i, 1− b, i− 1)

+ c>Π((1− b)χ[ωk−s̄i,ωk]),

if ωk ≥
∑i

l=1 s̄l and
(ωk − s̄i, ωk) ∩ τ(b) = ∅

for k = 2, . . . , |S̄| with ωk ∈ S \ {τ1, . . . , τl}, b ∈ {0, 1} and i = 1, . . . , σ. The
above recursion formula for c∗(ωk, b, i) is based on the fact that the corresponding
optimal control in D(s̄)SP is either constantly b on [ωk−1, ωk), or its i-th switching
is in t = ωk from 1 − b to b. In the latter case, one needs to check whether this
switching is allowed, taking into account the fixings and the minimum dwell time s̄i
for the i-th switch.

As long as the fixings are respected, the control can be constantly cκ before
or after τκ. Thus, c∗(τκ, cκ, i) with κ ∈ {1, . . . , L} can be computed in analogy
to c∗(ωk, b, i). However, if the fixing is not respected, then we know that the cor-
responding control for c∗(τκ, 1 − cκ, i) has to be constantly cκ on [τκ − s̄i, τκ) and
its i-th switching point has to be t = τκ. One has to prove whether the latter is
possible taking the other fixings into account, so that we get

c∗(τκ, 1−cκ, i) =


c∗(τκ − s̄i, cκ, i− 1)

+ c>Π(cκ χ[τκ−s̄i,τκ]),

if τκ ≥
∑i

l=1 s̄l and
(τκ − s̄i, τκ) ∩ τ(1− cκ) = ∅

∞, otherwise .

The desired optimal value is min{c∗(T, b, i) : b ∈ {0, 1}, i = 0, . . . , σ} then and a
corresponding optimal solution can be derived if the value is finite. Otherwise, the
problem is infeasible due to the fixings, i.e., the polytope CD(s̄)SP,Π is empty.

Remark 5.17. There are at most O((M + L)σ2) points in S and and c∗(ω, b, i)

results as the minimum of at most two values for ω ∈ S, b ∈ {0, 1} and i ∈ {1, . . . , σ}.
Consequently, one can optimize in O((M + L)σ3) time over the sets CD(s̄)SP,Π. To
backtrack the solution, one can additionally introduce the quantities s(ωk, b, i) with
s(ωk, b, i) = 1 if and only if c∗(ωk, b, i) = c∗(ωk−1, b, i) + c>Π(bχ[ωk−1,ωk]), which
means that the corresponding control u ∈ D(s̄)SP is constantly b on [ωk−1, ωk] and
does not switch in t = ωk. At most O((M + L)σ2) steps are necessary to backtrack
the corresponding solution.

Remark 5.18. When s̄1 = 0, it is easy to see that one can still efficiently optimize
over CD(s̄)SP,Π in O((M +L)σ3) time by using the dynamic programming approach
given in the proof of Theorem 5.16, but now setting c∗(w1, 1, 1) = 0 if (τ1, c1) 6= (0, 1).

If no fixings are present, i.e., D(s̄)SP = D(s̄), the recursion simplifies to the
calculation of the values c∗(ωk, b, i) in Theorem 5.16 and no fixings need to be taken
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5.2. Switching point constraints

into account. So let us first have a look at an example of the dynamic programming
approach for D(s̄) and afterwards, how fixings affect the values.

Example 5.19. Consider the time horizon [0, 3], the intervals Ii = (i−1, i) for each
i = 1, 2, 3, the dwell times s̄1 = 1 and s̄2 = 3

2 for σ = 2, as well as c = (1,−1, 1/2)>.
Then we have S = {0, 1/2, 1, 3/2, 2, 5/2, 3} and the dynamic programming approach
in Theorem 5.16 starts with c∗(ω, 0, 0) = 0, c∗(ω, 1, 0) = ∞ for all ω ∈ S and
c∗(0, b, i) =∞ for b ∈ {0, 1} and i = 1, 2. The other values are computed as follows:
since the controls in D(s̄) are constantly one after only one switching, we directly
obtain c∗(ω, 0, 1) = ∞ for all ω ∈ {1/2, 1, 3/2, 2, 5/2, 3}. Moreover, since s̄1 = 1, we
also have c∗(1

2 , 1, 1) =∞. The values c∗(ω, 1, 1) for ω ∈ {1/2, 1, 3/2, 2, 5/2, 3} are given
as

c∗(1, 1, 1) = min{c∗( 1
2 , 1, 1) + (1,−1, 12 )( 1

2 , 0, 0)>, c∗(0,0,0) + (1,−1, 12 )(0,0,0)>} = 0 ,

c∗( 3
2 , 1, 1) = min{c∗(1,1,1) + (1,−1, 12 )(0, 12 ,0)>, c∗( 1

2 , 0, 0) + (1,−1, 12 )(0, 0, 0)>} = − 1
2 ,

c∗(2, 1, 1) = min{c∗(3
2 ,1,1) + (1,−1, 12 )(0, 12 ,0)>, c∗(1, 0, 0) + (1,−1, 12 )(0, 0, 0)>} = −1 ,

c∗( 5
2 , 1, 1) = min{c∗(2,1,1) + (1,−1, 12 )(0,0, 12 )>, c∗( 3

2 , 0, 0) + (1,−1, 12 )(0, 0, 0)>} = − 3
4 ,

c∗(3, 1, 1) = min{c∗(5
2 ,1,1) + (1,−1, 12 )(0,0, 12 )>, c∗(2, 0, 0) + (1,−1, 12 )(0, 0, 0)>} = − 1

2 .

Note that the bold marked values determine the quantities s(ωk, b, i) from Re-
mark 5.17; e.g., s(1, 1, 1) = 0 and s(3

2 , 1, 1) = 1. Now, since the controls in D(s̄)

are constantly zero after exactly two switchings, we get c∗(ω, 1, 2) = ∞ for each
ω ∈ {1/2, 1, 3/2, 2, 5/2, 3}. Moreover, since s̄1+s̄2 = 5/2, the second switch of the control
is at the earliest in t = 5/2, so that c∗(ω, 0, 2) = ∞ follows for all ω ∈ {1/2, 1, 3/2, 2}.
The remaining values are given as

c∗( 5
2 , 0, 2) = min{c∗(2, 0, 2) + (1,−1, 12 )(0, 0, 0)>, c∗(1,1,1) + (1,−1, 12 )(0,1, 12 )>} = − 3

4 ,

c∗(3, 0, 2) = min{c∗(5
2 ,0,2) + (1,−1, 12 )(0,0,0)>, c∗( 3

2 , 1, 1) + (1,−1, 12 )(0, 12 , 1)>} = − 3
4 .

