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ABSTRACT There are significant advances in GNSS-free cross-modality self-localization of self-driving
vehicles. Recent methods focus on learnable features for both cross-modal global localization via place
recognition (PR) and local pose tracking, however they lack means of combining them in a complete
localization pipeline. That is, a pose retrieved from PR has to be validated if it actually represents the true
pose. Performing this validation without GNSS measurements makes the localization problem significantly
more challenging. In this contribution, we propose a method to precisely localize the ego-vehicle in a high
resolution map without GNSS prior. Furthermore, sensor and map data may be of different dimensions (2D
/ 3D) and modality, i.e. radar, lidar or aerial imagery. We initialize our system with multiple hypotheses
retrieved from a PR method and infer the correct hypothesis over time. This multi-hypothesis approach is
realized using a Gaussian sum filter which enables an efficient tracking of a low number of hypotheses and
further facilitates the inference of our deep sensor-to-map matching network at arbitrarily distant regions
simultaneously. We further propose a method to estimate the probability that none of the currently tracked
hypotheses is correct. We achieve successful global localization in extensive experiments on the MulRan
dataset, outperforming comparative methods even if none of the initial poses from PR was close to the true
pose. Due to the flexibility of the approach, we can show state-of-the-art accuracy in lidar-to-aerial-imagery
localization on a custom dataset using our pipeline with only minor modifications of the matching model.

INDEX TERMS Vehicle self-localization, cross-modality localization, global localization, place
recognition, multi-hypothesis localization, HD map, automated driving.

I. INTRODUCTION
HDmaps may support the automated vehicle in various func-
tionalities like navigation, perception, trajectory planning
and situation prediction [4]. To enable those functionalities,
an accurate pose estimate of the ego-vehicle within the map
is required through localization. The localization task may
be split up into first solving the global localization problem,
i.e. finding the (rough) initial vehicle pose, and subsequently
keeping track of the pose while enhancing its accuracy over
time, assuming that the current pose estimate is close to the
true vehicle pose [5]. While common GNSS-based local-
ization has the advantage of solving global localization, its
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application for precise pose tracking in HD maps is generally
insufficient as its accuracy often lies in the range of meters
even in combination with dead reckoning [6]. This problem
can be exacerbated in urban regions where obstacles, such as
tall buildings, block the direct GNSS signal path which may
lead to large GNSS errors, e.g. due to multipath effects [7],
or even complete outages. Moreover, recent studies reveal
that GNSS is additionally prone to jamming or spoofing [8]
which may be another cause for localization failure using
GNSS.

To overcome the drawbacks of GNSS-based localiza-
tion and enhance the localization accuracy and robustness,
HD maps contain georeferenced metric information of the
static environment that may be detected by the perception
sensors of the automated vehicle, including camera, lidar, and
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radar. Matching corresponding sensor and map data enables
both GNSS-free global localization, e.g. through place recog-
nition (PR) [9], [10], [11] and precise local pose track-
ing [12], [13]. Previous approaches employed the same sensor
modality for the map creation and subsequent localization
including approaches based on lidar [14], [15], [16], [17],
camera [18], [19], [20], and radar [21], [22], [23] sensors
as well as combinations of them [6], [24], [25]. However,
using the same sensor modality for mapping and localization
either requires a certain sensor to be available on the vehicle
for facilitating localization or multiple sensor-specific HD
maps of the same environment which increases data storage
and the effort of map creation and maintenance. Moreover,
it limits the availability and utility of suchmaps, as innovation
in the sensor technology used in vehicles may introduce the
necessity for frequent updates to the mapping vehicle fleet.

Therefore, cross-modality localization approaches, i.e.
employing different sensor modalities for the map creation
and subsequent localization, have potential to be a more
cost-effective alternative as they drastically increase the
utility of the created HD maps and increase reusability.
HD maps may thus be provided by third-party mapping com-
panies [26] as well as publicly available data, e.g. from aerial
imagery [27].

There are different approaches to realize cross-modality
in localization. One approach is to define handcrafted static
features within the environment, also called landmarks, that
may be detected by different sensor modalities. Common
landmark types are lane [28], [29] and road [30] markings,
poles [31], road signs [32] as well as generic low-level fea-
tures [33]. These approaches however, require knowledge
about the environment, the sensor used on the vehicle, and
additional effort to identify reliable landmark types while dis-
cardingmuch of the available sensor andmap data.Moreover,
this usually limits the usabiltiy of those maps to areas where
the predefined landmark types are present and relevant for
localization.

Recent works thus focus on learnable features for local-
ization. Compared to handcrafted methods, learning-based
approaches are driven towards finding reliably detectable
features that are useful for the localization task based on
a learning strategy and are not limited to those a human
annotator deems useful. Especially for cross-modality local-
ization, the identification of reliable landmarks for various
sensor and map modalities is non-trivial. Here, learning-
based approaches have become the state-of-the-art for both
cross-modal PR [1], [11], [34], [35], [36] as well as local
pose tracking, achieving localization accuracies below 1m
for various sensor modalities, including radar-to-lidar [2],
[37], [38], range-to-aerial-imagery [35], [39], [40], [41]
and camera-to-aerial-imagery, also called cross-view geo-
localization (CVGL) [27], [41], [42].

Most of these approaches estimate the current pose by
correlating or registering learned representations of the sen-
sor image with a map section around the current estimate.

Hence, they require that a prior pose estimate close to the
ground truth (GT) pose is given or provided by a global
localizer like a PR algorithm. Here, the term ‘‘close’’ is
defined by the search range of the employed correlation or
registration method and may amount up to 20m to 40m
[2], [27], [40], [42]. However, assuming that a prior pose near
the true pose is given is not viable for real world applications
when GNSS is not available, since current PR algorithms are
imperfect [1], [35]. Therefore, when using a PR algorithm
for initialization, it is initially unclear if the retrieved pose
is close to the true pose at all. However, for safety criti-
cal applications like automated driving, localization systems
need to be self-assessing and output a confidence measure
of the current estimate [43], [44]. To tackle this problem
we propose multiple extensions to previous works: inspired
by [45], [46], and [47], we propose to initialize and track
multiple hypotheses during initialization using a Gaussian
sum filter (GSF) where every hypothesis is represented by
a weighted Gaussian. Here, the weight corresponds to the
estimated probability of the corresponding hypothesis repre-
senting the true pose. The hypotheses are initialized based
on the top-n retrieval results of a PR algorithm. Subse-
quently, the hypotheses are tracked over time whereas their
weights are determined based on how consistent the odome-
try measurements are with the observations at the estimated
locations of the map. The observations are obtained from
our proposed deep correlation-based sensor-to-mapmatching
network that is not only capable of extracting meaningful
features for localization from sensor and map data of dif-
ferent modalities, e.g. radar sensor and lidar map, but the
data may also have different dimensions, e.g. registering
a 2D radar sensor image to a 3D lidar point cloud map.
We realize this by adding a short variant of Point Voxel
Convolution (PVConv) [48] as input layers which realizes a
learnable projection of three-dimensional input data to two-
dimensional features, thus keeping the subsequent correlation
efficient in the SE2 space. Fig. 1 visualizes our method for
a global radar-to-lidar localization initialization experiment
on the KAIST02 sequence of the MulRan dataset [3]. Note,
that no GNSS is used for initialization, but only retrieved
poses from a PR method [1], radar odometry estimates [2]
and pose observations from our proposed matching model.
Note, that the correct hypothesis (framed red) may be inferred
over time although it was the least likely hypothesis at the
time of initialization. Furthermore, the tracking of multiple
hypotheses enables the recognition of ambiguous scenarios
when multiple hypotheses keep a non-negligible probability
over time. The localization system can report being unavail-
able in these situations to avoid the dissemination of false
information leading to safety-critical localization failures.
To account for the case that none of the top-n retrieved
poses of the PR algorithm is correct, we incorporate the
concept of tracking a null hypothesis probability [46], [47]
which corresponds to the probability that all the currently
tracked hypotheses are incorrect. This allows us to find the

60006 VOLUME 11, 2023



N. Stannartz et al.: Toward Precise Ambiguity-Aware Cross-Modality Global Self-Localization

FIGURE 1. Overview of our proposed ambiguity-aware cross-modality (in the depicted case radar-to-lidar) global self-localization approach. In this
example, our method is initialized with four hypotheses, represented as a Gaussian mixture, based on the top-4 retrievals of a state-of-the-art
radar-to-lidar place recognition method [1]. Subsequently, the correct, but initially least likely, hypothesis (marked in red ) may be inferred over time using
a Gaussian sum filter through the fusion of pose observations, provided by our correlation-based sensor-to-map matching model, and odometry
estimates obtained from a given radar odometry [2]. The figure shows the situations at the time of initialization (left) and after convergence (right) from a
radar-to-lidar global localization initialization experiment on the KAIST02 sequence of the MulRan dataset [3]. The bar plots depict the probabilities of
the different hypotheses highlighted with the same colors in the zoomed in sections of the map. Within the zoomed in sections, the blue triangle and
covariance ellipse denote an estimated hypothesis while the red triangle and covariance ellipse denote the pose observation resulting from a Gaussian
approximation of the correlation output tensor of our matching model. Finally, the green triangle denotes the true pose.

correct pose during initialization even if all initially retrieved
hypothesis were wrong. While other approaches are also
able to track multiple hypotheses, e.g. using a histogram
filter (HF) [17] or a particle filter (PF) [37], [49], the GSF
can more efficiently represent and maintain a multimodal
posterior distribution using a low number of hypotheses
while the hypotheses may be arbitrarily distant of each other.
This would not be possible when using a HF for estimation
as the computational demand would rapidly increase when
increasing the spatial extent of the covered area for estimation
due to the discretization of the state space. Similarly, a PF
would require several thousands of particles for a reason-
able performance [50], [51] which exceeds the computational
resources available as well when provided as a batch to a
deep correlation-based matching model. The GSF formu-
lation therefore simultaneously enables us to significantly
increase the search space of our matchingmodel by providing
the model a batch of map tiles as input based on the currently
tracked hypotheses. The contributions of our work are there-
fore the following:

• We present a localization pipeline to solve both global
localization and local pose tracking without any GNSS
prior using only learned features of range sensor input
and map data of different sensing modalities as well
as dimensions by adding a stack of PVConv input
layers to our deep correlation-based sensor-to-map
matching model. Furthermore, through the employment
of a multi-hypothesis localization approach, we pro-
vide means to validate which of the retrieved poses
from a PR method is actually close to the true pose
by determining the hypothesis that best explains the
received odometry measurements and pose observations
from our sensor-to-map matching model over time.

Additionally, we integrate the concept of a null hypoth-
esis proposed by [46] and [47] within our framework to
simultaneously estimate the probability that none of the
currently tracked poses is correct and show that we can
successfully localize the ego-vehicle even if none of the
initially retrieved poses were close to the true pose.

• We propose to implement the multi-hypothesis localiza-
tion framework using a Gaussian sum filter (GSF) [45],
[46], [47]. As opposed to histogram or particle filters,
this formulation enables us to simultaneously evalu-
ate our sensor-to-map matching network at different
regions in the map that may be arbitrarily distant to each
other while determining the most likely hypothesis over
time through the fusion of odometry measurements and
map-based pose observations while keeping the com-
putational demand bounded. To account for misdetec-
tions and clutter measurements we employ the complete
measurement likelihood formulation for single-object
tracking (SOT) [52], [53], [54] which not only provides
means for outlier rejection, but also augments the prob-
ability calculation of the hypotheses.

• We provide an empirical calibration of the proposed
sensor-to-map matching model and present a method
to determine meaningful values for the filter parame-
ters prevalent in the measurement likelihood calcula-
tion based on a per-frame evaluation on the validation
set.

• We show in extensive experiments that our method
not only achieves state-of-the-art accuracy in radar-to-
lidar and lidar-to-aerial-imagery localization, but also
enables successful localization even if none of the ini-
tially retrieved poses from the PR was close to the true
pose which has not been possible with previous works.
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II. RELATED WORK
A. LEARNING-BASED CROSS-MODALITY POSE TRACKING
To achieve cross-modality pose tracking, current approaches
first bring both the sensor and map data into a common repre-
sentation and subsequently determine the pose offset between
both representations to obtain an accurate localization esti-
mate [2], [27], [35], [39], [40], [41], [55], [56]. To obtain
an end-to-end learnable approach the operations within this
pipeline are required to be differentiable with respect to
the input data [17]. While a differentiable transformation
into a common representation is easily realizable through
CNN-based architectures [2], [17], [27], [35], [39], [40], [41],
different methods exist to obtain a differentiable pose offset
regression. Here, themost popular approaches perform differ-
entiable pose offset regression through cross-correlation [27],
[39], [40], [41], similarity-based offset estimation [2] or
registration [35]. Cross-correlation based methods have the
advantage that the correlation can be applied in the fre-
quency domain and may be efficiently performed on a GPU,
rendering the operation to be real-time capable [17], [57],
[58]. Moreover, opposed to a registration-based method, the
result of the cross-correlation corresponds to a probabil-
ity distribution that may be further exploited as a measure
of uncertainty [41], [56], [57]. Furthermore, state-of-the-art
cross-modality correlation-based matching models achieve
sub-meter level accuracy [27], [41]. In general, the presented
pose tracking methods have in common that they require a
global initial pose estimate close to the true pose. Here, the
definition of ‘‘close’’ depends on the search range of the offset
regressionmethod ranging from 6m [2] to 40m [42] in lateral
and longitudinal direction.

B. GNSS-FREE CROSS-MODALITY GLOBAL LOCALIZATION
When GNSS is unavailable, global localization becomes sig-
nificantly more challenging as the global pose has to be
solely inferred from perception, motion measurements and
map data, especially when the perception and map data have
different modalities. Current approaches tackle the problem
either using a particle filter (PF) [59], [60] or a PR method
[1], [35]. The PF approaches typically require knowledge
about the location of the streets of the environment to
uniformly initialize particles on every street. Yan et al. [59]
obtain this information directly from OpenStreetMap (OSM)
whereas Miller et al. [60] preliminarily perform a seman-
tic segmentation on aerial imagery to segment the roads.
Both approaches converge around the true pose with mean
translation errors between 2m to 20m and average conver-
gence times between 17 s to 75 s using measurements of 3D
lidar sensor to update the particle weights. Opposed to PF
approaches, PR-based global localization methods require
a database of ‘‘places’’ typically represented as learned
descriptors that capture the modality-specific appearance of
each place [1], [35]. Current methods achieve top-1 recalls
between 25% to 65% for radar-to-lidar [1] and 4% to
15% for lidar/radar-to-aerial-imagery [35] PR with metric
accuracies around 3m.

The above mentioned approaches enable successful
cross-modal global localization without any GNSS prior,
however, they differ in their efficiency and scalability.
A PF requires a minimum initial particle density over the
complete map to ensure successful convergence. Blanco-
Claraco et al. [51] empirically determined a required particle
density of ≈ 2 particles

m2 for successful convergence in 3D lidar
localization which requires > 200 000 particles for an area
of only 420m × 320m in size leading to a mean runtime
of more than 2 s per time step when assuming an average
execution time of 0.01ms per particle. PR methods on the
other hand may exploit efficient nearest neighbor queries
achieving retrieval runtimes of around 1ms for a correspond-
ing database of similar size when assuming a density of 2map
images per m2 [61]. With feature extraction times of around
10ms, PR methods enable manageable runtimes for global
localization.

A drawback when using PR for initialization it is prelimi-
narily unknown which or if any of the retrieved PR poses is
actually close to the true pose. Here, multi-hypothesis local-
ization approaches provide means for detecting ambiguous
scenarios and thus may be used for an integrity check of
the localization estimate [62], [63], [64], [65], [66] as well
as estimating the probability that none of the hypotheses is
correct [46], [47].

C. AMBIGUITY-AWARE MULTI-HYPOTHESIS VEHICLE
LOCALIZATION
In [67] and [68], the authors developed a multi-hypothesis
localization approach to determine the vehicle’s location in
an OSM road network, solely based on motion estimates
from a visual odometry method. The developed filtering algo-
rithm was based on a Gaussian mixture representation of the
posterior distribution of the state whereas the state variables
were defined as the previous and current distance along a
corresponding street segment as well as the previous and
current orientation w.r.t. to the segment. Their localization
system becomes available when there is a single mode in
the posterior for at least 10 s. Both, Rabe et al. [62], [63] and
Li et al. [64], [65], [66] employ a PF for an ambiguity-aware
localization approach within a vectorized HD map. In [62]
and [63], the localization system is only deemed available
if the sum of the particle weights within a corresponding
HD map segment exceeds a threshold. Similarly, the authors
of [64], [65], and [66] require that after fault detection and the
pruning of low-likely hypotheses only a single hypothesis, i.e.
particle set on the same HD map lane segment, remains for
the localization system to become available. Kim et al. [50]
set a threshold on the standard deviation of the particles
as a condition for the filter to be converged and thus the
localization to be available. In [60], the convergence of a
PF-based localization approach is automatically detected as
well, despite the conditions for detecting convergence are not
explicitly defined. We assume that the convergence criteria
are similar to [50] since this approach is employed as a
baseline method for comparison.

60008 VOLUME 11, 2023



N. Stannartz et al.: Toward Precise Ambiguity-Aware Cross-Modality Global Self-Localization

D. PLACEMENT OF OUR WORK
Our work relies on a deep correlation-based sensor-to-
map matching model which allows for high localization
accuracy while providing information of uncertainty of the
pose estimate. Furthermore, to allow the processing of
three-dimensional sensor andmap data while keeping the cor-
relation efficient the SE2 space, we add PVConv (Point-Voxel
Convolution) layers [48] to the input layer which realizes
a learnable projection of 3D points on the two-dimensional
feature space. In contrast to previous works in the field of
learning-based cross-modality pose tracking (cf. Sect. II-A),
we simultaneously provide means for GNSS-free global
localization by initializing our method with the top-n retrieval
results of a PR algorithm and subsequently determine which
of the retrieved poses is actually close to the true pose using
a multi-hypothesis approach based on a Gaussian sum filter
(GSF) [45]. This allows us to track a low number of hypothe-
ses using the same precisematchingmodel while we can eval-
uate our model simultaneously at arbitrarily distant regions
by providing a small batch of map tiles centered around
the currently tracked hypotheses. Compared to other GNSS-
free cross-modal global localization methods (cf. Sect. II-B)
we achieve state-of-the-art decimeter-level localization accu-
racy while our method is simultaneously more scalable to
large maps than PF-based solutions. Moreover, through the
introduction of a null hypothesis [46], [47], we additionally
estimate the probability that none of the initially retrieved
poses from the PR was close to the true pose. This enables
successful global localization even if all the preliminarily
initialized hypotheses were wrong by periodically initializing
new hypotheses based on the retrieved PR pose if computa-
tional capacity is available until the null hypothesis proba-
bility falls below a threshold. Other ambiguity-aware multi-
hypothesis approaches (cf. Sect. II-C) either require GNSS
and a vectorized HD map to resolve ambiguities and detect
convergence [62], [63], [64], [65], [66] or have to initialize
localization hypotheses covering the complete driveable map
space [50], [60], [67], [68] leading to a less efficient and
scalable approach.

III. CROSS-MODALITY MULTI-HYPOTHESIS
LOCALIZATION
Fig. 1 already provided an overview of our proposed
GNSS-free cross-modal global multi-hypothesis localization
approach. The hypotheses are initialized using a suitable PR
method. Subsequently, the goal is to infer which of the initial-
ized hypotheses actually corresponds to the correct one close
to the true pose. This is achieved by determining the hypothe-
sis whose odometry measurements and pose observations are
most consistent over time. The pose observations are obtained
from our deep sensor-to-mapmatchingmodel which yields as
our localization frontend and will be described in Sect. III-A.
The intermediate results and representations of this model
for a single hypothesis are depicted in Fig. 2 for a radar-to-
lidar localization experiment on theKAIST02 sequence of the
MulRan dataset [3]. Centered around a prior pose hypothesis,

TABLE 1. PVCNN preprocessing layer configuration, from bottom (input)
layer to top (output) layer.

a horizontal region is extracted from the map (Fig. 2a) and fed
into the model together with the corresponding radar sensor
image (Fig. 2b) both represented from a bird’s eye view
(BEV) perspective. Subsequently, the network brings both the
map and the sensor image into common planar embedding
spaces (cf. Fig. 2c and Fig. 2d). For three-dimensional data
we add a stack of PVConv layers to the input layer which
keeps the pipeline for the subsequent modules equivalent,
but enables the processing of three-dimensional data. The
final layer performs cross-correlations in the ground plane for
different discrete yaw orientations whose output corresponds
to a probability distribution over possible SE2 poses given the
sensor image and the prior pose estimate (Fig. 2e). Note, that
these operations are computed for every hypothesis in parallel
on the GPU. Next, the correlation output is approximated by a
multivariate Gaussian (cf. Sect. III-B) to be further processed
by the proposed Gaussian sum filter (GSF) which determines
an updated pose estimate for every hypothesis based on
the pose observations and the odometry measurements as
detailed in Sect. III-C. Additionally, the probability of every
hypothesis is updated as well. These steps are then recursively
performed whereas a predicted pose of the GSF is used for
the map tile cropping in subsequent frames. To account for
the case that none of the initialized hypotheses from the
PR was correct, we additionally introduce the concept of
the null hypothesis [46], [47] (cf. Sect. III-C6) and develop
corresponding initialization strategies (cf. Sect. III-C7) that
will be employed in symbiosis with PR to be able to find
the correct hypothesis during initialization although none
of the preliminarily initialized hypotheses was close to the
true pose. In the following, we will assume that initial pose
estimates have already been provided by a PR method.