The optimal value is given by c∗(3, 0, 2) = −3/4 and we can reconstruct a cor-
responding optimal solution u? ∈ D(s̄) by backtracking as follows: we start at
the end time t = 3 with u?(3) = 0, since c∗(3, 0, 2) is the optimal value. Since
c∗(3, 0, 2) = c∗(5

2 , 0, 2) + (1,−1, 1)(0, 0, 0)> holds, we get u? = 0 on [5/2, 3). Then the
control is constantly one on [1, 5/2) due to c∗(5

2 , 0, 2) = c∗(1, 1, 1)+(1,−1, 1
2)(0, 1, 1

2)>.
Finally, c∗(1, 1, 1) = c∗(0, 0, 0) + (1,−1, 1

2)(0, 0, 0)> implies that u? is zero on [0, 1)

and we obtain

u?(t) =

{
1, t ∈ [1, 5/2)

0, otherwise

as a corresponding optimal solution in D(s̄) with projection vector (0, 1, 1/2)>.

Example 5.20. Let us consider the setting of Example 5.19 in the presence of fixings.
So let the time horizon [0, 3], the intervals Ii = (i− 1, i) for each i = 1, 2, 3, s̄1 = 1,
s̄2 = 3

2 with σ = 2 and the objective c = (1,−1, 1/2)> be given. In addition, let the
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fixing u(3
2) = 0 be given. Then the set S of possible switching points is still given

as S = {0, 1/2, 1, 3/2, 2, 5/2, 3}, but, compared to Example 5.19, some values c∗(ω, b, i)
for ω ∈ S, b ∈ {0, 1} and i ∈ {1, 2} change. First, it is clear that the values c∗(ω, b, i)
that are already infinity without the fixing are not affected by the fixings. Since
u(3

2) = 0, the formula for c∗(3/2, 1, 1) changes to

c∗(3
2 , 1, 1) = c∗(1

2 , 0, 0) + (1,−1, 1
2)(0, 0, 0)> = 0 .

As a consequence, we have c∗(2, 1, 1) = −1
2 , c
∗(5

2 , 1, 1) = −1
4 and c∗(3, 1, 1) = 0, but

the corresponding recursion formulae do not change. Note that for c∗(3, 1, 1) = 0 the
optimal solution is not unique. Since (1, 5

2) ∩ τ(0) = (3
2 , 3) ∩ τ(0) 6= ∅, the recursion

formulae for c∗(5
2 , 1, 1) and c∗(3, 1, 2) now change to

c∗(5
2 , 0, 2) = c∗(2, 0, 2) + (1,−1, 1

2)(0, 0, 0)> =∞ ,

c∗(3, 0, 2) = c∗(5
2 , 0, 2) + (1,−1, 1

2)(0, 0, 0)> =∞ .

Overall, the optimal value is c∗(3, 1, 1) = 0 and backtracking yields the optimal
solutions u?1(t) ≡ 0 and

u?2(t) =

{
1, t ∈ [3/2, 3)

0, otherwise

with the projection vectors Π(u?1) = (0, 0, 0)> and Π(u?2) = (0, 1
2 , 1)>, respectively.

In practice, it is necessary to design an explicit separation algorithm instead of
using the theoretical equivalence between separation and linear optimization. This
might be possible by generalizing the results presented in [LLM04]. In fact, in the
special case that we only consider a minimum time span a switch has to be on (off)
after being switches on (off), i.e., we have given su, sd > 0 such that s̄2i = su for
i ∈ {1, . . . , bσ/2c} and s̄2i−1 = sd for i ∈ {1, . . . , dσ/2e}, and (0, T ) is subdivided
into intervals I1, . . . , IN of the same size and this size is a divisor of su and sd, it
first follows that CD(s̄),Π agrees with the min-up/min-down polytope investigated
in [LLM04]; by Lemma 5.15 all the controls with switchings point in S are piecewise
constant on I1, . . . , IN in this case, so that CD(s̄),Π is a 0/1-polytope. Additionally,
since the fixing points τ1, . . . , τL only correspond with interval limits in this case,
CD(s̄)SP,Π is also a 0/1-polytope for arbitrary fixings. A full linear description, to-
gether with an exact and efficient separation algorithm with a run time in O(M), is
given in [LLM04]. From a practical point of view, the restriction to intervals of the
same size and whose size is a divisor of su and sd, is unproblematic, especially since
the separation algorithm is fast enough to deal with large dimensions M .

To conclude this subsection, we note that the above results directly apply to the
special case

D(s) =
{
ut1,...,tσ ∈ BV (0, T ; {0, 1}) : t1, . . . , tσ ≥ 0 s.t. ti − ti−1 ≥ s ∀ i = 2, . . . , σ

}
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of dwell time constraints with σ = dT/se, as defined in (4.5), thanks to Remark 5.18.
In this case, the set of possible switching points is given as

S = [0, T ] ∩
(
Zs+

(
{0, T} ∪ {ai, bi : i = 1, . . . , N} ∪ {τκ : κ = 1, . . . , L}

))
and can be computed in O((M + L)σ) time. Moreover, one can even optimize
in O((M + L)σ) time a linear objective over CD(s)SP,Π, since the tracking on the
number of used switchings so far can be omitted, as can be seen as follows:

Corollary 5.21. One can optimize in O((M + L)σ) time over CD(s)SP,Π.

Proof. By Lemma 5.15, it again suffices to optimize over the projections of all con-
trols u ∈ D(s)SP with switchings only in S. This can be done by a dynamic pro-
gramming approach: given c ∈ RM , we can compute the optimal value

c∗(t, b) := min c>Π(u · χ[0,t]) s.t. u ∈ D(s)SP, u(t) = b if t < T

recursively for all t ∈ S as follows: starting with c∗(ω1, b) = 0 if τ1 6= 0 and

c∗(ω1, b) =

{
∞, if c1 = 1 and b = 0

0, otherwise ,

otherwise, we obtain for k ∈ {2, . . . , |S|} with ωk ∈ S \ {τ1, . . . , τL}

c∗(ωk, b) = min



c∗(ωk−1, b) + c>Π(bχ[ωk−1,ωk])

c∗(ωk − s, 1− b)
+ c>Π((1− b)χ[ωk−s,ωk]),

if ωk ≥ s and
(ωk − s, ωk) ∩ τ(b) = ∅

c>Π((1− b)χ[0,ωk]), if ωκ < s, b = 1 and
[0, ωk) ∩ τ(b) = ∅ ,

where for b ∈ {0, 1} we again use τ(b) = {τκ : cκ = b, κ = 1, . . . , L}. The above
recursion formula for c∗(ωk, b) is, similar to the one for c∗(ωk, b, i) in the proof of
Theorem 5.16, based on the fact that the corresponding optimal control in D(P )SP

is either constantly b on [ωk−1, ωk), or switches from 1 − b to b in t = ωk. In the
latter case, one needs to check whether this switching is allowed, taking into account
the fixings and the minimum dwell time s.