A. LOCALIZATION FRONTEND
The task of the sensor-to-map matching model is to encode
localization-relevant features in an embedding space for both
sensor and map data. A straightforward way of generating
these embeddings is described in the works of [17], which
we adapt to our approach. Two encoder-decoder networks
with skip connections are used as sensor and map embedding
functions. These scan embedding networks are LinkNets [69]
using feature maps across four scales with an encoder and
decoder block for each scale. Table 2 shows the config-
uration of the model components in detail Each encoder
block is made up of two residual layers, decoder blocks
perform upsampling, convolution and addition. The output
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FIGURE 2. Depiction of input, intermediate and output data of the proposed localization approach for one hypothesis for a single frame of
the KAIST02 sequence. The depicted correlation image in subfigures (e) and (f) correspond to the most likely yaw angle. In subfigure (f), the
large blue triangle and ellipse corresponds to the current pose estimate with corresponding 2σ uncertainty ellipse after the Kalman update
step, the medium red triangle and ellipse corresponds to the pose measurement based on the Gaussian approximation of the correlation
surface and the small green triangle corresponds to the true pose. The subcaptions comprise the following abbreviations: PC: point cloud,
BEV: birds-eye-view, RI: radar image, ME: map embedding, RE: radar embedding, CS: correlation surface.

TABLE 2. Network layer configuration, from bottom (input) layer to top
(output) layer.

of the two networks is then cross-correlated in the Fourier
domain before fitting a multivariate Gaussian distribution to
the output (cf. Sect. III-B). The central change to [17] we per-
form is an additional stack of three Point Voxel Convolution
(PVConv) layers [70] at the input of any network that handles
three-dimensional point clouds. This allows the network to
distinguish three dimensional objects by assigning similar
feature vectors to points that originate from similar elements
of the environment. For vehicle localization tasks, commonly
only an SE2 pose is estimated under the assumption that
the vehicle stays in contact with the ground at all times.
Therefore, high resolution along the vertical dimension of the
point cloud is not strictly required for the localization task if
the features in each horizontal cell are sufficiently distinctive.
We project the point cloud onto a two-dimensional grid along
the horizontal plane, averaging the features of points that
fall into the same cell as shown in Fig. 3. This projection is
differentiable with respect to the input features of the points.
This layer is in essence a variant of the voxelization applied
in [48] with voxels that are infinitely large in the z dimension,

FIGURE 3. Projection procedure for points with a three dimensional
feature vector encoded in red, green and blue. Points falling into the
same cell will be average pooled, allowing the neural network to perform
point-wise weighting.

but with an immediate average pooling of all points within
each voxel:

fh,w =

∑
p∈P pfeature · m(p, h,w)∑

p∈P m(p, h,w)
(1)

with

m(p, h,w) =


1, if h ≤ py < h+1h

∧w ≤ px < w+1w
0, otherwise

(2)

where fh,w denotes the feature vector in cell (h,w) of the
resulting BEV feature map, pfeature is the feature vector asso-
ciated with point p from point cloud P , px and py is the x and
y position of point p, respectively, and 1h, 1w are vertical
and horizontal grid sizes of the BEV feature map. Reducing
the dimensionality of the point cloud in this way avoids the
memory overhead of a high resolution voxelization in 3D
and thereby grants the network the ability to produce a 2D
representation of the point cloud at the same resolution that
the localization frontend uses for the BEV representation of
the sensor data.

This allows the network to learn the importance of 3D
features for the SE2 localization task and the characteristics
of a particular sensor end-to-end. The network can select the
points from the map that a given sensor can detect and vice
versa.

The model is trained twice on different datasets to eval-
uate the performance when localizing across different sen-
sor modalities. The MulRan dataset [3] is used for this
purpose as it provides measurements from a radar sensor
and a three-dimensional lidar point cloud map. Additionally,
we recorded a custom lidar-to-aerial-imagery dataset around
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the city of Dortmund, Germany, with our own test vehicle
equipped with an Ouster OS1-64 3D lidar sensor and an
RTK-INS/GNSS system for GT information. The aerial
imagery map is a set of true orthophotos (TrueDOP) provided
by the Geobasis NRW [71]. This dataset will be termed
Dortmund dataset in the following.

The complete network is trained using Adam [72] with a
learning rate of ηlearn = 1 × 10−4. For regularization of the
network, both dropout [73] with a rate of Pdrop = 0.5 and
decoupled weight decay [74] with a rate of ηdecay = 1×10−6

are used. The point clouds are sampled at the input at random
with an independently sampled drop probability between
Cross entropy loss is used as supervision during training.
Learning is stopped once the validation loss stops decreasing
with a grace period of 10 epochs. Then, the model with the
lowest validation loss is picked for evaluation.

As there might be minor undetected errors in the ground
truth of the datasets that might lead to corrupted labels,
a technique from learning classification with noisy labels [75]
is adapted to the localization task to avoid small errors in
the label corrupting the training signal. As computing a full
confusion matrix for the search space is prohibitively com-
putationally expensive, a convolution layer with sufficiently
small kernel size is introduced instead and initialized with
a fixed (i.e. not changing during training) identity weight
matrix Di. A learnable weight matrix Dl of the same size is
initialized with zero weights and added to the fixed identity
mapping before the convolution with the correlation output
tensor Scorr is performed:

Ŝcorr = Scorr ⋆ (Dl + Di) (3)

Here, ⋆ denotes a 2D convolution. With this configuration,
the network can spread out the training signal across a small
space in the correlation tensor in the event of a wrong label.
Dl is driven to approximate the unknown inherent error dis-
tribution of the poses given in the dataset. Weight decay can
be applied to Dl to discourage the embedding networks from
spatially misaligning features. This additional layer is only
present during training and is not part of the pose estimation
frontend during evaluation.

In our experiments, using this method produced more
robust embeddings at the cost of possibly introducing bias
into the pose estimate. The pose observations resulting from
the network output are therefore calibrated to produce zero
bias on the validation set (cf. Sect. IV-C2).

B. GAUSSIAN APPROXIMATION OF THE CORRELATION
SURFACE
The GSF assumes that individual measurements, denoted
by zk , follow a zero-mean white-noise process with known
covariance Rk . However, the output of our sensor-to-map
matching model is a correlation surface over possible SE2
poses. A common approach to obtain a covariance estimate
from a correlation surface is the weighted sample covariance
method similar to [57]. Here, the mean zk of the approxima-
tion is set to the maximum of the correlation surface and the

FIGURE 4. Histogram of the longitudinal errors from the offline per-frame
localization experiment on the validation sequence.

covariance is estimated by

Rk =

∑
sk∈Scorr,k

p(sk ) (sk − zk) (sk − zk)⊺ (4)

with sk = [xs,k , ys,k , ψs,k ]⊺ being a pose sample and p(sk )
its relative weight. Scorr,k contains the poses around the
predicted pose that are represented by the correlation out-
put tensor. To analyze the goodness of this approximation,
we performed an offline per-frame localization on the valida-
tion sequence where we added random uniform perturbations
to the true poses to obtain a set of prior poses such that the
true pose still lies in the search range of the correlation. Based
on these perturbed poses the input map tiles are extracted.
Together with the corresponding sensor image, we then com-
pute the resulting correlation output tensor and perform the
multivariate Gaussian approximation to obtain a pose mea-
surement (zk ,Rk ) for every perturbed pose. Fig. 4 shows the
distribution of the longitudinal errors between the resulting
pose measurement means and the true poses. It is visible
that the main portion of measurements are approximately
Gaussian distributed whereas the rest of the measurements
are nearly uniformly distributed along the longitudinal range.
Moreover, Fig. 4 reveals that the pose measurements have
a non-negligible bias that needs to be accounted for. In the
following section, we explicitly consider this error distribu-
tion of our frontend networkwhenmodeling themeasurement
likelihood (cf. Sect. III-C3). For this, it is required to explic-
itly calculate the portion of measurements that approximately
follow a Gaussian distribution which can be regarded as the
detection probability of our localization frontend. On the
other hand, the remaining portion of measurements may be
considered as clutter which will be represented in the mea-
surement likelihood as well.

C. MULTI-HYPOTHESIS EGO-POSE TRACKING
We seek to estimate the location and orientation of the
ego-vehicle in UTM coordinates at every time step k , i.e.
the 2D pose xk = [xk yk ψk ]⊺ ∈ R3, given a set of
observations Z1:k = {zi}ki=1. For online estimation, we use
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the recursive Bayesian filtering framework to compute the
posterior distribution

p (xk |Z1:k) = ηp (Zk |xk) p (xk |Z1:k−1) (5)

where η is a normalization factor, p (Zk |xk) the measurement
likelihood and

p (xk |Z1:k−1) =

∫
p (xk |xk−1) p (xk−1|Z1:k−1) dxk−1 (6)

is the predicted density [5]. Here, p (xk |xk−1) corresponds
to the motion model. Note that if odometry measurements
U1:k = {ui}ki=1 with ui = [δlon,k δlat,k δψk ]⊺ ∈ R3 are
available, the motion model may be conditioned on the latest
odometry measurement uk , i.e p (xk |xk−1,uk). The main
problem when using PR for initialization is that the retrieved
pose may be wrong and not in the vicinity of the true pose.
Therefore, a self-assessing strategy is required for the local-
ization algorithm to identify if the retrieved pose is actually
close to the true pose or completely far off. To tackle this
problem, we propose to initially track multiple localization
hypotheses by initializing the localization algorithm with the
top-n poses of the PR. Subsequently, we identify plausi-
ble and non-plausible hypotheses over time by determining
if the motion and pose observations of an hypothesis are
consistent over time based on the corresponding estimated
location in the map. Thus, hypotheses where the predicted
and observed measurements disagree with each other become
less plausible, i.e. their probability decreases, and may be
finally pruned if their probability falls below a threshold.
To account for the case that none of the initially retrieved
poses from the PR is correct, we explicitly estimate this
probability based on the concept of a null hypothesis [46],
[47] and develop two PR-based initialization strategies
(cf. Sect. III-C7).