The same formula holds for the fixing points as long as the fixings are respected,
i.e., if ωk = τκ for some κ ∈ {1, . . . ;L} and b = cκ, then c∗(τκ, cκ) can be computed
analogously; compare the proof of Theorem 5.16. Otherwise, we have

c∗(τκ, 1− cκ) =



0, if τκ < s and cκ = 0

∞, if τκ < s and cκ = 1, or τκ ≥ s
and (τκ−s, τκ)∩τ(1−cκ) 6= ∅

c∗(τκ − s, cκ)

+ c>Π(cκ χ[τκ−s,τκ]),

otherwise
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for κ ∈ {1, . . . , L}, since the corresponding control has to be constantly cκ before τκ
if the fixing is not respected.

The desired optimal value is min{c∗(T, 0), c∗(T, 1)} now, and a corresponding
optimal solution can be derived if the value is finite. Otherwise, the problem is
infeasible due to the fixings, i.e., the polytope CD(s)SP,Π is empty. There are at most
O((M + L)σ) elements in S, so that the claim of the corollary follows.

Remark 5.22. Note that σ = dT/se for D(s) is not polynomial in the input size in
general, but only pseudopolynomial, when T and s are considered part of the input.
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Chapter 6

Numerical results

In this chapter, we numerically evaluate the branch-and-bound algorithm devised
in Chapter 4 as well the outer approximation algorithm from Section 3.2. We con-
centrate on the case of an upper bound σ on the number of switchings of a single
switch starting in zero, i.e., we consider

D =
{
u ∈ BV0(0, T ) : u(t) ∈ {0, 1} f.a.a. t ∈ (0, T ), |u|BV (−1,T ) ≤ σ

}
,

as defined in Section 4.1.1. By Theorem 5.6, the most violated cutting plane for
a vector v /∈ CDSP,Π can be computed in O(M + L) time, using the separation
algorithm in [BH23]. The separation algorithm is thus again fast enough to allow
to choose the intervals for the projection exactly as the intervals J1, . . . , JK given
by the discretization in time; compare Section 4.5.1. In particular, in the outer
approximation algorithm for each subproblem in the branch-and-bound algorithm
we do not need to separately adapt the projection intervals.

The overall branch-and-bound algorithm from Chapter 4 and the outer approxi-
mation algorithm devised in Section 3.2 to compute safe dual bounds for the gener-
ated subproblems are both implemented in C++, using the DUNE-library [San21]
for the discretization of the PDE. The source code can be downloaded at https:
//github.com/agruetering/dune-bnb. For all experiments, we discretize the prob-
lems as described in Section 4.5.1. This means that the spatial discretization uses
a standard Galerkin method with continuous and piecewise linear functionals, while
the temporal discretization for the control, the state and the desired temperature
uses piecewise constant functionals in time. We use a fixed equidistant grid with
100 nodes for the spatial discretization. The spatial integrals in the weak formula-
tion of the state equation (4.14) and the adjoint equation (4.15), respectively, are
approximated by a Gauss-Legendre rule with order 3. This means that all spatial
integrals except the one containing the form function ϕ is calculated exactly. The dis-
cretized systems, arising by the discretization of the state and adjoint equation, are
solved by a sequential conjugate gradient solver preconditioned with AMG smoothed
by SSOR.
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Chapter 6. Numerical results

All computations have been performed on a 64bit Linux system with an Intel
Xeon E5-2640 CPU @ 2.5 GHz and 32 GB RAM.

The remainder of this chapter is organized as follows: in Section 6.1 we have a
look at the overall branch-and-bound algorithm, especially on the interplay between
branching, outer approximation and adaptive refinement. Section 6.2 is dedicated to
investigate the strength of our dual bounds as well the qualitative behavior of the
outer approximation algorithm in the root node in detail.

The numerical results regarding the overall branch-and-bound algorithm in Sec-
tion 6.1 have already appeared in [BGM24]. Part of the experiments in Section 6.2
are similar to those in [BGM22b], but other instances are used.

6.1 Branch-and-bound

We start the branch-and-bound algorithm with an equidistant time grid with 20

nodes and, if necessary, we refine the subintervals that account for γ = 50 % of the
total error; see Section 4.5.4. The choice of a good time point τ to branch at is crucial
for the practical performance of the algorithm since the implicit restrictions on the
controls are highly influenced by the branching points; see Examples 4.9 and 4.10.
Hence, the quality of the dual bounds of each node in the branch-and-bound tree
depends on the branching decision. As mentioned at the end of Section 4.2, we choose
the point of the time grid where the control has the highest deviation from 0/1,
i.e., where the distance to 0/1 multiplied by the length of the corresponding grid
cell is the highest. Finally, we use breadth-first search as an enumeration strategy
since our computed primal bounds track the average of the relaxed solution over
the given temporal grid of the discretization, i.e., solve the CIA problem over D;
compare Example 4.14. In depth-first search, the shape of the computed relaxed
controls for the subproblems hardly changed, so that our primal heuristic always
produced the same feasible solution and good primal bounds were found late. As
a result, many nodes had to be examined before pruning. This effect is avoided by
breadth-first search.

In a branch-and-cut algorithm it may be reasonable to add only a few cutting
planes before resorting to branching. We have a closer look at the interplay between
branching and outer approximation in Section 6.1.2. Moreover, as discussed in Sec-
tion 4.4.1, it is favorable to choose a larger value for the Tikhonov parameter α to
speed up the performance of Algorithm 4 to compute the dual bounds within each
node of the branch-and-bound algorithm. Nevertheless, from a theoretical point of
view, it is clear that the dual bounds get worse with an increasing Tikhonov param-
eter. Thus, we also investigate in Section 6.1.2 whether a good quality or a quick
computation of the dual bounds for small α have a greater influence on the overall
performance.
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Figure 6.1: Form function ϕ = exp(x) sin(πx) + 0.5 used throughout the
experiments in Section 6.1.