1) GAUSSIAN MIXTURE REPRESENTATION OF THE BELIEF
There are several possibilities to choose a suitable model-
ing and representation of the likelihood p (Zk |xk) and belief
p (xk |Z1:k) for a tractable estimation of multiple hypotheses.
In this contribution we propose the use of a Gaussian sum
filter (GSF) [45], [52] for estimation to keep the number of
estimated hypotheses low. This enables us to simultaneously
provide our sensor-to-map matching model with a corre-
sponding small batch of map tiles that can be processed in
parallel. When employing a GSF for estimation, we assume
that the posterior distribution can be represented at every time
step k by

p (xk |Z1:k) =

nk∑
hk=1

w(hk )
k ·N

(
xk ; µ

(hk )
k|k ,6

(hk )
k|k

)
. (7)

Here,
{
w(hk )
k ,µ

(hk )
k|k ,6

(hk )
k|k

}nk
hk=1

denote the nk Gaussian mix-

ture components, termed hypotheses in the following. Each
hypothesis is comprised of a weight w(hk )

k , mean µ
(hk )
k|k and

covariance 6
(hk )
k|k whereas the superscript1 (hk ) denotes the

corresponding index of the hypothesis. The weight of each
hypothesis is equal to the estimated probability of the hypoth-
esis representing the true vehicle pose. In the following,
we will describe the individual modules of our localization
framework. First, we will briefly elaborate on the motion pre-
diction of every hypothesis (cf. Sect. III-C2). Subsequently,
based on an evaluation of the pose observations from the
multivariate Gaussian approximation of the correlation sur-
face (cf. Sect. III-B), we will explain how we deal with
clutter measurements and misdetections using the single-
object-tracking formulation of the measurement likelihood
[52], [53], [54] (cf. Sect. III-C3) which will be employed
to compute the posterior distribution (cf. Sect. III-C4).
This includes a Kalman update step for every data asso-
ciation hypothesis as well as the update of the hypotheses
weights. In a subsequent step, we will further elaborate
on methods that are required for a tractable GSF esti-
mation, namely hypotheses merging, capping and prun-
ing strategies to keep the number of estimated hypotheses
low (cf. Sect. III-C5). Finally, we will introduce the con-
cept of the null hypothesis probability (cf. Sect. III-C6)
which is accompanied by the proposition of two initializa-
tion strategies (cf. Sect. III-C7) to account for the case,
that none of the preliminarily initialized hypotheses was
correct.

2) PREDICTION
Within the prediction step, the mean of the hk -th hypothesis
is predicted independently using a motion model f(·) given
the prior mean µ

(hk )
k−1|k−1 and, if available, the latest motion

measurement uk according to

µ
(hk )
k|k−1 = f

(
µ
(hk )
k−1|k−1,uk

)
(8)

If motion measurements uk are available, the employed
motion model depends on the type of measurements quan-
tifying the motion [5]. For odometry measurements, i.e.
uk =

[
δlon,k δlat,k δψ,k

]⊺, the predicted mean is computed
by [76]x(hk )k|k−1

y(hk )k|k−1

ψ
(hk )
k|k−1

 =

x(hk )k−1|k−1

y(hk )k−1|k−1

ψ
(hk )
k−1|k−1



+


δlon,k cos

(
ψ

(hk )
k−1|k−1

)
−δlat,k sin

(
ψ

(hk )
k−1|k−1

)
δlon,k sin

(
ψ

(hk )
k−1|k−1

)
+δlat,k cos

(
ψ

(hk )
k−1|k−1

)
δψ,k


(9)

1Note, that this index notation will be used throughout in the following,
i.e. a superscript inside brackets (·) denotes an index and not an exponent.
Vice versa, a superscript without brackets denotes an exponent.
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Here, δlon,k and δlat,k correspond to the measured longitudinal
and lateral translation in the vehicle-fixed frame from time
step k − 1 to time step k whereas δψ,k denotes the measured
relative rotation in the yaw angle.

If the motion measurements are provided in the form
of translational and angular velocity, i.e. uk = [vk ωk ]⊺,
the constant turn rate velocity (CTRV) model [77] may be
employed to determine the predicted mean according tox(hk )k|k−1

y(hk )k|k−1

ψ
(hk )
k|k−1

 =

x(hk )k−1|k−1

y(hk )k−1|k−1

ψ
(hk )
k−1|k−1



+


vk
ωk

(
− sin

(
ψ

(hk )
k−1|k−1

)
+ sin

(
ψ

(hk )
k−1|k−1 + ωk1t

))
vk
ωk

(
cos

(
ψ

(hk )
k−1|k−1

)
− cos

(
ψ

(hk )
k−1|k−1 + ωk1t

))
ωk1t


(10)

Here, 1t denotes the time between frames k − 1 and k in
seconds. The predicted covariance 6

(hk )
k|k−1 is given by

6
(hk )
k|k−1 = Fk6

(hk )
k−1|k−1F

⊺
k + VkMkV

⊺
k (11)

where

Fk =
∂f
∂x

∣∣∣∣
µ
(hk )
k−1|k−1,uk

, Vk =
∂f
∂u

∣∣∣∣
µ
(hk )
k−1|k−1,uk

(12)

denote the state and motion noise Jacobian matrices respec-
tively. The matrix Mk denotes the motion noise covariance
matrix in the corresponding motion measurement space and
is usually defined by a diagonal matrix [5]. This yields
Mk = diag

(
σ 2
δlon
, σ 2
δlat
, σ 2
δψ

)
for the odometry and Mk =

diag
(
σ 2
v , σ

2
ω

)
for the CTRV motion model.

3) MEASUREMENT LIKELIHOOD
The evaluation of the Gaussian approximation of the out-
put of our deep sensor-to-map matching model revealed
(cf. Sect. III-B) that only a portion of the resulting measure-
ments are actually Gaussian-distributed around the true pose
(assuming that an occurring bias has been corrected) while
the rest of the measurements correspond to clutter which is
approximately uniformly distributed within the search range.
Therefore, if a measurement is received, the data associ-
ation is unknown, i.e. it is primarily obscure if the mea-
surement corresponds to the true pose or clutter. To model
misdetections and clutter among unknown data association,
we employ the single-object tracking (SOT) formulation of
the complete measurement likelihood [52], [53], [54]

p(Zk |xk ) =

(1 − pd)+
pd
λc

mk∑
θk=1

N
(
z(θk )k ; xk ,R

(θk )
k

)
·
e−λcV

mk !
(λcV )mk . (13)

Here, θk ∈ N0 denotes the data association variable. If θk ∈

{1, 2, . . . ,mk} it implies that z(θk )k is a measurement of the
true vehicle pose, i.e. the ego-vehicle pose has been detected.
In this case we assume that the spatial likelihood function is
Gaussian with covariance R(θk )

k (cf. Sect. III-B). Otherwise,
θk = 0 corresponds to a misdetection. Here, pd denotes the
probability of detecting the ego-pose. Based on the evaluation
of our Gaussian approximation of the correlation output,
we model the detection probability as a constant and esti-
mate its value by the portion of measurements that actually
follow a Gaussian distribution around the true pose. On the
other hand, the clutter measurements are assumed to follow
a uniform distribution over the correlation search volume
V = a2searchψsearch. Here, asearch corresponds to the search
range in both translational directions andψsearch to the search
range in yaw direction. The number of clutter measurements
is assumed to be Poisson distributed with spatial density
λc. The spatial density may be defined as λc = λ̄c/V ,
where λ̄c corresponds to the expected number of clutter
measurements per frame. An estimation of both the detec-
tion probability pd and the clutter rate λ̄c will be described
in Sect. IV-C2.

4) COMPUTATION OF THE POSTERIOR DISTRIBUTION
For the computation of the posterior distribution p (xk |Z1:k),
we can now plug (13) back into (5) and incorporate
the term outside the bracket of (13) in the normalizer
η. Since the predicted density p (xk |Z1:k−1) is a Gaus-
sian sum, the computation of p (xk |Z1:k) only involves
the multiplication of Gaussians which yields another
Gaussian sum with ñk = nk−1(mk + 1) components
[53]. The index h̃k of the h̃k -th posterior component is
given by

h̃k = hk−1 + nk−1θk (14)

where hk−1 ∈ {1, 2, 3, . . . , nk−1} denotes the index of the
prior hypothesis. The index set Ĩk = {1, 2, 3, . . . , ñk} com-
prises the indices of all posterior hypotheses, i.e. h̃k ∈ Ĩk .
The computation of the posterior mean µ

(h̃k )
k|k and covariance

6
(h̃k )
k|k differs based on the corresponding value of the data

association variable θk . If θk > 0, measurement z(θk )k is
associated to the hk−1-th hypothesis and the posterior mean
and covariance are computed by the EKF update equations

S(h̃k )k = H(hk−1)
k 6

(hk−1)
k|k−1

(
H(hk−1)
k

)⊺
+ R(θk )

k (15)

K(h̃k )
k = 6

(hk−1)
k|k−1

(
H(hk−1)
k

)⊺ (
S(h̃k )k

)−1
(16)

ν
(h̃k )
k = z(θk )k − h

(
µ
(hk−1)
k|k−1

)
(17)

µ
(h̃k )
k|k = µ

(hk−1)
k|k−1 + K(h̃k )

k ν
(h̃k )
k (18)

6
(h̃k )
k|k =

(
I − K(h̃k )

k H(hk−1)
k

)
6

(hk−1)
k|k−1 (19)
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where the measurement model is given by

h(x) =

x + blon cos(ψ) − blat sin(ψ)
y+ blon sin(ψ) + blat cos(ψ)

ψ + bψ

 . (20)

Here, blon, blat and bψ denote optional bias terms in the
longitudinal and lateral direction as well as in the yaw orienta-
tion that may be incorporated into the measurement model if
observed (cf. Sect.III-B). The measurement Jacobian H then
results in

H =

1 0 −blon sin(ψ) − blat cos(ψ)
0 1 blon cos(ψ) − blat sin(ψ)
0 0 1

 (21)

whereas H(hk−1)
k means that the Jacobian is evaluated at

µ
(hk−1)
k|k−1 . For θk = 0, i.e. a misdetection, no Kalman

update is performed and the posterior mean and covari-
ance are equal to the predicted mean µ

(hk−1)
k|k−1 and covari-

ance 6
(hk−1)
k|k−1 respectively. Finally, the unnormalized weights

w̃(h̃k )
k|k of the posterior mixture components are calculated by

[45], [52], and [53]

w̃(h̃k )
k

=

whk−1
k (1 − pd) if θk = 0

whk−1
k

pd
λc
N

(
z(θk )k ;h

(
µ
(hk−1)
k|k−1

)
,S(h̃k )k

)
if θk > 0

(22)

Finally, to obtain a valid posterior pdf, we normalize w̃(h̃k )
k

over all nk components

w(h̃k )
k =

w̃(h̃k )
k∑ñk

i=1 w̃
(i)
k

. (23)

5) HYPOTHESES MERGING, CAPPING AND PRUNING
The formulation of the GSF is, without any further post-
processing, intractable as the number of estimated hypothe-
ses would grow exponentially over time with

∏k
i=1(mi + 1).

Therefore, there is a need for limiting the number of hypothe-
ses. Common concepts for this purpose are merging, capping
and pruning of hypotheses. For this, we follow a combination
of the approaches of [46], [47], and [78]: first, we determine
the most likely hypothesis of the current set of unprocessed
hypotheses. If this hypothesis resulted from an association
with a measurement, i.e. its index j > nk−1 (cf. (14)),
we merge it with all nearby posterior hypotheses which
resulted likewise from an association to a measurement, i.e.
i > nk−1, using the same moment-matching procedure as
proposed in [78]. Here, nearby means that the Mahalanobis
distance between the hypotheses is below a threshold τmerge.
Additionally, if the posterior hypothesis which resulted from
a misdetection (θk = 0) of the same prior hypothesis as
the j-th hypothesis, i.e. iθk=0 = (j mod nk−1) (cf. (14)),
is nearby as well, we add its weight to the weight of the
merged posterior hypotheses. If the j-th hypothesis resulted

from a misdetection, it is kept and not merged with any other
hypotheses. This extends the merging approach of [78] by
the ‘‘hypotheses splitting’’ concept proposed by [47] with
the difference that the splitted hypotheses do not have equal
weights, but the weight ratio is determined by the corre-
sponding detection probability pd and clutter intensity λc
respectively. Details of our merging concept are depicted in
Algorithm 1.

Algorithm 1 Hypotheses Merging Algorithm

Require: Ĩk ,
{
w(h̃k )
k ,µ

(h̃k )
k|k ,6

(h̃k )
k|k

}ñk
h̃k=1

1: l = 0
2: repeat
3: l = l + 1
4: j = argmax

i∈Ĩk
w(i)
k

5: if j > nk−1 then

6: M =

{
i ∈ Ĩk

∣∣∣∣ ∥∥∥µ
(i)
k|k − µ

(j)
k|k

∥∥∥
6

(i)
k|k

≤ τmerge

∧ i > nk−1

}
7: w̄(l)

k|k =
∑
i∈M

w(i)
k|k

8: µ̄
(l)
k|k =

1
w̄(l)
k|k

∑
i∈M

w(i)
k|kµ

(i)
k|k

9: 6̄
(l)
k|k =

1
w̄(l)
k|k

∑
i∈M

w(i)
k|k

[
6

(i)
k|k

+

(
µ̄
(l)
k|k − µ

(i)
k|k

) (
µ̄
(l)
k|k − µ

(i)
k|k

)⊺]
10: iθk=0 = (j mod nk−1)

11: if
∥∥∥µ

(iθk=0)
k|k − µ

(j)
k|k

∥∥∥
6

(iθk=0)

k|k

≤ τmerge then

12: w̄(l)
k|k = w̄(l)

k|k + w
(iθk=0)
k

13: end if
14: else
15: M = {j}
16: w̄(l)

k|k = w(j)
k , µ̄(l)

k|k = µ
(j)
k|k , 6̄

(l)
k|k = 6

(j)
k|k

17: end if
18: Ĩk = Ĩk \M
19: until Ĩk = ∅

Subsequently, we cap the n̄k merged posterior hypothe-

ses
{
w̄(h̄k )
k , µ̄

(h̄k )
k|k , 6̄

(h̄k )
k|k

}n̄k
h̄k=1

to nmax most likely hypotheses

and normalize the hypotheses weights. Finally, we prune
all hypotheses with weights w̄(h̄k )

k < τprune and renormal-
ize if necessary to obtain the posterior mixture components{
w(hk )
k ,µ

(hk )
k|k ,6

(hk )
k|k

}nk
hk=1

.

So far we described how to predict and update the weight,
mean and covariance of multiple localization hypotheses
given pose observations from our localization frontend model
and available odometry measurements. We further elaborated
on the problem that the number of localization hypothe-
ses would grow exponentially over time when we explic-
itly consider that our frontend may misdetect the ego-pose
and produce clutter measurements. To keep the number of
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localization hypotheses limited and thus the GSF framework
tractable, we introducedmerging, capping and pruning strate-
gies in this section. The following two sections elaborate on
one remaining task that still needs to be discussed to obtain
a complete localization system, namely the initialization of
the localization hypotheses, in our case, based on a given PR
method.

6) INITIALIZATION WITH INTRODUCTION OF THE NULL
HYPOTHESIS
As previously discussed we propose a PR-based initialization
in this contribution to obtain a complete GNSS-free vehicle
localization system. Since our approach is capable of process-
ing and estimating multiple localization hypotheses we can
initialize our system with the top-n retrieved poses from the
PR. However, there remains the problem that we cannot be
sure if one of the initialized hypotheses will actually lie near
the true pose since the recall of a PR method is usually below
100% even for larger n [1], [35]. Hence, when initializing the
GSF with the top-n retrieved poses, there is a non-negligible
chance that none of the retrieved will be close to the true
pose. To tackle this problem, we explicitly incorporate and
estimate this probability within our GSF framework by intro-
ducing a so-called null hypothesis. This approach is inspired
by Jensfelt et al. [46], [47] who introduced the concept of a
null hypothesis within a multi-hypothesis global localization
approach for an indoor mobile robot. The null hypothesis can
be viewed as a uniform distribution assigning a probability of
ŵ(0)
k to all possible vehicle states. Therefore, before initializa-

tion, i.e. at k = 0,

ŵ(0)
0 = 1 (24)

is satisfied. Now, if we initialize hypotheses, the null hypothe-
sis probability decreases by the probability that the true pose
is found among the initialized hypotheses [47]. We denote
this probability by Prn(F) where F corresponds to the event
that the true pose is found among the n initialized hypotheses
and ¬F to its complement. The calculation of Prn(F) is two-
fold. On the one hand, it depends on the top-n recall rPR(n) of
the PR method which is associated with the probability that
at least one of the n ∈ N retrieved poses will be near the
true pose. Since we require not only initial pose estimates,
but also corresponding uncertainties for initializing the GSF,
we pass the retrieved poses from the PR preliminarily through
our localization frontend by extracting n map tiles centered
around the retrieved poses and provide them as a batch input
to the model. However, our localization frontend detects the
true pose only with a probability of pd which has to be
incorporated in the null hypothesis calculation as well. Let
Bk denote the event that exactly k out of the top-n retrieved
PR poses actually lie in range of the true pose. Furthermore,
let Prn(¬F |Bk ) denote the conditional probability that the true
pose is not found given that k out of n the retrieved poses lie in
range of the true pose. Now, assuming that the detection of the
true pose given different retrieved PR poses is independent of

each other, we can calculate Pn(¬F |Bk ) by

Pn(¬F |Bk ) = (1 − pd)k . (25)

Since the events Bk for k = 0, 1, 2, . . . , n are pairwise
disjoint and

∑n
k=0 Bk = 1, we can employ the law of total

probability to compute Pn(¬F) such that

Pn(¬F) =

n∑
k=0

Pn(¬F |Bk )Pn(Bk )

=

n∑
k=0

(1 − pd)kPn(Bk ). (26)

Therefore, after initializing n new hypotheses based on the
top-n retrieved PR poses, we decrease the null hypothesis
probability by

1ŵ(0)
k = ŵ(0)

k (1 − Pn(¬F))

ŵ(0)
k+1 = ŵ(0)

k −1ŵ(0)
k (27)

whereas the probability mass 1ŵ(0)
k is distributed across the

weights ŵ(hk )
k of the initialized hypotheses such that

ŵ(0)
k +

nk∑
hk=1

ŵ(hk )
k = 1 (28)

is satisfied at every time step k (cf. [46], [47]). The
approach therefore requires knowledge about Pi(Bk ) for i =

0, 1, 2, . . . , n and k = 0, 1, 2, . . . , i whereas Pn(B0) corre-
sponds to 1−rPR(n) of the employed PRmethod.We estimate
Pi(Bk ) based on the evaluation of the PR model on the valida-
tion set and empirically show the suitability of this approach
through experiments.

Additionally, to account for the fact that the retrieved poses
from the PR are ranked based on a similarity score, it is
possible to further weight them relatively to this score. In our
case the PR method returns an L2 distance metric d (hk )k for
every retrieved pose such that we can weight the initialized
hypotheses by their inverse distances according to

ŵ(hk )
k = 1ŵ(0)

k ·

(
1/d (hk )k

)
∑nk

i=1

(
1/d (i)k

) (29)

Note, that all previous calculations involving the hypotheses
weights w(hk )

k remain valid and those weights are related
through the null hypothesis probability ŵ(0)

k by

w(hk )
k =

ŵ(hk )
k

1 − ŵ(0)
k

, hk ∈ {1, 2, 3, . . . , nk}. (30)

Finally, whenever a hypothesis is pruned (cf. Sect III-C5), its
weight is added to ŵ(0)

k as proposed by [46] and [47].
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7) INITIALIZATION STRATEGIES
Through the introduction of the null hypothesis, it is now
possible to explicitly estimate the probability that none of
the tracked hypotheses by the GSF is actually close to the
true pose. With (27), we further have a formulation for
decreasing the null hypothesis probability when initializing
new hypotheses. Therefore, a general initialization strategy
would be to initialize new hypotheses until the null hypoth-
esis probability ŵ(0)

k falls below an acceptable predefined
threshold τinit. However, the problem remains that there is an
upper bound nmax for the number of hypotheses that can be
simultaneously processed by our localization frontend due to
computational limits. The goal therefore is to keep the num-
ber of estimated hypotheses upper bounded while simultane-
ously decreasing the null hypothesis probability. To achieve
this goal, we can further profit from the GSF framework
for localization since the number estimated hypotheses may
decrease over time through hypotheses merging or prun-
ing (cf. Sect. III-C5). We therefore propose to continuously
retrigger the PR over time to initialize new possible hypothe-
ses whenever computational resources are available, i.e. nk <
nmax, until ŵ

(0)
k < τinit. With this concept in mind, we propose

a greedy as well as a conservative initialization strategywhich
will be described in the following:

• Greedy: this strategy is a straightforward implementa-
tion of the previously described concept, i.e. whenever
nk < nmax, the PR is retriggered and ninit = nmax − nk
new hypotheses are initialized.

• Conservative: this strategy is motivated by the reason-
ing that as long as there is more than one hypothesis
probable, i.e. nk > 1, there is no need to initialize new
hypotheses as the localization system should be unavail-
able anyways since the current scenario is ambiguous
and the most likely hypothesis might be wrong. This
reasoning is inspired by [66] who recommend to not
‘‘use’’ the most likely localization estimate if there exist
multiple probable hypotheses. This concept can be seen
as an additional integrity check. Therefore, when using
the conservative initialization strategy, the PR is only
retriggered if nk = 1 such that always ninit = nmax − 1
new hypotheses are initialized.

8) LOCALIZATION ESTIMATE AND AVAILABILITY
Given all acquired information from sensor and map data,
the purpose of a localization system is to eventually output
an estimate of the ego-vehicle pose in the map. The most
popular estimator in the field of localization is the maximum-
a-posteriori (MAP) estimate, i.e. the state xk which max-
imizes p (xk |Z1:k) (cf. (5)) [79]. For a GSF, a reasonable
approximation of the MAP estimate is the the mean of the
hypothesis with maximum weight [52], i.e.

xMAP
k = µ

(j)
k|k , j = argmax

i=1,2,3,...,nk
w(i)
k . (31)

However, localization systems for automated vehicles are
required to provide means of self-assessment and integrity

checks [43], [63], [66], [80] to avoid dispensing misleading
information. In terms of localization, misleading information
means that the localization system is confident about its cur-
rently estimated location whereas the actual localization error
is larger than estimated and even exceeds safety-critical mar-
gins [44]. One error source for a localization system to dis-
pense misleading information is ambiguity [63], [66]. Since
one purpose of a multi-hypothesis localization approach is to
discover ambiguous situations, special caution has to be taken
if more than one hypothesis is probable. Inspired by [47]
and [66], we therefore propose the following two conditions
that need to be satisfied for our localization system to be
available. On the one hand, we propose that the null hypoth-
esis probability has to be below a predefined threshold, i.e.
ŵ(0)
k < τinit. Note, that τinit is a tuning parameter which

trades off the convergence time with robustness. The second
condition is that only one estimated hypothesis remains, i.e.
nk = 1, such that the probability of an ambiguous scenario is
low. In all other cases, the localization system is unavailable.