The parabolic optimal control problems in each iteration of the outer approxima-
tion algorithm are solved by the ADMM algorithm; see Algorithm 4. As tolerances
for the primal and dual residuals in the ADMM algorithm, we have always chosen
εrel = εabs = 10−3 and required the absolute error from the optimal value of (SPCk)
to be less than εpr = 10−5. We here chose a smaller absolute error tolerance εpr in
the objective than the absolute tolerance εabs for the primal and dual residuals in the
ADMM algorithm, since we focus on the computation of tight dual bounds withing
the branch-and-bound algorithm. The penalty parameter of the cutting planes was
set to ρ = 1+

√
5

2 . The best choice of the penalty parameter β for the box constraints
depending on the Tikhonov parameter α is investigated in Section 6.1.2. The result-
ing linear system from Step 3 in each ADMM iteration is solved by the conjugate
gradient method, preconditioned with PA = (α+ β)I + ρG?G .

6.1.1 Instances

We created instances of (P) with Ω = (0, 1), T = 1 and ψ(x) = exp(x) sin(π x)+0.5 as
form function; see Figure 6.1. In order to obtain challenging instances, we produced
the desired temperature as follows: we first generated a control ud : [0, T ] → {0, 1}
with a total variation |ud|BV (0,T ) = θ and chose the desired state yd as S(ud) such
that ud is the optimal solution for the problem (P) if we allow θ switchings. More
specifically, we randomly choose θ jump points 0 < t1 < · · · < tθ < T on the
equidistant time grid with 320 nodes. Then, we choose ud : [0, T ] → {0, 1} as the
binary control starting in zero and having the switching points t1, . . . , tθ. In this
way, we generated non-trivial instances, where the constraint D strongly affects the
optimal solution of (P) in the case σ � θ.

6.1.2 Parameter tuning

Before testing the potential of our approach, we investigate the influence of some
parameters on the overall performance. We first consider the Tikhonov parameter α
and the penalty parameter β for the box constraints; see Section 4.4.1. Afterwards,
we investigate how time-consuming it is to solve the subproblems generated by the
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α β Subs Cuts ADMM ∅ FixPoints ∅ FixIndices Time

0.01 0.01 3309 6610 23489 16.07 91.65% 41.91

0.005 3253 6519 19907 15.83 91.56% 35.59

0.001 2948 5905 18889 16.52 91.25% 30.84

0.005 0.01 1961 4187 17727 15.51 89.37% 26.99

0.005 1839 3896 13588 15.06 87.45% 18.33

0.001 1764 3882 17582 16.16 87.27% 21.17

0.001 0.01 1784 5076 20283 17.65 87.13% 22.52

0.005 1066 3400 9999 14.25 81.60% 10.05

0.001 1147 3426 13779 13.63 81.65% 13.22

Table 6.1: Influence of the Tikhonov parameter α and the penalty parame-
ter β for the box constraints on the branch-and-bound algorithm.

branch-and-bound algorithm, depending on when we stop the outer approximation
algorithm for each subproblem (SP). Here, we resort to branching if the relative
change of the bound is less than a certain percentage (RED) in three successive
iterations. Finally, we vary the relative allowed deviation (TOL) from the optimum
of (P); a subproblem in the branch-and-bound tree is pruned when the remaining
gap between primal and dual bound falls below this relative threshold. We start
with RED=TOL=1%.

For all results presented in this subsection, we have chosen the same instance with
θ = 8 jump points and allowed σ = 3 switchings, since it represents the typical behav-
ior of the algorithm. We always report the overall number of investigated subprob-
lems (Subs) in the branch-and-bound algorithm, of cutting plane iterations (Cuts)
and of ADMM iterations (ADMM). Moreover, the average number of fixings (∅ Fix-
Points) and the average percentage of cells that are implicitly fixed (∅ FixIndices)
are reported, where both averages are taken over all pruned subproblems. We also
provide the overall run time (Time) in CPU hours.

The results for different values of the parameters α and β can be found in Ta-
ble 6.1. The main message of Table 6.1 is that a small value of α is generally
favorable for the branch-and-bound algorithm, since a smaller value of α leads to
stronger dual bounds and consequently, fewer fixings are needed on average to prune
a subproblem. So, as long as no numerical issues arise with the ADMM algorithm
and the DWR error estimator, one should choose α = 0.001. But, with smaller
value of α it becomes more likely that the higher-order approximation of the un-
known quantities (see Section 4.5.3) is too imprecise to estimate the error in the cost
functional, so that the branch-and-bound algorithm returns wrong solutions. This
was also observed in our experiments: in many instances, the obtained solutions
for α ∈ {0.01, 0.005} switched three times and had very similar switching times for
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RED Subs Cuts ADMM ∅ FixPoints ∅ FixIndices Time

10 1816 3610 11872 15.43 88.47% 17.05

5 1821 3647 11750 15.39 88.99% 16.87

2 1670 3443 11940 14.31 87.91% 16.86

1 1839 3896 13588 15.06 87.45% 18.33

0.5 1857 4107 14592 15.00 87.44% 29.25

Table 6.2: Impact of the balance between branching and cutting plane iter-
ations on the branch-and-bound algorithm.

TOL Subs Cuts ADMM ∅ FixPoints ∅ FixIndices Obj Time

5 433 1123 6286 9.55 73.29% 0.137512 5.53

2 860 1953 8644 11.66 81.62% 0.135436 8.18

1 1670 3443 11940 14.31 87.91% 0.135326 16.86

0.5 3456 7437 18145 17.79 93.09% 0.135214 50.65

Table 6.3: Influence of the relative allowed deviation (TOL) from the opti-
mum on the branch-and-bound algorithm.

all values of β. In contrast, the obtained solutions for α = 0.001 frequently switched
only twice and differed enormously from the others. By recalculating the objective
on such a fine grid that all returned solutions are piecewise constant on it, it turned
out that the solutions obtained for α ∈ {0.01, 0.005} were indeed better than the
ones for α = 0.001. Moreover, the primal heuristic even produced some of the better
solutions for α = 0.001 within the branch-and-bound scheme, but due to the DWR
error estimator, their time-mesh independent objective values were worse. For that
reason, we choose α = β = 0.005 in all subsequent experiments, since with this
setting no errors occurred with the DWR error estimator.

We next investigate the interplay between branching and outer approximation.
Table 6.2 demonstrates that one has to balance the decision between branching
and outer approximation: a stronger focus on the outer approximation leads to
fewer branching decisions needed to cut off a subproblem. However, this does not
necessarily imply that fewer fixings are needed to prune a subproblem, since the
branching points strongly depend on the shape of the relaxed solutions. Moreover,
it is more time-consuming to solve each node due to the increased number of cutting
plane iterations. On the other hand, it is also not reasonable to resort to branching
too early because more subproblems need to be investigated then. Certainly, the dual
bounds then become weaker in each node of the subproblem, but also the branching
decisions might be better when the subproblems are solved more accurately, i.e.,
when more cutting planes are added within the outer approximation algorithm. We
therefore use RED= 2 % in the following.
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Figure 6.2: Branch-and-bound tree of an instance generated by θ = 3 jump
points and with σ = 1 allowed switchings. The path of the optimal solution
is marked in bold and the branching decisions along the optimal path are
listed. In the case of a single child node in this illustration, the temporal
discretization of the subproblem has been refined.

Finally, the impact of the relative allowed deviation from the optimal objective
value on the performance of the branch-and-bound algorithm is shown in Table 6.3.
As expected, a higher tolerance leads to an earlier pruning of the subproblems, as
indicated by the number of fixings required to prune a subproblem. At the same time,
however, the best known primal bound (Obj) found by the algorithm increases, so
that one has to decide which deviation is still acceptable. We choose TOL= 2 % in
the following, which we think is a reasonable optimality tolerance.

6.1.3 Performance of the algorithm

Before reporting running times and other key performance indicators of our algo-
rithm, we first illustrate the interplay between branching and adaptive refinement
by an example. Figure 6.2 shows the complete branch-and-bound tree obtained for
an instance with θ = 3 jump points and only one allowed switching, i.e., σ = 1.
Whenever a node has a single child node in the illustration, the discretization of the
subproblem has been refined. The branch-and-bound tree shows that a large part of
the generated subproblems can already be pruned without any refinement. Moreover,
in relatively few branches the subproblems need to be refined multiple times in order
to decide whether a solution of desired quality can be found in these branches. The
branching decisions taken along the path leading to the returned solution illustrate
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Chapter 6. Numerical results

that, e.g., the generated subproblem 16 was refined in order to choose the sixth fixing
point as τ6 = 0.225. This was not possible with the previous discretization of the
problem. In particular, the fourth and fifth fixing point together have limited the
switching point to be in the interval (0.2, 0.25]. The last branching decision in this
tree serves to determine t = 0.2375 as the switching point of the returned solution.

The behavior of the dual solutions for the convexified problems (SPC) on the
optimal path of the branch-and-bound tree in Figure 6.2 is illustrated in Figure 6.3.
If branching has not yet fixed larger parts of the switching structure, then the shape
of the dual solutions for (SPC) quickly changes throughout the outer approximation
iterations, as it can exemplarily be seen with the eight cutting plane iterations in
node 1. Moreover, the first branching decision (τ1, c1) = (0.6, 1) fixes exactly that
part of the last dual solution from node 1 to one in which the dual solution increases
rapidly and assumes its largest values. In node 13, the outer approximation iterations
hardly change the dual solution, since the branching decisions already fixed the dual
solution to be one over (0.25, 1). The refinement steps in the corresponding nodes
also change the dual solution only slightly, as can be seen, e.g., by comparing the
dual solutions of nodes 16 and 31. However, significant parts of the cells are finer in
the node 31 than in the node 16, compare the gray shaded area in the dual solution
of node 31 in Figure 6.3, in order to reduce the discretization error in the primal and
dual bounds.

Table 6.4 shows the performance of the branch-and-bound algorithm for various
instances generated with θ ∈ {1, . . . , 8} and an upper bound σ ∈ {1, . . . , 4} for the
total number of switching points. We were able to solve problems with up to four
allowed switchings, but, as could be expected, the number of generated subproblems
strongly increases in σ. However, we note that the ratio between generated sub-
problems and total cutting plane iterations is not affected by the upper bound σ.
While the branch-and-bound algorithm is able to solve problems with σ = 3 within
14 CPU hours, the algorithm does not terminate within 60 CPU hours for most
instances with σ = 4 allowed switchings. However, the results of Table 6.4 show that
the average number of subproblems in the branch-and-bound-tree remains relatively
small for all instances, showing that the dual bounds computed by our algorithm
are rather tight, and that the main challenge in terms of running times is the fast
computation of these dual bounds.

Moreover, the reported results show that our approach to globally solve parabolic
optimal control problems with dynamic switches by means of branch-and-bound,
combined with an adaptive refinement strategy, works in practice. Whenever the
maximal number of refinements of a grid cell in the branch-and-bound algorithm was
larger than 4 in our experiments, a grid cell was refined this often in less than 10 %

of the subproblems. The finest grid mesh size decreases with the number of allowed
switching points. This means that, if more switchings are allowed, a finer temporal
discretization is needed to detect the optimal positions of the switching points.

114



6.2. Root node relaxation

σ 1 2

θ Subs Cuts Time Refine Ratio Subs Cuts Time Refine Ratio

1 27.6 51.4 0.10 3.6 7.89%

2 33.2 71.8 0.23 4.8 9.27% 157.6 292.0 0.74 6.6 3.59%

3 32.4 69.6 0.22 3.8 5.53% 132.2 274.2 1.04 4.4 9.14%

4 29.0 65.2 0.22 4.0 30.75% 167.2 326.0 1.02 6.8 4.45%

5 36.4 79.2 0.20 4.2 8.58% 147.6 319.4 1.04 4.6 6.46%

6 18.6 49.0 0.19 1.0 64.04% 202.6 410.0 1.30 5.6 2.67%

7 32.2 75.6 0.19 2.2 25.48% 247.2 518.2 1.63 4.4 2.82%

8 27.0 65.6 0.23 3.0 27.88% 206.2 460.2 1.49 4.6 2.99%

σ 3 4

θ Subs Cuts Time Refine Ratio Subs Cuts Time Refine Ratio

3 956.6 1848.4 8.90 7.4 1.86%

4 976.0 2128.2 8.79 7.2 1.28% 5572.8 11055.6 44.29 8.0 2.09%

5 974.0 1861.6 6.75 7.2 6.32% 4949.4 9194.0 43.97 7.4 2.71%

6 1061.8 2278.0 10.22 7.2 1.35% 6255.8 12360.8 65.06 8.0 2.44%

7 1239.0 2496.2 11.15 7.2 2.41% 6144.6 12095.8 62.73 7.4 1.73%

8 1557.2 3123.2 13.70 6.4 1.45% 6379.8 13005.4 66.68 7.8 5.53%

Table 6.4: Performance of the branch-and-bound algorithm for instances
generated with θ switching points, allowing σ switchings. For each combi-
nation of θ and σ with σ ≤ θ, five instances are solved and the average of
the number of generated subproblems (Subs), the total cutting plane iter-
ations (Cuts), the total run time in CPU hours (Time), and the maximal
number of refinements of a grid cell (Refine) are reported. Moreover, we
state the percentage of subproblems (Ratio) whose grid mesh size equals the
finest grid mesh size considered.