IV. EXPERIMENTS
To evaluate our approach, we perform experiments for two
datasets that differ both in their sensor and map modali-
ties. Our first experiments are performed on the MulRan
dataset [3]. Here, the task is to localize a two-dimensional
radar sensor image in a three-dimensional lidar point cloud
map. We explicitly evaluate the capability of our approach
to globally localize the vehicle without any GNSS prior
by inferring the correct hypothesis over time from sets of
hypotheses that have been initialized by a PR algorithm. For
this, we employ a state-of-the-art radar-to-lidar PR algorithm
by [1].We compare our results with the state-of-the-art metric
radar-to-lidar localization method RaLL [2]. Here, we also
utilize the same odometry estimates provided by the radar
odometry from the RaLL method. To show that our approach
is likewise suited for different sensor-to-map modalities,
we evaluate our approach on a custom lidar-to-aerial-imagery
dataset around the city of Dortmund, Germany. The evaluated
routes comprise highway and urban scenarios. In the follow-
ing, we discuss why we opted for the MulRan dataset for
radar-to-lidar localization opposed to other popular datasets
like the Oxford Radar Robotcar dataset [81] for example.

A. PROBLEMS WITH CURRENT RADAR-TO-LIDAR
DATASETS FOR MAP-BASED LOCALIZATION
The authors of RaLL [2] trained their model on the Oxford
Radar Robotcar dataset [81] and evaluated their localization
accuracy on the same dataset as well as on the MulRan
dataset [3]. However, during the training and evaluation of our
model we realized that there are several problems / limitations
with both datasets for the evaluation of map-based localiza-
tion algorithms. One requirement for supervised training and
testing is the availability of a globally consistent map or set
of maps as well as GT poses both accurately referenced to
a fixed world coordinate system. When regarding Oxford
sequences, we realized that the GT poses as well as the maps
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FIGURE 5. Visualization of the inconsistencies in the ground truth poses
and lidar point cloud maps in both the MulRan and the Oxford Radar
Robotcar dataset. Subfigure (a) shows the inconsistencies in the map
from a single drive. Here, buildings at the road side are duplicated
possibly as a result of inaccurate loop closure. Subfigure (b) shows the
inconsistencies between the KAIST01 (yellow) and KAIST02 (green) point
cloud map where the offsets are visible in the building facade on the left
side and the tree trunks on the right side.

show global inconsistencies probably resulting from inaccu-
rate loop closures as visible in Fig. 5a. These inconsistencies
lead to wrong labels for the training of the localization model
thus yielding a degraded performance. Odometry estimation,
for which the Oxford dataset has been predominantly used
so far (cf. [58], [82], [83], [84], [85], [86]), only requires
relative GT and map consistency which is satisfied by the
dataset. In the case of MulRan, the maps and GT poses of
the individual sequences are in itself consistent, however they
are not globally consistent anymore when regarding the maps
and GT poses from two traversals of the same scenario but
different sequences (cf. Fig. 5b). Therefore, creating the map
based on a drive of one sequence and performing localization
with a drive from another sequence of the same scenario,
as proposed by [2], is problematic as the corresponding GT
poses are not valid anymore. Hence, to reasonably compare
our approach with RaLL we only evaluate the radar-to-lidar
localization results on the KAIST02, DCC01 and River-
side02 sequences from MulRan since here both the mapping
and localization drive from RaLL originated from the same
sequence such that the localization results are meaningful.
For training and validation, we use the Sejong01 drive of
the MulRan dataset since it is in itself consistent and was
recorded in a completely different environment with respect
to the test sequences.

B. INPUT DATA
For the MulRan experiments, the input data is comprised of
360◦ radar sensor images, the radar odometry estimates of
the RaLL method [2] as well as the lidar point cloud map for
the corresponding sequences. The localization frame rate is
determined by the measurement rate of the radar sensor and
corresponds to 1t = 0.25 s.

Regarding the Dortmund dataset, the lidar sensor data is
recorded with an Ouster OS1-64 with 10Hz which equally
corresponds to the frame rate of the localization algorithm in
this case. Furthermore, the yaw rate measurements are pro-
vided by the lidar’s internal IMU. To reduce noise, a moving

average filter has been applied to the yaw rate measurements.
The velocity measurements are received from the CAN bus
from the Nissan Leaf ZE0 test vehicle. Ground truth poses are
obtained from a RTK-GNSS/INS reference system. Before
passing the lidar point cloud to the localization algorithm,
it is motion compensated using the measured odometry. The
aerial imagery map is a set of true orthophotos (TrueDOP)
provided by the Geobasis NRW [71] and is publicly avail-
able.2 True orthophotos eliminate the parallax effects of a
camera mounted on an airplane to project pixels onto geo-
graphic coordinates [87] by fusing multiple images taken of
the same area, providing a consistent map of all ground points
that are not vertically occluded. The orthophotos used in this
work have a ground sampling distance of 10 cm px−1. The
mean absolute positioning error of the orthophotos is stated
by [71] as 20 cm to 30 cm. The model is trained on a highway
segment of the A45 as well as the drive to and from the
highway through low density urban areas with a total length
of 24 km. As test scenarios we chose a highway segment
of the A40 of 18.73 km length as well as an urban route of
2.92 km length, both close to TU Dortmund University.

C. PARAMETER CALIBRATION
One problem that persists through many localization
approaches is that of calibrating the uncertainty estimation.
This amounts to estimating covariance matrices that are con-
sistent, i.e. accurately capture the expected error that the
system produces in the real world. We therefore aim to
estimate the necessary calibration parameters systematically
from data. First, the estimates of the scan-to-map-matching
models are calibrated, as deep neural networks tend to be
overconfident in their estimates [88]. Based on the results of
this frontend calibration, the parameters for the measurement
likelihood can be empirically derived from data as well.
To avoid influence on the evaluation, calibration is performed
on the validation data set for both the MulRan and Dortmund
data.

1) CALIBRATING THE LOCALIZATION FRONTEND
The calibration of the network output results in the calibration
of the temperature parameter β of the softmax function. For
this, we perform a per-frame localization experiment on the
validation set. The network is configured to use a translational
search space of 5m by 5m with ±15◦ in yaw orientation, i.e.
asearch = 5m and ψsearch = 30◦ (cf. Sect. III-C3), represent-
ing the maximum search space that will be evaluated in this
work. The translational cell size corresponds to 0.1 m px−1

whereas the yaw range is divided into 21 cells with a suitable
spacing that will be specified later for the employed method.

In order to generate realistic measurement covariances for
the EM, the network is calibrated as in [58] by evaluating
an offline validation scenario. Here, the initial guess for
the pose is placed according to xinit = xGT ⊕ xrandom
where xGT denotes the ground truth (GT) pose and xrandom is

2https://www.geoportal.nrw
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independently sampled from a zero-mean multivariate Gaus-
sian distributionwith covariance diag

(
( 2.5m3 )2 ( 2.5m3 )2 ( 5

◦

3 )
2
)

for each example of one test drive that was part of the valida-
tion set. ⊕ is the pose composition operator [89]. This offsets
the initial guess such that approximately 99% of samples
will be within the search space. As opposed to the network
training, the normal distribution is selected for sampling the
map misalignment here to mimic what is to be expected from
the online localization method when using the previous time
step’s estimate as initial guess. The softmax function

softmaxi(Scorr, β) =

exp( si
β
)∑|Scorr|

k=1 exp( sk
β
)

(32)

converts bin si of the correlation output Scorr. In the general
case, Scorr does not represent a probability density to the i-th
bin of a discretized approximation of the underlying PDF.
The temperature parameter β is therefore selected to scale
the mean of the squared Mahalanobis distance

d2k = (µ̂k − xGT,k )⊺R̂−1
k (µ̂k − xGT,k ) (33)

from the distribution maximum to the ground truth, i.e.
ndim = d2 =

1
K

∑K
k=1 d

2
k [58]. R̂k is the covariance com-

puted from weighting all cells in the correlation output as
defined in (4). The selection of β for any given model is
done through bisection over β ∈ [0, 10], halving the interval
at each step until

∣∣∣d2 − ndim
∣∣∣ < 0.1. For our model with

3 degrees of freedom (DoF), ndim = 3. This is done under
the assumption that the error of a calibrated pose estimator
is χ2 distributed. with µ̂k as the position of the maximum
in the search space and xGT,k as the ground truth pose. This
search method results in β = 1.60 with d2 = 3.01 for the
MulRan dataset. For the Dortmund dataset, the search results
in β = 1.17 with d2 = 3.01.

2) CALIBRATING THE FILTER PARAMETERS
As already presented in sections III-B, III-C3 and III-C4 the
formulation of the measurement likelihood and measurement
model has been motivated by the error distribution of our
localization frontend. Here, the relevant parameters that need
to be provided are the detection probability pd, the clutter
rate λ̄c as well as the longitudinal, lateral and orientation bias
denoted by blon, blat and bψ . In the following, we will briefly
describe how to determine reasonable estimates of these
parameters based on the joint longitudinal, lateral and yaw
error distribution from the per-frame localization experiment
(cf. Sect. III-B). The goal is to find the portion of measure-
ments that actually follows a Gaussian distribution (cf. Fig. 4)
which yields an estimate for the detection probability pd. The
mean of this Gaussian distribution then provides an estimate
for the pose measurement bias. Furthermore, to prevent the
estimated covariance Rk (cf. (4)) being too overconfident,
we additionally assure a minimum longitudinal, lateral and
yaw variance for Rk denoted by σ 2

lon,min, σ
2
lat,min and σ 2

ψ,min
based on the determined Gaussian error distribution.

FIGURE 6. Histogram of the longitudinal errors from the offline per-frame
localization experiment on the validation sequence depicted together
with the Gaussian pdf of the errors estimated with maximum likelihood
estimation (MLE) as well as the minimum covariance determinant (MCD)
method.