In summary, our proposed branch-and-bound method is an effective and robust
algorithm to globally solve control problems of the form (P). A few pointwise fixings
of the controls suffice to significantly truncate the set of feasible switching patterns.
Moreover, thanks to the computation of tight dual bounds by means of outer ap-
proximation, relatively few subproblems need to be inspected and refined within the
branch-and-bound algorithm.

6.2 Root node relaxation

In this section, we want to have a closer look in Section 6.2.1 at the qualitative
behavior of the outer approximation algorithm, devised in Chapter 3, to solve general
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convex control problems of the form (Q). To this end, we exemplarily consider
the root node relaxation (SPC) of a binary parabolic optimal control problem (P).
Afterwards, we investigate in Section 6.2.2 the strength of our dual bounds compared
to the naive relaxation of (P), which replaces the binarity constraints on the controls
in D by u ∈ [0, 1] a.e. in (0, T ). Note that in the reported bounds in this section, we
have always taken the discretization error of the convexified problems (SPCk) into
account; compare Section 4.5.2.

6.2.1 Performance of outer approximation

To solve the convex problems occurring in the outer approximation algorithm for
the root node relaxation, we may either use the semi-smooth Newton algorithm,
presented in Section 3.3.2, or the ADMM algorithm, devised in Section 4.5.2, since
there are no fixings present in the root node and it is thus likely that the matrix
of the semi-smooth system (3.27a) and (3.27b) remains regular over the outer ap-
proximation iterations. From the literature, it is well-known that the semi-smooth
Newton method probably solves the convexified problems faster. We thus compare
the performance of the semi-smooth Newton method (see Section 3.3.2) and the
ADMM algorithm (see Section 4.5.2) to solve the linear quadratic problems occur-
ring in Step 2 of the outer approximation algorithm for the root node relaxation of
a binary parabolic control problem of the form (P). Throughout this section, we
generated instances of (P) as described in Section 6.1.1. Moreover, unless stated
otherwise, we set the Tikhonov parameter to α = 0.005 and chose an equidistant
grid with Nt nodes for the temporal discretization of (P).

The tolerances εrel, εabs, εpr and the penalty parameter ρ for the cutting planes for
the ADMM algorithm were chosen as in Section 6.1. Besides, the penalty parame-
ter β for the box constraints was set to β = α. The linear, symmetric systems (3.27a)
and (3.27b) in each semi-smooth Newton iteration are solved by the minimum resid-
ual solver Min-Res [Gre97] preconditioned with

PN =

(
αI 0

0 1
αGG

?

)
.

For the update of active cutting planes we chose ν = 10−5; see Section 3.3.2.
The development of the dual bounds over time for an instance with θ = 8 switch-

ing points and σ = 2 allowed switchings are illustrated in Figure 6.4. We here set
Nt = 160. Each cross and circle, respectively, corresponds to the dual bound (y-axis),
multiplied by 103, obtained after adding another cutting plane, where the x-axis rep-
resents the time needed in CPU hours to obtain these bounds. The bounds obtained
by the semi-smooth Newton method and the ADMM algorithm are not identical,
even in the first iteration without cutting planes, since the ADMM algorithm does
not necessarily stop with an optimal solution of the discretized problem and thus
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Figure 6.4: Comparison of semi-smooth Newton method and ADMM algo-
rithm.
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Figure 6.5: Comparison of semi-smooth Newton method and ADMM algo-
rithm for the instance of Figure 6.4 on a coarse time grid with Nt = 20

nodes.

an additional absolute error is added to the primal objective in this case; see Sec-
tion 4.4.1. It can be seen that the semi-smooth Newton method solves the convexified
problems much faster than the ADMM algorithm. While the semi-smooth Newton
method needed 1.32 CPU minutes on average to solve one of the convexified prob-
lems, the ADMM algorithm needed 56.41 CPU minutes on average. Moreover, the
dual bounds obtained by the ADMM algorithm are not monotonously increasing,
which is due to the absolute error caused by this algorithm.

Within the branch-and-bound algorithm, it is not a problem that the dual bounds
are not necessarily monotonously increasing in each iteration of the outer approx-
imation when the ADMM algorithm is used. It is only important that we obtain
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Figure 6.6: Development of dual bounds for refined time grid for the instance
of Figure 6.4 using the semi-smooth Newton method.

safe dual bounds for the subproblems. Moreover, thanks to the adaptive refinement
strategy, the discretized problems in the branch-and-bound algorithm do not contain
as many free control variables as the present instance, so that the ADMM algorithm
can solve these problems faster and more accurately. This can also be seen in Fig-
ure 6.5, where we solved the same instance of Figure 6.4 on a coarser time grid,
namely with only Nt = 20 nodes. Of course, the semi-smooth Newton method still
performs better than the ADMM algorithm, but the dual bounds of the ADMM
algorithm do not vary as much as in Figure 6.4. The semi-smooth Newton method
here stopped after 8 cutting plane iterations, since the returned solution was feasible
for the root node relaxation (P).

Comparing the bounds from Figure 6.4 and Figure 6.5, we note that the returned
dual bounds of both algorithms are significantly smaller than the dual bounds in Fig-
ure 6.4. This is because the discretization-dependent dual bounds were corrected con-
siderably stronger by the DWR a posteriori error estimator than the discretization-
dependent dual bounds for the instance in Figure 6.4. However, a coarser discretiza-
tion of the problems does not necessarily imply that the discretization-independent
bounds obtained by the DWR estimator are strongly beneath the safe dual bounds
of finer temporal discretizations. In Figure 6.6, the safe dual bounds of the same in-
stance of Figure 6.4 obtained with the semi-smooth Newton method are illustrated for
different temporal resolutions, i.e., for different equidistant time grids with Nt nodes.
In this case, the discretization-independent bounds with only Nt = 80 nodes are for
a fixed number of cutting plane iterations stronger than considering Nt = 160 or
Nt = 320. Additionally, the dual bounds for Nt = 80 improve more significantly.

Remark 6.1. Since there is no rigorous analysis in the literature for a posteriori
error estimators in the context of parabolic optimal control problems with additional
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linear constraints on the control functions, we used in this thesis the DWR estimator,
which has already achieved good results in practice and also seems to work well within
our branch-and-bound algorithm for moderate values of the Tikhonov parameter;
compare Section 6.1.3. However, the analytical derivation of an error estimator is
desirable for our approach. It is unclear whether the effect that coarser discretizations
provide for a fixed number of cutting plane iterations stronger bounds in function
space then still occurs.