A common approach to determine outliers for a given
multivariate Gaussian distribution is to flag all data points as
outliers whose probability density falls below a predefined
threshold. In our case, a data point yi of dimension ndim is
flagged as an outlier if the squared Mahalanobis distance(

yi − µ̂
)⊺

6̂
(
yi − µ̂

)
> τoutlier (34)

exceeds a threshold τoutlier whereas µ̂ and 6̂ are the mean
and covariance of the multivariate Gaussian respectively.
The threshold τoutlier is usually set based on a chi-square
distribution χ2

ndim,1−α
with ndim DoF. A common choice

for the critical α level is 0.025 [90]. The problem is that
the true parameters of the error distribution are usually not
known such that they need to be estimated. A straightforward
approach to estimate µ̂ and 6̂ is to calculate the sample mean
and covariance which corresponds to maximum likelihood
estimation (MLE). The problem with MLE however is that
outliers contained in the data distort the estimated parameters
such that outliers would appear less anomalous than they
really are. Tominimize the influence of outliers, theminimum
covariance determinant (MCD) approach [90], [91], [92] is
a robust method to estimate the mean and covariance by
aiming to find the covariance matrix that best represents
the dataset while minimizing its determinant. Fig. 6 shows
the error distribution of Fig. 4 overlaid with corresponding
Gaussian distributions fitted by the MLE and MCD method.
It highlights that the MCD fit represents the error distribution
more reasonably well. We apply the MCD to the joint distri-
bution of the longitudinal, lateral and yaw errors and addition-
ally compute the ratios of outliers and inliers. The resulting
estimates of the parameters for the MulRan and Dortmund
datasets are presented in Table 3 together with other relevant
parameters that have been determined empirically based on
the validation set data. Note, that depending on the dataset,
there are different motion noise parameter since we use an
odometry motion model for the MulRan dataset and a CTRV
model for the Dortmund dataset.
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TABLE 3. Parameter settings of our proposed method for the MulRan and
Dortmund dataset experiments.

D. RADAR-TO-LIDAR POSE TRACKING EVALUATION ON
THE MulRan DATASET
To evaluate the radar-to-lidar pose tracking performance
of our approach, we evaluate the global trajectory errors
as well as the relative error by travelled distance and
compare the performance with a state-of-the-art approach
for radar-to-lidar localization, termed RaLL [2]. Due to
the aforementioned inconsistency problems with the Mul-
Ran dataset (cf. Sect. IV-A), the only sequences that are
reasonable to compare are KAIST02, DCC01 and River-
side02 since here the mapping drive and the localization
drive are from the same sequence such that the ground
truth is valid. To provide a reasonable comparison with
RaLL, we employ the single-hypothesis configuration of
our approach, i.e nmax = 1. Note, this configuration effec-
tively corresponds to an EKF with a corresponding handling
of clutter measurements and misdetections as detailed in
Sect. III-C3. The employment of an EKF for pose tracking
in cross-modality localization has likewise been proposed
by [27], [41], and [55] as well. Equally to [41], the yaw range
is divided into 21 cells with decreasing cell sizes for values
closer to 0. As another baseline, we additionally evaluate a
histogram filter (HF) implementation of our approach similar
to [17]. Here, no Gaussian approximation of the correlation
surface is performed, but the correlation surface is directly
treated to be proportional to the measurement likelihood
p (Zk |xk) (cf. (5)). The state space dimensions correspond
to the search space of the correlation, i.e. 5m × 5m × 30◦

whereas the yaw cell spacing is linear in this case.
In addition to metric localization errors, we additionally

compute the failure rate as proposed in [17]. A ‘‘failure’’
occurs when the estimated pose exceeds a distance threshold
to the true pose. We set the threshold to 3.5m which approxi-
mately corresponds to the distance of the farthermost point in
our translational search range that is barely detectable. When
a failure occurs we reset the current estimate to the true pose
as our approach cannot recover from the failure when the
true pose does not lie in the search range anymore. Since
the localization accuracy after a reset would be unreasonably
accurate, we ignore the first 5 s after a reset within the error
calculation. Table 4 summarizes the quantitative results of
RaLL and our approach for the KAIST02, DCC01 and River-
side02 sequence.

FIGURE 7. Relative errors of our proposed approach on the Riverside02
sequence evaluated using the RPG Trajectory Evaluation toolbox [93].

The results show that using our proposed sensor-to-map
matching model together with the adjusted training strategy
(cf. Sect. III-A) and data selection (cf. Sect. IV-A), it is
possible to significantly reduce the translational median error
and RMSE with respect to RaLL achieving a decimeter-level
localization accuracy as well as a slightly more accurate yaw
estimation for both the HF and the proposed EKF approach.
Our proposed EKF approach outperforms the HF in localiza-
tion performance whereas the HF additionally suffers from
some failures in the DCC01 and Riverside02 sequences.
The reason is that, compared to the proposed EKF-based
approach, the HF lacks any form of outlier rejection such that
erroneous measurements can quickly move the pose estimate,
i.e. the maximum of the HF state tensor, outside the search
range such that the true pose is not recoverable anymore and
the HF estimate diverges.

Fig. 2 visualizes input, intermediate and output data of our
localization pipeline for an example frame of the KAIST02
sequence. It is visible that our localization frontend encodes
widespread features from the high-resolution lidar point
cloud map in the embedding. The embedding of the cor-
responding radar image comprises features of similar size.
The resulting correlation surface depicts a nearly unimodal
distribution which is approximated by a multivariate Gaus-
sian that yields the measurement. Similar to [2], we further
evaluate the relative localization errors for the Riverside02
sequence using the RPG trajectory evaluation toolbox [93].
Fig. 7 depicts the relative translation and yaw errors of our
method for various traveled distances. Table 5 displays the
mean relative errors comparedwith RaLL [2]. Comparedwith
RaLL, our localization approach likewise results in signifi-
cantly lower relative errors especially when considering max-
imum errors. We additionally outperform RaLL in the mean
relative translation and yaw error achieving errors below 1%
and 1◦ respectively.
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TABLE 4. Results of the radar-to-lidar pose tracking experiments on selected sequences of the MulRan dataset. Bold numbers highlight the best result for
the corresponding metric.

TABLE 5. Average relative translation and yaw errors on the Riverside02
sequence using the toolbox from [93]. Bold numbers highlight the best
result for the corresponding metric.

E. RADAR-TO-LIDAR PLACE RECOGNITION BASED
INITIALIZATION EVALUATION
The next experiment is designed to evaluate the ini-
tialization performance of our proposed multi-hypothesis
cross-modality localization method in conjunction with a
state-of-the-art cross-modal PR algorithm [1] for global
localization.Wewant to highlight at this point once again that
in order to develop a true GNSS-free localization system, it is
crucial that both global localization and metric pose track-
ing are running together in a complete localization pipeline.
Therefore, assuming that the pose tracking algorithm was
correctly initialized by PR, for example as done by [35],
is not feasible and will eventually lead to localization failures
where the reported pose may lie far off the true pose. In the
following, we will describe the evaluated configurations and
considered scenarios.

1) PLACE RECOGNITION METHOD
For this experiment, we use a state-of-the-art cross-modality
radar-to-lidar PR method by [1]. This work builds upon Scan
Context [94] which is an egocentric spatial descriptor suited
for range sensor based PR [3]. The authors of [95] extended
Scan Context to an end-to-end learnable rotation-invariant
descriptor, calledDISCO, by transforming descriptor features
into the frequency domain. This allows for an additional
estimation of the global orientation next to the retrieved
location. Caselitz et al. [1] facilitated cross-modality PRwith
this descriptor by performing a joint training of all possi-
ble combinations of both single-sensor as well as radar and
lidar sensor configurations using a triplet loss. Although,
[1] claimed, based on their experiments, that a siamese

network structure outperforms a separate encoder-decoder
architecture in terms of recall, we observed in our experi-
ments the opposite, namely that a seperate encoder-decoder
structure showed improved results. Possible explanations
may be that the approach requires to extract a slice from the
3D lidar point cloud near the height of the radar sensor whose
dimensions however are not explicitly specified. Another
reason might be the generation of the training data and labels
which is unspecified as well. Nevertheless, we want to high-
light, that we do not focus on the development of a novel
PR method in our contribution, but merely want to achieve a
realistic initialization using a given state-of-the-art approach.

For training, we employ the Adam optimizer [72]. We use
a decaying learning rate scheduler with fixed step size and
hyperparameters k0 = 1×10−4, γ = 0.85 and l = 1024 [96].
Additionally, we use a weight decay of 0.001 and a dropout
layer with rate of 0.5 in between the convolutional encoding
and decoding layers of the employed U-Net architecture [97].
Similar to [1], we employ the triplet loss for training with
all radar and lidar combinations for the anchor, positive and
negative sample. Moreover, we choose different samples and
corresponding labels for each training epoch. After training,
we select the model with the smallest loss on the validation
set.

Similar to [95], we save the 322-dimensional low-
frequency signature outputs of the model in a database for
the mapping drive. For a given query scan, we search for the
top-n nearest neighbors based on the Euclidean distance of
the signatures using the FAISS library [98]. Fig. 8 shows the
top-n recall of our trainedmodel on the validation set whereas
a query is counted as a true positive if the retrieved pose is
within the search range of 2.5m and ±15◦ to the true pose.
Finally, the estimation of the global orientation is achieved by
maximizing the cross-correlation of the retrieved frequency
signatures [95].

2) TESTED CONFIGURATIONS
We want to evaluate different configurations of our pro-
posed localization method to analyze the effects of estimating
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FIGURE 8. Top-n recall of our trained PR model based on [1], [95] on the
validation set.

multiple hypotheses on the one hand and additional esti-
mating a null hypothesis on the other hand with respect
to the initialization performance. Therefore, we compare
the single-hypothesis approach (nmax = 1) against the
multi-hypothesis approach where we choose nmax = 4 which
constitutes the GPU capacity in our case. For the multi-
hypothesis approaches, we can additionally enable the esti-
mation of the null hypothesis probability using either of
both null hypothesis initialization strategies (NHIS) detailed
in Sect. III-C7. Based on [47], we label the configurations
using a NHIS with MHL-G and MHL-C for the greedy (G)
and conservative (C) strategy respectively. The configuration
without NHIS will be termed GSF. The resulting localization
method is available if only one hypothesis is tracked and
all other possible hypotheses have been pruned or merged,
i.e. nk = 1, and, if enabled, the null hypothesis probability
is below the threshold τinit = 0.01. Again, we use the HF
configuration as another baseline as well.

3) INITIALIZATION SCENARIOS
Similar to [2], we choose the sequences KAIST02, DCC01
and Riverside02 of the MulRan dataset for testing. To focus
the evaluation on the initialization performance, we consider
multiple short snippets along each sequence with different
start frames where we initialize the localization based on the
corresponding top-n retrieved poses from the PR. That is for
the EKF and HF configuration, we initialize with the top-1
pose and for the GSF and MHL variants with the top-4 poses.
Every snippet has a length of 100 frames, i.e. 25 s. Based on
the retrieved poses from the PR, we differentiate between the
following scenarios:

• Top-1 in range: The top-1 pose at the corresponding
start frame lies within the search range of the true pose.
This scenario can be seen as the baseline scenario for
approaches like [27], [35], and [41] that assume, and in
fact require, that the top-1 pose lies in the search range
for the subsequent local pose tracking.

• Top-1 not in range, but top-n: in this case, the top-1 pose
at the start frame is not within the search range while we
enforce it to be at least 20m away from the true pose.
However, at least one of the other initial top-n poses
lies within the search range. With this scenario, we want

to evaluate the capabilities of our proposed method to
identify the correct pose from the n initialized poses.