In the remainder of this section, we always use the semi-smooth Newton method.
As the above experiments show, the bounds within the outer approximation algo-
rithm improve very quickly in the first cutting plane iterations and then continue to
increase slowly. When using the dual bounds within a branch-and-bound scheme,
this suggests to generate only few cutting planes before resorting to branching. But,
we have already seen in Section 6.1.2 that it is also not reasonable to resort to branch-
ing too early, since then the dual bounds are too weak to early prune subproblems,
so that more nodes need to be investigated.

We next note that reoptimization has a significant impact on the run time of the
outer approximation algorithm and thus on the overall branch-and-bound algorithm.
For the example in Figure 6.7, we again have θ = 8, σ = 2 and Nt = 160. Within our
branch-and-bound algorithm, reoptimization is used after each outer approximation
iteration (see Section 4.4.1), as well after each refining step of the temporal grid (see
Section 4.5.4).

0 1 2 3
3.12

3.14

3.16

3.18

3.20

3.22

3.24

CPU hours

reopt
no reopt

Figure 6.7: Impact of reoptimization on the run time of the outer approxi-
mation algorithm.

Finally, before comparing our dual bounds with the dual bounds obtained by
the naive relaxations of (P), we have a closer look at the typical behavior of the
optimal solutions throughout the outer approximation algorithm. For the example
shown in Figure 6.8, we have θ = 8, σ = 2 and Nt = 160. If none of the cutting
planes are added, the total variation of the control is not bounded by any constraint.
In this case, we have |u0|BV (0,T ) = 4.77. Adding cutting planes quickly changes
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|u1|BV (0,T ) = 4.77 |u5|BV (0,T ) = 9.39 |u9|BV (0,T ) = 8.51 |u13|BV (0,T ) = 5.35

|u17|BV (0,T ) = 4.88 |u21|BV (0,T ) = 4.38 |u25|BV (0,T ) = 4.91 |u29|BV (0,T ) = 4.12

Figure 6.8: Development of optimal solutions.

the shape of the optimal solutions ui in the i-th iteration of the outer approximation
algorithm as well as their total variation, which however does not necessarily decrease
monotonously. But, neither the shape of ui nor its total variation is directly relevant
for our approach, since we only aim at computing as tight dual bounds as possible.

6.2.2 Comparison with the naive relaxation

After investigating the performance of our outer approximation algorithm, we now
evaluate the quality of our outer description of the convex hull conv(D) and, in
particular, the strength of the resulting dual bounds. To this end, let again the
domain be given as Ω = (0, 1) and let the final time be T = 1. Moreover, let σ = 2

be the upper bound on the number of switchings and the form function ψ as well
the desired state yd be given as

ψ(x) := exp(x) sin(π x) and

yd(t, x) := 1
6 max(cos(4π t), 0) sin(π x)

We calculate the optimal value of the corresponding problem (P) with the help of the
branch-and-bound algorithm, as described in Section 6.1, using the same parameter
setting as for the experiments in Section 6.1.3, but only allow a deviation of 1 %

from the optimum, i.e., TOL=1 %, in order to evaluate the quality of conv(D) more
precisely. In the evaluation of the objective function, we consider for the desired
state yd an equidistant time grid with 640 nodes.

The naive relaxation and our convexification, based on the description of conv(D),
are both solved with the help of the outer approximation algorithm from Section 3.2.
With Example 3.9, it is easy to see that the finite-dimensional projection set of the
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naive relaxation is given as

Π(Cnaive) := {v ∈ [0, 1]M : v1 = 0,
M∑
i=2

|vi − vi−1| ≤ σ} ,

where v1 = 0 results from the fact that the switches are off at the beginning. A
complete description of Π(Cnaive) is then given by 0 ≤ vi ≤ 1 for i = 1, . . . ,M ,
v1 = 0 and v2 +

∑M
i=3(−1)%(i)(vi−1 − vi) for all % : {3, . . . ,M} → {0, 1}. The most

violated cutting plane for v̄ /∈ Π(Cnaive) is v2 +
∑M

i=3(−1)%(i)(vi−1−vi) with %(i) = 1

if and only if v̄i−1 ≤ v̄i for i = 3, . . . ,M . The separation algorithm for the naive
relaxation is thus again fast enough to allow to choose the projection intervals exactly
as the time intervals of the discretization.

The linear quadratic control problems in each iteration of the outer approximation
algorithm are solved by the semi-smooth Newton method; see Algorithm 3. We here
used the same parameter settings for the semi-smooth Newton algorithm as for the
experiments in Section 6.2.1. Moreover, for the discretization of the relaxations, we
used an equidistant time grid with 320 nodes. The grid mesh size of the chosen
equidistant time grid then coincides with the finest grid cell size considered in the
returned solution for (P) of the branch-and-bound algorithm.

The development of the dual bounds of the naive relaxation and our dual bounds
over time for α = 0.01 are illustrated in Figure 6.9. The reported objective values
(y-axis) are here scaled by the factor 103. Since in the first iteration of the outer
approximation algorithm none of the cutting planes for the naive and our relaxation,
respectively, are added, the bounds coincide in this case. It can be seen that our dual
bounds are already stronger than the final naive bounds after relatively few cutting
plane iterations, and that our convexified problems are not harder to solve than
the naive convexifications by our outer approximation algorithm. In fact, the naive
relaxation still includes inequality constraints involving the BV-seminorm, so that
its solution is very challenging in practice and no standard procedure is known in the
literature. Thus, the results emphasize that our relaxation can be solved as well as
the naive relaxation by our outer approximation approach and we additionally obtain
better dual bounds. For comparison, the optimal value of the original problem (P)
returned by our branch-and-bound algorithm is 2.19 · 10−3.

We now analyze the quality of our dual bounds in more detail. For this, we used
the same instance of Figure 6.9 with different Tikhonov parameters. We report in
Table 6.5 the objective values (Obj) obtained by the naive relaxation and our tai-
lored convexification. Here, for our convexification of (P), we already stopped the
cutting plane algorithm, when the relative change of the bound was less than 0.01 %

in three successive iterations. We state how many cutting planes are computed al-
together (Cuts) and how many of them are needed (Ex) to exceed the naive bound.
Moreover, we state how large the gap (Gap) between the dual bounds obtained by the
convexifications and the optimal value of (P) is. Finally, the last column (Filled Gap)
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Figure 6.9: Comparison of naive and tailored convexification.