• None in range: these scenarios define the cases where
none of the initially retrieved n poses at the start frame
are close to the true pose, i.e. at least 20m distant. Here,
we want to explicitly evaluate both presented initializa-
tion strategies that additionally estimate the probability
of the null hypothesis by consecutively performing PR
until this probability falls below a threshold. In fact, this
scenario would be the default scenario that has to be
assumed when initializing the localization system with
a PR method.

For every scenario we randomly select 150, 50 and 100 cor-
responding start frames along the KAIST02, DCC01 and
Riverside02 sequence respectively.

4) INITIALIZATION-SPECIFIC EVALUATION METRICS
As additional metrics especially designated for the quantifi-
cation of the initialization performance, we determine the
number of initialization failures that occurred in the exper-
iments. Initialization failures can be two-fold. Either the true
pose does not lie inside the search range after the initialization
time of 25 s although the localization system is available
or the localization system does not become available at all
within the initialization time. The latter condition may only
be applied for multiple hypotheses approaches, i.e. GSF
and MHL, which are unavailable if there is more than one
estimated hypothesis or the null hypothesis probability is
above the threshold. Based on both types of initialization fail-
ures, we can differentiate between undetected (Undet.) and
detected (Det.) failures. An undetected failure corresponds
to the situation where the localization system is available,
but the true pose lies outside the search range after initial-
ization. A detected failure corresponds to the case where
the localization system was unavailable for the complete
100 frames.

Similar to [60], we further determine the mean and stan-
dard deviation of the convergence time of the corresponding
methods, i.e. the number of seconds until the localization sys-
tem becomes available for the first time. The EKF approach
(nmax = 1) as well as the HF are always deemed available
with a required initialization time of 0 s as no self-assessment
is performed here.

5) QUANTITATIVE RESULTS
The results of the initialization experiments for KAIST02,
DCC01 and Riverside02 are summarized in Table 6. It shows
that all configurations enable a successful initialization in
most cases when the top-1 pose lies within the search range
of the frontend with medians in the translational and absolute
yaw error of < 0.4m and < 0.7◦ respectively. However,
the approaches that do not use a NHIS, i.e. the HF, EKF
and GSF, produce undetected failures. For the EKF and GSF
this corresponds to situations where only one hypothesis was
initialized within the search range of the true pose while
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the initial yaw orientation was > 10◦ off. Subsequently,
inaccurate pose measurements were received from the fron-
tend model such that the most likely drifted out of the
search range of the true pose. For the failure of the GSF,
this resulted in the problem that one of the previously less
likely hypothesis became the most probable such that the
estimation falsely converged to this wrong hypothesis. Again,
the HF failed due to clutter measurements mostly occurring in
the Riverside02 sequence (cf. Sect. IV-D) such that the true
pose moved out of the search range. The MHL approaches
do not suffer from the aforementioned problems as they
reinitialize multiple new hypotheses during the initialization
phase such that it becomes very likely that more than one
hypothesis will be initialized close to the true pose which
likewise leads to multiple pose measurements in the search
range. Here, the estimation eventually converges around the
true pose. This reveals that employing a NHIS robustifies the
initialization even in the case when the top-1 pose is already
close to the true pose. The drawback is that the convergence
time increases when using multiple hypotheses (cf. Table 6).
This is expected as it requires some update steps until the
weights of the incorrect hypotheses fall below the pruning
threshold and the null hypothesis probability finally falls
below τinit.
The results of the scenarios where the top-1 pose is not in

range highlight that using the top-1 PR pose for initialization
without any method for validation will lead to localization
failures with arbitrarily large errors that may even exceed
several hundreds of meters. However, if at least one of the
top-n poses lies within the search range, the correct pose can
be identified with 0% undetected failures when using one of
the proposed MHL approaches. Again, the GSF shows a less
robust performance where it converged to a wrong hypothesis
in some cases.

Finally, when none of the initially retrieved poses lies close
to the true pose, only the MHL approaches may succeed
while the other approaches fail for all experiments. Here,
the GSF approach may detect some failures in cases where
the ambiguities between the four initialized hypotheses could
not be resolved within the initialization phase such that more
than one hypothesis survived after 100 frames. The approach
therefore already provides some capabilities of detecting
ambiguous situations during initialization. However, in most
cases one of the four tracked, but incorrect, hypotheses still
becomes much more likely with respect to the other hypothe-
ses such that all other hypotheses are pruned. The greedy
MHL method generally achieves faster convergence times
and fewer failures when considering detected failures. This
is due to the property that the conservative method requires
more time for initialization as all hypotheses except one have
to be pruned before new hypotheses can be initialized. Since
it may happen that ambiguities cannot be resolved over the
whole initialization sequence, as visible in the GSF results,
the resulting rate of detected failures is much higher for the
conservative initialization method. The faster initialization
time of the greedy method however comes with the cost of

an inferior robustness compared to MHL-C. This may even
lead to undetected localization failures for very ambiguous
situations which are present in the Riverside02 sequence.
Overall, the MHL-C method shows the most robust initial-
ization performance and likewise achieves the lowest metric
localization errors when initialized.

6) QUALITATIVE RESULTS
Fig. 9 depicts an example initialization experiment using
the MHL-G config on the KAIST02 sequence where none
of the initially retrieved PR poses lied within the search
range. Fig. 9a shows the most likely hypothesis (top row)
as well as the currently closest hypothesis to the true pose
(bottom row) depicted by a blue triangle and 2σ covariance
ellipse overlaid on the corresponding map tiles for different
frames. The middle row shows the radar sensor image of the
corresponding frame. The red triangles and ellipses repre-
sent the pose measurements and associated uncertainties that
resulted from the Gaussian approximation of the correlation
surface. Finally, the green triangles depict the true poses.
The edge colors of the images correspond to different frames
that are accordingly marked with vertical lines of the same
color in the plot of the hypotheses log weights below in
Fig. 9b. At the beginning, the initialized hypotheses have
similar weights whereas none of the hypotheses is close to
the true pose. Over the next subsequent frames, odometry
and pose measurements are fused within the prediction and
update step of the MHL-G filter, which results in relative
changes between the hypotheses’ weights. However, the null
hypothesis probability stays constant as no hypotheses gets
pruned or merged. After frame 14 the situation changes.
Here, the weight of the least likely hypothesis falls below
τprune such that it gets pruned and the PR is retriggered. This
process repeats several times until it happens that at frame
52 the PR actually returns a pose that is within the search
range of the true pose which is visible in the mid-bottom
image in Fig. 9a. The most likely hypothesis at that frame
is by this time far off and the estimation even moved out-
side the driveable area due to inconsistencies between the
odometry and pose measurements. In the subsequent frames,
the MHL-G algorithm correctly and quickly identifies that
the newly initialized hypothesis is much more likely than the
previous most likely hypothesis such that already two frames
later a hypothesis switch takes place and the newly initialized
hypothesis becomes the most likely hypothesis. Afterwards,
this hypothesis consistently stays the most likely hypothesis
while the null hypothesis monotonically decreases when-
ever another hypothesis is pruned or merged until ŵ(0)

k falls
below τinit.

F. LIDAR-TO-AERIAL-IMAGERY POSE TRACKING
EVALUATION
To show that our approach is suited for different sensor
modalities, we performed lidar-to-aerial-imagery localiza-
tion, also known as geo-tracking [41], on a self-recorded
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TABLE 6. Results of the radar-to-lidar initialization experiments on selected sequences of the MulRan dataset. Bold numbers highlight the best result for
the corresponding metric.

TABLE 7. Results of our proposed EKF configuration for the
lidar-to-aerial-imagery pose tracking experiments on a highway and
urban sequence of the Dortmund dataset.

dataset around the city of Dortmund, Germany, for the EKF
configuration initialized with the GT. Table 7 reports the
mean and standard deviation of the translation and yaw error
for both scenarios. With an average translation error < 1m
for both a highway and an urban scenario, we achieve a

similar localization accuracy with respect to the state-of-the-
art geo-tracking approach of [41]. However, there are some
failures that occurred in the highway experiment. Fig. 10
depicts two situations of the highway sequence. The top
row depicts a scenario where the localization is success-
ful whereas the bottom row shows a situation where a
failure occurred. The cause of the failure is visible when
regarding the correlation surface. In case of a successful
localization, a clear smooth peak is visible in the cor-
relation surface. On the other hand, in case of a fail-
ure the correlation distribution is clearly multimodal such
that it can only be poorly approximated by a Gaussian
distribution.
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FIGURE 9. Evolution of an initialization scenario on the KAIST02 sequence of the MulRan dataset [3] using the MHL-G configuration where initially none
of the tracked hypotheses is close to the true pose. Subfigure (a) shows the most likely (top row) and currently closest hypothesis to the GT (bottom row)
after the update step together with the corresponding radar sensor image (middle row). The blue triangles with covariance ellipses correspond to the
estimated hypotheses whereas the red counterparts depict the current pose observations. The green triangle corresponds to the true pose. The colors of
the image borders correspond to specific time frames equally highlighted in subfigure (b) which depicts the corresponding evolution of the hypotheses
log weights during the experiment together with the null hypothesis probability threshold τinit.

FIGURE 10. Depiction of input, intermediate and output data of the proposed localization approach for two frames of the highway sequence.
Subfigures (a)-(f) represent a scenario where the localization was successful. Subfigures (g)-(l) shows a situation where a failure occurred.
The subcaptions comprise the following abbreviations: AI: aerial image, LI: lidar image, ME: map embedding, LE: lidar embedding, CS:
correlation surface.
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V. CONCLUSION
In this work, we presented a true GNSS-free cross-modality
global localization method by combining place recognition
with multi-hypothesis pose tracking to validate if one of the
retrieved poses from PR actually corresponds to the true
pose. Here, the multi-hypothesis pose tracking algorithm
obtains measurements from our deep sensor-to-map match-
ing network that is capable of extracting relevant features
of both two-dimensional and three-dimensional map and
sensor data of different modalities. Together with the latest
odometry measurements it is possible to infer the correct
hypothesis over time. The multi-hypothesis tracking algo-
rithm is realized by a Gaussian sum filter which allows for
an initialization with the top-n retrieved poses from the PR.
Equivalent multi-hypothesis solutions based on commonly
used histogram or particle filters would be computationally
hardlymanageable. Since the top-n recall of current PRmeth-
ods is below 100%, we additionally account for the case that
none of the initialized poses is close to the true pose by intro-
ducing the concept of a null hypothesis and estimate its proba-
bility during the initialization phase. Our localization method
continuously eliminates unlikely hypotheses while lowering
the null hypothesis probability through the initialization of
new hypotheses based on the PR until one likely pose hypoth-
esis remains and the null hypothesis probability falls below
a threshold. Only starting from this point, the localization
system becomes available. In extensive experiments, we show
that our system achieves 0% undetected initialization failures
on theMulRan dataset while achieving state-of-the-art metric
cross-modality localization accuracy on both a radar-to-lidar
as well as a lidar-to-aerial-imagery dataset. Future work will
focus on the extension of the approach to camera images
as sensor input data enabling cross-view geo-localization
(CVGL) [41]. Further enhancements will focus on localiza-
tion robustness and accuracy.
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