α naive rel. tailored convexification

Obj Gap Obj Cuts Ex Gap Filled gap

0.01 0.90·10−3 54.89 % 1.02·10−3 29 6 53.30 % 2.89 %

0.009 1.09·10−3 50.08 % 1.13·10−3 39 7 48.34 % 3.46 %

0.008 1.20·10−3 45.36 % 1.24·10−3 48 7 43.49 % 4.14 %

0.007 1.21·10−3 40.76 % 1.34·10−3 47 8 38.68 % 5.10 %

0.006 1.40·10−3 36.25 % 1.45·10−3 48 9 33.96 % 6.29 %

0.005 1.49·10−3 31.96 % 1.55·10−3 63 10 29.32 % 8.26 %

Table 6.5: Comparison of naive and tailored convexification for different
Tikhonov parameters.

reports how much of the gap left open by the naive relaxation is closed by our convex-
ification. The results again emphasize that our bounds are stronger than the naive
bounds even after adding relatively few cutting planes. In addition, the quality of
both bounds strongly depends on the Tikhonov parameter α. The smaller α, the
better the dual bounds are and the more our relaxation relatively closes the gap left
open by the naive relaxation.
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Conclusion and Outlook

In this thesis, we investigated parabolic optimal control problems with dynamic
switches that may be on or off at any point in time and that are subject to ad-
ditional combinatorial control constraints. We developed a branch-and-bound al-
gorithm, whose main ingredients are the computation of tight dual bounds and an
adaptive refinement strategy for the parabolic control problems. For the dual bounds,
we first devised a complete description of a class of convex controls by means of cut-
ting planes lifted from finite-dimensional projections of the feasible controls, and an
outer approximation approach to solve the corresponding convex control problem.
By transferring the results to the convex hull of feasible binary switches, we were able
to efficiently compute safe dual bounds for the non-convex parabolic control prob-
lem, as long as the discretization error is not taken into account. With the help of
the dual weighted residual method, we estimated the a posteriori discretization error
contained in these bounds and specified an adaptive refinement strategy to decide
between pruning and refining a subproblem within the branch-and-bound scheme.

While the overall approach is very general, the specific shape of the cutting planes
and separation algorithm for the projection sets, needed within the outer approxima-
tion algorithm, are problem-dependent. We showed the tractability of the separation
problems for the case of bounded variation and for the case where different minimum
time spans between two switchings of the same switch are required for a fixed choice
of projection intervals. For further research, it might be interesting to investigate
the separation problem for other combinatorial constraints arising in optimal con-
trol problems, such as, e.g., an upper bound on the total time a switch may be on;
see [BZH+20].

Recently, [Buc24] derived extended formulations for specific combinatorial switch-
ing constraints in function space. Extended formulations in general serve to find a
compact linear formulation of combinatorial optimization problems, i.e., one contain-
ing a polynomial number of variables and constraints, such that the convex hull of the
original feasible set is the projection of the feasible set of the extended formulation
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to the original space of variables; see [CCZ13]. By using these extended formulations
within the branch-and-bound algorithm presented in Chapter 4 instead of the outer
approximation algorithm from Section 3.2, we would obtain the same dual bounds
by solving the extended problem once without any separation procedure. The inte-
gration of extended formulations into the implementation of the branch-and-bound
algorithm and the investigation of the impact on the running time of the algorithm
could be subject to future research.

We focused our investigation on switches that only admit two different states.
However, the branch-and-bound scheme presented in Chapter 4 should be easily ex-
tendable to problems whose switches admit finitely many different states. Moreover,
we restricted ourselves to a linear PDE in our problem (P), so that the control prob-
lems arising in the outer approximation algorithm are linear-quadratic. However, a
closer inspection of the outer approximation algorithm and its convergence shows
that it should be sufficient that the problems are convex in order to compute global
minimizers within the algorithm. The convexity, however, would also hold true for
semilinear parabolic control problems with pointwise state constraints provided that
the nonlinearities in the PDE fulfill certain assumptions; see [BKM18]. More specifi-
cally, [BKM18] showed the convexity of a class of semilinear elliptic control problems
with pointwise state constraints, where the nonlinear part of the PDE was supposed
to be convex and non-decreasing with respect to the state. Following the same reason-
ing and using regularity results for the max-operator in W (0, T ) [Wac16], one could
transfer the convexity result to the parabolic case. Therefore, semilinear parabolic
control problems with pointwise state constraints should also be addressable by our
solution approach, but, of course, the numerical solution of the convexified problems
in the outer approximation algorithm would become more complicated due to the
nonlinearity of the PDE and the additional pointwise state constraints.

So far, we have considered different switching constraints on the feasible switching
patterns in our problem (P). A natural variation of this approach would be to enforce
the switching structure through penalization terms in the objective function, as fre-
quently done in the literature. For instance, for DΣ

max({0, 1}) in (4.2), one could con-
sider σ a one-dimensional control variable rather than a constant, and add a penalty
term g(σ) to the objective, where the function g : R→ R should be convex. In this
case, σ would become a part of the finite-dimensional projection sets. More specifi-
cally, the binary switches u would be projected to the finite-dimensional space RM by
local averaging operators as in Chapter 4 and then σ would be added to the projection
vector. With the consideration from Section 5.1.1, the finite-dimensional projection
sets would coincide then with {(v, σ) ∈ {0, 1}M × R : v1 = 0,

∑M
i=2 |vi − vi−1| ≤ σ},

for which a complete description and separation algorithm with linear run time inM
is specified in [BH23]. Within the outer approximation, the latter separation algo-
rithm would be used to cut off infeasible controls. The convergence of the iterates of
the outer approximation algorithm to the optimal solution of the penalized problem
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could be shown in analogy to Theorem 3.11, since the objective is convex and lower
semi-continuous in the variables due to the convexity of g.

Our branch-and-bound algorithm in Chapter 4, the outer approximation algo-
rithm in Section 3.2 and the extended formulations in [Buc24] for mixed-integer
control problems are all inspired by standard methods for mixed-integer program-
ming in finite dimension. Therefore, it might be interesting to see to what extent
other classical methods and concepts for mixed-integer optimization in finite dimen-
sion are also transferable to infinite dimensional problems; e.g., whether the concept
of robust optimization could be used to handle uncertainties in the problem data
effectively.

In summary, mixed-integer optimal control is of great importance in practice and
a very active field of research. The focus will continue to be on the development
of fast (global) solution approaches, but also on in-depth analysis of the considered
control constraints, and on the integration of other classical concepts, such as, e.g.,
robust optimization to cope with uncertainties in the control problems.
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